Administration and Configuration Guide

JBoss Enterprise Application Platform 6.2

For Use with Red Hat JBoss Enterprise Application Platform 6

Edition 1

Nidhi Chaudhary

Lucas Costi

Russell Dickenson

Sande Gilda

Vikram Goyal

Eamon Logue

Darrin Mison

Scott Mumford

David Ryan

Misty Stanley-Jones

Keerat Verma

Tom Wells

Abstract

This book is a guide to the administration and configuration of Red Hat JBoss Enterprise Application Platform 6 and its patch releases.

Chapter 1. Introduction

1.1. About Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6)

Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a fast, secure, powerful middleware platform built upon open standards, and compliant with the Java Enterprise Edition 6 specification. It integrates JBoss Application Server 7 with high-availability clustering, powerful messaging, distributed caching, and other technologies to create a stable and scalable platform.
The new modular structure allows for services to be enabled only when required, significantly increasing start up speed. The Management Console and Management Command Line Interface remove the need to edit XML configuration files by hand, adding the ability to script and automate tasks. In addition, it includes APIs and development frameworks that can be used to develop secure, powerful, and scalable Java EE applications quickly.

1.2. Features of JBoss EAP 6

Table 1.1. 6.1.0 Features

Feature Description
Java Certification Certified implementation of the Java Enterprise Edition 6 Full Profile and Web Profile specifications.
Managed Domain
  • Centralized management of multiple server instances and physical hosts, while a Standalone Server allows for a single server instance.
  • Configurations, deployments, socket bindings, modules, extensions, and system properties are managed per server group.
  • Application security, including security domains, are managed centrally for simplified configuration.
Management Console and Management CLI New interfaces are provided to manage the domain or standalone server. Manual editing of XML configuration files is no longer required. The Management CLI also offers batch mode that can script and automate management tasks.
Simplified directory layout The modules/ directory now contains the application server modules, instead of using common and server-specific lib/directories. The domain/ and standalone/ directories contain the artifacts and configuration files for domain and standalone deployments.
Modular classloading mechanism Modules are loaded and unloaded on demand to provide performance and security benefits and a faster start-up and restart time.
Streamlined Data source management Database drivers are deployed just like other services. In addition, datasources are created and managed directly in the Management Console or Management CLI.
Faster start and stop time JBoss EAP 6 uses fewer resources and is extremely efficient in its use of system resources. This is especially beneficial for developers.

1.3. About JBoss EAP 6 Operating Modes

JBoss EAP provides two modes of operating the JBoss EAP instances. It can either be booted into a standalone server, or managed domain. Each mode is designed to suit the different needs of diverse business scenarios. It enables you to choose from a single server installation or coordinated multi-server management to leverage on your business needs and automate processes for ease of management.
The choice between a managed domain and standalone servers is all about how your servers are managed and not what capabilities they provide to service the end user requests. This distinction is particularly important when it comes to high availability (HA) clusters. It is important to understand that HA functionality is orthogonal to running standalone servers or a managed domain. That is, a group of standalone servers can be configured to form an HA cluster.

1.4. About Standalone Servers

A standalone server is one of two operating modes for JBoss EAP 6. A standalone server mode is an independent process and is analogous to the only running mode of previous versions of JBoss EAP.
A JBoss EAP 6 instance running as a standalone server is a single instance only, but can optionally run in a clustered configuration.

1.5. About Managed Domains

A managed domain is one of two operating modes for a JBoss EAP 6 instance. It is a mode to manage multiple instances of JBoss EAP 6 from a single point of control.
A collection of servers that are centrally managed are known as members of a domain. All the JBoss EAP 6 instances in the domain share a common management policy. A domain consists of one domain controller, one or more host controller(s), and zero or more server groups per host.
A domain controller is the central point from which the domain is controlled. It ensures that each server is configured according to the management policy of the domain. The domain controller is also a host controller. A host controller is a physical or a virtual host on which the domain.sh or domain.bat script is run. Unlike the domain controller, the host controllers are configured to delegate domain management tasks to it. The host controller on each host interacts with the domain controller to control the lifecycle of the application server instances running on its host and to assist the domain controller to manage them. Each host can contain multiple server groups. A server group is a set of server instances, which has JBoss EAP 6 installed on it and are managed and configured as one. Since the domain controller manages the configuration and applications deployed onto server groups, each server in a server group shares the same configuration and deployments.
It is possible for a domain controller, a single host controller, and multiple servers to run within the same instance of JBoss EAP 6, on the same physical system. Host controllers are tied to specific physical (or virtual) hosts. You can run multiple host controllers on the same hardware if you use different configurations, so that the ports and other resources do not conflict.
A managed domain with one domain controller, three host controllers, and three server groups. Servers are members of server groups, and may be located on any of the host controllers in the domain.

Figure 1.1. Graphical Representation of a Managed Domain

1.6. About the Domain Controller

A Domain Controller is a JBoss EAP 6 server instance that acts as a central management point for a domain. One host controller instance is configured to act as a domain controller. The primary responsibilities of the domain controller are:
  • Maintain the domain's central management policy
  • Ensure all host controllers are aware of its current contents
  • Assist the host controllers in ensuring that all running JBoss EAP 6 instances are configured in accordance with this policy
The central management policy is stored by default in the domain/configuration/domain.xml file, in the unzipped JBoss EAP 6 installation file, on the domain controller's host's filesystem.
A domain.xml file must be located in the domain/configuration/ directory of the host controller that is meant to run as the domain controller. This file is not mandatory for installations on host controllers that are not meant to run as a domain controller though, the presence of a domain.xml file on such a server does no harm. The domain.xml file contains the configuration of the various profiles that can be configured to run on the server instances in a domain. A profile configuration includes the detailed configuration of the various subsystems that comprise a profile. The domain configuration also includes the definition of groups of sockets and the definition of server groups.

1.7. About Domain Controller Failover

If a domain controller fails due to some reason, you can configure and promote any of the host controllers to act as domain controller.

1.8. About Host Controller

A host controller is launched when the script domain.sh or domain.bat script is run on a host. The primary responsibility of a host controller is server management. It delegates domain management tasks and is responsible for starting and stopping the individual application server processes that run on its host. It interacts with the domain controller to help manage the communication between the servers and the domain controller. Multiple host controllers of a domain can interact with only a single domain controller. Hence, all the host controllers and server instances running on a single domain mode can have a single domain controller and must belong to the same domain.
Each host controller by default reads its configuration from the domain/configuration/host.xml file located in the unzipped JBoss EAP 6 installation file on its host's filesystem. The host.xml file contains the following configuration information that is specific to the particular host:
  • List of the names of the actual JBoss EAP 6 instances that are meant to run from this installation
  • Any of the following configurations:
    • how the host controller contacts the domain controller to register itself and access the domain configuration
    • how to find and contact a remote domain controller
    • telling the host controller to itself act as the domain controller
  • Configuration of items that are specific to the local physical installation. For example, named interface definitions declared in domain.xml can be mapped to an actual machine-specific IP address in host.xml. Abstract path names in domain.xml can be mapped to actual filesystem paths in host.xml.

1.9. About Server Groups

A server group is a collection of server instances that are managed and configured as one. In a managed domain, every application server instance belongs to a server group, even if it is the only member. The server instances in a group share the same profile configuration and deployed content. A domain controller and a host controller enforces the standard configuration on all server instances of every server group in its domain. A domain can consist of multiple server groups. Different server groups can be configured with different profiles and deployments, for example in a domain with different tiers of servers providing different services. Different server groups can also have the same profile and deployments, for example to support rolling application upgrade scenarios where a complete service outage is avoided by first upgrading the application on one server group and then upgrading a second server group.
The following is an example of a server group definition:
     
<server-group name="main-server-group" profile="default">
 <socket-binding-group ref="standard-sockets"/>
  <deployments>
   <deployment name="foo.war_v1" runtime-name="foo.war"/>
   <deployment name="bar.ear" runtime-name="bar.ear"/>
  </deployments>
</server-group>

A server group includes the following mandatory attributes:
  • name: the name of the server group
  • profile: the name of the profile for the server group
A server group includes the following optional attributes:
  • socket-binding-group: the name of the default socket binding group to be used for servers in the group. This name can be overridden on a per-server basis in host.xml. If the socket-binding-group name is not provided in the server-group element, it must be provided for each server in the host.xml.
  • deployments: the deployment content to be deployed on the servers in the group
  • system-properties: the system properties to be set on servers in the group
  • jvm: the default jvm settings for all servers in the group. The host controller merges these settings with any other configuration provided in host.xml to derive the settings to be used to launch the server's JVM.

1.10. About JBoss EAP 6 Profiles

The concept of profiles that was used in previous versions of JBoss EAP is no longer used. JBoss EAP 6 now uses a small number of configuration files to hold all information about its configuration.
Modules and drivers are loaded on an as-needed basis, so the concept of a default profile which was used in previous versions of JBoss EAP 6, where profiles were used to make the server start more efficiently, does not apply. At deployment time, module dependencies are determined, ordered, and resolved by the server or domain controller, and loaded in the correct order. During undeployment, modules are unloaded when no deployment needs them any longer.
It is possible to disable modules or undeploy drivers or other services manually by removing the subsystems from the configuration. However, for most cases this is unnecessary. If none of your applications use a module, it will not be loaded.

Chapter 2. Application Server Management

2.1. Start and Stop JBoss EAP 6

2.1.2. Start JBoss EAP 6 as a Standalone Server

Summary

This topic covers the steps to start JBoss EAP 6 as a Standalone Server.

Procedure 2.1. Start the Platform Service as a Standalone Server

  1. For Red Hat Enterprise Linux.

    Run the command: EAP_HOME/bin/standalone.sh
  2. For Microsoft Windows Server.

    Run the command: EAP_HOME\bin\standalone.bat
  3. Optional: Specify additional parameters.

    To print a list of additional parameters to pass to the start-up scripts, use the -h parameter.
Result

The JBoss EAP 6 Standalone Server instance starts.

2.1.3. Start JBoss EAP 6 as a Managed Domain

Order of Operations

The domain controller must be started before any slave servers in any server groups in the domain. Use this procedure first on the domain controller, and then on each associated host controller and each other host associated with the domain.

Procedure 2.2. Start the Platform Service as a Managed Domain

  1. For Red Hat Enterprise Linux.

    Run the command: EAP_HOME/bin/domain.sh
  2. For Microsoft Windows Server.

    Run the command: EAP_HOME\bin\domain.bat
  3. Optional: Pass additional parameters to the start-up script.

    For a list of parameters you can pass to the start-up script, use the -h parameter.
Result

The JBoss EAP 6 Managed Domain instance starts.

2.1.4. Start JBoss EAP 6 with an Alternative Configuration

If you do not specify a configuration file, the server starts with the default file. However, when you start the server, you can specify a configuration manually. The process varies slightly, depending on whether you are using a Managed Domain or Standalone Server, and depending on which operating system you are using.

Prerequisites

  • Before using an alternate configuration file, prepare it using the default configuration as a template. For a Managed Domain, the configuration file needs to be placed in the EAP_HOME/domain/configuration/ directory. For a Standalone Server, the configuration file should be placed in the EAP_HOME/standalone/configuration/ directory.

Note

Several example configurations are included in the EAP_HOME/docs/examples/configs/ directory. Use these examples to enable extra features such as clustering or the Transactions XTS API.

Procedure 2.3. Start the Instance with an Alternative Configuration

  1. Standalone server

    For a Standalone Server, provide the filename of the configuration file as an option to the --server-config parameter. The configuration file must be located in the EAP_HOME/standalone/configuration/ directory, and you need to specify the file path relative to that directory.

    Example 2.1. Using an alternate configuration file for a Standalone Server in Red Hat Enterprise Linux

    [user@host bin]$ ./standalone.sh --server-config=standalone-alternate.xml
    This example uses the EAP_HOME/standalone/configuration/standalone-alternate.xml configuration file.

    Example 2.2. Using an alternate configuration file for a Standalone Server in Microsoft Windows Server

    C:\EAP_HOME\bin> standalone.bat --server-config=standalone-alternate.xml
    This example uses the EAP_HOME\standalone\configuration\standalone-alternative.xml configuration file.
  2. Managed Domain

    For a Managed Domain, provide the file name of the configuration file as an option to the --domain-config parameter. The file must be present in the EAP_HOME/domain/configuration/ directory, and you need to specify the path relative to that directory.

    Example 2.3. Using an alternate configuration file for a Managed Domain in Red Hat Enterprise Linux

    [user@host bin]$ ./domain.sh --domain-config=domain-alternate.xml
    This example uses the EAP_HOME/domain/configuration/domain-alternate.xml configuration file.

    Example 2.4. Using an alternate configuration file for a Managed Domain in Microsoft Windows Server

    C:\EAP_HOME\bin> domain.bat --domain-config=domain-alternate.xml
    
    
    This example uses the EAP_HOME\domain\configuration\domain-alternate.xml configuration file.
Result

JBoss Enterprise Application Platform is now running, using your alternate configuration file.

2.1.5. Stop JBoss EAP 6

The way that you stop JBoss EAP 6 depends on how it was started. This task covers stopping an instance that was started interactively, stopping an instance that was started by a service, and stopping an instance that was forked into the background by a script.

Note

This task does not address stopping a server or server group in a Managed Domain. For those scenarios, see Section 2.2.3, “Stop a Server Using the Management Console”.

Procedure 2.4. Stop a standalone instance of JBoss EAP 6

  1. Stop an instance which was started interactively from a command prompt.

    Press Ctrl-C in the terminal where JBoss EAP 6 is running.
  2. Stop an instance which was started as an operating system service.

    Depending on your operating system, use one of the following procedures.
    • Red Hat Enterprise Linux

      For Red Hat Enterprise Linux, if you have written a service script, use its stop facility. This needs to be written into the script. Then you can use service scriptname stop, where scriptname is the name of your script.
    • Microsoft Windows Server

      In Microsoft Windows, use the net service command, or stop the service from the Services applet in the Control Panel.
  3. Stop an instance which is running in the background (Red Hat Enterprise Linux)

    1. Locate the instance from the process list. One option is to run the command ps aux |grep "[j]ava -server". This returns one result for each JBoss EAP 6 instance that is running on the local machine.
    2. Send the process the TERM signal, by running kill process_ID, where process_ID is the number in the second field of the ps aux command above.
Result

Each of these alternatives shuts JBoss EAP 6 down cleanly so that data is not lost.

2.1.6. Reference of Switches and Arguments to pass at Server Runtime

The application server startup script accepts the addition of arguments and switches at runtime. The use of these parameters allows for the server to be started under alternative configurations to those defined in the standalone.xml, domain.xml and host.xml configuration files. This might include starting the server with an alternative set of socket bindings or a secondary configuration. A list of these available parameters can be accessed by passing the help switch at startup.

Example 2.5. 

The following example is similar to the server startup explained in Section 2.1.2, “Start JBoss EAP 6 as a Standalone Server”, with the addition of the -h or --help switches. The results of the help switch are explained in the table below.
[localhost bin]$ standalone.sh -h

Table 2.1. Table of runtime switches and arguments

Argument or Switch Description
--admin-only Set the server's running type to ADMIN_ONLY. This will cause it to open administrative interfaces and accept management requests, but not start other runtime services or accept end user requests.
-b=<value> Set system property jboss.bind.address to the given value.
-b <value> Set system property jboss.bind.address to the given value.
-b<interface>=<value> Set system property jboss.bind.address.<interface> to the given value.
-c=<config> Name of the server configuration file to use. The default is standalone.xml.
-c <config> Name of the server configuration file to use. The default is standalone.xml.
--debug [<port>] Activate debug mode with an optional argument to specify the port. Only works if the launch script supports it.
-D<name>[=<value>] Set a system property.
-h Display the help message and exit.
--help Display the help message and exit.
--read-only-server-config=<config> Name of the server configuration file to use. This differs from '--server-config' and '-c' in that the original file is never overwritten.
-P=<url> Load system properties from the given URL.
-P <url> Load system properties from the given URL.
--properties=<url> Load system properties from the given URL.
-S<name>[=<value>] Set a security property.
--server-config=<config> Name of the server configuration file to use. The default is standalone.xml.
-u=<value> Set system property jboss.default.multicast.address to the given value.
-u <value> Set system property jboss.default.multicast.address to the given value.
-V Display the application server version and exit.
-v Display the application server version and exit.
--version Display the application server version and exit.

2.2. Start and Stop Servers

2.2.1. Start and Stop Servers Using the Management CLI

You can start and stop servers with the Management CLI or the Management Console. Both management tools allow you to control a single Standalone Server instance, or selectively manage multiple servers across a Managed Domain deployment. If you are using the Management Console, please refer to Section 2.2.2, “Start a Server Using the Management Console” for instructions. If you are using the Management CLI, the process varies between Standalone Server and Managed Domain instances.
Start and Stop a Standalone Server with the Management CLI

A Standalone Server instance can be started by the command line scripts, and shut down from the Management CLI with the shutdown command. If you require the instance again, run the startup process again as described in Section 2.1.2, “Start JBoss EAP 6 as a Standalone Server”.

Example 2.6. Stop a Standalone Server instance via the Management CLI

[standalone@localhost:9999 /] shutdown
Start and Stop a Managed Domain with the Management CLI

If you are running a Managed Domain, the Management Console allows you to selectively start or stop specific servers in the domain. This includes server groups across the whole of the domain, as well as specific server instances on a host.

Example 2.7. Stop a Server Host in a Managed Domain via the Management CLI

Similar to Standalone Server instance, the shutdown command is used to shut down a declared Managed Domain host. This example stops a server host named master by declaring the instance name before calling the shutdown operation. Use the tab key to assist with string completion and to expose visible variables such as available host values.
[domain@localhost:9999 /] /host=master:shutdown

Example 2.8. Start and Stop a Server Group in a Managed Domain via the Management CLI

This example starts a default server group named main-server-group by declaring the group before calling the start and stop operations. Use the tab key to assist with string completion and to expose visible variables such as available server group name values.
[domain@localhost:9999 /] /server-group=main-server-group:start-servers
[domain@localhost:9999 /] /server-group=main-server-group:stop-servers

Example 2.9. Start and Stop a Server Instance in a Managed Domain via the Management CLI

This example starts and then stops a server instance named server-one on the master host by declaring the host and server configuration before calling the start and stop operations. Use the tab key to assist with string completion and to expose visible variables such as available host and server configuration values.
[domain@localhost:9999 /] /host=master/server-config=server-one:start
[domain@localhost:9999 /] /host=master/server-config=server-one:stop

2.2.2. Start a Server Using the Management Console

Procedure 2.5. Start the Server

  1. Navigate to Server Instances in the Management Console

    1. Select the Runtime tab at the top of the console.
  2. Select a server

    From the list of Server Instances, select the server you want to start. Servers that are running are indicated by a check mark.
    Hovering over an instance in this list will present your options in blue text below the server's details.
  3. Click Start

    To start the instance, click on the Start Server text when it appears. A confirmation dialogue box will open. Click the Confirm button to start the server.
Result

The selected server is started and running.

2.2.3. Stop a Server Using the Management Console

Procedure 2.6. Stop a Server Using the Management Console

  1. Navigate to Hosts, groups and server instances in the Management Console

    1. Select the Runtime tab from the top of the console. Available server instances will be displayed in the main pane of the Topology tab.
  2. Select a server

    From the list of Server Instances, select the server you want to stop. Servers that are running are indicated by a check mark.
  3. Click the Stop Server text

    Click on the Stop Server text that appears when you hover your cursor over the server entry. A confirmation dialogue window will appear.
  4. Click the Confirm button to stop the server.
Result

The selected server is stopped.

2.3. Filesystem Paths

2.3.1. Filesystem Paths

JBoss EAP 6 uses logical names for a filesystem paths. The domain.xml, host.xml and standalone.xml configurations all include a section where paths can be declared. Other sections of the configuration can then reference those paths by their logical name, avoiding the declaration of the absolute path for each instance. This benefits configuration and administration efforts as it allows specific host configurations to resolve to universal logical names.
For example, the logging subsystem configuration includes a reference to the jboss.server.log.dir path that points to the server's log directory.

Example 2.10. Relative path example for the logging directory

<file relative-to="jboss.server.log.dir" path="server.log"/>

JBoss EAP 6 automatically provides a number of standard paths without any need for the user to configure them in a configuration file.

Table 2.2. Standard Paths

Value Description
jboss.home.dir The root directory of the JBoss EAP 6 distribution.
user.home The user home directory.
user.dir The user's current working directory.
java.home The Java installation directory
jboss.server.base.dir The root directory for an individual server instance.
jboss.server.data.dir The directory the server will use for persistent data file storage.
jboss.server.config.dir The directory that contains the server configuration.
jboss.server.log.dir The directory the server will use for log file storage.
jboss.server.temp.dir The directory the server will use for temporary file storage.
jboss.controller.temp.dir The directory the host controller will use for temporary file storage.
Users can add their own paths or override all except the first five of the above by adding a path element to their configuration file. The following example shows a new relative path declaration relative to the root directory for the individual server instance.

Example 2.11. Format of a relative path

<path name="examplename" path="example/path" relative-to="jboss.server.data.dir"/>

The structure of a path declaration uses the following attributes.

Table 2.3. Path Attributes

Attribute Description
name The name of the path.
path The actual filesystem path. Treated as an absolute path, unless the relative-to attribute is specified, in which case the value is treated as relative to that path.
relative-to An optional attribute indicating the name of another previously named path, or of one of the standard paths provided by the system.
A path element in a domain.xml configuration file only requires the name attribute. It does not need to include any information indicating what the actual filesystem path is, as shown in the following example.

Example 2.12. Domain path example

<path name="example"/>

This configuration simply declares that there is a path named example that the other parts of the domain.xml configuration can reference. The actual filesystem location declared by example is specific to the respective host.xml configuration files of the host instances joining the domain groups. If this approach is used, there must be a path element in each machine's host.xml that specifies what the actual filesystem path is.

Example 2.13. Host path example

<path name="example" path="path/to/example" />

A path element in a standalone.xml must include the specification of the actual filesystem path.

2.4. Configuration File History

2.4.1. About JBoss EAP 6 Configuration Files

The configuration for JBoss EAP 6 has changed considerably from previous versions. One of the most obvious differences is the use of a simplified configuration file structure, which includes one or more of the files listed below.

Table 2.4. Configuration File Locations

Server mode Location Purpose
domain.xml EAP_HOME/domain/configuration/domain.xml This is the main configuration file for a managed domain. Only the domain master reads this file. On other domain members, it can be removed.
host.xml EAP_HOME/domain/configuration/host.xml This file includes configuration details specific to a physical host in a managed domain, such as network interfaces, socket bindings, the name of the host, and other host-specific details. The host.xml file includes all of the features of both host-master.xml and host-slave.xml, which are described below. This file is not present for standalone servers.
host-master.xml EAP_HOME/domain/configuration/host-master.xml This file includes only the configuration details necessary to run a server as a managed domain master server. This file is not present for standalone servers.
host-slave.xml EAP_HOME/domain/configuration/host-slave.xml This file includes only the configuration details necessary to run a server as a managed domain slave server. This file is not present for standalone servers.
standalone.xml EAP_HOME/standalone/configuration/standalone.xml This is the default configuration file for a standalone server. It contains all information about the standalone server, including subsystems, networking, deployments, socket bindings, and other configurable details. This configuration is used automatically when you start your standalone server.
standalone-full.xml EAP_HOME/standalone/configuration/standalone-full.xml This is an example configuration for a standalone server. It includes support for every possible subsystem except for those required for high availability. To use it, stop your server and restart using the following command: EAP_HOME/bin/standalone.sh -c standalone-full.xml
standalone-ha.xml EAP_HOME/standalone/configuration/standalone-ha.xml This example configuration file enables all of the default subsystems and adds the mod_cluster and JGroups subsystems for a standalone server, so that it can participate in a high-availability or load-balancing cluster. This file is not applicable for a managed domain. To use this configuration, stop your server and restart using the following command: EAP_HOME/bin/standalone.sh -c standalone-ha.xml
standalone-full-ha.xml EAP_HOME/standalone/configuration/standalone-full-ha.xml This is an example configuration for a standalone server. It includes support for every possible subsystem, including those required for high availability. To use it, stop your server and restart using the following command: EAP_HOME/bin/standalone.sh -c standalone-full-ha.xml
These are only the default locations. You can specify a different configuration file at run-time.

2.4.2. Configuration File History

The application server configuration files include standalone.xml, as well as the domain.xml and host.xml files. While these files may be modified by direct editing, the recommended method is to configure the application server model with the available management operations, including the Management CLI and the Management Console.
To assist in the maintenance and management of the server instance, the application server creates a timestamped version of the original configuration file at the time of startup. Any additional configuration changes made by management operations result in the original file being automatically backed up, and a working copy of the instance being preserved for reference and rollback. This archival functionality extends to saving, loading and deleting snapshots of the server configuration to allow for recall and rollback scenarios.

2.4.3. Start the Server with a Previous Configuration

The following example shows how to start the application server with a previous configuration in a standalone server with standalone.xml. The same concept applies to a managed domain with domain.xml and host.xml respectively.
This example recalls a previous configuration saved automatically by the application server as management operations modify the server model.
  1. Identify the backed up version that you want to start. This example will recall the instance of the server model prior to the first modification after successfully booting up.
    EAP_HOME/configuration/standalone_xml_history/current/standalone.v1.xml 
  2. Start the server with this configuration of the backed up model by passing in the relative filename under jboss.server.config.dir.
    EAP_HOME/bin/standalone.sh --server-config=standalone_xml_history/current/standalone.v1.xml 
Result

The application server starts with the selected configuration.

2.4.4. Save a Configuration Snapshot Using the Management CLI

Summary

Configuration snapshots are a point-in-time copy of the current server configuration. These copies can be saved and loaded by the administrator.

The following example uses the standalone.xml configuration file, but the same process applies to the domain.xml and host.xml configuration files.

Procedure 2.7. Take a Configuration Snapshot and Save It

  • Save a snapshot

    Run the take-snapshot operation to capture a copy of the current server configuration.
    [standalone@localhost:9999 /] :take-snapshot
    {
        "outcome" => "success",
        "result" => "/home/User/EAP_HOME/standalone/configuration/standalone_xml_history/snapshot/20110630-172258657standalone.xml"
    
Result

A snapshot of the current server configuration has been saved.

2.4.5. Load a Configuration Snapshot Using the Management CLI

Configuration snapshots are a point-in-time copy of the current server configuration. These copies can be saved and loaded by the administrator. The process of loading snapshots is similar to the method used to Section 2.4.3, “Start the Server with a Previous Configuration”, running from the command line rather than the Management CLI interface used to create, list and delete snapshots.
The following example uses the standalone.xml file, but the same process applies to the domain.xml and host.xml files.

Procedure 2.8. Load a Configuration Snapshot

  1. Identify the snapshot to be loaded. This example will recall the following file from the snapshot directory. The default path for the snapshot files is as follows.
    EAP_HOME/standalone/configuration/standalone_xml_history/snapshot/20110812-191301472standalone.xml
    The snapshots are expressed by their relative paths, by which the above example can be written as follows.
    jboss.server.config.dir/standalone_xml_history/snapshot/20110812-191301472standalone.xml
  2. Start the server with the selected configuration snapshot by passing in the filename.
    EAP_HOME/bin/standalone.sh --server-config=standalone_xml_history/snapshot/20110913-164449522standalone.xml
Result

The server restarts with the configuration selected in the loaded snapshot.

2.4.6. Delete a Configuration Snapshot Using Management CLI

Configuration snapshots are a point-in-time copy of the current server configuration. These copies can be saved and loaded by the administrator.
The following examples use the standalone.xml file, but the same process applies to the domain.xml and host.xml files.

Procedure 2.9. Delete a Specific Snapshot

  1. Identify the snapshot to be deleted. This example will delete the following file from the snapshot directory.
    EAP_HOME/standalone/configuration/standalone_xml_history/snapshot/20110630-165714239standalone.xml
  2. Run the :delete-snapshot command to delete a specific snapshot, specifying the name of the snapshot as in the example below.
    [standalone@localhost:9999 /] :delete-snapshot(name="20110630-165714239standalone.xml")
    {"outcome" => "success"}
    
Result

The snapshot has been deleted.

Procedure 2.10. Delete All Snapshots

  • Run the :delete-snapshot(name="all") command to delete all snapshots as in the example below.
    [standalone@localhost:9999 /] :delete-snapshot(name="all")
    {"outcome" => "success"}
    
Result

All snapshots have been deleted.

2.4.7. List All Configuration Snapshots Using Management CLI

Configuration snapshots are a point-in-time copy of the current server configuration. These copies can be saved and loaded by the administrator.
The following example uses the standalone.xml file, but the same process applies to the domain.xml and host.xml files.

Procedure 2.11. List All Configuration Snapshots

  • List all snapshots

    List all of the saved snapshots by running the :list-snapshots command.
    [standalone@localhost:9999 /] :list-snapshots
    {
        "outcome" => "success",
        "result" => {
            "directory" => "/home/hostname/EAP_HOME/standalone/configuration/standalone_xml_history/snapshot",
            "names" => [
                "20110818-133719699standalone.xml",
                "20110809-141225039standalone.xml",
                "20110802-152010683standalone.xml",
                "20110808-161118457standalone.xml",
                "20110912-151949212standalone.xml",
                "20110804-162951670standalone.xml"
            ]
        }
    }
    
Result

The snapshots are listed.

Chapter 3. Management Interfaces

3.1. Manage the Application Server

JBoss EAP 6 offers you multiple management tools to configure and administer your implementation as you require. These include the new Management Console or the Management Command Line Interface (CLI), as examples of the underlying Management API that enables expert users to develop their own tools if they desire.

3.2. Management Application Programming Interfaces (APIs)

Management clients

JBoss EAP 6 offers three different approaches to configure and manage servers, being a web interface, a command line client and a set of XML configuration files. While the recommended methods for editing the configuration file include the Management Console and Management CLI, edits made to the configuration by all three are always synchronized across the different views and finally persisted to the XML files. Note that edits made to the XML configuration files while a server instance is running will be overwritten by the server model.

HTTP API

The Management Console is an example of a web interface built with the Google Web Toolkit (GWT). The Management Console communicates with the server using the HTTP management interface. The HTTP API endpoint is the entry point for management clients that rely on the HTTP protocol to integrate with the management layer. It uses a JSON encoded protocol and a de-typed, RPC-style API to describe and execute management operations against a Managed Domain or Standalone Server. The HTTP API is used by the web console, but offers integration capabilities for a wide range of other clients too.

The HTTP API endpoint is co-located with either the domain controller or a Standalone Server instance. The HTTP API Endpoint serves two different contexts; one for executing management operations and the other to access the web interface. By default, it runs on port 9990.

Example 3.1. HTTP API Configuration File Example

<management-interfaces>
  [...]
  <http-interface security-realm="ManagementRealm">
     <socket-binding http="management-http"/>
  </http-interface>
</management-interfaces>
The web console is served through the same port as the HTTP management API. It is important to distinguish between the Management Console accessed as on a default localhost, the Management Console as accessed remotely by a specific host and port combination, and the exposed domain API.

Table 3.1. URLs to access the Management Console

URL Description
http://localhost:9990/console The Management Console accessed on the local host, controlling the Managed Domain configuration.
http://hostname:9990/console The Management Console accessed remotely, naming the host and controlling the Managed Domain configuration.
http://hostname:9990/management The HTTP Management API runs on the same port as the Management Console, displaying the raw attributes and values exposed to the API.
Native API

An example of a Native API tool is the Management CLI. This management tool is available for a Managed Domain or Standalone Server instance, allowing the a user to connect to the domain controller or a Standalone Server instance and execute management operations available through the de-typed management model.

The Native API endpoint is the entry point for management clients that rely on the native protocol to integrate with the management layer. It uses an open binary protocol and an RPC-style API based on a very small number of Java types to describe and execute management operations. It's used by the Management CLI management tool, but offers integration capabilities for a wide range of other clients too.
The Native API endpoint is co-located with either a host controller or a Standalone Server. It must be enabled to use the Management CLI. By default, it runs on port 9999.

Example 3.2. Native API Configuration File Example

<management-interfaces>
  <native-interface security-realm="ManagementRealm">
    <socket-binding native="management-native"/>
  </native-interface>
  [...]
</management-interfaces>

3.3. About the Management Console and Management CLI

In JBoss EAP 6, all server instances and configurations are managed through management interfaces rather than by editing XML files. While the configuration XML files are still available for editing, administration through the management interfaces provides extra validation and advanced features for the persistent management of server instances. Changes made to the XML configuration files while the server instance is running will be overwritten by the server model, and any XML comments added will be removed as well. Only the management interfaces should be used for modifying the configuration files while a server instance is running.
To manage servers through a graphical user-interface in a web browser, use the Management Console.
To manage servers through a command line interface, use the Management CLI.

3.4. The Management Console

3.4.1. Management Console

The Management Console is a web-based administration tool for JBoss EAP 6.
Use the Management Console to start and stop servers, deploy and undeploy applications, tune system settings, and make persistent modifications to the server configuration. The Management Console also has the ability to perform administrative tasks, with live notifications when any changes require the server instance to be restarted or reloaded.
In a Managed Domain, server instances and server groups in the same domain can be centrally managed from the Management Console of the domain controller.

3.4.2. Log in to the Management Console

Prerequisites

  • JBoss EAP 6 must be running.

Procedure 3.1. Log in to the Management Console

  1. Navigate to the Management Console start page

    Navigate to the Management Console in your web browser. The default location is http://localhost:9990/console/, where port 9990 is predefined as the Management Console socket binding.
  2. Log in to the Management Console

    Enter the username and password of the account that you created previously to log into the Management Console login screen.
    The login screen for the Management console.

    Figure 3.1. Log in screen for the Management Console

Result

Once logged in, one of the Management Console landing pages appears:
Managed domain
Standalone server

3.4.3. Change the Language of the Management Console

The language settings of web-based Management Console use English by default. You can choose to use one of the following languages instead.

Supported Languages

  • German (de)
  • Simplified Chinese (zh-Hans)
  • Brazilian Portuguese (pt-BR)
  • French (fr)
  • Spanish (es)
  • Japanese (ja)

Procedure 3.2. Change the Language of the Web-based Management Console

  1. Log into the Management Console.

    Log into the web-based Management Console.
  2. Open the Settings dialog.

    Near the bottom right of the screen is a Settings label. Click it to open the settings for the Management Console.
  3. Select the desired language.

    Select the desired language from the Locale selection box. Select Save. A confirmation box informs you that you need to reload the application. Click Confirm. Refresh your web browser to use the new locale.

3.4.4. Configure a Server Using the Management Console

Procedure 3.3. Configure the Server

  1. Navigate to the server's Server Configurations panel in the Management Console

    1. Select the Hosts tab from the top of the console. Available server instances will be displayed in a table.
  2. Edit the server configuration

    1. Select the server instance from the Available Server Configurations table.
    2. Select the Edit button beneath the chosen server.
    3. Make changes to the configuration attributes.
    4. Select the Save button beneath the server list.
Result

The server configuration is changed, and will take effect next time the server restarts.

3.4.5. Add a Deployment in the Management Console

Procedure 3.4. Add and Verify a Deployment

  1. Navigate to the Manage Deployments panel in the Management Console

    1. Select the Runtime tab at the top of the console.
    2. For a standalone server, expand the Server menu item on the left of the console and select Manage Deployments. For a managed domain, expand the Domain menu item on the left of the console and select Manage Deployments.
    The Manage Deployments panel appears.
  2. Add deployment content

    Select the Add button on the Content Repository tab. A Create Deployment dialog box appears.
  3. Choose a file to deploy

    In the dialog box, select the Browse button. Browse to the file you want to deploy and select it for upload. Select the Next button to proceed once a file has been selected.
  4. Verify deployment names

    Verify the deployment name and runtime name that appear in the Create Deployments dialog box. Select the Save button to upload the file once the names are verified.
Result

The selected content is uploaded to the server and is now ready for deployment.

3.4.6. Create a New Server in the Management Console

Procedure 3.5. Create a New Server Configuration

  1. Navigate to the Server Configurations page in the Management Console

    Select the Server tab from the top-right of the console.
  2. Create a new configuration

    1. Select the Add button at the top of the Server Configuration panel.
    2. Edit the basic server settings in the Create Server Configuration dialog.
    3. Select the Save button to save the new server configuration.
Result

The new server is created and listed in the Server Configurations list.

3.4.7. Change the Default Log Levels Using the Management Console

Procedure 3.6. Edit the Logging Levels

  1. Navigate to the Logging panel in the Management Console

    1. If you are working with a managed domain, select the Profiles tab at the top of the console, then select the relevant profile from the drop-down list on the left of the console.
    2. For either a managed domain or a standalone server, expand the CoreLogging menu from the menu on the left of the console and click the Logging entry.
    3. Click on the Log Categories tab in the top of the console.
  2. Edit logger details

    Edit the details for any of the entries in the Log Categories table.
    1. Select an entry in the Log Categories table, then select the Edit button in the Details section below.
    2. Set the log level for the category with the Log Level drop-down box. Select the Save button when done.
Result

The log levels for the relevant categories are now updated.

