
JBoss Enterprise Application Platform
6.1

Security Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Last Updated: 2017-10-16

JBoss Enterprise Application Platform 6.1 Security Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Sande Gilda

David Ryan

Misty Stanley-Jones
misty@redhat.com

Tom Wells
twells@redhat.com

Legal Notice

Copyright © 2015 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is a guide to securing Red Hat JBoss Enterprise Application Platform 6 and its patch
releases.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6

CHAPTER 1. INTRODUCTION
1.1. ABOUT RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 (JBOSS EAP 6)
1.2. ABOUT SECURITY
1.3. SECURITY FOR THE SYSTEM ADMINISTRATOR
1.4. SECURITY FOR THE J2EE DEVELOPER

PART II. SECURING THE PLATFORM

CHAPTER 2. THE SECURITY SUBSYSTEM
2.1. ABOUT THE SECURITY SUBSYSTEM
2.2. ABOUT THE STRUCTURE OF THE SECURITY SUBSYSTEM
2.3. ABOUT ENCRYPTION
2.4. ABOUT DECLARATIVE SECURITY
2.5. SECURITY REFERENCES
2.6. CONFIGURE THE SECURITY SUBSYSTEM
2.7. JAVA EE DECLARATIVE SECURITY OVERVIEW
2.8. SECURITY IDENTITY
2.9. SECURITY ROLES
2.10. EJB METHOD PERMISSIONS
2.11. ENTERPRISE BEANS SECURITY ANNOTATIONS
2.12. WEB CONTENT SECURITY CONSTRAINTS
2.13. ENABLE FORM-BASED AUTHENTICATION
2.14. ENABLE DECLARATIVE SECURITY

CHAPTER 3. MANAGEMENT INTERFACE SECURITY
3.1. SECURE THE MANAGEMENT INTERFACES
3.2. DEFAULT USER SECURITY CONFIGURATION
3.3. OVERVIEW OF ADVANCED MANAGEMENT INTERFACE CONFIGURATION
3.4. DISABLE THE HTTP MANAGEMENT INTERFACE
3.5. REMOVE SILENT AUTHENTICATION FROM THE DEFAULT SECURITY REALM
3.6. DISABLE REMOTE ACCESS TO THE JMX SUBSYSTEM
3.7. CONFIGURE SECURITY REALMS FOR THE MANAGEMENT INTERFACES
3.8. PASSWORD VAULTS FOR SENSITIVE STRINGS

3.8.1. About Securing Sensitive Strings in Clear-Text Files
3.8.2. Create a Java Keystore to Store Sensitive Strings
3.8.3. Mask the Keystore Password and Initialize the Password Vault
3.8.4. Configure JBoss EAP 6 to Use the Password Vault
3.8.5. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore
3.8.6. Store and Resolve Sensitive Strings In Your Applications

3.9. LDAP
3.9.1. About LDAP
3.9.2. Use LDAP to Authenticate to the Management Interfaces

CHAPTER 4. JAVA SECURITY MANAGER
4.1. ABOUT THE JAVA SECURITY MANAGER
4.2. ABOUT JAVA SECURITY MANAGER POLICIES
4.3. RUN JBOSS EAP 6 WITHIN THE JAVA SECURITY MANAGER
4.4. WRITE A JAVA SECURITY MANAGER POLICY
4.5. DEBUG SECURITY MANAGER POLICIES

CHAPTER 5. PATCH INSTALLATION

6

7
7
7
7
8

9

10
10
10
11
11
12
13
14
14
16
17
20
21
23
24

25
25
25
26
27
28
30
30
31
31
31
34
35
36
39
41
41
42

46
46
46
46
47
50

52

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

5.1. ABOUT PATCHING MECHANISMS
5.2. SUBSCRIBE TO PATCH MAILING LISTS
5.3. INSTALL PATCHES IN ZIP FORM
5.4. INSTALL PATCHES IN RPM FORM
5.5. SEVERITY AND IMPACT RATING OF JBOSS SECURITY PATCHES

CHAPTER 6. SECURITY DOMAINS
6.1. ABOUT SECURITY DOMAINS
6.2. ABOUT PICKETBOX
6.3. ABOUT AUTHENTICATION
6.4. CONFIGURE AUTHENTICATION IN A SECURITY DOMAIN
6.5. ABOUT AUTHORIZATION
6.6. CONFIGURE AUTHORIZATION IN A SECURITY DOMAIN
6.7. ABOUT SECURITY AUDITING
6.8. CONFIGURE SECURITY AUDITING
6.9. ABOUT SECURITY MAPPING
6.10. CONFIGURE SECURITY MAPPING IN A SECURITY DOMAIN

CHAPTER 7. SSL ENCRYPTION
7.1. ABOUT SSL ENCRYPTION
7.2. IMPLEMENT SSL ENCRYPTION FOR THE JBOSS EAP 6 WEB SERVER
7.3. GENERATE A SSL ENCRYPTION KEY AND CERTIFICATE
7.4. SSL CONNECTOR REFERENCE

CHAPTER 8. SECURITY REALMS
8.1. ABOUT SECURITY REALMS
8.2. ADD A NEW SECURITY REALM
8.3. ADD A USER TO A SECURITY REALM

CHAPTER 9. SUBSYSTEM CONFIGURATION
9.1. TRANSACTION SUBSYSTEM CONFIGURATION

9.1.1. Configure the ORB for JTS Transactions
9.2. JMS CONFIGURATION

9.2.1. Reference for HornetQ Configuration Attributes

CHAPTER 10. WEB, HTTP CONNECTORS, AND HTTP CLUSTERING
10.1. CONFIGURE A MOD_CLUSTER WORKER NODE

CHAPTER 11. NETWORK SECURITY
11.1. SECURE THE MANAGEMENT INTERFACES
11.2. SPECIFY WHICH NETWORK INTERFACE JBOSS EAP 6 USES
11.3. CONFIGURE NETWORK FIREWALLS TO WORK WITH JBOSS EAP 6
11.4. NETWORK PORTS USED BY JBOSS EAP 6

PART III. SECURING APPLICATIONS

CHAPTER 12. APPLICATION SECURITY
12.1. ENABLING/DISABLING DESCRIPTOR BASED PROPERTY REPLACEMENT
12.2. DATASOURCE SECURITY

12.2.1. About Datasource Security
12.3. EJB APPLICATION SECURITY

12.3.1. Security Identity
12.3.1.1. About EJB Security Identity
12.3.1.2. Set the Security Identity of an EJB

12.3.2. EJB Method Permissions

52
52
53
54
55

57
57
57
57
58
59
60
61
61
62
62

64
64
64
65
69

73
73
73
74

75
75
75
76
76

81
81

85
85
85
86
88

92

93
93
94
94
94
95
95
95
96

Security Guide

2

. .

. .

. .

. .

12.3.2.1. About EJB Method Permissions
12.3.2.2. Use EJB Method Permissions

12.3.3. EJB Security Annotations
12.3.3.1. About EJB Security Annotations
12.3.3.2. Use EJB Security Annotations

12.3.4. Remote Access to EJBs
12.3.4.1. About Remote Method Access
12.3.4.2. About Remoting Callbacks
12.3.4.3. About Remoting Server Detection
12.3.4.4. Configure the Remoting Subsystem
12.3.4.5. Use Security Realms with Remote EJB Clients
12.3.4.6. Add a New Security Realm
12.3.4.7. Add a User to a Security Realm
12.3.4.8. About Remote EJB Access Using SSL Encryption

12.4. JAX-RS APPLICATION SECURITY
12.4.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
12.4.2. Secure a JAX-RS Web Service using Annotations

12.5. SECURE REMOTE PASSWORD PROTOCOL
12.5.1. About Secure Remote Password Protocol (SRP)
12.5.2. Configure Secure Remote Password (SRP) Protocol

CHAPTER 13. SINGLE SIGN ON (SSO)
13.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
13.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
13.3. CHOOSE THE RIGHT SSO IMPLEMENTATION
13.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION
13.5. ABOUT KERBEROS
13.6. ABOUT SPNEGO
13.7. ABOUT MICROSOFT ACTIVE DIRECTORY
13.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB
APPLICATIONS

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS
14.1. ABOUT APPLICATION SECURITY
14.2. ABOUT SECURITY AUDITING
14.3. ABOUT SECURITY MAPPING
14.4. ABOUT THE SECURITY EXTENSION ARCHITECTURE
14.5. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
14.6. USE A SECURITY DOMAIN IN YOUR APPLICATION
14.7. USE ROLE-BASED SECURITY IN SERVLETS
14.8. USE A THIRD-PARTY AUTHENTICATION SYSTEM IN YOUR APPLICATION

CHAPTER 15. MIGRATION
15.1. CONFIGURE APPLICATION SECURITY CHANGES

CHAPTER 16. AUTHENTICATION AND AUTHORIZATION
16.1. ABOUT AUTHENTICATION
16.2. ABOUT AUTHORIZATION
16.3. JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
16.4. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
16.5. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)

16.5.1. About Java Authorization Contract for Containers (JACC)
16.5.2. Configure Java Authorization Contract for Containers (JACC) Security

16.6. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)

96
96
99
99

100
101
101
102
103
103
111
111
112
112
113
113
114
115
115
115

118
118
119
119
120
122
123
123

123

128
128
128
128
129
130
134
136
138

146
146

147
147
147
147
147
152
152
152
153

Table of Contents

3

. .

. .

16.6.1. About Java Authentication SPI for Containers (JASPI) Security
16.6.2. Configure Java Authentication SPI for Containers (JASPI) Security

APPENDIX A. REFERENCE
A.1. INCLUDED AUTHENTICATION MODULES
A.2. INCLUDED AUTHORIZATION MODULES
A.3. INCLUDED SECURITY MAPPING MODULES
A.4. INCLUDED SECURITY AUDITING PROVIDER MODULES
A.5. JBOSS-WEB.XML CONFIGURATION REFERENCE
A.6. EJB SECURITY PARAMETER REFERENCE

APPENDIX B. REVISION HISTORY

153
154

155
155
182
182
183
183
186

188

Security Guide

4

Table of Contents

5

PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE
APPLICATION PLATFORM 6

Security Guide

6

CHAPTER 1. INTRODUCTION

1.1. ABOUT RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM
6 (JBOSS EAP 6)

Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a fast, secure, powerful middleware
platform built upon open standards, and compliant with the Java Enterprise Edition 6 specification. It
integrates JBoss Application Server 7 with high-availability clustering, powerful messaging, distributed
caching, and other technologies to create a stable and scalable platform.

The new modular structure allows for services to be enabled only when required, significantly increasing
start up speed. The Management Console and Management Command Line Interface remove the need
to edit XML configuration files by hand, adding the ability to script and automate tasks. In addition, it
includes APIs and development frameworks that can be used to develop secure, powerful, and scalable
Java EE applications quickly.

Report a bug

1.2. ABOUT SECURITY

Computer security is the all encompassing term given to the field of information technology that deals
with securing the virtual environments that power the digital age. This can include data protection and
integrity, application security, risk and vulnerability assessment and authentication and authorization
protocols.

Computer data is an all important asset for most organizations. Data protection is vital and forms the core
of most businesses. JBoss EAP 6 provides a multi-layered approach to security to take care of data at all
stages.

Truly secure systems are the ones that are designed from the ground up with security as the main
feature. Such systems use the principle of Security by Design. In such systems, malicious attacks and
infiltration's are accepted as part and parcel of normal security apparatus and systems are designed to
work around them.

Security can be applied at the operating system, middleware and application level. For more information
about security at the operating system level as it applies to RHEL, refer to the following document:
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-
single/Security_Guide/index.html

In the coming chapters, you will read about the different levels and layers of security within JBoss EAP 6.
These layers provides the infrastructure for all security functionality within the platform.

Report a bug

1.3. SECURITY FOR THE SYSTEM ADMINISTRATOR

System Administrators, tasked with providing always on computer systems and networks, must be
proficient in dealing with attacks on their networks and must also be proactive in thwarting such attacks
by the use of planned security drills and audits.

For a successful system administrator, planning for security breaches is a combination of art and
science. Security threats, whether they be physical, network or data based, are varying in nature and a
successful security system administrator can prepare for outages.

CHAPTER 1. INTRODUCTION

7

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+228-458161+%5BSpecified%5D&comment=Title%3A+About+Red+Hat+JBoss+Enterprise+Application+Platform+6+%28JBoss+EAP+6%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=228-458161+07+Jun+2013+12%3A15+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Security_Guide/index.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+13955-460419+%5BSpecified%5D&comment=Title%3A+About+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13955-460419+17+Jun+2013+14%3A00+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Report a bug

1.4. SECURITY FOR THE J2EE DEVELOPER

Application level security falls in the hands of the J2EE Developer. Even this can be divided into three
separate roles:

Application Developer - responsible for security at the development level and for defining the
roles, rules and business logic into the application logic.

Application Assembler - responsible for ensuring that the packaging of EAR's and WAR's is done
so that cross-application vulnerabilities are minimized.

Application Deployer - responsible for securing the deployment of EAR's and assigning and
maintaining access control lists.

It is not uncommon for all three roles to be played by the same set of developers.

JBoss EAP 6, as a component platform, provides declarative security. Rather than embed security logic
into a business component, you describe the security roles and permissions in a standard XML
descriptor. This way, business level code is isolated from the security code. Read more about
declarative security in JBoss EAP 6 here Section 2.4, “About Declarative Security”.

Declarative security is bolstered by programmatic security. J2EE developers can use J2EE APIs in code
to determine authorization and enforce enhanced security.

Report a bug

Security Guide

8

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+13957-456436+%5BSpecified%5D&comment=Title%3A+Security+for+the+System+Administrator%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13957-456436+31+May+2013+09%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+13956-460420+%5BSpecified%5D&comment=Title%3A+Security+for+the+J2EE+Developer%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13956-460420+17+Jun+2013+14%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

PART II. SECURING THE PLATFORM

PART II. SECURING THE PLATFORM

9

CHAPTER 2. THE SECURITY SUBSYSTEM

2.1. ABOUT THE SECURITY SUBSYSTEM

The security subsystem provides the infrastructure for all security functionality in JBoss EAP 6. Most
configuration elements rarely need to be changed. The only configuration element which may need to be
changed is whether to use deep-copy-subject-mode. In addition, you can configure system-wide security
properties. Most of the configuration relates to security domains.

Deep Copy Mode

If deep copy subject mode is disabled (the default), copying a security data structure makes a reference
to the original, rather than copying the entire data structure. This behavior is more efficient, but is prone
to data corruption if multiple threads with the same identity clear the subject by means of a flush or
logout operation.

Deep copy subject mode causes a complete copy of the data structure and all its associated data to be
made, as long as they are marked cloneable. This is more thread-safe, but less efficient.

System-Wide Security Properties

You can set system-wide security properties, which are applied to java.security.Security class.

Security Domain

A security domain is a set of Java Authentication and Authorization Service (JAAS) declarative security
configurations which one or more applications use to control authentication, authorization, auditing, and
mapping. Three security domains are included by default: jboss-ejb-policy, jboss-web-policy,
and other. You can create as many security domains as you need to accommodate the needs of your
applications.

Report a bug

2.2. ABOUT THE STRUCTURE OF THE SECURITY SUBSYSTEM

The security subsystem is configured in the managed domain or standalone configuration file. Most of
the configuration elements can be configured using the web-based management console or the console-
based management CLI. The following is the XML representing an example security subsystem.

Example 2.1. Example Security Subsystem Configuration

<subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-management>
 ...
 </security-management>
 <security-domains>
 <security-domain name="other" cache-type="default">
 <authentication>
 <login-module code="Remoting" flag="optional">
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 <login-module code="RealmUsersRoles" flag="required">
 <module-option name="usersProperties"
value="${jboss.domain.config.dir}/application-users.properties"/>
 <module-option name="rolesProperties"

Security Guide

10

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4702-490493+%5BSpecified%5D&comment=Title%3A+About+the+Security+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4702-490493+02+Aug+2013+15%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The <security-management>, <subject-factory> and <security-properties> elements
are not present in the default configuration. The <subject-factory> and <security-
properties> elements have been deprecated in JBoss EAP 6.1 onwards.

Report a bug

2.3. ABOUT ENCRYPTION

Encryption refers to obfuscating sensitive information by applying mathematical algorithms to it.
Encryption is one of the foundations of securing your infrastructure from data breaches, system outages,
and other risks.

Encryption can be applied to simple string data, such as passwords. It can also be applied to data
communication streams. The HTTPS protocol, for instance, encrypts all data before transferring it from
one party to another. If you connect from one server to another using the Secure Shell (SSH) protocol, all
of your communication is sent in an encrypted tunnel .

Report a bug

2.4. ABOUT DECLARATIVE SECURITY

Declarative security is a method to separate security concerns from your application code by using the
container to manage security. The container provides an authorization system based on either file
permissions or users, groups, and roles. This approach is usually superior to programmatic security,
which gives the application itself all of the responsibility for security.

JBoss EAP 6 provides declarative security via security domains.

Report a bug

value="${jboss.domain.config.dir}/application-roles.properties"/>
 <module-option name="realm"
value="ApplicationRealm"/>
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 </authentication>
 </security-domain>
 <security-domain name="jboss-web-policy" cache-type="default">
 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 <security-domain name="jboss-ejb-policy" cache-type="default">
 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 </security-domains>
 <vault>
 ...
 </vault>
</subsystem>

CHAPTER 2. THE SECURITY SUBSYSTEM

11

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7200-458752+%5BSpecified%5D&comment=Title%3A+About+the+Structure+of+the+Security+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7200-458752+11+Jun+2013+14%3A18+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4774-435776+%5BSpecified%5D&comment=Title%3A+About+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4774-435776+18+Apr+2013+15%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4766-460002+%5BSpecified%5D&comment=Title%3A+About+Declarative+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4766-460002+14+Jun+2013+14%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

2.5. SECURITY REFERENCES

Both Enterprise Java Beans (EJBs) and servlets can declare one or more <security-role-ref> elements.

Figure 2.1. Security Roles Reference Model

This element declares that a component is using the <role-name> element's role-nameType attribute
value as an argument to the isCallerInRole(String) method. By using the isCallerInRole
method, a component can verify whether the caller is in a role that has been declared with a <security-
role-ref> or <role-name> element. The <role-name> element value must link to a <security-role> element
through the <role-link> element. The typical use of isCallerInRole is to perform a security check that
cannot be defined by using the role-based <method-permissions> elements.

Example 2.2. ejb-jar.xml descriptor fragment

NOTE

This fragment is an example only. In deployments, the elements in this section must
contain role names and links relevant to the EJB deployment.

 <!-- A sample ejb-jar.xml fragment -->
 <ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 ...
 <security-role-ref>
 <role-name>TheRoleICheck<role-name>
 <role-link>TheApplicationRole</role-link>
 </security-role-ref>
 </session>
 </enterprise-beans>
 ...
 </ejb-jar>

Security Guide

12

Example 2.3. web.xml descriptor fragment

Report a bug

2.6. CONFIGURE THE SECURITY SUBSYSTEM

You can configure the security subsystem using the Management CLI or web-based Management
Console.

Each top-level element within the security subsystem contains information about a different aspect of the
security configuration. Refer to Section 2.2, “About the Structure of the Security Subsystem” for an
example of security subsystem configuration.

<security-management>

This section overrides high-level behaviors of the security subsystem. Each setting is optional. It is
unusual to change any of these settings except for deep copy subject mode.

Option Description

deep-copy-subject-mode Specifies whether to copy or link to security tokens,
for additional thread safety.

authentication-manager-class-name Specifies an alternate AuthenticationManager
implementation class name to use.

authorization-manager-class-name Specifies an alternate AuthorizationManager
implementation class name to use.

audit-manager-class-name Specifies an alternate AuditManager
implementation class name to use.

identity-trust-manager-class-name Specifies an alternate IdentityTrustManager
implementation class name to use.

mapping-manager-class-name Specifies the MappingManager implementation
class name to use.

<subject-factory>

<web-app>
 <servlet>
 <servlet-name>AServlet</servlet-name>
 ...
 <security-role-ref>
 <role-name>TheServletRole</role-name>
 <role-link>TheApplicationRole</role-link>
 </security-role-ref>
 </servlet>
 ...
</web-app>

CHAPTER 2. THE SECURITY SUBSYSTEM

13

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+24093-548989+%5BSpecified%5D&comment=Title%3A+Security+References%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24093-548989+25+Oct+2013+17%3A09+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The subject factory controls creation of subject instances. It may use the authentication manager to
verify the caller. The main use of the subject factory is for JCA components to establish a subject.It is
unusual to need to modify the subject factory.

<security-domains>

A container element which holds multiple security domains. A security domain may contain
information about authentication, authorization, mapping, and auditing modules, as well as JASPI
authentication and JSSE configuration. Your application would specify a security domain to manage
its security information.

<security-properties>

Contains names and values of properties which are set on the java.security.Security class.

Report a bug

2.7. JAVA EE DECLARATIVE SECURITY OVERVIEW

The J2EE security model is declarative in that you describe the security roles and permissions in a
standard XML descriptor rather than embedding security into your business component. This isolates
security from business-level code because security tends to be more a function of where the component
is deployed than an inherent aspect of the component's business logic. For example, consider an
Automated Teller Machine (ATM) that is to be used to access a bank account. The security
requirements, roles and permissions will vary independent of how you access the bank account, based
on what bank is managing the account, where the ATM is located, and so on.

Securing a J2EE application is based on the specification of the application security requirements via the
standard J2EE deployment descriptors. You secure access to EJBs and web components in an
enterprise application by using the ejb-jar.xml and web.xml deployment descriptors.

Report a bug

2.8. SECURITY IDENTITY

An Enterprise Java Bean (EJB) can specify the identity another EJB must use when it invokes methods
on components using the <security-identity> element.

Figure 2.2. J2EE Security Identity Data Model

Security Guide

14

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8424-466657+%5BSpecified%5D&comment=Title%3A+Configure+the+Security+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8424-466657+19+Jun+2013+15%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+24326-549222+%5BSpecified%5D&comment=Title%3A+Java+EE+Declarative+Security+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24326-549222+28+Oct+2013+13%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The invocation identity can be that of the current caller, or it can be a specific role. The application
assembler uses the <security-identity> element with a <use-caller-identity> child element. This indicate
that the current caller's identity should be propagated as the security identity for method invocations
made by the EJB. Propagation of the caller's identity is the default used in the absence of an explicit
<security-identity> element declaration.

Alternatively, the application assembler can use the <run-as> or <role-name> child element to specify
that a specific security role supplied by the <role-name> element value must be used as the security
identity for method invocations made by the EJB.

Note that this does not change the caller's identity as seen by the
EJBContext.getCallerPrincipal() method. Rather, the caller's security roles are set to the single
role specified by the <run-as> or <role-name> element value.

One use case for the <run-as> element is to prevent external clients from accessing internal EJBs. You
configure this behavior by assigning the internal EJB <method-permission> elements, which restrict
access to a role never assigned to an external client. EJBs that must in turn use internal EJBs are then
configured with a <run-as> or <role-name> equal to the restricted role. The following descriptor fragment
describes an example<security-identity> element usage.

When you use <run-as> to assign a specific role to outgoing calls, a principal named anonymous is
assigned to all outgoing calls. If you want another principal to be associated with the call, you must
associate a <run-as-principal> with the bean in the jboss.xml file. The following fragment associates a
principal named internal with RunAsBean from the prior example.

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
 </enterprise-beans>
 <!-- ... -->
</ejb-jar>

<session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>
</session>

CHAPTER 2. THE SECURITY SUBSYSTEM

15

The <run-as> element is also available in servlet definitions in a web.xml file. The following example
shows how to assign the role InternalRole to a servlet:

Calls from this servlet are associated with the anonymous principal. The <run-as-principal> element
is available in the jboss-web.xml file to assign a specific principal to go along with the run-as role.
The following fragment shows how to associate a principal named internal to the servlet above.

Report a bug

2.9. SECURITY ROLES

The security role name referenced by either the security-role-ref or security-identity
element needs to map to one of the application's declared roles. An application assembler defines logical
security roles by declaring security-role elements. The role-name value is a logical application
role name like Administrator, Architect, SalesManager, etc.

The J2EE specifications note that it is important to keep in mind that the security roles in the deployment
descriptor are used to define the logical security view of an application. Roles defined in the J2EE
deployment descriptors should not be confused with the user groups, users, principals, and other
concepts that exist in the target enterprise's operational environment. The deployment descriptor roles
are application constructs with application domain-specific names. For example, a banking application
might use role names such as BankManager, Teller, or Customer.

In JBoss EAP, a security-role element is only used to map security-role-ref/role-name
values to the logical role that the component role references. The user's assigned roles are a dynamic
function of the application's security manager. JBoss does not require the definition of security-role
elements in order to declare method permissions. However, the specification of security-role
elements is still a recommended practice to ensure portability across application servers and for
deployment descriptor maintenance.

Example 2.4. An ejb-jar.xml descriptor fragment that illustrates the security-role element
usage.

 <servlet>
 <servlet-name>AServlet</servlet-name>
 <!-- ... -->
 <run-as>
 <role-name>InternalRole</role-name>
 </run-as>
 </servlet>

 <servlet>
 <servlet-name>AServlet</servlet-name>
 <run-as-principal>internal</run-as-principal>
 </servlet>

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>
 <assembly-descriptor>
 <security-role>
 <description>The single application role</description>

Security Guide

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+24094-548934+%5BSpecified%5D&comment=Title%3A+Security+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24094-548934+25+Oct+2013+17%3A07+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Example 2.5. An example web.xml descriptor fragment that illustrates the security-role
element usage.

Report a bug

2.10. EJB METHOD PERMISSIONS

An application assembler can set the roles that are allowed to invoke an EJB's home and remote
interface methods through method-permission element declarations.

Figure 2.3. J2EE Method Permissions Element

Each method-permission element contains one or more role-name child elements that define the
logical roles that are allowed to access the EJB methods as identified by method child elements. You
can also specify an unchecked element instead of the role-name element to declare that any
authenticated user can access the methods identified by method child elements. In addition, you can
declare that no one should have access to a method that has the exclude-list element. If an EJB has

 <role-name>TheApplicationRole</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

<!-- A sample web.xml fragment -->
<web-app>
 <security-role>
 <description>The single application role</description>
 <role-name>TheApplicationRole</role-name>
 </security-role>
</web-app>

CHAPTER 2. THE SECURITY SUBSYSTEM

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+24095-549164+%5BSpecified%5D&comment=Title%3A+Security+Roles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24095-549164+28+Oct+2013+11%3A15+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

methods that have not been declared as accessible by a role using a method-permission element,
the EJB methods default to being excluded from use. This is equivalent to defaulting the methods into
the exclude-list.

Figure 2.4. J2EE Method Element

There are three supported styles of method element declarations.

The first is used for referring to all the home and component interface methods of the named enterprise
bean:

The second style is used for referring to a specified method of the home or component interface of the
named enterprise bean:

If there are multiple methods with the same overloaded name, this style refers to all of the overloaded
methods.

The third style is used to refer to a specified method within a set of methods with an overloaded name:

<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
</method>

 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 </method>

<method>

Security Guide

18

The method must be defined in the specified enterprise bean's home or remote interface. The method-
param element values are the fully qualified name of the corresponding method parameter type. If there
are multiple methods with the same overloaded signature, the permission applies to all of the matching
overloaded methods.

The optional method-intf element can be used to differentiate methods with the same name and
signature that are defined in both the home and remote interfaces of an enterprise bean.

Example 2.6, “An ejb-jar.xml descriptor fragment that illustrates the method-permission element usage.”
provides complete examples of the method-permission element usage.

Example 2.6. An ejb-jar.xml descriptor fragment that illustrates the method-permission
element usage.

 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAMETER_1</method-param>
 <!-- ... -->
 <method-param>PARAMETER_N</method-param>
 </method-params>
</method>

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may
access any
 method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>The employee role may access the
findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String)
method of
 the AardvarkPayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>

CHAPTER 2. THE SECURITY SUBSYSTEM

19

Report a bug

2.11. ENTERPRISE BEANS SECURITY ANNOTATIONS

Enterprise beans use Annotations to pass information to the deployer about security and other aspects of
the application. The deployer can set up the appropriate enterprise bean security policy for the
application if specified in annotations, or the deployment descriptor.

Any method values explicitly specified in the deployment descriptor override annotation values. If a
method value is not specified in the deployment descriptor, those values set using annotations are used.
The overriding granularity is on a per-method basis

Those annotations that address security and can be used in an enterprise beans include the following:

@DeclareRoles

Declares each security role declared in the code. For information about configuring roles, refer to the
Java EE 5 Tutorial Declaring Security Roles Using Annotations.

@RolesAllowed, @PermitAll, and @DenyAll

 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <description>The admin role may access any method of the
 EmployeeServiceAdmin bean </description>
 <role-name>admin</role-name>
 <method>
 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>Any authenticated user may access any method
of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring
bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

Security Guide

20

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+24096-549176+%5BSpecified%5D&comment=Title%3A+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24096-549176+28+Oct+2013+11%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
http://docs.sun.com/app/docs/doc/819-3669/bnbyp?l=en&a=view

Specifies method permissions for annotations. For information about configuring annotation method
permissions, refer to the Java EE 5 Tutorial Specifying Method Permissions Using Annotations.

@RunAs

Configures the propagated security identity of a component. For information about configuring
propagated security identities using annotations, refer to the Java EE 5 Tutorial Configuring a
Component’s Propagated Security Identity.

Report a bug

2.12. WEB CONTENT SECURITY CONSTRAINTS

In a web application, security is defined by the roles that are allowed access to content by a URL pattern
that identifies the protected content. This set of information is declared by using the web.xmlsecurity-
constraint element.

Figure 2.5. Web Content Security Constraints

The content to be secured is declared using one or more <web-resource-collection> elements. Each
<web-resource-collection> element contains an optional series of <url-pattern> elements followed by an

CHAPTER 2. THE SECURITY SUBSYSTEM

21

http://docs.sun.com/app/docs/doc/819-3669/bnbyw?l=en&a=view
http://docs.oracle.com/cd/E19226-01/820-7627/bnbzb/index.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+24097-549282+%5BSpecified%5D&comment=Title%3A+Enterprise+Beans+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24097-549282+28+Oct+2013+21%3A34+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

optional series of <http-method> elements. The <url-pattern> element value specifies a URL pattern
against which a request URL must match for the request to correspond to an attempt to access secured
content. The <http-method> element value specifies a type of HTTP request to allow.

The optional <user-data-constraint> element specifies the requirements for the transport layer of the
client to server connection. The requirement may be for content integrity (preventing data tampering in
the communication process) or for confidentiality (preventing reading while in transit). The <transport-
guarantee> element value specifies the degree to which communication between the client and server
should be protected. Its values are NONE, INTEGRAL, and CONFIDENTIAL. A value of NONE means that
the application does not require any transport guarantees. A value of INTEGRAL means that the
application requires the data sent between the client and server to be sent in such a way that it can not
be changed in transit. A value of CONFIDENTIAL means that the application requires the data to be
transmitted in a fashion that prevents other entities from observing the contents of the transmission. In
most cases, the presence of the INTEGRAL or CONFIDENTIAL flag indicates that the use of SSL is
required.

The optional <login-config> element is used to configure the authentication method that should be used,
the realm name that should be used for the application, and the attributes that are needed by the form
login mechanism.

Figure 2.6. Web Login Configuration

The <auth-method> child element specifies the authentication mechanism for the web application. As a
prerequisite to gaining access to any web resources that are protected by an authorization constraint, a
user must have authenticated using the configured mechanism. Legal <auth-method> values are BASIC,
DIGEST, FORM, and CLIENT-CERT. The <realm-name> child element specifies the realm name to use
in HTTP basic and digest authorization. The <form-login-config> child element specifies the log in as
well as error pages that should be used in form-based log in. If the <auth-method> value is not FORM,
then form-login-config and its child elements are ignored.

The following configuration example indicates that any URL lying under the web application's
/restricted path requires an AuthorizedUser role. There is no required transport guarantee and
the authentication method used for obtaining the user identity is BASIC HTTP authentication.

Example 2.7. web.xml Descriptor Fragment

Security Guide

22

Report a bug

2.13. ENABLE FORM-BASED AUTHENTICATION

Form-based authentication provides flexibility in defining a custom JSP/HTML page for log in, and a
separate page to which users are directed if an error occurs during login.

Form-based authentication is defined by including <auth-method>FORM</auth-method> in the
<login-config> element of the deployment descriptor, web.xml. The login and error pages are also
defined in <login-config>, as follows:

When a web application with form-based authentication is deployed, the web container uses
FormAuthenticator to direct users to the appropriate page. JBoss EAP maintains a session pool so
that authentication information does not need to be present for each request. When
FormAuthenticator receives a request, it queries org.apache.catalina.session.Manager for
an existing session. If no session exists, a new session is created. FormAuthenticator then verifies
the credentials of the session.

<web-app>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Secure Content</web-resource-name>
 <url-pattern>/restricted/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>AuthorizedUser</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <!-- ... -->
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>The Restricted Zone</realm-name>
 </login-config>
 <!-- ... -->
 <security-role>
 <description>The role required to access restricted content
</description>
 <role-name>AuthorizedUser</role-name>
 </security-role>
</web-app>

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

CHAPTER 2. THE SECURITY SUBSYSTEM

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+24098-549602+%5BSpecified%5D&comment=Title%3A+Web+Content+Security+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24098-549602+30+Oct+2013+13%3A56+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

NOTE

Each session is identified by a session ID, a 16 byte string generated from random
values. These values are retrieved from /dev/urandom (Linux) by default, and hashed
with MD5. Checks are performed at session ID creation to ensure that the ID created is
unique.

Once verified, the session ID is assigned as part of a cookie, and then returned to the client. This cookie
is expected in subsequent client requests and is used to identify the user session.

The cookie passed to the client is a name value pair with several optional attributes. The identifier
attribute is called JSESSIONID . Its value is a hex-string of the session ID. This cookie is configured to
be non-persistent. This means that on the client side it will be deleted when the browser exits. On the
server side, sessions expire after 60 seconds of inactivity, at which time session objects and their
credential information are deleted.

Say a user attempts to access a web application that is protected with form-based authentication.
FormAuthenticator caches the request, creates a new session if necessary, and redirects the user to
the login page defined in login-config. (In the previous example code, the login page is
login.html.) The user then enters their user name and password in the HTML form provided. User
name and password are passed to FormAuthenticator via the j_security_check form action.

The FormAuthenticator then authenticates the user name and password against the realm attached
to the web application context. In JBoss Enterprise Application Platform, the realm is JBossWebRealm.
When authentication is successful, FormAuthenticator retrieves the saved request from the cache
and redirects the user to their original request.

NOTE

The server recognizes form authentication requests only when the URI ends with
/j_security_check and at least the j_username and j_password parameters exist.

Report a bug

2.14. ENABLE DECLARATIVE SECURITY

The Java EE security elements that have been covered so far describe the security requirements only
from the application's perspective. Because Java EE security elements declare logical roles, the
application deployer maps the roles from the application domain onto the deployment environment. The
Java EE specifications omit these application server-specific details.

To map application roles onto the deployment environment, you must specify a security manager that
implements the Java EE security model using JBoss EAP-specific deployment descriptors. Refer to the
custom login module example for details of this security configuration.

Report a bug

Security Guide

24

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+24099-549604+%5BSpecified%5D&comment=Title%3A+Enable+Form-based+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24099-549604+30+Oct+2013+14%3A03+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+24100-549607+%5BSpecified%5D&comment=Title%3A+Enable+Declarative+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24100-549607+30+Oct+2013+14%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

3.1. SECURE THE MANAGEMENT INTERFACES

Summary

In a test environment, it is typical to run JBoss EAP 6 with no security layer on the management
interfaces, comprised of the Management Console, Management CLI, and any other API
implementation. This allows for rapid development and configuration changes.

In addition, a silent authentication mode is present by default, allowing a local client on the host machine
to connect to the Management CLI without requiring a username or password. This behavior is a
convenience for local users and Management CLI scripts, but it can be disabled if required. The
procedure is described in the topic Section 3.5, “Remove Silent Authentication from the Default Security
Realm”.

