
Red Hat OpenStack Platform 16.2

High Availability Deployment and Usage

Planning, deploying, and managing high availability in Red Hat OpenStack Platform

Last Updated: 2023-11-09

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

Planning, deploying, and managing high availability in Red Hat OpenStack Platform

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

To keep your OpenStack environment up and running efficiently, use the Red Hat OpenStack
Platform director to create configurations that offer high availability and load-balancing across all
major services in OpenStack.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. RED HAT OPENSTACK PLATFORM HIGH AVAILABILITY OVERVIEW AND PLANNING
1.1. RED HAT OPENSTACK PLATFORM HIGH AVAILABILITY SERVICES

1.1.1. Service types
1.1.2. Service modes

1.2. PLANNING HIGH AVAILABILITY HARDWARE ASSIGNMENTS
1.3. PLANNING HIGH AVAILABILITY NETWORKING
1.4. ACCESSING THE HIGH AVAILABILITY ENVIRONMENT
1.5. ADDITIONAL RESOURCES

CHAPTER 2. EXAMPLE DEPLOYMENT: HIGH AVAILABILITY CLUSTER WITH COMPUTE AND CEPH
2.1. EXAMPLE HIGH AVAILABILITY HARDWARE SPECIFICATIONS
2.2. EXAMPLE HIGH AVAILABILITY NETWORK SPECIFICATIONS
2.3. EXAMPLE HIGH AVAILABILITY UNDERCLOUD CONFIGURATION FILES
2.4. EXAMPLE HIGH AVAILABILITY OVERCLOUD CONFIGURATION FILES
2.5. ADDITIONAL RESOURCES

CHAPTER 3. MANAGING HIGH AVAILABILITY SERVICES WITH PACEMAKER
3.1. PACEMAKER RESOURCE BUNDLES AND CONTAINERS

3.1.1. Simple Bundle Set resources (simple bundles)
3.1.2. Complex Bundle Set resources (complex bundles)

3.2. CHECKING PACEMAKER CLUSTER STATUS
3.3. CHECKING BUNDLE STATUS IN A HIGH AVAILABILITY CLUSTER
3.4. VIEWING RESOURCE INFORMATION FOR VIRTUAL IPS IN A HIGH AVAILABILITY CLUSTER
3.5. VIEWING NETWORK INFORMATION FOR VIRTUAL IPS IN A HIGH AVAILABILITY CLUSTER
3.6. CHECKING FENCING AGENT AND PACEMAKER DAEMON STATUS
3.7. ADDITIONAL RESOURCES

CHAPTER 4. FENCING CONTROLLER NODES WITH STONITH
4.1. SUPPORTED FENCING AGENTS
4.2. DEPLOYING FENCING ON THE OVERCLOUD
4.3. TESTING FENCING ON THE OVERCLOUD
4.4. VIEWING STONITH DEVICE INFORMATION
4.5. FENCING PARAMETERS
4.6. ADDITIONAL RESOURCES

CHAPTER 5. LOAD BALANCING TRAFFIC WITH HAPROXY
5.1. HOW HAPROXY WORKS
5.2. VIEWING HAPROXY STATS
5.3. ADDITIONAL RESOURCES

CHAPTER 6. MANAGING DATABASE REPLICATION WITH GALERA
6.1. VERIFYING HOSTNAME RESOLUTION IN A MARIADB CLUSTER
6.2. CHECKING MARIADB CLUSTER INTEGRITY
6.3. CHECKING DATABASE NODE INTEGRITY IN A MARIADB CLUSTER
6.4. TESTING DATABASE REPLICATION PERFORMANCE IN A MARIADB CLUSTER
6.5. ADDITIONAL RESOURCES

CHAPTER 7. TROUBLESHOOTING HIGH AVAILABILITY RESOURCES
7.1. VIEWING RESOURCE CONSTRAINTS IN A HIGH AVAILABILITY CLUSTER

4

5

6
6
6
6
7
7
8
8

9
9

10
11

14
20

21
21
21
22
24
25
26
27
29
30

31
31
32
35
36
37
38

39
39
40
40

42
42
43
44
45
48

49
49

Table of Contents

1

. .

7.2. INVESTIGATING PACEMAKER RESOURCE PROBLEMS
7.3. INVESTIGATING SYSTEMD RESOURCE PROBLEMS

CHAPTER 8. MONITORING A HIGH AVAILABILITY RED HAT CEPH STORAGE CLUSTER
8.1. CHECKING RED HAT CEPH MONITORING SERVICE STATUS
8.2. CHECKING RED HAT CEPH MONITORING CONFIGURATION
8.3. CHECKING RED HAT CEPH NODE STATUS
8.4. ADDITIONAL RESOURCES

51
52

54
54
54
55
55

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

5

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. RED HAT OPENSTACK PLATFORM HIGH
AVAILABILITY OVERVIEW AND PLANNING

Red Hat OpenStack Platform (RHOSP) high availability (HA) is a collection of services that orchestrate
failover and recovery for your deployment. When you plan your HA deployment, ensure that you review
the considerations for different aspects of the environment, such as hardware assignments and network
configuration.

1.1. RED HAT OPENSTACK PLATFORM HIGH AVAILABILITY SERVICES

Red Hat OpenStack Platform (RHOSP) employs several technologies to provide the services required
to implement high availability (HA). These services include Galera, RabbitMQ, Redis, HAProxy,
individual services that Pacemaker manages, and Systemd and plain container services that Podman
manages.

1.1.1. Service types

Core container

Core container services are Galera, RabbitMQ, Redis, and HAProxy. These services run on all
Controller nodes and require specific management and constraints for the start, stop and restart
actions. You use Pacemaker to launch, manage, and troubleshoot core container services.

NOTE

RHOSP uses the MariaDB Galera Cluster to manage database replication.

Active-passive

Active-passive services run on one Controller node at a time, and include services such as
openstack-cinder-volume. To move an active-passive service, you must use Pacemaker to ensure
that the correct stop-start sequence is followed.

Systemd and plain container

Systemd and plain container services are independent services that can withstand a service
interruption. Therefore, if you restart a high availability service such as Galera, you do not need to
manually restart any other service, such as nova-api. You can use systemd or Podman to directly
manage systemd and plain container services.
When orchestrating your HA deployment, director uses templates and Puppet modules to ensure
that all services are configured and launched correctly. In addition, when troubleshooting HA issues,
you must interact with services in the HA framework using the podman command or the systemctl
command.

1.1.2. Service modes

HA services can run in one of the following modes:

Active-active

Pacemaker runs the same service on multiple Controller nodes, and uses HAProxy to distribute
traffic across the nodes or to a specific Controller with a single IP address. In some cases, HAProxy
distributes traffic to active-active services with Round Robin scheduling. You can add more
Controller nodes to improve performance.

IMPORTANT

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

6

https://mariadb.com/kb/en/mariadb/what-is-mariadb-galera-cluster/

IMPORTANT

Active-active mode is supported only in distributed compute node (DCN)
architecture at Edge sites.

Active-passive

Services that are unable to run in active-active mode must run in active-passive mode. In this mode,
only one instance of the service is active at a time. For example, HAProxy uses stick-table options to
direct incoming Galera database connection requests to a single back-end service. This helps
prevent too many simultaneous connections to the same data from multiple Galera nodes.

1.2. PLANNING HIGH AVAILABILITY HARDWARE ASSIGNMENTS

When you plan hardware assignments, consider the number of nodes that you want to run in your
deployment, as well as the number of Virtual Machine (vm) instances that you plan to run on Compute
nodes.

Controller nodes

Most non-storage services run on Controller nodes. All services are replicated across the three
nodes and are configured as active-active or active-passive services. A high availability (HA)
environment requires a minimum of three nodes.

Red Hat Ceph Storage nodes

Storage services run on these nodes and provide pools of Red Hat Ceph Storage areas to the
Compute nodes. A minimum of three nodes are required.

Compute nodes

Virtual machine (VM) instances run on Compute nodes. You can deploy as many Compute nodes as
you need to meet your capacity requirements, as well as migration and reboot operations. You must
connect Compute nodes to the storage network and to the project network to ensure that VMs can
access storage nodes, VMs on other Compute nodes, and public networks.

STONITH

You must configure a STONITH device for each node that is a part of the Pacemaker cluster in a
highly available overcloud. Deploying a highly available overcloud without STONITH is not supported.
For more information on STONITH and Pacemaker, see Fencing in a Red Hat High Availability Cluster
and Support Policies for RHEL High Availability Clusters .

1.3. PLANNING HIGH AVAILABILITY NETWORKING

When you plan the virtual and physical networks, consider the provisioning network switch configuration
and the external network switch configuration.

In addition to the network configuration, you must deploy the following components:

Provisioning network switch

This switch must be able to connect the undercloud to all the physical computers in the
overcloud.

The NIC on each overcloud node that is connected to this switch must be able to PXE boot
from the undercloud.

The portfast parameter must be enabled.

CHAPTER 1. RED HAT OPENSTACK PLATFORM HIGH AVAILABILITY OVERVIEW AND PLANNING

7

https://access.redhat.com/solutions/15575
https://access.redhat.com/articles/2881341

Controller/External network switch

This switch must be configured to perform VLAN tagging for the other VLANs in the
deployment.

Allow only VLAN 100 traffic to external networks.

Networking hardware and keystone endpoint

To prevent a Controller node network card or network switch failure disrupting overcloud
services availability, ensure that the keystone admin endpoint is located on a network that
uses bonded network cards or networking hardware redundancy.
If you move the keystone endpoint to a different network, such as internal_api, ensure that
the undercloud can reach the VLAN or subnet. For more information, see the Red Hat
Knowledgebase solution How to migrate Keystone Admin Endpoint to internal_api network .

1.4. ACCESSING THE HIGH AVAILABILITY ENVIRONMENT

To investigate high availability (HA) nodes, use the stack user to log in to the overcloud nodes and run
the openstack server list command to view the status and details of the nodes.

Prerequisites

High availability is deployed and running.

Procedure

1. In a running HA environment, log in to the undercloud as the stack user.

2. Identify the IP addresses of your overcloud nodes:

$ source ~/stackrc
(undercloud) $ openstack server list
 +-------+------------------------+---+----------------------+---+
 | ID | Name |...| Networks |...|
 +-------+------------------------+---+----------------------+---+
 | d1... | overcloud-controller-0 |...| ctlplane=*10.200.0.11* |...|
 ...

3. Log in to one of the overcloud nodes:

(undercloud) $ ssh heat-admin@<node_IP>

Replace <node_ip> with the IP address of the node that you want to log in to.

1.5. ADDITIONAL RESOURCES

Chapter 2, Example deployment: High availability cluster with Compute and Ceph

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

8

https://access.redhat.com/solutions/4911721

CHAPTER 2. EXAMPLE DEPLOYMENT: HIGH AVAILABILITY
CLUSTER WITH COMPUTE AND CEPH

This example scenario shows the architecture, hardware and network specifications, and the undercloud
and overcloud configuration files for a high availability deployment with the OpenStack Compute
service and Red Hat Ceph Storage.

IMPORTANT

This deployment is intended to use as a reference for test environments and is not
supported for production environments.

Figure 2.1. Example high availability deployment architecture

2.1. EXAMPLE HIGH AVAILABILITY HARDWARE SPECIFICATIONS

The example HA deployment uses a specific hardware configuration. You can adjust the CPU, memory,
storage, or NICs as needed in your own test deployment.

CHAPTER 2. EXAMPLE DEPLOYMENT: HIGH AVAILABILITY CLUSTER WITH COMPUTE AND CEPH

9

Table 2.1. Physical computers

Number of
Computers

Purpose CPUs Memory Disk Space Power
Manageme
nt

NICs

1 undercloud
node

4 24 GB 40 GB IPMI 2 (1 external;
1 on
provisioning
) + 1 IPMI

3 Controller
nodes

4 24 GB 40 GB IPMI 3 (2 bonded
on
overcloud; 1
on
provisioning
) + 1 IPMI

3 Ceph
Storage
nodes

4 24 GB 40 GB IPMI 3 (2 bonded
on
overcloud; 1
on
provisioning
) + 1 IPMI

2 Compute
nodes (add
more as
needed)

4 24 GB 40 GB IPMI 3 (2 bonded
on
overcloud; 1
on
provisioning
) + 1 IPMI

2.2. EXAMPLE HIGH AVAILABILITY NETWORK SPECIFICATIONS

The example HA deployment uses a specific virtual and physical network configuration. You can adjust
the configuration as needed in your own test deployment.

