
OpenStack Team

Red Hat OpenStack Platform
8
Understanding Red Hat OpenStack
Platform High Availability

Understanding, deploying, and managing High Availability in Red Hat
OpenStack Platform

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack
Platform High Availability

Understanding, deploying, and managing High Availability in Red Hat
OpenStack Platform

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
To keep your OpenStack environment up and running efficiently, Red Hat OpenStack Platform 8
Director lets you create configurations that offer high availability and load balancing across all major
services in OpenStack. This document describes: A foundational HA setup, created by Red Hat
OpenStack Platform 8 Director, that you can use as a reference model for understanding and
working with OpenStack HA features. HA features that are used to make various services included
in Red Hat OpenStack Platform 8 highly available. Examples of tools for working with and
troubleshooting HA features in Red Hat OpenStack Platform 8.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. UNDERSTANDING RED HAT OPENSTACK PLATFORM HIGH AVAILABILITY FEATURES

CHAPTER 3. GETTING INTO YOUR OPENSTACK HA ENVIRONMENT

CHAPTER 4. USING PACEMAKER
4.1. GENERAL PACEMAKER INFORMATION
4.2. VIRTUAL IP ADDRESSES CONFIGURED IN PACEMAKER
4.3. OPENSTACK SERVICES CONFIGURED IN PACEMAKER
4.4. PACEMAKER FAILED ACTIONS
4.5. OTHER PACEMAKER INFORMATION FOR CONTROLLERS
4.6. FENCING HARDWARE

CHAPTER 5. USING HAPROXY
5.1. HAPROXY STATS
5.2. REFERENCES

CHAPTER 6. USING GALERA
6.1. INVESTIGATING DATABASE CLUSTER INTEGRITY
6.2. INVESTIGATING DATABASE CLUSTER NODE
6.3. INVESTIGATING DATABASE REPLICATION PERFORMANCE

CHAPTER 7. INVESTIGATING AND FIXING HA CONTROLLER RESOURCES
7.1. CORRECTING RESOURCE PROBLEMS ON CONTROLLERS

CHAPTER 8. INVESTIGATING HA CEPH NODES

CHAPTER 9. INVESTIGATING HA COMPUTE NODES

APPENDIX A. BUILDING THE RED HAT OPENSTACK PLATFORM 8 HA ENVIRONMENT
A.1. HARDWARE SPECIFICATION
A.2. UNDERCLOUD CONFIGURATION FILES
A.3. OVERCLOUD CONFIGURATION FILES

3

4

5

7
7
7

10
14
14
14

16
17
17

18
18
20
21

24
25

27

29

30
30
32
35

Table of Contents

1

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

2

CHAPTER 1. OVERVIEW

The sample HA deployment used for this document was created using the following guides as
reference:

Red Hat Ceph Storage for the Overcloud

Director Installation and Usage

Figure 1.1, “OpenStack HA environment deployed through director” shows the particular
configuration that was built specifically to test the high availability features described here. For
details on how to recreate this setup so you can try the steps yourself, refer to Appendix A, Building
the Red Hat OpenStack Platform 8 HA Environment.

Figure 1.1. OpenStack HA environment deployed through director

In an HA deployment, all OpenStack services must be launched and managed by either Pacemaker
or HAProxy. This includes all related and dependent services.

For example, the httpd service is required by openstack-dashboard. As such, in an HA
environment, httpd must not be launched or enabled manually (eg. through systemctl rather than
pcs). Many colocation or dependency problems in HA deployments are caused by services being
managed outside of Pacemaker or HAProxy.

To avoid this, orchestrate your HA deployment entirely in director. The templates and puppet
modules used by director ensure that all services are configured and launched correctly, particularly
for HA. Further, when troubleshooting HA issues, always interact with services through the HA
framework whenever possible.

CHAPTER 1. OVERVIEW

3

https://access.redhat.com/documentation/en/red-hat-openstack-platform/version-8/red-hat-ceph-storage-for-the-overcloud/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/director-installation-and-usage/director-installation-and-usage

CHAPTER 2. UNDERSTANDING RED HAT OPENSTACK
PLATFORM HIGH AVAILABILITY FEATURES

Red Hat OpenStack Platform 8 employs several technologies to implement high-availability. High
availability is offered in different ways for controller, compute, and storage nodes in your OpenStack
configuration. To investigate how high availability is implemented, log into each node and run
commands, as described in the following sections. The resulting output shows you the high
availability services and processes running on each node.

Most of the coverage of high availability (HA) in this document relates to controller nodes. There are
two primary HA technologies used on Red Hat OpenStack Platform 8 controller nodes:

Pacemaker: By configuring virtual IP addresses, services, and other features as resources in a
cluster, Pacemaker makes sure that the defined set of OpenStack cluster resources are running
and available. When a service or entire node in a cluster fails, Pacemaker can restart the
service, take the node out of the cluster, or reboot the node. Requests to most of those services
is done through HAProxy.

HAProxy: When you configure more than one controller node with the director in Red Hat
OpenStack Platform 8, HAProxy is configured on those nodes to load balance traffic to some of
the OpenStack services running on those nodes.

Galera: Red Hat OpenStack Platform uses the MariaDB Galera Cluster to manage database
replication.

Highly available services in OpenStack run in one of two modes:

Active/active: In this mode, the same service is brought up on multiple controller nodes with
Pacemaker, then traffic can either be distributed across the nodes running the requested service
by HAProxy or directed to a particular controller via a single IP address. In some cases, HAProxy
distributes traffic to active/active services in a round robin fashion. Performance can be improved
by adding more controller nodes.

Active/passive: Services that are not capable of or reliable enough to run in active/active mode
are run in active/passive mode. This means that only one instance of the service is active at a
time. For Galera, HAProxy uses stick-table options to make sure incoming connections are
directed to a single backend service. Galera master-master mode can deadlock when services
are accessing the same data from multiple galera nodes at once.

As you begin exploring the high availability services described in this document, keep in mind that
the director system (referred to as the undercloud) is itself running OpenStack. The purpose of the
undercloud (director system) is to build and maintain the systems that will become your working
OpenStack environment. That environment you build from the undercloud is referred to as the
overcloud. To get to your overcloud, this document has you log into your undercloud, then choose
which Overcloud node you want to investigate.

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

4

https://mariadb.com/kb/en/mariadb/what-is-mariadb-galera-cluster/

CHAPTER 3. GETTING INTO YOUR OPENSTACK HA
ENVIRONMENT

With the OpenStack HA environment running, log into your director (undercloud) system. Then,
become the stack user by running:

sudo su - stack

From there, you can interact with either the undercloud and overcloud by loading its corresponding
environment variables. To interact with the undercloud, run:

$ source ~/stackrc

Likewise, to interact with the overcloud, run:

$ source ~/overcloudrc

For more information about accessing either undercloud or overcloud, see Accessing the Basic
Overcloud.

To access and investigate a node, first find out what IP addresses have been assigned to them.
This involves interacting with the undercloud:

$ source ~/stackrc
$ nova list
 +-------+------------------------+---+----------------------+
 | ID | Name |...| Networks |
 | d1... | overcloud-controller-0 |...| ctlplane=10.200.0.11 |
 ...

CHAPTER 3. GETTING INTO YOUR OPENSTACK HA ENVIRONMENT

5

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/director-installation-and-usage/75-accessing-the-overcloud

Note

For reference, the director deployed the following names and addresses in our test
environment:

Names Addresses

overcloud-controller-0 10.200.0.11

overcloud-controller-1 10.200.0.10

overcloud-controller-1 10.200.0.6 (virtual IP)

overcloud-controller-2 10.200.0.14

overcloud-compute-0 10.200.0.12

overcloud-compute-1 10.200.0.15

overcloud-cephstorage-0 10.200.0.9

overcloud-cephstorage-1 10.200.0.8

overcloud-cephstorage-2 10.200.0.7

In your own test environment, even if you use the same address ranges, the IP addresses
assigned to each node may be different.

Once you know the IP addresses of your overcloud nodes, you can run the following command to
log into one of those nodes. Doing so involves interacting with the overcloud. For example, to log
into overcloud-controller-0 as the heat-admin user:

$ source ~stack/overcloudrc
$ ssh heat-admin@10.200.0.11

After logging into a controller, compute, or storage system, you can begin investigating the HA
features there.

