
Red Hat OpenShift Data Foundation 4.9

Deploying and managing OpenShift Data
Foundation using Google Cloud

Instructions on deploying and managing OpenShift Data Foundation on existing Red
Hat OpenShift Container Platform Google Cloud clusters

Last Updated: 2022-12-02

Red Hat OpenShift Data Foundation 4.9 Deploying and managing
OpenShift Data Foundation using Google Cloud

Instructions on deploying and managing OpenShift Data Foundation on existing Red Hat OpenShift
Container Platform Google Cloud clusters

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this document for instructions about how to install and manage Red Hat OpenShift Data
Foundation using Red Hat OpenShift Container Platform on Google Cloud. Deploying and
managing OpenShift Data Foundation on Google Cloud is a Technology Preview feature.
Technology Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PREFACE

CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT DATA FOUNDATION
1.1. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT

CHAPTER 2. DEPLOYING OPENSHIFT DATA FOUNDATION ON GOOGLE CLOUD
2.1. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION OPERATOR
2.2. CREATING AN OPENSHIFT DATA FOUNDATION CLUSTER
2.3. VERIFYING OPENSHIFT DATA FOUNDATION DEPLOYMENT

2.3.1. Verifying the state of the pods
2.3.2. Verifying the OpenShift Data Foundation cluster is healthy
2.3.3. Verifying the Multicloud Object Gateway is healthy
2.3.4. Verifying that the OpenShift Data Foundation specific storage classes exist

CHAPTER 3. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY
3.1. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION OPERATOR
3.2. CREATING STANDALONE MULTICLOUD OBJECT GATEWAY

CHAPTER 4. UNINSTALLING OPENSHIFT DATA FOUNDATION
4.1. UNINSTALLING OPENSHIFT DATA FOUNDATION IN INTERNAL MODE

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS
5.1. CREATING STORAGE CLASSES AND POOLS
5.2. CREATING A STORAGE CLASS FOR PERSISTENT VOLUME ENCRYPTION

5.2.1. Prerequisites for using vaulttokens
5.2.2. Prerequisites for using vaulttenantsa
5.2.3. Procedure for creating a storage class for PV encryption

5.2.3.1. Overriding Vault connection details using tenant ConfigMap

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES
6.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT DATA FOUNDATION
6.2. CONFIGURING MONITORING TO USE OPENSHIFT DATA FOUNDATION
6.3. CLUSTER LOGGING FOR OPENSHIFT DATA FOUNDATION

6.3.1. Configuring persistent storage
6.3.2. Configuring cluster logging to use OpenShift data Foundation

CHAPTER 7. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT DATA
FOUNDATION

CHAPTER 8. HOW TO USE DEDICATED WORKER NODES FOR RED HAT OPENSHIFT DATA FOUNDATION

8.1. ANATOMY OF AN INFRASTRUCTURE NODE
8.2. MACHINE SETS FOR CREATING INFRASTRUCTURE NODES
8.3. MANUAL CREATION OF INFRASTRUCTURE NODES

CHAPTER 9. SCALING STORAGE NODES
9.1. REQUIREMENTS FOR SCALING STORAGE NODES
9.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR OPENSHIFT DATA FOUNDATION NODES ON
GOOGLE CLOUD INFRASTRUCTURE
9.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES

9.3.1. Adding a node on Google Cloud installer-provisioned infrastructure

5

6

7

8
8

10
10
12
14
14
16
16
16

17
17
18

21
21

22
22
23
23
24
27
29

31
31

33
35
36
37

40

42
42
42
43

45
45

45
47
48

Table of Contents

1

. .

. .

9.3.2. Verifying the addition of a new node
9.3.3. Scaling up storage capacity

CHAPTER 10. MULTICLOUD OBJECT GATEWAY
10.1. ABOUT THE MULTICLOUD OBJECT GATEWAY
10.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR APPLICATIONS

10.2.1. Accessing the Multicloud Object Gateway from the terminal
10.2.2. Accessing the Multicloud Object Gateway from the MCG command-line interface

10.3. ALLOWING USER ACCESS TO THE MULTICLOUD OBJECT GATEWAY CONSOLE
10.4. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD

10.4.1. Creating a new backing store
10.4.2. Adding storage resources for hybrid or Multicloud using the MCG command line interface

10.4.2.1. Creating an AWS-backed backingstore
10.4.2.2. Creating an IBM COS-backed backingstore
10.4.2.3. Creating an Azure-backed backingstore
10.4.2.4. Creating a GCP-backed backingstore
10.4.2.5. Creating a local Persistent Volume-backed backingstore

10.4.3. Creating an s3 compatible Multicloud Object Gateway backingstore
10.4.4. Adding storage resources for hybrid and Multicloud using the user interface
10.4.5. Creating a new bucket class
10.4.6. Editing a bucket class
10.4.7. Editing backing stores for bucket class

10.5. MANAGING NAMESPACE BUCKETS
10.5.1. Amazon S3 API endpoints for objects in namespace buckets
10.5.2. Adding a namespace bucket using the Multicloud Object Gateway CLI and YAML

10.5.2.1. Adding an AWS S3 namespace bucket using YAML
10.5.2.2. Adding an IBM COS namespace bucket using YAML
10.5.2.3. Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI
10.5.2.4. Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI

10.5.3. Adding a namespace bucket using the OpenShift Container Platform user interface
10.6. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS

10.6.1. Creating bucket classes to mirror data using the MCG command-line-interface
10.6.2. Creating bucket classes to mirror data using a YAML
10.6.3. Configuring buckets to mirror data using the user interface

10.7. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY
10.7.1. About bucket policies
10.7.2. Using bucket policies
10.7.3. Creating an AWS S3 user in the Multicloud Object Gateway

10.8. OBJECT BUCKET CLAIM
10.8.1. Dynamic Object Bucket Claim
10.8.2. Creating an Object Bucket Claim using the command line interface
10.8.3. Creating an Object Bucket Claim using the OpenShift Web Console
10.8.4. Attaching an Object Bucket Claim to a deployment
10.8.5. Viewing object buckets using the OpenShift Web Console
10.8.6. Deleting Object Bucket Claims

10.9. CACHING POLICY FOR OBJECT BUCKETS
10.9.1. Creating an AWS cache bucket
10.9.2. Creating an IBM COS cache bucket

10.10. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY ADDING ENDPOINTS
10.10.1. Scaling the Multicloud Object Gateway with storage nodes

10.11. AUTOMATIC SCALING OF MULTICLOUD OBJECT GATEWAY ENDPOINTS

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

48
49

50
50
50
51

53
56
57
57
58
58
60
62
64
65
67
68
70
71
71
73
73
74
74
76
79
80
82
84
84
85
85
86
86
86
88
90
90
92
95
98
99

100
100
101

103
105
105
106

107

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

2

. .

. .

. .

. .

. .

11.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT DATA FOUNDATION
11.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS
11.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS
11.4. DYNAMIC PROVISIONING

11.4.1. About dynamic provisioning
11.4.2. Dynamic provisioning in OpenShift Data Foundation
11.4.3. Available dynamic provisioning plug-ins

CHAPTER 12. VOLUME SNAPSHOTS
12.1. CREATING VOLUME SNAPSHOTS
12.2. RESTORING VOLUME SNAPSHOTS
12.3. DELETING VOLUME SNAPSHOTS

CHAPTER 13. VOLUME CLONING
13.1. CREATING A CLONE

CHAPTER 14. REPLACING STORAGE NODES
14.1. REPLACING OPERATIONAL NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED
INFRASTRUCTURE
14.2. REPLACING FAILED NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

CHAPTER 15. REPLACING STORAGE DEVICES
15.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON GOOGLE CLOUD INSTALLER-
PROVISIONED INFRASTRUCTURE

CHAPTER 16. UPGRADING TO OPENSHIFT DATA FOUNDATION
16.1. OVERVIEW OF THE OPENSHIFT DATA FOUNDATION UPDATE PROCESS
16.2. UPDATING RED HAT OPENSHIFT CONTAINER STORAGE 4.8 TO RED HAT OPENSHIFT DATA
FOUNDATION 4.9
16.3. UPDATING RED HAT OPENSHIFT DATA FOUNDATION 4.9.X TO 4.9.Y
16.4. CHANGING THE UPDATE APPROVAL STRATEGY

107
109
109
109
109
110
110

112
112
113
115

117
117

118

118
119

122

122

123
123

124
126
128

Table of Contents

3

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Do let us know how we can make it better. To give
feedback:

For simple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.

3. Click the Add Feedback pop-up that appears below the highlighted text.

4. Follow the displayed instructions.

For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.

2. In the Component section, choose documentation.

3. Fill in the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

6

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat OpenShift Data Foundation

PREFACE
Red Hat OpenShift Data Foundation 4.9 supports deployment on existing Red Hat OpenShift Container
Platform (RHOCP) Google Cloud clusters.

NOTE

Only internal OpenShift Data Foundation clusters are supported on Google Cloud. See
Planning your deployment for more information about deployment requirements.

To deploy OpenShift Data Foundation in internal mode, start with the requirements in Preparing to
deploy OpenShift Data Foundation chapter and follow the appropriate deployment process based on
your requirement:

Deploy OpenShift Data Foundation on Google Cloud

Deploy standalone Multicloud Object Gateway component

PREFACE

7

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#preparing_to_deploy_openshift_data_foundation
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#deploying-openshift-data-foundation-on-google-cloud
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#deploy-standalone-multicloud-object-gateway

CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT DATA
FOUNDATION

Deploying OpenShift Data Foundation on OpenShift Container Platform using dynamic storage devices
provides you with the option to create internal cluster resources. This will result in the internal
provisioning of the base services, which helps to make additional storage classes available to
applications.

Before you begin the deployment of Red Hat OpenShift Data Foundation, follow these steps:

1. Optional: If you want to enable cluster-wide encryption using an external Key Management
System (KMS):

Ensure that a policy with a token exists and the key value backend path in Vault is enabled.
See enabled the key value backend path and policy in Vault .

Ensure that you are using signed certificates on your Vault servers.

2. Minimum starting node requirements [Technology Preview]
An OpenShift Data Foundation cluster will be deployed with minimum configuration when the
standard deployment resource requirement is not met. See Resource requirements section in
Planning guide.

3. Regional-DR requirements [Developer Preview]
Disaster Recovery features supported by Red Hat OpenShift Data Foundation require all of the
following prerequisites in order to successfully implement a Disaster Recovery solution:

A valid Red Hat OpenShift Data Foundation Advanced entitlement

A valid Red Hat Advanced Cluster Management for Kubernetes subscription
To know how subscriptions for OpenShift Data Foundation work, see knowledgebase article
on OpenShift Data Foundation subscriptions.

For detailed requirements, see Regional-DR requirements and RHACM requirements.

1.1. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT

Prerequisites

Administrator access to Vault.

Carefully, choose a unique path name as the backend path that follows the naming convention
since it cannot be changed later.

Procedure

1. Enable the Key/Value (KV) backend path in Vault.
For Vault KV secret engine API, version 1:

$ vault secrets enable -path=odf kv

For Vault KV secret engine API, version 2:

$ vault secrets enable -path=odf kv-v2

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

8

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_openshift_data_foundation_using_amazon_web_services/index#enabling-key-value-backend-path-and-policy-in-vault_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/planning_your_deployment/index#resource-requirements_rhodf
https://access.redhat.com/articles/6932811
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/configuring_openshift_data_foundation_for_regional-dr_with_advanced_cluster_management#requirements-for-enabling-regional-disaster-recovery_rhodf
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/install/index#requirements-and-recommendations

2. Create a policy to restrict users to perform a write or delete operation on the secret using the
following commands.

echo '
path "odf/*" {
 capabilities = ["create", "read", "update", "delete", "list"]
}
path "sys/mounts" {
capabilities = ["read"]
}'| vault policy write odf -

3. Create a token matching the above policy.

$ vault token create -policy=odf -format json

CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT DATA FOUNDATION

9

CHAPTER 2. DEPLOYING OPENSHIFT DATA FOUNDATION
ON GOOGLE CLOUD

You can deploy OpenShift Data Foundation on OpenShift Container Platform using dynamic storage
devices provided by Google Cloud installer-provisioned infrastructure. This enables you to create
internal cluster resources and it results in internal provisioning of the base services, which helps to make
additional storage classes available to applications.

Also, it is possible to deploy only the Multicloud Object Gateway (MCG) component with OpenShift
Data Foundation. For more information, see Deploy standalone Multicloud Object Gateway .

NOTE

Only internal OpenShift Data Foundation clusters are supported on Google Cloud. See
Planning your deployment for more information about deployment requirements.

Ensure that you have addressed the requirements in Preparing to deploy OpenShift Data Foundation
chapter before proceeding with the below steps for deploying using dynamic storage devices:

1. Install the Red Hat OpenShift Data Foundation Operator .

2. Create the OpenShift Data Foundation Cluster .

2.1. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION
OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container
Platform Operator Hub.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin and
Operator installation permissions.

You must have at least three worker nodes in the Red Hat OpenShift Container Platform
cluster.

For additional resource requirements, see the Planning your deployment guide.

IMPORTANT

When you need to override the cluster-wide default node selector for OpenShift
Data Foundation, you can use the following command in the command line
interface to specify a blank node selector for the openshift-storage namespace
(create openshift-storage namespace in this case):

$ oc annotate namespace openshift-storage openshift.io/node-selector=

Taint a node as infra to ensure only Red Hat OpenShift Data Foundation
resources are scheduled on that node. This helps you save on subscription costs.
For more information, see How to use dedicated worker nodes for Red Hat
OpenShift Data Foundation chapter in the Managing and Allocating Storage
Resources guide.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

10

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#deploy-standalone-multicloud-object-gateway
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#preparing_to_deploy_openshift_container_storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/#installing-openshift-data-foundation-operator-using-the-operator-hub_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#creating-an-openshift-data-foundation-service_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_and_allocating_storage_resources/index#how-to-use-dedicated-worker-nodes-for-openshift-data-foundation_rhodf

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators → OperatorHub.

3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the
OpenShift Data Foundation Operator.

4. Click Install.

5. Set the following options on the Install Operator page:

a. Update Channel as stable-4.9.

b. Installation Mode as A specific namespace on the cluster.

c. Installed Namespace as Operator recommended namespace openshift-storage. If
Namespace openshift-storage does not exist, it is created during the operator installation.

d. Select Approval Strategy as Automatic or Manual.
If you select Automatic updates, then the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without any intervention.

If you select Manual updates, then the OLM creates an update request. As a cluster
administrator, you must then manually approve that update request to update the Operator
to a newer version.

e. Ensure that the Enable option is selected for the Console plugin.

f. Click Install.

NOTE

We recommend using all default settings. Changing it may result in unexpected behavior.
Alter only if you are aware of its result.

Verification steps

Verify that the OpenShift Data Foundation Operator shows a green tick indicating successful
installation.

After the operator is successfully installed, a pop-up with a message, Web console update is
available appears on the user interface. Click Refresh web console from this pop-up for the
console changes to reflect.

In the Web Console, navigate to Operators and verify if OpenShift Data Foundation is
available.

IMPORTANT

In case the console plugin option was not automatically enabled after you installed the
OpenShift Data Foundation Operator, you need to enable it.

For more information on how to enable the console plugin, see Enabling the Red Hat
OpenShift Data Foundation console plugin.

CHAPTER 2. DEPLOYING OPENSHIFT DATA FOUNDATION ON GOOGLE CLOUD

11

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/troubleshooting_openshift_data_foundation/index#enabling-the-red-hat-openshift-data-foundation-console-plugin-option_rhodf

2.2. CREATING AN OPENSHIFT DATA FOUNDATION CLUSTER

Create an OpenShift Data Foundation cluster after you install the OpenShift Data Foundation operator.

Prerequisites

The OpenShift Data Foundation operator must be installed from the Operator Hub. For more
information, see Installing OpenShift Data Foundation Operator .

Be aware that the default storage class of the Google Cloud platform uses hard disk drive
(HDD). To use solid state drive (SSD) based disks for better performance, you need to create a
storage class, using pd-ssd as shown in the following ssd-storeageclass.yaml example:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: faster
provisioner: kubernetes.io/gce-pd
parameters:
 type: pd-ssd
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Delete

Procedure

1. In the OpenShift Web Console, click Operators → Installed Operators to view all the installed
operators.
Ensure that the Project selected is openshift-storage.

2. Click on the OpenShift Data Foundation operator, and then click Create StorageSystem.

3. In the Backing storage page, select the following:

a. Select the Use an existing StorageClass option.

b. Select the Storage Class.
By default, it is set to standard. However, if you created a storage class to use SSD based
disks for better performance, you need to select that storage class.

c. Expand Advanced and select Full Deployment for the Deployment type option.

d. Click Next.

4. In the Capacity and nodes page, provide the necessary information:

a. Select a value for Requested Capacity from the dropdown list. It is set to 2 TiB by default.

NOTE

Once you select the initial storage capacity, cluster expansion is performed
only using the selected usable capacity (three times of raw storage).

b. In the Select Nodes section, select at least three available nodes.
For cloud platforms with multiple availability zones, ensure that the Nodes are spread
across different Locations/availability zones.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

12

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/#installing-openshift-data-foundation-operator-using-the-operator-hub_gcp

If the nodes selected do not match the OpenShift Data Foundation cluster requirement of
an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster is deployed. For minimum
starting node requirements, see the Resource requirements section in the Planning guide.

c. Click Next.

5. Optional: In the Security and network page, configure the following based on your
requirements:

a. To enable encryption, select Enable data encryption for block and file storage.

b. Choose either one or both the encryption levels:

Cluster-wide encryption
Encrypts the entire cluster (block and file).

StorageClass encryption
Creates encrypted persistent volume (block only) using encryption enabled storage
class.

c. Select the Connect to an external key management service checkbox. This is optional for
cluster-wide encryption.

i. Key Management Service Provider is set to Vault by default.

ii. Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>'),
Port number and Token.

iii. Expand Advanced Settings to enter additional settings and certificate details based on
your Vault configuration:

A. Enter the Key Value secret path in Backend Path that is dedicated and unique to
OpenShift Data Foundation.

B. Optional: Enter TLS Server Name and Vault Enterprise Namespace.

C. Upload the respective PEM encoded certificate file to provide the CA Certificate,
Client Certificate and Client Private Key .

D. Click Save.

d. Click Next.

6. In the Review and create page, review the configuration details.
To modify any configuration settings, click Back.

7. Click Create StorageSystem.

Verification steps

To verify the final Status of the installed storage cluster:

a. In the OpenShift Web Console, navigate to Installed Operators → OpenShift Data
Foundation → Storage System → ocs-storagecluster-storagesystem → Resources.

b. Verify that Status of StorageCluster is Ready and has a green tick mark next to it.

1. To verify that all components for OpenShift Data Foundation are successfully installed,

CHAPTER 2. DEPLOYING OPENSHIFT DATA FOUNDATION ON GOOGLE CLOUD

13

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/planning_your_deployment/index#resource-requirements_rhodf

1. To verify that all components for OpenShift Data Foundation are successfully installed,
see Verifying your OpenShift Data Foundation deployment .

Additional resources

To enable Overprovision Control alerts, refer to Alerts in Monitoring guide.

2.3. VERIFYING OPENSHIFT DATA FOUNDATION DEPLOYMENT

Use this section to verify that OpenShift Data Foundation is deployed correctly.

2.3.1. Verifying the state of the pods

Procedure

1. Click Workloads → Pods from the OpenShift Web Console.

2. Select openshift-storage from the Project drop-down list.

NOTE

If the Show default projects option is disabled, use the toggle button to list all
the default projects.

For more information about the expected number of pods for each component and how it varies
depending on the number of nodes, see Table 2.1, “Pods corresponding to OpenShift Data
Foundation cluster”.

3. Click the Running and Completed tabs to verify that the following pods are in Running and
Completed state:

Table 2.1. Pods corresponding to OpenShift Data Foundation cluster

Component Corresponding pods

OpenShift Data Foundation Operator
ocs-operator-* (1 pod on any worker
node)

ocs-metrics-exporter-* (1 pod on any
worker node)

odf-operator-controller-manager-*
(1 pod on any worker node)

odf-console-* (1 pod on any worker node)

Rook-ceph Operator rook-ceph-operator-*

(1 pod on any worker node)

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

14

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#verifying_openshift_data_foundation_deployment
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.8/html-single/monitoring_openshift_container_storage/index#alerts

Multicloud Object Gateway
noobaa-operator-* (1 pod on any worker
node)

noobaa-core-* (1 pod on any storage
node)

noobaa-db-pg-* (1 pod on any storage
node)

noobaa-endpoint-* (1 pod on any storage
node)

MON rook-ceph-mon-*

(3 pods distributed across storage nodes)

MGR rook-ceph-mgr-*

(1 pod on any storage node)

MDS rook-ceph-mds-ocs-storagecluster-
cephfilesystem-*

(2 pods distributed across storage nodes)

CSI
cephfs

csi-cephfsplugin-* (1 pod on each
worker node)

csi-cephfsplugin-provisioner-* (2
pods distributed across worker nodes)

rbd

csi-rbdplugin-* (1 pod on each worker
node)

csi-rbdplugin-provisioner-* (2 pods
distributed across worker nodes)

rook-ceph-crashcollector rook-ceph-crashcollector-*

(1 pod on each storage node)

OSD
rook-ceph-osd-* (1 pod for each device)

rook-ceph-osd-prepare-ocs-
deviceset-* (1 pod for each device)

Component Corresponding pods

CHAPTER 2. DEPLOYING OPENSHIFT DATA FOUNDATION ON GOOGLE CLOUD

15

2.3.2. Verifying the OpenShift Data Foundation cluster is healthy

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. In the Status card of the Overview tab, click Storage System and then click the storage
system link from the pop up that appears.

3. In the Status card of the Block and File tab, verify that Storage Cluster has a green tick.

4. In the Details card, verify that the cluster information is displayed.

For more information on the health of the OpenShift Data Foundation cluster using the Block and File
dashboard, see Monitoring OpenShift Data Foundation .