NOTE

This example does not include hardware redundancy for the control plane and the
provisioning network where the overcloud keystone admin endpoint is configured. For
information about planning your high availability networking, see Section 1.3, “Planning
high availability networking”.

Table 2.2. Physical and virtual networks

Physical NICs Purpose VLANs Description

eth0 Provisioning network
(undercloud)

N/A Manages all nodes from
director (undercloud)

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

10

eth1 and eth2 Controller/External
(overcloud)

N/A Bonded NICs with
VLANs

 External network VLAN 100 Allows access from
outside the environment
to the project networks,
internal API, and
OpenStack Horizon
Dashboard

 Internal API VLAN 201 Provides access to the
internal API between
Compute nodes and
Controller nodes

 Storage access VLAN 202 Connects Compute
nodes to storage media

 Storage management VLAN 203 Manages storage media

 Project network VLAN 204 Provides project
network services to
RHOSP

Physical NICs Purpose VLANs Description

2.3. EXAMPLE HIGH AVAILABILITY UNDERCLOUD CONFIGURATION
FILES

The example HA deployment uses the undercloud configuration files instackenv.json,
undercloud.conf, and network-environment.yaml.

instackenv.json

{
 "nodes": [
 {
 "pm_password": "testpass",
 "memory": "24",
 "pm_addr": "10.100.0.11",
 "mac": [
 "2c:c2:60:3b:b3:94"
],
 "pm_type": "ipmi",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {

CHAPTER 2. EXAMPLE DEPLOYMENT: HIGH AVAILABILITY CLUSTER WITH COMPUTE AND CEPH

11

 "pm_password": "testpass",
 "memory": "24",
 "pm_addr": "10.100.0.12",
 "mac": [
 "2c:c2:60:51:b7:fb"
],
 "pm_type": "ipmi",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "24",
 "pm_addr": "10.100.0.13",
 "mac": [
 "2c:c2:60:76:ce:a5"
],
 "pm_type": "ipmi",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "24",
 "pm_addr": "10.100.0.51",
 "mac": [
 "2c:c2:60:08:b1:e2"
],
 "pm_type": "ipmi",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "24",
 "pm_addr": "10.100.0.52",
 "mac": [
 "2c:c2:60:20:a1:9e"
],
 "pm_type": "ipmi",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "24",
 "pm_addr": "10.100.0.53",
 "mac": [

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

12

 "2c:c2:60:58:10:33"
],
 "pm_type": "ipmi",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "1",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "24",
 "pm_addr": "10.100.0.101",
 "mac": [
 "2c:c2:60:31:a9:55"
],
 "pm_type": "ipmi",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "2",
 "pm_user": "admin"
 },
 {
 "pm_password": "testpass",
 "memory": "24",
 "pm_addr": "10.100.0.102",
 "mac": [
 "2c:c2:60:0d:e7:d1"
],
 "pm_type": "ipmi",
 "disk": "40",
 "arch": "x86_64",
 "cpu": "2",
 "pm_user": "admin"
 }
],
 "overcloud": {"password": "7adbbbeedc5b7a07ba1917e1b3b228334f9a2d4e",
 "endpoint": "http://192.168.1.150:5000/v2.0/"
 }
}

undercloud.conf

[DEFAULT]
image_path = /home/stack/images
local_ip = 10.200.0.1/24
undercloud_public_vip = 10.200.0.2
undercloud_admin_vip = 10.200.0.3
undercloud_service_certificate = /etc/pki/instack-certs/undercloud.pem
local_interface = eth0
masquerade_network = 10.200.0.0/24
dhcp_start = 10.200.0.5
dhcp_end = 10.200.0.24
network_cidr = 10.200.0.0/24
network_gateway = 10.200.0.1
#discovery_interface = br-ctlplane
discovery_iprange = 10.200.0.150,10.200.0.200

CHAPTER 2. EXAMPLE DEPLOYMENT: HIGH AVAILABILITY CLUSTER WITH COMPUTE AND CEPH

13

discovery_runbench = 1
undercloud_admin_password = testpass
...

network-environment.yaml

resource_registry:
 OS::TripleO::BlockStorage::Net::SoftwareConfig: /home/stack/templates/nic-configs/cinder-
storage.yaml
 OS::TripleO::Compute::Net::SoftwareConfig: /home/stack/templates/nic-configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-configs/controller.yaml
 OS::TripleO::ObjectStorage::Net::SoftwareConfig: /home/stack/templates/nic-configs/swift-
storage.yaml
 OS::TripleO::CephStorage::Net::SoftwareConfig: /home/stack/templates/nic-configs/ceph-
storage.yaml

parameter_defaults:
 InternalApiNetCidr: 172.16.0.0/24
 TenantNetCidr: 172.17.0.0/24
 StorageNetCidr: 172.18.0.0/24
 StorageMgmtNetCidr: 172.19.0.0/24
 ExternalNetCidr: 192.168.1.0/24
 InternalApiAllocationPools: [{start: 172.16.0.10, end: 172.16.0.200}]
 TenantAllocationPools: [{start: 172.17.0.10, end: 172.17.0.200}]
 StorageAllocationPools: [{start: 172.18.0.10, end: 172.18.0.200}]
 StorageMgmtAllocationPools: [{start: 172.19.0.10, end: 172.19.0.200}]
 # Leave room for floating IPs in the External allocation pool
 ExternalAllocationPools: [{start: 192.168.1.150, end: 192.168.1.199}]
 InternalApiNetworkVlanID: 201
 StorageNetworkVlanID: 202
 StorageMgmtNetworkVlanID: 203
 TenantNetworkVlanID: 204
 ExternalNetworkVlanID: 100
 # Set to the router gateway on the external network
 ExternalInterfaceDefaultRoute: 192.168.1.1
 # Set to "br-ex" if using floating IPs on native VLAN on bridge br-ex
 NeutronExternalNetworkBridge: "''"
 # Customize bonding options if required
 BondInterfaceOvsOptions:
 "bond_mode=active-backup lacp=off other_config:bond-miimon-interval=100"

2.4. EXAMPLE HIGH AVAILABILITY OVERCLOUD CONFIGURATION
FILES

The example HA deployment uses the overcloud configuration files haproxy.cfg, corosync.cfg, and
ceph.cfg.

/var/lib/config-data/puppet-generated/haproxy/etc/haproxy/haproxy.cfg (Controller
nodes)

This file identifies the services that HAProxy manages. It contains the settings for the services that
HAProxy monitors. This file is identical on all Controller nodes.

This file is managed by Puppet

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

14

global
 daemon
 group haproxy
 log /dev/log local0
 maxconn 20480
 pidfile /var/run/haproxy.pid
 ssl-default-bind-ciphers
!SSLv2:kEECDH:kRSA:kEDH:kPSK:+3DES:!aNULL:!eNULL:!MD5:!EXP:!RC4:!SEED:!IDEA:!DES
 ssl-default-bind-options no-sslv3
 stats socket /var/lib/haproxy/stats mode 600 level user
 stats timeout 2m
 user haproxy

defaults
 log global
 maxconn 4096
 mode tcp
 retries 3
 timeout http-request 10s
 timeout queue 2m
 timeout connect 10s
 timeout client 2m
 timeout server 2m
 timeout check 10s

listen aodh
 bind 192.168.1.150:8042 transparent
 bind 172.16.0.10:8042 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:8042 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:8042 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:8042 check fall 5 inter 2000 rise 2

listen cinder
 bind 192.168.1.150:8776 transparent
 bind 172.16.0.10:8776 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:8776 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:8776 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:8776 check fall 5 inter 2000 rise 2

listen glance_api
 bind 192.168.1.150:9292 transparent
 bind 172.18.0.10:9292 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk GET /healthcheck
 server overcloud-controller-0.internalapi.localdomain 172.18.0.17:9292 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.18.0.15:9292 check fall 5 inter 2000 rise 2

CHAPTER 2. EXAMPLE DEPLOYMENT: HIGH AVAILABILITY CLUSTER WITH COMPUTE AND CEPH

15

 server overcloud-controller-2.internalapi.localdomain 172.18.0.16:9292 check fall 5 inter 2000 rise 2

listen gnocchi
 bind 192.168.1.150:8041 transparent
 bind 172.16.0.10:8041 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:8041 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:8041 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:8041 check fall 5 inter 2000 rise 2

listen haproxy.stats
 bind 10.200.0.6:1993 transparent
 mode http
 stats enable
 stats uri /
 stats auth admin:PnDD32EzdVCf73CpjHhFGHZdV

listen heat_api
 bind 192.168.1.150:8004 transparent
 bind 172.16.0.10:8004 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 timeout client 10m
 timeout server 10m
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:8004 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:8004 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:8004 check fall 5 inter 2000 rise 2

listen heat_cfn
 bind 192.168.1.150:8000 transparent
 bind 172.16.0.10:8000 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 timeout client 10m
 timeout server 10m
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:8000 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:8000 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:8000 check fall 5 inter 2000 rise 2

listen horizon
 bind 192.168.1.150:80 transparent
 bind 172.16.0.10:80 transparent
 mode http
 cookie SERVERID insert indirect nocache
 option forwardfor
 option httpchk
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:80 check cookie overcloud-
controller-0 fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:80 check cookie overcloud-

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

16

controller-0 fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:80 check cookie overcloud-
controller-0 fall 5 inter 2000 rise 2

listen keystone_admin
 bind 192.168.24.15:35357 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk GET /v3
 server overcloud-controller-0.ctlplane.localdomain 192.168.24.9:35357 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.ctlplane.localdomain 192.168.24.8:35357 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.ctlplane.localdomain 192.168.24.18:35357 check fall 5 inter 2000 rise
2

listen keystone_public
 bind 192.168.1.150:5000 transparent
 bind 172.16.0.10:5000 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk GET /v3
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:5000 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:5000 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:5000 check fall 5 inter 2000 rise 2

listen mysql
 bind 172.16.0.10:3306 transparent
 option tcpka
 option httpchk
 stick on dst
 stick-table type ip size 1000
 timeout client 90m
 timeout server 90m
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:3306 backup check inter 1s on-
marked-down shutdown-sessions port 9200
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:3306 backup check inter 1s on-
marked-down shutdown-sessions port 9200
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:3306 backup check inter 1s on-
marked-down shutdown-sessions port 9200

listen neutron
 bind 192.168.1.150:9696 transparent
 bind 172.16.0.10:9696 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:9696 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:9696 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:9696 check fall 5 inter 2000 rise 2

listen nova_metadata
 bind 172.16.0.10:8775 transparent
 option httpchk
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:8775 check fall 5 inter 2000 rise 2

CHAPTER 2. EXAMPLE DEPLOYMENT: HIGH AVAILABILITY CLUSTER WITH COMPUTE AND CEPH

17

 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:8775 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:8775 check fall 5 inter 2000 rise 2

listen nova_novncproxy
 bind 192.168.1.150:6080 transparent
 bind 172.16.0.10:6080 transparent
 balance source
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option tcpka
 timeout tunnel 1h
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:6080 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:6080 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:6080 check fall 5 inter 2000 rise 2

listen nova_osapi
 bind 192.168.1.150:8774 transparent
 bind 172.16.0.10:8774 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:8774 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:8774 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:8774 check fall 5 inter 2000 rise 2

listen nova_placement
 bind 192.168.1.150:8778 transparent
 bind 172.16.0.10:8778 transparent
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:8778 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:8778 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:8778 check fall 5 inter 2000 rise 2

listen panko
 bind 192.168.1.150:8977 transparent
 bind 172.16.0.10:8977 transparent
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:8977 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:8977 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:8977 check fall 5 inter 2000 rise 2

listen redis
 bind 172.16.0.13:6379 transparent
 balance first
 option tcp-check
 tcp-check send AUTH\ V2EgUh2pvkr8VzU6yuE4XHsr9\r\n
 tcp-check send PING\r\n
 tcp-check expect string +PONG
 tcp-check send info\ replication\r\n
 tcp-check expect string role:master