When you begin testing and preparing your environment to move to production, it is vitally important to
secure the management interfaces by at least the following methods:

Section 11.2, “Specify Which Network Interface JBoss EAP 6 Uses”

Section 11.3, “Configure Network Firewalls to Work with JBoss EAP 6”

Report a bug

3.2. DEFAULT USER SECURITY CONFIGURATION

Introduction

All management interfaces in JBoss EAP 6 are secured by default. This security takes two different
forms:

Local interfaces are secured by a SASL contract between local clients and the server they
connect to. This security mechanism is based on the client's ability to access the local filesystem.
This is because access to the local filesystem would allow the client to add a user or otherwise
change the configuration to thwart other security mechanisms. This adheres to the principle that
if physical access to the filesystem is achieved, other security mechanisms are superfluous. The
mechanism happens in four steps:

NOTE

HTTP access is considered to be remote, even if you connect to the localhost
using HTTP.

1. The client sends a message to the server which includes a request to authenticate with the
local SASL mechanism.

2. The server generates a one-time token, writes it to a unique file, and sends a message to
the client with the full path of the file.

3. The client reads the token from the file and sends it to the server, verifying that it has local
access to the filesystem.

4. The server verifies the token and then deletes the file.

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

25

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4703-537642+%5BSpecified%5D&comment=Title%3A+Secure+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4703-537642+17+Sep+2013+10%3A18+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Remote clients, including local HTTP clients, use realm-based security. The default realm with
the permissions to configure the JBoss EAP 6 remotely using the management interfaces is
ManagementRealm. A script is provided which allows you to add users to this realm (or realms
you create). For more information on adding users, refer to the Getting Started chapter of the
Installation guide for JBoss EAP 6. For each user, the username, a hashed password, and the
realm are stored in a file.

Standalone server

JPP_HOME/standalone/configuration/mgmt-users.properties

Even though the contents of the mgmt-users.properties are masked, the file should still be
treated as a sensitive file. It is recommended that it be set to the file mode of 600, which gives
no access other than read and write access by the file owner.

Report a bug

3.3. OVERVIEW OF ADVANCED MANAGEMENT INTERFACE
CONFIGURATION

The Management interface configuration in the EAP_HOME/domain/configuration/host.xml or
EAP_HOME/standalone/configuration/standalone.xml controls which network interfaces the
host controller process binds to, which types of management interfaces are available at all, and which
type of authentication system is used to authenticate users on each interface. This topic discusses how
to configure the Management Interfaces to suit your environment.

The Management subsystem consists of a <management> element that includes several configurable
attributes, and the following three configurable child elements. The security realms and outbound
connections are each first defined, and then applied to the management interfaces as attributes.

<security-realms>

<outbound-connections>

<management-interfaces>

Security Realms

The security realm is responsible for the authentication and authorization of users allowed to administer
JBoss EAP 6 via the Management API, Management CLI, or web-based Management Console.

Two different file-based security realms are included in a default installation: ManagementRealm and
ApplicationRealm. Each of these security realms uses a -users.properties file to store users
and hashed passwords, and a -roles.properties to store mappings between users and roles.
Support is also included for an LDAP-enabled security realm.

NOTE

Security realms can also be used for your own applications. The security realms
discussed here are specific to the management interfaces.

Outbound Connections

Security Guide

26

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5751-458764+%5BSpecified%5D&comment=Title%3A+Default+User+Security+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5751-458764+11+Jun+2013+14%3A35+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Some security realms connect to external interfaces, such as an LDAP server. An outbound connection
defines how to make this connection. A pre-defined connection type, ldap-connection, sets all of the
required and optional attributes to connect to the LDAP server and verify the credential.

Management Interfaces

A management interface includes properties about how connect to and configure JBoss EAP. Such
information includes the named network interface, port, security realm, and other configurable
information about the interface. Two interfaces are included in a default installation:

http-interface is the configuration for the web-based Management Console.

native-interface is the configuration for the command-line Management CLI and the REST-
like Management API.

Each of the three main configurable elements of the host management subsystem are interrelated. A
security realm refers to an outbound connection, and a management interface refers to a security realm.

Report a bug

3.4. DISABLE THE HTTP MANAGEMENT INTERFACE

In a managed domain, you only need access to the HTTP interface on the domain controller, rather than
on domain member servers. In addition, on a production server, you may decide to disable the web-
based Management Console altogether.

NOTE

Other clients, such as JBoss Operations Network, also operate using the HTTP interface.
If you want to use these services, and simply disable the Management Console itself, you
can set the console-enabled attribute of the HTTP interface to false, instead of
disabling the interface completely.

/host=master/core-service=management/management-interface=http-
interface/:write-attribute(name=console-enabled,value=false)

To disable access to the HTTP interface, which also disables access to the web-based Management
Console, you can delete the HTTP interface altogether.

The following JBoss CLI command allows you to read the current contents of your HTTP interface, in
case you decide to add it again.

Example 3.1. Read the Configuration of the HTTP Interface

/host=master/core-service=management/management-interface=http-
interface/:read-resource(recursive=true,proxies=false,include-
runtime=false,include-defaults=true)
{
 "outcome" => "success",
 "result" => {
 "console-enabled" => true,
 "interface" => "management",
 "port" => expression "${jboss.management.http.port:9990}",
 "secure-port" => undefined,

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

27

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8428-458765+%5BSpecified%5D&comment=Title%3A+Overview+of+Advanced+Management+Interface+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8428-458765+11+Jun+2013+14%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

 "security-realm" => "ManagementRealm"
 }
}

To remove the HTTP interface, issue the following command:

Example 3.2. Remove the HTTP Interface

/host=master/core-service=management/management-interface=http-
interface/:remove

To re-enable access, issue the following commands to re-create the HTTP Interface with the default
values.

Example 3.3. Re-Create the HTTP Interface

/host=master/core-service=management/management-interface=http-
interface:add(console-
enabled=true,interface=management,port="${jboss.management.http.port:999
0}",security-realm=ManagementRealm)

Report a bug

3.5. REMOVE SILENT AUTHENTICATION FROM THE DEFAULT
SECURITY REALM

Summary

The default installation of JBoss EAP 6 contains a method of silent authentication for a local
Management CLI user. This allows the local user the ability to access the Management CLI without
username or password authentication. This functionality is enabled as a convenience, and to assist local
users running Management CLI scripts without requiring authentication. It is considered a useful feature
given that access to the local configuration typically also gives the user the ability to add their own user
details or otherwise disable security checks.

The convenience of silent authentication for local users can be disabled where greater security control is
required. This can be achieved by removing the local element within the security-realm section of
the configuration file. This applies to both the standalone.xml for a Standalone Server instance, or
host.xml for a Managed Domain. You should only consider the removal of the local element if you
understand the impact that it might have on your particular server configuration.

The preferred method of removing silent authentication is by use of the Management CLI, which directly
removes the local element visible in the following example.

Example 3.4. Example of the local element in the security-realm

<security-realms>
 <security-realm name="ManagementRealm">
 <authentication>
 <local default-user="$local"/>

Security Guide

28

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8430-466979+%5BSpecified%5D&comment=Title%3A+Disable+the+HTTP+Management+Interface%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8430-466979+20+Jun+2013+05%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Procedure 3.1. Remove Silent Authentication from the Default Security Realm

Remove silent authentication with the Management CLI
Remove the local element from the Management Realm and Application Realm as required.

a. Remove the local element from the Management Realm.

For Standalone Servers

/core-service=management/security-
realm=ManagementRealm/authentication=local:remove

For Managed Domains

/host=HOST_NAME/core-service=management/security-
realm=ManagementRealm/authentication=local:remove

b. Remove the local element from the Application Realm.

For Standalone Servers

/core-service=management/security-
realm=ApplicationRealm/authentication=local:remove

For Managed Domains

/host=HOST_NAME/core-service=management/security-
realm=ApplicationRealm/authentication=local:remove

Result

The silent authentication mode is removed from the ManagementRealm and the ApplicationRealm.

Report a bug

 <properties path="mgmt-users.properties" relative-
to="jboss.server.config.dir"/>
 </authentication>
 </security-realm>
 <security-realm name="ApplicationRealm">
 <authentication>
 <local default-user="$local" allowed-users="*"/>
 <properties path="application-users.properties" relative-
to="jboss.server.config.dir"/>
 </authentication>
 <authorization>
 <properties path="application-roles.properties" relative-
to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
</security-realms>

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

29

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+9053-458767+%5BSpecified%5D&comment=Title%3A+Remove+Silent+Authentication+from+the+Default+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9053-458767+11+Jun+2013+14%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

3.6. DISABLE REMOTE ACCESS TO THE JMX SUBSYSTEM

Remote JMX connectivity allows you to trigger JDK and application management operations. In order to
secure an installation, disable this function. You can do this either by removing the remote connection
configuration, or removing the JMX subsystem entirely. The JBoss CLI commands reference the default
profile in a managed domain configuration. To modify a different profile, modify the /profile=default
part of the command. For a standalone server, remove that portion of the command completely.

NOTE

In a managed domain the remoting connector is removed from the JMX subsystem by
default. This command is provided for your information, in case you add it during
development.

Example 3.5. Remove the Remote Connector from the JMX Subsystem

/profile=default/subsystem=jmx/remoting-connector=jmx/:remove

Example 3.6. Remove the JMX Subsystem

Run this command for each profile you use, if you use a managed domain.

/profile=default/subsystem=jmx/:remove

Report a bug

3.7. CONFIGURE SECURITY REALMS FOR THE MANAGEMENT
INTERFACES

The Management Interfaces use security realms to control authentication and access to the configuration
mechanisms of JBoss EAP 6. This topic shows you how to read and configure security realms. These
commands use the Management CLI.

Read a Security Realm's Configuration

This example shows the default configuration for the ManagementRealm security realm. It uses a file
called mgmt-users.properties to store its configuration information.

Example 3.7. Default ManagementRealm

 /host=master/core-service=management/security-
realm=ManagementRealm/:read-
resource(recursive=true,proxies=false,include-runtime=false,include-
defaults=true)
{
 "outcome" => "success",
 "result" => {
 "authorization" => undefined,
 "server-identity" => undefined,
 "authentication" => {"properties" => {

Security Guide

30

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8432-431484+%5BSpecified%5D&comment=Title%3A+Disable+Remote+Access+to+the+JMX+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8432-431484+05+Apr+2013+15%3A19+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

 "path" => "mgmt-users.properties",
 "plain-text" => false,
 "relative-to" => "jboss.domain.config.dir"
 }}
 }
}

Write a Security Realm

The following commands create a new security realm called TestRealm and set the name and directory
for the relevant properties file.

Example 3.8. Writing a Security Realm

/host=master/core-service=management/security-realm=TestRealm/:add
/host=master/core-service=management/security-
realm=TestRealm/authentication=properties/:add(path=TestUsers.properties
, relative-to=jboss.domain.config.dir)

Apply a Security Realm to the Management Interface

After adding a security realm, supply its name as a reference to the Management Interface.

Example 3.9. Add a Security Realm to a Management Interface

/host=master/core-service=management/management-interface=http-
interface/:write-attribute(name=security-realm,value=TestRealm)

Report a bug

3.8. PASSWORD VAULTS FOR SENSITIVE STRINGS

3.8.1. About Securing Sensitive Strings in Clear-Text Files

Web applications and other deployments often include clear-text files, such as XML deployment
descriptors, which include sensitive information such as passwords and other sensitive strings. JBoss
EAP 6 includes a password vault mechanism which enables you to encrypt sensitive strings and store
them in an encrypted keystore. The vault mechanism manages decrypting the strings for use with
security domains, security realms, or other verification systems. This provides an extra layer of security.
The mechanism relies upon tools that are included in all supported Java Development Kit (JDK)
implementations.

Report a bug

3.8.2. Create a Java Keystore to Store Sensitive Strings

Prerequisites

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

31

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8433-458770+%5BSpecified%5D&comment=Title%3A+Configure+Security+Realms+for+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8433-458770+11+Jun+2013+14%3A40+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+9001-458809+%5BSpecified%5D&comment=Title%3A+About+Securing+Sensitive+Strings+in+Clear-Text+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9001-458809+11+Jun+2013+15%3A35+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The keytool command must be available to use. It is provided by the Java Runtime
Environment (JRE). Locate the path for the file. In Red Hat Enterprise Linux, it is installed to
/usr/bin/keytool.

Procedure 3.2. Setup a Java Keystore

1. Create a directory to store your keystore and other encrypted information.
Create a directory to hold your keystore and other important information. The rest of this
procedure assumes that the directory is /home/USER/vault/.

2. Determine the parameters to use with keytool.
Determine the following parameters:

alias

The alias is a unique identifier for the vault or other data stored in the keystore. The alias in
the example command at the end of this procedure is vault. Aliases are case-insensitive.

keyalg

The algorithm to use for encryption. The default is DSA. The example in this procedure uses
RSA. Check the documentation for your JRE and operating system to see which other
choices may be available to you.

keysize

The size of an encryption key impacts how difficult it is to decrypt through brute force. The
default size of keys is 1024. It must be between 512 and 2048, and a multiple of 64. The
example in this procedure uses 2048.

keystore

The keystore is a database which holds encrypted information and the information about how
to decrypt it. If you do not specify a keystore, the default keystore to use is a file called
.keystore in your home directory. The first time you add data to a keystore, it is created.
The example in this procedure uses the vault.keystore keystore.

The keytool command has many other options. Refer to the documentation for your JRE or
your operating system for more details.

3. Determine the answers to questions the keystore command will ask.
The keystore needs the following information in order to populate the keystore entry:

Keystore password

When you create a keystore, you must set a password. In order to work with the keystore in
the future, you need to provide the password. Create a strong password that you will
remember. The keystore is only as secure as its password and the security of the file system
and operating system where it resides.

Key password (optional)

In addition to the keystore password, you can specify a password for each key it holds. In
order to use such a key, the password needs to be given each time it is used. Usually, this
facility is not used.

First name (given name) and last name (surname)

Security Guide

32

This, and the rest of the information in the list, helps to uniquely identify the key and place it
into a hierarchy of other keys. It does not necessarily need to be a name at all, but it should
be two words, and must be unique to the key. The example in this procedure uses
Accounting Administrator. In directory terms, this becomes the common name of the
certificate.

Organizational unit

This is a single word that identifies who uses the certificate. It may be the application or the
business unit. The example in this procedure uses AccountingServices. Typically, all
keystores used by a group or application use the same organizational unit.

Organization

This is usually a single-word representation of your organization's name. This typically
remains the same across all certificates used by an organization. This example uses
MyOrganization.

City or municipality

Your city.

State or province

Your state or province, or the equivalent for your locality.

Country

The two-letter code for your country.

All of this information together will create a hierarchy for your keystores and certificates, ensuring
that they use a consistent naming structure but are unique.

4. Run the keytool command, supplying the information that you gathered.

Example 3.10. Example input and output of keystore command

$ keytool -genkey -alias vault -keyalg RSA -keysize 2048 -keystore
/home/USER/vault/vault.keystore
Enter keystore password: vault22
Re-enter new password:vault22
What is your first and last name?
 [Unknown]: Accounting Administrator
What is the name of your organizational unit?
 [Unknown]: AccountingServices
What is the name of your organization?
 [Unknown]: MyOrganization
What is the name of your City or Locality?
 [Unknown]: Raleigh
What is the name of your State or Province?
 [Unknown]: NC
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Accounting Administrator, OU=AccountingServices,
O=MyOrganization, L=Raleigh, ST=NC, C=US correct?
 [no]: yes

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

33

Enter key password for <vault>
 (RETURN if same as keystore password):

Result

A file named vault.keystore is created in the /home/USER/vault/ directory. It stores a single key,
called vault, which will be used to store encrypted strings, such as passwords, for JBoss EAP 6.

Report a bug

3.8.3. Mask the Keystore Password and Initialize the Password Vault

Prerequisites

Section 3.8.2, “Create a Java Keystore to Store Sensitive Strings”

The EAP_HOME/bin/vault.sh application needs to be accessible via a command-line
interface.

1. Run the vault.sh command.
Run EAP_HOME/bin/vault.sh. Start a new interactive session by typing 0.

2. Enter the directory where encrypted files will be stored.
This directory should be reasonably secure, but JBoss EAP 6 needs to be able to access it. If
you followed Section 3.8.2, “Create a Java Keystore to Store Sensitive Strings”, your keystore is
in a directory called vault/ in your home directory. This example uses the directory
/home/USER/vault/.

NOTE

Do not forget to include the trailing slash on the directory name. Either use / or \,
depending on your operating system.

3. Enter the path to the keystore.
Enter the full path to the keystore file. This example uses
/home/USER/vault/vault.keystore.

4. Encrypt the keystore password.
The following steps encrypt the keystore password, so that you can use it in configuration files
and applications securely.

a. Enter the keystore password.
When prompted, enter the keystore password.

b. Enter a salt value.
Enter an 8-character salt value. The salt value, together with the iteration count (below), are
used to create the hash value.

c. Enter the iteration count.
Enter a number for the iteration count.

d. Make a note of the masked password information.

Security Guide

34

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5353-473174+%5BSpecified%5D&comment=Title%3A+Create+a+Java+Keystore+to+Store+Sensitive+Strings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5353-473174+02+Jul+2013+13%3A26+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The masked password, the salt, and the iteration count are printed to standard output. Make
a note of them in a secure location. An attacker could use them to decrypt the password.

e. Enter the alias of the vault.
When prompted, enter the alias of the vault. If you followed Section 3.8.2, “Create a Java
Keystore to Store Sensitive Strings” to create your vault, the alias is vault.

5. Exit the interactive console.
Type 2 to exit the interactive console.

Result

Your keystore password has been masked for use in configuration files and deployments. In addition,
your vault is fully configured and ready to use.

Report a bug

3.8.4. Configure JBoss EAP 6 to Use the Password Vault

Overview

Before you can mask passwords and other sensitive attributes in configuration files, you need to make
JBoss EAP 6 aware of the password vault which stores and decrypts them. Follow this procedure to
enable this functionality.

Prerequisites

Section 3.8.2, “Create a Java Keystore to Store Sensitive Strings”

Section 3.8.3, “Mask the Keystore Password and Initialize the Password Vault”

Procedure 3.3. Setup a Password Vault

1. Determine the correct values for the command.
Determine the values for the following parameters, which are determined by the commands
used to create the keystore itself. For information on creating a keystore, refer to the following
topics: Section 3.8.2, “Create a Java Keystore to Store Sensitive Strings” and Section 3.8.3,
“Mask the Keystore Password and Initialize the Password Vault”.

Parameter Description

KEYSTORE_URL The file system path or URI of the keystore file,
usually called something like
vault.keystore

KEYSTORE_PASSWORD The password used to access the keystore. This
value should be masked.

KEYSTORE_ALIAS The name of the keystore.

SALT The salt used to encrypt and decrypt keystore
values.

ITERATION_COUNT The number of times the encryption algorithm is
run.

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

35

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5357-458811+%5BSpecified%5D&comment=Title%3A+Mask+the+Keystore+Password+and+Initialize+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5357-458811+11+Jun+2013+15%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

ENC_FILE_DIR The path to the directory from which the keystore
commands are run. Typically the directory
containing the password vault.

host (managed domain only) The name of the host you are configuring

Parameter Description

2. Use the Management CLI to enable the password vault.
Run one of the following commands, depending on whether you use a managed domain or
standalone server configuration. Substitute the values in the command with the ones from the
first step of this procedure.

Managed Domain

/host=YOUR_HOST/core-service=vault:add(vault-options=
[("KEYSTORE_URL" => "PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" =>
"MASKED_PASSWORD"), ("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" =>
"SALT"),("ITERATION_COUNT" => "ITERATION_COUNT"), ("ENC_FILE_DIR"
=> "ENC_FILE_DIR")])

Standalone Server

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
"PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" => "MASKED_PASSWORD"),
("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" => "SALT"),
("ITERATION_COUNT" => "ITERATION_COUNT"), ("ENC_FILE_DIR" =>
"ENC_FILE_DIR")])

The following is an example of the command with hypothetical values:

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
"/home/user/vault/vault.keystore"), ("KEYSTORE_PASSWORD" => "MASK-
3y28rCZlcKR"), ("KEYSTORE_ALIAS" => "vault"), ("SALT" =>
"12438567"),("ITERATION_COUNT" => "50"), ("ENC_FILE_DIR" =>
"/home/user/vault/")])

Result

JBoss EAP 6 is configured to decrypt masked strings using the password vault. To add strings to the
vault and use them in your configuration, refer to the following topic: Section 3.8.5, “Store and Retrieve
Encrypted Sensitive Strings in the Java Keystore”.

Report a bug

3.8.5. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore

Summary

Security Guide

36

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5358-458812+%5BSpecified%5D&comment=Title%3A+Configure+JBoss+EAP+6+to+Use+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5358-458812+11+Jun+2013+15%3A40+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Including passwords and other sensitive strings in plain-text configuration files is insecure. JBoss EAP 6
includes the ability to store and mask these sensitive strings in an encrypted keystore, and use masked
values in configuration files.

Prerequisites

Section 3.8.2, “Create a Java Keystore to Store Sensitive Strings”

Section 3.8.3, “Mask the Keystore Password and Initialize the Password Vault”

Section 3.8.4, “Configure JBoss EAP 6 to Use the Password Vault”

The EAP_HOME/bin/vault.sh application needs to be accessible via a command-line
interface.

Procedure 3.4. Setup the Java Keystore

1. Run the vault.sh command.
Run EAP_HOME/bin/vault.sh. Start a new interactive session by typing 0.

2. Enter the directory where encrypted files will be stored.
If you followed Section 3.8.2, “Create a Java Keystore to Store Sensitive Strings”, your keystore
is in a directory called vault/ in your home directory. In most cases, it makes sense to store all
of your encrypted information in the same place as the key store. This example uses the
directory /home/USER/vault/.

NOTE

Do not forget to include the trailing slash on the directory name. Either use / or \,
depending on your operating system.

3. Enter the path to the keystore.
Enter the full path to the keystore file. This example uses
/home/USER/vault/vault.keystore.

4. Enter the keystore password, vault name, salt, and iteration count.
When prompted, enter the keystore password, vault name, salt, and iteration count. A
handshake is performed.

5. Select the option to store a password.
Select option 0 to store a password or other sensitive string.

6. Enter the value.
When prompted, enter the value twice. If the values do not match, you are prompted to try again.

7. Enter the vault block.
Enter the vault block, which is a container for attributes which pertain to the same resource. An
example of an attribute name would be ds_ExampleDS. This will form part of the reference to
the encrypted string, in your datasource or other service definition.

8. Enter the attribute name.
Enter the name of the attribute you are storing. An example attribute name would be password.

Result

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

37

A message such as the one below shows that the attribute has been saved.

Attribute Value for (ds_ExampleDS, password) saved

9. Make note of the information about the encrypted string.
A message prints to standard output, showing the vault block, attribute name, shared key, and
advice about using the string in your configuration. Make note of this information in a secure
location. Example output is shown below.

**
Vault Block:ds_ExampleDS
Attribute Name:password
Shared
Key:N2NhZDYzOTMtNWE0OS00ZGQ0LWE4MmEtMWNlMDMyNDdmNmI2TElORV9CUkVBS3Zh
dWx0
Configuration should be done as follows:
VAULT::ds_ExampleDS::password::N2NhZDYzOTMtNWE0OS00ZGQ0LWE4MmEtMWNlM
DMyNDdmNmI2TElORV9CUkVBS3ZhdWx0
**

10. Use the encrypted string in your configuration.
Use the string from the previous step in your configuration, in place of a plain-text string. A
datasource using the encrypted password above is shown below.

...
 <subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS"
enabled="true" use-java-context="true" pool-name="H2DS">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-
1</connection-url>
 <driver>h2</driver>
 <pool></pool>
 <security>
 <user-name>sa</user-name>

<password>${VAULT::ds_ExampleDS::password::N2NhZDYzOTMtNWE0OS00ZGQ0L
WE4MmEtMWNlMDMyNDdmNmI2TElORV9CUkVBS3ZhdWx0}</password>
 </security>
 </datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-
datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>
...

You can use an encrypted string anywhere in your domain or standalone configuration file
where expressions are allowed.

Security Guide

38

NOTE

To check if expressions are allowed within a particular subsystem, run the
following CLI command against that subsystem:

From the output of running this command, look for the value for the
expressions-allowed parameter. If this is true, then you can use expressions
within the configuration of this particular subsystem.

After you store your string in the keystore, use the following syntax to replace any clear-text
string with an encrypted one.

${VAULT::<replaceable>VAULT_BLOCK</replaceable>::
<replaceable>ATTRIBUTE_NAME</replaceable>::
<replaceable>ENCRYPTED_VALUE</replaceable>}

Here is a sample real-world value, where the vault block is ds_ExampleDS and the attribute is
password.

<password>${VAULT::ds_ExampleDS::password::N2NhZDYzOTMtNWE0OS00ZGQ0L
WE4MmEtMWNlMDMyNDdmNmI2TElORV9CUkVBS3ZhdWx0}</password>

Report a bug

3.8.6. Store and Resolve Sensitive Strings In Your Applications

Overview

Configuration elements of JBoss EAP 6 support the ability to resolve encrypted strings against values
stored in a Java Keystore, via the Security Vault mechanism. You can add support for this feature to your
own applications.

First, add the password to the vault. Second, replace the clear-text password with the one stored in the
vault. You can use this method to obscure any sensitive string in your application.

Prerequisites

Before performing this procedure, make sure that the directory for storing your vault files exists. It does
not matter where you place them, as long as the user who executes JBoss EAP 6 has permission to
read and write the files. This example places the vault/ directory into the /home/USER/vault/
directory. The vault itself is a file called vault.keystore inside the vault/ directory.

Example 3.11. Adding the Password String to the Vault

Add the string to the vault using the EAP_HOME/bin/vault.sh command. The full series of
commands and responses is included in the following screen output. Values entered by the user are
emphasized. Some output is removed for formatting. In Microsoft Windows, the name of the
command is vault.bat. Note that in Microsoft Windows, file paths use the \ character as a
directory separator, rather than the / character.

[user@host bin]$./vault.sh

/host=master/core-service=management/security-
realm=TestRealm:read-resource-description(recursive=true)

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

39

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5359-458813+%5BSpecified%5D&comment=Title%3A+Store+and+Retrieve+Encrypted+Sensitive+Strings+in+the+Java+Keystore%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5359-458813+11+Jun+2013+15%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

**** JBoss Vault ********

Please enter a Digit:: 0: Start Interactive Session 1: Remove
Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:/home/user/vault/
Enter Keystore URL:/home/user/vault/vault.keystore
Enter Keystore password: ...
Enter Keystore password again: ...
Values match
Enter 8 character salt:12345678
Enter iteration count as a number (Eg: 44):25

Enter Keystore Alias:vault
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a password 1: Check whether password
exists 2: Exit
0
Task: Store a password
Please enter attribute value: sa
Please enter attribute value again: sa
Values match
Enter Vault Block:DS
Enter Attribute Name:thePass
Attribute Value for (DS, thePass) saved

Please make note of the following:
**
Vault Block:DS
Attribute Name:thePass
Shared
Key:OWY5M2I5NzctYzdkOS00MmZhLWExZGYtNjczM2U5ZGUyOWIxTElORV9CUkVBS3ZhdWx0
Configuration should be done as follows:
VAULT::DS::thePass::OWY5M2I5NzctYzdkOS00MmZhLWExZGYtNjczM2U5ZGUyOWIxTElO
RV9CUkVBS3ZhdWx0
**

Please enter a Digit:: 0: Store a password 1: Check whether password
exists 2: Exit
2

The string that will be added to the Java code is the last value of the output, the line beginning with
VAULT.

The following servlet uses the vaulted string instead of a clear-text password. The clear-text version is
commented out so that you can see the difference.

Example 3.12. Servlet Using a Vaulted Password

package vaulterror.web;

import java.io.IOException;

Security Guide

40

Your servlet is now able to resolve the vaulted string.

Report a bug

3.9. LDAP

3.9.1. About LDAP

import java.io.Writer;

import javax.annotation.Resource;
import javax.annotation.sql.DataSourceDefinition;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sql.DataSource;

/*@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "sa",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)*/
@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password =
"VAULT::DS::thePass::OWY5M2I5NzctYzdkOS00MmZhLWExZGYtNjczM2U5ZGUyOWIxTEl
ORV9CUkVBS3ZhdWx0",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)
@WebServlet(name = "MyTestServlet", urlPatterns = { "/my/" },
loadOnStartup = 1)
public class MyTestServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 @Resource(lookup = "java:jboss/datasources/LoginDS")
 private DataSource ds;

 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse
resp) throws ServletException, IOException {
 Writer writer = resp.getWriter();
 writer.write((ds != null) + "");
 }
}

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

41

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4930-458814+%5BSpecified%5D&comment=Title%3A+Store+and+Resolve+Sensitive+Strings+In+Your+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4930-458814+11+Jun+2013+15%3A44+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Lightweight Directory Access Protocol (LDAP) is a protocol for storing and distributing directory
information across a network. This directory information includes information about users, hardware
devices, access roles and restrictions, and other information.

Some common implementations of LDAP include OpenLDAP, Microsoft Active Directory, IBM Tivoli
Directory Server, Oracle Internet Directory, and others.

JBoss EAP 6 includes several authentication and authorization modules which allow you to use a LDAP
server as the authentication and authorization authority for your Web and EJB applications.

Report a bug

3.9.2. Use LDAP to Authenticate to the Management Interfaces

To use an LDAP directory server as the authentication source for the Management Console,
Management CLI, or Management API, you need to perform the following procedures:

1. Create an outbound connection to the LDAP server.

2. Create an LDAP-enabled security realm.

3. Reference the new security domain in the Management Interface.

Create an Outbound Connection to an LDAP Server

The LDAP outbound connection allows the following attributes:

Table 3.1. Attributes of an LDAP Outbound Connection

Attribute Required Description

name yes The name to identify this
connection. This name is used in
the security realm definition.

url yes The URL address of the directory
server.

search-dn yes The fully distinguished name (DN)
of the user authorized to perform
searches.

search-credentials yes The password of the user
authorized to perform searches.

initial-context-factory no The initial context factory to use
when establishing the connection.
Defaults to
com.sun.jndi.ldap.LdapC
txFactory.

Example 3.13. Add an LDAP Outbound Connection

This example adds an outbound connection with the following properties set:

Search DN: cn=search,dc=acme,dc=com

Security Guide

42

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7819-458766+%5BSpecified%5D&comment=Title%3A+About+LDAP%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7819-458766+11+Jun+2013+14%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Search Credential: myPass

URL: ldap://127.0.0.1:389

/host=master/core-service=management/ldap-
connection=ldap_connection/:add(search-
credential=myPass,url=ldap://127.0.0.1:389,search-
dn="cn=search,dc=acme,dc=com")

Example 3.14. XML Representing an LDAP Outbound Connection

Create an LDAP-Enabled Security Realm

The Management Interfaces can authenticate against LDAP server instead of the property-file based
security realms configured by default. The LDAP authenticator operates by first establishing a
connection to the remote directory server. It then performs a search using the username which the user
passed to the authentication system, to find the fully-qualified distinguished name (DN) of the LDAP
record. A new connection is established, using the DN of the user as the credential, and password
supplied by the user. If this authentication to the LDAP server is successful, the DN is verified to be valid.

The LDAP security realm needs the following configuration attributes and elements in order to perform
its functions.

connection

The name of the connection defined in <outbound-connections> to use to connect to the LDAP
directory.

base-dn

The distinguished name of the context to begin searching for the user.

recursive

Whether the search should be recursive throughout the LDAP directory tree, or only search the
specified context. Defaults to false.

user-dn

The attribute of the user that holds the distinguished name. This is subsequently used to test
authentication as the user can complete. Defaults to dn.

One of username-filter or advanced-filter, as a child element

The username-filter takes a single attribute called attribute, whose value is the name of the
LDAP attribute which holds the username, such as userName or sambaAccountName.

<outbound-connections>
 <ldap name="ldap_connection" url="ldap://127.0.0.1:389" search-
dn="cn=search,dc=acme,dc=com" search-credential="myPass" />
</outboundconnections>

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

43

The advanced-filter takes a single attribute called filter. This attribute contains a filter query
in standard LDAP syntax. Be cautious to escape any & characters by changing them to &. An
example of a filter is:

(&(sAMAccountName={0})(memberOf=cn=admin,cn=users,dc=acme,dc=com))

After escaping the ampersand character, the filter appears as:

(&(sAMAccountName={0})(memberOf=cn=admin,cn=users,dc=acme,dc=com))

Example 3.15. XML Representing an LDAP-enabled Security Realm

This example uses the following parameters:

connection - ldap_connection

base-dn - cn=users,dc=acme,dc=com.

username-filter - attribute="sambaAccountName"

WARNING

It is important to ensure that you do not allow empty LDAP passwords; unless you
specifically desire this in your environment, it is a serious security concern.

EAP 6.1 includes a patch for CVE-2012-5629, which sets the allowEmptyPasswords
option for the LDAP login modules to false if the option is not already configured. For
older versions, this option should be configured manually

Example 3.16. Add an LDAP Security Realm

The command below adds a security realm and sets its attributes for a standalone server.

/host=master/core-service=management/security-
realm=ldap_security_realm/authentication=ldap:add(base-
dn="DC=mycompany,DC=org", recursive=true, username-

<security-realm name="TestRealm">
 <authentication>
 <ldap connection="ldap_connection" base-
dn="cn=users,dc=acme,dc=com">
 <username-filter attribute="sambaAccountName" />
 </ldap>
 </authentication>
</security-realm>

Security Guide

44

attribute="MyAccountName", connection="ldap_connection")

Apply the New Security Realm to the Management Interface

After you create a security realm, you need to reference it in the configuration of your management
interface. The management interface will use the security realm for HTTP digest authentication.

Example 3.17. Apply the Security Realm to the HTTP Interface

After this configuration is in place, and you restart the host controller, the web-based Management
Console will use LDAP to authenticate its users.

/host=master/core-service=management/management-interface=http-
interface/:write-attribute(name=security-realm,value=TestRealm)

Report a bug

CHAPTER 3. MANAGEMENT INTERFACE SECURITY

45

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8429-436013+%5BSpecified%5D&comment=Title%3A+Use+LDAP+to+Authenticate+to+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8429-436013+19+Apr+2013+09%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 4. JAVA SECURITY MANAGER

4.1. ABOUT THE JAVA SECURITY MANAGER

Java Security Manager

The Java Security Manager is a class that manages the external boundary of the Java
Virtual Machine (JVM) sandbox, controlling how code executing within the JVM can
interact with resources outside the JVM. When the Java Security Manager is activated,
the Java API checks with the security manager for approval before executing a wide
range of potentially unsafe operations.

The Java Security Manager uses a security policy to determine whether a given action will be permitted
or denied.

Report a bug

4.2. ABOUT JAVA SECURITY MANAGER POLICIES

Security Policy

A set of defined permissions for different classes of code. The Java Security Manager
compares actions requested by applications against the security policy. If an action is
allowed by the policy, the Security Manager will permit that action to take place. If the
action is not allowed by the policy, the Security Manager will deny that action. The
security policy can define permissions based on the location of code or on the code's
signature.

The Java Security Manager and the security policy used are configured using the Java Virtual Machine
options java.security.manager and java.security.policy.

Report a bug

4.3. RUN JBOSS EAP 6 WITHIN THE JAVA SECURITY MANAGER

To specify a Java Security Manager policy, you need to edit the Java options passed to the domain or
server instance during the bootstrap process. For this reason, you cannot pass the parameters as
options to the domain.sh or standalone.sh scripts. The following procedure guides you through the
steps of configuring your instance to run within a Java Security Manager policy.

Prerequisites

Before you following this procedure, you need to write a security policy, using the policytool
command which is included with your Java Development Kit (JDK). This procedure assumes
that your policy is located at EAP_HOME/bin/server.policy.

