& RedHat

Red Hat JBoss Web Server5.3

Red Hat JBoss Web Server for OpenShift

Installing and using Red Hat JBoss Web Server for OpenShift

Last Updated: 2023-03-23

Red Hat JBoss Web Server 5.3 Red Hat JBoss Web Server for OpenShift

Installing and using Red Hat JBoss Web Server for OpenShift

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Red Hat JBoss Web Server for OpenShift

Table of Contents

Table of Contents

CHAPTER LLINTRODUGCTION ittt ittt ettt ettt et eaeeaneeeaneenaneeannesaneeeaneennneenns 3
1.1. OVERVIEW OF RED HAT JBOSS WEB SERVER FOR OPENSHIFT 3
CHAPTER 2. BEFORE YOU BEGIN .. ittt ittt e ttneeeeeenanneeeennnnanaeennnnnnns 4
2.1. THE DIFFERENCE BETWEEN RED HAT JBOSS WEB SERVER AND JWS FOR OPENSHIFT 4
2.2. VERSION COMPATIBILITY AND SUPPORT 4
2.3. SUPPORTED ARCHITECTURES BY JBOSS WEB SERVER 4
2.4. HEALTH CHECKS FOR RED HAT CONTAINER IMAGES 4
CHAPTER 3. THE DIFFERENCE BETWEEN RED HAT JBOSS WEB SERVER AND JWS FOR OPENSHIFT ... 5
CHAPTER 4. GET STARTED .o ttitiittt ittt ettt ettt et eeaaeeaneeeaneesaneeannesaneesaneennneenns 6
4.1, INITIAL SETUP 6
4.2. USING THE JWS FOR OPENSHIFT SOURCE-TO-IMAGE (S2I) PROCESS 6
4.2.1. Create a JWS for OpenShift application using existing maven binaries 7
4.2.2. Example: Creating a JWS for OpenShift application using existing maven binaries 8
4.2.2.1. Prerequisites: 8
4.2.2.2. To setup the example application on OpenShift 9

4.2.3. Create a JWS for OpenShift application from source code 1
CHAPTER 5. REFERENCE ... ittt ettt ettt ettt ettt e it e aaeeenneeaneeeaneenaneesnneenneenns 13
5.1. SOURCE-TO-IMAGE (S21) 13
5.1.1. Using maven artifact repository mirrors with JWS for OpenShift 13
5.1.2. Scripts included on the Red Hat JBoss Web Server for OpenShift image 14
5.1.3. JWS for OpenShift datasources 14
5.1.4. JWS for OpenShift compatible environment variables 15

5.2. VALVES ON JWS FOR OPENSHIFT 16
5.2.1. JWS for OpenShift compatible environmental variables (valve component) 16

5.3. CHECKING LOGS 17

Red Hat JBoss Web Server 5.3 Red Hat JBoss Web Server for OpenShift

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

1.1. OVERVIEW OF RED HAT JBOSS WEB SERVER FOR OPENSHIFT

The Apache Tomcat 9 component of Red Hat JBoss Web Server (JWS) 5.3 is available as a
containerized image designed for OpenShift. Developers can use this image to build, scale, and test
Java web applications for deployment across hybrid cloud environments.

Red Hat JBoss Web Server 5.3 Red Hat JBoss Web Server for OpenShift

CHAPTER 2. BEFORE YOU BEGIN

2.1. THE DIFFERENCE BETWEEN RED HAT JBOSS WEB SERVER AND
JWS FOR OPENSHIFT

The differences between the JWS for OpenShift images and the regular release of JWS are:

® The location of JWS_HOME/tomcat<versions/ inside a JWS for OpenShift image is:
/opt/webserver/.

® The JWS for OpenShift images do not contain Apache HTTP Server. All load balancing is
handled by the OpenShift router, not Apache HTTP Server mod_cluster or mod_jk connectors.

Documentation for JWS functionality not specific to JWS for OpenShift images is found in the Red Hat
JBoss Web Server documentation.

2.2. VERSION COMPATIBILITY AND SUPPORT

See the xPaaS table on the OpenShift Container Platform Tested Integrations page for details about
OpenShift image version compatibility.

