
Fuse MQ Enterprise
Fault Tolerant Messaging

Version 7.1
December 2012

Integration Everywhere

Fault Tolerant Messaging
Version 7.1

Updated: 07 Jan 2014
Copyright © 2012 Red Hat, Inc. and/or its affiliates.

Trademark Disclaimer

These materials and all Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation.
The information in these materials is subject to change without notice, and Progress Software Corporation assumes no responsibility
for any errors that may appear therein. The references in these materials to specific platforms supported are subject to change.

Fuse, Red Hat, Fuse ESB, Fuse ESB Enterprise, Fuse MQ Enterprise, Fuse Mediation Router, Fuse Message Broker, Fuse Services
Framework, Fuse IDE, Fuse HQ, Fuse Management Console, and Integration Everywhere are trademarks or registered trademarks
of Red Hat Corp. or its parent corporation, Progress Software Corporation, or one of their subsidiaries or affiliates in the United
States. Apache, ServiceMix, Camel, CXF, and ActiveMQ are trademarks of Apache Software Foundation. Any other names
contained herein may be trademarks of their respective owners.

Third Party Acknowledgements

One or more products in the Fuse MQ Enterprise release includes third party components covered by licenses that require that
the following documentation notices be provided:

• JLine (http://jline.sourceforge.net) jline:jline:jar:1.0

License: BSD (LICENSE.txt) - Copyright (c) 2002-2006, Marc Prud'hommeaux <mwp1@cornell.edu>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

• Neither the name of JLine nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://jline.sourceforge.net

• Stax2 API (http://woodstox.codehaus.org/StAX2) org.codehaus.woodstox:stax2-api:jar:3.1.1

License: The BSD License (http://www.opensource.org/licenses/bsd-license.php)

Copyright (c) <YEAR>, <OWNER> All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• jibx-run - JiBX runtime (http://www.jibx.org/main-reactor/jibx-run) org.jibx:jibx-run:bundle:1.2.3

License: BSD (http://jibx.sourceforge.net/jibx-license.html) Copyright (c) 2003-2010, Dennis M. Sosnoski.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.

• Neither the name of JiBX nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• JavaAssist (http://www.jboss.org/javassist) org.jboss.javassist:com.springsource.javassist:jar:3.9.0.GA:compile

License: MPL (http://www.mozilla.org/MPL/MPL-1.1.html)

http://woodstox.codehaus.org/StAX2
http://www.opensource.org/licenses/bsd-license.php
http://www.jibx.org/main-reactor/jibx-run
http://jibx.sourceforge.net/jibx-license.html
http://www.jboss.org/javassist
http://www.mozilla.org/MPL/MPL-1.1.html

• HAPI-OSGI-Base Module (http://hl7api.sourceforge.net/hapi-osgi-base/) ca.uhn.hapi:hapi-osgi-base:bundle:1.2

License: Mozilla Public License 1.1 (http://www.mozilla.org/MPL/MPL-1.1.txt)

http://hl7api.sourceforge.net/hapi-osgi-base/
http://www.mozilla.org/MPL/MPL-1.1.txt

Table of Contents
1. Introduction ... 11
2. Client Failover ... 13

Failover Protocol .. 14
Static Failover ... 15
Dynamic Failover ... 18

Discovery Protocol ... 22
Discovery URI ... 23
Discovery Agents ... 25

Fuse Fabric Discovery Agent ... 27
Static Discovery Agent .. 28
Multicast Discovery Agent .. 29
Zeroconf Discovery Agent ... 31

3. Master/Slave .. 33
Shared File System Master/Slave ... 34
Shared JDBC Master/Slave ... 39

4. Master/Slave and Broker Networks .. 45
Index .. 49

7Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

List of Figures
3.1. Shared File System Initial State .. 35
3.2. Shared File System after Master Failure ... 36
3.3. Shared File System after Master Restart ... 38
3.4. JDBC Master/Slave Initial State .. 40
3.5. JDBC Master/Slave after Master Failure .. 41
3.6. JDBC Master/Slave after Master Restart ... 43
4.1. Master/Slave Groups on Two Host Machines ... 46
4.2. Broker Network Consisting of Host Pairs ... 47

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.18

List of Tables
2.1. Failover Transport Options .. 15
2.2. Broker-side Failover Properties ... 19
2.3. Dynamic Discovery Protocol Options ... 23

9Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

List of Examples
2.1. Simple Failover URI .. 17
2.2. Broker for Dynamic Failover .. 20
2.3. Failover URI for Connecting to a Failover Cluster ... 21
2.4. Discovery URI ... 23
2.5. Discovery Protocol URI .. 24
2.6. Injecting Transport Options into a Discovered Transport .. 24
2.7. Enabling a Discovery Agent on a Broker ... 25
2.8. Fuse Fabric Discovery Agent URI Format .. 27
2.9. Client Connection URL using Fuse Fabric Discovery .. 27
2.10. Static Discovery Agent URI Format ... 28
2.11. Discovery URI using the Static Discovery Agent .. 28
2.12. Multicast Discovery Agent URI Format ... 29
2.13. Enabling a Multicast Discovery Agent on a Broker ... 29
2.14. Client Connection URL using Multicast Discovery ... 30
2.15. Zeroconf Discovery Agent URI Format .. 31
2.16. Enabling a Multicast Discovery Agent on a Broker ... 32
2.17. Client Connection URL using Zeroconf Discovery .. 32
3.1. Shared File System Broker Configuration .. 37
3.2. Client URL for a Shared File System Master/Slave Group .. 37
3.3. JDBC Master/Slave Broker Configuration .. 42
3.4. Client URL for a Shared JDBC Master/Slave Group .. 43
4.1. Network Connector to a Master/Slave Group .. 46

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.110

Chapter 1. Introduction
Fault tolerant message systems can recover from failures with little or no interruption of functionality. Fuse MQ
Enterprise does this by making it easy to configure clients to fail over to new brokers in the event of a broker
failure. It also makes it easy to set up master/slave groups that allow brokers to take over for each other and
maintain the integrity of persistent messages and transactions.

