[image: Third Party Acknowledgements]
Red Hat JBoss A-MQ
WS-Notification Guide

Accessing topic subscriptions through the WS-Notification standard

Red Hat

Version 6.1

Copyright © 2011-2014 Red Hat, Inc. and/or its affiliates.

Legal Notice

			Trademark Disclaimer

			
				The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
			

			
				Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
			

			
				Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
			

			
				Apache, ServiceMix, Camel, CXF, and ActiveMQ are trademarks of Apache Software Foundation. Any other names contained herein may be trademarks of their respective owners.
			

		

Legal Notice

			Third Party Acknowledgements

			
				One or more products in the Red Hat JBoss A-MQ release includes third party components covered by licenses that require that the following documentation notices be provided:
			

			 	
					
						JLine (http://jline.sourceforge.net) jline:jline:jar:1.0
					

					
						License: BSD (LICENSE.txt) - Copyright (c) 2002-2006, Marc Prud'hommeaux mwp1@cornell.edu
					

					
						All rights reserved.
					

					
						Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
					

					 	
							
								Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
							

						
	
							
								Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
							

						
	
							
								Neither the name of JLine nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
							

						

					
						THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
					

				
	
					
						Stax2 API (http://woodstox.codehaus.org/StAX2) org.codehaus.woodstox:stax2-api:jar:3.1.1
					

					
						License: The BSD License (http://www.opensource.org/licenses/bsd-license.php)
					

					
						Copyright (c) <YEAR>, <OWNER> All rights reserved.
					

					
						Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
					

					 	
							
								Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
							

						
	
							
								Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
							

						

					
						THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
					

				
	
					
						jibx-run - JiBX runtime (http://www.jibx.org/main-reactor/jibx-run) org.jibx:jibx-run:bundle:1.2.3
					

					
						License: BSD (http://jibx.sourceforge.net/jibx-license.html) Copyright (c) 2003-2010, Dennis M. Sosnoski.
					

					
						All rights reserved.
					

					
						Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
					

					 	
							
								Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
							

						
	
							
								Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
							

						
	
							
								Neither the name of JiBX nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
							

						

					
						THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
					

				
	
					
						JavaAssist (http://www.jboss.org/javassist) org.jboss.javassist:com.springsource.javassist:jar:3.9.0.GA:compile
					

					
						License: MPL (http://www.mozilla.org/MPL/MPL-1.1.html)
					

				
	
					
						HAPI-OSGI-Base Module (http://hl7api.sourceforge.net/hapi-osgi-base/) ca.uhn.hapi:hapi-osgi-base:bundle:1.2
					

					
						License: Mozilla Public License 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt)
					

				

		

01 Dec 2014

Abstract

			WS-Notification is implemented as a wrapper around the JBoss A-MQ broker, enabling you to access topic subscriptions through a standardised Web service interface.
		

	
	
	
	
	

 ⁠Chapter 1. Introduction to WS-Notification

		
		
 ⁠1.1. WS-Notification Standard

			
			
 ⁠Overview

			
				WS-Notification is a standard that describes a publish/subscribe messaging model implemented over Web services. The functionality is quite similar to the JMS publish/subscribe model, but the interfaces and the protocols are defined in terms of Web services standards (based on Apache CXF, in the context of JBoss A-MQ).
			

			
				The WS-Notification standard is defined by combining the following OASIS specifications:
			

			 	
					
						WS-Topics
					

				
	
					
						WS-BaseNotification
					

				
	
					
						WS-BrokeredNotification
					

				

			

 ⁠WS-Topics

			
				The WS-Topics standard describes how to organize and define the topics used in a notification broker. In particular, the following aspects of a topic are described:
			

			 	
					
						Topic hierarchy—a hierarchical naming scheme, which can be defined using an XML document associated with the notification broker.
					

				
	
					
						Topic set—a standardized XML schema, which can optionally be used to define the hierarchy of topic names.
					

				
	
					
						Topic dialect—a particular type of name expression that is used to specify one topic or to select multiple topics. The following dialects are defined by the WS-Topics specification:
					

					 	
							
								Simple
							

						
	
							
								Concrete
							

						
	
							
								Full
							

						
	
							
								XPath
							

						

				

			 Note

				
					Topic hierarchies are not supported in JBoss A-MQ. Only Simple topic names can be defined.
				

			

			

 ⁠WS-BaseNotification

			
				The WS-BaseNotification standard describes a simple point-to-point model of message notification. The base standard can be useful, if you want to send notifications through a standardized interface, without deploying a fully-fledged broker to mediate the messages. The following WSDL interfaces are defined in this standard:
			

			 	NotificationPublisher
	
						
							Must be implemented by the entity that wants to publish messages. This interfaces exposes the subscribe operation, which enables consumers to register their interest in receiving notifications from this publisher.
						

					
	NotificationConsumer
	
						
							Must be implemented by the entity that wants to receive messages. This interface exposes the notify operation, which enables the consumer to receive message notifications directly from the publisher.
						

					

			
				In addition to the two preceding interfaces for point-to-point communication, WS-BaseNotification defines another pair of interfaces for supporting pull-style notification, as follows:
			

			 	CreatePullPoint
	
						
							Exposes the createPullPoint operation, which creates a PullPoint object that can be used to accumulates messages.
						

					
	PullPoint
	
						
							Exposes the notify operation, which enables the pull-point to accumulate notification messages, and the getMessages operation, which enables a pull-style consumer to retrieve the accumulated messages when it is ready.
						

					

			

 ⁠WS-BrokeredNotification

			
				The WS-BrokeredNotification standard describes a brokered model of message notification, where a central broker (or network of brokers) can be used to route messages between publishers and consumers. This architecture scales much better than point-to-point, because each consumer requires only a single connection to the broker in order to monitor notifications from all publishers. The following additional interfaces are defined in this specification:
			

			 	NotificationBroker
	
						
							Combines the NotificationPubisher, NotificationConsumer, and CreatePullPoint interfaces, enabling you to provide the full range of notification services in a single application.
						

						
							The NotificationBroker interface defines one additional operation, the registerPublisher operation, which can optionally be used to register publishers with the broker. In particular, this operation can be useful when constructing a federation of brokers.
						

					
	RegisterPublisher
	
						
							The notification broker also implements the RegisterPublisher interface, which defines one additional operation, registerPublisher. A publisher can optionally use the registerPublisher operation its NotificationPublisher object with the broker.
						

						 Note

							
								It is also possible for publishers to send messages to the broker straightaway, by invoking notify, without needing to register in advance.
							

						

					
	PublisherRegistrationManager
	
						
							The return value of the registerPublisher operation is a reference to a PublisherRegistrationManager object, which can be used to destroy a registration.
						

					

			

 ⁠References

			
				For more information about the WS-Notification standards, see the following references:
			

			 	
					
						WS-Topics 1.3 OASIS Standard
					

				
	
					
						WS-BaseNotification 1.3 OASIS Standard
					

				
	
					
						WS-BrokeredNotification 1.3 OASIS Standard
					

				

			

		

		
 ⁠1.2. Consumer Client Scenario

			
			
 ⁠Overview

			
				In the consumer client scenario, the consumer client receives messages directly from the broker, as soon as they become available. This approach requires the consumer client to implement a callback object, which exposes a Web service endpoint. Figure 1.1, “A Consumer Client Scenario” provides an overview of this scenario.
			

			
 ⁠
				
				 [image:]

			
Figure 1.1. A Consumer Client Scenario

			

 ⁠Clients in this scenario

			
				There are two clients involved in this scenario:
			

			 	
					
						Publisher client—generates notification messages and publishes the messages on a specific topic, by sending them to the notification broker.
					

				
	
					
						Consumer client—a client that implements a consumer callback object (exposing a Web service endpoint of NotificationConsumer type), which is capable of receiving notifications directly from the notification broker.
					

				

			

 ⁠Scenario steps

			
				In this scenario, a consumer client receives notification messages from the broker as follows:
			

			 	
					
						The consumer client instantiates a consumer callback object, which implements the NotificationConsumer interface and is capable of receiving notifications from the broker.
					

				
	
					
						The consumer client creates a subscription by invoking the subscribe operation on the broker, passing the following operation arguments:
					

					 	
							
								Topic name—specifies the topic that the client wants to subscribe to.
							

