
Red Hat OpenStack Platform 11

Partner Integration

Integrating certified third party software and hardware in a Red Hat OpenStack
Platform environment

Last Updated: 2019-01-25

Red Hat OpenStack Platform 11 Partner Integration

Integrating certified third party software and hardware in a Red Hat OpenStack Platform
environment

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides guidelines on integrating certified third party components into a Red Hat
OpenStack Platform environment. This includes adding these components to your overcloud images
and creating configuration for deployment using the director.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. PARTNER INTEGRATION OVERVIEW
1.2. PARTNER INTEGRATION REQUIREMENTS

CHAPTER 2. ARCHITECTURE
2.1. CORE COMPONENTS

2.1.1. Ironic
2.1.2. Heat
2.1.3. Puppet
2.1.4. TripleO and TripleO Heat Templates
2.1.5. Composable Services

CHAPTER 3. OVERCLOUD IMAGES
3.1. OBTAINING THE OVERCLOUD IMAGES
3.2. INITRD: MODIFYING THE INITIAL RAMDISKS
3.3. QCOW: INSTALLING VIRT-CUSTOMIZE TO THE DIRECTOR
3.4. QCOW: INSPECTING THE OVERCLOUD IMAGE
3.5. QCOW: SETTING THE ROOT PASSWORD
3.6. QCOW: REGISTERING THE IMAGE
3.7. QCOW: ATTACHING A SUBSCRIPTION AND ENABLING RED HAT REPOSITORIES
3.8. QCOW: COPYING A CUSTOM REPOSITORY FILE
3.9. QCOW: INSTALLING RPMS
3.10. QCOW: CLEANING THE SUBSCRIPTION POOL
3.11. QCOW: UNREGISTERING THE IMAGE
3.12. UPLOADING THE IMAGES TO THE DIRECTOR

CHAPTER 4. CONFIGURATION
4.1. LEARNING PUPPET BASICS

4.1.1. Examining the Anatomy of a Puppet Module
4.1.2. Installing a Service
4.1.3. Starting and Enabling a Service
4.1.4. Configuring a Service

4.2. OBTAINING OPENSTACK PUPPET MODULES
4.3. ADDING CONFIGURATION FOR A PUPPET MODULE
4.4. ADDING HIERA DATA TO PUPPET CONFIGURATION

CHAPTER 5. ORCHESTRATION
5.1. LEARNING HEAT TEMPLATE BASICS

5.1.1. Understanding Heat Templates
5.1.2. Understanding Environment Files

5.2. OBTAINING THE DEFAULT DIRECTOR TEMPLATES
5.3. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION
5.4. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
5.5. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
5.6. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
5.7. PUPPET: APPLYING CUSTOM CONFIGURATION TO AN OVERCLOUD
5.8. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
5.9. ADDING ENVIRONMENT FILES TO AN OVERCLOUD DEPLOYMENT

CHAPTER 6. COMPOSABLE SERVICES
6.1. EXAMINING COMPOSABLE SERVICE ARCHITECTURE
6.2. CREATING A USER-DEFINED COMPOSABLE SERVICE
6.3. INCLUDING A USER-DEFINED COMPOSABLE SERVICE

4
4
4

6
6
7
7
9

10
10

11
11
11
12
12
13
13
13
14
14
14
15
15

17
17
17
18
18
19
20
20
22

24
24
24
25
26
27
29
32
34
37
38
39

40
40
41
43

Table of Contents

1

. .

. .

CHAPTER 7. INTEGRATION POINTS
7.1. BARE METAL PROVISIONING (IRONIC)
7.2. NETWORKING (NEUTRON)
7.3. BLOCK STORAGE (CINDER)
7.4. IMAGE STORAGE (GLANCE)
7.5. SHARED FILE SYSTEMS (MANILA)

CHAPTER 8. EXAMPLES
8.1. CISCO NEXUS 1000V
8.2. NETAPP STORAGE

45
45
46
47
48
49

51
51
53

Red Hat OpenStack Platform 11 Partner Integration

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
This document has been created to help Red Hat OpenStack Platform partners in their efforts to
integrate solutions with Red Hat OpenStack Platform director as the tool used to install and manage the
deployment lifecycle of an OpenStack Platform environment. Integration with the director enables
seamless adoption of your technology. You can find broad benefits in an optimization of resources,
reduction in deployment times and reduction in lifecycle management costs.

Looking forward, OpenStack Platform director integration is a strong move toward providing rich
integration with existing enterprise management systems and processes. Within the Red Hat product
portfolio, tools such as CloudForms are expected to have visibility into director’s integrations and provide
broader exposure for management of service deployment.

1.1. PARTNER INTEGRATION OVERVIEW

This guide aims to help partners integrate their software and hardware solutions in a manner that the
director configures as a part of the Overcloud. This follows a workflow broken down into multiple
sections that show how to perform certain integration tasks:

Architecture - An examination of some of the technologies the director uses to perform
Overcloud creation and configuration.

Overcloud Images - The director writes a base image to each node in the Overcloud as a
foundation for their node type. This section explains how to modify these images before
deployment so that you can include drivers or software. This is useful for testing your drivers and
configuration before contributing them upstream.

Configuration - The director configures each service on the Overcloud, primarily using Puppet
modules. This section show how Puppet modules work and how they are used to configure the
Overcloud.

Orchestration - The director uses a set of Heat templates to create and configure the
Overcloud. This can also include custom environment files and Heat templates to modify the
behavior of the Overcloud configuration. This section focuses on creating such templates to
enable custom configuration of the Overcloud. This also involves including Puppet configuration
from the previous chapter.

Composable Services - The director breaks down individual services for a more modular
approach to creating OpenStack Platform roles. This section explains the Composable Service
architecture and provides an example of how to create a custom composable service.

Integration Points - The image that the director deploys contains the required OpenStack
components and set of Puppet modules for the configuration. This section discusses some of
the upstream projects for contributing your component drivers and Puppet modules. This
ensures that Red Hat can test them and include them in future Red Hat OpenStack Platform
distributions.

Examples - This chapter is the culmination of the knowledge from previous chapters to
demonstrate how real world certified vendors currently integrate their projects into the Overcloud
using the director. This includes some practical network and storage examples. This section is
useful to help similar vendors integrate their own products into Red Hat OpenStack Platform’s
ecosystem.

1.2. PARTNER INTEGRATION REQUIREMENTS

Red Hat OpenStack Platform 11 Partner Integration

4

You must meet several prerequisites before meaningful integration work can be completed with the
director. These requirements are not limited to technical integration and also include various levels of
partner solution documentation. The goal is to have a complete shared understanding of the entire
integration so that Red Hat engineering, partner managers, and support resources can effectively
support the work.

The first requirement is related to Red Hat OpenStack Platform solution certification. To be included with
OpenStack Platform director, the partner solution must first be certified with Red Hat OpenStack
Platform.

Red Hat OpenStack Certification Policy Guide

Red Hat OpenStack Certification Workflow Guide

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/documentation/en-us/red_hat_openstack_certification/11/html/red_hat_openstack_certification_policy_guide/
https://access.redhat.com/documentation/en-us/red_hat_openstack_certification_test_suite/11/html/red_hat_openstack_certification_workflow_guide/

CHAPTER 2. ARCHITECTURE
The director advocates the use of native OpenStack APIs to configure, deploy, and manage OpenStack
environments itself. This means integration with director requires integrating with these native
OpenStack APIs and supporting components. The major benefit of utilizing such APIs is that they are
well documented, undergo extensive integration testing upstream, are mature, and makes understanding
how the director works easier for those that have a foundational knowledge of OpenStack. This also
means the director automatically inherits core OpenStack feature enhancements, security patches, and
bug fixes.

The Red Hat OpenStack Platform director is a toolset for installing and managing a complete OpenStack
environment. It is based primarily on the OpenStack project TripleO, which is an abbreviation for
"OpenStack-On-OpenStack". This project takes advantage of OpenStack components to install a fully
operational OpenStack environment. This includes new OpenStack components that provision and
control bare metal systems to use as OpenStack nodes. This provides a simple method for installing a
complete Red Hat OpenStack Platform environment that is both lean and robust.

The Red Hat OpenStack Platform director uses two main concepts: an Undercloud and an Overcloud.
This director itself is comprised of a subset of OpenStack components that form a single-system
OpenStack environment, otherwise known as the Undercloud. The Undercloud acts as a management
system that can create a production-level cloud for workloads to run. This production-level cloud is the
Overcloud. For more information on the Overcloud and the Undercloud, see the Director Installation and
Usage guide.

Director ships with tools, utilities, and example templates for creating an Overcloud configuration. The
director captures configuration data, parameters, and network topology information then uses this
information in conjunction with components such as Ironic, Heat, and Puppet to orchestrate an
Overcloud installation.

Partners have varied requirements. Understanding the director’s architecture aids in understand which
components matter for a given integration effort.

2.1. CORE COMPONENTS

This section examines some of the core components of the Red Hat OpenStack Platform director and
describes how they contribute to Overcloud creation.

Red Hat OpenStack Platform 11 Partner Integration

6

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage

2.1.1. Ironic

Ironic provides dedicated bare metal hosts to end users through self-service provisioning. The director
uses Ironic to manage the lifecycle of the bare metal hardware in our Overcloud. Ironic has its own native
API for defining bare metal nodes. Administrators aiming to provision OpenStack environments with the
director must register their nodes with Ironic using a specific driver. The main supported driver is The
Intelligent Platform Management Interface (IPMI) as most hardware contains some support for IPMI
power management functions. However, ironic also contains vendor specific equivalents such as HP
iLO, Cisco UCS, or Dell DRAC. Ironic controls the power management of the nodes and gathers
hardware information or facts using a introspection mechanism. The director uses the information
obtained from the introspection process to match node to various OpenStack environment roles, such as
Controller nodes, Compute nodes, and storage nodes. For example, a discovered node with 10 disks will
more than likely be provisioned as a storage node.

Partners wishing to have director support for their hardware will need to have driver coverage in Ironic.

2.1.2. Heat

Heat acts as an application stack orchestration engine. This allows organizations to define elements for
a given application before deploying it to a cloud. This involves creating a stack template that includes a
number of infrastructure resources (e.g. instances, networks, storage volumes, elastic IPs, etc) along
with a set of parameters for configuration. Heat creates these resources based on a given dependency
chain, monitors them for availability, and scales them where necessary. These templates enable
application stacks to become portable and achieve repeatable results.

CHAPTER 2. ARCHITECTURE

7

The director uses the native OpenStack Heat APIs to provision and manage the resources associated
with deploying an Overcloud. This includes precise details such as defining the number of nodes to
provision per node role, the software components to configure for each node, and the order in which the
director configures these components and node types. The director also uses Heat for troubleshooting a
deployment and making changes post-deployment with ease.

The following example is a snippet from a Heat template that defines parameters of a Controller node:

NeutronExternalNetworkBridge:
 description: Name of bridge used for external network traffic.
 type: string
 default: 'br-ex'
NeutronBridgeMappings:
 description: >
 The OVS logical->physical bridge mappings to use. See the Neutron
 documentation for details. Defaults to mapping br-ex - the external
 bridge on hosts - to a physical name 'datacentre' which can be used
 to create provider networks (and we use this for the default
floating
 network) - if changing this either use different post-install
network

Red Hat OpenStack Platform 11 Partner Integration

8

 scripts or be sure to keep 'datacentre' as a mapping network name.
 type: string
 default: "datacentre:br-ex"

Heat consumes templates included with the director to facilitate the creation of an Overcloud, which
includes calling Ironic to power the nodes. We can view the resources (and their status) of an in-progress
Overcloud using the standard Heat tools. For example, you can use the Heat tools to display the
Overcloud as a nested application stack.

Heat provides a comprehensive and powerful syntax for declaring and creating production OpenStack
clouds. However, it requires some prior understanding and proficiency for partner integration. Every
partner integration use case requires Heat templates.

2.1.3. Puppet

Puppet is a configuration management and enforcement tool. It is used as a mechanism to describe the
end state of a machine and keep it that way. You define this end state in a Puppet manifest. Puppet
supports two models:

A standalone mode in which instructions in the form of manifests are ran locally

A server mode where it retrieves its manifests from a central server, called a Puppet Master.

Administrators make changes in two ways: either uploading new manifests to a node and executing them
locally, or in the client/server model by making modifications on the Puppet Master.

We use Puppet in many areas of director:

We use Puppet on the Undercloud host locally to install and configure packages as per the
configuration laid out in undercloud.conf.