IMPORTANT

The 5.3 version of JWS for OpenShift images and application templates should be
used for deploying new applications.

The 5.2 version of JWS for OpenShift images and application templates are deprecated
and no longer receives updates.

2.3. SUPPORTED ARCHITECTURES BY JBOSS WEB SERVER
JBoss Web server supports the following architectures:

* x86_64 (AMD64)

e IBM Z (s390x) in the OpenShift environment

e IBM Power (ppc64le) in the OpenShift environment

Different images are supported for different architectures. The example codes in this guide
demonstrate the commands for x86_64 architecture. If you are using other architectures, specify the
relevant image name in the commands. See the Red Hat Container Catalog for more information about
images.

2.4. HEALTH CHECKS FOR RED HAT CONTAINER IMAGES

All container images available for OpenShift have a health rating associated with it. You can find the
health rating for Red Hat JBoss Web Server by navigating to the catalog of container images, searching
for JBoss Web Server and selecting the 5.3 version.

For more information on how OpenShift container can be tested for liveliness and readiness, please
refer to the following documentation

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Web_Server/
https://access.redhat.com/articles/2176281
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-application-health#container-health-checks-using-probes

CHAPTER 3. THE DIFFERENCE BETWEEN RED HAT JBOSS WEB SERVER AND JWS FOR OPENSHIFT

CHAPTER 3. THE DIFFERENCE BETWEEN RED HAT JBOSS
WEB SERVER AND JWS FOR OPENSHIFT

The differences between the {ProductShortName} for OpenShift images and the regular release of
JWS are:

® The location of JWS_HOME/tomcat<versions/ inside a {ProductShortName?} for OpenShift
image is: /opt/webserver/.

® The JWS for OpenShift images do not contain Apache HTTP Server. The OpenShift router
handles all load balancing. In {ProductShortName}, Apache HTTP Server mod_cluster or
mod_jk connectors handle load balancing. For information about JWS functionality that is not
specific to JWS for OpenShift, see Red Hat JBoss Web Server documentation.

Additional resources

® Red Hat JBoss Web Server documentation

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Web_Server/5.3/

Red Hat JBoss Web Server 5.3 Red Hat JBoss Web Server for OpenShift

CHAPTER 4. GET STARTED

4.1. INITIAL SETUP

The instructions in this guide follow on from the OpenShift Primer, assuming a supported OpenShift
configuration or a non-production OpenShift instance like that described in the OpenShift Primer.

The JWS for OpenShift images are automatically created during the installation of OpenShift, along
with the other default image streams and templates.

NOTE

The JWS for OpenShift application templates are distributed for Tomcat 9.

4.2. USING THE JWS FOR OPENSHIFT SOURCE-TO-IMAGE (S2I)
PROCESS

To run and configure the JWS for OpenShift images, use the OpenShift S2I process with the application
template parameters and environment variables.

The S2I process for the JWS for OpenShift images works as follows:

e |f there is a Maven settings.xml file in the configuration/source directory, it is moved to
$HOME/.m2/ of the new image.
See the Apache Maven Project website for more information on Maven and the Maven
settings.xml file.

e |f there is a pom.xml file in the source repository, a Maven build is triggered using the contents
of the SMAVEN_ARGS environment variable.
By default, the package goal is used with the openshift profile, including the arguments for
skipping tests (-DskipTests) and enabling the Red Hat GA repository (-
Dcom.redhat.xpaas.repo.redhatga).

® The results of a successful Maven build are copied to /opt/webserver/webapps/. This includes
all WAR files from the source directory specified by the $ARTIFACT_DIR environment variable.
The default value of SARTIFACT_DIR is the target/ directory.
Use the MAVEN_ARGS_APPEND environment variable to modify the Maven arguments.

e Al WAR files from the deployments/source directory are copied to /opt/webserver/webapps/.

e All files in the configuration/source directory are copied to /opt/webserver/conf/ (excluding
the Maven settings.xml file).

e Allfiles in the lib/source directory are copied to /opt/webserver/lib/.

