Show Table of Contents
20.7.2. Flow Control
The flow control service tries to adapt the sending data rate and the receiving data among nodes. If a sender node is too fast, it might overwhelm the receiver node and result in dropped packets that have to be retransmitted. In JGroups, the flow control is implemented via a credit-based system. The sender and receiver nodes have the same number of credits (bytes) to start with. The sender subtracts credits by the number of bytes in messages it sends. The receiver accumulates credits for the bytes in the messages it receives. When the sender's credit drops to a threshold, the receivers sends some credit to the sender. If the sender's credit is used up, the sender blocks until it receives credits from the receiver. The flow control service is configured in the
FC sub-element under the JGroups Config element. Here is an example configuration.
<FC max_credits="1000000"
down_thread="false" up_thread="false"
min_threshold="0.10"/>
The configurable attributes in the
FC element are as follows.
- max_credits specifies the maximum number of credits (in bytes). This value should be smaller than the JVM heap size.
- min_credits specifies the threshold credit on the sender, below which the receiver should send in more credits.
- min_threshold specifies percentage value of the threshold. It overrides the
min_creditsattribute. - min_block_time specifies the max time (in ms) a sender blocks. If a sender is blocking, and no credits have been received after 5 seconds, then it sends an explicit credit request to the receivers whose credits are currently below 0, until it receives credits from all members whose credits are below 0.
Note
Applications that use synchronous group RPC calls primarily do not require FC protocol in their JGroups protocol stack because synchronous communication, where the hread that makes the call blocks waiting for responses from all the members of the group, already slows overall rate of calls. Even though TCP provides flow control by itself, FC is still required in TCP based JGroups stacks because of group communication, where we essentially have to send group messages at the highest speed the slowest receiver can keep up with. TCP flow control only takes into account individual node communications and has not a notion of who's the slowest in the group, which is why FC is required.
20.7.2.1. Why is FC needed on top of TCP ? TCP has its own flow control !
The reason is group communication, where we essentially have to send group messages at the highest speed the slowest receiver can keep up with. Let's say we have a cluster {A,B,C,D}. D is slow (maybe overloaded), the rest is fast. When A sends a group message, it establishes TCP connections A-A (conceptually), A-B, A-C and A-D (if they don't yet exist). So let's say A sends 100 million messages to the cluster. Because TCP's flow control only applies to A-B, A-C and A-D, but not to A-{B,C,D}, where {B,C,D} is the group, it is possible that A, B and C receive the 100M, but D only received 1M messages. (BTW: this is also the reason why we need NAKACK, although TCP does its own retransmission).
Now JGroups has to buffer all messages in memory for the case when the original sender S dies and a node asks for retransmission of a message of S. Because all members buffer all messages they received, they need to purge stable messages (= messages seen by everyone) every now and then. This is done by the STABLE protocol, which can be configured to run the stability protocol round time based (e.g. every 50s) or size based (whenever 400K data has been received).
In the above case, the slow node D will prevent the group from purging messages above 1M, so every member will buffer 99M messages ! This in most cases leads to OOM exceptions. Note that - although the sliding window protocol in TCP will cause writes to block if the window is full - we assume in the above case that this is still much faster for A-B and A-C than for A-D.
So, in summary, we need to send messages at a rate the slowest receiver (D) can handle.

Where did the comment section go?
Red Hat's documentation publication system recently went through an upgrade to enable speedier, more mobile-friendly content. We decided to re-evaluate our commenting platform to ensure that it meets your expectations and serves as an optimal feedback mechanism. During this redesign, we invite your input on providing feedback on Red Hat documentation via the discussion platform.