3.4.8. Create a New Server Group in the Management Console

Procedure 3.7. Configure and Add a new Server Group

  1. Navigate to the Server Groups view

    Select the Hosts tab in the top-right corner.
  2. Select the Server Groups tab under the Server menu in the left hand column.
  3. Add a server group

    Click the Add button to add a new server group.
  4. Configure the server group

    1. Enter a name for the server group.
    2. Select the profile you want to add the server group to.
    3. Select the socket binding you want to add the server group to.
    4. Select the Save button to save your new group.
Result

The new server group is visible in the Management Console.

3.5. The Management CLI

3.5.1. About the Management Command Line Interface (CLI)

The Management Command Line Interface (CLI) is a command line administration tool for JBoss EAP 6.
Use the Management CLI to start and stop servers, deploy and undeploy applications, configure system settings, and perform other administrative tasks. Operations can be performed in batch modes, allowing multiple tasks to be run as a group.

3.5.2. Launch the Management CLI

Procedure 3.8. Launch CLI in Linux or Windows

    • Launch the CLI in Linux

      Run the EAP_HOME/bin/jboss-cli.sh file by entering the following at a command line:
      $ EAP_HOME/bin/jboss-cli.sh
    • Launch the CLI in Windows

      Run the EAP_HOME\bin\jboss-cli.bat file by double-clicking it, or by entering the following at a command line:
      C:\>EAP_HOME\bin\jboss-cli.bat

3.5.3. Quit the Management CLI

Procedure 3.9. Quit the Management CLI

  • Run the quit command

    From the Management CLI, enter the quit command:
    [domain@localhost:9999 /] quit
    Closed connection to localhost:9999

3.5.4. Connect to a Managed Server Instance Using the Management CLI

Procedure 3.10. Connect to a Managed Server Instance

  • Run the connect command

    From the Management CLI, enter the connect command:
    [disconnected /] connect
    Connected to domain controller at localhost:9999
    • Alternatively, to connect to a managed server when starting the Management CLI on a Linux system, use the --connect parameter:
      $ EAP_HOME/bin/jboss-cli.sh --connect
    • The --connect parameter can be used to specify the host and port of the server. To connect to the address 192.168.0.1 with the port value 9999 the following would apply:
      $ EAP_HOME/bin/jboss-cli.sh --connect --controller=192.168.0.1:9999

3.5.5. Get Help with the Management CLI

Summary

The Management CLI features a help dialog with general and context sensitive options. The help commands dependent on the operation context require an established connection to either a standalone or domain controller. These commands will not appear in the listing unless the connection has been established.

Procedure 3.11. General and Context-Sensitive Help

  1. Run the help command

    From the Management CLI, enter the help command:
    [standalone@localhost:9999 /] help
  2. Get context sensitive help

    From the Management CLI, enter the help -commands extended command:
    [standalone@localhost:9999 /] help --commands
  3. For a more detailed description of a specific command, execute the help command with '--help' as the argument.
    [standalone@localhost:9999 /]  deploy --help
Result

The CLI help information is displayed.

3.5.6. Use the Management CLI in Batch Mode

Summary

Batch processing allows a number of operation requests to be grouped in a sequence and executed together as a unit. If any of the operation requests in the sequence fail, the entire group of operations is rolled back.

Procedure 3.12. Batch Mode Commands and Operations

  1. Enter batch mode

    Enter batch mode with the batch command.
    [standalone@localhost:9999 /] batch
    [standalone@localhost:9999 / #]
    Batch mode is indicated by the hash symbol (#) in the prompt.
  2. Add operation requests to the batch

    Once in batch mode, enter operation requests as normal. The operation requests are added to the batch in the order they are entered.
    Refer to Section 3.5.8, “Use Operations and Commands in the Management CLI” for details on formatting operation requests.
  3. Run the batch

    Once the entire sequence of operation requests is entered, run the batch with the run-batch command.
    [standalone@localhost:9999 / #] run-batch
    The batch executed successfully.
    Refer to Section 3.5.7, “CLI Batch Mode Commands” for a full list of commands available for working with batches.
  4. Batch commands stored in external files

    Frequently run batch commands can be stored in an external text file and can either be loaded by passing the full path to the file as an argument to the batch command or executed directly by being an argument to the run-batch command.
    You can create a batch command file using a text editor. Each command must be on a line by itself and the CLI should be able to access it.
    The following command will load a myscript.txt file in the batch mode. All commands in this file will now be accessible to be edited or removed. New commands can be inserted. Changed made in this batch session do not persist to the myscript.txt file.
    [standalone@localhost:9999 /] batch --file=myscript.txt
    The following will instantly run the batch commands stored in the file myscript.txt
    [standalone@localhost:9999 /] run-batch --file=myscript.txt
Result

The entered sequence of operation requests is completed as a batch.

3.5.7. CLI Batch Mode Commands

This table provides a list of valid batch commands that can be used in the JBoss EAP 6 CLI. These commands can only be used to work with batches.

Table 3.2. CLI Batch Mode Commands

Command Name Description
list-batch List of the commands and operations in the current batch.
edit-batch-line line-number edited-command Edit a line in the current batch by providing the line number to edit and the edited command. Example: edit-batch-line 2 data-source disable --name=ExampleDS.
move-batch-line fromline toline Re-order the lines in the batch by specifying the line number you want to move as the first argument and its new position as the second argument. Example: move-batch-line 3 1.
remove-batch-line linenumber Remove the batch command at the specified line. Example: remove-batch-line 3.
holdback-batch [batchname]
You can postpone or store a current batch by using this command. Use this if you want to suddenly execute something in the CLI outside the batch. To return to this heldback batch, simply type batch again at the CLI command line.
If you provide a batchname while using holdback-batch command the batch will be stored under that name. To return to the named batch, use the command batch batchname. Calling the batch command without a batchname will start a new (unnamed) batch. There can be only one unnamed heldback batch.
To see a list of all heldback batches, use the batch -l command.
discard-batch Dicards the currently active batch.

3.5.8. Use Operations and Commands in the Management CLI

Procedure 3.13. Create, Configure and Execute Requests

  1. Construct the operation request

    Operation requests allow for low-level interaction with the management model. They provide a controlled way to edit server configurations. An operation request consists of three parts:
    • an address, prefixed with a slash (/).
    • an operation name, prefixed with a colon (:).
    • an optional set of parameters, contained within parentheses (()).
    1. Determine the address

      The configuration is presented as a hierarchical tree of addressable resources. Each resource node offers a different set of operations. The address specifies which resource node to perform the operation on. An address uses the following syntax:
      /node-type=node-name
      • node-type is the resource node type. This maps to an element name in the configuration XML.
      • node-name is the resource node name. This maps to the name attribute of the element in the configuration XML.
      • Separate each level of the resource tree with a slash (/).
      Refer to the configuration XML files to determine the required address. The EAP_HOME/standalone/configuration/standalone.xml file holds the configuration for a standalone server and the EAP_HOME/domain/configuration/domain.xml and EAP_HOME/domain/configuration/host.xml files hold the configuration for a managed domain.

      Example 3.3. Example operation addresses

      To perform an operation on the logging subsystem, use the following address in an operation request:
      /subsystem=logging
      To perform an operation on the Java datasource, use the following address in an operation request:
      /subsystem=datasources/data-source=java
    2. Determine the operation

      Operations differ for each different type of resource node. An operation uses the following syntax:
      :operation-name
      • operation-name is the name of the operation to request.
      Use the read-operation-names operation on any resource address in a standalone server to list the available operations.

      Example 3.4. Available operations

      To list all available operations for the logging subsystem, enter the following request for a standalone server:
      [standalone@localhost:9999 /] /subsystem=logging:read-operation-names
      {
          "outcome" => "success",
          "result" => [
              "add",
              "read-attribute",
              "read-children-names",
              "read-children-resources",
              "read-children-types",
              "read-operation-description",
              "read-operation-names",
              "read-resource",
              "read-resource-description",
              "remove",
              "undefine-attribute",
              "whoami",
              "write-attribute"
          ]
      }
      
    3. Determine any parameters

      Each operation may require different parameters.
      Parameters use the following syntax:
      (parameter-name=parameter-value)
      • parameter-name is the name of the parameter.
      • parameter-value is the value of the parameter.
      • Multiple parameters are separated by commas (,).
      To determine any required parameters, perform the read-operation-description command on a resource node, passing the operation name as a parameter. Refer to Example 3.5, “Determine operation parameters” for details.

      Example 3.5. Determine operation parameters

      To determine any required parameters for the read-children-types operation on the logging subsystem, enter the read-operation-description command as follows:
      [standalone@localhost:9999 /] /subsystem=logging:read-operation-description(name=read-children-types)
      {
          "outcome" => "success",
          "result" => {
              "operation-name" => "read-children-types",
              "description" => "Gets the type names of all the children under the selected resource",
              "reply-properties" => {
                  "type" => LIST,
                  "description" => "The children types",
                  "value-type" => STRING
              },
              "read-only" => true
          }
      }
      
  2. Enter the full operation request

    Once the address, operation, and any parameters have been determined, enter the full operation request.

    Example 3.6. Example operation request

    [standalone@localhost:9999 /] /subsystem=web/connector=http:read-resource(recursive=true)
Result

The management interface performs the operation request on the server configuration.

3.5.9. Reference of Management CLI Commands

Summary

The topic Section 3.5.5, “Get Help with the Management CLI” describes how to access the Management CLI help features, including a help dialogue with general and context sensitive options. The help commands are dependent on the operation context and require an established connection to either a standalone or domain controller. These commands will not appear in the listing unless the connection has been established.

Table 3.3. 

Command Description
batch Starts the batch mode by creating a new batch or, depending on the existing held back batches, re-activates one. If there are no held back batches this command invoked w/o arguments will start a new batch. If there is an unnamed held back batch, this command will re-activate it. If there are named held back batches, they can be activated by executing this command with the name of the held back batch as the argument.
cd Changes the current node path to the argument. The current node path is used as the address for operation requests that do not contain the address part. If an operation request does include the address, the included address is considered relative to the current node path. The current node path may end on a node-type. In that case, to execute an operation specifying a node-name would be sufficient, such as logging:read-resource.
clear Clears the screen.
command Allows you to add new, remove and list existing generic type commands. A generic type command is a command that is assigned to a specific node type and which allows you to perform any operation available for an instance of that type. It can also modify any of the properties exposed by the type on any existing instance.
connect Connects to the controller on the specified host and port.
connection-factory Defines a connection factory.
data-source Manages JDBC datasource configurations in the datasource subsystem.
deploy Deploys the application designated by the file path or enables an application that is pre-existing but disabled in the repository. If executed without arguments, this command will list all the existing deployments.
help Displays the help message. Can be used with the --commands argument to provide context sensitive results for the given commands.
history Displays the CLI command history in memory and displays a status of whether the history expansion is enabled or disabled. Can be used with arguments to clear, disable and enable the history expansion as required.
jms-queue Defines a JMS queue in the messaging subsystem.
jms-topic Defines a JMS topic in the messaging subsystem.
ls List the contents of the node path. By default the result is printed in columns using the whole width of the terminal. Using the -l switch will print results on one name per line.
pwd Prints the full node path of the current working node.
quit Terminates the command line interface.
read-attribute Prints the value and, depending on the arguments, the description of the attribute of a managed resource.
read-operation Displays the description of a specified operation, or lists all available operations if none is specified.
undeploy Undeploys an application when run with the name of the intended application. Can be run with arguments to remove the application from the repository also. Prints the list of all existing deployments when executed without an application specified.
version Prints the application server version and environment information.
xa-data-source Manages JDBC XA datasource configuration in the datasource subsystem.

3.5.10. Reference of Management CLI Operations

Exposing operations in the Management CLI

Operations in the Management CLI can be exposed by using the read-operation-names operation described in the topic Section 3.6.5, “Display the Operation Names using the Management CLI”. The operation descriptions can be exposed by using the read-operation-descriptions operation described in the topic Section 3.6.4, “Display an Operation Description using the Management CLI”.

Table 3.4. Management CLI operations

Operation Name Description
add-namespace Adds a namespace prefix mapping to the namespaces attribute's map.
add-schema-location Adds a schema location mapping to the schema-locations attribute's map.
delete-snapshot Deletes a snapshot of the server configuration from the snapshots directory.
full-replace-deployment Add previously uploaded deployment content to the list of content available for use, replace existing content of the same name in the runtime, and remove the replaced content from the list of content available for use. Refer to link for further information.
list-snapshots Lists the snapshots of the server configuration saved in the snapshots directory.
read-attribute Displays the value of an attribute for the selected resource.
read-children-names Displays the names of all children under the selected resource with the given type.
read-children-resources Displays information about all of a resource's children that are of a given type.
read-children-types Displays the type names of all the children under the selected resource.
read-config-as-xml Reads the current configuration and displays it in XML format.
read-operation-description Displays the details of an operation on the given resource.
read-operation-names Displays the names of all the operations for the given resource.
read-resource Displays a model resource's attribute values along with either basic or complete information about any child resources.
read-resource-description Displays the description of a resource's attributes, types of children and operations.
reload Reloads the server by shutting all services down and restarting.
remove-namespace Removes a namespace prefix mapping from the namespaces attribute map.
remove-schema-location Removes a schema location mapping from the schema-locations attribute map.
replace-deployment Replace existing content in the runtime with new content. The new content must have been previously uploaded to the deployment content repository.
resolve-expression Operation that accepts an expression as input or a string that can be parsed into an expression, and resolves it against the local system properties and environment variables.
resolve-internet-address Takes a set of interface resolution criteria and finds an IP address on the local machine that matches the criteria, or fails if no matching IP address can be found.
server-set-restart-required Puts the server into a restart-required mode
shutdown Shuts down the server via a call to System.exit(0).
start-servers Starts all configured servers in a Managed Domain that are not currently running.
stop-servers Stops all servers currently running in a Managed Domain.
take-snapshot Takes a snapshot of the server configuration and saves it to the snapshots directory.
upload-deployment-bytes Indicates that the deployment content in the included byte array should be added to the deployment content repository. Note that this operation does not indicate the content should be deployed into the runtime.
upload-deployment-stream Indicates that the deployment content available at the included input stream index should be added to the deployment content repository. Note that this operation does not indicate the content should be deployed into the runtime.
upload-deployment-url Indicates that the deployment content available at the included URL should be added to the deployment content repository. Note that this operation does not indicate the content should be deployed into the runtime.
validate-address Validates the operation's address.
write-attribute Sets the value of an attribute for the selected resource.

3.6. Management CLI Operations

3.6.1. Display the Attributes of a Resource with the Management CLI

Summary

The read-attribute operation is a global operation used to read the current runtime value of a selected attribute. It can be used to expose only the values that have been set by the user, ignoring any default or undefined values. The request properties include the following parameters.

Request Properties

name
The name of the attribute to get the value for under the selected resource.
include-defaults
A Boolean parameter that can be set to false to restrict the operation results to only show attributes set by the user and ignore default values.

Procedure 3.14. Display the Current Runtime Value of a Selected Attribute

An advantage of the read-attribute operation is the ability to expose the current runtime value of a specific attribute. Similar results can be achieved with the read-resource operation, but only with the addition of the include-runtime request property, and only as part of a list of all available resources for that node. The read-attribute operation is intended for fine-grained attribute queries, as the following example shows.

Example 3.7. Run the read-attribute operation to expose the public interface IP

If you know the name of the attribute that you would like to expose, you can use the read-attribute to return the exact value in the current runtime.
[standalone@localhost:9999 /] /interface=public:read-attribute(name=resolved-address)
{
    "outcome" => "success",
    "result" => "127.0.0.1"
}

The resolved-address attribute is a runtime value, so it is not displayed in the results of the standard read-resource operation.
[standalone@localhost:9999 /] /interface=public:read-resource                        
{
    "outcome" => "success",
    "result" => {
        "any" => undefined,
        "any-address" => undefined,
        "any-ipv4-address" => undefined,
        "any-ipv6-address" => undefined,
        "inet-address" => expression "${jboss.bind.address:127.0.0.1}",
        "link-local-address" => undefined,
        "loopback" => undefined,
        "loopback-address" => undefined,
        "multicast" => undefined,
        "name" => "public",
        "nic" => undefined,
        "nic-match" => undefined,
        "not" => undefined,
        "point-to-point" => undefined,
        "public-address" => undefined,
        "site-local-address" => undefined,
        "subnet-match" => undefined,
        "up" => undefined,
        "virtual" => undefined
    }
}

To display resolved-address and other runtime values, you must use the include-runtime request property.
[standalone@localhost:9999 /] /interface=public:read-resource(include-runtime=true)
{
    "outcome" => "success",
    "result" => {
        "any" => undefined,
        "any-address" => undefined,
        "any-ipv4-address" => undefined,
        "any-ipv6-address" => undefined,
        "inet-address" => expression "${jboss.bind.address:127.0.0.1}",
        "link-local-address" => undefined,
        "loopback" => undefined,
        "loopback-address" => undefined,
        "multicast" => undefined,
        "name" => "public",
        "nic" => undefined,
        "nic-match" => undefined,
        "not" => undefined,
        "point-to-point" => undefined,
        "public-address" => undefined,
        "resolved-address" => "127.0.0.1",
        "site-local-address" => undefined,
        "subnet-match" => undefined,
        "up" => undefined,
        "virtual" => undefined
    }
}

Result

The current runtime attribute value is displayed.

3.6.2. Display the Active User in the Management CLI

Summary

The whoami operation is a global operation used to identify the attributes of the current active user. The operation exposes the identity of the username and the realm that they are assigned to. The whoami operation is useful for administrators managing multiple users accounts across multiple realms, or to assist in keeping track of active users across domain instances with multiple terminal session and users accounts.

Procedure 3.15. Display the Active User in the Management CLI Using the whoami Operation

  • Run the whoami operation

    From the Management CLI, use the whoami operation to display the active user account.
    [standalone@localhost:9999 /] :whoami
    The following example uses the whoami operation in a standalone server instance to show that the active user is username, and that the user is assigned to the ManagementRealm realm.

    Example 3.8. Use the whoami in a standalone instance

    [standalone@localhost:9999 /]:whoami
    {
        "outcome" => "success",
        "result" => {"identity" => {
            "username" => "username",
            "realm" => "ManagementRealm"
        }}
    }
    
    
Result

Your current active user account is displayed.

3.6.3. Display System and Server Information in the Management CLI

Procedure 3.16. Display System and Server Information in the Management CLI

  • Run the version command

    From the Management CLI, enter the version command:
    [domain@localhost:9999 /] version
Result

Your application server version and environment information is displayed.

3.6.4. Display an Operation Description using the Management CLI

Procedure 3.17. Execute the Command in Management CLI

  • Run the read-operation-description operation

    From the Management CLI, use read-operation-description to display information about the operation. The operation requires additional parameters in the format of a key-value pair to indicate which operation to display. For more details on operation requests, refer to the topic Section 3.5.8, “Use Operations and Commands in the Management CLI”.
    [standalone@localhost:9999 /]:read-operation-description(name=name-of-operation)

Example 3.9. Display the list-snapshots operation description

The following example shows the method for describing the list-snapshots operation.
[standalone@localhost:9999 /] :read-operation-description(name=list-snapshots)
{
    "outcome" => "success",
    "result" => {
        "operation-name" => "list-snapshots",
        "description" => "Lists the snapshots",
        "request-properties" => {},
        "reply-properties" => {
            "type" => OBJECT,
            "value-type" => {
                "directory" => {
                    "type" => STRING,
                    "description" => "The directory where the snapshots are stored",
                    "expressions-allowed" => false,
                    "required" => true,
                    "nillable" => false,
                    "min-length" => 1L,
                    "max-length" => 2147483647L
                },
                "names" => {
                    "type" => LIST,
                    "description" => "The names of the snapshots within the snapshots directory",
                    "expressions-allowed" => false,
                    "required" => true,
                    "nillable" => false,
                    "value-type" => STRING
                }
            }
        },
        "access-constraints" => {"sensitive" => {"snapshots" => {"type" => "core"}}},
        "read-only" => false
    }
}
Result

The description is displayed for the chosen operation.

3.6.5. Display the Operation Names using the Management CLI

Procedure 3.18. Execute the Command in Management CLI

Example 3.10. Display the operation names using the Management CLI

The following example shows the method for describing the read-operation-names operation.
[standalone@localhost:9999 /]:read-operation-names
{
    "outcome" => "success",
    "result" => [
        "add-namespace",
        "add-schema-location",
        "delete-snapshot",
        "full-replace-deployment",
        "list-snapshots",
        "read-attribute",
        "read-children-names",
        "read-children-resources",
        "read-children-types",
        "read-config-as-xml",
        "read-operation-description",
        "read-operation-names",
        "read-resource",
        "read-resource-description",
        "reload",
        "remove-namespace",
        "remove-schema-location",
        "replace-deployment",
        "resolve-expression",
        "resolve-internet-address",
        "server-set-restart-required",
        "shutdown",
        "take-snapshot",
        "undefine-attribute",
        "upload-deployment-bytes",
        "upload-deployment-stream",
        "upload-deployment-url",
        "validate-address",
        "validate-operation",
        "whoami",
        "write-attribute"
    ]
}
Result

The available operation names are displayed.

3.6.6. Display Available Resources using the Management CLI

Summary

The read-resource operation is a global operation used to read resource values. It can be used to expose either basic or complete information about the resources of the current or child nodes, along with a range of request properties to expand or limit the scope of the operation results. The request properties include the following parameters.

Request Properties

recursive
Whether to recursively include complete information about child resources.
recursive-depth
The depth to which information about child resources should be included.
proxies
Whether to include remote resources in a recursive query. For example including the host level resources from slave Host Controllers in a query of the Domain Controller.
include-runtime
Whether to include runtime attributes in the response, such as attribute values that do not come from the persistent configuration. This request property is set to false by default.
include-defaults
A boolean request property that serves to enable or disable the reading of default attributes. When set to false only the attributes set by the user are returned, ignoring any that remain undefined.

Procedure 3.19. Execute the Command in Management CLI

  1. Run the read-resource operation

    From the Management CLI, use the read-resource operation to display the available resources.
    [standalone@localhost:9999 /]:read-resource
    The following example shows how you might use the read-resource operation on a standalone server instance to expose general resource information. The results resemble the standalone.xml configuration file, displaying the system resources, extensions, interfaces and subsystems installed or configured for the server instance. These can be further queried directly.

    Example 3.11. Using the read-resource operation at the root level

    [standalone@localhost:9999 /]:read-resource
    {
        "outcome" => "success",
        "result" => {
            "deployment" => undefined,
            "deployment-overlay" => undefined,
            "management-major-version" => 1,
            "management-micro-version" => 0,
            "management-minor-version" => 4,
            "name" => "longgrass",
            "namespaces" => [],
            "product-name" => "EAP",
            "product-version" => "6.1.0.GA",
            "release-codename" => "Janus",
            "release-version" => "7.2.0.Final-redhat-3",
            "schema-locations" => [],
            "system-property" => undefined,
            "core-service" => {
                "management" => undefined,
                "service-container" => undefined,
                "server-environment" => undefined,
                "platform-mbean" => undefined
            },
            "extension" => {
                "org.jboss.as.clustering.infinispan" => undefined,
                "org.jboss.as.connector" => undefined,
                "org.jboss.as.deployment-scanner" => undefined,
                "org.jboss.as.ee" => undefined,
                "org.jboss.as.ejb3" => undefined,
                "org.jboss.as.jaxrs" => undefined,
                "org.jboss.as.jdr" => undefined,
                "org.jboss.as.jmx" => undefined,
                "org.jboss.as.jpa" => undefined,
                "org.jboss.as.jsf" => undefined,
                "org.jboss.as.logging" => undefined,
                "org.jboss.as.mail" => undefined,
                "org.jboss.as.naming" => undefined,
                "org.jboss.as.pojo" => undefined,
                "org.jboss.as.remoting" => undefined,
                "org.jboss.as.sar" => undefined,
                "org.jboss.as.security" => undefined,
                "org.jboss.as.threads" => undefined,
                "org.jboss.as.transactions" => undefined,
                "org.jboss.as.web" => undefined,
                "org.jboss.as.webservices" => undefined,
                "org.jboss.as.weld" => undefined
            },
            "interface" => {
                "management" => undefined,
                "public" => undefined,
                "unsecure" => undefined
            },
            "path" => {
                "jboss.server.temp.dir" => undefined,
                "user.home" => undefined,
                "jboss.server.base.dir" => undefined,
                "java.home" => undefined,
                "user.dir" => undefined,
                "jboss.server.data.dir" => undefined,
                "jboss.home.dir" => undefined,
                "jboss.server.log.dir" => undefined,
                "jboss.server.config.dir" => undefined,
                "jboss.controller.temp.dir" => undefined
            },
            "socket-binding-group" => {"standard-sockets" => undefined},
            "subsystem" => {
                "logging" => undefined,
                "datasources" => undefined,
                "deployment-scanner" => undefined,
                "ee" => undefined,
                "ejb3" => undefined,
                "infinispan" => undefined,
                "jaxrs" => undefined,
                "jca" => undefined,
                "jdr" => undefined,
                "jmx" => undefined,
                "jpa" => undefined,
                "jsf" => undefined,
                "mail" => undefined,
                "naming" => undefined,
                "pojo" => undefined,
                "remoting" => undefined,
                "resource-adapters" => undefined,
                "sar" => undefined,
                "security" => undefined,
                "threads" => undefined,
                "transactions" => undefined,
                "web" => undefined,
                "webservices" => undefined,
                "weld" => undefined
            }
        }
    }
    
    
  2. Run the read-resource operation against a child node

    The read-resource operation can be run to query child nodes from the root. The structure of the operation first defines the node to expose, and then appends the operation to run against it.
    [standalone@localhost:9999 /]/subsystem=web/connector=http:read-resource
    In the following example, specific resource information about a web subsystem component can be exposed by directing the read-resource operation towards the specific web subsystem node.

    Example 3.12. Expose child node resources from the root node

    [standalone@localhost:9999 /] /subsystem=web/connector=http:read-resource                      
    {
        "outcome" => "success",
        "result" => {
            "configuration" => undefined,
            "enable-lookups" => false,
            "enabled" => true,
            "executor" => undefined,
            "max-connections" => undefined,
            "max-post-size" => 2097152,
            "max-save-post-size" => 4096,
            "name" => "http",
            "protocol" => "HTTP/1.1",
            "proxy-name" => undefined,
            "proxy-port" => undefined,
            "redirect-port" => 443,
            "scheme" => "http",
            "secure" => false,
            "socket-binding" => "http",
            "ssl" => undefined,
            "virtual-server" => undefined
        }
    }
    
    
    The same results are possible by using the cd command to navigate into the child nodes and run the read-resource operation directly.

    Example 3.13. Expose child node resources by changing directories

    [standalone@localhost:9999 /] cd subsystem=web
    
    [standalone@localhost:9999 subsystem=web] cd connector=http
    
    [standalone@localhost:9999 connector=http] :read-resource
    {
        "outcome" => "success",
        "result" => {
            "configuration" => undefined,
            "enable-lookups" => false,
            "enabled" => true,
            "executor" => undefined,
            "max-connections" => undefined,
            "max-post-size" => 2097152,
            "max-save-post-size" => 4096,
            "name" => "http",
            "protocol" => "HTTP/1.1",
            "proxy-name" => undefined,
            "proxy-port" => undefined,
            "redirect-port" => 443,
            "scheme" => "http",
            "secure" => false,
            "socket-binding" => "http",
            "ssl" => undefined,
            "virtual-server" => undefined
        }
    }
    
    
  3. Use the recursive parameter to include active values in results

    The recursive parameter can be used to expose the values of all attributes, including non-persistent values, those passed at startup, or other attributes otherwise active in the runtime model.
    [standalone@localhost:9999 /]/interface=public:read-resource(include-runtime=true)
    Compared to the previous example, the inclusion of the include-runtime request property exposes additional active attributes, such as the bytes sent and bytes received by the HTTP connector.

    Example 3.14. Expose additional and active values with the include-runtime parameter

    [standalone@localhost:9999 /] /subsystem=web/connector=http:read-resource(include-runtime=true)
    {
        "outcome" => "success",
        "result" => {
            "any" => undefined,
            "any-address" => undefined,
            "any-ipv4-address" => undefined,
            "any-ipv6-address" => undefined,
            "inet-address" => expression "${jboss.bind.address:127.0.0.1}",
            "link-local-address" => undefined,
            "loopback" => undefined,
            "loopback-address" => undefined,
            "multicast" => undefined,
            "name" => "public",
            "nic" => undefined,
            "nic-match" => undefined,
            "not" => undefined,
            "point-to-point" => undefined,
            "public-address" => undefined,
            "resolved-address" => "127.0.0.1",
            "site-local-address" => undefined,
            "subnet-match" => undefined,
            "up" => undefined,
            "virtual" => undefined
        }
    }
    
    

3.6.7. Display Available Resource Descriptions using the Management CLI

Procedure 3.20. Execute the Command in Management CLI

  1. Run the read-resource-description operation

    From the Management CLI, use the read-resource-description operation to read and display the available resources. For more details on operation requests, refer to the topic Section 3.5.8, “Use Operations and Commands in the Management CLI”.
    [standalone@localhost:9999 /]:read-resource-description
  2. Use optional parameters

    The read-resource-description operation allows the use of the additional parameters.
    1. Use the operations parameter to include descriptions of the resource's operations.
      [standalone@localhost:9999 /]:read-resource-description(operations=true)
    2. Use the inherited parameter to include or exclude descriptions of the resource's inherited operations. The default state is true.
      [standalone@localhost:9999 /]:read-resource-description(inherited=false)
    3. Use the recursive parameter to include recursive descriptions of the child resources.
      [standalone@localhost:9999 /]:read-resource-description(recursive=true)
    4. Use the locale parameter to get the resource description in. If null, the default locale will be used.
      [standalone@localhost:9999 /]:read-resource-description(locale=true)
Result

Descriptions of the available resources are displayed.

3.6.8. Reload the Application Server using the Management CLI

Procedure 3.21. Reload the Application Server

Result

The application server reloads by shutting down all services and starting the runtime again. The Management CLI automatically reconnects.

3.6.9. Shut the Application Server down using the Management CLI

Procedure 3.22. Shut down the Application Server

  • Run the shutdown operation

    • From the Management CLI, use the shutdown operation to shut the server down via the System.exit(0) system call. For more details on operation requests, refer to the topic Section 3.5.8, “Use Operations and Commands in the Management CLI”.
      • In the standalone mode, use the following command:
        [standalone@localhost:9999 /]:shutdown
      • In the domain mode, use the following command with the appropriate host name:
        [domain@localhost:9999 /]/host=master:shutdown
    • To connect to a detached CLI instance and shut down the server, execute the following command:
      jboss-cli.sh --connect command=:shutdown
      
    • To connect to a remote CLI instance and shut down the server, execute the following command:
      [disconnected /] connect IP_ADDRESS
      Connected to IP_ADDRESS:PORT_NUMBER
      [192.168.1.10:9999 /] :shutdown
      
      Replace IP_ADDRESS with the IP address of your instance.
Result

The application server is shut down. The Management CLI will be disconnected as the runtime is unavailable.

3.6.10. Configure an Attribute with the Management CLI

Summary

The write-attribute operation is a global operation used to write or modify a selected resource attribute. You can use the operation to make persistent changes and to modify the configuration settings of your managed server instances. The request properties include the following parameters.

Request Properties

name
The name of the attribute to set the value for under the selected resource.
value
The desired value of the attribute under the selected resource. May be null if the underlying model supports null values.

Procedure 3.23. Configure a Resource Attribute with the Management CLI

  • Run the write-attribute operation

    From the Management CLI, use the write-attribute operation to modify the value of a resource attribute. The operation can be run at the child node of the resource or at the root node of the Management CLI where the full resource path is specified.

Example 3.15. Disable the deployment scanner with the write-attribute operation

The following example uses the write-attribute operation to disable the deployment scanner. The operation is run from the root node, using tab completion to aid in populating the correct resource path.
[standalone@localhost:9999 /] /subsystem=deployment-scanner/scanner=default:write-attribute(name=scan-enabled,value=false)
{"outcome" => "success"}

The results of the operation can be confirmed directly with the read-attribute operation.
[standalone@localhost:9999 /] /subsystem=deployment-scanner/scanner=default:read-attribute(name=scan-enabled)
{
    "outcome" => "success",
    "result" => false
}

The results can also be confirmed by listing all of the node's available resource attributes with the read-resource operation. In the following example, this particular configuration shows the scan-enabled attribute is now set to false.
[standalone@localhost:9999 /] /subsystem=deployment-scanner/scanner=default:read-resource                                 
{
    "outcome" => "success",
    "result" => {
        "auto-deploy-exploded" => false,
        "auto-deploy-xml" => true,
        "auto-deploy-zipped" => true,
        "deployment-timeout" => 600,
        "path" => "deployments",
        "relative-to" => "jboss.server.base.dir",
        "scan-enabled" => false,
        "scan-interval" => 5000
    }
}

Result

The resource attribute is updated.

3.7. The Management CLI Command History

3.7.1. Use the Management CLI Command History

The Management CLI features a command history functionality that is enabled by default in the application server installation. The history is kept both as a record in the volatile memory of the active CLI session, and appended to a log file that saves automatically in the user's home directory as .jboss-cli-history. This history file is configured by default to record up to a maximum of 500 CLI commands.
The history command by itself will return the history of the current session, or with additional arguments will disable, enable or clear the history from the session memory. The Management CLI also features the ability to use your keyboard's arrow keys to go back and forth in the history of commands and operations.

3.7.2. Show the Management CLI Command history

Procedure 3.24. Show the Management CLI Command History

  • Run the history command

    From the Management CLI, enter the history command:
    [standalone@localhost:9999 /] history
Result

The CLI command history stored in memory since the CLI startup or the history clear command is displayed.

3.7.3. Clear the Management CLI Command history

Procedure 3.25. Clear the Management CLI Command history

  • Run the history --clear command

    From the Management CLI, enter the history --clear command:
    [standalone@localhost:9999 /] history --clear
Result

The history of commands recorded since the CLI startup is cleared from the session memory. The command history is still present in the .jboss-cli-history file saved to the user's home directory.

3.7.4. Disable the Management CLI Command history

Procedure 3.26. Disable the Management CLI Command history

  • Run the history --disable command

    From the Management CLI, enter the history --disable command:
    [standalone@localhost:9999 /] history --disable
Result

Commands made in the CLI will not be recorded either in memory or in the .jboss-cli-history file saved to the user's home directory.

3.7.5. Enable the Management CLI Command history

Procedure 3.27. Enable the Management CLI Command history

  • Run the history --enable command

    From the Management CLI, enter the history --enable command:
    [standalone@localhost:9999 /] history --enable
Result

Commands made in the CLI are recorded in memory and in the .jboss-cli-history file saved to the user's home directory.

3.8. Management Interface Audit Logging

3.8.1. About Management Interface Audit Logging

Audit logging can be enabled, so that operations carried out via the management API are recorded in an audit log. Whether those operations are carried out via the management console, management CLI interface, or a custom-written interface, all are subject to audit logging. Log records can be output to a file, forwarded to a Syslog server or both. By default, audit logging is disabled.
Logging data is output in JSON format, with several configuration options available for influencing the operations included in the log and the log entries' format.
Before being stored, log entries pass through a formatter and handler. The formatter specifies the format of the log entries, while the handler outputs the records to the specified destination(s). Only one formatter is currently available, which outputs entries in JSON format.

Note

Audit logging can be configured only via the management CLI.

3.8.2. Enable Management Interface Audit Logging from the Management CLI

To enable audit logging from the management CLI, use the following command.
/core-service=management/access=audit/logger=audit-log:write-attribute(name=enabled,value=true)
Audit logging is preconfigured output to the file EAP_HOME/standalone/data/audit-log.log.

3.8.3. About a Management Interface Audit Logging Formatter

The formatter specifies the format of the log entries.

Table 3.5. JSON Formatter Fields

Attribute Description
include-date Boolean value which defines whether or not the timestamp is included in the formatted log records.
date-separator A string containing characters to separate the date and the rest of the formatted log message. Will be ignored if include-date=false.
date-format The date format to use for the timestamp as understood by java.text.SimpleDateFormat. Ignored if include-date=false.
compact If true it will format the JSON on one line. There may still be values containing new lines, so if having the whole record on one line is important, set escape-new-line or escape-control-characters to true.
escape-control-characters If true it will escape all control characters (ASCII entries with a decimal value < 32) with the ASCII code in octal; for example, a new line becomes '#012'. If this is true, it will override escape-new-line=false.
escape-new-line If true it will escape all new lines with the ASCII code in octal; for example "#012".

3.8.4. About a Management Interface Audit Logging File Handler

A file handler specifies the parameters by which audit log records are output to a file. Specifically it defines the formatter, file name and path for the file.

