
JBoss Enterprise BRMS Platform 5

BRMS Rule Flow Component Guide

for Business Rules Developers
Edition 5.3.0

Last Updated: 2017-11-17

JBoss Enterprise BRMS Platform 5 BRMS Rule Flow Component Guide

for Business Rules Developers
Edition 5.3.0

Edited by

David Le Sage (Product Version)
Red Hat Engineering Content Services

Legal Notice

Copyright © 2011 Red Hat.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this guide to learn how to use JBoss Enterprise BRMS Platform's Rule Flow component to
develop business rules and undertake service orchestration tasks.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION

CHAPTER 2. USING RULE FLOW FOR THE FIRST TIME
2.1. CREATING YOUR FIRST PROCESS
2.2. EXECUTING YOUR FIRST PROCESS

CHAPTER 3. RULE FLOWS
3.1. CREATING A RULE FLOW PROCESS
3.2. USING A PROCESS IN YOUR APPLICATION
3.3. AVAILABLE NODE TYPES
3.4. DATA
3.5. CONSTRAINTS
3.6. ACTIONS
3.7. EVENTS
3.8. EXCEPTIONS
3.9. TIMERS
3.10. UPDATING RULE FLOWS
3.11. ASSIGNING RULES TO A RULE FLOW GROUP
3.12. EXAMPLE RULE FLOWS

CHAPTER 4. THE API
4.1. KNOWLEDGE BASE
4.2. SESSION
4.3. EVENTS

CHAPTER 5. JBOSS RULES IDE FEATURES
5.1. JBOSS RULES RUN-TIMES
5.2. PROCESS SKINS

APPENDIX A. © 2011

APPENDIX B. REVISION HISTORY

INDEX

3

4
4
6

9
9

13
14
22
23
24
25
26
27
27
29
30

32
32
32
32

34
34
35

37

38

39

Table of Contents

1

BRMS Rule Flow Component Guide

2

CHAPTER 1. INTRODUCTION
The JBoss Enterprise BRMS Platform's Rule Flow module is a work-flow process engine.

A Rule Flow describes the order in which a series of steps must be executed. They are traditionally
depicted using flow charts. For example, the following figure shows a process where, first of all, Task1
and Task2 must be executed in parallel. After they are completed, Task3 must be executed:

The following chapters will teach you everything you need to know about using the JBoss Enterprise
BRMS Platform Rule Flow Engine.

CHAPTER 1. INTRODUCTION

3

CHAPTER 2. USING RULE FLOW FOR THE FIRST TIME
Read this section to learn how to create and execute your first Ruleflow process.

2.1. CREATING YOUR FIRST PROCESS

Use the JBoss Business Developer Studio (JBDS) to create an executable project that contains the
files necessary to start defining and executing processes.

Step through the wizard to generate a basic project structure, a class-path, a sample process and
execution code. (To create a new JBoss Rules project, left-click on the JBoss Rules action button
(with the JBoss Rules heading) in the IDE toolbar and select New JBoss Rules Project.

NOTE

The JBoss Rules action button only shows up in the JBoss Rules perspective. To open
the JBoss Rules perspective (if you haven't done so already), click the Open
Perspective button in the top right corner of your IDE window, select Other... and pick
the JBoss Rules perspective.

Alternatively, you could select File, then New followed by Project..., and in the JBoss
Rules directory, select JBoss Rules Project.

Give your project a name and click Next.

In the following dialogue box, you can select which elements you wish to add to your project by default.
Since you are creating a new process, clear the first two check-boxes and select the last two. This will
generate a sample process and a Java class to execute this process.

If you have not yet set up a JBoss Rules run-time, do so now. A JBoss Rules run-time is a collection of
Java Archive files (JARs) that represent one specific release of the JBoss Rules project JARs.

To create a runtime, either point the IDE to the release of your choice, or create a new runtime on your
file system from the JARs included in the JBoss Rules IDE plug-in. (Since you want to use the JBoss
Rules version included in this plug-in, you will do the latter this time.)

NOTE

You will only have to do this once; the next time you create a JBoss Rules project, it will
automatically use the default runtime (unless you specify otherwise).

Unless you have already set up a JBoss Rules run-time, click the Next button.

A dialogue box will appear, telling you that you have not yet defined a default JBoss Rules runtime and
that you should configure the workspace settings first. Do this by clicking on the Configure
Workspace Settings... link.

The dialogue box that will appear shows you the workspace settings for the JBoss Rules run-times. (The
first time you do this, the list of installed JBoss Rules run-times will be empty.)

To create a new run-time on your file system, click the Add... button.

BRMS Rule Flow Component Guide

4

Use the dialogue box that appears to give the new run-time a name (such as "JBoss Rules 5.2 runtime"),
and put a path to your JBoss Rules run-time on your file system.

Click the Create a new JBoss Rules 5 runtime... button and select the directory in which you
want this run-time to be stored.

Click the OK button. You will see the path you selected showing up in the dialogue box.

Click the OK button. You will see the newly created run-time shown in your list of all the JBoss Rules run-
times.

Select this runtime and make it the new default by clicking on the check box next to its name and clicking
OK.

After successfully setting up your run-time, you can now dismiss the Project Creation Wizard by
clicking on the Finish button.

The end result will contain the following:

1. ruleflow.rf: this is the process definition file. In this case, you have a very simple process
containing a Start node (the entry point), an Action node (that prints out "Hello World") and an
End node (the end of the process).

2. RuleFlowTest.java: this is the Java class that executes the process.

3. the libraries you require. These are automatically added to the project class-path in the form of a
single JBoss Rules library.

Double-click on the ruleflow.rf file. The process will open in the Rule Flow Editor. (The Rule Flow
Editor contains a graphical representation of your process definition. It consists of nodes that are
connected to each other.) The Editor shows the overall control flow, while the details of each of the
elements can be viewed (and edited) in the Properties View at the bottom.

On the left-hand side of the Editor window, you will see a palette. Use this to drag-and-drop new
nodes. You will also find an outline view on the right-hand side.

CHAPTER 2. USING RULE FLOW FOR THE FIRST TIME

5

NOTE

While most readers will find it easier to use the Editor, you can also modify the underlying
XML directly if you wish. The XML for your sample process is shown below (note that the
graphical information is omitted here for the sake of simplicity).

The process element contains parameters like the name and id. of the process, and
consists of three main subsections: a header (where information like variables, globals
and imports can be defined), the nodes and the connections.

2.2. EXECUTING YOUR FIRST PROCESS

To execute your process, right-click on RuleFlowTest.java and select Run As..., followed by Java
Application.

When the process executes, the following output will appear in the Console window:

Look at the code of RuleFlowTest class:

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://drools.org/drools-5.0/process"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 xs:schemaLocation="http://drools.org/drools-
5.0/process drools-processes-5.0.xsd"
 type="RuleFlow"
 name="ruleflow"
 id="com.sample.ruleflow"
 package-name="com.sample" >

 <header>
 </header>

 <nodes>
 <start id="1" name="Start" x="16" y="16" />
 <actionNode id="2" name="Hello" x="128" y="16" >
 <action type="expression"
 dialect="mvel">System.out.println("Hello
World");</action>
 </actionNode>
 <end id="3" name="End" x="240" y="16" />
 </nodes>

 <connections>
 <connection from="1" to="2" />
 <connection from="2" to="3" />
 </connections>

</process>

Hello World

package com.sample;

import org.drools.KnowledgeBase;

BRMS Rule Flow Component Guide

6

As you can see, the execution process is made up of a number of steps:

1. Firstly, a knowledge base is created. A knowledge base contains all the knowledge (such as
words, processes, rules, and so forth) that are needed by your application. This knowledge base
is usually created once, and then reused multiple times. In this case, the knowledge base
consists of the sample process only.