Overview If planned for, disaster scenarios that result in the loss of a message broker
need not obstruct message delivery. Making a messaging system fault tolerant
involves:

• deploying multiple brokers into a topology that allows one broker to pick
up the duties of a failed broker

• configuring clients to fail over to a new broker in the event that its current
broker fails

Fuse MQ Enterprise provides mechanisms that make building fault tolerant
messaging systems easy.

Client fail over Fuse MQ Enterprise provides two protocols that allow clients to fail over to a
new broker in the case of a failure:

• the failover protocol—allows you to provide a list of brokers that a client
can use

• the discovery protocol—allows clients to automatically discover the brokers
available for fail over

Both protocols automatically reconnect to an available broker when its existing
connection fails. As long as an available broker is running, the client can
continue to function uninterrupted.

When combined with brokers deployed in a master/slave topology, the failover
protocol is a key part of a fault-tolerant messaging system. The clients will
automatically fail over to the slave broker if the master fails. The clients will
remain functional and continue working as if nothing had happened.

11Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

For more information, see "Client Failover" on page 13.

Master/Slave topologies A master/slave topology includes a master broker and one or more slave
brokers. All of the brokers share data by using either a replication mechanism
or by using a shared data store. When the master broker fails, one of the
slave brokers takes over and becomes the new master broker. Client
applications can reconnect to the new master broker and resume processing
as normal.

For details, see "Master/Slave" on page 33.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.112

Chapter 1. Introduction

Chapter 2. Client Failover
Fuse MQ Enterprise provides two simple mechanisms for clients to failover to an alternate broker if its active
connection fails. The failover protocol relies on a hard coded list of alternative brokers. The discovery protocol
relies on discovery agents to provide a list of alternative brokers.

Failover Protocol .. 14
Static Failover ... 15
Dynamic Failover ... 18

Discovery Protocol ... 22
Discovery URI ... 23
Discovery Agents ... 25

Fuse Fabric Discovery Agent ... 27
Static Discovery Agent .. 28
Multicast Discovery Agent .. 29
Zeroconf Discovery Agent ... 31

13Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Failover Protocol
Static Failover ... 15
Dynamic Failover ... 18

The failover protocol facilitates quick recovery from network failures. When
a recoverable network error occurs the protocol catches the error and
automatically attempts to reestablish the connection to an alternate broker
endpoint without the need to recreate all of the objects associated with the
connection. The failover URI is composed of one or more URIs that represent
different broker endpoints. By default, the protocol randomly chooses a URI
from the list and attempts to establish a network connection to it. If it does
not succeed, or if it subsequently fails, a new network connection is
established to one of the other URIs in the list.

You can set up failover in one of the following ways:

• Static—the client is configured with a static list of available URIs

• Dynamic—the brokers push information about the available broker
connections

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.114

Chapter 2. Client Failover

Static Failover

Overview In static failover a client is configured to use a failover URI that lists the URIs
of the broker connections the client can use. When establishing a connection,
the client randomly chooses a URI from the list and attempts to establish a
connection to it. If the connection does not succeed, the client chooses a new
URI from the list and tries again. The client will continue cycling through the
list until a connection attempt succeeds.

If a client's connection to a broker fails after it has been established, the client
will attempt to reconnect to a different broker in the list. Once a connection
to a new broker is established, the client will continue to use the new broker
until the connection to the new broker is severed.

Failover URI A failover URI is a composite URI that uses one of the following syntaxes:

• failover:uri1,...,uriN

• failover:(uri1,...,uriN)?TransportOptions

The URI list(uri1,...,uriN) is a comma-separated list containing the list of
broker endpoint URIs to which the client can connect. The transport
options(?TransportOptions) specified in the form of a query list, allow you
to configure some of the failoiver behaviors.

Transport options The failover protocol supports the transport options described in
Table 2.1 on page 15.

Table 2.1. Failover Transport Options

DescriptionDefaultOption

Specifies the number of milliseconds
to wait before the first reconnect
attempt.

10initialReconnectDelay

Specifies the maximum amount of
time, in milliseconds, to wait between
reconnect attempts.

30000maxReconnectDelay

15Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Static Failover

DescriptionDefaultOption

Specifies whether to use an
exponential back-off between
reconnect attempts.

trueuseExponentialBackOff

Specifies the exponent used in the
exponential back-off algorithm.

2backOffMultiplier

Specifies the maximum number of
reconnect attempts before an error is

-1maxReconnectAttempts

returned to the client. -1 specifies
unlimited attempts. 0 specifies that
an initial connection attempt is made
at start-up, but no attempts to fail
over to a secondary broker will be
made.

Specifies the maximum number of
reconnect attempts before an error is

-1startupMaxReconnectAttempts

returned to the client on the first
attempt by the client to start a
connection. -1 specifies unlimited
attempts and 0 specifies no retry
attempts.