We inject the openstack-puppet-modules package into the base Overcloud image. These
Puppet modules are ready for post-deployment configuration. By default, we create an image
that contains all OpenStack services and use it for each node.

We provide additional Puppet manifests and parameters to the nodes via Heat, and apply the
configuration after the Overcloud’s deployment. This includes the services to enable and start
and the OpenStack configuration to apply, which are dependent on the node type.

We provide Puppet hieradata to the nodes. The Puppet modules and manifests are free from
site or node-specific parameters to keep the manifests consistent. The hieradata acts as a form
of parameterized values that you can push to a Puppet module and reference in other areas. For
example, to reference the MySQL password inside of a manifest, save this information as
hieradata and reference it within the manifest.
Viewing the hieradata:

[root@localhost ~]# grep mysql_root_password hieradata.yaml # View
the data in the hieradata file
openstack::controller::mysql_root_password: ‘redhat123'

Referencing it in the Puppet manifest:

[root@localhost ~]# grep mysql_root_password example.pp # Now
referenced in the Puppet manifest
mysql_root_password =>
hiera(‘openstack::controller::mysql_root_password')

CHAPTER 2. ARCHITECTURE

9

Partner integrated services that need package installation and service enablement should consider
creating Puppet modules to meet their requirement. For examples, see Section 4.2, “Obtaining
OpenStack Puppet Modules” for information on how to obtain current OpenStack Puppet modules.

2.1.4. TripleO and TripleO Heat Templates

As mentioned previously, the director is based on the upstream TripleO project. This project combines a
set of OpenStack services that:

Store Overcloud images (Glance)

Orchestrate the Overcloud (Heat)

Provision bare metal machines (Ironic and Nova)

TripleO also includes a Heat template collection that defines a Red Hat-supported Overcloud
environment. The director, using Heat, reads this template collection and orchestrates the Overcloud
stack.

2.1.5. Composable Services

Each aspect of Red Hat OpenStack Platform is broken into a composable service. This means you can
define different roles using different combinations of services. For example, an administrator might aim
to move the networking agents from the default Controller node to a standalone Networker node.

For more information about the composable service architecture, see Chapter 6, Composable Services.

Red Hat OpenStack Platform 11 Partner Integration

10

CHAPTER 3. OVERCLOUD IMAGES
The Red Hat OpenStack Platform director provides images for the Overcloud. The QCOW image in this
collection contains a base set of software components that integrate together to form various Overcloud
roles, such as Compute, Controller, and storage nodes. In some situations, you might aim to modify
certain aspects of the Overcloud image to suit your needs, such installing additional components to
nodes.

This document describes a series of actions to use the virt-customize tool to modify an existing
Overcloud image to augment an existing Controller node. For example, you can use these procedures to
install additional ml2 plugins, Cinder backends, or monitoring agents not shipped with the initial image.

IMPORTANT

If you modify the Overcloud image to include third-party software and report an issue, Red
Hat may request you reproduce the issue using an unmodified image in accordance with
our general third-party support policy: https://access.redhat.com/articles/1067.

3.1. OBTAINING THE OVERCLOUD IMAGES

The director requires several disk images for provisioning Overcloud nodes. This includes:

A introspection kernel and ramdisk - Used for bare metal system introspection over PXE
boot.

A deployment kernel and ramdisk - Used for system provisioning and deployment.

An Overcloud kernel, ramdisk, and full image - A base Overcloud system that is written to the
node’s hard disk.

Obtain these images from the rhosp-director-images and rhosp-director-images-ipa
packages:

$ sudo yum install rhosp-director-images rhosp-director-images-ipa

Extract the archives to the images directory on the stack user’s home (/home/stack/images):

$ cd ~/images
$ for i in /usr/share/rhosp-director-images/overcloud-full-latest-11.0.tar
/usr/share/rhosp-director-images/ironic-python-agent-latest-11.0.tar; do
tar -xvf $i; done

3.2. INITRD: MODIFYING THE INITIAL RAMDISKS

Some situations might require you to modify the initial ramdisk. For example, you might require a certain
driver available when you boot the nodes during the introspection or provisioning processes. The
following procedure shows how to modify an initial ramdisk. In the context of the Overcloud, this includes
either:

The introspection ramdisk - ironic-python-agent.initramfs

The provisioning ramdisk - overcloud-full.initrd

This procedure adds an additional RPM package to the ironic-python-agent.initramfs ramdisk

CHAPTER 3. OVERCLOUD IMAGES

11

https://access.redhat.com/articles/1067

as an example.

Log in as the root user and create a temporary directory for the ramdisk

mkdir ~/ipa-tmp
cd ~/ipa-tmp

Use the skipcpio and `cpio commands to extract the ramdisk to the temporary directory:

/usr/lib/dracut/skipcpio ~/images/ironic-python-agent.initramfs | zcat |
cpio -ivd | pax -r

Install an RPM package to the extracted contents:

rpm2cpio ~/RPMs/python-proliantutils-2.1.7-1.el7ost.noarch.rpm | pax -r

Recreate the new ramdisk:

find . 2>/dev/null | cpio --quiet -c -o | gzip -8 >
/home/stack/images/ironic-python-agent.initramfs
chown stack: /home/stack/images/ironic-python-agent.initramfs

Verify the new package now exists in the ramdisk:

lsinitrd /home/stack/images/ironic-python-agent.initramfs | grep
proliant

3.3. QCOW: INSTALLING VIRT-CUSTOMIZE TO THE DIRECTOR

The libguestfs-tools package contains the virt-customize tool. Install the libguestfs-tools from the
rhel-7-server-rpms repository:

$ sudo yum install libguestfs-tools

3.4. QCOW: INSPECTING THE OVERCLOUD IMAGE

You might aim to explore the contents of the overcloud-full.qcow2. Create a virtual machine instance
using either the qemu-system-x86_64 command:

$ sudo qemu-system-x86_64 --kernel overcloud-full.vmlinuz --initrd
overcloud-full.initrd -m 1024 --append root=/dev/sda --enable-kvm
overcloud-full.qcow2

Or using the following boot options in virt-manager:

Kernel path: /overcloud-full.vmlinuz

initrd path: /overcloud-full.initrd

Kernel arguments: root=/dev/sda

Red Hat OpenStack Platform 11 Partner Integration

12

3.5. QCOW: SETTING THE ROOT PASSWORD

Set the password for the root user on image:

$ virt-customize --selinux-relabel -a overcloud-full.qcow2 --root-password
password:test
[0.0] Examining the guest ...
[18.0] Setting a random seed
[18.0] Setting passwords
[19.0] Finishing off

This provides administration-level access for your nodes through the console.

3.6. QCOW: REGISTERING THE IMAGE

Register your image temporarily to enable Red Hat repositories relevant to your customizations:

$ virt-customize --selinux-relabel -a overcloud-full.qcow2 --run-command
'subscription-manager register --username=[username] --password=
[password]'
[0.0] Examining the guest ...
[10.0] Setting a random seed
[10.0] Running: subscription-manager register --username=[username] --
password=[password]
[24.0] Finishing off

Make sure to replace the [username] and [password] with your Red Hat customer account details. This
runs the following command on the image:

subscription-manager register --username=[username] --password=[password]

This registers your Overcloud image to the Red Hat Content Delivery Network:

3.7. QCOW: ATTACHING A SUBSCRIPTION AND ENABLING RED HAT
REPOSITORIES

Find a list of pool ID from your account’s subscriptions:

$ sudo subscription-manager list

Choose a subscription pool ID and attach it to the image:

$ virt-customize --selinux-relabel -a overcloud-full.qcow2 --run-command
'subscription-manager attach --pool [subscription-pool]'
[0.0] Examining the guest ...
[12.0] Setting a random seed
[12.0] Running: subscription-manager attach --pool [subscription-pool]
[52.0] Finishing off

Make sure to replace the [subscription-pool] with your chosen subscription pool ID. This runs the
following command on the image:

CHAPTER 3. OVERCLOUD IMAGES

13

subscription-manager attach --pool [subscription-pool]

This adds the pool to the image, which allows you to enable Red Hat repositories with the following
command:

$ subscription-manager repos --enable=[repo-id]

3.8. QCOW: COPYING A CUSTOM REPOSITORY FILE

Adding third-party software to the image requires additional repositories. For example, the following is an
example repo file that contains configuration to use the OpenDaylight repository content:

$ cat opendaylight.repo

[opendaylight]
name=OpenDaylight Repository
baseurl=https://nexus.opendaylight.org/content/repositories/opendaylight-
yum-epel-6-x86_64/
gpgcheck=0

Copy the repository file on to the image:

$ virt-customize --selinux-relabel -a overcloud-full.qcow2 --upload
opendaylight.repo:/etc/yum.repos.d/
[0.0] Examining the guest ...
[12.0] Setting a random seed
[12.0] Copying: opendaylight.repo to /etc/yum.repos.d/
[13.0] Finishing off

The --copy-in option copies the repository file to /etc/yum.repos.d/ on the Overcloud image.

Important: Red Hat does not offer support for software from non-certified vendors. Check with your Red
Hat support representative that the software you aim to install is supported.

3.9. QCOW: INSTALLING RPMS

Use the virt-customize command to install packages to the image:

$ virt-customize --selinux-relabel -a overcloud-full.qcow2 --install
opendaylight
[0.0] Examining the guest ...
[11.0] Setting a random seed
[11.0] Installing packages: opendaylight
[91.0] Finishing off

The --install option allows you to specify a package to install.

3.10. QCOW: CLEANING THE SUBSCRIPTION POOL

After installing the necessary packages to customize the image, we now remove our subscriptions and
unregister the image:

Red Hat OpenStack Platform 11 Partner Integration

14

$ virt-customize --selinux-relabel -a overcloud-full.qcow2 --run-command
'subscription-manager remove --all'
[0.0] Examining the guest ...
[12.0] Setting a random seed
[12.0] Running: subscription-manager remove --all
[18.0] Finishing off

This removes all subscription pools from the image.

3.11. QCOW: UNREGISTERING THE IMAGE

Finally, unregister the image. This is so the Overcloud deployment process can deploy the image to your
nodes and register each of them individually.

$ virt-customize --selinux-relabel -a overcloud-full.qcow2 --run-command
'subscription-manager unregister'
[0.0] Examining the guest ...
[11.0] Setting a random seed
[11.0] Running: subscription-manager unregister
[17.0] Finishing off

3.12. UPLOADING THE IMAGES TO THE DIRECTOR

After modifying the image, upload it to the director. Make sure to source the stackrc file so that you can
access the director from the command line:

$ source stackrc
$ openstack overcloud image upload --image-path /home/stack/images/

This uploads the following images into the director: bm-deploy-kernel, bm-deploy-ramdisk,
overcloud-full, overcloud-full-initrd, and overcloud-full-vmlinuz. These are the images for
deployment and the Overcloud. The script also installs the introspection images on the director’s PXE
server. View a list of the images in the CLI using the following command:

$ openstack image list
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
765a46af-4417-4592-91e5-a300ead3faf6	bm-deploy-ramdisk
09b40e3d-0382-4925-a356-3a4b4f36b514	bm-deploy-kernel
ef793cd0-e65c-456a-a675-63cd57610bd5	overcloud-full
9a51a6cb-4670-40de-b64b-b70f4dd44152	overcloud-full-initrd
4f7e33f4-d617-47c1-b36f-cbe90f132e5d	overcloud-full-vmlinuz
+--------------------------------------+------------------------+

This list will not show the introspection PXE images (agent.*). The director copies these files to /httpboot.

[stack@host1 ~]$ ls /httpboot -l
total 151636
-rw-r--r--. 1 ironic ironic 269 Sep 19 02:43 boot.ipxe
-rw-r--r--. 1 root root 252 Sep 10 15:35 inspector.ipxe

CHAPTER 3. OVERCLOUD IMAGES

15

-rwxr-xr-x. 1 root root 5027584 Sep 10 16:32 agent.kernel
-rw-r--r--. 1 root root 150230861 Sep 10 16:32 agent.ramdisk
drwxr-xr-x. 2 ironic ironic 4096 Sep 19 02:45 pxelinux.cfg

Red Hat OpenStack Platform 11 Partner Integration

16

CHAPTER 4. CONFIGURATION
This chapter explores how to provide additions to the OpenStack Puppet modules. This includes some
basic guidelines on developing Puppet modules.

4.1. LEARNING PUPPET BASICS

The following section provide a few basic to help you understand Puppet’s syntax and the structure of a
Puppet module.

4.1.1. Examining the Anatomy of a Puppet Module

Before contributing to the OpenStack modules, we need to understand the components that create a
Puppet module.

