
Ella Deon Lackey

JBoss Operations Network
3.1
Development - Writing JON
Command-Line Scripts

using the JBoss ON CLI and remote API
Edition 3.1.2

JBoss Operations Network 3.1 Development - Writing JON Command-Line
Scripts

using the JBoss ON CLI and remote API
Edition 3.1.2

Ella Deon Lackey
dlackey@redhat.com

Legal Notice

Copyright © 2012 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
JBoss Operations Network provides its own command shell that can interact directly with the JBoss
ON server. This CLI uses the JBoss ON remote API to perform most of the tasks available in the
JBoss ON GUI, as well as additional operations like importing and exporting server configuration
and exporting historic metric data. The CLI allows administrators to script and automate their JBoss
ON deployment, which makes it easier to manage their infrastructure. This guide covers the basics
of installing and using the JBoss ON CLI and provides examples of scripts for common tasks. It is
intended primarily for administrators who will be using the default JBoss ON CLI to manage JBoss
ON. This manual has a secondary audience for plug-in writers and developers who intend to write
custom applications which leverage the remote API.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

Table of Contents

About This Guide
1. Audience and Intent
2. Document History

Part I. Getting Started

Chapter 1. Understanding How Scripts Work with the JBoss ON Server and CLI
1.1. A Summary of JBoss ON Public APIs
1.2. The JBoss ON Server and Its Interfaces
1.3. JBoss ON CLI Scripts and JBoss ON Server Scripts
1.4. Differences Between the JBoss ON CLI and JBoss ON GUI Operations
1.5. Using Other Clients
1.6. Additional Resources

Chapter 2. Installing the JBoss ON CLI
2.1. Installing the CLI
2.2. Setting CLI Environment Variables
2.3. CLI Files and Directories

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI
1. Compatible CLI and Server Versions
2. The JBoss ON CLI Command Syntax
3. Available Implicit Variables in the JBoss ON API
4. Methods Specific to the JBoss ON CLI
5. Common Actions with JBoss ON CLI Scripts
6. Tips and Tricks for Using the CLI
1. Searches
2. Getting the JBoss ON ID for an Object
3. Getting Data for Single and Multiple Resources
4. Setting Method Variables to String
5. Resources and Groups
6. Resource Configuration
7. Operations
8. Monitoring
9. Alerts
10. Users and Roles

Part III. Extended Examples and Use Scenarios
1. Example: Scripts to Manage Inventory (All Resource Types)
2. Example: Scripts to Manage Resources of a Specific Type
3. Example: Scripting Resource Deployments (JBoss EAP 5)
4. Example: Deploying an Application with Bundles (JBoss EAP 4, 5, and 6)
5. Example: JNDI Lookups After an Alert (JBoss EAP 5)
6. Example: Managing Grouped Servers (JBoss EAP 5)
7. Example: Deploying a Standalone Server to a Cluster (JBoss EAP 6)
8. Example: Deploying Applications Through Bundles (General)
9. Example: Remedying Resource Drift
10. Example: Managing JBoss ON Server Configuration
11. Example: Writing a Custom Java Client

2
2
2

3

4
4
4
5
6
6
7

8
8
9

10

12
12
12
16
19
29
39
44
49
49
51
51
55
59
64
68
70

72
72
74
76
80
85
86
97

102
107
114
117

Table of Contents

1

About This Guide

The remote API for JBoss Operations Network, and affiliated APIs like the domain API for searches and the
plug-in API for agent plug-ins, provides a framework for automating management tasks.

Automation can take different forms, from scheduling routine management tasks as cron jobs to initiating
server scripts in response to fired alerts. The remote API lets administrators be more active and responsive in
how they maintain resources.

Because of the different ways that scripts can be used with JBoss ON, there are different methods of both
writing and calling scripts. Because of the variety of different implementing scripts, wriing scripts, and even
tasks that scripts can perform, there is no way to give a comprehensive library of scripts so that "if you want
to do A, run script B." The goal of this guide it to provide clarity on what the remote API provides to script
writers and basic usage information and examples for the included interactive JBoss ON CLI utility.

With a good basis of understanding some of what JBoss ON server scripts can do, administrators can create
whatever specific script they need for their environments.

1. Audience and Intent

JBoss ON itself is written in Java, and the installed CLI utility communicates to the server in Java. However,
the CLI uses a JavaScript-style interpreter and can execute JavaScript files that are passed to it.

This guide is geared toward systems administrators and programmers with a basic understanding of
JavaScript. It is beneficial (though not required) to have a basic grasp of Java, as well.

The JBoss ON remote API can be used to write services in other Java-compatible languages, such as
Groovy and Scala. That is outside the scope of this guide.

2. Document History

Revision 3.1.2-1.400 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 3.1.2-1 January 23, 2013 Ella Deon Lackey
Fixed bad example for the baseDirName argument in the deploy application example, Bugzilla 852521.
Adding an example of printing/retrieving the results of an operation, Bugzilla 855442.
Adding a modified example of autoimport.js for a specific resource type (domain deployment), Bugzilla
860321.

Revision 3.1.1-0 October 3, 2012 Ella Deon Lackey
Bug fixes for JBoss Operations Network 3.1.1.

Revision 3.1-3 August 9, 2012 Ella Deon Lackey
Updating API links.

Revision 3.1-1 June 30, 2012 Ella Deon Lackey
Updating CLI short examples, baed on QE feedback.

Revision 3.1-0 June 12, 2012 Ella Deon Lackey
Initial release of JBoss ON 3.1.

Writing JBoss ON Command-Line Scripts

2

Part I. Getting Started

JBoss ON can use scripts in different ways and through different methods. There are different APIs available
depending on what, exactly, you want to accomplish. Understanding how the JBoss ON server interacts with
clients through its different interfaces makes it easier to understand how to plan and write scripts for different
management scenarios. Better scripting (and a better understanding of what JBoss ON is doing with scripts)
improves your ability to automate how you manage resources in your IT environment.

Part I. Getting Started

3

Chapter 1. Understanding How Scripts Work with the JBoss ON
Server and CLI

The JBoss Operations Network CLI and server-side scripts expose much of the core functionality of the JBoss
ON server itself and give a lot of control to IT administrators on managing the resources in JBoss ON
automatically and programmatically.

JBoss ON's remote API and the scripts which leverage it provide a way to access the JBoss ON server
directly. Ultimately, this allows administrators to interact with JBoss ON differently than a strictly UI-based
deployment.

Understanding the different JBoss ON APIs and how they interact with the JBoss ON server can help
administrators plan what scripts they need for using the CLI programmatically, for planning alerts, and for
designing clients.

1.1. A Summary of JBoss ON Public APIs

There are three relevant, public APIs for JBoss ON, which each interact differently with the JBoss ON server:
the remote API, the domain API, and the plug-in API.

Table 1.1. JBoss ON APIs

API Description
Remote Resource management functions for tasks such as

managing the inventory, changing configuration,
uploading and managing content, initiating
operations, viewing metrics and alerts, managing
configuration drift, creating groups, and creating and
managing users and roles. The remote API is
accessible using standard Java enterprise client
mechanisms or through the servlet-based JBoss
remoting endpoint.

Domain Functions which parallel the server's local manager
beans, particularly in how a feature area is
configured. Clients use the remote API to script
actions. The remote API relies on the domain API to
supply most of that functionality, such as the criteria
to use for object searches or the different properties
for viewing resource configuration.

Plug-in Functions related to both agent (resource) plug-ins.
This is not used at all for the JBoss ON CLI or
server-side scripts. The APIs are used by the agent
plug-ins to receive and convey information between
the agent and the JBoss ON server.

1.2. The JBoss ON Server and Its Interfaces

The JBoss ON server is a Java application. All of the subsystems — like resources and groups, monitoring,
alerting, drift, and provisioning — are contained in Enterprise JavaBeans in the server. The different JBoss
ON APIs interact with those EJBs.

Specifically, most of the server EJBs are stateless session beans (SLSBs). These core server SLSBs follow
a certain naming logic:

Writing JBoss ON Command-Line Scripts

4

../../html/API/files/remote-api/index.html
../../html/API/files/domain/index.html
../../html/API/files/plugin-api/index.html

The implementing class is *ManagerBean. This implements both the local API and the remote API.

SLSBs that are used internally by the server are *ManagerLocal.

SLSBs that define the remote API are *ManagerRemote.

Each SLSB exposes its remote interface in the CLI with the naming convention *Manager. For example, all of
the methods associated with managing a resource belong to ResourceManager.

The server itself uses EJBs to create its data structure. The CLI interacts with the server EJBs through the
remote API, the *Managers. The remote API is the compilation of the *Remote interfaces of the server's
EJBs.

Figure 1.1. The Server Interfaces and Client Interactions

So, how does all of that fit in with the JBoss ON server and using server-side scripts?

All of the different APIs interact with clients and with the server in slightly different ways.

Agents, and their underlying resources and resource plug-ins, use the plug-in API to communicate to the core
server (over the remoting framework). Agent and server plug-ins frequently work in pairs to extend JBoss ON
functionality. For example, implementing an additional recipe style for bundles would require an agent plug-in
to work with resources and a corresponding server plug-in to work with the server-side data structures.

The JBoss ON CLI uses the remote and domain APIs to communicate to the core server, also over the
remoting framework. Unlike the agent, the CLI does not implement functionality (or at least not a lot); rather, it
calls on the existing functionality to perform management tasks.

The GUI, which is hosted by the JBoss ON server, uses its local interface directly. Because the GUI uses a
different API than the CLI, there are slight differences in what can be performed through the GUI as opposed
to the CLI (Section 1.4, “Differences Between the JBoss ON CLI and JBoss ON GUI Operations”).

1.3. JBoss ON CLI Scripts and JBoss ON Server Scripts

There are two major ways to access the remote API: through the JBoss ON CLI and through a separate
JBoss ON server script.

Chapter 1. Understanding How Scripts Work with the JBoss ON Server and CLI

5

The scripts themselves are more or less identical, with the exception of some methods that are available
when the JBoss ON CLI is run interactively. Both CLI scripts and server-side scripts are written in JavaScript
and use the remote API primarily, with support from the domain API for tasks like searches.

The main difference is in how the scripts are invoked:

The JBoss ON CLI can be run manually, execute a script file, and even be invoked automatically by a
system tool like cron. The CLI can connect to to any JBoss ON server and can be run remotely.

Essentially, the CLI is a script execution engine. It exposes the remote API in a scripting language, which
makes it more convenient to interact dynamically the JBoss ON server.

Server-side scripts are uploaded into a content repository, managed in the JBoss ON server database,
and are then invoked in response to a fired alert. Even though the server-side scripts are located on the
server, they still use the same APIs to communicate with the server as other CLI scripts.

There is no way to define a dependency on another JBoss ON script or to pull in functions defined in a utility
script. The CLI allows you to load multiple scripts into a session using the exec command:

$ login -u rhqadmin -p rhqadmin
$ exec -f samples/util.js
$ exec /opt/my-scripts/mySupportScript.js
$ exec /opt/my-scripts/myScript.js

With a server-side script, all required functions must be included in the script itself because the server runs
the script on itself, locally. There is no session to load outside scripts in.

1.4. Differences Between the JBoss ON CLI and JBoss ON GUI Operations

While there is a lot of overlap between what can be done in the JBoss ON UI and the CLI scripts, there is not
complete parity. There are a couple of critical differences:

Alert definition configuration. This is probably the most critical difference. While fired alerts can be
retrieved through the CLI and scripts, there is no way to create or edit an alert definition, to set alert
notifications, or to set alert conditions.

Manually creating child resources

Defining failover lists for servers

Defining affinity groups for agents

Some other local managers are used internally by the server, so there is no reason for them to be exposed
or accessed through the remote API.:

Raw measurement data compression

Processing, caching, and logging alert conditions

Processing partition events

Determining authorization to resources based on role membership

Schedule loaders for metric collection, drift detection, and other scheduled events

1.5. Using Other Clients

Writing JBoss ON Command-Line Scripts

6

Because JBoss ON exposes a large amount of functionality through its APIs, a number of different clients can
be written to perform management tasks or to offer custom displays or views for resource data.

There are a number of different types of clients that can be written for JBoss ON:

Java clients, such as a desktop application to view alerts or monitoring charts. The JBoss ON CLI itself is
a Java shell that works as a script execution engine.

Clients in JVM-compatible languages, such as Scala or Groovy

REST clients (tech preview)

Writing and using custom clients is outside the scope of this guide. Still, the breadth and flexibility of JBoss
ON's APIs open up opportunities for organizations to integrate JBoss ON with other applications or to create
their own, environment-specific clients to make infrastructure management easier. A simple JEE client is at
Section 11, “Example: Writing a Custom Java Client”.

1.6. Additional Resources

Writing JBoss ON server scripts and using theJBoss ON CLI assumes a certain amount of familiarity with
Java principles and JavaScript writing. These are some good tutorials and references to get a better
understanding of Java, Rhino, and JavaScript.

Java Scripting Programmer's Guide

Rhino: JavaScript for Java

The Java Persistence Query Language (JEE 5 Tutorial)

JBoss Operations Network Development: Writing Custom Plug-ins

The JBoss ON API

Chapter 1. Understanding How Scripts Work with the JBoss ON Server and CLI

7

http://java.sun.com/javase/6/docs/technotes/guides/scripting/programmer_guide/index.html
https://developer.mozilla.org/en/Rhino
http://java.sun.com/javaee/5/docs/tutorial/backup/update3/doc/QueryLanguage.html
../../html/Dev_Writing_Custom_Plug-ins/index.html
../../html/API/index.html

Chapter 2. Installing the JBoss ON CLI

There are two default available ways to run a JBoss ON server script:

In response to an alert

Through the CLI utility

Running a script as part of an alert is configured with the alert definition and does not require any other user
intervention.

Running a script manually requires that the CLI utility be installed.

2.1. Installing the CLI

The CLI utility can be installed on any system, not just a system with a JBoss ON server or agent installed.
That CLI utility package is simply unzipped in the desired location.

Note

The Java 6 JDK must be installed on the system.

Important

The remote API cannot be run from a client inside an application server. For example, the remote
API cannot be run from a client inside an EAP instance; it fails with errors like the following:

Caused by: java.lang.IllegalArgumentException: interface
org.rhq.enterprise.server.auth.SubjectManagerRemote is not visible from
class
loader
at java.lang.reflect.Proxy.getProxyClass(Proxy.java:353)
at java.lang.reflect.Proxy.newProxyInstance(Proxy.java:581)
at
org.rhq.enterprise.client.RemoteClientProxy.getProcessor(RemoteClientPr
oxy.java:69)

1. Open the JBoss ON GUI.

http://server.example.com:7080

2. Click the Administration tab in the top menu.

3. Select the Downloads menu item.

Writing JBoss ON Command-Line Scripts

8

4. Scroll to the Command Line Client Download section, and click Download CLI
4.5.JON.3.1.2.

5. Save the .zip file into the directory where the CLI should be installed.

6. Unzip the packages. For example:

[jsmith@server opt]$ unzip rhq-remoting-cli-4.5.JON.3.1.2.zip

2.2. Setting CLI Environment Variables

The JBoss ON CLI utility is a Java application, so it supports a large variety of environment variables, JVM
settings, and other Java options.

Chapter 2. Installing the JBoss ON CLI

9

The Java settings and environment variables are defined in the rhq-cli-env.sh|bat file.

Note

The rhq-cli-env.sh|bat file is fully annotated, so all available parameters are listed with full
descriptions. If you want to change some of the JVM settings or parameters, read through the rhq-
cli-env.sh|bat file to get an idea of what parameters are available.

Default values are supplied for most of these arguments, and those defaults are sufficient for most operating
environments.

There is one environment variable which must be set for every installation: the Java home directory.
This can be set by editing either the RHQ_CLI_JAVA_HOME or the RHQ_CLI_JAVA_EXE_FILE_PATH
variable in the rhq-cli-env.sh|bat file. For example:

RHQ_CLI_JAVA_HOME="/usr/lib/jvm/java-1.6.0-openjdk-1.6.0.0.x86_64/jdk"

Important

Do not edit the rhq-cli.sh|bat file or attempt to set environment variables in that file. Environment
variables and Java options should only be set in the rhq-cli-env.sh|bat file.

Editing the rhq-cli.sh|bat file may cause unexpected behavior or prevent the utility from running.

2.3. CLI Files and Directories

These are the directories and relevant files for the CLI utility.

Table 2.1. Important CLI Utility Directories and Files

File or Directory Description
cliRoot/rhq-remoting-cli-3.1.2.GA The installation directory. The CLI utility is simply

unzipped, so the installation directory can be
anywhere on a system.

