
Red Hat support for Spring Boot 2.7

Dekorate Guide for Spring Boot Developers

Use Dekorate to automatically configure your Spring Boot applications for
deployment to OpenShift and stand-alone RHEL

Last Updated: 2023-12-07

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot
Developers

Use Dekorate to automatically configure your Spring Boot applications for deployment to
OpenShift and stand-alone RHEL

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides details about using Dekorate to automatically generate resource files from your
code and prepare your Spring Boot application for deployment to multiple environments.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION
1.1. OVERVIEW OF DEKORATE

1.1.1. Additional resources
1.2. CONFIGURING YOUR APPLICATION PROJECT TO USE DEKORATE
1.3. CUSTOMIZING YOUR APPLICATION CONFIGURATION WITH DEKORATE
1.4. USING ANNOTATIONLESS CONFIGURATION IN A SPRING BOOT APPLICATION
1.5. AUTOMATICALLY EXECUTING OPENSHIFT SOURCE-TO-IMAGE BUILDS WITH DEKORATE
1.6. USING DEKORATE WITH SPRING BOOT ON OPENSHIFT
1.7. DEKORATE CONFIGURATION PROPERTIES FOR OPENSHIFT
1.8. DEKORATE CONFIGURATION PROPERTIES FOR SOURCE-TO-IMAGE

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

APPENDIX B. ADDITIONAL SPRING BOOT RESOURCES

APPENDIX C. APPLICATION DEVELOPMENT RESOURCES

APPENDIX D. PROFICIENCY LEVELS
Foundational
Advanced
Expert

3

4

5
5
5
5
6
8
9

10
12
17

20

21

22

23
23
23
23

Table of Contents

1

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

2

PREFACE
Process the code of your Spring Boot application with Dekorate to automatically generate application
manifest files and configure your application for deployment to OpenShift.

PREFACE

3

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. To provide feedback, you can highlight the text in a
document and add comments.

This section explains how to submit feedback.

Prerequisites

You are logged in to the Red Hat Customer Portal.

In the Red Hat Customer Portal, view the document in Multi-page HTML format.

Procedure

To provide your feedback, perform the following steps:

1. Click the Feedback button in the top-right corner of the document to see existing feedback.

NOTE

The feedback feature is enabled only in the Multi-page HTML format.

2. Highlight the section of the document where you want to provide feedback.

3. Click the Add Feedback pop-up that appears near the highlighted text.
A text box appears in the feedback section on the right side of the page.

4. Enter your feedback in the text box and click Submit.
A documentation issue is created.

5. To view the issue, click the issue tracker link in the feedback view.

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

4

CHAPTER 1. USING DEKORATE IN A SPRING BOOT
APPLICATION

Use Dekorate to automatically generate application manifest files and configure your application for
deployment to OpenShift.

1.1. OVERVIEW OF DEKORATE

Dekorate is a collection of compile-time annotation processors and application resource generators that
are provided with Red Hat build of Spring Boot. It works by parsing annotations in your code when you
build your application, and extracting configuration properties. Dekorate then uses the extracted values
of properties to generate application configuration resources that you can use to deploy your
application to a Kubernetes or OpenShift cluster.

As a developer, you can annotate your code and then use Dekorate to automatically generate
application manifests when you build your application, which eliminates the need for you to manually
write resource files for deploying your application. When your application is based on a rich application
runtime framework, such as Spring Boot, Dekorate can integrate directly with the framework and extract
the configuration parameters from the API provided by the framework, thus eliminating the need for you
to annotate your code. Dekorate can automatically configure your application by:

Parsing Dekorate-specific annotations in the application code to obtain value and metadata
that are used to populate the manifest files

Extracting information from configuration resources, such as application.properties or
application.yaml

Obtaining the necessary metadata from a rich application framework and extracting the
configuration values from the application.properties or application.yml file.

In addition to generating resource definitions for your applications, Dekorate provides hooks allowing
you to build and deploy your applications on an OpenShift cluster Dekorate works independently of the
language in which you write your applications, and can be used with a wide range of build systems.
Dekorate consists of a set of libraries distributed as a Maven BOM. You can add the libraries as
dependencies of your application project to use Dekorate with your application.

Red Hat provides support for using Dekorate to generate resource files and hooks that you can use to
deploy Java applications based on Spring Boot to OpenShift Container Platform.

1.1.1. Additional resources

Reference for Dekorate configuration properties for OpenShift .

Reference for Dekorate configuration properties for Source-to-Image .