2.3.3. Verifying the Multicloud Object Gateway is healthy

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. In the Status card of the Overview tab, click Storage System and then click the storage
system link from the pop up that appears.

a. In the Status card of the Object tab, verify that both Object Service and Data Resiliency
have a green tick.

b. In the Details card, verify that the MCG information is displayed.

For more information on the health of the OpenShift Data Foundation cluster using the object service
dashboard, see Monitoring OpenShift Data Foundation .

2.3.4. Verifying that the OpenShift Data Foundation specific storage classes exist

Procedure

1. Click Storage → Storage Classes from the left pane of the OpenShift Web Console.

2. Verify that the following storage classes are created with the OpenShift Data Foundation
cluster creation:

ocs-storagecluster-ceph-rbd

ocs-storagecluster-cephfs

openshift-storage.noobaa.io

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

16

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/monitoring_openshift_data_foundation/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/monitoring_openshift_data_foundation/index

CHAPTER 3. DEPLOY STANDALONE MULTICLOUD OBJECT
GATEWAY

Deploying only the Multicloud Object Gateway component with the OpenShift Data Foundation
provides the flexibility in deployment and helps to reduce the resource consumption. Use this section to
deploy only the standalone Multicloud Object Gateway component, which involves the following steps:

Installing Red Hat OpenShift Data Foundation Operator

Creating standalone Multicloud Object Gateway

3.1. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION
OPERATOR

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container
Platform Operator Hub.

Prerequisites

Access to an OpenShift Container Platform cluster using an account with cluster-admin and
Operator installation permissions.

You must have at least three worker nodes in the Red Hat OpenShift Container Platform
cluster.

For additional resource requirements, see the Planning your deployment guide.

IMPORTANT

When you need to override the cluster-wide default node selector for OpenShift
Data Foundation, you can use the following command in the command line
interface to specify a blank node selector for the openshift-storage namespace
(create openshift-storage namespace in this case):

$ oc annotate namespace openshift-storage openshift.io/node-selector=

Taint a node as infra to ensure only Red Hat OpenShift Data Foundation
resources are scheduled on that node. This helps you save on subscription costs.
For more information, see How to use dedicated worker nodes for Red Hat
OpenShift Data Foundation chapter in the Managing and Allocating Storage
Resources guide.

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators → OperatorHub.

3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the
OpenShift Data Foundation Operator.

4. Click Install.

5. Set the following options on the Install Operator page:

CHAPTER 3. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY

17

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_and_allocating_storage_resources/index#how-to-use-dedicated-worker-nodes-for-openshift-data-foundation_rhodf

a. Update Channel as stable-4.9.

b. Installation Mode as A specific namespace on the cluster.

c. Installed Namespace as Operator recommended namespace openshift-storage. If
Namespace openshift-storage does not exist, it is created during the operator installation.

d. Select Approval Strategy as Automatic or Manual.
If you select Automatic updates, then the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without any intervention.

If you select Manual updates, then the OLM creates an update request. As a cluster
administrator, you must then manually approve that update request to update the Operator
to a newer version.

e. Ensure that the Enable option is selected for the Console plugin.

f. Click Install.

NOTE

We recommend using all default settings. Changing it may result in unexpected behavior.
Alter only if you are aware of its result.

Verification steps

Verify that the OpenShift Data Foundation Operator shows a green tick indicating successful
installation.

After the operator is successfully installed, a pop-up with a message, Web console update is
available appears on the user interface. Click Refresh web console from this pop-up for the
console changes to reflect.

In the Web Console, navigate to Operators and verify if OpenShift Data Foundation is
available.

IMPORTANT

In case the console plugin option was not automatically enabled after you installed the
OpenShift Data Foundation Operator, you need to enable it.

For more information on how to enable the console plugin, see Enabling the Red Hat
OpenShift Data Foundation console plugin.

3.2. CREATING STANDALONE MULTICLOUD OBJECT GATEWAY

Use this section to create only the Multicloud Object Gateway component with OpenShift Data
Foundation.

Prerequisites

Ensure that OpenShift Data Foundation Operator is installed.

(For deploying using local storage devices only) Ensure that Local Storage Operator is installed.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

18

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/troubleshooting_openshift_data_foundation/index#enabling-the-red-hat-openshift-data-foundation-console-plugin-option_rhodf

Ensure that you have a storage class and is set as the default.

Procedure

1. In the OpenShift Web Console, click Operators → Installed Operators to view all the installed
operators.
Ensure that the Project selected is openshift-storage.

2. Click OpenShift Data Foundation operator and then click Create StorageSystem.

3. In the Backing storage page, expand Advanced.

4. Select Multicloud Object Gateway for Deployment type.

5. Click Next.

6. Optional: In the Security page, select Connect to an external key management service.

a. Key Management Service Provider is set to Vault by default.

b. Enter Vault Service Name, host Address of Vault server ('https:// <hostname or ip> '), Port
number, and Token.

c. Expand Advanced Settings to enter additional settings and certificate details based on
your Vault configuration:

i. Enter the Key Value secret path in the Backend Path that is dedicated and unique to
OpenShift Data Foundation.

ii. Optional: Enter TLS Server Name and Vault Enterprise Namespace.

iii. Upload the respective PEM encoded certificate file to provide the CA Certificate,
Client Certificate, and Client Private Key.

iv. Click Save.

d. Click Next.

7. In the Review and create page, review the configuration details:
To modify any configuration settings, click Back.

8. Click Create StorageSystem.

Verification steps

Verifying that the OpenShift Data Foundation cluster is healthy

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. In the Status card of the Overview tab, click Storage System and then click the storage
system link from the pop up that appears.

a. In the Status card of the Object tab, verify that both Object Service and Data Resiliency
have a green tick.

b. In the Details card, verify that the MCG information is displayed.

CHAPTER 3. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY

19

Verify the state of the pods

1. Click Workloads → Pods from the OpenShift Web Console.

2. Select openshift-storage from the Project drop-down list and verify that the following
pods are in Running state.

NOTE

If the Show default projects option is disabled, use the toggle button to list
all the default projects.

Component Corresponding pods

OpenShift Data
Foundation Operator ocs-operator-* (1 pod on any worker node)

ocs-metrics-exporter-* (1 pod on any worker node)

odf-operator-controller-manager-* (1 pod on any worker
node)

odf-console-* (1 pod on any worker node)

Rook-ceph Operator rook-ceph-operator-*

(1 pod on any worker node)

Multicloud Object
Gateway noobaa-operator-* (1 pod on any worker node)

noobaa-core-* (1 pod on any worker node)

noobaa-db-pg-* (1 pod on any worker node)

noobaa-endpoint-* (1 pod on any worker node)

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

20

CHAPTER 4. UNINSTALLING OPENSHIFT DATA FOUNDATION

4.1. UNINSTALLING OPENSHIFT DATA FOUNDATION IN INTERNAL
MODE

To uninstall OpenShift Data Foundation in Internal mode, refer to the knowledge base article on
Uninstalling OpenShift Data Foundation.

CHAPTER 4. UNINSTALLING OPENSHIFT DATA FOUNDATION

21

https://access.redhat.com/articles/6525111

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS
The OpenShift Data Foundation operator installs a default storage class depending on the platform in
use. This default storage class is owned and controlled by the operator and it cannot be deleted or
modified. However, you can create a custom storage class if you want the storage class to have a
different behaviour.

You can create multiple storage pools which map to storage classes that provide the following features:

Enable applications with their own high availability to use persistent volumes with two replicas,
potentially improving application performance.

Save space for persistent volume claims using storage classes with compression enabled.

NOTE

Multiple storage classes and multiple pools are not supported for external mode
OpenShift Data Foundation clusters.

NOTE

With a minimal cluster of a single device set, only two new storage classes can be created.
Every storage cluster expansion allows two new additional storage classes.

5.1. CREATING STORAGE CLASSES AND POOLS

You can create a storage class using an existing pool or you can create a new pool for the storage class
while creating it.

Prerequisites

Ensure that you are logged into the OpenShift Container Platform web console and OpenShift
Data Foundation cluster is in Ready state.

Procedure

1. Click Storage → StorageClasses.

2. Click Create Storage Class.

3. Enter the storage class Name and Description.

4. Reclaim Policy is set to Delete as the default option. Use this setting.
If you change the reclaim policy to Retain in the storage class, the persistent volume (PV)
remains in Released state even after deleting the persistent volume claim (PVC).

5. Volume binding mode is set to WaitForConsumer as the default option.
If you choose the Immediate option, then the PV is created at the same time while creating the
PVC.

6. Select RBD Provisioner which is the plugin used for provisioning the persistent volumes.

7. Select an existing Storage Pool from the list or create a new pool.

Create new pool

a. Click Create New Pool.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

22

a. Click Create New Pool.

b. Enter Pool name.

c. Choose 2-way-Replication or 3-way-Replication as the Data Protection Policy.

d. Select Enable compression if you need to compress the data.
Enabling compression can impact application performance and might prove ineffective
when data to be written is already compressed or encrypted. Data written before
enabling compression will not be compressed.

e. Click Create to create the new storage pool.

f. Click Finish after the pool is created.

8. Optional: Select Enable Encryption checkbox.

9. Click Create to create the storage class.

5.2. CREATING A STORAGE CLASS FOR PERSISTENT VOLUME
ENCRYPTION

Persistent volume (PV) encryption guarantees isolation and confidentiality between tenants
(applications). Before you can use PV encryption, you must create a storage class for PV encryption.

OpenShift Data Foundation supports storing encryption passphrases in HashiCorp Vault. Use the
following procedure to create an encryption enabled storage class using an external key management
system (KMS) for persistent volume encryption. Persistent volume encryption is only available for RBD
PVs. You can configure access to the KMS in two different ways:

Using vaulttokens: allows users to authenticate using a token

Using vaulttenantsa (technology preview): allows users to use serviceaccounts to authenticate
with Vault

IMPORTANT

Accessing the KMS using vaulttenantsa is a Technology Preview feature. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information, see Technology Preview Features Support Scope .

See the relevant prerequisites section for your use case before following the procedure for creating the
storage class:

Section 5.2.1, “Prerequisites for using vaulttokens”

Section 5.2.2, “Prerequisites for using vaulttenantsa”

5.2.1. Prerequisites for using vaulttokens

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS

23

https://access.redhat.com/support/offerings/techpreview/

The OpenShift Data Foundation cluster is in Ready state.

On the external key management system (KMS),

Ensure that a policy with a token exists and the key value backend path in Vault is enabled.
For more information, see Enabling key value and policy in Vault .

Ensure that you are using signed certificates on your Vault servers.

Create a secret in the tenant’s namespace as follows:

On the OpenShift Container Platform web console, navigate to Workloads → Secrets.

Click Create → Key/value secret.

Enter Secret Name as ceph-csi-kms-token.

Enter Key as token.

Enter Value. It is the token from Vault. You can either click Browse to select and upload the
file containing the token or enter the token directly in the text box.

Click Create.

NOTE

The token can be deleted only after all the encrypted PVCs using the ceph-csi-kms-
token have been deleted.

Next, follow the steps in Section 5.2.3, “Procedure for creating a storage class for PV encryption” .

5.2.2. Prerequisites for using vaulttenantsa

The OpenShift Data Foundation cluster is in Ready state.

On the external key management system (KMS),

Ensure that a policy exists and the key value backend path in Vault is enabled. For more
information, see Enabling key value and policy in Vault .

Ensure that you are using signed certificates on your Vault servers.

Create the following serviceaccount in the tenant namespace as shown below:

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: ServiceAccount
metadata:
 name: ceph-csi-vault-sa
EOF

The Kubernetes authentication method must be configured before OpenShift Data Foundation
can authenticate with and start using Vault. The instructions below create and
configure serviceAccount, ClusterRole, and ClusterRoleBinding required to allow OpenShift
Data Foundation to authenticate with Vault.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

24

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_openshift_data_foundation_using_bare_metal_infrastructure/index#enabling-key-value-backend-path-and-policy-in-vault_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_openshift_data_foundation_using_bare_metal_infrastructure/index#enabling-key-value-backend-path-and-policy-in-vault_rhodf

1. Apply the following YAML to your Openshift cluster:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: rbd-csi-vault-token-review

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: rbd-csi-vault-token-review
rules:
 - apiGroups: ["authentication.k8s.io"]
 resources: ["tokenreviews"]
 verbs: ["create", "get", "list"]

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: rbd-csi-vault-token-review
subjects:
 - kind: ServiceAccount
 name: rbd-csi-vault-token-review
 namespace: openshift-storage
roleRef:
 kind: ClusterRole
 name: rbd-csi-vault-token-review
 apiGroup: rbac.authorization.k8s.io

2. Identify the secret name associated with the serviceaccount (SA) created above:

$ oc -n openshift-storage get sa rbd-csi-vault-token-review -o jsonpath="{.secrets[*]
['name']}"

3. Get the token and the CA certificate from the secret:

$ oc get secret <secret associated with SA> -o jsonpath="{.data['token']}" | base64 --
decode; echo
$ oc get secret <secret associated with SA> -o jsonpath="{.data['ca\.crt']}" | base64 --
decode; echo

4. Retrieve the OCP cluster endpoint:

$ oc config view --minify --flatten -o jsonpath="{.clusters[0].cluster.server}"

5. Use the information collected in the steps above to setup the kubernetes authentication
method in Vault as shown below:

$ vault auth enable kubernetes
$ vault write auth/kubernetes/config token_reviewer_jwt=<SA token> kubernetes_host=
<OCP cluster endpoint> kubernetes_ca_cert=<SA CA certificate>

6. Create a role in Vault for the tenant namespace:

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS

25

$ vault write "auth/kubernetes/role/csi-kubernetes"
bound_service_account_names="ceph-csi-vault-sa"
bound_service_account_namespaces=<tenant_namespace> policies=
<policy_name_in_vault>

csi-kubernetes is the default role name that OpenShift Data Foundation looks for in Vault.
The default service account name in the tenant namespace in the Openshift Data
Foundation cluster is ceph-csi-vault-sa. These default values can be overridden by creating
a ConfigMap in the tenant namespace.

For more information about overriding the default names, see Overriding Vault connection
details using tenant ConfigMap.

In order to create a storageclass that uses the vaulttenantsa method for PV encrytpion, you
must either edit the existing ConfigMap or create a ConfigMap named csi-kms-connection-
details that will hold all the information needed to establish the connection with Vault.
The sample yaml given below can be used to update or create the csi-kms-connection-detail
ConfigMap:

apiVersion: v1
data:
 vault-tenant-sa: |-
 {
 "encryptionKMSType": "vaulttenantsa",
 "vaultAddress": "<https://hostname_or_ip_of_vault_server:port>",
 "vaultTLSServerName": "<vault TLS server name>",
 "vaultAuthPath": "/v1/auth/kubernetes/login",
 "vaultAuthNamespace": "<vault auth namespace name>"
 "vaultNamespace": "<vault namespace name>",
 "vaultBackendPath": "<vault backend path name>",
 "vaultCAFromSecret": "<secret containing CA cert>",
 "vaultClientCertFromSecret": "<secret containing client cert>",
 "vaultClientCertKeyFromSecret": "<secret containing client private key>",
 "tenantSAName": "<service account name in the tenant namespace>"
 }
metadata:
 name: csi-kms-connection-details

encryptionKMSType: should be set to vaulttenantsa to use service accounts for
authentication with vault.

vaultAddress: The hostname or IP address of the vault server with the port number.

vaultTLSServerName: (Optional) The vault TLS server name

vaultAuthPath: (Optional) The path where kubernetes auth method is enabled in Vault. The
default path is kubernetes. If the auth method is enabled in a different path other than
kubernetes, this variable needs to be set as "/v1/auth/<path>/login".

vaultAuthNamespace: (Optional) The Vault namespace where kubernetes auth method is
enabled.

vaultNamespace: (Optional) The Vault namespace where the backend path being used to
store the keys exists

vaultBackendPath: The backend path in Vault where the encryption keys will be stored

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

26

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_and_allocating_storage_resources/index#overriding-vault-connection-details-using-tenant-configmap_rhodf

vaultCAFromSecret: The secret in the OpenShift Data Foundation cluster containing the
CA certificate from Vault

vaultClientCertFromSecret: The secret in the OpenShift Data Foundation cluster
containing the client certificate from Vault

vaultClientCertKeyFromSecret: The secret in the OpenShift Data Foundation cluster
containing the client private key from Vault

tenantSAName: (Optional) The service account name in the tenant namespace. The
default value is ceph-csi-vault-sa. If a different name is to be used, this variable has to be
set accordingly.

Next, follow the steps in Section 5.2.3, “Procedure for creating a storage class for PV encryption” .

5.2.3. Procedure for creating a storage class for PV encryption

After performing the required prerequisites for either vaulttokens or vaulttenantsa, perform the steps
below to create a storageclass with encryption enabled.

1. Navigate to Storage → StorageClasses.

2. Click Create Storage Class.

3. Enter the storage class Name and Description.

4. Select either Delete or Retain for the Reclaim Policy. By default, Delete is selected.

5. Select either Immediate or WaitForFirstConsumer as the Volume binding mode.
WaitForConsumer is set as the default option.

6. Select RBD Provisioner openshift-storage.rbd.csi.ceph.com which is the plugin used for
provisioning the persistent volumes.

7. Select Storage Pool where the volume data is stored from the list or create a new pool.

8. Select the Enable encryption checkbox. There are two options available to set the KMS
connection details:

Choose existing KMS connection: Select an existing KMS connection from the drop-down
list. The list is populated from the the connection details available in the csi-kms-
connection-details ConfigMap.

Create new KMS connection: This is applicable for vaulttokens only.

a. Key Management Service Provider is set to Vault by default.

b. Enter a unique Vault Service Name, host Address of the Vault server
(https://<hostname or ip>), and Port number.

c. Expand Advanced Settings to enter additional settings and certificate details based on
your Vault configuration.

i. Enter the key value secret path in Backend Path that is dedicated and unique to
OpenShift Data Foundation.

ii. Optional: Enter TLS Server Name and Vault Enterprise Namespace.

iii. Provide CA Certificate, Client Certificate and Client Private Key by uploading the

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS

27

iii. Provide CA Certificate, Client Certificate and Client Private Key by uploading the
respective PEM encoded certificate file.

iv. Click Save.

d. Click Save.

9. Click Create.

10. Edit the ConfigMap to add the VAULT_BACKEND or vaultBackend parameter if the
HashiCorp Vault setup does not allow automatic detection of the Key/Value (KV) secret engine
API version used by the backend path.

NOTE

VAULT_BACKEND or vaultBackend are optional parameters that has added to
the configmap to specify the version of the KV secret engine API associated with
the backend path. Ensure that the value matches the KV secret engine API
version that is set for the backend path, otherwise it might result in a failure
during persistent volume claim (PVC) creation.

a. Identify the encryptionKMSID being used by the newly created storage class.

i. On the OpenShift Web Console, navigate to Storage → Storage Classes.

ii. Click the Storage class name → YAML tab.

iii. Capture the encryptionKMSID being used by the storage class.
Example:

encryptionKMSID: 1-vault

b. On the OpenShift Web Console, navigate to Workloads → ConfigMaps.

c. To view the KMS connection details, click csi-kms-connection-details.

d. Edit the ConfigMap.

i. Click Action menu (⋮) → Edit ConfigMap.

ii. Add the VAULT_BACKEND or vaultBackend parameter depending on the backend
that is configured for the previously identified encryptionKMSID.
You can assign kv for KV secret engine API, version 1 and kv-v2 for KV secret engine
API, version 2.

Example:

 kind: ConfigMap
 apiVersion: v1
 metadata:
 name: csi-kms-connection-details
 [...]
 data:
 1-vault: |-
 {
 "KMS_PROVIDER": "vaulttokens",

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

28

 "KMS_SERVICE_NAME": "1-vault",
 [...]
 "VAULT_BACKEND": "kv-v2"
 }
 2-vault: |-
 {
 "encryptionKMSType": "vaulttenantsa",
 [...]
 "vaultBackend": "kv-v2"
 }

iii. Click Save

Next steps

The storage class can be used to create encrypted persistent volumes. For more information,
see managing persistent volume claims .

IMPORTANT

Red Hat works with the technology partners to provide this documentation as a
service to the customers. However, Red Hat does not provide support for the
HashiCorp product. For technical assistance with this product, contact
HashiCorp.

5.2.3.1. Overriding Vault connection details using tenant ConfigMap

The Vault connections details can be reconfigured per tenant by creating a ConfigMap in the Openshift
namespace with configuration options that differ from the values set in the csi-kms-connection-
details ConfigMap in the openshift-storage namespace. The ConfigMap needs to be located in the
tenant namespace. The values in the ConfigMap in the tenant namespace will override the values set in
the csi-kms-connection-details ConfigMap for the encrypted Persistent Volumes created in that
namespace.

Procedure

1. Ensure that you are in the tenant namespace.

2. Click on Workloads → ConfigMaps.

3. Click on Create ConfigMap.

4. The following is a sample yaml. The values to be overidden for the given tenant namespace can
be specified under the data section as shown below:

apiVersion: v1
kind: ConfigMap
metadata:
 name: ceph-csi-kms-config
data:
 vaultAddress: "<vault_address:port>"
 vaultBackendPath: "<backend_path>"
 vaultTLSServerName: "<vault_tls_server_name>"
 vaultNamespace: "<vault_namespace>"

CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS

29

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_and_allocating_storage_resources/index#managing-persistent-volume-claims_rhodf
https://www.hashicorp.com/technical-support-services-and-policies

5. Once the yaml is edited, click on Create.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

30

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT
CONTAINER PLATFORM SERVICES

You can use OpenShift Data Foundation to provide storage for OpenShift Container Platform services
such as image registry, monitoring, and logging.

The process for configuring storage for these services depends on the infrastructure used in your
OpenShift Data Foundation deployment.