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

6

CHAPTER 4. USING PACEMAKER

In the OpenStack configuration illustrated in Figure 1.1, “OpenStack HA environment deployed
through director”, most OpenStack services are running on the three controller nodes. To investigate
high availability features of those services, log into any of the controllers as the heat-admin user
and look at services controlled by Pacemaker. Output from the Pacemaker pcs status command
includes general Pacemaker information, virtual IP addresses, services, and other Pacemaker
information.

4.1. GENERAL PACEMAKER INFORMATION

The first part of the pcs status output displays the name of the cluster, when the cluster most
recently changed, the current DC, the number of nodes in the cluster, the number of resource
configured in the cluster, and the nodes in the cluster:

$ sudo pcs status
 Cluster name: tripleo_cluster
 Last updated: Mon Oct 5 13:42:37 2015
 Last change: Mon Oct 5 13:03:06 2015
 Stack: corosync
 Current DC: overcloud-controller-1 (2) - partition with quorum
 Version: 1.1.12-a14efad
 3 Nodes configured
 115 Resources configured
 Online: [overcloud-controller-0 overcloud-controller-1 overcloud-
controller-2]

 Full list of resources:
...

The initial output from sudo pcs status indicates that the cluster is named tripleo_cluster and it
consists of three nodes (overcloud-controller-0, -1, and -2). All three nodes are currently online.

The number of resources configured to be managed within the cluster named tripleo_cluster can
change, depending on how the systems are deployed. For this example, there were 115 resources.

The next part of the output from pcs status tells you exactly which resources have been started (IP
addresses, services, and so on) and which controller nodes they are running on. The next several
sections show examples of that output.

For more information about Pacemaker, see:

High Availability Add-On Overview

High Availability Add-On Administration

High Availability Add-On Reference

4.2. VIRTUAL IP ADDRESSES CONFIGURED IN PACEMAKER

Each IPaddr2 resource sets a virtual IP address that clients use to request access to a service. If the
Controller Node assigned to that IP address goes down, the IP address gets reassigned to a
different controller. In this example, you can see each controller (overcloud-controller-0, -1, etc.) that
is currently set to listen on a particular virtual IP address.

CHAPTER 4. USING PACEMAKER

7

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Overview/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Administration/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Reference/index.html

 ip-192.168.1.150 (ocf::heartbeat:IPaddr2): Started overcloud-
controller-0
 ip-10.200.0.6 (ocf::heartbeat:IPaddr2): Started overcloud-controller-1
 ip-172.16.0.10 (ocf::heartbeat:IPaddr2): Started overcloud-controller-
1
 ip-172.16.0.11 (ocf::heartbeat:IPaddr2): Started overcloud-controller-
0
 ip-172.18.0.10 (ocf::heartbeat:IPaddr2): Started overcloud-controller-
2
 ip-172.19.0.10 (ocf::heartbeat:IPaddr2): Started overcloud-controller-
2

Notice that each IP address is initially attached to a particular controller (for example, 192.168.1.150
is started on overcloud-controller-0). However, if that controller goes down, its IP address would
be reassigned to other controllers in the cluster. Here are descriptions of the IP addresses just
shown and how they were originally allocated:

192.168.1.150: Public IP address (allocated from ExternalAllocationPools in network-
environment.yaml)

10.200.0.6: Controller Virtual IP address (part of the dhcp_start and dhcp_end range set to
10.200.0.5-10.200.0.24 in undercloud.conf)

172.16.0.10: IP address providing access to OpenStack API services on a controller (allocated
from InternalApiAllocationPools in network-environment.yaml)

172.16.0.11: IP address providing access to Redis service on a controller (allocated from
InternalApiAllocationPools in network-environment.yaml)

172.18.0.10: Storage Virtual IP address, providing access to Glance API and Swift Proxy
services (allocated from StorageAllocationPools in network-environment.yaml)

172.19.0.10: IP address providing access to storage management (allocated from
StorageMgmtAlloctionPools in network-environment.yaml)

You can see details about a particular IPaddr2 addresses set in Pacemaker using the pcs
command. For example, to see timeouts and other pertinent information for a particular virtual IP
address, type the following for one of the IPaddr2 resources:

$ sudo pcs resource show ip-192.168.1.150
 Resource: ip-192.168.1.150 (class=ocf provider=heartbeat type=IPaddr2)
 Attributes: ip=192.168.1.150 cidr_netmask=32
 Operations: start interval=0s timeout=20s (ip-192.168.1.150-start-
timeout-20s)
 stop interval=0s timeout=20s (ip-192.168.1.150-stop-
timeout-20s)
 monitor interval=10s timeout=20s (ip-192.168.1.150-
monitor-interval-10s)

If you are logged into the controller which is currently assigned to listen on address 192.168.1.150,
run the following commands to make sure it is active and that there are services actively listening on
that address:

$ ip addr show vlan100
 9: vlan100: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue
state UNKNOWN
 link/ether be:ab:aa:37:34:e7 brd ff:ff:ff:ff:ff:ff

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

8

 inet 192.168.1.151/24 brd 192.168.1.255 scope global vlan100
 valid_lft forever preferred_lft forever
 inet 192.168.1.150/32 brd 192.168.1.255 scope global vlan100
 valid_lft forever preferred_lft forever

$ sudo netstat -tupln | grep 192.168.1.150
 tcp 0 0 192.168.1.150:6080 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:9696 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:8000 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:8003 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:8004 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:8773 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:8774 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:5000 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:8776 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:8777 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:9292 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:8080 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:80 0.0.0.0:* LISTEN
4333/haproxy
 tcp 0 0 192.168.1.150:35357 0.0.0.0:* LISTEN
4333/haproxy
 udp 0 0 192.168.1.150:123 0.0.0.0:* 459/ntpd
 ...
 tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 2471/sshd
 tcp 0 0 0.0.0.0:4567 0.0.0.0:* LISTEN
10064/mysqld
 ...
 udp 0 0 0.0.0.0:51475 0.0.0.0:*
545/dhclient
 udp 0 0 0.0.0.0:123 0.0.0.0:* 459/ntpd
 udp 0 0 0.0.0.0:161 0.0.0.0:*
1633/snmpd
 ...

The ip command shows that the vlan100 interface is listening on both the 192.168.1.150 and
192.168.1.151 IPv4 addresses. In output from the netstat command, you can see all the processes
listening on the 192.168.1.150 interface. Besides the ntpd process (listening on port 123), the
haproxy process is the only other one listening specifically on 192.168.1.150. Also, keep in mind that
processes listening on all local addresses (0.0.0.0) are also available through 192.168.1.150 (sshd,
mysqld, dhclient, ntpd and so on).

CHAPTER 4. USING PACEMAKER

9

The port numbers shown in the netstat output help you identify the exact service haproxy is
listening for. You could look inside the /etc/haproxy/haproxy.cfg file to see what services those
port numbers represent. Here are just a few examples:

TCP port 6080: nova_novncproxy

TCP port 9696: neutron

TCP port 8000: heat_cfn

TCP port 8003: heat_cloudwatch

TCP port 80: horizon

At this time, there are 14 services in haproxy.cfg listening specifically on 192.168.1.150 on all three
controllers. However, only controller-0 is currently actually listening externally on 192.168.1.150. So,
if controller-0 goes down, HAProxy only needs to reassign 192.168.1.150 to another controller and
all the services will already be running.

4.3. OPENSTACK SERVICES CONFIGURED IN PACEMAKER

Most services are configured as Clone Set resources (or clones), where they are started the same
way on each controller and set to always run on each controller. Services are cloned if they need to
be active on multiple nodes. As such, you can only clone services that can be active on multiple
nodes simultaneously (ie. cluster-aware services).

Other services are configured as Multi-state resources. Multi-state resources are specialized type
of clones: unlike ordinary Clone Set resources, a Multi-state resource can be in either a master or
slave state. When an instance is started, it must come up in the slave state. Other than this, the
names of either state do not have any special meaning. These states, however, allow clones of the
same service to run under different rules or constraints.

Keep in mind that, even though a service may be running on multiple controllers at the same time,
the controller itself may not be listening on the IP address needed to actually reach those services.