2. Next, a session for interaction with the engine is generated.

A logger is then added to the session. This records all execution events and make it easier for
you to visualize what is happening.

3. Finally, you can start a new instance of the process by invoking the startProcess(String
processId) method on the session. When you do this, your process instance begins to run,
resulting in the executions of the Start node, the Action node, and the End node in order. When
they finish the process instance will conclude.

import org.drools.builder.KnowledgeBuilder;
import org.drools.builder.KnowledgeBuilderFactory;
import org.drools.builder.ResourceType;
import org.drools.io.ResourceFactory;
import org.drools.logger.KnowledgeRuntimeLogger;
import org.drools.logger.KnowledgeRuntimeLoggerFactory;
import org.drools.runtime.StatefulKnowledgeSession;

/**
 * This is a sample file to launch a process.
 */
public class ProcessTest {

 public static final void main(String[] args) {
 try {
 // load up the knowledge base
 KnowledgeBase kbase = readKnowledgeBase();
 StatefulKnowledgeSession ksession =
kbase.newStatefulKnowledgeSession();
 KnowledgeRuntimeLogger logger =
KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "test");
 // start a new process instance
 ksession.startProcess("com.sample.ruleflow");
 logger.close();
 } catch (Throwable t) {
 t.printStackTrace();
 }
 }

 private static KnowledgeBase readKnowledgeBase() throws Exception {
 KnowledgeBuilder kbuilder =
KnowledgeBuilderFactory.newKnowledgeBuilder();
 kbuilder.add(ResourceFactory.newClassPathResource("ruleflow.rf"),
ResourceType.DRF);
 return kbuilder.newKnowledgeBase();
 }

}

CHAPTER 2. USING RULE FLOW FOR THE FIRST TIME

7

Because you added a logger to the session, you can review what happened by looking at the audit log:

Select the Audit View tab on the bottom right of the window, (next to the Console tab.)

Click on the Open Log button (the first one on the right) and navigate to the newly created test.log
file (in your project directory.)

NOTE

If you are not sure where this project directory is located, right-click on it and you will
find the location listed in the Resource section

A tree view will appear. This shows the events that occurred at run-time. Events that were executed as
the direct result of another event are shown as the children of that event.

This log shows that after starting the process, the Start node, the Action node and the End node were
triggered, in that order, after which the process instance was completed.

You can now start to experiment by designing your own process by modifying the example. To validate
your processes, click on the Check the rule-flow model button (this is the green check box action
in the upper tool-bar that appears when you are editing a process.) Processes are also automatically
validated when you save them. You can see the debugging information in the Error View.

BRMS Rule Flow Component Guide

8

CHAPTER 3. RULE FLOWS

Figure 3.1. A Rule Flow

A rule flow is a flow chart that describes the order in which a series of steps need to be undertaken. It
consists of a collection of nodes that are linked to each other by connections. Each of the nodes
represents one step in the overall process while the connections specify how to transition from one node
to the other. A large selection of predefined node types have been supplied. Read the rest of this chapter
to learn how to define and use rule flows in your application.

3.1. CREATING A RULE FLOW PROCESS

Create rule flows in one of these three ways:

1. By using the graphical Rule Flow Editor (part of the JBDS' JBoss Rules plug-in.)

2. By writing an XML file, according to the XML process format as defined in the XML Schema
definition for JBoss Rules processes.

3. By directly creating a process using the Process API.

3.1.1. Using the Graphical Rule Flow Editor

The Rule Flow Editor is a graphical tool that allows you to create a process by dragging and dropping
different nodes onto a canvas. It then allows you to edit the properties of these nodes.

Once you have set up a JBoss Rules project in the JBDS, you can start adding processes: When in a
project, launch the New wizard by using the Ctrl+N shortcut or by right-clicking on the directory in which
you would like to put your rule flow and selecting New, then Other....

Choose the section on JBoss Rules and then pick Rule Flow file. A new .rf file is created.

The Rule Flow Editor now appears.

Switch to the JBoss Rules Perspective. This will tweak the user interface so that it is optimal for
rules. Then,

Next, ensure that you can see the Properties View (at the bottom of the JBDS window). If you
cannot see the properties view, open it by going to the Window menu, clicking Show View and then
Other....

Next, under the General directory, select the Properties View.

The Rule Flow Editor consists of a palette, a canvas and an Outline View. To add new elements
to the canvas, select the element you would like to create and add it by clicking on your preferred
location. For example, click on the RuleFlowGroup icon in the Components palette of the GUI and then

CHAPTER 3. RULE FLOWS

9

draw a few rule flow groups.

Clicking on an element in your rule flow allows you to set its properties. You can connect the nodes (as
long as it is permitted by the different types of nodes) by using Connection Creation from the
Components palette.

Keep adding nodes and connections to your process until it represents the business logic that you want
to specify.

Finally, check the process for any missing information (by pressing the green Check icon in the IDE
menu bar) before using it in your application.

3.1.2. Defining Processes Using XML

You can also specify processes by writing the underlying XML by hand. The syntax of these XML
processes is defined by a schema definition. For example, the following XML fragment shows a simple
process made up of a Start node, an Action node that prints "Hello World" to the console, and an End
node:

The process XML file must contain only one <process> element. This element contains parameters
related to the process (its type, name, ID. and package name), and consists of three subsections: a
<header> (where process-level information like variables, globals, imports and swimlanes are defined),
a <nodes> section that defines each of the nodes in the process, and a <connections> section that
contains the connections between all the nodes in the process.

In the nodes section, there is a specific element for each node. Use these to define the various
parameters and sub-elements for that node type.

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://drools.org/drools-5.0/process"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 xs:schemaLocation="http://drools.org/drools-5.0/process drools-
processes-5.0.xsd"
 type="RuleFlow" name="ruleflow" id="com.sample.ruleflow" package-
name="com.sample" >

 <header>
 </header>

 <nodes>
 <start id="1" name="Start" x="16" y="16" />
 <actionNode id="2" name="Hello" x="128" y="16" >
 <action type="expression" dialect="mvel" >System.out.println("Hello
World");</action>
 </actionNode>
 <end id="3" name="End" x="240" y="16" />
 </nodes>

 <connections>
 <connection from="1" to="2" />
 <connection from="2" to="3" />
 </connections>

</process>

BRMS Rule Flow Component Guide

10

3.1.3. Defining Processes Using the Process API

WARNING

Red Hat does not recommend using the APIs directly. You should always use the
Graphical Editor or hand-code XML. This section is only included for the sake of
completeness.

It is possible to define a rule flow directly via the Process API. The most important process elements are
defined in the org.drools.workflow.core and org.drools.workflow.core.node packages.

The fluent API allows you to construct processes in a readable manner using factories. At the end,
you can validate the process that you were constructing manually.

3.1.3.1. Example One

This is a simple example of a basic process that has a rule set node only:

Note from the above that you start by calling the static createProcess() method from the
RuleFlowProcessFactory class. This method creates a new process with the given ID.

A typical process consists of three parts:

The header part is made up of global elements like the name of the process, imports, variables and so
on.

The nodes section contains all the different nodes that make up the process.

The connections section finally links these nodes to each other to create a flow chart.