Table 3.6. File Handler Audit Log Fields

Attribute Description Read Only
formatter The name of a JSON formatter to use to format the log records. False
path The path of the audit log file. False
relative-to The name of another previously named path, or of one of the standard paths provided by the system. If relative-to is provided, the value of the path attribute is treated as relative to the path specified by this attribute. False
failure-count The number of logging failures since the handler was initialized. True
max-failure-count The maximum number of logging failures before disabling this handler. False
disabled-due-to-failure true if this handler was disabled due to logging failures. True

3.8.5. About a Management Interface Audit Logging Syslog Handler

A syslog handler specifies the parameters by which audit log entries are sent to a syslog server, specifically the syslog server's hostname and the port on which the syslog server is listening.
Sending audit logging to a syslog server provides more security options than logging to a local file or local syslog server. Multiple syslog handlers can be defined.
Syslog servers vary in their implementation, so not all settings are applicable to all syslog servers. Testing has been conducted using the rsyslog syslog implementation. The referenced RFCs are:
  • http://www.ietf.org/rfc/rfc3164.txt
  • http://www.ietf.org/rfc/rfc5424.txt
  • http://www.ietf.org/rfc/rfc6587.txt

Table 3.7. Syslog Handler Fields

Field Description Read-only
formatter The name of the formatter to use to format the log records. False
failure-count The number of logging failures since the handler was initialized True
max-failure-count The maximum number of logging failures before disabling this handler. False
disabled-due-to-failure True if this handler was disabled due to logging failures. True
syslog-format Syslog format: RFC-5424 or RFC-3164. False
max-length The maximum length of a log message (in bytes), including the header. If undefined, it will default to 1024 bytes if the syslog-format is RFC3164, or 2048 bytes if the syslog-format is RFC5424. False.
truncate Whether or not a message, including the header, should truncate the message if the length in bytes is greater than the maximum length. If set to false messages will be split and sent with the same header values. False

3.8.6. Enable Management Interface Audit Logging to a Syslog Server

Note

Add the prefix /host=HOST_NAME to the /core-service commands if the change is to be applied to a managed domain.

Procedure 3.28. Enable Logging to a Syslog Server

  1. Create a syslog handler named msyslog

    [standalone@localhost:9999 /]batch
    [standalone@localhost:9999 /]/core-service=management/access=audit/syslog-handler=mysyslog:add(formatter=json-formatter)
    [standalone@localhost:9999 /]/core-service=management/access=audit/syslog-handler=mysyslog/protocol=udp:add(host=localhost,port=514)
    [standalone@localhost:9999 /]run-batch
  2. Add a reference to the syslog handler.

    [standalone@localhost:9999 /]/core-service=management/access=audit/logger=audit-log/handler=mysyslog:add
Result

Management interface audit log entries are logged on the syslog server.

3.8.7. Management Interface Audit Logging Options

In addition to enabling or disabling management interface audit logging, other configuration options are available.

Configuration Options

log-boot
If set to true, management operations when booting the server are included in the audit log, false otherwise. Default: false.
log-read-only
If set to true, all operations will be audit logged. If set to false only operations that change the model will be logged. Default: false.

3.8.8. Management Interface Audit Log Fields

Table 3.8. Management Interface Audit Log Fields

Field Name Description
type This can have the values core, meaning it is a management operation, or jmx meaning it comes from the JMX subsystem (see the JMX subsystem for configuration of the JMX subsystem's audit logging).
r/o true if the operation does not change the management model, false otherwise.
booting true if the operation was executed during the bootup process, false if it was executed once the server is up and running.
version Version number of the JBoss EAP instance.
user Username of the authenticated user. If the operation has been logged via the CLI on the same computer as the running server, the special $local user is used.
domainUUID An identifier to link together all operations as they are propagated from the doman controller to its servers, slave host controllers, and slave host controller servers.
access This can have one of the following values: NATIVE, HTTP, JMX. NATIVE - The operation came in through the native management interface, for example the CLI. HTTP - The operation came in through the domain HTTP interface, for example the admin console. JMX - The operation came in through the JMX subsystem. See JMX for how to configure audit logging for JMX.
remote-address The address of the client executing this operation.
success true if the operation succeeded, false if it was rolled back.
ops The operations being executed. This is a list of the operations serialized to JSON. At boot this will be all the operations resulting from parsing the XML. Once booted the list will typically contain a single entry.

Chapter 4. User Management

4.1. User Creation

4.1.1. Add the User for the Management Interfaces

Overview

The management interfaces in JBoss EAP 6 are secured by default as there are no user accounts initially available, unless you have installed the platform using the graphical installer. This is a security precaution to prevent security breaches from remote systems due to simple configuration errors. Local non-HTTP access is protected by a SASL mechanism, with a negotiation happening between the client and server each time the client connects for the first time from the localhost.

This task describes how to create the initial administrative user, which can use the web-based Management Console and remote instances of the Management CLI to configure and administer JBoss EAP 6 from remote systems.

Note

HTTP communication with JBoss EAP 6 is considered to be remote access, even if the traffic originates on the localhost. Therefore, you must create at least one user in order to be able to use the management console. If you attempt to access the management console before adding a user, you will receive an error because it does not even deploy until the user is added.

Procedure 4.1. Create the Initial Administrative User for the Remote Management Interfaces

  1. Invoke the add-user.sh or add-user.bat script.

    Change to the EAP_HOME/bin/ directory. Invoke the appropriate script for your operating system.
    Red Hat Enterprise Linux
    [user@host bin]$ ./add-user.sh
    Microsoft Windows Server
    C:\bin>  add-user.bat
  2. Choose to add a Management user.

    Hit ENTER to select the default option a to add a Management user. This user is added to the ManagementRealm and is authorized to perform management operations using the web-based Management Console or command-line based Management CLI. The other choice, b, adds a user to the ApplicationRealm, and provides no particular permissions. That realm is provided for use with applications.
  3. Enter the desired username and password.

    When prompted, enter the username and password. You will be prompted to confirm the password.
  4. Enter group information.

    Add the group or groups the user belongs to. If the user belongs to multiple groups, enter a comma separated list. Leave it blank if there are no groups for the user.
  5. Review the information and confirm.

    You are prompted to confirm the information. If you are satisfied, type yes.
  6. Choose whether the user represents a remote JBoss EAP 6 server instance.

    Besides administrators, the other type of user which occasionally needs to be added to JBoss EAP 6 in the ManagementRealm is a user representing another instance of JBoss EAP 6, which must be able to authenticate to join a cluster as a member. The next prompt allows you to designate your added user for this purpose. If you select yes, you will be given a hashed secret value, representing the user's password, which would need to be added to a different configuration file. For the purposes of this task, answer no to this question.
  7. Enter additional users.

    You can enter additional users if desired, by repeating the procedure. You can also add them at any time on a running system. Instead of choosing the default security realm, you can add users to other realms to fine-tune their authorizations.
  8. Create users non-interactively.

    You can create users non-interactively, by passing in each parameter at the command line. This approach is not recommended on shared systems, because the passwords will be visible in log and history files. The syntax for the command, using the management realm, is:
    [user@host bin]$ ./add-user.sh username password
    To use the application realm, use the -a parameter.
    [user@host bin]$ ./add-user.sh -a username password
  9. You can suppress the normal output of the add-user script by passing the --silent parameter. This applies only if the minimum parameters if username and password have been specified. Error messages will still be shown.
Result

Any users you add are activated within the security realms you have specified. Users active within the ManagementRealm realm are able to manage JBoss EAP 6 from remote systems.

4.1.2. Pass Arguments to the User Management add-user Script

You can run the add-user.sh or add-user.bat command interactively or you can pass the arguments on the command line. This section describes the options available when passing command line arguments to the add-user script.
For a comprehensive list of the command line arguments available for the add-user.sh or add-user.bat command. see Section 4.1.3, “Add-user Command Arguments” .
For information on how to specify an alternate properties file and location, see Section 4.1.4, “Specify Alternate Properties Files for User Management Information” .
For examples that demonstrate how to pass arguments on the add-user.sh or add-user.bat command, see Section 4.1.5, “Add-user Script Command Line Examples” .

4.1.3. Add-user Command Arguments

The following table describes the arguments available for the add-user.sh or add-user.bat command.

Table 4.1. Add-user Command Arguments

Command Line Argument Argument Value Description
-a
N/A
This argument specifies to create a user in the application realm. If omitted, the default is to create a user in the management realm.
-dc
DOMAIN_CONFIGURATION_DIRECTORY
This argument specifies the domain configuration directory that will contain the properties files. If it is omitted, the default directory is EAP_HOME/domain/configuration/.
-sc
SERVER_CONFIGURATION_DIRECTORY
This argument specifies an alternate standalone server configuration directory that will contain the properties files. If it is omitted, the default directory is EAP_HOME/standalone/configuration/.
-up
--user-properties
USER_PROPERTIES_FILE
This argument specifies the name of the alternate user properties file. It can an absolute path or it can be a file name used in conjunction with the -sc or -dc argument that specifies the alternate configuration directory.
-g
--group
GROUP_LIST
A comma-separated list of groups to assign to this user.
-gp
--group-properties
GROUP_PROPERTIES_FILE
This argument specifies the name of the alternate group properties file. It can an absolute path or it can be a file name used in conjunction with the -sc or -dc argument that specifies the alternate configuration directory.
-p
--password
PASSWORD
The password of the user. The password must satisfy the following requirements:
  • It can not be the same as the user name.
  • It must contain at least 8 characters.
  • It must contain at least one alphanumeric character.
  • It must contain at least one digit.
  • It must contain at least one non-alphanumeric symbol
-u
--user
USER_NAME
The name of the user.
-r
--realm
REALM_NAME
The name of the realm used to secure the management interfaces. If omitted, the default is "ManagementRealm".
-s
--silent
N/A
Run the add-user script with no output to the console.
-h
--help
N/A
Display usage information for the add-user script.

4.1.4. Specify Alternate Properties Files for User Management Information

Overview

By default, user and role information created using the add-user.sh or add-user.bat script are stored in properties files located in the server configuration directory. The server configuration information is stored in the EAP_HOME/standalone/configuration/ directory and the domain configuration information is stored in the EAP_HOME/domain/configuration/ directory. This topic describes how to override the default file names and locations.

Procedure 4.2. Specify Alternate Properties Files

    • To specify an alternate directory for the server configuration, use the -sc argument. This argument specifies an alternate directory that will contain the server configuration properties files.
    • To specify an alternate directory for the domain configuration, use the -dc argument. This argument specifies an alternate directory that will contain the domain configuration properties files.
    • To specify an alternate user configuration properties file, use the -up or --user-properties argument. It can an absolute path or it can be a file name used in conjunction with the -sc or -dc argument that specifies the alternate configuration directory.
    • To specify an alternate group configuration properties file, use the -gp or --group-properties argument. It can an absolute path or it can be a file name used in conjunction with the -sc or -dc argument that specifies the alternate configuration directory.

Note

The add-user command is intended to operate on existing properties files. Any alternate properties files specified in command line arguments must exist or you will see the following error:
JBAS015234: No appusers.properties files found
For more information about command arguments, see Section 4.1.3, “Add-user Command Arguments” .
For examples of the add-user commands, see Section 4.1.5, “Add-user Script Command Line Examples” .

4.1.5. Add-user Script Command Line Examples

The following examples demonstrate how to pass arguments on the add-user.sh or add-user.bat command. Unless noted, these commands assume the configuration of a standalone server.

Example 4.1. Create a user belonging to a single group using the default properties files.

EAP_HOME/bin/add-user.sh -a -u 'appuser1' -p 'password1!' -g 'guest'
The above command produces the following results.
  • The user appuser1 is added to the following default properties files that store user information.
    EAP_HOME/standalone/configuration/application-users.properties
    EAP_HOME/domain/configuration/application-users.properties
  • The user appuser1 with group guest is added to the default properties files that store group information.
    EAP_HOME/standalone/configuration/application-roles.properties
    EAP_HOME/domain/configuration/application-roles.properties

Example 4.2. Create a user belonging to multiple groups using the default properties files.

EAP_HOME/bin/add-user.sh -a -u 'appuser1' -p 'password1!' -g 'guest,app1group,app2group'
The above command produces the following results.
  • The user appuser1 is added to the following default properties files that store user information.
    EAP_HOME/standalone/configuration/application-users.properties
    EAP_HOME/domain/configuration/application-users.properties
  • The user appuser1 with groups guest, app1group, and app2group is added to the default properties files that store group information.
    EAP_HOME/standalone/configuration/application-roles.properties
    EAP_HOME/domain/configuration/application-roles.properties

Example 4.3. Create a user with admin privileges in the default realm using the default properties files.

EAP_HOME/bin/add-user.sh -u 'adminuser1' -p 'password1!' -g 'admin'
The above command produces the following results.
  • The user adminuser1 is added to the following default properties files that store user information.
    EAP_HOME/standalone/configuration/mgmt-users.properties
    EAP_HOME/domain/configuration/mgmt-users.properties
  • The user adminuser1 with group admin is added to the default properties files that store group information.
    EAP_HOME/standalone/configuration/mgmt-groups.properties
    EAP_HOME/domain/configuration/mgmt-groups.properties

Example 4.4. Create a user belonging to single group using alternate properties files to store the information.

EAP_HOME/bin/add-user.sh -a -u appuser1 -p password1! -g app1group -sc /home/someusername/userconfigs/ -up appusers.properties -gp appgroups.properties 
The above command produces the following results.
  • The user appuser1 is added to the following properties file and that file is now the default file to store user information.
    /home/someusername/userconfigs/appusers.properties
  • The user appuser1 with group app1group is added to the following properties file and that file is now the default file to store group information.
    /home/someusername/userconfigs/appgroups.properties

Chapter 5. Network and Port Configuration

5.1. Interfaces

5.1.1. About Interfaces

The application server uses named interface references throughout the configuration. This gives the configuration the ability to reference the individual interface declarations with logical names, rather than the full details of the interface at each use. The use of logical names also allows for consistency in group references to named interfaces, where server instances on a managed domain may contain varying interface details across multiple machines. With this methodology, each server instance may correspond to a logical name group that allows for easier administration of the interface group as a whole.
A network interface is declared by specifying a logical name and a selection criteria for the physical interface. The application server ships with a default configuration for a management and a public interface name. In this configuration, the public interface group is intended for use by any application-related network communication such as Web or Messaging. The management interface group is intended for use for all components and services that are required by the management layer, including the HTTP Management Endpoint. The interface names themselves are provided as a suggestion only, where any name for any group can be substituted or created as required.
The domain.xml, host.xml and standalone.xml configuration files all include interface declarations. The declaration criteria can reference a wildcard address or specify a set of one of more characteristics that an interface or address must have in order to be a valid match. The following examples show multiple possible configurations of interface declarations, typically defined in either the standalone.xml or host.xml configuration files. This allows any remote host groups to maintain their own specific interface attributes, while still allowing reference to the any interface groups in the domain.xml configuration file of the domain controller.
The first example shows a specific inet-address value specified for both the management and public relative name groups.

Example 5.1. An interface group created with an inet-address value

<interfaces>
  <interface name="management">
   <inet-address value="127.0.0.1"/>
  </interface>
  <interface name="public">
   <inet-address value="127.0.0.1"/>
  </interface>
</interfaces>


In the following example a global interface group uses the any-address element to declare a wildcard address.

Example 5.2. A global group created with a wildcard declaration

<interface name="global">
   <!-- Use the wild-card address -->
   <any-address/>
</interface>


The following example declares a network interface card under a relative group with the name external.

Example 5.3. An external group created with an NIC value

        
<interface name="external">
   <nic name="eth0"/>
</interface>


In the following example a declaration is created as the default group for a specific requirement. In this instance, the characteristics of the additional elements set the condition for the interface to be a valid match. This allows for the creation of very specific interface declaration groups, with the ability to reference them in a preset manner, reducing the configuration and administration time across multiple server instances.

Example 5.4. A default group created with specific conditional values

<interface name="default">
   <!-- Match any interface/address on the right subnet if it's
        up, supports multicast, and isn't point-to-point -->
   <subnet-match value="192.168.0.0/16"/>
   <up/>
   <multicast/>
   <not>
      <point-to-point/>
   </not>
</interface>


While the interface declarations can be made and edited in the source configuration files, the Management CLI and Management Console provide a safe, controlled and persistent environment for configuration changes.

5.1.2. Configure Interfaces

The default interface configurations in the standalone.xml and host.xml configuration files offer three named interfaces with relative interface tokens for each. You can use the Management Console or Management CLI to configure additional attributes and values, as listed in the table below. You can also replace the relative interface bindings with specific values as required. Note that if you do so, you will be unable to pass an interface value at server runtime, as the -b switch can only override a relative value.

Example 5.5. Default Interface Configurations

        <interfaces>
            <interface name="management">
                <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
            </interface>
            <interface name="public">
                <inet-address value="${jboss.bind.address:127.0.0.1}"/>
            </interface>
            <interface name="unsecure">
                <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}"/>
            </interface>
        </interfaces>

Table 5.1. Interface Attributes and Values

Interface Element Description
any Empty element of the address exclusion type, used to constrain the selection criteria.
any-address Empty element indicating that sockets using this interface should be bound to a wildcard address. The IPv6 wildcard address (::) will be used unless the java.net.preferIpV4Stack system property is set to true, in which case the IPv4 wildcard address (0.0.0.0) will be used. If a socket is bound to an IPv6 anylocal address on a dual-stack machine, it can accept both IPv6 and IPv4 traffic; if it is bound to an IPv4 (IPv4-mapped) anylocal address, it can only accept IPv4 traffic.
any-ipv4-address Empty element indicating that sockets using this interface should be bound to the IPv4 wildcard address (0.0.0.0).
any-ipv6-address Empty element indicating that sockets using this interface should be bound to the IPv6 wildcard address (::).
inet-address Either a IP address in IPv6 or IPv4 dotted decimal notation, or a hostname that can be resolved to an IP address.
link-local-address Empty element indicating that part of the selection criteria for an interface should be whether or not an address associated with it is link-local.
loopback Empty element indicating that part of the selection criteria for an interface should be whether or not it is a loopback interface.
loopback-address A loopback address that may not actually be configured on the machine's loopback interface. Differs from inet-addressType in that the given value will be used even if no NIC can be found that has the IP address associated with it.
multicast Empty element indicating that part of the selection criteria for an interface should be whether or not it supports multicast.
nic The name of a network interface (e.g. eth0, eth1, lo).
nic-match A regular expression against which the names of the network interfaces available on the machine can be matched to find an acceptable interface.
not Empty element of the address exclusion type, used to constrain the selection criteria.
point-to-point Empty element indicating that part of the selection criteria for an interface should be whether or not it is a point-to-point interface.
public-address Empty element indicating that part of the selection criteria for an interface should be whether or not it has a publicly routable address.
site-local-address Empty element indicating that part of the selection criteria for an interface should be whether or not an address associated with it is site-local.
subnet-match A network IP address and the number of bits in the address' network prefix, written in "slash notation"; e.g. "192.168.0.0/16".
up Empty element indicating that part of the selection criteria for an interface should be whether or not it is currently up.
virtual Empty element indicating that part of the selection criteria for an interface should be whether or not it is a virtual interface.
  • Configure Interface Attributes

    Choose either the Management CLI or the Management Console to configure your interface attributes as required.
    • Configure Interface Attributes with the Management CLI

      Use the Management CLI to add new interfaces and write new values to the interface attributes.
      1. Add a New Interface

        Use the add operation to create a new interface if required. You can run this command from the root of the Management CLI session, which in the following example creates a new interface name title interfacename, with an inet-address declared as 12.0.0.2.
        /interface=interfacename/:add(inet-address=12.0.0.2)
      2. Edit Interface Attributes

        Use the write operation to write a new value to an attribute. you can use tab completion to help complete the command string as you type, as well as to expose the available attributes. The following example updates the inet-address value to 12.0.0.8
        /interface=interfacename/:write(inet-address=12.0.0.8)
      3. Edit Interface Attributes

        Confirm the values are changed by running the read-resource operation with the include-runtime=true parameter to expose all current values active in the server model.
        [standalone@localhost:9999 interface=public] :read-resource(include-runtime=true)
    • Configure Interface Attributes with the Management Console

      Use the Management Console to add new interfaces and write new values to the interface attributes.
      1. Log into the Management Console.

        Log into the Management Console of your Managed Domain or Standalone Server instance.
      2. If you use a Managed Domain, choose the correct profile.

        Select the Profiles tab at the top right, and then select the correct profile from the Profile menu at the top left of the next screen.
      3. Select the Interfaces item from the navigation menu.

        Select the Interfaces menu item from the navigation menu.
      4. Add a New Interface

        1. Click the Add button.
        2. Enter any required values for Name, Inet Address and Address Wildcard.
        3. Click the Save to finish.
      5. Edit Interface Attributes

        1. Select the Interface to edit and click the Edit button.
        2. Enter any required values for Name, Inet Address and Address Wildcard.
        3. Click the Save to finish.

5.2. Socket Binding Groups

5.2.1. About Socket Binding Groups

Socket bindings and socket binding groups allow you to define network ports and their relationship to the networking interfaces required for your JBoss EAP 6 configuration.
A socket binding is a named configuration for a socket. The declarations for these named configurations can be found in both the domain.xml and standalone.xml configuration files. Other sections of the configuration can then reference those sockets by their logical name, rather than having to include the full details of the socket configuration. This allows you to reference relative socket configurations which may otherwise vary on different machines.
Socket bindings are collected under a socket binding group. A socket binding group is a collection of socket binding declarations that are grouped under a logical name. The named group can then be referenced throughout the configuration. A standalone server contains only one such group, while a managed domain instance can contain multiple groups. You can create a socket binding group for each server group in the managed domain, or share a socket binding group between multiple server groups.
The naming groups allow for simplified references to be used for particular groups of socket bindings when configuring server groups in the case of a managed domain. Another common use is for the configuration and management of multiple instances of the standalone server on the one system. The following examples show the default socket binding groups in the configuration files for the standalone and domain instances.

Example 5.6. Default socket bindings for the standalone configuration

The default socket binding groups in the standalone.xml configuration file are grouped under standard-sockets. This group is also referenced to the public interface, using the same logical referencing methodology.
   
<socket-binding-group name="standard-sockets" default-interface="public">
    <socket-binding name="http" port="8080"/>
    <socket-binding name="https" port="8443"/>
    <socket-binding name="jacorb" port="3528"/>
    <socket-binding name="jacorb-ssl" port="3529"/>
    <socket-binding name="jmx-connector-registry" port="1090" interface="management"/>
    <socket-binding name="jmx-connector-server" port="1091" interface="management"/>
    <socket-binding name="jndi" port="1099"/>
    <socket-binding name="messaging" port="5445"/>
    <socket-binding name="messaging-throughput" port="5455"/>
    <socket-binding name="osgi-http" port="8090" interface="management"/>
    <socket-binding name="remoting" port="4447"/>
    <socket-binding name="txn-recovery-environment" port="4712"/>
    <socket-binding name="txn-status-manager" port="4713"/>
</socket-binding-group>

Example 5.7. Default socket bindings for the domain configuration

The default socket binding groups in the domain.xml configuration file contain four groups: the standard-sockets, ha-sockets, full-sockets and the full-ha-sockets groups. These groups are also referenced to an interface called public.
<socket-binding-groups>
    <socket-binding-group name="standard-sockets" default-interface="public">
        <!-- Needed for server groups using the 'default' profile  -->
        <socket-binding name="ajp" port="8009"/>
        <socket-binding name="http" port="8080"/>
        <socket-binding name="https" port="8443"/>
        <socket-binding name="osgi-http" interface="management" port="8090"/>
        <socket-binding name="remoting" port="4447"/>
        <socket-binding name="txn-recovery-environment" port="4712"/>
        <socket-binding name="txn-status-manager" port="4713"/>
        <outbound-socket-binding name="mail-smtp">
            <remote-destination host="localhost" port="25"/>
        </outbound-socket-binding>
    </socket-binding-group>
    <socket-binding-group name="ha-sockets" default-interface="public">
        <!-- Needed for server groups using the 'ha' profile  -->
        <socket-binding name="ajp" port="8009"/>
        <socket-binding name="http" port="8080"/>
        <socket-binding name="https" port="8443"/>
        <socket-binding name="jgroups-mping" port="0" multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45700"/>
        <socket-binding name="jgroups-tcp" port="7600"/>
        <socket-binding name="jgroups-tcp-fd" port="57600"/>
        <socket-binding name="jgroups-udp" port="55200" multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45688"/>
        <socket-binding name="jgroups-udp-fd" port="54200"/>
        <socket-binding name="modcluster" port="0" multicast-address="224.0.1.105" multicast-port="23364"/>
        <socket-binding name="osgi-http" interface="management" port="8090"/>
        <socket-binding name="remoting" port="4447"/>
        <socket-binding name="txn-recovery-environment" port="4712"/>
        <socket-binding name="txn-status-manager" port="4713"/>
        <outbound-socket-binding name="mail-smtp">
            <remote-destination host="localhost" port="25"/>
        </outbound-socket-binding>
    </socket-binding-group>
    <socket-binding-group name="full-sockets" default-interface="public">
        <!-- Needed for server groups using the 'full' profile  -->
        <socket-binding name="ajp" port="8009"/>
        <socket-binding name="http" port="8080"/>
        <socket-binding name="https" port="8443"/>
        <socket-binding name="jacorb" interface="unsecure" port="3528"/>
        <socket-binding name="jacorb-ssl" interface="unsecure" port="3529"/>
        <socket-binding name="messaging" port="5445"/>
        <socket-binding name="messaging-group" port="0" multicast-address="${jboss.messaging.group.address:231.7.7.7}" multicast-port="${jboss.messaging.group.port:9876}"/>
        <socket-binding name="messaging-throughput" port="5455"/>
        <socket-binding name="osgi-http" interface="management" port="8090"/>
        <socket-binding name="remoting" port="4447"/>
        <socket-binding name="txn-recovery-environment" port="4712"/>
        <socket-binding name="txn-status-manager" port="4713"/>
        <outbound-socket-binding name="mail-smtp">
            <remote-destination host="localhost" port="25"/>
        </outbound-socket-binding>
    </socket-binding-group>
    <socket-binding-group name="full-ha-sockets" default-interface="public">
        <!-- Needed for server groups using the 'full-ha' profile  -->
        <socket-binding name="ajp" port="8009"/>
        <socket-binding name="http" port="8080"/>
        <socket-binding name="https" port="8443"/>
        <socket-binding name="jacorb" interface="unsecure" port="3528"/>
        <socket-binding name="jacorb-ssl" interface="unsecure" port="3529"/>
        <socket-binding name="jgroups-mping" port="0" multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45700"/>
        <socket-binding name="jgroups-tcp" port="7600"/>
        <socket-binding name="jgroups-tcp-fd" port="57600"/>
        <socket-binding name="jgroups-udp" port="55200" multicast-address="${jboss.default.multicast.address:230.0.0.4}" multicast-port="45688"/>
        <socket-binding name="jgroups-udp-fd" port="54200"/>
        <socket-binding name="messaging" port="5445"/>
        <socket-binding name="messaging-group" port="0" multicast-address="${jboss.messaging.group.address:231.7.7.7}" multicast-port="${jboss.messaging.group.port:9876}"/>
        <socket-binding name="messaging-throughput" port="5455"/>
        <socket-binding name="modcluster" port="0" multicast-address="224.0.1.105" multicast-port="23364"/>
        <socket-binding name="osgi-http" interface="management" port="8090"/>
        <socket-binding name="remoting" port="4447"/>
        <socket-binding name="txn-recovery-environment" port="4712"/>
        <socket-binding name="txn-status-manager" port="4713"/>
        <outbound-socket-binding name="mail-smtp">
            <remote-destination host="localhost" port="25"/>
        </outbound-socket-binding>
    </socket-binding-group>
</socket-binding-groups>

The socket binding instances can be created and edited in the standalone.xml and domain.xml source files in the application server directory. The recommended method of managing bindings is to use either the Management Console or the Management CLI. The advantages of using the Management Console include a graphical user interface with a dedicated Socket Binding Group screen under the General Configuration section. The Management CLI offers an API and workflow based around a command line approach that allows for batch processing and the use of scripts across the higher and lower levels of the application server configuration. Both interfaces allow for changes to be persisted or otherwise saved to the server configuration.

5.2.2. Configure Socket Bindings

Socket bindings can be defined in unique socket binding groups. The Standalone Server contains one such group, the standard-sockets group, and is unable to create any further groups. Instead you can create alternate Standalone Server configuration files. For the Managed Domain however, you can create multiple socket binding groups and configure the socket bindings that they contain as you require. The following table shows the available attributes for each socket binding.

Table 5.2. Socket Binding Attributes

Component Description Role
Name Logical name of the socket configuration that should be used elsewhere in the configuration. Required
Port Base port to which a socket based on this configuration should be bound. Note that servers can be configured to override this base value by applying an increment or decrement to all port values. Required
Interface Logical name of the interface to which a socket based on this configuration should be bound. If not defined, the value of the "default-interface" attribute from the enclosing socket binding group will be used. Optional
Multicast Address If the socket will be used for multicast, the multicast address to use. Optional
Multicast Port Bound to the lifecycle of the conversation. The conversation scope is between the lengths of the request and the session, and is controlled by the application. Optional
Fixed Port If the above contexts do not meet your needs, you can define custom scopes. Optional
  • Configure Socket Bindings in Socket Binding Groups

    Choose either the Management CLI or the Management Console to configure your socket bindings as required.
    • Configure Socket Bindings Using the Management CLI

      Use the Management CLI to configure socket bindings.
      1. Add a New Socket Binding

        Use the add operation to create a new address setting if required. You can run this command from the root of the Management CLI session, which in the following examples creates a new socket binding titled newsocket, with a port attribute declared as 1234. The examples apply for both Standalone Server and a Managed Domain editing on the standard-sockets socket binding group as shown.
        [domain@localhost:9999 /] /socket-binding-group=standard-sockets/socket-binding=newsocket/:add(port=1234)
      2. Edit Pattern Attributes

        Use the write-attribute operation to write a new value to an attribute. You can use tab completion to help complete the command string as you type, as well as to expose the available attributes. The following example updates the port value to 2020
        [domain@localhost:9999 /] /socket-binding-group=standard-sockets/socket-binding=newsocket/:write-attribute(name=port,value=2020)
      3. Confirm Pattern Attributes

        Confirm the values are changed by running the read-resource operation with the include-runtime=true parameter to expose all current values active in the server model.
        [domain@localhost:9999 /] /socket-binding-group=standard-sockets/socket-binding=newsocket/:read-resource
    • Configure Socket Bindings Using the Management Console

      Use the Management Console to configure socket bindings.
      1. Log into the Management Console.

        Log into the Management Console of your Managed Domain or Standalone Server.
      2. Select the Profile tab

        Select the Profiles tab at the top right.
      3. Select the Socket Binding item from the navigation menu.

        Select the Socket Binding menu item from the navigation menu. If you are using a Managed Domain, select the desired group in the Socket Binding Groups menu.
      4. Add a New Socket Binding

        1. Click the Add button.
        2. Enter any required values for Name, Port and Binding Group.
        3. Click the Save to finish.
      5. Edit Interface Attributes

        1. Select the Socket Binding to edit and click the Edit button.
        2. Enter any required values such as Name, Interface or Port.
        3. Click the Save to finish.

5.2.3. Network Ports Used By JBoss EAP 6

The ports used by the JBoss EAP 6 default configuration depend on several factors:
  • Whether your server groups use one of the default socket binding groups, or a custom group.
  • The requirements of your individual deployments.

Note

A numerical port offset can be configured, to alleviate port conflicts when you run multiple servers on the same physical server. If your server uses a numerical port offset, add the offset to the default port number for its server group's socket binding group. For instance, if the HTTP port of the socket binding group is 8080, and your server uses a port offset of 100, its HTTP port is 8180.
Unless otherwise stated, the ports use the TCP protocol.

The default socket binding groups

  • full-ha-sockets
  • full-sockets
  • ha-sockets
  • standard-sockets

Table 5.3. Reference of the default socket bindings

Name Port Mulicast Port Description full-ha-sockets full-sockets ha-socket standard-socket
ajp 8009 Apache JServ Protocol. Used for HTTP clustering and load balancing. Yes Yes Yes Yes
http 8080 The default port for deployed web applications. Yes Yes Yes Yes
https 8443 SSL-encrypted connection between deployed web applications and clients. Yes Yes Yes Yes
jacorb 3528 CORBA services for JTS transactions and other ORB-dependent services. Yes Yes No No
jacorb-ssl 3529 SSL-encrypted CORBA services. Yes Yes No No
jgroups-diagnostics 7500 Multicast. Used for peer discovery in HA clusters. Not configurable using the Management Interfaces. Yes No Yes No
jgroups-mping 45700 Multicast. Used to discover initial membership in a HA cluster. Yes No Yes No
jgroups-tcp 7600 Unicast peer discovery in HA clusters using TCP. Yes No Yes No
jgroups-tcp-fd 57600 Used for HA failure detection over TCP. Yes No Yes No
jgroups-udp 55200 45688 Unicast peer discovery in HA clusters using UDP. Yes No Yes No
jgroups-udp-fd 54200 Used for HA failure detection over UDP. Yes No Yes No
messaging 5445 JMS service. Yes Yes No No
messaging-group Referenced by HornetQ JMS broadcast and discovery groups. Yes Yes No No
messaging-throughput 5455 Used by JMS Remoting. Yes Yes No No
mod_cluster 23364 Multicast port for communication between JBoss EAP 6 and the HTTP load balancer. Yes No Yes No
osgi-http 8090 Used by internal components which use the OSGi subsystem. Not configurable using the Management Interfaces. Yes Yes Yes Yes
remoting 4447 Used for remote EJB invocation. Yes Yes Yes Yes
txn-recovery-environment 4712 The JTA transaction recovery manager. Yes Yes Yes Yes
txn-status-manager 4713 The JTA / JTS transation manager. Yes Yes Yes Yes
Management Ports

In addition to the socket binding groups, each host controller opens two more ports for management purposes:

  • 9990 - The Web Management Console port
  • 9999 - The port used by the Management Console and Management API

5.2.4. About Port Offsets for Socket Binding Groups

Port offsets are a numeric offset added to the port values given by the socket binding group for that server. This allows a single server to inherit the socket bindings of the server group that is belongs, with an offset to ensure that it does not clash with the other servers in the group. For instance, if the HTTP port of the socket binding group is 8080, and your server uses a port offset of 100, its HTTP port is 8180.

5.2.5. Configure Port Offsets

  • Configure Port Offsets

    Choose either the Management CLI or the Management Console to configure your port offsets.
    • Configure Port Offsets Using the Management CLI

      Use the Management CLI to configure port offsets.
      1. Edit Port Offsets

        Use the write-attribute operation to write a new value to the port offset atttribute. The following example updates the socket-binding-port-offset value of server-two to 250. This server is a member of the default local host group. A restart is required for the changes to take affect.
        [domain@localhost:9999 /] /host=master/server-config=server-two/:write-attribute(name=socket-binding-port-offset,value=250)
      2. Confirm Port Offset Attributes

        Confirm the values are changed by running the read-resource operation with the include-runtime=true parameter to expose all current values active in the server model.
        [domain@localhost:9999 /] /host=master/server-config=server-two/:read-resource(include-runtime=true)
    • Configure Port Offsets Using the Management Console

      Use the Management Console to configure port offsets.
      1. Log into the Management Console.

        Log into the Management Console of your Managed Domain.
      2. Select the Hosts tab

        Select the Hosts tab at the top right.
      3. Edit Port Offset Attributes

        1. Select the server under the Configuration Name section and click the Edit button.
        2. Enter any desired values in the Port Offset field.
        3. Click the Save button to finish.

5.3. IPv6

5.3.1. Configure JVM Stack Preferences for IPv6 Networking

Summary
This topic covers enabling IPv6 networking for the JBoss EAP 6 installation.

Procedure 5.1. Disable the IPv4 Stack Java Property

  1. Open the relevant file for the installation:
    • For a Standalone Server:

      Open EAP_HOME/bin/standalone.conf.
    • For a Managed Domain:

      Open EAP_HOME/bin/domain.conf.
  2. Change the IPv4 Stack Java property to false:
    -Djava.net.preferIPv4Stack=false
    For example:
    # Specify options to pass to the Java VM.
    #
    if [ "x$JAVA_OPTS" = "x" ]; then
       JAVA_OPTS="-Xms64m -Xmx512m -XX:MaxPermSize=256m -Djava.net.preferIPv4Stack=false 
       -Dorg.jboss.resolver.warning=true -Dsun.rmi.dgc.client.gcInterval=3600000 
       -Dsun.rmi.dgc.server.gcInterval=3600000 -Djava.net.preferIPv6Addresses=true"
    fi
    

5.3.2. Configure the Interface Declarations for IPv6 Networking

Summary

Follow these steps to configure the interface inet address to the IPv6 default:

Procedure 5.2. Configure the Interface for IPv6 Networking

  1. Select the Profile tab, in the top right corner of the console.
  2. Select the Interfaces option under General Configuration.
  3. Select the named network interface to configure.
  4. Click the Edit button.
  5. Set the inet address to:
    ${jboss.bind.address.management:[ADDRESS]}
  6. Click the Save button to save the changes.
  7. Restart the server to implement the changes.

5.3.3. Configure JVM Stack Preferences for IPv6 Addresses

Summary
This topic covers configuring the JBoss EAP 6 installation to prefer IPv6 addresses through the configuration files.