Manifests

Manifests are files that contain code to define a set of resource and their attributes. A resource is any
configurable part of a system. Examples of resources include packages, services, files, users and
groups, SELinux configuration, SSH key authentication, cron jobs, and more. A manifest defines each
required resource using a set of key-value pairs for their attributes. For example:

 package { 'httpd':
 ensure => installed,
 }

This declaration checks if the httpd package is installed. If not, the manifest executes yum and installs
it. Manifests are located in the manifest directory of a module. Puppet modules also use a test
directory for test manifests. These manifests are used to test certain classes contained in your official
manifests.

Classes

Classes act as a method for unifying multiple resources in a manifest. For example, if installing and
configuring a HTTP server, you might create a class with three resources: one to install the HTTP
server packages, one to configure the HTTP server, and one to start or enable the server. You can
also refer to classes from other modules, which applies their configuration. For example, if you had to
configure an application that also required a webserver, you can refer to the previously mentioned
class for the HTTP server.

Static Files

Modules can contain static files that Puppet can copy to certain locations on your system. These
locations, and other attributes such as permissions, are defined through file resource declarations in
manifests.
Static files are located in the files directory of a module.

Templates

Sometimes configuration files require custom content. In this situation, users would create a template
instead of a static file. Like static files, templates are defined in manifests and copied to locations on a
system. The difference is that templates allow Ruby expressions to define customized content and
variable input. For example, if you wanted to configure httpd with a customizable port then the
template for the configuration file would include:

Listen <%= @httpd_port %>

CHAPTER 4. CONFIGURATION

17

The httpd_port variable in this case is defined in the manifest that references this template.

Templates are located in the templates directory of a module.

Plugins

Plugins allow for aspects that extend beyond the core functionality of Puppet. For example, you can
use plugins to define custom facts, custom resources, or new functions. For example, a database
administrator might need a resource type for PostgreSQL databases. This could help the database
administrator populate PostgreSQL with a set of new databases after installing PostgreSQL. As a
result, the database administrator need only create a Puppet manifest that ensures PostgreSQL
installs and the databases are created afterwards.
Plugins are located in the lib directory of a module. This includes a set of subdirectories depending on
the plugin type. For example:

/lib/facter - Location for custom facts.

/lib/puppet/type - Location for custom resource type definitions, which outline the key-
value pairs for attributes.

/lib/puppet/provider - Location for custom resource providers, which are used in
conjunction with resource type definitions to control resources.

/lib/puppet/parser/functions - Location for custom functions.

4.1.2. Installing a Service

Some software requires package installations. This is one function a Puppet module can perform. This
requires a resource definition that defines configurations for a certain package.

For example, to install the httpd package through the mymodule module, you would add the following
content to a Puppet manifest in the mymodule module:

class mymodule::httpd {
 package { 'httpd':
 ensure => installed,
 }
}

This code defines a subclass of mymodule called httpd, then defines a package resource declaration
for the httpd package. The ensure => installed attribute tells Puppet to check if the package is
installed. If it is not installed, Puppet executes yum to install it.

4.1.3. Starting and Enabling a Service

After installing a package, you might aim to start the service. Use another resource declaration called
service. This requires editing the manifest with the following content:

class mymodule::httpd {
 package { 'httpd':
 ensure => installed,
 }
 service { 'httpd':
 ensure => running,

Red Hat OpenStack Platform 11 Partner Integration

18

 enable => true,
 require => Package["httpd"],
 }
}

This achieves a couple of things:

The ensure => running attribute checks if the service is running. If not, Puppet enables it.

The enable => true attribute sets the service to run when the system boots.

The require => Package["httpd"] attribute defines an ordering relationship between one
resource declaration and another. In this case, it ensures the httpd service starts after the httpd
package installs. This creates a dependency between the service and its respective package.

4.1.4. Configuring a Service

The previous two steps show how to install and enable a service through Puppet. However, you might
aim to provide some custom configuration to the services. In our example, the HTTP server already
provides some default configuration in /etc/httpd/conf/httpd.conf, which provides a web host
on port 80. This section adds some extra configuration to provide an additional web host on a user-
specified port.

For this to occur, you use a template file to store the HTTP configuration file. This is because the user-
defined port requires variable input. In the module’s templates directory, you would add a file called
myserver.conf.erb with the following contents:

Listen <%= @httpd_port %>
NameVirtualHost *:<%= @httpd_port %>
<VirtualHost *:<%= @httpd_port %>>
 DocumentRoot /var/www/myserver/
 ServerName *:<%= @fqdn %>>
 <Directory "/var/www/myserver/">
 Options All Indexes FollowSymLinks
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

This template follows the standard syntax for Apache web server configuration. The only difference is the
inclusion of Ruby escape characters to inject variables from our module. For example, httpd_port,
which we use to specify the web server port.

Notice also the inclusion of fqdn, which is a variable that stores the fully qualified domain name of the
system. This is known as a system fact. System facts are collected from each system prior to
generating each respective system’s Puppet catalog. Puppet uses the facter command to gather
these system facts and you can also run facter to view a list of these facts.

After saving this file, you would add the resource to module’s Puppet manifest :

class mymodule::httpd {
 package { 'httpd':
 ensure => installed,
 }
 service { 'httpd':

CHAPTER 4. CONFIGURATION

19

 ensure => running,
 enable => true,
 require => Package["httpd"],
 }
 file {'/etc/httpd/conf.d/myserver.conf':
 notify => Service["httpd"],
 ensure => file,
 require => Package["httpd"],
 content => template("mymodule/myserver.conf.erb"),
 }
 file { "/var/www/myserver":
 ensure => "directory",
 }
}

This achieves the following:

We add a file resource declaration for the server configuration file
(/etc/httpd/conf.d/myserver.conf). The content for this file is the
myserver.conf.erb template we created earlier. We also check the httpd package is
installed before adding this file.

We also add a second file resource declaration. This one creates a directory
(/var/www/myserver) for our web server.

We also add a relationship between the configuration file and the httpd service using the notify
=> Service["httpd"] attribute. This checks our configuration file for any changes. If the file
has changed, Puppet restarts the service.

4.2. OBTAINING OPENSTACK PUPPET MODULES

The Red Hat OpenStack Platform uses the official OpenStack Puppet modules, which you obtain from
the openstack group on Github. Navigate your browser to https://github.com/openstack and in the
filters section search for puppet. All Puppet module use the prefix puppet-.

For this example, we will examine the official OpenStack Block Storage (cinder), which you can clone
using the following command:

$ git clone https://github.com/openstack/puppet-cinder.git

This creates a clone of the Puppet module for Cinder.

4.3. ADDING CONFIGURATION FOR A PUPPET MODULE

The OpenStack modules primarily aim to configure the core service. Most also contain additional
manifests to configure additional services, sometimes known as backends, agents, or plugins. For
example, the cinder module contains a directory called backends, which contains configuration
options for different storage devices including NFS, iSCSI, Red Hat Ceph Storage, and others.

For example, the manifests/backends/nfs.pp file contains the following configuration

define cinder::backend::nfs (
 $volume_backend_name = $name,
 $nfs_servers = [],

Red Hat OpenStack Platform 11 Partner Integration

20

https://github.com/openstack

 $nfs_mount_options = undef,
 $nfs_disk_util = undef,
 $nfs_sparsed_volumes = undef,
 $nfs_mount_point_base = undef,
 $nfs_shares_config = '/etc/cinder/shares.conf',
 $nfs_used_ratio = '0.95',
 $nfs_oversub_ratio = '1.0',
 $extra_options = {},
) {

 file {$nfs_shares_config:
 content => join($nfs_servers, "\n"),
 require => Package['cinder'],
 notify => Service['cinder-volume']
 }

 cinder_config {
 "${name}/volume_backend_name": value => $volume_backend_name;
 "${name}/volume_driver": value =>
 'cinder.volume.drivers.nfs.NfsDriver';
 "${name}/nfs_shares_config": value => $nfs_shares_config;
 "${name}/nfs_mount_options": value => $nfs_mount_options;
 "${name}/nfs_disk_util": value => $nfs_disk_util;
 "${name}/nfs_sparsed_volumes": value => $nfs_sparsed_volumes;
 "${name}/nfs_mount_point_base": value => $nfs_mount_point_base;
 "${name}/nfs_used_ratio": value => $nfs_used_ratio;
 "${name}/nfs_oversub_ratio": value => $nfs_oversub_ratio;
 }

 create_resources('cinder_config', $extra_options)

}

This achieves a couple of things:

The define statement creates a defined type called cinder::backend::nfs. A defined type
is similar to a class; the main difference is Puppet evaluates a defined type multiple times. For
example, you might require multiple NFS backends and as such the configuration requires
multiple evaluations for each NFS share.

The next few lines define the parameters in this configuration and their default values. The
default values are overwritten if the user passes new values to the cinder::backend::nfs
defined type.

The file function is a resource declaration that calls for the creation of a file. This file contains
a list of our NFS shares and name for this file is defined in the parameters
($nfs_shares_config = '/etc/cinder/shares.conf'). Note the additional attributes:

The content attribute creates a list using the $nfs_servers parameter.

The require attribute ensures that the cinder package is installed.

The notify attribute tells the cinder-volume service to reset.

The cinder_config function is a resource declaration that uses a plugin from the
lib/puppet/ directory in the module. This plugin adds configuration to the

CHAPTER 4. CONFIGURATION

21

/etc/cinder/cinder.conf file. Each line in this resource adds a configuration options to the
relevant section in the cinder.conf file. For example, if the $name parameter is mynfs, then
the following attributes:

 "${name}/volume_backend_name": value => $volume_backend_name;
 "${name}/volume_driver": value =>
 'cinder.volume.drivers.nfs.NfsDriver';
 "${name}/nfs_shares_config": value => $nfs_shares_config;

Would save the following to the cinder.conf file:

[mynfs]
volume_backend_name=mynfs
volume_driver=cinder.volume.drivers.nfs.NfsDriver
nfs_shares_config=/etc/cinder/shares.conf

The create_resources function converts a hash into a set of resources. In this case, the
manifest converts the $extra_options hash to a set of additional configuration options for the
backend. This provides a flexible method to add further configuration options not included in the
manifest’s core parameters.

This shows the importance of including a manifest to configure your hardware’s OpenStack driver. The
manifest provides a simple method for the director to include configuration options relevant to your
hardware. This acts as a main integration point for the director to configure your Overcloud to use your
hardware.

4.4. ADDING HIERA DATA TO PUPPET CONFIGURATION

Puppet contains a tool called Hiera, which acts as a key/value systems that provides node-specific
configuration. These keys and their values are usually stored in files located in
/etc/puppet/hieradata. The /etc/puppet/hiera.yaml file defines the order that Puppet reads
the files in the hieradata directory.

When configuring the Overcloud, Puppet uses this data to overwrite the default values for certain Puppet
classes. For example, the default NFS mount options for cinder::backend::nfs in puppet-
cinder are undefined:

 $nfs_mount_options = undef,

However, you can create your own manifest that calls the cinder::backend::nfs defined type and
replace this option with Hiera data:

 cinder::backend::nfs { $cinder_nfs_backend:
 nfs_mount_options => hiera('cinder_nfs_mount_options'),
 }

This means the nfs_mount_options parameter takes uses Hiera data value from the
cinder_nfs_mount_options key:

cinder_nfs_mount_options: rsize=8192,wsize=8192

Red Hat OpenStack Platform 11 Partner Integration

22

Alternatively, you can use the Hiera data to overwrite
cinder::backend::nfs::nfs_mount_options parameter directly so that it applies to all
evalutations of the NFS configuration. For example:

cinder::backend::nfs::nfs_mount_options: rsize=8192,wsize=8192

The above Hiera data overwrites this parameter on each evaluation of cinder::backend::nfs.

CHAPTER 4. CONFIGURATION

23

CHAPTER 5. ORCHESTRATION
The director uses Heat Orchestration Templates (HOT) as a template format for its Overcloud
deployment plan. Templates in HOT format are mostly expressed in YAML format. The purpose of a
template is to define and create a stack, which is a collection of resources that heat creates, and the
configuration of the resources. Resources are objects in OpenStack and can include compute resources,
network configuration, security groups, scaling rules, and custom resources.

This chapter provides some basics for understanding the HOT syntax so that you can create your own
template files.

5.1. LEARNING HEAT TEMPLATE BASICS

5.1.1. Understanding Heat Templates

The structure of a Heat template has three main sections:

Parameters

These are settings passed to heat, which provides a way to customize a stack, and any default
values for parameters without passed values. These are defined in the parameters section of a
template.