In the example above, the header contains the name and the version of the process. It also contains the
package name. Following on from that, you can start adding nodes to the current process. If you are



RuleFlowProcessFactory factory =
 RuleFlowProcessFactory.createProcess("org.drools.HelloWorldRuleSet");
factory
 // Header
 .name("HelloWorldRuleSet")
 .version("1.0")
 .packageName("org.drools")
 // Nodes
 .startNode(1).name("Start").done()
 .ruleSetNode(2)
 .name("RuleSet")
 .ruleFlowGroup("someGroup").done()
 .endNode(3).name("End").done()
 // Connections
 .connection(1, 2)
 .connection(2, 3);
RuleFlowProcess process = factory.validate().getProcess();

CHAPTER 3. RULE FLOWS

11

using auto-completion you can see that you different methods are available to you to create each of the
supported node types at your disposal.

To start adding nodes to the process in this example, call the startNode(), ruleSetNode() and
endNode() methods.

You will see that these methods return a specific NodeFactory, that allows you to set their properties.

Once you have finished configuring a specific node, call the done() method to return to the current
RuleFlowProcessFactory so you can add more nodes if necessary.

When you have finished adding all the nodes, connect them by calling the connection method.

Finally, call the validate() method to check your work. This will also retrieve the RuleFlowProcess
object you created.

3.1.3.2. Example Two

This example shows you how to use Split and Join nodes:

Note from the above that a Split node can have multiple outgoing connections, and a Join node multiple
incoming connections.

3.1.3.3. Example Three

This more complex example demonstrates the use of a ForEach node and nested action nodes:

RuleFlowProcessFactory factory =

RuleFlowProcessFactory.createProcess("org.drools.HelloWorldJoinSplit");
factory
 // Header
 .name("HelloWorldJoinSplit")
 .version("1.0")
 .packageName("org.drools")
 // Nodes
 .startNode(1).name("Start").done()
 .splitNode(2).name("Split").type(Split.TYPE_AND).done()
 .actionNode(3).name("Action 1")
 .action("mvel", "System.out.println(\"Inside Action 1\")").done()
 .actionNode(4).name("Action 2")
 .action("mvel", "System.out.println(\"Inside Action 2\")").done()
 .joinNode(5).type(Join.TYPE_AND).done()
 .endNode(6).name("End").done()
 // Connections
 .connection(1, 2)
 .connection(2, 3)
 .connection(2, 4)
 .connection(3, 5)
 .connection(4, 5)
 .connection(5, 6);
RuleFlowProcess process = factory.validate().getProcess();

RuleFlowProcessFactory factory =
 RuleFlowProcessFactory.createProcess("org.drools.HelloWorldForeach");

BRMS Rule Flow Component Guide

12

Note how the linkIncomingConnections() and linkOutgoingConnections() methods that are
called to link the ForEach node with the internal action node. These methods are used to specify the first
and last nodes inside the ForEach composite node.

3.2. USING A PROCESS IN YOUR APPLICATION

There are two things you need to do to be able to execute processes from within your application:

Firstly, you need to create a knowledge base that contains the definition of the process,

Secondly you need to start the process by creating a session to communicate with the process engine.

1. Creating a knowledge base : once you have a valid process, you can add it to your knowledge
base. Note that this process is almost identical to that for adding rules to the knowledge base:
only the type of knowledge that is added is changed:

After adding all your knowledge to the builder (you can add more than one process, and even
rules), create a new knowledge base:

factory
 // Header
 .name("HelloWorldForeach")
 .version("1.0")
 .packageName("org.drools")
 // Nodes
 .startNode(1).name("Start").done()
 .forEachNode(2)
 // Properties
 .linkIncomingConnections(3)
 .linkOutgoingConnections(4)
 .collectionExpression("persons")
 .variable("child", new ObjectDataType("org.drools.Person"))
 // Nodes
 .actionNode(3)
 .action("mvel", "System.out.println(\"inside
action1\")").done()
 .actionNode(4)
 .action("mvel", "System.out.println(\"inside
action2\")").done()
 // Connections
 .connection(3, 4)
 .done()
 .endNode(5).name("End").done()
 // Connections
 .connection(1, 2)
 .connection(2, 5);
RuleFlowProcess process = factory.validate().getProcess();

KnowledgeBuilder kbuilder =
KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.rf"),
 ResourceType.DRF);

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

CHAPTER 3. RULE FLOWS

13

WARNING

This will throw an exception if the knowledge base contains errors (because
it will not be able to parse your processes correctly).

2. Starting a process: processes are only executed if you explicitly state that they should be. This is
because you could potentially define a lot of processes in your knowledge base and the engine
has no way to know when you would like to start each of them. To activate a particular process,
call the startProcess method:

The startProcess method's parameter represents the ID. of the process to be started. This
process ID. needs to be specified as a property of the process, shown in the Properties
View when you click the background canvas.

IMPORTANT

If your process also needs to execute rules, you must also call the
ksession.fireAllRules() method.

NOTE

You can specify additional parameters to pass input data to the process. To do
so, use the startProcess(String processId, Map parameters)
method. This method takes an additional set of parameters as name-value pairs
and copies to the newly-created process instance as top-level variables.

NOTE

To start a process from within a rule consequence, or from inside a process
action, use the predefined kcontext parameter:

3.3. AVAILABLE NODE TYPES

A rule-flow process is a flow chart that depicts different types of nodes which are linked by connections.
The process itself exposes the following properties:

ID: this is the process' unique ID.

Name: this is the process' unique display name.

Version: this is the process' version number.



StatefulKnowledgeSession ksession =
kbase.newStatefulKnowledgeSession();
ksession.startProcess("com.sample.MyProcess");

kcontext.getKnowledgeRuntime().startProcess("com.sample.M
yProcess");

BRMS Rule Flow Component Guide

14

Package: this is the package (or name-space) in which the process is stored.

Variables: you can define variables to store data during the execution of your process.

Exception Handlers: use these specify what is expected to happen when a fault occurs in the
process.

Connection Layouts: use these to specify what your connections are to look like on the canvas:

Manual always draws your connections as lines going straight from their start points to their
end points (with the option to use intermediate break points).

Shortest path is similar, but it tries to go around any obstacles it might encounter between
the start and end point, to avoid lines crossing nodes.

The Manhattan option draws connections using horizontal and vertical lines only.

The following types of nodes are available when creating a rule flow:

Section 3.3.1, “Start Event”

Section 3.3.2, “End Event”

Section 3.3.3, “Rule Task (or RuleFlowGroup)”

Section 3.3.4, “Diverging Gateway (or Split)”

Section 3.3.5, “Converging Gateway (or Join)”

Section 3.3.6, “State”

Section 3.3.7, “Reusable Sub-Process (or SubFlow)”

Section 3.3.8, “Action (or Script Task)”

Section 3.3.9, “Timer Event”

Section 3.3.10, “Error Event (or Fault)”

Section 3.3.11, “(Message) Event”

Section 3.3.12, “Sub-Process (or Composite)”

Section 3.3.13, “Multiple Instance (or ForEach)”

3.3.1. Start Event

This is the start of the rule flow. (A rule flow must have only one start node. It cannot have incoming
connections and must have one outgoing connection.) Whenever a rule flow process is started,
execution will commence at this node and automatically continue to the first node linked from it, and so
on.

The Start Event node possesses the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

CHAPTER 3. RULE FLOWS

15

Triggers: you can specify triggers that, when activated, will automatically start the process.
Examples are a constraint trigger that automatically launches the process if a given rule or
constraint is satisfied, and an event trigger that automatically starts the process if a specific
event is signalled.