Procedure 5.3. Configure the JBoss EAP 6 Installation to Prefer IPv6 Addresses

  1. Open the relevant file for the installation:
    • For a Standalone Server:

      Open EAP_HOME/bin/standalone.conf.
    • For a Managed Domain:

      Open EAP_HOME/bin/domain.conf.
  2. Append the following Java property to the Java VM options:
    -Djava.net.preferIPv6Addresses=true
    For example:
    # Specify options to pass to the Java VM.
    #
    if [ "x$JAVA_OPTS" = "x" ]; then
       JAVA_OPTS="-Xms64m -Xmx512m -XX:MaxPermSize=256m -Djava.net.preferIPv4Stack=false 
       -Dorg.jboss.resolver.warning=true -Dsun.rmi.dgc.client.gcInterval=3600000 
       -Dsun.rmi.dgc.server.gcInterval=3600000 -Djava.net.preferIPv6Addresses=true"
    fi
    

Chapter 6. Datasource Management

6.1. Introduction

6.1.1. About JDBC

The JDBC API is the standard that defines how databases are accessed by Java applications. An application configures a datasource that references a JDBC driver. Application code can then be written against the driver, rather than the database. The driver converts the code to the database language. This means that if the correct driver is installed, an application can be used with any supported database.
The JDBC 4.0 specification is defined here: http://jcp.org/en/jsr/detail?id=221.
To get started with JDBC and datasources, refer to the JDBC Driver section of the Administration and Configuration Guide for JBoss EAP 6.

6.1.2. JBoss EAP 6 Supported Databases

The list of JDBC compliant databases supported by JBoss EAP 6 is available here: https://access.redhat.com/site/articles/111663.

6.1.3. Types of Datasources

The two general types of resources are referred to as datasources and XA datasources.
Non-XA datasources are used for applications which do not use transactions, or applications which use transactions with a single database.
XA datasources are used by applications whose transactions are distributed across multiple databases. XA datasources introduce additional overhead.
You specify the type of your datasource when you create it in the Management Console or Management CLI.

6.1.4. The Example Datasource

JBoss EAP 6 includes a H2 database. It is a lightweight, relational database management system that provides developers with the ability to quickly build applications, and is the example datasource for the platform.

Warning

However, it should not be used in a production environment. It is a very small, self-contained datasource that supports all of the standards needed for testing and building applications, but is not robust or scalable enough for production use.
For a list of supported and certified datasources, refer here: Section 6.1.2, “JBoss EAP 6 Supported Databases”.

6.1.5. Deployment of -ds.xml files

In JBoss EAP 6, datasources are defined as a resource of the server subsystem. In previous versions, a *-ds.xml datasource configuration file was required in the deployment directory of the server configuration. *-ds.xml files can still be deployed in JBoss EAP 6, following the 1.1 data sources schema available under Schemas here: http://www.ironjacamar.org/documentation.html.

Warning

This feature should only be used for development. It is not recommended for production environments, because it is not supported by the JBoss administrative and management tools.

Important

It is mandatory to use a reference to an already deployed / defined <driver> entry when deploying *-ds.xml files.

6.2. JDBC Drivers

6.2.1. Install a JDBC Driver with the Management Console

Summary

Before your application can connect to a JDBC datasource, your datasource vendor's JDBC drivers need to be installed in a location where JBoss EAP 6 can use them. JBoss EAP 6 allows you to deploy these drivers like any other deployment. This means that you can deploy them across multiple servers in a server group, if you use a managed domain.

Note

For better startup server behavior, the preferred installation method for JDBC drivers is to install them as a core module. To install the JDBC driver as a core module, refer here: Section 6.2.2, “Install a JDBC Driver as a Core Module”.
Prerequisites

Before performing this task, you need to meet the following prerequisites:

  • Download the JDBC driver from your database vendor.

Procedure 6.1. Deploy the JDBC Driver

  1. Access the Management Console.

  2. Deploy the JAR file to your server or server group.

    If you use a managed domain, deploy the JAR file to a server group. Otherwise, deploy it to your server. See Section 9.2.2, “Deploy an Application Using the Management Console”.
Result:

The JDBC driver is deployed, and is available for your applications to use.

6.2.2. Install a JDBC Driver as a Core Module

Prerequisites

Before performing this task, you need to meet the following prerequisites:

Procedure 6.2. Install a JDBC Driver as a Core Module

  1. Create a file path structure under the EAP_HOME/modules/ directory. For example, for a MySQL JDBC driver, create a directory structure as follows: EAP_HOME/modules/com/mysql/main/.
  2. Copy the JDBC driver JAR into the main/ subdirectory.
  3. In the main/ subdirectory, create a module.xml file similar to the example in Section 7.1.1, “Modules”. The module XSD is defined in the EAP_HOME/docs/schema/module-1_2.xsd file.
  4. Start the Server.
  5. Start the Management CLI.
  6. Run the following CLI command to add the JDBC driver module as a driver:
    /subsystem=datasources/jdbc-driver=DRIVER_NAME:add(driver-name=DRIVER_NAME,driver-module-name=MODULE_NAME,driver-xa-datasource-class-name=XA_DATASOURCE_CLASS_NAME)

    Example 6.1. Example CLI Command

    /subsystem=datasources/jdbc-driver=mysql:add(driver-name=mysql,driver-module-name=com.mysql,driver-xa-datasource-class-name=com.mysql.jdbc.jdbc2.optional.MysqlXADataSource)
Result

The JDBC driver is now installed and set up as a core module, and is available to be referenced by application datasources.

6.2.3. JDBC Driver Download Locations

The following table gives the standard download locations for JDBC drivers of common databases used with JBoss EAP 6. These links point to third-party websites which are not controlled or actively monitored by Red Hat. For the most up-to-date drivers for your database, check your database vendor's documentation and website.

6.2.4. Access Vendor Specific Classes

Summary

This topic covers the steps required to use the JDBC specific classes. This is necessary when an application needs to use vendor specific functionality that is not part of the JDBC API.

Warning

This is advanced usage. Only applications that need functionality not found in the JDBC API should implement this procedure.

Important

This process is required when using the reauthentication mechanism, and accessing vendor specific classes.

Important

Follow the vendor specific API guidelines closely, as the connection is being controlled by the IronJacamar container.

Procedure 6.3. Add a Dependency to the Application

    • Configure the MANIFEST.MF file

      1. Open the application's META-INF/MANIFEST.MF file in a text editor.
      2. Add a dependency for the JDBC module and save the file.
        Dependencies: MODULE_NAME

        Example 6.2. Example Dependency

        Dependencies: com.mysql
      1. Create a jboss-deployment-structure.xml file

        Create a file called jboss-deployment-structure.xml in the META-INF/ or WEB-INF folder of the application.

        Example 6.3. Example jboss-deployment-structure.xml file

        <jboss-deployment-structure>
          <deployment>
            <dependencies>
              <module name="com.mysql" />
            </dependencies>
          </deployment>
        </jboss-deployment-structure>
        
        

Example 6.4. Access the Vendor Specific API

The example below accesses the MySQL API.
import java.sql.Connection;
import org.jboss.jca.adapters.jdbc.WrappedConnection;

  Connection c = ds.getConnection();
  WrappedConnection wc = (WrappedConnection)c;
  com.mysql.jdbc.Connection mc = wc.getUnderlyingConnection();

6.3. Non-XA Datasources

6.3.1. Create a Non-XA Datasource with the Management Interfaces

Summary

This topic covers the steps required to create a non-XA datasource, using either the Management Console or the Management CLI.

Prerequisites

  • The JBoss EAP 6 server must be running.

Note

Prior to version 10.2 of the Oracle datasource, the <no-tx-separate-pools/> parameter was required, as mixing non-transactional and transactional connections would result in an error. This parameter may no longer be required for certain applications.

Procedure 6.4. Create a Datasource using either the Management CLI or the Management Console

    • Management CLI

      1. Launch the CLI tool and connect to your server.
      2. Run the following command to create a non-XA datasource, configuring the variables as appropriate:
        data-source add --name=DATASOURCE_NAME --jndi-name=JNDI_NAME --driver-name=DRIVER_NAME  --connection-url=CONNECTION_URL
      3. Enable the datasource:
        data-source enable --name=DATASOURCE_NAME
    • Management Console

      1. Login to the Management Console.
      2. Navigate to the Datasources panel in the Management Console

          • Standalone Mode

            Select the Profile tab from the top of the console.
          • Domain Mode

            1. Select the Profiles tab from the top of the console.
            2. Select the appropriate profile from the drop-down box in the top left.
            3. Expand the Subsystems menu on the left of the console.
        1. Select ConnectorDatasources from the menu on the left of the console.
      3. Create a new datasource

        1. Select the Add button at the top of the Datasources panel.
        2. Enter the new datasource attributes in the Create Datasource wizard and proceed with the Next button.
        3. Enter the JDBC driver details in the Create Datasource wizard and proceed with the Next button.
        4. Enter the connection settings in the Create Datasource wizard and select the Done button.
Result

The non-XA datasource has been added to the server. It is now visible in either the standalone.xml or domain.xml file, as well as the management interfaces.

6.3.2. Modify a Non-XA Datasource with the Management Interfaces

Summary

This topic covers the steps required to modify a non-XA datasource, using either the Management Console or the Management CLI.

Note

Non-XA datasources can be integrated with JTA transactions. To integrate the datasource with JTA, ensure that the jta parameter is set to true.

Procedure 6.5. Modify a Non-XA Datasource

    • Management CLI

      1. Use the write-attribute command to configure a datasource attribute:
        /subsystem=datasources/data-source=DATASOURCE_NAME:write-attribute(name=ATTRIBUTE_NAME,value=ATTRIBUTE_VALUE)
      2. Reload the server to confirm the changes:
        :reload
    • Management Console

      1. Navigate to the Datasources panel in the Management Console

          • Standalone Mode

            Select the Profile tab from the top of the console.
          • Domain Mode

            1. Select the Profiles tab from the top of the console.
            2. Select the appropriate profile from the drop-down box in the top left.
            3. Expand the Subsystems menu on the left of the console.
        1. Select ConnectorDatasources from the menu on the left of the console.
      2. Edit the datasource

        1. Select the relevant datasource from the Available Datasources list. The datasource attributes are displayed in the Attributes panel below it.
        2. Select the Edit button to edit the datasource attributes.
        3. Edit the datasource attributes and select the Save button when done.
Result

The non-XA datasource has been configured. The changes are now visible in either the standalone.xml or domain.xml file, as well as the management interfaces.

6.3.3. Remove a Non-XA Datasource with the Management Interfaces

Summary

This topic covers the steps required to remove a non-XA datasource from JBoss EAP 6, using either the Management Console or the Management CLI.

Procedure 6.6. Remove a Non-XA Datasource

    • Management CLI

      1. Run the following command to remove a non-XA datasource:
        data-source remove --name=DATASOURCE_NAME
    • Management Console

      1. Navigate to the Datasources panel in the Management Console

          • Standalone Mode

            Select the Profile tab from the top of the console.
          • Domain Mode

            1. Select the Profiles tab from the top of the console.
            2. Select the appropriate profile from the drop-down box in the top left.
            3. Expand the Subsystems menu on the left of the console.
        1. Select ConnectorDatasources from the menu on the left of the console.
      2. Select the registered datasource to be deleted, and click the Remove button in the top right corner of the console.
Result

The non-XA datasource has been removed from the server.

6.4. XA Datasources

6.4.1. Create an XA Datasource with the Management Interfaces

Summary

This topic covers the steps required to create an XA datasource, using either the Management Console or the Management CLI.

Note

Prior to version 10.2 of the Oracle datasource, the <no-tx-separate-pools/> parameter was required, as mixing non-transactional and transactional connections would result in an error. This parameter may no longer be required for certain applications.

Procedure 6.7. Create an XA Datasource, Using Either the Management CLI or the Management Console

    • Management CLI

      1. Run the following command to create an XA datasource, configuring the variables as appropriate:
        xa-data-source add --name=XA_DATASOURCE_NAME --jndi-name=JNDI_NAME --driver-name=DRIVER_NAME --xa-datasource-class=XA_DATASOURCE_CLASS
      2. Configure the XA datasource properties

        1. Set the server name

          Run the following command to configure the server name for the host:
          /subsystem=datasources/xa-data-source=XA_DATASOURCE_NAME/xa-datasource-properties=ServerName:add(value=HOSTNAME)
        2. Set the database name

          Run the following command to configure the database name:
          /subsystem=datasources/xa-data-source=XA_DATASOURCE_NAME/xa-datasource-properties=DatabaseName:add(value=DATABASE_NAME)
      3. Enable the datasource:
        xa-data-source enable --name=XA_DATASOURCE_NAME
    • Management Console

      1. Navigate to the Datasources panel in the Management Console

          • Standalone Mode

            Select the Profile tab from the top of the console.
          • Domain Mode

            1. Select the Profiles tab from the top of the console.
            2. Select the appropriate profile from the drop-down box in the top left.
            3. Expand the Subsystems menu on the left of the console.
        1. Select ConnectorDatasources from the menu on the left of the console.
      2. Select the XA Datasource tab.
      3. Create a new XA datasource

        1. Select the Add button at the top of the XA Datasources panel.
        2. Enter the new XA datasource attributes in the Create XA Datasource wizard and proceed with the Next button.
        3. Enter the JDBC driver details in the Create XA Datasource wizard and proceed with the Next button.
        4. Edit the XA properties and proceed with the Next button.
        5. Enter the connection settings in the Create XA Datasource wizard and select the Done button.
Result

The XA datasource has been added to the server. It is now visible in either the standalone.xml or domain.xml file, as well as the management interfaces.

6.4.2. Modify an XA Datasource with the Management Interfaces

Summary

This topic covers the steps required to modify an XA datasource, using either the Management Console or the Management CLI.

Procedure 6.8. Modify an XA Datasource, Using Either the Management CLI or the Management Console

    • Management CLI

      1. Configure XA datasource attributes

        Use the write-attribute command to configure a datasource attribute:
        /subsystem=datasources/xa-data-source=XA_DATASOURCE_NAME:write-attribute(name=ATTRIBUTE_NAME,value=ATTRIBUTE_VALUE)
      2. Configure XA datasource properties

        Run the following command to configure an XA datasource subresource:
        /subsystem=datasources/xa-data-source=DATASOURCE_NAME/xa-datasource-properties=PROPERTY_NAME:add(value=PROPERTY_VALUE)
      3. Reload the server to confirm the changes:
        :reload
    • Management Console

      1. Navigate to the Datasources panel in the Management Console

          • Standalone Mode

            Select the Profile tab from the top of the console.
          • Domain Mode

            1. Select the Profiles tab from the top of the console.
            2. Select the appropriate profile from the drop-down box in the top left.
            3. Expand the Subsystems menu on the left of the console.
        1. Select ConnectorDatasources from the menu on the left of the console.
      2. Select the XA Datasource tab.
      3. Edit the datasource

        1. Select the relevant XA datasource from the Available XA Datasources list. The XA datasource attributes are displayed in the Attributes panel below it.
        2. Select the Edit button to edit the datasource attributes.
        3. Edit the XA datasource attributes and select the Save button when done.
Result

The XA datasource has been configured. The changes are now visible in either the standalone.xml or domain.xml file, as well as the management interfaces.

6.4.3. Remove an XA Datasource with the Management Interfaces

Summary

This topic covers the steps required to remove an XA datasource from JBoss EAP 6, using either the Management Console or the Management CLI.

Procedure 6.9. Remove an XA Datasource Using Either the Management CLI or the Management Console

    • Management CLI

      1. Run the following command to remove an XA datasource:
        xa-data-source remove --name=XA_DATASOURCE_NAME
    • Management Console

      1. Navigate to the Datasources panel in the Management Console

          • Standalone Mode

            Select the Profile tab from the top of the console.
          • Domain Mode

            1. Select the Profiles tab from the top of the console.
            2. Select the appropriate profile from the drop-down box in the top left.
            3. Expand the Subsystems menu on the left of the console.
        1. Select ConnectorDatasources from the menu on the left of the console.
      2. Select the XA Datasource tab.
      3. Select the registered XA datasource to be deleted, and click the Remove button in the top right corner of the console.
Result

The XA datasource has been removed from the server.

6.4.4. XA Recovery

6.4.4.1. About XA Recovery Modules

Each XA resource needs a recovery module associated with its configuration. The recovery module must extend class com.arjuna.ats.jta.recovery.XAResourceRecovery.
JBoss EAP 6 provides recovery modules for JDBC and JMS XA resources. For these types of resources, recovery modules are automatically registered. If you need to use a custom module, you can register it in your datasource.

6.4.4.2. Configure XA Recovery Modules

For most JDBC and JMS resources, the recovery module is automatically associated with the resource. In these cases, you only need to configure the options that allow the recovery module to connect to your resource to perform recovery.
For custom resources which are not JDBC or JMS, contact Red Hat Global Support Services for information on supported configurations.
Each of these configuration attributes can be set either during datasource creation, or afterward. You can set them using either the web-based Management Console or the command-line Management CLI. Refer to Section 6.4.1, “Create an XA Datasource with the Management Interfaces” and Section 6.4.2, “Modify an XA Datasource with the Management Interfaces” for general information on configuring XA datasources.
Refer to the following tables for general datasource configuration attributes, and for information about configuration details relating to specific database vendors.

Table 6.2. General Configuration Attributes

Attribute Description
recovery-username
The username the recovery module should use to connect to the resource for recovery.
recovery-password
The password the recovery module should use to connect to the resource for recovery.
recovery-security-domain
The security domain the recovery module should use to connect to the resource for recovery.
recovery-plugin-class-name
If you need to use a custom recovery module, set this attribute to the fully-qualified class name of the module. The module should extend class com.arjuna.ats.jta.recovery.XAResourceRecovery.
recovery-plugin-properties
If you use a custom recovery module which requires properties to be set, set this attribute to the list of comma-separated key=value pairs for the properties.

Vendor-Specific Configuration Information

Oracle
If the Oracle datasource is configured incorrectly, you may see errors like the following in your log output:
WARN  [com.arjuna.ats.jta.logging.loggerI18N] [com.arjuna.ats.internal.jta.recovery.xarecovery1] Local XARecoveryModule.xaRecovery  got XA exception javax.transaction.xa.XAException, XAException.XAER_RMERR
To resolve this error, ensure that the Oracle user configured in recovery-username has access to the tables needed for recovery. The following SQL statement shows the correct grants for Oracle 11g or Oracle 10g R2 instances patched for Oracle bug 5945463.
GRANT SELECT ON sys.dba_pending_transactions TO recovery-username;
GRANT SELECT ON sys.pending_trans$ TO recovery-username;
GRANT SELECT ON sys.dba_2pc_pending TO recovery-username;
GRANT EXECUTE ON sys.dbms_xa TO recovery-username;
If you use an Oracle 11 version prior to 11g, change the final EXECUTE statement to the following:
	GRANT EXECUTE ON sys.dbms_system TO recovery-username;
PostgreSQL
See the PostgreSQL documentation for instructions on enabling prepared (i.e. XA) transactions. Version 8.4-701 of PostgreSQL's JDBC driver has a bug in org.postgresql.xa.PGXAConnection which breaks recovery in certain situations. This is fixed in newer versions.
MySQL
Based on http://bugs.mysql.com/bug.php?id=12161, XA transaction recovery did not work in some versions of MySQL 5. This is addressed in MySQL 6.1. Refer to the bug URL or to the MySQL documentation for more information.
IBM DB2
IBM DB2 expects method XAResource.recover to be called only during the designated resynchronization stage which occurs when the application server is restarted after a crash or failure. This is a design decision in the DB2 implementation, and out of the scope of this documentation.

6.5. Datasource Security

6.5.1. About Datasource Security

The preferred solution for datasource security is the use of either security domains or password vaults. Examples of each are included below. For more information, refer to:

Example 6.5. Security Domain Example

<security>
   <security-domain>mySecurityDomain</security-domain>
</security>

Example 6.6. Password Vault Example

<security>
  <user-name>admin</user-name>
  <password>${VAULT::ds_ExampleDS::password::N2NhZDYzOTMtNWE0OS00ZGQ0LWE4MmEtMWNlMDMyNDdmNmI2TElORV9CUkVBS3ZhdWx0}</password>
</security>

6.6. Datasource Configuration

6.6.1. Datasource Parameters

Table 6.3. Datasource parameters common to non-XA and XA datasources

Parameter Description
jndi-name The unique JNDI name for the datasource.
pool-name The name of the management pool for the datasource.
enabled Whether or not the datasource is enabled.
use-java-context
Whether to bind the datasource to global JNDI.
spy
Enable spy functionality on the JDBC layer. This logs all JDBC traffic to the datasource. The logging-category parameter must also be set to org.jboss.jdbc.
use-ccm Enable the cached connection manager.
new-connection-sql A SQL statement which executes when the connection is added to the connection pool.
transaction-isolation
One of the following:
  • TRANSACTION_READ_UNCOMMITTED
  • TRANSACTION_READ_COMMITTED
  • TRANSACTION_REPEATABLE_READ
  • TRANSACTION_SERIALIZABLE
  • TRANSACTION_NONE
url-delimiter The delimiter for URLs in a connection-url for High Availability (HA) clustered databases.
url-selector-strategy-class-name A class that implements interface org.jboss.jca.adapters.jdbc.URLSelectorStrategy.
security
Contains child elements which are security settings. See Table 6.8, “Security parameters”.
validation
Contains child elements which are validation settings. See Table 6.9, “Validation parameters”.
timeout
Contains child elements which are timeout settings. See Table 6.10, “Timeout parameters”.
statement
Contains child elements which are statement settings. See Table 6.11, “Statement parameters”.

Table 6.4. Non-XA datasource parameters

Parameter Description
jta Enable JTA integration for non-XA datasources. Does not apply to XA datasources.
connection-url The JDBC driver connection URL.
driver-class The fully-qualified name of the JDBC driver class.
connection-property
Arbitrary connection properties passed to the method Driver.connect(url,props). Each connection-property specifies a string name/value pair. The property name comes from the name, and the value comes from the element content.
pool
Contains child elements which are pooling settings. See Table 6.6, “Pool parameters common to non-XA and XA datasources”.

Table 6.5. XA datasource parameters

Parameter Description
xa-datasource-property
A property to assign to implementation class XADataSource. Specified by name=value. If a setter method exists, in the format setName, the property is set by calling a setter method in the format of setName(value).
xa-datasource-class
The fully-qualified name of the implementation class javax.sql.XADataSource.
driver
A unique reference to the classloader module which contains the JDBC driver. The accepted format is driverName#majorVersion.minorVersion.
xa-pool
recovery
Contains child elements which are recovery settings. See Table 6.12, “Recovery parameters”.

Table 6.6. Pool parameters common to non-XA and XA datasources

Parameter Description
min-pool-size The minimum number of connections a pool holds.
max-pool-size The maximum number of connections a pool can hold.
prefill Whether to try to prefill the connection pool. An empty element denotes a true value. The default is false.
use-strict-min Whether the pool-size is strict. Defaults to false.
flush-strategy
Whether the pool is flushed in the case of an error. Valid values are:
  • FailingConnectionOnly
  • IdleConnections
  • EntirePool
The default is FailingConnectionOnly.
allow-multiple-users Specifies if multiple users will access the datasource through the getConnection(user, password) method, and whether the internal pool type accounts for this behavior.

Table 6.7. XA pool parameters

Parameter Description
is-same-rm-override Whether the javax.transaction.xa.XAResource.isSameRM(XAResource) class returns true or false.
interleaving Whether to enable interleaving for XA connection factories.
no-tx-separate-pools Whether to create separate sub-pools for each context. This is required for Oracle datasources, which do not allow XA connections to be used both inside and outside of a JTA transaction.
pad-xid Whether to pad the Xid.
wrap-xa-resource
Whether to wrap the XAResource in an org.jboss.tm.XAResourceWrapper instance.

Table 6.8. Security parameters

Parameter Description
user-name The username to use to create a new connection.
password The password to use to create a new connection.
security-domain Contains the name of a JAAS security-manager which handles authentication. This name correlates to the application-policy/name attribute of the JAAS login configuration.
reauth-plugin Defines a reauthentication plugin to use to reauthenticate physical connections.

Table 6.9. Validation parameters

Parameter Description
valid-connection-checker
An implementation of interface org.jboss.jca.adaptors.jdbc.ValidConnectionChecker which provides a SQLException.isValidConnection(Connection e) method to validate a connection. An exception means the connection is destroyed. This overrides the parameter check-valid-connection-sql if it is present.
check-valid-connection-sql An SQL statement to check validity of a pool connection. This may be called when a managed connection is taken from a pool for use.
validate-on-match
Indicates whether connection level validation is performed when a connection factory attempts to match a managed connection for a given set.
Specifying "true" for validate-on-match is typically not done in conjunction with specifying "true" for background-validation. Validate-on-match is needed when a client must have a connection validated prior to use. This parameter is true by default.
background-validation
Specifies that connections are validated on a background thread. Background validation is a performance optimization when not used with validate-on-match. If validate-on-match is true, using background-validation could result in redundant checks. Background validation does leave open the opportunity for a bad connection to be given to the client for use (a connection goes bad between the time of the validation scan and prior to being handed to the client), so the client application must account for this possibility.
background-validation-millis The amount of time, in milliseconds, that background validation runs.
use-fast-fail
If true, fail a connection allocation on the first attempt, if the connection is invalid. Defaults to false.
stale-connection-checker
An instance of org.jboss.jca.adapters.jdbc.StaleConnectionChecker which provides a Boolean isStaleConnection(SQLException e) method. If this method returns true, the exception is wrapped in an org.jboss.jca.adapters.jdbc.StaleConnectionException, which is a subclass of SQLException.
exception-sorter
An instance of org.jboss.jca.adapters.jdbc.ExceptionSorter which provides a Boolean isExceptionFatal(SQLException e) method. This method validates whether an exception is broadcast to all instances of javax.resource.spi.ConnectionEventListener as a connectionErrorOccurred message.

Table 6.10. Timeout parameters

Parameter Description
use-try-lock Uses tryLock() instead of lock(). This attempts to obtain the lock for the configured number of seconds, before timing out, rather than failing immediately if the lock is unavailable. Defaults to 60 seconds. As an example, to set a timeout of 5 minutes, set <use-try-lock>300</use-try-lock>.
blocking-timeout-millis The maximum time, in milliseconds, to block while waiting for a connection. After this time is exceeded, an exception is thrown. This blocks only while waiting for a permit for a connection, and does not throw an exception if creating a new connection takes a long time. Defaults to 30000, which is 30 seconds.
idle-timeout-minutes
The maximum time, in minutes, before an idle connection is closed. The actual maximum time depends upon the idleRemover scan time, which is half of the smallest idle-timeout-minutes of any pool.
set-tx-query-timeout
Whether to set the query timeout based on the time remaining until transaction timeout. Any configured query timeout is used if no transaction exists. Defaults to false.
query-timeout Timeout for queries, in seconds. The default is no timeout.
allocation-retry The number of times to retry allocating a connection before throwing an exception. The default is 0, so an exception is thrown upon the first failure.
allocation-retry-wait-millis
How long, in milliseconds, to wait before retrying to allocate a connection. The default is 5000, which is 5 seconds.
xa-resource-timeout
If non-zero, this value is passed to method XAResource.setTransactionTimeout.

Table 6.11. Statement parameters

Parameter Description
track-statements
Whether to check for unclosed statements when a connection is returned to a pool and a statement is returned to the prepared statement cache. If false, statements are not tracked.

Valid values

  • true: statements and result sets are tracked, and a warning is issued if they are not closed.
  • false: neither statements or result sets are tracked.
  • nowarn: statements are tracked but no warning is issued. This is the default.
prepared-statement-cache-size The number of prepared statements per connection, in a Least Recently Used (LRU) cache.
share-prepared-statements
Whether asking for the same statement twice without closing it uses the same underlying prepared statement. The default is false.

Table 6.12. Recovery parameters

Parameter Description
recover-credential A username/password pair or security domain to use for recovery.
recover-plugin
An implementation of the org.jboss.jca.core.spi.recoveryRecoveryPlugin class, to be used for recovery.

6.6.2. Datasource Connection URLs

Table 6.13. 

Datasource Connection URL
PostgreSQL jdbc:postgresql://SERVER_NAME:PORT/DATABASE_NAME
MySQL jdbc:mysql://SERVER_NAME:PORT/DATABASE_NAME
Oracle jdbc:oracle:thin:@ORACLE_HOST:PORT:ORACLE_SID
IBM DB2 jdbc:db2://SERVER_NAME:PORT/DATABASE_NAME
Microsoft SQLServer jdbc:microsoft:sqlserver://SERVER_NAME:PORT;DatabaseName=DATABASE_NAME

6.6.3. Datasource Extensions

Datasource deployments can use several extensions in the JDBC resource adapter to improve the connection validation, and check whether an exception should reestablish the connection. Those extensions are:

Table 6.14. Datasource Extensions

Datasource Extension Configuration Parameter Description
org.jboss.jca.adapters.jdbc.spi.ExceptionSorter <exception-sorter> Checks whether an SQLException is fatal for the connection on which it was thrown
org.jboss.jca.adapters.jdbc.spi.StaleConnection <stale-connection-checker> Wraps stale SQLExceptions in a org.jboss.jca.adapters.jdbc.StaleConnectionException
org.jboss.jca.adapters.jdbc.spi.ValidConnection <valid-connection-checker> Checks whether a connection is valid for use by the application
JBoss EAP 6 also features implementations of these extensions for several supported databases.

Extension Implementations

Generic
  • org.jboss.jca.adapters.jdbc.extensions.novendor.NullExceptionSorter
  • org.jboss.jca.adapters.jdbc.extensions.novendor.NullStaleConnectionChecker
  • org.jboss.jca.adapters.jdbc.extensions.novendor.NullValidConnectionChecker
  • org.jboss.jca.adapters.jdbc.extensions.novendor.JDBC4ValidConnectionChecker
PostgreSQL
  • org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLExceptionSorter
  • org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLValidConnectionChecker
MySQL
  • org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter
  • org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLReplicationValidConnectionChecker
  • org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker
IBM DB2
  • org.jboss.jca.adapters.jdbc.extensions.db2.DB2ExceptionSorter
  • org.jboss.jca.adapters.jdbc.extensions.db2.DB2StaleConnectionChecker
  • org.jboss.jca.adapters.jdbc.extensions.db2.DB2ValidConnectionChecker
Sybase
  • org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseExceptionSorter
  • org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseValidConnectionChecker
Microsoft SQLServer
  • org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLValidConnectionChecker
Oracle
  • org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter
  • org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter
  • org.jboss.jca.adapters.jdbc.extensions.oracle.OracleValidConnectionChecker

6.6.4. View Datasource Statistics

You can view statistics from defined datasources for both the jdbc and pool using appropriately modified versions of the commands below:

Procedure 6.10. 

  • /subsystem=datasources/data-source=ExampleDS/statistics=jdbc:read-resource(include-runtime=true)
    
    /subsystem=datasources/data-source=ExampleDS/statistics=pool:read-resource(include-runtime=true)
    

Note

Ensure you specify the include-runtime=true argument, as all statistics are runtime only information and the default is false.

6.6.5. Datasource Statistics

Core Statistics

The following table contains a list of the supported datasource core statistics:

Table 6.15. Core Statistics

Name Description
ActiveCount
The number of active connections. Each of the connections is either in use by an application or available in the pool
AvailableCount
The number of available connections in the pool.
AverageBlockingTime
The average time spent blocking on obtaining an exclusive lock on the pool. The value is in milliseconds.
AverageCreationTime
The average time spent creating a connection. The value is in milliseconds.
CreatedCount
The number of connections created.
DestroyedCount
The number of connections destroyed.
InUseCount
The number of connections currently in use.
MaxCreationTime
The maximum time it took to create a connection. The value is in milliseconds.
MaxUsedCount
The maximum number of connections used.
MaxWaitCount
The maximum number of requests waiting for a connection at the same time.
MaxWaitTime
The maximum time spent waiting for an exclusive lock on the pool.
TimedOut
The number of timed out connections.
TotalBlockingTime
The total time spent waiting for an exclusive lock on the pool. The value is in milliseconds.
TotalCreationTime
The total time spent creating connections. The value is in milliseconds.
WaitCount
The number of requests that had to wait for a connection.
JDBC Statistics

The following table contains a list of the supported datasource JDBC statistics:

Table 6.16. JDBC Statistics

Name Description
PreparedStatementCacheAccessCount
The number of times that the statement cache was accessed.
PreparedStatementCacheAddCount
The number of statements added to the statement cache.
PreparedStatementCacheCurrentSize
The number of prepared and callable statements currently cached in the statement cache.
PreparedStatementCacheDeleteCount
The number of statements discarded from the cache.
PreparedStatementCacheHitCount
The number of times that statements from the cache were used.
PreparedStatementCacheMissCount
The number of times that a statement request could not be satisfied with a statement from the cache.

6.7. Example Datasources

6.7.1. Example PostgreSQL Datasource

Example 6.7. 

The example below is a PostgreSQL datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <datasource jndi-name="java:jboss/PostgresDS" pool-name="PostgresDS">
    <connection-url>jdbc:postgresql://localhost:5432/postgresdb</connection-url>
    <driver>postgresql</driver>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security>
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLValidConnectionChecker"></valid-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLExceptionSorter"></exception-sorter>
    </validation>
  </datasource>
  <drivers>
    <driver name="postgresql" module="org.postgresql">
      <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the PostgreSQL datasource above.
<module xmlns="urn:jboss:module:1.1" name="org.postgresql">
  <resources>
    <resource-root path="postgresql-9.1-902.jdbc4.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.2. Example PostgreSQL XA Datasource

Example 6.8. 

The example below is a PostgreSQL XA datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <xa-datasource jndi-name="java:jboss/PostgresXADS" pool-name="PostgresXADS">
    <driver>postgresql</driver>
    <xa-datasource-property name="ServerName">localhost</xa-datasource-property>
    <xa-datasource-property name="PortNumber">5432</xa-datasource-property>
    <xa-datasource-property name="DatabaseName">postgresdb</xa-datasource-property>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security>
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLValidConnectionChecker">
      </valid-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLExceptionSorter">
      </exception-sorter>
    </validation>
  </xa-datasource>
  <drivers>
    <driver name="postgresql" module="org.postgresql">
      <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the PostgreSQL XA datasource above.
<module xmlns="urn:jboss:module:1.1" name="org.postgresql">
  <resources>
    <resource-root path="postgresql-9.1-902.jdbc4.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.3. Example MySQL Datasource

Example 6.9. 

The example below is a MySQL datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <datasource jndi-name="java:jboss/MySqlDS" pool-name="MySqlDS">
    <connection-url>jdbc:mysql://mysql-localhost:3306/jbossdb</connection-url>
    <driver>mysql</driver>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security> 
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker"></valid-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter"></exception-sorter>
    </validation>
  </datasource>
  <drivers>
    <driver name="mysql" module="com.mysql">
      <xa-datasource-class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the MySQL datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.mysql">
  <resources>
    <resource-root path="mysql-connector-java-5.0.8-bin.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.4. Example MySQL XA Datasource

Example 6.10. 

The example below is a MySQL XA datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <xa-datasource jndi-name="java:jboss/MysqlXADS" pool-name="MysqlXADS">
  <driver>mysql</driver>
    <xa-datasource-property name="ServerName">localhost</xa-datasource-property>
    <xa-datasource-property name="DatabaseName">mysqldb</xa-datasource-property>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security>
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker"></valid-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter"></exception-sorter>
    </validation>
  </xa-datasource>
  <drivers>
    <driver name="mysql" module="com.mysql">
      <xa-datasource-class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the MySQL XA datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.mysql">
  <resources>
    <resource-root path="mysql-connector-java-5.0.8-bin.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.5. Example Oracle Datasource

Note

Prior to version 10.2 of the Oracle datasource, the <no-tx-separate-pools/> parameter was required, as mixing non-transactional and transactional connections would result in an error. This parameter may no longer be required for certain applications.

Example 6.11. 

The example below is an Oracle datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <datasource jndi-name="java:/OracleDS" pool-name="OracleDS">
    <connection-url>jdbc:oracle:thin:@localhost:1521:XE</connection-url>
    <driver>oracle</driver>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security> 
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleValidConnectionChecker"></valid-connection-checker>
      <stale-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleStaleConnectionChecker"></stale-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter"></exception-sorter>
    </validation>
  </datasource>
  <drivers>
    <driver name="oracle" module="com.oracle">
      <xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the Oracle datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.oracle">
  <resources>
    <resource-root path="ojdbc6.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.6. Example Oracle XA Datasource

Note

Prior to version 10.2 of the Oracle datasource, the <no-tx-separate-pools/> parameter was required, as mixing non-transactional and transactional connections would result in an error. This parameter may no longer be required for certain applications.