CLI Scripts
cliRoot/rhq-remoting-cli-3.1.2.GA/bin Contains both Linux (shell) and Windows (batch)

scripts for the CLI utility.
rhq-cli.sh | rhq-cli.bat The CLI utility.

rhq-cli-env.sh | rhq-cli-env.bat Sets environment variables for the CLI utility, such
as the Java home directory and Java options.

Samples
cliRoot/rhq-remoting-cli-
3.1.2.GA/samples

Contains both sample JavaScript files and
supplemental JavaScript files which can be adapted
to work with other scripts.

util.js A utility script which provides additional functions for
search, mapping, and listing objects.

Writing JBoss ON Command-Line Scripts

10

measurement_utils.js A utility script which simplifies updating metrics
schedules. Instead of having to understand the
underlying measurement APIs, it provides a way to
define the metrics to change based on their friendly
(UI) name and then both enables/disables and sets
collection intervals in simpler terms.

drift.js A sample script which contains functions to create a
snapshot, search for a specific drift definition,
compare snapshots, and view drift histories.

bundles.js A sample script which sets up a bundles definition.
This includes generating a bundle archive, creating
a destination group, and then deploying the bundle.

deploy-to-and-restart-JBAS.js A sample script which deploys a new bundle or
updated bundle to a group of JBoss servers, and
then restarts the servers in the destination group.

Logging
cliRoot/rhq-remoting-cli-3.1.2.GA/conf Contains the XML files to configure the log4j logger

for the CLI utility.

log4j.xml

log4j-debug.xml

Sets the configuration for regular and debug logging
for the CLI utility.

cliRoot/rhq-remoting-cli-3.1.2.GA/logs Contains the error logs for the CLI utility. This
directory is created when the CLI is first run.

rhq-server-cli.log The error log for the CLI utility.

Libraries
cliRoot/rhq-remoting-cli-3.1.2.GA/lib Contains all of the libraries used specifically by the

CLI utility, including some libraries for proxy
resources and CLI-specific commands.

File or Directory Description

Chapter 2. Installing the JBoss ON CLI

11

Part II. Basic Examples for Running JBoss ON Scripts Through
the CLI

One of the ways to run scripts on the JBoss ON server is through the JBoss ON CLI. The JBoss ON CLI
is essentially a script interpreter which processes JavaScript — either interactively or from a file — and
translates it into Java, which the server then run. The CLI uses the server's remote API, an underlying
domain API, and some of its own CLI-specific methods to make common tasks easier to execute.

The JBoss Operations Network CLI is only one way to run scripts on the server, but it is a flexible and
powerful way to create and execute scripts.

The JBoss ON CLI is essentially a script interpreter which processes JavaScript — either interactively or from
a file — and translates it into Java, which the server then run. (The background concepts for the CLI are
covered in more detail in Chapter 1, Understanding How Scripts Work with the JBoss ON Server and CLI.)

The JBoss ON CLI builds on the defined remote and domain API with its own internal commands, options,
and methods which make writing scripts and managing resources easier. One of the biggest assets is the
ability to create resource proxies, which are simplified (and therefore easier to use) resource objects.

This section focuses on the CLI options and basic usage tips. For scripting basics, see Short Examples.

1. Compatible CLI and Server Versions

Like the agent and other JBoss ON components, the CLI utility has a version. The CLI utility must be the
same version as the JBoss ON server to which it is trying to connect.

The CLI utility is not compatible with other versions of the JBoss ON server, neither newer nor older versions.

2. The JBoss ON CLI Command Syntax

The JBoss ON CLI is a shell and interpreter so that commands and statements can be executed interactively
against the JBoss ON server. Scripts stored in files can also be executed, so it is possible to automate
operations for the JBoss ON server.

2.1. The CLI Script

The CLI script is run directly from its cli-install-dir/bin directory. There are two files associated with
launching the JBoss ON CLI:

A script (rhq-cli.sh|bat)

A file of environment variables (rhq-cli-env.sh|bat)

The environment variables in the rhq-cli-env.sh|bat file use defaults that are reasonable for most
deployments, so this file usually does not need to be edited. It is possible to reset variables to point a
server that doesn't follow the default installation, such as a virtual machine or a non-default JVM. The

[1]

[1] Other methods include alert scripts and custom clients.

Writing JBoss ON Command-Line Scripts

12

comments at the top of the rhq-cli-env.|bat file contain a detailed list of available environment
variables.

Important

Do not edit the rhq-cli.sh|bat file. Only set environment variables through the terminal or in
the rhq-cli-env.sh|bat file, not the script itself.

Note

Be sure to set the correct path to the Java 6 installation in the RHQ_CLI_JAVA_HOME or the
RHQ_CLI_JAVA_EXE_FILE_PATH variable.

The rhq-cli.sh|bat script has the following general syntax:

rhq-cli.sh|bat options

It is possible to launch the CLI script without any arguments, including specifying a username. This opens the
CLI client without connecting to the server.

[jsmith@server bin]$ cliRoot/rhq-remoting-cli-3.1.2.GA/bin/rhq-cli.sh
RHQ - RHQ Enterprise Remote CLI
unconnected$

While scripts can be executed without logging in, most of the functionality of the CLI is unavailable. To truly
use the JBoss ON CLI, log into the server as a JBoss ON user, either by passing a username and password
or by using the login command after starting the CLI.

[jsmith@server bin]$ rhq-cli -u rhqadmin -p rhqadmin

The CLI provides two modes of operation: interactive and non-interactive.

Interactive mode executes an individual statement. Interactive mode provides a simple environment for
prototyping, testing, learning, and discovering features of the CLI.

Non-interactive mode loads a specified script file and executes multiple commands in sequence. Non-
interactive mode provides the capability to automate tasks such as collecting metrics on managed resources
or executing a scheduled operation.

Important

These native commands, like quit, are available only in interactive mode. They cannot be used in a
script when the CLI is used in non-interactive mode, such as when running a script from file. In these
instances, use the Java method.

After logging in, any commands (covered in Section 2.3, “Interactive CLI Commands”) can be passed to the
server.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

13

Important

Whatever user you run the CLI as — meaning, whatever system user runs the rhq-cli.sh script —
must have write access to the logs/ directory for the CLI.

If the CLI is installed as root, for example, then a regular user cannot run the CLI; it fails with write
errors.

2.2. CLI Script Options

Both rhq-cli.bat and rhq-cli.sh scripts accept the options listed in Table 1, “Command-Line Options”.

Table 1. Command-Line Options

Short Option Long Option Description
-h --help Displays the help text of the

command line options of the CLI.
-u --user The username used to log into the

JBoss ON server.
-p --password The password used to log into the

JBoss ON server.
-P Displays a password prompt

where input is not echoed backed
to the screen.

-s --host The JBoss ON server against
which the CLI executes
commands. Defaults to localhost.

-t --port The port on which the JBoss ON
server is accepting HTTP
requests. The default is 7080.

-c --command A command to be executed. The
command must be encased in
double quotes. The CLI will exit
after the command has finished
executing.

-f --file The full path and filename of a
script to execute.

--args-style Indicates the style or format of
arguments passed to the script.
This is the same as using the -s
option with the exec command
interactively.

-v --version Displays CLI and JBoss ON
server version information once
connected to the CLI.

Writing JBoss ON Command-Line Scripts

14

--transport Determines whether or not SSL
will be used for the
communication layer protocol
between the CLI and the JBoss
ON server. If not specified the
value is determined from the {port}
option. If you use a port that ends
in 443, SSL will be used. You only
need to explicitly specify the
transport when your JBoss ON
server is listening over SSL on a
port that does not end with 443.

Short Option Long Option Description

2.3. Interactive CLI Commands

Some native commands are included in the org.rhq.enterprise.client.commands inside the CLI JAR itself.
These commands are part of the CLI itself. Other input in the JBoss ON CLI is passed through the JavaScript
interpreter to the server; these commands are passed to the CLI module.

Section 2.3.1, “login”

Section 2.3.2, “logout”

Section 2.3.3, “quit”

Section 2.3.4, “exec”

Section 2.3.5, “record”

Important

These native commands are available only in interactive mode. They cannot be used in a script when
the CLI is used in non-interactive mode, such as when running a script from file. In these instances,
you must use the Java method.

2.3.1. login

Logs into a JBoss ON server with the specified username and password.

Optionally, the hostname (or IP address) and port can be specified. The hostname defaults to localhost, and
the port defaults to 7080.

It is also possible to specify a transport protocol, which sets whether to use SSL to communicate with the
server. If the transport is not given, then the CLI evaluates the transport based on the port. A port ending in
443 automatically uses SSL, while all other ports use standard connections. The only reason to explicitly set
a transport method is if the server is listening over SSL over a port which does not end in 443.

login username password [host] [port]

The login command can be used in a script executed using exec or with the rhq-cli.sh --f option.

2.3.2. logout

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

15

Logs off of the JBoss ON server without existing from the CLI.

logout

The login command can be used in a script executed using exec or with the rhq-cli.sh --f option.

2.3.3. quit

Exits the CLI.

quit

This only works when the CLI is running interactively. In a script, use java.lang.System.exit.

2.3.4. exec

Executes a statement or a script with the specified file name. A statement wraps onto multiple lines using
backslashes.

exec statement | [-s indexed|named] -f /absolute/path/to/file [args]

Option Description
-f, --file The full path filename of the script to execute. The

full path must be given, or the CLI cannot locate the
script.

-s, --style=named|indexed Indicates the style or format of arguments passed to
the script. It must have a value of either indexed or
named.

2.3.5. record

Records user input commands to a file. This is very useful if you are running the CLI interactively to test a
new script that will later be run non-interactively in the CLI or as an alert server-side script.

record [-b | -e] [-a] -f filename

Option Description
-b, --start Specify this option to start recording.
-e, --end Specify this option to stop recording.
-a, --append Appends output to the end of a file. If not specified,

output will be written starting at the beginning of the
file.

-f, --file The file where output will be written.

3. Available Implicit Variables in the JBoss ON API

In the Java programming language, classes in the java.lang package do not have to be imported; they are
automatically made available. Classes in other packages, however, have to be explicitly imported.

In the JBoss ON CLI, there are a number of classes, particularly from the domain API, that are used routinely.
To simplify using the JBoss ON CLI, everything under the org.rhq.core.domain class is automatically

Writing JBoss ON Command-Line Scripts

16

imported, which makes it easier to use the CLI for managing resources, alerts, and other configuration areas.
For example, the class org.rhq.core.domain.criteria.ResourceCriteria is commonly used to
query resources. The entire class path can be given when calling that class:

var criteria = new org.rhq.core.domain.criteria.ResourceCriteria();
var resource = new org.rhq.core.domain.resource.Resource();

Because the domain class is already imported, this can be more succinctly written as:

var criteria = new ResourceCriteria();
var resource = new Resource();

Common variables used with the CLI scripts are listed in Table 2, “Variables Available by Default to the
JBoss ON CLI”. Methods and other information about these variables are in Section 4, “Methods Specific to
the JBoss ON CLI”.

Table 2. Variables Available by Default to the JBoss ON CLI

Variable Type Description Access Requires Login
rhq org.rhq.enterprise.client.

Controller
Provides built-in
commands to the
interactive CLI: login,
logout, quit, exec, and
version. Two of these
methods, login and
logout, can be called in
server script files, such
as
rhq.login('rhqadmi
n', 'rhqadmin').

YES

subject org.rhq.core.domain.auth
.Subject

Represents the current,
logged in user. For
security purposes, all
remote service
invocations require the
subject to be passed;
however, the CLI will
implicitly pass the
subject for you.

YES

Assert org.rhq.bindings.util.Scrip
tAssert

Provides assertion
utilities for CLI scripts.

NO

pretty org.rhq.enterprise.client.
TabularWriter

Provides for tabular-
formatted printed and
handles converting
objects, particularly
domain objects in the
packages under
org.rhq.core.domain, into
a format suitable for
display in the console.

NO

unlimitedPC org.rhq.core.domain.util.
PageControl

NO

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

17

pageControl org.rhq.core.domain.util.
PageControl

Used to specify paging
and sorting on data
retrieval operations

NO

exporter org.rhq.enterprise.client.
Exporter

Used to export output to
a file. Supported formats
are plain text in tabular
format and CSV.

NO

ProxyFactory org.rhq.enterprise.client.
utility.ResourceClientPro
xy.Factory

NO

scriptUtil org.rhq.enterprise.client.
utility.ScriptUtil

Provides methods that
can be useful when
writing scripts.

NO

AlertManager org.rhq.enterprise.server
.alert.AlertManagerRemo
te

Provides an interface
into the alerts
subsystem.

YES

AlertDefinitionManager org.rhq.enterprise.server
.alert.AlertDefinitionMana
gerRemote

Provides an interface
into the alerts definition
subsystem.

YES

AvailabilityManager org.rhq.enterprise.server
.measurement.Availabilit
yManagerRemote

Provides an interface
into the measurement
subsystem that can be
used to determine
resources' availability.

YES

CallTimeDataManager org.rhq.enterprise.server
.measurement.CallTime
DataManagerRemote

Provides an interface
into the measurement
subsystem for retrieving
call-time metric data.

YES

RepoManager org.rhq.enterprise.server
.content.RepoManagerR
emote

Provides an interface
into the content
subsystem for working
with repositories.

YES

ConfigurationManager org.rhq.enterprise.server
.configuration.Configurati
onManagerRemote

Provides an interface
into the configuration
subsystem.

YES

DataAccessManager org.rhq.enterprise.server
.report.DataAccessRem
ote

Provides an interface for
executing user-defined
queries.

YES

EventManager org.rhq.enterprise.server
.event.EventManagerRe
mote

Provides an interface
into the events
subsystem.

YES

MeasurementBaselineM
anager

org.rhq.enterprise.server
.measurement.Measure
mentBaselineManagerRe
mote

Provides an interface
into the measurement
subsystem for working
with measurement
baselines.

YES

MeasurementDataMana
ger

org.rhq.enterprise.server
.measurement.Measure
mentDataManagerRemot
e

Provides an interface
into the measurement
subsystem for working
with measurement data.

YES

Variable Type Description Access Requires Login

Writing JBoss ON Command-Line Scripts

18

MeasurementDefinitionM
anager

org.rhq.enterprise.server
.measurement.Measure
mentDefinitionManagerR
emote

Provides an interface
into the measurement
subsystem for working
with measurement
definitions.

YES

MeasurementScheduleM
anager

org.rhq.enterprise.server
.measurement.Measure
mentScheduleManagerR
emote

Provides an interface
into the measurement
subsystem for working
with measurement
schedules.

YES

OperationManager org.rhq.enterprise.server
.operation.OperationMan
agerRemote

Provides an interface
into the operation
subsystem.

YES

ResourceManager org.rhq.enterprise.server
.resource.ResourceMan
agerRemote

Provides an interface
into the resource
subsystem.

YES

ResourceGroupManager org.rhq.enterprise.server
.resource.group.Resourc
eGroupManagerRemote

Provides an interface
into the resource group
subsystem.

YES

ResourceTypeManager org.rhq.enterprise.server
.resource.ResourceType
ManagerRemote

Provides an interface
into the resource
subsystem for working
with resource types.

YES

RoleManager org.rhq.enterprise.server
.authz.RoleManagerRem
ote

Provides an interface
into the security
subsystem for working
with security rules and
roles.

YES

SubjectManager org.rhq.enterprise.server
.auth.SubjectManagerRe
mote

Provides an interface
into the security
subsystem for working
with users.

YES

SupportManager org.rhq.enterprise.server
.support.SupportManage
rRemote

Provides an interface
into the reporting
subsystem for getting
reports of managed
resources.

YES

Variable Type Description Access Requires Login

4. Methods Specific to the JBoss ON CLI

Some classes and methods are available to the JBoss ON CLI and JBoss ON server scripts which are not
part of the regular API.

4.1. Methods Available to the CLI and Server Scripts

4.1.1. Assert

Provides assertion utilities for CLI scripts. More information about using Java assertions is in the Java
language documentation.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

19

http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html

Method Signature
Assert.assertEquals

assertEquals(float, float, float,
String)
assertEquals(short, short, String)
assertEquals(double, double,
double)
assertEquals(long, long, String)
assertEquals(byte, byte, String)
assertEquals(Object, Object)
assertEquals(char, char, String)
assertEquals(Object, Object,
String)
assertEquals(double, double,
double, String)
assertEquals(byte[], byte[])
assertEquals(boolean, boolean)
assertEquals(Object[], Object[],
String)
assertEquals(Collection,
Collection)
assertEquals(Object[], Object[])
assertEquals(byte, byte)
assertEquals(float, float, float)
assertEquals(char, char)
assertEquals(int, int)
assertEquals(long, long)
assertEquals(Collection,
Collection, String)
assertEquals(short, short)
assertEquals(String, String,
String)
assertEquals(byte[], byte[],
String)
assertEquals(boolean, boolean,
String)
assertEquals(String, String)
assertEquals(int, int, String)

Assert.assertEqualsNoOrder
assertEqualsNoOrder(Object[],
Object[], String)
assertEqualsNoOrder(Object[],
Object[])

Assert.assertExists
assertExists(String)

Assert.assertFalse
assertFalse(boolean)
assertFalse(boolean, String)

Writing JBoss ON Command-Line Scripts

20

Assert.assertNotNull
assertNotNull(Object)
assertNotNull(Object, String)

Assert.assertNotSame
assertNotSame(Object, Object,
String)
assertNotSame(Object, Object)

Assert.assertNull
assertNull(Object)
assertNull(Object, String)

Assert.assertNumberEqualsJS
assertNumberEqualsJS(double,
double, String)

Assert.assertSame
assertSame(Object, Object, String)
assertSame(Object, Object)

Assert.assertTrue
assertTrue(boolean, String)
assertTrue(boolean)

Assert.fail
fail()
fail(String, Throwable)
fail(String)

Method Signature

4.1.2. Subject

Represents the current logged-in JBoss ON user.