NOTE

You cannot yet specify these triggers in the Graphical Editor. Edit the XML file
instead to add them.

MetaData: this is meta-data related to this node.

3.3.2. End Event

This is the end of the rule flow. A rule flow must have at least one end node. The End node must have
one incoming connection and cannot have any outgoing connections.

This node possesses the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

Terminate: an End node can be terminate the entire process (this is the default) or just one path.
If the process is terminated, every active node (even those on parallel paths) in this rule flow is
cancelled.

Non-terminating End nodes end terminate the current path, while other parallel paths remain.

MetaData: this is meta-data related to this node.

3.3.3. Rule Task (or RuleFlowGroup)

Use this node to represent a set of rules you wish to have evaluated. A RuleFlowGroup node should
have one incoming connection and one outgoing connection.

To make rules part of a specific rule flow group, use the ruleflow-group header attribute. When a
RuleFlowGroup node is reached, the engine will start executing any rules that are part of the
corresponding ruleflow-group. Execution will automatically continue to the next node once there are
no more active rules in that group.

This means that you can add new activations (belonging to the currently active rule flow group) to the
Agenda even if the facts have been modified by other rules.

NOTE

The rule flow will immediately process the next node if it encounters a rule flow group
containing no active rules. If the rule flow group was already active, it will remain so and
execution will only continue if every active rule has been run.

This contains the following properties:

ID: this is the ID. of the node (and is unique within one node container).

BRMS Rule Flow Component Guide

16

Name: this is the node's display name.

RuleFlowGroup: this is the name of the rule flow group that represents the set of rules for this
node.

Timers: these are any timers that are linked to this node.

MetaData: this is meta-data related to this node.

3.3.4. Diverging Gateway (or Split)

Use this to create branches in your rule flow. A Split node must have one incoming connection and two
or more outgoing connections.

There are three types of Split node:

AND means that the control flow will continue in all outgoing connections simultaneously.

XOR means that no more or less than one of the outgoing connections will be chosen. The
decision is made by evaluating the constraints that are linked to each of the outgoing
connections. Constraints are specified using the same syntax as the left-hand side of a rule. The
constraint with the lowest priority number that evaluates to true is selected.

WARNING

Make sure that at least one of the outgoing connections will evaluate to
true at run time (the rule flow will throw an exception if there are none). For
example, you could use a connection which is always true (default) with a
high priority number to specify what should happen if none of the other
connections can be taken.

OR means that all outgoing connections whose condition evaluates to true are selected.
Conditions are similar to the XOR split, except that no priorities are taken into account.

WARNING

Make sure that at least one of the outgoing connections will evaluate to
true at run time (the rule flow will throw an exception if there are none). For
example, you could use a connection which is always true (default) with a
high priority number to specify what should happen if none of the other
connections can be taken.

This node contains the following properties:

ID: this is the ID. of the node (and is unique within one node container).





CHAPTER 3. RULE FLOWS

17

Name: this is the node's display name.

Type: this is the node type (AND, XOR or OR.)

Constraints: these are the constraints linked to each of the outgoing connections (in case of an
(X)OR split).

MetaData: this is meta-data related to this node.

3.3.5. Converging Gateway (or Join)

Use this to synchronize multiple branches. A join node must have two or more incoming connections and
one outgoing connection. Four types of split are available to you:

AND means that it will wait until all incoming branches are completed before continuing.

XOR means that it continues as soon as one of its incoming branches has been completed. (If it
is triggered from more than one incoming connection, it will activate the next node for each of
those triggers.)

Discriminator means that it will continue if one of its incoming branches has been
completed. Other incoming branches are registered as they complete until all connections have
finished At that point, the node will be reset, so that it can be triggered again when one of its
incoming branches has been completed once more.

n-of-m means that it continues if n of its m incoming branches have been completed. The
variable n could either be hard-coded to a fixed value, or refer to a process variable that will
contain the number of incoming branches for which it must wait.

This node contains the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

Type: this is the node type (AND, XOR or OR.)

n: this is the number of incoming connections for which it must wait (in case of a n-of-m join).

MetaData: this is meta-data related to this node.

3.3.6. State

this node represents a wait state. A state must have one incoming connection and one or more outgoing
connections.

For each of the outgoing connections, you can specify a rule constraint to define how long the process
should wait before continuing. For example, a constraint in an order entry application might specify that
the process should wait until no more errors are found in the given order.

To specify a constraint, use the same syntax as you would for the left-hand side of a rule.

When it reaches this node, the engine will check the associated constraints. If one of the constraint
evaluates to true directly, the flow will continue immediately. Otherwise, the flow will continue if one of
the constraints is satisfied later on, for example when a fact is inserted, updated or removed from the
working memory.

BRMS Rule Flow Component Guide

18

NOTE

You can also signal a state manually to make it progress to the next state, using
ksession.signalEvent("signal", "name") where name should either be the
name of the constraint for the connection that should be selected, or the name of the node
to which you wish to move.

A state contains the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

Constraints: use these to define when the process can leave this state and continue for each of
the outgoing connections.

Timers: these are any timers that are linked to this node.

On-entry and on-exit actions: these are actions that are executed upon entry or exit of this node,
respectively.

MetaData: this is meta-data related to this node.

3.3.7. Reusable Sub-Process (or SubFlow)

This represents the invocation of another process from within the parent process. A sub-process node
must have one incoming connection and one outgoing connection.

When a SubFlow node is reached, the engine will start the process with the given ID.

This node contains the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

ProcessId: this is the ID. of the process that is to be executed.

Wait for completion: if you set this property to true, the SubFlow node will only continue if it has
terminated its execution (by other completing or aborting it); otherwise it will continue
immediately after having started the sub-process.

Independent: if you set this property to true, the sub-process will start as an independent
process. This means that the SubFlow process will not terminate if this it reaches an end node;
otherwise the active sub-process will be cancelled on termination (or abortion) of the process.

On-entry and on-exit actions: these are actions that are executed upon entry or exit of this node,
respectively.

Parameter in/out mapping: you can also define sub-flow nodes by using in- and out-mappings
for variables. The value of variables in this process will be used as parameters when starting the
process. The value of the variables in the sub-process will be copied to the variables of this
process when the sub-process has been completed.

CHAPTER 3. RULE FLOWS

19

NOTE

You can only use out mappings when Wait for completion is set to true.

Timers: these are any timers that are linked to this node.

MetaData: this is meta-data related to this node.

3.3.8. Action (or Script Task)

This node represents an action that should be executed in this rule flow. An action node should have one
incoming connection and one outgoing connection. The associated action specifies what should be
executed, the dialect used for coding the action (such as Java or MVEL), and the actual action code.

This code can access any global, the predefined variable called drools referring to a
KnowledgeHelper object (which can, for example, be used to retrieve the Working Memory by calling
drools.getWorkingMemory()), and the variable kcontext that references the ProcessContext
object. (This latter object can, for example, be used to access the current ProcessInstance or
NodeInstance, and to obtain and set variables).

When the rule flow reaches an Action node, it will execute the action and then continue to the next node.

The Action node possesses the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

Action: this is the action associated with the node.

MetaData: this is meta-data related to this node.

3.3.9. Timer Event

This node represents a timer that can trigger one or multiple times after a given period. A Timer node
must have one incoming connection and one outgoing connection.