						
	
							
								Callback reference—a reference to the consumer callback object that will receive the notifications, where the service reference has the format of a WS-Addressing Endpoint Reference (EPR).
							

						

				
	
					
						A publisher client sends a notification message on a specific topic, by invoking the notify operation on the broker.
					

				
	
					
						If the message topic matches the consumer client's subscription, the broker will forward the message to the consumer client by invoking the notify operation on the consumer callback service.
					

				

			

		

		
 ⁠1.3. PullPoint Client Scenario

			
			
 ⁠Overview

			
				In the pull-point client scenario, the pull-point client does not receive messages directly from the broker. Instead, the pull-point client allows messages to accumulate in a remote PullPoint object (which acts as a message drop-box) and retrieves the messages from time to time by invoking the getMessages operation on the PullPoint. Figure 1.2, “A PullPoint Client Scenario” provides an overview of this scenario.
			

			
 ⁠
				
				 [image:]

			
Figure 1.2. A PullPoint Client Scenario

			

 ⁠Clients in this scenario

			
				There are two clients involved in this scenario:
			

			 	
					
						Publisher client—generates notification messages and publishes the messages on a specific topic, by sending them to the notification broker.
					

				
	
					
						PullPoint client—a client that uses a polling strategy to get notification messages. Instead of receiving notification messages directly from the broker, this client creates a remote PullPoint instance. Messages that accumulate in the PullPoint can be retrieved at any time by invoking the getMessages operation on the PullPoint.
					

				

			

 ⁠Scenario steps

			
				In this scenario, a pull-point client polls for notification messages as follows:
			

			 	
					
						The pull-point client creates a remote PullPoint instance by invoking the create operation on the CreatePullPoint interface in the broker. The return value from this operation contains a WS-Addressing reference to the remote pull-point.
					

				
	
					
						The pull-point client creates a subscription by invoking the subscribe operation on the broker, passing the following operation arguments:
					

					 	
							
								Topic name—specifies the topic that the client wants to subscribe to.
							

						
	
							
								Callback reference—a reference to the remote PullPoint instance that will receive the notifications on behalf of the client.
							

						

				
	
					
						A publisher client sends a notification message on a specific topic, by invoking the notify operation on the broker.
					

				
	
					
						At any time, the pull-point client can retrieve messages that have accumulated in the PullPoint instance by invoking the getMessages operation on the PullPoint.
					

				

			

		

		
 ⁠1.4. Implementation of WS-Notification

			
			
 ⁠Overview

			
				Figure 1.3, “Notification Broker Architecture” shows an overview of how the WS-Notification standard is implemented in JBoss A-MQ, where the notification broker supports both the WS-BaseNotification standard and the WS-BrokeredNotification standard.
			

			
 ⁠
				
				 [image:]

			
Figure 1.3. Notification Broker Architecture

			

 ⁠Notification broker as wrapper around ActiveMQ broker

			
				The JBoss A-MQ notification broker is implemented essentially as a wrapper around the Apache ActiveMQ broker. This is possible, because the topic-based messaging model at the heart of WS-Notification is essentially the same as the JMS publish/subscribe model. The notification broker wrapper layer provides the SOAP/HTTP protocol, implements the standard WSDL interfaces, and implements the integration layer; the ActiveMQ broker component provides persistence, message routing, and JMX support (amongst other things).
			

			
				The notification broker wrapper and the ActiveMQ broker are connected together using a normal client-broker connection. In theory, you could use any ActiveMQ supported protocol for this connection, but it makes the most sense to embed both components in the same JVM and to use the VM protocol. This embedded coupling ensures optimum efficiency and performance.
			

			

 ⁠OSGi container deployment

			
				In theory, the notification broker can be deployed standalone or into various containers. The normal deployment model in JBoss A-MQ, however, is the OSGi container deployment. To simplify OSGi deployment, the notification broker can be installed as the Karaf feature, cxf-wsn.
			

			

 ⁠Supported WS-Notification interfaces

			
				The notification broker service supports the following two WS-Notification interfaces:
			

			 	NotificationBroker
	
						
							The main notification broker interface enables you to create subscriptions (subscribe operation), send notification messages (notify operation), and register Publisher services (registerPublisher operation).
						

					
	CreatePullPoint
	
						
							The create pull-point interface enables you to create new pull-point endpoints on the notification broker, which are used to accumulate messages until a consumer client is ready to retrieve them.
						

					

			

 ⁠Qualities of service

			
				Most of the options to configure qualities of service are provided by the underlying ActiveMQ broker. All of the usual topic-oriented features and qualities of service can be configured on the underlying broker. In particular, you can turn on persistence in the broker, so that subscriptions and messages are persisted.
			

			

 ⁠Topics

			
				Notification messages are organized by topic, so that messages sent on a particular topic will be received by those consumers that are subscribed to that topic. In JBoss A-MQ, the notification topics are mapped to the underlying ActiveMQ topics, as follows:
			

			 	
					
						Only the SIMPLE dialect is supported (of the dialects described in the WS-Notification specification).
					

				
	
					
						In a WS-Notification client, you can specify a topic name as the String type or as the QName type.
					

				
	
					
						A notification topic name maps directly to an ActiveMQ topic name.
					

				
	
					
						Topic hierarchies are not supported in JBoss A-MQ, but something very similar is supported by the underlying ActiveMQ broker. In Apache ActiveMQ, you can define a topic to have a segmented structure, where each segment is delimited by the . character—for example, STOCKS.NYSE.REDHAT. Within the ActiveMQ configuration, you can exploit this structure to match multiple topics—for example, STOCKS.NYSE.> matches all topics starting with STOCKS.NYSE..
					

				
	
					
						Topics are ad-hoc—in other words, there is no need to pre-define any topic hierarchy in XML. Topics are created dynamically: if you use them, they are automatically created in the broker. This is the standard approach supported in the underlying ActiveMQ broker.
					

				

			

 ⁠Configuration of the notification broker

			
				The notification broker is configured mainly by the following OSGi Config Admin configuration files:
			

			 	etc/org.apache.cxf.wsn.cfg
	
						
							Configures the wrapper component of the notification broker. For details about the properties you can set in this file, see the section called “org.apache.cxf.wsn.cfg settings”.
						

					
	etc/org.fusesource.mq.fabric.server-default.cfg
	
						
							Customizes the OSGi deployment of the Apache ActiveMQ broker. A couple of important properties can be set in this file—for example, the broker name.
						

					
	etc/activemq.xml
	
						
							Configures the Apache ActiveMQ broker. Most of the broker features and properties can be configured in this file. For example, you can configure message persistence and fine tune broker performance in this file.
						

					

			

		

		
 ⁠1.5. Client API

			
			
 ⁠Overview

			
				Figure 1.4, “Client APIs” gives an overview of the available APIs for programing WS-Notification clients.
			

			
 ⁠
				
				 [image:]

			
Figure 1.4. Client APIs

			

 ⁠WS-Notification standard API

			
				Clients can be implemented using the standard WS-Notification API, which is obtained by mapping the standard WSDL interfaces to Java the JAX-WS and JAX-B. This has the advantage that you can use standard client code to access the notification broker (ensuring code portability), but it has the disadvantage that the standard API is relatively complicated to program with.
			

			

 ⁠Simplified client API

			
				To simplify working with the notification broker, JBoss A-MQ offers a simplified (non-standard) client API for accessing the notification broker. This API automatically takes care of tedious manipulation of JAX-B data types. Using this API, you typically require just a few method calls to implement a basic WS-Notification client.
			

			
				For example, see the client code samples in Chapter 2, WS-Notification Tutorial.
			

			

 ⁠API reference

			
				The full API reference for the simplified client API is provided in the Apache CXF API Reference, which is available from the API Reference in the JBoss Fuse library. All of the relevant classes can be found in the following Java package:
			

			
org.apache.cxf.wsn.client

			

		

	

 ⁠Chapter 2. WS-Notification Tutorial

		
		
 ⁠2.1. Install and Configure the Notification Broker

			
			
 ⁠Overview

			
				This section of the tutorial describes how to install and configure the notification broker as a Web service in the JBoss A-MQ standalone container. For convenient OSGi deployment, the notification broker is packaged as an Apache Karaf feature.
			