The domain or standalone server must be completely stopped before you edit any configuration
files.

Perform the following procedure for each physical host or instance in your domain, if you have domain
members spread across multiple systems.

Procedure 4.1. Edit Configuration Files

Security Guide

46

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4778-435837+%5BSpecified%5D&comment=Title%3A+About+the+Java+Security+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4778-435837+19+Apr+2013+03%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4781-435838+%5BSpecified%5D&comment=Title%3A+About+Java+Security+Manager+Policies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4781-435838+19+Apr+2013+03%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

1. Open the configuration file.
Open the configuration file for editing. This file is located in one of two places, depending on
whether you use a managed domain or standalone server. This is not the executable file used to
start the server or domain.

Managed Domain
EAP_HOME/bin/domain.conf

Standalone Server
EAP_HOME/bin/standalone.conf

2. Add the Java options at the end of the file.
Add the following line to a new line at the very end of the file. You can modify the -
Djava.security.policy value to specify the exact location of your security policy. It should
go onto one line only, with no line break. You can modify the -Djava.security.debug to log
more or less information, by specifying the debug level. The most verbose is
failure,access,policy.

JAVA_OPTS="$JAVA_OPTS -Djava.security.manager -
Djboss.home.dir=$PWD/.. -Djava.security.policy==$PWD/server.policy -
Djava.security.debug=failure"

3. Start the domain or server.
Start the domain or server as normal.

Report a bug

4.4. WRITE A JAVA SECURITY MANAGER POLICY

Introduction

An application called policytool is included with most JDK and JRE distributions, for the purpose of
creating and editing Java Security Manager security policies. Detailed information about policytool is
linked from http://docs.oracle.com/javase/6/docs/technotes/tools/.

Basic Information

A security policy consists of the following configuration elements:

CodeBase

The URL location (excluding the host and domain information) where the code originates from. This
parameter is optional.

SignedBy

The alias used in the keystore to reference the signer whose private key was used to sign the code.
This can be a single value or a comma-separated list of values. This parameter is optional. If omitted,
presence or lack of a signature has no impact on the Java Security Manager.

Principals

A list of principal_type/principal_name pairs, which must be present within the executing thread's
principal set. The Principals entry is optional. If it is omitted, it signifies "any principals".

Permissions

CHAPTER 4. JAVA SECURITY MANAGER

47

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4779-458781+%5BSpecified%5D&comment=Title%3A+Run+JBoss+EAP+6+Within+the+Java+Security+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4779-458781+11+Jun+2013+14%3A56+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
http://docs.oracle.com/javase/6/docs/technotes/tools/

A permission is the access which is granted to the code. Many permissions are provided as part of
the Java Enterprise Edition 6 (Java EE 6) specification. This document only covers additional
permissions which are provided by JBoss EAP 6.

Procedure 4.2. Setup a new Java Security Manager Policy

1. Start policytool.
Start the policytool tool in one of the following ways.

Red Hat Enterprise Linux
From your GUI or a command prompt, run /usr/bin/policytool.

Microsoft Windows Server
Run policytool.exe from your Start menu or from the bin\ of your Java installation. The
location can vary.

2. Create a new policy.
To create a new policy, select Add Policy Entry. Add the parameters you need, then click
Done.

3. Edit an existing policy
Select the policy from the list of existing policies, and select the Edit Policy Entry button.
Edit the parameters as needed.

4. Delete an existing policy.
Select the policy from the list of existing policies, and select the Remove Policy Entry
button.

Permission Specific to JBoss EAP 6

org.jboss.security.SecurityAssociation.getPrincipalInfo

Provides access to the org.jboss.security.SecurityAssociation getPrincipal() and
getCredential() methods. The risk involved with using this runtime permission is the ability to see
the current thread caller and credentials.

org.jboss.security.SecurityAssociation.getSubject

Provides access to the org.jboss.security.SecurityAssociation getSubject() method.

org.jboss.security.SecurityAssociation.setPrincipalInfo

Provides access to the org.jboss.security.SecurityAssociation setPrincipal(),
setCredential(), setSubject(), pushSubjectContext(), and popSubjectContext()
methods. The risk involved with using this runtime permission is the ability to set the current thread
caller and credentials.

org.jboss.security.SecurityAssociation.setServer

Provides access to the org.jboss.security.SecurityAssociation setServer() method.
The risk involved with using this runtime permission is the ability to enable or disable multi-thread
storage of the caller principal and credential.

org.jboss.security.SecurityAssociation.setRunAsRole

Provides access to the org.jboss.security.SecurityAssociation pushRunAsRole(),

Security Guide

48

popRunAsRole(), pushRunAsIdentity(), and popRunAsIdentity() methods. The risk
involved with using this runtime permission is the ability to change the current caller run-as role
principal.

org.jboss.security.SecurityAssociation.accessContextInfo

Provides access to the org.jboss.security.SecurityAssociation
accessContextInfo(), and accessContextInfo() getter and setter methods. This allows you
to both set and get the current security context info.

org.jboss.naming.JndiPermission

Provides special permissions to files and directories in a specified JNDI tree path, or recursively to all
files and subdirectories. A JndiPermission consists of a pathname and a set of valid permissions
related to the file or directory.

The available permissions include:

bind

rebind

unbind

lookup

list

listBindings

createSubcontext

all

Pathnames ending in /* indicate that the specified permissions apply to all files and directories of the
pathname. Pathnames ending in /- indicate recursive permissions to all files and subdirectories of
the pathname. Pathnames consisting of the special token <<ALL BINDINGS>> matches any file in
any directory.

org.jboss.security.srp.SRPPermission

A custom permission class for protecting access to sensitive SRP information like the private session
key and private key. This permission does not have any actions defined. The getSessionKey()
target provides access to the private session key which results from the SRP negotiation. Access to
this key allows you to encrypt and decrypt messages that have been encrypted with the session key.

org.hibernate.secure.HibernatePermission

This permission class provides basic permissions to secure Hibernate sessions. The target for this
property is the entity name. The available actions include:

insert

delete

update

read

CHAPTER 4. JAVA SECURITY MANAGER

49

* (all)

org.jboss.metadata.spi.stack.MetaDataStackPermission

Provides a custom permission class for controlling how callers interact with the metadata stack. The
available permissions are:

modify

push (onto the stack)

pop (off the stack)

peek (onto the stack)

* (all)

org.jboss.config.spi.ConfigurationPermission

Secures setting of configuration properties. Defines only permission target names, and no actions.
The targets for this property include:

<property name> (the property this code has permission to set)

* (all properties)

org.jboss.kernel.KernelPermission

Secures access to the kernel configuration. Defines only permission target names and no actions.
The targets for this property include:

access (to the kernel configuration)

configure (implies access)

* (all)

org.jboss.kernel.plugins.util.KernelLocatorPermission

Secures access to the kernel. Defines only permission target names and no actions. The targets for
this property include:

kernel

* (all)

Report a bug

4.5. DEBUG SECURITY MANAGER POLICIES

You can enable debugging information to help you troubleshoot security policy-related issues. The
java.security.debug option configures the level of security-related information reported. The
command java -Djava.security.debug=help will produce help output with the full range of
debugging options. Setting the debug level to all is useful when troubleshooting a security-related
failure whose cause is completely unknown, but for general use it will produce too much information. A
sensible general default is access:failure.

Security Guide

50

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4782-458782+%5BSpecified%5D&comment=Title%3A+Write+a+Java+Security+Manager+Policy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4782-458782+11+Jun+2013+14%3A57+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Procedure 4.3. Enable general debugging

This procedure will enable a sensible general level of security-related debug information.
Add the following line to the server configuration file.

If the JBoss EAP 6 instance is running in a managed domain, the line is added to the
bin/domain.conf file for Linux or the bin/domain.conf.bat file for Windows.

If the JBoss EAP 6 instance is running as a standalone server, the line is added to the
bin/standalone.conf file for Linux, or the bin\standalone.conf.bat file for
Windows.

 Linux

 Windows

Result

A general level of security-related debug information has been enabled.

Report a bug

JAVA_OPTS="$JAVA_OPTS -Djava.security.debug=access:failure"

JAVA_OPTS="%JAVA_OPTS% -Djava.security.debug=access:failure"

CHAPTER 4. JAVA SECURITY MANAGER

51

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4780-458784+%5BSpecified%5D&comment=Title%3A+Debug+Security+Manager+Policies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4780-458784+11+Jun+2013+14%3A59+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 5. PATCH INSTALLATION

5.1. ABOUT PATCHING MECHANISMS

JBoss security and bug patches are released in two forms.

Planned updates: As part of a micro, minor or major upgrade of an existing product.

Asynchronous updates: As a one off patch which is released outside the normal upgrade cycle of
the existing product.

Deciding whether a patch is released as part of a planned update or an out-of-cycle one-off depends on
the severity of the flaw being fixed. Flaws of low impact are typically deferred, to be resolved in the next
minor release of the affected products. Flaws of moderate or higher impact are typically addressed in
order of importance as an update to the product with an asynchronous release and contain only a
resolution to the flaw at hand.

The severity of a security flaw is based on the assessment of the bug by the Security Response Team at
Red Hat, combined with several consistent factors:

How easily can a flaw be exploited?

What kind of damage can be done if exploited?

Are there typically other factors involved that lower the impact of the flaw (such as firewalls,
Security-Enhanced Linux, compiler directives, and so forth)?

Red Hat maintains a mailing list for notifying subscribers about security related flaws. See Section 5.2,
“Subscribe to Patch Mailing Lists”

For more information on how Red Hat rates JBoss security flaws, please click on the following link:
http://securityblog.redhat.com/2012/09/19/how-red-hat-rates-jboss-security-flaws/

Report a bug

5.2. SUBSCRIBE TO PATCH MAILING LISTS

Summary

The JBoss team at Red Hat maintains a mailing list for security announcements for Red Hat JBoss
Enterprise Middleware products. This topic covers what you need to do to subscribe to this list.

Prerequisites

None

Procedure 5.1. Subscribe to the JBoss Watch List

1. Click the following link to go to the JBoss Watch mailing list page: JBoss Watch Mailing List.

2. Enter your email address in the Subscribing to Jboss-watch-list section.

3. [You may also wish to enter your name and select a password. Doing so is completely optional
but recommended.]

Security Guide

52

http://securityblog.redhat.com/2012/09/19/how-red-hat-rates-jboss-security-flaws/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+13441-435332+%5BSpecified%5D&comment=Title%3A+About+Patching+Mechanisms%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13441-435332+17+Apr+2013+11%3A00+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
http://www.redhat.com/mailman/listinfo/jboss-watch-list

4. Press the Subscribe button to start the subscription process.

5. You can browse the archives of the mailing list by going to: JBoss Watch Mailing List Archives.

Result

After confirmation of your email account, you will be subscribed to receive security related
announcements from the JBoss patch mailing list.

Report a bug

5.3. INSTALL PATCHES IN ZIP FORM

Summary

JBoss security patches are distributed in two forms: zip (for all products) and RPM (for a subset of
products). JBoss bug fix patches are only distributed in zip format. This task describes the steps you
need to take to install the patches (security or bug fixes) via the zip format.

Prerequisites

Valid access and subscription to the Red Hat Customer Portal.

A current subscription to a JBoss product installed in a zip format.

Procedure 5.2. Apply a patch to a JBoss product via the zip method

Security updates for JBoss products are provided by an erratum (for both zip and RPM methods). The
erratum encapsulates a list of the resolved flaws, their severity ratings, the affected products, textual
description of the flaws, and a reference to the patches. Bug fix updates are not announced via an
erratum.

For zip distributions of JBoss products, the errata includes a link to a URL on the Customer Portal where
the patch zip can be downloaded. This download contains the patched versions of existing JBoss
products and only includes the files that have been changed from the previous install.

WARNING

Before installing a patch, you must backup your JBoss product along with all
customized configuration files.

1. Get notified about the security patch either via being a subscriber to the JBoss watch mailing list
or by browsing the JBoss watch mailing list archives.

NOTE

Only security patches are announced on the JBoss watch mailing list.

2. Read the errata for the security patch and confirm that it applies to a JBoss product in your
environment.

CHAPTER 5. PATCH INSTALLATION

53

https://www.redhat.com/archives/jboss-watch-list/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+13442-375115+%5BSpecified%5D&comment=Title%3A+Subscribe+to+Patch+Mailing+Lists%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13442-375115+20+Feb+2013+10%3A58+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

3. If the security patch applies to a JBoss product in your enviornment, then follow the link to
download the patch from the Red Hat Customer Portal.

4. The downloadable zip file from the customer portal will contain all the files required to fix the
security issue or bug. Download this patch zip file in the same location as your JBoss product.

5. Unzip the patch file in the same location where the JBoss product is installed. The patched
versions overwrite the existing files.

Result

The JBoss product is patched with the latest update using the zip format.

Report a bug

5.4. INSTALL PATCHES IN RPM FORM

Summary

JBoss patches are distributed in two forms: ZIP (for all products) and RPM (for a subset of products).
This task describes the steps you need to take to install the patches via the RPM format. This RPM
update method is used to ship security asynchronous patches and macro/minor/major product updates
only.

Prerequisites

A valid subscription to the Red Hat Network.

A current subscription to a JBoss product installed via an RPM package.

Procedure 5.3. Apply a patch to a JBoss product via the RPM method

Security updates for JBoss products are provided by an erratum (for both zip and RPM methods). The
erratum encapsulates a list of the resolved flaws, their severity ratings, the affected products, textual
description of the flaws, and a reference to the patches.

For RPM distributions of JBoss products, the errata include references to the updated RPM packages.
The patch can be installed by using yum or another RPM tool to update the relevant packages.

WARNING

Before installing a patch, you must backup your JBoss product along with all
customized configuration files.

1. Get notified about the security patch either via being a subscriber to the JBoss watch mailing list
or by browsing the JBoss watch mailing list archives.

2. Read the errata for the security patch and confirm that it applies to a JBoss product in your
environment.

Security Guide

54

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+13443-377329+%5BSpecified%5D&comment=Title%3A+Install+Patches+in+zip+form%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13443-377329+27+Feb+2013+15%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

3. If the security patch applies to a JBoss product in your environment, then follow the link to
download the updated RPM package which is included in the errata.

4. Use

yum update

or a similar command to install the patch.

Result

The JBoss product is patched with the latest update using the RPM format.

Report a bug

5.5. SEVERITY AND IMPACT RATING OF JBOSS SECURITY PATCHES

To communicate the risk of each JBoss security flaw, Red Hat uses a four-point severity scale of low,
moderate, important and critical, in addition to Common Vulnerability Scoring System (CVSS) version 2
base scores which can be used to identify the impact of the flaw.

Table 5.1. Severity Ratings of JBoss Security Patches

Severity Description

Critical This rating is given to flaws that could be easily
exploited by a remote unauthenticated attacker and
lead to system compromise (arbitrary code execution)
without requiring user interaction. These are the
types of vulnerabilities that can be exploited by
worms. Flaws that require an authenticated remote
user, a local user, or an unlikely configuration are not
classed as critical impact.

Important This rating is given to flaws that can easily
compromise the confidentiality, integrity, or
availability of resources. These are the types of
vulnerabilities that allow local users to gain privileges,
allow unauthenticated remote users to view
resources that should otherwise be protected by
authentication, allow authenticated remote users to
execute arbitrary code, or allow local or remote users
to cause a denial of service.

Moderate This rating is given to flaws that may be more difficult
to exploit but could still lead to some compromise of
the confidentiality, integrity, or availability of
resources, under certain circumstances. These are
the types of vulnerabilities that could have had a
critical impact or important impact but are less easily
exploited based on a technical evaluation of the flaw,
or affect unlikely configurations.

Low This rating is given to all other issues that have a
security impact. These are the types of vulnerabilities
that are believed to require unlikely circumstances to
be able to be exploited, or where a successful exploit
would give minimal consequences.

CHAPTER 5. PATCH INSTALLATION

55

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+13444-444128+%5BSpecified%5D&comment=Title%3A+Install+Patches+in+RPM+form%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13444-444128+24+Apr+2013+10%3A27+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The impact component of a CVSS v2 score is based on a combined assessment of three potential
impacts: Confidentiality (C), Integrity (I) and Availability (A). Each of these can be rated as None (N),
Partial (P) or Complete (C).

Because the JBoss server process runs as an unprivileged user and is isolated from the host operating
system, JBoss security flaws are only rated as having impacts of either None (N) or Partial (P).

Example 5.1. CVSS v2 Impact Score

The example below shows a CVSS v2 impact score, where exploiting the flaw would have no impact
on system confidentiality, partial impact on system integrity and complete impact on system
availability (that is, the system would become completely unavailable for any use, for example, via a
kernel crash).

C:N/I:P/A:C

Combined with the severity rating and the CVSS score, organizations can make informed decisions on
the risk each issue places on their unique environment and schedule upgrades accordingly.

For more information about CVSS2, please see: CVSS2 Guide.

Report a bug

Security Guide

56

https://access.redhat.com/security/updates/classification/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+13447-444130+%5BSpecified%5D&comment=Title%3A+Severity+and+Impact+Rating+of+JBoss+Security+Patches%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13447-444130+24+Apr+2013+10%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 6. SECURITY DOMAINS

6.1. ABOUT SECURITY DOMAINS

Security domains are part of the JBoss EAP 6 security subsystem. All security configuration is now
managed centrally, by the domain controller of a managed domain, or by the standalone server.

A security domain consists of configurations for authentication, authorization, security mapping, and
auditing. It implements Java Authentication and Authorization Service (JAAS) declarative security.

Authentication refers to verifying the identity of a user. In security terminology, this user is referred to as
a principal. Although authentication and authorization are different, many of the included authentication
modules also handle authorization.

An authorization is a security policy, which contains information about actions which are allowed or
prohibited. In security terminology, this is often referred to as a role.

Security mapping refers to the ability to add, modify, or delete information from a principal, role, or
attribute before passing the information to your application.

The auditing manager allows you to configure provider modules to control the way that security events
are reported.

If you use security domains, you can remove all specific security configuration from your application
itself. This allows you to change security parameters centrally. One common scenario that benefits from
this type of configuration structure is the process of moving applications between testing and production
environments.

Report a bug

6.2. ABOUT PICKETBOX

Picketbox is the foundational security framework that provides the authentication, authorization, audit
and mapping capabilities to Java applications running in JBoss EAP 6. It provides the following
capabilities, in a single framework with a single configuration:

Section 6.3, “About Authentication”

Section 6.5, “About Authorization” and access control

Section 6.7, “About Security Auditing”

Section 6.9, “About Security Mapping” of principals, roles, and attributes

Report a bug

6.3. ABOUT AUTHENTICATION

Authentication refers to identifying a subject and verifying the authenticity of the identification. The most
common authentication mechanism is a username and password combination. Other common
authentication mechanisms use shared keys, smart cards, or fingerprints. The outcome of a successful
authentication is referred to as a principal, in terms of Java Enterprise Edition declarative security.

JBoss EAP 6 uses a pluggable system of authentication modules to provide flexibility and integration
with the authentication systems you already use in your organization. Each security domain contains one

CHAPTER 6. SECURITY DOMAINS

57

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4721-458754+%5BSpecified%5D&comment=Title%3A+About+Security+Domains%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4721-458754+11+Jun+2013+14%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4722-458756+%5BSpecified%5D&comment=Title%3A+About+Picketbox%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4722-458756+11+Jun+2013+14%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

or more configured authentication modules. Each module includes additional configuration parameters to
customize its behavior. The easiest way to configure the authentication subsystem is within the web-
based management console.

Authentication is not the same as authorization, although they are often linked. Many of the included
authentication modules can also handle authorization.

Report a bug

6.4. CONFIGURE AUTHENTICATION IN A SECURITY DOMAIN

To configure authentication settings for a security domain, log into the management console and follow
this procedure.

Procedure 6.1. Setup Authentication Settings for a Security Domain

1. Open the security domain's detailed view.
Click the Profiles label at the top right of the management console. In a managed domain,
select the profile to modify from the Profile selection box at the top left of the Profile view.
Click the Security menu item at the left, and click Security Domains from the expanded
menu. Click the View link for the security domain you want to edit.

2. Navigate to the Authentication subsystem configuration.
Click the Authentication label at the top of the view if it is not already selected.

The configuration area is divided into two areas: Login Modules and Details. The login
module is the basic unit of configuration. A security domain can include several login modules,
each of which can include several attributes and options.

3. Add an authentication module.
Click the Add button to add a JAAS authentication module. Fill in the details for your module.
The Code is the class name of the module. The Flags controls how the module relates to other
authentication modules within the same security domain.

Explanation of the Flags

The Java Enterprise Edition 6 specification provides the following explanation of the flags for
security modules. The following list is taken from
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA
Refer to that document for more detailed information.

Flag Details

required The LoginModule is required to succeed. If it
succeeds or fails, authentication still continues to
proceed down the LoginModule list.

requisite LoginModule is required to succeed. If it
succeeds, authentication continues down the
LoginModule list. If it fails, control immediately
returns to the application (authentication does
not proceed down the LoginModule list).

Security Guide

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4723-458757+%5BSpecified%5D&comment=Title%3A+About+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4723-458757+11+Jun+2013+14%3A27+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA

sufficient The LoginModule is not required to succeed. If it
does succeed, control immediately returns to the
application (authentication does not proceed
down the LoginModule list). If it fails,
authentication continues down the LoginModule
list.

optional The LoginModule is not required to succeed. If it
succeeds or fails, authentication still continues to
proceed down the LoginModule list.

Flag Details

After you have added your module, you can modify its Code or Flags by clicking the Edit
button in the Details section of the screen. Be sure the Attributes tab is selected.

4. Optional: Add or remove module options.
If you need to add options to your module, click its entry in the Login Modules list, and select
the Module Options tab in the Details section of the page. Click the Add button, and
provide the key and value for the option. Use the Remove button to remove an option.

Result

Your authentication module is added to the security domain, and is immediately available to applications
which use the security domain.

The jboss.security.security_domain Module Option

By default, each login module defined in a security domain has the
jboss.security.security_domain module option added to it automatically. This option causes
problems with login modules which check to make sure that only known options are defined. The IBM
Kerberos login module, com.ibm.security.auth.module.Krb5LoginModule is one of these.

You can disable the behavior of adding this module option by setting the system property to true when
starting JBoss EAP 6. Add the following to your start-up parameters.

-Djboss.security.disable.secdomain.option=true

You can also set this property using the web-based Management Console. In a standalone server, you
can set system properties in the Profile section of the configuration. In a managed domain, you can
set system properties for each server group.

Report a bug

6.5. ABOUT AUTHORIZATION

Authorization is a mechanism for granting or denying access to a resource based on identity. It is
implemented as a set of declarative security roles which can be granted to principals.

JBoss EAP 6 uses a modular system to configure authorization. Each security domain can contain one
or more authorization policies. Each policy has a basic module which defines its behavior. It is configured
through specific flags and attributes. The easiest way to configure the authorization subsystem is by
using the web-based management console.

CHAPTER 6. SECURITY DOMAINS

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4724-490496+%5BSpecified%5D&comment=Title%3A+Configure+Authentication+in+a+Security+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4724-490496+02+Aug+2013+15%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Authorization is different from authentication, and usually happens after authentication. Many of the
authentication modules also handle authorization.

Report a bug

6.6. CONFIGURE AUTHORIZATION IN A SECURITY DOMAIN

To configure authorization settings for a security domain, log into the management console and follow
this procedure.

Procedure 6.2. Setup Authorization in a Security Domain

1. Open the security domain's detailed view.
Click the Profiles label at the top right of the management console. In a managed domain,
select the profile to modify from the Profile selection box at the top left of the Profile view.
Click the Security menu item at the left, and click Security Domains from the expanded
menu. Click the View link for the security domain you want to edit.

2. Navigate to the Authorization subsystem configuration.
Click the Authorization label at the top of the view if it is not already selected.

The configuration area is divided into two areas: Policies and Details. The login module is
the basic unit of configuration. A security domain can include several authorization policies, each
of which can include several attributes and options.

3. Add a policy.
Click the Add button to add a JAAS authorization policy module. Fill in the details for your
module. The Code is the class name of the module. The Flags controls how the module relates
to other authorization policy modules within the same security domain.

Explanation of the Flags

The Java Enterprise Edition 6 specification provides the following explanation of the flags for
security modules. The following list is taken from
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA
Refer to that document for more detailed information.

Flag Details

Required The LoginModule is required to succeed. If it
succeeds or fails, authorization still continues to
proceed down the LoginModule list.

Requisite LoginModule is required to succeed. If it
succeeds, authorization continues down the
LoginModule list. If it fails, control immediately
returns to the application (authorization does not
proceed down the LoginModule list).

Sufficient The LoginModule is not required to succeed. If it
does succeed, control immediately returns to the
application (authorization does not proceed
down the LoginModule list). If it fails,
authorization continues down the LoginModule
list.

Security Guide

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4725-458760+%5BSpecified%5D&comment=Title%3A+About+Authorization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4725-458760+11+Jun+2013+14%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA

Optional The LoginModule is not required to succeed. If it
succeeds or fails, authorization still continues to
proceed down the LoginModule list.

Flag Details

After you have added your module, you can modify its Code or Flags by clicking the Edit
button in the Details section of the screen. Be sure the Attributes tab is selected.

4. Optional: Add, edit, or remove module options.
If you need to add options to your module, click its entry in the Login Modules list, and select
the Module Options tab in the Details section of the page. Click the Add button, and
provide the key and value for the option. To edit an option that already exists, click the key or to
change it. Use the Remove button to remove an option.

Result

Your authorization policy module is added to the security domain, and is immediately available to
applications which use the security domain.

Report a bug

6.7. ABOUT SECURITY AUDITING

Security auditing refers to triggering events, such as writing to a log, in response to an event that
happens within the security subsystem. Auditing mechanisms are configured as part of a security
domain, along with authentication, authorization, and security mapping details.

Auditing uses provider modules. You can use one of the included ones, or implement your own.

Report a bug

6.8. CONFIGURE SECURITY AUDITING

To configure security auditing settings for a security domain, log into the management console and
follow this procedure.

Procedure 6.3. Setup Security Auditing for a Security Domain

1. Open the security domain's detailed view.
Click the Profiles label at the top right of the management console. In a standalone server,
the tab is labeled Profile. In a managed domain, select the profile to modify from the Profile
selection box at the top left of the Profile view. Click the Security menu item at the left, and
click Security Domains from the expanded menu. Click the View link for the security domain
you want to edit.

2. Navigate to the Auditing subsystem configuration.
Click the Audit label at the top of the view if it is not already selected.

The configuration area is divided into two areas: Provider Modules and Details. The
provider module is the basic unit of configuration. A security domain can include several provider
modules each of which can include attributes and options.

CHAPTER 6. SECURITY DOMAINS

61

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4726-435096+%5BSpecified%5D&comment=Title%3A+Configure+Authorization+in+a+Security+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4726-435096+16+Apr+2013+10%3A53+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4727-328515+%5BSpecified%5D&comment=Title%3A+About+Security+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4727-328515+05+Nov+2012+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

3. Add a provider module.
Click the Add button to add a provider module. Fill in the Code section with the classname of the
provider module.

After you have added your module, you can modify its Code by clicking the Edit button in the
Details section of the screen. Be sure the Attributes tab is selected.

4. Verify if your module is working
The goal of an audit module is to provide a way to monitor the events in the security subsystem.
This monitoring can be done by means of writing to a log file, email notifications or any other
measurable auditing mechanism.

For example, JBoss EAP 6 includes the LogAuditProvider module by default. If enabled
following the steps above, this audit module writes security notifications to a audit.log file in
the log subfolder within the EAP_HOME directory.

To verify if the steps above have worked in the context of the LogAuditProvider, perform an
action that is likely to trigger a notification and then check the audit log file.

For a full list of included security auditing provider modules, see here: Section A.4, “Included
Security Auditing Provider Modules”

5. Optional: Add, edit, or remove module options.
If you need to add options to your module, click its entry in the Modules list, and select the
Module Options tab in the Details section of the page. Click the Add button, and provide
the key and value for the option. To edit an option that already exists, remove it by clicking the
Remove label, and add it again with the correct options by clicking the Add button.

Result

Your security auditing module is added to the security domain, and is immediately available to
applications which use the security domain.

Report a bug

6.9. ABOUT SECURITY MAPPING

Security mapping allows you to combine authentication and authorization information after the
authentication or authorization happens, but before the information is passed to your application. One
example of this is using an X509 certificate for authentication, and then converting the principal from the
certificate to a logical name which your application can display.

You can map principals (authentication), roles (authorization), or credentials (attributes which are not
principals or roles).

Role Mapping is used to add, replace, or remove roles to the subject after authentication.

Principal mapping is used to modify a principal after authentication.

Attribute mapping is used to convert attributes from an external system to be used by your application,
and vice versa.

Report a bug

6.10. CONFIGURE SECURITY MAPPING IN A SECURITY DOMAIN

Security Guide

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4728-460687+%5BSpecified%5D&comment=Title%3A+Configure+Security+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4728-460687+17+Jun+2013+14%3A27+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4729-328516+%5BSpecified%5D&comment=Title%3A+About+Security+Mapping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4729-328516+05+Nov+2012+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

To configure security mapping settings for a security domain, log into the management console and
follow this procedure.

Procedure 6.4. Setup Security Mapping Settings in a Security Domain

1. Open the security domain's detailed view.
Click the Profiles label at the top right of the management console. This tab is labeled
Profile in a standalone server. In a managed domain, select the profile to modify from the
Profile selection box at the top left of the Profile view. Click the Security menu item at the
left, and click Security Domains from the expanded menu. Click the View link for the security
domain you want to edit.

2. Navigate to the Mapping subsystem configuration.
Click the Mapping label at the top of the view if it is not already selected.

The configuration area is divided into two areas: Modules and Details. The mapping module
is the basic unit of configuration. A security domain can include several mapping modules, each
of which can include several attributes and options.

3. Add a module.
Click the Add button to add a security mapping module. Fill in the details for your module. The
Code is the class name of the module. The Type field refers to the type of mapping this module
performs. Allowed values are principal, role, attribute or credential.

After you have added your module, you can modify its Code or Type by clicking the Edit button
in the Details section of the screen. Be sure the Attributes tab is selected.

4. Optional: Add, edit, or remove module options.
If you need to add options to your module, click its entry in the Modules list, and select the
Module Options tab in the Details section of the page. Click the Add button, and provide
the key and value for the option. To edit an option that already exists, click the Remove label key
to remove it, and add it again with the new value. Use the Remove button to remove an option.

Result

Your security mapping module is added to the security domain, and is immediately available to
applications which use the security domain.

Report a bug

CHAPTER 6. SECURITY DOMAINS

63

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4730-432982+%5BSpecified%5D&comment=Title%3A+Configure+Security+Mapping+in+a+Security+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4730-432982+11+Apr+2013+10%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 7. SSL ENCRYPTION

7.1. ABOUT SSL ENCRYPTION

Secure Sockets Layer (SSL) encrypts network traffic between two systems. Traffic between the two
systems is encrypted using a two-way key, generated during the handshake phase of the connection and
known only by those two systems.

For secure exchange of the two-way encryption key, SSL makes use of Public Key Infrastructure (PKI), a
method of encryption that utilizes a key pair . A key pair consists of two separate but matching
cryptographic keys - a public key and a private key. The public key is shared with others and is used to
encrypt data, and the private key is kept secret and is used to decrypt data that has been encrypted using
the public key.

When a client requests a secure connection, a handshake phase takes place before secure
communication can begin. During the SSL handshake the server passes its public key to the client in the
form of a certificate. The certificate contains the identity of the server (its URL), the public key of the
server, and a digital signature that validates the certificate. The client then validates the certificate and
makes a decision about whether the certificate is trusted or not. If the certificate is trusted, the client
generates the two-way encryption key for the SSL connection, encrypts it using the public key of the
server, and sends it back to the server. The server decrypts the two-way encryption key, using its private
key, and further communication between the two machines over this connection is encrypted using the
two-way encryption key.

Report a bug

7.2. IMPLEMENT SSL ENCRYPTION FOR THE JBOSS EAP 6 WEB
SERVER

Introduction

Many web applications require a SSL-encrypted connection between clients and server, also known as a
HTTPS connection. You can use this procedure to enable HTTPS on your server or server group.

Prerequisites

You need a set of SSL encryption keys and a SSL encryption certificate. You may purchase
these from a certificate-signing authority, or you can generate them yourself using command-line
utilities. To generate encryption keys using Red Hat Enterprise Linux utilities, refer to
Section 7.3, “Generate a SSL Encryption Key and Certificate”.

You need to know the following details about your specific environment and set-up:

The full directory name and path to your certificate files

The encryption password for your encryption keys.

You need to run the Management CLI and connect it to your domain controller or standalone
server.

Security Guide

64

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4775-432896+%5BSpecified%5D&comment=Title%3A+About+SSL+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4775-432896+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

NOTE

This procedure uses commands appropriate for a JBoss EAP 6 configuration that uses a
managed domain. If you use a standalone server, modify Management CLI commands by
removing the /profile=default from the beginning of any Management CLI
commands.

Procedure 7.1. Configure the JBoss Web Server to use HTTPS

1. Add a new HTTPS connector.
Execute the following Management CLI command, changing the profile as appropriate. This
creates a new secure connector, called HTTPS, which uses the https scheme, the https
socket binding (which defaults to 8443), and is set to be secure.

Example 7.1. Management CLI Command

/profile=default/subsystem=web/connector=HTTPS/:add(socket-
binding=https,scheme=https,protocol=HTTP/1.1,secure=true)

2. Configure the SSL encryption certificate and keys.
Execute the following CLI commands to configure your SSL certificate, substituting your own
values for the example ones. This example assumes that the keystore is copied to the server
configuration directory, which is EAP_HOME/domain/configuration/ for a managed
domain.

Example 7.2. Management CLI Command

/profile=default/subsystem=web/connector=HTTPS/ssl=configuration:a
dd(name=https,certificate-key-
file="${jboss.server.config.dir}/keystore.jks",password=SECRET,
key-alias=KEY_ALIAS)

For a full listing of parameters you can set for the SSL properties of the connector, refer to
Section 7.4, “SSL Connector Reference”.

3. Deploy an application.
Deploy an application to a server group which uses the profile you have configured. If you use a
standalone server, deploy an application to your server. HTTP requests to it use the new SSL-
encrypted connection.

Report a bug

7.3. GENERATE A SSL ENCRYPTION KEY AND CERTIFICATE

To use a SSL-encrypted HTTP connection (HTTPS), as well as other types of SSL-encrypted
communication, you need a signed encryption certificate. You can purchase a certificate from a
Certificate Authority (CA), or you can use a self-signed certificate. Self-signed certificates are not
considered trustworthy by many third parties, but are appropriate for internal testing purposes.

This procedure enables you to create a self-signed certificate using utilities which are available on Red
Hat Enterprise Linux.

CHAPTER 7. SSL ENCRYPTION

65

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+9036-458786+%5BSpecified%5D&comment=Title%3A+Implement+SSL+Encryption+for+the+JBoss+EAP+6+Web+Server%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9036-458786+11+Jun+2013+15%3A00+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Prerequisites

You need the keytool utility, which is provided by any Java Development Kit implementation.
OpenJDK on Red Hat Enterprise Linux installs this command to /usr/bin/keytool.

Understand the syntax and parameters of the keytool command. This procedure uses
extremely generic instructions, because further discussion of the specifics of SSL certificates or
the keytool command are out of scope for this documentation.

Procedure 7.2. Generate a SSL Encryption Key and Certificate

1. Generate a keystore with public and private keys.
Run the following command to generate a keystore named server.keystore with the alias
jboss in your current directory.

keytool -genkeypair -alias jboss -keyalg RSA -keystore
server.keystore -storepass mykeystorepass --dname
"CN=jsmith,OU=Engineering,O=mycompany.com,L=Raleigh,S=NC,C=US"

The following table describes the parameters used in the keytool command:

Parameter Description

-genkeypair The keytool command to generate a key pair
containing a public and private key.

-alias The alias for the keystore. This value is arbitrary,
but the alias jboss is the default used by the
JBoss Web server.