Reference for all Dekorate Configuration properties in the community documentation.

1.2. CONFIGURING YOUR APPLICATION PROJECT TO USE DEKORATE

Add the Dekorate BOM and the OpenShift Annotations Starter to the pom.xml file of your application
project. Include basic annotations in your source files and package your application with Maven to
generate the application manifests.

Prerequisites

CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION

5

https://github.com/dekorateio/dekorate/blob/master/assets/config.md#configuration-options

A Maven-based Java application project configured to use Spring Boot.

Java JDK 8 or JDK 11 is installed.

Maven is installed.

Procedure

1. Add the Dekorate OpenShift Spring Starter to the pom.xml file of your application to enable
Dekorate to porcess your application source code and resource files:

2. Add the @SpringBootApplication annotation to the main class file of your application project:

3. Package your application to process you application code and resource files with Dekorate

4. Navigate to the target/classes/META-INF/dekorate directory that contains the generated
OpenShift manifests.

1.3. CUSTOMIZING YOUR APPLICATION CONFIGURATION WITH
DEKORATE

Use Dekorate to customize the configuration of your application for deployment on OpenShift by

specifying configuration parameters in annotations in the source your application

setting a property in the application.properties file

The following example shows how you can set your application to start with 2 replicas when deployed to
OpenShift.

Prerequisites

<project>
 ...
 <dependencies>
 ...
 <dependency>
 <!-- The OpenShift Spring Starter automatically imports the "io.dekorate:openshift-
annotations" dependency. -->
 <groupId>io.dekorate</groupId>
 <artifactId>openshift-spring-starter</artifactId>
 <version>${dekorate.version}</version>
 </dependency>
 ...
 </dependencies>
...
<project>

package org.acme;

@SpringBootApplication
public class Application {
}

mvn clean package

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

6

Prerequisites

A Maven-based Java application project configured to use Spring Boot and Dekorate

Java JDK 8 or JDK 11 is installed.

Maven is installed.

Procedure

1. Add the Dekorate OpenShift Annotations module as a dependency in the pom.xml file of your
application:

2. Configure the default number of replicas that your application starts with when deployed to
OpenShift:

a. Add the @OpenshiftApplication annotation to the main source file of your application and
set number of replicas to 2. When you build and deploy your application, it automatically
starts with 2 replicas of the main application container running:

b. Alternatively, set the dekorate.openshift.replicas=2 property in the
application.properties file of your application.

/src/main/resources/application.properties

3. Package your application:

4. Navigate to the target/classes/META-INF/dekorate view the manifests generated by Dekorate.

<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>io.dekorate</groupId>
 <artifactId>openshift-spring-starter</artifactId>
 <version>${dekorate.version}</version>
 </dependency>
 ...
 </dependencies>
...
<project>

package org.acme;

import io.dekorate.openshift.annotation.OpenshiftApplication;

// include the parameter for the number of replicas to
@OpenshiftApplication(replicas=2)
@SpringBootApplication
public class Application {
}

dekorate.openshift.replicas=2

mvn clean package

CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION

7

4. Navigate to the target/classes/META-INF/dekorate view the manifests generated by Dekorate.
The number of replicas in the deployment configuration YAML template is set to 2:

Additional resources

Overview of Dekorate configuration properties for OpenShift .

1.4. USING ANNOTATIONLESS CONFIGURATION IN A SPRING BOOT
APPLICATION

Use Dekorate to generate OpenShift resource configuration files for your Spring Boot application
project by extracting dekorate configuration properties from application.properties and
application.yml files. This method does not require that you annotate your application source, because
Dekorate can obtain the required metadata from Spring Boot and the configuration parameters from
the property files. Annontationless configuration is a feature of rich framework integration between
Spring Boot and Dekorate.

Prerequisites

A Maven-based application project configured to use Spring Boot and Dekorate.

At least one class in your application project is annotated with the @SpringBootApplication
annotation.

Java JDK 8 or JDK 11 is installed.

Maven is installed.

Procedure

1. Add the following dependencies in the pom.xml file of your application:

...
spec:
 replicas: 2
 selector:
 matchLabels:
 app: acme
...

<project>
 ...
 <dependencies>
 ...
 <!-- The OpenShift Spring Starter automatically adds "io.dekorate:openshift-annotations"
as a transitive dependency -->
 <dependency>
 <groupId>io.dekorate</groupId>
 <artifactId>openshfit-spring-starter</artifactId>
 <version>${dekorate.version}</version>
 </dependency>
 ...