WARNING

Always ensure that you have plenty of storage capacity for these services. If the
storage for these critical services runs out of space, the cluster becomes inoperable
and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these
services. See Configuring the Curator schedule and the Modifying retention time for
Prometheus metrics data sub section of Configuring persistent storage in the
OpenShift Container Platform documentation for details.

If you do run out of storage space for these services, contact Red Hat Customer
Support.

6.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT DATA
FOUNDATION

OpenShift Container Platform provides a built in Container Image Registry which runs as a standard
workload on the cluster. A registry is typically used as a publication target for images built on the cluster
as well as a source of images for workloads running on the cluster.

Follow the instructions in this section to configure OpenShift Data Foundation as storage for the
Container Image Registry. On Google Cloud, it is not required to change the storage for the registry.

WARNING

This process does not migrate data from an existing image registry to the new
image registry. If you already have container images in your existing registry, back up
your registry before you complete this process, and re-register your images when
this process is complete.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Data Foundation Operator is installed and running in the openshift-storage

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/index#cluster-logging-curator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/cluster-monitoring#configuring-persistent-storage

OpenShift Data Foundation Operator is installed and running in the openshift-storage
namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed
operators.

Image Registry Operator is installed and running in the openshift-image-registry namespace. In
OpenShift Web Console, click Administration → Cluster Settings → Cluster Operators to view
cluster operators.

A storage class with provisioner openshift-storage.cephfs.csi.ceph.com is available. In
OpenShift Web Console, click Storage → StorageClasses to view available storage classes.

Procedure

1. Create a Persistent Volume Claim for the Image Registry to use.

a. In the OpenShift Web Console, click Storage → Persistent Volume Claims.

b. Set the Project to openshift-image-registry.

c. Click Create Persistent Volume Claim.

i. From the list of available storage classes retrieved above, specify the Storage Class
with the provisioner openshift-storage.cephfs.csi.ceph.com.

ii. Specify the Persistent Volume Claim Name, for example, ocs4registry.

iii. Specify an Access Mode of Shared Access (RWX).

iv. Specify a Size of at least 100 GB.

v. Click Create.
Wait until the status of the new Persistent Volume Claim is listed as Bound.

2. Configure the cluster’s Image Registry to use the new Persistent Volume Claim.

a. Click Administration → Custom Resource Definitions.

b. Click the Config custom resource definition associated with the
imageregistry.operator.openshift.io group.

c. Click the Instances tab.

d. Beside the cluster instance, click the Action Menu (⋮) → Edit Config.

e. Add the new Persistent Volume Claim as persistent storage for the Image Registry.

i. Add the following under spec:, replacing the existing storage: section if necessary.

 storage:
 pvc:
 claim: <new-pvc-name>

For example:

 storage:
 pvc:
 claim: ocs4registry

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

32

ii. Click Save.

3. Verify that the new configuration is being used.

a. Click Workloads → Pods.

b. Set the Project to openshift-image-registry.

c. Verify that the new image-registry-* pod appears with a status of Running, and that the
previous image-registry-* pod terminates.

d. Click the new image-registry-* pod to view pod details.

e. Scroll down to Volumes and verify that the registry-storage volume has a Type that
matches your new Persistent Volume Claim, for example, ocs4registry.

6.2. CONFIGURING MONITORING TO USE OPENSHIFT DATA
FOUNDATION

OpenShift Data Foundation provides a monitoring stack that comprises of Prometheus and Alert
Manager.

Follow the instructions in this section to configure OpenShift Data Foundation as storage for the
monitoring stack.

IMPORTANT

Monitoring will not function if it runs out of storage space. Always ensure that you have
plenty of storage capacity for monitoring.

Red Hat recommends configuring a short retention interval for this service. See the
Modifying retention time for Prometheus metrics data of Monitoring guide in the
OpenShift Container Platform documentation for details.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Data Foundation Operator is installed and running in the openshift-storage
namespace. In the OpenShift Web Console, click Operators → Installed Operators to view
installed operators.

Monitoring Operator is installed and running in the openshift-monitoring namespace. In the
OpenShift Web Console, click Administration → Cluster Settings → Cluster Operators to view
cluster operators.

A storage class with provisioner openshift-storage.rbd.csi.ceph.com is available. In the
OpenShift Web Console, click Storage → StorageClasses to view available storage classes.

Procedure

1. In the OpenShift Web Console, go to Workloads → Config Maps.

2. Set the Project dropdown to openshift-monitoring.

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/monitoring/index#modifying-retention-time-for-prometheus-metrics-data_configuring-the-monitoring-stack

3. Click Create Config Map.

4. Define a new cluster-monitoring-config Config Map using the following example.
Replace the content in angle brackets (<, >) with your own values, for example, retention: 24h
or storage: 40Gi.

Replace the storageClassName with the storageclass that uses the provisioner openshift-
storage.rbd.csi.ceph.com. In the example given below the name of the storageclass is ocs-
storagecluster-ceph-rbd.

Example cluster-monitoring-config Config Map

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: <time to retain monitoring files, e.g. 24h>
 volumeClaimTemplate:
 metadata:
 name: ocs-prometheus-claim
 spec:
 storageClassName: ocs-storagecluster-ceph-rbd
 resources:
 requests:
 storage: <size of claim, e.g. 40Gi>
 alertmanagerMain:
 volumeClaimTemplate:
 metadata:
 name: ocs-alertmanager-claim
 spec:
 storageClassName: ocs-storagecluster-ceph-rbd
 resources:
 requests:
 storage: <size of claim, e.g. 40Gi>

5. Click Create to save and create the Config Map.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the pods.

a. Go to Storage → Persistent Volume Claims.

b. Set the Project dropdown to openshift-monitoring.

c. Verify that 5 Persistent Volume Claims are visible with a state of Bound, attached to three
alertmanager-main-* pods, and two prometheus-k8s-* pods.

Figure 6.1. Monitoring storage created and bound

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

34

Figure 6.1. Monitoring storage created and bound

2. Verify that the new alertmanager-main-* pods appear with a state of Running.

a. Go to Workloads → Pods.

b. Click the new alertmanager-main-* pods to view the pod details.

c. Scroll down to Volumes and verify that the volume has a Type, ocs-alertmanager-claim
that matches one of your new Persistent Volume Claims, for example, ocs-alertmanager-
claim-alertmanager-main-0.

Figure 6.2. Persistent Volume Claims attached to alertmanager-main-* pod

3. Verify that the new prometheus-k8s-* pods appear with a state of Running.

a. Click the new prometheus-k8s-* pods to view the pod details.

b. Scroll down to Volumes and verify that the volume has a Type, ocs-prometheus-claim
that matches one of your new Persistent Volume Claims, for example, ocs-prometheus-
claim-prometheus-k8s-0.

Figure 6.3. Persistent Volume Claims attached to prometheus-k8s-* pod

6.3. CLUSTER LOGGING FOR OPENSHIFT DATA FOUNDATION

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

35

You can deploy cluster logging to aggregate logs for a range of OpenShift Container Platform services.
For information about how to deploy cluster logging, see Deploying cluster logging .

Upon initial OpenShift Container Platform deployment, OpenShift Data Foundation is not configured by
default and the OpenShift Container Platform cluster will solely rely on default storage available from
the nodes. You can edit the default configuration of OpenShift logging (ElasticSearch) to be backed by
OpenShift Data Foundation to have OpenShift Data Foundation backed logging (Elasticsearch).

IMPORTANT

Always ensure that you have plenty of storage capacity for these services. If you run out
of storage space for these critical services, the logging application becomes inoperable
and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these
services. See Cluster logging curator in the OpenShift Container Platform
documentation for details.

If you run out of storage space for these services, contact Red Hat Customer Support.

6.3.1. Configuring persistent storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the storage
class name and size parameters. The Cluster Logging Operator creates a Persistent Volume Claim for
each data node in the Elasticsearch cluster based on these parameters. For example:

spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "ocs-storagecluster-ceph-rbd”
 size: "200G"

This example specifies that each data node in the cluster will be bound to a Persistent Volume Claim
that requests 200GiB of ocs-storagecluster-ceph-rbd storage. Each primary shard will be backed by a
single replica. A copy of the shard is replicated across all the nodes and are always available and the
copy can be recovered if at least two nodes exist due to the single redundancy policy. For information
about Elasticsearch replication policies, see Elasticsearch replication policy in About deploying and
configuring cluster logging.

NOTE

Omission of the storage block will result in a deployment backed by default storage. For
example:

spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage: {}

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/index#cluster-logging-deploying
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/index#cluster-logging-curator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/index#cluster-logging-about_cluster-logging

For more information, see Configuring cluster logging.

6.3.2. Configuring cluster logging to use OpenShift data Foundation

Follow the instructions in this section to configure OpenShift Data Foundation as storage for the
OpenShift cluster logging.

NOTE

You can obtain all the logs when you configure logging for the first time in OpenShift
Data Foundation. However, after you uninstall and reinstall logging, the old logs are
removed and only the new logs are processed.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Data Foundation Operator is installed and running in the openshift-storage
namespace.

Cluster logging Operator is installed and running in the openshift-logging namespace.

Procedure

1. Click Administration → Custom Resource Definitions from the left pane of the OpenShift
Web Console.

2. On the Custom Resource Definitions page, click ClusterLogging.

3. On the Custom Resource Definition Overview page, select View Instances from the Actions
menu or click the Instances Tab.

4. On the Cluster Logging page, click Create Cluster Logging.
You might have to refresh the page to load the data.

5. In the YAML, replace the storageClassName with the storageclass that uses the provisioner
openshift-storage.rbd.csi.ceph.com. In the example given below the name of the
storageclass is ocs-storagecluster-ceph-rbd:

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: ocs-storagecluster-ceph-rbd
 size: 200G # Change as per your requirement
 redundancyPolicy: "SingleRedundancy"
 visualization:

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/index#cluster-logging-configuring

 type: "kibana"
 kibana:
 replicas: 1
 curation:
 type: "curator"
 curator:
 schedule: "30 3 * * *"
 collection:
 logs:
 type: "fluentd"
 fluentd: {}

If you have tainted the OpenShift Data Foundation nodes, you must add toleration to enable
scheduling of the daemonset pods for logging.

spec:
[...]
 collection:
 logs:
 fluentd:
 tolerations:
 - effect: NoSchedule
 key: node.ocs.openshift.io/storage
 value: 'true'
 type: fluentd

6. Click Save.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the elasticsearch pods.

a. Go to Storage → Persistent Volume Claims.

b. Set the Project dropdown to openshift-logging.

c. Verify that Persistent Volume Claims are visible with a state of Bound, attached to
elasticsearch-* pods.

Figure 6.4. Cluster logging created and bound

2. Verify that the new cluster logging is being used.

a. Click Workload → Pods.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

38

b. Set the Project to openshift-logging.

c. Verify that the new elasticsearch-* pods appear with a state of Running.

d. Click the new elasticsearch-* pod to view pod details.

e. Scroll down to Volumes and verify that the elasticsearch volume has a Type that matches
your new Persistent Volume Claim, for example, elasticsearch-elasticsearch-cdm-
9r624biv-3.

f. Click the Persistent Volume Claim name and verify the storage class name in the
PersistentVolumeClaim Overview page.

NOTE

Make sure to use a shorter curator time to avoid PV full scenario on PVs attached to
Elasticsearch pods.

You can configure Curator to delete Elasticsearch data based on retention settings. It is
recommended that you set the following default index data retention of 5 days as a
default.

config.yaml: |
 openshift-storage:
 delete:
 days: 5

For more details, see Curation of Elasticsearch Data .

NOTE

To uninstall the cluster logging backed by Persistent Volume Claim, use the procedure
removing the cluster logging operator from OpenShift Data Foundation in the uninstall
chapter of the respective deployment guide.

CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/logging/index#cluster-logging-curator

CHAPTER 7. BACKING OPENSHIFT CONTAINER PLATFORM
APPLICATIONS WITH OPENSHIFT DATA FOUNDATION

You cannot directly install OpenShift Data Foundation during the OpenShift Container Platform
installation. However, you can install OpenShift Data Foundation on an existing OpenShift Container
Platform by using the Operator Hub and then configure the OpenShift Container Platform applications
to be backed by OpenShift Data Foundation.

Prerequisites

OpenShift Container Platform is installed and you have administrative access to OpenShift Web
Console.

OpenShift Data Foundation is installed and running in the openshift-storage namespace.

Procedure

1. In the OpenShift Web Console, perform one of the following:

Click Workloads → Deployments.
In the Deployments page, you can do one of the following:

Select any existing deployment and click Add Storage option from the Action menu
(⋮).

Create a new deployment and then add storage.

i. Click Create Deployment to create a new deployment.

ii. Edit the YAML based on your requirement to create a deployment.

iii. Click Create.

iv. Select Add Storage from the Actions drop-down menu on the top right of the
page.

Click Workloads → Deployment Configs.
In the Deployment Configs page, you can do one of the following:

Select any existing deployment and click Add Storage option from the Action menu
(⋮).

Create a new deployment and then add storage.

i. Click Create Deployment Config to create a new deployment.

ii. Edit the YAML based on your requirement to create a deployment.

iii. Click Create.

iv. Select Add Storage from the Actions drop-down menu on the top right of the
page.

2. In the Add Storage page, you can choose one of the following options:

Click the Use existing claim option and select a suitable PVC from the drop-down list.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

40

Click the Create new claim option.

a. Select the appropriate CephFS or RBD storage class from the Storage Class drop-
down list.

b. Provide a name for the Persistent Volume Claim.

c. Select ReadWriteOnce (RWO) or ReadWriteMany (RWX) access mode.

NOTE

ReadOnlyMany (ROX) is deactivated as it is not supported.

d. Select the size of the desired storage capacity.

NOTE

You can expand the block PVs but cannot reduce the storage capacity
after the creation of Persistent Volume Claim.

3. Specify the mount path and subpath (if required) for the mount path volume inside the
container.

4. Click Save.

Verification steps

1. Depending on your configuration, perform one of the following:

Click Workloads → Deployments.

Click Workloads → Deployment Configs.

2. Set the Project as required.

3. Click the deployment for which you added storage to display the deployment details.

4. Scroll down to Volumes and verify that your deployment has a Type that matches the
Persistent Volume Claim that you assigned.

5. Click the Persistent Volume Claim name and verify the storage class name in the Persistent
Volume Claim Overview page.

CHAPTER 7. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT DATA FOUNDATION

41

CHAPTER 8. HOW TO USE DEDICATED WORKER NODES FOR
RED HAT OPENSHIFT DATA FOUNDATION

Any Red Hat OpenShift Container Platform subscription requires an OpenShift Data Foundation
subscription. However, you can save on the OpenShift Container Platform subscription costs if you are
using infrastructure nodes to schedule OpenShift Data Foundation resources.

It is important to maintain consistency across environments with or without Machine API support.
Because of this, it is highly recommended in all cases to have a special category of nodes labeled as
either worker or infra or have both roles. See the Section 8.3, “Manual creation of infrastructure nodes”
section for more information.

8.1. ANATOMY OF AN INFRASTRUCTURE NODE

Infrastructure nodes for use with OpenShift Data Foundation have a few attributes. The infra node-role
label is required to ensure the node does not consume RHOCP entitlements. The infra node-role label
is responsible for ensuring only OpenShift Data Foundation entitlements are necessary for the nodes
running OpenShift Data Foundation.

Labeled with node-role.kubernetes.io/infra

Adding an OpenShift Data Foundation taint with a NoSchedule effect is also required so that the infra
node will only schedule OpenShift Data Foundation resources.

Tainted with node.ocs.openshift.io/storage="true"

The label identifies the RHOCP node as an infra node so that RHOCP subscription cost is not applied.
The taint prevents non OpenShift Data Foundation resources to be scheduled on the tainted nodes.

NOTE

Adding storage taint on nodes might require toleration handling for the other daemonset
pods such as openshift-dns daemonset. For information about how to manage the
tolerations, see Knowledgebase article: https://access.redhat.com/solutions/6592171.

Example of the taint and labels required on infrastructure node that will be used to run OpenShift Data
Foundation services:

 spec:
 taints:
 - effect: NoSchedule
 key: node.ocs.openshift.io/storage
 value: "true"
 metadata:
 creationTimestamp: null
 labels:
 node-role.kubernetes.io/worker: ""
 node-role.kubernetes.io/infra: ""
 cluster.ocs.openshift.io/openshift-storage: ""

8.2. MACHINE SETS FOR CREATING INFRASTRUCTURE NODES

If the Machine API is supported in the environment, then labels should be added to the templates for

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

42

https://access.redhat.com/solutions/6592171

the Machine Sets that will be provisioning the infrastructure nodes. Avoid the anti-pattern of adding
labels manually to nodes created by the machine API. Doing so is analogous to adding labels to pods
created by a deployment. In both cases, when the pod/node fails, the replacement pod/node will not
have the appropriate labels.

NOTE

In EC2 environments, you will need three machine sets, each configured to provision
infrastructure nodes in a distinct availability zone (such as us-east-2a, us-east-2b, us-
east-2c). Currently, OpenShift Data Foundation does not support deploying in more than
three availability zones.

The following Machine Set template example creates nodes with the appropriate taint and labels
required for infrastructure nodes. This will be used to run OpenShift Data Foundation services.

 template:
 metadata:
 creationTimestamp: null
 labels:
 machine.openshift.io/cluster-api-cluster: kb-s25vf
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: kb-s25vf-infra-us-west-2a
 spec:
 taints:
 - effect: NoSchedule
 key: node.ocs.openshift.io/storage
 value: "true"
 metadata:
 creationTimestamp: null
 labels:
 node-role.kubernetes.io/infra: ""
 cluster.ocs.openshift.io/openshift-storage: ""

IMPORTANT

If you add a taint to the infrastructure nodes, you also need to add tolerations to the taint
for other workloads, for example, the fluentd pods. For more information, see the Red
Hat Knowledgebase solution Infrastructure Nodes in OpenShift 4 .

8.3. MANUAL CREATION OF INFRASTRUCTURE NODES

Only when the Machine API is not supported in the environment should labels be directly applied to
nodes. Manual creation requires that at least 3 RHOCP worker nodes are available to schedule
OpenShift Data Foundation services, and that these nodes have sufficient CPU and memory resources.
To avoid the RHOCP subscription cost, the following is required:

oc label node <node> node-role.kubernetes.io/infra=""
oc label node <node> cluster.ocs.openshift.io/openshift-storage=""

Adding a NoSchedule OpenShift Data Foundation taint is also required so that the infra node will only
schedule OpenShift Data Foundation resources and repel any other non-OpenShift Data Foundation
workloads.

CHAPTER 8. HOW TO USE DEDICATED WORKER NODES FOR RED HAT OPENSHIFT DATA FOUNDATION

43

https://access.redhat.com/solutions/5034771

oc adm taint node <node> node.ocs.openshift.io/storage="true":NoSchedule

WARNING

Do not remove the node-role node-role.kubernetes.io/worker=""

The removal of the node-role.kubernetes.io/worker="" can cause issues unless
changes are made both to the OpenShift scheduler and to MachineConfig
resources.

If already removed, it should be added again to each infra node. Adding node-role
node-role.kubernetes.io/infra="" and OpenShift Data Foundation taint is
sufficient to conform to entitlement exemption requirements.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

44

CHAPTER 9. SCALING STORAGE NODES
To scale the storage capacity of OpenShift Data Foundation, you can do either of the following:

Scale up storage nodes - Add storage capacity to the existing OpenShift Data Foundation
worker nodes

Scale out storage nodes - Add new worker nodes containing storage capacity

9.1. REQUIREMENTS FOR SCALING STORAGE NODES

Before you proceed to scale the storage nodes, refer to the following sections to understand the node
requirements for your specific Red Hat OpenShift Data Foundation instance:

Platform requirements

Storage device requirements

Dynamic storage devices

Capacity planning

WARNING

Always ensure that you have plenty of storage capacity.

If storage ever fills completely, it is not possible to add capacity or delete or migrate
content away from the storage to free up space. Completely full storage is very
difficult to recover.

Capacity alerts are issued when cluster storage capacity reaches 75% (near-full)
and 85% (full) of total capacity. Always address capacity warnings promptly, and
review your storage regularly to ensure that you do not run out of storage space.

If you do run out of storage space completely, contact Red Hat Customer Support.

9.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR
OPENSHIFT DATA FOUNDATION NODES ON GOOGLE CLOUD
INFRASTRUCTURE

You can add storage capacity and performance to your configured Red Hat OpenShift Data Foundation
worker nodes.

Prerequisites

A running OpenShift Data Foundation Platform.

Administrative privileges on the OpenShift Web Console.

To scale using a storage class other than the one provisioned during deployment, first define an

CHAPTER 9. SCALING STORAGE NODES

45

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/planning_your_deployment/index#platform-requirements_rhocs
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/planning_your_deployment/index#dynamic_storage_devices
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/planning_your_deployment/index#capacity_planning

To scale using a storage class other than the one provisioned during deployment, first define an
additional storage class. See Creating a storage class for details.

Procedure

1. Log in to the OpenShift Web Console.

2. Click Operators → Installed Operators.

3. Click OpenShift Data Foundation Operator.

4. Click the Storage Systems tab.

a. Click the Action Menu (⋮) on the far right of the storage system name to extend the
options menu.

b. Select Add Capacity from the options menu.

c. Select the Storage Class.

Set the storage class to standard if you are using the default storage class that uses HDD. However, if
you created a storage class to use SSD based disks for better performance, you need to select that
storage class.

+ The Raw Capacity field shows the size set during storage class creation. The total amount of storage
consumed is three times this amount, because OpenShift Data Foundation uses a replica count of 3.

a. Click Add.

1. To check the status, navigate to Storage → OpenShift Data Foundation and verify that
Storage System in the Status card has a green tick.

Verification steps

Verify the Raw Capacity card.

a. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

b. In the Status card of the Overview tab, click Storage System and then click the storage
system link from the pop up that appears.

c. In the Block and File tab, check the Raw Capacity card.
Note that the capacity increases based on your selections.

NOTE

The raw capacity does not take replication into account and shows the full
capacity.