-keyalg The key pair generation algorithm. In this case it
is RSA.

-keystore The name and location of the keystore file. The
default location is the current directory. The
name you choose is arbitrary. In this case, the
file will be named server.keystore.

-storepass This password is used to authenticate to the
keystore so that the key can be read. The
password must be at least 6 characters long and
must be provided when the keystore is
accessed. In this case, we used
mykeystorepass. If you omit this parameter,
you will be prompted to enter it when you
execute the command.

Security Guide

66

-keypass This is the password for the actual key.

NOTE

Due to an implementation
limitation this must be the same
as the store password.

--dname A quoted string describing the distinguished
name for the key, for example:
"CN=jsmith,OU=Engineering,O=mycompany.co
m,L=Raleigh,C=US". This string is a
concatenation of the following components:

CN - The common name or host name. If
the hostname is "jsmith.mycompany.com",
the CN is "jsmith".

OU - The organizational unit, for example
"Engineering"

O - The organization name, for example
"mycompany.com".

L - The locality, for example "Raleigh" or
"London"

S - The state or province, for example "NC".
This parameter is optional.

C - The 2 letter country code, for example
"US" or "UK",

Parameter Description

When you execute the above command, you are prompted for the following information:

If you did not use the -storepass parameter on the command line, you are asked to enter
the keystore password. Re-enter the new password at the next prompt.

If you did not use the -keypass parameter on the command line, you are asked to enter the
key password. Press Enter to set this to the same value as the keystore password.

When the command completes, the file server.keystore now contains the single key with the
alias jboss.

2. Verify the key.
Verify that the key works properly by using the following command.

keytool -list -keystore server.keystore

CHAPTER 7. SSL ENCRYPTION

67

You are prompted for the keystore password. The contents of the keystore are displayed (in this
case, a single key called jboss). Notice the type of the jboss key, which is keyEntry. This
indicates that the keystore contains both a public and private entry for this key.

3. Generate a certificate signing request.
Run the following command to generate a certificate signing request using the public key from
the keystore you created in step 1.

keytool -certreq -keyalg RSA -alias jboss -keystore server.keystore
-file certreq.csr

You are prompted for the password in order to authenticate to the keystore. The keytool
command then creates a new certificate signing request called certreq.csr in the current
working directory.

4. Test the newly generated certificate.
Test the contents of the certificate by using the following command.

openssl req -in certreq.csr -noout -text

The certificate details are shown.

5. Optional: Submit your certificate to a Certificate Authority (CA).
A Certificate Authority (CA) can authenticate your certificate so that it is considered trustworthy
by third-party clients. The CA supplies you with a signed certificate, and optionally with one or
more intermediate certificates.

6. Optional: Export a self-signed certificate from the keystore.
If you only need it for testing or internal purposes, you can use a self-signed certificate. You can
export one from the keystore you created in step 1 as follows:

keytool -export -alias jboss -keystore server.keystore -file
server.crt

You are prompted for the password in order to authenticate to the keystore. A self-signed
certificate, named server.crt, is created in the current working directory.

7. Import the signed certificate, along with any intermediate certificates.
Import each certificate, in the order that you are instructed by the CA. For each certificate to
import, replace intermediate.ca or server.crt with the actual file name. If your
certificates are not provided as separate files, create a separate file for each certificate, and
paste its contents into the file.

NOTE

Your signed certificate and certificate keys are valuable assets. Be cautious with
how you transport them between servers.

keytool -import -keystore server.keystore -alias intermediateCA -
file intermediate.ca

keytool -import -alias jboss -keystore server.keystore -file
server.crt

Security Guide

68

8. Test that your certificates imported successfully.
Run the following command, and enter the keystore password when prompted. The contents of
your keystore are displayed, and the certificates are part of the list.

keytool -list -keystore server.keystore

Result

Your signed certificate is now included in your keystore and is ready to be used to encrypt SSL
connections, including HTTPS web server communications.

Report a bug

7.4. SSL CONNECTOR REFERENCE

JBoss Web connectors may include the following SSL configuration attributes. The CLI commands
provided are designed for a managed domain using profile default. Change the profile name to the
one you wish to configure, for a managed domain, or omit the /profile=default portion of the
command, for a standalone server.

Table 7.1. SSL Connector Attributes

Attribute Description CLI Command

Name The display name of the SSL
connector. /profile=default/sub

system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=name,
value=https)

verify-client Set to true to require a valid
certificate chain from the client
before accepting a connection.
Set to want if you want the SSL
stack to request a client
Certificate, but not fail if one is not
presented. Set to false (the
default) to not require a certificate
chain unless the client requests a
resource protected by a security
constraint that uses CLIENT-
CERT authentication.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=verif
y-client,value=want)

verify-depth The maximum number of
intermediate certificate issuers
checked before deciding that the
clients do not have a valid
certificate. The default value is
10.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=verif
y-depth,value=10)

CHAPTER 7. SSL ENCRYPTION

69

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+9037-456124+%5BSpecified%5D&comment=Title%3A+Generate+a+SSL+Encryption+Key+and+Certificate%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9037-456124+30+May+2013+11%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

certificate-key-file The full file path and file name of
the keystore file where the signed
server certificate is stored. With
JSSE encryption, this certificate
file will be the only one, while
OpenSSL uses several files. The
default value is the .keystore
file in the home directory of the
user running JBoss EAP 6. If your
keystoreType does not use a
file, set the parameter to an empty
string.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=certi
ficate-key-
file,value=../domain
/configuration/serve
r.keystore)

certificate-file If you use OpenSSL encryption,
set the value of this parameter to
the path to the file containing the
server certificate.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=certi
ficate-
file,value=server.cr
t)

password The password for both the
trustore and keystore. In the
following example, replace
PASSWORD with your own
password.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=passw
ord,value=PASSWORD)

protocol The version of the SSL protocol to
use. Supported values include
SLv2, SSLv3, TLSv1,
SSLv2+SSLv3, and ALL. The
default is ALL.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=proto
col,value=ALL)

cipher-suite A comma-separated list of the
encryption ciphers which are
allowed. The JVM default for
JSSE contains weak ciphers
which should not be used. The
example only lists two possible
ciphers, but real-world examples
will likely use more.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=ciphe
r-suite,
value="TLS_RSA_WITH_
AES_128_CBC_SHA,TLS_
RSA_WITH_AES_256_CBC
_SHA")

Attribute Description CLI Command

Security Guide

70

key-alias The alias used to for the server
certificate in the keystore. In the
following example, replace
KEY_ALIAS with your certificate's
alias.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=key-
alias,value=KEY_ALIA
S)

truststore-type The type of the truststore. Various
types of keystores are available,
including PKCS12 and Java's
standard JKS.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=trust
store-
type,value=jks)

keystore-type The type of the keystore, Various
types of keystores are available,
including PKCS12 and Java's
standard JKS.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=keyst
ore-type,value=jks)

ca-certificate-file The file containing the CA
certificates. This is the
truststoreFile, in the case
of JSSE, and uses the same
password as the keystore. The
ca-certificate-file file is
used to validate client certificates.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=certi
ficate-
file,value=ca.crt)

Attribute Description CLI Command

CHAPTER 7. SSL ENCRYPTION

71

ca-certificate-password The Certificate password for the
ca-certificate-file. In
the following example, replace the
MASKED_PASSWORD with your
own masked password.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=ca-
certificate-
password,value=MASKE
D_PASSWORD)

ca-revocation-url A file or URL which contains the
revocation list. It refers to the
crlFile for JSSE or the
SSLCARevocationFile for
SSL.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=ca-
revocation-
url,value=ca.crl)

session-cache-size The size of the SSLSession
cache. This attribute applies only
to JSSE connectors. The default
is 0, which specifies an unlimited
cache size.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=sessi
on-cache-
size,value=100)

session-timeout The number of seconds before a
cached SSLSession expires. This
attribute applies only to JSSE
connectors. The default is 86400
seconds, which is 24 hours.

/profile=default/sub
system=web/connector
=HTTPS/ssl=configura
tion/:write-
attribute(name=sessi
on-
timeout,value=43200)

Attribute Description CLI Command

Report a bug

Security Guide

72

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+9038-479133+%5BSpecified%5D&comment=Title%3A+SSL+Connector+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9038-479133+18+Jul+2013+11%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 8. SECURITY REALMS

8.1. ABOUT SECURITY REALMS

A security realm is a series of mappings between users and passwords, and users and roles. Security
realms are a mechanism for adding authentication and authorization to your EJB and Web applications.
JBoss EAP 6 provides two security realms by default:

ManagementRealm stores user, password, and role information for the Management API, which
provides the functionality for the Management CLI and web-based Management Console. It
provides an authentication system for managing JBoss EAP 6 itself. You could also use the
ManagementRealm if your application needed to authenticate with the same business rules you
use for the Management API.

ApplicationRealm stores user, password, and role information for Web Applications and
EJBs.

Each realm is stored in two files on the filesystem:

REALM-users.properties stores usernames and hashed passwords.

REALM-users.roles stores user-to-role mappings.

The properties files are stored in the domain/configuration/ and standalone/configuration/
directories. The files are written simultaneously by the add-user.sh or add-user.bat command.
When you run the command, the first decision you make is which realm to add your new user to.

Report a bug

8.2. ADD A NEW SECURITY REALM

1. Run the Management CLI.
Start the jboss-cli.sh or jboss-cli.bat command and connect to the server.

2. Create the new security realm itself.
Run the following command to create a new security realm named MyDomainRealm on a
domain controller or a standalone server.

/host=master/core-service=management/security-
realm=MyDomainRealm:add()

3. Create the references to the properties file which will store information about the new
role.
Run the following command to create a pointer a file named myfile.properties, which will
contain the properties pertaining to the new role.

NOTE

The newly-created properties file is not managed by the included add-user.sh
and add-user.bat scripts. It must be managed externally.

CHAPTER 8. SECURITY REALMS

73

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8269-460016+%5BSpecified%5D&comment=Title%3A+About+Security+Realms%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8269-460016+14+Jun+2013+14%3A34+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

/host=master/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.proper
ties)

Result

Your new security realm is created. When you add users and roles to this new realm, the information will
be stored in a separate file from the default security realms. You can manage this new file using your
own applications or procedures.

Report a bug

8.3. ADD A USER TO A SECURITY REALM

1. Run the add-user.sh or add-user.bat command.
Open a terminal and change directories to the EAP_HOME/bin/ directory. If you run Red Hat
Enterprise Linux or another UNIX-like operating system, run add-user.sh. If you run Microsoft
Windows Server, run add-user.bat.

2. Choose whether to add a Management User or Application User.
For this procedure, type b to add an Application User.

3. Choose the realm the user will be added to.
By default, the only available realm is ApplicationRealm. If you have added a custom realm,
you can type its name instead.

4. Type the username, password, and roles, when prompted.
Type the desired username, password, and optional roles when prompted. Verify your choice by
typing yes, or type no to cancel the changes. The changes are written to each of the properties
files for the security realm.

Report a bug

Security Guide

74

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8272-455581+%5BSpecified%5D&comment=Title%3A+Add+a+New+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8272-455581+29+May+2013+13%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8271-450875+%5BSpecified%5D&comment=Title%3A+Add+a+User+to+a+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8271-450875+21+May+2013+14%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 9. SUBSYSTEM CONFIGURATION

9.1. TRANSACTION SUBSYSTEM CONFIGURATION

9.1.1. Configure the ORB for JTS Transactions

In a default installation of JBoss EAP 6, the ORB is disabled. You can enable the ORB using the
command-line Management CLI.

NOTE

In a managed domain, the JacORB subsystem is available in full and full-ha profiles
only. In a standalone server, it is available when you use the standalone-full.xml or
standalone-full-ha.xml configurations.

Procedure 9.1. Configure the ORB using the Management Console

1. View the profile settings.
Select Profiles (managed domain) or Profile (standalone server) from the top right of the
management console. If you use a managed domain, select either the full or full-ha profile
from the selection box at the top left.

2. Modify the Initializers Settings
Expand the Subsystems menu at the left, if necessary. Expand the Container sub-menu and
click JacORB.

In the form that appears in the main screen, select the Initializers tab and click the Edit
button.

Enable the security interceptors by setting the value of Security to on.

To enable the ORB for JTS, set the Transaction Interceptors value to on, rather than the
default spec.

Refer to the Need Help? link in the form for detailed explanations about these values. Click
Save when you have finished editing the values.

3. Advanced ORB Configuration
Refer to the other sections of the form for advanced configuration options. Each section includes
a Need Help? link with detailed information about the parameters.

Configure the ORB using the Management CLI

You can configure each aspect of the ORB using the Management CLI. The following commands
configure the initializers to the same values as the procedure above, for the Management Console. This
is the minimum configuration for the ORB to be used with JTS.

These commands are configured for a managed domain using the full profile. If necessary, change the
profile to suit the one you need to configure. If you use a standalone server, omit the /profile=full
portion of the commands.

Example 9.1. Enable the Security Interceptors

CHAPTER 9. SUBSYSTEM CONFIGURATION

75

/profile=full/subsystem=jacorb/:write-attribute(name=security,value=on)

Example 9.2. Enable the ORB for JTS

/profile=full/subsystem=jacorb/:write-
attribute(name=transactions,value=on)

Report a bug

9.2. JMS CONFIGURATION

9.2.1. Reference for HornetQ Configuration Attributes

The JBoss EAP 6 implementation of HornetQ exposes the following attributes for configuration. You can
use the Management CLI in particular to exposure the configurable or viewable attributes with the read-
resource operation.

Example 9.3. Example

Table 9.1. HornetQ Attributes

Attribute Example Value Type

allow-failback true BOOLEAN

async-
connection-
execution-
enabled

true BOOLEAN

backup false BOOLEAN

cluster-password somethingsecure STRING

cluster-user HORNETQ.CLUSTER.A
DMIN.USER

STRING

clustered false BOOLEAN

connection-ttl-
override

-1 LONG

[standalone@localhost:9999 /] /subsystem=messaging/hornetq-
server=default:read-resource

Security Guide

76

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4981-459153+%5BSpecified%5D&comment=Title%3A+Configure+the+ORB+for+JTS+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4981-459153+12+Jun+2013+11%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

create-bindings-
dir

true BOOLEAN

create-journal-
dir

true BOOLEAN

failback-delay 5000 LONG

failover-on-
shutdown

false BOOLEAN

id-cache-size 2000 INT

jmx-domain org.hornetq STRING

jmx-management-
enabled

false BOOLEAN

journal-buffer-
size

100 LONG

journal-buffer-
timeout

100 LONG

journal-compact-
min-files

10 INT

journal-compact-
percentage

30 INT

journal-file-
size

102400 LONG

journal-max-io 1 INT

journal-min-
files

2 INT

journal-sync-
non-
transactional

true BOOLEAN

journal-sync-
transactional

true BOOLEAN

journal-type ASYNCIO STRING

Attribute Example Value Type

CHAPTER 9. SUBSYSTEM CONFIGURATION

77

live-connector-
ref

reference STRING

log-journal-
write-rate

false BOOLEAN

management-
address

jms.queue.hornetq.mana
gement

STRING

management-
notification-
address

hornetq.notifications STRING

memory-measure-
interval

-1 LONG

memory-warning-
threshold

25 INT

message-counter-
enabled

false BOOLEAN

message-counter-
max-day-history

10 INT

message-counter-
sample-period

10000 LONG

message-expiry-
scan-period

30000 LONG

message-expiry-
thread-priority

3 INT

page-max-
concurrent-io

5 INT

perf-blast-pages -1 INT

persist-
delivery-count-
before-delivery

false BOOLEAN

persist-id-cache true BOOLEAN

persistence-
enabled

true BOOLEAN

Attribute Example Value Type

Security Guide

78

remoting-
interceptors

undefined LIST

run-sync-speed-
test

false BOOLEAN

scheduled-
thread-pool-max-
size

5 INT

security-domain other STRING

security-enabled true BOOLEAN

security-
invalidation-
interval

10000 LONG

server-dump-
interval

-1 LONG

shared-store true BOOLEAN

started true BOOLEAN

thread-pool-max-
size

30 INT

transaction-
timeout

300000 LONG

transaction-
timeout-scan-
period

1000 LONG

version 2.2.16.Final
(HQ_2_2_16_FINAL,
122)

STRING

wild-card-
routing-enabled

true BOOLEAN

Attribute Example Value Type

CHAPTER 9. SUBSYSTEM CONFIGURATION

79

WARNING

The value of journal-file-size must be higher than the size of message sent
to server, or the server won't be able to store the message.

Report a bug

Security Guide

80

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+9087-459141+%5BSpecified%5D&comment=Title%3A+Reference+for+HornetQ+Configuration+Attributes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9087-459141+12+Jun+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 10. WEB, HTTP CONNECTORS, AND HTTP
CLUSTERING

10.1. CONFIGURE A MOD_CLUSTER WORKER NODE

The master is only configured once, via the mod_cluster subsystem. To configure the mod_cluster
subsystem, refer to Configure the mod_cluster Subsystem in the Administration and Configuration
Guide. Each worker node is configured separately, so repeat this procedure for each node you wish to
add to the cluster.

If you use a managed domain, each server in a server group is a worker node which shares an identical
configuration. Therefore, configuration is done to an entire server group. In a standalone server,
configuration is done to a single JBoss EAP 6 instance. The configuration steps are otherwise identical.

Worker Node Configuration

If you use a standalone server, it must be started with the standalone-ha profile.

If you use a managed domain, your server group must use the ha or full-ha profile, and the
ha-sockets or full-ha-sockets socket binding group. JBoss EAP 6 ships with a cluster-
enabled server group called other-server-group which meets these requirements.

NOTE

Where Management CLI commands are given, they assume you use a managed domain.
If you use a standalone server, remove the /profile=full-ha portion of the
commands.

Procedure 10.1. Configure a Worker Node

1. Configure the network interfaces.
By default, the network interfaces all default to 127.0.0.1. Every physical host which hosts
either a standalone server or one or more servers in a server group needs its interfaces to be
configured to use its public IP address, which the other servers can see.

To change the IP address of a JBoss EAP 6 host, you need to shut it down and edit its
configuration file directly. This is because the Management API which drives the Management
Console and Management CLI relies on a stable management address.

Follow these steps to change the IP address on each server in your cluster to the master's public
IP address.

a. Shut down the server completely.

b. Edit either the host.xml, which is in EAP_HOME/domain/configuration/ for a
managed domain, or the standalone-ha.xml file, which is in
EAP_HOME/standalone/configuration/ for a standalone server.

c. Locate the <interfaces> element. Three interfaces are configured, management,
public, and unsecured. For each of these, change the value 127.0.0.1 to the external
IP address of the host.

d. For hosts that participate in a managed domain but are not the master, locate the <host

CHAPTER 10. WEB, HTTP CONNECTORS, AND HTTP CLUSTERING

81

element. Note that it does not have the closing > symbol, because it contains attributes.
Change the value of its name attribute from master to a unique name, a different one per
slave. This name will also be used for the slave to identify to the cluster, so make a note of
it.

e. For newly-configured hosts which need to join a managed domain, find the <domain-
controller> element. Comment out or remove the <local /> element, and add the
following line, changing the IP address (X.X.X.X) to the address of the domain controller.
This step does not apply for a standalone server.

<remote host="X.X.X.X" port="${jboss.domain.master.port:9999}"
security-realm="ManagementRealm"/>

f. Save the file and exit.

2. Configure authentication for each slave server.
Each slave server needs a username and password created in the domain controller's or
standalone master's ManagementRealm. On the domain controller or standalone master, run
the EAP_HOME/add-user.sh command. Add a user with the same username as the slave, to
the ManagementRealm. When asked if this user will need to authenticate to an external JBoss
AS instance, answer yes. An example of the input and output of the command is below, for a
slave called slave1, with password changeme.

user:bin user$./add-user.sh

What type of user do you wish to add?
 a) Management User (mgmt-users.properties)
 b) Application User (application-users.properties)
(a): a

Enter the details of the new user to add.
Realm (ManagementRealm) :
Username : slave1
Password : changeme
Re-enter Password : changeme
About to add user 'slave1' for realm 'ManagementRealm'
Is this correct yes/no? yes
Added user 'slave1' to file '/home/user/jboss-eap-
6.0/standalone/configuration/mgmt-users.properties'
Added user 'slave1' to file '/home/user/jboss-eap-
6.0/domain/configuration/mgmt-users.properties'
Is this new user going to be used for one AS process to connect to
another AS process e.g. slave domain controller?
yes/no? yes
To represent the user add the following to the server-identities
definition <secret value="Y2hhbmdlbWU=" />

3. Copy the Base64-encoded <secret> element from the add-user.sh output.
If you plan to specify the Base64-encoded password value for authentication, copy the
<secret> element value from the last line of the add-user.sh output as you will need it in the
step below.

4. Modify the slave host's security realm to use the new authentication.

Security Guide

82

a. Re-open the slave host's host.xml or standalone-ha.xml file.

b. Locate the <security-realms> element. This is where you configure the security realm.

c. You can specify the secret value in one of the following ways:

Specify the Base64-encoded password value in the configuration file.

i. Add the following block of XML code directly below the <security-realm
name="ManagementRealm"> line,

<server-identities>
 <secret value="Y2hhbmdlbWU="/>
</server-identities>

ii. Replace the "Y2hhbmdlbWU=" with the secret value returned from the add-
user.sh output in the previous step.

Configure the host to get the password from the vault.

i. Use the vault.sh script to generate a masked password. It will generate a string
like the following:
VAULT::secret::password::ODVmYmJjNGMtZDU2ZC00YmNlLWE4ODMtZjQ1N
WNmNDU4ZDc1TElORV9CUkVBS3ZhdWx0.

You can find more information on the vault in the Password Vaults for Sensitive
Strings section of this guide starting here: Section 3.8.1, “About Securing Sensitive
Strings in Clear-Text Files”.

ii. Add the following block of XML code directly below the <security-realm
name="ManagementRealm"> line.

<server-identities>
 <secret
value="${VAULT::secret::password::ODVmYmJjNGMtZDU2ZC00YmNlL
WE4ODMtZjQ1NWNmNDU4ZDc1TElORV9CUkVBS3ZhdWx0}"/>
</server-identities>

Be sure to replace the secret value with the masked password generated in the
previous step.

NOTE

When creating a password in the vault, it must be specified in plain
text, not Base64-encoded.

Specify the password as a system property.

i. Add the following block of XML code directly below the <security-realm
name="ManagementRealm"> line

<server-identities>

CHAPTER 10. WEB, HTTP CONNECTORS, AND HTTP CLUSTERING

83

 <secret value=${server.identity.password}/>
</server-identities>

ii. When you specify the password as a system property, you can configure the host in
either of the following ways:

Start the server entering the password in plain text as a command line
argument, for example:

-Dserver.identity.password=changeme

NOTE

The password must be entered in plain text and will be visible to
anyone who issues a ps -ef command.

Place the password in a properties file and pass the properties file URL as a
command line argument.

A. Add the key/value pair to a properties file. For example:

server.identity.password=changeme

B. Start the server with the command line arguments

--properties=URL_TO_PROPERTIES_FILE

.

d. Save and exit the file.

5. Restart the server.
The slave will now authenticate to the master using its host name as the username and the
encrypted string as its password.

Report a bug

Security Guide

84

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5223-459099+%5BSpecified%5D&comment=Title%3A+Configure+a+mod_cluster+Worker+Node%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5223-459099+12+Jun+2013+10%3A02+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 11. NETWORK SECURITY

11.1. SECURE THE MANAGEMENT INTERFACES

Summary

In a test environment, it is typical to run JBoss EAP 6 with no security layer on the management
interfaces, comprised of the Management Console, Management CLI, and any other API
implementation. This allows for rapid development and configuration changes.

In addition, a silent authentication mode is present by default, allowing a local client on the host machine
to connect to the Management CLI without requiring a username or password. This behavior is a
convenience for local users and Management CLI scripts, but it can be disabled if required. The
procedure is described in the topic Section 3.5, “Remove Silent Authentication from the Default Security
Realm”.

When you begin testing and preparing your environment to move to production, it is vitally important to
secure the management interfaces by at least the following methods:

Section 11.2, “Specify Which Network Interface JBoss EAP 6 Uses”

Section 11.3, “Configure Network Firewalls to Work with JBoss EAP 6”

Report a bug

11.2. SPECIFY WHICH NETWORK INTERFACE JBOSS EAP 6 USES

Overview

Isolating services so that they are accessible only to the clients who need them increases the security of
your network. JBoss EAP 6 includes two interfaces in its default configuration, both of which bind to the
IP address 127.0.0.1, or localhost, by default. One of the interfaces is called management, and is
used by the Management Console, CLI, and API. The other is called public, and is used to deploy
applications. These interfaces are not special or significant, but are provided as a starting point.

The management interface uses ports 9990 and 9999 by default, and the public interface uses port
8080, or port 8443 if you use HTTPS.

You can change the IP address of the management interface, public interface, or both.

WARNING

If you expose the management interfaces to other network interfaces which are
accessible from remote hosts, be aware of the security implications. Most of the
time, it is not advisable to provide remote access to the management interfaces.

1. Stop JBoss EAP 6.
Stop JBoss EAP 6 by sending an interrupt in the appropriate way for your operating system. If
you are running JBoss EAP 6 as a foreground application, the typical way to do this is to press
Ctrl+C.

CHAPTER 11. NETWORK SECURITY

85

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4703-537642+%5BSpecified%5D&comment=Title%3A+Secure+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4703-537642+17+Sep+2013+10%3A18+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

2. Restart JBoss EAP 6, specifying the bind address.
Use the -b command-line switch to start JBoss EAP 6 on a specific interface.

Example 11.1. Specify the public interface.

EAP_HOME/bin/domain.sh -b 10.1.1.1

Example 11.2. Specify the management interface.

EAP_HOME/bin/domain.sh -bmanagement=10.1.1.1

Example 11.3. Specify different addresses for each interface.

EAP_HOME/bin/domain.sh -bmanagement=127.0.0.1 -b 10.1.1.1

Example 11.4. Bind the public interface to all network interfaces.

EAP_HOME/bin/domain.sh -b 0.0.0.0

It is possible to edit your XML configuration file directly, to change the default bind addresses. However,
if you do this, you will no longer be able to use the -bcommand-line switch to specify an IP address at
run-time, so this is not recommended. If you do decide to do this, be sure to stop JBoss EAP 6
completely before editing the XML file.

Report a bug

11.3. CONFIGURE NETWORK FIREWALLS TO WORK WITH JBOSS
EAP 6

Summary

Most production environments use firewalls as part of an overall network security strategy. If you need
multiple server instances to communicate with each other or with external services such as web servers
or databases, your firewall needs to take this into account. A well-managed firewall only opens the ports
which are necessary for operation, and limits access to the ports to specific IP addresses, subnets, and
network protocols.

A full discussion of firewalls is out of the scope of this documentation.

Prerequisites

Determine the ports you need to open. Refer to Section 11.4, “Network Ports Used By JBoss
EAP 6” to determine the list of ports for your situation.

An understanding of your firewall software is required. This procedure uses the system-
config-firewall command in Red Hat Enterprise Linux 6. Microsoft Windows Server
includes a built-in firewall, and several third-party firewall solutions are available for each

Security Guide

86

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4704-458774+%5BSpecified%5D&comment=Title%3A+Specify+Which+Network+Interface+JBoss+EAP+6+Uses%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4704-458774+11+Jun+2013+14%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

platform.

Assumptions

This procedure configures a firewall in an environment with the following assumptions:

The operating system is Red Hat Enterprise Linux 6.

JBoss EAP 6 runs on host 10.1.1.2. Optionally, the server has its own firewall.

The network firewall server runs on host 10.1.1.1 on interface eth0, and has an external
interface eth1.

You want traffic on port 5445 (a port used by JMS) forwarded to JBoss EAP 6. No other traffic
should be allowed through the network firewall.

Procedure 11.1. Manage Network Firewalls and JBoss EAP 6 to work together

1. Log into the Management Console.
Log into the Management Console. By default, it runs on http://localhost:9990/console/.

2. Determine the socket bindings used by the socket binding group.
Click the Profiles label at the top right of the Management Console. At the left-hand side of the
screen, a series of menus is shown. The bottom menu heading is General Configuration.
Click the Socket Binding Groups item below this heading. The Socket Binding
Declarations screen appears. Initially, the standard-sockets group is shown. You can
choose a different group by selecting it from the combo box on the right-hand side.

NOTE

If you use a standalone server, it has only one socket binding group.

The list of socket names and ports is shown, six values per page. You can go through the pages
by using the arrow navigation below the table.

3. Determine the ports you need to open.
Depending on the function of the particular port and the needs of your environment, some of the
ports may need to be accessible across your firewall. If you are unsure of the purpose of a
socket binding, refer to Section 11.4, “Network Ports Used By JBoss EAP 6” for a list of the
default socket bindings and their purposes.

4. Configure your firewall to forward traffic to JBoss EAP 6.
Perform these steps to configure your network firewall to allow traffic on the desired port.

a. Log into your firewall machine and access a command prompt, as the root user.

b. Issue the command system-config-firewall to launch the firewall configuration utility.
A GUI or command-line utility launches, depending on the way you are logged into the
firewall system. This task makes the assumption that you are logged in via SSH and using
the command-line interface.

c. Use the TAB key on your keyboard to navigate to the Customize button, and press the
ENTER key. The Trusted Services screen appears.

CHAPTER 11. NETWORK SECURITY

87

http://localhost:9990/console/

d. Do not change any values, but use the TAB key to navigate to the Forward button, and
press ENTER to advanced to the next screen. The Other Ports screen appears.

e. Use the TAB key to navigate to the <Add> button, and press ENTER. The Port and
Protocol screen appears.

f. Enter 5445 in the Port / Port Range field, then use the TAB key to move to the
Protocol field, and enter tcp. Use the TAB key to navigate to the OK button, and press
ENTER.

g. Use the TAB key to navigate to the Forward button until you reach the Port Forwarding
screen.

h. Use the TAB key to navigate to the <Add> button, and press the ENTER key.

i. Fill in the following values to set up port forwarding for port 5445.

Source interface: eth1

Protocol: tcp

Port / Port Range: 5445

Destination IP address: 10.1.1.2

Port / Port Range: 5445

Use the TAB key to navigate to the OK button, and press ENTER.

j. Use the TAB key to navigate to the Close button, and press ENTER.

k. Use the TAB key to navigate to the OK button, and press ENTER. To apply the changes, read
the warning and click Yes.

5. Configure a firewall on your JBoss EAP 6 host.
Some organizations choose to configure a firewall on the JBoss EAP 6 server itself, and close all
ports that are not necessary for its operation. Consult Section 11.4, “Network Ports Used By
JBoss EAP 6” and determine which ports to open, then close the rest. The default configuration
of Red Hat Enterprise Linux 6 closes all ports except 22 (used for Secure Shell (SSH) and 5353
(used for multicast DNS). While you are configuring ports, make sure you have physical access
to your server so that you do not inadvertently lock yourself out.

Result

Your firewall is configured to forward traffic to your internal JBoss EAP 6 server in the way you specified
in your firewall configuration. If you chose to enable a firewall on your server, all ports are closed except
the ones needed to run your applications.

Report a bug

11.4. NETWORK PORTS USED BY JBOSS EAP 6

The ports used by the JBoss EAP 6 default configuration depend on several factors:

Whether your server groups use one of the default socket binding groups, or a custom group.

Security Guide

88

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4705-458776+%5BSpecified%5D&comment=Title%3A+Configure+Network+Firewalls+to+Work+with+JBoss+EAP+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4705-458776+11+Jun+2013+14%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The requirements of your individual deployments.

NOTE

A numerical port offset can be configured, to alleviate port conflicts when you run multiple
servers on the same physical server. If your server uses a numerical port offset, add the
offset to the default port number for its server group's socket binding group. For instance,
if the HTTP port of the socket binding group is 8080, and your server uses a port offset of
100, its HTTP port is 8180.

Unless otherwise stated, the ports use the TCP protocol.

The default socket binding groups

full-ha-sockets

full-sockets

ha-sockets

standard-sockets

Table 11.1. Reference of the default socket bindings

Name Port Mulicast
Port

Description full-ha-
sockets

full-
sockets

ha-
socket

standar
d-
socket

ajp 8009 Apache JServ
Protocol. Used for
HTTP clustering and
load balancing.

Yes Yes Yes Yes

http 8080 The default port for
deployed web
applications.

Yes Yes Yes Yes

https 8443 SSL-encrypted
connection between
deployed web
applications and
clients.

Yes Yes Yes Yes

jacorb 3528 CORBA services for
JTS transactions and
other ORB-
dependent services.

Yes Yes No No

jacorb
-ssl

3529 SSL-encrypted
CORBA services.

Yes Yes No No

CHAPTER 11. NETWORK SECURITY

89

jgroup
s-
diagno
stics

7500 Multicast. Used for
peer discovery in HA
clusters.

Yes No Yes No

jgroup
s-
mping

45700 Multicast. Used to
discover initial
membership in a HA
cluster.

Yes No Yes No

jgroup
s-tcp

7600 Unicast peer
discovery in HA
clusters using TCP.

Yes No Yes No

jgroup
s-tcp-
fd

57600 Used for HA failure
detection over TCP.

Yes No Yes No

jgroup
s-udp

55200 45688 Unicast peer
discovery in HA
clusters using UDP.

Yes No Yes No

jgroup
s-udp-
fd

54200 Used for HA failure
detection over UDP.

Yes No Yes No

messag
ing

5445 JMS service. Yes Yes No No

messag
ing-
group

Referenced by
HornetQ JMS
broadcast and
discovery groups.

Yes Yes No No

messag
ing-
throug
hput

5455 Used by JMS
Remoting.

Yes Yes No No

mod_cl
uster

23364 Multicast port for
communication
between JBoss EAP
6 and the HTTP load
balancer.

Yes No Yes No

Name Port Mulicast
Port

Description full-ha-
sockets

full-
sockets

ha-
socket

standar
d-
socket

Security Guide

90

osgi-
http

8090 Used by internal
components which
use the OSGi
subsystem.

Yes Yes Yes Yes

remoti
ng

4447 Used for remote EJB
invocation.

Yes Yes Yes Yes

txn-
recove
ry-
enviro
nment

4712 The JTA transaction
recovery manager.

Yes Yes Yes Yes

txn-
status
-
manage
r

4713 The JTA / JTS
transation manager.

Yes Yes Yes Yes

Name Port Mulicast
Port

Description full-ha-
sockets

full-
sockets

ha-
socket

standar
d-
socket

Management Ports

In addition to the socket binding groups, each host controller opens two more ports for management
purposes:

9990 - The Web Management Console port

9999 - The port used by the Management Console and Management API

Report a bug

CHAPTER 11. NETWORK SECURITY

91

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5377-458778+%5BSpecified%5D&comment=Title%3A+Network+Ports+Used+By+JBoss+EAP+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5377-458778+11+Jun+2013+14%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

PART III. SECURING APPLICATIONS

Security Guide

92

CHAPTER 12. APPLICATION SECURITY

12.1. ENABLING/DISABLING DESCRIPTOR BASED PROPERTY
REPLACEMENT

Summary

Finite control over descriptor property replacement was introduced in jboss-as-ee_1_1.xsd. This
task covers the steps required to configure descriptor based property replacement.

Descriptor based property replacement flags have boolean values:

When set to true, property replacements are enabled.

When set to false, property replacements are disabled.

Procedure 12.1. jboss-descriptor-property-replacement

jboss-descriptor-property-replacement is used to enable or disable property replacement in
the following descriptors:

jboss-ejb3.xml

jboss-app.xml

jboss-web.xml

*-jms.xml

*-ds.xml

The default value for jboss-descriptor-property-replacement is true.

1. In the Management CLI, run the following command to determine the value of jboss-
descriptor-property-replacement:

/subsystem=ee:read-attribute(name="jboss-descriptor-property-
replacement")

2. Run the following command to configure the behavior:

/subsystem=ee:write-attribute(name="jboss-descriptor-property-
replacement",value=VALUE)

Procedure 12.2. spec-descriptor-property-replacement

spec-descriptor-property-replacement is used to enable or disable property replacement in
the following descriptors:

ejb-jar.xml

persistence.xml

CHAPTER 12. APPLICATION SECURITY

93

The default value for spec-descriptor-property-replacement is false.