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

18

 tcp-check send QUIT\r\n
 tcp-check expect string +OK
 server overcloud-controller-0.internalapi.localdomain 172.16.0.13:6379 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.internalapi.localdomain 172.16.0.14:6379 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.internalapi.localdomain 172.16.0.15:6379 check fall 5 inter 2000 rise 2

listen swift_proxy_server
 bind 192.168.1.150:8080 transparent
 bind 172.18.0.10:8080 transparent
 option httpchk GET /healthcheck
 timeout client 2m
 timeout server 2m
 server overcloud-controller-0.storage.localdomain 172.18.0.17:8080 check fall 5 inter 2000 rise 2
 server overcloud-controller-1.storage.localdomain 172.18.0.15:8080 check fall 5 inter 2000 rise 2
 server overcloud-controller-2.storage.localdomain 172.18.0.16:8080 check fall 5 inter 2000 rise 2

/etc/corosync/corosync.conf file (Controller nodes)

This file defines the cluster infrastructure, and is available on all Controller nodes.

totem {
 version: 2
 cluster_name: tripleo_cluster
 transport: udpu
 token: 10000
}

nodelist {
 node {
 ring0_addr: overcloud-controller-0
 nodeid: 1
 }

 node {
 ring0_addr: overcloud-controller-1
 nodeid: 2
 }

 node {
 ring0_addr: overcloud-controller-2
 nodeid: 3
 }
}

quorum {
 provider: corosync_votequorum
}

logging {
 to_logfile: yes
 logfile: /var/log/cluster/corosync.log
 to_syslog: yes
}

CHAPTER 2. EXAMPLE DEPLOYMENT: HIGH AVAILABILITY CLUSTER WITH COMPUTE AND CEPH

19

/etc/ceph/ceph.conf (Ceph nodes)

This file contains Ceph high availability settings, including the hostnames and IP addresses of the
monitoring hosts.

[global]
osd_pool_default_pgp_num = 128
osd_pool_default_min_size = 1
auth_service_required = cephx
mon_initial_members = overcloud-controller-0,overcloud-controller-1,overcloud-controller-2
fsid = 8c835acc-6838-11e5-bb96-2cc260178a92
cluster_network = 172.19.0.11/24
auth_supported = cephx
auth_cluster_required = cephx
mon_host = 172.18.0.17,172.18.0.15,172.18.0.16
auth_client_required = cephx
osd_pool_default_size = 3
osd_pool_default_pg_num = 128
public_network = 172.18.0.17/24

2.5. ADDITIONAL RESOURCES

Deploying an Overcloud with Containerized Red Hat Ceph

Chapter 1, Red Hat OpenStack Platform high availability overview and planning

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

20

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/

CHAPTER 3. MANAGING HIGH AVAILABILITY SERVICES WITH
PACEMAKER

The Pacemaker service manages core container and active-passive services, such as Galera, RabbitMQ,
Redis, and HAProxy. You use Pacemaker to view and manage general information about the managed
services, virtual IP addresses, power management, and fencing.

3.1. PACEMAKER RESOURCE BUNDLES AND CONTAINERS

Pacemaker manages Red Hat OpenStack Platform (RHOSP) services as Bundle Set resources, or
bundles. Most of these services are active-active services that start in the same way and always run on
each Controller node.

Pacemaker manages the following resource types:

Bundle

A bundle resource configures and replicates the same container on all Controller nodes, maps the
necessary storage paths to the container directories, and sets specific attributes related to the
resource itself.

Container

A container can run different kinds of resources, from simple systemd services like HAProxy to
complex services like Galera, which requires specific resource agents that control and set the state
of the service on the different nodes.

IMPORTANT

You cannot use podman or systemctl to manage bundles or containers. You can
use the commands to check the status of the services, but you must use
Pacemaker to perform actions on these services.

Podman containers that Pacemaker controls have a RestartPolicy set to no by
Podman. This is to ensure that Pacemaker, and not Podman, controls the
container start and stop actions.

3.1.1. Simple Bundle Set resources (simple bundles)

A simple Bundle Set resource, or simple bundle, is a set of containers that each include the same
Pacemaker services that you want to deploy across the Controller nodes.

The following example shows a list of simple bundles from the output of the pcs status command:

Podman container set: haproxy-bundle [192.168.24.1:8787/rhosp-rhel8/openstack-
haproxy:pcmklatest]
 haproxy-bundle-podman-0 (ocf::heartbeat:podman): Started overcloud-controller-0
 haproxy-bundle-podman-1 (ocf::heartbeat:podman): Started overcloud-controller-1
 haproxy-bundle-podman-2 (ocf::heartbeat:podman): Started overcloud-controller-2

For each bundle, you can see the following details:

The name that Pacemaker assigns to the service.

The reference to the container that is associated with the bundle.

CHAPTER 3. MANAGING HIGH AVAILABILITY SERVICES WITH PACEMAKER

21

The list and status of replicas that are running on the different Controller nodes.

The following example shows the settings for the haproxy-bundle simple bundle:

$ sudo pcs resource show haproxy-bundle
Bundle: haproxy-bundle
 Podman: image=192.168.24.1:8787/rhosp-rhel8/openstack-haproxy:pcmklatest network=host
options="--user=root --log-driver=journald -e KOLLA_CONFIG_STRATEGY=COPY_ALWAYS"
replicas=3 run-command="/bin/bash /usr/local/bin/kolla_start"
 Storage Mapping:
 options=ro source-dir=/var/lib/kolla/config_files/haproxy.json target-
dir=/var/lib/kolla/config_files/config.json (haproxy-cfg-files)
 options=ro source-dir=/var/lib/config-data/puppet-generated/haproxy/ target-
dir=/var/lib/kolla/config_files/src (haproxy-cfg-data)
 options=ro source-dir=/etc/hosts target-dir=/etc/hosts (haproxy-hosts)
 options=ro source-dir=/etc/localtime target-dir=/etc/localtime (haproxy-localtime)
 options=ro source-dir=/etc/pki/ca-trust/extracted target-dir=/etc/pki/ca-trust/extracted (haproxy-pki-
extracted)
 options=ro source-dir=/etc/pki/tls/certs/ca-bundle.crt target-dir=/etc/pki/tls/certs/ca-bundle.crt
(haproxy-pki-ca-bundle-crt)
 options=ro source-dir=/etc/pki/tls/certs/ca-bundle.trust.crt target-dir=/etc/pki/tls/certs/ca-
bundle.trust.crt (haproxy-pki-ca-bundle-trust-crt)
 options=ro source-dir=/etc/pki/tls/cert.pem target-dir=/etc/pki/tls/cert.pem (haproxy-pki-cert)
 options=rw source-dir=/dev/log target-dir=/dev/log (haproxy-dev-log)

The example shows the following information about the containers in the bundle:

image: Image used by the container, which refers to the local registry of the undercloud.

network: Container network type, which is "host" in the example.

options: Specific options for the container.

replicas: Indicates how many copies of the container must run in the cluster. Each bundle
includes three containers, one for each Controller node.

run-command: System command used to spawn the container.

Storage Mapping: Mapping of the local path on each host to the container. The haproxy
configuration is located in the /var/lib/config-data/puppet-
generated/haproxy/etc/haproxy/haproxy.cfg file instead of the /etc/haproxy/haproxy.cfg file.

NOTE

Although HAProxy provides high availability services by load balancing traffic to selected
services, you configure HAProxy as a highly available service by managing it as a
Pacemaker bundle service.

3.1.2. Complex Bundle Set resources (complex bundles)

Complex Bundle Set resources, or complex bundles, are Pacemaker services that specify a resource
configuration in addition to the basic container configuration that is included in simple bundles.

This configuration is needed to manage multi-state resources, which are services that can have different
states depending on the Controller node they run on.

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

22

This example shows a list of complex bundles from the output of the pcs status command:

Podman container set: rabbitmq-bundle [192.168.24.1:8787/rhosp-rhel8/openstack-
rabbitmq:pcmklatest]
 rabbitmq-bundle-0 (ocf::heartbeat:rabbitmq-cluster): Started overcloud-controller-0
 rabbitmq-bundle-1 (ocf::heartbeat:rabbitmq-cluster): Started overcloud-controller-1
 rabbitmq-bundle-2 (ocf::heartbeat:rabbitmq-cluster): Started overcloud-controller-2
Podman container set: galera-bundle [192.168.24.1:8787/rhosp-rhel8/openstack-mariadb:pcmklatest]
 galera-bundle-0 (ocf::heartbeat:galera): Master overcloud-controller-0
 galera-bundle-1 (ocf::heartbeat:galera): Master overcloud-controller-1
 galera-bundle-2 (ocf::heartbeat:galera): Master overcloud-controller-2
Podman container set: redis-bundle [192.168.24.1:8787/rhosp-rhel8/openstack-redis:pcmklatest]
 redis-bundle-0 (ocf::heartbeat:redis): Master overcloud-controller-0
 redis-bundle-1 (ocf::heartbeat:redis): Slave overcloud-controller-1
 redis-bundle-2 (ocf::heartbeat:redis): Slave overcloud-controller-2

This output shows the following information about each complex bundle:

RabbitMQ: All three Controller nodes run a standalone instance of the service, similar to a
simple bundle.

Galera: All three Controller nodes are running as Galera masters under the same constraints.

Redis: The overcloud-controller-0 container is running as the master, while the other two
Controller nodes are running as slaves. Each container type might run under different
constraints.

The following example shows the settings for the galera-bundle complex bundle:

[...]
Bundle: galera-bundle
 Podman: image=192.168.24.1:8787/rhosp-rhel8/openstack-mariadb:pcmklatest masters=3
network=host options="--user=root --log-driver=journald -e
KOLLA_CONFIG_STRATEGY=COPY_ALWAYS" replicas=3 run-command="/bin/bash
/usr/local/bin/kolla_start"
 Network: control-port=3123
 Storage Mapping:
 options=ro source-dir=/var/lib/kolla/config_files/mysql.json target-
dir=/var/lib/kolla/config_files/config.json (mysql-cfg-files)
 options=ro source-dir=/var/lib/config-data/puppet-generated/mysql/ target-
dir=/var/lib/kolla/config_files/src (mysql-cfg-data)
 options=ro source-dir=/etc/hosts target-dir=/etc/hosts (mysql-hosts)
 options=ro source-dir=/etc/localtime target-dir=/etc/localtime (mysql-localtime)
 options=rw source-dir=/var/lib/mysql target-dir=/var/lib/mysql (mysql-lib)
 options=rw source-dir=/var/log/mariadb target-dir=/var/log/mariadb (mysql-log-mariadb)
 options=rw source-dir=/dev/log target-dir=/dev/log (mysql-dev-log)
 Resource: galera (class=ocf provider=heartbeat type=galera)
 Attributes: additional_parameters=--open-files-limit=16384 cluster_host_map=overcloud-controller-
0:overcloud-controller-0.internalapi.localdomain;overcloud-controller-1:overcloud-controller-
1.internalapi.localdomain;overcloud-controller-2:overcloud-controller-2.internalapi.localdomain
enable_creation=true wsrep_cluster_address=gcomm://overcloud-controller-
0.internalapi.localdomain,overcloud-controller-1.internalapi.localdomain,overcloud-controller-
2.internalapi.localdomain
 Meta Attrs: container-attribute-target=host master-max=3 ordered=true
 Operations: demote interval=0s timeout=120 (galera-demote-interval-0s)
 monitor interval=20 timeout=30 (galera-monitor-interval-20)

CHAPTER 3. MANAGING HIGH AVAILABILITY SERVICES WITH PACEMAKER

23

 monitor interval=10 role=Master timeout=30 (galera-monitor-interval-10)
 monitor interval=30 role=Slave timeout=30 (galera-monitor-interval-30)
 promote interval=0s on-fail=block timeout=300s (galera-promote-interval-0s)
 start interval=0s timeout=120 (galera-start-interval-0s)
 stop interval=0s timeout=120 (galera-stop-interval-0s)
[...]