			

 ⁠Prerequisites

			
				This tutorial assumes that you are starting from a plain standalone container, in the initial configuration you find it in after installing JBoss A-MQ (and, in particular, that the container is not configured as part of a Fuse fabric).
			

			

 ⁠Steps to install the notification broker

			
				To install and configure the notification broker in the JBoss A-MQ container, perform the following steps:
			

			 	
					
						Make sure you have already configured some user accounts in the etc/users.properties file. If necessary, create a user account by adding lines in the following format:
					

					
Username=Password[,Role1][,Role2]...

					
						For example, this tutorial assumes that the following admin user account is defined (which has privileges defined by the admin role):
					

					
admin=admin,admin

				
	
					
						Create the notification broker configuration file, InstallDir/etc/org.apache.cxf.wsn.cfg, and use a text editor to add the following property settings:
					

					
cxf.wsn.activemq=vm://amq?create=false&waitForStart=10000
cxf.wsn.activemq.username=admin
cxf.wsn.activemq.password=admin

					
						The following aspects of the notification broker are configured in this file:
					

					 	
							
								Connection to the ActiveMQ broker—the vm://amq URL connects through the Java Virtual Machine to access the broker named amq (where the broker's name is defined by the broker-name setting in the etc/org.fusesource.mq.fabric.server-default.cfg file). The following options are specified on this URL:
							

							 	create
	
										
											By setting create=false, you can ensure that the notification broker does not try to create its own (embedded) instance of a broker, but always tries to connect to the existing broker instance named amq.
										

									
	waitForStart
	
										
											To compensate for any delays that might occur during the container's start-up sequence, this endpoint defines a grace period, during which it waits for the broker to start.
										

									

						
	
							
								Credentials for the connection—because authentication is enabled by default in the broker, you must provide credentials (username and password) for connecting to the broker. The credentials must refer to one of the user accounts defined in etc/users.properties.
							

						

				
	
					
						Start up the JBoss A-MQ container, by entering the following command from the InstallDir/bin directory:
					

					
./amq

				
	
					
						Install and start up the notification broker using the features:install console command, as follows:
					

					
JBossA-MQ:karaf@root> features:install cxf-wsn

				
	
					
						Check that broker has started up by navigating to the following URL in your Web browser (querying the WSDL contract from the Web service endpoint):
					

					
http://localhost:8182/wsn/NotificationBroker?wsdl

					 Note

						
							Your browser should display the NotificationBroker WSDL contract in response to this URL, but this does not work in all browsers. For example, the Safari browser just displays a blank page.
						

					

				

			

 ⁠Troubleshooting

			
				If you are not sure whether the notification broker is running properly, you can get some diagnostic information using the following commands:
			

			 	osgi:list
	
						
							If you run osgi:list at the console prompt, you should see some output like the following:
						

						
JBossA-MQ:karaf@root> osgi:list
...
[149] [Active] [Created] [40] Apache CXF API (2.6.0.redhat-60024)
[150] [Active] [Created] [40] Apache CXF Runtime Core (2.6.0.redhat-60024)
[151] [Active] [] [40] Apache CXF Runtime Management (2.6.0.redhat-60024)
[152] [Active] [Created] [40] Apache CXF Karaf Commands (2.6.0.redhat-60024)
[153] [Active] [] [30] Apache Neethi (3.0.2)
[154] [Active] [Created] [40] Apache CXF Runtime WS Policy (2.6.0.redhat-60024)
[155] [Active] [] [40] Apache CXF Runtime XML Binding (2.6.0.redhat-60024)
[156] [Active] [Created] [40] Apache CXF Runtime SOAP Binding (2.6.0.redhat-60024)
[157] [Active] [Created] [40] Apache CXF Runtime WS Addressing (2.6.0.redhat-60024)
[158] [Active] [] [40] Apache CXF Runtime JAXB DataBinding (2.6.0.redhat-60024)
[159] [Active] [Created] [40] Apache CXF Runtime HTTP Transport (2.6.0.redhat-60024)
[160] [Active] [Created] [40] Apache CXF Runtime Simple Frontend (2.6.0.redhat-60024)
[161] [Active] [Created] [40] Apache CXF Runtime JAX-WS Frontend (2.6.0.redhat-60024)
[162] [Active] [] [60] Apache CXF WSN API (2.6.0.redhat-60024)
[163] [Active] [Created] [40] Apache CXF Runtime HTTP Jetty Transport (2.6.0.redhat-60024)
[166] [Active] [Created] [60] Apache CXF WSN Core (2.6.0.redhat-60024)

						
							In particular, the Apache CXF WSN Core bundle (which deploys the notification broker server) must have the status Active and Created.
						

					
	log:display
	
						
							Run the log:display command at the console prompt to search the container log for errors and warnings.
						

					

			

 ⁠org.apache.cxf.wsn.cfg settings

			
				You can set the following properties in the etc/org.apache.cxf.wsn.cfg configuration file:
			

			 	cxf.wsn.activemq
	
						
							Specifies the URI for connecting to the ActiveMQ broker (must be an ActiveMQ client URL). Default is vm:localhost.
						

					
	cxf.wsn.activemq.username
	
						
							Specifies the username credentials for logging on to the ActiveMQ broker. Default is user.
						

					
	cxf.wsn.activemq.password
	
						
							Specifies the password credentials for logging on to the ActiveMQ broker. Default is password.
						

					
	cxf.wsn.rootUrl
	
						
							Specifies the host and IP port of the notification broker's Web service endpoints. Default is http://0.0.0.0:8182.
						

					
	cxf.wsn.context
	
						
							Defines the servlet context for notification broker's Web service endpoints. Default is /wsn.
						

						
							By default, the notification broker constructs its NotificationBroker endpoint address and its CreatePullPoint endpoint address as follows:
						

						
${cxf.wsn.rootUrl}${cxf.wsn.context}/NotificationBroker
${cxf.wsn.rootUrl}${cxf.wsn.context}/CreatePullPoint

					

			

 ⁠Advanced configuration

			
				Because the ActiveMQ broker provides the core functionality of the notification broker, most of the configuration options are available in the etc/activemq.xml file. For example, through the settings in this file you can configure persistent storage and you can optimize the broker for optimum performance.
			

			
				For more details, see Managing and Monitoring a Broker and Configuring Broker Persistence.
			

			

		

		
 ⁠2.2. Create a Publisher Client

			
			
 ⁠Overview

			
				This section describes how to create a publisher client of the notification broker. The publisher client is capable of sending messages on a specific topic to the notification broker.
			

			

 ⁠Prerequisites

			
				In order to access artifacts from the Maven repository, you need to add the fusesource repository to Maven's settings.xml file. Maven looks for your settings.xml file in the following standard location:
			

			 	
					
						UNIX: home/User/.m2/settings.xml
					

				
	
					
						Windows: Documents and Settings\User\.m2\settings.xml
					

				

			
				If there is currently no settings.xml file at this location, you need to create a new settings.xml file. Modify the settings.xml file by adding the repository element for fusesource, as highlighted in the following example:
			

			
<settings>
 <profiles>
 <profile>
 <id>my-profile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>fusesource</id>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 ...
 </repositories>
 </profile>
 </profiles>
 ...
</settings>

			

 ⁠Sample publisher client code

			
				Example 2.1, “Publisher Client Code” shows the code for a sample publisher client that pushes a simple Hello World! message to the MyTopic topic on the notification broker.
			