The timer delay specifies how long (in milliseconds) the timer should wait before triggering the first time.
The timer period specifies the time between two subsequent triggers. A period of 0 means that the timer
should only be triggered once. When the rule flow reaches a Timer node, it starts the associated timer.

The timer is cancelled if the timer node is cancelled (by, for instance, completing or aborting the process).

The Timer node contains the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

Timer delay: this is the delay (in milliseconds) that the node should wait before triggering the first
time.

Timer period: this is the period (in milliseconds) between two subsequent triggers. If the period
is 0, the timer should only be triggered once.

BRMS Rule Flow Component Guide

20

MetaData: this is meta-data related to this node.

3.3.10. Error Event (or Fault)

Use a Fault node to signal an exceptional condition in the process. It must have one incoming
connection and no outgoing connections.

When the rule flow reaches a fault node, it will throw a fault with the given name. The process will search
for an appropriate exception handler that is capable of handling this kind of fault. If no fault handler is
found, the process instance is aborted.

A Fault node contains the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

FaultName: this is the name of the fault. This name is used to search for appropriate exception
handlers that are capable of handling this kind of fault.

FaultVariable: this is the name of the variable that contains the data associated with this fault.
This data is also passed on to the exception handler (if one is found).

MetaData: this is meta-data related to this node.

3.3.11. (Message) Event

Use this Event node to respond to internal or external events during the execution of the process. An
Event node must have no incoming connections and one outgoing connection. It specifies the type of
event that is expected. Whenever that type of event is detected, the node connected to this Event node is
triggered.

It contains the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

EventType: this is the type of event that is expected.

VariableName: this is the name of the variable that will contain the data (if any) associated with
this event.

Scope: you can use this node to listen to internal events only (that is, events that are signalled to
this process instance directly, by using processInstance.signalEvent(String type,
Object data).)

You can define it as external, by using workingMemory.signalEvent(String type,
Object event). In this case, it will also be listening to external events that are signalled to the
process engine directly .

MetaData: this is meta-data related to this node.

3.3.12. Sub-Process (or Composite)

A Composite node is a node that can contain other nodes so that it acts as a node container. This allows

CHAPTER 3. RULE FLOWS

21

not only the embedding of a part of the flow within such a Composite node, but also the definition of
additional variables and exception handlers that are accessible for all nodes inside this container. A
Composite node should have one incoming connection and one outgoing connection. It contains the
following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

StartNodeId: this is the ID. of the node container node that should be triggered.

EndNodeId: this is the ID. of the node container node that that represents the end of the flow.
When this node is completed, the composite node will also complete and move to the outgoing
connection. Every other node executing within this composite node will be cancelled.

Variables: you can add additional data storage variables.

Exception Handlers: use these to specify the behavior to occur when a fault is encountered.

3.3.13. Multiple Instance (or ForEach)

A ForEach node is a special composite that allows you to execute the flow contained therein multiple
times, once for each element in a collection. A ForEach node must have one incoming connection and
one outgoing connection.

A ForEach node awaits the completion of the embedded flow for each of the collection''s elements before
continuing.

This node contains the following properties:

ID: this is the ID. of the node (and is unique within one node container).

Name: this is the node's display name.

StartNodeId: this is the ID. of the node container node that should be triggered.

EndNodeId: this is the ID. of the node container node that that represents the end of the flow.
When this node is completed, the composite node will also complete and move to the outgoing
connection. Every other node executing within this composite node will be cancelled.

CollectionExpression: this is the name of a variable that represents the collection of elements
over which you will iterate. Set the collection variable to java.util.Collection.

VariableName: this is the name of the variable which contains the current element from the
collection. This gives sub-nodes contained in the composite node access to the selected
element.

3.4. DATA

While the rule flow is designed specifically to allow you to create process control flows, you also have to
plan it from a data perspective. Throughout the execution of a process, data is retrieved, stored, passed
on and used.

To store run-time data while a process is executing, use variables. A variable is defined by a name and a
data type. This could be something very basic, such as Boolean, int, or String, or it could be any kind of
Object sub-class.

BRMS Rule Flow Component Guide

22

Define variables inside a variable scope. The top-level scope is that for the process itself. Sub-scopes
can be defined via a composite node. Variables that are defined in sub-scopes can only be accessed by
nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate definitive variable scope.

You are allowed to nest variable scopes. A node will always search for a variable in its parent container.
If the variable cannot be found, it will look in that one's parent container, and so on, until the process
instance itself is reached. If the variable cannot be found, a read access yields null, and a write access
produces an error message, with the process continuing its execution.

You can use variables in these ways:

you can set process-level variables when starting a process by providing a map of parameters to
the invocation of the startProcess method. These parameters are then set as variables on
the process scope.

actions can access variables directly. They do so by using the name of the variable as a
parameter name:

You can change the value of a variable via the knowledge context:

you can make WorkItem and SubFlow nodes pass the value of parameters to the "outside world"
by mapping the variable to one of the work item parameters. To do so, either use a parameter
mapping or interpolate it into a String parameter, using #{expression} . You can also copy a
WorkItem's output to a variable via a result mapping.

various other nodes can also access data. Event nodes, for example, can store the data
associated with an event in a variable. Exception handlers can read error data from a specific
variable. Check the properties of the different node types for more information.

Finally, every process and rule can access globals. These are globally-defined variables that are
considered immutable with regard to rule evaluation and data in the knowledge session.

You can access the knowledge session via the actions in the knowledge context:

3.5. CONSTRAINTS

You can use constraints in a multitude of locations in your rule flow. You can, for example use them in a
Split node using OR or XOR decisions, or as a constraint for a State node. The Rules Flow Engine
supports two types of constraints:

Code constraints are Boolean expressions, evaluated directly immediately upon arrival. You can
write them in either of these two dialects: Java and MVEL. Both have direct access to the globals
and variables defined in the process.

Here is an example of a constraint written in Java, person being a variable in the process:

// call method on the process variable "person"
person.setAge(10);

kcontext.setVariable(variableName, value);

kcontext.getKnowledgeRuntime().insert(new Person(...));

CHAPTER 3. RULE FLOWS

23

Here is the same constraint written in MVEL:

Rule constraints are the same as normal JBoss Rules conditions. They use the JBoss Rules
Rule Language's syntax to express what are potentially very complex constraints. These rules
can, (like any other rule), refer to data in the working memory. You can also refer to globals
directly.

Here is an example of a valid rule constraint:

This searches the working memory for people older than twenty.

Rule constraints do not have direct access to variables that have been defined inside the rule flow. You
can, however, possible to refer to the current process instance inside a rule constraint, by adding the
process instance to the working memory and matching it to the process instance in your rule constraint.

Red Hat has added special logic to make sure that a processInstance variable of the type
WorkflowProcessInstance will only match the current process instance and not to other process instances
in the working memory. You, however, are responsible for inserting the process instance into the session
and, updating it, using, for example, either Java code or an on-entry or on-exit or explicit process action.

The following example of a rule constraint will search for a person with the same name as the value
stored in the process variable name:

3.6. ACTIONS

You can use actions in these ways:

within an Action node,

as entries or exits, (with a number of nodes),

to specify the the behavior of exception handlers.

Actions have access to globals and those variables that are defined for the process and the predefined
context variable. This latter is of the type org.drools.runtime.process.ProcessContext and
can be used for the following tasks:

obtaining the current node instance. The node instance can be queried for such information as
its name and type. You can also cancel it:

return person.getAge() > 20;

return person.age > 20;

Person(age > 20)

processInstance : WorkflowProcessInstance()
Person(name == (processInstance.getVariable("name")))
add more constraints here ...