This output shows that, unlike in a simple bundle, the galera-bundle resource includes explicit resource
configuration that determines all aspects of the multi-state resource.

NOTE

Although a service can run on multiple Controller nodes at the same time, the Controller
node itself might not be listening at the IP address that is required to reach those
services. For information about how to check the IP address of a service, see Section 3.4,
“Viewing resource information for virtual IPs in a high availability cluster”.

3.2. CHECKING PACEMAKER CLUSTER STATUS

You can check the status of the Pacemaker cluster in any node where Pacemaker is running, and view
information about the number of resources that are active and running.

Prerequisites

High availability is deployed and running.

Procedure

1. Log in to any Controller node as the heat-admin user.

$ ssh heat-admin@overcloud-controller-0

2. Run the pcs status command:

[heat-admin@overcloud-controller-0 ~] $ sudo pcs status

Example output:

Cluster name: tripleo_cluster
Stack: corosync
Current DC: overcloud-controller-1 (version 2.0.1-4.el8-0eb7991564) - partition with quorum

Last updated: Thu Feb 8 14:29:21 2018
Last change: Sat Feb 3 11:37:17 2018 by root via cibadmin on overcloud-controller-2

12 nodes configured
37 resources configured

Online: [overcloud-controller-0 overcloud-controller-1 overcloud-controller-2]
GuestOnline: [galera-bundle-0@overcloud-controller-0 galera-bundle-1@overcloud-
controller-1 galera-bundle-2@overcloud-controller-2 rabbitmq-bundle-0@overcloud-
controller-0 rabbitmq-bundle-1@overcloud-controller-1 rabbitmq-bundle-2@overcloud-
controller-2 redis-bundle-0@overcloud-controller-0 redis-bundle-1@overcloud-controller-1
redis-bundle-2@overcloud-controller-2]

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

24

Full list of resources:
[...]

The main sections of the output show the following information about the cluster:

Cluster name: Name of the cluster.

[NUM] nodes configured: Number of nodes that are configured for the cluster.

[NUM] resources configured: Number of resources that are configured for the cluster.

Online: Names of the Controller nodes that are currently online.

GuestOnline: Names of the guest nodes that are currently online. Each guest node consists
of a complex Bundle Set resource. For more information about bundle sets, see Section 3.1,
“Pacemaker resource bundles and containers”.

3.3. CHECKING BUNDLE STATUS IN A HIGH AVAILABILITY CLUSTER

You can check the status of a bundle from an undercloud node or log in to one of the Controller nodes
to check the bundle status directly.

Prerequisites

High availability is deployed and running.

Procedure

Use one of the following options:

Log in to an undercloud node and check the bundle status, in this example haproxy-bundle:

$ sudo podman exec -it haproxy-bundle-podman-0 ps -efww | grep haproxy*

Example output:

root 7 1 0 06:08 ? 00:00:00 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg -Ws
haproxy 11 7 0 06:08 ? 00:00:17 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg -
Ws

The output shows that the haproxy process is running inside the container.

Log in to a Controller node and check the bundle status, in this example haproxy:

$ ps -ef | grep haproxy*

Example output:

root 17774 17729 0 06:08 ? 00:00:00 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg
-Ws
42454 17819 17774 0 06:08 ? 00:00:21 /usr/sbin/haproxy -f
/etc/haproxy/haproxy.cfg -Ws
root 288508 237714 0 07:04 pts/0 00:00:00 grep --color=auto haproxy*
[root@controller-0 ~]# ps -ef | grep -e 17774 -e 17819

CHAPTER 3. MANAGING HIGH AVAILABILITY SERVICES WITH PACEMAKER

25

root 17774 17729 0 06:08 ? 00:00:00 /usr/sbin/haproxy -f /etc/haproxy/haproxy.cfg
-Ws
42454 17819 17774 0 06:08 ? 00:00:22 /usr/sbin/haproxy -f
/etc/haproxy/haproxy.cfg -Ws
root 301950 237714 0 07:07 pts/0 00:00:00 grep --color=auto -e 17774 -e 17819

3.4. VIEWING RESOURCE INFORMATION FOR VIRTUAL IPS IN A HIGH
AVAILABILITY CLUSTER

To check the status of all virtual IPs (VIPs) or a specific VIP, run the pcs resource show command with
the relevant options. Each IPaddr2 resource sets a virtual IP address that clients use to request access
to a service. If the Controller node with that IP address fails, the IPaddr2 resource reassigns the IP
address to a different Controller node.

Prerequisites

High availability is deployed and running.

Procedure

1. Log in to any Controller node as the heat-admin user.

$ ssh heat-admin@overcloud-controller-0

2. Use one of the following options:

Show all resources that use virtual IPs by running the pcs resource show command with
the --full option:

$ sudo pcs resource show --full

Example output:

 ip-10.200.0.6 (ocf::heartbeat:IPaddr2): Started overcloud-controller-1
 ip-192.168.1.150 (ocf::heartbeat:IPaddr2): Started overcloud-controller-0
 ip-172.16.0.10 (ocf::heartbeat:IPaddr2): Started overcloud-controller-1
 ip-172.16.0.11 (ocf::heartbeat:IPaddr2): Started overcloud-controller-0
 ip-172.18.0.10 (ocf::heartbeat:IPaddr2): Started overcloud-controller-2
 ip-172.19.0.10 (ocf::heartbeat:IPaddr2): Started overcloud-controller-2

Each IP address is initially attached to a specific Controller node. For example,
192.168.1.150 is started on overcloud-controller-0. However, if that Controller node fails,
the IP address is reassigned to other Controller nodes in the cluster.

The following table describes the IP addresses in the example output and shows the original
allocation of each IP address.

Table 3.1. IP address description and allocation source

IP Address Description Allocated From

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

26

10.200.0.6 Controller virtual IP address Part of the dhcp_start and
dhcp_end range set to
10.200.0.5-10.200.0.24 in
the undercloud.conf file

192.168.1.150 Public IP address ExternalAllocationPools
attribute in the network-
environment.yaml file

172.16.0.10 Provides access to
OpenStack API services on a
Controller node

InternalApiAllocationPoo
ls in the network-
environment.yaml file

172.16.0.11 Provides access to Redis
service on a Controller node

InternalApiAllocationPoo
ls in the network-
environment.yaml file

172.18.0.10 Storage virtual IP address
that provides access to the
Glance API and to Swift
Proxy services

StorageAllocationPools
attribute in the network-
environment.yaml file

172.19.0.10 Provides access to storage
management

StorageMgmtAlloctionPo
ols in the network-
environment.yaml file

IP Address Description Allocated From

View a specific VIP address by running the pcs resource show command with the name of
the resource that uses that VIP, in this example ip-192.168.1.150:

$ sudo pcs resource show ip-192.168.1.150

Example output:

 Resource: ip-192.168.1.150 (class=ocf provider=heartbeat type=IPaddr2)
 Attributes: ip=192.168.1.150 cidr_netmask=32
 Operations: start interval=0s timeout=20s (ip-192.168.1.150-start-timeout-20s)
 stop interval=0s timeout=20s (ip-192.168.1.150-stop-timeout-20s)
 monitor interval=10s timeout=20s (ip-192.168.1.150-monitor-interval-10s)

3.5. VIEWING NETWORK INFORMATION FOR VIRTUAL IPS IN A HIGH
AVAILABILITY CLUSTER

You can view the network interface information for a Controller node that is assigned to a specific virtual
IP (VIP), and view port number assignments for a specific service.

Prerequisites

High availability is deployed and running.

CHAPTER 3. MANAGING HIGH AVAILABILITY SERVICES WITH PACEMAKER

27

Procedure

1. Log in to the Controller node that is assigned to the IP address you want to view and run the ip
addr show command on the network interface, in this example vlan100:

$ ip addr show vlan100

Example output:

 9: vlan100: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UNKNOWN
 link/ether be:ab:aa:37:34:e7 brd ff:ff:ff:ff:ff:ff
 inet *192.168.1.151/24* brd 192.168.1.255 scope global vlan100
 valid_lft forever preferred_lft forever
 inet *192.168.1.150/32* brd 192.168.1.255 scope global vlan100
 valid_lft forever preferred_lft forever

2. Run the netstat command to show all processes that listen to the IP address, in this example
192.168.1.150.haproxy:

$ sudo netstat -tupln | grep "192.168.1.150.haproxy"

Example output:

tcp 0 0 192.168.1.150:8778 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:8042 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:9292 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:8080 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:80 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:8977 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:6080 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:9696 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:8000 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:8004 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:8774 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:5000 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:8776 0.0.0.0:* LISTEN 61029/haproxy
tcp 0 0 192.168.1.150:8041 0.0.0.0:* LISTEN 61029/haproxy

NOTE

Processes that are listening to all local addresses, such as 0.0.0.0, are also
available through 192.168.1.150. These processes include sshd, mysqld,
dhclient, ntpd.

3. View the default port number assignments and the services they listen to by opening the
configuration file for the HA service, in this example /var/lib/config-data/puppet-
generated/haproxy/etc/haproxy/haproxy.cfg:

TCP port 6080: nova_novncproxy

TCP port 9696: neutron

TCP port 8000: heat_cfn

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

28

TCP port 80: horizon

TCP port 8776: cinder
In this example, most services that are defined in the haproxy.cfg file listen to the
192.168.1.150 IP address on all three Controller nodes. However, only the controller-0
node is listening externally to the 192.168.1.150 IP address.

Therefore, if the controller-0 node fails, HAProxy only needs to re-assign 192.168.1.150 to
another Controller node and all other services will already be running on the fallback
Controller node.

3.6. CHECKING FENCING AGENT AND PACEMAKER DAEMON STATUS

You can check the status of the fencing agent and the status of the Pacemaker daemons in any node
where Pacemaker is running, and view information about the number of Controller nodes that are active
and running.

Prerequisites

High availability is deployed and running.

Procedure

1. Log in to any Controller node as the heat-admin user.

$ ssh heat-admin@overcloud-controller-0

2. Run the pcs status command:

[heat-admin@overcloud-controller-0 ~] $ sudo pcs status

Example output:

 my-ipmilan-for-controller-0 (stonith:fence_ipmilan): Started my-ipmilan-for-controller-0
 my-ipmilan-for-controller-1 (stonith:fence_ipmilan): Started my-ipmilan-for-controller-1
 my-ipmilan-for-controller-2 (stonith:fence_ipmilan): Started my-ipmilan-for-controller-2

PCSD Status:
 overcloud-controller-0: Online
 overcloud-controller-1: Online
 overcloud-controller-2: Online

Daemon Status:
 corosync: active/enabled
 pacemaker: active/enabled openstack-cinder-volume (systemd:openstack-cinder-
volume): Started overcloud-controller-0
 pcsd: active/enabled

The output shows the following sections of the pcs status command output:

my-ipmilan-for-controller: Shows the type of fencing for each Controller node
(stonith:fence_ipmilan) and whether or not the IPMI service is stopped or running.

PCSD Status: Shows that all three Controller nodes are currently online.

CHAPTER 3. MANAGING HIGH AVAILABILITY SERVICES WITH PACEMAKER

29

Daemon Status: Shoes the status of the three Pacemaker daemons: corosync,
pacemaker, and pcsd. In the example, all three services are active and enabled.

3.7. ADDITIONAL RESOURCES

Configuring and Managing High Availability Clusters

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

30

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_high_availability_clusters/

CHAPTER 4. FENCING CONTROLLER NODES WITH STONITH
Fencing is the process of isolating a failed node to protect the cluster and the cluster resources.
Without fencing, a failed node might result in data corruption in a cluster. Director uses Pacemaker to
provide a highly available cluster of Controller nodes.