Resources

These are the specific objects to create and configure as part of a stack. OpenStack contains a set of
core resources that span across all components. These are defined in the resources section of a
template.

Output

These are values passed from heat after the stack’s creation. You can access these values either
through the heat API or client tools. These are defined in the output section of a template.

Here is an example of a basic heat template:

heat_template_version: 2013-05-23

description: > A very basic Heat template.

parameters:
 key_name:
 type: string
 default: lars
 description: Name of an existing key pair to use for the instance
 flavor:
 type: string
 description: Instance type for the instance to be created
 default: m1.small
 image:
 type: string
 default: cirros
 description: ID or name of the image to use for the instance

resources:
 my_instance:
 type: OS::Nova::Server
 properties:

Red Hat OpenStack Platform 11 Partner Integration

24

 name: My Cirros Instance
 image: { get_param: image }
 flavor: { get_param: flavor }
 key_name: { get_param: key_name }

output:
 instance_name:
 description: Get the instance's name
 value: { get_attr: [my_instance, name] }

This template uses the resource type type: OS::Nova::Server to create an instance called
my_instance with a particular flavor, image, and key. The stack can return the value of
instance_name, which is called My Cirros Instance.

IMPORTANT

A Heat template also requires the heat_template_version parameter, which defines
the syntax version to use and the functions available. For more information, see the
Official Heat Documentation.

5.1.2. Understanding Environment Files

An environment file is a special type of template that provides customization for your Heat templates.
This includes three key parts:

Resource Registry

This section defines custom resource names, linked to other heat templates. This essentially provides
a method to create custom resources that do not exist within the core resource collection. These are
defined in the resource_registry section of an environment file.

Parameters

These are common settings you apply to the top-level template’s parameters. For example, if you
have a template that deploys nested stacks, such as resource registry mappings, the parameters only
apply to the top-level template and not templates for the nested resources. Parameters are defined in
the parameters section of an environment file.

Parameter Defaults

These parameters modify the default values for parameters in all templates. For example, if you
have a Heat template that deploys nested stacks, such as resource registry mappings,the parameter
defaults apply to all templates. In other words, the top-level template and those defining all nested
resources. The parameter defaults are defined in the parameter_defaults section of an
environment file.

IMPORTANT

It is recommended to use parameter_defaults instead of parameters When
creating custom environment files for your Overcloud. This is so the parameters apply to
all stack templates for the Overcloud.

An example of a basic environment file:

resource_registry:
 OS::Nova::Server::MyServer: myserver.yaml

CHAPTER 5. ORCHESTRATION

25

http://docs.openstack.org/developer/heat/template_guide/hot_spec.html#heat-template-version

parameter_defaults:
 NetworkName: my_network

parameters:
 MyIP: 192.168.0.1

For example, this environment file (my_env.yaml) might be included when creating a stack from a
certain Heat template (my_template.yaml). The my_env.yaml files creates a new resource type
called OS::Nova::Server::MyServer. The myserver.yaml file is a Heat template file that provides
an implementation for this resource type that overrides any built-in ones. You can include the
OS::Nova::Server::MyServer resource in your my_template.yaml file.

The MyIP applies a parameter only to the main Heat template that deploys along with this environment
file. In this example, it only applies to the parameters in my_template.yaml.

The NetworkName applies to both the main Heat template (in this example, my_template.yaml) and
the templates associated with resources included the main template, such as the
OS::Nova::Server::MyServer resource and its myserver.yaml template in this example.

5.2. OBTAINING THE DEFAULT DIRECTOR TEMPLATES

The director uses an advanced Heat template collection used to create an Overcloud. This collection is
available from the openstack group on Github in the openstack-tripleo-heat-templates
repository. To obtain a clone of this template collection, run the following command:

$ git clone https://github.com/openstack/tripleo-heat-templates.git

NOTE

The Red Hat-specific version of this template collection is available from the openstack-
tripleo-heat-template package, which installs the collection to
/usr/share/openstack-tripleo-heat-templates.

There are many heat templates and environment files in this collection. However, the main files and
directories to note in this template collection are:

overcloud.j2.yaml

This is the main template file used to create the Overcloud environment. This file uses Jinja2 syntax
to iterate over certain sections in the template to create custom roles. The Jinja2 formatting is
rendered into YAML during the overcloud deployment process.

overcloud-resource-registry-puppet.j2.yaml

This is the main environment file used to create the Overcloud environment. It provides a set of
configurations for Puppet modules stored on the Overcloud image. After the director writes the
Overcloud image to each node, Heat starts the Puppet configuration for each node using the
resources registered in this environment file. This file uses Jinja2 syntax to iterate over certain
sections in the template to create custom roles. The Jinja2 formatting is rendered into YAML during
the overcloud deployment process.

roles_data.yaml

A file that defines the roles in an overcloud and maps services to each role.

capabilities-map.yaml

A mapping of environment files for an overcloud plan. Use this file to describe and enable

Red Hat OpenStack Platform 11 Partner Integration

26

https://github.com/openstack/tripleo-heat-templates

environment files through the director’s web UI. Custom environment files detected in an overcloud
plan but not listed in the capabilities-map.yaml are listed in the Other subtab of 2 Specify
Deployment Configuration > Overall Settings on the web UI.

environments

Contains additional Heat environment files that you can use with your Overcloud creation. These
environment files enable extra functions for your resulting OpenStack environment. For example, the
directory contains an environment file for enabling Cinder NetApp backend storage (cinder-
netapp-config.yaml).

network

A set of Heat templates to help create isolated networks and ports.

puppet

Templates mostly driven by configuration with puppet. The aforementioned overcloud-resource-
registry-puppet.j2.yaml environment file uses the files in this directory to drive the application
of the Puppet configuration on each node.

puppet/services

A directory containing heat templates for all services in the composable service architecture.

extraconfig

Templates used to enable extra functionality. For example, the extraconfig/pre_deploy/rhel-
registration director provides the ability to register your nodes' Red Hat Enterprise Linux
operating systems to the Red Hat Content Delivery network or your own Red Hat Satellite server.

firstboot

Provides example first_boot scripts that the director uses when initially creating the nodes.

This provides a general overview of the templates the director uses for orchestrating the Overcloud
creation. The next few sections show how to create your own custom templates and environment files
that you can add to an Overcloud deployment.

5.3. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION

The director provides a mechanism to perform configuration on all nodes upon the initial creation of the
Overcloud. The director achieves this through cloud-init, which you can call using the
OS::TripleO::NodeUserData resource type.

In this example, you will update the nameserver with a custom IP address on all nodes. You must first
create a basic heat template (/home/stack/templates/nameserver.yaml) that runs a script to
append each node’s resolv.conf with a specific nameserver. You can use the
OS::TripleO::MultipartMime resource type to send the configuration script.

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

resources:
 userdata:
 type: OS::Heat::MultipartMime
 properties:
 parts:
 - config: {get_resource: nameserver_config}

CHAPTER 5. ORCHESTRATION

27

 nameserver_config:
 type: OS::Heat::SoftwareConfig
 properties:
 config: |
 #!/bin/bash
 echo "nameserver 192.168.1.1" >> /etc/resolv.conf

outputs:
 OS::stack_id:
 value: {get_resource: userdata}

Next, create an environment file (/home/stack/templates/firstboot.yaml) that registers your
heat template as the OS::TripleO::NodeUserData resource type.

resource_registry:
 OS::TripleO::NodeUserData: /home/stack/templates/nameserver.yaml

To add the first boot configuration, add the environment file to the stack along with your other
environment files when first creating the Overcloud. For example:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/firstboot.yaml \
 ...

The -e applies the environment file to the Overcloud stack.

This adds the configuration to all nodes when they are first created and boot for the first time.
Subsequent inclusions of these templates, such as updating the Overcloud stack, does not run these
scripts.

IMPORTANT

You can only register the OS::TripleO::NodeUserData to one heat template.
Subsequent usage overrides the heat template to use.

This achieves the following:

1. OS::TripleO::NodeUserData is a director-based Heat resource used in other templates in
the collection and applies first boot configuration to all nodes. This resource passes data for use
in cloud-init. The default NodeUserData refers to a Heat template that produces a blank
value (firstboot/userdata_default.yaml). In our case, our firstboot.yaml
environment file replaces this default with a reference to our own nameserver.yaml file.

2. nameserver_config defines our Bash script to run on first boot. The
OS::Heat::SoftwareConfig resource defines it as a piece of configuration to apply.

3. userdata converts the configuration from nameserver_config into a multi-part MIME
message using the OS::Heat::MultipartMime resource.

4. The outputs provides an output parameter OS::stack_id which takes the MIME message
from userdata and provides it to the the Heat template/resource calling it.

As a result, each node runs the following Bash script on its first boot:

Red Hat OpenStack Platform 11 Partner Integration

28

#!/bin/bash
echo "nameserver 192.168.1.1" >> /etc/resolve.conf

This example shows how Heat template pass and modfy configuration from one resource to another. It
also shows how to use environment files to register new Heat resources or modify existing ones.

5.4. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD
ROLES

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PreConfig
resources to provide pre-configuration hooks on a per role basis. The director’s Heat
template collection requires dedicated use of these hooks, which means you should not
use them for custom use. Instead, use the OS::TripleO::*ExtraConfigPre hooks
outlined below.

The Overcloud uses Puppet for the core configuration of OpenStack components. The director provides
a set of hooks to provide custom configuration for specific node roles after the first boot completes and
before the core configuration begins. These hooks include:

OS::TripleO::ControllerExtraConfigPre

Additional configuration applied to Controller nodes before the core Puppet configuration.

OS::TripleO::ComputeExtraConfigPre

Additional configuration applied to Compute nodes before the core Puppet configuration.

OS::TripleO::CephStorageExtraConfigPre

Additional configuration applied to Ceph Storage nodes before the core Puppet configuration.

OS::TripleO::ObjectStorageExtraConfigPre

Additional configuration applied to Object Storage nodes before the core Puppet configuration.

OS::TripleO::BlockStorageExtraConfigPre

Additional configuration applied to Block Storage nodes before the core Puppet configuration.

OS::TripleO::[ROLE]ExtraConfigPre

Additional configuration applied to custom nodes before the core Puppet configuration. Replace
[ROLE] with the composable role name.

In this example, you first create a basic heat template
(/home/stack/templates/nameserver.yaml) that runs a script to write to a node’s resolv.conf
with a variable nameserver.

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

 parameters:
 server:
 type: json
 nameserver_ip:
 type: string
 DeployIdentifier:

CHAPTER 5. ORCHESTRATION

29

 type: string

resources:
 CustomExtraConfigPre:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" > /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeploymentPre:
 type: OS::Heat::SoftwareDeployment
 properties:
 server: {get_param: server}
 config: {get_resource: CustomExtraConfigPre}
 actions: ['CREATE','UPDATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

outputs:
 deploy_stdout:
 description: Deployment reference, used to trigger pre-deploy on
changes
 value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the
CustomExtraConfigPre resource. Note the following:

The config parameter makes a reference to the CustomExtraConfigPre resource so
Heat knows what configuration to apply.

The server parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE, UPDATE,
DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

Red Hat OpenStack Platform 11 Partner Integration

30

Next, create an environment file (/home/stack/templates/pre_config.yaml) that registers your
heat template to the role-based resource type. For example, to apply only to Controller nodes, use the
ControllerExtraConfigPre hook:

resource_registry:
 OS::TripleO::ControllerExtraConfigPre:
/home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/pre_config.yaml \
 ...

This applies the configuration to all Controller nodes before the core configuration begins on either the
initial Overcloud creation or subsequent updates.

IMPORTANT

You can only register each resource to only one Heat template per hook. Subsequent
usage overrides the Heat template to use.

This achieves the following:

1. OS::TripleO::ControllerExtraConfigPre is a director-based Heat resource used in the
configuration templates in the Heat template collection. This resource passes configuration to
each Controller node. The default ControllerExtraConfigPre refers to a Heat template that
produces a blank value (puppet/extraconfig/pre_deploy/default.yaml). In our case,
our pre_config.yaml environment file replaces this default with a reference to our own
nameserver.yaml file.

2. The environment file also passes the nameserver_ip as a parameter_default value for
our environment. This is a parameter that stores the IP address of our nameserver. The
nameserver.yaml Heat template then accepts this parameter as defined in the parameters
section.