1. In the Management CLI, run the following command to confirm the value of spec-
descriptor-property-replacement:

/subsystem=ee:read-attribute(name="spec-descriptor-property-
replacement")

2. Run the following command to configure the behavior:

/subsystem=ee:write-attribute(name="spec-descriptor-property-
replacement",value=VALUE)

Result

The descriptor based property replacement tags have been successfully configured.

Report a bug

12.2. DATASOURCE SECURITY

12.2.1. About Datasource Security

The preferred solution for datasource security is the use of either security domains or password vaults.
Examples of each are included below. For more information, refer to:

Security domains: Section 6.1, “About Security Domains”.

Password vaults: Section 3.8.1, “About Securing Sensitive Strings in Clear-Text Files”.

Example 12.1. Security Domain Example

Example 12.2. Password Vault Example

Report a bug

12.3. EJB APPLICATION SECURITY

<security>
 <security-domain>mySecurityDomain</security-domain>
</security>

<security>
 <user-name>admin</user-name>

<password>${VAULT::ds_ExampleDS::password::N2NhZDYzOTMtNWE0OS00ZGQ0LWE4M
mEtMWNlMDMyNDdmNmI2TElORV9CUkVBS3ZhdWx0}</password>
</security>

Security Guide

94

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+9089-431229+%5BSpecified%5D&comment=Title%3A+Enabling%2FDisabling+Descriptor+Based+Property+Replacement%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9089-431229+04+Apr+2013+11%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+9096-330818+%5BSpecified%5D&comment=Title%3A+About+Datasource+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9096-330818+07+Nov+2012+00%3A07+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

12.3.1. Security Identity

12.3.1.1. About EJB Security Identity

The security identity, which is also known as invocation identity, refers to the <security-identity>
tag in the security configuration. It refers to the identity another EJB must use when it invokes methods
on components.

The invocation identity can be either the current caller, or it can be a specific role. In the first case, the
<use-caller-identity> tag is present, and in the second case, the <run-as> tag is used.

For information about setting the security identity of an EJB, refer to Section 12.3.1.2, “Set the Security
Identity of an EJB”.

Report a bug

12.3.1.2. Set the Security Identity of an EJB

Example 12.3. Set the security identity of an EJB to be the same as its caller

This example sets the security identity for method invocations made by an EJB to be the same as the
current caller's identity. This behavior is the default if you do not specify a <security-identity>
element declaration.

Example 12.4. Set the security identity of an EJB to a specific role

To set the security identity to a specific role, use the <run-as> and <role-name> tags inside the
<security-identity> tag.

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <!-- ... -->
 </enterprise-beans>
</ejb-jar>

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>

CHAPTER 12. APPLICATION SECURITY

95

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4713-328592+%5BSpecified%5D&comment=Title%3A+About+EJB+Security+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4713-328592+05+Nov+2012+14%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

By default, when you use <run-as>, a principal named anonymous is assigned to outgoing calls. To
assign a different principal, uses the <run-as-principal>.

NOTE

You can also use the <run-as> and <run-as-principal> elements inside a servlet
element.

See also:

Section 12.3.1.1, “About EJB Security Identity”

Section A.6, “EJB Security Parameter Reference”

Report a bug

12.3.2. EJB Method Permissions

12.3.2.1. About EJB Method Permissions

EJB provides a <method-permisison> element declaration. This declaration sets the roles which are
allowed to invoke an EJB's interface methods. You can specify permissions for the following
combinations:

All home and component interface methods of the named EJB

A specified method of the home or component interface of the named EJB

A specified method within a set of methods with an overloaded name

For examples, see Section 12.3.2.2, “Use EJB Method Permissions”.

Report a bug

12.3.2.2. Use EJB Method Permissions

Overview

The <method-permission> element defines the logical roles that are allowed to access the EJB
methods defined by <method> elements. Several examples demonstrate the syntax of the XML.
Multiple method permission statements may be present, and they have a cumulative effect. The

 </session>
 </enterprise-beans>
 <!-- ... -->
</ejb-jar>

<session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>
</session>

Security Guide

96

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5052-448698+%5BSpecified%5D&comment=Title%3A+Set+the+Security+Identity+of+an+EJB%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5052-448698+13+May+2013+11%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4767-432892+%5BSpecified%5D&comment=Title%3A+About+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4767-432892+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

<method-permission> element is a child of the <assembly-descriptor> element of the <ejb-
jar> descriptor.

The XML syntax is an alternative to using annotations for EJB method permissions.

Example 12.5. Allow roles to access all methods of an EJB

Example 12.6. Allow roles to access only specific methods of an EJB, and limiting which
method parameters can be passed.

Example 12.7. Allow any authenticated user to access methods of EJBs

Using the <unchecked/> element allows any authenticated user to use the specified methods.

<method-permission>
 <description>The employee and temp-employee roles may access any
method
 of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<method-permission>
 <description>The employee role may access the findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String) method of
 the AcmePayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</method-permission>

<method-permission>
 <description>Any authenticated user may access any method of the
 EmployeeServiceHelp bean</description>

CHAPTER 12. APPLICATION SECURITY

97

Example 12.8. Completely exclude specific EJB methods from being used

Example 12.9. A complete <assembly-descriptor> containing several <method-
permission> blocks

 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
</exclude-list>

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may
access any
 method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>The employee role may access the
findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String)
method of
 the AcmePayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>

Security Guide

98

Report a bug

12.3.3. EJB Security Annotations

12.3.3.1. About EJB Security Annotations

EJBs use security annotations to pass information about security to the deployer. These include:

@DeclareRoles

Declares which roles are available.

@SecurityDomain

Specifies the security domain to use for the EJB. If the EJB is annotated for authorization with
@RolesAllowed, authorization will only apply if the EJB is annotated with a security domain.

@RolesAllowed, @PermitAll, @DenyAll

 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <description>The admin role may access any method of the
 EmployeeServiceAdmin bean </description>
 <role-name>admin</role-name>
 <method>
 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>Any authenticated user may access any method
of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring
bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

CHAPTER 12. APPLICATION SECURITY

99

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4794-455574+%5BSpecified%5D&comment=Title%3A+Use+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4794-455574+29+May+2013+13%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Specifies which method permissions are allowed. For information about method permissions, refer to
Section 12.3.2.1, “About EJB Method Permissions”.

@RolesAllowed, @PermitAll, @DenyAll

Specifies which method permissions are allowed. For information about method permissions, refer to
Section 12.3.2.1, “About EJB Method Permissions”.

@RunAs

Configures the propagated security identify of a component.

For more information, refer to Section 12.3.3.2, “Use EJB Security Annotations”.

Report a bug

12.3.3.2. Use EJB Security Annotations

Overview

You can use either XML descriptors or annotations to control which security roles are able to call
methods in your Enterprise JavaBeans (EJBs). For information on using XML descriptors, refer to
Section 12.3.2.2, “Use EJB Method Permissions”.

Annotations for Controlling Security Permissions of EJBs

@DeclareRoles

Use @DeclareRoles to define which security roles to check permissions against. If no
@DeclareRoles is present, the list is built automatically from the @RolesAllowed annotation.

@SecurityDomain

Specifies the security domain to use for the EJB. If the EJB is annotated for authorization with
@RolesAllowed, authorization will only apply if the EJB is annotated with a security domain.

@RolesAllowed, @PermitAll, @DenyAll

Use @RolesAllowed to list which roles are allowed to access a method or methods. Use @PermitAll
or @DenyAll to either permit or deny all roles from using a method or methods.

@RunAs

Use @RunAs to specify a role a method will always be run as.

Example 12.10. Security Annotations Example

@Stateless
@RolesAllowed({"admin"})
@SecurityDomain("other")
public class WelcomeEJB implements Welcome {
 @PermitAll
 public String WelcomeEveryone(String msg) {
 return "Welcome to " + msg;
 }
 @RunAs("tempemployee")

Security Guide

100

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4768-336471+%5BSpecified%5D&comment=Title%3A+About+EJB+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4768-336471+28+Nov+2012+23%3A16+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

In this code, all roles can access method WelcomeEveryone. The GoodBye method runs as the
tempemployee role. Only the admin role can access method GoodbyeAdmin, and any other
methods with no security annotation..

Report a bug

12.3.4. Remote Access to EJBs

12.3.4.1. About Remote Method Access

JBoss Remoting is the framework which provides remote access to EJBs, JMX MBeans, and other
similar services. It works within the following transport types, with or without SSL:

Supported Transport Types

Socket / Secure Socket

RMI / RMI over SSL

HTTP / HTTPS

Servlet / Secure Servlet

Bisocket / Secure Bisocket

JBoss Remoting also provides automatic discovery via Multicast or JNDI.

It is used by many of the subsystems within JBoss EAP 6, and also enables you to design, implement,
and deploy services that can be remotely invoked by clients over several different transport mechanisms.
It also allows you to access existing services in JBoss EAP 6.

Data Marshalling

The Remoting system also provides data marshalling and unmarshalling services. Data marshalling
refers to the ability to safely move data across network and platform boundaries, so that a separate
system can perform work on it. The work is then sent back to the original system and behaves as though
it were handled locally.

Architecture Overview

When you design a client application which uses Remoting, you direct your application to communicate
with the server by configuring it to use a special type of resource locator called an InvokerLocator,
which is a simple String with a URL-type format. The server listens for requests for remote resources on
a connector, which is configured as part of the remoting subsystem. The connector hands the
request off to a configured ServerInvocationHandler. Each ServerInvocationHandler
implements a method invoke(InvocationRequest), which knows how to handle the request.

 public String GoodBye(String msg) {
 return "Goodbye, " + msg;
 }
 public String
 public String GoodbyeAdmin(String msg) {
 return "See you later, " + msg;
 }
}

CHAPTER 12. APPLICATION SECURITY

101

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4795-336485+%5BSpecified%5D&comment=Title%3A+Use+EJB+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4795-336485+28+Nov+2012+23%3A27+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The JBoss Remoting framework contains three layers that mirror each other on the client and server
side.

JBoss Remoting Framework Layers

The user interacts with the outer layer. On the client side, the outer layer is the Client class,
which sends invocation requests. On the server side, it is the InvocationHandler, which is
implemented by the user and receives invocation requests.

The transport is controlled by the invoker layer.

The lowest layer contains the marshaller and unmarshaller, which convert data formats to wire
formats.

Report a bug

12.3.4.2. About Remoting Callbacks

When a Remoting client requests information from the server, it can block and wait for the server to
reply, but this is often not the ideal behavior. To allow the client to listen for asynchronous events on the
server, and continue doing other work while waiting for the server to finish the request, your application
can ask the server to send a notification when it has finished. This is referred to as a callback. One client
can add itself as a listener for asynchronous events generated on behalf of another client, as well. There
are two different choices for how to receive callbacks: pull callbacks or push callbacks. Clients check for
pull callbacks synchronously, but passively listen for push callbacks.

In essence, a callback works by the server sending an InvocationRequest to the client. Your server-
side code works the same regardless of whether the callback is synchronous or asynchronous. Only the
client needs to know the difference. The server's InvocationRequest sends a responseObject to the
client. This is the payload that the client has requested. This may be a direct response to a request or an
event notification.

Your server also tracks listeners using an m_listeners object. It contains a list of all listeners that have
been added to your server handler. The ServerInvocationHandler interface includes methods that
allow you to manage this list.

The client handles pull and push callback in different ways. In either case, it must implement a callback
handler. A callback handler is an implementation of interface
org.jboss.remoting.InvokerCallbackHandler, which processes the callback data. After
implementing the callback handler, you either add yourself as a listener for a pull callback, or implement
a callback server for a push callback.

Pull Callbacks

For a pull callback, your client adds itself to the server's list of listeners using the
Client.addListener() method. It then polls the server periodically for synchronous delivery of
callback data. This poll is performed using the Client.getCallbacks().

Push Callback

A push callback requires your client application to run its own InvocationHandler. To do this, you need to
run a Remoting service on the client itself. This is referred to as a callback server. The callback server
accepts incoming requests asynchronously and processes them for the requester (in this case, the
server). To register your client's callback server with the main server, pass the callback server's
InvokerLocator as the second argument to the addListener method.

Report a bug

Security Guide

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7882-466868+%5BSpecified%5D&comment=Title%3A+About+Remote+Method+Access%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7882-466868+20+Jun+2013+01%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7883-432927+%5BSpecified%5D&comment=Title%3A+About+Remoting+Callbacks%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7883-432927+11+Apr+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

12.3.4.3. About Remoting Server Detection

Remoting servers and clients can automatically detect each other using JNDI or Multicast. A Remoting
Detector is added to both the client and server, and a NetworkRegistry is added to the client.

The Detector on the server side periodically scans the InvokerRegistry and pulls all server invokers it
has created. It uses this information to publish a detection message which contains the locator and
subsystems supported by each server invoker. It publishes this message via a multicast broadcast or a
binding into a JNDI server.

On the client side, the Detector receives the multicast message or periodically polls the JNDI server to
retrieve detection messages. If the Detector notices that a detection message is for a newly-detected
remoting server, it registers it into the NetworkRegistry. The Detector also updates the NetworkRegistry
if it detects that a server is no longer available.

Report a bug

12.3.4.4. Configure the Remoting Subsystem

Overview

JBoss Remoting has three top-level configurable elements: the worker thread pool, one or more
connectors, and a series of local and remote connection URIs. This topic presents an explanation of
each configurable item, example CLI commands for how to configure each item, and an XML example of
a fully-configured subsystem. This configuration only applies to the server. Most people will not need to
configure the Remoting subsystem at all, unless they use custom connectors for their own applications.
Applications which act as Remoting clients, such as EJBs, need separate configuration to connect to a
specific connector.

NOTE

The Remoting subsystem configuration is not exposed to the web-based Management
Console, but it is fully configurable from the command-line based Management CLI.
Editing the XML by hand is not recommended.

Adapting the CLI Commands

The CLI commands are formulated for a managed domain, when configuring the default profile. To
configure a different profile, substitute its name. For a standalone server, omit the /profile=default
part of the command.

Configuration Outside the Remoting Subsystem

There are a few configuration aspects which are outside of the remoting subsystem:

Network Interface

The network interface used by the remoting subsystem is the unsecure interface defined in the
domain/configuration/domain.xml or standalone/configuration/standalone.xml.

<interfaces>
 <interface name="management"/>
 <interface name="public"/>
 <interface name="unsecure"/>
</interfaces>

CHAPTER 12. APPLICATION SECURITY

103

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7890-432929+%5BSpecified%5D&comment=Title%3A+About+Remoting+Server+Detection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7890-432929+11+Apr+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The per-host definition of the unsecure interface is defined in the host.xml in the same directory
as the domain.xml or standalone.xml. This interface is also used by several other subsystems.
Exercise caution when modifying it.

socket-binding

The default socket-binding used by the remoting subsystem binds to TCP port 4777. Refer to the
documentation about socket bindings and socket binding groups for more information if you need to
change this.

Remoting Connector Reference for EJB

The EJB subsystem contains a reference to the remoting connector for remote method invocations.
The following is the default configuration:

Secure Transport Configuration

Remoting transports use StartTLS to use a secure (HTTPS, Secure Servlet, etc) connection if the
client requests it. The same socket binding (network port) is used for secured and unsecured
connections, so no additional server-side configuration is necessary. The client requests the secure
or unsecured transport, as its needs dictate. JBoss EAP 6 components which use Remoting, such as
EJBs, the ORB, and the JMS provider, request secured interfaces by default.

WARNING

StartTLS works by activating a secure connection if the client requests it, and
otherwise defaulting to an unsecured connection. It is inherently susceptible to a
Man in the Middle style exploit, wherein an attacker intercepts the client's request
and modifies it to request an unsecured connection. Clients must be written to fail
appropriately if they do not receive a secure connection, unless an unsecured
connection actually is an appropriate fall-back.

<interfaces>
 <interface name="management">
 <inet-address
value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
 <interface name="unsecure">
 <!-- Used for IIOP sockets in the standard configuration.
 To secure JacORB you need to setup SSL -->
 <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}"/>
 </interface>
</interfaces>

<remote connector-ref="remoting-connector" thread-pool-name="default"/>

Security Guide

104

Worker Thread Pool

The worker thread pool is the group of threads which are available to process work which comes in
through the Remoting connectors. It is a single element <worker-thread-pool>, and takes several
attributes. Tune these attributes if you get network timeouts, run out of threads, or need to limit memory
usage. Specific recommendations depend on your specific situation. Contact Red Hat Global Support
Services for more information.

Table 12.1. Worker Thread Pool Attributes

Attribute Description CLI Command

read-threads The number of read threads to
create for the remoting worker.
Defaults to 1.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
read-threads,value=1)

write-threads The number of write threads to
create for the remoting worker.
Defaults to 1.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
write-threads,value=1)

task-keepalive The number of milliseconds to
keep non-core remoting worker
task threads alive. Defaults to 60.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
task-
keepalive,value=60)

task-max-threads The maximum number of threads
for the remoting worker task
thread pool. Defaults to 16.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
task-max-
threads,value=16)

task-core-threads The number of core threads for
the remoting worker task thread
pool. Defaults to 4.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
task-core-
threads,value=4)

task-limit The maximum number of
remoting worker tasks to allow
before rejecting. Defaults to
16384.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
task-limit,value=16384)

Connector

The connector is the main Remoting configuration element. Multiple connectors are allowed. Each
consists of a element <connector> element with several sub-elements, as well as a few possible
attributes. The default connector is used by several subsystems of JBoss EAP 6. Specific settings for the
elements and attributes of your custom connectors depend on your applications, so contact Red Hat
Global Support Services for more information.

Table 12.2. Connector Attributes

CHAPTER 12. APPLICATION SECURITY

105

Attribute Description CLI Command

socket-binding The name of the socket binding to
use for this connector.

/profile=default/subsys
tem=remoting/connector=
remoting-
connector/:write-
attribute(name=socket-
binding,value=remoting)

authentication-provider The Java Authentication Service
Provider Interface for Containers
(JASPIC) module to use with this
connector. The module must be in
the classpath.

/profile=default/subsys
tem=remoting/connector=
remoting-
connector/:write-
attribute(name=authenti
cation-
provider,value=myProvid
er)

security-realm Optional. The security realm
which contains your application's
users, passwords, and roles. An
EJB or Web Application can
authenticate against a security
realm. ApplicationRealm is
available in a default JBoss EAP 6
installation.

/profile=default/subsys
tem=remoting/connector=
remoting-
connector/:write-
attribute(name=security
-
realm,value=Application
Realm)

Table 12.3. Connector Elements

Attribute Description CLI Command

sasl Enclosing element for Simple
Authentication and Security Layer
(SASL) authentication
mechanisms

N/A

properties Contains one or more
<property> elements, each
with a name attribute and an
optional value attribute.

/profile=default/subsys
tem=remoting/connector=
remoting-
connector/property=myPr
op/:add(value=myPropVal
ue)

Outbound Connections

You can specify three different types of outbound connection:

Outbound connection to a URI.

Local outbound connection – connects to a local resource such as a socket.

Remote outbound connection – connects to a remote resource and authenticates using a
security realm.

All of the outbound connections are enclosed in an <outbound-connections> element. Each of these

Security Guide

106

connection types takes an outbound-socket-binding-ref attribute. The outbound-connection
takes a uri attribute. The remote outbound connection takes optional username and security-
realm attributes to use for authorization.

Table 12.4. Outbound Connection Elements

Attribute Description CLI Command

outbound-connection Generic outbound connection. /profile=default/subsys
tem=remoting/outbound-
connection=my-
connection/:add(uri=htt
p://my-connection)

local-outbound-connection Outbound connection with a
implicit local:// URI scheme.

/profile=default/subsys
tem=remoting/local-
outbound-connection=my-
connection/:add(outboun
d-socket-binding-
ref=remoting2)

remote-outbound-connection Outbound connections for
remote:// URI scheme, using
basic/digest authentication with a
security realm.

/profile=default/subsys
tem=remoting/remote-
outbound-connection=my-
connection/:add(outboun
d-socket-binding-
ref=remoting,username=m
yUser,security-
realm=ApplicationRealm)

SASL Elements

Before defining the SASL child elements, you need to create the initial SASL element. Use the following
command:

/profile=default/subsystem=remoting/connector=remoting-
connector/security=sasl:add

The child elements of the SASL element are described in the table below.

Attribute Description CLI Command

include-mechanisms Contains a value attribute,
which is a space-separated list of
SASL mechanisms.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=inclu
de-mechanisms,value=
["DIGEST","PLAIN","G
SSAPI"])

CHAPTER 12. APPLICATION SECURITY

107

qop Contains a value attribute,
which is a space-separated list of
SASL Quality of protection values,
in decreasing order of preference.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=qop,v
alue=["auth"])

strength Contains a value attribute,
which is a space-separated list of
SASL cipher strength values, in
decreasing order of preference.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=stren
gth,value=
["medium"])

reuse-session Contains a value attribute which
is a boolean value. If true, attempt
to reuse sessions.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=reuse
-
session,value=false)

server-auth Contains a value attribute which
is a boolean value. If true, the
server authenticates to the client.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=serve
r-auth,value=false)

policy An enclosing element which
contains zero or more of the
following elements, which each
take a single value.

forward-secrecy –
whether mechanisms are
required to implement
forward secrecy
(breaking into one
session will not
automatically provide
information for breaking
into future sessions)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:add

/profile=default/sub
system=remoting/conn
ector=remoting-

Attribute Description CLI Command

Security Guide

108

no-active – whether
mechanisms susceptible
to non-dictionary attacks
are permitted. A value of
false permits, and
true denies.

no-anonymous – whether
mechanisms that accept
anonymous login are
permitted. A value of
false permits, and
true denies.

no-dictionary – whether
mechanisms susceptible
to passive dictionary
attacks are allowed. A
value of false permits,
and true denies.

no-plain-text – whether
mechanisms which are
susceptible to simple
plain passive attacks are
allowed. A value of
false permits, and
true denies.

pass-credentials –
whether mechanisms
which pass client
credentials are allowed.

connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=forwa
rd-
secrecy,value=true)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=no-
active,value=false)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=no-
anonymous,value=fals
e)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=no-
dictionary,value=tru
e)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=no-
plain-
text,value=false)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-

Attribute Description CLI Command

CHAPTER 12. APPLICATION SECURITY

109

attribute(name=pass-
credentials,value=tr
ue)properties Contains one or more

<property> elements, each
with a name attribute and an
optional value attribute.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/property=myprop:
add(value=1)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/property=myprop2
:add(value=2)

Attribute Description CLI Command

Example 12.11. Example Configurations

This example shows the default remoting subsystem that ships with JBoss EAP 6.

This example contains many hypothetical values, and is presented to put the elements and attributes
discussed previously into context.

<subsystem xmlns="urn:jboss:domain:remoting:1.1">
 <connector name="remoting-connector" socket-binding="remoting"
security-realm="ApplicationRealm"/>
</subsystem>

<subsystem xmlns="urn:jboss:domain:remoting:1.1">
 <worker-thread-pool read-threads="1" task-keepalive="60' task-max-
threads="16" task-core-thread="4" task-limit="16384" write-threads="1"
/>
 <connector name="remoting-connector" socket-binding="remoting"
security-realm="ApplicationRealm">
 <sasl>
 <include-mechanisms value="GSSAPI PLAIN DIGEST-MD5" />
 <qop value="auth" />
 <strength value="medium" />
 <reuse-session value="false" />
 <server-auth value="false" />
 <policy>
 <forward-secrecy value="true" />
 <no-active value="false" />
 <no-anonymous value="false" />
 <no-dictionary value="true" />
 <no-plain-text value="false" />
 <pass-credentials value="true" />
 </policy>
 <properties>
 <property name="myprop1" value="1" />
 <property name="myprop2" value="2" />

Security Guide

110

Configuration Aspects Not Yet Documented

JNDI and Multicast Automatic Detection

Report a bug

12.3.4.5. Use Security Realms with Remote EJB Clients

One way to add security to clients which invoke EJBs remotely is to use security realms. A security
realm is a simple database of username/password pairs and username/role pairs. The terminology is
also used in the context of web containers, with a slightly different meaning.

To authenticate an EJB to a specific username and password which exists in a security realm, follow
these steps:

Add a new security realm to the domain controller or standalone server.

Add the following parameters to the jboss-ejb-client.properties file, which is in the
classpath of the application. This example assumes the connection is referred to as default by
the other parameters in the file.

Create a custom Remoting connector on the domain or standalone server, which uses your new
security realm.

Deploy your EJB to the server group which is configured to use the profile with the custom
Remoting connector, or to your standalone server if you are not using a managed domain.

Report a bug

12.3.4.6. Add a New Security Realm

1. Run the Management CLI.

 </properties>
 </sasl>
 <authentication-provider name="myprovider" />
 <properties>
 <property name="myprop3" value="propValue" />
 </properties>
 </connector>
 <outbound-connections>
 <outbound-connection name="my-outbound-connection"
uri="http://myhost:7777/"/>
 <remote-outbound-connection name="my-remote-connection"
outbound-socket-binding-ref="my-remote-socket" username="myUser"
security-realm="ApplicationRealm"/>
 <local-outbound-connection name="myLocalConnection" outbound-
socket-binding-ref="my-outbound-socket"/>
 </outbound-connections>
</subsystem>

remote.connection.default.username=appuser
remote.connection.default.password=apppassword

CHAPTER 12. APPLICATION SECURITY

111

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7884-460018+%5BSpecified%5D&comment=Title%3A+Configure+the+Remoting+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7884-460018+14+Jun+2013+14%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8270-432931+%5BSpecified%5D&comment=Title%3A+Use+Security+Realms+with+Remote+EJB+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8270-432931+11+Apr+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Start the jboss-cli.sh or jboss-cli.bat command and connect to the server.

2. Create the new security realm itself.
Run the following command to create a new security realm named MyDomainRealm on a
domain controller or a standalone server.

/host=master/core-service=management/security-
realm=MyDomainRealm:add()

3. Create the references to the properties file which will store information about the new
role.
Run the following command to create a pointer a file named myfile.properties, which will
contain the properties pertaining to the new role.

NOTE

The newly-created properties file is not managed by the included add-user.sh
and add-user.bat scripts. It must be managed externally.

/host=master/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.proper
ties)

Result

Your new security realm is created. When you add users and roles to this new realm, the information will
be stored in a separate file from the default security realms. You can manage this new file using your
own applications or procedures.

Report a bug

12.3.4.7. Add a User to a Security Realm

1. Run the add-user.sh or add-user.bat command.
Open a terminal and change directories to the EAP_HOME/bin/ directory. If you run Red Hat
Enterprise Linux or another UNIX-like operating system, run add-user.sh. If you run Microsoft
Windows Server, run add-user.bat.

2. Choose whether to add a Management User or Application User.
For this procedure, type b to add an Application User.

3. Choose the realm the user will be added to.
By default, the only available realm is ApplicationRealm. If you have added a custom realm,
you can type its name instead.

4. Type the username, password, and roles, when prompted.
Type the desired username, password, and optional roles when prompted. Verify your choice by
typing yes, or type no to cancel the changes. The changes are written to each of the properties
files for the security realm.

Report a bug

12.3.4.8. About Remote EJB Access Using SSL Encryption

Security Guide

112

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8272-455581+%5BSpecified%5D&comment=Title%3A+Add+a+New+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8272-455581+29+May+2013+13%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+8271-450875+%5BSpecified%5D&comment=Title%3A+Add+a+User+to+a+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8271-450875+21+May+2013+14%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

By default, the network traffic for Remote Method Invocation (RMI) of EJB2 and EJB3 Beans is not
encrypted. In instances where encryption is required, Secure Sockets Layer (SSL) can be utilized so that
the connection between the client and server is encrypted. Using SSL also has the added benefit of
allowing the network traffic to traverse firewalls that block the RMI port.

Report a bug

12.4. JAX-RS APPLICATION SECURITY

12.4.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

Summary

RESTEasy supports the @RolesAllowed, @PermitAll, and @DenyAll annotations on JAX-RS methods.
However, it does not recognize these annotations by default. Follow these steps to configure the
web.xml file and enable role-based security.

WARNING

Do not activate role-based security if the application uses EJBs. The EJB container
will provide the functionality, instead of RESTEasy.

Procedure 12.3. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

1. Open the web.xml file for the application in a text editor.

2. Add the following <context-param> to the file, within the web-app tags:

<context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
</context-param>

3. Declare all roles used within the RESTEasy JAX-RS WAR file, using the <security-role> tags:

<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>

4. Authorize access to all URLs handled by the JAX-RS runtime for all roles:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/PATH</url-pattern>
 </web-resource-collection>

CHAPTER 12. APPLICATION SECURITY

113

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4786-432898+%5BSpecified%5D&comment=Title%3A+About+Remote+EJB+Access+Using+SSL+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4786-432898+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

 <auth-constraint>
 <role-name>ROLE_NAME</role-name>
 <role-name>ROLE_NAME</role-name>
 </auth-constraint>
</security-constraint>

Result

Role-based security has been enabled within the application, with a set of defined roles.

Example 12.12. Example Role-Based Security Configuration

Report a bug

12.4.2. Secure a JAX-RS Web Service using Annotations

Summary

This topic covers the steps to secure a JAX-RS web service using the supported security annotations

Procedure 12.4. Secure a JAX-RS Web Service using Supported Security Annotations

<web-app>

 <context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
 </context-param>

 <servlet-mapping>
 <servlet-name>Resteasy</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/security</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>

</web-app>

Security Guide

114

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5945-431989+%5BSpecified%5D&comment=Title%3A+Enable+Role-Based+Security+for+a+RESTEasy+JAX-RS+Web+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5945-431989+08+Apr+2013+16%3A03+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

1. Enable role-based security. For more information, refer to: Section 12.4.1, “Enable Role-Based
Security for a RESTEasy JAX-RS Web Service”

2. Add security annotations to the JAX-RS web service. RESTEasy supports the following
annotations:

@RolesAllowed

Defines which roles can access the method. All roles should be defined in the web.xml file.

@PermitAll

Allows all roles defined in the web.xml file to access the method.

@DenyAll

Denies all access to the method.

Report a bug

12.5. SECURE REMOTE PASSWORD PROTOCOL

12.5.1. About Secure Remote Password Protocol (SRP)

The Secure Remote Password (SRP) protocol is an implementation of a public key exchange
handshake described in the Internet Standards Working Group Request For Comments 2945
(RFC2945). The RFC2945 abstract states:

This document describes a cryptographically strong network authentication mechanism
known as the Secure Remote Password (SRP) protocol. This mechanism is suitable for
negotiating secure connections using a user-supplied password, while eliminating the
security problems traditionally associated with reusable passwords. This system also
performs a secure key exchange in the process of authentication, allowing security
layers (privacy and/or integrity protection) to be enabled during the session. Trusted key
servers and certificate infrastructures are not required, and clients are not required to
store or manage any long-term keys. SRP offers both security and deployment
advantages over existing challenge-response techniques, making it an ideal drop-in
replacement where secure password authentication is needed.

The complete RFC2945 specification can be obtained from http://www.rfc-editor.org/rfc.html. Additional
information on the SRP algorithm and its history can be found at http://srp.stanford.edu/.

Algorithms like Diffie-Hellman and RSA are known as public key exchange algorithms. The concept of
public key algorithms is that you have two keys, one public that is available to everyone, and one that is
private and known only to you. When someone wants to send encrypted information to you, they encrypt
the information using your public key. Only you are able to decrypt the information using your private key.
Contrast this with the more traditional shared password based encryption schemes that require the
sender and receiver to know the shared password. Public key algorithms eliminate the need to share
passwords.

Report a bug

12.5.2. Configure Secure Remote Password (SRP) Protocol

CHAPTER 12. APPLICATION SECURITY

115

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+6095-431984+%5BSpecified%5D&comment=Title%3A+Secure+a+JAX-RS+Web+Service+using+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6095-431984+08+Apr+2013+15%3A59+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4776-328676+%5BSpecified%5D&comment=Title%3A+About+Secure+Remote+Password+Protocol+%28SRP%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4776-328676+05+Nov+2012+15%3A17+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

To use Secure Remote Password (SRP) Protocol in your application, you first create an MBean which
implements the SRPVerifierStore interface. Information about the implementation is provided in The
SRPVerifierStore Implementation.

Procedure 12.5. Integrate the Existing Password Store

1. Create the hashed password information store.
If your passwords are already stored in an irreversible hashed form, you need to do this on a
per-user basis.

You can implement setUserVerifier(String, VerifierInfo) as a noOp method, or a
method that throws an exception stating that the store is read-only.

2. Create the SRPVerifierStore interface.
Create a custom SRPVerifierStore interface implementation that can obtain the
VerifierInfo from the store you created.

The verifyUserChallenge(String, Object) can be used to integrate existing hardware
token based schemes like SafeWord or Radius into the SRP algorithm. This interface method is
called only when the client SRPLoginModule configuration specifies the hasAuxChallenge
option.

3. Create the JNDI MBean.
Create a MBean that exposes the SRPVerifierStore interface available to JNDI, and
exposes any configurable parameters required.

The default org.jboss.security.srp.SRPVerifierStoreService allows you to
implement this. You can also implement the MBean using a Java properties file implementation
of SRPVerifierStore.

The SRPVerifierStore Implementation

The default implementation of the SRPVerifierStore interface is not recommended for production
systems, becauase it requires all password hash information to be available as a file of serialized
objects.

The SRPVerifierStore implementation provides access to the
SRPVerifierStore.VerifierInfo object for a given username. The getUserVerifier(String)
method is called by the SRPService at the start of a user SRP session to obtain the parameters needed
by the SRP algorithm.

Elements of a VerifierInfo Object

username

The username or user ID used to authenticate

verifier

A one-way hash of the password the user enters as proof of identity. The
org.jboss.security.Util class includes a calculateVerifier method which performs the
password hashing algorithm. The output password takes the form H(salt | H(username | ':'
| password)), where H is the SHA secure hash function as defined by RFC2945. The username is
converted from a string to a byte[] using UTF-8 encoding.

salt

Security Guide

116

A random number used to increase the difficulty of a brute force dictionary attack on the verifier
password database in the event that the database is compromised. The value should be generated
from a cryptographically strong random number algorithm when the user's existing clear-text
password is hashed.

g

The SRP algorithm primitive generator. This can be a well known fixed parameter rather than a per-
user setting. The org.jboss.security.srp.SRPConf utility class provides several settings for g,
including a suitable default obtained via SRPConf.getDefaultParams().g().

N

The SRP algorithm safe-prime modulus. This can be a well-known fixed parameter rather than a per-
user setting. The org.jboss.security.srp.SRPConf utility class provides several settings for N
including a good default obtained via SRPConf.getDefaultParams().N().

Example 12.13. The SRPVerifierStore Interface

Report a bug

package org.jboss.security.srp;

import java.io.IOException;
import java.io.Serializable;
import java.security.KeyException;

public interface SRPVerifierStore
{
 public static class VerifierInfo implements Serializable
 {

 public String username;

 public byte[] salt;
 public byte[] g;
 public byte[] N;
 }

 public VerifierInfo getUserVerifier(String username)
 throws KeyException, IOException;

 public void setUserVerifier(String username, VerifierInfo info)
 throws IOException;

 public void verifyUserChallenge(String username, Object
auxChallenge)
 throws SecurityException;
}

CHAPTER 12. APPLICATION SECURITY

117

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4777-455583+%5BSpecified%5D&comment=Title%3A+Configure+Secure+Remote+Password+%28SRP%29+Protocol%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4777-455583+29+May+2013+13%3A30+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 13. SINGLE SIGN ON (SSO)

13.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS

Overview

Single Sign On (SSO) allows authentication to one resource to implicitly authorize access to other
resources.