Pacemaker uses a process called STONITH to fence failed nodes. STONITH is an acronym for "Shoot
the other node in the head". STONITH is disabled by default and requires manual configuration so that
Pacemaker can control the power management of each node in the cluster.

If a Controller node fails a health check, the Controller node that acts as the Pacemaker designated
coordinator (DC) uses the Pacemaker stonith service to fence the impacted Controller node.

IMPORTANT

Deploying a highly available overcloud without STONITH is not supported. You must
configure a STONITH device for each node that is a part of the Pacemaker cluster in a
highly available overcloud. For more information on STONITH and Pacemaker, see
Fencing in a Red Hat High Availability Cluster and Support Policies for RHEL High
Availability Clusters.

4.1. SUPPORTED FENCING AGENTS

When you deploy a high availability environment with fencing, you can choose the fencing agents based
on your environment needs. To change the fencing agent, you must configure additional parameters in
the fencing.yaml file.

Red Hat OpenStack Platform (RHOSP) supports the following fencing agents:

Intelligent Platform Management Interface (IPMI)

Default fencing mechanism that Red Hat OpenStack Platform (RHOSP) uses to manage fencing.

STONITH Block Device (SBD)

The SBD (Storage-Based Death) daemon integrates with Pacemaker and a watchdog device to
arrange for nodes to reliably shut down when fencing is triggered and in cases where traditional
fencing mechanisms are not available.

IMPORTANT

SBD fencing is not supported in clusters with remote bare metal or virtual
machine nodes that use pacemaker_remote, so it is not supported if your
deployment uses Instance HA.

fence_sbd and sbd poison-pill fencing with block storage devices are not
supported.

SBD fencing is only supported with compatible watchdog devices. For more
information, see Support Policies for RHEL High Availability Clusters - sbd
and fence_sbd.

fence_kdump

Use in deployments with the kdump crash recovery service. If you choose this agent, ensure that you
have enough disk space to store the dump files.

You can configure this agent as a secondary mechanism in addition to the IPMI, fence_rhevm, or

CHAPTER 4. FENCING CONTROLLER NODES WITH STONITH

31

https://access.redhat.com/solutions/15575
https://access.redhat.com/articles/2881341
https://access.redhat.com/articles/2800691

You can configure this agent as a secondary mechanism in addition to the IPMI, fence_rhevm, or
Redfish fencing agents. If you configure multiple fencing agents, make sure that you allocate enough
time for the first agent to complete the task before the second agent starts the next task.

IMPORTANT

RHOSP director supports only the configuration of the fence_kdump
STONITH agent, and not the configuration of the full kdump service that the
fencing agent depends on. For information about configuring the kdump
service, see the Red Hat Knowledgebase solution How do I configure
fence_kdump in a Red Hat Pacemaker cluster.

fence_kdump is not supported if the Pacemaker network traffic interface
uses ovs_bridges, ovs_bonds, or a VLAN on top of a Linux bridge. To
enable fence_kdump, you must change the network device to linux_bond or
linux_bridge. For information about VLANs and kdump, see the Red Hat
Knowledgebase solution What VLAN configurations are supported for
kdump?. For more information about network interface configuration, see
Network interface reference.

Redfish

Use in deployments with servers that support the DMTF Redfish APIs. To specify this agent, change
the value of the agent parameter to fence_redfish in the fencing.yaml file. For more information
about Redfish, see the DTMF Documentation.

fence_rhevm for Red Hat Virtualization (RHV)

Use to configure fencing for Controller nodes that run in RHV environments. You can generate the
fencing.yaml file in the same way as you do for IPMI fencing, but you must define the pm_type
parameter in the nodes.json file to use RHV.
By default, the ssl_insecure parameter is set to accept self-signed certificates. You can change the
parameter value based on your security requirements.

IMPORTANT

Ensure that you use a role that has permissions to create and launch virtual machines
in RHV, such as UserVMManager.

Multi-layered fencing

You can configure multiple fencing agents to support complex fencing use cases. For example, you
can configure IPMI fencing together with fence_kdump. The order of the fencing agents determines
the order in which Pacemaker triggers each mechanism.

Additional resources

Section 4.2, “Deploying fencing on the overcloud”

Section 4.3, “Testing fencing on the overcloud”

Section 4.5, “Fencing parameters”

4.2. DEPLOYING FENCING ON THE OVERCLOUD

To deploy fencing on the overcloud, first review the state of STONITH and Pacemaker and configure

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

32

https://access.redhat.com/solutions/2876971
https://access.redhat.com/solutions/4295421
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/advanced_overcloud_customization/index#network-interface-reference
https://www.dmtf.org/standards/redfish

To deploy fencing on the overcloud, first review the state of STONITH and Pacemaker and configure
the fencing.yaml file. Then, deploy the overcloud and configure additional parameters. Finally, test that
fencing is deployed correctly on the overcloud.

Prerequisites

Choose the correct fencing agent for your deployment. For the list of supported fencing agents,
see Section 4.1, “Supported fencing agents” .

Ensure that you can access the nodes.json file that you created when you registered your
nodes in director. This file is a required input for the fencing.yaml file that you generate during
deployment.

The nodes.json file must contain the MAC address of one of the network interfaces (NICs) on
the node. For more information, see Registering Nodes for the Overcloud.

If you use the Red Hat Virtualization (RHV) fencing agent, use a role that has permissions to
manage virtual machines, such as UserVMManager.

Procedure

1. Log in to each Controller node as the heat-admin user.

2. Verify that the cluster is running:

$ sudo pcs status

Example output:

Cluster name: openstackHA
Last updated: Wed Jun 24 12:40:27 2015
Last change: Wed Jun 24 11:36:18 2015
Stack: corosync
Current DC: lb-c1a2 (2) - partition with quorum
Version: 1.1.12-a14efad
3 Nodes configured
141 Resources configured

3. Verify that STONITH is disabled:

$ sudo pcs property show

Example output:

Cluster Properties:
cluster-infrastructure: corosync
cluster-name: openstackHA
dc-version: 1.1.12-a14efad
have-watchdog: false
stonith-enabled: false

4. Depending on the fencing agent that you want to use, choose one of the following options:

If you use the IPMI or RHV fencing agent, generate the fencing.yaml environment file:

CHAPTER 4. FENCING CONTROLLER NODES WITH STONITH

33

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.2/html-single/director_installation_and_usage/index#proc_registering-nodes-for-the-overcloud_basic

(undercloud) $ openstack overcloud generate fencing --output fencing.yaml nodes.json

NOTE

This command converts ilo and drac power management details to IPMI
equivalents.

If you use a different fencing agent, such as STONITH Block Device (SBD), fence_kdump,
or Redfish, or if you use pre-provisioned nodes, create the fencing.yaml file manually.

5. SBD fencing only: Add the following parameter to the fencing.yaml file:

parameter_defaults:
 ExtraConfig:
 pacemaker::corosync::enable_sbd: true

NOTE

This step is applicable to initial overcloud deployments only. For more information
about how to enable SBD fencing on an existing overcloud, see Enabling sbd
fencing in RHEL 7 and 8.

6. Multi-layered fencing only: Add the level-specific parameters to the generated fencing.yaml
file:

parameter_defaults:
 EnableFencing: true
 FencingConfig:
 devices:
 level1:
 - agent: [VALUE]
 host_mac: aa:bb:cc:dd:ee:ff
 params:
 <parameter>: <value>
 level2:
 - agent: fence_agent2
 host_mac: aa:bb:cc:dd:ee:ff
 params:
 <parameter>: <value>

Replace <parameter> and <value> with the actual parameters and values that the fencing
agent requires.

7. Run the overcloud deploy command and include the fencing.yaml file and any other
environment files that are relevant for your deployment:

openstack overcloud deploy --templates \
-e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
-e ~/templates/network-environment.yaml \
-e ~/templates/storage-environment.yaml --ntp-server pool.ntp.org --neutron-network-type
vxlan --neutron-tunnel-types vxlan \
-e fencing.yaml

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

34

https://access.redhat.com/articles/3099231

8. SBD fencing only: Set the watchdog timer device interval and check that the interval is set
correctly.

pcs property set stonith-watchdog-timeout=<interval>
pcs property show

Verification

1. Log in to the overcloud as the heat-admin user and ensure that Pacemaker is configured as the
resource manager:

$ source stackrc
$ openstack server list | grep controller
$ ssh heat-admin@<controller-x_ip>
$ sudo pcs status | grep fence
stonith-overcloud-controller-x (stonith:fence_ipmilan): Started overcloud-controller-y

In this example, Pacemaker is configured to use a STONITH resource for each of the Controller
nodes that are specified in the fencing.yaml file.

NOTE

You must not configure the fence-resource process on the same node that it
controls.

2. Check the fencing resource attributes. The STONITH attribute values must match the values in
the fencing.yaml file:

$ sudo pcs stonith show <stonith-resource-controller-x>

Additional Resources

Section 4.3, “Testing fencing on the overcloud”

Section 4.5, “Fencing parameters”

Exploring RHEL High Availability’s Components - sbd and fence_sbd

4.3. TESTING FENCING ON THE OVERCLOUD

To test that fencing works correctly, trigger fencing by closing all ports on a Controller node and
restarting the server.

IMPORTANT

This procedure deliberately drops all connections to the Controller node, which causes
the node to restart.

Prerequisites

Fencing is deployed and running on the overcloud. For information on how to deploy fencing,
see Section 4.2, “Deploying fencing on the overcloud” .

CHAPTER 4. FENCING CONTROLLER NODES WITH STONITH

35

https://access.redhat.com/articles/2943361

Controller node is available for a restart.

Procedure

1. Log in to a Controller node as the stack user and source the credentials file:

$ source stackrc
$ openstack server list | grep controller
$ ssh heat-admin@<controller-x_ip>

2. Change to the root user and close all connections to the Controller node:

$ sudo -i
iptables -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT &&
iptables -A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT &&
iptables -A INPUT -p tcp -m state --state NEW -m tcp --dport 5016 -j ACCEPT &&
iptables -A INPUT -p udp -m state --state NEW -m udp --dport 5016 -j ACCEPT &&
iptables -A INPUT ! -i lo -j REJECT --reject-with icmp-host-prohibited &&
iptables -A OUTPUT -p tcp --sport 22 -j ACCEPT &&
iptables -A OUTPUT -p tcp --sport 5016 -j ACCEPT &&
iptables -A OUTPUT -p udp --sport 5016 -j ACCEPT &&
iptables -A OUTPUT ! -o lo -j REJECT --reject-with icmp-host-prohibited

3. From a different Controller node, locate the fencing event in the Pacemaker log file:

$ ssh heat-admin@<controller-x_ip>
$ less /var/log/cluster/corosync.log
(less): /fenc*

If the STONITH service performed the fencing action on the Controller, the log file shows a
fencing event.

4. Wait a few minutes and then verify that the restarted Controller node is running in the cluster
again by running the pcs status command. If you can see the Controller node that you restarted
in the output, fencing functions correctly.

4.4. VIEWING STONITH DEVICE INFORMATION

To see how STONITH configures your fencing devices, run the pcs stonith show --full command from
the overcloud.

Prerequisites

Fencing is deployed and running on the overcloud. For information on how to deploy fencing,
see Section 4.2, “Deploying fencing on the overcloud” .

Procedure

Show the list of Controller nodes and the status of their STONITH devices:

$ sudo pcs stonith show --full
 Resource: my-ipmilan-for-controller-0 (class=stonith type=fence_ipmilan)
 Attributes: pcmk_host_list=overcloud-controller-0 ipaddr=10.100.0.51 login=admin
passwd=abc lanplus=1 cipher=3

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

36

 Operations: monitor interval=60s (my-ipmilan-for-controller-0-monitor-interval-60s)
 Resource: my-ipmilan-for-controller-1 (class=stonith type=fence_ipmilan)
 Attributes: pcmk_host_list=overcloud-controller-1 ipaddr=10.100.0.52 login=admin
passwd=abc lanplus=1 cipher=3
 Operations: monitor interval=60s (my-ipmilan-for-controller-1-monitor-interval-60s)
 Resource: my-ipmilan-for-controller-2 (class=stonith type=fence_ipmilan)
 Attributes: pcmk_host_list=overcloud-controller-2 ipaddr=10.100.0.53 login=admin
passwd=abc lanplus=1 cipher=3
 Operations: monitor interval=60s (my-ipmilan-for-controller-2-monitor-interval-60s)

This output shows the following information for each resource:

IPMI power management service that the fencing device uses to turn the machines on and
off as needed, such as fence_ipmilan.