3. The template defines CustomExtraConfigPre as a configuration resource through
OS::Heat::SoftwareConfig. Note the group: script property. The group defines the
software configuration tool to use, which are available through a set of hooks for Heat. In this
case, the script hook runs an executable script that you define in the SoftwareConfig
resource as the config property.

4. The script itself appends /etc/resolve.conf with the nameserver IP address. Note the
str_replace attribute, which allows you to replace variables in the template section with
parameters in the params section. In this case, we set the NAMESERVER_IP to the
nameserver IP address, which substitutes the same variable in the script. This results in the
following script:

#!/bin/sh

CHAPTER 5. ORCHESTRATION

31

echo "nameserver 192.168.1.1" >> /etc/resolve.conf

This example shows how to create a Heat template that defines a configuration and deploys it using the
OS::Heat::SoftwareConfig and OS::Heat::SoftwareDeployments before the core
configuration. It also shows how to define parameters in your environment file and pass them to
templates in the configuration.

5.5. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

The Overcloud uses Puppet for the core configuration of OpenStack components. The director provides
a hook to configure all node types after the first boot completes and before the core configuration begins:

OS::TripleO::NodeExtraConfig

Additional configuration applied to all nodes roles before the core Puppet configuration.

In this example, you first create a basic heat template
(/home/stack/templates/nameserver.yaml) that runs a script to append each node’s
resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 server:
 type: string
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string

resources:
 CustomExtraConfigPre:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeploymentPre:
 type: OS::Heat::SoftwareDeployment
 properties:
 server: {get_param: server}
 config: {get_resource: CustomExtraConfigPre}
 actions: ['CREATE','UPDATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

outputs:

Red Hat OpenStack Platform 11 Partner Integration

32

 deploy_stdout:
 description: Deployment reference, used to trigger pre-deploy on
changes
 value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the
CustomExtraConfigPre resource. Note the following:

The config parameter makes a reference to the CustomExtraConfigPre resource so
Heat knows what configuration to apply.

The server parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE, UPDATE,
DELETE, SUSPEND, and RESUME.

The input_values parameter contains a sub-parameter called deploy_identifier,
which stores the DeployIdentifier from the parent template. This parameter provides a
timestamp to the resource for each deployment update. This ensures the resource reapplies
on subsequent overcloud updates.

Next, create an environment file (/home/stack/templates/pre_config.yaml) that registers your
heat template as the OS::TripleO::NodeExtraConfig resource type.

resource_registry:
 OS::TripleO::NodeExtraConfig: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/pre_config.yaml \
 ...

This applies the configuration to all nodes before the core configuration begins on either the initial
Overcloud creation or subsequent updates.

CHAPTER 5. ORCHESTRATION

33

IMPORTANT

You can only register the OS::TripleO::NodeExtraConfig to only one Heat
template. Subsequent usage overrides the Heat template to use.

This achieves the following:

1. OS::TripleO::NodeExtraConfig is a director-based Heat resource used in the
configuration templates in the Heat template collection. This resource passes configuration to
each node. The default NodeExtraConfig refers to a Heat template that produces a blank
value (puppet/extraconfig/pre_deploy/default.yaml). In our case, our
pre_config.yaml environment file replaces this default with a reference to our own
nameserver.yaml file.

2. The environment file also passes the nameserver_ip as a parameter_default value for
our environment. This is a parameter that stores the IP address of our nameserver. The
nameserver.yaml Heat template then accepts this parameter as defined in the parameters
section.

3. The template defines CustomExtraConfigPre as a configuration resource through
OS::Heat::SoftwareConfig. Note the group: script property. The group defines the
software configuration tool to use, which are available through a set of hooks for Heat. In this
case, the script hook runs an executable script that you define in the SoftwareConfig
resource as the config property.

4. The script itself appends /etc/resolve.conf with the nameserver IP address. Note the
str_replace attribute, which allows you to replace variables in the template section with
parameters in the params section. In this case, we set the NAMESERVER_IP to the
nameserver IP address, which substitutes the same variable in the script. This results in the
following script:

#!/bin/sh
echo "nameserver 192.168.1.1" >> /etc/resolve.conf

This example shows how to create a Heat template that defines a configuration and deploys it using the
OS::Heat::SoftwareConfig and OS::Heat::SoftwareDeployments before the core
configuration. It also shows how to define parameters in your environment file and pass them to
templates in the configuration.

5.6. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PostConfig
resources to provide post-configuration hooks on a per role basis. The director’s Heat
template collection requires dedicated use of these hooks, which means you should not
use them for custom use. Instead, use the OS::TripleO::NodeExtraConfigPost
hook outlined below.

A situation might occur where you have completed the creation of your Overcloud but want to add
additional configuration to all roles, either on initial creation or on a subsequent update of the Overcloud.
In this case, you use the following post-configuration hook:

Red Hat OpenStack Platform 11 Partner Integration

34

OS::TripleO::NodeExtraConfigPost

Additional configuration applied to all nodes roles after the core Puppet configuration.

In this example, you first create a basic heat template
(/home/stack/templates/nameserver.yaml) that runs a script to append each node’s
resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
 Extra hostname configuration

parameters:
 servers:
 type: json
 nameserver_ip:
 type: string
 DeployIdentifier:
 type: string

resources:
 CustomExtraConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 group: script
 config:
 str_replace:
 template: |
 #!/bin/sh
 echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
 params:
 _NAMESERVER_IP_: {get_param: nameserver_ip}

 CustomExtraDeployments:
 type: OS::Heat::SoftwareDeploymentGroup
 properties:
 servers: {get_param: servers}
 config: {get_resource: CustomExtraConfig}
 actions: ['CREATE','UPDATE']
 input_values:
 deploy_identifier: {get_param: DeployIdentifier}

In this example, the resources section contains the following:

CustomExtraConfig

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeployments

This executes a software configuration, which is the software configuration from the
CustomExtraConfig resource. Note the following:

The config parameter makes a reference to the CustomExtraConfig resource so Heat
knows what configuration to apply.

CHAPTER 5. ORCHESTRATION

35

The servers parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE, UPDATE,
DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

Next, create an environment file (/home/stack/templates/post_config.yaml) that registers your
heat template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost: /home/stack/templates/nameserver.yaml

parameter_defaults:
 nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/templates/post_config.yaml \
 ...

This applies the configuration to all nodes after the core configuration completes on either initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register the OS::TripleO::NodeExtraConfigPost to only one Heat
template. Subsequent usage overrides the Heat template to use.

This achieves the following:

1. OS::TripleO::NodeExtraConfigPost is a director-based Heat resource used in the post-
configuration templates in the collection. This resource passes configuration to each node type
through the *-post.yaml templates. The default NodeExtraConfigPost refers to a Heat
template that produces a blank value (extraconfig/post_deploy/default.yaml). In our
case, our post_config.yaml environment file replaces this default with a reference to our
own nameserver.yaml file.

2. The environment file also passes the nameserver_ip as a parameter_default value for
our environment. This is a parameter that stores the IP address of our nameserver. The
nameserver.yaml Heat template then accepts this parameter as defined in the parameters
section.

3. The template defines CustomExtraConfig as a configuration resource through
OS::Heat::SoftwareConfig. Note the group: script property. The group defines the

Red Hat OpenStack Platform 11 Partner Integration

36

software configuration tool to use, which are available through a set of hooks for Heat. In this
case, the script hook runs an executable script that your define in the SoftwareConfig
resource as the config property.

4. The script itself appends /etc/resolve.conf with the nameserver IP address. Note the
str_replace attribute, which allows you to replace variables in the template section with
parameters in the params section. In this case, we set the NAMESERVER_IP to the
nameserver IP address, which substitutes the same variable in the script. This results in the
following script:

#!/bin/sh
echo "nameserver 192.168.1.1" >> /etc/resolve.conf

This example shows how to create a Heat template that defines a configuration and deploys it using the
OS::Heat::SoftwareConfig and OS::Heat::SoftwareDeployments. It also shows how to
define parameters in your environment file and pass them to templates in the configuration.

5.7. PUPPET: APPLYING CUSTOM CONFIGURATION TO AN
OVERCLOUD

Previously, we discussed adding configuration for a new backend to OpenStack Puppet modules. This
section show how the director executes the application of new configuration.

Heat templates provide a hook allowing you to apply Puppet configuration with a
OS::Heat::SoftwareConfig resource. The process is similar to how we include and execute Bash
scripts. However, instead of the group: script hook, we use the group: puppet hook.

For example, you might have a Puppet manifest (example-puppet-manifest.pp) that enables an
NFS Cinder backend using the official Cinder Puppet Module:

cinder::backend::nfs { 'mynfsserver':
 nfs_servers => ['192.168.1.200:/storage'],
}

This Puppet configuration creates a new resource using the cinder::backend::nfs defined type. To
apply this resource through Heat, create a basic Heat template (puppet-config.yaml) that runs our
Puppet manifest:

heat_template_version: 2014-10-16

parameters:
 servers:
 type: json

resources:
 ExtraPuppetConfig:
 type: OS::Heat::SoftwareConfig
 properties:
 group: puppet
 config:
 get_file: example-puppet-manifest.pp
 options:
 enable_hiera: True
 enable_facter: False

CHAPTER 5. ORCHESTRATION

37

 ExtraPuppetDeployment:
 type: OS::Heat::SoftwareDeployments
 properties:
 config: {get_resource: ExtraPuppetConfig}
 servers: {get_param: servers}
 actions: ['CREATE','UPDATE']

Next, create an environment file (puppet_config.yaml) that registers our Heat template as the
OS::TripleO::NodeExtraConfigPost resource type.

resource_registry:
 OS::TripleO::NodeExtraConfigPost: puppet_config.yaml

This example is similar to using SoftwareConfig and SoftwareDeployments from the script
hook example in the previous section. However, there are some differences in this example:

1. We set group: puppet so that we execute the puppet hook.

2. The config attribute uses the get_file attribute to refer to a Puppet manifest that contains
our additional configuration.

3. The options attribute contains some options specific to Puppet configurations:

The enable_hiera option enables the Puppet configuration to use Hiera data.

The enable_facter option enables the Puppet configuration to use system facts from the
facter command.

This example shows how to include a Puppet manifest as part of the software configuration for the
Overcloud. This provides a way to apply certain configuration classes from existing Puppet modules on
the Overcloud images, which helps you customize your Overcloud to use certain software and hardware.

5.8. PUPPET: CUSTOMIZING HIERADATA FOR ROLES

The Heat template collection contains a set of parameters to pass extra configuration to certain node
types. These parameters save the configuration as hieradata for the node’s Puppet configuration. These
parameters are:

ControllerExtraConfig

Configuration to add to all Controller nodes.

NovaComputeExtraConfig

Configuration to add to all Compute nodes.

BlockStorageExtraConfig

Configuration to add to all Block Storage nodes.

ObjectStorageExtraConfig

Configuration to add to all Object Storage nodes

CephStorageExtraConfig

Configuration to add to all Ceph Storage nodes

[ROLE]ExtraConfig

Configuration to add to a composable role. Replace [ROLE] with the composable role name.

Red Hat OpenStack Platform 11 Partner Integration

38

ExtraConfig

Configuration to add to all nodes.

To add extra configuration to the post-deployment configuration process, create an environment file that
contains these parameters in the parameter_defaults section. For example, to increase the
reserved memory for Compute hosts to 1024 MB and set the VNC keymap to Japanese:

parameter_defaults:
 NovaComputeExtraConfig:
 nova::compute::reserved_host_memory: 1024
 nova::compute::vnc_keymap: ja

Include this environment file when running openstack overcloud deploy.

IMPORTANT

You can only define each parameter once. Subsequent usage overrides previous values.

5.9. ADDING ENVIRONMENT FILES TO AN OVERCLOUD DEPLOYMENT

After developing a set of environment files relevant to your custom configuration, include these files in
your Overcloud deployment. This means running the openstack overcloud deploy command with
the -e option, followed by the environment file. You can specify the -e option as many times as
necessary for your customization. For example:

$ openstack overcloud deploy --templates -e network-configuration.yaml -e
storage-configuration.yaml -e first-boot.yaml

IMPORTANT

Environment files are stacked in consecutive order. This means that each subsequent file
stacks upon both the main Heat template collection and all previous environment files.
This provides a way to override resource definitions. For example, if all environment files
in an Overcloud deployment define the NodeExtraConfigPost resource, then Heat
uses NodeExtraConfigPost defined in the last environment file. As a result, the order
of the environment files is important. Make sure to order your environment files so they
are processed and stacked correctly.

WARNING

Any environment files added to the Overcloud using the -e option become part of
your Overcloud’s stack definition. The director requires these environment files for
any post-deployment or re-deployment functions. Failure to include these files can
result in damage to your Overcloud.