9’ NOTE

If you want to use custom Tomcat configuration files, the file names should be
the same as for a normal Tomcat installation. For example, context.xml and
server.xml.

See the Artifact Repository Mirrors section for guidance on configuring the S2I process to use a custom
Maven artifacts repository mirror.

https://access.redhat.com/documentation/en-us/red_hat_jboss_middleware_for_openshift/3/html/openshift_primer/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html/installation_and_configuration/install-config-imagestreams-templates
https://maven.apache.org/settings.html

CHAPTER 4. GET STARTED

4.2.1. Create a JWS for OpenShift application using existing maven binaries

Existing applications are deployed on OpenShift using the oc start-build command.

Prerequisite: An existing .war, .ear, or .jar of the application to deploy on JWS for OpenShift.

1.

Prepare the directory structure on the local file system.

Create a source directory containing any content required by your application not included in
the binary (if required, see Using the JWS for OpenShift Source-to-Image (S2I) process), then
create a subdirectory deployments/:

I $ mkdir -p <build_dir>/deployments
Copy the binaries (.war,.ear,.jar) to deployments/:

I $ cp /path/to/binary/<filenames_with_extensions> <build_dir>/deployments/

—

NOTE

Application archives in the deployments/ subdirectory of the source directory
are copied to the $JWS_HOME/webapps/ directory of the image being built on
OpenShift. For the application to deploy, the directory hierarchy containing the
web application data must be structured correctly (see Section 4.2, “Using the
JWS for OpenShift Source-to-Image (S2I) process”).

Log in to the OpenShift instance:

I $ oc login <url>

Create a new project if required:

I $ oc new-project <project-name>

Identify the JWS for OpenShift image stream to use for your application with oc get is -n
openshift:

$ oc get is -n openshift | grep "jboss-webserver | cut -f1 -d '’

jboss-webserver50-tomcat9-openshift

NOTE

The option -n openshift specifies the project to use. oc get is -n openshift
retrieves (get) the image stream resources (is) from the openshift project.

6. Create the new build configuration, specifying image stream and application name:

$ oc new-build --binary=true \
--image-stream=jboss-webserver50-tomcat9-openshift \
--name=<my-jws-on-openshift-app>

https://docs.openshift.com/container-platform/latest/dev_guide/builds/build_inputs.html#binary-source

Red Hat JBoss Web Server 5.3 Red Hat JBoss Web Server for OpenShift

7. Instruct OpenShift to use the source directory created previously for binary input of the
OpenShift image build:

I $ oc start-build <my-jws-on-openshift-app> --from-dir=./<build_dir> --follow
8. Create a new OpenShift application based on the image:

I $ oc new-app <my-jws-on-openshift-app>
9. Expose the service to make the application accessible to users:

to check the name of the service to expose
$ oc get svc -0 name

service/<my-jws-on-openshift-app>

to expose the service
$ oc expose svc/my-jws-on-openshift-app

route "my-jws-on-openshift-app" exposed
10. Retrieve the address of the exposed route:

I oc get routes --no-headers -0 custom-columns='host:spec.host' my-jws-on-openshift-app

1. To access the application in your browser: http://<address_of_exposed_route> /<my-war-ear-
jar-filename-without-extension>

4.2.2. Example: Creating a JWS for OpenShift application using existing maven
binaries

The example below uses the tomcat-websocket-chat quickstart using the procedure from Section 4.2.],
“Create a JWS for OpenShift application using existing maven binaries”.

4.2.2.1. Prerequisites:
A. Get the WAR application archive or build the application locally.

® Clone the source code:

I $ git clone https://github.com/jboss-openshift/openshift-quickstarts.git

® Configure the Red Hat JBoss Middleware Maven Repository

o Additional information for the Red Hat JBoss Middleware Maven Repository

® Build the application:

I $ cd openshift-quickstarts/tomcat-websocket-chat/

$ mvn clean package

[INFO] Scanning for projects...

https://github.com/jboss-openshift/openshift-quickstarts/tree/master/tomcat-websocket-chat
https://github.com/jboss-openshift/openshift-quickstarts.git
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html/development_guide/using_maven_with_eap#use_the_maven_repository
https://access.redhat.com/maven-repository