IP address of the IPMI interface, such as 10.100.0.51.

User name to log in with, such as admin.

Password to use to log in to the node, such as abc.

Interval in seconds at which each host is monitored, such as 60s.

4.5. FENCING PARAMETERS

When you deploy fencing on the overcloud, you generate the fencing.yaml file with the required
parameters to configure fencing.

The following example shows the structure of the fencing.yaml environment file:

parameter_defaults:
 EnableFencing: true
 FencingConfig:
 devices:
 - agent: fence_ipmilan
 host_mac: 11:11:11:11:11:11
 params:
 ipaddr: 10.0.0.101
 lanplus: true
 login: admin
 passwd: InsertComplexPasswordHere
 pcmk_host_list: host04
 privlvl: administrator

This file contains the following parameters:

EnableFencing

Enables the fencing functionality for Pacemaker-managed nodes.

FencingConfig

Lists the fencing devices and the parameters for each device:

agent: Fencing agent name.

host_mac: The mac address in lowercase of the provisioning interface or any other network
interface on the server. You can use this as a unique identifier for the fencing device.

CHAPTER 4. FENCING CONTROLLER NODES WITH STONITH

37

params: List of fencing device parameters.

Fencing device parameters

Lists the fencing device parameters. This example shows the parameters for the IPMI fencing agent:

auth: IPMI authentication type (md5, password, or none).

ipaddr: IPMI IP address.

ipport: IPMI port.

login: Username for the IPMI device.

passwd: Password for the IPMI device.

lanplus: Use lanplus to improve security of connection.

privlvl: Privilege level on IPMI device

pcmk_host_list: List of Pacemaker hosts.

Additional resources

Section 4.2, “Deploying fencing on the overcloud”

Section 4.1, “Supported fencing agents”

4.6. ADDITIONAL RESOURCES

"Configuring fencing in a Red Hat High Availability cluster"

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

38

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_high_availability_clusters/assembly_configuring-fencing-configuring-and-managing-high-availability-clusters

CHAPTER 5. LOAD BALANCING TRAFFIC WITH HAPROXY
The HAProxy service provides load balancing of traffic to Controller nodes in the high availability
cluster, as well as logging and sample configurations. The haproxy package contains the haproxy
daemon, which corresponds to the systemd service of the same name. Pacemaker manages the
HAProxy service as a highly available service called haproxy-bundle.

5.1. HOW HAPROXY WORKS

Director can configure most Red Hat OpenStack Platform services to use the HAProxy service. Director
configures those services in the /var/lib/config-data/puppet-
generated/haproxy/etc/haproxy/haproxy.cfg file, which instructs HAProxy to run in a dedicated
container on each overcloud node.

The following table shows the list of services that HAProxy manages:

Table 5.1. Services managed by HAProxy

aodh cinder glance_api gnocchi

haproxy.stats heat_api heat_cfn horizon

keystone_admin keystone_public mysql neutron

nova_metadata nova_novncproxy nova_osapi nova_placement

For each service in the haproxy.cfg file, you can see the following properties:

listen: The name of the service that is listening for requests.

bind: The IP address and TCP port number on which the service is listening.

server: The name of each Controller node server that uses HAProxy, the IP address and
listening port, and additional information about the server.

The following example shows the OpenStack Block Storage (cinder) service configuration in the
haproxy.cfg file:

listen cinder
 bind 172.16.0.10:8776
 bind 192.168.1.150:8776
 mode http
 http-request set-header X-Forwarded-Proto https if { ssl_fc }
 http-request set-header X-Forwarded-Proto http if !{ ssl_fc }
 option httpchk
 server overcloud-controller-0 172.16.0.13:8777 check fall 5 inter 2000 rise 2
 server overcloud-controller-1 172.16.0.14:8777 check fall 5 inter 2000 rise 2
 server overcloud-controller-2 172.16.0.15:8777 check fall 5 inter 2000 rise 2

This example output shows the following information about the OpenStack Block Storage (cinder)
service:

172.16.0.10:8776: Virtual IP address and port on the Internal API network (VLAN201) to use

CHAPTER 5. LOAD BALANCING TRAFFIC WITH HAPROXY

39

172.16.0.10:8776: Virtual IP address and port on the Internal API network (VLAN201) to use
within the overcloud.

192.168.1.150:8776: Virtual IP address and port on the External network (VLAN100) that
provides access to the API network from outside the overcloud.

8776: Port number on which the OpenStack Block Storage (cinder) service is listening.

server: Controller node names and IP addresses. HAProxy can direct requests made to those IP
addresses to one of the Controller nodes listed in the server output.

httpchk: Enables health checks on the Controller node servers.

fall 5: Number of failed health checks to determine that the service is offline.

inter 2000: Interval between two consecutive health checks in milliseconds.

rise 2: Number of successful health checks to determine that the service is running.

For more information about settings you can use in the haproxy.cfg file, see the
/usr/share/doc/haproxy-[VERSION]/configuration.txt file on any node where the haproxy package is
installed.

5.2. VIEWING HAPROXY STATS

By default, the director also enables HAProxy Stats, or statistics, on all HA deployments. With this
feature, you can view detailed information about data transfer, connections, and server states on the
HAProxy Stats page.

The director also sets the IP:Port address that you use to reach the HAProxy Stats page and stores the
information in the haproxy.cfg file.

Prerequisites

High availability is deployed and running.

Procedure

1. Open the /var/lib/config-data/puppet-generated/haproxy/etc/haproxy/haproxy.cfg file in any
Controller node where HAProxy is installed.

2. Locate the listen haproxy.stats section:

listen haproxy.stats
 bind 10.200.0.6:1993
 mode http
 stats enable
 stats uri /
 stats auth admin:<haproxy-stats-password>

3. In a Web browser, navigate to 10.200.0.6:1993 and enter the credentials from the stats auth
row to view the HAProxy Stats page.

5.3. ADDITIONAL RESOURCES

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

40

HAProxy 1.8 documentation

How can I verify my haproxy.cfg is correctly configured to load balance openstack services?

CHAPTER 5. LOAD BALANCING TRAFFIC WITH HAPROXY

41

http://cbonte.github.io/haproxy-dconv/1.8/configuration.html
https://access.redhat.com/solutions/1599813

CHAPTER 6. MANAGING DATABASE REPLICATION WITH
GALERA

Red Hat OpenStack Platform uses the MariaDB Galera Cluster to manage database replication.
Pacemaker runs the Galera service as a bundle set resource that manages the database master/slave
status. You can use Galera to test and verify different aspects of the database cluster, such as
hostname resolution, cluster integrity, node integrity, and database replication performance.

When you investigate database cluster integrity, each node must meet the following criteria:

The node is a part of the correct cluster.

The node can write to the cluster.

The node can receive queries and write commands from the cluster.

The node is connected to other nodes in the cluster.

The node is replicating write-sets to tables in the local database.

6.1. VERIFYING HOSTNAME RESOLUTION IN A MARIADB CLUSTER

To troubleshoot the MariaDB Galera cluster, first eliminate any hostname resolution problems and then
check the write-set replication status on the database of each Controller node. To access the MySQL
database, use the password set by director during the overcloud deployment.

By default, director binds the Galera resource to a hostname instead of an IP address. Therefore, any
problems that prevent hostname resolution, such as misconfigured or failed DNS, might cause
Pacemaker to incorrectly manage the Galera resource.

Procedure

1. From a Controller node, get the MariaDB database root password by running the hiera
command.

$ sudo hiera -c /etc/puppet/hiera.yaml "mysql::server::root_password"
[MYSQL-HIERA-PASSWORD]

2. Get the name of the MariaDB container that runs on the node.

$ sudo podman ps | grep -i galera
a403d96c5026 undercloud.ctlplane.localdomain:8787/rhosp-rhel8/openstack-mariadb:16.0-
106 /bin/bash /usr/lo... 3 hours ago Up 3 hours ago galera-bundle-podman-0

3. Get the write-set replication information from the MariaDB database on each node.

$ sudo podman exec galera-bundle-podman-0 sudo mysql -B --password="[MYSQL-HIERA-
PASSWORD]" -e "SHOW GLOBAL STATUS LIKE 'wsrep_%';"
 +----------------------------+----------+
 | Variable_name | Value |
 +----------------------------+----------+
 | wsrep_applier_thread_count | 1 |
 | wsrep_apply_oooe | 0.018672 |
 | wsrep_apply_oool | 0.000630 |

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

42

 | wsrep_apply_window | 1.021942 |
 | ... | ... |
 +----------------------------+----------+

Each relevant variable uses the prefix wsrep.

4. Verify the health and integrity of the MariaDB Galera cluster by checking that the cluster is
reporting the correct number of nodes.

6.2. CHECKING MARIADB CLUSTER INTEGRITY

To investigate problems with the MariaDB Galera Cluster, check the integrity of the whole cluster by
checking specific wsrep database variables on each Controller node.

Procedure

Run the following command and replace <variable> with the wsrep database variable that you
want to check:

$ sudo podman exec galera-bundle-podman-0 sudo mysql -B --password="[MYSQL-HIERA-
PASSWORD]" -e "SHOW GLOBAL STATUS LIKE <variable;"

The following example shows how to view the cluster state UUID of the node:

$ sudo podman exec galera-bundle-podman-0 sudo mysql -B --password="[MYSQL-HIERA-
PASSWORD]" -e "SHOW GLOBAL STATUS LIKE 'wsrep_cluster_state_uuid';"

 +--------------------------+--------------------------------------+
 | Variable_name | Value |
 +--------------------------+--------------------------------------+
 | wsrep_cluster_state_uuid | e2c9a15e-5485-11e0-0800-6bbb637e7211 |
 +--------------------------+--------------------------------------+

The following table lists the wsrep database variables that you can use to check cluster integrity.

Table 6.1. Database variables to check for cluster integrity

Variable Summary Description

wsrep_cluster_state_uuid Cluster state UUID ID of the cluster to which the
node belongs. All nodes must
have an identical cluster ID. A
node with a different ID is not
connected to the cluster.

wsrep_cluster_size Number of nodes in the cluster You can check this on any node. If
the value is less than the actual
number of nodes, then some
nodes either failed or lost
connectivity.

CHAPTER 6. MANAGING DATABASE REPLICATION WITH GALERA

43

wsrep_cluster_conf_id Total number of cluster changes Determines whether the cluster
was split to several components,
or partitions. Partitioning is usually
caused by a network failure. All
nodes must have an identical
value.

In case some nodes report a
different
wsrep_cluster_conf_id, check
the wsrep_cluster_status
value to see if the nodes can still
write to the cluster (Primary).

wsrep_cluster_status Primary component status Determines whether the node can
write to the cluster. If the node
can write to the cluster, the
wsrep_cluster_status value is
Primary. Any other value
indicates that the node is part of
a non-operational partition.

Variable Summary Description

6.3. CHECKING DATABASE NODE INTEGRITY IN A MARIADB CLUSTER

To investigate problems with a specific Controller node in the MariaDB Galera Cluster, check the
integrity of the node by checking specific wsrep database variables.

Procedure

Run the following command and replace <variable> with the wsrep database variable that you
want to check:

$ sudo podman exec galera-bundle-podman-0 sudo mysql -B --password="[MYSQL-HIERA-
PASSWORD]" -e "SHOW GLOBAL STATUS LIKE <variable>;"

The following table lists the wsrep database variables that you can use to check node integrity.

Table 6.2. Database variables to check for node integrity

Variable Summary Description

wsrep_ready Node ability to accept queries States whether the node can
accept write-sets from the
cluster. If so, then wsrep_ready
is ON.