Method Signature
subject.addLdapRole

addLdapRole(Role)

subject.addRole
addRole(Role)
addRole(Role, boolean)

subject.department Prints the department value (if any) for the current
user.

subject.emailAddress Prints the email address for the current user.
subject.factive Prints whether the user account is active.
subject.firstName Prints whether the first name of the user.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

21

subject.fsystem
subject.id Prints the ID number for the user account within

JBoss ON.
subject.lastName Prints the surname for the user.
subject.ldapRoles Lists any roles associated with LDAP groups to

which the current user is a member.
subject.name Prints the JBoss ON user ID of the current user.
subject.ownedGroups
subject.phoneNumber Prints the phone number, if any exists, for the

current user.
subject.removeLdapRole

removeLdapRole(Role)

subject.removeRole
removeRole(Role)

subject.roles Prints the role name, permissions, associated LDAP
users and groups, associated resource groups, and
other information about every role to which the
current user belongs.

subject.sessionId Prints the current session ID number.
subject.smsAddress Returns the pager number, if it exists, for the user.
subject.toString

String toString()

subject.userConfiguration Returns all of the dashboard information, based on
the configured portlets, dashboards, and settings
that are specific to the logged-in user.

Method Signature

4.1.3. pretty

Converts CLI objects (particularly search results and other domain objects) into a pretty-print format in the
output.

Method Signature
pretty.exportMode Prints the current export setting for the server.
pretty.print

print(String[][])
print(PropertySimple, int)
print(Configuration)
print(PropertyMap, int)
print(PropertyList, int)
print(Collection)
print(Map)
print(Object[])
print(Object)

pretty.width Prints the current width settings for the console
display.

4.1.4. unlimitedPC and pageControl

Writing JBoss ON Command-Line Scripts

22

4.1.4. unlimitedPC and pageControl

Sets paging and sorting settings for returned data.

Method Signature
unlimitedPC.addDefaultOrderingField

addDefaultOrderingField(String,
PageOrdering)
addDefaultOrderingField(String)

unlimitedPC.clone
clone()

unlimitedPC.firstRecord Returns the first record in the results page.
unlimitedPC.getExplicitPageControl

PageControl
getExplicitPageControl(int, int)

unlimitedPC.getSingleRowInstance
PageControl getSingleRowInstance()

unlimitedPC.getUnlimitedInstance
PageControl getUnlimitedInstance()

unlimitedPC.initDefaultOrderingField
initDefaultOrderingField(String)
initDefaultOrderingField(String,
PageOrdering)

unlimitedPC.orderingFields
unlimitedPC.orderingFieldsAsArray
unlimitedPC.pageNumber Returns the current page number for paged results.
unlimitedPC.pageSize Returns the current configured page size (number of

returned entries per page).
unlimitedPC.primarySortColumn
unlimitedPC.primarySortOrder
unlimitedPC.removeOrderingField

removeOrderingField(String)

unlimitedPC.reset
reset()

unlimitedPC.setPrimarySort
setPrimarySort(String,
PageOrdering)

unlimitedPC.setPrimarySortOrder
setPrimarySortOrder(PageOrdering)

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

23

unlimitedPC.sortBy
sortBy(String)

unlimitedPC.startRow Returns the current starting row number.
unlimitedPC.toString

String toString()

unlimitedPC.truncateOrderingFields
truncateOrderingFields(int)

Method Signature

4.1.5. exporter

Writes the CLI output to a specified file.

Method Signature
exporter.close

close()

exporter.file
exporter.format Shows the current configured output format.
exporter.pageWidth Shows the configured line length for content in the

output file.
exporter.setFormat

setFormat(String)

exporter.setFile
setFile(String)

exporter.setPageWidth
setPageWidth(int)

exporter.setTarget
setTarget(String, String)

exporter.write
write(Object)

4.1.6. ProxyFactory

Provides specialized methods to make it easier and simpler to manage resource objects.

Method Signature

Writing JBoss ON Command-Line Scripts

24

ProxyFactory.getResource
ResourceClientProxy
getResource(int)

ProxyFactory.outputWriter
ProxyFactory.remoteClient Returns information about the managers and

configuration used by the remote client. In the
interactive CLI, this prints information about the
manager beans used by the interactive CLI.

ProxyFactory.resource

Method Signature

4.1.7. scriptUtil

Provides utilities to use for writing CLI scripts.

Method Signature
scriptUtil.findResources

PageList<Resource>
findResources(String)

scriptUtil.getFileBytes
byte[] getFileBytes(String)

scriptUtil.isDefined
boolean isDefined(String)

scriptUtil.saveBytesToFile
saveBytesToFile(byte[], String)

scriptUtil.sleep
sleep(long)

scriptUtil.waitForScheduledOperationToComplete
ResourceOperationHistory
waitForScheduledOperationToComplete
(ResourceOperationSchedule, long,
int)
ResourceOperationHistory
waitForScheduledOperationToComplete
(ResourceOperationSchedule)

4.2. Methods Available to Proxy Resources

The ProxyFactory classes provide shortcuts for a lot of common resource management tasks, such as
viewing monitoring data, running operations, or changing the resource or plug-in configuration. These
methods are not in the regular API, but they can be used both by the JBoss ON CLI and by JBoss ON server-
side scripts.

The shortcuts and methods available through ProxyFactory are different, depending on the resource type.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

25

Methods are only available if the resource type supports that functional area.

This section lists the three most common resource types:

Table 3, “Proxy Methods for Platforms”

Table 4, “Proxy Methods for JBoss AS/EAP Servers”

Table 5, “Proxy Methods for Content Sources (EARs, WARs, JARs)”

Note

Use tab-complete in the interactive CLI to find the specific methods available for a resource type or to
get the method signatures for individual methods.

Using proxy resources is covered in Section 5.2, “Using Resource Proxies”.

Table 3. Proxy Methods for Platforms

Information Methods
measurements Displays a pretty-print list of the available metrics,

current values, and description of all measurements
for the platform resource.

operations Lists the available operations for the resource type.

Shortcut Metric Methods
OSName OSVersion architecture createdDate
description distributionName distributionVersion freeMemory
freeSwapSpace hostname idle totalMemory
systemLoad totalSwapSpace usedSwapSpace usedMemory
userLoad modifiedDate waitLoad version

Shortcut Resource Entry Methods
id (inventory ID number) resourceType name (inventory name)

Shortcut Operation Methods
manualAutodiscovery cleanYumMetadataCache viewProcessList

Shortcut Configuration Methods
editPluginConfiguration() pluginConfiguration
pluginConfigurationDefinition

Shortcut Content Methods
contentTypes

Shortcut Inventory Methods
children

Method Signature
platform.getChild

ResourceClientProxy
getChild(String)

Writing JBoss ON Command-Line Scripts

26

platform.getMeasurement
Measurement getMeasurement(String)

platform.updatePluginConfiguration
PluginConfigurationUpdate
updatePluginConfiguration(Configura
tion)

platform.toString
String toString()

Method Signature

Table 4. Proxy Methods for JBoss AS/EAP Servers

Information Methods
measurements Displays a pretty-print list of the available metrics,

current values, and description of all measurements
for the JBoss resource.

operations Lists the available operations for the resource type.

Shortcut Metric Methods
JVMFreeMemory JVMMaxMemory JVMTotalMemory activeThreadCount
activeThreadGroupCoun
t

buildDate createdDate description

modifiedDate startDate totalTransactions totalTransactionsperMinu
te

transactionsCommitted transactionsCommittedp
erMinute

transactionsRolledback transactionsRolledbackp
erMinute

partitionName versionName version

Shortcut Resource Entry Methods
id (inventory ID number) resourceType name (inventory name)

Shortcut Operation Methods
restart shutdown start

Shortcut Configuration Methods
editPluginConfiguration() pluginConfiguration
pluginConfigurationDefinition

Shortcut Content Methods
contentTypes

Shortcut Inventory Methods
children

Method Signature
jbossas.getChild

ResourceClientProxy
getChild(String)

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

27

jbossas.getMeasurement
Measurement getMeasurement(String)

jbossas.updatePluginConfiguration
PluginConfigurationUpdate
updatePluginConfiguration(Configura
tion)

jbossas.toString
String toString()

Method Signature

Table 5. Proxy Methods for Content Sources (EARs, WARs, JARs)

Information Methods
measurements Displays a pretty-print list of the available metrics,

current values, and description of all measurements
for the content resource.

operations Lists the available operations for the resource type.

Shortcut Metric Methods
createdDate modifiedDate description
path version exploded

Shortcut Resource Entry Methods
id (inventory ID number) resourceType name (inventory name)

Shortcut Operation Methods
revert

Shortcut Configuration Methods
editPluginConfiguration() pluginConfiguration
pluginConfigurationDefinition

Shortcut Content Methods
contentTypes backingContent

Shortcut Inventory Methods
children

Method Signature
content.getChild

ResourceClientProxy
getChild(String)

content.getMeasurement
Measurement getMeasurement(String)

Writing JBoss ON Command-Line Scripts

28

content.updatePluginConfiguration
PluginConfigurationUpdate
updatePluginConfiguration(Configura
tion)

content.toString
String toString()

content.retrieveBackingContent
retrieveBackingContent(String
fileName)

content.updateBackingContent
updateBackingContent(String
filename, String displayVersion)

Method Signature

5. Common Actions with JBoss ON CLI Scripts

Important

The remote API cannot be run from a client inside an application server. For example, the remote
API cannot be run from a client inside an EAP instance; it fails with errors like the following:

Caused by: java.lang.IllegalArgumentException: interface
org.rhq.enterprise.server.auth.SubjectManagerRemote is not visible from
class
loader
at java.lang.reflect.Proxy.getProxyClass(Proxy.java:353)
at java.lang.reflect.Proxy.newProxyInstance(Proxy.java:581)
at
org.rhq.enterprise.client.RemoteClientProxy.getProcessor(RemoteClientPr
oxy.java:69)

5.1. Logging In

The CLI actually connects to the JBoss ON server, much like connecting through the GUI. This means that
you have to log into the server before you can perform most tasks.

There are two ways to log into the server through the CLI:

By passing user credentials when the rhq-cli.sh script is run.

By using the command in a script or after starting the CLI without connecting to the server.

When logging into the server, other connection information, such as a server name and port number, can be
passed with the login command.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

29

Example 1. Logging in to a Specified Server

This connects to the CLI and logs into the JBoss ON server on 192.168.1.100 over port 70443. Because
the port number ends with 443, the CLI automatically attempts to connect over SSL.

rhq-cli.sh -u rhqadmin -p rhqadmin -s 192.168.1.100 -t 70443

Example 2. Prompting for a Password

Instead of sending the password in clear text, it is possible to have the server prompt for a password. This
is probably unnecessary when connecting to a server on the local host, but it is useful if the target JBoss
ON server is on a different system.

rhq-cli.sh -u rhqadmin -P

5.2. Using Resource Proxies

The JBoss ON CLI interacts directly with the JBoss ON server through remote APIs for handling resource
objects and through the domain APIs for tasks like searches.

The JBoss ON CLI itself provides another API layer that can make it easier to perform common operations.
The CLI can create a resource proxy object in the CLI, and then that object uses the classes available in the
ProxyFactory to interact with the remote and domain API.

One thing to remember is that proxy resources still use the remote and domain API. The proxy API just
provides a simpler and clearer API on top of the remote and domain APIs that can make it easier to script
many operations.

Note

The ProxyFactory is available to the JBoss ON CLI in interactive mode or when using a script file. It
is also available to server scripts, such as scripts used for alerting.

The ProxyFactory gets information about a resource, which is identified in the getResource() method
with the resource's ID number.

At its simplest, ProxyFactory can return a complete summary of information about the specified resource,
such as its current monitoring data and traits, resource name, available metrics, available operations, content
information, and child inventory, all dependent on the resource type. For example:

rhqadmin@localhost:7080$ ProxyFactory.getResource(10001)
ResourceClientProxy_$$_javassist_0:
 OSName: Linux
 OSVersion: 2.6.32-220.4.1.el6.x86_64
 architecture: x86_64
 children:
 contentTypes: {rpm=RPM File}
 createdDate: Mon Feb 06 11:24:50 EST 2012
 description: Linux Operating System
 distributionName: Red Hat Enterprise Linux Server

Writing JBoss ON Command-Line Scripts

30

 distributionVersion: release 6.2 (Santiago)
 freeMemory: 16.7GB
 freeSwapSpace: 25.6GB
 handler:
 hostname: server.example.com
 id: 10001
 idle: 70.8%
 measurements: [Wait Load, Used Memory, System
Load, Distribution Version, Total Memory, OS Name, Free Memory, Hostname,
Architecture, Distribution Name, Idle, Total Swap Space, Used Swap Space,
User Load, OS Version, Free Swap Space]
 modifiedDate: Mon Feb 06 11:24:50 EST 2012
 name: server.example.com
 operations: [viewProcessList,
cleanYumMetadataCache, manualAutodiscovery]
 pluginConfiguration:
 pluginConfigurationDefinition: ConfigurationDefinition[id=10009,
name=Linux]
 resourceType: Linux
 systemLoad: 0.0%
 totalMemory: 23.5GB
 totalSwapSpace: 25.6GB
 usedMemory: 6.8GB
 usedSwapSpace: 0.0B
 userLoad: 15.8%
 version: Linux 2.6.32-220.4.1.el6.x86_64
 waitLoad: 0.0%

To truly manage resources, the ProxyFactory creates a resource proxy object.

Example 3. Defining a Platform Proxy Resource

var rhelServerOne = ProxyFactory.getResource(10001)

The methods that are available to a resource proxy depend on the resource type and the resource's own
configuration. There are five major types of operations that can be performed on resource proxies:

Viewing basic information about the resource, such as its children

Getting measurement information

Running operations

Changing resource and plug-in configuration

Updating and retrieving content

For each resource type, methods are exposed which allow you to find and use specific information about the
resource. Additionally, the proxy API includes "shortcuts" which provide one-word methods, without requiring
any parameters, to perform common remote API tasks, like getting monitoring information.

The proxy API for common resource types is listed in Section 4.2, “Methods Available to Proxy Resources”.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

31

Note

Use tab-complete in the interactive CLI to find the specific methods available for a resource type or to
get the method signatures for individual methods.

Example 4. Viewing a Resource's Children

ProxyFactory has a method for all proxy objects, children, which lists all of the children for the proxy
resource.

var rhelServerOne = ProxyFactory.getResource(10001)

rhqadmin@localhost:7080$ platform.children
Array of org.rhq.bindings.client.ResourceClientProxy
[10027] Bundle Handler - Ant (Ant Bundle Handler::AntBundlePlugin)
[10026] CPU 6 (CPU::Platforms)
[10025] CPU 0 (CPU::Platforms)
[10024] CPU 5 (CPU::Platforms)
[10023] CPU 1 (CPU::Platforms)
[10022] CPU 4 (CPU::Platforms)
[10021] CPU 2 (CPU::Platforms)
[10020] CPU 3 (CPU::Platforms)
[10019] CPU 7 (CPU::Platforms)
[10018] /boot (File System::Platforms)
[10017] / (File System::Platforms)
[10016] /dev/shm (File System::Platforms)
[10015] /home (File System::Platforms)
[10014] eth1 (Network Adapter::Platforms)
[10013] eth2 (Network Adapter::Platforms)
[10012] eth0 (Network Adapter::Platforms)
[10011] lo (Network Adapter::Platforms)
[10004] postgres (Postgres Server::Postgres)
[10003] AS server.example.com RHQ Server (JBossAS Server::JBossAS)
[10002] RHQ Agent (RHQ Agent::RHQAgent)

Example 5. Viewing Resource Metrics

ProxyFactory provides a set of shortcut metrics for each individual measurement for a resource type.
This corresponds to the findLiveData() method in the remote API, but it is much easier to get
monitoring information quickly and it is simpler to identify what metrics are available.