Verify that the new OSDs and their corresponding new Persistent Volume Claims (PVCs) are
created.

To view the state of the newly created OSDs:

a. Click Workloads → Pods from the OpenShift Web Console.

b. Select openshift-storage from the Project drop-down list.

NOTE

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

46

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/scaling_storage/index#creating-a-storage-class_rhodf

NOTE

If the Show default projects option is disabled, use the toggle button to
list all the default projects.

To view the state of the PVCs:

a. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

b. Select openshift-storage from the Project drop-down list.

NOTE

If the Show default projects option is disabled, use the toggle button to
list all the default projects.

Optional: If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices
are encrypted.

a. Identify the nodes where the new OSD pods are running.

$ oc get -o=custom-columns=NODE:.spec.nodeName pod/<OSD-pod-name>

<OSD-pod-name>

Is the name of the OSD pod.
For example:

oc get -o=custom-columns=NODE:.spec.nodeName pod/rook-ceph-osd-0-
544db49d7f-qrgqm

b. For each of the nodes identified in the previous step, do the following:

i. Create a debug pod and open a chroot environment for the selected hosts.

$ oc debug node/<node-name>

<node-name>

Is the name of the node.

$ chroot /host

ii. Check for the crypt keyword beside the ocs-deviceset names.

$ lsblk

IMPORTANT

Cluster reduction is supported only with the Red Hat Support Team’s assistance..

9.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES

CHAPTER 9. SCALING STORAGE NODES

47

https://access.redhat.com/support

To scale out storage capacity, you need to perform the following:

Add a new node to increase the storage capacity when existing worker nodes are already
running at their maximum supported OSDs, which is the increment of 3 OSDs of the capacity
selected during initial configuration.

Verify that the new node is added successfully

Scale up the storage capacity after the node is added

9.3.1. Adding a node on Google Cloud installer-provisioned infrastructure

Prerequisites

You must be logged into OpenShift Container Platform cluster.

Procedure

1. Navigate to Compute → Machine Sets.

2. On the machine set where you want to add nodes, select Edit Machine Count.

a. Add the amount of nodes, and click Save.

b. Click Compute → Nodes and confirm if the new node is in Ready state.

3. Apply the OpenShift Data Foundation label to the new node.

a. For the new node, click Action menu (⋮) → Edit Labels.

b. Add cluster.ocs.openshift.io/openshift-storage, and click Save.

NOTE

It is recommended to add 3 nodes, one each in different zones. You must add 3 nodes
and perform this procedure for all of them.

Verification steps

To verify that the new node is added, see Verifying the addition of a new node .

9.3.2. Verifying the addition of a new node

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in
Running state:

csi-cephfsplugin-*

csi-rbdplugin-*

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

48

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/scaling_storage/index#verifying-the-addition-of-a-new-node_rhodf

9.3.3. Scaling up storage capacity

After you add a new node to OpenShift Data Foundation, you must scale up the storage capacity as
described in Scaling up storage by adding capacity .

CHAPTER 9. SCALING STORAGE NODES

49

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#proc_scaling-up-storage-by-adding-capacity-to-your-openshift-data-foundation-nodes-on-aws-vmware-infrastructure_gcp

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

10.1. ABOUT THE MULTICLOUD OBJECT GATEWAY

The Multicloud Object Gateway (MCG) is a lightweight object storage service for OpenShift, allowing
users to start small and then scale as needed on-premise, in multiple clusters, and with cloud-native
storage.

10.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR
APPLICATIONS

You can access the object service with any application targeting AWS S3 or code that uses AWS S3
Software Development Kit (SDK). Applications need to specify the Multicloud Object Gateway (MCG)
endpoint, an access key, and a secret access key. You can use your terminal or the MCG CLI to retrieve
this information.

Prerequisites

A running OpenShift Data Foundation Platform.

Download the MCG command-line interface for easier management.

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager.

For IBM Power, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs
found at Download RedHat OpenShift Data Foundation page .

NOTE

Choose the correct Product Variant according to your architecture.

You can access the relevant endpoint, access key, and secret access key in two ways:

Section 10.2.1, “Accessing the Multicloud Object Gateway from the terminal”

Section 10.2.2, “Accessing the Multicloud Object Gateway from the MCG command-line
interface”

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

50

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

Example 10.1. Example

Accessing the MCG bucket(s) using the virtual-hosted style

If the client application tries to access https://<bucket-name>.s3-openshift-
storage.apps.mycluster-cluster.qe.rh-ocs.com

<bucket-name>

is the name of the MCG bucket
For example, https://mcg-test-bucket.s3-openshift-storage.apps.mycluster-cluster.qe.rh-
ocs.com

A DNS entry is needed for mcg-test-bucket.s3-openshift-storage.apps.mycluster-
cluster.qe.rh-ocs.com to point to the S3 Service.

IMPORTANT

Ensure that you have a DNS entry in order to point the client application to the MCG
bucket(s) using the virtual-hosted style.

10.2.1. Accessing the Multicloud Object Gateway from the terminal

Procedure

Run the describe command to view information about the Multicloud Object Gateway (MCG) endpoint,
including its access key (AWS_ACCESS_KEY_ID value) and secret access key
(AWS_SECRET_ACCESS_KEY value).

oc describe noobaa -n openshift-storage

The output will look similar to the following:

Name: noobaa
Namespace: openshift-storage
Labels: <none>
Annotations: <none>
API Version: noobaa.io/v1alpha1
Kind: NooBaa
Metadata:
 Creation Timestamp: 2019-07-29T16:22:06Z
 Generation: 1
 Resource Version: 6718822
 Self Link: /apis/noobaa.io/v1alpha1/namespaces/openshift-storage/noobaas/noobaa
 UID: 019cfb4a-b21d-11e9-9a02-06c8de012f9e
Spec:
Status:
 Accounts:
 Admin:
 Secret Ref:
 Name: noobaa-admin
 Namespace: openshift-storage
 Actual Image: noobaa/noobaa-core:4.0
 Observed Generation: 1
 Phase: Ready

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

51

 Readme:

 Welcome to NooBaa!

 Welcome to NooBaa!

 NooBaa Core Version:
 NooBaa Operator Version:

 Lets get started:

 1. Connect to Management console:

 Read your mgmt console login information (email & password) from secret: "noobaa-admin".

 kubectl get secret noobaa-admin -n openshift-storage -o json | jq '.data|map_values(@base64d)'

 Open the management console service - take External IP/DNS or Node Port or use port
forwarding:

 kubectl port-forward -n openshift-storage service/noobaa-mgmt 11443:443 &
 open https://localhost:11443

 2. Test S3 client:

 kubectl port-forward -n openshift-storage service/s3 10443:443 &
1

 NOOBAA_ACCESS_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r
'.data.AWS_ACCESS_KEY_ID|@base64d')
2

 NOOBAA_SECRET_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r
'.data.AWS_SECRET_ACCESS_KEY|@base64d')
 alias s3='AWS_ACCESS_KEY_ID=$NOOBAA_ACCESS_KEY
AWS_SECRET_ACCESS_KEY=$NOOBAA_SECRET_KEY aws --endpoint https://localhost:10443 --
no-verify-ssl s3'
 s3 ls

 Services:
 Service Mgmt:
 External DNS:
 https://noobaa-mgmt-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
 https://a3406079515be11eaa3b70683061451e-1194613580.us-east-
2.elb.amazonaws.com:443
 Internal DNS:
 https://noobaa-mgmt.openshift-storage.svc:443
 Internal IP:
 https://172.30.235.12:443
 Node Ports:
 https://10.0.142.103:31385
 Pod Ports:
 https://10.131.0.19:8443
 serviceS3:
 External DNS: 3
 https://s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

52

1

2

3

 https://a340f4e1315be11eaa3b70683061451e-943168195.us-east-2.elb.amazonaws.com:443
 Internal DNS:
 https://s3.openshift-storage.svc:443
 Internal IP:
 https://172.30.86.41:443
 Node Ports:
 https://10.0.142.103:31011
 Pod Ports:
 https://10.131.0.19:6443

access key (AWS_ACCESS_KEY_ID value)

secret access key (AWS_SECRET_ACCESS_KEY value)

MCG endpoint

10.2.2. Accessing the Multicloud Object Gateway from the MCG command-line
interface

Prerequisites

Download the MCG command-line interface.

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager.

For IBM Power, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Procedure

Run the status command to access the endpoint, access key, and secret access key:

noobaa status -n openshift-storage

The output will look similar to the following:

INFO[0000] Namespace: openshift-storage
INFO[0000]
INFO[0000] CRD Status:
INFO[0003] � Exists: CustomResourceDefinition "noobaas.noobaa.io"
INFO[0003] � Exists: CustomResourceDefinition "backingstores.noobaa.io"

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

53

INFO[0003] � Exists: CustomResourceDefinition "bucketclasses.noobaa.io"
INFO[0004] � Exists: CustomResourceDefinition "objectbucketclaims.objectbucket.io"
INFO[0004] � Exists: CustomResourceDefinition "objectbuckets.objectbucket.io"
INFO[0004]
INFO[0004] Operator Status:
INFO[0004] � Exists: Namespace "openshift-storage"
INFO[0004] � Exists: ServiceAccount "noobaa"
INFO[0005] � Exists: Role "ocs-operator.v0.0.271-6g45f"
INFO[0005] � Exists: RoleBinding "ocs-operator.v0.0.271-6g45f-noobaa-f9vpj"
INFO[0006] � Exists: ClusterRole "ocs-operator.v0.0.271-fjhgh"
INFO[0006] � Exists: ClusterRoleBinding "ocs-operator.v0.0.271-fjhgh-noobaa-pdxn5"
INFO[0006] � Exists: Deployment "noobaa-operator"
INFO[0006]
INFO[0006] System Status:
INFO[0007] � Exists: NooBaa "noobaa"
INFO[0007] � Exists: StatefulSet "noobaa-core"
INFO[0007] � Exists: Service "noobaa-mgmt"
INFO[0008] � Exists: Service "s3"
INFO[0008] � Exists: Secret "noobaa-server"
INFO[0008] � Exists: Secret "noobaa-operator"
INFO[0008] � Exists: Secret "noobaa-admin"
INFO[0009] � Exists: StorageClass "openshift-storage.noobaa.io"
INFO[0009] � Exists: BucketClass "noobaa-default-bucket-class"
INFO[0009] � (Optional) Exists: BackingStore "noobaa-default-backing-store"
INFO[0010] � (Optional) Exists: CredentialsRequest "noobaa-cloud-creds"
INFO[0010] � (Optional) Exists: PrometheusRule "noobaa-prometheus-rules"
INFO[0010] � (Optional) Exists: ServiceMonitor "noobaa-service-monitor"
INFO[0011] � (Optional) Exists: Route "noobaa-mgmt"
INFO[0011] � (Optional) Exists: Route "s3"
INFO[0011] � Exists: PersistentVolumeClaim "db-noobaa-core-0"
INFO[0011] � System Phase is "Ready"
INFO[0011] � Exists: "noobaa-admin"

#------------------#
#- Mgmt Addresses -#
#------------------#

ExternalDNS : [https://noobaa-mgmt-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
https://a3406079515be11eaa3b70683061451e-1194613580.us-east-2.elb.amazonaws.com:443]
ExternalIP : []
NodePorts : [https://10.0.142.103:31385]
InternalDNS : [https://noobaa-mgmt.openshift-storage.svc:443]
InternalIP : [https://172.30.235.12:443]
PodPorts : [https://10.131.0.19:8443]

#--------------------#
#- Mgmt Credentials -#
#--------------------#

email : admin@noobaa.io
password : HKLbH1rSuVU0I/souIkSiA==

#----------------#
#- S3 Addresses -#
#----------------#

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

54

1

2

3

1
ExternalDNS : [https://s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
https://a340f4e1315be11eaa3b70683061451e-943168195.us-east-2.elb.amazonaws.com:443]
ExternalIP : []
NodePorts : [https://10.0.142.103:31011]
InternalDNS : [https://s3.openshift-storage.svc:443]
InternalIP : [https://172.30.86.41:443]
PodPorts : [https://10.131.0.19:6443]

#------------------#
#- S3 Credentials -#
#------------------#

2
AWS_ACCESS_KEY_ID : jVmAsu9FsvRHYmfjTiHV
3

AWS_SECRET_ACCESS_KEY : E//420VNedJfATvVSmDz6FMtsSAzuBv6z180PT5c

#------------------#
#- Backing Stores -#
#------------------#

NAME TYPE TARGET-BUCKET PHASE AGE
noobaa-default-backing-store aws-s3 noobaa-backing-store-15dc896d-7fe0-4bed-9349-
5942211b93c9 Ready 141h35m32s

#------------------#
#- Bucket Classes -#
#------------------#

NAME PLACEMENT PHASE AGE
noobaa-default-bucket-class {Tiers:[{Placement: BackingStores:[noobaa-default-backing-store]}]}
Ready 141h35m33s

#-----------------#
#- Bucket Claims -#
#-----------------#

No OBC's found.

endpoint

access key

secret access key

You now have the relevant endpoint, access key, and secret access key in order to connect to your
applications.

Example 10.2. Example

If AWS S3 CLI is the application, the following command will list the buckets in OpenShift Data
Foundation:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

55

AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
aws --endpoint <ENDPOINT> --no-verify-ssl s3 ls

10.3. ALLOWING USER ACCESS TO THE MULTICLOUD OBJECT
GATEWAY CONSOLE

To allow access to the Multicloud Object Gateway (MCG) Console to a user, ensure that the user meets
the following conditions:

User is in cluster-admins group.

User is in system:cluster-admins virtual group.

Prerequisites

A running OpenShift Data Foundation Platform.

Procedure

1. Enable access to the MCG console.
Perform the following steps once on the cluster :

a. Create a cluster-admins group.

oc adm groups new cluster-admins

b. Bind the group to the cluster-admin role.

oc adm policy add-cluster-role-to-group cluster-admin cluster-admins

2. Add or remove users from the cluster-admins group to control access to the MCG console.

To add a set of users to the cluster-admins group :

oc adm groups add-users cluster-admins <user-name> <user-name> <user-name>...

where <user-name> is the name of the user to be added.

NOTE

If you are adding a set of users to the cluster-admins group, you do not need
to bind the newly added users to the cluster-admin role to allow access to
the OpenShift Data Foundation dashboard.

To remove a set of users from the cluster-admins group :

oc adm groups remove-users cluster-admins <user-name> <user-name> <user-
name>...

where <user-name> is the name of the user to be removed.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

56

Verification steps

1. On the OpenShift Web Console, login as a user with access permission to Multicloud Object
Gateway Console.

2. Navigate to Storage → OpenShift Data Foundation.

3. In the Storage Systems tab, select the storage system and then click Overview → Object tab.

4. Select the Multicloud Object Gateway link.

5. Click Allow selected permissions.

10.4. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD

10.4.1. Creating a new backing store

Use this procedure to create a new backing store in OpenShift Data Foundation.

Prerequisites

Administrator access to OpenShift Data Foundation.

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. Click the Backing Store tab.

3. Click Create Backing Store.

4. On the Create New Backing Store page, perform the following:

a. Enter a Backing Store Name.

b. Select a Provider.

c. Select a Region.

d. Enter an Endpoint. This is optional.

e. Select a Secret from the drop-down list, or create your own secret. Optionally, you can
Switch to Credentials view which lets you fill in the required secrets.
For more information on creating an OCP secret, see the section Creating the secret in the
Openshift Container Platform documentation.

Each backingstore requires a different secret. For more information on creating the secret
for a particular backingstore, see the Section 10.4.2, “Adding storage resources for hybrid or
Multicloud using the MCG command line interface” and follow the procedure for the
addition of storage resources using a YAML.

NOTE

This menu is relevant for all providers except Google Cloud and local PVC.

f. Enter the Target bucket. The target bucket is a container storage that is hosted on the

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

57

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/authentication_and_authorization/index#identity-provider-creating-secret-tls_configuring-keystone-identity-provider

f. Enter the Target bucket. The target bucket is a container storage that is hosted on the
remote cloud service. It allows you to create a connection that tells the MCG that it can use
this bucket for the system.

5. Click Create Backing Store.

Verification steps

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. Click the Backing Store tab to view all the backing stores.

10.4.2. Adding storage resources for hybrid or Multicloud using the MCG command
line interface

The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider
and clusters.

You must add a backing storage that can be used by the MCG.

Depending on the type of your deployment, you can choose one of the following procedures to create a
backing storage:

For creating an AWS-backed backingstore, see Section 10.4.2.1, “Creating an AWS-backed
backingstore”

For creating an IBM COS-backed backingstore, see Section 10.4.2.2, “Creating an IBM COS-
backed backingstore”

For creating an Azure-backed backingstore, see Section 10.4.2.3, “Creating an Azure-backed
backingstore”

For creating a GCP-backed backingstore, see Section 10.4.2.4, “Creating a GCP-backed
backingstore”

For creating a local Persistent Volume-backed backingstore, see Section 10.4.2.5, “Creating a
local Persistent Volume-backed backingstore”

For VMware deployments, skip to Section 10.4.3, “Creating an s3 compatible Multicloud Object
Gateway backingstore” for further instructions.

10.4.2.1. Creating an AWS-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface.

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

58

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create aws-s3 <backingstore_name> --access-key=<AWS ACCESS
KEY> --secret-key=<AWS SECRET ACCESS KEY> --target-bucket <bucket-name> -n
openshift-storage

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access key
ID and secret access key you created for this purpose.

c. Replace <bucket-name> with an existing AWS bucket name. This argument tells the MCG
which bucket to use as a target bucket for its backing store, and subsequently, data storage and
administration.
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "aws-resource"
INFO[0002] � Created: Secret "backing-store-secret-aws-resource"

You can also add storage resources using a YAML:

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
 namespace: openshift-storage
type: Opaque
data:
 AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
 AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN BASE64>

a. You must supply and encode your own AWS access key ID and secret access key using

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

59

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

a. You must supply and encode your own AWS access key ID and secret access key using
Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64>
and <AWS SECRET ACCESS KEY ENCODED IN BASE64>.

b. Replace <backingstore-secret-name> with a unique name.

2. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 awsS3:
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBucket: <bucket-name>
 type: aws-s3

a. Replace <bucket-name> with an existing AWS bucket name. This argument tells the MCG
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.

b. Replace <backingstore-secret-name> with the name of the secret created in the previous
step.

10.4.2.2. Creating an IBM COS-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface.

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager. For instance,

For IBM Power, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

60

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create ibm-cos <backingstore_name> --access-key=<IBM ACCESS
KEY> --secret-key=<IBM SECRET ACCESS KEY> --endpoint=<IBM COS ENDPOINT> --
target-bucket <bucket-name> -n openshift-storage

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <IBM ACCESS KEY>, <IBM SECRET ACCESS KEY>, <IBM COS ENDPOINT>
with an IBM access key ID, secret access key and the appropriate regional endpoint that
corresponds to the location of the existing IBM bucket.
To generate the above keys on IBM cloud, you must include HMAC credentials while
creating the service credentials for your target bucket.

c. Replace <bucket-name> with an existing IBM bucket name. This argument tells the MCG
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "ibm-resource"
INFO[0002] � Created: Secret "backing-store-secret-ibm-resource"

You can also add storage resources using a YAML:

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
 namespace: openshift-storage
type: Opaque
data:
 IBM_COS_ACCESS_KEY_ID: <IBM COS ACCESS KEY ID ENCODED IN BASE64>
 IBM_COS_SECRET_ACCESS_KEY: <IBM COS SECRET ACCESS KEY ENCODED IN
BASE64>

a. You must supply and encode your own IBM COS access key ID and secret access key using
Base64, and use the results in place of <IBM COS ACCESS KEY ID ENCODED IN
BASE64> and <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>.

b. Replace <backingstore-secret-name> with a unique name.

2. Apply the following YAML for a specific backing store:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

61

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 ibmCos:
 endpoint: <endpoint>
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBucket: <bucket-name>
 type: ibm-cos

a. Replace <bucket-name> with an existing IBM COS bucket name. This argument tells the
MCG which bucket to use as a target bucket for its backing store, and subsequently, data
storage and administration.

b. Replace <endpoint> with a regional endpoint that corresponds to the location of the
existing IBM bucket name. This argument tells Multicloud Object Gateway which endpoint
to use for its backing store, and subsequently, data storage and administration.

c. Replace <backingstore-secret-name> with the name of the secret created in the previous
step.

10.4.2.3. Creating an Azure-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface.

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

62

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create azure-blob <backingstore_name> --account-key=<AZURE
ACCOUNT KEY> --account-name=<AZURE ACCOUNT NAME> --target-blob-container
<blob container name>

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <AZURE ACCOUNT KEY> and <AZURE ACCOUNT NAME> with an AZURE
account key and account name you created for this purpose.

c. Replace <blob container name> with an existing Azure blob container name. This
argument tells the MCG which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "azure-resource"
INFO[0002] � Created: Secret "backing-store-secret-azure-resource"

You can also add storage resources using a YAML:

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
type: Opaque
data:
 AccountName: <AZURE ACCOUNT NAME ENCODED IN BASE64>
 AccountKey: <AZURE ACCOUNT KEY ENCODED IN BASE64>

a. You must supply and encode your own Azure Account Name and Account Key using
Base64, and use the results in place of <AZURE ACCOUNT NAME ENCODED IN
BASE64> and <AZURE ACCOUNT KEY ENCODED IN BASE64>.

b. Replace <backingstore-secret-name> with a unique name.

2. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 azureBlob:
 secret:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

63

 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBlobContainer: <blob-container-name>
 type: azure-blob

a. Replace <blob-container-name> with an existing Azure blob container name. This
argument tells the MCG which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.

b. Replace <backingstore-secret-name> with the name of the secret created in the previous
step.