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

44

wsrep_connected Node network connectivity States whether the node can
connect to other nodes on the
network. If so, then
wsrep_connected is ON.

wsrep_local_state_comment Node state Summarizes the node state. If the
node can write to the cluster, then
typical values for
wsrep_local_state_comment
can be Joining, Waiting on
SST, Joined, Synced, or
Donor.

If the node is part of a non-
operational component, then the
value of
wsrep_local_state_comment
is Initialized.

Variable Summary Description

NOTE

The wsrep_connected value can be ON even if the node is connected only to a
subset of nodes in the cluster. For example, in case of a cluster partition, the
node might be part of a component that cannot write to the cluster. For more
information about checking cluster integrity, see Section 6.2, “Checking MariaDB
cluster integrity”.

If the wsrep_connected value is OFF, then the node is not connected to any
cluster components.

6.4. TESTING DATABASE REPLICATION PERFORMANCE IN A
MARIADB CLUSTER

To check the performance of the MariaDB Galera Cluster, run benchmark tests on the replication
throughput of the cluster by checking specific wsrep database variables.

Every time you query one of these variables, a FLUSH STATUS command resets the variable value. To
run benchmark tests, you must run multiple queries and analyze the variances. These variances can help
you determine how much Flow Control is affecting the cluster performance.

Flow Control is a mechanism that the cluster uses to manage replication. When the local receive queue
exceeds a certain threshold, Flow Control pauses the replication until the queue size goes down. For
more information about Flow Control, see Flow Control on the Galera Cluster website.

Procedure

Run the following command and replace <variable> with the wsrep database variable that you
want to check:

$ sudo podman exec galera-bundle-podman-0 sudo mysql -B --password="[MYSQL-HIERA-
PASSWORD]" -e "SHOW STATUS LIKE <variable>;"

CHAPTER 6. MANAGING DATABASE REPLICATION WITH GALERA

45

https://galeracluster.com/library/documentation/node-states.html
http://galeracluster.com/

The following table lists the wsrep database variables that you can use to test database replication
performance.

Table 6.3. Database variables to check for database replication performance

Variable Summary Usage

wsrep_local_recv_queue_av
g

Average size of the local received
write-set queue after the last
query.

A value higher than 0.0 indicates
that the node cannot apply write-
sets as quickly as it receives write-
sets, which triggers replication
throttling. Check
wsrep_local_recv_queue_mi
n and
wsrep_local_recv_queue_ma
x for a detailed look at this
benchmark.

wsrep_local_send_queue_av
g

Average send queue length after
the last query.

A value higher than 0.0 indicates
a higher likelihood of replication
throttling and network throughput
problems.

wsrep_local_recv_queue_mi
n and
wsrep_local_recv_queue_ma
x

Minimum and maximum size of
the local receive queue after the
last query.

If the value of
wsrep_local_recv_queue_av
g is higher than 0.0, you can
check these variables to
determine the scope of the queue
size.

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

46

wsrep_flow_control_paused Fraction of the time that Flow
Control paused the node after the
last query.

A value higher than 0.0 indicates
that Flow Control paused the
node. To determine the duration
of the pause, multiply the
wsrep_flow_control_paused
value with the number of seconds
between the queries. The optimal
value is as close to 0.0 as
possible.

For example:

If the value of
wsrep_flow_control_
paused is 0.50 one
minute after the last
query, then Flow Control
paused the node for 30
seconds.

If the value of
wsrep_flow_control_
paused is 1.0 one
minute after the last
query, then Flow Control
paused the node for the
entire minute.

wsrep_cert_deps_distance Average difference between the
lowest and highest sequence
number (seqno) value that can
be applied in parallel

In case of throttling and pausing,
this variable indicates how many
write-sets on average can be
applied in parallel. Compare the
value with the
wsrep_slave_threads variable
to see how many write-sets can
actually be applied
simultaneously.

Variable Summary Usage

CHAPTER 6. MANAGING DATABASE REPLICATION WITH GALERA

47

wsrep_slave_threads Number of threads that can be
applied simultaneously

You can increase the value of this
variable to apply more threads
simultaneously, which also
increases the value of
wsrep_cert_deps_distance.
The value of
wsrep_slave_threads must
not be higher than the number of
CPU cores in the node.

For example, if the
wsrep_cert_deps_distance
value is 20, you can increase the
value of wsrep_slave_threads
from 2 to 4 to increase the
amount of write-sets that the
node can apply.

If a problematic node already has
an optimal
wsrep_slave_threads value,
you can exclude the node from
the cluster while you investigate
possible connectivity issues.

Variable Summary Usage

6.5. ADDITIONAL RESOURCES

What is MariaDB Galera Cluster?

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

48

https://mariadb.com/kb/en/mariadb/what-is-mariadb-galera-cluster/

CHAPTER 7. TROUBLESHOOTING HIGH AVAILABILITY
RESOURCES

In case of resource failure, you must investigate the cause and location of the problem, fix the failed
resource, and optionally clean up the resource. There are many possible causes of resource failures
depending on your deployment, and you must investigate the resource to determine how to fix the
problem.

For example, you can check the resource constraints to ensure that the resources are not interrupting
each other, and that the resources can connect to each other. You can also examine a Controller node
that is fenced more often than other Controller nodes to identify possible communication problems.

Depending on the location of the resource problem, you choose one of the following options:

Controller node problems

If health checks to a Controller node are failing, this can indicate a communication problem between
Controller nodes. To investigate, log in to the Controller node and check if the services can start
correctly.

Individual resource problems

If most services on a Controller are running correctly, you can run the pcs status command and
check the output for information about a specific Pacemaner resource failure or run the systemctl
command to investigate a non-Pacemaker resource failure.

7.1. VIEWING RESOURCE CONSTRAINTS IN A HIGH AVAILABILITY
CLUSTER

Before you investigate resource problems, you can view constraints on how services are launched,
including constraints related to where each resource is located, the order in which the resource starts,
and whether the resource must be colocated with another resource.

Procedure

Use one of the following options:

To view all resource constraints, log in to any Controller node and run the pcs constraint
show command:

$ sudo pcs constraint show

The following example shows a truncated output from the pcs constraint show command
on a Controller node:

Location Constraints:
 Resource: galera-bundle
 Constraint: location-galera-bundle (resource-discovery=exclusive)
 Rule: score=0
 Expression: galera-role eq true
 [...]
 Resource: ip-192.168.24.15
 Constraint: location-ip-192.168.24.15 (resource-discovery=exclusive)
 Rule: score=0
 Expression: haproxy-role eq true
 [...]

CHAPTER 7. TROUBLESHOOTING HIGH AVAILABILITY RESOURCES

49

 Resource: my-ipmilan-for-controller-0
 Disabled on: overcloud-controller-0 (score:-INFINITY)
 Resource: my-ipmilan-for-controller-1
 Disabled on: overcloud-controller-1 (score:-INFINITY)
 Resource: my-ipmilan-for-controller-2
 Disabled on: overcloud-controller-2 (score:-INFINITY)
Ordering Constraints:
 start ip-172.16.0.10 then start haproxy-bundle (kind:Optional)
 start ip-10.200.0.6 then start haproxy-bundle (kind:Optional)
 start ip-172.19.0.10 then start haproxy-bundle (kind:Optional)
 start ip-192.168.1.150 then start haproxy-bundle (kind:Optional)
 start ip-172.16.0.11 then start haproxy-bundle (kind:Optional)
 start ip-172.18.0.10 then start haproxy-bundle (kind:Optional)
Colocation Constraints:
 ip-172.16.0.10 with haproxy-bundle (score:INFINITY)
 ip-172.18.0.10 with haproxy-bundle (score:INFINITY)
 ip-10.200.0.6 with haproxy-bundle (score:INFINITY)
 ip-172.19.0.10 with haproxy-bundle (score:INFINITY)
 ip-172.16.0.11 with haproxy-bundle (score:INFINITY)
 ip-192.168.1.150 with haproxy-bundle (score:INFINITY)

This output displays the following main constraint types:

Location Constraints

Lists the locations to which resources can be assigned:

The first constraint defines a rule that sets the galera-bundle resource to run on
nodes with the galera-role attribute set to true.

The second location constraint specifies that the IP resource ip-192.168.24.15 runs
only on nodes with the haproxy-role attribute set to true. This means that the
cluster associates the IP address with the haproxy service, which is necessary to
make the services reachable.

The third location constraint shows that the ipmilan resource is disabled on each of
the Controller nodes.

Ordering Constraints

Lists the order in which resources can launch. This example shows a constraint that sets
the virtual IP address resources IPaddr2 to start before the HAProxy service.

NOTE

Ordering constraints only apply to IP address resources and to HAproxy.
Systemd manages all other resources, because services such as Compute
are expected to withstand an interruption of a dependent service, such as
Galera.

Colocation Constraints

Lists which resources must be located together. All virtual IP addresses are linked to the
haproxy-bundle resource.

To view constraints for a specific resource, log in to any Controller node and run the pcs
property show command:

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

50

$ sudo pcs property show

Example output:

Cluster Properties:
 cluster-infrastructure: corosync
 cluster-name: tripleo_cluster
 dc-version: 2.0.1-4.el8-0eb7991564
 have-watchdog: false
 redis_REPL_INFO: overcloud-controller-0
 stonith-enabled: false
Node Attributes:
 overcloud-controller-0: cinder-volume-role=true galera-role=true haproxy-role=true
rabbitmq-role=true redis-role=true rmq-node-attr-last-known-
rabbitmq=rabbit@overcloud-controller-0
 overcloud-controller-1: cinder-volume-role=true galera-role=true haproxy-role=true
rabbitmq-role=true redis-role=true rmq-node-attr-last-known-
rabbitmq=rabbit@overcloud-controller-1
 overcloud-controller-2: cinder-volume-role=true galera-role=true haproxy-role=true
rabbitmq-role=true redis-role=true rmq-node-attr-last-known-
rabbitmq=rabbit@overcloud-controller-2

In this output, you can verify the that the resource constraints are set correctly. For
example, the galera-role attribute is true for all Controller nodes, which means that the
galera-bundle resource runs only on these nodes.

7.2. INVESTIGATING PACEMAKER RESOURCE PROBLEMS

To investigate failed resources that Pacemaker manages, log in to the Controller node on which the
resource is failing and check the status and log events for the resource. For example, investigate the
status and log events for the openstack-cinder-volume resource.

Prerequisites

A Controller node with Pacemaker services

Root user permissions to view log events

Procedure

1. Log in to the Controller node on which the resource is failing.

2. Run the pcs status command with the grep option to get the status of the service:

sudo pcs status | grep cinder
 Podman container: openstack-cinder-volume [192.168.24.1:8787/rh-osbs/rhosp161-
openstack-cinder-volume:pcmklatest]
 openstack-cinder-volume-podman-0 (ocf::heartbeat:podman): Started controller-1

3. View the log events for the resource:

sudo less /var/log/containers/stdouts/openstack-cinder-volume.log
[...]
2021-04-12T12:32:17.607179705+00:00 stderr F ++ cat /run_command

CHAPTER 7. TROUBLESHOOTING HIGH AVAILABILITY RESOURCES

51

2021-04-12T12:32:17.609648533+00:00 stderr F + CMD='/usr/bin/cinder-volume --config-file
/usr/share/cinder/cinder-dist.conf --config-file /etc/cinder/cinder.conf'
2021-04-12T12:32:17.609648533+00:00 stderr F + ARGS=
2021-04-12T12:32:17.609648533+00:00 stderr F + [[! -n '']]
2021-04-12T12:32:17.609648533+00:00 stderr F + . kolla_extend_start
2021-04-12T12:32:17.611214130+00:00 stderr F +++ stat -c %U:%G /var/lib/cinder
2021-04-12T12:32:17.616637578+00:00 stderr F ++ [[cinder:kolla != \c\i\n\d\e\r\:\k\o\l\l\a]]
2021-04-12T12:32:17.616722778+00:00 stderr F + echo 'Running command:
'\''/usr/bin/cinder-volume --config-file /usr/share/cinder/cinder-dist.conf --config-file
/etc/cinder/cinder.conf'\'''
2021-04-12T12:32:17.616751172+00:00 stdout F Running command: '/usr/bin/cinder-volume
--config-file /usr/share/cinder/cinder-dist.conf --config-file /etc/cinder/cinder.conf'
2021-04-12T12:32:17.616775368+00:00 stderr F + exec /usr/bin/cinder-volume --config-file
/usr/share/cinder/cinder-dist.conf --config-file /etc/cinder/cinder.conf

4. Correct the failed resource based on the information from the output and from the logs.

5. Run the pcs resource cleanup command to reset the status and the fail count of the resource.

$ sudo pcs resource cleanup openstack-cinder-volume
 Resource: openstack-cinder-volume successfully cleaned up

7.3. INVESTIGATING SYSTEMD RESOURCE PROBLEMS

To investigate failed resources that systemd manages, log in to the Controller node on which the
resource is failing and check the status and log events for the resource. For example, investigate the
status and log events for the tripleo_nova_conductor resource.