Specifies if a URI is chosen at random
from the list. Otherwise, the list is
traversed from left to right.

truerandomize

Specifies if the protocol initializes and
holds a second transport connection
to enable fast failover.

falsebackup

Specifies the amount of time, in
milliseconds, to wait before sending

-1timeout

an error if a new connection is not
established. -1 specifies an infinite
timeout value.

Specifies if the protocol keeps a cache
of in-flight messages that are flushed
to a broker on reconnect.

falsetrackMessages

Specifies the size, in bytes, used for
the cache used to track messages.

131072maxCacheSize

Specifies whether the client accepts
updates to its list of known URIs from

trueupdateURIsSupported

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.116

Chapter 2. Client Failover

DescriptionDefaultOption

the connected broker. Setting this to
false inhibits the client's ability to use
dynamic failover. See "Dynamic
Failover" on page 18.

Specifies a URL locating a text file
that contains a comma-separated list

updateURIsURL

of URIs to use for reconnect in the
case of failure. See "Dynamic
Failover" on page 18.

Example Example 2.1 on page 17 shows a failover URI that can connect to one of
two message brokers.

Example 2.1. Simple Failover URI

failover:(tcp://localhost:61616,tcp://remotehost:61616)?initialReconnectDelay=100

17Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Static Failover

Dynamic Failover

Overview Dynamic failover combines the failover protocol and a network of brokers to
allow a broker to supply its clients with a list of broker connections to which
the clients can failover. Clients use a failover URI to connect to a broker and
the broker dynamically updates the clients' list of available URIs. The broker
updates its clients' failover lists with the URIs of the other brokers in its
network of brokers that are currently running. As new brokers join, or exit,
the network of brokers, the broker will adjust its clients' failover lists.

From a connectivity point of view, dynamic failover works the same as static
failover. A client randomly chooses a URI from the list provided in its failover
URI. Once that connection is established, the list of available brokers is
updated. If the original connection fails, the client will randomly select a new
URI from its dynamically generated list of brokers. If the new broker is
configured for to supply a failover list, the new broker will update the client's
list.

Set-up To use dynamic failover you must configure both the clients and brokers used
by your application. The following must be configured:

• The client's must be configured to use the failover protocol when connecting
with its broker.

• The client must be configured to accept URI lists from a broker.

• The brokers must be configured to form a network of brokers.

See Using Networks of Brokers.

• The broker's transport connector must set the failover properties needed to
update its consumers.

Client-side configuration The client-side configuration for using dynamic failover is nearly identical to
the client-side configuration for using static failover. The differences include:

• The failover URI can consist of a single broker URI.

• The updateURIsSupported option must be set to true.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.118

Chapter 2. Client Failover

http://fusesource.com/docs/mqent/7.1//Using_Networks_of_Brokers/Fuse_MQ_Enterprise-7.1-Using_Networks_of_Brokers-en-US.pdf#FMQNetworks

• The updateURIsURL option should be set so that the transport can failover

to a new broker when none of the broker's in the dynamically supplied list
are available.

See "Failover URI" on page 15 and "Transport options" on page 15 for more
information about using failover URIs.

Broker-side configuration Important
Brokers should never use a failover URI to configure a transport
connector. The failover protocol does not support listening for
incoming messages.

Configuring a broker to participate in dynamic failover requires two things:

• The broker must be configured to participate in a network of brokers that
can be available for failovers.

See Using Networks of Brokers for information about setting up a network
of brokers.

• The broker's transport connector must set the failover properties needed to
update its consumers.

Table 2.2 on page 19 describes the broker-side properties that can be used
to configure a failover cluster. These properties are attributes on the broker's
transportConnector element.

Table 2.2. Broker-side Failover Properties

DescriptionDefaultProperty

Specifies if the broker passes
information to connected clients about

falseupdateClusterClients

changes in the topology of the broker
cluster.

Specifies if clients are updated when
a broker is removed from the cluster.

falseupdateClusterClientsOnRemove

Specifies if connected clients are
asked to rebalance across the cluster
whenever a new broker joins.

falserebalanceClusterClients

Specifies a comma-separated list of
regular expression filters, which

updateClusterFilter

19Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Dynamic Failover

http://fusesource.com/docs/mqent/7.1//Using_Networks_of_Brokers/Fuse_MQ_Enterprise-7.1-Using_Networks_of_Brokers-en-US.pdf#FMQNetworks

DescriptionDefaultProperty

match against broker names to select
the brokers that belong to the failover
cluster.

Example Example 2.2 on page 20 shows the configuration for a broker that participates
in dynamic failover.

Example 2.2. Broker for Dynamic Failover

<beans ... >
<broker>
...
<networkConnectors>

❶ <networkConnector uri="multicast://default" />
</networkConnectors>
...
<transportConnectors>
<transportConnector name="openwire"

uri="tcp://0.0.0.0:61616"
❷ discoveryUri="multicast://default"
❸ updateClusterClients="true"
❹ updateClusterFilter="*A*,*B*" />

</transportConnectors>
...

</broker>
</beans>

The configuration in Example 2.2 on page 20 does the following:

❶ Creates a network connector that connects to any discoverable broker
that uses the multicast transport.

❷ Makes the broker discoverable by other brokers over the multicast
protocol.

❸ Makes the broker update the list of available brokers for clients that
connect using the failover protocol.

Note
Clients will only be updated when new brokers join the cluster,
not when a broker leaves the cluster.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.120

Chapter 2. Client Failover

❹ Creates a filter so that only those brokers whose names start with the
letter A or the letter B are considered to belong to the failover cluster.