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

8

2. Add Dekorate configuration properties to the application.properties or application.yml file in
your project. You do not have to add any Dekorate property annotations to your source files.
Note, that you can still use annotations in your source files, but if you do so, Dekorate overwrites
parameters provided in annotations with the parameters provided in the application.properties
or application.yml files.

3. Package your application:

When you build your application Dekorate parses the configuration in the following resources
within your application project. The configuration resources are parsed in an increasing order of
priority. This means that if 2 different resources of different type present different values for
the same configuration parameter, Dekorate uses the value obtained from a resource that is
higher on the list of priorities. For example, if an annotation in your source specifies a parameter
value, but a different value is specified for the same parameter in your application.yml,
Dekorate uses the value it obtains from application.yml. Dekorate parses your project
resources in the following order of priority:

1. Annotations

2. application.properties

3. application.yaml

4. application.yml

4. Navigate to the target/classes/META-INF/dekorate directory that contains the generated
openshift.json and openshift.yml manifest files.

1.5. AUTOMATICALLY EXECUTING OPENSHIFT SOURCE-TO-IMAGE
BUILDS WITH DEKORATE

You can use Dekorate to automatically execute an OpenShift container image build after you compile
your application with Maven.

Note, that the functionality of automatically triggering Source-to-image builds using Dekorate is
available as a Technology Preview. Red Hat does not provide support for using this functionality in a
production environment.

Prerequisites

A Maven-based application project configured to use Spring Boot and Dekorate.

The @SpringBootApplication annotation is added to the source files in your project.

Java JDK 8 or JDK 11 is installed.

Maven is installed.

oc command-line tool is installed.

 </dependencies>
...
<project>

mvn clean package

CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION

9

https://access.redhat.com/support/offerings/techpreview

You are logged in to an OpenShift cluster using oc command-line tool.

Procedure

1. Add the Dekorate OpenShift Spring Starter as a dependency to the pom.xml file of your
application. Note, that this module is included as a transitive dependency in all Dekorate
OpenShift Starters:

2. Build and Deploy your application. Include the -Ddekorate.build=true property to execute the
container image build after Maven compiles your application. Note that the functionality that
automatically executes the Source-to-image build is provided as Technology Preview.

You can also execute the Source-to-image build manually from the command line after you
compile your application with Maven:

1.6. USING DEKORATE WITH SPRING BOOT ON OPENSHIFT

The following example shows you how:

1. You can use the openshift-spring-stater in an application.

2. Dekorate can automaticaly identify the type of the application and configure OpenShift service
routes and probes accordingly.

3. You can set up your application to trigger a source-to-image build after Maven compiles your
application.

4. Prerequisites

A Maven-based application project configured to use Spring Boot and Dekorate.

The @SpringBootApplication annotation is added to the source files in your project.

Java JDK 8 or JDK 11 is installed.

<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>io.dekorate</groupId>
 <artifactId>openshift-spring-starter</artifactId>
 <version>${dekorate.version}</version>
 </dependency>
 ...
 </dependencies>
...
<project>

$ mvn clean install -Ddekorate.build=true

Process your application YAML template that is generated by Dekorate:
$ oc apply -f target/classes/META-INF/dekorate/openshift.yml
Execute the Source-to-image build and deploy your application to the OpenShift cluster:
$ oc start-build example --from-dir=./target --follow

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

10

https://access.redhat.com/support/offerings/techpreview

Maven is installed.

oc command-line tool installed.

You are logged in to an OpenShift cluster using oc command-line tool.

Procedure

1. Add the Dekorate Spring Starter as a dependency in the pom.xml file of your application
project.

pom.xml

2. Add the @SpringBootApplication annotation to your Main.java class. This enables the source-
to-image build to start when the application is compiled:

/src/main/java/io/dekorate/example/sbonopenshift/Main.java

3. Add a Rest controller to your application:

/src/main/java/io/dekorate/example/sbonopenshift/Controller.java

<project>
 ...
 <dependencies>
 ...
 <dependency>
 <groupId>io.dekorate</groupId>
 <artifactId>openshift-spring-starter</artifactId>
 <version>${dekorate.version}</version>
 </dependency>
 ...
 </dependencies>
...
<project>

package io.dekorate.example.sbonopenshift;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Main {

 public static void main(String[] args) {
 SpringApplication.run(Main.class, args);
 }

}

package io.dekorate.example.sbonopenshift;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION

11

The Spring application processor provided by the the Dekorate Spring starter automatically
detects the Rest controller and identifies the application type as a web application. For a web
application, Dekorate automatically generate the OpenShift application template and
configures:

the OpenShift Service route for your application

exposes a service on the route of your application

configures liveness and readiness probe settings

4. Build and deploy your application. Include the -Ddekorate.deploy=true property to
automatically execute the source-to-image build after Maven compiles your application.