NodeInstance node = context.getNodeInstance();
String name = node.getNodeName();

BRMS Rule Flow Component Guide

24

obtaining the current process instance. A process instance can be queried for such information
as its name and processId. It can also be aborted or signalled via an internal event:

obtaining or setting the value of variables.

accessing the knowledge run-time, in order to do things like start a process, signal external
events or insert data.

Java actions should be valid Java code.

MVEL actions can use this business scripting language to express the action. MVEL accepts any valid
Java code but also provides support for nested accesses of parameters (such as, person.name
instead of person.getName()), and various other advantages. Thus, MVEL expressions are normally
more convenient for the business user. For example, an action that prints out the name of the person in
the rule flow's requester variable will: look like this:

3.7. EVENTS

Figure 3.2. A sample process using events

When you execute a process, the Rule Flow Engine makes sure that all of the relevant tasks are
executed according to the process plan. It does so by requesting the execution of work items and waiting
for the results. However, you can also make the rule flow respond to events that were not directly
requested by the Engine. By explicitly representing these events in a rule flow, you allow yourself to
specify how the process should react to them.

Each events has an associated type. It may also have associated data. You can define your own event
types and their associated data.

To specify how a rule flow is to respond to events, use Event nodes. An Event node needs to specify the
type of event the node is interested in. It can also define the name of a variable, which will receive the
data that is associated with the event. This allows subsequent nodes in the process to access the event
data and take appropriate action based on this data.

WorkflowProcessInstance proc = context.getProcessInstance();
proc.signalEvent(type, eventObject);

// Java dialect
System.out.println(person.getName());

// MVEL dialect
System.out.println(person.name);

CHAPTER 3. RULE FLOWS

25

You can signal an event to a running instance of a process in these ways:

via internal events: to make an action inside a rule flow signal the occurrence of an internal
event, using code like this:

via external event: to notify a process instance of an external event use code like this:

via external event using event correlation: instead of notifying a process instance directly, you
can make the Rule Flow Engine automatically determine which process instances might be
interested in an event using event correlation. This is based on the event type. Use this code to
make a process instance that contains an event node listening for a particular external event will
be notified whenever such an event occurs:

You can also use events to start a rule flow. Whenever a Start node defines an event trigger of a specific
type, a new rule flow instance will launch.

3.8. EXCEPTIONS

Figure 3.3. A sample process using exception handlers

If an exceptional condition occurs during the execution of a rule flow, a fault will be raised. The rule flow
will then search for an appropriate exception handler that is capable of handling this type of fault.

As with events, each fault has an associated type. They may also have associated data. You can define
both your own types and your own data.

If the Fault node specifies a fault variable, the value of the given variable will be associated with the fault.

Whenever a fault is created, the process will search for the exception handler to match.

context.getProcessInstance().signalEvent(type, eventData);

processInstance.signalEvent(type, eventData);

workingMemory.signalEvent(type, eventData);

BRMS Rule Flow Component Guide

26

Rule flows and Composite nodes can both define exception handlers.

You can nest exception handlers; a node will always search for an appropriate exception handler in its
parent container. If none is found, it will look in that one's parent container, and so on, until the process
instance itself is reached. If no exception handler can be found, the process instance will abort, resulting
in the cancellation of all nodes inside the process.

You can also use exception handlers to specify a fault variable. In this case, any data associated with
the fault will be copied to this variable. This allows subsequent Action nodes in the rule flow to access
the fault data and take appropriate action based on it.

Exception handlers need to be told how to respond to a given fault. In most cases, the behavior required
of them cannot be expressed in a single action. Red Hat therefore recommends that you have the
exception handler signal an event of a specific type (in this case "Fault") by using this code:

3.9. TIMERS

Use timers to set a time delay for a trigger. You can use them to specify supervision periods, to trigger
certain logic after a certain period, or to repeat some action at regular intervals.

You must configure a timer node so that it has both a delay and a period. The delay specifies the how
long (in milliseconds) to wait after node activation before triggering the timer for the first time. The period
defines the duration of time between subsequent trigger activations. If you set the period to 0, the timer
will only run once.

The timer service is responsible for making sure that timers are triggered at the correct moment. You can
also cancel timers. This means that they will no longer be triggered.

You can use timers in these ways:

you can add a Timer node to the rule flow. When the node is activated, it starts the timer, and its
triggers (once or repeatedly) activate the Timer node's successor. This means that the timer's
outgoing connection is triggered multiple times if you set the period. Cancelling a Timer node
also cancels the associated timer, after which nothing will be triggered anymore.

you can associate timers with event-based nodes like WorkItem, SubFlow and so forth. A timer
associated with a node is activated whenever the node becomes active. The associated action is
executed whenever the timer triggers. You may use this, for instance, to send out regular
notifications to alert that the execution of tasks is taking too long to perform, or to signal a fault if
a supervision period expires.

When the node owning the timer completes, the timer is automatically cancelled.

3.10. UPDATING RULE FLOWS

Over time, your business processes are likely to evolve as you refine them or due to changing
requirements. You cannot actually update a rule flow to mirror this but you can deploy a new version of it.
The old process will still exist because existing process instances might still need the old one's definition.
Because of this, you have to give the new process different ID., but you can use the same name and
version parameter.

context.getProcessInstance().signalEvent("FaultType",
context.getVariable("FaultVariable");

CHAPTER 3. RULE FLOWS

27

Whenever a rule flow is updated, it is important that you determine what is to happen to the already
process instances that are already running. Here are your options:

Proceed: you allow the running process instance to proceed as normal, using the definition as it
was defined when the instance was started. In other words, the already-running instance will
proceed as if the rule flow has not been updated. Only when you start new instances, will the
updated version be used.

Abort (and restart): you abort the running instance. If necessary, restart it so that it will use the
new version of the rule flow.

Transfer: you migrate the process instance to the new process definition, meaning that it will
continue executing based on the updated rule flow logic.

By default, the Rule Flow Engine uses the "proceed" approach.

3.10.1. Rule Flow Instance Migration

A rule flow instance contains all the run-time information needed to continue execution at some later
point in time. This includes all of the data linked to this process instance (stored in variables), and also
the current state of the process diagram. For each active node, a node instance represents this.

A node instances also contain an additional state linked to the execution of that specific node only. There
are different types of node instances, one for each type of node.

A rule flow instance only contains the run-time state. It is only indirectly linked to a particular rule flow (via
an ID. reference) that represents the logic that it needs to follow when running. As a result, to update a
running process instance to a newer version of the new rule flow, you simply have to update the linked
process ID.

However, this does not take into account fact that you might need to migrate the state of the rule flow
instance as well. In cases where the process is only extended and all existing wait states are kept, this is
relatively straightforward, as the run-time state does not need to change at all. However, at other times a
more sophisticated mapping may be needed. For example, when you remove an existing wait state, or
split into multiple wait states, you cannot update the existing rule flow instance. Likewise, when a new
process variable is introduced, you might need to initialize that variable correctly prior to using it in the
remainder of the process.

To handle this, you can use the WorkflowProcessInstanceUpgrader to upgrade a rule flow
process instance to a newer one. To use this tool, you will need to provide the process instance and the
new process' ID. By default, the Rules Flow Engine will automatically map old node instances to new
ones with the same ID but you can provide a mapping of the old (unique) node ID. to the new node ID.
(The unique node ID is the node ID., preceded by the node IDs of its parents, separated by a colon).
These IDs allow you to uniquely identify a node when composites are used (as a node ID. is only unique
within its node container.)