Important

The following settings must be applied for the user accessing an Oracle XA datasource in order for XA recovery to operate correctly. The value user is the user defined to connect from JBoss to Oracle:
  • GRANT SELECT ON sys.dba_pending_transactions TO user;
  • GRANT SELECT ON sys.pending_trans$ TO user;
  • GRANT SELECT ON sys.dba_2pc_pending TO user;
  • GRANT EXECUTE ON sys.dbms_xa TO user; (If using Oracle 10g R2 (patched) or Oracle 11g)
    OR
    GRANT EXECUTE ON sys.dbms_system TO user; (If using an unpatched Oracle version prior to 11g)

Example 6.12. 

The example below is an Oracle XA datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <xa-datasource jndi-name="java:/XAOracleDS" pool-name="XAOracleDS">
    <driver>oracle</driver>
    <xa-datasource-property name="URL">jdbc:oracle:oci8:@tc</xa-datasource-property>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security>
    <xa-pool>
      <is-same-rm-override>false</is-same-rm-override>
      <no-tx-separate-pools />
    </xa-pool>
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleValidConnectionChecker"></valid-connection-checker>
      <stale-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleStaleConnectionChecker"></stale-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter"></exception-sorter>
    </validation>
  </xa-datasource>
  <drivers>
    <driver name="oracle" module="com.oracle">
      <xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the Oracle XA datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.oracle">
  <resources>
    <resource-root path="ojdbc6.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.7. Example Microsoft SQLServer Datasource

Example 6.13. 

The example below is a Microsoft SQLServer datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <datasource jndi-name="java:/MSSQLDS" pool-name="MSSQLDS">
    <connection-url>jdbc:microsoft:sqlserver://localhost:1433;DatabaseName=MyDatabase</connection-url>
    <driver>sqlserver</driver>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security>
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLValidConnectionChecker"></valid-connection-checker>
    </validation>
  </datasource>
  <drivers>
    <driver name="sqlserver" module="com.microsoft">
      <xa-datasource-class>com.microsoft.sqlserver.jdbc.SQLServerXADataSource</xa-datasource-class>
    </driver>
</datasources>

The example below is a module.xml file for the Microsoft SQLServer datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.microsoft">
  <resources>
    <resource-root path="sqljdbc4.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.8. Example Microsoft SQLServer XA Datasource

Example 6.14. 

The example below is a Microsoft SQLServer XA datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <xa-datasource jndi-name="java:/MSSQLXADS" pool-name="MSSQLXADS">
    <driver>sqlserver</driver>
    <xa-datasource-property name="ServerName">localhost</xa-datasource-property>
    <xa-datasource-property name="DatabaseName">mssqldb</xa-datasource-property>
    <xa-datasource-property name="SelectMethod">cursor</xa-datasource-property>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security>
    <xa-pool>
      <is-same-rm-override>false</is-same-rm-override>
    </xa-pool>
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLValidConnectionChecker"></valid-connection-checker>
    </validation>
  </xa-datasource>
  <drivers>
    <driver name="sqlserver" module="com.microsoft">
      <xa-datasource-class>com.microsoft.sqlserver.jdbc.SQLServerXADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the Microsoft SQLServer XA datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.microsoft">
  <resources>
    <resource-root path="sqljdbc4.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.9. Example IBM DB2 Datasource

Example 6.15. 

The example below is an IBM DB2 datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <datasource jndi-name="java:/DB2DS" pool-name="DB2DS">
    <connection-url>jdbc:db2:ibmdb2db</connection-url>
    <driver>ibmdb2</driver>
    <pool>
      <min-pool-size>0</min-pool-size>
      <max-pool-size>50</max-pool-size>
    </pool>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security> 
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.db2.DB2ValidConnectionChecker"></valid-connection-checker>
      <stale-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.db2.DB2StaleConnectionChecker"></stale-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.db2.DB2ExceptionSorter"></exception-sorter>
    </validation>
  </datasource>
  <drivers>
    <driver name="ibmdb2" module="com.ibm">
      <xa-datasource-class>com.ibm.db2.jdbc.DB2XADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the IBM DB2 datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.ibm">
  <resources>
    <resource-root path="db2jcc.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.10. Example IBM DB2 XA Datasource

Example 6.16. 

The example below is an IBM DB2 XA datasource configuration. The datasource has been enabled, a user has been added and validation options have been set.
<datasources>
  <xa-datasource jndi-name="java:/DB2XADS" pool-name="DB2XADS">
    <driver>ibmdb2</driver>
    <xa-datasource-property name="DatabaseName">ibmdb2db</xa-datasource-property>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security>
    <xa-pool>
      <is-same-rm-override>false</is-same-rm-override>
    </xa-pool>
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.db2.DB2ValidConnectionChecker"></valid-connection-checker>
      <stale-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.db2.DB2StaleConnectionChecker"></stale-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.db2.DB2ExceptionSorter"></exception-sorter>
    </validation>
    <recovery>
      <recover-plugin class-name="org.jboss.jca.core.recovery.ConfigurableRecoveryPlugin">
        <config-property name="EnableIsValid">false</config-property>
        <config-property name="IsValidOverride">false</config-property>
        <config-property name="EnableClose">false</config-property>
      </recover-plugin>
    </recovery>
  </xa-datasource>
  <drivers>
    <driver name="ibmdb2" module="com.ibm">
      <xa-datasource-class>com.ibm.db2.jcc.DB2XADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the IBM DB2 XA datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.ibm">
  <resources>
    <resource-root path="db2jcc.jar"/>
    <resource-root path="db2jcc_license_cisuz.jar"/>
    <resource-root path="db2jcc_license_cu.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.11. Example Sybase Datasource

Example 6.17. 

The example below is a Sybase datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <datasource jndi-name="java:jboss/SybaseDB" pool-name="SybaseDB" enabled="true">
    <connection-url>jdbc:sybase:Tds:localhost:5000/DATABASE?JCONNECT_VERSION=6</connection-url>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security>
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseValidConnectionChecker"></valid-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseExceptionSorter"></exception-sorter>
    </validation>
  </datasource>
  <drivers>
    <driver name="sybase" module="com.sybase">
      <datasource-class>com.sybase.jdbc2.jdbc.SybDataSource</datasource-class>
      <xa-datasource-class>com.sybase.jdbc3.jdbc.SybXADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the Sybase datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.sybase">
  <resources>
    <resource-root path="jconn2.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

6.7.12. Example Sybase XA Datasource

Example 6.18. 

The example below is a Sybase XA datasource configuration. The datasource has been enabled, a user has been added, and validation options have been set.
<datasources>
  <xa-datasource jndi-name="java:jboss/SybaseXADS" pool-name="SybaseXADS" enabled="true">
    <xa-datasource-property name="NetworkProtocol">Tds</xa-datasource-property>
    <xa-datasource-property name="ServerName">myserver</xa-datasource-property>
    <xa-datasource-property name="PortNumber">4100</xa-datasource-property>
    <xa-datasource-property name="DatabaseName">mydatabase</xa-datasource-property>
    <security>
      <user-name>admin</user-name>
      <password>admin</password>
    </security>
    <validation>
      <background-validation>true</background-validation>
      <valid-connection-checker class-name="org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseValidConnectionChecker"></valid-connection-checker>
      <exception-sorter class-name="org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseExceptionSorter"></exception-sorter>
    </validation>
  </xa-datasource>
  <drivers>
    <driver name="sybase" module="com.sybase">
      <datasource-class>com.sybase.jdbc2.jdbc.SybDataSource</datasource-class>
      <xa-datasource-class>com.sybase.jdbc3.jdbc.SybXADataSource</xa-datasource-class>
    </driver>
  </drivers>
</datasources>

The example below is a module.xml file for the Sybase XA datasource above.
<module xmlns="urn:jboss:module:1.1" name="com.sybase">
  <resources>
    <resource-root path="jconn2.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

Chapter 7. Configuring Modules

7.1. Introduction

7.1.1. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss EAP 6 identifies two different types of modules, sometimes called static and dynamic modules. However the only difference between the two is how they are packaged. All modules provide the same features.
Static Modules
Static Modules are predefined in the EAP_HOME/modules/ directory of the application server. Each sub-directory represents one module and contains one or more JAR files and a configuration file (module.xml). The name of the module is defined in the module.xml file. All the application server provided APIs are provided as static modules, including the Java EE APIs as well as other APIs such as JBoss Logging.

Example 7.1. Example module.xml file

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
  <resources>
    <resource-root path="mysql-connector-java-5.1.15.jar"/>
  </resources>
  <dependencies>
    <module name="javax.api"/>
    <module name="javax.transaction.api"/>
  </dependencies>
</module>

The module name, com.mysql, should match the directory structure for the module.
Creating custom static modules can be useful if many applications are deployed on the same server that use the same third party libraries. Instead of bundling those libraries with each application, a module containing these libraries can be created and installed by the JBoss administrator. The applications can then declare an explicit dependency on the custom static modules.
Dynamic Modules
Dynamic Modules are created and loaded by the application server for each JAR or WAR deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name of the deployed archive. Because deployments are loaded as modules, they can configure dependencies and be used as dependencies by other deployments.
Modules are only loaded when required. This usually only occurs when an application is deployed that has explicit or implicit dependencies.

7.1.2. Global Modules

A global module is a module that JBoss EAP 6 provides as a dependency to every application. Any module can be made global by adding it to the application server's list of global modules. It does not require changes to the module.

7.1.3. Module Dependencies

A module dependency is a declaration that one module requires the classes of another module in order to function. Modules can declare dependencies on any number of other modules. When the application server loads a module, the modular class loader parses the dependencies of that module and adds the classes from each dependency to its class path. If a specified dependency cannot be found, the module will fail to load.
Deployed applications (JAR and WAR) are loaded as dynamic modules and make use of dependencies to access the APIs provided by JBoss EAP 6.
There are two types of dependencies: explicit and implicit.
Explicit dependencies are declared in configuration by the developer. Static modules can declare dependencies in the modules.xml file. Dynamic modules can have dependencies declared in the MANIFEST.MF or jboss-deployment-structure.xml deployment descriptors of the deployment.
Explicit dependencies can be specified as optional. Failure to load an optional dependency will not cause a module to fail to load. However if the dependency becomes available later it will NOT be added to the module's class path. Dependencies must be available when the module is loaded.
Implicit dependencies are added automatically by the application server when certain conditions or meta-data are found in a deployment. The Java EE 6 APIs supplied with JBoss EAP 6 are examples of modules that are added by detection of implicit dependencies in deployments.
Deployments can also be configured to exclude specific implicit dependencies. This is done with the jboss-deployment-structure.xml deployment descriptor file. This is commonly done when an application bundles a specific version of a library that the application server will attempt to add as an implicit dependency.
A module's class path contains only its own classes and that of it's immediate dependencies. A module is not able to access the classes of the dependencies of one of its dependencies. However a module can specify that an explicit dependency is exported. An exported dependency is provided to any module that depends on the module that exports it.

Example 7.2. Module dependencies

Module A depends on Module B and Module B depends on Module C. Module A can access the classes of Module B, and Module B can access the classes of Module C. Module A cannot access the classes of Module C unless:
  • Module A declares an explicit dependency on Module C, or
  • Module B exports its dependency on Module C.

7.1.4. Subdeployment Class Loader Isolation

Each subdeployment in an Enterprise Archive (EAR) is a dynamic module with its own class loader. By default a subdeployment can access the resources of other subdeployments.
If a subdeployment should not access the resources of other subdeployments (strict subdeployment isolation is required) then this can be enabled.

7.2. Disable Subdeployment Module Isolation for All Deployments

This task shows server administrators how to disable Subdeployment Module Isolation on the application server. This affects all deployments.

Warning

This task requires you to edit the XML configuration files of the server. The server must be halted before doing this. This is temporary as the final release administration tools will support this type of configuration.
  1. Stop the server

    Halt the JBoss EAP server.
  2. Open the server configuration file

    Open the server configuration file in a text editor.
    This file will be different for a managed domain or standalone server. In addition, non-default locations and file names may be used. The default configuration files are domain/configuration/domain.xml and standalone/configuration/standalone.xml for managed domains and standalone servers respectively.
  3. Locate the EE Subsystem Configuration

    Locate the EE Subsystem configuration element in the configuration file. The <profile> element of the configuration file contains several subsystem elements. The EE Subsystem element has the namespace of urn:jboss:domain:ee:1.0.
    <profile>
    
       ...
    
       <subsystem xmlns="urn:jboss:domain:ee:1.0" />
    
       ...
    The default configuration has a single self-closing tag but a custom configuration may have separate open and closing tags (possibly with other elements within) like this:
    <subsystem xmlns="urn:jboss:domain:ee:1.0" ></subsystem>
  4. Replace self-closing tags if necessary

    If the EE Subsystem element is a single self-closing tag then replace with appropriate opening and closing tags like this:
    <subsystem xmlns="urn:jboss:domain:ee:1.0" ></subsystem>
  5. Add ear-subdeployments-isolated element

    Add the ear-subdeployments-isolated element as a child of the EE Subsystem element and add the content of false like this:
    <subsystem xmlns="urn:jboss:domain:ee:1.0" ><ear-subdeployments-isolated>false</ear-subdeployments-isolated></subsystem>
  6. Start the server

    Relaunch the JBoss EAP server to start it running with the new configuration.
Result:

The server will now be running with Subdeployment Module Isolation disabled for all deployments.

7.3. Add a module to all deployments

This task shows how JBoss administrators can define a list of global modules.

Prerequisites

  1. You must know the name of the modules that are to be configured as global modules. Refer to Section 7.4.1, “Included Modules” for the list of static modules included with JBoss EAP 6. If the module is in another deployment, refer to Section 7.4.2, “Dynamic Module Naming” to determine the module name.

Procedure 7.1. Add a module to the list of global modules

  1. Navigate to the EE Subsystem panel.
      • Standalone Mode

        Select the Profile tab from the top of the console.
      • Domain Mode

        1. Select the Profiles tab from the top of the console.
        2. Select the appropriate profile from the drop-down box in the top left.
        3. Expand the Subsystems menu on the left of the console.
    1. Select ContainerEE from the menu on the left of the console.
  2. Click the Add button in the Subsystem Defaults section. The Create Module dialog appears.
  3. Type in the name of the module and optionally the module slot.
  4. Click the Save button to add the new global module, or click the Cancel link to abort.
    • If you click the Save button, the dialog will close and the specified module will be added to the list of global modules.
    • If you click Cancel, the dialog will close and no changes will be made.
Result

The modules added to the list of global modules will be added as dependencies to every deployment.

7.4. Reference

7.4.1. Included Modules

  • asm.asm
  • ch.qos.cal10n
  • com.google.guava
  • com.h2database.h2
  • com.sun.jsf-impl
  • com.sun.jsf-impl
  • com.sun.xml.bind
  • com.sun.xml.messaging.saaj
  • gnu.getopt
  • javaee.api
  • javax.activation.api
  • javax.annotation.api
  • javax.api
  • javax.ejb.api
  • javax.el.api
  • javax.enterprise.api
  • javax.enterprise.deploy.api
  • javax.faces.api
  • javax.faces.api
  • javax.inject.api
  • javax.interceptor.api
  • javax.jms.api
  • javax.jws.api
  • javax.mail.api
  • javax.management.j2ee.api
  • javax.persistence.api
  • javax.resource.api
  • javax.rmi.api
  • javax.security.auth.message.api
  • javax.security.jacc.api
  • javax.servlet.api
  • javax.servlet.jsp.api
  • javax.servlet.jstl.api
  • javax.transaction.api
  • javax.validation.api
  • javax.ws.rs.api
  • javax.wsdl4j.api
  • javax.xml.bind.api
  • javax.xml.jaxp-provider
  • javax.xml.registry.api
  • javax.xml.rpc.api
  • javax.xml.soap.api
  • javax.xml.stream.api
  • javax.xml.ws.api
  • jline
  • net.sourceforge.cssparser
  • net.sourceforge.htmlunit
  • net.sourceforge.nekohtml
  • nu.xom
  • org.antlr
  • org.apache.ant
  • org.apache.commons.beanutils
  • org.apache.commons.cli
  • org.apache.commons.codec
  • org.apache.commons.collections
  • org.apache.commons.io
  • org.apache.commons.lang
  • org.apache.commons.logging
  • org.apache.commons.pool
  • org.apache.cxf
  • org.apache.httpcomponents
  • org.apache.james.mime4j
  • org.apache.log4j
  • org.apache.neethi
  • org.apache.santuario.xmlsec
  • org.apache.velocity
  • org.apache.ws.scout
  • org.apache.ws.security
  • org.apache.ws.xmlschema
  • org.apache.xalan
  • org.apache.xerces
  • org.apache.xml-resolver
  • org.codehaus.jackson.jackson-core-asl
  • org.codehaus.jackson.jackson-jaxrs
  • org.codehaus.jackson.jackson-mapper-asl
  • org.codehaus.jackson.jackson-xc
  • org.codehaus.woodstox
  • org.dom4j
  • org.hibernate
  • org.hibernate.envers
  • org.hibernate.infinispan
  • org.hibernate.validator
  • org.hornetq
  • org.hornetq.ra
  • org.infinispan
  • org.infinispan.cachestore.jdbc
  • org.infinispan.cachestore.remote
  • org.infinispan.client.hotrod
  • org.jacorb
  • org.javassist
  • org.jaxen
  • org.jboss.as.aggregate
  • org.jboss.as.appclient
  • org.jboss.as.cli
  • org.jboss.as.clustering.api
  • org.jboss.as.clustering.common
  • org.jboss.as.clustering.ejb3.infinispan
  • org.jboss.as.clustering.impl
  • org.jboss.as.clustering.infinispan
  • org.jboss.as.clustering.jgroups
  • org.jboss.as.clustering.service
  • org.jboss.as.clustering.singleton
  • org.jboss.as.clustering.web.infinispan
  • org.jboss.as.clustering.web.spi
  • org.jboss.as.cmp
  • org.jboss.as.connector
  • org.jboss.as.console
  • org.jboss.as.controller
  • org.jboss.as.controller-client
  • org.jboss.as.deployment-repository
  • org.jboss.as.deployment-scanner
  • org.jboss.as.domain-add-user
  • org.jboss.as.domain-http-error-context
  • org.jboss.as.domain-http-interface
  • org.jboss.as.domain-management
  • org.jboss.as.ee
  • org.jboss.as.ee.deployment
  • org.jboss.as.ejb3
  • org.jboss.as.embedded
  • org.jboss.as.host-controller
  • org.jboss.as.jacorb
  • org.jboss.as.jaxr
  • org.jboss.as.jaxrs
  • org.jboss.as.jdr
  • org.jboss.as.jmx
  • org.jboss.as.jpa
  • org.jboss.as.jpa.hibernate
  • org.jboss.as.jpa.hibernate
  • org.jboss.as.jpa.hibernate.infinispan
  • org.jboss.as.jpa.openjpa
  • org.jboss.as.jpa.spi
  • org.jboss.as.jpa.util
  • org.jboss.as.jsr77
  • org.jboss.as.logging
  • org.jboss.as.mail
  • org.jboss.as.management-client-content
  • org.jboss.as.messaging
  • org.jboss.as.modcluster
  • org.jboss.as.naming
  • org.jboss.as.network
  • org.jboss.as.osgi
  • org.jboss.as.platform-mbean
  • org.jboss.as.pojo
  • org.jboss.as.process-controller
  • org.jboss.as.protocol
  • org.jboss.as.remoting
  • org.jboss.as.sar
  • org.jboss.as.security
  • org.jboss.as.server
  • org.jboss.as.standalone
  • org.jboss.as.threads
  • org.jboss.as.transactions
  • org.jboss.as.web
  • org.jboss.as.webservices
  • org.jboss.as.webservices.server.integration
  • org.jboss.as.webservices.server.jaxrpc-integration
  • org.jboss.as.weld
  • org.jboss.as.xts
  • org.jboss.classfilewriter
  • org.jboss.com.sun.httpserver
  • org.jboss.common-core
  • org.jboss.dmr
  • org.jboss.ejb-client
  • org.jboss.ejb3
  • org.jboss.iiop-client
  • org.jboss.integration.ext-content
  • org.jboss.interceptor
  • org.jboss.interceptor.spi
  • org.jboss.invocation
  • org.jboss.ironjacamar.api
  • org.jboss.ironjacamar.impl
  • org.jboss.ironjacamar.jdbcadapters
  • org.jboss.jandex
  • org.jboss.jaxbintros
  • org.jboss.jboss-transaction-spi
  • org.jboss.jsfunit.core
  • org.jboss.jts
  • org.jboss.jts.integration
  • org.jboss.logging
  • org.jboss.logmanager
  • org.jboss.logmanager.log4j
  • org.jboss.marshalling
  • org.jboss.marshalling.river
  • org.jboss.metadata
  • org.jboss.modules
  • org.jboss.msc
  • org.jboss.netty
  • org.jboss.osgi.deployment
  • org.jboss.osgi.framework
  • org.jboss.osgi.resolver
  • org.jboss.osgi.spi
  • org.jboss.osgi.vfs
  • org.jboss.remoting3
  • org.jboss.resteasy.resteasy-atom-provider
  • org.jboss.resteasy.resteasy-cdi
  • org.jboss.resteasy.resteasy-jackson-provider
  • org.jboss.resteasy.resteasy-jaxb-provider
  • org.jboss.resteasy.resteasy-jaxrs
  • org.jboss.resteasy.resteasy-jsapi
  • org.jboss.resteasy.resteasy-multipart-provider
  • org.jboss.sasl
  • org.jboss.security.negotiation
  • org.jboss.security.xacml
  • org.jboss.shrinkwrap.core
  • org.jboss.staxmapper
  • org.jboss.stdio
  • org.jboss.threads
  • org.jboss.vfs
  • org.jboss.weld.api
  • org.jboss.weld.core
  • org.jboss.weld.spi
  • org.jboss.ws.api
  • org.jboss.ws.common
  • org.jboss.ws.cxf.jbossws-cxf-client
  • org.jboss.ws.cxf.jbossws-cxf-factories
  • org.jboss.ws.cxf.jbossws-cxf-server
  • org.jboss.ws.cxf.jbossws-cxf-transports-httpserver
  • org.jboss.ws.jaxws-client
  • org.jboss.ws.jaxws-jboss-httpserver-httpspi
  • org.jboss.ws.native.jbossws-native-core
  • org.jboss.ws.native.jbossws-native-factories
  • org.jboss.ws.native.jbossws-native-services
  • org.jboss.ws.saaj-impl
  • org.jboss.ws.spi
  • org.jboss.ws.tools.common
  • org.jboss.ws.tools.wsconsume
  • org.jboss.ws.tools.wsprovide
  • org.jboss.xb
  • org.jboss.xnio
  • org.jboss.xnio.nio
  • org.jboss.xts
  • org.jdom
  • org.jgroups
  • org.joda.time
  • org.junit
  • org.omg.api
  • org.osgi.core
  • org.picketbox
  • org.picketlink
  • org.python.jython.standalone
  • org.scannotation.scannotation
  • org.slf4j
  • org.slf4j.ext
  • org.slf4j.impl
  • org.slf4j.jcl-over-slf4j
  • org.w3c.css.sac
  • sun.jdk

7.4.2. Dynamic Module Naming

All deployments are loaded as modules by JBoss EAP 6 and named according to the following conventions.
  1. Deployments of WAR and JAR files are named with the following format:
     deployment.DEPLOYMENT_NAME 
    For example, inventory.war and store.jar will have the module names of deployment.inventory.war and deployment.store.jar respectively.
  2. Subdeployments within an Enterprise Archive are named with the following format:
     deployment.EAR_NAME.SUBDEPLOYMENT_NAME 
    For example, the subdeployment of reports.war within the enterprise archive accounts.ear will have the module name of deployment.accounts.ear.reports.war.

Chapter 8. Global Valves

8.1. About Valves

A Valve is a Java class that gets inserted into the request processing pipeline for an application. It is inserted in the pipeline before servlet filters. Valves can make changes to the request before passing it on or perform any other processing such as authentication or even cancelling the request. Valves are usually packaged with an application.
Version 6.1.0 and later supports global valves.

8.2. About Global Valves

A Global Valve is a valve that is inserted into the request processing pipeline of all deployed applications. A valve is made global by being packaged and installed as a static module in JBoss EAP 6. Global valves are configured in the web subsystem.
Only version 6.1.0 and later supports global valves.

8.3. About Authenticator Valves

An authenticator valve is a valve that authenticates the credentials of a request. Such valve is a sub-class of org.apache.catalina.authenticator.AuthenticatorBase and overrides the authenticate() method.
This can be used to implement additional authentication schemes.

8.4. Install a Global Valve

Global valves must be packaged and installed as static modules in JBoss EAP 6. This task shows how to install the module.

Pre-requisities:

  • The valve must already be created and packaged in a JAR file.
  • A module.xml file must already be created for the module.
    Refer to Section 7.1.1, “Modules” for an example of module.xml file.

Procedure 8.1. Install a Global Module

  1. Create module installation directory

    A directory for the module to be installed in must be created in the modules directory of the application server.
    EAP_HOME/modules/system/layers/base/MODULENAME/main
    $ mkdir -P /usr/share/jboss/modules/system/layers/base/MyValveModule/main
  2. Copy files

    Copy the JAR and module.xml files to the directory created in step 1.
    $ cp MyValves.jar modules.xml /usr/share/jboss/modules/system/layers/base/MyValveModule/main
The valve classes declared in the module are now available to be configured in the web subsystem.

8.5. Configure a Global Valve

Global valves are enabled and configured in the web subsystem. This is done using the JBoss CLI tool.

Procedure 8.2. Configure a Global Valve

  1. Enable the Valve

    Use the add operation to add a new valve entry.
    /subsystem=web/valve=VALVENAME:add(module="MODULENAME",class-name="CLASSNAME")
    You need to specify the following values:
    • VALVENAME, the name that is used to refer to this valve in application configuration.
    • MODULENAME, the module that contains the value being configured.
    • CLASSNAME, the classname of the specific valve in the module.
    /subsystem=web/valve=clientlimiter:add(module="clientlimitermodule",class-name="org.jboss.samplevalves.restrictedUserAgentsValve")
  2. Optionally: Specify Parameters

    If the valve has configuration parameters, specify these with the add-param operation.
    /subsystem=web/valve=testvalve:add-param(param-name="NAME", param-value="VALUE")
    /subsystem=web/valve=testvalve:add-param(
       param-name="restricteduseragents", 
       param-value="^.*MS Web Services Client Protocol.*$"
    )
The valve is now enabled and configured for all deployed applications.

Chapter 9. Application Deployment

9.1. About Application Deployment

JBoss EAP 6 features a range of application deployment and configuration options to cater to both administrative and development environments. For administrators, the Management Console and the Management CLI offer the ideal graphical and command line interfaces to manage application deployments in a production environment. For developers, the range of application deployment testing options include a highly configurable filesystem deployment scanner, the use of an IDE such as JBoss Developer Studio, or deployment and undeployment via Maven.

9.2. Deploy with the Management Console

9.2.1. Manage Application Deployment in the Management Console

Deploying applications via the Management Console gives you the benefit of a graphical interface that is easy to use. You can see at a glance what applications are deployed to your server or server groups, and you can disable or delete applications from the content repository as required.

9.2.2. Deploy an Application Using the Management Console

Procedure 9.1. Deploy an Application using the Management Console

  1. Navigate to the Manage Deployments panel in the Management Console

    1. Select the Runtime tab from the top of the console.
    2. Expand the Domain or Standalone menu (if it is not already expanded).
    3. Select the Manage Deployments option from the menu on the left of the console.
  2. Deploy an application

    The deployment method will differ depending on whether you are deploying to a standalone server instance or a managed domain.
    • Deploy to a standalone server instance

      The Available Deployment Content table shows all available application deployments and their status.
      1. Enable the application in a standalone server instance

        Click on the Enable button in the Deployments table to enable the application deployment.
      2. Confirm

        Click on the confirm button to confirm that the application will be enabled on the server instance.
    • Deploy to a managed domain

      The Deployment Content section contains a Content Repository table showing all available application deployments and their status.
      1. Enable the application in a Managed Domain

        Click on the Add button in the Content Repository table.
      2. Select server groups

        Check the boxes for each of the server groups that you want the application to be added to and click on the Save button to continue.
      3. Confirm

        Click on the Server Group Deployments tab to view the Server Groups table. Your application is now deployed to the server groups that you have selected.
Result

The application is deployed on the relevant server or server group.

9.2.3. Undeploy an Application Using the Management Console

Procedure 9.2. Undeploy an Application using the Management Console

  1. Navigate to the Manage Deployments panel in the Management Console

    1. Select the Runtime tab from the top of the console.
    2. Expand the Domain or Standalone menu (if it is not already expanded).
    3. Select the Manage Deployments option from the menu on the left of the console.
  2. Undeploy an application

    The undeployment method will differ depending on whether you are deploying to a standalone server instance or a managed domain.
    • Undeploy from a standalone server instance

      The Available Deployment Content table shows all available application deployments and their status.
      1. Disable the application in a standalone server instance

        Click on the Disable button in the Deployments table to disable the application.
      2. Confirm that you wish to disable the application

        Click on the confirm button to confirm that the application will be disabled on the server instance.
    • Undeploy from a managed domain

      The Deployment Content section contains a Content Repository tab. The Available Deployment Content shows all available application deployments and their status.
      1. Disable the application in a Managed Domain

        Click on the Server Groups tab to view the server groups and the status of their deployed applications.
      2. Select server group

        Click on the name of the server in the Server Group table to undeploy an application from.
      3. Disable the application from the selected server

        Click on the disable button to disable the application for the selected server.
      4. Confirm that you wish to disable the application

        Click on the confirm button to confirm that the application will be disabled on the server instance.
      5. Repeat undeployment for remaining server groups

        Repeat as required for other server groups. The application status is confirmed for each server group in the Deployments table.
Result

The application is undeployed from the relevant server or server group.

9.3. Deploy with the Management CLI

9.3.1. Manage Application Deployment in the Management CLI

Deploying applications via the Management CLI gives you the benefit of single command line interface with the ability to create and run deployment scripts. You can use this scripting ability to configure specific application deployment and management scenarios. You can manage the deployment status of a single server in the case of a standalone instance, or an entire network of servers in the case of a managed domain.

9.3.2. Deploy an Application in a Managed Domain Using the Management CLI

Procedure 9.3. Deploy an Application in a Managed Domain

  • Run the deploy command

    From the Management CLI, enter the deploy command with the path to the application deployment. Include the --all-server-groups parameter to deploy to all server groups.
    [domain@localhost:9999 /] deploy /path/to/test-application.war --all-server-groups
    • Alternatively, define specific server groups for the deployment with the --server-groups parameter.
      [domain@localhost:9999 /] deploy /path/to/test-application.war --server-groups=server_group_1,server_group_2
    Note that a successful deploy does not produce any output to the CLI.
Result

The specified application is now deployed to a server group in your managed domain.

9.3.3. Undeploy an Application in a Managed Domain Using the Management CLI

Procedure 9.4. Undeploy an Application in a Managed Domain

  • Run the undeploy command

    From the Management CLI, enter the undeploy command with the filename of the application deployment. The application can be undeployed from any server group that it was originally deployed to with the addition of the --all-relevant-server-groups parameter.
    [domain@localhost:9999 /] undeploy test-application.war --all-relevant-server-groups
    Note that a successful undeploy does not produce any output to the CLI.
Result

The specified application is now undeployed.

9.3.4. Deploy an Application in a Standalone Server Using the Management CLI

Procedure 9.5. Deploy an Application in a Standalone Server

  • Run the deploy command

    From the Management CLI, enter the deploy command with the path to the application deployment.
    [standalone@localhost:9999 /] deploy /path/to/test-application.war
    Note that a successful deploy does not produce any output to the CLI.
Result

The specified application is now deployed in the standalone server.

9.3.5. Undeploy an Application in a Standalone Server Using the Management CLI

Procedure 9.6. Undeploy an Application in a Standalone Server

  • Run the undeploy command

    From the Management CLI, enter the undeploy command with the filename of the application deployment.
    [standalone@localhost:9999 /] undeploy test-application.war
    Note that a successful undeploy does not produce any output to the CLI.
Result

The specified application is now undeployed.

9.4. Deploy with the Deployment Scanner

9.4.1. Manage Application Deployment in the Deployment Scanner

Deploying applications to a standalone server instance via the deployment scanner allows you to build and test applications in a manner suited for rapid development cycles. You can configure the deployment scanner to suit your needs for deployment frequency and behaviour for a variety of application types.

9.4.2. Deploy an Application to a Standalone Server Instance with the Deployment Scanner

Summary

This task shows a method for deploying applications to a standalone server instance with the deployment scanner. As indicated in the Section 9.1, “About Application Deployment” topic, this method is retained for the convenience of developers, where the Management Console and Management CLI methods are recommended for application management under production environments.

Procedure 9.7. Use the Deployment Scanner to Deploy Applications

  1. Copy content to the deployment folder

    Copy the application file to the deployment folder found at EAP_HOME/standalone/deployments/.
  2. Deployment scanning modes

    The application deployment varies between automatic and manual deployment scanner modes.
    • Automatic deployment

      The deployment scanner picks up a change to the state of the folder and creates a marker file as defined in the Section 9.4.5, “Reference for Deployment Scanner Marker Files” topic.
    • Manual deployment

      The deployment scanner requires a marker file to trigger the deployment process. The following example uses the Unix touch command to create a new .dodeploy file.

      Example 9.1. Deploy with the touch command

      [user@host bin]$ touch $EAP_HOME/standalone/deployments/example.war.dodeploy
Result

The application file is deployed to the application server. A marker file is created in the deployment folder to indicate the successful deployment, and the application is flagged as Enabled in the Management Console.

Example 9.2. Deployment folder contents after deployment

example.war
example.war.deployed

9.4.3. Undeploy an Application to a Standalone Server Instance with the Deployment Scanner

Summary

This task shows a method for undeploying applications from a standalone server instance that have been deployed with the deployment scanner. As indicated in the Section 9.1, “About Application Deployment” topic, this method is retained for the convenience of developers, where the Management Console and Management CLI methods are recommended for application management under production environments.

Note

The deployment scanner should not be used in conjunction with other deployment methods for application management. Applications removed from the application server by the management console will be removed from the runtime without affecting the marker files or application contained in the deployment directory. To minimize the risk of accidental redployment or other errors, use the Management CLI and Management Console for administration in production environments.

Procedure 9.8. Undeploy an Application using one of these Methods

  • Undeploy the application

    There are two methods to undeploy the application depending on whether you want to delete the application from the deployment folder or only alter its deployment status.
    • Undeploy by deleting the marker file

      Delete the deployed application's example.war.deployed marker file to trigger the deployment scanner to begin undeploying the application from the runtime.
      Result
      The deployment scanner undeploys the application and creates a example.war.undeployed marker file. The application remains in the deployment folder.
    • Undeploy by removing the application

      Remove the application from the deployment directory to trigger the deployment scanner to begin undeploying the application from the runtime.
      Result
      The deployment scanner undeploys the application and creates a filename.filetype.undeployed marker file. The application is not present in the deployment folder.
Result

The application file is undeployed from the application server and is not visible in the Deployments screen of the Management Console.

9.4.4. Redeploy an Application to a Standalone Server Instance with the Deployment Scanner

Summary

This task shows a method for redeploying applications to a standalone server instance that have been deployed with the deployment scanner. As indicated in the Section 9.1, “About Application Deployment” topic, this method is retained for the convenience of developers, where the Management Console and Management CLI methods are recommended for application management under production environments.

Procedure 9.9. Redeploy an Application to a Standalone Server

  • Redeploy the application

    There are three possible methods to redeploy an application deployed with the deployment scanner. These methods trigger the deployment scanner to initiate a deployment cycle, and can be chosen to suit personal preference.
Result

The application file is redeployed.

9.4.5. Reference for Deployment Scanner Marker Files

Marker files

Marker files are a part of the deployment scanner subsystem. These files mark the status of an application within the deployment directory of the standalone server instance. A marker file has the same name as the application, with the file suffix indicating the state of the application's deployment. The following table defines the types and responses for each marker file.

Example 9.4. Marker file example

The following example shows the marker file for a successfully deployed instance of an application called testapplication.war.
testapplication.war.deployed

Table 9.1. Marker filetype definitions

Filename Suffix Origin Description
.dodeploy User generated Indicates that the content should be deployed or redeployed into the runtime.
.skipdeploy User generated Disables auto-deploy of an application while present. Useful as a method of temporarily blocking the auto-deployment of exploded content, preventing the risk of incomplete content edits pushing live. Can be used with zipped content, although the scanner detects in-progress changes to zipped content and waits until completion.
.isdeploying System generated Indicates the initiation of deployment. The marker file will be deleted when the deployment process completes.
.deployed System generated Indicates that the content has been deployed. The content will be undeployed if this file is deleted.
.failed System generated Indicates deployment failure. The marker file contains information about the cause of failure. If the marker file is deleted, the content will be visible to the auto-deployment again.
.isundeploying System generated Indicates a response to a .deployed file deletion. The content will be undeployed and the marker will be automatically deleted upon completion.
.undeployed System generated Indicates that the content has been undeployed. Deletion of the marker file has no impact to content redeployment.
.pending System generated Indicates that deployment instructions will be sent to the server pending resolution of a detected issue. This marker serves as a global deployment road-block. The scanner will not instruct the server to deploy or undeploy any other content while this condition exists.