Prerequisites

A Controller node with systemd services

Root user permissions to view log events

Procedure

1. Run the systemctl status command to show the resource status and recent log events:

[heat-admin@controller-0 ~]$ sudo systemctl status tripleo_nova_conductor
● tripleo_nova_conductor.service - nova_conductor container
 Loaded: loaded (/etc/systemd/system/tripleo_nova_conductor.service; enabled; vendor
preset: disabled)
 Active: active (running) since Mon 2021-04-12 10:54:46 UTC; 1h 38min ago
 Main PID: 5125 (conmon)
 Tasks: 2 (limit: 126564)
 Memory: 1.2M
 CGroup: /system.slice/tripleo_nova_conductor.service
 └─5125 /usr/bin/conmon --api-version 1 -c
cc3c63b54e0864c94ac54a5789be96aea1dd60b2f3216b37c3e020c76e7887d4 -u
cc3c63b54e0864c94ac54a5789be96aea1dd60b2f3216b37c3e020c76e7887d4 -r
/usr/bin/runc -b /var/lib/containers/storage/overlay-
containers/cc3c63b54e0864c94ac54a5789be96aea1dd60b2f3216b37c3e02>

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

52

Apr 12 10:54:42 controller-0.redhat.local systemd[1]: Starting nova_conductor container...
Apr 12 10:54:46 controller-0.redhat.local podman[2855]: nova_conductor
Apr 12 10:54:46 controller-0.redhat.local systemd[1]: Started nova_conductor container.

2. View the log events for the resource:

sudo less /var/log/containers/tripleo_nova_conductor.log

3. Correct the failed resource based on the information from the output and from the logs.

4. Restart the resource and check the status of the service:

systemctl restart tripleo_nova_conductor
systemctl status tripleo_nova_conductor
● tripleo_nova_conductor.service - nova_conductor container
 Loaded: loaded (/etc/systemd/system/tripleo_nova_conductor.service; enabled; vendor
preset: disabled)
 Active: active (running) since Thu 2021-04-22 14:28:35 UTC; 7s ago
 Process: 518937 ExecStopPost=/usr/bin/podman stop -t 10 nova_conductor (code=exited,
status=0/SUCCESS)
 Process: 518653 ExecStop=/usr/bin/podman stop -t 10 nova_conductor (code=exited,
status=0/SUCCESS)
 Process: 519063 ExecStart=/usr/bin/podman start nova_conductor (code=exited,
status=0/SUCCESS)
 Main PID: 519198 (conmon)
 Tasks: 2 (limit: 126564)
 Memory: 1.1M
 CGroup: /system.slice/tripleo_nova_conductor.service
 └─519198 /usr/bin/conmon --api-version 1 -c
0d6583beb20508e6bacccd5fea169a2fe949471207cb7d4650fec5f3638c2ce6 -u
0d6583beb20508e6bacccd5fea169a2fe949471207cb7d4650fec5f3638c2ce6 -r /usr/bin/runc
-b /var/lib/containe>

Apr 22 14:28:34 controller-0.redhat.local systemd[1]: Starting nova_conductor container...
Apr 22 14:28:35 controller-0.redhat.local podman[519063]: nova_conductor
Apr 22 14:28:35 controller-0.redhat.local systemd[1]: Started nova_conductor container.

CHAPTER 7. TROUBLESHOOTING HIGH AVAILABILITY RESOURCES

53

CHAPTER 8. MONITORING A HIGH AVAILABILITY RED HAT
CEPH STORAGE CLUSTER

When you deploy an overcloud with Red Hat Ceph Storage, Red Hat OpenStack Platform uses the
ceph-mon monitor daemon to manage the Ceph cluster. Director deploys the daemon on all Controller
nodes.

8.1. CHECKING RED HAT CEPH MONITORING SERVICE STATUS

To check the status of the Red Hat Ceph Storage monitoring service, log in to a Controller node and run
the service ceph status command.

Procedure

Log in to a Controller node and check that the Ceph Monitoring service is running:

$ sudo service ceph status
=== mon.overcloud-controller-0 ===
mon.overcloud-controller-0: running {"version":"0.94.1"}

8.2. CHECKING RED HAT CEPH MONITORING CONFIGURATION

To check the configuration of the Red Hat Ceph Storage monitoring service, log in to a Controller node
or a Red Hat Ceph node and open the /etc/ceph/ceph.conf file.

Procedure

Log in to a Controller nodes or on a Ceph node and open the /etc/ceph/ceph.conf file to view
the monitoring configuration parameters:

[global]
osd_pool_default_pgp_num = 128
osd_pool_default_min_size = 1
auth_service_required = cephx
mon_initial_members = overcloud-controller-0,overcloud-controller-1,overcloud-controller-2
fsid = 8c835acc-6838-11e5-bb96-2cc260178a92
cluster_network = 172.19.0.11/24
auth_supported = cephx
auth_cluster_required = cephx
mon_host = 172.18.0.17,172.18.0.15,172.18.0.16
auth_client_required = cephx
osd_pool_default_size = 3
osd_pool_default_pg_num = 128
public_network = 172.18.0.17/24

This example shows the following information:

All three Controller nodes are configured to monitor the Red Hat Ceph Storage cluster with
the mon_initial_members parameter.

The 172.19.0.11/24 network is configured to provide a communication path between the
Controller nodes and the Red Hat Ceph Storage nodes.

The Red Hat Ceph Storage nodes are assigned to a separate network from the Controller

Red Hat OpenStack Platform 16.2 High Availability Deployment and Usage

54

The Red Hat Ceph Storage nodes are assigned to a separate network from the Controller
nodes, and the IP addresses for the monitoring Controller nodes are 172.18.0.15, 172.18.0.16,
and 172.18.0.17.

8.3. CHECKING RED HAT CEPH NODE STATUS

To check the status of a specific Red Hat Ceph Storage node, log in to the node and run the ceph -s
command.

Procedure

Log in to the Ceph node and run the ceph -s command:

ceph -s
 cluster 8c835acc-6838-11e5-bb96-2cc260178a92
 health HEALTH_OK
 monmap e1: 3 mons at {overcloud-controller-0=172.18.0.17:6789/0,overcloud-controller-
1=172.18.0.15:6789/0,overcloud-controller-2=172.18.0.16:6789/0}
 election epoch 152, quorum 0,1,2 overcloud-controller-1,overcloud-controller-
2,overcloud-controller-0
 osdmap e543: 6 osds: 6 up, 6 in
 pgmap v1736: 256 pgs, 4 pools, 0 bytes data, 0 objects
 267 MB used, 119 GB / 119 GB avail
 256 active+clean

This example output shows that the health parameter value is HEALTH_OK, which indicates
that the Ceph node is active and healthy. The output also shows three Ceph monitor services
that are running on the three overcloud-controller nodes and the IP addresses and ports of the
services.

8.4. ADDITIONAL RESOURCES

Red Hat Ceph product page

CHAPTER 8. MONITORING A HIGH AVAILABILITY RED HAT CEPH STORAGE CLUSTER

55

https://access.redhat.com/products/red-hat-ceph-storage/

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. RED HAT OPENSTACK PLATFORM HIGH AVAILABILITY OVERVIEW AND PLANNING
	1.1. RED HAT OPENSTACK PLATFORM HIGH AVAILABILITY SERVICES
	1.1.1. Service types
	1.1.2. Service modes

	1.2. PLANNING HIGH AVAILABILITY HARDWARE ASSIGNMENTS
	1.3. PLANNING HIGH AVAILABILITY NETWORKING
	1.4. ACCESSING THE HIGH AVAILABILITY ENVIRONMENT
	1.5. ADDITIONAL RESOURCES

	CHAPTER 2. EXAMPLE DEPLOYMENT: HIGH AVAILABILITY CLUSTER WITH COMPUTE AND CEPH
	2.1. EXAMPLE HIGH AVAILABILITY HARDWARE SPECIFICATIONS
	2.2. EXAMPLE HIGH AVAILABILITY NETWORK SPECIFICATIONS
	2.3. EXAMPLE HIGH AVAILABILITY UNDERCLOUD CONFIGURATION FILES
	2.4. EXAMPLE HIGH AVAILABILITY OVERCLOUD CONFIGURATION FILES
	2.5. ADDITIONAL RESOURCES

	CHAPTER 3. MANAGING HIGH AVAILABILITY SERVICES WITH PACEMAKER
	3.1. PACEMAKER RESOURCE BUNDLES AND CONTAINERS
	3.1.1. Simple Bundle Set resources (simple bundles)
	3.1.2. Complex Bundle Set resources (complex bundles)

	3.2. CHECKING PACEMAKER CLUSTER STATUS
	3.3. CHECKING BUNDLE STATUS IN A HIGH AVAILABILITY CLUSTER
	3.4. VIEWING RESOURCE INFORMATION FOR VIRTUAL IPS IN A HIGH AVAILABILITY CLUSTER
	3.5. VIEWING NETWORK INFORMATION FOR VIRTUAL IPS IN A HIGH AVAILABILITY CLUSTER
	3.6. CHECKING FENCING AGENT AND PACEMAKER DAEMON STATUS
	3.7. ADDITIONAL RESOURCES

	CHAPTER 4. FENCING CONTROLLER NODES WITH STONITH
	4.1. SUPPORTED FENCING AGENTS
	4.2. DEPLOYING FENCING ON THE OVERCLOUD
	4.3. TESTING FENCING ON THE OVERCLOUD
	4.4. VIEWING STONITH DEVICE INFORMATION
	4.5. FENCING PARAMETERS
	4.6. ADDITIONAL RESOURCES

	CHAPTER 5. LOAD BALANCING TRAFFIC WITH HAPROXY
	5.1. HOW HAPROXY WORKS
	5.2. VIEWING HAPROXY STATS
	5.3. ADDITIONAL RESOURCES

	CHAPTER 6. MANAGING DATABASE REPLICATION WITH GALERA
	6.1. VERIFYING HOSTNAME RESOLUTION IN A MARIADB CLUSTER
	6.2. CHECKING MARIADB CLUSTER INTEGRITY
	6.3. CHECKING DATABASE NODE INTEGRITY IN A MARIADB CLUSTER
	6.4. TESTING DATABASE REPLICATION PERFORMANCE IN A MARIADB CLUSTER
	6.5. ADDITIONAL RESOURCES

	CHAPTER 7. TROUBLESHOOTING HIGH AVAILABILITY RESOURCES
	7.1. VIEWING RESOURCE CONSTRAINTS IN A HIGH AVAILABILITY CLUSTER
	7.2. INVESTIGATING PACEMAKER RESOURCE PROBLEMS
	7.3. INVESTIGATING SYSTEMD RESOURCE PROBLEMS

	CHAPTER 8. MONITORING A HIGH AVAILABILITY RED HAT CEPH STORAGE CLUSTER
	8.1. CHECKING RED HAT CEPH MONITORING SERVICE STATUS
	8.2. CHECKING RED HAT CEPH MONITORING CONFIGURATION
	8.3. CHECKING RED HAT CEPH NODE STATUS
	8.4. ADDITIONAL RESOURCES