Here is an example:

// create the session and start the process "com.sample.ruleflow"
KnowledgeBuilder kbuilder = ...
StatefulKnowledgeSession ksession = ...
ProcessInstance processInstance =
ksession.startProcess("com.sample.ruleflow");

// add a new version of the process "com.sample.ruleflow2"
kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

BRMS Rule Flow Component Guide

28

If this kind of mapping is still insufficient, you can generate your own custom mappers for specific
situations. To do so, follow these instructions:

Firstly, disconnect the process instance.

Next, change the state accordingly.

Finally, reconnect the process instance.

3.11. ASSIGNING RULES TO A RULE FLOW GROUP

When you are dealing with many large rule sets, managing the order in which rules are evaluated can
become complex. Rule Flow allows you to specify the order in which rule sets are to be evaluated. It
does so by providing you with a flow chart. Use this chart to define which rule sets should be evaluated
in sequence and which in parallel, and to specify conditions under which rule sets should be evaluated.
Read this section to learn more about this functionality and to see some examples.

A rule flow can handle conditional branching, parallelism, and synchronization.

To use a rule flow to describe the order in which rules should be evaluated, follow these steps:

First sort your rules into groups using the ruleflow-group rule attribute (options in the GUI).

Next, create a rule flow graph (which is a flow chart) that graphically orders the sequence in which the
ruleflow-group should be evaluated.Here is an example:

This rule belongs to the ruleflow-group called group1.

Rules that are executing as part of a ruleflow-group that is triggered by a process, can also access the
rule consequence's rule flow context. Through this context, you can access the rule flow or node instance
that triggered the ruleflow-group. You can also set or retrieve variables:

kbuilder.add(..., ResourceType.DRF);
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

// migrate process instance to new version
Map<String, Long> mapping = new HashMap<String, Long>();
// top level node 2 is mapped to a new node with ID 3
mapping.put("2", 3L);
// node 2, which is part of composite node 5, is mapped to a new node with
ID 4
mapping.put("5.2", 4L);
WorkflowProcessInstanceUpgrader.upgradeProcessInstance(
 ksession, processInstance.getId(),
 "com.sample.ruleflow2", mapping);

rule 'YourRule'
 ruleflow-group 'group1'
when
 ...
then
 ...
end

drools.getContext(ProcessContext.class).getProcessInstance()

CHAPTER 3. RULE FLOWS

29

3.12. EXAMPLE RULE FLOWS

Figure 3.4. A Simple Rule Flow

The rule flow above specifies that the rules in the Check Order group must be executed before the
rules in the Process Order group. You could achieve similar results using salience, but this is harder
to maintain and makes a time relationship implicit in the rules (or Agenda groups.) By contrast, using a
rule-flow makes the processing order explicit, in its own layer on top of the rule structure, allowing you to
manage complex business processes more easily.

In practice, if you are using rule-flow, you are most likely doing more than just setting a linear sequence
of groups to progress though. You will be using Split and Join nodes to model branches and define flows
by connections, from the Start to ruleflow-groups, to Splits and then on to more groups, Joins, and so on.
Do all of via a graphical editor:

Figure 3.5. A Complex Rule Flow

The rule flow depicted above represents a more complex business process for finalizing an insurance
claim:

First of all, the claim data validation rules are processed. These perform data integrity checks for
consistency and completeness.

Next, in a Split node, a conditional decision is made based on the value of the claim. Processing will
either move on to an auto-settlement group, or to another Split node, which checks whether there was a
fatality in the incident.

If so, it determines whether the "regular" set of fatality-specific rules should take effect, with more
processing to follow.

BRMS Rule Flow Component Guide

30

Based on a few conditions, many different control flows are possible.

NOTE

All the rules can be in one package, with the control flow definition being stored
separately.

To edit Split nodes, follow this process:

Firstly, click on the node.

From the properties panel that appears, choose the type: AND, OR or XOR. If you choose OR, then
any of the split's potential outputs will be allowed to occur, meaning that processing can proceed in
parallel along two or more different paths. If you chose XOR, then only one path will be taken.

If you choose OR or XOR, there will be a square button on the right-hand side of the Constraints row.

Click on this button to open the Constraint Editor. This is a text editor with which you add
constraints (which are like the conditional part of a rule.)

NOTE

These constraints operate on facts in the working memory. In the example above, there is
a check for claims with a value of less than 250. Should this condition be true, then the
associated path will be followed.

Set the conditions that will decide which outgoing path to follow.

CHAPTER 3. RULE FLOWS

31

CHAPTER 4. THE API
Use the API for these two tasks: to create a knowledge base containing your rule flow definitions and to
create a session.

4.1. KNOWLEDGE BASE

The knowledge-based API allows you to create a single knowledge base that contains all the knowledge
your rule flows need. You can be reuse it across sessions.

The knowledge base includes all your rule flow definitions (and other "knowledge types" such as
example rules).

This code shows you how to create a knowledge base consisting of only one process definition, using a
knowledge builder to add the resource (which comes from the class-path in this case):

NOTE

The knowledge-based API allows you to add different types of resources, such as
processes and rules, in almost identical ways, to the same knowledge base. This enables
a user who knows how to use the Rule Flow engine to start using JBoss Rules Fusion
almost immediately, and even to integrate these different types of knowledge.

4.2. SESSION

Next, you must create a session to interact with the Engine. The following code shows you how to do
this, and how to start a process (via its id.):

The ProcessRuntime interface defines all of the session methods:

4.3. EVENTS

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.rf"),
ResourceType.DRF);
KnowledgeBase kbase = kbuilder.newKnowledgeBase();

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
ProcessInstance processInstance =
ksession.startProcess("com.sample.MyProcess");

ProcessInstance startProcess(String processId);
ProcessInstance startProcess(String processId, Map<String, Object>
parameters);
void signalEvent(String type, Object event);
void signalEvent(String type, Object event, long processInstanceId);
Collection<ProcessInstance> getProcessInstances();
ProcessInstance getProcessInstance(long id);
void abortProcessInstance(long id);
WorkItemManager getWorkItemManager();

BRMS Rule Flow Component Guide

32

Both the stateful and stateless knowledge sessions provide methods that allow you to register and
remove listeners. Use ProcessEventListener objects to listen to process-related events (like starting
or completing a process or entering or leaving a node.) Here are the different methods for it:

You can create an audit log based on the information provided by these process listeners. Red Hat
provides you with the following ones out-of the-box:

1. Console logger: this outputs every event to the console.

2. File logger: this outputs every event to an XML file. This log file might then be used in the IDE to
generate a tree-based visualization of the events that occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the logger
or when the number of events in the logger reaches a pre-defined threshold, it cannot be used
when debugging processes at run-time. The threaded file logger writes the events to a file after a
specified time interval, making it possible to use the logger to visualize progress in real-time,
making it useful for debugging.

Use the KnowledgeRuntimeLoggerFactory to add a logger to your session:

NOTE

When creating a console logger, pass the knowledge session for it as an argument.

The file logger must also be supplied requires the name of the log file to be created.

The threaded file logger requires the interval (in milliseconds) after which the events are to
be saved.