To get a single measurement value, use the method for that resource type. (Get a list of all methods for a
proxy object using tab-complete.)

var jbossas = ProxyFactory.getResource(14832)

rhqadmin@localhost:7080$ jbossas.JVMTotalMemory
Measurement:
 name: JVM Total Memory
 displayValue: 995.3MB
 description: The total amount of memory currently available in the app
server JVM for current and fut...

Writing JBoss ON Command-Line Scripts

32

Alternatively, simply get a list of metrics with their current values using the measurements method:

var rhelServerOne = ProxyFactory.getResource(10001)

rhqadmin@localhost:7080$ rhelServerOne.measurements
Array of org.rhq.bindings.client.ResourceClientProxy$Measurement
name displayValue description
--

Wait Load 0.0% Percentage of
all CPUs waiting on I/O
Used Memory 6.3GB The total used
system memory
System Load 0.0% Percentage of
all CPUs running in system mode
Distribution Version release 6.2 (Santiago) version of the
Linux distribution
Total Memory 31.4GB The total
system memory
OS Name Linux Name that the
operating system is known as
Free Memory 25.2GB The total free
system memory
Hostname server.example.com Name that this
platform is known as
Architecture x86_64 Hardware
architecture of the platform
Distribution Name Red Hat Enterprise Linux Server name of the
Linux distribution
Idle 92.6% Idle
percentage of all CPUs
Total Swap Space 33.6GB The total
system swap
Used Swap Space 0.0B The total used
system swap
User Load 16.7% Percentage of
all CPUs running in user mode
OS Version 2.6.32-220.4.2.el6.x86_64 Version of the
operating system
Free Swap Space 33.6GB The total free
system swap
16 rows

Example 6. Running Operations on a Proxy

ProxyFactory has a shortcut method for every operation available for a resource.

First, get the list of operations available for the resource type using the operations method:

var rhelServerOne = ProxyFactory.getResource(10001)

rhqadmin@localhost:7080$ rhelServerOne.operations
Array of org.rhq.bindings.client.ResourceClientProxy$Operation

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

33

name description
--

viewProcessList View running processes on this system
cleanYumMetadataCache Deletes all cached package metadata
manualAutodiscovery Run an immediate discovery to search for resources
3 rows

Then, run the given operation method.

rhqadmin@localhost:7080$ rhelServerOne.viewProcessList();
Invoking operation viewProcessList
Configuration [11951] - null
 processList [305] {
pid name size userTime
kernelTime
--
--
1 init 19865600 150
10050
....
26285 httpd 214618112 90
80
26286 httpd 214618112 90
80
26288 httpd 214618112 110 70
26289 httpd 214618112 90
80
27357 java 4734758912 1289650
373890
30458 postgres 218861568 1820
27440
30460 postgres 180985856 1210
5330
30462 postgres 218984448 13080
42200
30463 postgres 218861568 3970
26940
30464 postgres 219328512 10600
15320
30465 postgres 181407744 18680
78760
30482 httpd 185905152 1660
7520
32410 bash 108699648 0
10
32420 java 6024855552 3890240
669810
305 rows
}

Example 7. Changing Configuration Properties

If the resource type supports resource configuration editing or if the resource type has plug-in connection
properties, then the resource proxy has methods — editResourceConfiguration() and

Writing JBoss ON Command-Line Scripts

34

editPluginConfiguration(), respectively — to edit those properties.

The current configuration can be printed using the get*Configuration). For example, for the plug-in
configuration:

var rhelServerOne = ProxyFactory.getResource(10001)

rhqadmin@localhost:7080$ rhelServerOne.getPluginConfiguration()
Configuration [10793] - null
 metadataCacheTimeout = 1800
 enableContentDiscovery = false
 yumPort = 9080
 enableInternalYumServer = false
 logs [0] {
 }

The edit*Configuration() method brings up a configuration wizard that goes through all of the
properties individually and prompts to keep or change each value. The properties are even grouped
according to the same organization that the JBoss ON web UI uses. For example:

rhqadmin@localhost:7080$ rhelServerOne.editPluginConfiguration();
Non-Grouped Properties:
Group: Content
enableContentDiscovery[false]:
enableInternalYumServer[false]:
yumPort[9080]:
metadataCacheTimeout[1800]:
Group: Event Logs
[R]eview, [E]dit, Re[V]ert [S]ave or [C]ancel:
...

After each group, you have the option to revert or save the changes. Once the changes are saved, they
are immediately updated on the JBoss ON server.

Keys Action
return Selects the default or existing value for a property.
ctrl-d The same as selecting the unset checkbox in the

configuration UI.
ctrl-k Exits the configuration wizard.
ctrl-e Displays the help description for the current

property.

Example 8. Managing Content on Resources

Some types of resources have content associated with them. These are typically EAR or WAR resources
within an application server. The content file actually associated with that EAR/WAR resource is called
backing content. These are usually JARs.

This content can be updated or downloaded from the resource.

To retrieve backing content (meaning, to download the JAR/EAR/WAR file), specify the filename and file
path on the application server. For example:

var contentResource = ProxyFactory.getResource(14932)
contentResource.retrieveBackingContent("/resources/backup/original.war")

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

35

To update the content for the resource, use the updateBackingContent method and specify the
filename with the path on the application server to put the content and the version number of the content.
For example:

contentResource.updateBackingContent("/resources/current/new.war", "2.0")

5.3. Passing Command and Script Arguments

When connecting to the CLI using rhq-cli.sh, commands or full scripts can be passed simultaneously.
This is a non-interactive way to connect to the CLI, since the CLI runs the specified command or script and
then exits, rather than staying connected in interactive mode.

Example 9. Passing Variables to the Server

A single command can be passed to the CLI by using the -c. In this example, the server searches for and
prints all supported resource types for the server and prints the results to resource_types.txt

rhq-cli.sh -u rhqadmin -p rhqadmin -c
"pretty.print(ResourceTypeManager.findResourceTypesByCriteria(new
ResourceTypeCriteria()))" > resource_types.txt

The ResourceTypeManager.findResourceTypesByCriteria(new ResourceTypeCriteria())
class invokes the findResourceTypesByCriteria operation on ResourceTypeManager. A new
ResourceTypeCriteria object is passed as the argument.

Nothing has been specified on the criteria object so all resource types will be returned.

pretty is an implicit object made available to commands and scripts by the CLI. This is useful for
outputting objects in a readable, tabular format which is designed for domain objects.

This single command provides a nicely formatted, text-based report of the resource types in the inventory.

Example 10. Running a Script

This executes the script file, my_script.js. The CLI terminates immediately after the script has finished
executing.

cliRoot/rhq-remoting-cli-3.1.2.GA/bin/rhq-cli.sh -f
/export/myScripts/my_script.js

Example 11. Handling Script Arguments

A feature common to most programming languages is the ability to pass arguments to the program to be
executed. In Java, the entry point into a program is a class's main method, and it takes a String array as
an argument. That array holds any arguments passed to the program. Similarly, arguments can be passed
to CLI scripts. Arguments passed to a script can be accessed in the implicit args array:

if (args.length > 2) {
 throw "Not enough arguments!";

Writing JBoss ON Command-Line Scripts

36

}

for (i in args) {
 println('args[' + i + '] = ' + args[i]);
}

The args variable is only available when executing a script in non-interactive mode or with exec -f.

In addition to the traditional style of indexed-based arguments, named arguments can also be passed to a
script:

rhqadmin@localhost:7080$ exec -f echo_args.js --args-style=named x=1 y=2

The echo_args.js, for example, is written to accept the two named option with the script invocation, x
and y.

for (i in args) {
 println('args[' + i + '] = ' + args[i]);
}
println('named args...');
println('x = ' + x);
println('y = ' + y);

This simple script echoes the given x and y values.

args[0] = 1
args[1] = 2
named args...

x = 1
y = 2

Be aware of the following:

Explicitly specify that you are using named arguments with the --args-style option.

The values of the named arguments are still accessible through the implicit args array.

The named arguments, such as x and y, are bound into the script context as variables.

Example 12. Executing a Single Statement

When running the CLI interactively, commands can still be passed and executed, same as using the -c
option with rhq-cli.sh. This is done using the exec command and then the statement.

localhost:7080> exec var x = 1

Example 13. Executing a Multi-Line Statement

The CLI is a Java shell interpreter, and it can handle multi-line statements properly. To indicate a new line
in the same statement, use the backslash (\) character.

localhost:7080(rhqadmin)> exec for (i = 1; i < 3; ++i) { \

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

37

localhost:7080(rhqadmin)> println(i); \
localhost:7080(rhqadmin)> }
1
2

localhost:7080(rhqadmin)>

Example 14. Executing a Script

To run a script from a file, use the -f option with the exec command.

The -f option must give the absolute location of the script, even if it is in the same directory as the rhq-
cli.sh script. The CLI will not find a script with only a relative path.

localhost:7080(rhqadmin)> exec -f /absolute/path/to/myscript.js

Example 15. Executing a Script with Arguments

A script can be written to accept or require arguments; this is described more in Section 6.3, “Defining
Arguments and Other Parameters for the CLI Scripts”. Indexed arguments can be passed with exec
command simply by supplying them in the proper order, as specified in the JavaScript file.

localhost:7080(rhqadmin)> exec -f /absolute/path/to/myscript.js 1 2 3

Example 16. Executing a Script with Named Arguments

Script arguments can be indexed or named. While it is not required to specify with the exec command
which type of argument is being used, there may be instances where it is beneficial.

localhost:7080(rhqadmin)> exec --args-style=named -f
/absolute/path/to/myscript.js x=1 y=2 y=3

5.4. Displaying Pretty-Print Output

The JBoss ON CLI has a special class that formats JBoss ON information into table-style output. This class
(TabularWriter) is implicit for all CLI commands, so almost all output is properly formatted automatically.
This class is also available as an implicit variable called pretty, which is useful when writing scripts.

For example:

rhqadmin@localhost:7080$ criteria = ResourceCriteria()
rhqadmin@localhost:7080$ criteria.addFilterResourceTypeName('service-alpha')
rhqadmin@localhost:7080$ criteria.addFilterParentResourceName('server-omega-
0')
rhqadmin@localhost:7080$ resources =
ResourceManager.findResourcesByCriteria(criteria)
id name version resourceType
--
11373 service-alpha-8 1.0 service-alpha
11374 service-alpha-1 1.0 service-alpha

Writing JBoss ON Command-Line Scripts

38

11375 service-alpha-0 1.0 service-alpha
11376 service-alpha-4 1.0 service-alpha
11377 service-alpha-2 1.0 service-alpha
11378 service-alpha-3 1.0 service-alpha
11379 service-alpha-5 1.0 service-alpha
11380 service-alpha-9 1.0 service-alpha
11381 service-alpha-6 1.0 service-alpha
11382 service-alpha-7 1.0 service-alpha
10 rows

pretty formats any object defined in the domain (org.rhq.core.domain) package.

Simply printing the output is much less readable:

rhqadmin@localhost:7080$ println(resources)
PageList[Resource[id=11373, type=service-alpha, key=service-alpha-8,
name=service-alpha-8, version=1.0],
Resource[id=11374, type=service-alpha, key=service-alpha-1, name=service-
alpha-1, version=1.0],
.... 8<

For a single object, pretty checks for the summary information (@Summary), so that it only displays a
subset of information. It then prints the summary information for the single object as a formatted list. For
example:

rhqadmin@localhost:7080$ pretty.print(resources.get(0))
Resource:
 id: 11373
 name: service-alpha-8
 version: 1.0
 resourceType: service-alpha

5.5. Exporting Output

export is another implicit script variable that writes output to a specified file. exporter uses
pretty.print to output all of the information to a plaintext file that matches the table-style formatting used
in the interactive display.

rhqadmin@localhost:7080$ exporter.setTarget('raw', 'output.txt')
rhqadmin@localhost:7080$ exporter.write(resources)

File IO operations like opening or closing the file are not a problem because exporter handles the IO
operations.

Alternatively, exporter can write the raw resource or other information to a CSV file:

rhqadmin@localhost:7080$ exporter.setTarget('csv', 'output.csv')
rhqadmin@localhost:7080$ exporter.write(resources)

6. Tips and Tricks for Using the CLI

JBoss ON CLI scripts make it possible to automate tasks, from simply importing discovered resources to
running complex management operations to remedy configuration drift or schedule web app upgrades.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

39

The JBoss ON CLI has some usability features to make it easier to use interactively for developing scripts, to
integrate with system tools to help task automation, and to create custom functions for more versatile, real-life
applications.

6.1. Using Tab Complete

In interactive mode, the JBoss ON CLI is aware of the implicit variables (Section 3, “Available Implicit
Variables in the JBoss ON API”) in the domain API and the JBoss ON remote API, as well as the specific CLI
commands and methods (Section 4, “Methods Specific to the JBoss ON CLI”). When running the CLI
interactively, any of these methods can be filled in using Tab complete.

Filling in part of a class lists potential matching classes (or, if it matches, commands). For example:

[jsmith@server bin]# ./rhq-cli.sh -u rhqadmin -p rhqadmin
RHQ Enterprise Remote CLI 3.1.2
Remote server version is: 3.1.2 (2484565)
Login successful
rhqadmin@localhost:7080$ Resource

ResourceFactoryManager ResourceGroupManager ResourceManager
ResourceTypeManager

rhqadmin@localhost:7080$ ex

exporter exec

After selecting a class, hitting Tab once lists all of the methods for that class.

rhqadmin@localhost:7080$ ResourceManager.

availabilitySummary disableResources
enableResources findChildResources
findResourceLineage findResourcesByCriteria
getAvailabilitySummary getLiveResourceAvailability
getParentResource getResource
getResourcesAncestry liveResourceAvailability
parentResource resource
toString uninventoryResources
updateResource

Hitting Tab twice prints the full method signatures:

rhqadmin@localhost:7080$

 List<Integer> enableResources(GenericArrayTypeImpl[int])
 Resource updateResource(Resource resource)
 List<Integer> uninventoryResources(GenericArrayTypeImpl[int]
resourceIds)
ResourceAvailabilitySummary getAvailabilitySummary(int resourceId)
 PageList<Resource> findChildResources(int resourceId, PageControl
pageControl)
 Map<Integer,String>
getResourcesAncestry(GenericArrayTypeImpl[Integer] resourceIds,
ResourceAncestryFormat format)
 List<Integer> disableResources(GenericArrayTypeImpl[int])

Writing JBoss ON Command-Line Scripts

40

 List<Resource> findResourceLineage(int resourceId)
 ResourceAvailability getLiveResourceAvailability(int resourceId)
 PageList<Resource> findResourcesByCriteria(ResourceCriteria
criteria)
 Resource getResource(int resourceId)
 String toString()
 Resource getParentResource(int resourceId)

Autocomplete is very useful for finding what methods or objects are implicitly available, for building criteria-
based searches (because it is easier to select criteria), and for developing server scripts.

6.2. Differences Between Running the CLI Interactively and with Files

Scripts can be run in the CLI either by entering the lines directly (in interactive mode) or by passing a script
file to the CLI using the -f option or exec command.

Scripts that are entered interactively and scripts in a file are substantively the same, with one exception. In
interactive mode, the CLI has a set of commands (Section 2.3, “Interactive CLI Commands”). These
commands are part of the CLI, and most of those commands are only available in interactive mode. These
commands cannot be referenced inside a referenced script file:

quit (which exits the CLI)

exec

record

The login and logout commands are not directly available, either, but there are login and logout functions
available which can be used within a script.

rhq.login('rhqadmin', 'rhqadmin');

rhq.logout();

As with the differences between the GUI, CLI, and alert scripts, this is a matter of context. Most of the CLI-
defined commands only make sense within an interactive environment, like executing an external script file or
recording inputted commands. Outside that interactive context, other Java methods should be used.

6.3. API Differences Between Resources Types and Versions

One important thing to remember about the structure of objects in JBoss ON is that each resource type is
defined individually, in its own plug-in descriptor. (There can be multiple resource types in a single plug-in
descriptor, and these are all related as parent and children resource types.)

Each resource type has different management APIs, which reflect the software application. Obviously, a
Tomcat server is different than a Postgres database, so they have different metrics, operations, and
configuration properties. Even seemingly common traits like stopping and starting a resource are different
depending on the resource type descriptor. Tomcat has an operation to stop gracefully (something not
needed for a database or most services), while JBoss AS 5 servers are stopped and then started as separate
tasks instead of restarting in one step.

An agent plug-in defines a resource type not only by the application or service, but also by the version of that
application or service. An EJB resource is difference than an EJB3 resource, with a different definition.