Clone Set resources (clones)

Here are the clone settings from pcs status:

Clone Set: haproxy-clone [haproxy]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: mongod-clone [mongod]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: rabbitmq-clone [rabbitmq]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: memcached-clone [memcached]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-nova-scheduler-clone [openstack-nova-scheduler]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: neutron-l3-agent-clone [neutron-l3-agent]
 Started: [overcloud-controller-0 overcloud-controller-1

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

10

overcloud-controller-2]
 Clone Set: openstack-ceilometer-alarm-notifier-clone [openstack-
ceilometer-alarm-notifier]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-heat-engine-clone [openstack-heat-engine]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-ceilometer-api-clone [openstack-ceilometer-api]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: neutron-metadata-agent-clone [neutron-metadata-agent]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: neutron-ovs-cleanup-clone [neutron-ovs-cleanup]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: neutron-netns-cleanup-clone [neutron-netns-cleanup]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-heat-api-clone [openstack-heat-api]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-cinder-scheduler-clone [openstack-cinder-
scheduler]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-nova-api-clone [openstack-nova-api]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-heat-api-cloudwatch-clone [openstack-heat-api-
cloudwatch]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-ceilometer-collector-clone [openstack-ceilometer-
collector]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-keystone-clone [openstack-keystone]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-nova-consoleauth-clone [openstack-nova-
consoleauth]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-glance-registry-clone [openstack-glance-registry]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-c openstack-cinder-volume
 Clone Set: openstack-ceilometer-notification-clone [openstack-
ceilometer-notification]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-cinder-api-clone [openstack-cinder-api]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: neutron-dhcp-agent-clone [neutron-dhcp-agent]

CHAPTER 4. USING PACEMAKER

11

 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-glance-api-clone [openstack-glance-api]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: neutron-openvswitch-agent-clone [neutron-openvswitch-agent]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-nova-novncproxy-clone [openstack-nova-novncproxy]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: delay-clone [delay]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: neutron-server-clone [neutron-server]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: httpd-clone [httpd]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-ceilometer-central-clone [openstack-ceilometer-
central]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-ceilometer-alarm-evaluator-clone [openstack-
ceilometer-alarm-evaluator]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 Clone Set: openstack-heat-api-cfn-clone [openstack-heat-api-cfn]
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]
 openstack-cinder-volume (systemd:openstack-cinder-volume): Started
overcloud-controller-0
 Clone Set: openstack-nova-conductor-clone [openstack-nova-conductor]
openstack-cinder-volume
 Started: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]

For each of the Clone Set resources, you can see the following:

The name Pacemaker assigns to the service

The actual service name

The controllers on which the services are started or stopped

With Clone Set, the service is intended to start the same way on all controllers. To see details for a
particular clone service (such as the haproxy service), use the pcs resource show command. For
example:

$ sudo pcs resource show haproxy-clone
 Clone: haproxy-clone
 Resource: haproxy (class=systemd type=haproxy)
 Operations: start interval=0s timeout=60s (haproxy-start-timeout-
60s)
 monitor interval=60s (haproxy-monitor-interval-60s)
$ sudo systemctl status haproxy

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

12

haproxy.service - Cluster Controlled haproxy
 Loaded: loaded (/usr/lib/systemd/system/haproxy.service; disabled)
 Drop-In: /run/systemd/system/haproxy.service.d
 └─50-pacemaker.conf
 Active: active (running) since Tue 2015-10-06 08:58:49 EDT; 1h 52min
ago
 Main PID: 4215 (haproxy-systemd)
 CGroup: /system.slice/haproxy.service
 ├─4215 /usr/sbin/haproxy-systemd-wrapper -f
/etc/haproxy/haproxy.cfg -p /run/haproxy.pid
 ├─4216 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg -p
/run/haproxy.pid -Ds
 └─4217 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg -p
/run/haproxy.pid -Ds

The haproxy-clone example displays the resource settings for HAProxy. Although HAProxy
provides high availability services by load-balancing traffic to selected services, keeping HAProxy
itself highly available is done here by configuring it as a Pacemaker clone service.

From the output, notice that the resource is a systemd service named haproxy. It also has start
interval and timeout values as well as monitor intervals. The systemctl status command shows that
haproxy is currently active. The actual running processes for the haproxy service are listed at the
end of the output. Because the whole command line is shown, you can see the configuration file
(haproxy.cfg) and PID file (haproxy.pid) associated with the command.

Run those same commands on any Clone Set resource to see its current level of activity and
details about the commands the service runs. Note that systemd services controlled by Pacemaker
are set to disabled by systemd, since you want Pacemaker and not the system’s boot process to
control when the service comes up or goes down.

For more information about Clone Set resources, see Resource Clones in the High Availability Add-
On Reference.

Multi-state resources (master/slave)

The Galera and Redis services are run as Multi-state resources. Here is what the pcs status
output looks like for those two types of services:

[...]
Master/Slave Set: galera-master [galera]
 Masters: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]

Master/Slave Set: redis-master [redis]
 Masters: [overcloud-controller-2]
 Slaves: [overcloud-controller-0 overcloud-controller-1]
[...]

For the galera-master resource, all three controllers are running as Galera masters. For the redis-
master resource, overcloud-controller-2 is running as the master, while the other two controllers
are running as slaves. This means that at the moment, the galera service is running under one set
of constraints on all three controllers, while redis may be subject to different constraints on the
master and slave controllers.

For more information about Multi-State resources, see Multi-State Resources: Resources That
Have Multiple Modes in the High Availability Add-On Reference.

CHAPTER 4. USING PACEMAKER

13

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Reference/ch-advancedresource-HAAR.html#s1-resourceclones-HAAR
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Reference/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Reference/s1-multistateresource-HAAR.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Reference/index.html

For more information about troubleshooting the Galera resource, see Chapter 6, Using Galera.

4.4. PACEMAKER FAILED ACTIONS

If any of the resources fail in any way, they will be listed under the Failed actions heading of the
pcs status output. Here is an example where the httpd service stopped working on controller-0:

Failed actions:
 httpd_monitor_60000 on overcloud-controller-0 'not running' (7):
call= openstack-cinder-volume (systemd:openstack-cinder-
volume): Started overcloud-controller-0
190, status=complete, exit-reason='none', last-rc-change='Thu Oct 8
10:12:32 2015', queued=0ms, exec=0ms

In this case, the systemd service httpd just needed to be restarted. In other cases, you need to
track down and fix the problem, then clean up the resources. See Section 7.1, “Correcting Resource
Problems on Controllers” for details.

4.5. OTHER PACEMAKER INFORMATION FOR CONTROLLERS

The last sections of the pcs status output shows information about your power management fencing
(IPMI in this case) and the status of the Pacemaker service itself:

 my-ipmilan-for-controller-0 (stonith:fence_ipmilan): Started my-
ipmilan-for-controller-0
 my-ipmilan-for-controller-1 (stonith:fence_ipmilan): Started my-
ipmilan-for-controller-1
 my-ipmilan-for-controller-2 (stonith:fence_ipmilan): Started my-
ipmilan-for-controller-2

PCSD Status:
 overcloud-controller-0: Online
 overcloud-controller-1: Online
 overcloud-controller-2: Online

Daemon Status:
 corosync: active/enabled
 pacemaker: active/enabled openstack-cinder-volume
(systemd:openstack-cinder-volume): Started overcloud-controller-0

 pcsd: active/enabled

The my-ipmilan-for-controller settings show the type of fencing done for each node
(stonith:fence_ipmilan) and whether or not the IPMI service is stopped or running. The PCSD
Status shows that all three controllers are currently online. The Pacemaker service itself consists of
three daemons: corosync, pacemaker, and pcsd. Here, all three services are active and enabled.

4.6. FENCING HARDWARE

When a controller node fails a health check, the controller acting as the Pacemaker designated
coordinator (DC) uses the Pacemaker stonith service to fence off the offending node. Stonith is an
acronym for the term "Shoot the other node in the head". So, the DC basically kicks the node out of
the cluster.