10.4.2.4. Creating a GCP-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface.

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create google-cloud-storage <backingstore_name> --private-key-json-
file=<PATH TO GCP PRIVATE KEY JSON FILE> --target-bucket <GCP bucket name>

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <PATH TO GCP PRIVATE KEY JSON FILE> with a path to your GCP private key
created for this purpose.

c. Replace <GCP bucket name> with an existing GCP object storage bucket name. This
argument tells the MCG which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.
The output will be similar to the following:

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

64

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "google-gcp"
INFO[0002] � Created: Secret "backing-store-google-cloud-storage-gcp"

You can also add storage resources using a YAML:

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
type: Opaque
data:
 GoogleServiceAccountPrivateKeyJson: <GCP PRIVATE KEY ENCODED IN BASE64>

a. You must supply and encode your own GCP service account private key using Base64, and
use the results in place of <GCP PRIVATE KEY ENCODED IN BASE64>.

b. Replace <backingstore-secret-name> with a unique name.

2. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 googleCloudStorage:
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 targetBucket: <target bucket>
 type: google-cloud-storage

a. Replace <target bucket> with an existing Google storage bucket. This argument tells the
MCG which bucket to use as a target bucket for its backing store, and subsequently, data
storage and administration.

b. Replace <backingstore-secret-name> with the name of the secret created in the previous
step.

10.4.2.5. Creating a local Persistent Volume-backed backingstore

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

65

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager. For instance, in case of IBM Z infrastructure use the
following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/packages

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create pv-pool <backingstore_name> --num-volumes=<NUMBER OF
VOLUMES> --pv-size-gb=<VOLUME SIZE> --storage-class=<LOCAL STORAGE CLASS>

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <NUMBER OF VOLUMES> with the number of volumes you would like to create.
Note that increasing the number of volumes scales up the storage.

c. Replace <VOLUME SIZE> with the required size, in GB, of each volume.

d. Replace <LOCAL STORAGE CLASS> with the local storage class, recommended to use
ocs-storagecluster-ceph-rbd.
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Exists: BackingStore "local-mcg-storage"

You can also add storage resources using a YAML:

1. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <backingstore_name>
 namespace: openshift-storage

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

66

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

spec:
 pvPool:
 numVolumes: <NUMBER OF VOLUMES>
 resources:
 requests:
 storage: <VOLUME SIZE>
 storageClass: <LOCAL STORAGE CLASS>
 type: pv-pool

a. Replace <backingstore_name> with the name of the backingstore.

b. Replace <NUMBER OF VOLUMES> with the number of volumes you would like to create.
Note that increasing the number of volumes scales up the storage.

c. Replace <VOLUME SIZE> with the required size, in GB, of each volume. Note that the
letter G should remain.

d. Replace <LOCAL STORAGE CLASS> with the local storage class, recommended to use
ocs-storagecluster-ceph-rbd.

10.4.3. Creating an s3 compatible Multicloud Object Gateway backingstore

The Multicloud Object Gateway (MCG) can use any S3 compatible object storage as a backing store,
for example, Red Hat Ceph Storage’s RADOS Object Gateway (RGW). The following procedure shows
how to create an S3 compatible MCG backing store for Red Hat Ceph Storage’s RGW. Note that when
the RGW is deployed, OpenShift Data Foundation operator creates an S3 compatible backingstore for
MCG automatically.

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create s3-compatible rgw-resource --access-key=<RGW ACCESS
KEY> --secret-key=<RGW SECRET KEY> --target-bucket=<bucket-name> --endpoint=
<RGW endpoint>

a. To get the <RGW ACCESS KEY> and <RGW SECRET KEY>, run the following command
using your RGW user secret name:

oc get secret <RGW USER SECRET NAME> -o yaml -n openshift-storage

b. Decode the access key ID and the access key from Base64 and keep them.

c. Replace <RGW USER ACCESS KEY> and <RGW USER SECRET ACCESS KEY> with
the appropriate, decoded data from the previous step.

d. Replace <bucket-name> with an existing RGW bucket name. This argument tells the MCG
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.

e. To get the <RGW endpoint>, see Accessing the RADOS Object Gateway S3 endpoint .
The output will be similar to the following:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

67

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#Accessing-the-RADOS-Object-Gateway-S3-endpoint_rhodf

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "rgw-resource"
INFO[0002] � Created: Secret "backing-store-secret-rgw-resource"

You can also create the backingstore using a YAML:

1. Create a CephObjectStore user. This also creates a secret containing the RGW credentials:

apiVersion: ceph.rook.io/v1
kind: CephObjectStoreUser
metadata:
 name: <RGW-Username>
 namespace: openshift-storage
spec:
 store: ocs-storagecluster-cephobjectstore
 displayName: "<Display-name>"

a. Replace <RGW-Username> and <Display-name> with a unique username and display
name.

2. Apply the following YAML for an S3-Compatible backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <backingstore-name>
 namespace: openshift-storage
spec:
 s3Compatible:
 endpoint: <RGW endpoint>
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 signatureVersion: v4
 targetBucket: <RGW-bucket-name>
 type: s3-compatible

a. Replace <backingstore-secret-name> with the name of the secret that was created with
CephObjectStore in the previous step.

b. Replace <bucket-name> with an existing RGW bucket name. This argument tells the MCG
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.

c. To get the <RGW endpoint>, see Accessing the RADOS Object Gateway S3 endpoint .

10.4.4. Adding storage resources for hybrid and Multicloud using the user interface

Procedure

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

68

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#Accessing-the-RADOS-Object-Gateway-S3-endpoint_rhodf

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. In the Storage Systems tab, select the storage system and then click Overview → Object tab.

3. Select the Multicloud Object Gateway link.

1. Select the Resources tab in the left, highlighted below. From the list that populates, select Add
Cloud Resource.

2. Select Add new connection.

3. Select the relevant native cloud provider or S3 compatible option and fill in the details.

4. Select the newly created connection and map it to the existing bucket.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

69

5. Repeat these steps to create as many backing stores as needed.

NOTE

Resources created in NooBaa UI cannot be used by OpenShift UI or MCG CLI.

10.4.5. Creating a new bucket class

Bucket class is a CRD representing a class of buckets that defines tiering policies and data placements
for an Object Bucket Class (OBC).

Use this procedure to create a bucket class in OpenShift Data Foundation.

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. Click the Bucket Class tab.

3. Click Create Bucket Class.

4. On the Create new Bucket Class page, perform the following:

a. Select the bucket class type and enter a bucket class name.

i. Select the BucketClass type. Choose one of the following options:

Standard: data will be consumed by a Multicloud Object Gateway (MCG), deduped,
compressed and encrypted.

Namespace: data is stored on the NamespaceStores without performing de-
duplication, compression or encryption.
By default, Standard is selected.

ii. Enter a Bucket Class Name.

iii. Click Next.

b. In Placement Policy, select Tier 1 - Policy Type and click Next. You can choose either one

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

70

b. In Placement Policy, select Tier 1 - Policy Type and click Next. You can choose either one
of the options as per your requirements.

Spread allows spreading of the data across the chosen resources.

Mirror allows full duplication of the data across the chosen resources.

Click Add Tier to add another policy tier.

c. Select at least one Backing Store resource from the available list if you have selected Tier 1
- Policy Type as Spread and click Next. Alternatively, you can also create a new backing
store.

NOTE

You need to select at least 2 backing stores when you select Policy Type as
Mirror in previous step.

d. Review and confirm Bucket Class settings.

e. Click Create Bucket Class.

Verification steps

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. Click the Bucket Class tab and search the new Bucket Class.

10.4.6. Editing a bucket class

Use the following procedure to edit the bucket class components through the YAML file by clicking the
edit button on the Openshift web console.

Prerequisites

Administrator access to OpenShift Web Console.

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. Click the Bucket Class tab.

3. Click the Action Menu (⋮) next to the Bucket class you want to edit.

4. Click Edit Bucket Class.

5. You are redirected to the YAML file, make the required changes in this file and click Save.

10.4.7. Editing backing stores for bucket class

Use the following procedure to edit an existing Multicloud Object Gateway (MCG) bucket class to
change the underlying backing stores used in a bucket class.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

71

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#creating-a-new-backing-store_rhodf

Prerequisites

Administrator access to OpenShift Web Console.

A bucket class.

Backing stores.

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. Click the Bucket Class tab.

3. Click the Action Menu (⋮) next to the Bucket class you want to edit.

4. Click Edit Bucket Class Resources.

5. On the Edit Bucket Class Resources page, edit the bucket class resources either by adding a
backing store to the bucket class or by removing a backing store from the bucket class. You can
also edit bucket class resources created with one or two tiers and different placement policies.

To add a backing store to the bucket class, select the name of the backing store.

To remove a backing store from the bucket class, clear the name of the backing store.

6. Click Save.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

72

10.5. MANAGING NAMESPACE BUCKETS

Namespace buckets let you connect data repositories on different providers together, so you can
interact with all of your data through a single unified view. Add the object bucket associated with each
provider to the namespace bucket, and access your data through the namespace bucket to see all of
your object buckets at once. This lets you write to your preferred storage provider while reading from
multiple other storage providers, greatly reducing the cost of migrating to a new storage provider.

You can interact with objects in a namespace bucket using the S3 API. See S3 API endpoints for objects
in namespace buckets for more information.

NOTE

A namespace bucket can only be used if its write target is available and functional.

10.5.1. Amazon S3 API endpoints for objects in namespace buckets

You can interact with objects in the namespace buckets using the Amazon Simple Storage Service (S3)
API.

Red Hat OpenShift Data Foundation 4.6 onwards supports the following namespace bucket operations:

ListObjectVersions

ListObjects

PutObject

CopyObject

ListParts

CreateMultipartUpload

CompleteMultipartUpload

UploadPart

UploadPartCopy

AbortMultipartUpload

GetObjectAcl

GetObject

HeadObject

DeleteObject

DeleteObjects

See the Amazon S3 API reference documentation for the most up-to-date information about these
operations and how to use them.

Additional resources

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

73

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#amazon-s3-api-endpoints-for-objects-in-namespace-buckets_gcp
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectVersions.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjects.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CopyObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListParts.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateMultipartUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CompleteMultipartUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_UploadPart.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_UploadPartCopy.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_AbortMultipartUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObjectAcl.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObject.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObjects.html

Amazon S3 REST API Reference

Amazon S3 CLI Reference

10.5.2. Adding a namespace bucket using the Multicloud Object Gateway CLI and
YAML

For more information about namespace buckets, see Managing namespace buckets.

Depending on the type of your deployment and whether you want to use YAML or the Multicloud Object
Gateway CLI, choose one of the following procedures to add a namespace bucket:

Adding an AWS S3 namespace bucket using YAML

Adding an IBM COS namespace bucket using YAML

Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI

Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI

10.5.2.1. Adding an AWS S3 namespace bucket using YAML

Prerequisites

A running OpenShift Data Foundation Platform

Access to the Multicloud Object Gateway (MCG), see Chapter 2, Accessing the Multicloud
Object Gateway with your applications.

Procedure

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <namespacestore-secret-name>
 type: Opaque
data:
 AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
 AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN BASE64>

a. You must supply and encode your own AWS access key ID and secret access key using
Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64>
and <AWS SECRET ACCESS KEY ENCODED IN BASE64>.

b. Replace <namespacestore-secret-name> with a unique name.

2. Create a NamespaceStore resource using OpenShift Custom Resource Definitions (CRDs). A
NamespaceStore represents underlying storage to be used as a read or write target for the data
in the MCG namespace buckets. To create a NamespaceStore resource, apply the following
YAML:

apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

74

https://docs.aws.amazon.com/AmazonS3/latest/API/Welcome.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#managing-namespace-buckets_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#adding-an-aws-s3-namespace-bucket-using-yaml_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#adding-an-ibm-cos-namespace-bucket-using-yaml_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#adding-an-aws-s3-namespace-bucket-using-the-multicloud-object-gateway-cli_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#adding-an-ibm-cos-namespace-bucket-using-the-multicloud-object-gateway-cli_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#accessing-the-multicloud-object-gateway-with-your-applications_rhodf

metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <resource-name>
 namespace: openshift-storage
spec:
 awsS3:
 secret:
 name: <namespacestore-secret-name>
 namespace: <namespace-secret>
 targetBucket: <target-bucket>
 type: aws-s3

a. Replace <resource-name> with the name you want to give to the resource.

b. Replace <namespacestore-secret-name> with the secret created in step 1.

c. Replace <namespace-secret> with the namespace where the secret can be found.

d. Replace <target-bucket> with the target bucket you created for the NamespaceStore.

3. Create a namespace bucket class that defines a namespace policy for the namespace buckets.
The namespace policy requires a type of either single or multi.

A namespace policy of type single requires the following configuration:

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type:
 single:
 resource: <resource>

Replace <my-bucket-class> with a unique namespace bucket class name.

Replace <resource> with the name of a single namespace-store that defines the read
and write target of the namespace bucket.

A namespace policy of type multi requires the following configuration:

apiVersion: noobaa.io/v1alpha1

kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

75

spec:
 namespacePolicy:
 type: Multi
 multi:
 writeResource: <write-resource>
 readResources:
 - <read-resources>
 - <read-resources>

Replace <my-bucket-class> with a unique bucket class name.

Replace <write-resource> with the name of a single namespace-store that defines the
write target of the namespace bucket.

Replace <read-resources> with a list of the names of the namespace-stores that
defines the read targets of the namespace bucket.

4. Apply the following YAML to create a bucket using an Object Bucket Class (OBC) resource that
uses the bucket class defined in step 2.

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: <resource-name>
 namespace: openshift-storage
spec:
 generateBucketName: <my-bucket>
 storageClassName: openshift-storage.noobaa.io
 additionalConfig:
 bucketclass: <my-bucket-class>

a. Replace <resource-name> with the name you want to give to the resource.

b. Replace <my-bucket> with the name you want to give to the bucket.

c. Replace <my-bucket-class> with the bucket class created in the previous step.

Once the OBC is provisioned by the operator, a bucket is created in the MCG, and the operator creates
a Secret and ConfigMap with the same name and on the same namespace of the OBC.

10.5.2.2. Adding an IBM COS namespace bucket using YAML

Prerequisites

A running OpenShift Data Foundation Platform.

Access to the Multicloud Object Gateway (MCG), see Chapter 2, Accessing the Multicloud
Object Gateway with your applications.

Procedure

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

76

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#accessing-the-multicloud-object-gateway-with-your-applications_rhodf

metadata:
 name: <namespacestore-secret-name>
 type: Opaque
data:
 IBM_COS_ACCESS_KEY_ID: <IBM COS ACCESS KEY ID ENCODED IN BASE64>
 IBM_COS_SECRET_ACCESS_KEY: <IBM COS SECRET ACCESS KEY ENCODED IN
BASE64>

a. You must supply and encode your own IBM COS access key ID and secret access key using
Base64, and use the results in place of <IBM COS ACCESS KEY ID ENCODED IN
BASE64> and <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>.

b. Replace <namespacestore-secret-name> with a unique name.

2. Create a NamespaceStore resource using OpenShift Custom Resource Definitions (CRDs). A
NamespaceStore represents underlying storage to be used as a read or write target for the data
in the MCG namespace buckets. To create a NamespaceStore resource, apply the following
YAML:

apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: openshift-storage
spec:
 s3Compatible:
 endpoint: <IBM COS ENDPOINT>
 secret:
 name: <namespacestore-secret-name>
 namespace: <namespace-secret>
 signatureVersion: v2
 targetBucket: <target-bucket>
 type: ibm-cos

a. Replace <IBM COS ENDPOINT> with the appropriate IBM COS endpoint.

b. Replace <namespacestore-secret-name> with the secret created in step 1.

c. Replace <namespace-secret> with the namespace where the secret can be found.

d. Replace <target-bucket> with the target bucket you created for the NamespaceStore.

3. Create a namespace bucket class that defines a namespace policy for the namespace buckets.
The namespace policy requires a type of either single or multi.

A namespace policy of type single requires the following configuration:

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

77

 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type:
 single:
 resource: <resource>

Replace <my-bucket-class> with a unique namespace bucket class name.

Replace <resource> with a the name of a single namespace-store that defines the
read and write target of the namespace bucket.

A namespace policy of type multi requires the following configuration:

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <my-bucket-class>
 namespace: openshift-storage
spec:
 namespacePolicy:
 type: Multi
 multi:
 writeResource: <write-resource>
 readResources:
 - <read-resources>
 - <read-resources>

Replace <my-bucket-class> with a unique bucket class name.

Replace <write-resource> with the name of a single namespace-store that defines the
write target of the namespace bucket.

Replace <read-resources> with a list of the names of namespace-stores that defines
the read targets of the namespace bucket.

4. Apply the following YAML to create a bucket using an Object Bucket Class (OBC) resource that
uses the bucket class defined in step 2.

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: <resource-name>
 namespace: openshift-storage
spec:
 generateBucketName: <my-bucket>
 storageClassName: openshift-storage.noobaa.io
 additionalConfig:
 bucketclass: <my-bucket-class>

a. Replace <resource-name> with the name you want to give to the resource.

b. Replace <my-bucket> with the name you want to give to the bucket.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

78

c. Replace <my-bucket-class> with the bucket class created in the previous step.

Once the OBC is provisioned by the operator, a bucket is created in the MCG, and the operator creates
a Secret and ConfigMap with the same name and on the same namespace of the OBC.

10.5.2.3. Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI

Prerequisites

A running OpenShift Data Foundation Platform.

Access to the Multicloud Object Gateway (MCG), see Chapter 2, Accessing the Multicloud
Object Gateway with your applications.

Download the MCG command-line interface:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using subscription
manager. For instance, in case of IBM Z infrastructure use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs found here
https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package.

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be
used as a read or write target for the data in MCG namespace buckets. From the MCG
command-line interface, run the following command:

noobaa namespacestore create aws-s3 <namespacestore> --access-key <AWS ACCESS
KEY> --secret-key <AWS SECRET ACCESS KEY> --target-bucket <bucket-name> -n
openshift-storage

a. Replace <namespacestore> with the name of the NamespaceStore.

b. Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access
key ID and secret access key you created for this purpose.

c. Replace <bucket-name> with an existing AWS bucket name. This argument tells the MCG
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.

2. Create a namespace bucket class that defines a namespace policy for the namespace buckets.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

79

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#accessing-the-multicloud-object-gateway-with-your-applications_rhodf
https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package

2. Create a namespace bucket class that defines a namespace policy for the namespace buckets.
The namespace policy requires a type of either single or multi.

Run the following command to create a namespace bucket class with a namespace policy of
type single:

noobaa bucketclass create namespace-bucketclass single <my-bucket-class> --resource
<resource> -n openshift-storage

Replace <resource-name> with the name you want to give the resource.

Replace <my-bucket-class> with a unique bucket class name.

Replace <resource> with a single namespace-store that defines the read and write
target of the namespace bucket.

Run the following command to create a namespace bucket class with a namespace policy of
type multi:

noobaa bucketclass create namespace-bucketclass multi <my-bucket-class> --write-
resource <write-resource> --read-resources <read-resources> -n openshift-storage

Replace <resource-name> with the name you want to give the resource.

Replace <my-bucket-class> with a unique bucket class name.

Replace <write-resource> with a single namespace-store that defines the write target
of the namespace bucket.

Replace <read-resources> with a list of namespace-stores separated by commas that
defines the read targets of the namespace bucket.

3. Run the following command to create a bucket using an Object Bucket Class (OBC) resource
that uses the bucket class defined in step 2.

noobaa obc create my-bucket-claim -n openshift-storage --app-namespace my-app --
bucketclass <custom-bucket-class>

a. Replace <bucket-name> with a bucket name of your choice.

b. Replace <custom-bucket-class> with the name of the bucket class created in step 2.

Once the OBC is provisioned by the operator, a bucket is created in the MCG, and the operator creates
a Secret and ConfigMap with the same name and on the same namespace of the OBC.

10.5.2.4. Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI

Prerequisites

A running OpenShift Data Foundation Platform.

Access to the Multicloud Object Gateway (MCG), see Chapter 2, Accessing the Multicloud
Object Gateway with your applications.

Download the MCG command-line interface:

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

80

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#accessing-the-multicloud-object-gateway-with-your-applications_rhodf

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using
subscription manager.

For IBM Power, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/package.

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be
used as a read or write target for the data in MCG namespace buckets. From the MCG
command-line interface, run the following command:

noobaa namespacestore create ibm-cos <namespacestore> --endpoint <IBM COS
ENDPOINT> --access-key <IBM ACCESS KEY> --secret-key <IBM SECRET ACCESS
KEY> --target-bucket <bucket-name> -n openshift-storage

a. Replace <namespacestore> with the name of the NamespaceStore.

b. Replace <IBM ACCESS KEY>, <IBM SECRET ACCESS KEY>, <IBM COS ENDPOINT>
with an IBM access key ID, secret access key and the appropriate regional endpoint that
corresponds to the location of the existing IBM bucket.

c. Replace <bucket-name> with an existing IBM bucket name. This argument tells the MCG
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.

2. Create a namespace bucket class that defines a namespace policy for the namespace buckets.
The namespace policy requires a type of either single or multi.

Run the following command to create a namespace bucket class with a namespace policy of
type single:

noobaa bucketclass create namespace-bucketclass single <my-bucket-class> --resource
<resource> -n openshift-storage

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

81

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package

Replace <resource-name> with the name you want to give the resource.

Replace <my-bucket-class> with a unique bucket class name.

Replace <resource> with a single namespace-store that defines the read and write
target of the namespace bucket.

Run the following command to create a namespace bucket class with a namespace policy of
type multi:

noobaa bucketclass create namespace-bucketclass multi <my-bucket-class> --write-
resource <write-resource> --read-resources <read-resources> -n openshift-storage

Replace <resource-name> with the name you want to give the resource.

Replace <my-bucket-class> with a unique bucket class name.

Replace <write-resource> with a single namespace-store that defines the write target
of the namespace bucket.

Replace <read-resources> with a list of namespace-stores separated by commas that
defines the read targets of the namespace bucket.

3. Run the following command to create a bucket using an Object Bucket Class (OBC) resource
that uses the bucket class defined in step 2.

noobaa obc create my-bucket-claim -n openshift-storage --app-namespace my-app --
bucketclass <custom-bucket-class>

a. Replace <bucket-name> with a bucket name of your choice.

b. Replace <custom-bucket-class> with the name of the bucket class created in step 2.