Example 2.3 on page 21 shows the URI for a client that uses the failover
protocol to connect to the broker and its cluster.

Example 2.3. Failover URI for Connecting to a Failover Cluster

failover:(tcp://0.0.0.0:61616)?initialReconnectDelay=100

21Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Dynamic Failover

Discovery Protocol
Discovery URI ... 23
Discovery Agents ... 25

Fuse Fabric Discovery Agent ... 27
Static Discovery Agent .. 28
Multicast Discovery Agent .. 29
Zeroconf Discovery Agent ... 31

The failover protocol provides a lot of control over the brokers to which a
client can connect. Using dynamic failover adds some ability to make the
broker list more transparent. However, it has weaknesses. It requires that
you know the address of at least one broker and that an initial broker is active
when the client starts up. Using dynamic failover also requires that all of the
brokers being used for failover are configured in a network of brokers.

Fuse MQ Enterprise's discovery protocol offers an alternative method for
dynamically generating a list of brokers that are available for client failover.
The protocol allows brokers to advertise their availability and for clients to
dynamically discover them. This is accomplished using two pieces:

• discovery URI—looks up all of the discoverable brokers and presents them
as a list of actual URIs for use by the client or network connector

• discovery agents—components that advertise the list of available brokers

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.122

Chapter 2. Client Failover

Discovery URI

Overview The discovery URI is a virtual URI that specifies which discovery agent to use
for discovering available brokers. The discovery protocol connects to the
specified agent and uses that data returned from the agent to build up a list
of broker URIs.

URI syntax Example 2.4 on page 23 shows the syntax for a discovery URI.

Example 2.4. Discovery URI

discovery://(DiscoveryAgentUri)?Options

DiscoveryAgentUri is URI for the discovery agent used to build up the list
of available brokers. Discovery agents are described in "Discovery Agents"
on page 25.

The options, ?Options, are specified in the form of a query list. The discovery
options are described in Table 2.3 on page 23. You can also inject transport
options as described in "Setting options on the discovered transports"
on page 24.

Tip
If no options are required, you can drop the parentheses from the
URI. The resulting URI would take the form
discovery://DiscoveryAgentUri

Transport options The discovery protocol supports the options described in
Table 2.3 on page 23.

Table 2.3. Dynamic Discovery Protocol Options

DescriptionDefaultOption

Specifies, in milliseconds, how long
to wait before the first reconnect
attempt.

10initialReconnectDelay

Specifies, in milliseconds, the
maximum amount of time to wait
between reconnect attempts.

30000maxReconnectDelay

23Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Discovery URI

DescriptionDefaultOption

Specifies if an exponential back-off is
used between reconnect attempts.

trueuseExponentialBackOff

Specifies the exponent used in the
exponential back-off algorithm.

2backOffMultiplier

Specifies the maximum number of
reconnect attempts before an error is

0maxReconnectAttempts

sent back to the client. 0 specifies

unlimited attempts.

Sample URI Example 2.5 on page 24 shows a discovery URI that uses a multicast
discovery agent.

Example 2.5. Discovery Protocol URI

discovery://(multicast://default)?initialReconnectDelay=100

Setting options on the discovered
transports

The list of transport options, Options, in the discovery URI can also be used
to set options on the discovered transports. If you set an option not listed in
Table 2.3 on page 23, the URI parser attempts to inject the option setting
into every one of the discovered endpoints.

Example 2.6 on page 24 shows a discovery URI that sets the TCP
connectionTimeout option to 10 seconds.

Example 2.6. Injecting Transport Options into a Discovered Transport

discovery://(multicast://default)?connectionTimeout=10000

The 10 second timeout setting is injected into every discovered TCP endpoint.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.124

Chapter 2. Client Failover

Discovery Agents
Fuse Fabric Discovery Agent ... 27
Static Discovery Agent .. 28
Multicast Discovery Agent .. 29
Zeroconf Discovery Agent ... 31

A discovery agent is a mechanism that advertises available brokers to clients
and other brokers. When a client, or broker, using a discovery URI starts up
it will look for any brokers that are available using the specified discovery
agent. The clients will update their lists periodically using the same
mechanism.

How a discovery agent learns about the available brokers varies between
agents. Some agents use a static list, some use a third party registry, and
some rely on the brokers to provide the information. For discovery agents that
rely on the brokers for information, it is necessary to enable the discovery
agent in the message broker configuration. For example, to enable the
multicast discovery agent on an Openwire endpoint, you edit the relevant
transportConnector element as shown in Example 2.7 on page 25.

Example 2.7. Enabling a Discovery Agent on a Broker

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default" />

</transportConnectors>

Where the discoveryUri attribute on the transportConnector element
is initialized to multicast://default.

Tip
If a broker uses multiple transport connectors, you need to configure
each transport connector to use a discovery agent individually. This
means that different connectors can use different discovery
mechanisms or that one or more of the connectors can be
indiscoverable.

Fuse MQ Enterprise currently supports the following discovery agents:

• Fuse Fabric Discovery Agent

• Static Discovery Agent

25Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Discovery Agents

• Multicast Discovery Agent

• Zeroconf Discovery Agent

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.126

Chapter 2. Client Failover

Fuse Fabric Discovery Agent

Overview The Fuse Fabric discovery agent uses Fuse Fabric to discover the brokers in
a specified group. The discovery agent requires that all of the discoverable
brokers be deployed into a single fabric. When the client attempts to connect
to a broker the agent looks up all of the available brokers in the fabric's registry
and returns the ones in the specified group.