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

14

To see how your fencing devices are configured by stonith for your OpenStack Platform HA cluster,
run the following command:

$ sudo pcs stonith show --full
 Resource: my-ipmilan-for-controller-0 (class=stonith
type=fence_ipmilan)
 Attributes: pcmk_host_list=overcloud-controller-0 ipaddr=10.100.0.51
login=admin passwd=abc lanplus=1 cipher=3
 Operations: monitor interval=60s (my-ipmilan-for-controller-0-
monitor-interval-60s)
 Resource: my-ipmilan-for-controller-1 (class=stonith
type=fence_ipmilan)
 Attributes: pcmk_host_list=overcloud-controller-1 ipaddr=10.100.0.52
login=admin passwd=abc lanplus=1 cipher=3
 Operations: monitor interval=60s (my-ipmilan-for-controller-1-
monitor-interval-60s)
 Resource: my-ipmilan-for-controller-2 (class=stonith
type=fence_ipmilan)
 Attributes: pcmk_host_list=overcloud-controller-2 ipaddr=10.100.0.53
login=admin passwd=abc lanplus=1 cipher=3
 Operations: monitor interval=60s (my-ipmilan-for-controller-2-
monitor-interval-60s)

The show --full listing shows details about the three controller nodes that relate to fencing. The
fence device uses IPMI power management (fence_ipmilan) to turn the machines on and off as
required. Information about the IPMI interface for each node includes the IP address of the IPMI
interface (10.100.0.51), the user name to log in as (admin) and the password to use (abc). You can
also see the interval at which each host is monitored (60 seconds).

For more information on fencing with Pacemaker, see "Fencing Configuration" in Red Hat Enterprise
Linux 7 High Availability Add-On Administration.

CHAPTER 4. USING PACEMAKER

15

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/High_Availability_Add-On_Administration/s1-fenceconfig-HAAA.html

CHAPTER 5. USING HAPROXY

HAProxy provides high-availability features to OpenStack by load-balancing traffic to controllers
running OpenStack services. The haproxy package contains the haproxy daemon, which is started
from the systemd service of the same name, along with logging features and sample configurations.
As noted earlier, Pacemaker manages the HAProxy service itself as a highly available service
(haproxy-clone).

Note

Refer to the KCS solution How can I verify my haproxy.cfg is correctly configured to load
balance openstack services? for information on validating an HAProxy configuration.

In Red Hat OpenStack Platform 8, the director configures multiple OpenStack services to take
advantage of the haproxy service. It does this by configuring those services in the
/etc/haproxy/haproxy.cfg file. For each service in that file, you can see:

listen: The name of the service that is listening for requests

bind: The IP address and TCP port number on which the service is listening

server: The name of each server providing the service, the server’s IP address and listening
port, and other information.

The haproxy.cfg file created when you install Red Hat OpenStack Platform 8 with the director
identifies 19 different services for HAProxy to manage. Here’s an example of how the ceilometer
listen service is configured in the haproxy.cfg file:

listen ceilometer
 bind 172.16.0.10:8777
 bind 192.168.1.150:8777
 server overcloud-controller-0 172.16.0.13:8777 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:8777 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:8777 check fall 5 inter
2000 rise 2

This example of HAProxy settings for the ceilometer service identifies the IP addresses and ports on
which the ceilometer service is offered (port 8777 on 172.16.0.10 and 192.168.1.150). The
172.16.0.10 address is a virtual IP address on the Internal API network (VLAN201) for use within the
overcloud, while the 192.168.1.150 virtual IP address is on the External network (VLAN100) to
provide access to the API network from outside of the overcloud.

HAProxy can direct requests made for those two IP addresses to overcloud-controller-0
(172.16.0.13:8777), overcloud-controller-1 (172.16.0.14:8777), or overcloud-controller-2
(172.16.0.15:8777).

The options set on these servers enables health checks (check) and the service is considered to be
dead after five failed health checks (fall 5). The interval between two consecutive health checks is
set to 2000 milliseconds (or 2 seconds) by inter 2000. A server is considered operational after 2
successful health checks (rise 2).

Here is the list of services managed by HAProxy on the controller nodes:

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

16

https://access.redhat.com/solutions/1599813

Table 5.1. Services managed by HAProxy

ceilometer cinder glance_api glance_registry

haproxy.stats heat_api heat_cfn heat_cloudwatch

horizon keystone_admin keystone_public mysql

neutron nova_ec2 nova_metadata nova_novncproxy

5.1. HAPROXY STATS

The director also enables HAProxy Stats by default on all HA deployments. This feature allows you
to view detailed information about data transfer, connections, server states, and the like on the
HAProxy Stats page.

The director also sets the IP:Port address through which you can reach the HAProxy Stats page. To
find out what this address is, open the /etc/haproxy/haproxy.cfg file of any node where HAProxy is
installed. The listen haproxy.stats section lists this information. For example:

listen haproxy.stats
 bind 10.200.0.6:1993
 mode http
 stats enable
 stats uri /

In this case, point your web browser to 10.200.0.6:1993 to view the HAProxy Stats page.

5.2. REFERENCES

For more information about HAProxy, see HAProxy Configuration (from Load Balancer
Administration).

For detailed information about settings you can use in the haproxy.cfg file, see the documentation
in /usr/share/doc/haproxy-VERSION/configuration.txt on any system where the haproxy
package is installed (such as Controller nodes).

CHAPTER 5. USING HAPROXY

17

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Load_Balancer_Administration/ch-haproxy-setup-VSA.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Load_Balancer_Administration/index.html

CHAPTER 6. USING GALERA

In a high-availability deployment, Red Hat OpenStack Platform uses the MariaDB Galera Cluster to
manage database replication. As mentioned in Section 4.3, “OpenStack Services Configured in
Pacemaker”, Pacemaker runs the Galera service using a Master/Slave Set resource. You can use
pcs status to check if galera-master is running, and on which controllers:

Master/Slave Set: galera-master [galera]
 Masters: [overcloud-controller-0 overcloud-controller-1
overcloud-controller-2]

Hostname resolution

When troubleshooting the MariaDB Galera Cluster, start by verifying hostname resolution.
By default, the director binds the Galera resource to a hostname rather than an IP address
[1]. As such, any problems preventing hostname resolution (for example, a misconfigured or
failed DNS) could, in turn, prevent Pacemaker from properly managing the Galera resource.

Once you rule out hostname resolution problems, check the integrity of the cluster itself. To do so,
check the status of write-set replication on each Controller node’s database.

Write-set replication information is stored on each node’s MariaDB database. Each relevant variable
uses the prefix wsrep_. As such, you can query this information directly through the database client:

$ sudo mysql -B -e "SHOW GLOBAL STATUS LIKE 'wsrep_%';"
 +------------------------+-------+
 | Variable_name | Value |
 +------------------------+-------+
 | wsrep_protocol_version | 5 |
 | wsrep_last_committed | 202 |
 | ... | ... |
 | wsrep_thread_count | 2 |
 +------------------------+-------+

To verify the health and integrity of the MariaDB Galera Cluster, check first whether the cluster is
reporting the right number of nodes. Then, check each node if it:

Is part of the correct cluster

Can write to the cluster

Can receive queries and writes from the cluster

Is connected to others within the cluster

Is replicating write-sets to tables in the local database

The following sections discuss how to investigate each status.

6.1. INVESTIGATING DATABASE CLUSTER INTEGRITY

When investigating problems with the MariaDB Galera Cluster, start with the integrity of the cluster
itself. Verifying cluster integrity involves checking specific wsrep_ database variables on each
Controller node. To check a database variable, run:

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

18

https://mariadb.com/kb/en/mariadb/what-is-mariadb-galera-cluster/

$ sudo mysql -B -e "SHOW GLOBAL STATUS LIKE 'VARIABLE';"

Replace VARIABLE with the wsrep_ database variable you want to check. For example, to view the
node’s cluster state UUID:

$ sudo mysql -B -e "SHOW GLOBAL STATUS LIKE
'wsrep_cluster_state_uuid';"
 +--------------------------+-----------------------------------
---+
 | Variable_name | Value
|
 +--------------------------+-----------------------------------
---+
 | wsrep_cluster_state_uuid | e2c9a15e-5485-11e0-0800-6bbb637e7211 |
 +--------------------------+-----------------------------------
---+

The following table lists the different wsrep_ database variables that relate to cluster integrity.

Table 6.1. Database variables to check for cluster integrity

VARIABLE Summary Description

wsrep_cluster_state_uuid Cluster state UUID The ID of the cluster to which the
node belongs. All nodes must
have an identical ID. A node with
a different ID is not connected to
the cluster.

wsrep_cluster_size Number of nodes in the cluster You can check this on any single
node. If the value is less than
the actual number of nodes, then
some nodes have either failed or
lost connectivity.

wsrep_cluster_conf_id Total number of cluster changes Determines whether or not the
cluster has been split into
several components, also known
as a partition. This is likely
caused by a network failure. All
nodes must have an identical
value.