This distinction — that different versions of the same application are treated as different resource types — is
particularly critical for server resources.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

41

Different resource types have configuration properties and operations available. This can impact CLI scripts
written to manage those resources. For example, a script written for a JBoss AS 5 resource may not work for
a JBoss AS 4 or JBoss AS 7 resource because the different resources have different APIs.

If you are writing a script which may be used for different versions of a server, create a CLI script which first
identifies the resource type and then calls the appropriate method.

6.4. Available Utility and Sample Scripts

Several scripts are provided that supply additional functionality, like simplified functions for parsing search
results, deploying bundles, or managing drift. These utility scripts add functions without performing any
concrete task. They are available as a reference for and extension to custom scripts. These example
functions can be copied into a script file or can be loaded before a script is run, as in Section 6.6, “Script
Dependencies and Loading Functions”.

A couple of scripts are available that both provide additional functions (for reference or ease of use) and also
perform management tasks when run. This scripts can be used directly to manage resources, without having
to write a custom script.

Important

Utility and sample scripts have not been extensively tested and may not be updated between
releases. These are included for convenience and for real-life, complete examples of writing server
scripts.

Test these scripts for quality and consistency within your environment.

Table 6. Utility and Sample Scripts

Script Description Location
Utility Scripts
util.js Defines search functions for

iterating through an array of object
(foreach), to return the first
matching object (find) or to
return all matching objects
(findAll). It also has functions
for converting information from
JavaScript hashes to JBoss ON
configuration objects and back.

cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/

measurement_utils.js Defines functions to enable,
disable, or update metric
schedules.

cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/

bundles.js Defines functions to create and
deploy a bundle, create a bundle
destination, or get information on
supported base directories for a
resource.

cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/

drift.js Defines functions to create and
diff snapshots, get a definition,
and show the history for a
resource or specific file.

cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/

Writing JBoss ON Command-Line Scripts

42

Sample Scripts
add-as7-standalone-server-to-
cluster.js

Defines a series of functions that
add a specified AS 7 to a cluster.

cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/

deploy-to-and-restart-JBAS.js Defines two functions to deploy
new content to EAP servers and
to update existing content. With
the proper variables set, this script
can be run directly to deploy
content and restart the given app
server.

cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/

fix-bundle-deployment.js An example server-side alert
script that reverts a bundle
deployment to a specified version.

serverRoot/jon-server-
3.1.2.GA/jbossas/server/default/d
eploy/rhq.ear/rhq-downloads/cli-
alert-scripts/

Script Description Location

6.5. Defining Custom Functions

Custom functions are permissible and supported in CLI scripts as long as they are properly structured and
conform to the JBoss ON remote API.

6.6. Script Dependencies and Loading Functions

When executing a script from a file by using the rhq-cli.sh -f option, there is no way to define a
dependency with an external file. Any functions required by that script must be contained in the script.

When executing scripts interactively, however, there is a bit more flexibility. The exec -f command loads
whatever functions are in the file into the active CLI session. This allows utility scripts to be loaded first and
then scripts to be run that take advantage of the utility functions.

For example, util.js contains very useful functions for iterating through an array of objects and returning
some or all of the matching objects. This can be loaded first, and then a script which relies on its search
functions can be executed next:

rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/util.js
rhqadmin@localhost:7080$ exec -f /export/scripts/myScript.js

Important

Scripts must be executed in order for the functions to be loaded properly. For example, if ScriptB.js
depends on ScriptA.js, then ScriptA.js must be executed first for its functions to be available to
ScriptB.js.

6.7. Scheduling Script Runs with Cron

Administrators may create some scripts to perform routine maintenance on their JBoss ON systems, such as
deleting old bundle versions to improve database performance or to add newly-discovered resources to the
inventory automatically.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

43

Scripts can be run through the JBoss ON CLI using a simple cron job. For example, an administrator writes
import.js to add discovered resources to the inventory automatically and runs it daily:

vim /etc/cron.daily/rhq-cli

#!/bin/sh
run JON CLI every morning to import new resources
cliRoot/rhq-remoting-cli-3.1.2.GA/bin/rhq-cli.sh -u rhqadmin -p rhqadmin -f
/export/scripts/import.js

More information about scheduling jobs with cron is available in the crontab manpage.

6.8. Using Wrapper Scripts

Ultimately, JBoss ON CLI scripts are regular JavaScript files. For simplicity or ease of programming, you may
write a number of different scripts, each performing a different task or for a different resource type.

This collection of scripts can be controlled through wrapper scripts. Using simple shell scripts can make
running the JBoss ON CLI scripts more user-friendly (by providing a nicer interface) or it can make it easier
to pass variables to manage specific resources.

There is a simplistic example of using a wrapper script in Section 6, “Example: Managing Grouped Servers
(JBoss EAP 5)”.

6.9. Permissions and Setup for JBoss ON Users

Every CLI script, either for a logged in user or through the rhq.login method, is run on the JBoss ON
server by a JBoss ON user.

The JBoss ON CLI does enforce access controls to resources touched by JBoss ON CLI scripts. This means
that the script's user must meet the same authorization requirements as a GUI user to perform the given
operation.

Additionally, any user who runs a CLI script must already exist in JBoss ON as a user. When the JBoss ON
server is configured to create LDAP users, these users are created automatically the first time the LDAP user
logs into the JBoss ON web UI. The same account creation does not occur when logging in with the CLI.
Therefore, LDAP users must log into the web UI before they can run the JBoss ON CLI.

CLI scripts follow a certain flow of events. Each functional element within that workflow, such as searching for
a resource or object and then running an operation, has its own classes in the remote API.

Most actions in JBoss ON CLI scripts are repeatable — the part for running a search for a platform or for
collecting live data for a metric is pretty similar across CLI scripts.

This section provides some basic examples for running a single, specific functional task. These individual
script examples can be used consistently in larger script workflows and as part of task automation.

1. Searches

All object managers define operations for retrieving data. Most of the managers define criteria-based
operations for data retrieval — meaning that the search can be based on attributes within the JBoss ON
objects.

Criteria-based searches have methods in the form findObjectByCriteria, so a resource find method is
findResourcesByCriteria and a group find method is findResourceGroupsByCriteria.

Writing JBoss ON Command-Line Scripts

44

http://linux.die.net/man/5/crontab

Searches are translated into a corresponding JPA-QL query.

The criteria classes reside in the org.rhq.core.domain.criteria package.

1.1. Setting Basic Search Criteria

The simplest criteria is to define results based on what they are, such as resource type, without any
additional search parameters.

For example, this fetches all committed resources in the inventory because it has no filters to limit by
resource type or ID.

rhqadmin@localhost:7080$ var criteria = new ResourceCriteria() // this sets
the criteria to use for the search
rhqadmin@localhost:7080$ criteria.clearPaging() // this clears the 200 item
page size to return all entries
rhqadmin@localhost:7080$ var resources =
ResourceManager.findResourcesByCriteria(criteria) // this actually runs the
search
rhqadmin@localhost:7080$ pretty.print(resources) // this prints the search
results
id name versio curren resour
--

10001 server Linux UP Linux
10002 server AS 4.2 UP JBossA
10392 full-h UP Profil
10014 AlertH UP EJB3 S
10015 Adviso UP EJB3 S
10016 DataAc UP EJB3 S
10017 Affini UP EJB3 S
10011 Access UP Access
10391 ha UP Profil
...8<...

While the findResourcesByCriteria() is what runs the search, the pretty.print method is required
to display the results.

This basic criteria search is translated into the following JPA-QL query:

SELECT r
FROM Resource r
WHERE (r.inventoryStatus = InventoryStatus.COMMITTED

1.2. Using Sorting

The basic search criteria can be refined so that the resource results are sorted by plug-in.

To add sorting, call criteria.addSortPluginName(). Sorting criteria have methods in the form
addSortXXX(PageOrdering order).

For example:

rhqadmin@localhost:7080$ var criteria = new ResourceCriteria()
rhqadmin@localhost:7080$ criteria.addSortPluginName(PageOrdering.ASC) //

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

45

adds a sort order to the results
rhqadmin@localhost:7080$ resources =
ResourceManager.findResourcesByCriteria(criteria)

This criteria is translated into the following JPA-QL query:

SELECT r
FROM Resource r
WHERE (r.inventoryStatus = InventoryStatus.COMMITTED)
ORDER BY r.resourceType.plugin ASC

1.3. Using Filtering

Adding additional matching criteria, like resource name in this example, further narrows the search results.
To add filtering to any criteria, use methods of the form addFilterXXX().

rhqadmin@localhost:7080$ var criteria = new ResourceCriteria()
rhqadmin@localhost:7080$ criteria.addFilterResourceTypeName('JBossAS
Server') // a search filter
rhqadmin@localhost:7080$ resources =
ResourceManager.findResourcesByCriteria(criteria)

The resulting JPA-QL query is as follows:

SELECT r
FROM Resource r
WHERE (r.inventoryStatus = InventoryStatus.COMMITTED
AND LOWER(r.resourceType.name) like 'JBossAS Server' ESCAPE '\\')

This code retrieves all JBoss servers in the inventory. There can be multiple filters used with a single search.
For example, this searches for JBoss servers that have been registered by a particular agent:

rhqadmin@localhost:7080$ var criteria = new ResourceCriteria()
rhqadmin@localhost:7080$ criteria.addFilterResourceTypeName('JBossAS
Server')
rhqadmin@localhost:7080$
criteria.addFilterAgentName('localhost.localdomain')
rhqadmin@localhost:7080$ resources =
ResourceManager.findResourcesByCriteria(criteria)

This generates the following JPA-QL query:

SELECT r
FROM Resource r
WHERE (r.inventoryStatus = InventoryStatus.COMMITTED
AND LOWER(r.agent.name) like 'localhost.localdomain' ESCAPE '\\')

1.4. Fetching Associations

An association shows the hierarchy of parent and child resources. After retrieving the resources, it is possible
to view their associated parent or child resources using a special fetch method.

Simply printing a list of children after a search will fail, even if the given server has child resources.

Writing JBoss ON Command-Line Scripts

46

...8<...
rhqadmin@localhost:7080$ resource = resources.get(0)
rhqadmin@localhost:7080$ if (resource.childResources == null) print('no
child resources')

The reason for this is that lazy loading is used throughout the domain layer for one-to-many and many-to-
many associations. Since child resources are lazily loaded, the list of children has to explicitly set as a fetch
in the search criteria.

For example:

rhqadmin@localhost:7080$ criteria.addFilterResourceTypeName('JBossAS
Server')
rhqadmin@localhost:7080$ criteria.fetchChildResources(true)
rhqadmin@localhost:7080$ resources =
ResourceManager.findResourcesByCriteria(criteria)
rhqadmin@localhost:7080$ resource = resources.get(0)
rhqadmin@localhost:7080$ if (resource.childResources == null) print('no
child resources'); else pretty.print(resource.childResources)
id name versio resourceType

222 AlertManagerBean EJB3 Session Bean
222 SchedulerBean EJB3 Session Bean
222 AlertDefinitionManagerBean EJB3 Session Bean
222 AlertConditionConsumerBean EJB3 Session Bean
222 PartitionEventManagerBean EJB3 Session Bean
...8<...

The output varies depending on what is inventoried. These are the child resources of the JBoss ON server.
The JPA-QL query that is generated appears as follows:

SELECT r
FROM Resource r
LEFT JOIN FETCH r.childResources
WHERE (r.inventoryStatus = InventoryStatus.COMMITTED
AND LOWER(r.resourceType.name) like 'JBossAS Server' ESCAPE '\\')

1.5. Setting Page Sizes

Almost all searches return a paged list of results. By default, paged results are capped at 200 entries. So, for
example, attempting to return all resources in the inventory only returns the first 200 resources, while
querying the database directly may return several hundred resources.

The Criteria class defines some methods which can be used to control page sizes for search results.

Example 1. Clearing the Page Size

If there are more than 200 results, and all matching resources need to be contained in a single results set,
the page limit can be cleared with the clearPaging

var criteria = new ResourceCriteria()
criteria.clearPaging()
var resources = ResourceManager.findResourcesByCriteria(criteria)

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

47

Example 2. Setting a Page Size

There can be times when a different page limit needs to be used, but for clarity or control, some paging
still needs to be in effect.

The setPaging method sets the number of pages and the page size for the given search. Generally,
since there is only a single page, the page number is set to 0, and then the page size can be reset higher
or lower, as desired.

rhqadmin@localhost:7080$ var criteria = new ResourceCriteria()

rhqadmin@localhost:7080$ criteria.getPageSize()
200

rhqadmin@localhost:7080$ criteria.getPageNumber()
0

rhqadmin@localhost:7080$ criteria.setPaging(0,300)

rhqadmin@localhost:7080$ var resources =
ResourceManager.findResourcesByCriteria(criteria)
id name currentAvailability
resourceType
--
--
10032 RHQDS UP
Datasource
10033 ResourceFactoryManagerBean UP
EJB3 Session Bean
10034 CoreTestBean UP
EJB3 Session Bean
10035 rhq-postinstaller.war (//localhost/installer) UP Web
Application (WAR)
10036 ResourceMetadataManagerBean UP
EJB3 Session Bean
10037 SystemInfoManagerBean UP
EJB3 Session Bean
10105 wstools.sh UP
Script
10038 PartitionEventManagerBean UP
EJB3 Session Bean
10039 CallTimeDataManagerBean UP
EJB3 Session Bean
10040 AlertDefinitionManagerBean UP
EJB3 Session Bean
10041 DiscoveryTestBean UP
EJB3 Session Bean
10123 wsconsume.sh UP
Script
10042 ROOT.war (//localhost/) UP
Web Application (WAR)
10044 AlertManagerBean UP
EJB3 Session Bean

Writing JBoss ON Command-Line Scripts

48

10045 AgentManagerBean UP
EJB3 Session Bean
... 8< ...
300 rows

2. Getting the JBoss ON ID for an Object

Everything in JBoss ON — resources, configuration properties, bundle archives, templates, alerts, everything
— is identified with a unique ID number. Most of these ID numbers are visible in the web UI as part of the
URL which goes to that object's details page.

Not every ID is easily found, though. For example, searching for a metric template requires the resource type
ID, but the resource type ID is hard to find.

In other instances, you may want to run a script against multiple resources, which means there are multiple
resource IDs which may not be explicitly known at the time you write the script.

Searching for a resource (Section 1, “Searches”) retrieves the resource's details, including its ID.

rhqadmin@localhost:7080$ criteria = new ResourceCriteria();
ResourceCriteria:
 inventoryManagerRequired: false
 persistentClass: class
org.rhq.core.domain.resource.Resource

rhqadmin@localhost:7080$ criteria.addFilterResourceTypeName('Linux')

rhqadmin@localhost:7080$ ResourceManager.findResourcesByCriteria(criteria);
one row
Resource:
 id: 10001
 name: gs-dl585g2-01.rhts.eng.bos.redhat.com
 version: Linux 2.6.32-220.el6.x86_64
 currentAvailability: UP
 resourceType: Linux

This is true for any *Criteria search. It retrieves the ID for the object is searches for, even if that ID is not
explicitly displayed.

This ID can then be used in other operations.

rhqadmin@localhost:7080$ var metrics =
MeasurementDataManager.findLiveData(resources.get(0).id, [mdefs.get(0).id]);

3. Getting Data for Single and Multiple Resources

When you run any sort of operation or function, you frequently have to pull the results from that operation, the
data, into another function.

For example, this exports and writes whatever the results from the data variable was:

exporter.write(data.get(0))

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

49

Using get(0) takes the first object that was returned and uses it.

There can be instances when there are a lot of objects returned that could potentially be used in the next step
of the script, and there are a couple of different ways to handle it.

One option, instead of get(0), is to work incrementally through each object in a list. For example, this gets
the data for each metric definition (i) for a resource.

Example 3. get(i)

if(mdefs != null) {
 if(mdefs.size() > 1) {
 for(i =0; i < mdefs.size(); ++i) {
 mdef = mdefs.get(i);
 var data =
MeasurementDataManager.findDataForResource(resources.get(0).id,
[mdef.id],start,end,"")

 exporter.write(data.get(0));
 }
 }
 ...8<...

Other objects can be sent to an array, and then the operation or task can be performed for each object in that
array. This example searches for all JBoss AS 5 servers, sends the results to an array, and then performs a
restart operation on each server.

Example 4. An Array

//find the resources
//use a plugin filter to make sure they are all of the same type
criteria = new ResourceCriteria();
criteria.addFilterPluginName('JBossAS5')

var resources =
ResourceManager.findResourcesByCriteria(criteria).toArray();
var resType = ResourceTypeManager.getResourceTypeByNameAndPlugin('JBossAS
Server', 'JBossAS5');

// go through the array
var idx=0;
var jbossServers = new Array();

for(i in resources) {
 if(resources[i].resourceType.id == resType.id) {
 jbossServers[idx] = resources[i];
 idx = idx + 1;
 }
}

// restart the resources

Writing JBoss ON Command-Line Scripts

50

for(a in resources) {
 var jboss = ProxyFactory.getResource(jbossServers[a].id);
 jboss.restart()
}

The util.js support script has a foreach function that also iterates cleanly through arrays, collections,
and maps, as well as generic objects.