URI The Fuse Fabric discovery agent URI conforms to the syntax in
Example 2.8 on page 27.

Example 2.8. Fuse Fabric Discovery Agent URI Format

fabric://GID

Where GID is the ID of the broker group from which the client discovers the
available brokers.

Configuring a broker The Fuse Fabric discovery agent requires that the discoverable brokers are
deployed into a single fabric.

The best way to deploy brokers into a fabric is using Fuse Management
Console. For information on using Fuse Management Console see Fuse
Management Console Documentation1.

You can also use the console to deploy brokers into a fabric. See "Fabric
Console Commands" in Console Reference.

Configuring a client To use the agent a client must be configured to connect to a broker using a
discovery protocol that uses a Fuse Fabric agent URI as shown in
Example 2.9 on page 27.

Example 2.9. Client Connection URL using Fuse Fabric Discovery

discovery://(fabric://nwBrokers)

A client using the URL in Example 2.9 on page 27 will discover all the brokers
in the nwBrokers broker group and generate a list of brokers to which it can
connect.

1 http://fusesource.com/docs/fmc

27Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Discovery Agents

http://fusesource.com/docs/fmc
http://fusesource.com/docs/fmc
http://fusesource.com/docs/mqent/7.1//Console_Reference/Fuse_MQ_Enterprise-7.1-Console_Reference-en-US.pdf#Consolefabric
http://fusesource.com/docs/mqent/7.1//Console_Reference/Fuse_MQ_Enterprise-7.1-Console_Reference-en-US.pdf#Consolefabric
http://fusesource.com/docs/fmc

Static Discovery Agent

Overview The static discovery agent does not truly discover the available brokers. It
uses an explicit list of broker URLs to specify the available brokers. Brokers
are not involved with the static discovery agent. The client only knows about
the brokers that are hard coded into the agent's URI.

Using the agent The static discovery agent is a client-side only agent. It does not require any
configuration on the brokers that will be discovered.

To use the agent, you simply configure the client to connect to a broker using
a discovery protocol that uses a static agent URI.

The static discovery agent URI conforms to the syntax in
Example 2.10 on page 28.

Example 2.10. Static Discovery Agent URI Format

static://(URI1,URI2,URI3,...)

Example Example 2.11 on page 28 shows a discovery URI that configures a client to
use the static discovery agent to connect to one member of a broker pair.

Example 2.11. Discovery URI using the Static Discovery Agent

discovery://(static://(tcp://localhost:61716,tcp://local
host:61816))

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.128

Chapter 2. Client Failover

Multicast Discovery Agent

Overview The multicast discovery agent uses the IP multicast protocol to find any
message brokers currently active on the local network. The agent requires
that each broker you want to advertise is configured to use the multicast
agent to publish its details to a multicast group. Clients using the multicast
agent as part of the discovery URI they use for connecting to a broker will
use the agent to receive the list of available brokers advertising in the specified
multicast group.

Important
Your local network (LAN) must be configured appropriately for the
IP/multicast protocol to work.

URI The multicast discovery agent URI conforms to the syntax in
Example 2.12 on page 29.

Example 2.12. Multicast Discovery Agent URI Format

multicast://GroupID

Where GroupID is an alphanumeric identifier. All participants in the same
discovery group must use the same GroupID.

Configuring a broker For a broker to be discoverable using the multicast discovery agent, you must
enable the discovery agent in the broker's configuration. To enable the
multicast discovery agent you set the transportConnector element's
discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 2.13 on page 29.

Example 2.13. Enabling a Multicast Discovery Agent on a Broker

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://default" />

</transportConnectors>

29Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Discovery Agents

The broker configured in Example 2.13 on page 29 is discoverable as part
of the multicast group default.

Configuring a client To use the multicast agent a client must be configured to connect to a broker
using a discovery URI that uses a multicast agent URI as shown in
Example 2.14 on page 30.

Example 2.14. Client Connection URL using Multicast Discovery

discovery://(multicast://default)

A client using the URI in Example 2.14 on page 30 will discover all the
brokers advertised in the default multicast group and generate a list of
brokers to which it can connect.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.130

Chapter 2. Client Failover

Zeroconf Discovery Agent

Overview The zeroconf discovery agent is derived from Apple’s Bonjour Networking2

technology, which defines the zeroconf protocol as a mechanism for
discovering services on a network. Fuse MQ Enterprise bases its
implementation of the zeroconf discovery agent on JmDSN3, which is a service
discovery protocol that is layered over IP/multicast and is compatible with
Apple Bonjour.

The agent requires that each broker you want to advertise is configured to
use a multicast discovery agent to publish its details to a multicast group.
Clients using the zeroconf agent as part of the discovery URI they use for
connecting to a broker will use the agent to receive the list of available brokers
advertising in the specified multicast group.

Important
Your local network (LAN) must be configured to use IP/multicast for
the zeroconf agent to work.

URI The zeroconf discovery agent URI conforms to the syntax in
Example 2.15 on page 31.

Example 2.15. Zeroconf Discovery Agent URI Format

zeroconf://GroupID

Where the GroupID is an alphanumeric identifier. All participants in the same
discovery group must use the same GroupID.

Configuring a broker For a broker to be discoverable using the zeroconf discovery agent, you must
enable a multicast discovery agent in the broker's configuration. To enable
the multicast discovery agent you set the transportConnector element's
discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 2.16 on page 32.