In case some nodes are
reporting a different
wsrep_cluster_conf_id, check
their wsrep_cluster_status
value to see if it can still write to
the cluster (Primary).

CHAPTER 6. USING GALERA

19

wsrep_cluster_status Primary component status Determines whether or not the
node can still write to the cluster.
If so, then the
wsrep_cluster_status should
be Primary. Any other value
indicates that the node is part of
a non-operational partition.

VARIABLE Summary Description

6.2. INVESTIGATING DATABASE CLUSTER NODE

If you can isolate a Galera cluster problem to a specific node, other wsrep_ database variables can
provide clues on the specific problem. You can check these variables in a similar manner as a
cluster check (as in Section 6.1, “Investigating Database Cluster Integrity”):

$ sudo mysql -B -e "SHOW GLOBAL STATUS LIKE 'VARIABLE';"

Likewise, replace VARIABLE with any of the following values:

Table 6.2. Database variables to check for node integrity

VARIABLE Summary Description

wsrep_ready Node ability to accept queries States whether the node can
accept write-sets from the
cluster. If so, then wsrep_ready
should be ON.

wsrep_connected Node network connectiviry States whether the node has
network connectivity to other
nodes. If so, then
wsrep_connected should be
ON.

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

20

wsrep_local_state_comment Node state Summarizes the node state. If
node can still write to the cluster
(ie. if wsrep_cluster_status is
Primary, see Section 6.1,
“Investigating Database Cluster
Integrity”), then typical values for
wsrep_local_state_comment
are Joining, Waiting on SST,
Joined, Synced, or Donor.

If the node is part of a non-
operational component, then
wsrep_local_state_comment is
set to Initialized.

VARIABLE Summary Description

Note

A wsrep_connected of ON could also mean that the node is only connected to some
nodes. For example, in cases of a cluster partition, the node may be part of a component
that cannot write to the cluster. See Section 6.1, “Investigating Database Cluster Integrity”
for details.

If wsrep_connected is OFF, then the node is not connected to ANY cluster components.

6.3. INVESTIGATING DATABASE REPLICATION PERFORMANCE

If cluster and its individual nodes are all healthy and stable, you can also check replication
throughput to benchmark performance. As in Section 6.2, “Investigating Database Cluster Node”
and Section 6.1, “Investigating Database Cluster Integrity”, doing so involves wsrep_ database
variables on each node:

$ sudo mysql -B -e "SHOW STATUS LIKE 'VARIABLE';"

Likewise, replace VARIABLE with any of the following values:

Table 6.3. Database variables to check for cluster performance (replication throughput)

VARIABLE Summary

wsrep_local_recv_queue_avg Average size of the local received queue since last
query

wsrep_local_send_queue_avg Average send queue length since the last time the
variable was queried

CHAPTER 6. USING GALERA

21

wsrep_local_recv_queue_min and
wsrep_local_recv_queue_max

The minimum and maximum sizes the local
received queue since either variable was last
queried

wsrep_flow_control_paused Fraction of time that the node paused due to Flow
Control since the last time the variable was queried

wsrep_cert_deps_distance Average distance between the lowest and highest
sequence number (seqno) value that can be
applied in parallel (ie. potential degree of
parallelization)

VARIABLE Summary

Each time any of these variables are queried, a FLUSH STATUS command resets its value.
Benchmarking cluster replication involves querying these values multiple times to see variances.
These variances can help you judge how much Flow Control is affecting the cluster’s performance.

Flow Control is a mechanism used by the cluster to manage replication. When the local received
write-set queue exceeds a certain threshold, Flow Control pauses replication in order for the node to
catch up. See Flow Control from the Galera Cluster site for more information.

Check the following table for clues on different values and benchmarks:

wsrep_local_recv_queue_avg > 0.0

The node cannot apply write-sets as quickly as it receives them, thereby triggering
replication throttling. Check wsrep_local_recv_queue_min and
wsrep_local_recv_queue_max for a detailed look at this benchmark.

wsrep_local_send_queue_avg > 0.0

As the value of wsrep_local_send_queue_avg rises, so does the likelihood of replication
throttling and network throughput issues. This is especially true as
wsrep_local_recv_queue_avg rises.

wsrep_flow_control_paused > 0.0

Flow Control paused the node. To determine how long the node was paused, multiply the
wsrep_flow_control_paused value with the number of seconds between querying it. For
example, if wsrep_flow_control_paused = 0.50 a minute after last checking it, then node
replication was paused for 30 seconds. If wsrep_flow_control_paused = 1.0 then the node
was paused the entire time since the last query.

Ideally, wsrep_flow_control_paused should be as close to 0.0 as possible.

In case of throttling and pausing, you can check wsrep_cert_deps_distance to see how many
write-sets (on average) can be applied in parallel. Then, check wsrep_slave_threads to see how
many write-sets can actually be applied simultaneously.

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

22

http://galeracluster.com/documentation-webpages/nodestates.html
http://galeracluster.com/

Configuring a higher wsrep_slave_threads can help mitigate throttling and pausing. For example,
wsrep_cert_deps_distance reads 20, then doubling wsrep_slave_threads from 2 to 4 can also
double the amount of write-sets that the node can apply. However, wsrep_slave_threads should
only be set as high as the node’s number of CPU cores.

If a problematic node already has an optimal wsrep_slave_threads setting, then consider excluding
the node from the cluster as you investigate possible connectivity issues.

[1] This method was implemented to allow Galera to start successfully in overclouds that use IPv6
(specifically, to address BZ#1298671).

CHAPTER 6. USING GALERA

23

https://bugzilla.redhat.com/show_bug.cgi?id=1298671

CHAPTER 7. INVESTIGATING AND FIXING HA
CONTROLLER RESOURCES

The pcs constraint show command displays any constraints on how services are launched. The
output from the command shows constraints relating to where each resource is located, the order in
which it starts and what it must be colocated with. If there are any problems, you can try to fix those
problems, then clean up the resources.

The pcs constraint show command shows how a resource is constrained by location (can only run
on certain hosts), ordering (depends on other resources to be enabled before starting), or colocation
(requires it be colocated with another resource). Here is truncated output from pcs constraint
show on a controller node:

$ sudo pcs constraint show
Location Constraints:
 Resource: my-ipmilan-for-controller-0
 Disabled on: overcloud-controller-0 (score:-INFINITY)
 Resource: my-ipmilan-for-controller-1
 Disabled on: overcloud-controller-1 (score:-INFINITY)
 Resource: my-ipmilan-for-controller-2
 Disabled on: overcloud-controller-2 (score:-INFINITY)
Ordering Constraints:
 start ip-172.16.0.10 then start haproxy-clone (kind:Optional)
 start ip-10.200.0.6 then start haproxy-clone (kind:Optional)
 start ip-172.19.0.10 then start haproxy-clone (kind:Optional)
 start ip-192.168.1.150 then start haproxy-clone (kind:Optional)
 start ip-172.16.0.11 then start haproxy-clone (kind:Optional)
 start ip-172.18.0.10 then start haproxy-clone (kind:Optional)
 start mongod-clone then start openstack-ceilometer-central-clone
(kind:Mandatory)
 start openstack-glance-registry-clone then start openstack-glance-
api-clone (kind:Mandatory)
 start openstack-heat-api-clone then start openstack-heat-api-cfn-
clone (kind:Mandatory)
 start delay-clone then start openstack-ceilometer-alarm-evaluator-
clone (kind:Mandatory)

...

Colocation Constraints:
 ip-172.16.0.10 with haproxy-clone (score:INFINITY)
 ip-172.18.0.10 with haproxy-clone (score:INFINITY)
 ip-10.200.0.6 with haproxy-clone (score:INFINITY)
 ip-172.19.0.10 with haproxy-clone (score:INFINITY)
 ip-172.16.0.11 with haproxy-clone (score:INFINITY)
 ip-192.168.1.150 with haproxy-clone (score:INFINITY)
 openstack-glance-api-clone with openstack-glance-registry-clone
(score:INFINITY)
 openstack-cinder-volume with openstack-cinder-scheduler-clone
(score:INFINITY)
 neutron-dhcp-agent-clone with neutron-openvswitch-agent-clone
(score:INFINITY)

...

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

24

This output displays three major sections:

Location Constraints

This section shows there are no particular constraints on where resources are assigned.
However, the output shows that the ipmilan resource is disabled on each of the controllers.
So that requires further investigation.