CHAPTER 4. GET STARTED

[INFQO]
[INFQO]
[INFQO] Building Tomcat websocket example 1.2.0.Final
[INFQO]

[INFO]
[INFO] BUILD SUCCESS
[INFO]
[INFO] Total time: 01:28 min

[INFO] Finished at: 2018-01-16T15:59:16+10:00
[INFO] Final Memory: 19M/271M

[INFO]

B. Prepare the directory structure on the local file system.
Create the source directory for the binary build on your local file system and the deployments/
subdirectory. Copy the WAR archive to deployments/:

[tomcat-websocket-chat]$ Is

pom.xml README.md src/ target/
I $ mkdir -p ocp/deployments

I $ cp target/websocket-chat.war ocp/deployments/

4.2.2.2. To setup the example application on OpenShift

1. Login to the OpenShift instance:
I $ oc login <url>

2. Create a new project if required:
I $ oc new-project jws-bin-demo

3. Identify the JWS for OpenShift image stream to use for your application with oc get is -n
openshift:

$ oc get is -n openshift | grep "jboss-webserver | cut -f1 -d '’

jboss-webserver50-tomcat9-openshift
4. Create new build configuration, specifying image stream and application name:

$ oc new-build --binary=true \
--image-stream=jboss-webserver50-tomcat9-openshift \
--name=jws-wsch-app

--> Found image 8c3b85b (4 weeks old) in image stream "openshift/jboss-webserver50-
tomcat9-openshift" under tag "latest" for "jooss-webserver50-tomcat9-openshift”

JBoss Web Server 5.0

Red Hat JBoss Web Server 5.3 Red Hat JBoss Web Server for OpenShift

Platform for building and running web applications on JBoss Web Server 5.0 - Tomcat v9
Tags: builder, java, tomcat9

* A source build using binary input will be created
* The resulting image will be pushed to image stream "jws-wsch-app:latest”
* A binary build was created, use 'start-build --from-dir' to trigger a new build

--> Creating resources with label build=jws-wsch-app ...
imagestream "jws-wsch-app" created
buildconfig "jws-wsch-app" created

--> Success

5. Start the binary build. Instruct OpenShift to use source directory for the binary input for the
OpenShift image build:

$ oc start-build jws-wsch-app --from-dir=./ocp --follow

Uploading directory "ocp" as binary input for the build ...
build "jws-wsch-app-1" started
Receiving source from STDIN as archive ...

Copying all deployments war artifacts from /home/jooss/source/deployments directory into
/opt/webserver/webapps for later deployment...
''nome/jboss/source/deployments/websocket-chat.war' ->
'/opt/webserver/webapps/websocket-chat.war'

Pushing image 172.30.202.111:5000/jws-bin-demo/jws-wsch-app:latest ...
Pushed 0/7 layers, 7% complete

Pushed 1/7 layers, 14% complete

Pushed 2/7 layers, 29% complete

Pushed 3/7 layers, 49% complete

Pushed 4/7 layers, 62% complete

Pushed 5/7 layers, 92% complete

Pushed 6/7 layers, 100% complete

Pushed 7/7 layers, 100% complete

Push successful

6. Create a new OpenShift application based on the image:

$ oc new-app jws-wsch-app

--> Found image e5f3a6b (About a minute old) in image stream "jws-bin-demo/jws-wsch-app"
under tag "latest" for "jws-wsch-app"

JBoss Web Server 5.0
Platform for building and running web applications on JBoss Web Server 5.0 - Tomcat v9

Tags: builder, java, tomcat9

* This image will be deployed in deployment config "jws-wsch-app"
* Ports 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by service "jws-wsch-app"

10

CHAPTER 4. GET STARTED

* Other containers can access this service through the hostname "jws-wsch-app"
--> Creating resources ...
deploymentconfig "jws-wsch-app" created
service "jws-wsch-app" created

--> Success

Application is not exposed. You can expose services to the outside world by executing one
or more of the commands below:

'oc expose svc/jws-wsch-app'

Run 'oc status' to view your app.