1.7. DEKORATE CONFIGURATION PROPERTIES FOR OPENSHIFT

The properties listed in the table below set the values that Dekorate uses to configure your application
for deployment to OpenShift. Dekorate uses the values specified in these properties to populate the
Deployment Configuration and application resource files generated for your application project. Each
property accepts values of the data type that is listed in the table for the particular property. Some of
the properties have a default value that Dekorate uses if you do not specify a value for these attributes.
You can set these properties in the application.properties file of your application project.

Table 1.1. Dekorate application properties for OpenShift

Property Data Type Description Default Value (if
applicable)

dekorate.openshift.p
art-of

String The name of the
collection of
components that your
application belongs to.
The value of this
property is used in the
name for other
Kubernetes resources
that your application
contains, such as
Deployment
Configurations and
Services.

If you do not specify a
value for this property,
Dekorate uses the name
of the groupId that you
use in the Maven project
of your application as
the default value.

@RestController
public class Controller {

 @RequestMapping("/")
 public String hello() {
 return "Hello world";
 }
}

mvn clean install -Ddekorate.deploy=true

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

12

dekorate.openshift.n
ame

String The name of the
application. The value of
this property is used in
the name for other
Kubernetes resources
that your application
contains, such as
Deployment
Configurations and
Services.

If you do not specify a
value for this property,
Dekorate uses the name
of the artifactId that
you use for the Maven
project of your
application as the
default value.

dekorate.openshift.v
ersion

String The version of the
application. The value of
this property is used in
the name of all
Kubernetes resources
that your application
contains, such as
Deployment
Configurations and
Services.

If you do not specify a
value for this property,
Dekorate uses the
version that you
specify in the Maven
project containing your
application as the
default value.

dekorate.openshift.i
nit-containers

Container[] Specifies init containers
that you want to use in
your application

dekorate.openshift.l
abels

Label[] Specifies custom labels
to be added to all
resources in your
application

dekorate.openshift.a
nnotations

Annotation[] Specifies custom
annotations that you
want to add to all
resources in your
application

dekorate.openshift.e
nv-vars

Env[] Specifies environment
variables that you want
to define for all
containers created for
your application

dekorate.openshift.w
orking-dir

String Specifies the working
directory of your
application container

Property Data Type Description Default Value (if
applicable)

CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION

13

dekorate.openshift.c
ommand

String[] Specifies commands
that you want to use in
your container

dekorate.openshift.a
rguments

String[] Specifies custom
command-line
arguments that you
want to use in your
container

dekorate.openshift.r
eplicas

int Specifies how many
replicas of application
containers you want to
create when you deploy
your application

1

dekorate.openshift.s
ervice-account

String Specifies the name of
the Service account
used by your application

dekorate.openshift.h
ost

String The name of the host
node on which your
application is running

dekorate.openshift.p
orts

Port[] Network ports that the
services provided by
your are exposed on

dekorate.openshift.s
ervice-type

ServiceType The type of service that
is generated for your
application

ClusterIP

dekorate.openshift.p
vc-volumes

PersistentVolumeClaim
Volume[]

Persistent Volume
Claims that you want to
attach to all containers
of your application

dekorate.openshift.s
ecret-volumes

SecretVolume[] Secret volumes that you
want to attach to all
containers of your
application

dekorate.openshift.c
onfig-map-volumes

ConfigMapVolume[] ConfigMap volumes that
you want to attach to all
containers of your
application

Property Data Type Description Default Value (if
applicable)

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

14

dekorate.openshift.g
it-repo-volumes

GitRepoVolume[] Git repository volumes
that you want to attach
to all containers of your
application

dekorate.openshift.a
ws-elastic-block-
store-volumes

AwsElasticBlockStoreVo
lume[]

AWS Elastic Block Store
volumes that you want
to attach to all
containers of your
application

dekorate.openshift.a
zure-disk-volumes

AzureDiskVolume[] Microsoft Azure disk
volumes that you want
to attach to all
containers of your
application

dekorate.openshift.a
zure-file-volumes

AzureFileVolume[] Azure file volumes
volumes that you want
to attach to all
containers of your
application

dekorate.openshift.
mounts

Mount[] Mounts that you want to
attach to all containers
of your application

dekorate.openshift.i
mage-pull-policy

ImagePullPolicy Specify the image pull
policy that you want to
when deploying your
application