Ordering Constraints

Here, notice that the virtual IP address resources (IPaddr2) are set to start before HAProxy.
There are also many mandatory Ordering Constraints, including starting mongod-clone
before openstack-ceilometer-central-clone , and starting openstack-glance-registry-
clone before openstack-glance-api-clone. Knowing these constraints can help
understand the dependencies between services. In other words, you want to know what
dependencies need to be in place for you to be able to fix a broken service or another
resource.

Colocation Constraints

This section shows what resources need to be located together. For example, certain virtual
IP addresses are tied to the haproxy-clone resource. In addition, the openstack-glance-
api-clone resource needs to be on the same host as the openstack-glance-registry-clone
resource.

7.1. CORRECTING RESOURCE PROBLEMS ON CONTROLLERS

Failed actions are listed by the pcs status command. There are lots of different kinds of problems
that can occur. In general, you can approach problems in the following ways:

Controller problem

If health checks to a controller are failing, log into the controller and check if services can
start up without problems. Service startup problems could indicate a communication
problem between controllers. Other indications of communication problems between
controllers include:

A controller gets fenced disproportionately more than other controllers, and/or

A suspiciously large amount of services are failing from a specific controller.

Individual resource problem

If services from a controller are generally working, but an individual resource is failing, see if
you can figure out the problem from the pcs status messages. If you need more
information, log into the controller where the resource is failing and try some of the steps
below.

To determine the problem with an individual failed resource, look at the Ordering Constraints
illustrated in Chapter 7, Investigating and Fixing HA Controller Resources. Make sure all the
resources the failed resource depends on are up and running. Then work your way up from the
bottom, correcting them.

Given the name of the failed resource and the controller it’s running on, you can log into the
controller to debug the problem. If the failed resource is a systemd service (such as openstack-
ceilometer-api), you could use systemctl to check its status and journalctl to search through
journal messages. For example:

CHAPTER 7. INVESTIGATING AND FIXING HA CONTROLLER RESOURCES

25

$ sudo systemctl status openstack-ceilometer-api
openstack-ceilometer-api.service - Cluster Controlled openstack-
ceilometer-api
 Loaded: loaded (/usr/lib/systemd/system/openstack-ceilometer-
api.service; disabled)
 Drop-In: /run/systemd/system/openstack-ceilometer-api.service.d
 └─50-pacemaker.conf
 Active: active (running) since Thu 2015-10-08 13:30:44 EDT; 1h 4min
ago
 Main PID: 17865 (ceilometer-api)
 CGroup: /system.slice/openstack-ceilometer-api.service
 └─17865 /usr/bin/python /usr/bin/ceilometer-api --logfile
/var/log/ceilometer/api.log

Oct 08 13:30:44 overcloud-controller-2.localdomain systemd[1]: Starting
Cluster Controlled openstack-ceilo.....
Oct 08 13:30:44 overcloud-controller-2.localdomain systemd[1]: Started
Cluster Controlled openstack-ceilom...i.
Oct 08 13:30:49 overcloud-controller-2.localdomain ceilometer-
api[17865]: /usr/lib64/python2.7/site-package....
$ sudo journalctl -u openstack-ceilometer-api
-- Logs begin at Thu 2015-10-01 08:57:25 EDT, end at Thu 2015-10-08
14:40:18 EDT. --
Oct 01 11:22:41 overcloud-controller-2.localdomain systemd[1]: Starting
Cluster Controlled openstack...
Oct 01 11:22:41 overcloud-controller-2.localdomain systemd[1]: Started
Cluster Controlled openstack-ceilometer-api...
Oct 01 11:22:52 overcloud-controller-2.localdomain ceilometer-
api[8918]: /usr/lib64/python2.7/...

After you have corrected the failed resource, you can run the pcs resource cleanup command to
reset the status of the resource and its fail count. For example, after finding and fixing a problem
with the httpd-clone resource, run:

$ sudo pcs resource cleanup httpd-clone
 Resource: httpd-clone successfully cleaned up

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

26

CHAPTER 8. INVESTIGATING HA CEPH NODES

When deployed with Ceph storage, Red Hat OpenStack Platform 8 uses ceph-mon as a monitor
daemon for the Ceph cluster. The director deploys this daemon on all controller nodes.

To check whether the Ceph Monitoring service is running, use:

$ sudo service ceph status
=== mon.overcloud-controller-0 ===
mon.overcloud-controller-0: running {"version":"0.94.1"}

On the controllers, as well as on the Ceph Nodes, you can see how Ceph is configured by viewing
the /etc/ceph/ceph.conf file. For example:

[global]
osd_pool_default_pgp_num = 128
osd_pool_default_min_size = 1
auth_service_required = cephx
mon_initial_members = overcloud-controller-0,overcloud-controller-
1,overcloud-controller-2
fsid = 8c835acc-6838-11e5-bb96-2cc260178a92
cluster_network = 172.19.0.11/24
auth_supported = cephx
auth_cluster_required = cephx
mon_host = 172.18.0.17,172.18.0.15,172.18.0.16
auth_client_required = cephx
osd_pool_default_size = 3
osd_pool_default_pg_num = 128
public_network = 172.18.0.17/24

Here, all three controller nodes (overcloud-controller-0, -1, and -2) are set to monitor the Ceph
cluster (mon_initial_members). The 172.19.0.11/24 network (VLAN 203) is used as the Storage
Management Network and provides a communications path between the controller and Ceph
Storage Nodes. The three Ceph Storage Nodes are on a separate network. As you can see, the IP
addresses for those three nodes are on the Storage Network (VLAN 202) and are defined as
172.18.0.15, 172.18.0.16, and 172.18.0.17.

To check the current status of a Ceph node, log into that node and run the following command:

ceph -s
 cluster 8c835acc-6838-11e5-bb96-2cc260178a92
 health HEALTH_OK
 monmap e1: 3 mons at {overcloud-controller-
0=172.18.0.17:6789/0,overcloud-controller-
1=172.18.0.15:6789/0,overcloud-controller-2=172.18.0.16:6789/0}
 election epoch 152, quorum 0,1,2 overcloud-controller-
1,overcloud-controller-2,overcloud-controller-0
 osdmap e543: 6 osds: 6 up, 6 in
 pgmap v1736: 256 pgs, 4 pools, 0 bytes data, 0 objects
 267 MB used, 119 GB / 119 GB avail
 256 active+clean

From the ceph -s output, you can see that the health of the Ceph cluster is OK (HEALTH_OK).
There are three Ceph monitor services (running on the three overcloud-controller nodes). Also
shown here are the IP addresses and ports each is listening on.

CHAPTER 8. INVESTIGATING HA CEPH NODES

27

For more information about Red Hat Ceph, see the Red Hat Ceph product page.

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

28

https://access.redhat.com/products/red-hat-ceph-storage/

CHAPTER 9. INVESTIGATING HA COMPUTE NODES

If a compute node fails, Pacemaker attempts to restart the failed services on that node. This includes
starting neutron-ovs-agent, then ceilometer-compute, and finally nova-compute. If the failure
comes from a Swift ACO node, an attempt to restart the Swift services is done in this order: swift-fs,
swift-object, swift-container, and swift-account. Pacemaker will fence the compute node if
starting these services fails.

CHAPTER 9. INVESTIGATING HA COMPUTE NODES

29

APPENDIX A. BUILDING THE RED HAT OPENSTACK
PLATFORM 8 HA ENVIRONMENT

The Red Hat Ceph Storage for the Overcloud guide provides instructions for deploying the type of
highly available OpenStack environment described in this document. The Director Installation and
Usage guide was also used for reference throughout the process.

A.1. HARDWARE SPECIFICATION

The following tables show the specifications used by the deployment tested for this document. For
better results, increase the CPU, memory, storage, or NICs on your own test deployment.

Table A.1. Physical Computers

Number of
Computers

Assigned
as…

CPUs Memory Disk space Power
mgmt.