7. Expose the service to make the application accessible to users:

to check the name of the service to expose
$ oc get svc -0 name

service/jws-wsch-app

to expose the service
$ oc expose svc/jws-wsch-app

route "jws-wsch-app" exposed
8. Retrieve the address of the exposed route:

I oc get routes --no-headers -0 custom-columns='host:spec.host' jws-wsch-app

9. Access the application in your browser: http://<address_of_exposed_route>/websocket-chat

4.2.3. Create a JWS for OpenShift application from source code

For detailed instructions on creating new OpenShift applications from source code, see OpenShift.com
- Creating an application from source code.

NOTE

Before proceeding, ensure that the applications' data is structured correctly (see
Section 4.2, "Using the JWS for OpenShift Source-to-Image (S2l) process”).

1. Login to the OpenShift instance:
I $ oc login <url>
2. Create a new project if required:
I $ oc new-project <project-name>

3. Identify the JWS for OpenShift image stream to use for your application with oc get is -n
openshift:

$ oc get is -n openshift | grep "jboss-webserver | cut -f1 -d '’

jboss-webserver50-tomcat9-openshift

1

https://docs.openshift.com/container-platform/latest/applications/creating_applications/creating-applications-using-cli.html#applications-create-using-cli-source-code_creating-applications-using-cli

Red Hat JBoss Web Server 5.3 Red Hat JBoss Web Server for OpenShift

4. Create the new OpenShift application from source code using Red Hat JBoss Web Server for
OpenShift images, use the --image-stream option:

$ oc new-app \

<source_code_location>\
--image-stream=jboss-webserver50-tomcat9-openshift \
--name=<openshift_application _name>

For Example:

$ oc new-app \
https://github.com/jboss-openshift/openshift-quickstarts.git#master \
--image-stream=jboss-webserver50-tomcat9-openshift \
--context-dir="tomcat-websocket-chat' \

--name=jws-wsch-app

The source code is added to the image and the source code is compiled. The build
configuration and services are also created.

5. To expose the application:

to check the name of the service to expose
$ oc get svc -0 name

service/<openshift_application _name>

to expose the service
$ oc expose svc/<openshift_application_name>

route "<openshift_application _name>" exposed

6. Toretrieve the address of the exposed route:

oc get routes --no-headers -0 custom-columns='host:spec.host'
<openshift_application _name>

7. To access the application in your browser:
http://<address_of exposed_route>/<java_application_name>

12

https://github.com/jboss-openshift/openshift-quickstarts.git#master

CHAPTER 5. REFERENCE

CHAPTER 5. REFERENCE

5.1. SOURCE-TO-IMAGE (S2I)

The Red Hat JBoss Web Server for OpenShift image includes S2I scripts and Maven.

5.1.1. Using maven artifact repository mirrors with JWS for OpenShift

A Maven repository holds build artifacts and dependencies, such as the project jars, library jars, plugins
or any other project specific artifacts. It also defines locations to download artifacts from while
performing the S2I build. Along with using the Maven Central Repository, some organizations also
deploy a local custom repository (mirror).
Benefits of using a local mirror are:

® Availability of a synchronized mirror, which is geographically closer and faster.

® Greater control over the repository content.

® Possibility to share artifacts across different teams (developers, Cl), without the need to rely on
public servers and repositories.

® |mproved build times.
A Maven repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at http;//10.0.0.1:8080/repository/internal/, the S2I build
can use this repository. To use an internal Maven repository, add the MAVEN_MIRROR_URL

environment variable to the build configuration of the application.