CHAPTER 5. ORCHESTRATION

39

CHAPTER 6. COMPOSABLE SERVICES
Red Hat OpenStack Platform now includes the ability to define custom roles and compose service
combinations on roles (see "Composable Services and Custom Roles" in Advanced Overcloud
Customization). As part of the integration, you can define your own custom services and include them on
chosen roles. This section explores the composable service architecture and provides an example of
how to integrate a custom service into the composable service architecture.

6.1. EXAMINING COMPOSABLE SERVICE ARCHITECTURE

The core Heat template collection contains a collection of composable service templates in the
puppet/services subdirectory. You can view these services with the following command:

$ ls /usr/share/openstack-tripleo-heat-templates/puppet/services

Each service template contains a description that identifies its purpose. For example, the
keystone.yaml service template contains the following description:

description: >
 OpenStack Identity (`keystone`) service configured with Puppet

These service templates are registered as resources specific to a Red Hat OpenStack Platform
deployment. This means you can call each resource using a unique Heat resource namespace defined
in the overcloud-resource-registry-puppet.j2.yaml file. All services use the
OS::TripleO::Services namespace for their resource type. For example, the keystone.yaml
service template is registered to the OS::TripleO::Services::Keystone resource type:

grep "OS::TripleO::Services::Keystone" /usr/share/openstack-tripleo-heat-
templates/overcloud-resource-registry-puppet.j2.yaml
 OS::TripleO::Services::Keystone: puppet/services/keystone.yaml

The overcloud.j2.yaml Heat template includes a section of Jinja2-based code to define a service list
for each custom role in the roles_data.yaml file:

{{role.name}}Services:
 description: A list of service resources (configured in the Heat
 resource_registry) which represent nested stacks
 for each service that should get installed on the
{{role.name}} role.
 type: comma_delimited_list
 default: {{role.ServicesDefault|default([])}}

For the default roles, this creates the following service list parameters: ControllerServices,
ComputeServices, BlockStorageServices, ObjectStorageServices, and
CephStorageServices.

You define the default services for each custom role in the roles_data.yaml file. For example, the
default Controller role contains the following content:

- name: Controller
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::CACerts

Red Hat OpenStack Platform 11 Partner Integration

40

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html/advanced_overcloud_customization/roles

 - OS::TripleO::Services::CephMon
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CephRgw
 - OS::TripleO::Services::CinderApi
 - OS::TripleO::Services::CinderBackup
 - OS::TripleO::Services::CinderScheduler
 - OS::TripleO::Services::CinderVolume
 - OS::TripleO::Services::Core
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Keystone
 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GlanceRegistry
...

These services are then defined as the default list for the ControllerServices parameter.

You can also use an environment file to override the default list for the service parameters. For example,
you can define ControllerServices as a parameter_default in an environment file to override
the services list from the roles_data.yaml file.

6.2. CREATING A USER-DEFINED COMPOSABLE SERVICE

This example examines how to create a user-defined composable service and focuses on implementing
a message of the day (motd) service. This example assumes the overcloud image contains a custom
motd Puppet module loaded either through a configuration hook or through modifying the overcloud
images as per Chapter 3, Overcloud Images.

When creating your own service, there are specific items to define in the service’s Heat template:

parameters

The following are compulsory parameters that you must include in your service template:

ServiceNetMap - A map of services to networks. Use an empty hash ({}) as the default
value as this parameter is overriden with values from the parent Heat template.

DefaultPasswords - A list of default passwords. Use an empty hash ({}) as the default
value as this parameter is overriden with values from the parent Heat template.

EndpointMap - A list of OpenStack service endpoints to protocols. Use an empty hash ({})
as the default value as this parameter is overriden with values from the parent Heat
template.

Define any additional parameters that your service requires.

outputs

The following output parameters define the service configuration on the host:

config_settings - Custom hieradata settings for your service.

service_config_settings - Custom hieradata settings for another service. For
example, your service might require its endpoints registered in OpenStack Identity
(keystone). This provides parameters from one service to another and provide a method of
cross-service configuration, even if the services are on different roles.

global_config_settings - Custom hieradata settings distributed to all roles.

CHAPTER 6. COMPOSABLE SERVICES

41

step_config - A Puppet snippet to configure the service. This snippet is added to a
combined manifest created and run at each step of the service configuration process. These
steps are:

Step 1 - Load balancer configuration

Step 2 - Core high availability and general services (Database, RabbitMQ, NTP)

Step 3 - Early OpenStack Platform Service setup (Storage, Ring Building)

Step 4 - General OpenStack Platform services

Step 5 - Service activation (Pacemaker) and OpenStack Identity (keystone) role and user
creation

In any referenced puppet manifest, you can use the step hieradata (using hiera('step')) to
define specific actions at specific steps during the deployment process.

upgrade_tasks and `upgrade_batch_tasks - Ansible snippet to help with upgrading the
service. The snippet is added to a combined playbook. Each operation uses a tag to define a
step, which includes:

common - Applies to all steps

step0 - Validation

step1 - Stop all OpenStack services.

step2 - Stop all Pacemaker-controlled services

step3 - Package update and new package installation

step4 - Start OpenStack service required for database upgrade

step5 - Upgrade database
The upgrade_batch_tasks performs a similar function but only executes batch set of
Ansible tasks in order they are listed. The default is 1, but you can change this per role
using the upgrade_batch_size parameter in a roles_data.yaml file.

The following is an example Heat template (service.yaml) for the motd service:

heat_template_version: 2016-04-08

description: >
 Message of the day service configured with Puppet

parameters:
 ServiceNetMap:
 default: {}
 type: json
 DefaultPasswords:
 default: {}
 type: json
 EndpointMap:
 default: {}

Red Hat OpenStack Platform 11 Partner Integration

42

1

2

3

 type: json

 MotdMessage: 1
 default: |
 Welcome to my Red Hat OpenStack Platform environment!

 type: string
 description: The message to include in the motd

outputs:
 role_data:
 description: Motd role using composable services.
 value:
 service_name: motd

 config_settings: 2
 motd::content: {get_param: MotdMessage}

 step_config: | 3
 if hiera('step') >= 2 {
 include ::motd
 }

The template includes a MotdMessage parameter used to define the message of the day. The
parameter includes a default message but you can override it using the same parameter in a
custom environment file, which is demonstrated later.

The outputs section defines some service hieradata in config_settings. The
motd::content hieradata stores the content from the MotdMessage parameter. The motd
Puppet class eventually reads this hieradata and passes the user-defined message to the
/etc/motd file.

The outputs section includes a Puppet manifest snippet in step_config. The snippet checks if
the configuration has reached step 2 and, if so, runs the motd Puppet class.

6.3. INCLUDING A USER-DEFINED COMPOSABLE SERVICE

The aim for this example is to configure the custom motd service only on our overcloud’s Controller
nodes. This requires a custom environment file and custom roles data file included with our deployment.

First, add the new service to an environment file (env-motd.yaml) as a registered Heat resource within
the OS::TripleO::Services namespace. For this example, the resource name for our motd service
is OS::TripleO::Services::Motd:

resource_registry:
 OS::TripleO::Services::Motd: /home/stack/templates/motd.yaml

parameter_defaults:
 MotdMessage: |
 You have successfully accessed my Red Hat OpenStack Platform
environment!

Note that our custom environment file also includes a new message that overrides the default for
MotdMessage.

CHAPTER 6. COMPOSABLE SERVICES

43

The deployment will now include the motd service. However, each role that requires this new service
must have an updated ServicesDefault listing in a custom roles_data.yaml file. In this example,
we aim to only configure the service on Controller nodes.

Create a copy of the default roles_data.yaml file:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml
~/custom_roles_data.yaml

Edit this file, scroll to the Controller role, and include the service in the ServicesDefault listing:

- name: Controller
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephMon
 - OS::TripleO::Services::CephExternal
...
 - OS::TripleO::Services::FluentdClient
 - OS::TripleO::Services::VipHosts
 - OS::TripleO::Services::Motd # Add the service to the end

When creating an overcloud, include the resulting environment file and the custom_roles_data.yaml
file with your other environment files and deployment options:

$ openstack overcloud deploy --templates -e /home/stack/templates/env-
motd.yaml -r ~/custom_roles_data.yaml [OTHER OPTIONS]

This includes our custom motd service in our deployment and configures the service on Controller nodes
only.

Red Hat OpenStack Platform 11 Partner Integration

44

CHAPTER 7. INTEGRATION POINTS
This chapter explores the specific integration points for director integration. This includes looking at
specific OpenStack components and their relationship with director or Overcloud integration. This section
is not an exhaustive description of all OpenStack integration but should give you enough information to
start integrating hardware and software with Red Hat OpenStack Platform.

7.1. BARE METAL PROVISIONING (IRONIC)

The OpenStack Bare Metal Provisioning (Ironic) component is used within the director to control the
power state of the nodes. The director uses a set of back-end drivers to interface with specific bare metal
power controllers. These drivers are the key to enabling hardware and vendor specific extensions and
capabilities. The most common driver is the IPMI driver (pxe_ipmitool) which controls the power state
for any server that supports the Intelligent Platform Management Interface (IPMI).

Integrating with Ironic starts with the upstream OpenStack community first. Ironic drivers accepted
upstream are automatically included in the core Red Hat OpenStack Platform product and the director by
default. However, they might not be supported as per certification requirements.

Hardware drivers must undergo continuous integration testing to ensure their continued functionality. For
information on third party driver testing and suitability, please see the OpenStack community page on
Ironic Testing.

Upstream Repositories:

OpenStack: http://git.openstack.org/cgit/openstack/ironic/

GitHub: https://github.com/openstack/ironic/

Upstream Blueprints:

Launchpad: http://launchpad.net/ironic

Puppet Module:

GitHub: https://github.com/openstack/puppet-ironic

Bugzilla components:

openstack-ironic

python-ironicclient

python-ironic-oscplugin

openstack-ironic-discoverd

openstack-puppet-modules

openstack-tripleo-heat-templates

Integration Notes:

The upstream project contains drivers in the ironic/drivers directory.

The director performs a bulk registration of nodes defined in a JSON file. The os-cloud-

CHAPTER 7. INTEGRATION POINTS

45

https://wiki.openstack.org/wiki/Ironic/Testing
http://git.openstack.org/cgit/openstack/ironic/
https://github.com/openstack/ironic/
http://launchpad.net/ironic
https://github.com/openstack/puppet-ironic

config tool (https://github.com/openstack/os-cloud-config/) parses this file to determine the
node registration details and perform the registration. This means the os-cloud-config tool,
specifically the nodes.py file, requires support for your driver.

The director is automatically configured to use Ironic, which means the Puppet configuration
requires little to no modification. However, if your driver is included with Ironic, you need to add
your driver to the /etc/ironic/ironic.conf file. Edit this file and search for the
enabled_drivers parameter. For example:

enabled_drivers=pxe_ipmitool,pxe_ssh,pxe_drac

This allows Ironic to use the specified driver from the drivers directory.

7.2. NETWORKING (NEUTRON)

OpenStack Networking (Neutron) provides the ability to create a network architecture within your cloud
environment. The project provides several integration points for Software Defined Networking (SDN)
vendors. These integration points usually fall into the categories of plugins or agents

A plugin allows extension and customization of pre-existing Neutron functions. Vendors can write
plugins to ensure interoperability between Neutron and certified software and hardware. Most vendors
should aim to develop a driver for Neutron’s Modular Layer 2 (ml2) plugin, which provides a modular
backend for integrating your own drivers.

An agent provides a specific network function. The main Neutron server (and its plugins) communicate
with Neutron agents. Existing examples include agents for DHCP, Layer 3 support, and bridging support.

For both plugins and agents, you can either:

Include them for distribution as part of the OpenStack Platform solution, or

Add them to the Overcloud images after OpenStack Platform’s distribution.

It is recommended to analyze the functionality of existing plugins and agents so you can determine how
to integrate your own certified hardware and software. In particular, it is recommended to first develop a
driver as a part of the ml2 plugin.