Which method you use to handle multiple objects — or whether you even want to handle multiple objects —
depends on the type of information and the purpose of the script. These are just some options to keep in
mind.

4. Setting Method Variables to String

Some types of information have a integer value within the database but the information given in the API has a
string value. This is common for search filters which depend on a category; the category has a user-friendly
string name and an internal integer.

Attempting to pass the string value when the server expects an integer causes the operation to fail with an
error that it cannot find the method.

rhqadmin@localhost:7080$ groupcriteria = new ResourceGroupCriteria();
rhqadmin@localhost:7080$ groupcriteria.addFilterGroupCategory('MIXED')
Can't find method
org.rhq.core.domain.criteria.ResourceGroupCriteria.addFilterGroupCategory(st
ring). (<Unknown source>#1)

To use the user-friendly string in script, append the .toString method with the remote API method.

groupcriteria.addFilterGroupCategory.toString('MIXED');

5. Resources and Groups

5.1. Creating and Updating Content-Backed Resources (Web Apps)

Web applications (EARs and WARs) are content-backed resources, a cross between a managed resource
and a content package.

When running a CLI script, there are some methods available specifically to retrieve or create the content for
the resource.

To create a content-backed resource, upload the file with a specified version number.

This script's steps are:

1. Search for the resource to upload the content to. This example looks for a JBoss AS 5 server.

2. Make sure the server is running. The JBoss server has to be running for content to be deployed
successfully.

Example 5. Creating a Content-Backed Resource

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

51

// fill this information in before running the script
var pathName = '/home/jon/myExampleApp.ear'

var resTypeName = 'JBossAS Server'
var pluginName = "JBossAS5"
var appTypeName = "Enterprise Application (EAR)"

// define a custom function to parse the filename and path info
function PackageParser(pathName) {
 var file = new java.io.File(pathName);
 var fileName = file.getName();
 var packageType = fileName.substring(fileName.lastIndexOf('.')+1);
 var tmp = fileName.substring(0, fileName.lastIndexOf('.'));
 var version = 1;
 var realName = tmp;
 var packageName = fileName;

 // parse the package version, only if version is included
 if(tmp.indexOf('-') != -1){
 realName = tmp.substring(0, tmp.lastIndexOf('-'));
 version = tmp.substring(tmp.lastIndexOf('-') + 1);
 packageName = realName + "." + packageType;
 }

 this.packageType = packageType.toLowerCase();
 this.packageName = packageName;
 this.version = version;
 this.realName = realName;
 this.fileName = fileName;
}

criteria = new ResourceCriteria();
criteria.addFilterResourceTypeName(resTypeName);
criteria.addFilterPluginName(pluginName);
var resources = ResourceManager.findResourcesByCriteria(criteria);

// create the config options for the new EAR
var deployConfig = new Configuration();
deployConfig.put(new PropertySimple("deployExploded", "false"));
deployConfig.put(new PropertySimple("deployFarmed", "false"));

// stream in the file bytes
var file = new java.io.File(pathName);
var inputStream = new java.io.FileInputStream(file);
var fileLength = file.length();
var fileBytes = java.lang.reflect.Array.newInstance(java.lang.Byte.TYPE,
fileLength);
for (numRead=0, offset=0; ((numRead >= 0) && (offset < fileBytes.length));
offset += numRead) {
 numRead = inputStream.read(fileBytes, offset, fileBytes.length -
offset);
}

// parse the filename and path info
PackageParser(pathName);

Writing JBoss ON Command-Line Scripts

52

// identifies the type of resource being created
var appType =
ResourceTypeManager.getResourceTypeByNameAndPlugin(appTypeName,
pluginName);

// create the new EAR resource on each discovered app server
if(resources != null) {
 for(i =0; i < resources.size(); ++i) {
 var res = resources.get(i);println("res: " + res);
 ResourceFactoryManager.createPackageBackedResource(
 res.id,
 appType.id,
 packageName,
 null, // pluginConfiguration
 packageName,
 version,
 null, // architectureId
 deployConfig,
 fileBytes,
 null // timeout
);
 }
}

Updating a package is slightly simpler. It requires sending a new file and version number to the existing EAR
resource.

Example 6. Updating a Content-Backed Resource

// update this
var fullPathName = '/export/myfiles/updatedApp.ear'

// define a custom function to parse the filename and path info
function PackageParser(pathName) {
 var file = new java.io.File(pathName);

 var fileName = file.getName();
 var packageType = fileName.substring(fileName.lastIndexOf('.')+1);
 var tmp = fileName.substring(0, fileName.lastIndexOf('.'));
 var version = 1;
 var realName = tmp;
 var packageName = fileName;

 // parse the package version, only if version is included
 if(tmp.indexOf('-') != -1){
 realName = tmp.substring(0, tmp.lastIndexOf('-'));
 version = tmp.substring(tmp.lastIndexOf('-') + 1);
 packageName = realName + "." + packageType;
 }

 this.packageType = packageType.toLowerCase();
 this.packageName = packageName;
 this.version = version;

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

53

 this.realName = realName;
 this.fileName = fileName;
}

// parse the filename and path info
PackageParser(fullPathName);

// search for the JBoss AS 5 server by name
criteria = new ResourceCriteria();
criteria.addFilterName('My JBoss AS 5 Server');
var res = ResourceManager.findResourcesByCriteria(criteria);

var jboss = ProxyFactory.getResource(res.get(0).id);

var children = jboss.children;
for(c in children) {
 var child = children[c];
 if(child.name == packageName) {
 child.updateBackingContent(fullPathName,version);
 }
}

While a content-backed resource is added or updated as if it were a software package (which it is), it is
deleted as if it were a resource.

Note

Deleting is not the same as uninventorying a resource. Uninventorying removes the resource from the
inventory but leaves it intact on the platform. Deleting a resource deletes it from the platform itself.

Example 7. Deleting a Content-Backed Resource

// search for the content resource by name
criteria = new ResourceCriteria();
criteria.addFilterName('updatedApp.ear');
var res = ResourceManager.findResourcesByCriteria(criteria);

ResourceFactoryManager.deleteResource(res.get(0).id)

5.2. Creating a Resource Group and Adding Members

When a group is created by a script, it is initially created as a mixed group. All empty groups are treated as
mixed groups. Once members are added, if all the members are the same resource type, then the group is
automatically tagged as a compatible group.

Compatible groups are great for scripted management tasks, because the same operation or configuration
change can be performed on each member iteratively.

The script steps are:

1. Search for the resource type.

Writing JBoss ON Command-Line Scripts

54

2. Create the group, based on the resource type.

3. Find resources of that resource type.

4. Iterate through the returned resources and add them to the group.

Example 8. Annotated Example

// search for the resource type to use for the compat group
var resType =
ResourceTypeManager.getResourceTypeByNameAndPlugin("Linux","Platforms");

//create the new resource group
var rg = new ResourceGroup(resType);
rg.setRecursive(false);
rg.setName('Linux Group - ' + java.util.Date());

rg = ResourceGroupManager.createResourceGroup(rg);

//find resources to add to the group based on their resource type
criteria = new ResourceCriteria();
criteria.addFilterResourceTypeId(resType.id);

var resources = ResourceManager.findResourcesByCriteria(criteria);

// add the found resources to the group
if(resources != null) {
 for(i =0; i < resources.size(); ++i) {
 var resource = resources.get(i);
 ResourceGroupManager.addResourcesToGroup(rg.id, [resource.id]);
 }
}

6. Resource Configuration

There are two areas of resource configuration:

The plug-in configuration. In the web UI, this is called the connection setting; it is the information which the
agent uses to discover and connect to the resource, such as a PID file path or a port number.

Every resource has some kind of plug-in configuration.

Resource configuration. Configuration properties are drawn from the configuration files for a resource,
such as .conf or .xml. The configuration files and properties that are exposed within JBoss ON are
defined in the plug-in descriptor.

Resource configuration is optional, and many resources do not support configuration editing or only
expose a subset of possible properties.

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

55

Note

When changing the configuration for a resource, it is simplest to use the configuration editor with a
proxy resource, as in Example 7, “Changing Configuration Properties”.

The configuration editor is only available with the interactive CLI; for running an alert script or script
automatic changes to resource configuration, the remote API can be used directly.

6.1. Viewing Current Configuration

Plug-in (connection settings) configuration and resource configuration are both defined per resource type, in
the resource type's plug-in descriptor.

The get*ConfigurationDefinitionForResourceType methods can display the descriptor-defined
templates used for the resource type's configuration. These are the configuration properties available to
every resource of that type.

Example 9. Viewing Plug-in Configuration for a Resource Type

rhqadmin@localhost:7080$ var res =
ResourceTypeManager.getResourceTypeByNameAndPlugin('Linux','Platforms')
//get the resource type ID

rhqadmin@localhost:7080$
ConfigurationManager.getPluginConfigurationDefinitionForResourceType(res.i
d) //use the type ID to search for the resource type template

ConfigurationDefinition:
 configurationFormat: Structured
 defaultTemplate: ConfigurationTemplate[id=10443,
name=default, config=Linux]
 description:
 groupDefinitions: [PropertyGroupDefinition[id=10058,
name=Content], PropertyGroupDefinition[id=10059, name=Event Logs]]
 id: 10437
 name: Linux
 nonGroupedProperties: []
 propertyDefinitions: {logs=PropertyDefinitionList[id=11792,
name=logs, config=Linux, group=Event Logs],
metadataCacheTimeout=SimpleProperty[metadataCacheTimeout] (Type: INTEGER)
(Group: Content),
enableContentDiscovery=SimpleProperty[enableContentDiscovery] (Type:
BOOLEAN)(Group: Content),
enableInternalYumServer=SimpleProperty[enableInternalYumServer] (Type:
BOOLEAN)(Group: Content), yumPort=SimpleProperty[yumPort] (Type: INTEGER)
(Group: Content)}
 templates: {default=ConfigurationTemplate[id=10443,
name=default, config=Linux]}

The propertyDefinitions parameter contains the information about the configuration properties that can
be set, including details about the configuration property setup. For example, for the event logs configuration:

Writing JBoss ON Command-Line Scripts

56

logs=[id=11792, name=logs, config=Linux, group=Event Logs]

The property name is logs, and the type of property is a list, PropertyDefinitionList. The property list ID is
11792, though not every type of property has a template ID. The event log properties are organized together
in the Event Logs group.

The cache timeout property has a slightly different configuration. This is a simple property type
(SimpleProperty), and the expected value is given in the Type: element. The group for the property is
Content.

metadataCacheTimeout=SimpleProperty[metadataCacheTimeout] (Type: INTEGER)
(Group: Content)

Group settings for a property are mainly used to create a logical organization in the web UI. For the event
logs configuration, all of the members in the properties list belong to the group, and only those values. For the
cache timeout, it belongs to the content group but other, discrete properties also belong to the group, so the
way the group is defined is different.

The resource configuration template can be retrieved similarly to retrieving the plug-in configuration template.

Example 10. Viewing the Configuration Properties for the Resource Type

rhqadmin@localhost:7080$ var res =
ResourceTypeManager.getResourceTypeByNameAndPlugin('Samba Server',
'Samba') //get the resource type ID

rhqadmin@localhost:7080$
ConfigurationManager.getResourceConfigurationDefinitionForResourceType(res
.id)
ConfigurationDefinition:
 configurationFormat: Structured
 defaultTemplate: ConfigurationTemplate[id=11123,
name=default, config=Samba Server]
 description:
 groupDefinitions: [PropertyGroupDefinition[id=10905,
name=Basic Configurations], PropertyGroupDefinition[id=10906,
name=Security], PropertyGroupDefinition[id=10907, name=Printing],
PropertyGroupDefinition[id=10908, name=Active Server Directory]]
 id: 11087
 name: Samba Server
 nonGroupedProperties: []
 propertyDefinitions: {winbind enum groups=SimpleProperty[winbind
enum groups] (Type: BOOLEAN)(Group: Active Server Directory), winbind
separator=SimpleProperty[winbind separator] (Type: STRING)(Group: Active
Server Directory), cups options=SimpleProperty[cups options] (Type:
STRING)(Group: Printing), workgroup=SimpleProperty[workgroup] (Type:
STRING)(Group: Basic Configurations), encrypt
passwords=SimpleProperty[encrypt passwords] (Type: BOOLEAN)(Group:
Security), winbind enum users=SimpleProperty[winbind enum users] (Type:
BOOLEAN)(Group: Active Server Directory),
security=SimpleProperty[security] (Type: STRING)(Group: Security),
template shell=SimpleProperty[template shell] (Type: STRING)(Group: Active
Server Directory), password=SimpleProperty[password] (Type: PASSWORD)
(Group: Active Server Directory), load printers=SimpleProperty[load

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

57

printers] (Type: BOOLEAN)(Group: Printing),
username=SimpleProperty[username] (Type: STRING)(Group: Active Server
Directory), realm=SimpleProperty[realm] (Type: STRING)(Group: Active
Server Directory), idmap gid=SimpleProperty[idmap gid] (Type: STRING)
(Group: Active Server Directory), server string=SimpleProperty[server
string] (Type: STRING)(Group: Basic Configurations),
controller=SimpleProperty[controller] (Type: STRING)(Group: Active Server
Directory), enableRecycleBin=SimpleProperty[enableRecycleBin] (Type:
BOOLEAN)(Group: Basic Configurations), idmap uid=SimpleProperty[idmap uid]
(Type: STRING)(Group: Active Server Directory)}
 templates: {default=ConfigurationTemplate[id=11123,
name=default, config=Samba Server]}

The property values for a specific resource can be viewed using the get*Configuration methods.

Note

If you are only viewing the resource configuration and are running the interactive CLI, this is done
more easily using a proxy resource, as in Example 7, “Changing Configuration Properties”.

Example 11. Viewing a Resource's Configuration Settings

rhqadmin@localhost:7080$ criteria = new ResourceCriteria(); // find the
resource
rhqadmin@localhost:7080$ criteria.addFilterResourceTypeName('Samba')
rhqadmin@localhost:7080$ criteria.addFilterAgentName('agent1.example.com')
rhqadmin@localhost:7080$ var resource =
ResourceManager.findResourcesByCriteria(criteria);

rhqadmin@localhost:7080$
ConfigurationManager.getResourceConfiguration(resource.get(0).id)
Configuration [12082] - Loaded from Augeas at Wed May 02 12:04:24 EDT 2012
 winbind separator = null
 winbind enum groups = null
 cups options = null
 workgroup = null
 winbind enum users = null
 encrypt passwords = null
 security = null
 template shell = null
 password = null
 load printers = null
 username = null
 realm = null
 idmap gid = null
 server string = null
 controller = null
 enableRecycleBin = false
 idmap uid = null

6.2. Changing Simple Configuration Properties

Writing JBoss ON Command-Line Scripts

58

6.2. Changing Simple Configuration Properties

The way that a configuration property is edited depends on the type of property, whether it is simple, list, or
map. The process for changing configuration is the same for both plug-in configuration properties and
resource configuration properties.

The steps in this script:

1. Search for the resource.

2. Create a configuration object.

3. Set the new property value. The method to set the property value depends on the format of the
property. In this case, it uses setSimpleValue since this is a simple property. For a simple
property, the value is set by passing ('property','value').

4. Run an update operation for the resource. For a resource configuration update, the method is
updateResourceConfiguration. For a plug-in configuration update, it is
updatePluginConfiguration.

Example 12. Changing a Simple Property

// find the resource
criteria = new ResourceCriteria();
criteria.addFilterResourceTypeName('Samba')
// this only updates the resource for this specific agent
criteria.addFilterAgentName('agent1.example.com')
var resources = ResourceManager.findResourcesByCriteria(criteria);

//get current configuration
var config =
ConfigurationManager.getResourceConfiguration(resources.get(0).id);

//set the new value in the form 'property', 'value'
config.setSimpleValue("workgroup","example")

// run the update operation
ConfigurationManager.updateResourceConfiguration(resources.get(0).id,confi
g)

7. Operations

7.1. Starting and Stopping a Resource

A resource can simple be started by using an operation.

This example looks for a specific resource by name, and then runs the start() function.