For a new build configuration, use the --build-env option with oc hew-app or oc new-build:

$ oc new-app \
https://github.com/jboss-openshift/openshift-quickstarts.git#master \
--image-stream=jboss-webserver50-tomcat9-openshift \
--context-dir="tomcat-websocket-chat' \
--build-env MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/\
--name=jws-wsch-app

For an existing build configuration:

1. ldentify the build configuration which requires the MAVEN_MIRROR_URL variable:

$ oc get bc -0 name

buildconfig/jws

2. Add the MAVEN_MIRROR_URL environment variable to buildconfig/jws:

$ oc env bc/jws MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"

buildconfig "jws" updated

3. Verify the build configuration has updated:

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.7/html/creating_images/creating-images-s2i
https://maven.apache.org/repository/index.html
https://maven.apache.org/repository-management.html
https://github.com/jboss-openshift/openshift-quickstarts.git#master

Red Hat JBoss Web Server 5.3 Red Hat JBoss Web Server for OpenShift

$ oc env bc/jws --list

buildconfigs jws
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

4. Schedule a new build of the application using oc start-build

/, NOTE

During application build, Maven dependencies are download from the repository
manager, instead of the default public repositories. Once the build has finished, the mirror
contains all the dependencies retrieved and used during the build.

5.1.2. Scripts included on the Red Hat JBoss Web Server for OpenShift image

run
runs Catalina (Tomcat)
assemble

uses Maven to build the source, create package (.war) and move it to the $JWS_HOME/webapps
directory.

5.1.3. JWS for OpenShift datasources

There are 3 types of data sources:

1. Default Internal Datasources: These are PostgreSQL, MySQL, and MongoDB. These
datasources are available on OpenShift by default through the Red Hat Registry and do not
require additional environment files to be configured for image streams. To make a database
discoverable and used as a datasource, set the DB_SERVICE_PREFIX_MAPPING environment
variable to the name of the OpenShift service.

2. Other Internal Datasources: These are datasources not available by default through the Red
Hat Registry but run on OpenShift. Configuration of these datasources is provided by
environment files added to OpenShift Secrets.

3. External Datasources: Datasources not run on OpenShift.Configuration of external
datasources is provided by environment files added to OpenShift Secrets.

The datasources environment files are added to the OpenShift Secret for the project. These
environment files are then called within the template using the ENV_FILES environment property.

Datasources are automatically created based on the value of certain environment variables. The most
important environment variable is DB_SERVICE_PREFIX_MAPPING.
DB_SERVICE_PREFIX_MAPPING defines JNDI mappings for the datasources. The allowed value for
this variable is a comma-separated list of POOLNAME-DATABASETYPE=PREFIX triplets, where:

® POOLNAME is used as the pool-name in the datasource.

e DATABASETYPE is the database driver to use.

® PREFIX is the prefix used in the names of environment variables that are used to configure the
datasource.

14

For each POOLNAME-DATABASETYPE=PREFIX triplet defined in the
DB_SERVICE_PREFIX_MAPPING environment variable, the launch script creates a separate
datasource, which is executed when running the image.

CHAPTER 5. REFERENCE

For a full listing of datasource configuration environment variables, please see the Datasource

Configuration Environment Variables list given here.

5.1.4. JWS for OpenShift compatible environment variables

The build configuration can be modified by including environment variables to the Source-to-Image
build command (see Section 5.1.1, “Using maven artifact repository mirrors with JWS for OpenShift”).
The valid environment variables for the Red Hat JBoss Web Server for OpenShift images are:

Variable Name

Display Name

Description

Example Value

ARTIFACT_DIR

APPLICATION_NAME

CONTEXT_DIR

GITHUB_WEBHOOK_S
ECRET

GENERIC_WEBHOOK_
SECRET

HOSTNAME_HTTP

HOSTNAME_HTTPS

IMAGE_STREAM_NAM

ESPACE

JWS_HTTPS_SECRET

N/A

Application Name

Context Directory

Github Webhook Secret

Generic Webhook
Secret

Custom HTTP Route
Hostname

Custom HTTPS Route
Hostname

Imagestream
Namespace

Secret Name

.war, .ear, and .jar files
from this directory will
be copied into the
deployments
directory

The name for the
application

Path within Git project
to build; empty for root
project directory

Github trigger secret

Generic build trigger
secret

Custom hostname for
http service route.
Leave blank for default
hostname

Custom hostname for
https service route.
Leave blank for default
hostname

Namespace in which the
ImageStreams for Red
Hat Middleware images
are installed

The name of the secret
containing the
certificate files

target

jws-app

tomcat-websocket-chat

Expression from: [a-zA-
Z0-9]§8}

Expression from: [a-zA-
Z0-9]§8}

<application-name>-
<project>.<default-
domain-suffix>

<application-name>-
<project>.<default-
domain-suffix>

openshift

jws-app-secret

15

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html/getting_started_with_jboss_eap_for_openshift_container_platform/reference_information#db_service_prefix_mapping