You can open the log file in JBDS. To do so, go to the Audit View. Here you will see the events
depicted in the form of a tree. (Anything that occurs between the before and after events is shown as
a child of that event.)

public interface ProcessEventListener {

 void beforeProcessStarted(ProcessStartedEvent event);
 void afterProcessStarted(ProcessStartedEvent event);
 void beforeProcessCompleted(ProcessCompletedEvent event);
 void afterProcessCompleted(ProcessCompletedEvent event);
 void beforeNodeTriggered(ProcessNodeTriggeredEvent event);
 void afterNodeTriggered(ProcessNodeTriggeredEvent event);
 void beforeNodeLeft(ProcessNodeLeftEvent event);
 void afterNodeLeft(ProcessNodeLeftEvent event);

}

KnowledgeRuntimeLogger logger =
 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "test");
// add invocations to the process engine here,
// e.g. ksession.startProcess(processId);
...
logger.close();

CHAPTER 4. THE API

33

CHAPTER 5. JBOSS RULES IDE FEATURES
The JBDS' JBoss Rules plug-in provides a few additional features that some business developers may
find interesting. Read this chapter to learn about them.

5.1. JBOSS RULES RUN-TIMES

A JBoss Rules run-time is a collection of JAR files that represent one specific release of the JBoss Rules
project JARs. To create a run-time, you must point the IDE to the release of your choice.

NOTE

You can create a new run-time based on the latest JBoss Rules project JARs which
come included with the plug-in itself.

NOTE

You are required to specify a default JBoss Rules run-time for your workspace, but each
individual project can override the default and select the run-time most appropriate for it.

5.1.1. Defining a JBoss Rules Run-time

Follow these instructions to define one or more JBoss Rules run-times:

go to the Window menu

selecting the Preferences menu item

a Preferences dialogue box, containing all of your settings, appears

on the left-hand side of this dialogue box, under the JBoss Rules category, select Installed JBoss
Rules run-times. The panel on the right will then update to display all of your currently-defined run-
times.

to define a new run-time, click on the add button. A dialogue box will appear.

input the name of your runtime and the path to its location on your file system.

In general, you have two options:

1. if you simply want to use the default JAR files as included with the JBoss Rules plug-in, just
click the Create a new JBoss Rules 5 run-time... button.

A file browser will appear, asking you to select the directory in which you want this run-time to be
created. The plug-in will then automatically copy every required dependency into this directory.

2. if you want to use one specific release of the JBoss Rules project, you should create a directory
on your file system that contains all of the required libraries and dependencies. Instead of
creating a new JBoss Rules run-time as explained above, give your run-time a name and then
select the directory that you just created, containing all of the required JARs.

after clicking the OK button, your newly-created run-time will appear in the right-hand panel alongside all
the others.

BRMS Rule Flow Component Guide

34

click on check box in front of the newly-created run-time to make it the default . It will now be used as the
run-time for all of your future JBoss Rules project (unless you select a project-specific one.)

NOTE

You can add as many JBoss Rules run-times as you need.

IMPORTANT

You will need to restart the IDE if you changed the default run-time. This will ensure that
all of your projects will use it. Their class-paths will update automatically.

5.1.2. Selecting a Run-time for Your JBoss Rules project

Whenever you create a JBoss Rules project (by using the New JBoss Rules Project wizard or by
converting an existing Java project into a JBoss Rules project using the Convert to JBoss Rules
Project command), the plug-in will automatically add all of the JARs it needs to your project's class-
path.

The default run-time will be used unless you specify otherwise when you are creating it. However, you
can change the run-time at any time. To do so, follow these steps:

open the project's properties,

select the JBoss Rules category,

tick the Enable project specific settings check box

select the run-time you desire from the drop-down list.

NOTE

If you click the Configure workspace settings... link, the preferences will display,
showing you the currently installed JBoss Rules run-times. You can add new run-times
from this screen.

NOTE

If you de-select the Enable project specific settings check box, the default
run-time will be used.

5.2. PROCESS SKINS

Use process skins to control the appearance of a rule flow's nodes.

NOTE

You can also change the appearance of the various node types by implementing your own
SkinProvider.

BPMN is a popular language used employed by corporate developers to model business processes. Red
Hat has created a BPMN skin that maps Rule Flow concepts to the equivalent BPMN visualization.

CHAPTER 5. JBOSS RULES IDE FEATURES

35

You can change the process skin via the JBoss Rules Preferences dialogue box.

After reopening the editor, the rule flow will reappear, displaying the new BPMN skin.

BRMS Rule Flow Component Guide

36

APPENDIX A. © 2011
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

APPENDIX A. © 2011

37

APPENDIX B. REVISION HISTORY

Revision 5.3.0-15.402 Fri Oct 25 2013 Rüdiger Landmann
Rebuild with Publican 4.0.0

Revision 5.3.0-15.33 2012-07-22 Anthony Towns
Rebuild for Publican 3.0

Revision 5.2.0-3 Thur Jan 12 2012 L Carlon
Removed the chapters dealing with Business Activity monitoring and the web console as these are not supported in Ruleflow.

Revision 5.2.0-2 Mon Nov 21 2011 L Carlon
Removed the BPMN2.0 notation chapter as BPMN2.0 is not supported in Ruleflow.

Revision 5.2.0-1 Thu Sept 30 2011 L Carlon
Updated for the JBoss Enterprise BRMS Platform

Revision 5.2.0-0 Thu Jul 14 2011 David Le Sage
First edition of the book

BRMS Rule Flow Component Guide

38

INDEX

INDEX

39

	Table of Contents
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. USING RULE FLOW FOR THE FIRST TIME
	2.1. CREATING YOUR FIRST PROCESS
	2.2. EXECUTING YOUR FIRST PROCESS

	CHAPTER 3. RULE FLOWS
	3.1. CREATING A RULE FLOW PROCESS
	3.1.1. Using the Graphical Rule Flow Editor
	3.1.2. Defining Processes Using XML
	3.1.3. Defining Processes Using the Process API
	3.1.3.1. Example One
	3.1.3.2. Example Two
	3.1.3.3. Example Three

	3.2. USING A PROCESS IN YOUR APPLICATION
	3.3. AVAILABLE NODE TYPES
	3.3.1. Start Event
	3.3.2. End Event
	3.3.3. Rule Task (or RuleFlowGroup)
	3.3.4. Diverging Gateway (or Split)
	3.3.5. Converging Gateway (or Join)
	3.3.6. State
	3.3.7. Reusable Sub-Process (or SubFlow)
	3.3.8. Action (or Script Task)
	3.3.9. Timer Event
	3.3.10. Error Event (or Fault)
	3.3.11. (Message) Event
	3.3.12. Sub-Process (or Composite)
	3.3.13. Multiple Instance (or ForEach)

	3.4. DATA
	3.5. CONSTRAINTS
	3.6. ACTIONS
	3.7. EVENTS
	3.8. EXCEPTIONS
	3.9. TIMERS
	3.10. UPDATING RULE FLOWS
	3.10.1. Rule Flow Instance Migration

	3.11. ASSIGNING RULES TO A RULE FLOW GROUP
	3.12. EXAMPLE RULE FLOWS

	CHAPTER 4. THE API
	4.1. KNOWLEDGE BASE
	4.2. SESSION
	4.3. EVENTS

	CHAPTER 5. JBOSS RULES IDE FEATURES
	5.1. JBOSS RULES RUN-TIMES
	5.1.1. Defining a JBoss Rules Run-time
	5.1.2. Selecting a Run-time for Your JBoss Rules project

	5.2. PROCESS SKINS

	APPENDIX A. © 2011
	APPENDIX B. REVISION HISTORY
	INDEX