			
 ⁠Example 2.1. Publisher Client Code

				
				
// Java
package org.jboss.fuse.example.wsn.publisher.client;

import javax.xml.bind.JAXBElement;
import javax.xml.namespace.QName;

import org.w3c.dom.Element;

import org.apache.cxf.wsn.client.Consumer;
import org.apache.cxf.wsn.client.NotificationBroker;
import org.apache.cxf.wsn.client.Subscription;
import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;

/**
 *
 */
public final class Client {
 private Client() {
 //not constructed
 }

 /**
 * @param args
 */
 public static void main(String[] args) throws Exception {
 String wsnPort = "8182";
 if (args.length > 0) {
 wsnPort = args[0];
 }

 // Create a NotificationBroker proxy
 NotificationBroker notificationBroker
 = new NotificationBroker("http://localhost:" + wsnPort + "/wsn/NotificationBroker");

 for (int i=0; i<120; i++) {
 // Send notifications on the Topic
 notificationBroker.notify(
 "MyTopic",
 new JAXBElement<String>(
 new QName("urn:test:org", "foo"),
 String.class,
 "Hello World!"
)
);

 // Sleep for 1s between notifications
 Thread.sleep(1000);
 }

 // Cleanup and exit
 System.exit(0);
 }

}

			

			

 ⁠NotificationBroker proxy class

			
				The client code from Example 2.1, “Publisher Client Code” uses the NotificationBroker proxy class to connect to the remote notification broker and to publish notifications to the broker. In this example, the following NotificationBroker methods are invoked:
			

			 	NotificationBroker(String address, Class<?>... cls)
	
						
							The NotificationBroker constructor normally takes a single argument, which is the URL of the remote notification broker Web service.
						

					
	notify(String topic, Object msg)
	
						
							Sends a message, msg, on the topic, topic, to the notification broker, where the format of the msg argument is an XML document. For example, you can use the JAX-B API to create a single XML element containing a string for the message, as shown in Example 2.1, “Publisher Client Code”.
						

					

			 Note

				
					This NotificationBroker proxy class belongs to the simplified client API provided by the Apache CXF implementation of WS-Notification; it is not an instance of the standard NotificationBroker SEI defined by JAX-WS (although the standard SEI is also available and could be used instead).
				

			

			

 ⁠Steps to create a publisher client

			
				Perform the following steps to create a publisher client:
			

			 	
					
						You can create a Maven project directly from the command line, by invoking the archetype:generate goal. First of all, create a directory to hold the WS-Notification client projects. Open a command prompt, navigate to a convenient location in your file system, and create the wsn directory, as follows:
					

					
mkdir wsn
cd wsn

					
						You can now use the archetype:generate goal to invoke the servicemix-cxf-code-first-osgi-bundle archetype, which generates a simple Apache CXF demonstration, as follows:
					

					
mvn archetype:generate \
 -DarchetypeGroupId=org.apache.servicemix.tooling \
 -DarchetypeArtifactId=servicemix-cxf-code-first-osgi-bundle \
 -DarchetypeVersion=2013.01.0.redhat-610379 \
 -DgroupId=org.jboss.fuse.example \
 -DartifactId=wsn-publisher \
 -Dversion=1.0-SNAPSHOT \
 -Dpackage=org.jboss.fuse.example.wsn.publisher

					
 Note

						
							The backslash characters at the end of each line are effective as line-continuation characters on UNIX and LINUX platforms. If you are entering the command on a Windows platform, however, you must enter the entire command on a single line.
						

					

					
						You will be prompted to confirm the project settings, with a message similar to this one:
					

					
Confirm properties configuration:
groupId: org.jboss.fuse.example
artifactId: wsn-publisher
version: 1.0-SNAPSHOT
package: org.jboss.fuse.example.wsn.publisher
 Y: :

					
						Type Return to accept the settings and generate the project. When the command finishes, you should find a new Maven project in the wsn/wsn-publisher directory.
					

				
	
					
						Some of the generated project files are not needed for this tutorial. Under the wsn/wsn-publisher directory, delete the following files and directories:
					

					
src/main/resources/META-INF/spring/beans.xml
src/main/java/org/jboss/fuse/example/wsn/publisher/Person.java
src/main/java/org/jboss/fuse/example/wsn/publisher/PersonImpl.java
src/main/java/org/jboss/fuse/example/wsn/publisher/UnknownPersonFault.java
src/main/java/org/jboss/fuse/example/wsn/publisher/types

				
	
					
						Edit the pom.xml file in the wsn-publisher directory, and add the dependency required for WS-Notification clients:
					

					
<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <dependencies>
 ...
 <!-- Needed for WS-Notification -->
 <dependency>
 <groupId>org.apache.cxf.services.wsn</groupId>
 <artifactId>cxf-services-wsn-api</artifactId>
 <version>2.7.0.redhat-610379</version>
 </dependency>
 </dependencies>
 ...
</project>

				
	
					
						Edit the Client.java file in the wsn-publisher/src/main/java/org/jboss/fuse/example/wsn/publisher/client/ directory, remove the existing content, and replace it with the code from Example 2.1, “Publisher Client Code”.
					

				
	
					
						You can now run the publisher client from the wsn-publisher directory by entering the following command:
					

					
mvn -Pclient

					
						In the command window, you should see some output like the following:
					

					
INFO: Creating Service {http://cxf.apache.org/wsn/jaxws}NotificationBrokerService
from WSDL: jar:file:/Users/fbolton/.m2/repository/org/apache/cxf/services/wsn/
cxf-services-wsn-api/2.6.0.redhat-60024/cxf-services-wsn-api-2.6.0.redhat-60024.jar
!/org/apache/cxf/wsn/wsdl/wsn.wsdl

					
						Notification messages are now accumulating in the broker, but you will not be able to receive the messages until you create a consumer client.
					

				

			

		

		
 ⁠2.3. Create a Consumer Client

			
			
 ⁠Overview

			
				This section describes how to create a consumer client of the notification broker. The consumer client subscribes to a particular topic and creates a callback service, which is capable of receiving messages directly from the broker.
			

			

 ⁠Sample consumer client code

			
				Example 2.2, “Consumer Client Code” shows the code for a sample consumer client that subscribes to messages published on the MyTopic topic.
			

			
 ⁠Example 2.2. Consumer Client Code

				
				
// Java
package org.jboss.fuse.example.wsn.consumer.client;

import javax.xml.bind.JAXBElement;
import javax.xml.namespace.QName;

import org.w3c.dom.Element;

import org.apache.cxf.wsn.client.Consumer;
import org.apache.cxf.wsn.client.NotificationBroker;
import org.apache.cxf.wsn.client.Subscription;
import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;

/**
 *
 */
public final class Client {
 private Client() {
 //not constructed
 }

 /**
 * @param args
 */
 public static void main(String[] args) throws Exception {
 String wsnPort = "8182";
 if (args.length > 0) {
 wsnPort = args[0];
 }

 // Start a consumer that will listen for notification messages
 // We'll just print the text content out for now.
 Consumer consumer = new Consumer(new Consumer.Callback() {
 public void notify(NotificationMessageHolderType message) {
 Object o = message.getMessage().getAny();
 System.out.println(message.getMessage().getAny());
 if (o instanceof Element) {
 System.out.println(((Element)o).getTextContent());
 }
 }
 }, "http://localhost:9001/MyConsumer");

 // Create a subscription for a Topic on the broker
 NotificationBroker notificationBroker
 = new NotificationBroker("http://localhost:" + wsnPort + "/wsn/NotificationBroker");
 Subscription subscription = notificationBroker.subscribe(consumer, "MyTopic");

 // Just sleep for a bit to pick up some incoming messages
 Thread.sleep(60000);

 // Cleanup and exit
 subscription.unsubscribe();
 consumer.stop();
 System.exit(0);
 }

}

			

			

 ⁠Creating a consumer callback object

			
				In order to receive notification messages from the notification broker, you must create a consumer callback object to receive the messages. The consumer callback object is in fact a Web service which is embedded in your client. The easiest way to create the consumer callback is to use the org.apache.cxf.wsn.client.Consumer class from the simplified client API, which enables you to define a callback as follows:
			

			
 // Start a consumer that will listen for notification messages
 // We'll just print the text content out for now.
 Consumer consumer = new Consumer(new Consumer.Callback() {
 public void notify(NotificationMessageHolderType message) {
 Object o = message.getMessage().getAny();
 System.out.println(message.getMessage().getAny());
 if (o instanceof Element) {
 System.out.println(((Element)o).getTextContent());
 }
 }
 }, "http://localhost:9001/MyConsumer");

			
				The first argument to the Consumer constructor is a reference to the consumer callback object, which is defined inline. The second argument specifies the URL of the consumer callback endpoint, which can receive messages from the notification broker.
			

			

 ⁠Subscribing to a topic

			
				To start receiving messages, you must subscribe the consumer to a topic in the notification broker. To create a subscription, invoke the following subscribe method on the NotificationBroker proxy object:
			

			
Subscription subscribe(Referencable consumer, String topic)

			
				The first argument is a reference to a Consumer object (which is capable of returning a WS-Addressing endpoint reference to the consumer callback through the Referencable.getEpr() method). The second argument is the name of the topic you want to subscribe to.
			