Red Hat JBoss Web Server 5.3 Red Hat JBoss Web Server for OpenShift

Variable Name Display Name Description Example Value
JWS_HTTPS_CERTIFIC Certificate Name The name of the server.crt
ATE certificate file within the
secret
JWS_HTTPS_CERTIFIC Certificate Key Name The name of the server.key
ATE_KEY certificate key file within
the secret
JWS_HTTPS_CERTIFIC Certificate Password The Certificate P5sswOrd
ATE_PASSWORD Password
JWS_ADMIN_USERNA JWS Admin Username JWS Admin account ADMIN
ME username
JWS_ADMIN_PASSWO JWS Admin Password JWS Admin account P5swOrd
RD password
SOURCE_REPOSITORY Git Repository URL Git source URI for https://github.com/jbo
_URL Application ss-
openshift/openshift-
quickstarts.git
SOURCE_REPOSITORY Git Reference Git branch/tag 1.2
_REFERENCE reference
IMAGE_STREAM_NAM Imagestream Namespace in which the openshift
ESPACE Namespace ImageStreams for Red
Hat Middleware images
are installed
MAVEN_MIRROR_URL Maven Mirror URL URL of a Maven http://10.0.0.1:8080/rep
mirror/repository ository/internal/

manager to configure.

5.2. VALVES ON JWS FOR OPENSHIFT

5.2.1. JWS for OpenShift compatible environmental variables (valve component)

You can define the following environment variables to insert the valve component into the request
processing pipeline for the associated Catalina container.

Variable Name Description Example Value Default Value

ENABLE_ACCESS_LOG Enable the Access Log Valve true false
to log access messages to the
standard output channel.

16

https://github.com/jboss-openshift/openshift-quickstarts.git

5.3. CHECKING LOGS

To view the OpenShift logs or the logs provided by a running container’s console:

I $ oc logs -f <pod_name> <container_name>

Access logs are stored in fopt/webserver/logs/.

CHAPTER 5. REFERENCE

17

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. OVERVIEW OF RED HAT JBOSS WEB SERVER FOR OPENSHIFT

	CHAPTER 2. BEFORE YOU BEGIN
	2.1. THE DIFFERENCE BETWEEN RED HAT JBOSS WEB SERVER AND JWS FOR OPENSHIFT
	2.2. VERSION COMPATIBILITY AND SUPPORT
	2.3. SUPPORTED ARCHITECTURES BY JBOSS WEB SERVER
	2.4. HEALTH CHECKS FOR RED HAT CONTAINER IMAGES

	CHAPTER 3. THE DIFFERENCE BETWEEN RED HAT JBOSS WEB SERVER AND JWS FOR OPENSHIFT
	CHAPTER 4. GET STARTED
	4.1. INITIAL SETUP
	4.2. USING THE JWS FOR OPENSHIFT SOURCE-TO-IMAGE (S2I) PROCESS
	4.2.1. Create a JWS for OpenShift application using existing maven binaries
	4.2.2. Example: Creating a JWS for OpenShift application using existing maven binaries
	4.2.2.1. Prerequisites:
	4.2.2.2. To setup the example application on OpenShift

	4.2.3. Create a JWS for OpenShift application from source code

	CHAPTER 5. REFERENCE
	5.1. SOURCE-TO-IMAGE (S2I)
	5.1.1. Using maven artifact repository mirrors with JWS for OpenShift
	5.1.2. Scripts included on the Red Hat JBoss Web Server for OpenShift image
	5.1.3. JWS for OpenShift datasources
	5.1.4. JWS for OpenShift compatible environment variables

	5.2. VALVES ON JWS FOR OPENSHIFT
	5.2.1. JWS for OpenShift compatible environmental variables (valve component)

	5.3. CHECKING LOGS