Once the OBC is provisioned by the operator, a bucket is created in the MCG, and the operator creates
a Secret and ConfigMap with the same name and on the same namespace of the OBC.

10.5.3. Adding a namespace bucket using the OpenShift Container Platform user
interface

With the release of OpenShift Data Foundation 4.8, namespace buckets can be added using the
OpenShift Container Platform user interface. For more information about namespace buckets, see
Managing namespace buckets.

Prerequisites

Openshift Container Platform with OpenShift Data Foundation operator installed.

Access to the Multicloud Object Gateway (MCG).

Procedure

1. Log into the OpenShift Web Console.

2. Click Storage → OpenShift Data Foundation.

3. Click the Namespace Store tab to create a namespacestore resources to be used in the

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

82

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#Managing-namespace-buckets_rhodf

3. Click the Namespace Store tab to create a namespacestore resources to be used in the
namespace bucket.

a. Click Create namespace store.

b. Enter a namespacestore name.

c. Choose a provider.

d. Choose a region.

e. Either select an existing secret, or click Switch to credentials to create a secret by entering
a secret key and secret access key.

f. Choose a target bucket.

g. Click Create.

h. Verify the namespacestore is in the Ready state.

i. Repeat these steps until you have the desired amount of resources.

4. Click the Bucket Class tab → Create a new Bucket Class.

a. Select the Namespace radio button.

b. Enter a Bucket Class name.

c. Add a description (optional).

d. Click Next.

5. Choose a namespace policy type for your namespace bucket, and then click Next.

6. Select the target resource(s).

If your namespace policy type is Single, you need to choose a read resource.

If your namespace policy type is Multi, you need to choose read resources and a write
resource.

If your namespace policy type is Cache, you need to choose a Hub namespace store that
defines the read and write target of the namespace bucket.

7. Click Next.

8. Review your new bucket class, and then click Create Bucketclass.

9. On the BucketClass page, verify that your newly created resource is in the Created phase.

10. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

11. In the Status card, click Storage System and click the storage system link from the pop up that
appears.

12. In the Object tab, click Multicloud Object Gateway → Buckets → Namespace Buckets tab .

13. Click Create Namespace Bucket.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

83

a. On the Choose Name tab, specify a Name for the namespace bucket and click Next.

b. On the Set Placement tab:

i. Under Read Policy, select the checkbox for each namespace resource created in step 5
that the namespace bucket should read data from.

ii. If the namespace policy type you are using is Multi, then Under Write Policy, specify
which namespace resource the namespace bucket should write data to.

iii. Click Next.

c. Click Create.

Verification

Verify that the namespace bucket is listed with a green check mark in the State column, the
expected number of read resources, and the expected write resource name.

10.6. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS

The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider
and clusters.

Prerequisites

You must first add a backing storage that can be used by the MCG, see Section 10.4, “Adding
storage resources for hybrid or Multicloud”.

Then you create a bucket class that reflects the data management policy, mirroring.

Procedure

You can set up mirroring data in three ways:

Section 10.6.1, “Creating bucket classes to mirror data using the MCG command-line-interface”

Section 10.6.2, “Creating bucket classes to mirror data using a YAML”

Section 10.6.3, “Configuring buckets to mirror data using the user interface”

10.6.1. Creating bucket classes to mirror data using the MCG command-line-
interface

1. From the Multicloud Object Gateway (MCG) command-line interface, run the following
command to create a bucket class with a mirroring policy:

$ noobaa bucketclass create placement-bucketclass mirror-to-aws --backingstores=azure-
resource,aws-resource --placement Mirror

2. Set the newly created bucket class to a new bucket claim, generating a new bucket that will be
mirrored between two locations:

$ noobaa obc create mirrored-bucket --bucketclass=mirror-to-aws

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

84

10.6.2. Creating bucket classes to mirror data using a YAML

1. Apply the following YAML. This YAML is a hybrid example that mirrors data between local Ceph
storage and AWS:

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 labels:
 app: noobaa
 name: <bucket-class-name>
 namespace: openshift-storage
spec:
 placementPolicy:
 tiers:
 - backingStores:
 - <backing-store-1>
 - <backing-store-2>
 placement: Mirror

2. Add the following lines to your standard Object Bucket Claim (OBC):

additionalConfig:
 bucketclass: mirror-to-aws

For more information about OBCs, see Section 10.8, “Object Bucket Claim” .

10.6.3. Configuring buckets to mirror data using the user interface

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. In the Status card, click Storage System and click the storage system link from the pop up that
appears.

3. In the Object tab, click the Multicloud Object Gateway link.

4. On the NooBaa page, click the buckets icon on the left side. You can see a list of your buckets:

5. Click the bucket you want to update.

6. Click Edit Tier 1 Resources:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

85

7. Select Mirror and check the relevant resources you want to use for this bucket. In the following
example, the data between noobaa-default-backing-store which is on RGW and AWS-
backingstore which is on AWS is mirrored:

8. Click Save.

NOTE

Resources created in NooBaa UI cannot be used by OpenShift UI or Multicloud Object
Gateway (MCG) CLI.

10.7. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY

OpenShift Data Foundation supports AWS S3 bucket policies. Bucket policies allow you to grant users
access permissions for buckets and the objects in them.

10.7.1. About bucket policies

Bucket policies are an access policy option available for you to grant permission to your AWS S3 buckets
and objects. Bucket policies use JSON-based access policy language. For more information about
access policy language, see AWS Access Policy Language Overview .

10.7.2. Using bucket policies

Prerequisites

A running OpenShift Data Foundation Platform.

Access to the Multicloud Object Gateway (MCG), see Section 10.2, “Accessing the Multicloud

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

86

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html

Access to the Multicloud Object Gateway (MCG), see Section 10.2, “Accessing the Multicloud
Object Gateway with your applications”

Procedure

To use bucket policies in the MCG:

1. Create the bucket policy in JSON format. See the following example:

{
 "Version": "NewVersion",
 "Statement": [
 {
 "Sid": "Example",
 "Effect": "Allow",
 "Principal": [
 "john.doe@example.com"
],
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::john_bucket"
]
 }
]
}

There are many available elements for bucket policies with regard to access permissions.

For details on these elements and examples of how they can be used to control the access
permissions, see AWS Access Policy Language Overview .

For more examples of bucket policies, see AWS Bucket Policy Examples .

Instructions for creating S3 users can be found in Section 10.7.3, “Creating an AWS S3 user in
the Multicloud Object Gateway”.

2. Using AWS S3 client, use the put-bucket-policy command to apply the bucket policy to your S3
bucket:

aws --endpoint ENDPOINT --no-verify-ssl s3api put-bucket-policy --bucket MyBucket --
policy BucketPolicy

a. Replace ENDPOINT with the S3 endpoint.

b. Replace MyBucket with the bucket to set the policy on.

c. Replace BucketPolicy with the bucket policy JSON file.

d. Add --no-verify-ssl if you are using the default self signed certificates.
For example:

aws --endpoint https://s3-openshift-storage.apps.gogo44.noobaa.org --no-verify-ssl
s3api put-bucket-policy -bucket MyBucket --policy file://BucketPolicy

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

87

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

For more information on the put-bucket-policy command, see the AWS CLI Command
Reference for put-bucket-policy.

NOTE

The principal element specifies the user that is allowed or denied access to a
resource, such as a bucket. Currently, Only NooBaa accounts can be used as
principals. In the case of object bucket claims, NooBaa automatically create
an account obc-account.<generated bucket name>@noobaa.io.

NOTE

Bucket policy conditions are not supported.

10.7.3. Creating an AWS S3 user in the Multicloud Object Gateway

Prerequisites

A running OpenShift Data Foundation Platform.

Access to the Multicloud Object Gateway (MCG), see Section 10.2, “Accessing the Multicloud
Object Gateway with your applications”

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. In the Status card, click Storage System and click the storage system link from the pop up that
appears.

3. In the Object tab, click the Multicloud Object Gateway link.

4. Under the Accounts tab, click Create Account.

5. Select S3 Access Only, provide the Account Name, for example, john.doe@example.com. Click
Next.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

88

https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-policy.html
mailto:john.doe@example.com

6. Select S3 default placement, for example, noobaa-default-backing-store. Select Buckets
Permissions. A specific bucket or all buckets can be selected. Click Create.

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

89

10.8. OBJECT BUCKET CLAIM

An Object Bucket Claim can be used to request an S3 compatible bucket backend for your workloads.

You can create an Object Bucket Claim in three ways:

Section 10.8.1, “Dynamic Object Bucket Claim”

Section 10.8.2, “Creating an Object Bucket Claim using the command line interface”

Section 10.8.3, “Creating an Object Bucket Claim using the OpenShift Web Console”

An object bucket claim creates a new bucket and an application account in NooBaa with permissions to
the bucket, including a new access key and secret access key. The application account is allowed to
access only a single bucket and can’t create new buckets by default.

10.8.1. Dynamic Object Bucket Claim

Similar to Persistent Volumes, you can add the details of the Object Bucket claim (OBC) to your
application’s YAML, and get the object service endpoint, access key, and secret access key available in a
configuration map and secret. It is easy to read this information dynamically into environment variables
of your application.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

90

Procedure

1. Add the following lines to your application YAML:

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: <obc-name>
spec:
 generateBucketName: <obc-bucket-name>
 storageClassName: openshift-storage.noobaa.io

These lines are the OBC itself.

a. Replace <obc-name> with the a unique OBC name.

b. Replace <obc-bucket-name> with a unique bucket name for your OBC.

2. You can add more lines to the YAML file to automate the use of the OBC. The example below is
the mapping between the bucket claim result, which is a configuration map with data and a
secret with the credentials. This specific job claims the Object Bucket from NooBaa, which
creates a bucket and an account.

apiVersion: batch/v1
kind: Job
metadata:
 name: testjob
spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - image: <your application image>
 name: test
 env:
 - name: BUCKET_NAME
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_NAME
 - name: BUCKET_HOST
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_HOST
 - name: BUCKET_PORT
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_PORT
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: <obc-name>
 key: AWS_ACCESS_KEY_ID
 - name: AWS_SECRET_ACCESS_KEY

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

91

 valueFrom:
 secretKeyRef:
 name: <obc-name>
 key: AWS_SECRET_ACCESS_KEY

a. Replace all instances of <obc-name> with your OBC name.

b. Replace <your application image> with your application image.

3. Apply the updated YAML file:

oc apply -f <yaml.file>

Replace <yaml.file> with the name of your YAML file.

4. To view the new configuration map, run the following:

oc get cm <obc-name> -o yaml

Replace obc-name with the name of your OBC.

You can expect the following environment variables in the output:

BUCKET_HOST - Endpoint to use in the application.

BUCKET_PORT - The port available for the application.

The port is related to the BUCKET_HOST. For example, if the BUCKET_HOST is
https://my.example.com, and the BUCKET_PORT is 443, the endpoint for the object
service would be https://my.example.com:443.

BUCKET_NAME - Requested or generated bucket name.

AWS_ACCESS_KEY_ID - Access key that is part of the credentials.

AWS_SECRET_ACCESS_KEY - Secret access key that is part of the credentials.

IMPORTANT

Retrieve the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. The names
are used so that it is compatible with the AWS S3 API. You need to specify the keys while
performing S3 operations, especially when you read, write or list from the Multicloud
Object Gateway (MCG) bucket. The keys are encoded in Base64. Decode the keys
before using them.

oc get secret <obc_name> -o yaml

<obc_name>

Specify the name of the object bucket claim.

10.8.2. Creating an Object Bucket Claim using the command line interface

When creating an Object Bucket Claim (OBC) using the command-line interface, you get a configuration
map and a Secret that together contain all the information your application needs to use the object
storage service.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

92

https://my.example.com
https://my.example.com:443

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface.

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager.

For IBM Power, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Procedure

1. Use the command-line interface to generate the details of a new bucket and credentials. Run
the following command:

noobaa obc create <obc-name> -n openshift-storage

Replace <obc-name> with a unique OBC name, for example, myappobc.

Additionally, you can use the --app-namespace option to specify the namespace where the
OBC configuration map and secret will be created, for example, myapp-namespace.

Example output:

INFO[0001] � Created: ObjectBucketClaim "test21obc"

The MCG command-line-interface has created the necessary configuration and has informed
OpenShift about the new OBC.

2. Run the following command to view the OBC:

oc get obc -n openshift-storage

Example output:

NAME STORAGE-CLASS PHASE AGE
test21obc openshift-storage.noobaa.io Bound 38s

3. Run the following command to view the YAML file for the new OBC:

oc get obc test21obc -o yaml -n openshift-storage

Example output:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

93

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 generation: 2
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 resourceVersion: "40756"
 selfLink: /apis/objectbucket.io/v1alpha1/namespaces/openshift-
storage/objectbucketclaims/test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
spec:
 ObjectBucketName: obc-openshift-storage-test21obc
 bucketName: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
 generateBucketName: test21obc
 storageClassName: openshift-storage.noobaa.io
status:
 phase: Bound

4. Inside of your openshift-storage namespace, you can find the configuration map and the secret
to use this OBC. The CM and the secret have the same name as the OBC. Run the following
command to view the secret:

oc get -n openshift-storage secret test21obc -o yaml

Example output:

Example output:
apiVersion: v1
data:
 AWS_ACCESS_KEY_ID: c0M0R2xVanF3ODR3bHBkVW94cmY=
 AWS_SECRET_ACCESS_KEY:
Wi9kcFluSWxHRzlWaFlzNk1hc0xma2JXcjM1MVhqa051SlBleXpmOQ==
kind: Secret
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 ownerReferences:
 - apiVersion: objectbucket.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ObjectBucketClaim

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

94

 name: test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
 resourceVersion: "40751"
 selfLink: /api/v1/namespaces/openshift-storage/secrets/test21obc
 uid: 65117c1c-f662-11e9-9094-0a5305de57bb
type: Opaque

The secret gives you the S3 access credentials.

5. Run the following command to view the configuration map:

oc get -n openshift-storage cm test21obc -o yaml

Example output:

apiVersion: v1
data:
 BUCKET_HOST: 10.0.171.35
 BUCKET_NAME: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
 BUCKET_PORT: "31242"
 BUCKET_REGION: ""
 BUCKET_SUBREGION: ""
kind: ConfigMap
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 ownerReferences:
 - apiVersion: objectbucket.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ObjectBucketClaim
 name: test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
 resourceVersion: "40752"
 selfLink: /api/v1/namespaces/openshift-storage/configmaps/test21obc
 uid: 651c6501-f662-11e9-9094-0a5305de57bb

The configuration map contains the S3 endpoint information for your application.

10.8.3. Creating an Object Bucket Claim using the OpenShift Web Console

You can create an Object Bucket Claim (OBC) using the OpenShift Web Console.

Prerequisites

Administrative access to the OpenShift Web Console.

In order for your applications to communicate with the OBC, you need to use the configmap and

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

95

In order for your applications to communicate with the OBC, you need to use the configmap and
secret. For more information about this, see Section 10.8.1, “Dynamic Object Bucket Claim” .

Procedure

1. Log into the OpenShift Web Console.

2. On the left navigation bar, click Storage → Object Bucket Claims → Create Object Bucket
Claim.

a. Enter a name for your object bucket claim and select the appropriate storage class based on
your deployment, internal or external, from the dropdown menu:

Internal mode

The following storage classes, which were created after deployment, are available for
use:

ocs-storagecluster-ceph-rgw uses the Ceph Object Gateway (RGW)

openshift-storage.noobaa.io uses the Multicloud Object Gateway (MCG)

External mode

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

96

The following storage classes, which were created after deployment, are available for
use:

ocs-external-storagecluster-ceph-rgw uses the RGW

openshift-storage.noobaa.io uses the MCG

NOTE

The RGW OBC storage class is only available with fresh installations
of OpenShift Data Foundation version 4.5. It does not apply to
clusters upgraded from previous OpenShift Data Foundation
releases.

b. Click Create.
Once you create the OBC, you are redirected to its detail page:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

97

Additional Resources

Section 10.8, “Object Bucket Claim”

10.8.4. Attaching an Object Bucket Claim to a deployment

Once created, Object Bucket Claims (OBCs) can be attached to specific deployments.

Prerequisites

Administrative access to the OpenShift Web Console.

Procedure

1. On the left navigation bar, click Storage → Object Bucket Claims.

2. Click the Action menu (⋮) next to the OBC you created.

a. From the drop-down menu, select Attach to Deployment.

b. Select the desired deployment from the Deployment Name list, then click Attach.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

98

Additional Resources

Section 10.8, “Object Bucket Claim”

10.8.5. Viewing object buckets using the OpenShift Web Console

You can view the details of object buckets created for Object Bucket Claims (OBCs) using the
OpenShift Web Console.

Prerequisites

Administrative access to the OpenShift Web Console.

Procedure

1. Log into the OpenShift Web Console.

2. On the left navigation bar, click Storage → Object Buckets.

Alternatively, you can also navigate to the details page of a specific OBC and click the Resource
link to view the object buckets for that OBC.

3. Select the object bucket you want to see details for. You are navigated to the Object Bucket
Details page.

Additional Resources

Section 10.8, “Object Bucket Claim”

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

99

10.8.6. Deleting Object Bucket Claims

Prerequisites

Administrative access to the OpenShift Web Console.

Procedure

1. On the left navigation bar, click Storage → Object Bucket Claims.

2. Click the Action menu (⋮) next to the Object Bucket Claim (OBC) you want to delete.

a. Select Delete Object Bucket Claim.

b. Click Delete.

Additional Resources

Section 10.8, “Object Bucket Claim”

10.9. CACHING POLICY FOR OBJECT BUCKETS

A cache bucket is a namespace bucket with a hub target and a cache target. The hub target is an S3
compatible large object storage bucket. The cache bucket is the local Multicloud Object Gateway
bucket. You can create a cache bucket that caches an AWS bucket or an IBM COS bucket.

IMPORTANT

Cache buckets are a Technology Preview feature. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might not be
functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information, see Technology Preview Features Support Scope .

AWS S3

IBM COS

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

100

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#creating-an-aws-cache-bucket_rhocs
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/managing_hybrid_and_multicloud_resources/index#creating-an-ibm-cos-cache-bucket_rhocs

10.9.1. Creating an AWS cache bucket

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface.

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager. In case of IBM Z infrastructure use the following
command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/package.

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be
used as a read or write target for the data in the MCG namespace buckets. From the MCG
command-line interface, run the following command:

noobaa namespacestore create aws-s3 <namespacestore> --access-key <AWS ACCESS
KEY> --secret-key <AWS SECRET ACCESS KEY> --target-bucket <bucket-name>

a. Replace <namespacestore> with the name of the namespacestore.

b. Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access
key ID and secret access key you created for this purpose.

c. Replace <bucket-name> with an existing AWS bucket name. This argument tells the MCG
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.
You can also add storage resources by applying a YAML. First create a secret with
credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <namespacestore-secret-name>
type: Opaque
data:

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

101

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package

 AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
 AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN
BASE64>

You must supply and encode your own AWS access key ID and secret access key using
Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64>
and <AWS SECRET ACCESS KEY ENCODED IN BASE64>.

Replace <namespacestore-secret-name> with a unique name.

Then apply the following YAML:

apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <namespacestore>
 namespace: openshift-storage
spec:
 awsS3:
 secret:
 name: <namespacestore-secret-name>
 namespace: <namespace-secret>
 targetBucket: <target-bucket>
 type: aws-s3

d. Replace <namespacestore> with a unique name.

e. Replace <namespacestore-secret-name> with the secret created in the previous step.

f. Replace <namespace-secret> with the namespace used to create the secret in the
previous step.

g. Replace <target-bucket> with the AWS S3 bucket you created for the namespacestore.

2. Run the following command to create a bucket class:

noobaa bucketclass create namespace-bucketclass cache <my-cache-bucket-class> --
backingstores <backing-store> --hub-resource <namespacestore>

a. Replace <my-cache-bucket-class> with a unique bucket class name.

b. Replace <backing-store> with the relevant backing store. You can list one or more
backingstores separated by commas in this field.

c. Replace <namespacestore> with the namespacestore created in the previous step.

3. Run the following command to create a bucket using an Object Bucket Claim (OBC) resource
that uses the bucket class defined in step 2.

noobaa obc create <my-bucket-claim> my-app --bucketclass <custom-bucket-class>

a. Replace <my-bucket-claim> with a unique name.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

102

b. Replace <custom-bucket-class> with the name of the bucket class created in step 2.

10.9.2. Creating an IBM COS cache bucket

Prerequisites

Download the Multicloud Object Gateway (MCG) command-line interface.

subscription-manager repos --enable=rh-odf-4-for-rhel-8-x86_64-rpms
yum install mcg

NOTE

Specify the appropriate architecture for enabling the repositories using the
subscription manager.

For IBM Power, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-ppc64le-rpms

For IBM Z infrastructure, use the following command:

subscription-manager repos --enable=rh-odf-4-for-rhel-8-s390x-rpms

Alternatively, you can install the MCG package from the OpenShift Data Foundation RPMs
found here https://access.redhat.com/downloads/content/547/ver=4/rhel---
8/4/x86_64/package.

NOTE

Choose the correct Product Variant according to your architecture.

Procedure

1. Create a NamespaceStore resource. A NamespaceStore represents an underlying storage to be
used as a read or write target for the data in the MCG namespace buckets. From the MCG
command-line interface, run the following command:

noobaa namespacestore create ibm-cos <namespacestore> --endpoint <IBM COS
ENDPOINT> --access-key <IBM ACCESS KEY> --secret-key <IBM SECRET ACCESS
KEY> --target-bucket <bucket-name>

a. Replace <namespacestore> with the name of the NamespaceStore.

b. Replace <IBM ACCESS KEY>, <IBM SECRET ACCESS KEY>, <IBM COS ENDPOINT>
with an IBM access key ID, secret access key and the appropriate regional endpoint that
corresponds to the location of the existing IBM bucket.

c. Replace <bucket-name> with an existing IBM bucket name. This argument tells the MCG
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.