			
				The return value is a reference to a Subscription object, which you can use to manage the subscription (for example, pause, resume, or unsubscribe).
			

			

 ⁠Threading in the consumer client

			
				Because the consumer client has an embedded Web service (the consumer callback object), which automatically starts in a background thread, it is necessary to manage threading in this sample client. In particular, after creating the subscription, you need to put the main thread to sleep (by calling Thread.sleep(60000)), so that the thread context can switch to the background thread, where the callback Web service is running. This makes it possible for the consumer callback to receive some messages.
			

			

 ⁠Steps to create a consumer client

			
				Perform the following steps to create a consumer client:
			

			 	
					
						Use the archetype:generate goal to invoke the servicemix-cxf-code-first-osgi-bundle archetype. Under the wsn directory, invoke the Maven archetype as follows:
					

					
mvn archetype:generate \
 -DarchetypeGroupId=org.apache.servicemix.tooling \
 -DarchetypeArtifactId=servicemix-cxf-code-first-osgi-bundle \
 -DarchetypeVersion=2013.01.0.redhat-610379 \
 -DgroupId=org.jboss.fuse.example \
 -DartifactId=wsn-consumer \
 -Dversion=1.0-SNAPSHOT \
 -Dpackage=org.jboss.fuse.example.wsn.consumer

					
 Note

						
							The backslash characters at the end of each line are effective as line-continuation characters on UNIX and LINUX platforms. If you are entering the command on a Windows platform, however, you must enter the entire command on a single line.
						

					

					
						You will be prompted to confirm the project settings, with a message similar to this one:
					

					
Confirm properties configuration:
groupId: org.jboss.fuse.example
artifactId: wsn-consumer
version: 1.0-SNAPSHOT
package: org.jboss.fuse.example.wsn.consumer
 Y: :

					
						Type Return to accept the settings and generate the project. When the command finishes, you should find a new Maven project in the wsn/wsn-consumer directory.
					

				
	
					
						Some of the generated project files are not needed for this tutorial. Under the wsn/wsn-consumer directory, delete the following files and directories:
					

					
src/main/resources/META-INF/spring/beans.xml
src/main/java/org/jboss/fuse/example/wsn/consumer/Person.java
src/main/java/org/jboss/fuse/example/wsn/consumer/PersonImpl.java
src/main/java/org/jboss/fuse/example/wsn/consumer/UnknownPersonFault.java
src/main/java/org/jboss/fuse/example/wsn/consumer/types

				
	
					
						Edit the pom.xml file in the wsn-consumer directory, and add the following dependencies, as required by the consumer client:
					

					
<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <dependencies>
 ...
 <!-- Needed for HTTP callback endpoint -->
 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-jetty</artifactId>
 <version>2.7.0.redhat-610379</version>
 </dependency>

 <!-- Needed for WS-Notification -->
 <dependency>
 <groupId>org.apache.cxf.services.wsn</groupId>
 <artifactId>cxf-services-wsn-api</artifactId>
 <version>2.7.0.redhat-610379</version>
 </dependency>
 </dependencies>
 ...
</project>

				
	
					
						Edit the Client.java file in the wsn-consumer/src/main/java/org/jboss/fuse/example/wsn/consumer/client/ directory, remove the existing content, and replace it with the code from Example 2.2, “Consumer Client Code”.
					

				

			

 ⁠Test the consumer client

			
				Test the consumer client as follows:
			

			 	
					
						If the JBoss A-MQ container is not already running (with the notification broker installed), start it up now:
					

					
./amq

				
	
					
						Run the publisher client at the command line. Open a new command prompt, and enter the following commands:
					

					
cd wsn/wsn-publisher
mvn -Pclient

					
						In the command window, you should see some output like the following:
					

					
...
INFO: Creating Service {http://cxf.apache.org/wsn/jaxws}NotificationBrokerService
from WSDL: jar:file:/Users/fbolton/.m2/repository/org/apache/cxf/services/wsn/
cxf-services-wsn-api/2.6.0.redhat-60024/cxf-services-wsn-api-2.6.0.redhat-60024.jar
!/org/apache/cxf/wsn/wsdl/wsn.wsdl

					
						You now have approximately two minutes before the publisher client times out.
					

				
	
					
						Run the consumer client at the command line. Open a new command prompt and enter the following commands:
					

					
cd wsn/wsn-consumer
mvn -Pclient

					
						In the command window, you should see some output like the following:
					

					
...
Jun 25, 2013 4:13:47 PM org.apache.cxf.service.factory.ReflectionServiceFactoryBean
buildServiceFromWSDL
INFO: Creating Service {http://cxf.apache.org/wsn/jaxws}PausableSubscriptionManagerService
from WSDL: jar:file:/Users/fbolton/.m2/repository/org/apache/cxf/services/wsn
/cxf-services-wsn-api/2.6.0.redhat-60024/cxf-services-wsn-api-2.6.0.redhat-60024.jar
!/org/apache/cxf/wsn/wsdl/wsn.wsdl
[ns8:foo: null]
Hello World!
...

				
	
					
						To inspect the state of the notification broker, you can connect to the JMX port of the ActiveMQ broker. Start up a JMX console by entering the following command at the command line:
					

					
jconsole

					
						In the JConsole: New Connection dialog, select Remote Process and enter the following URL in the accompanying text field:
					

					
service:jmx:rmi:///jndi/rmi://localhost:1099/karaf-root

					
						In the Username and Password fields, enter one of the user credentials you created at the start of this tutorial. When you are connected to the JMX port, you can inspect the state of the broker by clicking on the MBeans tab and drilling down the object tree in the JConsole.
					

				

			

		

		
 ⁠2.4. Create a PullPoint Client

			
			
 ⁠Overview

			
				This section describes how to create a pull-point client of the notification broker. The pull-point client first creates a remote pull-point (which is used to accumulate messages), then subscribes the pull-point to a particular topic. Finally, the pull-point client retrieves the accumulated messages from the pull-point.
			

			

 ⁠Sample PullPoint client code

			
				Example 2.3, “PullPoint Client Code” shows the code for a sample pull-point client that subscribes to messages published on the MyTopic topic.
			

			
 ⁠Example 2.3. PullPoint Client Code

				
				
// Java
package org.jboss.fuse.example.wsn.pullpoint.client;

import java.util.List;
import java.util.Iterator;

import javax.xml.bind.JAXBElement;
import javax.xml.namespace.QName;

import org.w3c.dom.Element;

import org.apache.cxf.wsn.client.PullPoint;
import org.apache.cxf.wsn.client.NotificationBroker;
import org.apache.cxf.wsn.client.CreatePullPoint;
import org.apache.cxf.wsn.client.Subscription;
import org.oasis_open.docs.wsn.b_2.NotificationMessageHolderType;

/**
 *
 */
public final class Client {
 private Client() {
 //not constructed
 }

 /**
 * @param args
 */
 public static void main(String[] args) throws Exception {
 String wsnPort = "8182";
 if (args.length > 0) {
 wsnPort = args[0];
 }

 // Create a PullPoint
 CreatePullPoint createPullPoint
 = new CreatePullPoint("http://localhost:" + wsnPort + "/wsn/CreatePullPoint");
 PullPoint pullPoint = createPullPoint.create();

 // Create a PullPoint style subscription
 NotificationBroker notificationBroker
 = new NotificationBroker("http://localhost:" + wsnPort + "/wsn/NotificationBroker");
 Subscription subscription = notificationBroker.subscribe(pullPoint, "MyTopic");

 // Wait for some messages to accumulate in the pull point
 Thread.sleep(10000);

 // Now retrieve messages from the pull point
 List<NotificationMessageHolderType> messages = pullPoint.getMessages(10);

 if (!messages.isEmpty()) {
 Iterator<NotificationMessageHolderType> messageIterator = messages.iterator();
 while (messageIterator.hasNext()) {
 NotificationMessageHolderType messageH = messageIterator.next();
 Object o = messageH.getMessage().getAny();
 System.out.println(messageH.getMessage().getAny());
 if (o instanceof Element) {
 System.out.println(((Element)o).getTextContent());
 }
 }
 }
 else {
 System.out.println("Warn: message list is empty!");
 }

 subscription.unsubscribe();
 pullPoint.destroy();

 System.exit(0);
 }

}

			

			

 ⁠Steps to create a pullpoint client

			
				Perform the following steps to create a PullPoint client:
			

			 	
					
						Use the archetype:generate goal to invoke the servicemix-cxf-code-first-osgi-bundle archetype. Under the wsn directory, invoke the Maven archetype as follows:
					

					
mvn archetype:generate \
 -DarchetypeGroupId=org.apache.servicemix.tooling \
 -DarchetypeArtifactId=servicemix-cxf-code-first-osgi-bundle \
 -DarchetypeVersion=2013.01.0.redhat-610379 \
 -DgroupId=org.jboss.fuse.example \
 -DartifactId=wsn-pullpoint \
 -Dversion=1.0-SNAPSHOT \
 -Dpackage=org.jboss.fuse.example.wsn.pullpoint

					
 Note

						
							The backslash characters at the end of each line are effective as line-continuation characters on UNIX and LINUX platforms. If you are entering the command on a Windows platform, however, you must enter the entire command on a single line.
						