2 http://developer.apple.com/networking/bonjour/
3 http://sourceforge.net/projects/jmdns/

31Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Discovery Agents

http://developer.apple.com/networking/bonjour/
http://sourceforge.net/projects/jmdns/
http://developer.apple.com/networking/bonjour/
http://sourceforge.net/projects/jmdns/

Example 2.16. Enabling a Multicast Discovery Agent on a Broker

<transportConnectors>
<transportConnector name="openwire"
uri="tcp://localhost:61716"
discoveryUri="multicast://NEGroup" />

</transportConnectors>

The broker configured in Example 2.16 on page 32 is discoverable as part
of the multicast group NEGroup.

Configuring a client To use the agent a client must be configured to connect to a broker using a
discovery protocol that uses a zeroconf agent URI as shown in
Example 2.17 on page 32.

Example 2.17. Client Connection URL using Zeroconf Discovery

discovery://(zeroconf://NEGroup)

A client using the URL in Example 2.17 on page 32 will discover all the
brokers advertised in the NEGroup multicast group and generate a list of
brokers to which it can connect.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.132

Chapter 2. Client Failover

Chapter 3. Master/Slave
Persistent messages require an additional layer of fault tolerance. In case of a broker failure, persistent messages
require that the replacement broker has a copy of all the undelivered messages. Master/slave groups address
this requirement by having a standby broker that shares the active broker's data store.

Shared File System Master/Slave ... 34
Shared JDBC Master/Slave ... 39

A master/slave group consists of two or more brokers where one master broker
is active and one or more slave brokers are on hot standby, ready to take over
whenever the master fails or shuts down. All of the brokers store the message
and event data processed by the master broker. So, when one of the slaves
takes over as the new master broker the integrity of the messaging system is
guaranteed.

Fuse MQ Enterprise supports two master/slave broker configurations:

• Shared file system—the master and the slaves use a common persistence
store that is located on a shared file system

• Shared JDBC database—the masters and the slaves use a common JDBC
persistence store

33Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Shared File System Master/Slave

Overview A shared file system master/slave group works by sharing a common data
store that is located on a shared file system. Brokers automatically configure
themselves to operate in master mode or slave mode based on their ability
to grab an exclusive lock on the underlying data store.

The disadvantage of this configuration is that the shared file system is a single
point of failure. This disadvantage can be mitigated by using a storage area
network(SAN) with built in high availability(HA) functionality. The SAN will
handle replication and fail over of the data store.

File locking requirements The shared file system requires an efficient and reliable file locking mechanism
to function correctly. Not all SAN file systems are compatible with the shared
file system configuration's needs.

Warning
OCFS2 is incompatible with this master/slave configuration, because
mutex file locking from Java is not supported.

Warning
NFSv3 is incompatible with this master/slave configuration. In the
event of an abnormal termination of a master broker, which is an
NFSv3 client, the NFSv3 server does not time out the lock held by
the client. This renders the Fuse MQ Enterprise data directory
inaccessible. Because of this, the slave broker cannot acquire the
lock and therefore cannot start up. In this case, the only way to
unblock the master/slave in NFSv3 is to reboot all broker instances.

On the other hand, NFSv4 is compatible with this master/slave configuration,
because its design includes timeouts for locks. When an NFSv4 client holding
a lock terminates abnormally, the lock is automatically released after 30
seconds, allowing another NFSv4 client to grab the lock.

Initial state Figure 3.1 on page 35 shows the initial state of a shared file system
master/slave group. When all of the brokers are started, one of them grabs
the exclusive lock on the broker data store and becomes the master. All of
the other brokers remain slaves and pause while waiting for the exclusive

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.134

Chapter 3. Master/Slave

lock to be freed up. Only the master starts its transport connectors, so all of
the clients connect to it.

Figure 3.1. Shared File System Initial State

State after failure of the master Figure 3.2 on page 36 shows the state of the master/slave group after the
original master has shut down or failed. As soon as the master gives up the
lock (or after a suitable timeout, if the master crashes), the lock on the data
store frees up and another broker grabs the lock and gets promoted to master.

35Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Shared File System Master/Slave

Figure 3.2. Shared File System after Master Failure

After the clients lose their connection to the original master, they automatically
try all of the other brokers listed in the failover URL. This enables them to
find and connect to the new master.

Configuring the brokers In the shared file system master/slave configuration, there is nothing special
to distinguish a master broker from the slave brokers. The membership of a
particular master/slave group is defined by the fact that all of the brokers in
the group use the same persistence layer and store their data in the same
shared directory.

Example 3.1 on page 37 shows the broker configuration for a shared file
system master/slave group that shares a data store located at
/sharedFileSystem/sharedBrokerData and uses the KahaDB persistence
store.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.136

Chapter 3. Master/Slave

Example 3.1. Shared File System Broker Configuration

<broker ... >
...
<persistenceAdapter>
<kahaDB directory="/sharedFileSystem/sharedBrokerData"/>

</persistenceAdapter>
...

</broker>

All of the brokers in the group must share the same persistenceAdapter
element.

Configuring the clients Clients of shared file system master/slave group must be configured with a
failover URL that lists the URLs for all of the brokers in the group.
Example 3.2 on page 37 shows the client failover URL for a group that
consists of three brokers: broker1, broker2, and broker3.