You can also add storage resources by applying a YAML. First, Create a secret with the

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

103

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/package

You can also add storage resources by applying a YAML. First, Create a secret with the
credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <namespacestore-secret-name>
type: Opaque
data:
 IBM_COS_ACCESS_KEY_ID: <IBM COS ACCESS KEY ID ENCODED IN BASE64>
 IBM_COS_SECRET_ACCESS_KEY: <IBM COS SECRET ACCESS KEY ENCODED
IN BASE64>

You must supply and encode your own IBM COS access key ID and secret access key using
Base64, and use the results in place of <IBM COS ACCESS KEY ID ENCODED IN
BASE64> and <IBM COS SECRET ACCESS KEY ENCODED IN BASE64>.

Replace <namespacestore-secret-name> with a unique name.

Then apply the following YAML:

apiVersion: noobaa.io/v1alpha1
kind: NamespaceStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <namespacestore>
 namespace: openshift-storage
spec:
 s3Compatible:
 endpoint: <IBM COS ENDPOINT>
 secret:
 name: <backingstore-secret-name>
 namespace: <namespace-secret>
 signatureVersion: v2
 targetBucket: <target-bucket>
 type: ibm-cos

d. Replace <namespacestore> with a unique name.

e. Replace <IBM COS ENDPOINT> with the appropriate IBM COS endpoint.

f. Replace <backingstore-secret-name> with the secret created in the previous step.

g. Replace <namespace-secret> with the namespace used to create the secret in the
previous step.

h. Replace <target-bucket> with the AWS S3 bucket you created for the namespacestore.

2. Run the following command to create a bucket class:

noobaa bucketclass create namespace-bucketclass cache <my-bucket-class> --
backingstores <backing-store> --hubResource <namespacestore>

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

104

a. Replace <my-bucket-class> with a unique bucket class name.

b. Replace <backing-store> with the relevant backing store. You can list one or more
backingstores separated by commas in this field.

c. Replace <namespacestore> with the namespacestore created in the previous step.

3. Run the following command to create a bucket using an Object Bucket Claim resource that uses
the bucket class defined in step 2.

noobaa obc create <my-bucket-claim> my-app --bucketclass <custom-bucket-class>

a. Replace <my-bucket-claim> with a unique name.

b. Replace <custom-bucket-class> with the name of the bucket class created in step 2.

10.10. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY
ADDING ENDPOINTS

The Multicloud Object Gateway performance may vary from one environment to another. In some cases,
specific applications require faster performance which can be easily addressed by scaling S3 endpoints.

The Multicloud Object Gateway resource pool is a group of NooBaa daemon containers that provide
two types of services enabled by default:

Storage service

S3 endpoint service

10.10.1. Scaling the Multicloud Object Gateway with storage nodes

Prerequisites

A running OpenShift Data Foundation cluster on OpenShift Container Platform with access to
the Multicloud Object Gateway (MCG).

A storage node in the MCG is a NooBaa daemon container attached to one or more Persistent Volumes
(PVs) and used for local object service data storage. NooBaa daemons can be deployed on Kubernetes
nodes. This can be done by creating a Kubernetes pool consisting of StatefulSet pods.

Procedure

1. Log in to OpenShift Web Console.

2. From the MCG user interface, click Overview → Add Storage Resources.

3. In the window, click Deploy Kubernetes Pool.

4. In the Create Pool step create the target pool for the future installed nodes.

5. In the Configure step, configure the number of requested pods and the size of each PV. For
each new pod, one PV is to be created.

6. In the Review step, you can find the details of the new pool and select the deployment method
you wish to use: local or external deployment. If local deployment is selected, the Kubernetes

CHAPTER 10. MULTICLOUD OBJECT GATEWAY

105

nodes will deploy within the cluster. If external deployment is selected, you will be provided with
a YAML file to run externally.

7. All nodes will be assigned to the pool you chose in the first step, and can be found under
Resources → Storage resources → Resource name.

10.11. AUTOMATIC SCALING OF MULTICLOUD OBJECT GATEWAY
ENDPOINTS

The number of MultiCloud Object Gateway (MCG) endpoints scale automatically when the load on the
MCG S3 service increases or decreases. OpenShift Data Foundation clusters are deployed with one
active MCG endpoint. Each MCG endpoint pod is configured by default with 1 CPU and 2Gi memory
request, with limits matching the request. When the CPU load on the endpoint crosses over an 80%
usage threshold for a consistent period of time, a second endpoint is deployed lowering the load on the
first endpoint. When the average CPU load on both endpoints falls below the 80% threshold for a
consistent period of time, one of the endpoints is deleted. This feature improves performance and
serviceability of the MCG.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

106

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

IMPORTANT

Expanding PVCs is not supported for PVCs backed by OpenShift Data Foundation.

11.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT DATA
FOUNDATION

Follow the instructions in this section to configure OpenShift Data Foundation as storage for an
application pod.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Data Foundation Operator is installed and running in the openshift-storage
namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed
operators.

The default storage classes provided by OpenShift Data Foundation are available. In OpenShift
Web Console, click Storage → StorageClasses to view default storage classes.

Procedure

1. Create a Persistent Volume Claim (PVC) for the application to use.

a. In OpenShift Web Console, click Storage → Persistent Volume Claims.

b. Set the Project for the application pod.

c. Click Create Persistent Volume Claim.

i. Specify a Storage Class provided by OpenShift Data Foundation.

ii. Specify the PVC Name, for example, myclaim.

iii. Select the required Access Mode.

NOTE

The Access Mode, Shared access (RWX) is not supported in IBM
FlashSystem.

iv. For Rados Block Device (RBD), if the Access mode is ReadWriteOnce (RWO), select
the required Volume mode. The default volume mode is Filesystem.

v. Specify a Size as per application requirement.

vi. Click Create and wait until the PVC is in Bound status.

2. Configure a new or existing application pod to use the new PVC.

For a new application pod, perform the following steps:

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

107

i. Click Workloads →Pods.

ii. Create a new application pod.

iii. Under the spec: section, add volumes: section to add the new PVC as a volume for the
application pod.

volumes:
 - name: <volume_name>
 persistentVolumeClaim:
 claimName: <pvc_name>

For example:

volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

For an existing application pod, perform the following steps:

i. Click Workloads →Deployment Configs.

ii. Search for the required deployment config associated with the application pod.

iii. Click on its Action menu (⋮) → Edit Deployment Config.

iv. Under the spec: section, add volumes: section to add the new PVC as a volume for the
application pod and click Save.

volumes:
 - name: <volume_name>
 persistentVolumeClaim:
 claimName: <pvc_name>

For example:

volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

3. Verify that the new configuration is being used.

a. Click Workloads → Pods.

b. Set the Project for the application pod.

c. Verify that the application pod appears with a status of Running.

d. Click the application pod name to view pod details.

e. Scroll down to Volumes section and verify that the volume has a Type that matches your
new Persistent Volume Claim, for example, myclaim.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

108

11.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS

Use this procedure to view the status of a PVC request.

Prerequisites

Administrator access to OpenShift Data Foundation.

Procedure

1. Log in to OpenShift Web Console.

2. Click Storage → Persistent Volume Claims

3. Search for the required PVC name by using the Filter textbox. You can also filter the list of
PVCs by Name or Label to narrow down the list

4. Check the Status column corresponding to the required PVC.

5. Click the required Name to view the PVC details.

11.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS

Use this procedure to review and address Persistent Volume Claim (PVC) request events.

Prerequisites

Administrator access to OpenShift Web Console.

Procedure

1. In the OpenShift Web Console, click Storage → OpenShift Data Foundation.

2. In the Storage systems tab, select the storage system and then click Overview → Block and
File.

3. Locate the Inventory card to see the number of PVCs with errors.

4. Click Storage → Persistent Volume Claims

5. Search for the required PVC using the Filter textbox.

6. Click on the PVC name and navigate to Events

7. Address the events as required or as directed.

11.4. DYNAMIC PROVISIONING

11.4.1. About dynamic provisioning

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand. StorageClass
objects can also serve as a management mechanism for controlling different levels of storage and

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

109

access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators (storage-
admin) define and create the StorageClass objects that users can request without needing any intimate
knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While
all of them can be statically provisioned by an administrator, some types of storage are created
dynamically using the built-in provider and plug-in APIs.

11.4.2. Dynamic provisioning in OpenShift Data Foundation

Red Hat OpenShift Data Foundation is software-defined storage that is optimised for container
environments. It runs as an operator on OpenShift Container Platform to provide highly integrated and
simplified persistent storage management for containers.

OpenShift Data Foundation supports a variety of storage types, including:

Block storage for databases

Shared file storage for continuous integration, messaging, and data aggregation

Object storage for archival, backup, and media storage

Version 4 uses Red Hat Ceph Storage to provide the file, block, and object storage that backs persistent
volumes, and Rook.io to manage and orchestrate provisioning of persistent volumes and claims. NooBaa
provides object storage, and its Multicloud Gateway allows object federation across multiple cloud
environments (available as a Technology Preview).

In OpenShift Data Foundation 4, the Red Hat Ceph Storage Container Storage Interface (CSI) driver
for RADOS Block Device (RBD) and Ceph File System (CephFS) handles the dynamic provisioning
requests. When a PVC request comes in dynamically, the CSI driver has the following options:

Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on
Ceph RBDs with volume mode Block

Create a PVC with ReadWriteOnce (RWO) access that is based on Ceph RBDs with volume
mode Filesystem

Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on
CephFS for volume mode Filesystem

The judgment of which driver (RBD or CephFS) to use is based on the entry in the storageclass.yaml
file.

11.4.3. Available dynamic provisioning plug-ins

OpenShift Container Platform provides the following provisioner plug-ins, which have generic
implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new
storage resources:

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

110

Storage type Provisioner plug-in name Notes

OpenStack Cinder kubernetes.io/cinder

AWS Elastic Block Store (EBS) kubernetes.io/aws-ebs For dynamic provisioning when
using multiple clusters in different
zones, tag each node with
Key=kubernetes.io/cluster/<c
luster_name>,Value=
<cluster_id> where
<cluster_name> and
<cluster_id> are unique per
cluster.

AWS Elastic File System (EFS) Dynamic provisioning is
accomplished through the EFS
provisioner pod and not through a
provisioner plug-in.

Azure Disk kubernetes.io/azure-disk

Azure File kubernetes.io/azure-file The persistent-volume-binder
ServiceAccount requires
permissions to create and get
Secrets to store the Azure
storage account and keys.

GCE Persistent Disk (gcePD) kubernetes.io/gce-pd In multi-zone configurations, it is
advisable to run one OpenShift
Container Platform cluster per
GCE project to avoid PVs from
being created in zones where no
node in the current cluster exists.

VMware vSphere kubernetes.io/vsphere-
volume

Red Hat Virtualization csi.ovirt.org

IMPORTANT

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS

111

https://www.vmware.com/support/vsphere.html

CHAPTER 12. VOLUME SNAPSHOTS
A volume snapshot is the state of the storage volume in a cluster at a particular point in time. These
snapshots help to use storage more efficiently by not having to make a full copy each time and can be
used as building blocks for developing an application.

You can create multiple snapshots of the same persistent volume claim (PVC). For CephFS, you can
create up to 100 snapshots per PVC. For RADOS Block Device (RBD), you can create up to 512
snapshots per PVC.

NOTE

You cannot schedule periodic creation of snapshots.

12.1. CREATING VOLUME SNAPSHOTS

You can create a volume snapshot either from the Persistent Volume Claim (PVC) page or the Volume
Snapshots page.

Prerequisites

For a consistent snapshot, the PVC should be in Bound state and not be in use. Ensure to stop
all IO before taking the snapshot.

NOTE

OpenShift Data Foundation only provides crash consistency for a volume snapshot of a
PVC if a pod is using it. For application consistency, be sure to first tear down a running
pod to ensure consistent snapshots or use any quiesce mechanism provided by the
application to ensure it.

Procedure

From the Persistent Volume Claims page

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

2. To create a volume snapshot, do one of the following:

Beside the desired PVC, click Action menu (⋮) → Create Snapshot.

Click on the PVC for which you want to create the snapshot and click Actions → Create
Snapshot.

3. Enter a Name for the volume snapshot.

4. Choose the Snapshot Class from the drop-down list.

5. Click Create. You will be redirected to the Details page of the volume snapshot that is
created.

From the Volume Snapshots page

1. Click Storage → Volume Snapshots from the OpenShift Web Console.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

112

2. In the Volume Snapshots page, click Create Volume Snapshot.

3. Choose the required Project from the drop-down list.

4. Choose the Persistent Volume Claim from the drop-down list.

5. Enter a Name for the snapshot.

6. Choose the Snapshot Class from the drop-down list.

7. Click Create. You will be redirected to the Details page of the volume snapshot that is
created.

Verification steps

Go to the Details page of the PVC and click the Volume Snapshots tab to see the list of
volume snapshots. Verify that the new volume snapshot is listed.

Click Storage → Volume Snapshots from the OpenShift Web Console. Verify that the new
volume snapshot is listed.

Wait for the volume snapshot to be in Ready state.

12.2. RESTORING VOLUME SNAPSHOTS

When you restore a volume snapshot, a new Persistent Volume Claim (PVC) gets created. The restored
PVC is independent of the volume snapshot and the parent PVC.

You can restore a volume snapshot from either the Persistent Volume Claim page or the Volume
Snapshots page.

Procedure

From the Persistent Volume Claims page

You can restore volume snapshot from the Persistent Volume Claims page only if the parent PVC is
present.

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

2. Click on the PVC name with the volume snapshot to restore a volume snapshot as a new
PVC.

3. In the Volume Snapshots tab, click the Action menu (⋮) next to the volume snapshot you
want to restore.

4. Click Restore as new PVC.

5. Enter a name for the new PVC.

6. Select the Storage Class name.

NOTE

CHAPTER 12. VOLUME SNAPSHOTS

113

NOTE

For Rados Block Device (RBD), you must select a storage class with the same
pool as that of the parent PVC. Restoring the snapshot of an encrypted PVC
using a storage class where encryption is not enabled and vice versa is not
supported.

7. Select the Access Mode of your choice.

IMPORTANT

The ReadOnlyMany (ROX) access mode is a Developer Preview feature and
is subject to Developer Preview support limitations. Developer Preview
releases are not intended to be run in production environments and are not
supported through the Red Hat Customer Portal case management system. If
you need assistance with ReadOnlyMany feature, reach out to the ocs-
devpreview@redhat.com mailing list and a member of the Red Hat
Development Team will assist you as quickly as possible based on availability
and work schedules. See Creating a clone or restoring a snapshot with the
new readonly access mode to use the ROX access mode.

8. Optional: For RBD, select Volume mode.

9. Click Restore. You are redirected to the new PVC details page.

From the Volume Snapshots page

1. Click Storage → Volume Snapshots from the OpenShift Web Console.

2. In the Volume Snapshots tab, click the Action menu (⋮) next to the volume snapshot you
want to restore.

3. Click Restore as new PVC.

4. Enter a name for the new PVC.

5. Select the Storage Class name.

NOTE

For Rados Block Device (RBD), you must select a storage class with the same
pool as that of the parent PVC. Restoring the snapshot of an encrypted PVC
using a storage class where encryption is not enabled and vice versa is not
supported.

6. Select the Access Mode of your choice.

IMPORTANT

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

114

mailto:ocs-devpreview@redhat.com
https://access.redhat.com/articles/5890531

IMPORTANT

The ReadOnlyMany (ROX) access mode is a Developer Preview feature and
is subject to Developer Preview support limitations. Developer Preview
releases are not intended to be run in production environments and are not
supported through the Red Hat Customer Portal case management system. If
you need assistance with ReadOnlyMany feature, reach out to the ocs-
devpreview@redhat.com mailing list and a member of the Red Hat
Development Team will assist you as quickly as possible based on availability
and work schedules. See Creating a clone or restoring a snapshot with the
new readonly access mode to use the ROX access mode.

7. Optional: For RBD, select Volume mode.

8. Click Restore. You are redirected to the new PVC details page.

Verification steps

Click Storage → Persistent Volume Claims from the OpenShift Web Console and confirm that
the new PVC is listed in the Persistent Volume Claims page.

Wait for the new PVC to reach Bound state.

12.3. DELETING VOLUME SNAPSHOTS

Prerequisites

For deleting a volume snapshot, the volume snapshot class which is used in that particular
volume snapshot should be present.

Procedure

From Persistent Volume Claims page

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

2. Click on the PVC name which has the volume snapshot that needs to be deleted.

3. In the Volume Snapshots tab, beside the desired volume snapshot, click Action menu (⋮) →
Delete Volume Snapshot.

From Volume Snapshots page

1. Click Storage → Volume Snapshots from the OpenShift Web Console.

2. In the Volume Snapshots page, beside the desired volume snapshot click Action menu (⋮)
→ Delete Volume Snapshot.

Verfication steps

Ensure that the deleted volume snapshot is not present in the Volume Snapshots tab of the
PVC details page.

CHAPTER 12. VOLUME SNAPSHOTS

115

mailto:ocs-devpreview@redhat.com
https://access.redhat.com/articles/5890531

Click Storage → Volume Snapshots and ensure that the deleted volume snapshot is not listed.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

116

CHAPTER 13. VOLUME CLONING
A clone is a duplicate of an existing storage volume that is used as any standard volume. You create a
clone of a volume to make a point in time copy of the data. A persistent volume claim (PVC) cannot be
cloned with a different size. You can create up to 512 clones per PVC for both CephFS and RADOS
Block Device (RBD).

13.1. CREATING A CLONE

Prerequisites

Source PVC must be in Bound state and must not be in use.

NOTE

Do not create a clone of a PVC if a Pod is using it. Doing so might cause data corruption
because the PVC is not quiesced (paused).

Procedure

1. Click Storage → Persistent Volume Claims from the OpenShift Web Console.

2. To create a clone, do one of the following:

Beside the desired PVC, click Action menu (⋮) → Clone PVC.

Click on the PVC that you want to clone and click Actions → Clone PVC.

3. Enter a Name for the clone.

4. Select the access mode of your choice.

IMPORTANT

The ReadOnlyMany (ROX) access mode is a Developer Preview feature and is
subject to Developer Preview support limitations. Developer Preview releases are
not intended to be run in production environments and are not supported
through the Red Hat Customer Portal case management system. If you need
assistance with ReadOnlyMany feature, reach out to the ocs-
devpreview@redhat.com mailing list and a member of the Red Hat Development
Team will assist you as quickly as possible based on availability and work
schedules. See Creating a clone or restoring a snapshot with the new readonly
access mode to use the ROX access mode.

5. Click Clone. You are redirected to the new PVC details page.

6. Wait for the cloned PVC status to become Bound.
The cloned PVC is now available to be consumed by the pods. This cloned PVC is independent
of its dataSource PVC.

CHAPTER 13. VOLUME CLONING

117

mailto:ocs-devpreview@redhat.com
https://access.redhat.com/articles/5890531

CHAPTER 14. REPLACING STORAGE NODES
You can choose one of the following procedures to replace storage nodes:

Section 14.1, “Replacing operational nodes on Google Cloud installer-provisioned infrastructure”

Section 14.2, “Replacing failed nodes on Google Cloud installer-provisioned infrastructure”

14.1. REPLACING OPERATIONAL NODES ON GOOGLE CLOUD
INSTALLER-PROVISIONED INFRASTRUCTURE

Use this procedure to replace an operational node on Google Cloud installer-provisioned infrastructure
(IPI).

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

2. Identify the node that needs to be replaced. Take a note of its Machine Name.

3. Mark the node as unschedulable using the following command:

$ oc adm cordon <node_name>

4. Drain the node using the following command:

$ oc adm drain <node_name> --force --delete-emptydir-data=true --ignore-daemonsets

IMPORTANT

This activity may take at least 5-10 minutes or more. Ceph errors generated
during this period are temporary and are automatically resolved when the new
node is labeled and functional.

5. Click Compute → Machines. Search for the required machine.

6. Besides the required machine, click the Action menu (⋮) → Delete Machine.

7. Click Delete to confirm the machine deletion. A new machine is automatically created.

8. Wait for new machine to start and transition into Running state.

IMPORTANT

This activity may take at least 5-10 minutes or more.

9. Click Compute → Nodes, confirm if the new node is in Ready state.

10. Apply the OpenShift Data Foundation label to the new node using any one of the following:

From User interface

a. For the new node, click Action Menu (⋮) → Edit Labels

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

118

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

From Command line interface

Execute the following command to apply the OpenShift Data Foundation label to the
new node:

$ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in
Running state:

csi-cephfsplugin-*

csi-rbdplugin-*

3. Verify that all other required OpenShift Data Foundation pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

5. Optional: If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices
are encrypted.
For each of the new nodes identified in previous step, do the following:

a. Create a debug pod and open a chroot environment for the selected host(s).

$ oc debug node/<node name>
$ chroot /host

b. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

$ lsblk

6. If verification steps fail, contact Red Hat Support .

14.2. REPLACING FAILED NODES ON GOOGLE CLOUD INSTALLER-
PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node which is not operational on Google Cloud installer-
provisioned infrastructure (IPI) for OpenShift Data Foundation.

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

CHAPTER 14. REPLACING STORAGE NODES

119

https://access.redhat.com/support

2. Identify the faulty node and click on its Machine Name.

3. Click Actions → Edit Annotations, and click Add More.

4. Add machine.openshift.io/exclude-node-draining and click Save.

5. Click Actions → Delete Machine, and click Delete.

6. A new machine is automatically created, wait for new machine to start.

IMPORTANT

This activity may take at least 5-10 minutes or more. Ceph errors generated
during this period are temporary and are automatically resolved when the new
node is labeled and functional.