Clustered and Non-Clustered SSO

Non-clustered SSO limits the sharing of authorization information to applications on the same virtual
host. In addition, there is no resiliency in the event of a host failure. Clustered SSO data can be shared
between applications in multiple virtual hosts, and is resilient to failover. In addition, clustered SSO is
able to receive requests from a load balancer.

How SSO Works

If a resource is unprotected, a user is not challenged to authenticate at all. If a user accesses a protected
resource, the user is required to authenticate.

Upon successful authentication, the roles associated with the user are stored and used for authorization
of all other associated resources.

If the user logs out of an application, or an application invalidates the session programmatically, all
persisted authorization data is removed, and the process starts over.

A session timeout does not invalidate the SSO session if other sessions are still valid.

Limitations of SSO

No propagation across third-party boundaries.

SSO can only be used between applications deployed within JBoss EAP 6 containers.

Container-managed authentication only.

You must use container-managed authentication elements such as <login-config> in your
application's web.xml.

Requires cookies.

SSO is maintained via browser cookies and URL rewriting is not supported.

Realm and security-domain limitations

Unless the requireReauthentication parameter is set to true, all web applications configured
for the same SSO valve must share the same Realm configuration in web.xml and the same
security domain.

You can nest the Realm element inside the Host element or the surrounding Engine element, but not
inside a context.xml element for one of the involved web applications.

The <security-domain> configured in the jboss-web.xml must be consistent across all web
applications.

All security integrations must accept the same credentials (for instance, username and password).

Security Guide

118

Report a bug

13.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB
APPLICATIONS

Single Sign On (SSO) is the ability for users to authenticate to a single web application, and by means of
a successful authentication, to be granted authorization to multiple other applications. Clustered SSO
stores the authentication and authorization information in a clustered cache. This allows for applications
on multiple different servers to share the information, and also makes the information resilient to a failure
of one of the hosts.

A SSO configuration is called a valve. A valve is connected to a security domain, which is configured at
the level of the server or server group. Each application which should share the same cached
authentication information is configured to use the same valve. This configuration is done in the
application's jboss-web.xml.

Some common SSO valves supported by the web subsystem of JBoss EAP 6 include:

Apache Tomcat ClusteredSingleSignOn

Apache Tomcat IDPWebBrowserSSOValve

SPNEGO-based SSO provided by PicketLink

Depending on the specific type of valve, you may need to do some additional configuration in your
security domain, in order for your valve to work properly.

Report a bug

13.3. CHOOSE THE RIGHT SSO IMPLEMENTATION

JBoss EAP 6 runs Java Enterprise Edition (EE) applications, which may be web applications, EJB
applications, web services, or other types. Single Sign On (SSO) allows you to propagate security
context and identity information between these applications. Depending on your organization's needs, a
few different SSO solutions are available. The solution you use depends on whether you use web
applications, EJB applications, or web services; whether your applications run on the same server,
multiple non-clustered servers, or multiple clustered servers; and whether you need to integrate into a
desktop-based authentication system or you only need authentication between your applications
themselves.

Kerberos-Based Desktop SSO

If your organization already uses a Kerberos-based authentication and authorization system, such as
Microsoft Active Directory, you can use the same systems to transparently authenticate to your
enterprise applications running in JBoss EAP 6.

Non-Clustered and Web Application SSO

If you need to propagate security information among applications which run within the same server group
or instance, you can use non-clustered SSO. This only involves configuring the valve in your
application's jboss-web.xml descriptor.

Clustered Web Application SSO

If you need to propagate security information among applications running in a clustered environment
across multiple JBoss EAP 6 instances, you can use the clustered SSO valve. This is configured in your
application's jboss-web.xml.

CHAPTER 13. SINGLE SIGN ON (SSO)

119

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4694-460020+%5BSpecified%5D&comment=Title%3A+About+Single+Sign+On+%28SSO%29+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4694-460020+14+Jun+2013+14%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4696-460022+%5BSpecified%5D&comment=Title%3A+About+Clustered+Single+Sign+On+%28SSO%29+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4696-460022+14+Jun+2013+14%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Report a bug

13.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION

Overview

Single Sign On (SSO) capabilities are provided by the web and Infinispan subsystems. Use this
procedure to configure SSO in web applications.

Prerequisites

You need to have a configured security domain which handles authentication and authorization.

The infinispan subsystem needs to be present. It is present in the full-ha profile for a
managed domain, or by using the standalone-full-ha.xml configuration in a standalone
server.

The web cache-container and SSO cache-container must each be present. The initial
configuration files already contain the web cache-container, and some of the configurations
already contain the SSO cache-container as well. Use the following commands to check for and
enable the SSO cache container. Note that these commands modify the ha profile of a managed
domain. You can change the commands to use a different profile, or remove the
/profile=full portion of the command, for a standalone server.

Example 13.1. Check for the web cache-container

The profiles and configurations mentioned above include the web cache-container by default.
Use the following command to verify its presence. If you use a different profile, substitute its
name instead of ha.

/profile=ha/subsystem=infinispan/cache-container=web/:read-
resource(recursive=false,proxies=false,include-
runtime=false,include-defaults=true)

If the result is success the subsystem is present. Otherwise, you need to add it.

Example 13.2. Add the web cache-container

Use the following three commands to enable the web cache-container to your configuration.
Modify the name of the profile as appropriate, as well as the other parameters. The
parameters here are the ones used in a default configuration.

/profile=ha/subsystem=infinispan/cache-container=web:add(aliases=
["standard-session-cache"],default-
cache="repl",module="org.jboss.as.clustering.web.infinispan")

/profile=ha/subsystem=infinispan/cache-
container=web/transport=TRANSPORT:add(lock-timeout=60000)

/profile=ha/subsystem=infinispan/cache-container=web/replicated-
cache=repl:add(mode="ASYNC",batching=true)

Security Guide

120

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7502-460023+%5BSpecified%5D&comment=Title%3A+Choose+the+Right+SSO+Implementation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7502-460023+14+Jun+2013+14%3A41+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Example 13.3. Check for the SSO cache-container

Run the following Management CLI command:

/profile=ha/subsystem=infinispan/cache-container=web/:read-
resource(recursive=true,proxies=false,include-
runtime=false,include-defaults=true)

Look for output like the following: "sso" => {

If you do not find it, the SSO cache-container is not present in your configuration.

Example 13.4. Add the SSO cache-container

/profile=ha/subsystem=infinispan/cache-container=web/replicated-
cache=sso:add(mode="SYNC", batching=true)

The web subsystem needs to be configured to use SSO. The following command enables SSO
on the virtual server called default-host, and the cookie domain domain.com. The cache
name is sso, and reauthentication is disabled.

/profile=ha/subsystem=web/virtual-server=default-
host/sso=configuration:add(cache-container="web",cache-
name="sso",reauthenticate="false",domain="domain.com")

Each application which will share the SSO information needs to be configured to use the same
<security-domain> in its jboss-web.xml deployment descriptor and the same Realm in its
web.xml configuration file.

Differences Between Clustered and Non-Clustered SSO Valves

Clustered SSO allows sharing of authentication between separate hosts, while non-clustered SSO does
not. The clustered and non-clustered SSO valves are configured the same way, but the clustered SSO
includes the cacheConfig, processExpiresInterval and maxEmptyLife parameters, which
control the clustering replication of the persisted data.

Example 13.5. Example Clustered SSO Configuration

Because clustered and non-clustered SSO configurations are so similar, only a clustered
configuration is shown. This example uses a security domain called tomcat.

<jboss-web>
 <security-domain>tomcat</security-domain>
 <valve>
 <class-
name>org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn</class-name>
 <param>
 <param-name>maxEmptyLife</param-name>
 <param-value>900</param-value>
 </param>

CHAPTER 13. SINGLE SIGN ON (SSO)

121

Table 13.1. SSO Configuration Options

Option Description

cookieDomain The host domain to be used for SSO cookies. The
default is /. To allow app1.xyz.com and
app2.xyz.com to share SSO cookies, you could
set the cookieDomain to xyz.com.

maxEmptyLife Clustered SSO only. The maximum number of
seconds an SSO valve with no active sessions will
be usable by a request, before expiring. A positive
value allows proper handling of shutdown of a node if
it is the only one with active sessions attached to the
valve. If maxEmptyLife is set to 0, the valve
terminates at the same time as the local session
copies, but backup copies of the sessions, from
clustered applications, are available to other cluster
nodes. Allowing the valve to live beyond the life of its
managed sessions gives the user time to make
another request which can then fail over to a different
node, where it activates the backup copy of the
session. Defaults to 1800 seconds (30 minutes).

processExpiresInterval Clustered SSO only. The minimum number of
seconds between efforts by the valve to find and
invalidate SSO instances which have expired the
MaxEmptyLife timeout. Defaults to 60 (1 minute).

requiresReauthentication If true, each request uses cached credentials to
reauthenticate to the security realm. If false (the
default), a valid SSO cookie is sufficient for the valve
to authenticate each new request.

Invalidate a Session

An application can programmatically invalidate a session by invoking method
javax.servlet.http.HttpSession.invalidate().

Report a bug

13.5. ABOUT KERBEROS

Kerberos is a network authentication protocol for client/server applications. It allows authentication
across a non-secure network in a secure way, using secret-key symmetric cryptography.

Kerberos uses security tokens called tickets. To use a secured service, you need to obtain a ticket from
the Ticket Granting Service (TGS), which is a service running on a server on your network. After
obtaining the ticket, you request a Service Ticket (ST) from an Authentication Service (AS), which is
another service running on your network. You then use the ST to authenticate to the service you want to
use. The TGS and the AS both run inside an enclosing service called the Key Distribution Center (KDC).

 </valve>
</jboss-web>

Security Guide

122

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4695-455585+%5BSpecified%5D&comment=Title%3A+Use+Single+Sign+On+%28SSO%29+In+A+Web+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4695-455585+29+May+2013+13%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Kerberos is designed to be used in a client-server environment, and is rarely used in Web applications
or thin client environments. However, many organizations already use a Kerberos system for desktop
authentication, and prefer to reuse their existing system rather than create a second one for their Web
Applications. Kerberos is an integral part of Microsoft Active Directory, and is also used in many Red Hat
Enterprise Linux environments.

Report a bug

13.6. ABOUT SPNEGO

Simple and Protected GSS_API Negotiation Mechanism (SPNEGO) provides a mechanism for
extending a Kerberos-based Single Sign On (SSO) environment for use in Web applications.

When an application on a client computer, such as a web browser, attempts to access a protect page on
the web server, the server responds that authorization is required. The application then requests a
service ticket from the Kerberos Key Distribution Center (KDC). After the ticket is obtained, the
application wraps it in a request formatted for SPNEGO, and sends it back to the Web application, via
the browser. The web container running the deployed Web application unpacks the request and
authenticates the ticket. Upon successful authentication, access is granted.

SPNEGO works with all types of Kerberos providers, including the Kerberos service included in Red Hat
Enterprise Linux and the Kerberos server which is an integral part of Microsoft Active Directory.

Report a bug

13.7. ABOUT MICROSOFT ACTIVE DIRECTORY

Microsoft Active Directory is a directory service developed by Microsoft to authenticate users and
computers in a Microsoft Windows domain. It is included as part of Microsoft Windows Server. The
computer in the Microsoft Windows Server is referred to as the domain controller. Red Hat Enterprise
Linux servers running the Samba service can also act as the domain controller in this type of network.

Active Directory relies on three core technologies which work together:

Lightweight Directory Access Protocol (LDAP), for storing information about users, computers,
passwords, and other resources.

Kerberos, for providing secure authentication over the network.

Domain Name Service (DNS) for providing mappings between IP addresses and host names of
computers and other devices on the network.

Report a bug

13.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY
DESKTOP SSO FOR WEB APPLICATIONS

Introduction

To authenticate your web or EJB applications using your organization's existing Kerberos-based
authentication and authorization infrastructure, such as Microsoft Active Directory, you can use the
JBoss Negotation capabilities built into JBoss EAP 6. If you configure your web application properly, a
successful desktop or network login is sufficient to transparently authenticate against your web
application, so no additional login prompt is required.

CHAPTER 13. SINGLE SIGN ON (SSO)

123

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7816-328401+%5BSpecified%5D&comment=Title%3A+About+Kerberos%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7816-328401+05+Nov+2012+14%3A02+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7817-328449+%5BSpecified%5D&comment=Title%3A+About+SPNEGO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7817-328449+05+Nov+2012+14%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7818-328400+%5BSpecified%5D&comment=Title%3A+About+Microsoft+Active+Directory%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7818-328400+05+Nov+2012+14%3A02+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Difference from Previous Versions of the Platform

There are a few noticeable differences between JBoss EAP 6 and earlier versions:

Security domains are configured centrally, for each profile of a managed domain, or for each
standalone server. They are not part of the deployment itself. The security domain a deployment
should use is named in the deployment's jboss-web.xml or jboss-ejb3.xml file.

Security properties are configured as part of the security domain, as part of its central
configuration. They are not part of the deployment.

You can no longer override the authenticators as part of your deployment. However, you can
add a NegotiationAuthenticator valve to your jboss-web.xml descriptor to achieve the same
effect. The valve still requires the <security-constraint> and <login-config> elements
to be defined in the web.xml. These are used to decide which resources are secured. However,
the chosen auth-method will be overridden by the NegotiationAuthenticator valve in the jboss-
web.xml.

The CODE attributes in security domains now use a simple name instead of a fully-qualified class
name. The following table shows the mappings between the classes used for JBoss
Negotiation, and their classes.

Table 13.2. Login Module Codes and Class Names

Simple Name Class Name Purpose

Kerberos com.sun.security.auth.module.Krb
5LoginModule

Kerberos login module

SPNEGO org.jboss.security.negotiation.spn
ego.SPNEGOLoginModule

The mechanism which enables
your Web applications to
authenticate to your Kerberos
authentication server.

AdvancedLdap org.jboss.security.negotiation.Adv
ancedLdapLoginModule

Used with LDAP servers other
than Microsoft Active Directory.

AdvancedAdLdap org.jboss.security.negotiation.Adv
ancedADLoginModule

Used with Microsoft Active
Directory LDAP servers.

Jboss Negotiation Toolkit

The JBoss Negotiation Toolkit is a debugging tool which is available for download from
https://community.jboss.org/servlet/JiveServlet/download/16876-2-34629/jboss-negotiation-toolkit.war. It
is provided as an extra tool to help you to debug and test the authentication mechanisms before
introducing your application into production. It is an unsupported tool, but is considered to be very
helpful, as SPNEGO can be difficult to configure for web applications.

Procedure 13.1. Setup SSO Authentication for your Web or EJB Applications

1. Configure one security domain to represent the identity of the server. Set system
properties if necessary.
The first security domain authenticates the container itself to the directory service. It needs to
use a login module which accepts some type of static login mechanism, because a real user is

Security Guide

124

https://community.jboss.org/servlet/JiveServlet/download/16876-2-34629/jboss-negotiation-toolkit.war

not involved. This example uses a static principal and references a keytab file which contains the
credential.

The XML code is given here for clarity, but you should use the Management Console or
Management CLI to configure your security domains.

2. Configure a second security domain to secure the web application or applications. Set
system properties if necessary.
The second security domain is used to authenticate the individual user to the Kerberos or
SPNEGO authentication server. You need at least one login module to authenticate the user,
and another to search for the roles to apply to the user. The following XML code shows an
example SPNEGO security domain. It includes an authorization module to map roles to
individual users. You can also use a module which searches for the roles on the authentication
server itself.

3. Specify the security-constraint and login-config in the web.xml
The web.xml descriptor contain information about security constraints and login configuration.
The following are example values for each.

<security-domain name="host" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="storeKey" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="principal"
value="host/testserver@MY_REALM"/>
 <module-option name="keyTab"
value="/home/username/service.keytab"/>
 <module-option name="doNotPrompt" value="true"/>
 <module-option name="debug" value="false"/>
 </login-module>
 </authentication>
</security-domain>

<security-domain name="SPNEGO" cache-type="default">
 <authentication>
 <!-- Check the username and password -->
 <login-module code="SPNEGO" flag="requisite">
 <module-option name="password-stacking"
value="useFirstPass"/>
 <module-option name="serverSecurityDomain" value="host"/>
 </login-module>
 <!-- Search for roles -->
 <login-module code="UserRoles" flag="required">
 <module-option name="password-stacking"
value="useFirstPass" />
 <module-option name="usersProperties" value="spnego-
users.properties" />
 <module-option name="rolesProperties" value="spnego-
roles.properties" />
 </login-module>
 </authentication>
</security-domain>

CHAPTER 13. SINGLE SIGN ON (SSO)

125

4. Specify the security domain and other settings in the jboss-web.xml descriptor.
Specify the name of the client-side security domain (the second one in this example) in the
jboss-web.xml descriptor of your deployment, to direct your application to use this security
domain.

You can no longer override authenticators directly. Instead, you can add the
NegotiationAuthenticator as a valve to your jboss-web.xml descriptor, if you need to. The
<jacc-star-role-allow> allows you to use the asterisk (*) character to match multiple role
names, and is optional.

5. Add a dependency to your application's MANIFEST.MF, to locate the Negotiation classes.
The web application needs a dependency on class org.jboss.security.negotiation to
be added to the deployment's META-INF/MANIFEST.MF manifest, in order to locate the JBoss
Negotiation classes. The following shows a properly-formatted entry.

Result

<security-constraint>
 <display-name>Security Constraint on Conversation</display-name>
 <web-resource-collection>
 <web-resource-name>examplesWebApp</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>RequiredRole</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>SPNEGO</auth-method>
 <realm-name>SPNEGO</realm-name>
</login-config>

<security-role>
 <description> role required to log in to the
Application</description>
 <role-name>RequiredRole</role-name>
</security-role>

<jboss-web>
 <security-domain>java:/jaas/SPNEGO</security-domain>
 <valve>
 <class-
name>org.jboss.security.negotiation.NegotiationAuthenticator</class-
name>
 </valve>
 <jacc-star-role-allow>true</jacc-star-role-allow>
</jboss-web>

Manifest-Version: 1.0
Build-Jdk: 1.6.0_24
Dependencies: org.jboss.security.negotiation

Security Guide

126

Your web application accepts and authenticates credentials against your Kerberos, Microsoft Active
Directory, or other SPNEGO-compatible directory service. If the user runs the application from a system
which is already logged into the directory service, and where the required roles are already applied to the
user, the web application does not prompt for authentication, and SSO capabilities are achieved.

Report a bug

CHAPTER 13. SINGLE SIGN ON (SSO)

127

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4937-460025+%5BSpecified%5D&comment=Title%3A+Configure+Kerberos+or+Microsoft+Active+Directory+Desktop+SSO+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4937-460025+14+Jun+2013+14%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

14.1. ABOUT APPLICATION SECURITY

Securing your applications is a multi-faceted and important concern for every application developer.
JBoss EAP 6 provides all the tools you need to write secure applications, including the following abilities:

Section 16.1, “About Authentication”

Section 16.2, “About Authorization”

Section 14.2, “About Security Auditing”

Section 14.3, “About Security Mapping”

Section 2.4, “About Declarative Security”

Section 12.3.2.1, “About EJB Method Permissions”

Section 12.3.3.1, “About EJB Security Annotations”

See also Section 14.6, “Use a Security Domain in Your Application”.

Report a bug

14.2. ABOUT SECURITY AUDITING

Security auditing refers to triggering events, such as writing to a log, in response to an event that
happens within the security subsystem. Auditing mechanisms are configured as part of a security
domain, along with authentication, authorization, and security mapping details.

Auditing uses provider modules. You can use one of the included ones, or implement your own.

Report a bug

14.3. ABOUT SECURITY MAPPING

Security mapping allows you to combine authentication and authorization information after the
authentication or authorization happens, but before the information is passed to your application. One
example of this is using an X509 certificate for authentication, and then converting the principal from the
certificate to a logical name which your application can display.

You can map principals (authentication), roles (authorization), or credentials (attributes which are not
principals or roles).

Role Mapping is used to add, replace, or remove roles to the subject after authentication.

Principal mapping is used to modify a principal after authentication.

Attribute mapping is used to convert attributes from an external system to be used by your application,
and vice versa.

Report a bug

Security Guide

128

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4771-460003+%5BSpecified%5D&comment=Title%3A+About+Application+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4771-460003+14+Jun+2013+14%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4727-328515+%5BSpecified%5D&comment=Title%3A+About+Security+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4727-328515+05+Nov+2012+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4729-328516+%5BSpecified%5D&comment=Title%3A+About+Security+Mapping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4729-328516+05+Nov+2012+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

14.4. ABOUT THE SECURITY EXTENSION ARCHITECTURE

The architecture of the JBoss EAP 6 security extensions consists of three parts. These three parts
connect your application to your underlying security infrastructure, whether it is LDAP, Kerberos, or
another external system.

JAAS

The first part of the infrastructure is the JAAS API. JAAS is a pluggable framework which provides a
layer of abstraction between your security infrastructure and your application.

The main implementation in JAAS is org.jboss.security.plugins.JaasSecurityManager,
which implements the AuthenticationManager and RealmMapping interfaces.
JaasSecurityManager integrates into the EJB and web container layers, based on the <security-
domain> element of the corresponding component deployment descriptor.

For more information about JAAS, refer to Section 16.3, “Java Authentication and Authorization Service
(JAAS)”.

The JaasSecurityManagerService MBean

The JaasSecurityManagerService MBean service manages security managers. Although its
name begins with Jaas, the security managers it handles need not use JAAS in their implementation.
The name reflects the fact that the default security manager implementation is the
JaasSecurityManager.

The primary role of the JaasSecurityManagerService is to externalize the security manager
implementation. You can change the security manager implementation by providing an alternate
implementation of the AuthenticationManager and RealmMapping interfaces.

The second fundamental role of the JaasSecurityManagerService is to provide a JNDI
javax.naming.spi.ObjectFactory implementation to allow for simple code-free management of
the binding between the JNDI name and the security manager implementation. To enable security,
specify the JNDI name of the security manager implementation via the <security-domain>
deployment descriptor element.

When you specify a JNDI name, an object-binding needs to already exist. To simplify the setup of the
binding between the JNDI name and security manager, the JaasSecurityManagerService binds a
next naming system reference, nominating itself as the JNDI ObjectFactory under the name
java:/jaas. This permits a naming convention of the form java:/jaas/XYZ as the value for the
<security-domain> element, and the security manager instance for the XYZ security domain is
created as needed, by creating an instance of the class specified by the
SecurityManagerClassName attribute, using a constructor that takes the name of the security
domain.

NOTE

You do not need to include the java:/jaas prefix in your deployment descriptor. You
may do so, for backward compatibility, but it is ignored.

The JaasSecurityDomain MBean

The org.jboss.security.plugins.JaasSecurityDomain is an extension of
JaasSecurityManager which adds the notion of a KeyStore, a KeyManagerFactory, and a
TrustManagerFactory for supporting SSL and other cryptographic use cases.

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

129

Further information

For more information, and practical examples of the security architecture in action, refer to Section 14.5,
“About Java Authentication and Authorization Service (JAAS)”.

Report a bug

14.5. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE
(JAAS)

The security architecture of JBoss EAP 6 is comprised of the security configuration subsystem,
application-specific security configurations which are included in several configuration files within the
application, and the JAAS Security Manager, which is implemented as an MBean.

Domain, Server Group, and Server Specific Configuration

Server groups (in a managed domain) and servers (in a standalone server) include the configuration for
security domains. A security domain includes information about a combination of authentication,
authorization, mapping, and auditing modules, with configuration details. An application specifies which
security domain it requires, by name, in its jboss-web.xml.

Application-specific Configuration

Application-specific configuration takes place in one or more of the following four files.

Table 14.1. Application-Specific Configuration Files

File Description

ejb-jar.xml The deployment descriptor for an Enterprise
JavaBean (EJB) application, located in the META-
INF directory of the EJB. Use the ejb-jar.xml to
specify roles and map them to principals, at the
application level. You can also limit specific methods
and classes to certain roles. It is also used for other
EJB-specific configuration not related to security.

web.xml The deployment descriptor for a Java Enterprise
Edition (EE) web application. Use the web.xml to
declare the security domain the application uses for
authentication and authorization, as well as resource
and transport constraints for the application, such as
limiting which types of HTTP requests are allowed.
You can also configure simple web-based
authentication in this file. It is also used for other
application-specific configuration not related to
security.

jboss-ejb3.xml Contains JBoss-specific extensions to the ejb-
jar.xml descriptor.

jboss-web.xml Contains JBoss-specific extensions to the web.xml
descriptor..

Security Guide

130

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4770-460004+%5BSpecified%5D&comment=Title%3A+About+the+Security+Extension+Architecture%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4770-460004+14+Jun+2013+14%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

NOTE

The ejb-jar.xml and web.xml are defined in the Java Enterprise Edition (Java EE)
specification. The jboss-ejb3.xml provides JBoss-specific extensions for the ejb-
jar.xml, and the jboss-web.xml provides JBoss-specific extensions for the
web.xml.

The JAAS Security Manager MBean

The Java Authentication and Authorization Service (JAAS) is a framework for user-level security in Java
applications, using pluggable authentication modules (PAM). It is integrated into the Java Runtime
Environment (JRE). In JBoss EAP 6, the container-side component is the
org.jboss.security.plugins.JaasSecurityManager MBean. It provides the default
implementations of the AuthenticationManager and RealmMapping interfaces.

The JaasSecurityManager MBean integrates into the EJB and web container layers based on the
security domain specified in the EJB or web deployment descriptor files in the application. When an
application deploys, the container associates the security domain specified in the deployment descriptor
with the security manager instance of the container. The security manager enforces the configuration of
the security domain as configured on the server group or standalone server.

Flow of Interaction between the Client and the Container with JAAS

The JaasSecurityManager uses the JAAS packages to implement the AuthenticationManager and
RealmMapping interface behavior. In particular, its behavior derives from the execution of the login
module instances that are configured in the security domain to which the JaasSecurityManager has been
assigned. The login modules implement the security domain's principal authentication and role-mapping
behavior. You can use the JaasSecurityManager across different security domains by plugging in
different login module configurations for the domains.

To illustrate how the JaasSecurityManager uses the JAAS authentication process, the following steps
outline a client invocation of method which implements method EJBHome. The EJB has already been
deployed in the server and its EJBHome interface methods have been secured using <method-
permission> elements in the ejb-jar.xml descriptor. It uses the jwdomain security domain, which is
specified in the <security-domain> element of the jboss-ejb3.xml file. The image below shows the
steps, which are explained afterward.

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

131

Figure 14.1. Steps of a Secured EJB Method Invocation

1. The client performs a JAAS login to establish the principal and credentials for authentication.
This is labeled Client Side Login in the figure. This could also be performed via JNDI.

To perform a JAAS login, you create a LoginContext instance and pass in the name of the
configuration to use. Here, the configuration name is other. This one-time login associates the
login principal and credentials with all subsequent EJB method invocations. The process does
not necessarily authenticate the user. The nature of the client-side login depends on the login

Security Guide

132

module configuration that the client uses. In this example, the other client-side login
configuration entry uses the ClientLoginModule login module. This module binds the user
name and password to the EJB invocation layer for later authentication on the server. The
identity of the client is not authenticated on the client.

2. The client obtains the EJBHome method and invokes it on the server. The invocation includes the
method arguments passed by the client, along with the user identity and credentials from the
client-side JAAS login.

3. On the server, the security interceptor authenticates the user who invoked the method. This
involves another JAAS login.

4. The security domain under determines the choice of login modules. The name of the security
domain is passed to the LoginContext constructor as the login configuration entry name. The
EJB security domain is jwdomain. If the JAAS authentication is successful, a JAAS Subject is
created. A JAAS subject includes a PrincipalSet, which includes the following details:

A java.security.Principal instance that corresponds to the client identity from the
deployment security environment.

A java.security.acl.Group called Roles, which contains the role names from the
user's application domain. Objects of type org.jboss.security.SimplePrincipal
objects represent the role names. These roles validate access to EJB methods according to
constraints in ejb-jar.xml and the EJBContext.isCallerInRole(String) method
implementation.

An optional java.security.acl.Group named CallerPrincipal, which contains a
single org.jboss.security.SimplePrincipal that corresponds to the identity of the
application domain's caller. The CallerPrincipal group member is the value returned by the
EJBContext.getCallerPrincipal() method. This mapping allows a Principal in the
operational security environment to map to a Principal known to the application. In the
absence of a CallerPrincipal mapping, the operational principal is the same as the
application domain principal.

5. The server verifies that the user calling the EJB method has the permission to do so. Performing
this authorization involves the following steps:

Obtain the names of the roles allowed to access the EJB method from the EJB container.
The role names are determined by ejb-jar.xml descriptor <role-name> elements of all
<method-permission> elements containing the invoked method.

If no roles have been assigned, or the method is specified in an exclude-list element, access
to the method is denied. Otherwise, the doesUserHaveRole method is invoked on the
security manager by the security interceptor to check if the caller has one of the assigned
role names. This method iterates through the role names and checks if the authenticated
user's Subject Roles group contains a SimplePrincipal with the assigned role name.
Access is allowed if any role name is a member of the Roles group. Access is denied if none
of the role names are members.

If the EJB uses a custom security proxy, the method invocation is delegated to the proxy. If
the security proxy denies access to the caller, it throws a
java.lang.SecurityException. Otherwise, access to the EJB method is allowed and
the method invocation passes to the next container interceptor. The
SecurityProxyInterceptor handles this check and this interceptor is not shown.

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

133

For web connection requests, the web server checks the security constraints defined in
web.xml that match the requested resource and the accessed HTTP method.

If a constraint exists for the request, the web server calls the JaasSecurityManager to
perform the principal authentication, which in turn ensures the user roles are associated with
that principal object.

Report a bug

14.6. USE A SECURITY DOMAIN IN YOUR APPLICATION

Overview

To use a security domain in your application, first you must configure the domain in either the server's
configuration file or the application's descriptor file. Then you must add the required annotations to the
EJB that uses it. This topic covers the steps required to use a security domain in your application.

Procedure 14.1. Configure Your Application to Use a Security Domain

1. Define the Security Domain
You can define the security domain either in the server's configuration file or the application's
descriptor file.

Configure the security domain in the server's configuration file
The security domain is configured in the security subsystem of the server's configuration
file. If the JBoss EAP 6 instance is running in a managed domain, this is the
domain/configuration/domain.xml file. If the JBoss EAP 6 instance is running as a
standalone server, this is the standalone/configuration/standalone.xml file.

The other, jboss-web-policy, and jboss-ejb-policy security domains are
provided by default in JBoss EAP 6. The following XML example was copied from the
security subsystem in the server's configuration file.

<subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-domains>
 <security-domain name="other" cache-type="default">
 <authentication>
 <login-module code="Remoting" flag="optional">
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 <login-module code="RealmDirect"
flag="required">
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 </authentication>
 </security-domain>
 <security-domain name="jboss-web-policy" cache-
type="default">
 <authorization>
 <policy-module code="Delegating"
flag="required"/>
 </authorization>
 </security-domain>
 <security-domain name="jboss-ejb-policy" cache-

Security Guide

134

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4797-460007+%5BSpecified%5D&comment=Title%3A+About+Java+Authentication+and+Authorization+Service+%28JAAS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4797-460007+14+Jun+2013+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

You can configure additional security domains as needed using the Management Console
or CLI.

Configure the security domain in the application's descriptor file
The security domain is specified in the <security-domain> child element of the <jboss-
web> element in the application's WEB-INF/jboss-web.xml file. The following example
configures a security domain named my-domain.

This is only one of many settings which you can specify in the WEB-INF/jboss-web.xml
descriptor.

2. Add the Required Annotation to the EJB
You configure security in the EJB using the @SecurityDomain and @RolesAllowed
annotations. The following EJB code example limits access to the other security domain by
users in the guest role.

type="default">
 <authorization>
 <policy-module code="Delegating"
flag="required"/>
 </authorization>
 </security-domain>
 </security-domains>
</subsystem>

<jboss-web>
 <security-domain>my-domain</security-domain>
</jboss-web>

package example.ejb3;

import java.security.Principal;

import javax.annotation.Resource;
import javax.annotation.security.RolesAllowed;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

import org.jboss.ejb3.annotation.SecurityDomain;

/**
 * Simple secured EJB using EJB security annotations
 * Allow access to "other" security domain by users in a "guest"
role.
 */
@Stateless
@RolesAllowed({ "guest" })
@SecurityDomain("other")
public class SecuredEJB {

 // Inject the Session Context
 @Resource
 private SessionContext ctx;

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

135

For more code examples, see the ejb-security quickstart in the JBoss EAP 6 Quickstarts
bundle, which is available from the Red Hat Customer Portal.

Report a bug

14.7. USE ROLE-BASED SECURITY IN SERVLETS

To add security to a servlet, you map each servlet to a URL pattern, and create security constraints on
the URL patterns which need to be secured. The security constraints limit access to the URLs to roles.
The authentication and authorization are handled by the security domain specified in the WAR's jboss-
web.xml.

Prerequisites

Before you use role-based security in a servlet, the security domain used to authenticate and authorize
access needs to be configured in the JBoss EAP 6 container.

Procedure 14.2. Add Role-Based Security to Servlets

1. Add mappings between servlets and URL patterns.
Use <servlet-mapping> elements in the web.xml to map individual servlets to URL
patterns. The following example maps the servlet called DisplayOpResult to the URL pattern
/DisplayOpResult.

2. Add security constraints to the URL patterns.
To map the URL pattern to a security constraint, use a <security-constraint>. The
following example constrains access from the URL pattern /DisplayOpResult to be accessed
by principals with the role eap_admin. The role needs to be present in the security domain.

 /**
 * Secured EJB method using security annotations
 */
 public String getSecurityInfo() {
 // Session context injected using the resource annotation
 Principal principal = ctx.getCallerPrincipal();
 return principal.toString();
 }
}

<servlet-mapping>
 <servlet-name>DisplayOpResult</servlet-name>
 <url-pattern>/DisplayOpResult</url-pattern>
</servlet-mapping>

<security-constraint>
 <display-name>Restrict access to role eap_admin</display-name>
 <web-resource-collection>
 <web-resource-name>Restrict access to role eap_admin</web-
resource-name>
 <url-pattern>/DisplayOpResult/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>eap_admin</role-name>

Security Guide

136

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4765-458761+%5BSpecified%5D&comment=Title%3A+Use+a+Security+Domain+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4765-458761+11+Jun+2013+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

You need to specify the authentication method, which can be any of the following: BASIC,
FORM, DIGEST, CLIENT-CERT, SPNEGO. This example uses BASIC authentication.

3. Specify the security domain in the WAR's jboss-web.xml
Add the security domain to the WAR's jboss-web.xml in order to connect the servlets to the
configured security domain, which knows how to authenticate and authorize principals against
the security constraints. The following example uses the security domain called acme_domain.

Example 14.1. Example web.xml with Role-Based Security Configured

 </auth-constraint>
</security-constraint>

<security-role>
 <role-name>eap_admin</role-name>
</security-role>

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<jboss-web>
 ...
 <security-domain>acme_domain</security-domain>
 ...
</jboss-web>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

<display-name>Use Role-Based Security In Servlets</display-name>

<welcome-file-list>
 <welcome-file>/index.jsp</welcome-file>
</welcome-file-list>

<servlet-mapping>
 <servlet-name>DisplayOpResult</servlet-name>
 <url-pattern>/DisplayOpResult</url-pattern>
</servlet-mapping>

<security-constraint>
 <display-name>Restrict access to role eap_admin</display-name>
 <web-resource-collection>
 <web-resource-name>Restrict access to role eap_admin</web-
resource-name>
 <url-pattern>/DisplayOpResult/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

137

Report a bug

14.8. USE A THIRD-PARTY AUTHENTICATION SYSTEM IN YOUR
APPLICATION

You can integrate third-party security systems with JBoss EAP 6. These types of systems are usually
token-based. The external system performs the authentication and passes a token back to the Web
application through the request headers. This is often referred to as perimeter authentication. To
configure perimeter authentication in your application, add a custom authentication valve. If you have a
valve from a third-party provider, be sure it is in your classpath and follow the examples below, along
with the documentation for your third-party authentication module.