Example 13. Simple Start

//find the resource
criteria = new ResourceCriteria();
criteria.addFilterName('My JBossAS')

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

59

var servers = ResourceManager.findResourcesByCriteria(criteria);
var myJBossAS = ProxyFactory.getResource(servers.get(0).id)
myJBossAS.start()

Each resource type has its own defined operations, and even simple tasks like start and stop may have
different methods depending on the resource. Try using a proxy resource and then the operations method
to list the available operations.

rhqadmin@localhost:7080$ server.operations
Array of org.rhq.bindings.client.ResourceClientProxy$Operation
name description

restart Shutdown and then start this application server.
start Start this application server.
shutdown Shutdown this application server via script or JMX.
3 rows

A more complex start or stop script can be used to iterate over an array of resources of the same type.

Example 14. Starting an Array 1

//find the resources
//use a plugin filter to make sure they are all of the same type
criteria = new ResourceCriteria();
criteria.addFilterPluginName('JBossAS5')

var resources =
ResourceManager.findResourcesByCriteria(criteria).toArray();
var resType = ResourceTypeManager.getResourceTypeByNameAndPlugin('JBossAS
Server', 'JBossAS5');

// go through the array
var idx=0;
var jbossServers = new Array();

for(i in resources) {
 if(resources[i].resourceType.id == resType.id) {
 jbossServers[idx] = resources[i];
 idx = idx + 1;
 }
}

// restart the resources
for(a in resources) {
 var jboss = ProxyFactory.getResource(jbossServers[a].id);
 jboss.restart()
}

Example 15. Starting an Array 2

//find the resources

Writing JBoss ON Command-Line Scripts

60

//use a plugin filter to make sure they are all of the same type
criteria = new ResourceCriteria();
criteria.addFilterPluginName('JBossAS5')
criteria.addFilterResourceTypeName('JBossAS Server');

var jbossServers =
ResourceManager.findResourcesByCriteria(criteria).toArray();

// restart the resources
for(a in jbossServers) {
 var jboss = ProxyFactory.getResource(jbossServers[a].id);
 jboss.restart()
}

7.2. Scheduling Operations

The simplest way to run an operation is to create a proxy for the resource, and then run the operation on that
proxy, in the form proxyName.operationName().

Example 16. Immediate Operation

rhqadmin@localhost:7080$ var agent = ProxyFactory.getResource(10008)
rhqadmin@localhost:7080$ agent.executeAvailabilityScan(true)
Invoking operation executeAvailabilityScan
Configuration [13903] - null
 isChangesOnly = true
 agentName = server.example.com
 resourceAvailabilities [0] {
 }

Operations can be run on a schedule. A schedule requires several configuration pieces:

The resource ID

The operation name

A delay period, meaning when in the future to start the operation (optional)

A repeat interval and count (optional)

A timeout period (optional)

Configuration parameters, if required by the operation

A description of the scheduled operation (optional)

This example runs an availability scan on a specific agent.

Example 17. Scheduled Operation Example

// find the agent
var rc = ResourceCriteria();
rc.addFilterResourceTypeName("RHQ Agent");

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

61

rc.addFilterVersion("3.1.2");

var agent = ResourceManager.findResourcesByCriteria(rc);

//set the config properties for the operation
var config = new Configuration();
config.put(new PropertySimple("changesOnly", "true"));

//schedule the operation
OperationManager.scheduleResourceOperation(
 agent.get(0).id,
 "executeAvailabilityScan",
 0, // 0 means that the delay was skipped
 1,
 0, // this skips the repeat count
 10000000,
 config,
 "test from cli"
);

This immediately prints the information for the scheduled operation.

rhqadmin@localhost:7080$ exec -f /export/myscripts/test.js
ResourceOperationSchedule:
 resource: Resource[id=10008, uuid=e11390ec-34c4-49df-a4b6-
c37c516f545c, type={RHQAgent}RHQ Agent, key=server.example.com RHQ Agent,
name=RHQ Agent, parent=server.example.com, version=3.1.2]

7.3. Retrieving the Results of an Operation

Some operations really only report a success or failure, and that is all the information that is required. Other
operations, however, may retrieve information from a resource or make a more complex change on the
resource. In that case, that information needs to be returned so it can be used in further tasks.

The fetchResults(true) method can be used to return the results of the operation as part of the search
for the operation history.

// search for the operation
var c = new ResourceOperationHistoryCriteria()
c.addFilterId(schedule.id)
c.fetchResults(true)
var r = OperationManager.findResourceOperationHistoriesByCriteria(c)

// get the operation data
var h = r.get(0);

// get the results
var c = h.getResults();
c

Example 18. Printing the Results of a Process Scan

Writing JBoss ON Command-Line Scripts

62

In this longer example, the script first runs an operation (a process scan on a platform) and then prints the
results.

The first part of the script sets up the requirement for the resource ID and then searchs for that resource.

if (args.length != 1) {
 throw "we need a resource id as an argument";
}

var platform = ResourceManager.getResource(args[0]);

The next part schedules the process scan operation. As covered in Section 7.2, “Scheduling Operations”,
this sets the resource ID, operation name, and operation settings.

var ros = OperationManager.scheduleResourceOperation(
 platform.id,
 "viewProcessList",
 0,
 1,
 0,
 15,
 null,
 "test operation"
);

The last part retrieves the operation history with two additional search settings:

fetchResults(true), which is required to include the operation result data and not just the status

a sort method, in this case addSortStartTime

There are also a couple of sleeps in the script to ensure that the operation has time to complete before the
script attempts to retrieve the results.

var opcrit = ResourceOperationHistoryCriteria();
opcrit.addFilterResourceIds(platform.id);
opcrit.fetchResults(true); // request the additional optional data in the
result
opcrit.addSortStartTime(PageOrdering.DESC); // sort by start time
java.lang.Thread.sleep(1000); // wait a second to make sure operation is
in the history

// wait for up to 15 seconds for last operation to complete, then print
result
now=new Date().getTime();
while (new Date().getTime() - now < 15000) {
 operations =
OperationManager.findResourceOperationHistoriesByCriteria(opcrit);
 if (operations.get(0).getResults() == null) {
 println("operation still pending result");
 java.lang.Thread.sleep(1000);
 } else {
 pretty.print(operations.get(0).getResults());
 break;
 }
}

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

63

if (operations.get(0).getErrorMessage() != null) {
 println("Error getting process list: ");
 pretty.print(operations.get(0).getErrorMessage());
}

This script prints the results of the operation as long as the operation has completed successfully:

 } else {
 pretty.print(operations.get(0).getResults());
 break;
 }

7.4. Checking a Resource's Operations History

The operation history for a resource exists as an object, so it can be searched for, by criteria, same as other
objects.

Example 19. Viewing the Operation History

// find the resource
var rc = ResourceCriteria();
rc.addFilterPluginName("RHQAgent");
rc.addFilterName("RHQ Agent");
rc.addFilterResourceTypeName("RHQ Agent");
rc.addFilterDescription("Agent");

var agent = ResourceManager.findResourcesByCriteria(rc);

// print the operation history for the resource
var opcrit = ResourceOperationHistoryCriteria()
opcrit.addFilterResourceIds(agent.get(0).id)
OperationManager.findResourceOperationHistoriesByCriteria(opcrit);

The (successful) operation results are in Configuration objects in the results table.

rhqadmin@localhost:7080$ exec -f /export/myscripts/test.js
resource results
--

Resource[id=10008, uuid=e11390ec-34c4-49df-a4b6-c37c516f545c, type=
{RHQAgent}RHQ Agent, key=server.example.com RHQ Age Configuration[id=13903]
Resource[id=10008, uuid=e11390ec-34c4-49df-a4b6-c37c516f545c, type=
{RHQAgent}RHQ Agent, key=server.example.com RHQ Age Configuration[id=13913]
2 rows

8. Monitoring

8.1. Getting Resource Availability

Writing JBoss ON Command-Line Scripts

64

Many operations should only occur if the target resource is running, such as deploying a new web
application. Including an availability check in a larger script is helpful for controlling when state-dependent
operations are run.

The script steps are:

1. Search for the resource. In this case, the script just looks for any resource which matches the
resource type (Linux platform), and uses the first match for the availability scan.

2. Get the current availability status.

Example 20. Current Availability

// get the resource ID
criteria = new ResourceCriteria();
criteria.addFilterResourceTypeName('Linux')

var res = ResourceManager.findResourcesByCriteria(criteria);

// check the current availability
AvailabilityManager.getCurrentAvailabilityForResource(res.get(0).id)

The JBoss ON server returns the resource information, its current status, and the time what the current status
began (meaning, if the server is up, the time the server started).

rhqadmin@localhost:7080$ exec -f /export/myscripts/test.js
Availability:
 availabilityType: UP
 endTime:
 id: 10192
 resource: Resource[id=10001, uuid=null, type=<null>,
key=null, name=null, parent=<null>]
 startTime: 1335974397214

8.2. Getting Specific Metrics

The monitoring information in JBoss ON is not a live reading. There are two reasons for that: scans are
periodic, not streaming, and the information for baselines and averages are processed (aggregated).

The findLiveData method is a way to pull in the current, un-average, live reading of a given metric.

The script steps are:

1. Search for the available metric definitions, based on the resource type and then filtered to a single
metric. This example grabs the free memory metric for the Linux platform.

2. Search for the resource.

3. Get the current reading for the metric.

4. Print the data to the terminal.

Example 21. Annotated Example

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

65

// search for the resource
criteria = new ResourceCriteria();
criteria.addFilterResourceTypeName('Linux');
var resources = ResourceManager.findResourcesByCriteria(criteria);

// search for the resource type to use in the metrics definition
var rt = ResourceTypeManager.getResourceTypeByNameAndPlugin("Linux",
"Platforms");

// search for the metric definition
var mdc = MeasurementDefinitionCriteria();
mdc.addFilterDisplayName("Free Memory");
mdc.addFilterResourceTypeId(rt.id);
var mdefs =
MeasurementDefinitionManager.findMeasurementDefinitionsByCriteria(mdc);

//get the data
var metrics = MeasurementDataManager.findLiveData(resources.get(0).id,
[mdefs.get(0).id]);

// as a nice little display, print the retrieved metrics value
if(metrics !=null) {
 println(" Metric value for " + resources.get(0).id + " is " +
metrics);
}

With this example, the current, live reading for the metric is printed to the screen.

rhqadmin@localhost:7080$ exec -f /export/myscripts/test.js
 Metric value for 10001 is [MeasurementDataNumeric[value=[6.3932239872E10],
MeasurementData [MeasurementDataPK: timestamp=[Tue May 08 20:10:15 EDT
2012], scheduleId=[10002]]]]

8.3. Exporting Metric Data for a Resource

Raw metrics data are only saved in the database for a week by default. After that, only the processed
(aggregated) data are saved. It can be useful to export raw measurements to a CSV or text file so that long-
term historical data can be preserved.

The script steps are:

1. Search for the available metric definitions, based on the resource type. In this example, it is for the
Linux platform.

2. Search for the resource.

3. Set a date range for the metric information. This is configured in seconds, relative to the time the
script is run.

4. Set up the file information to which to write the data.

5. Iterate through all the metric definitions for the resource, and print the data to the given CSV file.

Example 22. Exporting All Metrics Definitions for a Linux Server

Writing JBoss ON Command-Line Scripts

66

// search for the available metrics definitions
var rt =
ResourceTypeManager.getResourceTypeByNameAndPlugin("Linux","Platforms")
var mdc = MeasurementDefinitionCriteria();
mdc.addFilterResourceTypeId(rt.id);
var mdefs =
MeasurementDefinitionManager.findMeasurementDefinitionsByCriteria(mdc);

// search for the resource
criteria = new ResourceCriteria();
criteria.addFilterResourceTypeName('Linux')
var resources = ResourceManager.findResourcesByCriteria(criteria);

// give the date range for the metrics collection
// this is in seconds
var start = new Date() - 8* 3600 * 1000;
var end = new Date()

// setup up the CSV to dump the data to
exporter.file = '/opt/myfile.csv'
exporter.format = 'csv'

// iterate through the metrics definitions for the resource
// and export all the collected metrics for all definitions
// within the given date range
if(mdefs != null) {
 if(mdefs.size() > 1) {
 for(i =0; i < mdefs.size(); ++i) {
 mdef = mdefs.get(i);
 var data =
MeasurementDataManager.findDataForResource(resources.get(0).id,
[mdef.id],start,end,"")

 exporter.write(data.get(0)); // write the data to the CSV file
 }
 }
 else if(mdefs.size() == 1) {
 mdef = mdefs.get(0);
 var data =
MeasurementDataManager.findDataForResource(resources.get(0).id,
[mdef.get(0).id],start,end,60)
 exporter.write(data.get(0))
 }
}

8.4. Getting Baseline Calculations

Baselines are the normal operating ranges for a specific resource, based on its own performance.

Getting a baseline is really easy; all it requires is the resource ID.

rhqadmin@localhost:7080$
MeasurementBaselineManager.findBaselinesForResource(10001)

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

67

one row
MeasurementBaseline:
 computeTime: Tue May 08 21:28:05 EDT 2012
 id: 10001
 max: 6.4005419008E10
 mean: 6.3933904981333336E10
 min: 6.380064768E10
 schedule: [MeasurementSchedule, id=10002]
 userEntered: true

9. Alerts

Alert definitions cannot be created or edited using the CLI, but there are some management tasks that can
still be performed. For fired alerts themselves, server-side scripts can be used as alert responses (and the
alert referenced as an implicit variable) and the fired alert can be viewed and acknowledged by an
administrator. Definitions can be enabled or disabled.

9.1. Using Alerts with Scripts

One possible response to an alert is for the server to automatically run a stored server script (essentially a
stored CLI script file).

That server-side alert script can reference the alert object for the triggered alert. The server defines an implicit
alert variable, which pulls in the alert information, ID, definition, and other information for the fired alert.

Because the alert method identifies the alert definition, it identifies the resource which triggered the alert.
This allows you to create a reusable proxy resource definition in the script that could be applied to any
resource which uses that alert script.

For example:

var myResource = ProxyFactory.getResource(alert.alertDefinition.resource.id)

Note

This method is only available to server-side script used with alerts, not to the interactive CLI or
external CLI script files.

9.2. Acknowledging Alerts

One common administrative action when an alert is fired is for an administrator to review and then
acknowledge the alert, which effectively closes it. This script example acknowledges all of the current alerts
for all Linux platform resources.

The criteria for the search can be set to be more restrictive so that only certain alerts or only certain
resources are included in the action.

The steps in this script:

1. Search for fired alerts; in this case, the search is based on the resource type (Linux).

2. Retrieve the data for the search results.

Writing JBoss ON Command-Line Scripts

68

3. Acknowledge all returned alerts.

Example 23. Acknowledging Alerts for Platform Resources

// set the criteria and search for the alerts
var criteria = new AlertCriteria()
criteria.addFilterResourceTypeName('Linux')
var alerts = AlertManager.findAlertsByCriteria(criteria)

// go through the results and then acknowledge the alerts
if(alerts != null) {
 if(alerts.size() > 1) {
 for(i =0; i < alerts.size(); ++i) {
 alert = alerts.get(i);
 AlertManager.acknowledgeAlerts([alert.id])
 }
 }
 else if(alerts.size() == 1) {
 alert = alerts.get(0);
 AlertManager.acknowledgeAlerts([alert.id])
 }
}

9.3. Enabling or Disabling Alert Definitions

Alert definitions cannot be created or edited through the CLI, but they can be enabled or disabled.

This example script disables all of the definitions returned in the search. In real life, the criteria for the search
are crucial to make sure that only the right definitions are disabled, rather than disabling large blocs of
definitions.

The steps in this script:

1. Search for matching alert definitions based on priority (low, in this case).

2. Retrieve the data for the search results.

3. Disable all returned alert definitions, based on the IDs in the retrieved search list.

Example 24. Disabling Alerts Based on Priority

// set the search criteria for the alert definitions with a reasonable
filter
var criteria = new AlertDefinitionCriteria()
criteria.addFilterPriority(AlertPriority.LOW)

//search for the alert definitions
alertdefs =
AlertDefinitionManager.findAlertDefinitionsByCriteria(criteria)

//get the data from the results
alertdef = alertdefs.get(0);

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

69

println(" alert: " + alertdef.id);

//disable the matching alerts, based on ID
AlertDefinitionManager.disableAlertDefinitions([alertdef.id]);

10. Users and Roles

Roles are the primary access control method in JBoss ON. A role creates a relationship between users and
resources (through resource groups). The permissions set for the role define what permissions the users in
the role have for the resource in the role.

10.1. Creating Roles

A user can only see and manage what resources are in the roles to which a user belongs. If there are no
resources, then the user can do very little in JBoss ON, regardless of whatever their permissions are.

This script creates a role and adds a mixed group to it. It could be made more complex, like using different
criteria to get different types of groups or adding multiple groups to the role at once.

The script steps are:

1. Create a role and assigning the appropriate permissions. In this case, the role has manage inventory
and view user permissions.