9.4.6. Reference for Deployment Scanner Attributes

The deployment scanner contains the following attributes that are exposed to the Management CLI and able to be configured using the write-attribute operation. For more information on configuration options, refer to the topic Section 9.4.8, “Configure the Deployment Scanner with the Management CLI”.

Table 9.2. Deployment Scanner Attributes

Name Description Type Default Value
auto-deploy-exploded Allows the automatic deployment of exploded content without requiring a .dodeploy marker file. Recommended for only basic development scenarios to prevent exploded application deployment from occurring during changes by the developer or operating system. Boolean False
auto-deploy-xml Allows the automatic deployment of XML content without requiring a .dodeploy marker file. Boolean True
auto-deploy-zipped Allows the automatic deployment of zipped content without requiring a .dodeploy marker file. Boolean True
deployment-timeout The time value in seconds for the deployment scanner to allow a deployment attempt before being cancelled. Long 600
path Defines the actual filesystem path to be scanned. If the relative-to attribute is specified, the path value acts as a relative addition to that directory or path. String deployments
relative-to Reference to a filesystem path defined in the paths section of the server configuration XML file. String jboss.server.base.dir
scan-enabled Allows the automatic scanning for applications by scan-interval and at startup. Boolean True
scan-interval The time interval in milliseconds between scans of the repository. A value of less than 1 restricts the scanner to operate only at startup. Int 5000

9.4.7. Configure the Deployment Scanner

The deployment scanner can be configured using the Management Console or the Management CLI. You can create a new deployment scanner or manage the existing scanner attributes. These include the scanning interval, the location of the deployment folder, and the application file types that will trigger a deployment.

9.4.8. Configure the Deployment Scanner with the Management CLI

Summary

While there are multiple methods of configuring the deployment scanner, the Management CLI can be used to expose and modify the attributes by use of batch scripts or in real time. You can modify the behavior of the deployment scanner by use of the read-attribute and write-attribute global command line operations. Further information about the deployment scanner attributes are defined in the topic Section 9.4.6, “Reference for Deployment Scanner Attributes”.

The deployment scanner is a subsystem of JBoss EAP 6, and can be viewed in the standalone.xml.
<subsystem xmlns="urn:jboss:domain:deployment-scanner:1.1">
    <deployment-scanner path="deployments" relative-to="jboss.server.base.dir" scan-interval="5000"/>
</subsystem>

Procedure 9.10. Configure the Deployment Scanner

  1. Determine the deployment scanner attributes to configure

    Configuring the deployment scanner via the Management CLI requires that you first expose the correct attribute names. You can do this with the read-resources operation at either the root node, or by using the cd command to change into the subsystem child node. You can also display the attributes with the ls command at this level.
    • Expose the deployment scanner attributes with the read-resource operation

      Use the read-resource operation to expose the attributes defined by the default deployment scanner resource.
      [standalone@localhost:9999 /]/subsystem=deployment-scanner/scanner=default:read-resource
      {
          "outcome" => "success",
          "result" => {
              "auto-deploy-exploded" => false,
              "auto-deploy-xml" => true,
              "auto-deploy-zipped" => true,
              "deployment-timeout" => 600,
              "path" => "deployments",
              "relative-to" => "jboss.server.base.dir",
              "scan-enabled" => true,
              "scan-interval" => 5000
          }
      }
      
    • Expose the deployment scanner attributes with the ls command

      Use the ls command with the -l optional argument to display a table of results that include the subsystem node attributes, values, and type. You can learn more about the ls command and its arguments by exposing the CLI help entry by typing ls --help. For more information about the help menu in the Management CLI, refer to the topic Section 3.5.5, “Get Help with the Management CLI”.
      [standalone@localhost:9999 /] ls -l /subsystem=deployment-scanner/scanner=default
      ATTRIBUTE            VALUE                 TYPE    
      auto-deploy-exploded false                 BOOLEAN 
      auto-deploy-xml      true                  BOOLEAN 
      auto-deploy-zipped   true                  BOOLEAN 
      deployment-timeout   600                   LONG    
      path                 deployments           STRING  
      relative-to          jboss.server.base.dir STRING  
      scan-enabled         true                  BOOLEAN 
      scan-interval        5000                  INT
      
  2. Configure the deployment scanner with the write-attribute operation

    Once you have determined the name of the attribute to modify, use the write-attribute to specify the attribute name and the new value to write to it. The following examples are all run at the child node level, which can be accessed by using the cd command and tab completion to expose and change into the default scanner node.
    [standalone@localhost:9999 /] cd subsystem=deployment-scanner/scanner=default
    
    1. Enable automatic deployment of exploded content

      Use the write-attribute operation to enable the automatic deployment of exploded application content.
      [standalone@localhost:9999 scanner=default] :write-attribute(name=auto-deploy-exploded,value=true)
      {"outcome" => "success"}
      
    2. Disable the automatic deployment of XML content

      Use the write-attribute operation to disable the automatic deployment of XML application content.
      [standalone@localhost:9999 scanner=default] :write-attribute(name=auto-deploy-xml,value=false)     
      {"outcome" => "success"}
      
    3. Disable the automatic deployment of zipped content

      Use the write-attribute command to disable the automatic deployment of zipped application content.
      [standalone@localhost:9999 scanner=default] :write-attribute(name=auto-deploy-zipped,value=false)
      {"outcome" => "success"}
      
    4. Configure the path attribute

      Use the write-attribute operation to modify the path attribute, substituting the example newpathname value for the new path name for the deployment scanner to monitor. Note that the server will require a reload to take effect.
      [standalone@localhost:9999 scanner=default] :write-attribute(name=path,value=newpathname)            
      {
          "outcome" => "success",
          "response-headers" => {
              "operation-requires-reload" => true,
              "process-state" => "reload-required"
          }
      }
      
    5. Configure the relative path attribute

      Use the write-attribute operation to modify the relative reference to the filesystem path defined in the paths section of the configuration XML file. Note that the server will require a reload to take effect.
      [standalone@localhost:9999 scanner=default] :write-attribute(name=relative-to,value=new.relative.dir)
      {
          "outcome" => "success",
          "response-headers" => {
              "operation-requires-reload" => true,
              "process-state" => "reload-required"
          }
      }
      
    6. Disable the deployment scanner

      Use the write-attribute operation to disable the deployment scanner by setting the scan-enabled value to false.
      [standalone@localhost:9999 scanner=default] :write-attribute(name=scan-enabled,value=false)        
      {"outcome" => "success"}
      
    7. Change the scan interval

      Use the write-attribute operation to modify the scan interval time from 5000 milliseconds to 10000 milliseconds.
      [standalone@localhost:9999 scanner=default] :write-attribute(name=scan-interval,value=10000)
      {"outcome" => "success"}
      
Result

Your configuration changes are saved to the deployment scanner.

9.5. Deploy with Maven

9.5.1. Manage Application Deployment with Maven

Deploying applications via Maven allows you to incorporate a deployment cycle as part of your existing development workflow.

9.5.2. Deploy an Application with Maven

Summary

This task shows a method for deploying applications with Maven. The example provided uses the jboss-as-helloworld.war application found in the JBoss EAP 6 Quickstarts collection. The helloworld project contains a POM file which initializes the jboss-as-maven-plugin. This plugin provides simple operations to deploy and undeploy applications to and from the application server.

Procedure 9.11. Deploy an application with Maven

  1. Run the Maven deploy command in a terminal session

    Open a terminal session and navigate to the directory containing the quickstart examples.
  2. Run the Maven deploy command to deploy the application. If the application is already running, it will be redeployed.
    [localhost]$ mvn package jboss-as:deploy
  3. Confirm the application deployment

    • View result in terminal window

      The deployment can be confirmed by viewing the operation logs in the terminal window.

      Example 9.5. Maven confirmation for helloworld application

                              
      [INFO] ------------------------------------------------------------------------
      [INFO] BUILD SUCCESSFUL
      [INFO] ------------------------------------------------------------------------
      [INFO] Total time: 3 seconds
      [INFO] Finished at: Mon Oct 10 17:22:05 EST 2011
      [INFO] Final Memory: 21M/343M
      [INFO] ------------------------------------------------------------------------
      
      
    • View results in server terminal window

      The deployment can also be confirmed in the status stream of the active application server instance.

      Example 9.6. Application server confirmation for helloworld application

      17:22:04,922 INFO  [org.jboss.as.server.deployment] (pool-1-thread-3) Content added at location /home/username/EAP_HOME/standalone/data/content/2c/39607b0c8dbc6a36585f72866c1bcfc951f3ff/content
      17:22:04,924 INFO  [org.jboss.as.server.deployment] (MSC service thread 1-1) Starting deployment of "jboss-as-helloworld.war"
      17:22:04,954 INFO  [org.jboss.weld] (MSC service thread 1-3) Processing CDI deployment: jboss-as-helloworld.war
      17:22:04,973 INFO  [org.jboss.weld] (MSC service thread 1-2) Starting Services for CDI deployment: jboss-as-helloworld.war
      17:22:04,979 INFO  [org.jboss.weld] (MSC service thread 1-4) Starting weld service
      17:22:05,051 INFO  [org.jboss.web] (MSC service thread 1-2) registering web context: /jboss-as-helloworld
      17:22:05,064 INFO  [org.jboss.as.server.controller] (pool-1-thread-3) Deployed "jboss-as-helloworld.war"
Result

The application is deployed to the application server.

9.5.3. Undeploy an Application with Maven

Summary

This task shows a method for undeploying applications with Maven. The example provided uses the jboss-as-helloworld.war application found in the JBoss EAP 6 Quickstarts collection. The helloworld project contains a POM file which initializes the jboss-as-maven-plugin. This plug-in provides simple operations to deploy and undeploy applications to and from the application server.

Procedure 9.12. Undeploy an application with Maven

  1. Run the Maven deploy command in a terminal session

    Open a terminal session and navigate to the directory containing the quickstart examples.

    Example 9.7. Change into the helloworld application directory

    [localhost]$ cd /path/to/EAP_Quickstarts/helloworld
    
  2. Run the Maven undeploy command to undeploy the application.
    [localhost]$ mvn jboss-as:undeploy
  3. Confirm the application undeployment

    • View result in terminal window

      The undeployment can be confirmed by viewing the operation logs in the terminal window.

      Example 9.8. Maven confirmation for helloworld application

                              
      [INFO] ------------------------------------------------------------------------
      [INFO] Building JBoss AS Quickstarts: Helloworld
      [INFO]    task-segment: [jboss-as:undeploy]
      [INFO] ------------------------------------------------------------------------
      [INFO] [jboss-as:undeploy {execution: default-cli}]
      [INFO] Executing goal undeploy for /home/username/EAP_Quickstarts/helloworld/target/jboss-as-helloworld.war on server localhost (127.0.0.1) port 9999.
      Oct 10, 2011 5:33:02 PM org.jboss.remoting3.EndpointImpl <clinit>
      INFO: JBoss Remoting version 3.2.0.Beta2
      Oct 10, 2011 5:33:02 PM org.xnio.Xnio <clinit>
      INFO: XNIO Version 3.0.0.Beta2
      Oct 10, 2011 5:33:02 PM org.xnio.nio.NioXnio <clinit>
      INFO: XNIO NIO Implementation Version 3.0.0.Beta2
      [INFO] ------------------------------------------------------------------------
      [INFO] BUILD SUCCESSFUL
      [INFO] ------------------------------------------------------------------------
      [INFO] Total time: 1 second
      [INFO] Finished at: Mon Oct 10 17:33:02 EST 2011
      [INFO] Final Memory: 11M/212M
      [INFO] ------------------------------------------------------------------------
      
      
    • View results in server terminal window

      The undeployment can also be confirmed in the status stream of the active application server instance.

      Example 9.9. Application server confirmation for helloworld application

           
      17:33:02,334 INFO  [org.jboss.weld] (MSC service thread 1-3) Stopping weld service
      17:33:02,342 INFO  [org.jboss.as.server.deployment] (MSC service thread 1-3) Stopped deployment jboss-as-helloworld.war in 15ms
      17:33:02,352 INFO  [org.jboss.as.server.controller] (pool-1-thread-5) Undeployed "jboss-as-helloworld.war"
      
      
Result

The application is undeployed from the application server.

9.6. Control the order of Deployed Applications on JBoss EAP 6

JBoss EAP 6 offers fine grained control over the order of deployment of applications when the server is started. Strict order of deployment of applications present in multiple ear files can be enabled along with persistence of the order after a restart.

Procedure 9.13. Control the order of deployment in EAP 6.0.X

  1. Create CLI scripts that will deploy and undeploy the applications in sequential order when the server is started/stopped.
  2. CLI also supports the concept of batch mode which allows you to group commands and operations and execute them together as an atomic unit. If at least one of the commands or operations fails, all the other successfully executed commands and operations in the batch are rolled back.

Procedure 9.14. Control the order of deployment in EAP 6.1.X

A new feature in EAP 6.1.X called Inter Deployment Dependencies allows you to declare dependencies between top level deployments.
  1. Create (if it doesn't exist) a jboss-all.xml file in the app.ear/META-INF folder, where app.ear is the application archive that depends on another application archive to be deployed before it is.
  2. Make a jboss-deployment-dependencies entry in this file as shown below. Note that in the listing below, framework.ear is the dependency application archive that should be deployed before app.ear application archive is.
    <jboss umlns="urn:jboss:1.0">
      <jboss-deployment-dependencies xmlns="urn:jboss:deployment-dependencies:1.0">
        <dependency name="framework.ear" />
      </jboss-deployment-dependencies>
    </jboss>
    

9.7. Deployment Descriptor Overrides

A new feature in EAP 6.1.x allows you to override deployment descriptors at runtime. A deployment overlay represents a ruleset of files that must be overriden in the archive. It also provides links to the new files that must be used instead of the overriden ones. If the file being overridden is not present in the deployment archive, it will be added back to the deployment.

Procedure 9.15. Override the deployment descriptor using the Management CLI

The following steps assume that you already have a deployed application called app.war and you wish to override it's WEB-INF/web.xml file with another web.xml file located in /home/user/web.xml.
  1. Add a deployment overlay and add content to it. You can achieve this in the following two ways:
    • Using DMR tree

      1. /deployment-overlay=myoverlay:add
      2. /deployment-overlay=myoverlay/content=WEB-INF\/web.xml:add(content={url=file:///home/user/web.xml})
        If you wish to, you may add more content rules using the second statement.
    • Using convenience methods

      deployment-overlay add --name=myoverlay --content=WEB-INF/web.xml=/home/user/web.xml
  2. Link the overlay to a deployment archive

    • deployment-overlay link --name=myoverlay --deployments=app.war
      You may specify multiple archive names separated by commas.
    • /deployment-overlay=myoverlay/deployment=app.war:add
      Note that the deployment archive name need not exist on the server yet. You are specifying the name, but not linking it to an actual deployment yet.
  3. Re-deploy the application

    /deployment=app.war:redeploy

Chapter 10. Securing JBoss EAP 6

10.1. About the Security Subsystem

The security subsystem provides the infrastructure for all security functionality in JBoss EAP 6. Most configuration elements rarely need to be changed. The only configuration element which may need to be changed is whether to use deep-copy-subject-mode. In addition, you can configure system-wide security properties. Most of the configuration relates to security domains.
Deep Copy Mode

If deep copy subject mode is disabled (the default), copying a security data structure makes a reference to the original, rather than copying the entire data structure. This behavior is more efficient, but is prone to data corruption if multiple threads with the same identity clear the subject by means of a flush or logout operation.

Deep copy subject mode causes a complete copy of the data structure and all its associated data to be made, as long as they are marked cloneable. This is more thread-safe, but less efficient.
System-Wide Security Properties

You can set system-wide security properties, which are applied to java.security.Security class.

Security Domain

A security domain is a set of Java Authentication and Authorization Service (JAAS) declarative security configurations which one or more applications use to control authentication, authorization, auditing, and mapping. Three security domains are included by default: jboss-ejb-policy, jboss-web-policy, and other. You can create as many security domains as you need to accommodate the needs of your applications.

10.2. About the Structure of the Security Subsystem

The security subsystem is configured in the managed domain or standalone configuration file. Most of the configuration elements can be configured using the web-based management console or the console-based management CLI. The following is the XML representing an example security subsystem.

Example 10.1. Example Security Subsystem Configuration

<subsystem xmlns="urn:jboss:domain:security:1.2">
	<security-management>
		...
	</security-management>
	<security-domains>
        <security-domain name="other" cache-type="default">
            <authentication>
                <login-module code="Remoting" flag="optional">
                    <module-option name="password-stacking" value="useFirstPass"/>
                </login-module>
                <login-module code="RealmUsersRoles" flag="required">
                    <module-option name="usersProperties" value="${jboss.domain.config.dir}/application-users.properties"/>
                    <module-option name="rolesProperties" value="${jboss.domain.config.dir}/application-roles.properties"/>
                    <module-option name="realm" value="ApplicationRealm"/>
                    <module-option name="password-stacking" value="useFirstPass"/>
                </login-module>
            </authentication>
        </security-domain>
        <security-domain name="jboss-web-policy" cache-type="default">
            <authorization>
                <policy-module code="Delegating" flag="required"/>
            </authorization>
        </security-domain>
        <security-domain name="jboss-ejb-policy" cache-type="default">
            <authorization>
                <policy-module code="Delegating" flag="required"/>
            </authorization>
        </security-domain>
    </security-domains>
    <vault>
    	...
    </vault>
</subsystem>		
		

The <security-management>, <subject-factory> and <security-properties> elements are not present in the default configuration. The <subject-factory> and <security-properties> elements have been deprecated in JBoss EAP 6.1 onwards.

10.3. Configure the Security Subsystem

You can configure the security subsystem using the Management CLI or web-based Management Console.
Each top-level element within the security subsystem contains information about a different aspect of the security configuration. Refer to Section 10.2, “About the Structure of the Security Subsystem” for an example of security subsystem configuration.
<security-management>
This section overrides high-level behaviors of the security subsystem. Each setting is optional. It is unusual to change any of these settings except for deep copy subject mode.
Option Description
deep-copy-subject-mode
Specifies whether to copy or link to security tokens, for additional thread safety.
authentication-manager-class-name
Specifies an alternate AuthenticationManager implementation class name to use.
authorization-manager-class-name
Specifies an alternate AuthorizationManager implementation class name to use.
audit-manager-class-name
Specifies an alternate AuditManager implementation class name to use.
identity-trust-manager-class-name
Specifies an alternate IdentityTrustManager implementation class name to use.
mapping-manager-class-name
Specifies the MappingManager implementation class name to use.
<subject-factory>
The subject factory controls creation of subject instances. It may use the authentication manager to verify the caller. The main use of the subject factory is for JCA components to establish a subject.It is unusual to need to modify the subject factory.
<security-domains>
A container element which holds multiple security domains. A security domain may contain information about authentication, authorization, mapping, and auditing modules, as well as JASPI authentication and JSSE configuration. Your application would specify a security domain to manage its security information.
<security-properties>
Contains names and values of properties which are set on the java.security.Security class.

10.4. About Deep Copy Subject Mode

If deep copy subject mode is disabled (the default), copying a security data structure makes a reference to the original, rather than copying the entire data structure. This behavior is more efficient, but is prone to data corruption if multiple threads with the same identity clear the subject by means of a flush or logout operation.
Deep copy subject mode causes a complete copy of the data structure and all its associated data to be made, as long as they are marked cloneable. This is more thread-safe, but less efficient.
Deep copy subject mode is configured as part of the security subsystem.

10.5. Enable Deep Copy Subject Mode

You can enable deep copy security mode from the web-based management console or the management CLI.

Procedure 10.1. Enable Deep Copy Security Mode from the Management Console

  1. Log into the Management Console.

    The management console is usually available at a URL such as http://127.0.0.1:9990/. Adjust this value to suit your needs.
  2. Managed Domain: Select the appropriate profile.

    In a managed domain, the security subsystem is configured per profile, and you can enable or disable the deep copy security mode in each, independently.
    To select a profile, click the Profiles label at the top right of the console display, and then select the profile you wish to change from the Profile selection box at the top left.
  3. Open the Security Subsystem configuration menu.

    Expand the Security menu item at the right of the management console, then click the Security Subsystem link.
  4. Modify the deep-copy-subject-mode value.

    Click the Edit button. Check the box beside Deep Copy Subjects: to enable deep copy subject mode.
Enable Deep Copy Subject Mode Using the Management CLI

If you prefer to use the management CLI to enable this option, use one of the following commands.

Example 10.2. Managed Domain

/profile=full/subsystem=security:write-attribute(name=deep-copy-subject-mode,value=TRUE)

Example 10.3. Standalone Server

/subsystem=security:write-attribute(name=deep-copy-subject-mode,value=TRUE)

10.6. Security Domains

10.6.1. About Security Domains

Security domains are part of the JBoss EAP 6 security subsystem. All security configuration is now managed centrally, by the domain controller of a managed domain, or by the standalone server.
A security domain consists of configurations for authentication, authorization, security mapping, and auditing. It implements Java Authentication and Authorization Service (JAAS) declarative security.
Authentication refers to verifying the identity of a user. In security terminology, this user is referred to as a principal. Although authentication and authorization are different, many of the included authentication modules also handle authorization.
An authorization is a security policy, by which the server determines whether an authenticated user has permission to access specific privileges or resources in the system or operation. In security terminology, this is often referred to as a role.
Security mapping refers to the ability to add, modify, or delete information from a principal, role, or attribute before passing the information to your application.
The auditing manager allows you to configure provider modules to control the way that security events are reported.
If you use security domains, you can remove all specific security configuration from your application itself. This allows you to change security parameters centrally. One common scenario that benefits from this type of configuration structure is the process of moving applications between testing and production environments.

10.6.2. About Picketbox

Picketbox is the foundational security framework that provides the authentication, authorization, audit and mapping capabilities to Java applications running in JBoss EAP 6. It provides the following capabilities, in a single framework with a single configuration:

10.6.3. About Authentication

Authentication refers to identifying a subject and verifying the authenticity of the identification. The most common authentication mechanism is a username and password combination. Other common authentication mechanisms use shared keys, smart cards, or fingerprints. The outcome of a successful authentication is referred to as a principal, in terms of Java Enterprise Edition declarative security.
JBoss EAP 6 uses a pluggable system of authentication modules to provide flexibility and integration with the authentication systems you already use in your organization. Each security domain contains one or more configured authentication modules. Each module includes additional configuration parameters to customize its behavior. The easiest way to configure the authentication subsystem is within the web-based management console.
Authentication is not the same as authorization, although they are often linked. Many of the included authentication modules can also handle authorization.

10.6.4. Configure Authentication in a Security Domain

To configure authentication settings for a security domain, log into the management console and follow this procedure.

Procedure 10.2. Setup Authentication Settings for a Security Domain

  1. Open the security domain's detailed view.

    Click the Profiles label at the top right of the management console. In a managed domain, select the profile to modify from the Profile selection box at the top left of the Profile view. Click the Security menu item at the left, and click Security Domains from the expanded menu. Click the View link for the security domain you want to edit.
  2. Navigate to the Authentication subsystem configuration.

    Click the Authentication label at the top of the view if it is not already selected.
    The configuration area is divided into two areas: Login Modules and Details. The login module is the basic unit of configuration. A security domain can include several login modules, each of which can include several attributes and options.
  3. Add an authentication module.

    Click the Add button to add a JAAS authentication module. Fill in the details for your module. The Code is the class name of the module. The Flags controls how the module relates to other authentication modules within the same security domain.
    Explanation of the Flags

    The Java Enterprise Edition 6 specification provides the following explanation of the flags for security modules. The following list is taken from http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA. Refer to that document for more detailed information.

    Flag Details
    required
    The LoginModule is required to succeed. If it succeeds or fails, authentication still continues to proceed down the LoginModule list.
    requisite
    LoginModule is required to succeed. If it succeeds, authentication continues down the LoginModule list. If it fails, control immediately returns to the application (authentication does not proceed down the LoginModule list).
    sufficient
    The LoginModule is not required to succeed. If it does succeed, control immediately returns to the application (authentication does not proceed down the LoginModule list). If it fails, authentication continues down the LoginModule list.
    optional
    The LoginModule is not required to succeed. If it succeeds or fails, authentication still continues to proceed down the LoginModule list.
    After you have added your module, you can modify its Code or Flags by clicking the Edit button in the Details section of the screen. Be sure the Attributes tab is selected.
  4. Optional: Add or remove module options.

    If you need to add options to your module, click its entry in the Login Modules list, and select the Module Options tab in the Details section of the page. Click the Add button, and provide the key and value for the option. Use the Remove button to remove an option.
Result

Your authentication module is added to the security domain, and is immediately available to applications which use the security domain.

The jboss.security.security_domain Module Option

By default, each login module defined in a security domain has the jboss.security.security_domain module option added to it automatically. This option causes problems with login modules which check to make sure that only known options are defined. The IBM Kerberos login module, com.ibm.security.auth.module.Krb5LoginModule is one of these.

You can disable the behavior of adding this module option by setting the system property to true when starting JBoss EAP 6. Add the following to your start-up parameters.
-Djboss.security.disable.secdomain.option=true
You can also set this property using the web-based Management Console. In a standalone server, you can set system properties in the Profile section of the configuration. In a managed domain, you can set system properties for each server group.

10.6.5. About Authorization

Authorization is a mechanism for granting or denying access to a resource based on identity. It is implemented as a set of declarative security roles which can be granted to principals.
JBoss EAP 6 uses a modular system to configure authorization. Each security domain can contain one or more authorization policies. Each policy has a basic module which defines its behavior. It is configured through specific flags and attributes. The easiest way to configure the authorization subsystem is by using the web-based management console.
Authorization is different from authentication, and usually happens after authentication. Many of the authentication modules also handle authorization.

10.6.6. Configure Authorization in a Security Domain

To configure authorization settings for a security domain, log into the management console and follow this procedure.

Procedure 10.3. Setup Authorization in a Security Domain

  1. Open the security domain's detailed view.

    Click the Profiles label at the top right of the management console. In a managed domain, select the profile to modify from the Profile selection box at the top left of the Profile view. Click the Security menu item at the left, and click Security Domains from the expanded menu. Click the View link for the security domain you want to edit.
  2. Navigate to the Authorization subsystem configuration.

    Click the Authorization label at the top of the view if it is not already selected.
    The configuration area is divided into two areas: Policies and Details. The login module is the basic unit of configuration. A security domain can include several authorization policies, each of which can include several attributes and options.
  3. Add a policy.

    Click the Add button to add a JAAS authorization policy module. Fill in the details for your module. The Code is the class name of the module. The Flags controls how the module relates to other authorization policy modules within the same security domain.
    Explanation of the Flags

    The Java Enterprise Edition 6 specification provides the following explanation of the flags for security modules. The following list is taken from http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA. Refer to that document for more detailed information.

    Flag Details
    required
    The LoginModule is required to succeed. If it succeeds or fails, authorization still continues to proceed down the LoginModule list.
    requisite
    LoginModule is required to succeed. If it succeeds, authorization continues down the LoginModule list. If it fails, control immediately returns to the application (authorization does not proceed down the LoginModule list).
    sufficient
    The LoginModule is not required to succeed. If it does succeed, control immediately returns to the application (authorization does not proceed down the LoginModule list). If it fails, authorization continues down the LoginModule list.
    optional
    The LoginModule is not required to succeed. If it succeeds or fails, authorization still continues to proceed down the LoginModule list.
    After you have added your module, you can modify its Code or Flags by clicking the Edit button in the Details section of the screen. Be sure the Attributes tab is selected.
  4. Optional: Add, edit, or remove module options.

    If you need to add options to your module, click its entry in the Login Modules list, and select the Module Options tab in the Details section of the page. Click the Add button, and provide the key and value for the option. To edit an option that already exists, click the key or to change it. Use the Remove button to remove an option.
Result

Your authorization policy module is added to the security domain, and is immediately available to applications which use the security domain.

10.6.7. About Security Auditing

Security auditing refers to triggering events, such as writing to a log, in response to an event that happens within the security subsystem. Auditing mechanisms are configured as part of a security domain, along with authentication, authorization, and security mapping details.
Auditing uses provider modules. You can use one of the included ones, or implement your own.

10.6.8. Configure Security Auditing

To configure security auditing settings for a security domain, log into the management console and follow this procedure.

Procedure 10.4. Setup Security Auditing for a Security Domain

  1. Open the security domain's detailed view.

    Click the Profiles label at the top right of the management console. In a standalone server, the tab is labeled Profile. In a managed domain, select the profile to modify from the Profile selection box at the top left of the Profile view. Click the Security menu item at the left, and click Security Domains from the expanded menu. Click the View link for the security domain you want to edit.
  2. Navigate to the Auditing subsystem configuration.

    Click the Audit label at the top of the view if it is not already selected.
    The configuration area is divided into two areas: Provider Modules and Details. The provider module is the basic unit of configuration. A security domain can include several provider modules each of which can include attributes and options.
  3. Add a provider module.

    Click the Add button to add a provider module. Fill in the Code section with the classname of the provider module.
    After you have added your module, you can modify its Code by clicking the Edit button in the Details section of the screen. Be sure the Attributes tab is selected.
  4. Verify if your module is working

    The goal of an audit module is to provide a way to monitor the events in the security subsystem. This monitoring can be done by means of writing to a log file, email notifications or any other measurable auditing mechanism.
    For example, JBoss EAP 6 includes the LogAuditProvider module by default. If enabled following the steps above, this audit module writes security notifications to a audit.log file in the log subfolder within the EAP_HOME directory.
    To verify if the steps above have worked in the context of the LogAuditProvider, perform an action that is likely to trigger a notification and then check the audit log file.
    For a full list of included security auditing provider modules, see here: Section 11.4, “Included Security Auditing Provider Modules”
  5. Optional: Add, edit, or remove module options.

    If you need to add options to your module, click its entry in the Modules list, and select the Module Options tab in the Details section of the page. Click the Add button, and provide the key and value for the option. To edit an option that already exists, remove it by clicking the Remove label, and add it again with the correct options by clicking the Add button.
Result

Your security auditing module is added to the security domain, and is immediately available to applications which use the security domain.

10.6.9. About Security Mapping

Security mapping allows you to combine authentication and authorization information after the authentication or authorization happens, but before the information is passed to your application. One example of this is using an X509 certificate for authentication, and then converting the principal from the certificate to a logical name which your application can display.
You can map principals (authentication), roles (authorization), or credentials (attributes which are not principals or roles).
Role Mapping is used to add, replace, or remove roles to the subject after authentication.
Principal mapping is used to modify a principal after authentication.
Attribute mapping is used to convert attributes from an external system to be used by your application, and vice versa.

10.6.10. Configure Security Mapping in a Security Domain

To configure security mapping settings for a security domain, log into the management console and follow this procedure.

Procedure 10.5. Setup Security Mapping Settings in a Security Domain

  1. Open the security domain's detailed view.

    Click the Profiles label at the top right of the management console. This tab is labeled Profile in a standalone server. In a managed domain, select the profile to modify from the Profile selection box at the top left of the Profile view. Click the Security menu item at the left, and click Security Domains from the expanded menu. Click the View link for the security domain you want to edit.
  2. Navigate to the Mapping subsystem configuration.

    Click the Mapping label at the top of the view if it is not already selected.
    The configuration area is divided into two areas: Modules and Details. The mapping module is the basic unit of configuration. A security domain can include several mapping modules, each of which can include several attributes and options.
  3. Add a module.

    Click the Add button to add a security mapping module. Fill in the details for your module. The Code is the class name of the module. The Type field refers to the type of mapping this module performs. Allowed values are principal, role, attribute or credential.
    After you have added your module, you can modify its Code or Type by clicking the Edit button in the Details section of the screen. Be sure the Attributes tab is selected.
  4. Optional: Add, edit, or remove module options.

    If you need to add options to your module, click its entry in the Modules list, and select the Module Options tab in the Details section of the page. Click the Add button, and provide the key and value for the option. To edit an option that already exists, click the Remove label key to remove it, and add it again with the new value. Use the Remove button to remove an option.
Result

Your security mapping module is added to the security domain, and is immediately available to applications which use the security domain.

10.6.11. Use a Security Domain in Your Application

Overview

To use a security domain in your application, first you must configure the domain in either the server's configuration file or the application's descriptor file. Then you must add the required annotations to the EJB that uses it. This topic covers the steps required to use a security domain in your application.

Warning

If an application is part of a security domain that uses an authentication cache, user authentications for that application will also be available to other applications in that security domain.

Procedure 10.6. Configure Your Application to Use a Security Domain

  1. Define the Security Domain

    You can define the security domain either in the server's configuration file or the application's descriptor file.
    • Configure the security domain in the server's configuration file

      The security domain is configured in the security subsystem of the server's configuration file. If the JBoss EAP 6 instance is running in a managed domain, this is the domain/configuration/domain.xml file. If the JBoss EAP 6 instance is running as a standalone server, this is the standalone/configuration/standalone.xml file.
      The other, jboss-web-policy, and jboss-ejb-policy security domains are provided by default in JBoss EAP 6. The following XML example was copied from the security subsystem in the server's configuration file.
      <subsystem xmlns="urn:jboss:domain:security:1.2">
          <security-domains>
              <security-domain name="other" cache-type="default">
                  <authentication>
                      <login-module code="Remoting" flag="optional">
                          <module-option name="password-stacking" value="useFirstPass"/>
                      </login-module>
                      <login-module code="RealmDirect" flag="required">
                          <module-option name="password-stacking" value="useFirstPass"/>
                      </login-module>
                  </authentication>
              </security-domain>
              <security-domain name="jboss-web-policy" cache-type="default">
                  <authorization>
                      <policy-module code="Delegating" flag="required"/>
                  </authorization>
              </security-domain>
              <security-domain name="jboss-ejb-policy" cache-type="default">
                  <authorization>
                      <policy-module code="Delegating" flag="required"/>
                  </authorization>
              </security-domain>
          </security-domains>
      </subsystem>
      
      You can configure additional security domains as needed using the Management Console or CLI.
    • Configure the security domain in the application's descriptor file

      The security domain is specified in the <security-domain> child element of the <jboss-web> element in the application's WEB-INF/jboss-web.xml file. The following example configures a security domain named my-domain.
      <jboss-web>
          <security-domain>my-domain</security-domain>
      </jboss-web>
      
      This is only one of many settings which you can specify in the WEB-INF/jboss-web.xml descriptor.
  2. Add the Required Annotation to the EJB

    You configure security in the EJB using the @SecurityDomain and @RolesAllowed annotations. The following EJB code example limits access to the other security domain by users in the guest role.
    package example.ejb3;
    
    import java.security.Principal;
    
    import javax.annotation.Resource;
    import javax.annotation.security.RolesAllowed;
    import javax.ejb.SessionContext;
    import javax.ejb.Stateless;
    
    import org.jboss.ejb3.annotation.SecurityDomain;
    
    /**
     * Simple secured EJB using EJB security annotations
     * Allow access to "other" security domain by users in a "guest" role.
     */
    @Stateless
    @RolesAllowed({ "guest" })
    @SecurityDomain("other")
    public class SecuredEJB {
    
       // Inject the Session Context
       @Resource
       private SessionContext ctx;
    
       /**
        * Secured EJB method using security annotations
        */
       public String getSecurityInfo() {
          // Session context injected using the resource annotation
          Principal principal = ctx.getCallerPrincipal();
          return principal.toString();
       }
    }
    For more code examples, see the ejb-security quickstart in the JBoss EAP 6 Quickstarts bundle, which is available from the Red Hat Customer Portal.

10.6.12. Java Authorization Contract for Containers (JACC)

10.6.12.1. About Java Authorization Contract for Containers (JACC)

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between containers and authorization service providers, which results in the implementation of providers for use by containers. It was defined in JSR-115, which can be found on the Java Community Process website at http://jcp.org/en/jsr/detail?id=115. It has been part of the core Java Enterprise Edition (Java EE) specification since Java EE version 1.3.
JBoss EAP 6 implements support for JACC within the security functionality of the security subsystem.

10.6.12.2. Configure Java Authorization Contract for Containers (JACC) Security

To configure Java Authorization Contract for Containers (JACC), you need to configure your security domain with the correct module, and then modify your jboss-web.xml to include the correct parameters.
Add JACC Support to the Security Domain

To add JACC support to the security domain, add the JACC authorization policy to the authorization stack of the security domain, with the required flag set. The following is an example of a security domain with JACC support. However, the security domain is configured in the Management Console or Management CLI, rather than directly in the XML.

<security-domain name="jacc" cache-type="default">
    <authentication>
        <login-module code="UsersRoles" flag="required">
        </login-module>
    </authentication>
    <authorization>
        <policy-module code="JACC" flag="required"/>
    </authorization>
</security-domain>

Configure a Web Application to use JACC

The jboss-web.xml is located in the META-INF/ or WEB-INF/ directory of your deployment, and contains overrides and additional JBoss-specific configuration for the web container. To use your JACC-enabled security domain, you need to include the <security-domain> element, and also set the <use-jboss-authorization> element to true. The following application is properly configured to use the JACC security domain above.