7. Click Compute → Nodes, confirm if the new node is in Ready state.

8. Apply the OpenShift Data Foundation label to the new node using any one of the following:

From the web user interface

a. For the new node, click Action Menu (⋮) → Edit Labels

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

From the command line interface

Execute the following command to apply the OpenShift Data Foundation label to the
new node:

$ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

9. [Optional]: If the failed Google Cloud instance is not removed automatically, terminate the
instance from Google Cloud console.

Verification steps

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in
Running state:

csi-cephfsplugin-*

csi-rbdplugin-*

3. Verify that all other required OpenShift Data Foundation pods are in Running state.

4. Verify that new OSD pods are running on the replacement node.

$ oc get pods -o wide -n openshift-storage| egrep -i new-node-name | egrep osd

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

120

5. Optional: If cluster-wide encryption is enabled on the cluster, verify that the new OSD devices
are encrypted.
For each of the new nodes identified in previous step, do the following:

a. Create a debug pod and open a chroot environment for the selected host(s).

$ oc debug node/<node name>
$ chroot /host

b. Run “lsblk” and check for the “crypt” keyword beside the ocs-deviceset name(s)

$ lsblk

6. If verification steps fail, contact Red Hat Support .

CHAPTER 14. REPLACING STORAGE NODES

121

https://access.redhat.com/support

CHAPTER 15. REPLACING STORAGE DEVICES

15.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON
GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

When you need to replace a device in a dynamically created storage cluster on an Google Cloud
installer-provisioned infrastructure, you must replace the storage node. For information about how to
replace nodes, see:

Replacing operational nodes on Google Cloud installer-provisioned infrastructure

Replacing failed nodes on Google Cloud installer-provisioned infrastructures .

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

122

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#replacing-operational-nodes-on-google-cloud-installer-provisioned-infrastructure_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/deploying_and_managing_openshift_data_foundation_using_google_cloud/index#replacing-failed-nodes-on-google-cloud-installer-provisioned-infrastructures_gcp

CHAPTER 16. UPGRADING TO OPENSHIFT DATA
FOUNDATION

16.1. OVERVIEW OF THE OPENSHIFT DATA FOUNDATION UPDATE
PROCESS

OpenShift Container Storage, based on the open source Ceph technology, has expanded its scope and
foundational role in a containerized, hybrid cloud environment since its introduction. It complements
existing storage in addition to other data-related hardware and software, making them rapidly
attachable, accessible, and scalable in a hybrid cloud environment. To better reflect these foundational
and infrastructure distinctives, OpenShift Container Storage is now OpenShift Data Foundation.

IMPORTANT

You can perform the upgrade process for OpenShift Data Foundation version 4.9 from
OpenShift Container Storage version 4.8 only by installing the OpenShift Data
Foundation operator from OpenShift Container Platform OperatorHub.

In the future release, you can upgrade Red Hat OpenShift Data Foundation, either between minor
releases like 4.9 and 4.x, or between batch updates like 4.9.0 and 4.9.1 by enabling automatic updates (if
not done so during operator installation) or performing manual updates.

You also need to upgrade the different parts of Red Hat OpenShift Data Foundation in the following
order for both internal and external mode deployments:

1. Update OpenShift Container Platform according to the Updating clusters documentation for
OpenShift Container Platform.

2. Update Red Hat OpenShift Data Foundation.

a. To prepare a disconnected environment for updates, see Operators guide to using
Operator Lifecycle Manager on restricted networks to be able to update Red Hat OpenShift
Data Foundation as well as Local Storage Operator when in use.

b. Update Red Hat OpenShift Container Storage operator version 4.8 to version 4.9 by
installing the Red Hat OpenShift Data Foundation operator from the OperatorHub on
OpenShift Container Platform web console. See Updating Red Hat OpenShift Container
Storage 4.8 to Red Hat OpenShift Data Foundation 4.9.

c. Update Red Hat OpenShift Data Foundation from 4.9.x to 4.9.y. See Updating Red Hat
OpenShift Data Foundation 4.9.x to 4.9.y.

d. For updating external mode deployments, you must also perform the steps from section
Updating the OpenShift Data Foundation external secret .

e. If you use local storage:

i. Update the Local Storage operator.
See Checking for Local Storage Operator deployments if you are unsure.

ii. Perform post-update configuration changes for clusters backed by local storage.
See Post-update configuration for clusters backed by local storage for details.

Update considerations

CHAPTER 16. UPGRADING TO OPENSHIFT DATA FOUNDATION

123

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/updating_clusters/index
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html-single/operators/index#olm-restricted-networks
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/upgrading_to_openshift_data_foundation/index#updating-ocs-to-odf_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/upgrading_to_openshift_data_foundation/index#updating-zstream-odf_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/upgrading_to_openshift_data_foundation#updating-the-openshift-data-foundation-external-secret_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/troubleshooting_openshift_data_foundation/index#checking-for-local-storage-operator-deployments_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/upgrading_to_openshift_data_foundation/index#post-update-configuration-changes-for-clusters-backed-by-local-storage_rhodf

Review the following important considerations before you begin.

Red Hat recommends using the same version of Red Hat OpenShift Container Platform with
Red Hat OpenShift Data Foundation.
See the Interoperability Matrix for more information about supported combinations of
OpenShift Container Platform and Red Hat OpenShift Data Foundation.

The Local Storage Operator is fully supported only when the Local Storage Operator version
matches the Red Hat OpenShift Container Platform version.

The flexible scaling feature is available only in new deployments of Red Hat OpenShift Data
Foundation versions 4.7 and later. Storage clusters upgraded from a previous version to version
4.7 or later do not support flexible scaling. For more information, see Flexible scaling of
OpenShift Container Storage cluster in the New features section of 4.7 Release Notes .

16.2. UPDATING RED HAT OPENSHIFT CONTAINER STORAGE 4.8 TO
RED HAT OPENSHIFT DATA FOUNDATION 4.9

This chapter helps you to upgrade between the z-stream release for all Red Hat OpenShift Data
Foundation deployments (Internal, Internal-Attached and External). The upgrade process remains the
same for all deployments. The Only difference is what gets upgraded and what’s not.

For Internal and Internal-attached deployments, upgrading OpenShift Container Storage
upgrades all OpenShift Container Storage services including the backend Ceph Storage cluster.

For External mode deployments, upgrading OpenShift Container Storage only upgrades the
OpenShift Container Storage service while the backend Ceph storage cluster remains
untouched and needs to be upgraded separately.
We recommend upgrading RHCS along with OpenShift Container Storage in order to get new
feature support, security fixes, and other bug fixes. Since we do not have a strong dependency
on RHCS upgrade, you can upgrade the OpenShift Data Foundation operator first followed by
RHCS upgrade or vice-versa. See solution to know more about Red Hat Ceph Storage releases.

IMPORTANT

Upgrading to 4.9 directly from any version older than 4.8 is unsupported.

Prerequisites

Ensure that the OpenShift Container Platform cluster has been updated to the latest stable
release of version 4.9.X, see Updating Clusters.

Ensure that the OpenShift Container Storage cluster is healthy and data is resilient.

Navigate to Storage → Overview and check both Block and File and Object tabs for the
green tick on the status card. Green tick indicates that the storage cluster , object service
and data resiliency are all healthy.

Ensure that all OpenShift Container Storage Pods, including the operator pods, are in Running
state in the openshift-storage namespace.
To view the state of the pods, on the OpenShift Web Console, click Workloads → Pods. Select
openshift-storage from the Project drop-down list.

NOTE

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

124

https://access.redhat.com/labs/ocssi/
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.7/html-single/4.7_release_notes#New-features
https://access.redhat.com/solutions/2045583
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/updating_clusters/index

NOTE

If the Show default projects option is disabled, use the toggle button to list all
the default projects.

Ensure that you have sufficient time to complete the OpenShift Data Foundation update
process, as the update time varies depending on the number of OSDs that run in the cluster.

Procedure

1. On the OpenShift Web Console, navigate to OperatorHub.

2. Search for OpenShift Data Foundation using the Filter by keyword box and click on the
OpenShift Data Foundation tile.

3. Click Install.

4. On the install Operator page, click Install. Wait for the Operator installation to complete.

NOTE

We recommend using all default settings. Changing it may result in unexpected
behavior. Alter only if you are aware of its result.

Verification steps

1. Verify that the page displays Succeeded message along with the option to Create
StorageSystem.

NOTE

For the upgraded clusters, since the storage system is automatically created, do
not create it again.

2. On the notification popup, click Refresh web console link to reflect the OpenShift Data
Foundation changes in the OpenShift console.

3. Verify the state of the pods on the OpenShift Web Console.

Click Workloads → Pods.

Select openshift-storage from the Project drop-down list.

NOTE

If the Show default projects option is disabled, use the toggle button to list
all the default projects.

Wait for all the pods in the openshift-storage namespace to restart and reach Running
state.

4. Verify that the OpenShift Data Foundation cluster is healthy and data is resilient.

Navigate to Storage → OpenShift Data foundation → Storage Systems tab and then click
on the storage system name.

CHAPTER 16. UPGRADING TO OPENSHIFT DATA FOUNDATION

125

on the storage system name.

Check both Block and File and Object tabs for the green tick on the status card. Green
tick indicates that the storage cluster, object service and data resiliency are all healthy.

IMPORTANT

In case the console plugin option was not automatically enabled after you
installed the OpenShift Data Foundation Operator, you need to enable it.
For more information on how to enable the console plugin, see Enabling the Red
Hat OpenShift Data Foundation console plugin.

After updating external mode deployments, you must also update the external
secret. For instructions, see Updating the OpenShift Data Foundation external
secret.

Additional Resources

If you face any issues while updating OpenShift Data Foundation, see the Commonly required logs for
troubleshooting section in the Troubleshooting guide.

16.3. UPDATING RED HAT OPENSHIFT DATA FOUNDATION 4.9.X TO
4.9.Y

This chapter helps you to upgrade between the z-stream release for all Red Hat OpenShift Data
Foundation deployments (Internal, Internal-Attached and External). The upgrade process remains the
same for all deployments. The Only difference is what gets upgraded and what’s not.

For Internal and Internal-attached deployments, upgrading OpenShift Container Storage
upgrades all OpenShift Container Storage services including the backend Ceph Storage cluster.

For External mode deployments, upgrading OpenShift Container Storage only upgrades the
OpenShift Container Storage service while the backend Ceph storage cluster remains
untouched and needs to be upgraded separately.
Hence, we recommend upgrading RHCS along with OpenShift Container Storage in order to get
new feature support, security fixes, and other bug fixes. Since we do not have a strong
dependency on RHCS upgrade, you can upgrade the OpenShift Data Foundation operator first
followed by RHCS upgrade or vice-versa. See solution to know more about Red Hat Ceph
Storage releases.

When a new z-stream release becomes available, the upgrade process triggers automatically if the
update strategy was set to Automatic. If the update strategy is set to Manual then use the following
procedure.

Prerequisites

Ensure that the OpenShift Container Platform cluster has been updated to the latest stable
release of version 4.9.X, see Updating Clusters.

Ensure that the OpenShift Data Foundation cluster is healthy and data is resilient.

Navigate to Storage → OpenShift Data Foundation → Storage Systems tab and then click
on the storage system name.

Check for the green tick on the status card of Overview - Block and File and Object tabs.
Green tick indicates that the storage cluster, object service and data resiliency is healthy.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

126

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/troubleshooting_openshift_data_foundation/index#enabling-the-red-hat-openshift-data-foundation-console-plugin-option_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/upgrading_to_openshift_data_foundation#updating-the-openshift-data-foundation-external-secret_rhodf
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/troubleshooting_openshift_data_foundation/index#commonly-required-logs_rhodf
https://access.redhat.com/solutions/2045583
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.9/html/updating_clusters/index

Ensure that all OpenShift Data Foundation Pods, including the operator pods, are in Running
state in the openshift-storage namespace.
To view the state of the pods, on the OpenShift Web Console, click Workloads → Pods. Select
openshift-storage from the Project drop-down list.

NOTE

If the Show default projects option is disabled, use the toggle button to list all
the default projects.

Ensure that you have sufficient time to complete the OpenShift Data Foundation update
process, as the update time varies depending on the number of OSDs that run in the cluster.

Procedure

1. On the OpenShift Web Console, navigate to Operators → Installed Operators.

2. Select openshift-storage project.

NOTE

If the Show default projects option is disabled, use the toggle button to list all
the default projects.

3. Click the OpenShift Data Foundation operator name.

4. Click the Subscription tab.

5. If the Upgrade Status shows require approval, click on requires approval link.

6. On the InstallPlan Details page, click Preview Install Plan.

7. Review the install plan and click Approve.

8. Wait for the Status to change from Unknown to Created.

Verification steps

Verify that the Version below the OpenShift Data Foundation name and the operator status is
the latest version.

Navigate to Operators → Installed Operators and select the openshift-storage project.

When the upgrade completes, the version updates to a new version number for OpenShift
Data Foundation and status changes to Succeeded with a green tick.

Verify that the OpenShift Data Foundation cluster is healthy and data is resilient.

Navigate to Storage → OpenShift Data Foundation → Storage Systems tab and then click
on the storage system name.

Check for the green tick on the status card of Overview - Block and File and Object tabs.
Green tick indicates that the storage cluster, object service and data resiliency is healthy

IMPORTANT

CHAPTER 16. UPGRADING TO OPENSHIFT DATA FOUNDATION

127

IMPORTANT

In case the console plugin option was not automatically enabled after you installed the
OpenShift Data Foundation Operator, you need to enable it.

For more information on how to enable the console plugin, see Enabling the Red Hat
OpenShift Data Foundation console plugin.

If verification steps fail, contact Red Hat Support .

16.4. CHANGING THE UPDATE APPROVAL STRATEGY

To ensure that the storage system gets updated automatically when a new update is available in the
same channel, we recommend keeping the update approval strategy to Automatic. Changing the
update approval strategy to Manual will need manual approval for each upgrade.

Procedure

1. Navigate to Operators → Installed Operators.

2. Select openshift-storage from the Project drop-down list.

NOTE

If the Show default projects option is disabled, use the toggle button to list all
the default projects.

3. Click on OpenShift Data Foundation operator name

4. Go to the Subscription tab.

5. Click on the pencil icon for changing the Update approval.

6. Select the update approval strategy and click Save.

Verification steps

Verify that the Update approval shows the newly selected approval strategy below it.

Red Hat OpenShift Data Foundation 4.9 Deploying and managing OpenShift Data Foundation using Google Cloud

128

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.9/html-single/troubleshooting_openshift_data_foundation/index#enabling-the-red-hat-openshift-data-foundation-console-plugin-option_rhodf
https://access.redhat.com/support

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	PREFACE
	CHAPTER 1. PREPARING TO DEPLOY OPENSHIFT DATA FOUNDATION
	1.1. ENABLING KEY VALUE BACKEND PATH AND POLICY IN VAULT

	CHAPTER 2. DEPLOYING OPENSHIFT DATA FOUNDATION ON GOOGLE CLOUD
	2.1. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION OPERATOR
	2.2. CREATING AN OPENSHIFT DATA FOUNDATION CLUSTER
	2.3. VERIFYING OPENSHIFT DATA FOUNDATION DEPLOYMENT
	2.3.1. Verifying the state of the pods
	2.3.2. Verifying the OpenShift Data Foundation cluster is healthy
	2.3.3. Verifying the Multicloud Object Gateway is healthy
	2.3.4. Verifying that the OpenShift Data Foundation specific storage classes exist

	CHAPTER 3. DEPLOY STANDALONE MULTICLOUD OBJECT GATEWAY
	3.1. INSTALLING RED HAT OPENSHIFT DATA FOUNDATION OPERATOR
	3.2. CREATING STANDALONE MULTICLOUD OBJECT GATEWAY

	CHAPTER 4. UNINSTALLING OPENSHIFT DATA FOUNDATION
	4.1. UNINSTALLING OPENSHIFT DATA FOUNDATION IN INTERNAL MODE

	CHAPTER 5. STORAGE CLASSES AND STORAGE POOLS
	5.1. CREATING STORAGE CLASSES AND POOLS
	5.2. CREATING A STORAGE CLASS FOR PERSISTENT VOLUME ENCRYPTION
	5.2.1. Prerequisites for using vaulttokens
	5.2.2. Prerequisites for using vaulttenantsa
	5.2.3. Procedure for creating a storage class for PV encryption
	5.2.3.1. Overriding Vault connection details using tenant ConfigMap

	CHAPTER 6. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES
	6.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT DATA FOUNDATION
	6.2. CONFIGURING MONITORING TO USE OPENSHIFT DATA FOUNDATION
	6.3. CLUSTER LOGGING FOR OPENSHIFT DATA FOUNDATION
	6.3.1. Configuring persistent storage
	6.3.2. Configuring cluster logging to use OpenShift data Foundation

	CHAPTER 7. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT DATA FOUNDATION
	CHAPTER 8. HOW TO USE DEDICATED WORKER NODES FOR RED HAT OPENSHIFT DATA FOUNDATION
	8.1. ANATOMY OF AN INFRASTRUCTURE NODE
	8.2. MACHINE SETS FOR CREATING INFRASTRUCTURE NODES
	8.3. MANUAL CREATION OF INFRASTRUCTURE NODES

	CHAPTER 9. SCALING STORAGE NODES
	9.1. REQUIREMENTS FOR SCALING STORAGE NODES
	9.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR OPENSHIFT DATA FOUNDATION NODES ON GOOGLE CLOUD INFRASTRUCTURE
	9.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES
	9.3.1. Adding a node on Google Cloud installer-provisioned infrastructure
	9.3.2. Verifying the addition of a new node
	9.3.3. Scaling up storage capacity

	CHAPTER 10. MULTICLOUD OBJECT GATEWAY
	10.1. ABOUT THE MULTICLOUD OBJECT GATEWAY
	10.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR APPLICATIONS
	10.2.1. Accessing the Multicloud Object Gateway from the terminal
	10.2.2. Accessing the Multicloud Object Gateway from the MCG command-line interface

	10.3. ALLOWING USER ACCESS TO THE MULTICLOUD OBJECT GATEWAY CONSOLE
	10.4. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD
	10.4.1. Creating a new backing store
	10.4.2. Adding storage resources for hybrid or Multicloud using the MCG command line interface
	10.4.2.1. Creating an AWS-backed backingstore
	10.4.2.2. Creating an IBM COS-backed backingstore
	10.4.2.3. Creating an Azure-backed backingstore
	10.4.2.4. Creating a GCP-backed backingstore
	10.4.2.5. Creating a local Persistent Volume-backed backingstore

	10.4.3. Creating an s3 compatible Multicloud Object Gateway backingstore
	10.4.4. Adding storage resources for hybrid and Multicloud using the user interface
	10.4.5. Creating a new bucket class
	10.4.6. Editing a bucket class
	10.4.7. Editing backing stores for bucket class

	10.5. MANAGING NAMESPACE BUCKETS
	10.5.1. Amazon S3 API endpoints for objects in namespace buckets
	10.5.2. Adding a namespace bucket using the Multicloud Object Gateway CLI and YAML
	10.5.2.1. Adding an AWS S3 namespace bucket using YAML
	10.5.2.2. Adding an IBM COS namespace bucket using YAML
	10.5.2.3. Adding an AWS S3 namespace bucket using the Multicloud Object Gateway CLI
	10.5.2.4. Adding an IBM COS namespace bucket using the Multicloud Object Gateway CLI

	10.5.3. Adding a namespace bucket using the OpenShift Container Platform user interface

	10.6. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS
	10.6.1. Creating bucket classes to mirror data using the MCG command-line-interface
	10.6.2. Creating bucket classes to mirror data using a YAML
	10.6.3. Configuring buckets to mirror data using the user interface

	10.7. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY
	10.7.1. About bucket policies
	10.7.2. Using bucket policies
	10.7.3. Creating an AWS S3 user in the Multicloud Object Gateway

	10.8. OBJECT BUCKET CLAIM
	10.8.1. Dynamic Object Bucket Claim
	10.8.2. Creating an Object Bucket Claim using the command line interface
	10.8.3. Creating an Object Bucket Claim using the OpenShift Web Console
	10.8.4. Attaching an Object Bucket Claim to a deployment
	10.8.5. Viewing object buckets using the OpenShift Web Console
	10.8.6. Deleting Object Bucket Claims

	10.9. CACHING POLICY FOR OBJECT BUCKETS
	10.9.1. Creating an AWS cache bucket
	10.9.2. Creating an IBM COS cache bucket

	10.10. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY ADDING ENDPOINTS
	10.10.1. Scaling the Multicloud Object Gateway with storage nodes

	10.11. AUTOMATIC SCALING OF MULTICLOUD OBJECT GATEWAY ENDPOINTS

	CHAPTER 11. MANAGING PERSISTENT VOLUME CLAIMS
	11.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT DATA FOUNDATION
	11.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS
	11.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS
	11.4. DYNAMIC PROVISIONING
	11.4.1. About dynamic provisioning
	11.4.2. Dynamic provisioning in OpenShift Data Foundation
	11.4.3. Available dynamic provisioning plug-ins

	CHAPTER 12. VOLUME SNAPSHOTS
	12.1. CREATING VOLUME SNAPSHOTS
	12.2. RESTORING VOLUME SNAPSHOTS
	12.3. DELETING VOLUME SNAPSHOTS

	CHAPTER 13. VOLUME CLONING
	13.1. CREATING A CLONE

	CHAPTER 14. REPLACING STORAGE NODES
	14.1. REPLACING OPERATIONAL NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE
	14.2. REPLACING FAILED NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

	CHAPTER 15. REPLACING STORAGE DEVICES
	15.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

	CHAPTER 16. UPGRADING TO OPENSHIFT DATA FOUNDATION
	16.1. OVERVIEW OF THE OPENSHIFT DATA FOUNDATION UPDATE PROCESS
	16.2. UPDATING RED HAT OPENSHIFT CONTAINER STORAGE 4.8 TO RED HAT OPENSHIFT DATA FOUNDATION 4.9
	16.3. UPDATING RED HAT OPENSHIFT DATA FOUNDATION 4.9.X TO 4.9.Y
	16.4. CHANGING THE UPDATE APPROVAL STRATEGY