					

					
						You will be prompted to confirm the project settings, with a message similar to this one:
					

					
Confirm properties configuration:
groupId: org.jboss.fuse.example
artifactId: wsn-pullpoint
version: 1.0-SNAPSHOT
package: org.jboss.fuse.example.wsn.pullpoint
 Y: :

					
						Type Return to accept the settings and generate the project. When the command finishes, you should find a new Maven project in the wsn/wsn-pullpoint directory.
					

				
	
					
						Some of the generated project files are not needed for this tutorial. Under the wsn/wsn-pullpoint directory, delete the following files and directories:
					

					
src/main/resources/META-INF/spring/beans.xml
src/main/java/org/jboss/fuse/example/wsn/pullpoint/Person.java
src/main/java/org/jboss/fuse/example/wsn/pullpoint/PersonImpl.java
src/main/java/org/jboss/fuse/example/wsn/pullpoint/UnknownPersonFault.java
src/main/java/org/jboss/fuse/example/wsn/pullpoint/types

				
	
					
						Edit the pom.xml file in the wsn-pullpoint directory, and add the following dependency required for WS-Notification clients:
					

					
<?xml version="1.0" encoding="UTF-8"?>
<project ...>
 ...
 <dependencies>
 ...
 <!-- Needed for WS-Notification -->
 <dependency>
 <groupId>org.apache.cxf.services.wsn</groupId>
 <artifactId>cxf-services-wsn-api</artifactId>
 <version>2.7.0.redhat-610379</version>
 </dependency>
 </dependencies>
 ...
</project>

				
	
					
						Edit the Client.java file in the wsn-pullpoint/src/main/java/org/jboss/fuse/example/wsn/pullpoint/client/ directory, remove the existing content, and replace it with the code from Example 2.3, “PullPoint Client Code”.
					

				

			

 ⁠Test the PullPoint client

			
				Test the PullPoint client as follows:
			

			 	
					
						If the JBoss A-MQ container is not already running (with the notification broker installed), start it up now:
					

					
./amq

				
	
					
						Run the publisher client at the command line. Open a new command prompt, and enter the following commands:
					

					
cd wsn/wsn-publisher
mvn -Pclient

					
						In the command window, you should see some output like the following:
					

					
...
INFO: Creating Service {http://cxf.apache.org/wsn/jaxws}NotificationBrokerService
from WSDL: jar:file:/Users/fbolton/.m2/repository/org/apache/cxf/services/wsn/
cxf-services-wsn-api/2.6.0.redhat-60024/cxf-services-wsn-api-2.6.0.redhat-60024.jar
!/org/apache/cxf/wsn/wsdl/wsn.wsdl

					
						You now have approximately two minutes before the publisher client times out.
					

				
	
					
						Run the PullPoint client at the command line. Open a new command prompt and enter the following commands:
					

					
cd wsn/wsn-pullpoint
mvn -Pclient

					
						After a ten second delay, you should see some output like the following:
					

					
...
INFO: Creating Service {http://cxf.apache.org/wsn/jaxws}PausableSubscriptionManagerService from WSDL: jar:file:/Users/fbolton/.m2/repository/org/apache/cxf/services/wsn/cxf-services-wsn-api/2.6.0.redhat-60024/cxf-services-wsn-api-2.6.0.redhat-60024.jar!/org/apache/cxf/wsn/wsdl/wsn.wsdl
[ns8:foo: null]
Hello World!
[ns8:foo: null]
Hello World!
...

				
	
					
						To inspect the state of the notification broker, you can connect to the JMX port of the ActiveMQ broker. Start up a JMX console by entering the following command at the command line:
					

					
jconsole

					
						In the JConsole: New Connection dialog, select Remote Process and enter the following URL in the accompanying text field:
					

					
service:jmx:rmi:///jndi/rmi://localhost:1099/karaf-root

					
						In the Username and Password fields, enter one of the user credentials you created at the start of this tutorial. When you are connected to the JMX port, you can inspect the state of the broker by clicking on the MBeans tab and drilling down the object tree in the JConsole.
					

				

			

		

	
OEBPS/Common_Content/images/18.png

OEBPS/Common_Content/images/dot2.png

OEBPS/Common_Content/images/documentation.png

OEBPS/Common_Content/images/h1-bg.png

OEBPS/Common_Content/images/26.png

OEBPS/content.opf
 _AMQWSN WS-Notification Guide October 2014 Copyright © 2011-2014 Red Hat, Inc. and/or its affiliates. Red Hat en

OEBPS/Common_Content/images/shine.png

OEBPS/Common_Content/images/shade.png

OEBPS/Common_Content/images/36.png

OEBPS/Common_Content/images/stock-home.png

OEBPS/Common_Content/images/image_right.png

OEBPS/Common_Content/images/red.png

OEBPS/Common_Content/images/stock-go-up.png

OEBPS/Common_Content/images/32.png

OEBPS/Common_Content/images/rhlogo.png
E) redhat.

OEBPS/Common_Content/images/28.png

OEBPS/images/cover.png
e
\d ®
* JBoss
[J
@ @ by Red Hat

Red Hat JBoss A-MQ

Version 6.0

OEBPS/Common_Content/scripts/css_conflicts.js
function fixCSSConflicts() {}

OEBPS/Common_Content/images/3.png

OEBPS/Common_Content/images/34.png

OEBPS/Common_Content/images/image_left.png
E) redhat.

OEBPS/Common_Content/images/16.png

OEBPS/Common_Content/images/dot.png

OEBPS/Common_Content/images/13.png

OEBPS/Common_Content/images/30.png

OEBPS/Common_Content/images/22.png

OEBPS/Common_Content/images/39.png

OEBPS/Common_Content/images/5.png

OEBPS/Common_Content/images/note.png

OEBPS/Common_Content/images/Enterprise_title_logo.png
E) redhat.

OEBPS/Common_Content/images/bullet_arrowblue.png

OEBPS/Common_Content/images/24.png

OEBPS/Common_Content/images/11.png

OEBPS/Common_Content/images/title_logo.png
E) redhat.

OEBPS/Common_Content/images/37.png

OEBPS/Common_Content/images/Online_title_logo.png
E) redhat.