NICs

1 Director
node

4 6144 MB 40 GB IPMI 2 (1
external; 1
on
Provisionin
g) + 1 IPMI

3 Controller
nodes

4 6144 MB 40 GB IPMI 3 (2
bonded on
Overcloud;
1 on
Provisionin
g) + 1 IPMI

3 Ceph
Storage
nodes

4 6144 MB 40 GB IPMI 3 (2
bonded on
Overcloud;
1 on
Provisionin
g) + 1 IPMI

2 Compute
node (add
more as
needed)

4 6144 MB 40 GB IPMI 3 (2
bonded on
Overcloud;
1 on
Provisionin
g) + 1 IPMI

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

30

https://access.redhat.com/documentation/en/red-hat-openstack-platform/version-8/red-hat-ceph-storage-for-the-overcloud/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/director-installation-and-usage/director-installation-and-usage

The following list describes the general functions and connections associated with each non-director
assignment:

Controller nodes

Most OpenStack services, other than storage, run on these controller nodes. All services are
replicated across the three nodes (some active-active; some active-passive). Three nodes
are required for reliable HA.

Ceph storage nodes

Storage services run on these nodes, providing pools of Ceph storage areas to the compute
nodes. Again, three nodes are needed for HA.

Compute nodes

Virtual machines actually run on these compute nodes. You can have as many compute
nodes as you need to meet your capacity requirements, including the ability to shut down
compute nodes and migrate virtual machines between those nodes. Compute nodes must
be connected to the storage network (so the VMs can access storage) and Tenant network
(so VMs can access VMs on other compute nodes and also access public networks, to
make their services available).

Table A.2. Physical and Virtual Networks

Physical NICs Reason for Network VLANs Used to…

eth0 Provisioning network
(undercloud)

N/A Manage all nodes from
director (undercloud)

eth1 and eth2 Controller/External
(overcloud)

N/A Bonded NICs with
VLANs

External Network VLAN 100 Allow access from

outside world to Tenant
networks, Internal API,
and OpenStack
Horizon Dashboard

Internal API VLAN 201 Provide access to the

internal API between
compute and controller
nodes

Storage access VLAN 202 Connect compute

nodes to underlying
Storage media

APPENDIX A. BUILDING THE RED HAT OPENSTACK PLATFORM 8 HA ENVIRONMENT

31

Storage management VLAN 203 Manage storage media

Tenant network VLAN 204 Provide tenant network

services to OpenStack

Physical NICs Reason for Network VLANs Used to…

The following are also required:

Provisioning network switch

This switch must be able to connect the director system (undercloud) to all computers in the
Red Hat OpenStack Platform 8 environment (overcloud). The NIC on each overcloud node
that is connected to this switch must be able to PXE boot from the director. Also check that
the switch has portfast set to enabled.

Controller/External network switch

This switch must be configured to do VLAN tagging for the VLANs shown in Figure 1. Only
VLAN 100 traffic should be allowed to external networks.

Fencing Hardware

Hardware defined for use with Pacemaker is supported in this configuration. Supported
fencing devices can be determined using the Pacemaker tool stonith. See Fencing the
Controller Nodes of the the Director Installation and Usage guide for details.

A.2. UNDERCLOUD CONFIGURATION FILES

This section shows relevant configuration files from the test configuration used for this document. If
you change IP address ranges, consider making a diagram similar to Figure 1.1, “OpenStack HA
environment deployed through director” to track your resulting address settings.

instackenv.json

{
 "nodes": [
 {
 "pm_password": "testpass",
 "memory": "6144",
 "pm_addr": "10.100.0.11",
 "mac": [
 "2c:c2:60:3b:b3:94"
],
 "pm_type": "pxe_ipmitool",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

32

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/director-installation-and-usage/86-fencing-the-controller-nodes
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/director-installation-and-usage/director-installation-and-usage

 "pm_password": "testpass",
 "memory": "6144",
 "pm_addr": "10.100.0.12",
 "mac": [
 "2c:c2:60:51:b7:fb"
],
 "pm_type": "pxe_ipmitool",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "6144",
 "pm_addr": "10.100.0.13",
 "mac": [
 "2c:c2:60:76:ce:a5"
],
 "pm_type": "pxe_ipmitool",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "6144",
 "pm_addr": "10.100.0.51",
 "mac": [
 "2c:c2:60:08:b1:e2"
],
 "pm_type": "pxe_ipmitool",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "6144",
 "pm_addr": "10.100.0.52",
 "mac": [
 "2c:c2:60:20:a1:9e"
],
 "pm_type": "pxe_ipmitool",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "6144",
 "pm_addr": "10.100.0.53",
 "mac": [

APPENDIX A. BUILDING THE RED HAT OPENSTACK PLATFORM 8 HA ENVIRONMENT

33

 "2c:c2:60:58:10:33"
],
 "pm_type": "pxe_ipmitool",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "6144",
 "pm_addr": "10.100.0.101",
 "mac": [
 "2c:c2:60:31:a9:55"
],
 "pm_type": "pxe_ipmitool",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "2",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "6144",
 "pm_addr": "10.100.0.102",
 "mac": [
 "2c:c2:60:0d:e7:d1"
],
 "pm_type": "pxe_ipmitool",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "2",
 "pm_user": "admin"
 }
],
 "overcloud": {"password":
"7adbbbeedc5b7a07ba1917e1b3b228334f9a2d4e",
 "endpoint": "http://192.168.1.150:5000/v2.0/"
 }
}

undercloud.conf

[DEFAULT]
image_path = /home/stack/images
local_ip = 10.200.0.1/24
undercloud_public_vip = 10.200.0.2
undercloud_admin_vip = 10.200.0.3
undercloud_service_certificate = /etc/pki/instack-certs/undercloud.pem
local_interface = eth0
masquerade_network = 10.200.0.0/24
dhcp_start = 10.200.0.5
dhcp_end = 10.200.0.24
network_cidr = 10.200.0.0/24
network_gateway = 10.200.0.1

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

34

#discovery_interface = br-ctlplane
discovery_iprange = 10.200.0.150,10.200.0.200
discovery_runbench = 1
undercloud_admin_password = testpass
...

network-environment.yaml

resource_registry:
 OS::TripleO::BlockStorage::Net::SoftwareConfig:
/home/stack/templates/nic-configs/cinder-storage.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig:
/home/stack/templates/nic-configs/controller.yaml
 OS::TripleO::ObjectStorage::Net::SoftwareConfig:
/home/stack/templates/nic-configs/swift-storage.yaml
 OS::TripleO::CephStorage::Net::SoftwareConfig:
/home/stack/templates/nic-configs/ceph-storage.yaml

parameter_defaults:
 InternalApiNetCidr: 172.16.0.0/24
 TenantNetCidr: 172.17.0.0/24
 StorageNetCidr: 172.18.0.0/24
 StorageMgmtNetCidr: 172.19.0.0/24
 ExternalNetCidr: 192.168.1.0/24
 InternalApiAllocationPools: [{'start': '172.16.0.10', 'end':
'172.16.0.200'}]
 TenantAllocationPools: [{'start': '172.17.0.10', 'end':
'172.17.0.200'}]
 StorageAllocationPools: [{'start': '172.18.0.10', 'end':
'172.18.0.200'}]
 StorageMgmtAllocationPools: [{'start': '172.19.0.10', 'end':
'172.19.0.200'}]
 # Leave room for floating IPs in the External allocation pool
 ExternalAllocationPools: [{'start': '192.168.1.150', 'end':
'192.168.1.199'}]
 InternalApiNetworkVlanID: 201
 StorageNetworkVlanID: 202
 StorageMgmtNetworkVlanID: 203
 TenantNetworkVlanID: 204
 ExternalNetworkVlanID: 100
 # Set to the router gateway on the external network
 ExternalInterfaceDefaultRoute: 192.168.1.1
 # Set to "br-ex" if using floating IPs on native VLAN on bridge br-ex
 NeutronExternalNetworkBridge: "''"
 # Customize bonding options if required
 BondInterfaceOvsOptions:
 "bond_mode=active-backup lacp=off other_config:bond-miimon-
interval=100"

A.3. OVERCLOUD CONFIGURATION FILES

APPENDIX A. BUILDING THE RED HAT OPENSTACK PLATFORM 8 HA ENVIRONMENT

35

The following configuration files reflect the actual overcloud settings from the deployment used for
this document.

/etc/haproxy/haproxy.cfg (Controller Nodes)

This file identifies the services that HAProxy manages. It contains the settings that define the
services monitored by HAProxy. This file exists and is the same on all Controller nodes.

