Red Hat DocumentationFuse ESBToggle FramesPrintFeedback



The multicast pattern, shown in Figure 30, is a variation of the recipient list with a fixed destination pattern, which is compatible with the InOut message exchange pattern. This is in contrast to recipient list, which is only compatible with the InOnly exchange pattern.

Figure 30. Multicast Pattern

Multicast pattern

Multicast with a custom aggregation strategy

Whereas the multicast processor receives multiple Out messages in response to the original request (one from each of the recipients), the original caller is only expecting to receive a single reply. Thus, there is an inherent mismatch on the reply leg of the message exchange, and to overcome this mismatch, you must provide a custom aggregation strategy to the multicast processor. The aggregation strategy class is responsible for aggregating all of the Out messages into a single reply message.

Consider the example of an electronic auction service, where a seller offers an item for sale to a list of buyers. The buyers each put in a bid for the item, and the seller automatically selects the bid with the highest price. You can implement the logic for distributing an offer to a fixed list of buyers using the multicast() DSL command, as follows:

from("cxf:bean:offer").multicast(new HighestBidAggregationStrategy()).
    to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buyer3");

Where the seller is represented by the endpoint, cxf:bean:offer, and the buyers are represented by the endpoints, cxf:bean:Buyer1, cxf:bean:Buyer2, cxf:bean:Buyer3. To consolidate the bids received from the various buyers, the multicast processor uses the aggregation strategy, HighestBidAggregationStrategy. You can implement the HighestBidAggregationStrategy in Java, as follows:

// Java
import org.apache.camel.processor.aggregate.AggregationStrategy;
import org.apache.camel.Exchange;

public class HighestBidAggregationStrategy implements AggregationStrategy {
    public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
        float oldBid = oldExchange.getOut().getHeader("Bid", Float.class);
        float newBid = newExchange.getOut().getHeader("Bid", Float.class);
        return (newBid > oldBid) ? newExchange : oldExchange;

Where it is assumed that the buyers insert the bid price into a header named, Bid. For more details about custom aggregation strategies, see Aggregator.

Parallel processing

By default, the multicast processor invokes each of the recipient endpoints one after another (in the order listed in the to() command). In some cases, this might cause unacceptably long latency. To avoid these long latency times, you have the option of enabling parallel processing in the multicast processor by passing the value true as the second argument. For example, to enable parallel processing in the electronic auction example, define the route as follows:

    .multicast(new HighestBidAggregationStrategy(), true)
    .to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buyer3");

Where the multicast processor now invokes the buyer endpoints, using a thread pool that has one thread for each of the endpoints.

If you want to customize the size of the thread pool that invokes the buyer endpoints, you can invoke the setThreadPoolExecutor() method to specify your own custom thread pool executor. For example:

    .multicast(new HighestBidAggregationStrategy(), true)
    .to("cxf:bean:Buyer1", "cxf:bean:Buyer2", "cxf:bean:Buyer3");

Where MyExecutor is an instance of java.util.concurrent.ThreadPoolExecutor type.

XML configuration example

The following example shows how to configure a similar route in XML, where the route uses a custom aggregation strategy and a custom thread executor:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns=""

  <camelContext xmlns="">
      <from uri="cxf:bean:offer"/>
      <multicast strategyRef="highestBidAggregationStrategy"
         <to uri="cxf:bean:Buyer1"/>
         <to uri="cxf:bean:Buyer2"/>
         <to uri="cxf:bean:Buyer3"/>

  <bean id="highestBidAggregationStrategy" class="com.acme.example.HighestBidAggregationStrategy"/>
  <bean id="myThreadExcutor" class="com.acme.example.MyThreadExcutor"/>


Where both the parallelProcessing attribute and the threadPoolRef attribute are optional. It is only necessary to set them if you want to customize the threading behavior of the multicast processor.

Comments powered by Disqus