NOTE

The location for configuring valves has changed in JBoss EAP 6. There is no longer a
context.xml deployment descriptor. Valves are configured directly in the jboss-
web.xml descriptor instead. The context.xml is now ignored.

Example 14.2. Basic Authentication Valve

This valve is used for Kerberos-based SSO. It also shows the most simple pattern for specifying a
third-party authenticator for your Web application.

Example 14.3. Custom Valve With Header Attributes Set

 <role-name>eap_admin</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>eap_admin</role-name>
 </security-role>

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>

</web-app>

<jboss-web>
 <valve>
 <class-
name>org.jboss.security.negotiation.NegotiationAuthenticator</class-
name>
 </valve>
</jboss-web>

<jboss-web>
 <valve>
 <class-

Security Guide

138

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4927-471360+%5BSpecified%5D&comment=Title%3A+Use+Role-Based+Security+In+Servlets%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4927-471360+26+Jun+2013+16%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

This example shows how to set custom attributes on your valve. The authenticator checks for the
presence of the header ID and the session key, and passes them into the JAAS framework which
drives the security layer, as the username and password value. You need a custom JAAS login
module which can process the username and password and populate the subject with the correct
roles. If no header values match the configured values, regular form-based authentication semantics
apply.

Writing a Custom Authenticator

Writing your own authenticator is out of scope of this document. However, the following Java code is
provided as an example.

Example 14.4. GenericHeaderAuthenticator.java

name>org.jboss.web.tomcat.security.GenericHeaderAuthenticator</class-
name>
 <param>
 <param-name>httpHeaderForSSOAuth</param-name>
 <param-value>sm_ssoid,ct-remote-user,HTTP_OBLIX_UID</param-value>
 </param>
 <param>
 <param-name>sessionCookieForSSOAuth</param-name>
 <param-value>SMSESSION,CTSESSION,ObSSOCookie</param-value>
 </param>
 </valve>
</jboss-web>

/*
 * JBoss, Home of Professional Open Source.
 * Copyright 2006, Red Hat Middleware LLC, and individual contributors
 * as indicated by the @author tags. See the copyright.txt file in the
 * distribution for a full listing of individual contributors.
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this software; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
 */

package org.jboss.web.tomcat.security;

import java.io.IOException;
import java.security.Principal;
import java.util.StringTokenizer;

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

139

import javax.management.JMException;
import javax.management.ObjectName;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.catalina.Realm;
import org.apache.catalina.Session;
import org.apache.catalina.authenticator.Constants;
import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;
import org.apache.catalina.deploy.LoginConfig;
import org.jboss.logging.Logger;

import org.jboss.as.web.security.ExtendedFormAuthenticator;

/**
 * JBAS-2283: Provide custom header based authentication support
 *
 * Header Authenticator that deals with userid from the request header
Requires
 * two attributes configured on the Tomcat Service - one for the http
header
 * denoting the authenticated identity and the other is the SESSION
cookie
 *
 * @author Anil Saldhana
 * @author Stefan Guilhen
 * @version $Revision$
 * @since Sep 11, 2006
 */
public class GenericHeaderAuthenticator extends
ExtendedFormAuthenticator {
 protected static Logger log = Logger
 .getLogger(GenericHeaderAuthenticator.class);

 protected boolean trace = log.isTraceEnabled();

 // JBAS-4804: GenericHeaderAuthenticator injection of ssoid and
 // sessioncookie name.
 private String httpHeaderForSSOAuth = null;

 private String sessionCookieForSSOAuth = null;

 /**
 * <p>
 * Obtain the value of the <code>httpHeaderForSSOAuth</code>
attribute. This
 * attribute is used to indicate the request header ids that have to
be
 * checked in order to retrieve the SSO identity set by a third party
 * security system.
 * </p>
 *
 * @return a <code>String</code> containing the value of the
 * <code>httpHeaderForSSOAuth</code> attribute.

Security Guide

140

 */
 public String getHttpHeaderForSSOAuth() {
 return httpHeaderForSSOAuth;
 }

 /**
 * <p>
 * Set the value of the <code>httpHeaderForSSOAuth</code> attribute.
This
 * attribute is used to indicate the request header ids that have to
be
 * checked in order to retrieve the SSO identity set by a third party
 * security system.
 * </p>
 *
 * @param httpHeaderForSSOAuth
 * a <code>String</code> containing the value of the
 * <code>httpHeaderForSSOAuth</code> attribute.
 */
 public void setHttpHeaderForSSOAuth(String httpHeaderForSSOAuth) {
 this.httpHeaderForSSOAuth = httpHeaderForSSOAuth;
 }

 /**
 * <p>
 * Obtain the value of the <code>sessionCookieForSSOAuth</code>
attribute.
 * This attribute is used to indicate the names of the SSO cookies
that may
 * be present in the request object.
 * </p>
 *
 * @return a <code>String</code> containing the names (separated by a
 * <code>','</code>) of the SSO cookies that may have been
set by a
 * third party security system in the request.
 */
 public String getSessionCookieForSSOAuth() {
 return sessionCookieForSSOAuth;
 }

 /**
 * <p>
 * Set the value of the <code>sessionCookieForSSOAuth</code>
attribute. This
 * attribute is used to indicate the names of the SSO cookies that may
be
 * present in the request object.
 * </p>
 *
 * @param sessionCookieForSSOAuth
 * a <code>String</code> containing the names (separated
by a
 * <code>','</code>) of the SSO cookies that may have been
set by
 * a third party security system in the request.

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

141

 */
 public void setSessionCookieForSSOAuth(String sessionCookieForSSOAuth)
{
 this.sessionCookieForSSOAuth = sessionCookieForSSOAuth;
 }

 /**
 * <p>
 * Creates an instance of <code>GenericHeaderAuthenticator</code>.
 * </p>
 */
 public GenericHeaderAuthenticator() {
 super();
 }

 public boolean authenticate(Request request, HttpServletResponse
response,
 LoginConfig config) throws IOException {
 log.trace("Authenticating user");

 Principal principal = request.getUserPrincipal();
 if (principal != null) {
 if (trace)
 log.trace("Already authenticated '" + principal.getName() +
"'");
 return true;
 }

 Realm realm = context.getRealm();
 Session session = request.getSessionInternal(true);

 String username = getUserId(request);
 String password = getSessionCookie(request);

 // Check if there is sso id as well as sessionkey
 if (username == null || password == null) {
 log.trace("Username is null or password(sessionkey) is
null:fallback to form auth");
 return super.authenticate(request, response, config);
 }
 principal = realm.authenticate(username, password);

 if (principal == null) {
 forwardToErrorPage(request, response, config);
 return false;
 }

 session.setNote(Constants.SESS_USERNAME_NOTE, username);
 session.setNote(Constants.SESS_PASSWORD_NOTE, password);
 request.setUserPrincipal(principal);

 register(request, response, principal, HttpServletRequest.FORM_AUTH,
 username, password);
 return true;
 }

Security Guide

142

 /**
 * Get the username from the request header
 *
 * @param request
 * @return
 */
 protected String getUserId(Request request) {
 String ssoid = null;
 // We can have a comma-separated ids
 String ids = "";
 try {
 ids = this.getIdentityHeaderId();
 } catch (JMException e) {
 if (trace)
 log.trace("getUserId exception", e);
 }
 if (ids == null || ids.length() == 0)
 throw new IllegalStateException(
 "Http headers configuration in tomcat service missing");

 StringTokenizer st = new StringTokenizer(ids, ",");
 while (st.hasMoreTokens()) {
 ssoid = request.getHeader(st.nextToken());
 if (ssoid != null)
 break;
 }
 if (trace)
 log.trace("SSOID-" + ssoid);
 return ssoid;
 }

 /**
 * Obtain the session cookie from the request
 *
 * @param request
 * @return
 */
 protected String getSessionCookie(Request request) {
 Cookie[] cookies = request.getCookies();
 log.trace("Cookies:" + cookies);
 int numCookies = cookies != null ? cookies.length : 0;

 // We can have comma-separated ids
 String ids = "";
 try {
 ids = this.getSessionCookieId();
 log.trace("Session Cookie Ids=" + ids);
 } catch (JMException e) {
 if (trace)
 log.trace("checkSessionCookie exception", e);
 }
 if (ids == null || ids.length() == 0)
 throw new IllegalStateException(
 "Session cookies configuration in tomcat service missing");

 StringTokenizer st = new StringTokenizer(ids, ",");

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

143

 while (st.hasMoreTokens()) {
 String cookieToken = st.nextToken();
 String val = getCookieValue(cookies, numCookies, cookieToken);
 if (val != null)
 return val;
 }
 if (trace)
 log.trace("Session Cookie not found");
 return null;
 }

 /**
 * Get the configured header identity id in the tomcat service
 *
 * @return
 * @throws JMException
 */
 protected String getIdentityHeaderId() throws JMException {
 if (this.httpHeaderForSSOAuth != null)
 return this.httpHeaderForSSOAuth;
 return (String) mserver.getAttribute(new ObjectName(
 "jboss.web:service=WebServer"), "HttpHeaderForSSOAuth");
 }

 /**
 * Get the configured session cookie id in the tomcat service
 *
 * @return
 * @throws JMException
 */
 protected String getSessionCookieId() throws JMException {
 if (this.sessionCookieForSSOAuth != null)
 return this.sessionCookieForSSOAuth;
 return (String) mserver.getAttribute(new ObjectName(
 "jboss.web:service=WebServer"), "SessionCookieForSSOAuth");
 }

 /**
 * Get the value of a cookie if the name matches the token
 *
 * @param cookies
 * array of cookies
 * @param numCookies
 * number of cookies in the array
 * @param token
 * Key
 * @return value of cookie
 */
 protected String getCookieValue(Cookie[] cookies, int numCookies,
 String token) {
 for (int i = 0; i < numCookies; i++) {
 Cookie cookie = cookies[i];
 log.trace("Matching cookieToken:" + token + " with cookie name="
 + cookie.getName());
 if (token.equals(cookie.getName())) {
 if (trace)

Security Guide

144

Report a bug

 log.trace("Cookie-" + token + " value=" + cookie.getValue());
 return cookie.getValue();
 }
 }
 return null;
 }
}

CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS

145

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7825-468477+%5BSpecified%5D&comment=Title%3A+Use+A+Third-Party+Authentication+System+In+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7825-468477+24+Jun+2013+09%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 15. MIGRATION

15.1. CONFIGURE APPLICATION SECURITY CHANGES

Configure security for basic authentication

In previous versions of JBoss EAP, properties files placed in the
EAP_HOME/server/SERVER_NAME/conf/ directory were on classpath and could be easily found by
the UsersRolesLoginModule. In JBoss EAP 6, the directory structure has changed. Properties files
must be packaged within the application to make them available in the classpath.

IMPORTANT

You must stop the server before editing the server configuration file for your change to be
persisted on server restart.

To configure security for basic authentication, add a new security domain under security-domains to
the standalone/configuration/standalone.xml or the
domain/configuration/domain.xml server configuration file:

If the JBoss EAP 6 instance is running as a standalone server, ${jboss.server.config.dir}
refers to the EAP_HOME/standalone/configuration/ directory. If the instance is running in a
managed domain, ${jboss.server.config.dir} refers to the
EAP_HOME/domain/configuration/ directory.

Modify security domain names

In JBoss EAP 6, security domains no longer use the prefix java:/jaas/ in their names.

For Web applications, you must remove this prefix from the security domain configurations in the
jboss-web.xml.

For Enterprise applications, you must remove this prefix from the security domain configurations
in the jboss-ejb3.xml file. This file has replaced the jboss.xml in JBoss EAP 6.

Report a bug

<security-domain name="example">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="usersProperties"
 value="${jboss.server.config.dir}/example-
users.properties"/>
 <module-option name="rolesProperties"
 value="${jboss.server.config.dir}/example-
roles.properties"/>
 </login-module>
 </authentication>
</security-domain>

Security Guide

146

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4945-480349+%5BSpecified%5D&comment=Title%3A+Configure+Application+Security+Changes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4945-480349+22+Jul+2013+22%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

CHAPTER 16. AUTHENTICATION AND AUTHORIZATION

16.1. ABOUT AUTHENTICATION

Authentication refers to identifying a subject and verifying the authenticity of the identification. The most
common authentication mechanism is a username and password combination. Other common
authentication mechanisms use shared keys, smart cards, or fingerprints. The outcome of a successful
authentication is referred to as a principal, in terms of Java Enterprise Edition declarative security.

JBoss EAP 6 uses a pluggable system of authentication modules to provide flexibility and integration
with the authentication systems you already use in your organization. Each security domain contains one
or more configured authentication modules. Each module includes additional configuration parameters to
customize its behavior. The easiest way to configure the authentication subsystem is within the web-
based management console.

Authentication is not the same as authorization, although they are often linked. Many of the included
authentication modules can also handle authorization.

Report a bug

16.2. ABOUT AUTHORIZATION

Authorization is a mechanism for granting or denying access to a resource based on identity. It is
implemented as a set of declarative security roles which can be granted to principals.

JBoss EAP 6 uses a modular system to configure authorization. Each security domain can contain one
or more authorization policies. Each policy has a basic module which defines its behavior. It is configured
through specific flags and attributes. The easiest way to configure the authorization subsystem is by
using the web-based management console.

Authorization is different from authentication, and usually happens after authentication. Many of the
authentication modules also handle authorization.

Report a bug

16.3. JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)

Java Authentication and Authorization Service (JAAS) is a security API which consists of a set of Java
packages designed for user authentication and authorization. The API is a Java implementation of the
standard Pluggable Authentication Modules (PAM) framework. It extends the Java Enterprise Edition
access control architecture to support user-based authorization.

In JBoss EAP 6, JAAS only provides declarative role-based security. For more information about
declarative security, refer to Section 2.4, “About Declarative Security”.

JAAS is independent of any underlying authentication technologies, such as Kerberos or LDAP. You can
change your underlying security structure without changing your application. You only need to change
the JAAS configuration.

Report a bug

16.4. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE
(JAAS)

CHAPTER 16. AUTHENTICATION AND AUTHORIZATION

147

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4723-458757+%5BSpecified%5D&comment=Title%3A+About+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4723-458757+11+Jun+2013+14%3A27+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4725-458760+%5BSpecified%5D&comment=Title%3A+About+Authorization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4725-458760+11+Jun+2013+14%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4769-460006+%5BSpecified%5D&comment=Title%3A+Java+Authentication+and+Authorization+Service+%28JAAS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4769-460006+14+Jun+2013+14%3A30+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

The security architecture of JBoss EAP 6 is comprised of the security configuration subsystem,
application-specific security configurations which are included in several configuration files within the
application, and the JAAS Security Manager, which is implemented as an MBean.

Domain, Server Group, and Server Specific Configuration

Server groups (in a managed domain) and servers (in a standalone server) include the configuration for
security domains. A security domain includes information about a combination of authentication,
authorization, mapping, and auditing modules, with configuration details. An application specifies which
security domain it requires, by name, in its jboss-web.xml.

Application-specific Configuration

Application-specific configuration takes place in one or more of the following four files.

Table 16.1. Application-Specific Configuration Files

File Description

ejb-jar.xml The deployment descriptor for an Enterprise
JavaBean (EJB) application, located in the META-
INF directory of the EJB. Use the ejb-jar.xml to
specify roles and map them to principals, at the
application level. You can also limit specific methods
and classes to certain roles. It is also used for other
EJB-specific configuration not related to security.

web.xml The deployment descriptor for a Java Enterprise
Edition (EE) web application. Use the web.xml to
declare the security domain the application uses for
authentication and authorization, as well as resource
and transport constraints for the application, such as
limiting which types of HTTP requests are allowed.
You can also configure simple web-based
authentication in this file. It is also used for other
application-specific configuration not related to
security.

jboss-ejb3.xml Contains JBoss-specific extensions to the ejb-
jar.xml descriptor.

jboss-web.xml Contains JBoss-specific extensions to the web.xml
descriptor..

NOTE

The ejb-jar.xml and web.xml are defined in the Java Enterprise Edition (Java EE)
specification. The jboss-ejb3.xml provides JBoss-specific extensions for the ejb-
jar.xml, and the jboss-web.xml provides JBoss-specific extensions for the
web.xml.

The JAAS Security Manager MBean

The Java Authentication and Authorization Service (JAAS) is a framework for user-level security in Java
applications, using pluggable authentication modules (PAM). It is integrated into the Java Runtime
Environment (JRE). In JBoss EAP 6, the container-side component is the

Security Guide

148

org.jboss.security.plugins.JaasSecurityManager MBean. It provides the default
implementations of the AuthenticationManager and RealmMapping interfaces.

The JaasSecurityManager MBean integrates into the EJB and web container layers based on the
security domain specified in the EJB or web deployment descriptor files in the application. When an
application deploys, the container associates the security domain specified in the deployment descriptor
with the security manager instance of the container. The security manager enforces the configuration of
the security domain as configured on the server group or standalone server.

Flow of Interaction between the Client and the Container with JAAS

The JaasSecurityManager uses the JAAS packages to implement the AuthenticationManager and
RealmMapping interface behavior. In particular, its behavior derives from the execution of the login
module instances that are configured in the security domain to which the JaasSecurityManager has been
assigned. The login modules implement the security domain's principal authentication and role-mapping
behavior. You can use the JaasSecurityManager across different security domains by plugging in
different login module configurations for the domains.

To illustrate how the JaasSecurityManager uses the JAAS authentication process, the following steps
outline a client invocation of method which implements method EJBHome. The EJB has already been
deployed in the server and its EJBHome interface methods have been secured using <method-
permission> elements in the ejb-jar.xml descriptor. It uses the jwdomain security domain, which is
specified in the <security-domain> element of the jboss-ejb3.xml file. The image below shows the
steps, which are explained afterward.

CHAPTER 16. AUTHENTICATION AND AUTHORIZATION

149

Figure 16.1. Steps of a Secured EJB Method Invocation

1. The client performs a JAAS login to establish the principal and credentials for authentication.
This is labeled Client Side Login in the figure. This could also be performed via JNDI.

To perform a JAAS login, you create a LoginContext instance and pass in the name of the
configuration to use. Here, the configuration name is other. This one-time login associates the
login principal and credentials with all subsequent EJB method invocations. The process does
not necessarily authenticate the user. The nature of the client-side login depends on the login

Security Guide

150

module configuration that the client uses. In this example, the other client-side login
configuration entry uses the ClientLoginModule login module. This module binds the user
name and password to the EJB invocation layer for later authentication on the server. The
identity of the client is not authenticated on the client.

2. The client obtains the EJBHome method and invokes it on the server. The invocation includes the
method arguments passed by the client, along with the user identity and credentials from the
client-side JAAS login.

3. On the server, the security interceptor authenticates the user who invoked the method. This
involves another JAAS login.

4. The security domain under determines the choice of login modules. The name of the security
domain is passed to the LoginContext constructor as the login configuration entry name. The
EJB security domain is jwdomain. If the JAAS authentication is successful, a JAAS Subject is
created. A JAAS subject includes a PrincipalSet, which includes the following details:

A java.security.Principal instance that corresponds to the client identity from the
deployment security environment.

A java.security.acl.Group called Roles, which contains the role names from the
user's application domain. Objects of type org.jboss.security.SimplePrincipal
objects represent the role names. These roles validate access to EJB methods according to
constraints in ejb-jar.xml and the EJBContext.isCallerInRole(String) method
implementation.

An optional java.security.acl.Group named CallerPrincipal, which contains a
single org.jboss.security.SimplePrincipal that corresponds to the identity of the
application domain's caller. The CallerPrincipal group member is the value returned by the
EJBContext.getCallerPrincipal() method. This mapping allows a Principal in the
operational security environment to map to a Principal known to the application. In the
absence of a CallerPrincipal mapping, the operational principal is the same as the
application domain principal.

5. The server verifies that the user calling the EJB method has the permission to do so. Performing
this authorization involves the following steps:

Obtain the names of the roles allowed to access the EJB method from the EJB container.
The role names are determined by ejb-jar.xml descriptor <role-name> elements of all
<method-permission> elements containing the invoked method.

If no roles have been assigned, or the method is specified in an exclude-list element, access
to the method is denied. Otherwise, the doesUserHaveRole method is invoked on the
security manager by the security interceptor to check if the caller has one of the assigned
role names. This method iterates through the role names and checks if the authenticated
user's Subject Roles group contains a SimplePrincipal with the assigned role name.
Access is allowed if any role name is a member of the Roles group. Access is denied if none
of the role names are members.

If the EJB uses a custom security proxy, the method invocation is delegated to the proxy. If
the security proxy denies access to the caller, it throws a
java.lang.SecurityException. Otherwise, access to the EJB method is allowed and
the method invocation passes to the next container interceptor. The
SecurityProxyInterceptor handles this check and this interceptor is not shown.

CHAPTER 16. AUTHENTICATION AND AUTHORIZATION

151

For web connection requests, the web server checks the security constraints defined in
web.xml that match the requested resource and the accessed HTTP method.

If a constraint exists for the request, the web server calls the JaasSecurityManager to
perform the principal authentication, which in turn ensures the user roles are associated with
that principal object.

Report a bug

16.5. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)

16.5.1. About Java Authorization Contract for Containers (JACC)

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between
containers and authorization service providers, which results in the implementation of providers for use
by containers. It was defined in JSR-115, which can be found on the Java Community Process website
at http://jcp.org/en/jsr/detail?id=115. It has been part of the core Java Enterprise Edition (Java EE)
specification since Java EE version 1.3.

JBoss EAP 6 implements support for JACC within the security functionality of the security subsystem.

Report a bug

16.5.2. Configure Java Authorization Contract for Containers (JACC) Security

To configure Java Authorization Contract for Containers (JACC), you need to configure your security
domain with the correct module, and then modify your jboss-web.xml to include the correct
parameters.

Add JACC Support to the Security Domain

To add JACC support to the security domain, add the JACC authorization policy to the authorization stack
of the security domain, with the required flag set. The following is an example of a security domain
with JACC support. However, the security domain is configured in the Management Console or
Management CLI, rather than directly in the XML.

Configure a Web Application to use JACC

The jboss-web.xml is located in the META-INF/ or WEB-INF/ directory of your deployment, and
contains overrides and additional JBoss-specific configuration for the web container. To use your JACC-
enabled security domain, you need to include the <security-domain> element, and also set the
<use-jboss-authorization> element to true. The following application is properly configured to
use the JACC security domain above.

<security-domain name="jacc" cache-type="default">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 </login-module>
 </authentication>
 <authorization>
 <policy-module code="JACC" flag="required"/>
 </authorization>
</security-domain>

<jboss-web>

Security Guide

152

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4797-460007+%5BSpecified%5D&comment=Title%3A+About+Java+Authentication+and+Authorization+Service+%28JAAS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4797-460007+14+Jun+2013+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
http://jcp.org/en/jsr/detail?id=115
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7687-458762+%5BSpecified%5D&comment=Title%3A+About+Java+Authorization+Contract+for+Containers+%28JACC%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7687-458762+11+Jun+2013+14%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Configure an EJB Application to Use JACC

Configuring EJBs to use a security domain and to use JACC differs from Web Applications. For an EJB,
you can declare method permissions on a method or group of methods, in the ejb-jar.xml descriptor.
Within the <ejb-jar> element, any child <method-permission> elements contain information about
JACC roles. Refer to the example configuration for more details. The EJBMethodPermission class is
part of the Java Enterprise Edition 6 API, and is documented at
http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html.

Example 16.1. Example JACC Method Permissions in an EJB

You can also constrain the authentication and authorization mechanisms for an EJB by using a security
domain, just as you can do for a web application. Security domains are declared in the jboss-
ejb3.xml descriptor, in the <security> child element. In addition to the security domain, you can also
specify the run-as principal , which changes the principal the EJB runs as.

Example 16.2. Example Security Domain Declaration in an EJB

Report a bug

16.6. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)

16.6.1. About Java Authentication SPI for Containers (JASPI) Security

 <security-domain>jacc</security-domain>
 <use-jboss-authorization>true</use-jboss-authorization>
</jboss-web>

<ejb-jar>
 <method-permission>
 <description>The employee and temp-employee roles may access any
method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
</ejb-jar>

<security>
 <ejb-name>*</ejb-name>
 <security-domain>myDomain</security-domain>
 <run-as-principal>myPrincipal</run-as-principal>
</security>

CHAPTER 16. AUTHENTICATION AND AUTHORIZATION

153

http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4933-455587+%5BSpecified%5D&comment=Title%3A+Configure+Java+Authorization+Contract+for+Containers+%28JACC%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4933-455587+29+May+2013+13%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Java Application SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java applications. It
is defined in JSR-196 of the Java Community Process. Refer to http://www.jcp.org/en/jsr/detail?id=196
for details about the specification.

Report a bug

16.6.2. Configure Java Authentication SPI for Containers (JASPI) Security

To authenticate against a JASPI provider, add a <authentication-jaspi> element to your security
domain. The configuration is similar to a standard authentication module, but login module elements are
enclosed in a <login-module-stack> element. The structure of the configuration is:

Example 16.3. Structure of the authentication-jaspi element

The login module itself is configured in exactly the same way as a standard authentication module.

Because the web-based management console does not expose the configuration of JASPI
authentication modules, you need to stop JBoss EAP 6 completely before adding the configuration
directly to EAP_HOME/domain/configuration/domain.xml or
EAP_HOME/standalone/configuration/standalone.xml.

Report a bug

<authentication-jaspi>
 <login-module-stack name="...">
 <login-module code="..." flag="...">
 <module-option name="..." value="..."/>
 </login-module>
 </login-module-stack>
 <auth-module code="..." login-module-stack-ref="...">
 <module-option name="..." value="..."/>
 </auth-module>
</authentication-jaspi>

Security Guide

154

http://www.jcp.org/en/jsr/detail?id=196
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+7199-328604+%5BSpecified%5D&comment=Title%3A+About+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7199-328604+05+Nov+2012+14%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4934-458763+%5BSpecified%5D&comment=Title%3A+Configure+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4934-458763+11+Jun+2013+14%3A34+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

APPENDIX A. REFERENCE

A.1. INCLUDED AUTHENTICATION MODULES

The following authentication modules are included in JBoss EAP 6. Some of these handle authorization
as well as authentication. These usually include the word Role within the Code name.

When you configure these modules, use the Code value or the full (package qualified) name to refer to
the module.

Authentication Modules

Table A.1, “Client”

Table A.3, “Certificate”

Table A.5, “CertificateUsers”

Table A.7, “CertificateRoles”

Table A.9, “Database”

Table A.11, “DatabaseCertificate”

Table A.13, “Identity”

Table A.15, “Ldap”

Table A.17, “LdapExtended”

Table A.19, “RoleMapping”

Table A.21, “RunAs”

Table A.23, “Simple”

Table A.24, “ConfiguredIdentity”

Table A.26, “SecureIdentity”

Table A.28, “PropertiesUsers”

Table A.30, “SimpleUsers”

Table A.32, “LdapUsers”

Table A.33, “Kerberos”

Table A.35, “SPNEGOUsers”

Table A.37, “AdvancedLdap”

Table A.39, “AdvancedADLdap”

Table A.40, “UsersRoles”

APPENDIX A. REFERENCE

155

Custom Authentication Modules

Table A.1. Client

Code Client

Class org.jboss.security.ClientLoginModule

Description This login module is designed to establish caller
identity and credentials when JBoss EAP 6 is acting
as a client. It should never be used as part of a
security domain used for actual server authentication.

Table A.2. Client Module Options

Option Type Default Description

multi-threaded true or false false Set to true if each thread
has its own principal and
credential storage. Set
to false to indicate that
all threads in the VM
share the same identity
and credential.

password-
stacking

useFirstPass or
false

false Set to useFirstPass to
indicate that this login
module should look for
information stored in the
LoginContext to use as
the identity. This option
can be used when
stacking other login
modules with this one.

restore-login-
identity

true or false false Set to true if the identity
and credential seen at
the start of the login()
method should be
restored after the
logout() method is
invoked.

Table A.3. Certificate

Code Certificate

Class org.jboss.security.auth.spi.BaseCert
LoginModule

Description This login module is designed to authenticate users
based on X509 Certificates. A use case for
this is CLIENT-CERT authentication of a web
application.

Security Guide

156

Table A.4. Certificate Module Options

Option Type Default Description

securityDomain string none Name of the security
domain that has the
JSSE configuration for
the truststore holding the
trusted certificates.

verifier Class none The class name of the
org.jboss.securi
ty.auth.certs.X5
09CertificateVer
ifier to use for
verification of the login
certificate.

Table A.5. CertificateUsers

Code CertificateUsers

Class org.jboss.security.auth.spi.UsersRol
esLoginModule

Description Uses a properties resources. The first maps
usernames to passwords, and the second maps
usernames to roles.

Table A.6. CertificateUsers Module Options

Option Type Default Description

unauthenticatedI
dentity

A string none Defines the principal
name that should be
assigned to requests
which contain no
authentication
information. This can
allow unprotected
servlets to invoke
methods on EJBs that
do not require a specific
role. Such a principal
has no associated roles
and can only access
either unsecured EJBs
or EJB methods that are
associated with the
unchecked
permission
constraint.

APPENDIX A. REFERENCE

157

password-
stacking

useFirstPass or
false

false Set to useFirstPass
to indicate that this login
module should look for
information stored in the
LoginContext to use
as the identity. This
option can be used
when stacking other
login modules with this
one.

hashAlgorithm A string none The name of the
java.security.Me
ssageDigest
algorithm to use to hash
the password. There is
no default so this option
must be explicitly set to
enable hashing. When
hashAlgorithm is
specified, the clear text
password obtained from
the
CallbackHandler is
hashed before it is
passed to
UsernamePassword
LoginModule.vali
datePassword as the
inputPassword
argument. The
expectedPassword
stored in the
users.properties
file must be comparably
hashed. Refer to
http://docs.oracle.com/ja
vase/6/docs/api/java/sec
urity/MessageDigest.htm
l for information on
java.security.Me
ssageDigest and the
algorithms this class
supports.

hashEncoding base64 or hex base64 The string format for the
hashed password, if
hashAlgorithm is
also set.

hashCharset A string The default encoding set
in the container's
environment.

The encoding used to
convert the clear-text
password to a byte
array.

Option Type Default Description

Security Guide

158

http://docs.oracle.com/javase/6/docs/api/java/security/MessageDigest.html

usersProperties The fully-qualified file
path and name of a
properties file or
resource

users.properties The file containing the
mappings between users
and passwords. Each
property in the file has
the format
username=passwor
d.

rolesProperties The fully-qualified file
path and name of a
properties file or
resource

roles.properties The file containing the
mappings between users
and roles. Each property
in the file has the format
username=role1,r
ole2,...,roleN.

ignorePasswordCa
se

true or false false Whether the password
comparison should
ignore case. This is
useful for hashed
password encoding
where the case of the
hashed password is not
significant.

principalClass A fully-qualified
classname.

none A Principal
implementation class
which contains a
constructor that takes a
String argument for the
princpal name.

roleGroupSeparat
or

A single character . (a single period) The character used to
seperate the username
from the role group
name in the
rolesGroup file.

defaultUsersProp
erties

string defaultUsers.pro
perties

Name of the resource or
file to fall back to if the
usersProperties file can't
be found.

defaultRolesProp
erties

string defaultRoles.pro
perties

Name of the resource or
file to fall back to if the
rolesProperties
file cannot be found.

hashUserPassword true or false true Whether to hash the
password entered by the
user, when
hashAlgorithm is
specified. Defaults to
true.

Option Type Default Description

APPENDIX A. REFERENCE

159

hashStorePasswor
d

true or false true Whether the store
password returned from
getUsersPassword
() should be hashed,
when
hashAlgorithm is
specified.

digestCallback A fully-qualified
classname.

none The class name of the
org.jboss.crypto
.digest.DigestCa
llback implementation
that includes pre or post
digest content such as
salt values. Only used if
hashAlgorithm is
specified.

storeDigestCallb
ack

A fully-qualified
classname.

none The class name of the
org.jboss.crypto
.digest.DigestCa
llback implementation
that includes pre/post
digest content like salts
for hashing the store
password. Only used if
hashStorePasswor
d is true and
hashAlgorithm is
specified.

callback.option.
STRING

Various none All options prefixed with
callback.option.
are passed to the
DigestCallback.i
nit(Map) method.
The input username is
always passed in via the
javax.security.a
uth.login.name
option, and the
input/store password is
passed in via the
javax.security.a
uth.login.passwo
rd option to the
digestCallback or
storeDigestCallb
ack.

Option Type Default Description

Table A.7. CertificateRoles

Code CertificateRoles

Security Guide

160

Class org.jboss.security.auth.spi.CertRole
sLoginModule

Description This login module extends the Certificate login
module to add role mapping capabilities from a
properties file. It takes all of the same options as the
Certificate login module, and adds the following
options.

Table A.8. CertificateRoles Module Options

Option Type Default Description

rolesProperties A string roles.properties The name of the
resource or file
containing the roles to
assign to each user. The
role properties file must
be in the format
username=role1,role2
where the username is
the DN of the certificate,
escaping any = (equals)
and space characters.
The following example is
in the correct format:

CN\=unit-
tests-client,\
OU\=Red\ Hat\
Inc.,\ O\=Red\
Hat\ Inc.,\
ST\=North\
Carolina,\
C\=US=JBossAdm
in

defaultRolesProp
erties

A string defaultRoles.pro
perties

Name of the resource or
file to fall back to if the
rolesProperties
file cannot be found.

roleGroupSeparat
or

A single character . (a single period) Which character to use
as the role group
separator in the
roleProperties file.

Table A.9. Database

Code Database

Class org.jboss.security.auth.spi.Database
ServerLoginModule

APPENDIX A. REFERENCE

161

Description A JDBC-based login module that supports
authentication and role mapping. It is based on two
logical tables, with the following definitions.

Principals: PrincipalID
(text), Password (text)

Roles: PrincipalID (text),
Role (text), RoleGroup (text)

Table A.10. Database Module Options

Option Type Default Description

dsJndiName A JNDI resource none The name of the JNDI
resource storing the
authentication
information. This option
is required.

principalsQuery A prepared SQL
statement

select Password
from Principals
where
PrincipalID=?

The prepared SQL
query to obtain the
information about the
principal.

rolesQuery A prepared SQL
statement

select Role,
RoleGroup from
Roles where
PrincipalID=?

The prepared SQL
query to obtain the
information about the
roles. It should be
equivalent to select
Role, RoleGroup
from Roles where
PrincipalID=?,
where Role is the role
name and the
RoleGroup column value
should always be either
Roles with a capital R
or
CallerPrincipal.

Table A.11. DatabaseCertificate

Code DatabaseCertificate

Class org.jboss.security.auth.spi.Database
CertLoginModule

Description This login module extends the Certificate login
module to add role mapping capabilities from a
database table. It has the same options plus these
additional options:

Security Guide

162

Table A.12. DatabaseCertificate Module Options

Option Type Default Description

dsJndiName A JNDI resource The name of the JNDI
resource storing the
authentication
information. This option
is required.

rolesQuery A prepared SQL
statement

select
Role,RoleGroup
from Roles where
PrincipalID=?

SQL prepared statement
to be executed in order
to map roles. It should
be an equivalent to
select Role,
RoleGroup from
Roles where
PrincipalID=?,
where Role is the role
name and the
RoleGroup column value
should always be either
Roles with a capital R
or
CallerPrincipal.

suspendResume true or false true Whether any existing
JTA transaction should
be suspended during
database operations.

Table A.13. Identity

Code Identity

Class org.jboss.security.auth.spi.Identity
LoginModule

Description Associates the principal specified in the module
options with any subject authenticated against the
module. The type of Principal class used is
org.jboss.security.SimplePrincipal..
If no principal option is specified a principal with the
name of guest is used.

Table A.14. Identity Module Options

Option Type Default Description

principal A string guest The name to use for the
principal.

roles A comma-separated list
of strings

none A comma-delimited list
of roles which will be
assigned to the subject.