Example 3.2. Client URL for a Shared File System Master/Slave Group

fail
over:(tcp://broker1:61616,tcp://broker2:61616,tcp://broker3:61616)

For more information about using the failover protocol see "Static Failover"
on page 15.

Reintroducing a failed node You can restart the failed master at any time and it will rejoin the cluster. It
will rejoin as a slave broker because one of the other brokers already owns
the exclusive lock on the data store, as shown in Figure 3.3 on page 38.

37Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Shared File System Master/Slave

Figure 3.3. Shared File System after Master Restart

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.138

Chapter 3. Master/Slave

Shared JDBC Master/Slave

Overview A shared JDBC master/slave group works by sharing a common database
using the JDBC persistence adapter. Brokers automatically configure
themselves to operate in master mode or slave mode, depending on whether
or not they manage to grab a mutex lock on the underlying database table.

The disadvantages of this configuration are:

• The shared database is a single point of failure. This disadvantage can be
mitigated by using a database with built in high availability(HA)
functionality. The database will handle replication and fail over of the data
store.

• You cannot enable high speed journaling. This has a significant impact on
performance.

Initial state Figure 3.4 on page 40 shows the initial state of a JDBC master/slave group.
When all of the brokers are started, one of them grabs the mutex lock on the
database table and becomes the master. All of the other brokers become
slaves and pause while waiting for the lock to be freed up. Only the master
starts its transport connectors, so all of the clients connect to it.

39Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Shared JDBC Master/Slave

Figure 3.4. JDBC Master/Slave Initial State

After failure of the master Figure 3.5 on page 41 shows the state of the group after the original master
has shut down or failed. As soon as the master gives up the lock (or after a
suitable timeout, if the master crashes), the lock on the database table frees
up and another broker grabs the lock and gets promoted to master.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.140

Chapter 3. Master/Slave

Figure 3.5. JDBC Master/Slave after Master Failure

After the clients lose their connection to the original master, they automatically
try all of the other brokers listed in the failover URL. This enables them to
find and connect to the new master.

Configuring the brokers In a JDBC master/slave configuration, there is nothing special to distinguish
a master broker from the slave brokers. The membership of a particular
master/slave group is defined by the fact that all of the brokers in the cluster
use the same JDBC persistence layer and store their data in the same database
tables.

There is one important requirement when configuring the JDBC persistence
adapter for use in a shared database master/slave cluster. You must use the

41Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Shared JDBC Master/Slave

direct JDBC persistence adapter. This is because the journal used by the
journaled JDBC persistence adapter is not replicated and batch updates are
used to sync with the JDBC store. Therefore it is not possible to guarantee
that the latest updates are on the shared JDBC store.

Example 3.3 on page 42 shows the configuration used be a master/slave
group that stores the shared broker data in an Oracle database.

Example 3.3. JDBC Master/Slave Broker Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:amq="http://activemq.apache.org/schema/core"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core-5.3.1.xsd">

<broker xmlns="http://activemq.apache.org/schema/core"
brokerName="brokerA">

...
<persistenceAdapter>

<jdbcPersistenceAdapter dataSource="#oracle-ds"/>
</persistenceAdapter>
...

</broker>

<bean id="oracle-ds"
class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

<property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<property name="url" value="jdbc:oracle:thin:@localhost:1521:AMQDB"/>
<property name="username" value="scott"/>
<property name="password" value="tiger"/>
<property name="poolPreparedStatements" value="true"/>

</bean>

</beans>

Configuring the clients Clients of shared JDBC master/slave group must be configured with a failover
URL that lists the URLs for all of the brokers in the group.
Example 3.4 on page 43 shows the client failover URL for a group that
consists of three brokers: broker1, broker2, and broker3.

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.142

Chapter 3. Master/Slave

Example 3.4. Client URL for a Shared JDBC Master/Slave Group

fail
over:(tcp://broker1:61616,tcp://broker2:61616,tcp://broker3:61616)

For more information about using the failover protocol see "Static Failover"
on page 15.

Reintroducing a failed node You can restart the failed node at any time and it will rejoin the group. It will
rejoin the group as a slave because one of the other brokers already owns the
mutex lock on the database table, as shown in Figure 3.6 on page 43.

Figure 3.6. JDBC Master/Slave after Master Restart

43Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

Shared JDBC Master/Slave

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.144

Chapter 4. Master/Slave and Broker
Networks
Master/slave groups and networks of brokers are very different things. Master/slave groups can be used in a
network of brokers to provide fault tolerance to the nodes in the broker network. This requires careful consideration
and the use of a special network connection protocol.

Overview Master/slave groups and broker networks represent different levels of
organization. A network of brokers provides a symmetrical group of brokers
that share information among all of the members in the group. They are useful
for distributing the message processing load among many brokers.

Master/slave groups are asymmetrical> Only one member of the group is
active at a time. They are useful for providing fault tolerance when data loss
is unacceptable.

You can include a master/slave group as a node in a network of brokers. Using
the basic principles of making a master/slave group a node in a broker network,
you can scale up to an entire network consisting of master/slave groups.

When combining master/slave groups with broker networks there are two
things to remember:

• Network connectors to a master/slave group use a special protocol.

• A broker cannot open a network connection to another member of its
master/slave group.

Configuring the connection to a
master/slave group

The network connection to a master/slave group needs to do two things:

• Open a connection to the master broker without connecting to the slave
brokers.

• Connect to the new master in the case of a failure.