Upstream Repositories:

OpenStack: http://git.openstack.org/cgit/openstack/neutron/

GitHub: https://github.com/openstack/neutron/

Upstream Blueprints:

Launchpad: http://launchpad.net/neutron

Puppet Module:

GitHub: https://github.com/openstack/puppet-neutron

Bugzilla components:

openstack-neutron

python-neutronclient

Red Hat OpenStack Platform 11 Partner Integration

46

https://github.com/openstack/os-cloud-config/
http://git.openstack.org/cgit/openstack/neutron/
https://github.com/openstack/neutron/
http://launchpad.net/neutron
https://github.com/openstack/puppet-neutron

openstack-puppet-modules

openstack-tripleo-heat-templates

Integration Notes:

The upstream neutron project contains several integration points:

The plugins are located in neutron/plugins/

The ml2 plugin drivers are located in neutron/plugins/ml2/drivers/

The agents are located in neutron/agents/

Since the OpenStack Liberty release, many of the vendor-specific ml2 plugin have been moved
into their own repositories beginning with networking-. For example, the Cisco-specific
plugins are located in https://github.com/openstack/networking-cisco

The puppet-neutron repository also contains separate directories for configuring these
integration points:

The plugin configuration is located in manifests/plugins/

The ml2 plugin driver configuration is located in manifests/plugins/ml2/

The agent configuration is located in manifests/agents/

The puppet-neutron repository contains numerous additional libraries for configuration
functions. For example, the neutron_plugin_ml2 library adds a function to add attributes to
the ml2 plugin configuration file.

7.3. BLOCK STORAGE (CINDER)

OpenStack Block Storage (Cinder) provides an API that interacts with block storage devices, which
OpenStack uses to create volumes. For example, Cinder provides virtual storage devices for instances.
Cinder provides a core set of drivers to support different storage hardware and protocols. For example,
some of the core drivers include support for NFS, iSCSI, and Red Hat Ceph Storage. Vendors can
include drivers to support additional certified hardware.

Vendors have two main options with the drivers and configuration they develop:

Include them for distribution as part of the OpenStack Platform solution, or

Add them to the Overcloud images after OpenStack Platform’s distribution.

It is recommended to analyze the functionality of existing drivers so you can determine how to integrate
your own certified hardware and software.

Upstream Repositories:

OpenStack: http://git.openstack.org/cgit/openstack/cinder/

GitHub: https://github.com/openstack/cinder/

Upstream Blueprints:

Launchpad: http://launchpad.net/cinder

CHAPTER 7. INTEGRATION POINTS

47

https://github.com/openstack/networking-cisco
http://git.openstack.org/cgit/openstack/cinder/
https://github.com/openstack/cinder/
http://launchpad.net/cinder

Puppet Module:

GitHub: https://github.com/openstack/puppet-cinder

Bugzilla components:

openstack-cinder

python-cinderclient

openstack-puppet-modules

openstack-tripleo-heat-templates

Integration Notes:

The upstream cinder repository contains the drivers in cinder/volume/drivers/

The puppet-cinder repository contains two main directories for driver configuration:

The manifests/backend directory contains a set of defined types that configure the
drivers.

The manifests/volume directory contains a set of classes to configure a default block
storage device.

The puppet-cinder repository contains a library called cinder_config to add attributes to
the Cinder configuration files.

7.4. IMAGE STORAGE (GLANCE)

OpenStack Image Storage (Cinder) provides an API that interacts with storage types to provide storage
for images. Glance provides a core set of drivers to support different storage hardware and protocols.
For example, the core drivers include support for file, OpenStack Object Storage (Swift), OpenStack
Block Storage (Cinder), and Red Hat Ceph Storage. Vendors can include drivers to support additional
certified hardware.

Upstream Repositories:

OpenStack:

http://git.openstack.org/cgit/openstack/glance/

http://git.openstack.org/cgit/openstack/glance_store/

GitHub:

https://github.com/openstack/glance/

https://github.com/openstack/glance_store/

Upstream Blueprints:

Launchpad: http://launchpad.net/glance

Puppet Module:

Red Hat OpenStack Platform 11 Partner Integration

48

https://github.com/openstack/puppet-cinder
http://git.openstack.org/cgit/openstack/glance/
http://git.openstack.org/cgit/openstack/glance_store/
https://github.com/openstack/glance/
https://github.com/openstack/glance_store/
http://launchpad.net/glance

GitHub: https://github.com/openstack/puppet-glance

Bugzilla components:

openstack-glance

python-glanceclient

openstack-puppet-modules

openstack-tripleo-heat-templates

Integration Notes:

Adding vendor-specific driver is not necessary as Glance can use Cinder, which contains
integretion points, to manage image storage.

The upstream glance_store repository contains the drivers in glance_store/_drivers.

The puppet-glance repository contains the driver configuration in the manifests/backend
directory.

The puppet-glance repository contains a library called glance_api_config to add
attributes to the Glance configuration files.

7.5. SHARED FILE SYSTEMS (MANILA)

OpenStack Shared File System Service (Manila) provides an API for shared and distributed file system
services. Vendors can include drivers to support additional certified hardware.

Upstream Repositories:

OpenStack: http://git.openstack.org/cgit/openstack/manila/

GitHub: https://github.com/openstack/manila/

Upstream Blueprints:

Launchpad: http://launchpad.net/manila

Puppet Module:

GitHub: https://github.com/openstack/puppet-manila

Bugzilla components:

openstack-manila

python-manilaclient

openstack-puppet-modules

openstack-tripleo-heat-templates

Integration Notes:

The upstream manila repository contains the drivers in manila/share/drivers/.

CHAPTER 7. INTEGRATION POINTS

49

https://github.com/openstack/puppet-glance
http://git.openstack.org/cgit/openstack/manila/
https://github.com/openstack/manila/
http://launchpad.net/manila
https://github.com/openstack/puppet-manila

The puppet-manila repository contains the driver configuration in the manifests/backend
directory.

The puppet-manila repository contains a library called manila_config to add attributes to
the Manila configuration files.

Red Hat OpenStack Platform 11 Partner Integration

50

CHAPTER 8. EXAMPLES
This chapter highlights some example vendor integration as part of the Red Hat OpenStack Platform.

8.1. CISCO NEXUS 1000V

The Cisco Nexus 1000V is a network switch designed for virtual machine access. It also provides
advanced switching and security using VXLANs, ACLs, and IGMP snooping. The ml2 driver for the
Cisco Nexus 1000V is contained in the networking-cisco repository, which you can install alongside
the Neutron service.

The Overcloud image contains the Neutron Puppet module (puppet-neutron), which includes a class
(neutron::plugins::ml2::cisco::nexus1000v) to configure Neutron to use the Cisco Nexus
1000V. This class is located in the manifests/plugins/ml2/cisco/nexus1000v.pp manifest from
the module. The class uses a set of default parameters, which you can override, and then uses the
neutron_plugin_ml2 library to configure the ml2 plugin to use the Cisco Nexus 1000V:

neutron_plugin_ml2 {
 'ml2/extension_drivers' : value =>
$extension_drivers;
 'ml2_cisco_n1kv/n1kv_vsm_ips' : value =>
$n1kv_vsm_ip;
 'ml2_cisco_n1kv/username' : value =>
$n1kv_vsm_username;
 'ml2_cisco_n1kv/password' : value =>
$n1kv_vsm_password;
 'ml2_cisco_n1kv/default_policy_profile' : value =>
$default_policy_profile;
 'ml2_cisco_n1kv/default_vlan_network_profile' : value =>
$default_vlan_network_profile;
 'ml2_cisco_n1kv/default_vxlan_network_profile' : value =>
$default_vxlan_network_profile;
 'ml2_cisco_n1kv/poll_duration' : value =>
$poll_duration;
 'ml2_cisco_n1kv/http_pool_size' : value =>
$http_pool_size;
 'ml2_cisco_n1kv/http_timeout' : value =>
$http_timeout;
 'ml2_cisco_n1kv/sync_interval' : value =>
$sync_interval;
 'ml2_cisco_n1kv/max_vsm_retries' : value =>
$max_vsm_retries;
 'ml2_cisco_n1kv/restrict_policy_profiles' : value =>
$restrict_policy_profiles;
 'ml2_cisco_n1kv/enable_vif_type_n1kv' : value =>
$enable_vif_type_n1kv;
}

The director’s Heat template collection contains an environment file and registered templates to
configure the Hiera data for the Cisco Nexus 1000V. The environment file is located in
environments/cisco-n1kv-config.yaml and contains the following default content:

resource_registry:
 OS::TripleO::ControllerExtraConfigPre:

CHAPTER 8. EXAMPLES

51

https://github.com/openstack/networking-cisco

../puppet/extraconfig/pre_deploy/controller/cisco-n1kv.yaml
 OS::TripleO::ComputeExtraConfigPre:
../puppet/extraconfig/pre_deploy/controller/cisco-n1kv.yaml

parameter_defaults:
 N1000vVSMIP: '192.0.2.50'
 N1000vMgmtGatewayIP: '192.0.2.1'
 N1000vVSMDomainID: '100'
 N1000vVSMHostMgmtIntf: 'br-ex'

The resource_registry sets the preconfiguration resources for Controller and Compute nodes
(OS::TripleO::ControllerExtraConfigPre and OS::TripleO::ComputeExtraConfigPre)
to use puppet/extraconfig/pre_deploy/controller/cisco-n1kv.yaml as the template to
use for preconfiguration. The parameter_defaults section includes some parameters to pass to
these resources.

Including this environment file in the deployment defines the Hiera data, which the Puppet uses for the
Neutron Puppet module’s parameters during configuration.

Starting the actual application of the Puppet configuration is automatic. The Heat template collection
contains a set of core Puppet manifests for configuring the Controller and Compute nodes. These files
contain logic that detects if the Cisco Nexus 1000V Hiera data is set. If so (by including cisco-
n1kv.yaml in your deployment), the manifest includes the
neutron::plugins::ml2::cisco::nexus1000v class as well as the Cisco Nexus 1000V’s VEM
and VSM agents:

 if 'cisco_n1kv' in hiera('neutron_mechanism_drivers') {
 include neutron::plugins::ml2::cisco::nexus1000v

 class { 'neutron::agents::n1kv_vem':
 n1kv_source => hiera('n1kv_vem_source', undef),
 n1kv_version => hiera('n1kv_vem_version', undef),
 }

 class { 'n1k_vsm':
 n1kv_source => hiera('n1kv_vsm_source', undef),
 n1kv_version => hiera('n1kv_vsm_version', undef),
 }
 }

This means configuring the Overcloud to use Cisco Nexus 1000V only requires a few steps:

1. Copy the environments/cisco-n1kv-config.yaml file to a local location so that you can
edit it:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/cisco-
n1kv-config.yaml ~/templates/.

2. Edit the cisco-n1kv-config.yaml file:

Modify the resource_registery section to use absolute paths refering to cisco-
n1kv.yaml

Modify the parameter_defaults section to add Cisco Nexus 1000V parameters. See the
cisco-n1kv.yaml for reference

Red Hat OpenStack Platform 11 Partner Integration

52

For example:

resource_registry:
 OS::TripleO::ControllerExtraConfigPre: /usr/share/openstack-
tripleo-heat-
templates/puppet/extraconfig/pre_deploy/controller/cisco-
n1kv.yaml
 OS::TripleO::ComputeExtraConfigPre: /usr/share/openstack-
tripleo-heat-
templates/puppet/extraconfig/pre_deploy/controller/cisco-
n1kv.yaml

parameter_defaults:
 N1000vVSMIP: '192.0.2.50'
 N1000vMgmtGatewayIP: '192.0.2.1'
 N1000vVSMDomainID: '100'
 N1000vVSMHostMgmtIntf: 'br-ex'
 N1000vVSMUser: admin
 N1000vVSMPassword: p@55w0rd!

3. Include the cisco-n1kv-config.yaml file in your deployment:

$ openstack overcloud deploy --templates -e ~/templates/cisco-n1kv-
config.yaml

This defines the Cisco Nexus 1000V configuration as a part of the Overcloud’s Hiera data. Then the
Overcloud uses this Hieradata to configure Neutron’s Nexus 1000V ml2 driver during the core
configuration.

This example demonstrates how the director integrates network components from a certified vendor with
the Overcloud’s Neutron service.

8.2. NETAPP STORAGE

NetApp provides several solutions for integration with OpenStack storage components. This example
shows the how NetApp Storage integrates with Cinder to provide a backend for block storage.

The drivers for Cinder are contained within the project itself, which is publically available on GitHub at
https://github.com/openstack/cinder. The drivers for NetApp Storage are located in the
cinder/volume/drivers/netapp/ directory of the repository. This means the drivers are
automatically included with Red Hat OpenStack Platform.