APPENDIX A. REFERENCE

163

Table A.15. Ldap

Code Ldap

Class org.jboss.security.auth.spi.LdapLogi
nModule

Description Authenticates against an LDAP server, when the
username and password are stored in an LDAP
server that is accessible using a JNDI LDAP provider.
Many of the options are not required, because they
are determined by the LDAP provider or the
environment.

Table A.16. Ldap Module Options

Option Type Default Description

java.naming.fact
ory.initial

class name com.sun.jndi.lda
p.LdapCtxFactory

InitialContextFa
ctory implementation
class name.

java.naming.prov
ider.url

ldap:// URL none URL for the LDAP
server.

java.naming.secu
rity.authenticat
ion

none, simple, or the
name of a SASL
mechanism

simple The security level to use
to bind to the LDAP
server.

java.naming.secu
rity.protocol

A transport protocol If unspecified,
determined by the
provider.

The transport protocol to
use for secure access,
such as SSL.

java.naming.secu
rity.principal

A string none The name of the
principal for
authenticating the caller
to the service. This is
built from other
properties described
below.

java.naming.secu
rity.credentials

A credential type none The type of credential
used by the
authentication scheme.
Some examples include
hashed password, clear-
text password, key, or
certificate. If this property
is unspecified, the
behavior is determined
by the service provider.

Security Guide

164

principalDNPrefi
x

A string none Prefix added to the
username to form the
user DN. You can
prompt the user for a
username and build the
fully-qualified DN by
using the
principalDNPrefi
x and
principalDNSuffi
x.

principalDNSuffi
x

string Suffix added to the
username to form the
user DN. You can
prompt the user for a
username and build the
fully-qualified DN by
using the
principalDNPrefi
x and
principalDNSuffi
x.

useObjectCredent
ial

true or false false Whether the credential
should be obtained as
an opaque Object using
the
org.jboss.securi
ty.auth.callback
.ObjectCallback
type of Callback rather
than as a char[]
password using a JAAS
PasswordCallback. This
allows for passing non-
char[] credential
information to the LDAP
server.

rolesCtxDN A fully-qualified DN none The fully-qualified DN for
the context to search for
user roles.

userRolesCtxDNAt
tributeName

An attribute none The attribute in the user
object that contains the
DN for the context to
search for user roles.
This differs from
rolesCtxDN in that
the context to search for
a user's roles may be
unique for each user.

roleAttributeID An attribute roles Name of the attribute
containing the user
roles.

Option Type Default Description

APPENDIX A. REFERENCE

165

roleAttributeIsD
N

true or false false Whether or not the
roleAttributeID
contains the fully-
qualified DN of a role
object. If false, the role
name is taken from the
value of the
roleNameAttribut
eId attribute of the
context name. Certain
directory schemas, such
as Microsoft Active
Directory, require this
attribute to be set to
true.

roleNameAttribut
eID

An attribute group Name of the attribute
within the roleCtxDN
context which contains
the role name. If the
roleAttributeIsD
N property is set to
true, this property is
used to find the role
object's name attribute.

uidAttributeID An attribute uid Name of the attribute in
the
UserRolesAttribu
teDN that corresponds
to the user ID. This is
used to locate the user
roles.

matchOnUserDN true or false false Whether or not the
search for user roles
should match on the
user's fully distinguished
DN or the username
only. If true, the full
user DN is used as the
match value. If false,
only the username is
used as the match value
against the
uidAttributeName
attribute.

allowEmptyPasswo
rds

true or false true Whether to allow empty
passwords. Most LDAP
servers treat empty
passwords as
anonymous login
attempts. To reject
empty passwords, set
this to false.

Option Type Default Description

Security Guide

166

Table A.17. LdapExtended

Code LdapExtended

Class org.jboss.security.auth.spi.LdapExtL
oginModule

Description An alternate LDAP login module implementation that
uses searches to locate the bind user and associated
roles. The roles query recursively follows DNs to
navigate a hierarchical role structure. It uses the
same java.naming options as the Ldap module,
and uses the following options instead of the other
options of the Ldap module.

The authentication happens in 2 steps:

1. An initial bind to the LDAP server is done
using the bindDN and bindCredential
options. The bindDN is a LDAP user with
the ability to search both the baseCtxDN
and rolesCtxDN trees for the user and
roles. The user DN to authenticate against is
queried using the filter specified by the
baseFilter attribute.

2. The resulting user DN is authenticated by
binding to the LDAP server using the user
DN as the InitialLdapContext
environment
Context.SECURITY_PRINCIPAL. The
Context.SECURITY_CREDENTIALS
property is set to the String password
obtained by the callback handler.

Table A.18. LdapExtended Module Options

Option Type Default Description

baseCtxDN A fully-qualified DN none The fixed DN of the top-
level context to begin
the user search.

bindDN A fully-qualified DN none The DN used to bind
against the LDAP server
for the user and roles
queries. This DN needs
read and search
permissions on the
baseCtxDN and
rolesCtxDN values.

bindCredential A string, optionally
encrypted

none The password for the
bindDN. This can be
encrypted if the
jaasSecurityDoma
in is specified.

APPENDIX A. REFERENCE

167

jaasSecurityDoma
in

A JMX ObjectName none The JMX ObjectName
of the
JaasSecurityDoma
in to use to decrypt the
bindCredential.
The encrypted form of
the password is the
format returned by the
JaasSecurityDoma
in.encrypt64(byt
e[]) method.

baseFilter LDAP filter string none A search filter used to
locate the context of the
user to authenticate. The
input username or
userDN obtained from
the login module
callback is substituted
into the filter anywhere a
{0} expression is used.
A common example for
the search filter is
(uid={0}).

rolesCtxDN fully-qualified DN none The fixed DN of the
context to search for
user roles. This is not
the DN where the actual
roles are, but the DN
where the objects
containing the user roles
are. For example, in a
Microsoft Active
Directory server, this is
the DN where the user
account is.

Option Type Default Description

Security Guide

168

roleFilter LDAP filter string A search filter used to
locate the roles
associated with the
authenticated user. The
input username or
userDN obtained from
the login module
callback is substituted
into the filter anywhere a
{0} expression is used.
The authenticated
userDN is substituted
into the filter anywhere a
{1} is used. An
example search filter
that matches on the
input username is
(member={0}). An
alternative that matches
on the authenticated
userDN is (member=
{1}).

roleAttributeIsD
N

true or false false Whether or not the
roleAttributeID
contains the fully-
qualified DN of a role
object. If false, the role
name is taken from the
value of the
roleNameAttribut
eId attribute of the
context name. Certain
directory schemas, such
as Microsoft Active
Directory, require this
attribute to be set to
true.

defaultRole Role name none A role included for all
authenticated users

parseRoleNameFro
mDN

true or false false A flag indicating if the
DN returned by a query
contains the
roleNameAttributeID. If
set to true, the DN is
checked for the
roleNameATtributeID. If
set to false, the DN is
not checked for the
roleNameAttributeID.
This flag can improve
the performance of
LDAP queries.

Option Type Default Description

APPENDIX A. REFERENCE

169

parseUsername true or false false A flag indicating if the
DN is to be parsed for
the username. If set to
true, the DN is parsed
for the username. If set
to false the DN is not
parsed for the
username. This option is
used together with
usernameBeginString
and
usernameEndString.

usernameBeginStr
ing

a string none Defines the string which
is to be removed from
the start of the DN to
reveal the username.
This option is used
together with
usernameEndStrin
g.

usernameEndStrin
g

a string none Defines the string which
is to be removed from
the end of the DN to
reveal the username.
This option is used
together with
usernameBeginStr
ing.

roleNameAttribut
eID

An attribute group Name of the attribute
within the roleCtxDN
context which contains
the role name. If the
roleAttributeIsD
N property is set to
true, this property is
used to find the role
object's name attribute.

distinguishedNam
eAttribute

An attribute distinguishedNam
e

The name of the
attribute in the user
entry that contains the
DN of the user. This
may be necessary if the
DN of the user itself
contains special
characters (backslash
for example) that
prevent correct user
mapping. If the attribute
does not exist, the
entry's DN is used.

Option Type Default Description

Security Guide

170

roleRecursion An integer 0 The numbers of levels of
recursion the role search
will go below a matching
context. Disable
recursion by setting this
to 0.

searchTimeLimit An integer 10000 (10 seconds) The timeout in
milliseconds for user or
role searches.

searchScope One of:
OBJECT_SCOPE,
ONELEVEL_SCOPE,
SUBTREE_SCOPE

SUBTREE_SCOPE The search scope to
use.

allowEmptyPasswo
rds

true or false true Whether to allow empty
passwords. Most LDAP
servers treat empty
passwords as
anonymous login
attempts. To reject
empty passwords, set
this to false.

Option Type Default Description

Table A.19. RoleMapping

Code RoleMapping

Class org.jboss.security.auth.spi.RoleMapp
ingLoginModule

Description Maps a role which is the end result of the
authentication process to a declarative role. This
module must be flagged as optional when you
add it to the security domain.

Table A.20. RoleMapping Module Options

Option Type Default Description

rolesProperties The fully-qualified file
path and name of a
properties file or
resource

roles.properties The fully-qualified file
path and name of a
properties file or
resource which maps
roles to replacement
roles. The format is
original_role=ro
le1,role2,role3

APPENDIX A. REFERENCE

171

replaceRole true or false false Whether to add to the
current roles, or replace
the current roles with the
mapped ones. Replaces
if set to true.

Option Type Default Description

Table A.21. RunAs

Code RunAs

Class Class:
org.jboss.security.auth.spi.RunAsLog
inModule

Description A helper module that pushes a run as role onto the
stack for the duration of the login phase of
authentication, and pops the run as role off the
stack in either the commit or abort phase. This login
module provides a role for other login modules that
must access secured resources in order to perform
their authentication, such as a login module which
accesses a secured EJB. RunAsLoginModule
must be configured before the login modules that
require a run as role to be established.

Table A.22. RunAs Options

Option Type Default Description

roleName A role name. nobody The name of the role to
use as the run as role
during the login phase.

Table A.23. Simple

Code Simple

Class org.jboss.security.auth.spi.SimpleSe
rverLoginModule

Security Guide

172

Description A module for quick setup of security for testing
purposes. It implements the following simple
algorithm:

If the password is null, authenticate the user
and assign an identity of guest and a role
of guest.

Otherwise, if the password is equal to the
user, assign an identity equal to the
username and both admin and guest
roles.

Otherwise, authentication fails.

Simple Module Options

The Simple module has no options.

Table A.24. ConfiguredIdentity

Code ConfiguredIdentity

Class org.picketbox.datasource.security.Co
nfiguredIdentityLoginModule

Description Associates the principal specified in the module
options with any subject authenticated against the
module. The type of Principal class used is
org.jboss.security.SimplePrincipal.

Table A.25. ConfiguredIdentity Module Options

Option Type Default Description

principal Name of a principal. none The principal which will
be associated with any
subject authenticated
against the module.

Table A.26. SecureIdentity

Code SecureIdentity

Class org.picketbox.datasource.security.Se
cureIdentityLoginModule

Description This module is provided for legacy purposes. It
allows you to encrypt a password and then use the
encrypted password with a static principal. If your
application uses SecureIdentity, consider
using a password vault mechanism instead.

APPENDIX A. REFERENCE

173

Table A.27. SecureIdentity Module Options

Option Type Default Description

username string none The username for
authentication.

password encrypted string none The password to use for
authentication. To
encrypt the password,
use the module directly
at the command line.

java
org.picketbox.
datasource.sec
urity.SecureId
entityLoginMod
ule
password_to_en
crypt

Paste the result of this
command into the
module option's value
field.

managedConnectio
nFactoryName

A JCA resource none The name of the JCA
connection factory for
your datasource.

Table A.28. PropertiesUsers

Code PropertiesUsers

Class org.jboss.security.auth.spi.Properti
esUsersLoginModule

Description Uses a properties file to store usernames and
passwords for authentication. No authorization (role
mapping) is provided. This module is only
appropriate for testing.

Table A.29. PropertiesUsers Module Options

Option Type Default Description

properties The fully-qualified file
path and name of a Java
properties file or
resource.

none The properties file
containing the
usernames and clear-
text passwords to be
used for authentication.

Security Guide

174

Table A.30. SimpleUsers

Code SimpleUsers

Class org.jboss.security.auth.spi.SimpleUs
ersLoginModule

Description This login module stores the username and clear-text
password in a Java properties file. It is included for
testing only, and is not appropriate for a production
environment.

Table A.31. SimpleUsers Module Options

Option Type Default Description

username string none The username to use for
authentication.

password string none The clear-text password
to use for authentication.

Table A.32. LdapUsers

Code LdapUsers

Class org.jboss.security.auth.spi.LdapUser
sLoginModule

Description The LdapUsers module is superseded by the
ExtendedLDAP and AdvancedLdap modules.

Table A.33. Kerberos

Code Kerberos

Class com.sun.security.auth.module.Krb5Log
inModule

Description Performs Kerberos login authentication, using
GSSAPI. This module is part of the security
framework from the API provided by Sun
Microsystems. Details can be found at
http://docs.oracle.com/javase/1.4.2/docs/guide/securit
y/jaas/spec/com/sun/security/auth/module/Krb5Login
Module.html. This module needs to be paired with
another module which handles the authentication and
roles mapping.

Table A.34. Kerberos Module Options

APPENDIX A. REFERENCE

175

http://docs.oracle.com/javase/1.4.2/docs/guide/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html

Option Type Default Description

storekey true or false false Whether or not to add
the KerberosKey to
the subject's private
credentials.

doNotPrompt true or false false If set to true, the user
is not prompted for the
password.

useTicketCache Boolean value of true
or false
.

false If true, the GTG is
obtained from the ticket
cache. If false, the
ticket cache is not used.

ticketcache A file or resource
representing a Kerberos
ticket cache.

The default depends on
which operating system
you use.

Red Hat
Enterprise
Linux / Solaris:
/tmp/krb5c
c_uid, using
the numeric
UID value of
the operating
system.

Microsoft
Windows
Server: uses
the Local
Security
Authority (LSA)
API to find the
ticketcache.

The location of the ticket
cache.

useKeyTab true or false false Whether to obtain the
principal's key from a
key table file.

keytab A file or resource
representing a Kerberos
keytab.

the location in the
operating system's
Kerberos configuration
file, or
/home/user/krb5.
keytab

The location of the key
table file.

Security Guide

176

principal A string none The name of the
principal. This can either
be a simple user name
or a service name such
as
host/testserver.
acme.com. Use this
instead of obtaining the
principal from the key
table, or when the key
table contains more than
one principal.

useFirstPass true or false false Whether to retrieve the
username and password
from the module's
shared state, using
javax.security.a
uth.login.name
and
javax.security.a
uth.login.passwo
rd as the keys. If
authentication fails, no
retry attempt is made.

tryFirstPass true or false false Same as
useFirstPass, but if
authentication fails, the
module uses the
CallbackHandler to
retrieve a new username
and password. If the
second authentication
fails, the failure is
reported to the calling
application.

storePass true or false false Whether to store the
username and password
in the module's shared
state. This does not
happen if the keys
already exist in the
shared state, or if
authentication fails.

clearPass true or false false Set this to true to clear
the username and
password from the
shared state after both
phases of authentication
complete.

Option Type Default Description

Table A.35. SPNEGOUsers

APPENDIX A. REFERENCE

177

Code SPNEGOUsers

Class org.jboss.security.negotiation.spneg
o.SPNEGOLoginModule

Description Allows SPNEGO authentication to a Microsoft Active
Directory server or other environment which supports
SPNEGO. SPNEGO can also carry Kerberos
credentials. This module needs to be paired with
another module which handles authentication and
role mapping.

Table A.36. SPNEGO Module Options

Option Type Default Description

storeKey true or false false Whether or not to store
the key.

useKeyTab true or false false Whether to use a key
table.

principal String reperesenting a
principal for Kerberos
auhentication.

none The name of the
principal for
authentication.

keyTab A file or resource
representing a keytab.

none The location of a key
table.

doNotPrompt true or false false Whether to prompt for a
password.

debug true or false false Whether to record more
verbose messages for
debugging purposes.

Table A.37. AdvancedLdap

Code AdvancedLdap

Class org.jboss.security.negotiation.Advan
cedLdapLoginModule

Description A module which provides additional functionality,
such as SASL and the use of a JAAS security
domain.

Table A.38. AdvancedLdap Module Options

Security Guide

178

Option Type Default Description

bindAuthenticati
on

string none The type of SASL
authentication to use for
binding to the directory
server.

jassSecurityDoma
in

string none The name of the JAAS
security domain to use.

java.naming.prov
ider.url

string none The URI of the directory
server.

baseCtxDN A fully qualified
Distinguished Name
(DN).

none The distinguished name
to use as the base for
searches.

baseFilter String representing a
LDAP search filter.

none The filter to use to
narrow down search
results.

roleAttributeID A string representing an
LDAP attribute.

none The LDAP attribute
which contains the
names of authorization
roles.

roleAttributeIsD
N

true or false false Whether the role
attribute is a
Distinguished Name
(DN).

roleNameAttribut
eID

String representing an
LDAP attribute.

none The attribute contained
within the
RoleAttributeId
which contains the
actual role attribute.

recurseRoles true or false false Whether to recorsively
search the
RoleAttributeId
for roles.

Table A.39. AdvancedADLdap

Code AdvancedADLdap

Class org.jboss.security.negotiation.Advan
cedADLoginModule

Description This module extends the AdvancedLdap login
module, and adds extra parameters that are relevant
to Microsoft Active Directory.

APPENDIX A. REFERENCE

179

Table A.40. UsersRoles

Code UsersRoles

Class org.jboss.security.auth.spi.UsersRol
esLoginModul

Description A simple login module that supports multiple users
and user roles stored in two different properties files.

Table A.41. UsersRoles Module Options

Option Type Default Description

usersProperties Path to a file or
resource.

users.properties The file or resource
which contains the user-
to-password mappings.
The format of the file is
user=hashed-
password

rolesProperties Path to a file or
resource.

roles.properties The file or resource
which contains the user-
to-role mappings. The
format of the file is
username=role1,r
ole2,role3

password-
stacking

useFirstPass or
false

false A value of
useFirstPass
indicates that this login
module should first look
to the information stored
in the LoginContext
for the identity. This
option can be used
when stacking other
login modules with this
one.

Security Guide

180

hashAlgorithm A string representing a
password hashing
algorithm.

none The name of the
java.security.Me
ssageDigest
algorithm to use to hash
the password. There is
no default so this option
must be explicitly set to
enable hashing. When
hashAlgorithm is
specified, the clear text
password obtained from
the
CallbackHandler is
hashed before it is
passed to
UsernamePassword
LoginModule.vali
datePassword as the
inputPassword
argument. The
password stored in the
users.properties
file must be comparably
hashed.

hashEncoding base64 or hex base64 The string format for the
hashed password, if
hashAlgorithm is also
set.

hashCharset A string The default encoding set
in the container's
runtime environment

The encoding used to
convert the clear-text
password to a byte
array.

unauthenticatedI
dentity

A principal name none Defines the principal
name assigned to
requests which contain
no authentication
information. This can
allow unprotected
servlets to invoke
methods on EJBs that
do not require a specific
role. Such a principal
has no associated roles
and can only access
unsecured EJBs or EJB
methods that are
associated with the
unchecked
permission
constraint.

Option Type Default Description

Custom Authentication Modules

APPENDIX A. REFERENCE

181

Authentication modules are implementations of javax.security.auth.spi.LoginModule. Refer to
the API documentation for more information about creating a custom authentication module.

Report a bug

A.2. INCLUDED AUTHORIZATION MODULES

The following modules provide authorization services.

Code Class

DenyAll org.jboss.security.authorization.modules.AllDenyAuth
orizationModule

PermitAll org.jboss.security.authorization.modules.AllPermitAut
horizationModule

Delegating org.jboss.security.authorization.modules.DelegatingA
uthorizationModule

Web org.jboss.security.authorization.modules.WebAuthori
zationModule

JACC org.jboss.security.authorization.modules.JACCAuthor
izationModule

Report a bug

A.3. INCLUDED SECURITY MAPPING MODULES

The following security mapping roles are provided in JBoss EAP 6.

Code Class

PropertiesRoles org.jboss.security.mapping.providers.role.PropertiesR
olesMappingProvider

SimpleRoles org.jboss.security.mapping.providers.role.SimpleRole
sMappingProvider

DeploymentRoles org.jboss.security.mapping.providers.DeploymentRol
esMappingProvider

DatabaseRoles org.jboss.security.mapping.providers.role.DatabaseR
olesMappingProvider

LdapRoles org.jboss.security.mapping.providers.role.LdapRoles
MappingProvider

Security Guide

182

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4732-461366+%5BSpecified%5D&comment=Title%3A+Included+Authentication+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4732-461366+17+Jun+2013+16%3A23+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+6877-328380+%5BSpecified%5D&comment=Title%3A+Included+Authorization+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6877-328380+05+Nov+2012+13%3A56+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

Report a bug

A.4. INCLUDED SECURITY AUDITING PROVIDER MODULES

JBoss EAP 6 provides one security auditing provider.

Code Class

LogAuditProvider org.jboss.security.audit.providers.LogAuditProvider

Report a bug

A.5. JBOSS-WEB.XML CONFIGURATION REFERENCE

Introduction

The jboss-web.xml is a file within your deployment's WEB-INF or META-INF directory. It contains
configuration information about features the JBoss Web container adds to the Servlet 3.0 specification.
Settings specific to the Servlet 3.0 specification are placed into web.xml in the same directory.

The top-level element in the jboss-web.xml file is the <jboss-web> element.

Mapping Global Resources to WAR Requirements

Many of the available settings map requirements set in the application's web.xml to local resources. The
explanations of the web.xml settings can be found at
http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html.

For instance, if the web.xml requires jdbc/MyDataSource, the jboss-web.xml may map the global
datasource java:/DefaultDS to fulfill this need. The WAR uses the global datasource to fill its need
for jdbc/MyDataSource.

Table A.42. Common Top-Level Attributes

Attribute Description

env-entry A mapping to an env-entry required by the
web.xml.

ejb-ref A mapping to an ejb-ref required by the
web.xml.

ejb-local-ref A mapping to an ejb-local-ref required by the
web.xml.

service-ref A mapping to a service-ref required by the
web.xml.

resource-ref A mapping to a resource-ref required by the
web.xml.

APPENDIX A. REFERENCE

183

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+6879-458818+%5BSpecified%5D&comment=Title%3A+Included+Security+Mapping+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6879-458818+11+Jun+2013+15%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+6881-458819+%5BSpecified%5D&comment=Title%3A+Included+Security+Auditing+Provider+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6881-458819+11+Jun+2013+15%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0
http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html

resource-env-ref A mapping to a resource-env-ref required by
the web.xml.

message-destination-ref A mapping to a message-destination-ref
required by the web.xml.

persistence-context-ref A mapping to a persistence-context-ref
required by the web.xml.

persistence-unit-ref A mapping to a persistence-unit-ref
required by the web.xml.

post-construct A mapping to a post-context required by the
web.xml.

pre-destroy A mapping to a pre-destroy required by the
web.xml.

data-source A mapping to a data-source required by the
web.xml.

context-root The root context of the application. The default value
is the name of the deployment without the .war
suffix.

virtual-host The name of the HTTP virtual-host the application
accepts requests from. It refers to the contents of the
HTTP Host header.

annotation Describes an annotation used by the application.
Refer to <annotation> for more information.

listener Describes a listener used by the application. Refer to
<listener> for more information.

session-config This element fills the same function as the
<session-config> element of the web.xml
and is included for compatibility only.

valve Describes a valve used by the application. Refer to
<valve> for more information.

overlay The name of an overlay to add to the application.

security-domain The name of the security domain used by the
application. The security domain itself is configured in
the web-based management console or the
management CLI.

Attribute Description

Security Guide

184

security-role This element fills the same function as the
<security-role> element of the web.xml and
is included for compatibility only.

use-jboss-authorization If this element is present and contains the case
insensitive value "true", the JBoss web authorization
stack is used. If it is not present or contains any value
that is not "true", then only the authorization
mechanisms specified in the Java Enterprise Edition
specifications are used. This element is new to JBoss
EAP 6.

disable-audit If this empty element is present, web security auditing
is disabled. Otherwise, it is enabled. Web security
auditing is not part of the Java EE specification. This
element is new to JBoss EAP 6.

disable-cross-context If false, the application is able to call another
application context. Defaults to true.

Attribute Description

The following elements each have child elements.

<annotation>

Describes an annotation used by the application. The following table lists the child elements of an
<annotation>.

Table A.43. Annotation Configuration Elements

Attribute Description

class-name Name of the class of the annotation

servlet-security The element, such as @ServletSecurity, which
represents servlet security.

run-as The element, such as @RunAs, which represents the
run-as information.

multi-part The element, such as @MultiPart, which
represents the multi-part information.

<listener>

Describes a listener. The following table lists the child eleents of a <listener>.

Table A.44. Listener Configuration Elements

APPENDIX A. REFERENCE

185

Attribute Description

class-name Name of the class of the listener

listener-type List of condition elements, which indicate what
kind of listener to add to the Context of the
application. Valid choices are:

CONTAINER

Adds a ContainerListener to the Context.

LIFECYCLE

Adds a LifecycleListener to the Context.

SERVLET_INSTANCE

Adds an InstanceListener to the Context.

SERVLET_CONTAINER

Adds a WrapperListener to the Context.

SERVLET_LIFECYCLE

Adds a WrapperLifecycle to the Context.

module The name of the module containing the listener class.

param A parameter. Contains two child elements, <param-
name> and <param-value>.

<valve>

Describes a valve of the application. It contains the same configuration elements as <listener>.

Report a bug

A.6. EJB SECURITY PARAMETER REFERENCE

Table A.45. EJB security parameter elements

Element Description

<security-identity> Contains child elements pertaining to the security
identity of an EJB.

<use-caller-identity /> Indicates that the EJB uses the same security identity
as the caller.

<run-as> Contains a <role-name> element.

Security Guide

186

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+4928-460029+%5BSpecified%5D&comment=Title%3A+jboss-web.xml+Configuration+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4928-460029+14+Jun+2013+14%3A45+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

<run-as-principal> If present, indicates the principal assigned to
outgoing calls. If not present, outgoing calls are
assigned to a principal named anonymous.

<role-name> Specifies the role the EJB should run as.

<description> Describes the role named in <role-name>
.

Element Description

Example A.1. Security identity examples

This example shows each tag described in Table A.45, “EJB security parameter elements”. They can
also be used inside a <servlet>.

Report a bug

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>
 </session>
 </enterprise-beans>
</ejb-jar>

APPENDIX A. REFERENCE

187

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+13944%2C+Security+Guide-6.1-2%0ABuild+Date%3A+17-07-2015+10%3A14%3A06%0ATopic+ID%3A+5053-328484+%5BSpecified%5D&comment=Title%3A+EJB+Security+Parameter+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5053-328484+05+Nov+2012+14%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.1.0

APPENDIX B. REVISION HISTORY

Revision 2.0.0-3 Fri Jul 17 2015 Scott Mumford
Built from Content Specification: 13944, Revision: 765278 by smumford

Security Guide

188

	Table of Contents
	PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6 (JBOSS EAP 6)
	1.2. ABOUT SECURITY
	1.3. SECURITY FOR THE SYSTEM ADMINISTRATOR
	1.4. SECURITY FOR THE J2EE DEVELOPER

	PART II. SECURING THE PLATFORM
	CHAPTER 2. THE SECURITY SUBSYSTEM
	2.1. ABOUT THE SECURITY SUBSYSTEM
	2.2. ABOUT THE STRUCTURE OF THE SECURITY SUBSYSTEM
	2.3. ABOUT ENCRYPTION
	2.4. ABOUT DECLARATIVE SECURITY
	2.5. SECURITY REFERENCES
	2.6. CONFIGURE THE SECURITY SUBSYSTEM
	2.7. JAVA EE DECLARATIVE SECURITY OVERVIEW
	2.8. SECURITY IDENTITY
	2.9. SECURITY ROLES
	2.10. EJB METHOD PERMISSIONS
	2.11. ENTERPRISE BEANS SECURITY ANNOTATIONS
	2.12. WEB CONTENT SECURITY CONSTRAINTS
	2.13. ENABLE FORM-BASED AUTHENTICATION
	2.14. ENABLE DECLARATIVE SECURITY

	CHAPTER 3. MANAGEMENT INTERFACE SECURITY
	3.1. SECURE THE MANAGEMENT INTERFACES
	3.2. DEFAULT USER SECURITY CONFIGURATION
	3.3. OVERVIEW OF ADVANCED MANAGEMENT INTERFACE CONFIGURATION
	3.4. DISABLE THE HTTP MANAGEMENT INTERFACE
	3.5. REMOVE SILENT AUTHENTICATION FROM THE DEFAULT SECURITY REALM
	3.6. DISABLE REMOTE ACCESS TO THE JMX SUBSYSTEM
	3.7. CONFIGURE SECURITY REALMS FOR THE MANAGEMENT INTERFACES
	3.8. PASSWORD VAULTS FOR SENSITIVE STRINGS
	3.8.1. About Securing Sensitive Strings in Clear-Text Files
	3.8.2. Create a Java Keystore to Store Sensitive Strings
	3.8.3. Mask the Keystore Password and Initialize the Password Vault
	3.8.4. Configure JBoss EAP 6 to Use the Password Vault
	3.8.5. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore
	3.8.6. Store and Resolve Sensitive Strings In Your Applications

	3.9. LDAP
	3.9.1. About LDAP
	3.9.2. Use LDAP to Authenticate to the Management Interfaces

	CHAPTER 4. JAVA SECURITY MANAGER
	4.1. ABOUT THE JAVA SECURITY MANAGER
	4.2. ABOUT JAVA SECURITY MANAGER POLICIES
	4.3. RUN JBOSS EAP 6 WITHIN THE JAVA SECURITY MANAGER
	4.4. WRITE A JAVA SECURITY MANAGER POLICY
	4.5. DEBUG SECURITY MANAGER POLICIES

	CHAPTER 5. PATCH INSTALLATION
	5.1. ABOUT PATCHING MECHANISMS
	5.2. SUBSCRIBE TO PATCH MAILING LISTS
	5.3. INSTALL PATCHES IN ZIP FORM
	5.4. INSTALL PATCHES IN RPM FORM
	5.5. SEVERITY AND IMPACT RATING OF JBOSS SECURITY PATCHES

	CHAPTER 6. SECURITY DOMAINS
	6.1. ABOUT SECURITY DOMAINS
	6.2. ABOUT PICKETBOX
	6.3. ABOUT AUTHENTICATION
	6.4. CONFIGURE AUTHENTICATION IN A SECURITY DOMAIN
	6.5. ABOUT AUTHORIZATION
	6.6. CONFIGURE AUTHORIZATION IN A SECURITY DOMAIN
	6.7. ABOUT SECURITY AUDITING
	6.8. CONFIGURE SECURITY AUDITING
	6.9. ABOUT SECURITY MAPPING
	6.10. CONFIGURE SECURITY MAPPING IN A SECURITY DOMAIN

	CHAPTER 7. SSL ENCRYPTION
	7.1. ABOUT SSL ENCRYPTION
	7.2. IMPLEMENT SSL ENCRYPTION FOR THE JBOSS EAP 6 WEB SERVER
	7.3. GENERATE A SSL ENCRYPTION KEY AND CERTIFICATE
	7.4. SSL CONNECTOR REFERENCE

	CHAPTER 8. SECURITY REALMS
	8.1. ABOUT SECURITY REALMS
	8.2. ADD A NEW SECURITY REALM
	8.3. ADD A USER TO A SECURITY REALM

	CHAPTER 9. SUBSYSTEM CONFIGURATION
	9.1. TRANSACTION SUBSYSTEM CONFIGURATION
	9.1.1. Configure the ORB for JTS Transactions

	9.2. JMS CONFIGURATION
	9.2.1. Reference for HornetQ Configuration Attributes

	CHAPTER 10. WEB, HTTP CONNECTORS, AND HTTP CLUSTERING
	10.1. CONFIGURE A MOD_CLUSTER WORKER NODE

	CHAPTER 11. NETWORK SECURITY
	11.1. SECURE THE MANAGEMENT INTERFACES
	11.2. SPECIFY WHICH NETWORK INTERFACE JBOSS EAP 6 USES
	11.3. CONFIGURE NETWORK FIREWALLS TO WORK WITH JBOSS EAP 6
	11.4. NETWORK PORTS USED BY JBOSS EAP 6

	PART III. SECURING APPLICATIONS
	CHAPTER 12. APPLICATION SECURITY
	12.1. ENABLING/DISABLING DESCRIPTOR BASED PROPERTY REPLACEMENT
	12.2. DATASOURCE SECURITY
	12.2.1. About Datasource Security

	12.3. EJB APPLICATION SECURITY
	12.3.1. Security Identity
	12.3.1.1. About EJB Security Identity
	12.3.1.2. Set the Security Identity of an EJB

	12.3.2. EJB Method Permissions
	12.3.2.1. About EJB Method Permissions
	12.3.2.2. Use EJB Method Permissions

	12.3.3. EJB Security Annotations
	12.3.3.1. About EJB Security Annotations
	12.3.3.2. Use EJB Security Annotations

	12.3.4. Remote Access to EJBs
	12.3.4.1. About Remote Method Access
	12.3.4.2. About Remoting Callbacks
	12.3.4.3. About Remoting Server Detection
	12.3.4.4. Configure the Remoting Subsystem
	12.3.4.5. Use Security Realms with Remote EJB Clients
	12.3.4.6. Add a New Security Realm
	12.3.4.7. Add a User to a Security Realm
	12.3.4.8. About Remote EJB Access Using SSL Encryption

	12.4. JAX-RS APPLICATION SECURITY
	12.4.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
	12.4.2. Secure a JAX-RS Web Service using Annotations

	12.5. SECURE REMOTE PASSWORD PROTOCOL
	12.5.1. About Secure Remote Password Protocol (SRP)
	12.5.2. Configure Secure Remote Password (SRP) Protocol

	CHAPTER 13. SINGLE SIGN ON (SSO)
	13.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
	13.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
	13.3. CHOOSE THE RIGHT SSO IMPLEMENTATION
	13.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION
	13.5. ABOUT KERBEROS
	13.6. ABOUT SPNEGO
	13.7. ABOUT MICROSOFT ACTIVE DIRECTORY
	13.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB APPLICATIONS

	CHAPTER 14. ROLE-BASED SECURITY IN APPLICATIONS
	14.1. ABOUT APPLICATION SECURITY
	14.2. ABOUT SECURITY AUDITING
	14.3. ABOUT SECURITY MAPPING
	14.4. ABOUT THE SECURITY EXTENSION ARCHITECTURE
	14.5. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
	14.6. USE A SECURITY DOMAIN IN YOUR APPLICATION
	14.7. USE ROLE-BASED SECURITY IN SERVLETS
	14.8. USE A THIRD-PARTY AUTHENTICATION SYSTEM IN YOUR APPLICATION

	CHAPTER 15. MIGRATION
	15.1. CONFIGURE APPLICATION SECURITY CHANGES

	CHAPTER 16. AUTHENTICATION AND AUTHORIZATION
	16.1. ABOUT AUTHENTICATION
	16.2. ABOUT AUTHORIZATION
	16.3. JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
	16.4. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
	16.5. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
	16.5.1. About Java Authorization Contract for Containers (JACC)
	16.5.2. Configure Java Authorization Contract for Containers (JACC) Security

	16.6. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
	16.6.1. About Java Authentication SPI for Containers (JASPI) Security
	16.6.2. Configure Java Authentication SPI for Containers (JASPI) Security

	APPENDIX A. REFERENCE
	A.1. INCLUDED AUTHENTICATION MODULES
	A.2. INCLUDED AUTHORIZATION MODULES
	A.3. INCLUDED SECURITY MAPPING MODULES
	A.4. INCLUDED SECURITY AUDITING PROVIDER MODULES
	A.5. JBOSS-WEB.XML CONFIGURATION REFERENCE
	A.6. EJB SECURITY PARAMETER REFERENCE

	APPENDIX B. REVISION HISTORY