The network connector's reconnect logic will handle the reconnection to the
new master in the case of a network failure. The network connector's
connection logic, however, attempts to establish connections to all of the
specified brokers. To get around the network connector's default behavior,

45Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

you use a masterslave URI to specify the list of broker's in the master/slave
group. The masterslave URI only allows the connector to connect to one of
brokers in the list which will be the master.

The masterslave protocol's URI is a list of the connections points for each
broker in the master/slave group. The network connector will traverse the list
in order until it establishes a connection.

Example 4.1 on page 46 shows a network connector configured to link to a
master/slave group.

Example 4.1. Network Connector to a Master/Slave Group

<networkConnectors>
<networkConnector name="linkToCluster"

uri="mastersalve:(tcp://masterHost:61002,tcp://slaveHost:61002)"
... />

</networkConnectors>

Host pair with master/slave
groups

In order to scale up to a large fault tolerant broker network, it is a good idea
to adopt a simple building block as the basis for the network. An effective
building block for this purpose is the host pair arrangement shown in
Figure 4.1 on page 46.

Figure 4.1. Master/Slave Groups on Two Host Machines

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.146

Chapter 4. Master/Slave and Broker Networks

The host pair arrangement consists of two master/slave groups distributed
between two host machines. Under normal operating conditions, one master
broker is active on each of the two host machines. If one of the machines
should fail for some reason, the slave on the other machine takes over, so
that you end up with two active brokers on the healthy machine.

When configuring the network connectors, you must remember not to open
any connectors to brokers in the same group. For example, the network
connector for brokerB1 should be configured to connect to at most brokerA1
and brokerA2.

Network of multiple host pairs You can easily scale up to a large fault tolerant broker network by adding host
pairs, as shown in Figure 4.2 on page 47.

Figure 4.2. Broker Network Consisting of Host Pairs

The preceding network consists of eight master/slave groups distributed over
eight host machines. As before, you should open network connectors only to
brokers outside the current master/slave group. For example, brokerA1 can
connect to at most the following brokers: brokerB*, brokerC*, brokerD*,
brokerE*, brokerF*, brokerG*, and brokerH*.

More information For detailed information on setting up a network of brokers see Using Networks
of Brokers.

47Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

http://fusesource.com/docs/mqent/7.1//Using_Networks_of_Brokers/Fuse_MQ_Enterprise-7.1-Using_Networks_of_Brokers-en-US.pdf#FMQNetworks
http://fusesource.com/docs/mqent/7.1//Using_Networks_of_Brokers/Fuse_MQ_Enterprise-7.1-Using_Networks_of_Brokers-en-US.pdf#FMQNetworks

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.148

Index
B
broker networks

master/slave, 45
broker properties

rebalanceClusterClients, 19
updateClusterClients, 19
updateClusterClientsOnRemove, 19
updateClusterFilter, 19

D
discovery agent

Fuse Fabric, 27
multicast, 29
static, 28
zeroconf, 31

discovery protocol
backOffMultiplier, 24
initialReconnectDelay, 23
maxReconnectAttempts, 24
maxReconnectDelay, 23
URI, 23
useExponentialBackOff, 24

discovery URI, 23
discovery://, 23
discoveryUri, 29, 31
dynamic failover, 18

broker configuration, 19
client configuration, 18

F
fabric://, 27
failover, 14

backOffMultiplier, 16
backup, 16
broker properties, 19
dynamic, 18
initialReconnectDelay, 15
maxCacheSize, 16
maxReconnectAttempts, 16

maxReconnectDelay, 15
randomize, 16
startupMaxReconnectAttempts, 16
static, 15
timeout, 16
trackMessages, 16
updateURIsSupported, 16
updateURIsURL, 17
useExponentialBackOff, 16

failover URI, 15
transport options, 15

failover://, 15
Fuse Fabric discovery agent

URI, 27

J
jdbcPersistenceAdapter, 41

M
master broker

reintroduction
shared file system, 37
shared JDBC, 43

master/slave
broker networks, 45
network of brokers, 45

masterslave, 45
multicast discovery agent

broker configuration, 29
URI, 29

multicast://, 29

N
network of brokers

master/slave, 45
NFSv3, 34
NFSv4, 34

O
OCFS2, 34

49Fuse MQ Enterprise Fault Tolerant Messaging Version 7.1

P
persistenceAdapter, 36, 41

S
shared file system master/slave

advantages, 34
broker configuration, 36, 41
client configuration, 37
disadvantages, 34
incompatible SANs, 34
initial state, 34
master failure, 35
NFSv3, 34
NFSv4, 34
OCFS2, 34
recovery strategies, 35
reintroducing a node, 37

shared JDBC master/slave
advantages, 39
client configuration, 42
disadvantages, 39
initial state, 39
master failure, 40
recovery strategies, 40
reintroducing a node, 43

static discovery agent
URI, 28

static failover, 15
static://, 28

T
transportConnector

discoveryUri, 29, 31

Z
zeroconf discovery agent

broker configuration, 31
URI, 31

zeroconf://, 31

Fuse MQ Enterprise Fault Tolerant Messaging Version 7.150

	Fault Tolerant Messaging
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Client Failover
	Failover Protocol
	Static Failover
	Dynamic Failover

	Discovery Protocol
	Discovery URI
	Discovery Agents
	Fuse Fabric Discovery Agent
	Static Discovery Agent
	Multicast Discovery Agent
	Zeroconf Discovery Agent

	Chapter 3. Master/Slave
	Shared File System Master/Slave
	Shared JDBC Master/Slave

	Chapter 4. Master/Slave and Broker Networks
	Index