IfNotPresent

dekorate.openshift.i
mage-pull-secrets

String[] Specify the image pull
secret policy that you
want to use when
deploying your
application

dekorate.openshift.li
veness-probe

Probe Set up a Liveness probe
for your application
container

dekorate.openshift.r
eadiness-probe

Probe Set up a Readiness
probe for your
application container

Property Data Type Description Default Value (if
applicable)

CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION

15

dekorate.openshift.r
equest-resources

ResourceRequirements Specify the amount of
resources that your
application container
requires

dekorate.openshift.li
mit-resources

ResourceRequirements Set a resource limit for
your application
container

dekorate.openshift.s
idecars

Container[] Specify containers that
you want to deploy as
sidecars

dekorate.openshift.e
xpose

boolean Set whether you want to
expose a Route for your
application after you
deploy it

false

dekorate.openshift.h
eadless

boolean Set whether you want
the service that you
generate to execute
headless

false

dekorate.openshift.a
uto-deploy-enabled

boolean Set whether your
application is
automatically deployed
when you generate a
deploy hook. Setting this
property on your
application requires that
you hard-code its value
in your
application.propertie
s file. Do not set this
property if you want to
avoid hard-coding its
value. Instead, use the -
Ddekorate.deploy=tr
ue option when
deploying your
application with Maven

false

Property Data Type Description Default Value (if
applicable)

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

16

dekorate.openshift.d
eployment-kind

String The kind of the
deployment resource to
use. Supported values
are
DeploymentConfig,
Deployment,
StatefulSet, Job, and
CronJob defaulting to
the first.

DeploymentConfig

Property Data Type Description Default Value (if
applicable)

1.8. DEKORATE CONFIGURATION PROPERTIES FOR SOURCE-TO-
IMAGE

The properties listed in the table below set the values that Dekorate uses to configure Source-to-Image
(s2i) to build for your applications. You can set these properties in the application.properties file of
your application project.

Table 1.2. Dekorate configuration properties for S2i

Property Data Type Description Default Value (if
applicable)

dekorate.s2i.enabled boolean Enable s2i build hook
generation for your
application

true

dekorate.s2i.registry String Specify the registry
name for the image that
you want to build

dekorate.s2i.group String Specify the group ID of
the application. This
value will be used as the
username in the docker
image that you build

dekorate.s2i.name String Specify the name of
your application. This
value is be used as the
name of the image that
you build.

dekorate.s2i.version String The version of the
application. This value is
be used as the tag of the
image that you build.

CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION

17

dekorate.s2i.image String Specifies the full
reference to the image
that you want to build.
When set, this property
overrides the values of
the group, name and
version properties.

dekorate.s2i.docker-
file

String Specifies the relative
path to the Dockerfile
from the root directory
of your application
project

Dockerfile

dekorate.s2i.builder-
image

String Specifies the name of
the S2i builder image
that you want to use

registry.access.redh
at.com/ubi8/openjdk-
8:1.3

dekorate.s2i.build-
env-vars

Env[] Set environment
variables for the s2i build

dekorate.s2i.auto-
push-enabled

boolean When true, s2i
automatically pushes
the image to the
specified registry when
the image is built.

false

dekorate.s2i.auto-
build-enabled

boolean When true, s2i
automatically registers a
build hook when the
application is compiled

false

Property Data Type Description Default Value (if
applicable)

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

18

dekorate.s2i.auto-
deploy-enabled

boolean When true, your
application is
automatically deployed
when you generate a
deploy hook. Setting this
property on your
application requires that
you hard-code its value
in your
application.propertie
s file. Do not set this
property if you want to
avoid hard-coding its
value. Instead, use the -
Ddekorate.deploy=tr
ue option when
deploying your
application with Maven

false

Property Data Type Description Default Value (if
applicable)

CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION

19

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
Source-to-Image (S2I) is a build tool for generating reproducible Docker-formatted container images
from online SCM repositories with application sources. With S2I builds, you can easily deliver the latest
version of your application into production with shorter build times, decreased resource and network
usage, improved security, and a number of other advantages. OpenShift supports multiple build
strategies and input sources.

For more information, see the Source-to-Image (S2I) Build chapter of the OpenShift Container
Platform documentation.