OEBPS/Common_Content/images/7.png

OEBPS/Common_Content/images/warning.png

OEBPS/Common_Content/images/important.png

OEBPS/Common_Content/scripts/menu.js
var work = 1;
var name_c = window.location.hostname + '-publican';
var num_days = 7;
var name_cp = window.location.hostname + '-publican-current_page';
var name_menu = window.location.hostname + '-publican-menu';
var style = 1;
var toc_path = '';
site_title = 'Documentation';

function setCookie(name, value, expires, path, domain, secure) {
	var curCookie = name + "=" + value +
		((expires) ? ";expires=" + expires.toGMTString() : "") +
		((path) ? ";path=" + path : "");
// +
//		((domain) ? ";domain=" + domain : "") +
//		((secure) ? ";secure" : "");

	document.cookie = curCookie;
}

function isSafari() {
 return navigator.userAgent.indexOf("Safari") != -1 && navigator.userAgent.indexOf("Chrome") == -1;
}

function expand_menu(id) {
	if(work) {
		work = 0;
		var entity = document.getElementById(id);
		if(entity) {
			var my_class = entity.className;
			var my_parent = entity.parentNode;
			if(my_class.indexOf("hidden") != -1) {
				entity.className = my_class.replace(/hidden/,"visible");
				my_parent.className = my_parent.className.replace(/collapsed/,"expanded");
			}
		}
	}
}

function retract_menu(id) {
	if(work) {
		work = 0;
		var entity = document.getElementById(id);
		if(entity) {
			var my_class = entity.className;
			var my_parent = entity.parentNode;
			if(my_class.indexOf("visible") != -1) {
				entity.className = my_class.replace(/visible/,"hidden");
				my_parent.className = my_parent.className.replace(/expanded/,"collapsed");
			}
		}
	}
}

function loadToc() {
	var my_select = document.getElementById('langselect');
	if (my_select.selectedIndex > 0) {
		var expDate = new Date();
		expDate.setDate(expDate.getDate() + num_days);
		setCookie(name_c + '-lang', my_select.options[my_select.selectedIndex].value, expDate, '/', false, false);
		location.href="../" + my_select.options[my_select.selectedIndex].value + "/toc.html";
//		parent.frames.main.location.replace("../" + my_select.options[my_select.selectedIndex].value + "/index.html");
	}
}

function loadDocNav(ajq) {
 var topDocNav = getTopDocNav(ajq);
 var bottomDocNav = getBottomDocNav(ajq);

 updateDocNavItems(getCurrentPageName(), topDocNav, bottomDocNav);

 var onChange = function() {
 var currentPage = getCurrentPageName();
 var newSelection = ajq(this).val();
 window.location = newSelection;
 if (newSelection.indexOf(currentPage) === 0) {
 updateDocNavItems(newSelection, getTopDocNav(ajq), getBottomDocNav(ajq));
 }
 };
 topDocNav.change(onChange);
 bottomDocNav.change(onChange);
}

function getCurrentPageName() {
 return window.location.href.substr(window.location.href.lastIndexOf("/") + 1);
}

function updateDocNavItems(filename, topDocNav, bottomDocNav) {
 topDocNav.val(filename);
 bottomDocNav.val(filename);
}

function getTopDocNav(ajq) {
 return ajq(".docnav.top").find(".pageSelect");
}

function getBottomDocNav(ajq) {
 return ajq(".docnav.bottom").find("select");
}

function scrollToTarget(ajq) {
 if(ajq(window.location.hash).length > 0){
 ajq('html, body').animate({ scrollTop: ajq(window.location.hash).offset().top}, 1000);
 }
}

function checkMenu() {
 if (document.cookie) {
 var cookies = document.cookie.split(/ *; */);
 for (var i=0; i < cookies.length; i++) {
 var current_c = cookies[i].split("=");
 if (current_c[0] == name_menu) {
 var menu_status = current_c[1];
 if(menu_status == "closed") {
 hideMenu();
 }
 break;
 }
 }
 }
}

function hideMenu() {
	parent.document.body.className = parent.document.body.className = "toc_embeded notoc";
	var entity = parent.document.getElementById('tocframe');
	if(entity) {
		entity.className = "notoc";
	}

	document.body.className = "toc_embeded notocnav";

	entity = document.getElementById('closemenu');
	if(entity) {
		entity.className = entity.className.replace(/visible/,"hidden");
	}
	entity = document.getElementById('outer');
	if(entity) {
		entity.className = entity.className.replace(/visible/,"hidden");
	}
	entity = document.getElementById('openmenu');
	if(entity) {
		entity.className = entity.className.replace(/hidden/,"visible");
	}

	var expDate = new Date();
	expDate.setDate(expDate.getDate() + num_days);
	setCookie(name_menu, 'closed', expDate, '/', false, false);
}

function showMenu() {
	parent.document.body.className = parent.document.body.className = "toc_embeded";
	var entity = parent.document.getElementById('tocframe');
	if(entity) {
		entity.className = "toc";
	}

	document.body.className = "tocnav";

	entity = document.getElementById('closemenu');
	if(entity) {
		entity.className = entity.className.replace(/hidden/,"visible");
	}
	entity = document.getElementById('outer');
	if(entity) {
		entity.className = entity.className.replace(/hidden/,"visible");
	}
	entity = document.getElementById('openmenu');
	if(entity) {
		entity.className = entity.className.replace(/visible/,"hidden");
	}
	var expDate = new Date();
	expDate.setDate(expDate.getDate() + num_days);
	setCookie(name_menu, 'open', expDate, '/', false, false);
}

function placeBcrumbs(ajq) {
 ajq('#doc_menu').remove().prependTo('#main-top').wrap('<div class="wrapi"></div>');
}

function runAnalytics(ajq) {
 /*
 var pkBaseUrl = (('https:' == document.location.protocol) ? 'https://engstats.redhat.com/piwik/' : 'http://engstats.redhat.com/piwik/');
 var pkUrl = pkBaseUrl + 'piwik.js';
 ajq('body').append('<noscript><p></p></noscript>');
 require([pkUrl], function() {
 try {
 var piwikTracker = Piwik.getTracker(pkBaseUrl + 'piwik.php', 3);
 if (document.location.hostname == 'access.redhat.com') {
 piwikTracker.trackPageView();
 piwikTracker.enableLinkTracking();
 }
 } catch(err) {}
 });
 */
}

function initializeBreadcrumbs(toc_path, current_product, current_version, current_book) {
 // Set the siteMapState variable so that the support tab is active when the breadcrumbs are created.
 window.siteMapState = "support";

 var support_label = labels["trans_strings"]["Support"];
 var doc_label = labels["trans_strings"]["Product_Documentation"];

 // Create the very basic breadcrumb array
 var doc_array = [doc_label];
 var breadcrumbs = [
 [support_label, "/support/"],
 doc_array
];

 // Create the base breadcrumb, which will later be replaced with the extended version
 if(typeof current_product != "undefined" && current_product != '') {
 var prod_label;
 if(current_product != 'Products') {
 prod_label = labels[current_product]["label"];
 } else {
 prod_label = labels["trans_strings"]["Products"];
 }

 var prod_array = [prod_label];
 breadcrumbs.push(prod_array);

 doc_array[1] = "../";

 if (typeof current_version != "undefined" && current_version != '') {
 var version_array = [current_version];
 breadcrumbs.push(version_array);

 doc_array[1] = "../../";
 prod_array[1] = "../";

 if(typeof current_book != "undefined" && current_book != '') {
 doc_array[1] = "../../../../";
 prod_array[1] = "../../../";
 version_array[1] = "../../";
 if(current_book != "Books") {
 breadcrumbs.push(labels[current_product][current_version][current_book]["label"]);
 } else {
 breadcrumbs.push(labels["trans_strings"]["Books"]);
 }
 }
 }
 }

 window.breadcrumbs = breadcrumbs;

 chrometwo_require(['jquery', 'chrome_lib'], function (ajq, lib) {
 ajq('#navigation').append('<button onclick="toggleToc();" class="menu-toggle"></button>');
 ajq("#navigation").load('index.html div > div.toc:eq(0)', function() {
 ajq('#navigation').append('<button onclick="toggleToc();" class="menu-toggle"></button>');
 checkToc(ajq);
 styleToc(ajq);

 // Safari has a bug in getBoundingClientRect that needs the page to be loaded to return valid info.
 if (isSafari()) {
 ajq(window).load(function() {
 styleToc(ajq);
 });
 }
 });

 // Load the breadcrumbs menu items
 lib.whenBreadcrumbsReady(function(ajq) {
 loadMenu2(ajq, toc_path, current_product, current_version, current_book);
 });

 ajq(window).scroll(function(e){
 styleToc(ajq);
 });

 ajq(window).resize(function(e){
 styleToc(ajq);
 });