The configuration for NetApp is contained in the Puppet module for cinder (puppet-cinder), which the
Overcloud image also contains. The manifest in the Puppet modules that contains the configuration is
located at manifests/backend/netapp.pp. This manifest uses the cinder_config library to add
netapp settings to the Cinder configuration files:

cinder_config {
 "${name}/nfs_mount_options": value => $nfs_mount_options;
 "${name}/volume_backend_name": value => $volume_backend_name;
 "${name}/volume_driver": value =>
'cinder.volume.drivers.netapp.common.NetAppDriver';
 "${name}/netapp_login": value => $netapp_login;
 "${name}/netapp_password": value => $netapp_password,

CHAPTER 8. EXAMPLES

53

https://github.com/openstack/cinder

secret => true;
 "${name}/netapp_server_hostname": value =>
$netapp_server_hostname;
 "${name}/netapp_server_port": value => $netapp_server_port;
 "${name}/netapp_size_multiplier": value =>
$netapp_size_multiplier;
 "${name}/netapp_storage_family": value => $netapp_storage_family;
 "${name}/netapp_storage_protocol": value =>
$netapp_storage_protocol;
 "${name}/netapp_transport_type": value => $netapp_transport_type;
 "${name}/netapp_vfiler": value => $netapp_vfiler;
 "${name}/netapp_volume_list": value => $netapp_volume_list;
 "${name}/netapp_vserver": value => $netapp_vserver;
 "${name}/netapp_partner_backend_name": value =>
$netapp_partner_backend_name;
 "${name}/expiry_thres_minutes": value => $expiry_thres_minutes;
 "${name}/thres_avl_size_perc_start": value =>
$thres_avl_size_perc_start;
 "${name}/thres_avl_size_perc_stop": value =>
$thres_avl_size_perc_stop;
 "${name}/nfs_shares_config": value => $nfs_shares_config;
 "${name}/netapp_copyoffload_tool_path": value =>
$netapp_copyoffload_tool_path;
 "${name}/netapp_controller_ips": value => $netapp_controller_ips;
 "${name}/netapp_sa_password": value => $netapp_sa_password,
secret => true;
 "${name}/netapp_storage_pools": value => $netapp_storage_pools;
 "${name}/netapp_eseries_host_type": value =>
$netapp_eseries_host_type;
 "${name}/netapp_webservice_path": value =>
$netapp_webservice_path;
}

The director’s Heat template collection contains an environment file and registered templates to
configure the Hiera data for a NetApp Storage backend. The environment file is located in
environments/cinder-netapp-config.yaml and contains the following default content:

resource_registry:
 OS::TripleO::ControllerExtraConfigPre:
../puppet/extraconfig/pre_deploy/controller/cinder-netapp.yaml

parameter_defaults:
 CinderEnableNetappBackend: true
 CinderNetappBackendName: 'tripleo_netapp'
 CinderNetappLogin: ''
 CinderNetappPassword: ''
 CinderNetappServerHostname: ''
 CinderNetappServerPort: '80'
 CinderNetappSizeMultiplier: '1.2'
 CinderNetappStorageFamily: 'ontap_cluster'
 CinderNetappStorageProtocol: 'nfs'
 CinderNetappTransportType: 'http'
 CinderNetappVfiler: ''
 CinderNetappVolumeList: ''
 CinderNetappVserver: ''
 CinderNetappPartnerBackendName: ''

Red Hat OpenStack Platform 11 Partner Integration

54

 CinderNetappNfsShares: ''
 CinderNetappNfsSharesConfig: '/etc/cinder/shares.conf'
 CinderNetappNfsMountOptions: ''
 CinderNetappCopyOffloadToolPath: ''
 CinderNetappControllerIps: ''
 CinderNetappSaPassword: ''
 CinderNetappStoragePools: ''
 CinderNetappEseriesHostType: 'linux_dm_mp'
 CinderNetappWebservicePath: '/devmgr/v2'

The resource_registry sets the preconfiguration resources for Controller nodes
(OS::TripleO::ControllerExtraConfigPre) to use
puppet/extraconfig/pre_deploy/controller/cinder-netapp.yaml as the template to use
for preconfiguration. The parameter_defaults section includes some parameters to pass to these
resources.

Including this environment file in the deployment defines the Hiera data, which the Puppet uses for the
Cinder Puppet module’s parameters during configuration.

Starting the actual application of the Puppet configuration depends on the
CinderEnableNetappBackend parameter. The Heat template collection contains a set of core Puppet
manifests for configuring Controller nodes. These files contain logic that detects if the
cinder_enable_netapp_backend Hiera data is set. The Hiera data is set using the
CinderEnableNetappBackend parameter in the preconfiguration. Including cinder-netapp-
config.yaml in your deployment and leaving the CinderEnableNetappBackend: true as is
means the Controller Puppet manifest includes the cinder::backend::netapp class and passes the
Hiera data values from the environment file:

 if hiera('cinder_enable_netapp_backend', false) {
 $cinder_netapp_backend = hiera('cinder::backend::netapp::title')

 cinder_config {
 "${cinder_netapp_backend}/host": value => 'hostgroup';
 }

 if hiera('cinder::backend::netapp::nfs_shares', undef) {
 $cinder_netapp_nfs_shares =
split(hiera('cinder::backend::netapp::nfs_shares', undef), ',')
 }

 cinder::backend::netapp { $cinder_netapp_backend :
 netapp_login =>
hiera('cinder::backend::netapp::netapp_login', undef),
 netapp_password =>
hiera('cinder::backend::netapp::netapp_password', undef),
 netapp_server_hostname =>
hiera('cinder::backend::netapp::netapp_server_hostname', undef),
 netapp_server_port =>
hiera('cinder::backend::netapp::netapp_server_port', undef),
 netapp_size_multiplier =>
hiera('cinder::backend::netapp::netapp_size_multiplier', undef),
 netapp_storage_family =>
hiera('cinder::backend::netapp::netapp_storage_family', undef),
 netapp_storage_protocol =>
hiera('cinder::backend::netapp::netapp_storage_protocol', undef),

CHAPTER 8. EXAMPLES

55

 netapp_transport_type =>
hiera('cinder::backend::netapp::netapp_transport_type', undef),
 netapp_vfiler =>
hiera('cinder::backend::netapp::netapp_vfiler', undef),
 netapp_volume_list =>
hiera('cinder::backend::netapp::netapp_volume_list', undef),
 netapp_vserver =>
hiera('cinder::backend::netapp::netapp_vserver', undef),
 netapp_partner_backend_name =>
hiera('cinder::backend::netapp::netapp_partner_backend_name', undef),
 nfs_shares => $cinder_netapp_nfs_shares,
 nfs_shares_config =>
hiera('cinder::backend::netapp::nfs_shares_config', undef),
 netapp_copyoffload_tool_path =>
hiera('cinder::backend::netapp::netapp_copyoffload_tool_path', undef),
 netapp_controller_ips =>
hiera('cinder::backend::netapp::netapp_controller_ips', undef),
 netapp_sa_password =>
hiera('cinder::backend::netapp::netapp_sa_password', undef),
 netapp_storage_pools =>
hiera('cinder::backend::netapp::netapp_storage_pools', undef),
 netapp_eseries_host_type =>
hiera('cinder::backend::netapp::netapp_eseries_host_type', undef),
 netapp_webservice_path =>
hiera('cinder::backend::netapp::netapp_webservice_path', undef),
 }
 }

This means configuring the Overcloud to use NetApp Storage only requires a few steps:

1. Copy the environments/cinder-netapp-config.yaml file to a local location so that you
can edit it:

$ cp /usr/share/openstack-tripleo-heat-
templates/environments/cinder-netapp-config.yaml ~/templates/.

2. Edit the cinder-netapp-config.yaml file:

Modify the resource_registery section to use an absolute path refering to cinder-
netapp.yaml

Modify the parameter_defaults section to add NetApp parameters. See the cinder-
netapp.yaml for reference
For example:

resource_registry:
 OS::TripleO::ControllerExtraConfigPre: /usr/share/openstack-
tripleo-heat-
templates/puppet/extraconfig/pre_deploy/controller/cinder-
netapp.yaml

parameter_defaults:
 CinderEnableNetappBackend: true
 CinderNetappBackendName: 'tripleo_netapp'
 CinderNetappLogin: 'admin'

Red Hat OpenStack Platform 11 Partner Integration

56

 CinderNetappPassword: 'p@55w0rd!'
 CinderNetappServerHostname: 'netapp.example.com'
 CinderNetappServerPort: '80'
 CinderNetappSizeMultiplier: '1.2'
 CinderNetappStorageFamily: 'ontap_cluster'
 CinderNetappStorageProtocol: 'nfs'
 CinderNetappTransportType: 'http'
 CinderNetappNfsShares:
'192.168.1.200:/storage1,192.168.1.200:/storage2'
 CinderNetappNfsSharesConfig: '/etc/cinder/shares.conf'
 CinderNetappEseriesHostType: 'linux_dm_mp'
 CinderNetappWebservicePath: '/devmgr/v2'

Make sure to leave CinderEnableNetappBackend set to true.

3. Include the cinder-netapp-config.yaml file in your deployment:

$ openstack overcloud deploy --templates -e ~/templates/cinder-
netapp-config.yaml

This defines the NetApp Storage configuration as a part of the Overcloud’s Hiera data. Then the
Overcloud uses this Hieradata to configure Cinder’s NetApp backend during the core configuration.

This example demonstrates how the director integrates storage components from a certified vendor with
the Overcloud’s Cinder service.

CHAPTER 8. EXAMPLES

57

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. PARTNER INTEGRATION OVERVIEW
	1.2. PARTNER INTEGRATION REQUIREMENTS

	CHAPTER 2. ARCHITECTURE
	2.1. CORE COMPONENTS
	2.1.1. Ironic
	2.1.2. Heat
	2.1.3. Puppet
	2.1.4. TripleO and TripleO Heat Templates
	2.1.5. Composable Services

	CHAPTER 3. OVERCLOUD IMAGES
	3.1. OBTAINING THE OVERCLOUD IMAGES
	3.2. INITRD: MODIFYING THE INITIAL RAMDISKS
	3.3. QCOW: INSTALLING VIRT-CUSTOMIZE TO THE DIRECTOR
	3.4. QCOW: INSPECTING THE OVERCLOUD IMAGE
	3.5. QCOW: SETTING THE ROOT PASSWORD
	3.6. QCOW: REGISTERING THE IMAGE
	3.7. QCOW: ATTACHING A SUBSCRIPTION AND ENABLING RED HAT REPOSITORIES
	3.8. QCOW: COPYING A CUSTOM REPOSITORY FILE
	3.9. QCOW: INSTALLING RPMS
	3.10. QCOW: CLEANING THE SUBSCRIPTION POOL
	3.11. QCOW: UNREGISTERING THE IMAGE
	3.12. UPLOADING THE IMAGES TO THE DIRECTOR

	CHAPTER 4. CONFIGURATION
	4.1. LEARNING PUPPET BASICS
	4.1.1. Examining the Anatomy of a Puppet Module
	4.1.2. Installing a Service
	4.1.3. Starting and Enabling a Service
	4.1.4. Configuring a Service

	4.2. OBTAINING OPENSTACK PUPPET MODULES
	4.3. ADDING CONFIGURATION FOR A PUPPET MODULE
	4.4. ADDING HIERA DATA TO PUPPET CONFIGURATION

	CHAPTER 5. ORCHESTRATION
	5.1. LEARNING HEAT TEMPLATE BASICS
	5.1.1. Understanding Heat Templates
	5.1.2. Understanding Environment Files

	5.2. OBTAINING THE DEFAULT DIRECTOR TEMPLATES
	5.3. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION
	5.4. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
	5.5. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	5.6. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	5.7. PUPPET: APPLYING CUSTOM CONFIGURATION TO AN OVERCLOUD
	5.8. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
	5.9. ADDING ENVIRONMENT FILES TO AN OVERCLOUD DEPLOYMENT

	CHAPTER 6. COMPOSABLE SERVICES
	6.1. EXAMINING COMPOSABLE SERVICE ARCHITECTURE
	6.2. CREATING A USER-DEFINED COMPOSABLE SERVICE
	6.3. INCLUDING A USER-DEFINED COMPOSABLE SERVICE

	CHAPTER 7. INTEGRATION POINTS
	7.1. BARE METAL PROVISIONING (IRONIC)
	7.2. NETWORKING (NEUTRON)
	7.3. BLOCK STORAGE (CINDER)
	7.4. IMAGE STORAGE (GLANCE)
	7.5. SHARED FILE SYSTEMS (MANILA)

	CHAPTER 8. EXAMPLES
	8.1. CISCO NEXUS 1000V
	8.2. NETAPP STORAGE