<jboss-web>
    <security-domain>jacc</security-domain>
    <use-jboss-authorization>true</use-jboss-authorization>
</jboss-web>

Configure an EJB Application to Use JACC

Configuring EJBs to use a security domain and to use JACC differs from Web Applications. For an EJB, you can declare method permissions on a method or group of methods, in the ejb-jar.xml descriptor. Within the <ejb-jar> element, any child <method-permission> elements contain information about JACC roles. Refer to the example configuration for more details. The EJBMethodPermission class is part of the Java Enterprise Edition 6 API, and is documented at http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html.

Example 10.4. Example JACC Method Permissions in an EJB

<ejb-jar>
  <method-permission>
    <description>The employee and temp-employee roles may access any method of the EmployeeService bean </description>
    <role-name>employee</role-name>
    <role-name>temp-employee</role-name>
    <method>
      <ejb-name>EmployeeService</ejb-name>
      <method-name>*</method-name>
    </method>
  </method-permission>
</ejb-jar>
	      

You can also constrain the authentication and authorization mechanisms for an EJB by using a security domain, just as you can do for a web application. Security domains are declared in the jboss-ejb3.xml descriptor, in the <security> child element. In addition to the security domain, you can also specify the run-as principal, which changes the principal the EJB runs as.

Example 10.5. Example Security Domain Declaration in an EJB


<security>
  <ejb-name>*</ejb-name>
  <security-domain>myDomain</security-domain>
  <run-as-principal>myPrincipal</run-as-principal>
</security>


10.6.13. Java Authentication SPI for Containers (JASPI)

10.6.13.1. About Java Authentication SPI for Containers (JASPI) Security

Java Application SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java applications. It is defined in JSR-196 of the Java Community Process. Refer to http://www.jcp.org/en/jsr/detail?id=196 for details about the specification.

10.6.13.2. Configure Java Authentication SPI for Containers (JASPI) Security

To authenticate against a JASPI provider, add a <authentication-jaspi> element to your security domain. The configuration is similar to a standard authentication module, but login module elements are enclosed in a <login-module-stack> element. The structure of the configuration is:

Example 10.6. Structure of the authentication-jaspi element

<authentication-jaspi>
	<login-module-stack name="...">
	  <login-module code="..." flag="...">
	    <module-option name="..." value="..."/>
	  </login-module>
	</login-module-stack>
	<auth-module code="..." login-module-stack-ref="...">
	  <module-option name="..." value="..."/>
	</auth-module>
</authentication-jaspi>


The login module itself is configured in exactly the same way as a standard authentication module.
Because the web-based management console does not expose the configuration of JASPI authentication modules, you need to stop JBoss EAP 6 completely before adding the configuration directly to EAP_HOME/domain/configuration/domain.xml or EAP_HOME/standalone/configuration/standalone.xml.

10.7. Management Interface Security

10.7.1. Default User Security Configuration

Introduction

All management interfaces in JBoss EAP 6 are secured by default. This security takes two different forms:

  • Local interfaces are secured by a SASL contract between local clients and the server they connect to. This security mechanism is based on the client's ability to access the local filesystem. This is because access to the local filesystem would allow the client to add a user or otherwise change the configuration to thwart other security mechanisms. This adheres to the principle that if physical access to the filesystem is achieved, other security mechanisms are superfluous. The mechanism happens in four steps:

    Note

    HTTP access is considered to be remote, even if you connect to the localhost using HTTP.
    1. The client sends a message to the server which includes a request to authenticate with the local SASL mechanism.
    2. The server generates a one-time token, writes it to a unique file, and sends a message to the client with the full path of the file.
    3. The client reads the token from the file and sends it to the server, verifying that it has local access to the filesystem.
    4. The server verifies the token and then deletes the file.
  • Remote clients, including local HTTP clients, use realm-based security. The default realm with the permissions to configure the JBoss EAP 6 remotely using the management interfaces is ManagementRealm. A script is provided which allows you to add users to this realm (or realms you create). For more information on adding users, see the Getting Started chapter of the JBoss EAP 6 Installation Guide. For each user, the username, a hashed password, and the realm are stored in a file.
    Managed domain
    EAP_HOME/domain/configuration/mgmt-users.properties
    Standalone server
    EAP_HOME/standalone/configuration/mgmt-users.properties
    Even though the contents of the mgmt-users.properties are masked, the file must still be treated as a sensitive file. It is recommended that it be set to the file mode of 600, which gives no access other than read and write access by the file owner.

10.7.2. Overview of Advanced Management Interface Configuration

The Management interface configuration in the EAP_HOME/domain/configuration/host.xml or EAP_HOME/standalone/configuration/standalone.xml controls which network interfaces the host controller process binds to, which types of management interfaces are available at all, and which type of authentication system is used to authenticate users on each interface. This topic discusses how to configure the Management Interfaces to suit your environment.
The Management subsystem consists of a <management> element that includes several configurable attributes, and the following three configurable child elements. The security realms and outbound connections are each first defined, and then applied to the management interfaces as attributes.
  • <security-realms>
  • <outbound-connections>
  • <management-interfaces>
Security Realms

The security realm is responsible for the authentication and authorization of users allowed to administer JBoss EAP 6 via the Management API, Management CLI, or web-based Management Console.

Two different file-based security realms are included in a default installation: ManagementRealm and ApplicationRealm. Each of these security realms uses a -users.properties file to store users and hashed passwords, and a -roles.properties to store mappings between users and roles. Support is also included for an LDAP-enabled security realm.

Note

Security realms can also be used for your own applications. The security realms discussed here are specific to the management interfaces.
Outbound Connections

Some security realms connect to external interfaces, such as an LDAP server. An outbound connection defines how to make this connection. A pre-defined connection type, ldap-connection, sets all of the required and optional attributes to connect to the LDAP server and verify the credential.

Management Interfaces

A management interface includes properties about how connect to and configure JBoss EAP. Such information includes the named network interface, port, security realm, and other configurable information about the interface. Two interfaces are included in a default installation:

  • http-interface is the configuration for the web-based Management Console.
  • native-interface is the configuration for the command-line Management CLI and the REST-like Management API.
Each of the three main configurable elements of the host management subsystem are interrelated. A security realm refers to an outbound connection, and a management interface refers to a security realm.
Associated information can be found in Section 10.9.1, “Secure the Management Interfaces”.

10.7.3. About LDAP

Lightweight Directory Access Protocol (LDAP) is a protocol for storing and distributing directory information across a network. This directory information includes information about users, hardware devices, access roles and restrictions, and other information.
Some common implementations of LDAP include OpenLDAP, Microsoft Active Directory, IBM Tivoli Directory Server, Oracle Internet Directory, and others.
JBoss EAP 6 includes several authentication and authorization modules which allow you to use a LDAP server as the authentication and authorization authority for your Web and EJB applications.

10.7.4. Use LDAP to Authenticate to the Management Interfaces

To use an LDAP directory server as the authentication source for the Management Console, Management CLI, or Management API, you need to perform the following procedures:
  1. Create an outbound connection to the LDAP server.
  2. Create an LDAP-enabled security realm.
  3. Reference the new security domain in the Management Interface.
Create an Outbound Connection to an LDAP Server

The LDAP outbound connection allows the following attributes:

Table 10.1. Attributes of an LDAP Outbound Connection

Attribute Required Description
url yes
The URL address of the directory server.
search-dn yes
The fully distinguished name (DN) of the user authorized to perform searches.
search-credentials yes
The password of the user authorized to perform searches.
initial-context-factory no
The initial context factory to use when establishing the connection. Defaults to com.sun.jndi.ldap.LdapCtxFactory.
security-realm no
The security realm to reference to obtain a configured SSLContext to use when establishing the connection.

Example 10.7. Add an LDAP Outbound Connection

This example adds an outbound connection with the following properties set:
  • Search DN: cn=search,dc=acme,dc=com
  • Search Credential: myPass
  • URL: ldap://127.0.0.1:389
The first command adds the security realm.
/host=master/core-service=management/security-realm=ldap_security_realm:add
The second command adds the LDAP connection.
/host=master/core-service=management/ldap-connection=ldap_connection/:add(search-credential=myPass,url=ldap://127.0.0.1:389,search-dn="cn=search,dc=acme,dc=com")
Create an LDAP-Enabled Security Realm

The Management Interfaces can authenticate against LDAP server instead of the property-file based security realms configured by default. The LDAP authenticator operates by first establishing a connection to the remote directory server. It then performs a search using the username which the user passed to the authentication system, to find the fully-qualified distinguished name (DN) of the LDAP record. A new connection is established, using the DN of the user as the credential, and password supplied by the user. If this authentication to the LDAP server is successful, the DN is verified to be valid.

The LDAP security realm needs the following configuration attributes and elements in order to perform its functions.
connection
The name of the connection defined in <outbound-connections> to use to connect to the LDAP directory.
base-dn
The distinguished name of the context to begin searching for the user.
recursive
Whether the search should be recursive throughout the LDAP directory tree, or only search the specified context. Defaults to false.
user-dn
The attribute of the user that holds the distinguished name. This is subsequently used to test authentication as the user can complete. Defaults to dn.
One of username-filter or advanced-filter, as a child element
The username-filter takes a single attribute called attribute, whose value is the name of the LDAP attribute which holds the username, such as userName or sambaAccountName.
The advanced-filter takes a single attribute called filter. This attribute contains a filter query in standard LDAP syntax. Be cautious to escape any & characters by changing them to &amp;. An example of a filter is:
(&(sAMAccountName={0})(memberOf=cn=admin,cn=users,dc=acme,dc=com))
After escaping the ampersand character, the filter appears as:
(&amp;(sAMAccountName={0})(memberOf=cn=admin,cn=users,dc=acme,dc=com))

Example 10.8. XML Representing an LDAP-enabled Security Realm

This example uses the following parameters:
  • connection - ldap_connection
  • base-dn - cn=users,dc=acme,dc=com.
  • username-filter - attribute="sambaAccountName"
<security-realm name="ldap_security_realm">
   <authentication>
      <ldap connection="ldap_connection" base-dn="cn=users,dc=acme,dc=com">
         <username-filter attribute="sambaAccountName" />
      </ldap>
  </authentication>
</security-realm>	


Warning

It is important to ensure that you do not allow empty LDAP passwords; unless you specifically desire this in your environment, it is a serious security concern.
EAP 6.1 includes a patch for CVE-2012-5629, which sets the allowEmptyPasswords option for the LDAP login modules to false if the option is not already configured. For older versions, this option should be configured manually

Example 10.9. Add an LDAP Security Realm

The command below adds a security realm and sets its attributes for a standalone server.
/host=master/core-service=management/security-realm=ldap_security_realm/authentication=ldap:add(base-dn="DC=mycompany,DC=org", recursive=true, username-attribute="MyAccountName", connection="ldap_connection")
Apply the New Security Realm to the Management Interface

After you create a security realm, you need to reference it in the configuration of your management interface. The management interface will use the security realm for HTTP digest authentication.

Example 10.10. Apply the Security Realm to the HTTP Interface

After this configuration is in place, and you restart the host controller, the web-based Management Console will use LDAP to authenticate its users.
/host=master/core-service=management/management-interface=http-interface/:write-attribute(name=security-realm,value=ldap-security-realm)
Configure a Managed Domain Member to Authenticate using Microsoft Active Directory

To configure a host in a managed domain to authenticate to Microsoft Active Directory, follow this procedure, which creates a security domain and maps roles to Active Directory groups, using JAAS authentication. This procedure is required because Microsoft Active Directory allows binding with an empty password. This procedure prevents an empty password from being used within the application platform.

Before performing this procedure, you need to know the name of your host controller. This example assumes the host controller is named master.
  1. Add a new <security-realm> named ldap_security_realm, and configure it to use JAAS.

    The following Management CLI commands add the new security realm and set its authentication mechanism. Change the name of the host as required.
    /host=master/core-service=management/security-realm=ldap_security_realm/:add
    /host=master/core-service=management/security-realm=ldap_security_realm/authentication=jaas/:add(name=managementLDAPDomain)
  2. Configure the <http-interface> to use the new security realm.

    The following Management CLI command configures the HTTP interface.
    /host=master/core-service=management/management-interface=http-interface/:write-attribute(name=security-realm,value=ldap_security_realm)
  3. Configure JBoss Enterprise Application Platform to add the custom JAAS configuration to its start-up parameters.

    Edit the EAP_HOME/bin/domain.conf file. Search for the HOST_CONTROLLER_JAVA_OPTS variable. This is where you add directives for the JVM which are needed before JBoss Enterprise Application Platform starts. The following is an example of the default contents of this parameter:
    HOST_CONTROLLER_JAVA_OPTS="$JAVA_OPTS"
    
    Add the following directive to the line: -Djava.security.auth.login.config=/opt/jboss-eap-6.0/domain/configuration/jaas.conf"
    The edited line is similar to the following:
    -Djava.security.auth.login.config=/opt/jboss-eap-6.0/domain/configuration/jaas.conf"
    
  4. Add the login module to the module options.

    In the same file, find the line containing the following:
    JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman"
    Change that line to read as follows. Make sure not to insert any extra spaces.
    JBOSS_MODULES_SYSTEM_PKGS="org.jboss.byteman,com.sun.security.auth.login"
    Save and close the domain.conf file.
  5. Create the JAAS configuration which will be added to the classpath.

    Create a new file at the following location: EAP_HOME/domain/configuration/jaas.conf
    The file should contain the following contents. Edit the parameters to match your own environment.
    managementLDAPDomain {
        org.jboss.security.auth.spi.LdapExtLoginModule required
            java.naming.factory.initial="com.sun.jndi.ldap.LdapCtxFactory"
            java.naming.provider.url="ldap://your_active_directory_host:389"
            java.naming.security.authentication="simple"
            bindDN="cn=Administrator,cn=users,dc=domain,dc=your_company,dc=com"
            bindCredential="password"
            baseCtxDN="cn=users,dc=domain,dc=redhat,dc=com"
            baseFilter="(&(sAMAccountName={0})(|(memberOf=cn=Domain Guests,cn=Users,dc=domain,dc=acme,dc=com)(memberOf=cn=Domain Admins,cn=Users,dc=domain,dc=acme,dc=com)))"
            allowEmptyPasswords="false"
            rolesCtxDN="cn=users,dc=domain,dc=acme,dc=com"
            roleFilter="(cn=no such group)"
            searchScope="SUBTREE_SCOPE";
    };
    
  6. Restart JBoss Enterprise Application Platform and your HTTP interface uses your LDAP server for authentication.

10.7.5. Disable the HTTP Management Interface

In a managed domain, you only need access to the HTTP interface on the domain controller, rather than on domain member servers. In addition, on a production server, you may decide to disable the web-based Management Console altogether.

Note

Other clients, such as JBoss Operations Network, also operate using the HTTP interface. If you want to use these services, and simply disable the Management Console itself, you can set the console-enabled attribute of the HTTP interface to false, instead of disabling the interface completely.
/host=master/core-service=management/management-interface=http-interface/:write-attribute(name=console-enabled,value=false)
To disable access to the HTTP interface, which also disables access to the web-based Management Console, you can delete the HTTP interface altogether.
The following JBoss CLI command allows you to read the current contents of your HTTP interface, in case you decide to add it again.

Example 10.11. Read the Configuration of the HTTP Interface

/host=master/core-service=management/management-interface=http-interface/:read-resource(recursive=true,proxies=false,include-runtime=false,include-defaults=true)
{
    "outcome" => "success",
    "result" => {
        "console-enabled" => true,
        "interface" => "management",
        "port" => expression "${jboss.management.http.port:9990}",
        "secure-port" => undefined,
        "security-realm" => "ManagementRealm"
    }
}
To remove the HTTP interface, issue the following command:

Example 10.12. Remove the HTTP Interface

/host=master/core-service=management/management-interface=http-interface/:remove
To re-enable access, issue the following commands to re-create the HTTP Interface with the default values.

Example 10.13. Re-Create the HTTP Interface

/host=master/core-service=management/management-interface=http-interface:add(console-enabled=true,interface=management,port="${jboss.management.http.port:9990}",security-realm=ManagementRealm)

10.7.6. Remove Silent Authentication from the Default Security Realm

Summary

The default installation of JBoss EAP 6 contains a method of silent authentication for a local Management CLI user. This allows the local user the ability to access the Management CLI without username or password authentication. This functionality is enabled as a convenience, and to assist local users running Management CLI scripts without requiring authentication. It is considered a useful feature given that access to the local configuration typically also gives the user the ability to add their own user details or otherwise disable security checks.

The convenience of silent authentication for local users can be disabled where greater security control is required. This can be achieved by removing the local element within the security-realm section of the configuration file. This applies to both the standalone.xml for a Standalone Server instance, or host.xml for a Managed Domain. You should only consider the removal of the local element if you understand the impact that it might have on your particular server configuration.
The preferred method of removing silent authentication is by use of the Management CLI, which directly removes the local element visible in the following example.

Example 10.14. Example of the local element in the security-realm

<security-realms>
    <security-realm name="ManagementRealm">
        <authentication>
            <local default-user="$local"/>
            <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>
        </authentication>
    </security-realm>
    <security-realm name="ApplicationRealm">
        <authentication>
            <local default-user="$local" allowed-users="*"/>
            <properties path="application-users.properties" relative-to="jboss.server.config.dir"/>
        </authentication>
        <authorization>
            <properties path="application-roles.properties" relative-to="jboss.server.config.dir"/>
        </authorization>
    </security-realm>
</security-realms>

Procedure 10.7. Remove Silent Authentication from the Default Security Realm

  • Remove silent authentication with the Management CLI

    Remove the local element from the Management Realm and Application Realm as required.
    1. Remove the local element from the Management Realm.
      • For Standalone Servers

        /core-service=management/security-realm=ManagementRealm/authentication=local:remove
      • For Managed Domains

        /host=HOST_NAME/core-service=management/security-realm=ManagementRealm/authentication=local:remove
    2. Remove the local element from the Application Realm.
      • For Standalone Servers

        /core-service=management/security-realm=ApplicationRealm/authentication=local:remove
      • For Managed Domains

        /host=HOST_NAME/core-service=management/security-realm=ApplicationRealm/authentication=local:remove
Result

The silent authentication mode is removed from the ManagementRealm and the ApplicationRealm.

10.7.7. Disable Remote Access to the JMX Subsystem

Remote JMX connectivity allows you to trigger JDK and application management operations. In order to secure an installation, disable this function. You can do this either by removing the remote connection configuration, or removing the JMX subsystem entirely. The JBoss CLI commands reference the default profile in a managed domain configuration. To modify a different profile, modify the /profile=default part of the command. For a standalone server, remove that portion of the command completely.

Note

In a managed domain the remoting connector is removed from the JMX subsystem by default. This command is provided for your information, in case you add it during development.

Example 10.15. Remove the Remote Connector from the JMX Subsystem

/profile=default/subsystem=jmx/remoting-connector=jmx/:remove

Example 10.16. Remove the JMX Subsystem

Run this command for each profile you use, if you use a managed domain.
/profile=default/subsystem=jmx/:remove

10.7.8. Configure Security Realms for the Management Interfaces

The Management Interfaces use security realms to control authentication and access to the configuration mechanisms of JBoss EAP 6. This topic shows you how to read and configure security realms. These commands use the Management CLI.
Read a Security Realm's Configuration

This example shows the default configuration for the ManagementRealm security realm. It uses a file called mgmt-users.properties to store its configuration information.

Example 10.17. Default ManagementRealm

	/host=master/core-service=management/security-realm=ManagementRealm/:read-resource(recursive=true,proxies=false,include-runtime=false,include-defaults=true)
{
    "outcome" => "success",
    "result" => {
        "authorization" => undefined,
        "server-identity" => undefined,
        "authentication" => {"properties" => {
            "path" => "mgmt-users.properties",
            "plain-text" => false,
            "relative-to" => "jboss.domain.config.dir"
        }}
    }
}
Write a Security Realm

The following commands create a new security realm called TestRealm and set the directory for the relevant properties file.

Example 10.18. Writing a Security Realm

/host=master/core-service=management/security-realm=TestRealm/:add
/host=master/core-service=management/security-realm=TestRealm/authentication=properties/:add(path=TestUsers.properties, relative-to=jboss.domain.config.dir)
Apply a Security Realm to the Management Interface

After adding a security realm, supply it as a reference to the Management Interface.

Example 10.19. Add a Security Realm to a Management Interface

/host=master/core-service=management/management-interface=http-interface/:write-attribute(security-realm=TestRealm)

10.8. Securing the Management Interfaces with Role-Based Access Control

10.8.1. About Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) is a mechanism for specifying a set of permissions for management users. It allows multiple users to share responsibility for managing JBoss EAP 6.2 servers without each of them requiring unrestricted access. By providing "separation of duties" for management users, JBoss EAP 6.2 makes it easy for an organization to spread responsibility between individuals or groups without granting unnecessary privileges. This ensures the maximum possible security of your servers and data while still providing flexibility for configuration, deployment, and management.

Role-Based Access Control in JBoss EAP 6.2 works through a combination of role permissions and constraints.

Seven predefined roles are provided that each have different fixed permissions. The predefined roles are: Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, and SuperUser. Each management user is assigned one or more roles, what the user is permitted to do when managing the server is specified by their assigned roles.

10.8.2. Role-Based Access Control in the GUI and CLI

When Role-Based Access Control(RBAC) is enabled, some users will not be able to run some operations, read from some resources or even be able to see parts of the management model at all, according to the roles assigned to them.
The Management Console

In the management console some controls and views are disabled (greyed out) or not visible at all depending on the permissions of your assigned role.

If you do not have read permissions to a resource attribute, that attribute will appear blank in the console. For example, most roles cannot read the username and password fields for datasources.

If you do not have write permissions to a resource attribute, that attribute will be disabled (greyed-out) in the edit form for the resource. If you do not have write permissions to the resource at all, then the edit button for the resource will not appear.

If you do not have permissions to access a resource or attribute at all (it is "unaddressable" for your role) then it does not appear in the console at all for you. An example of that is the access control system itself which is only visible to a few roles by default.
The Management API

Users that use the jboss-cli.sh tool or use the API directly will encounter slightly different behaviour in the API when RBAC is enabled.

Resources and attributes that cannot be read are filtered from results. If the filtered items are addressable by the role, their names are listed as filtered-attributes in the response-headers section of the result. If a resource or attribute is not addressable by the role, it is not listed at all.

Attempting to access a resource that is not addressable will result in a "resource not found" error.

If a user attempts to write or read a resource that they can address but lack the appropriate write or read permissions, a "Permission Denied" error is returned.

10.8.3. Supported Authentication Schemes

Role-Based Access Control works with the standard authentication providers that are included with JBoss EAP 6.2. The standard authentication providers are: username/password, client certificate, and local user.
Username/Password

Users are authenticated using a username and password combination which is verified against either the mgmt-users.properties file, or an LDAP server.
Client Certificate

Using the Trust Store.
Local User

jboss-cli.sh authenticates automatically as Local User if the server that is running on the same machine. By default Local User is a member of the SuperUser group.
Regardless of which provider is used, JBoss EAP is responsible for the assignment of roles to users. However when authenticating with the mgmt-users.properties file or an LDAP server, those systems can supply user group information. This information can also be used by JBoss EAP to assign roles to users.

10.8.4. The Standard Roles

JBoss EAP 6 provides seven predefined user roles: Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, and SuperUser. Each of these roles has a different set of permissions and is designed for specific use cases. The Monitor, Operator, Maintainer, Administrator, and SuperUser role each build upon each other, with each having more permissions than the previous. The Auditor and Deployer roles are similar to the Monitor and Maintainer roles respectively but have some additional special permissions and restrictions.
Monitor

Users of the Monitor role have the fewest permissions and can only read the current configuration and state of the server. This role is intended for users who need to track and report on the performance of the server.

Monitors cannot modify server configuration nor can they access sensitive data or operations.
Operator

The Operator role extends the Monitor role by adding the ability to modify the runtime state of the server. This means that Operators can reload and shutdown the server as well as pause and resume JMS destinations. The Operator role is ideal for users who are responsible for the physical or virtual hosts of the application server so they can ensure that servers can be shutdown and restarted corrected when needed.

Operators cannot modify server configuration or access sensitive data or operations.
Maintainer

The Maintainer role has access to view and modify runtime state and all configuration except sensitive data and operations. The Maintainer role is the general purpose role that doesn't have access to sensitive data and operation. The Maintainer role allows users to be granted almost complete access to administer the server without giving those users access to passwords and other sensitive information.

Maintainers cannot access sensitive data or operations.
Administrator

The Administrator role has unrestricted access to all resources and operations on the server except the audit logging system. Administrator is the only role (except SuperUser) that has access to sensitive data and operations. This role can also configure the access control system. The Administrator role is only required when handling sensitive data or configuring users and roles.

Administrators cannot access the audit logging system and cannot change themselves to the Auditor or SuperUser role.
SuperUser

The SuperUser role has no restrictions and has complete access to all resources and operations of the server including the audit logging system. This role is equivalent to the administrator users of earlier versions of JBoss EAP 6 (6.0 and 6.1). If RBAC is disabled, all management users have permissions equivalent to the SuperUser role.
Deployer

The Deployer role has the same permissions as the Monitor, but can modify configuration and state for deployments and any other resource type enabled as an application resource.
Auditor

The Auditor role has all the permissions of the Monitor role and can also view (but not modify) sensitive data, and has full access to the audit logging system. The Auditor role is the only role other than SuperUser that can access the audit logging system.

Auditors cannot modify sensitive data or resources. Only read access is permitted.

10.8.5. About Role Permissions

What each role is allowed to do is defined by what permissions it has. Not every role has every permission. Notably SuperUser has every permission and Monitor has the least.
Each permission can grant read and/or write access for a single category of resources.
The categories are: runtime state, server configuration, sensitive data, the audit log, and the access control system.
Table 10.2, “Role Permissions Matrix” summarizes the permissions of each role.

Table 10.2. Role Permissions Matrix

Monitor

Operator

Maintainer

Deployer

Auditor

Administrator

SuperUser

Read Config and State

X

X

X

X

X

X

X

Read Sensitive Data [2]

X

X

X

Modify Sensitive Data [2]

X

X

Read/Modify Audit Log

X

X

Modify Runtime State

X

X

X[1]

X

X

Modify Persistent Config

X

X[1]

X

X

Read/Modify Access Control

X

X
[1] permissions are restricted to application resources.
[2] What resources are considered to be "sensitive data" are configured using Sensitivity Constraints.

10.8.6. About Constraints

Constraints are named sets of access-control configuration for a specified list of resources. The RBAC system uses the combination of constraints and role permissions to determine if any specific user can perform a management action.

Constraints are divided into two classifications: application, sensitivity.
Application Constraints

Application Constraints define sets of resources and attributes that can be accessed by users of the Deployer role. By default the only enabled Application Constraint is core which includes deployments, deployment overlays. Application Constraints are also included (but not enabled by default) for datasources, logging, mail, messaging, naming, resource-adapters and security. These constraints allow Deployer users to not only deploy applications but also configure and maintain the resources that are required by those applications.

Application constraint configuration is in the Management API at /core-service=management/access=authorization/constraint=application-classification.
Sensitivity Constraints

Sensitivity Constraints define sets of resources that are considered "sensitive". A sensitive resource is generally one that is either secret, like a password, or one that will have serious impact on the operation of the server, like networking, JVM configuration, or system properties. The access control system itself is also considered sensitive.

The only roles permitted to write to sensitive resources are Administrator and SuperUser. The Auditor role is only able to read sensitive resources. No other roles have access.

Sensitivity constraint configuration is in the Management API at /core-service=management/access=authorization/constraint=sensitivity-classification.
Vault Expression Constraint

The Vault Expression constraint defines if reading or writing vault expressions is consider a sensitive operation. By default both reading and writing vault expressions is a sensitive operation.

Vault Expression constraint configuration is in the Management API at /core-service=management/access=authorization/constraint=vault-expression.

Constraints can not be configured in the Management Console at this time.

10.8.7. About JMX and Role-Based Access Control

Role-Based Access Control applies to JMX in three ways:
  1. The Management API of JBoss EAP 6 is exposed as JMX Management Beans. These Management Beans are referred to as "core mbeans" and access to them is controlled and filtered exactly the same as the underlying Management API itself.
  2. The JMX subsystem is configured with write permissions being "sensitive". This means only users of the Administrator and SuperUser roles can make changes to that subsystem. Users of the Auditor role can also read this subsystem configuration.
  3. By default Management Beans registered by deployed applications and services (non-core mbeans) can be accessed by all management users, but only users of the Maintainer, Operator, Administrator, SuperUser roles can write to them.

10.8.8. Configuring Role-Based Access Control

10.8.8.1. Overview of RBAC Configuration Tasks

When RBAC is enabled only users of the Administration or SuperUser role can view and make changes to the Access Control system.
The Management Console provides an interface for the following common RBAC tasks:
  • View and configure what roles are assigned to (or excluded from) each user
  • View and configure what roles are assigned to (or excluded from) each group
  • View group and user membership per role.
  • Configure default membership per role.
  • Create a scoped role
The CLI provides access to the complete access control system. This means that everything that can be done in the management console can be done there, but also a number of additional tasks can be performed with the CLI that cannot be done with the access control system.
The following additional tasks can be performed in the CLI:
  • Enable and disable RBAC
  • Change permission combination policy
  • Configuring Application Resource and Resource Sensitivity Constraints

10.8.8.2. Enabling Role-Based Access Control

By default the Role-Based Access Control (RABC) system is disabled. It is enabled by changing the provider attribute from simple to rbac. This can be done using the jboss-cli.sh tool or by editing the server configuration XML file if the server is off-line. When RBAC is disabled or enabled on a running server, the server configuration must be reloaded before it takes effect.
Once enabled it can only be disabled by a user of the Administrator or SuperUser roles. By default the jboss-cli.sh runs as the SuperUser role if it is run on the same machine as the server.

Procedure 10.8. Enabling RBAC

  • To enable RBAC with jboss-cli.sh use the write-attribute operation of the access authorization resource to set the provider attribute to rbac.
    /core-service=management/access=authorization:write-attribute(name=provider, value=rbac)
    [standalone@localhost:9999 /] /core-service=management/access=authorization:write-attribute(name=provider, value=rbac)
    {
        "outcome" => "success",
        "response-headers" => {
            "operation-requires-reload" => true,
            "process-state" => "reload-required"
        }
    }
    [standalone@localhost:9999 /] /:reload
    {
        "outcome" => "success",
        "result" => undefined
    }
    [standalone@localhost:9999 /]
    

Procedure 10.9. Disabling RBAC

  • To disable RBAC with jboss-cli.sh use the write-attribute operation of the access authorization resource to set the provider attribute to simple.
    /core-service=management/access=authorization:write-attribute(name=provider, value=simple)
    [standalone@localhost:9999 /] /core-service=management/access=authorization:write-attribute(name=provider, value=simple)
    {
        "outcome" => "success",
        "response-headers" => {
            "operation-requires-reload" => true,
            "process-state" => "reload-required"
        }
    }
    [standalone@localhost:9999 /] /:reload
    {
        "outcome" => "success",
        "result" => undefined
    }
    [standalone@localhost:9999 /]
    
If the server is off-line the XML configuration can be edited to enabled or disable RBAC. To do this, edit the provider attribute of the access-control element of the management element. Set the value to rbac to enable, and simple to disable.
<management>

        <access-control provider="rbac">
            <role-mapping>
                <role name="SuperUser">
                    <include>
                        <user name="$local"/>
                    </include>
                </role>
            </role-mapping>
        </access-control>

    </management>

10.8.8.3. Changing the Permission Combination Policy

Permission Combination Policy determines how permissions are determined if a user is assigned more than one role. This can be set to permissive or rejecting. The default is permissive.
When set to permissive, if any role is assigned to the user that permits an action, then the action is allowed.
When set to rejecting, if multiple roles are assigned to a user that permit an action, then the action is not allowed.
When the policy is set to rejecting each user should only be assigned one role. Users with multiple roles will not be able to use the management console or jboss-cli.sh tool when the policy is set to rejecting.
The Permission Combination Policy is configured by setting the permission-combination-policy attribute to either permissive or rejecting. This can be done using the jboss-cli.sh tool or by editing the server configuration XML file if the server is off-line.

Procedure 10.10. Set the Permission Combination Policy

  • Use the write-attribute operation of the access authorization resource to set the permission-combination-policy attribute to the required policy name.
    /core-service=management/access=authorization:write-attribute(name=permission-combination-policy, value=POLICYNAME)
    The valid policy names are rejecting and permissive.
    [standalone@localhost:9999 /] /core-service=management/access=authorization:write-attribute(name=permission-combination-policy, value=rejecting)
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization] 
    
    
If the server is off-line the XML configuration can be edited to change the permission combination policy value. To do this, edit the permission-combination-policy attribute of the access-control element.
<access-control provider="rbac" permission-combination-policy="rejecting">
  <role-mapping>
    <role name="SuperUser">
      <include>
        <user name="$local"/>
      </include>
    </role>
  </role-mapping>
</access-control>

10.8.9. Managing Roles

10.8.9.1. About Role Membership

When Role-Based Access Control (RBAC) is enabled, what a management user is permitted to do is determined by the roles that the user is assigned to. JBoss EAP 6.2 uses a system of includes and excludes based on both the user and group membership to determine what role a user belongs to.

A user is considered to be assigned to a role if:
  1. The user is:
    • listed as a user to be included in the role, or
    • a member of a group that is listed to be included in the role.
  2. The user is not:
    • listed as a user to exclude from the role, or
    • a member of a group that is listed to be excluded from the role.

Exclusions take priority over inclusions.

Role include and exclude settings for users and groups can be configured using both the Management Console and the jboss-cli.sh tool.

Only users of the SuperUser or Administrator roles can perform this configuration.

10.8.9.2. Configure User Role Assignment

Roles for a user to be included in and excluded from can be configured in the Management Console and the jboss-cli.sh tool. This topic only shows using the Management Console.
Only users in the SuperUser or Administrator roles can perform this configuration.

The User roles configuration in the management console can be found by following these steps:
  1. Login to the Management Console.
  2. Click on the Administration tab.
  3. Expand the Access Control item on the left and select Role Assignment.
  4. Select the USERS tab.
Screenshot of User Role Management in the Management Console

Figure 10.1. User Role Management in the Management Console

Procedure 10.11. Create a new role assignment for a user

  1. Login to the Management console.
  2. Navigate to the Users tab of the Role Assignment section.
  3. Click the Add button at the top right of the user list. Add User dialog appears.
    Screenshot of Add User Dialog

    Figure 10.2. Add User Dialog

  4. Specify user name, and optionally realm.
  5. Set the type menu to include or exclude.
  6. Click the checkbox of the roles to include or exclude. You can use the Control key (Command key on OSX) to check multiple items.
  7. Click save.
    When successful, the Add User dialog closes, and the list of users is updated to reflect the changes made. If unsuccessful a "Failed to save role assignment" message is displayed.

Procedure 10.12. Update the role assignment for a user

  1. Login to the Management console.
  2. Navigate to the Users tab of the Role Assignment section.
  3. Select user from the list.
  4. Click Edit. The selection panel enters edit mode.
    Screenshot of Selection Edit View

    Figure 10.3. Selection Edit View

    Here you can add and remove assigned and excluded roles for the user.
    1. To add an assigned role, select the required role from the list of available roles on the left and click button with the right-facing arrow next to the assigned roles list. The role moves from the available list to the assigned list.
    2. To remove an assigned role, selected the required role from the assigned roles list on the right and click the button with the left-facing arrow next to the assigned roles list. The role moves from the assigned list to the available list.
    3. To add an excluded role, select the required role from the list of available roles on the left and click button with the right-facing arrow next to the excluded roles list. The role moves from the available list to the excluded list.
    4. To remove an excluded role, selected the required role from the excluded roles list on the right and click the button with the left-facing arrow next to the excluded roles list. The role moves from the excluded list to the available list.
  5. Click save.
    When successful, the edit view closes, and the list of users is updated to reflect the changes made. If unsuccessful a "Failed to save role assignment" message is displayed.

Procedure 10.13. Remove role assignment for a user

  1. Login to the Management console.
  2. Navigate to the Users tab of the Role Assignment section.
  3. Select the user from list.
  4. Click the Remove button. The Remove Role Assignment confirmation prompt appears.
  5. Click the Confirm button.
    When successful, the user will no longer appear in the list of user role assignments.

Important

Removing the user from the list of role assignments does not remove the user from the system, nor does it guarantee that no roles will be assigned to the user. Roles might still be assigned from group membership.

10.8.9.3. Configure User Role Assignment using jboss-cli.sh

Roles for a user to be included in and excluded from can be configured in the Management Console and the jboss-cli.sh tool. This topic only shows using the jboss-cli.sh tool.
The configuration of mapping users and groups to roles is located in the management API at: /core-service=management/access=authorization as role-mapping elements.
Only users of the SuperUser or Administrator roles can perform this configuration.