You must provide three elements to the S2I process to assemble the final container image:

The application sources hosted in an online SCM repository, such as GitHub.

The S2I Builder image, which serves as the foundation for the assembled image and provides
the ecosystem in which your application is running.

Optionally, you can also provide environment variables and parameters that are used by S2I
scripts.

The process injects your application source and dependencies into the Builder image according to
instructions specified in the S2I script, and generates a Docker-formatted container image that runs the
assembled application. For more information, check the S2I build requirements, build options and how
builds work sections of the OpenShift Container Platform documentation.

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

20

https://docs.openshift.com/container-platform/4.11/cicd/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/4.11/cicd/builds/build-strategies.html
https://docs.openshift.com/container-platform/4.11/cicd/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/4.11/openshift_images/create-images.html
https://docs.openshift.com/container-platform/4.11/openshift_images/create-images.html
https://docs.openshift.com/container-platform/4.11/cicd/builds/build-strategies.html
https://docs.openshift.com/container-platform/4.11/cicd/builds/understanding-image-builds.html

APPENDIX B. ADDITIONAL SPRING BOOT RESOURCES
OpenShift Architecture Overview

Spring Cloud Kubernetes

Spring Boot Project

Spring Framework Project

OpenShift Spring Boot Lab Microservices

APPENDIX B. ADDITIONAL SPRING BOOT RESOURCES

21

https://docs.openshift.com/container-platform/latest/architecture/architecture.html
https://github.com/spring-cloud/spring-cloud-kubernetes/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-framework/
https://github.com/redhat-microservices/lab_springboot-openshift/

APPENDIX C. APPLICATION DEVELOPMENT RESOURCES
For additional information about application development with OpenShift, see:

OpenShift Interactive Learning Portal

To reduce network load and shorten the build time of your application, set up a Nexus mirror for Maven
on your OpenShift Container Platform:

Setting Up a Nexus Mirror for Maven

Red Hat support for Spring Boot 2.7 Dekorate Guide for Spring Boot Developers

22

https://learn.openshift.com/
https://docs.openshift.com/container-platform/3.11/dev_guide/dev_tutorials/maven_tutorial.html

APPENDIX D. PROFICIENCY LEVELS
Each available example teaches concepts that require certain minimum knowledge. This requirement
varies by example. The minimum requirements and concepts are organized in several levels of
proficiency. In addition to the levels described here, you might need additional information specific to
each example.

Foundational
The examples rated at Foundational proficiency generally require no prior knowledge of the subject
matter; they provide general awareness and demonstration of key elements, concepts, and terminology.
There are no special requirements except those directly mentioned in the description of the example.

Advanced
When using Advanced examples, the assumption is that you are familiar with the common concepts and
terminology of the subject area of the example in addition to Kubernetes and OpenShift. You must also
be able to perform basic tasks on your own, for example, configuring services and applications, or
administering networks. If a service is needed by the example, but configuring it is not in the scope of the
example, the assumption is that you have the knowledge to properly configure it, and only the resulting
state of the service is described in the documentation.

Expert
Expert examples require the highest level of knowledge of the subject matter. You are expected to
perform many tasks based on feature-based documentation and manuals, and the documentation is
aimed at most complex scenarios.

APPENDIX D. PROFICIENCY LEVELS

23

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. USING DEKORATE IN A SPRING BOOT APPLICATION
	1.1. OVERVIEW OF DEKORATE
	1.1.1. Additional resources

	1.2. CONFIGURING YOUR APPLICATION PROJECT TO USE DEKORATE
	1.3. CUSTOMIZING YOUR APPLICATION CONFIGURATION WITH DEKORATE
	1.4. USING ANNOTATIONLESS CONFIGURATION IN A SPRING BOOT APPLICATION
	1.5. AUTOMATICALLY EXECUTING OPENSHIFT SOURCE-TO-IMAGE BUILDS WITH DEKORATE
	1.6. USING DEKORATE WITH SPRING BOOT ON OPENSHIFT
	1.7. DEKORATE CONFIGURATION PROPERTIES FOR OPENSHIFT
	1.8. DEKORATE CONFIGURATION PROPERTIES FOR SOURCE-TO-IMAGE

	APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
	APPENDIX B. ADDITIONAL SPRING BOOT RESOURCES
	APPENDIX C. APPLICATION DEVELOPMENT RESOURCES
	APPENDIX D. PROFICIENCY LEVELS
	Foundational
	Advanced
	Expert