 // Add a mechanism to handle the the main menu dropdowns.
 // TODO: This is hacky and a better way should be found to handle this.
 ajq('.primary-nav a').on('click', function() {
 setTimeout(function() {
 styleToc(ajq);
 }, 600);
 });
 });
}

function styleToc(ajq) {
 /* NOTE: We need to use an absolute position due to the portal adding content (ie outage messages), which then makes the toc overlap
 * that. There is a minor effect of some flickering, but it's minimal and currently the best situation since no events are fired by the
 * portal to say it's finished.
 */

 var nav = ajq('#navigation');
 var navToc = ajq('#navigation > .toc');

 var main = ajq('#legacy-portal');
 var main_rect = main[0].getBoundingClientRect();
 var main_height = main.height();
 var main_bottom = main_rect.bottom;
 var main_top = main_rect.top;

 var headernav = document.getElementById('header-nav');
 var headernav_bottom = headernav.offsetTop + headernav.offsetHeight;

 var my_top = -25;
 var height = main_height;
 var pos = "absolute";
 if (main_top <= 0 || main_top - 25 < headernav_bottom) {
 my_top = headernav_bottom;
 pos = "fixed";
 }

 if (navToc.is(':visible')) {
 if (pos === "fixed") {
 if (height > ((window.innerHeight || document.documentElement.clientHeight) - my_top)) {
 height = (window.innerHeight || document.documentElement.clientHeight) - my_top;
 }

 if (my_top + height > main_bottom) {
 height = main_bottom - my_top;
 }
 } else {
 if (height > ((window.innerHeight || document.documentElement.clientHeight) - main_top)) {
 height = (window.innerHeight || document.documentElement.clientHeight) - main_top;
 }

 if (height > main_bottom) {
 height = main_bottom;
 }
 }

 nav.attr('style', 'top: ' + my_top + 'px !important; height: ' + height +'px; position: ' + pos);
 navToc.attr('style', 'top: 0px !important; height: ' + height + 'px;');
 } else {
 nav.attr('style', 'top: ' + my_top + 'px !important; height: 0px; position: ' + pos);
 }
}

function loadMenu2(ajq, toc_path, current_product, current_version, current_book) {
 var breadcrumbs = ajq("#breadcrumbs");

 // Add a small timeout, to try to fix the items not loading
 setTimeout(function() {
 // We only care about fixing up the default breadcrumbs if we have a current product
 if (typeof current_product != "undefined" && current_product != '') {

 // Remove the dummy Product Documentation text node
 var breadcrumbsDiv = breadcrumbs.get(0);
 while (breadcrumbsDiv.childNodes.length > 1) {
 breadcrumbsDiv.removeChild(breadcrumbsDiv.lastChild);
 }

 // Calculate the product label
 var prod_label;
 if(current_product != 'Products') {
 prod_label = labels[current_product]["label"];
 } else {
 prod_label = labels["trans_strings"]["Products"];
 }

 var book_label = labels["trans_strings"]["Books"];

 if(current_book != 'Books') {
 book_label = labels[current_product]["label"];
 }

 // Convert the default menu into something we can use
 var html = '' + labels["trans_strings"]["Product_Documentation"] + '';
 if(typeof current_version != "undefined" && current_version != '') {
 html += '<div id="product_menu" onmouseover="work=1; expand_menu(\'product_menu_list\');" onmouseout="work=1; retract_menu(\'product_menu_list\');">' + prod_label + '</div>';
 if(typeof current_book != "undefined" && current_book != '') {
 html += '<div id="version_menu" onmouseover="work=1; expand_menu(\'version_menu_list\');" onmouseout="work=1; retract_menu(\'version_menu_list\');">' + current_version + '</div>';

 html += '<div id="book_menu" onmouseover="work=1; expand_menu(\'book_menu_list\');" onmouseout="work=1; retract_menu(\'book_menu_list\');">' + book_label + '</div>';

 if(current_book != 'Books') {
 html += '<div id="left-menu"><div id="book_format_menu" onmouseover="work=1; expand_menu(\'book_format_menu_list\');" onmouseout="work=1; retract_menu(\'book_format_menu_list\');"></div>';
 html += '<div id="book_lang_menu" onmouseover="work=1; expand_menu(\'book_lang_menu_list\');" onmouseout="work=1; retract_menu(\'book_lang_menu_list\');"></div>';
 html += '<div id="lang_menu_label">' + '</div></div>';
 }
 } else {
 html += '<div id="version_menu" onmouseover="work=1; expand_menu(\'version_menu_list\');" onmouseout="work=1; retract_menu(\'version_menu_list\');">' + current_version + '</div>';
 }
 } else {
 html += '<div id="product_menu" onmouseover="work=1; expand_menu(\'product_menu_list\');" onmouseout="work=1; retract_menu(\'product_menu_list\');">' + prod_label + '</div>';
 }
 breadcrumbs.append(html);

 // Add a small timeout, to try to fix the items not loading
 // Load and add the hover menus
 ajq("#product_menu").load(toc_path + "/products_menu.html");
 ajq("#version_menu").load(toc_path + '/' + current_product + "/versions_menu.html");
 if(typeof current_version != "undefined" && current_version != '') {
 ajq("#book_menu").load(toc_path + '/' + current_product + '/' + current_version + '/' + "/books_menu.html");
 if(typeof current_book != "undefined" && current_book != '') {
 ajq("#book_lang_menu").load(toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/lang_menu.html");
 ajq("#book_format_menu").load(toc_path + '/' + current_product + '/' + current_version + '/' + current_book + "/format_menu.html");
 }
 }
 }

 // For splash pages the language menu is loaded in a global javascript variable
 if (typeof lang_menu_2_div != "undefined" && lang_menu_2_div != '') {
 breadcrumbs.append(lang_menu_2_div);
 }
 }, 500);

 ajq(document).ready(function(ajq) {
 checkToc(ajq);
 ajq(".doctoc").load('index.html .toc:eq(0)', function() {
 loadDocNav(ajq);
 });
 scrollToTarget(ajq);
 });
}

function checkToc(ajq) {
 if (document.cookie) {
 var cookies = document.cookie.split(/ *; */);
 for(var i=0; i < cookies.length; i++) {
 var current_c = cookies[i].split("=");
 if(current_c[0] == name_menu) {
 var menu_status = current_c[1];
 if (menu_status == "closed") {
 hideToc(ajq);
 }
 break;
 }
 }
 }
}

function toggleToc() {
 chrometwo_require(['jquery'], function(ajq) {
 if (ajq("#navigation .toc").is(':visible')) {
 hideToc(ajq);
 } else {
 showToc(ajq);
 }
 });
}

function hideToc(ajq) {
 ajq("#navigation button").addClass("tocClosed");
 ajq("#navigation .toc").hide();
 ajq("#main").addClass('noLtoc');
 styleToc(ajq);

 var expDate = new Date();
 expDate.setDate(expDate.getDate() + num_days);
 setCookie(name_menu, 'closed', expDate, '/', false, false);
}

function showToc(ajq) {
 ajq("#navigation button").removeClass("tocClosed");
 ajq("#navigation .toc").show();
 ajq("#main").removeClass('noLtoc');
 styleToc(ajq);

 var expDate = new Date();
 expDate.setDate(expDate.getDate() + num_days);
 setCookie(name_menu, 'open', expDate, '/', false, false);
}

OEBPS/Common_Content/images/9.png

OEBPS/Common_Content/images/35.png

OEBPS/Common_Content/images/green.png

OEBPS/Common_Content/images/19.png

OEBPS/Common_Content/images/17.png

OEBPS/Common_Content/images/yellow.png

OEBPS/Common_Content/images/27.png

OEBPS/Common_Content/images/10.png

OEBPS/Common_Content/images/2.png

OEBPS/Common_Content/images/stock-go-back.png

OEBPS/Common_Content/images/15.png

OEBPS/Common_Content/images/watermark-draft.png

OEBPS/Common_Content/images/20.png

OEBPS/Common_Content/images/33.png

OEBPS/Common_Content/images/29.png

OEBPS/Common_Content/images/4.png

OEBPS/Common_Content/images/21.png

OEBPS/Common_Content/images/31.png

OEBPS/Common_Content/images/23.png

OEBPS/Common_Content/images/stock-go-forward.png

OEBPS/Common_Content/images/40.png

OEBPS/Common_Content/images/6.png

OEBPS/Common_Content/images/14.png

OEBPS/Common_Content/images/1.png

OEBPS/Common_Content/images/12.png

OEBPS/Common_Content/images/25.png

OEBPS/Common_Content/images/38.png

OEBPS/Common_Content/images/bkgrnd_greydots.png

OEBPS/Common_Content/images/8.png