Procedure 10.14. Viewing Role Assignment Configuration

  1. Use the :read-children-names operation to get a complete list of the configured roles:
    /core-service=management/access=authorization:read-children-names(child-type=role-mapping)
    [standalone@localhost:9999 access=authorization] :read-children-names(child-type=role-mapping)
    {
        "outcome" => "success",
        "result" => [
            "ADMINISTRATOR",
            "DEPLOYER",
            "MAINTAINER",
            "MONITOR",
            "OPERATOR",
            "SuperUser"
        ]
    }
    
  2. Use the read-resource operation of a specified role-mapping to get the full details of a specific role:
    /core-service=management/access=authorization/role-mapping=ROLENAME:read-resource(recursive=true)
    [standalone@localhost:9999 access=authorization] ./role-mapping=ADMINISTRATOR:read-resource(recursive=true)
    {
        "outcome" => "success",
        "result" => {
            "include-all" => false,
            "exclude" => undefined,
            "include" => {
                "user-theboss" => {
                    "name" => "theboss",
                    "realm" => undefined,
                    "type" => "USER"
                },
                "user-harold" => {
                    "name" => "harold",
                    "realm" => undefined,
                    "type" => "USER"
                },
                "group-SysOps" => {
                    "name" => "SysOps",
                    "realm" => undefined,
                    "type" => "GROUP"
                }
            }
        }
    }
    [standalone@localhost:9999 access=authorization]
    

Procedure 10.15. Add a new role

This procedure shows how to add a role-mapping entry for a role. This must be done before the role can be configured.
  • Use the add operation to add a new role configuration.
    /core-service=management/access=authorization/role-mapping=ROLENAME:add
    ROLENAME is the name of the role that the new mapping is for.
    [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR:add             
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    

Procedure 10.16. Add a user as included in a role

This procedure shows how to add a user to the included list of a role.
If no configuration for a role has been done, then a role-mapping entry for it must be done first.
  • Use the add operation to add a user entry to the includes list of the role.
    /core-service=management/access=authorization/role-mapping=ROLENAME/include=ALIAS:add(name=USERNAME, type=USER)
    ROLENAME is the name of the role being configured.
    ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming convention for your aliases such as user-USERNAME.
    USERNAME is the name of the user being added to the include list.
     [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR/include=user-max:add(name=max, type=USER)
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    

Procedure 10.17. Add a user as excluded in a role

This procedure shows how to add a user to the excluded list of a role.
If no configuration for a role has been done, then a role-mapping entry for it must be done first.
  • Use the add operation to add a user entry to the excludes list of the role.
    /core-service=management/access=authorization/role-mapping=ROLENAME/exclude=ALIAS:add(name=USERNAME, type=USER)
    ROLENAME is the name of the role being configured.
    USERNAME is the name of the user being added to the exclude list.
    ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming convention for your aliases such as user-USERNAME.
    [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR/exclude=user-max:add(name=max, type=USER)
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    

Procedure 10.18. Remove user role include configuration

This procedure shows how to remove a user include entry from a role mapping.
  • Use the remove operation to remove the entry.
    /core-service=management/access=authorization/role-mapping=ROLENAME/include=ALIAS:remove
    ROLENAME is the name of the role being configured
    ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming convention for your aliases such as user-USERNAME.
    [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR/include=user-max:remove
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    
    Removing the user from the list of includes does not remove the user from the system, nor does it guarantee that the role won't be assigned to the user. The role might still be assigned based on group membership.

Procedure 10.19. Remove user role exclude configuration

This procedure shows how to remove an user exclude entry from a role mapping.
  • Use the remove operation to remove the entry.
    /core-service=management/access=authorization/role-mapping=ROLENAME/exclude=ALIAS:remove
    ROLENAME is the name of the role being configured.
    ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming convention for your aliases such as user-USERNAME.
    [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR/exclude=user-max:remove
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    
    Removing the user from the list of excludes does not remove the user from the system, nor does it guarantee the role will be assigned to the user. Roles might still be excluded based on group membership.

10.8.9.4. About Roles and User Groups

Users authenticated using either the mgmt-users.properties file or an LDAP server, can be members of user groups. A user group is an arbitrary label that can be assigned to one or more users.
The RBAC system can be configured to automatically assign roles to users depending on what user groups they are members of. It can also exclude users from roles based on group membership.
When using the mgmt-users.properties file, group information is stored in the mgmt-groups.properties file. When using LDAP the group information is stored in the LDAP sever and maintained by those responsible for the LDAP server.

10.8.9.5. Configure Group Role Assignment

Roles can be assigned to a user based on the user's membership of a user group.
Groups to be included or excluded from a role can be configured in the Management Console and the jboss-cli.sh tool. This topic only shows using the Management Console.
Only users in the SuperUser or Administrator roles can perform this configuration.
The Group roles configuration in the management console can be found by following these steps:
  1. Login to the Management Console.
  2. Click on the Administration tab.
  3. Expand the Access Control item on the left and select Role Assignment.
  4. Select the GROUPS tab.
Screenshot of Group Role Management in the Management Console

Figure 10.4. Group Role Management in the Management Console

Procedure 10.20. Create a new role assignment for a group

  1. Login to the Management console
  2. Navigate to the GROUPS tab of the Role Assignment section.
  3. Click the Add button at the top right of the user list. Add Group dialog appears
    Screenshot of Add Group dialog

    Figure 10.5. Add Group Dialog

  4. Specify the group name, and optionally the realm.
  5. Set the type menu to include or exclude.
  6. Click the checkbox of the roles to include or exclude. You can use the Control key (Command key on OSX) to check multiple items.
  7. Click save.
    When successful, the Add Group dialog closes, and the list of groups is updated to reflect the changes made. If unsuccessful a "Failed to save role assignment" message is displayed.

Procedure 10.21. Update a role assignment for a group

  1. Login to the Management console.
  2. Navigate to the GROUPS tab of the Role Assignment section.
  3. Select the group from the list.
  4. Click Edit. The Selection view enters Edit mode.
    Screenshot of Selection View in Edit Mode

    Figure 10.6. Selection View Edit Mode

    Here you can add and remove assigned and excluded roles from the group:
    • To add assigned role, select the required role from the list of available roles on the left and click button with the right-facing arrow next to the assigned roles list. The role moves from the available list to the assigned list.
    • To remove an assigned role, selected the required role from the assigned roles list on the right and click the button with the left-facing arrow next to the assigned roles list. The role moves from the assigned list to the available list.
    • To add an excluded role, select the required role from the list of available roles on the left and click button with the right-facing arrow next to the excluded roles list. The role moves from the available list to the excluded list.
    • To remove an excluded role, selected the required role from the excluded roles list on the right and click the button with the left-facing arrow next to the excluded roles list. The role moves from the excluded list to the available list.
  5. Click save.
    When successful, the edit view closes, and the list of groups is updated to reflect the changes made. If unsuccessful a "Failed to save role assignment" message is displayed.

Procedure 10.22. Remove role assignment for a group

  1. Login to the Management console.
  2. Navigate to the GROUPS tab of the Role Assignment section.
  3. Select the group from list.
  4. Click the Remove button. The Remove Role Assignment confirmation prompt appears.
  5. Click the Confirm button.
    When successful, the role will no longer appear in the list of user role assignments.
    Removing the group from the list of role assignments does not remove the user group from the system, nor does it guarantee that no roles will be assigned to members of that group. Each group member might still have a role assigned to them directly.

10.8.9.6. Configure Group Role Assignment with jboss-cli.sh

Groups to be included or excluded from a role can be configured in the Management Console and the jboss-cli.sh tool. This topic only shows using the jboss-cli.sh tool.
The configuration of mapping users and groups to roles is located in the management API at: /core-service=management/access=authorization as role-mapping elements.
Only users in the SuperUser or Administrator roles can perform this configuration.

Procedure 10.23. Viewing Group Role Assignment Configuration

  1. Use the read-children-names operation to get a complete list of the configured roles:
    /core-service=management/access=authorization:read-children-names(child-type=role-mapping)
    [standalone@localhost:9999 access=authorization] :read-children-names(child-type=role-mapping)
    {
        "outcome" => "success",
        "result" => [
            "ADMINISTRATOR",
            "DEPLOYER",
            "MAINTAINER",
            "MONITOR",
            "OPERATOR",
            "SuperUser"
        ]
    }
    
  2. Use the read-resource operation of a specified role-mapping to get the full details of a specific role:
    /core-service=management/access=authorization/role-mapping=ROLENAME:read-resource(recursive=true)
    [standalone@localhost:9999 access=authorization] ./role-mapping=ADMINISTRATOR:read-resource(recursive=true)
    {
        "outcome" => "success",
        "result" => {
            "include-all" => false,
            "exclude" => undefined,
            "include" => {
                "user-theboss" => {
                    "name" => "theboss",
                    "realm" => undefined,
                    "type" => "USER"
                },
                "user-harold" => {
                    "name" => "harold",
                    "realm" => undefined,
                    "type" => "USER"
                },
                "group-SysOps" => {
                    "name" => "SysOps",
                    "realm" => undefined,
                    "type" => "GROUP"
                }
            }
        }
    }
    [standalone@localhost:9999 access=authorization]
    

Procedure 10.24. Add a new role

This procedure shows how to add a role-mapping entry for a role. This must be done before the role can be configured.
  • Use the add operation to add a new role configuration.
    /core-service=management/access=authorization/role-mapping=ROLENAME:add
    [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR:add             
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    

Procedure 10.25. Add a Group as included in a role

This procedure shows how to add a Group to the included list of a role.
If no configuration for a role has been done, then a role-mapping entry for it must be done first.
  • Use the add operation to add a Group entry to the includes list of the role.
    /core-service=management/access=authorization/role-mapping=ROLENAME/include=ALIAS:add(name=GROUPNAME, type=GROUP)
    ROLENAME is the name of the role being configured.
    GROUPNAME is the name of the group being added to the include list.
    ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming convention for your aliases such as group-GROUPNAME.
    [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR/include=group-investigators:add(name=investigators, type=GROUP)
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    

Procedure 10.26. Add a group as excluded in a role

This procedure shows how to add a group to the excluded list of a role.
If no configuration for a role has been done, then a role-mapping entry for it must be created first.
  • Use the add operation to add a group entry to the excludes list of the role.
    /core-service=management/access=authorization/role-mapping=ROLENAME/exclude=ALIAS:add(name=GROUPNAME, type=GROUP)
    ROLENAME is the name of the role being configured
    GROUPNAME is the name of the group being added to the include list
    ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming convention for your aliases such as group-GROUPNAME.
    [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR/exclude=group-supervisors:add(name=supervisors, type=USER)
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    

Procedure 10.27. Remove group role include configuration

This procedure shows how to remove a group include entry from a role mapping.
  • Use the remove operation to remove the entry.
    /core-service=management/access=authorization/role-mapping=ROLENAME/include=ALIAS:remove
    ROLENAME is the name of the role being configured
    ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming convention for your aliases such as group-GROUPNAME.
    [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR/include=group-investigators:remove
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    
    Removing the group from the list of includes does not remove the group from the system, nor does it guarantee that the role won't be assigned to users in this group. The role might still be assigned to users in the group individually.

Procedure 10.28. Remove a user group exclude entry

This procedure shows how to remove a group exclude entry from a role mapping.
  • Use the remove operation to remove the entry.
    /core-service=management/access=authorization/role-mapping=ROLENAME/exclude=ALIAS:remove
    ROLENAME is the name of the role being configured.
    ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming convention for your aliases such as group-GROUPNAME.
    [standalone@localhost:9999 access=authorization] ./role-mapping=AUDITOR/exclude=group-supervisors:remove
    {"outcome" => "success"}
    [standalone@localhost:9999 access=authorization]
    
    Removing the group from the list of excludes does not remove the group from the system. It also does not guarantee the role will be assigned to members of the group. Roles might still be excluded based on group membership.

10.8.9.7. About Authorization and Group Loading with LDAP

Within the LDAP directory it is expected that there are entries for the user accounts and that there are entries for the groups, these are then cross referenced by the use of attributes. The attributes used to cross reference between the two could be a reference from the user account over to the group entry or an attribute on the group referencing the users that are members of the group. On some servers both forms of cross reference exist.

It is also common that a user would be authenticating against the server using a simple user name, when it comes to searching for the group membership information depending on the directory server in use searches could be performed using this simple name or it could be performed using the distinguished name of the users entry in the directory.

The authentication step of a user connecting to the server would always happen first, only once it has been decided that the user is successfully authenticated does the server move onto loading a users groups. As the authentication step and the authorization step both use a connection to the LDAP server the realm contains an optimization that any connection used for authentication will be reused for the group loading step. As will be shown within the configuration steps below it is possible to define rules within the authorization section to convert a users simple user name to their distinguished name, this is potentially duplicating a search that would have occurred during the authentication step so if a user name to distinguished name search has already been performed the result of that search is cached and reused without requiring a repeat.
<authorization>
    <ldap connection="...">
       <username-to-dn> <!-- OPTIONAL -->
           <!-- Only one of the following. -->
           <username-is-dn />
           <username-filter base-dn="..." recursive="..." user-dn-attribute="..." attribute="..." />
           <advanced-filter base-dn="..." recursive="..." user-dn-attribute="..." filter="..." />
        </username-to-dn>
       <group-search group-name="..." iterative="..." group-dn-attribute="..." group-name-attribute="..." >
           <!-- One of the following -->
           <group-to-principal base-dn="..." recursive="..." search-by="...">
               <membership-filter principal-attribute="..." />
           </group-to-principal>
           <principal-to-group group-attribute="..." />
       </group-search>
    </ldap>
</authorization>

Important

Some of these examples specify attributes are using the default values. They are shown here for clarity. Attributes that contain the default values are removed from the configuration when it is persisted by the server.
username-to-dn

As mentioned above there may sometimes be a need to define within the authorization configuration how to map from the user name supplied by the user being authenticated to the distinguished name of their entry within the LDAP directory. The username-to-dn element is how this is defined, this element is only required if both of the following are true:
  • The authentication step was not against LDAP.
  • The group searching is using the distinguished name during the searching.

Do try and keep the first bullet point in mind, as you read the examples below this will feel as though the authentication configuration is being duplicated and it is true that it is - if you are only using LDAP for authentication this is not required as the distinguished name will be obtained during authentication.
1:1 username-to-dn

This is the most basic form of the configuration and is used to specify that the user name entered by the remote user is actually the users distinguished name.
<username-to-dn>
   <username-is-dn />
</username-to-dn>

As this is defining a 1:1 mapping there is no additional configuration possible.
username-filter

The next option is very similar to the simple option described above for the authentication step, quite simply an attribute is specified that is searched for a match against the supplied user name.
<username-to-dn>
    <username-filter base-dn="dc=people,dc=harold,dc=example,dc=com" recursive="false" attribute="sn" user-dn-attribute="dn" />
</username-to-dn>

The attributes that can be set here are:
  • base-dn: The distinguished name of the context to begin the search.
  • recursive: Whether the search will extend to sub contexts. Defaults to false.
  • attribute: The attribute of the users entry to try and match against the supplied user name. Defaults to uid.
  • user-dn-attribute: The attribute to read to obtain the users distinguished name. Defaults to dn.
advanced-filter

The final option is to specify an advanced filter, as in the authentication section this is an opportunity to use a custom filter to locate the users distinguished name.
<username-to-dn>
    <advanced-filter base-dn="dc=people,dc=harold,dc=example,dc=com" recursive="false" filter="sAMAccountName={0}" user-dn-attribute="dn" />
</username-to-dn>

For the attributes that match the ones in the username-filter the meaning and default values are the same so I will not list them here again, this leaves one new attribute:
  • filter: Custom filter used to search for a users entry where the user name will be substituted in the {0} place holder.

Important

The XML must remain valid after the filter is defined so if any special characters are used such as & ensure the proper form is used. For example &amp; for the & character.
The Group Search

As described above there are two different styles that can be used when searching for group membership information. The first style is where the user's entry contains an attribute that references the groups the user is a member of. The second style is where the group contains an attribute referencing the users entry.

When there is a choice of which style to use Red Hat recommends that the configuration for a user's entry referencing the group is used. This is because with this method group information can be loaded by reading attributes of known distinguished names without having to perform any searches. The other approach requires extensive searches to identify the groups that reference the user.

Before describing the configuration here are a couple of LDIF examples to illustrate this.

Example 10.20. Principal to Group - LDIF example.

This example illustrates where we have a user TestUserOne who is a member of GroupOne, GroupOne is then in-turn a member of GroupFive. The group membership is shown by the use of a memberOf attribute which is set to the distinguished name of the group the user (or group) is a member of.

It is not shown here but a user could potentially have multiple memberOf attributes set, one for each group the user is directly a member of.
dn: uid=TestUserOne,ou=users,dc=principal-to-group,dc=example,dc=org
objectClass: extensibleObject
objectClass: top
objectClass: groupMember
objectClass: inetOrgPerson
objectClass: uidObject
objectClass: person
objectClass: organizationalPerson
cn: Test User One
sn: Test User One
uid: TestUserOne
distinguishedName: uid=TestUserOne,ou=users,dc=principal-to-group,dc=example,dc=org
memberOf: uid=GroupOne,ou=groups,dc=principal-to-group,dc=example,dc=org
memberOf: uid=Slashy/Group,ou=groups,dc=principal-to-group,dc=example,dc=org
userPassword:: e1NTSEF9WFpURzhLVjc4WVZBQUJNbEI3Ym96UVAva0RTNlFNWUpLOTdTMUE9PQ==

dn: uid=GroupOne,ou=groups,dc=principal-to-group,dc=example,dc=org
objectClass: extensibleObject
objectClass: top
objectClass: groupMember
objectClass: group
objectClass: uidObject
uid: GroupOne
distinguishedName: uid=GroupOne,ou=groups,dc=principal-to-group,dc=example,dc=org
memberOf: uid=GroupFive,ou=subgroups,ou=groups,dc=principal-to-group,dc=example,dc=org

dn: uid=GroupFive,ou=subgroups,ou=groups,dc=principal-to-group,dc=example,dc=org
objectClass: extensibleObject
objectClass: top
objectClass: groupMember
objectClass: group
objectClass: uidObject
uid: GroupFive
distinguishedName: uid=GroupFive,ou=subgroups,ou=groups,dc=principal-to-group,dc=example,dc=org

Example 10.21. Group to Principal - LDIF Example

This example shows the same user TestUserOne who is a member of GroupOne which is in turn a member of GroupFive - however in this case it is an attribute uniqueMember from the group to the user being used for the cross reference.

Again the attribute used for the group membership cross reference can be repeated, if you look at GroupFive there is also a reference to another user TestUserFive which is not shown here.
dn: uid=TestUserOne,ou=users,dc=group-to-principal,dc=example,dc=org
objectClass: top
objectClass: inetOrgPerson
objectClass: uidObject
objectClass: person
objectClass: organizationalPerson
cn: Test User One
sn: Test User One
uid: TestUserOne
userPassword:: e1NTSEF9SjR0OTRDR1ltaHc1VVZQOEJvbXhUYjl1dkFVd1lQTmRLSEdzaWc9PQ==

dn: uid=GroupOne,ou=groups,dc=group-to-principal,dc=example,dc=org
objectClass: top
objectClass: groupOfUniqueNames
objectClass: uidObject
cn: Group One
uid: GroupOne
uniqueMember: uid=TestUserOne,ou=users,dc=group-to-principal,dc=example,dc=org

dn: uid=GroupFive,ou=subgroups,ou=groups,dc=group-to-principal,dc=example,dc=org
objectClass: top
objectClass: groupOfUniqueNames
objectClass: uidObject
cn: Group Five
uid: GroupFive
uniqueMember: uid=TestUserFive,ou=users,dc=group-to-principal,dc=example,dc=org
uniqueMember: uid=GroupOne,ou=groups,dc=group-to-principal,dc=example,dc=org
General Group Searching

Before looking at the examples for the two approaches shown above we first need to define the attributes common to both of these.
<group-search group-name="..." iterative="..." group-dn-attribute="..." group-name-attribute="..." >
    ...
</group-search>
  • group-name: This attribute is used to specify the form that should be used for the group name returned as the list of groups the user is a member of, this can either be the simple form of the group name or the groups distinguished name, if the distinguished name is required this attribute can be set to DISTINGUISHED_NAME. Defaults to SIMPLE.
  • iterative: This attribute is used to indicate if after identifying the groups a user is a member of we should also iteratively search based on the groups to identify which groups the groups are a member of. If iterative searching is enabled we keep going until either we reach a group that is not a member if any other groups or a cycle is detected. Defaults to false.

Cyclic group membership is not a problem. A record of each search is kept to prevent groups that have already been searched from being searched again.

Important

For iterative searching to work the group entries need to look the same as user entries, that is the same approach used to identify the groups a user is a member of is then used to identify the groups the group is a member of. This would not be possible if say once we are talking about group to group membership the name of the attribute used for the cross reference changes or if the direction of the reference changes.
  • group-dn-attribute: On an entry for a group which attribute is it's distinguished name. Defaults to dn.
  • group-name-attribute: On an entry for a group which attribute is it's simple name. Defaults to uid.

Example 10.22. Principal to Group Example Configuration

Based on the example LDIF from above here is an example configuration iteratively loading a users groups where the attribute used to cross reference is the memberOf attribute on the user.
<authorization>
    <ldap connection="LocalLdap">
        <username-to-dn>
            <username-filter base-dn="ou=users,dc=principal-to-group,dc=example,dc=org" recursive="false" attribute="uid" user-dn-attribute="dn" />
        </username-to-dn>
        <group-search group-name="SIMPLE" iterative="true" group-dn-attribute="dn" group-name-attribute="uid">
            <principal-to-group group-attribute="memberOf" />
        </group-search>
    </ldap>
</authorization>

The most important aspect of this configuration is that the principal-to-group element has been added with a single attribute.
  • group-attribute: The name of the attribute on the user entry that matches the distinguished name of the group the user is a member of. Defaults to memberOf.

Example 10.23. Group to Principal Example Configuration

This example shows an iterative search for the group to principal LDIF example shown above.
<authorization>
      <ldap connection="LocalLdap">
          <username-to-dn>
              <username-filter base-dn="ou=users,dc=group-to-principal,dc=example,dc=org" recursive="false" attribute="uid" user-dn-attribute="dn" />
          </username-to-dn>
          <group-search group-name="SIMPLE" iterative="true" group-dn-attribute="dn" group-name-attribute="uid">
              <group-to-principal base-dn="ou=groups,dc=group-to-principal,dc=example,dc=org" recursive="true" search-by="DISTINGUISHED_NAME">
                  <membership-filter principal-attribute="uniqueMember" />
              </group-to-principal>
          </group-search>
      </ldap>
  </authorization>

Here an element group-to-principal is added, this element is used to define how searches for groups that reference the user entry will be performed, the following attributes are set:
  • base-dn: The distinguished name of the context to use to begin the search.
  • recursive: Whether sub-contexts also be searched. Defaults to false.
  • search-by: The form of the role name used in searches. Valid valids are SIMPLE and DISTINGUISHED_NAME. Defaults to DISTINGUISHED_NAME.

Within the group-to-principal element there is a membership-filter element to define the cross reference.
  • principal-attribute: The name of the attribute on the group entry that references the user entry. Defaults to member.

10.8.9.8. About Scoped Roles

Scoped Roles are user-defined roles that grant the permissions of one of the standard roles but only for one or more specified server groups or hosts. Scoped roles allow for management users to be granted permissions that are limited to only those server groups or hosts that are required.

Scoped roles can be created by users assigned the Administrator or SuperUser roles.

They are defined by five characteristics:
  1. A unique name.
  2. Which of the standard roles it is based on.
  3. If it applies to Server Groups or Hosts
  4. The list of server groups or hosts that it is restricted to.
  5. If all users are automatically include. This defaults to false.

Once created a scoped role can be assigned to users and groups the same way that the standard roles are.

Creating a scoped role does not let you define new permissions. Scoped roles can only be used to apply the permissions of an existing role in a limited scope. For example, you could create a scoped role based on the Deployer role which is restricted to a single server group.

There are only two scopes that roles can be limited to, host and server group.
Host-scoped roles

A role that is host-scoped restricts the permissions of that role to one or more hosts. This means access is provided to the relevant /host=*/ resource trees but resources that are specific to other hosts are hidden.
Server-Group-scoped roles

A role that is server-group-scoped restricts the permissions of that role to one or more server groups. Additionally the role permissions will also apply to the profile, socket binding group, server config and server resources that are associated with the specified server-groups. Any sub-resources within any of those that are not logically related to the server-group will not be visible to the user.

Both host and server-group scoped roles have permissions of the Monitor role for the remainder of the managed domain configuration.

10.8.9.9. Creating Scoped Roles

Scoped Roles are user-defined roles that grant the permissions of one of the standard roles but only for one or more specified server groups or hosts. This topic shows how to create scoped roles.

Only users in the SuperUser or Administrator roles can perform this configuration.

Scoped Role configuration in the management console can be found by following these steps:
  1. Login to the Management Console
  2. Click on the Administration tab
  3. Expand the Access Control item on the left and select Role Assignment
  4. Select ROLES tab, and then the Scoped Roles tab within it.
Scoped Role Configuration in the Management Console

Figure 10.7. Scoped Role Configuration in the Management Console

The Scoped Roles section of the Management Console consists of two main areas, a table containing a list of the currently configured scoped roles, and the Selection panel which displays the details of the role currently selected in the table.
The following procedures show how to perform configuration tasks for Scoped Roles.

Procedure 10.29. Add a New Scoped Role

  1. Login to the Management Console
  2. Navigate tot he Scoped Roles area of the Roles tab.
  3. Click the Add button. The Add Scoped Role dialog appears.
    Add Scoped Role Dialog

    Figure 10.8. Add Scoped Role Dialog

  4. Specify the following details:
    • Name, the unique name for the new scoped role.
    • Base Role, the role which this role will base its permissions on.
    • Type, whether this role will be restricted to hosts or server groups.
    • Scope, the list of hosts or server groups that the role is restricted to. Multiple entries can be selected.
    • Include All, should this role automatically include all users. Defaults to no.
  5. Click the Save button and the dialog will close and the newly created role will appear in the table.

Procedure 10.30. Edit a Scoped Role

  1. Login to the Management Console
  2. Navigate to the Scoped Roles area of the Roles tab.
  3. Click on the scoped role you want to edit in the table. The details of that role appears in the Selection panel below the table.
    Role Selected

    Figure 10.9. Role Selected

  4. Click the Edit link in the Selection panel. The Selection panel enters edit mode.
    Selection Panel in Edit Mode

    Figure 10.10. Selection Panel in Edit Mode

  5. Update the details you need to change and click the Save button. The Selection panel returns to it's previous state. Both the Selection panel and table show the newly updated details.

Procedure 10.31. View Scoped Role Members

  1. Login to the Management Console
  2. Navigate to the Scoped Roles area of the Roles tab.
  3. Click on the scoped role in the table that you want to view the Members of, then click the Members button. The Members of role dialog appears. It shows users and groups that are included or excluded from the role.
    Role Membership Dialog

    Figure 10.11. Role Membership Dialog

  4. Click the Done button when you have finished reviewing this information.

Procedure 10.32. Delete a Scoped Role

Important

A Scoped Role cannot be deleted if users or groups are assigned to it. Remove the role assignments first, and then delete it.
  1. Login to the Management Console
  2. Navigate to the Scoped Roles area of the Roles tab.
  3. Select the scoped role to be removed in the table.
  4. Click the Remove button. The Remove Scoped Role dialog appears.
  5. Click the Confirm button.The dialog closes and the role is removed.

10.8.10. Configuring Constraints

10.8.10.1. Configure Sensitivity Constraints

Each Sensitivity Constraint defines a set of resources that are considered "sensitive". A sensitive resource is generally one that either should be secret, like passwords, or one that will have serious impact on the server, like networking, JVM configuration, or system properties. The access control system itself is also considered sensitive. Resource sensitivity limits which roles are able to read, write or address a specific resource.

Sensitivity constraint configuration is in the Management API at /core-service=management/access=authorization/constraint=sensitivity-classification.

Within the management model each Sensitivity Constraint is identified as a classification. The classifications are then grouped into types. There are 39 included classifications that are arranged into 13 types.

To configure a a sensitivity constraint, use the write-attribute operation to set the configured-requires-read, configured-requires-write, or configured-requires-addressable attribute. To make that type of operation sensitive set the value of the attribute to true, otherwise to make it nonsensitive set it to false. By default these attributes are not set and the values of default-requires-read, default-requires-write, and default-requires-addressable are used. Once the configured attribute is set it is that value that is used instead of the default. The default values cannot be changed.

Example 10.24. Make reading system properties a sensitive operation

[domain@localhost:9999 /] cd /core-service=management/access=authorization/constraint=sensitivity-classification/type=core/classification=system-property
[domain@localhost:9999 classification=system-property] :write-attribute(name=configured-requires-read, value=true)
{
    "outcome" => "success",
    "result" => undefined,
    "server-groups" => {"main-server-group" => {"host" => {"master" => {
        "server-one" => {"response" => {"outcome" => "success"}},
        "server-two" => {"response" => {"outcome" => "success"}}
    }}}}
}
[domain@localhost:9999 classification=system-property] :read-resource
{
    "outcome" => "success",
    "result" => {
        "configured-requires-addressable" => undefined,
        "configured-requires-read" => true,
        "configured-requires-write" => undefined,
        "default-requires-addressable" => false,
        "default-requires-read" => false,
        "default-requires-write" => true,
        "applies-to" => {
            "/host=master/system-property=*" => undefined,
            "/host=master/core-service=platform-mbean/type=runtime" => undefined,
            "/server-group=*/system-property=*" => undefined,
            "/host=master/server-config=*/system-property=*" => undefined,
            "/host=master" => undefined,
            "/system-property=*" => undefined,
            "/" => undefined
        }
    }
}
[domain@localhost:9999 classification=system-property]

What roles will be able to perform what operations depending on the configuration of these attributes is summarized in Table 10.3, “Sensitivity Constraint Configuration outcomes”.

Table 10.3. Sensitivity Constraint Configuration outcomes

Value requires-read requires-write requires-addressable

true

Read is sensitive.

Only Auditor, Administrator, SuperUser can read.

Write is sensitive.

Only Administrator and SuperUser can write

Addressing is sensitive.

Only Auditor, Administrator, SuperUser can address.

false

Read is not sensitive.

Any management user can read.

Write is not sensitive.

Only Maintainer, Administrator and SuperUser can write. Deployers can also write the resource is an application resource.

Addressing is not sensitive.

Any management user can address.

10.8.10.2. Configure Application Resource Constraints

Each Application Resource Constraint defines a set of resources, attributes and operations that are usually associated with the deployment of applications and services. When an application resource constraint is enabled management users of the Deployer role are granted access to the resources that it applies to.

Application constraint configuration is in the Management Model at /core-service=management/access=authorization/constraint=application-classification/.

Within the management model each Application Resource Constraint is identified as a classification. The classifications are then grouped into types. There are 14 included classifications that are arranged into 8 types. Each classification has an applies-to element which is a list of resource path patterns to which the classifications configuration applies.

By default the only Application Resource classification that is enabled is core. Core includes deployments, deployment overlays, and the deployment operations.

To enable an Application Resource, use the write-attribute operation to set the configured-application attribute of the classification to true. To disable an Application Resource, set this attribute to false. By default these attributes are not set and the value of default-application attribute is used. The default value cannot be changed.

Example 10.25. Enabling the logger-profile application resource classification

[domain@localhost:9999 /] cd /core-service=management/access=authorization/constraint=application-classification/type=logging/classification=logging-profile
[domain@localhost:9999 classification=logging-profile] :write-attribute(name=configured-application, value=true)
{
    "outcome" => "success",
    "result" => undefined,
    "server-groups" => {"main-server-group" => {"host" => {"master" => {
        "server-one" => {"response" => {"outcome" => "success"}},
        "server-two" => {"response" => {"outcome" => "success"}}
    }}}}
}
[domain@localhost:9999 classification=logging-profile] :read-resource 
{
    "outcome" => "success",
    "result" => {
        "configured-application" => true,
        "default-application" => false,
        "applies-to" => {"/profile=*/subsystem=logging/logging-profile=*" => undefined}
    }
}
[domain@localhost:9999 classification=logging-profile]

Important

Application Resource Constraints apply to all resources that match its configuration. For example, It is not possible to grant a Deployer user access to one datasource resource but not another. If this level of separation is required then it is recommended to configure the resources in different server groups and create different scoped Deployer roles for each group.

10.8.10.3. Configure the Vault Expression Constraint

By default, reading and writing vault expressions are sensitive operations. Configuring the Vault Expression Constraint allows you to set either or both of those operations to being nonsensitive. Changing this constraint allows a greater number of roles to read and write vault expressions.

The vault expression constraint is found in the management model at /core-service=management/access=authorization/constraint=vault-expression.

To configure the vault expression constraint, use the write-attribute operation to set the attributes of configured-requires-write and configured-requires-read to true or false. By default these are not set and the values of default-requires-read and default-requires-write are used. The default values cannot be changed.

Example 10.26. Making writing to vault expressions a nonsensitive operation

[domain@localhost:9999 /] cd /core-service=management/access=authorization/constraint=vault-expression
[domain@localhost:9999 constraint=vault-expression] :write-attribute(name=configured-requires-write, value=false)
{
    "outcome" => "success",
    "result" => undefined,
    "server-groups" => {"main-server-group" => {"host" => {"master" => {
        "server-one" => {"response" => {"outcome" => "success"}},
        "server-two" => {"response" => {"outcome" => "success"}}
    }}}}
}
[domain@localhost:9999 constraint=vault-expression] :read-resource
{
    "outcome" => "success",
    "result" => {
        "configured-requires-read" => undefined,
        "configured-requires-write" => false,
        "default-requires-read" => true,
        "default-requires-write" => true
    }
}
[domain@localhost:9999 constraint=vault-expression]

What roles will be able to read and write to vault expressions depending on this configuration is summarized in Table 10.4, “Vault Expression Constraint Configuration outcomes”.

Table 10.4. Vault Expression Constraint Configuration outcomes

Value requires-read requires-write

true

Read operation is sensitive.

Only Auditor, Administrator, and SuperUser can read.

Write operation is sensitive.

Only Administrator and SuperUser can write.

false

Read operation is not sensitive.

All management users can read.

Write operation is not sensitive.

Monitor, Administrator and SuperUser can write. Deployers can also write if the vault expression is in an Application Resource.

10.8.11. Constraints Reference

10.8.11.1. Application Resource Constraints Reference

Type: core

Classification: deployment-overlay
  • default: true
    PATH Attributes Operations

    /deployment-overlay=*

    /deployment=*

    /

    upload-deployment-stream, full-replace-deployment, upload-deployment-url, upload-deployment-bytes

Type: datasources

Classification: datasource
  • default: false
    PATH Attributes Operations

    /deployment=*/subdeployment=*/subsystem=datasources/data-source=*

    /subsystem=datasources/data-source=*

    /subsystem=datasources/data-source=ExampleDS

    /deployment=*/subsystem=datasources/data-source=*
Classification: jdbc-driver
  • default: false
    PATH Attributes Operations

    /subsystem=datasources/jdbc-driver=*
Classification: xa-data-source
  • default: false
    PATH Attributes Operations

    /subsystem=datasources/xa-data-source=*

    /deployment=*/subsystem=datasources/xa-data-source=*

    /deployment=*/subdeployment=*/subsystem=datasources/xa-data-source=*

Type: logging

Classification: logger
  • default: false
    PATH Attributes Operations

    /subsystem=logging/logger=*

    /subsystem=logging/logging-profile=*/logger=*
Classification: logging-profile
  • default: false
    PATH Attributes Operations

    /subsystem=logging/logging-profile=*

Type: mail

Classification: mail-session
  • default: false
    PATH Attributes Operations

    /subsystem=mail/mail-session=*

Type: naming

Classification: binding
  • default: false
    PATH Attributes Operations

    /subsystem=naming/binding=*

Type: resource-adapters

Classification: resource-adapters
  • default: false
    PATH Attributes Operations

    /subsystem=resource-adapters/resource-adapter=*

Type: security

Classification: security-domain
  • default: false
    PATH Attributes Operations

    /subsystem=security/security-domain=*

10.8.11.2. Sensitivity Constraints Reference

Type: core

Classification: access-control
  • requires-addressable: true
  • requires-read: true
  • requires-write: true
    PATH attributes operations

    /core-service=management/access=authorization

    /subsystem=jmx

    non-core-mbean-sensitivity
Classification: credential
  • requires-addressable: false
  • requires-read: true
  • requires-write: true
    PATH attributes operations

    /subsystem=mail/mail-session=*/server=pop3

    username , password

    /subsystem=mail/mail-session=*/server=imap

    username, password

    /subsystem=datasources/xa-data-source=*

    user-name, recovery-username, password, recovery-password

    /subsystem=mail/mail-session=*/custom=*

    username, password

    /subsystem=datasources/data-source=*"

    user-name, password

    /subsystem=remoting/remote-outbound-connection=*"

    username

    /subsystem=mail/mail-session=*/server=smtp

    username , password

    /subsystem=web/connector=*/configuration=ssl

    key-alias, password

    /subsystem=resource-adapters/resource-adapter=*/connection-definitions=*"

    recovery-username, recovery-password
Classification: domain-controller
  • requires-addressable: false
  • requires-read: false
  • requires-write: true
    PATH attributes operations
Classification: domain-names
  • requires-addressable: false
  • requires-read: false