This file managed by Puppet
global
 daemon
 group haproxy
 log /dev/log local0
 maxconn 10000
 pidfile /var/run/haproxy.pid
 user haproxy

defaults
 log global
 mode tcp
 option tcpka
 option tcplog
 retries 3
 timeout http-request 10s
 timeout queue 1m
 timeout connect 10s
 timeout client 1m
 timeout server 1m
 timeout check 10s

listen ceilometer
 bind 172.16.0.10:8777
 bind 192.168.1.150:8777
 server overcloud-controller-0 172.16.0.13:8777 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:8777 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:8777 check fall 5 inter
2000 rise 2

listen cinder
 bind 172.16.0.10:8776
 bind 192.168.1.150:8776
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:8776 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:8776 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:8776 check fall 5 inter
2000 rise 2

listen glance_api
 bind 172.18.0.10:9292
 bind 192.168.1.150:9292
 option httpchk GET /
 server overcloud-controller-0 172.18.0.17:9292 check fall 5 inter

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

36

2000 rise 2
 server overcloud-controller-1 172.18.0.15:9292 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.18.0.16:9292 check fall 5 inter
2000 rise 2

listen glance_registry
 bind 172.16.0.10:9191
 server overcloud-controller-0 172.16.0.13:9191 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:9191 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:9191 check fall 5 inter
2000 rise 2

listen haproxy.stats
 bind 10.200.0.6:1993
 mode http
 stats enable
 stats uri /

listen heat_api
 bind 172.16.0.10:8004
 bind 192.168.1.150:8004
 mode http
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:8004 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:8004 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:8004 check fall 5 inter
2000 rise 2

listen heat_cfn
 bind 172.16.0.10:8000
 bind 192.168.1.150:8000
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:8000 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:8000 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:8000 check fall 5 inter
2000 rise 2

listen heat_cloudwatch
 bind 172.16.0.10:8003
 bind 192.168.1.150:8003
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:8003 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:8003 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:8003 check fall 5 inter
2000 rise 2

listen horizon

APPENDIX A. BUILDING THE RED HAT OPENSTACK PLATFORM 8 HA ENVIRONMENT

37

 bind 172.16.0.10:80
 bind 192.168.1.150:80
 cookie SERVERID insert indirect nocache
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:80 check fall 5 inter 2000
rise 2
 server overcloud-controller-1 172.16.0.14:80 check fall 5 inter 2000
rise 2
 server overcloud-controller-2 172.16.0.15:80 check fall 5 inter 2000
rise 2

listen keystone_admin
 bind 172.16.0.10:35357
 bind 192.168.1.150:35357
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:35357 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:35357 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:35357 check fall 5 inter
2000 rise 2

listen keystone_public
 bind 172.16.0.10:5000
 bind 192.168.1.150:5000
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:5000 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:5000 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:5000 check fall 5 inter
2000 rise 2

listen mysql
 bind 172.16.0.10:3306
 option httpchk
 stick on dst
 stick-table type ip size 1000
 timeout client 0
 timeout server 0
 server overcloud-controller-0 172.16.0.13:3306 backup check fall 5
inter 2000 on-marked-down shutdown-sessions port 9200 rise 2
 server overcloud-controller-1 172.16.0.14:3306 backup check fall 5
inter 2000 on-marked-down shutdown-sessions port 9200 rise 2
 server overcloud-controller-2 172.16.0.15:3306 backup check fall 5
inter 2000 on-marked-down shutdown-sessions port 9200 rise 2

listen neutron
 bind 172.16.0.10:9696
 bind 192.168.1.150:9696
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:9696 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:9696 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:9696 check fall 5 inter

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

38

2000 rise 2

listen nova_ec2
 bind 172.16.0.10:8773
 bind 192.168.1.150:8773
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:8773 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:8773 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:8773 check fall 5 inter
2000 rise 2

listen nova_metadata
 bind 172.16.0.10:8775
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:8775 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:8775 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:8775 check fall 5 inter
2000 rise 2

listen nova_novncproxy
 bind 172.16.0.10:6080
 bind 192.168.1.150:6080
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:6080 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:6080 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:6080 check fall 5 inter
2000 rise 2

listen nova_osapi
 bind 172.16.0.10:8774
 bind 192.168.1.150:8774
 option httpchk GET /
 server overcloud-controller-0 172.16.0.13:8774 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:8774 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.16.0.15:8774 check fall 5 inter
2000 rise 2

listen redis
 bind 172.16.0.11:6379
 balance first
 option tcp-check
 tcp-check send info\ replication\r\n
 tcp-check expect string role:master
 timeout client 0
 timeout server 0
 server overcloud-controller-0 172.16.0.13:6379 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.16.0.14:6379 check fall 5 inter

APPENDIX A. BUILDING THE RED HAT OPENSTACK PLATFORM 8 HA ENVIRONMENT

39

2000 rise 2
 server overcloud-controller-2 172.16.0.15:6379 check fall 5 inter
2000 rise 2

listen swift_proxy_server
 bind 172.18.0.10:8080
 bind 192.168.1.150:8080
 option httpchk GET /info
 server overcloud-controller-0 172.18.0.17:8080 check fall 5 inter
2000 rise 2
 server overcloud-controller-1 172.18.0.15:8080 check fall 5 inter
2000 rise 2
 server overcloud-controller-2 172.18.0.16:8080 check fall 5 inter
2000 rise 2

/etc/corosync/corosync.conf file (Controller Nodes)

This file defines the cluster infrastructure, and is available on all Controller nodes.

totem {
version: 2
secauth: off
cluster_name: tripleo_cluster
transport: udpu
}

nodelist {
 node {
 ring0_addr: overcloud-controller-0
 nodeid: 1
 }
 node {
 ring0_addr: overcloud-controller-1
 nodeid: 2
 }
 node {
 ring0_addr: overcloud-controller-2
 nodeid: 3
 }
}

quorum {
provider: corosync_votequorum

}

logging {
to_syslog: yes
}

/etc/ceph/ceph.conf (Ceph Nodes)

This file contains Ceph high availability settings, including the hostnames and IP addresses of
monitoring hosts.

Red Hat OpenStack Platform 8 Understanding Red Hat OpenStack Platform High Availability

40

[global]
osd_pool_default_pgp_num = 128
osd_pool_default_min_size = 1
auth_service_required = cephx
mon_initial_members = overcloud-controller-0,overcloud-controller-
1,overcloud-controller-2
fsid = 8c835acc-6838-11e5-bb96-2cc260178a92
cluster_network = 172.19.0.11/24
auth_supported = cephx
auth_cluster_required = cephx
mon_host = 172.18.0.17,172.18.0.15,172.18.0.16
auth_client_required = cephx
osd_pool_default_size = 3
osd_pool_default_pg_num = 128
public_network = 172.18.0.17/24

APPENDIX A. BUILDING THE RED HAT OPENSTACK PLATFORM 8 HA ENVIRONMENT

41

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. UNDERSTANDING RED HAT OPENSTACK PLATFORM HIGH AVAILABILITY FEATURES
	CHAPTER 3. GETTING INTO YOUR OPENSTACK HA ENVIRONMENT
	CHAPTER 4. USING PACEMAKER
	4.1. GENERAL PACEMAKER INFORMATION
	4.2. VIRTUAL IP ADDRESSES CONFIGURED IN PACEMAKER
	4.3. OPENSTACK SERVICES CONFIGURED IN PACEMAKER
	4.4. PACEMAKER FAILED ACTIONS
	4.5. OTHER PACEMAKER INFORMATION FOR CONTROLLERS
	4.6. FENCING HARDWARE

	CHAPTER 5. USING HAPROXY
	5.1. HAPROXY STATS
	5.2. REFERENCES

	CHAPTER 6. USING GALERA
	6.1. INVESTIGATING DATABASE CLUSTER INTEGRITY
	6.2. INVESTIGATING DATABASE CLUSTER NODE
	6.3. INVESTIGATING DATABASE REPLICATION PERFORMANCE

	CHAPTER 7. INVESTIGATING AND FIXING HA CONTROLLER RESOURCES
	7.1. CORRECTING RESOURCE PROBLEMS ON CONTROLLERS

	CHAPTER 8. INVESTIGATING HA CEPH NODES
	CHAPTER 9. INVESTIGATING HA COMPUTE NODES
	APPENDIX A. BUILDING THE RED HAT OPENSTACK PLATFORM 8 HA ENVIRONMENT
	A.1. HARDWARE SPECIFICATION
	A.2. UNDERCLOUD CONFIGURATION FILES
	A.3. OVERCLOUD CONFIGURATION FILES