2. Search for the group to add as a member.

3. Search for the new role entry.

4. Add the group to the role.

Example 25. A New Role

// create the role
var role = Role('Role Name - ' + java.util.Date());
role.description = 'This role is an example';
role.addPermission(Permission.MANAGE_INVENTORY);
role.addPermission(Permission.VIEW_USERS);
RoleManager.createRole(role);

//search for the group to add to the role
groupcriteria = new ResourceGroupCriteria();
groupcriteria.addFilterGroupCategory.toString('MIXED');

var groups =
ResourceGroupManager.findResourceGroupsByCriteria(groupcriteria);

//search for the new role
var c = new RoleCriteria();
c.addFilterName('Role Name');
var roles = RoleManager.findRolesByCriteria(c);
RoleManager.addResourceGroupsToRole(roles.get(0).id,[groups.get(0).id]);

Writing JBoss ON Command-Line Scripts

70

10.2. Creating Users

There are two parts to a user entry: the descriptive entry in JBoss ON and the principal, which is the login
username/password pair.

The script steps are:

1. Create a new user (subject) entry.

2. Create a principal for the new user.

3. Search for roles to add the user to and create an array.

4. Add the user to the roles.

Example 26. Creatting a User and Adding Roles

//create the new user entry
var newSubject = new Subject();
newSubject.setEmailAddress('admin@example.com');
newSubject.setFirstName('John');
newSubject.setLastName('Smith');
newSubject.setFactive(true);
newSubject.setFsystem(false);
newSubject.setName('jsmith');
var s = SubjectManager.createSubject(newSubject);

//create the login principal for the user
SubjectManager.createPrincipal(s.name, 'password');

//search for the role and create an array
var c = new RoleCriteria();
c.addFilterName('Role Name');
var roles = RoleManager.findRolesByCriteria(c);
var role = roles.get(0);
var rolesArray = new Array(1);
rolesArray[0] = role.getId();

//add the new user to the roles in the array
RoleManager.addRolesToSubject(s.getId(), rolesArray);

Part II. Basic Examples for Running JBoss ON Scripts Through the CLI

71

Part III. Extended Examples and Use Scenarios

Short Examples runs through discrete code examples that perform limited and specific tasks. In real life,
those code examples (and others) are going to be strung together to perform more coherent and useful
management tasks. These examples illustrate some potential script workflows.

1. Example: Scripts to Manage Inventory (All Resource Types)

Servers and services are routinely added or removed from a local machine. While discovery scans are
scheduled regularly, actually adding or removing that resource within the JBoss ON inventory is all manual —
and administrator must actually choose to import the resource.

An administrator can manage the JBoss ON inventory by automatically adding new resources and
automatically deleting other ones based on whatever criteria are defined.

1.1. Automatically Import New Resources: autoimport.js

As soon as a resource is discovered it is, technically, already in the JBoss ON inventory. It is included with a
status of NEW. That's an in-between state, because JBoss ON is aware that the resource exists, but the
resource has not been committed so JBoss ON can't manage it.

A script can be created and run regularly so that any newly-discovered resources can be automatically added
to the inventory. This script bases its identification on new resources on the inventory state, so ignored or
already imported resources aren't included.

The CLI script runs through three steps:

It identifies new resources using the findUncommittedResources() method.

It gets those new resources' IDs.

It then imports those resources by invoking the discovery system's import operation.

//Usage: autoImport.js
//Description: Imports all auto-discovered inventory into JON
// autoImport.js
rhq.login('rhqadmin', 'rhqadmin');
println("Running autoImport.js");

var resources = findUncommittedResources();
var resourceIds = getIds(resources);
DiscoveryBoss.importResources(resourceIds);

rhq.logout();

Only one of the operations is already defined in the remote API — importResources. The other two
functions — findUncommittedResources and getIds — have to be defined in the script.

Uncommitted (new) resources can be identified through a ResourceCriteria search by adding a search
parameter based on the inventory status.

// returns a java.util.List of Resource objects
// that have not yet been committed into inventory
function findUncommittedResources() {
 var criteria = ResourceCriteria();

Writing JBoss ON Command-Line Scripts

72

 criteria.addFilterInventoryStatus(InventoryStatus.NEW);

 return ResourceManager.findResourcesByCriteria(criteria);
}

The second function checks that the inventory search actually returned resources and, if so, gets the ID for
each resource in the array.

// returns an array of ids for a given list
// of Resource objects. Note the resources argument
// can actually be any Collection that contains
// elements having an id property.
function getIds(resources) {
 var ids = [];

 if (resources.size() > 0) {
 println("Found resources to import: ");
 for (i = 0; i < resources.size(); i++) {
 resource = resources.get(i);
 ids[i] = resource.id;
 println(" " + resource.name);
 }
 } else {
 println("No resources found awaiting import...");
 }

 return ids;
}

1.2. Simple Inventory Count: inventoryCount.js

Searches are performed using *Criteria classes; for resources, this is ResourceCriteria. A search
can be very specific, passing criteria so that it returns only one resource or a small subset of resource. It is
also possible to return everything in inventory.

This script runs a search with no specific criteria (ResourceCriteria()), so that every resource matches
the search. It then takes the size of the results to produce a simple inventory count.

// inventory.js
rhq.login('rhqadmin', 'rhqadmin');
var resources = ResourceManager.findResourcesByCriteria(ResourceCriteria());
println('There are ' + resources.size() + ' resources in inventory');

// end script

1.3. Uninventory a Resource After an Alert: uninventory.js

Removing a resource from the inventory simply removes it from JBoss ON; the server or application itself
remains intact on the local system. (This allows the resource to be re-discovered and re-imported later.)

The alert system can launch CLI scripts in response to a fired alert (covered in "Setting up Monitoring, Alerts,
and Operations"). One possible response is to uninventory a resource which is not performing well.

Part III. Extended Examples and Use Scenarios

73

http://docs.redhat.com/docs/en-US/JBoss_Operations_Network/3.0/html/Setting_up_Monitoring_Alerts_and_Operations/alerts.html#init-cli-script-alerts

This can be a pretty simple little script. To uninventory the resource, simply use the resource ID which was
included in the alert and the uninventoryResource method:

List<Integer> uninventoryResources(Subject subject, int[] resourceIds);

It is possible to combine the uninventory operation with another task. For example, uninventory one resource
and automatically create and import another resource to take its place.

Note

This script should be uploaded to the server and then referenced as an alert notification.

2. Example: Scripts to Manage Resources of a Specific Type

Section 1, “Example: Scripts to Manage Inventory (All Resource Types)” shows a general resource discovery
and import script. In some environments, it may be more useful to discover and import only specific types of
resources. For example, and administrator may be constantly deploying new applications to an app server, or
maybe spinning up and destroying application servers dynamically to respond to load. In that case, the
administrator only wants to find the specific resources which he knows are frequently created.

For this example, the workflow has some pretty basic steps:

1. Search for new, uncommitted resources of a specific type.

2. Get the resource IDs.

3. Import those new resources.

4. Do something with the newly-imported resources.

Steps 1 through 3 are basically the same as the autoimport.js example in Section 1.1, “Automatically
Import New Resources: autoimport.js”, with one significant change. The search has an extra filter for the
resource type.

Uncommitted (new) resources can be identified through a ResourceCriteria search by adding a search
parameter based on the inventory status and the resource type (in this example, JBoss EAP 6 domain
deployments, for new web applications). The new findUncommittedJbasApps() function runs that
search.

function findUncommittedJbasApps() {
 var criteria = ResourceCriteria();
 criteria.addFilterInventoryStatus(InventoryStatus.NEW);
 criteria.addFilterResourceTypeName('DomainDeployment');

 return ResourceManager.findResourcesByCriteria(criteria);
}

As with the autoimport.js example, a getIds function retrieves an array of the resource IDs.

function getIds(resources) {
 var ids = [];

 if (resources.size() > 0) {

Writing JBoss ON Command-Line Scripts

74

 println("Found resources to import: ");
 for (i = 0; i < resources.size(); i++) {
 resource = resources.get(i);
 ids[i] = resource.id;
 println(" " + resource.name);
 }
 } else {
 println("No resources found awaiting import...");
 }

 return ids;
}

Those two functions accomplish the first two steps: search for uncommitted resources of a specific type and
then retrieve those IDs.

Step 3 then runs the DiscoveryBoss method to import the discovered resources.

The first half of the script, then mimics the original autoimport.js, with the slight adjustment to the new
function to search for JBoss EAP 6 domain deployments.

rhq.login('rhqadmin', 'rhqadmin');
println("Running autoImport.js");

var resources = findUncommittedJbasApps();
var resourceIds = getIds(resources);
DiscoveryBoss.importResources(resourceIds);

The last step simply does something with the new resource.

For a new domain deployment, then it is probably most useful to assign the new domain deployment to server
group, so the new application is deployed. For example, this assigns all new applications automatically to a
server group used for the staging environment, using the promote operation:

var config = new Configuration();
config.put(new PropertySimple("server-group", "Staging-Server-Group"));

OperationManager.scheduleResourceOperation(
 resources.get(0).id,
 "promote",
 0, // 0 means that the delay was skipped
 1,
 0, // this skips the repeat count
 10000000,
 config,
 "promote new app to server group"
);

Alternatively, if this script is used to add a new service or a new server, then it may be more appropriate to
add the new resource to a group. This example uses an explicit group ID (15001) for an existing compatible
group. The assumption is that the group has already been created, before this script is run, and there is no
need to create a new group for the resources.

ResourceGroupManager.addResourcesToGroup(15001, [resourceIds]);

Part III. Extended Examples and Use Scenarios

75

Then, have the script log out from the CLI and close.

rhq.logout();

3. Example: Scripting Resource Deployments (JBoss EAP 5)

A common use case for management tools is to automate deployments of new or existing applications. This
example creates an easy script for basic management tasks:

1. Find all JBoss EAP instances for a specified JBoss ON group.

2. Shut down each EAP instance.

3. Update binaries for existing deployed applications or create new deployments.

4. Restart the EAP instance.

5. End the loop.

3.1. Declaring Custom Functions

This script will use two custom functions to deploy the packages to create new resources.

function usage() {
 println("Usage: deployToGroup <fileName> <groupName>");
 throw "Illegal arguments";
}

function PackageParser(fullPathName) {
 var file = new java.io.File(fullPathName);

 var fileName = file.getName();
 var packageType = fileName.substring(fileName.lastIndexOf('.')+1);
 var tmp = fileName.substring(0, fileName.lastIndexOf('.'));
 var realName = tmp.substring(0, tmp.lastIndexOf('-'));
 var version = tmp.substring(tmp.lastIndexOf('-') + 1);
 var packageName = realName + "." + packageType;

 this.packageType = packageType.toLowerCase();
 this.packageName = packageName;
 this.version = version;
 this.realName = realName;
}

3.2. Checking the JBoss ON Groups and Inventory

The script should have two command-line parameters. The first should be the path of the new application that
is installed in the group. The second is the name of the group itself. These parameters are parsed in the
script (as described in more detail in Section 5.3, “Passing Command and Script Arguments”).

For example:

Writing JBoss ON Command-Line Scripts

76

if(args.length < 2) usage();

var fileName = args[0];
var groupName = args[1];

Next, check if the path is valid and if the current user can read it. This is done by using Java classes as
shown here:

// check that the file exists and that we can read it
var file = new java.io.File(fileName);

if(!file.exists()) {
 println(fileName + " does not exist!");
 usage();
}

if(!file.canRead()) {
 println(fileName + " can't be read!");
 usage();
}

Verify that the group really exists on the JBoss ON server:

// find resource group
var rgc = new ResourceGroupCriteria();
rgc.addFilterName(groupName);
rgc.fetchExplicitResources(true);
var groupList = ResourceGroupManager.findResourceGroupsByCriteria(rgc);

The important part here is to fetch the resources.

rgc.fetchExplicitResources(true);

Check if there is a group found:

if(groupList == null || groupList.size() != 1) {
 println("Can't find a resource group named " + groupName);
 usage();
}

var group = groupList.get(0);

println(" Found group: " + group.name);
println(" Group ID : " + group.id);
println(" Description: " + group.description);

After validating that there is a group with the specified name, check if the group contains explicit resources:

if(group.explicitResources == null || group.explicitResources.size() == 0)
{
 println(" Group does not contain explicit resources --> exiting!");
 usage();
}
var resourcesArray = group.explicitResources.toArray();

Part III. Extended Examples and Use Scenarios

77

resourceArray now contains all resources which are part of the group. Next, check if there are JBoss AS 5
Server instances which need to be restarted before the application is deployed.

for(i in resourcesArray) {
 var res = resourcesArray[i];
 var resType = res.resourceType.name;
 println(" Found resource " + res.name + " of type " + resType + " and
ID " + res.id);

 if(resType != "JBossAS5 Server") {
 println(" ---> Resource not of required type. Exiting!");
 usage();
 }

 // get server resource to start/stop it and to redeploy application
 var server = ProxyFactory.getResource(res.id);
}

This requires a group with only JBoss AS 5 Server resource types as top level resources. Now server
contains the JBoss AS 5 instance. This requires re-reading the server because it needs to be fully populated.
Internally, the CLI is using simple JPA persistence, and it is necessary to not always fetch all dependent
objects.

Next, traverse all the children of the server instance and find the resource name of the application:

var children = server.children;
for(c in children) {
 var child = children[c];

 if(child.name == packageName) {
 }
}

packageName is the name of the application without version information and path as shown in the JBoss ON
GUI as deployed applications.

Create a backup of the original version of the application:

println(" download old app to /tmp");
child.retrieveBackingContent("/tmp/" + packageName + "_" + server.name +
"_old");

A copy of the old application with the server name decoded in path is available in the /tmp/ directory.

Shut down the server and upload the new application content to the server.

println(" stopping " + server.name + "....");
try {
 server.shutDown();
}
catch(ex) {
 println(" --> Caught " + ex);
}

Writing JBoss ON Command-Line Scripts

78

println(" uploading new application code");
child.updateBackingContent(fileName);

println(" restarting " + server.name + ".....");

try {
 server.start();
}
catch(ex) {
 println(" --> Caught " + ex);
}

3.3. Deploying the New Resource

At this point, existing application can be updated. The next step is to create the resource through the CLI and
then deploy it to the JBoss server.

First, get the resource type for the application. This depends on several parameters:

1. The type of the application (e.g., WAR or EAR)

2. The type of the container the app needs to be deployed on (such as Tomcat or JBoss AS 5)

Note

All of the information about the resource type, such as the appType and appTypeName, is defined in
the resource agent plug-in, in the rhq-plugin.xml descriptor. The attributes, configuration
parameters, operations, and metrics for each default resource type are listed in the Resource
Monitoring and Operations Reference.

For example:

var appType = ResourceTypeManager.getResourceTypeByNameAndPlugin(
appTypeName, "JBossAS5");
if(appType == null) {
 println(" Could not find application type. Exit.");
 usage();
}

Then get the package type of the application.

var realPackageType = ContentManager.findPackageTypes(appTypeName,
"JBossAS5");

if(realPackageType == null) {
 println(" Could not find JBoss ON's packageType. Exit.");
 usage();
}

Part III. Extended Examples and Use Scenarios

79

Each resource in JBoss ON has some configuration parameters, including the WARs or EARs deployed on a
JBoss AS 5 resource. As with the descriptive information, this is defined in the resource type's agent plug-in,
in the rhq-plugin.xml descriptor. To be able to create a new resource, these parameters need to be filled
in.

// create deployConfig
var deployConfig = new Configuration();
deployConfig.put(new PropertySimple("deployExploded", "false"));
deployConfig.put(new PropertySimple("deployFarmed", "false"));

The property names can be retrieved by calling a list of supported properties by the package type by calling
this method:

var deployConfigDef =
ConfigurationManager.getPackageTypeConfigurationDefinition(realPackageType.g
etId());

Provide the package bits as a byte array:

var inputStream = new java.io.FileInputStream(file);
var fileLength = file.length();
var fileBytes = java.lang.reflect.Array.newInstance(java.lang.Byte.TYPE,
fileLength);
for (numRead=0, offset=0; ((numRead >= 0) && (offset < fileBytes.length));
offset += numRead) {
 numRead = inputStream.read(fileBytes, offset, fileBytes.length -
offset);
}

Then, create the resource. The information is defined in the resource type's agent plug-in, in the rhq-
plugin.xml descriptor. For example:

ResourceFactoryManager.createPackageBackedResource(
 server.id,
 appType.id,
 packageName,
 null, // pluginConfiguration
 packageName,
 packageVersion,
 null, // architectureId
 deployConfig,
 fileBytes,
 null // timeout
);

Make sure that the given JBoss AS 5 server instance is still running and that JBoss ON knows that it is
running, or it will throw an exception saying that the JBoss ON agent is not able to upload the binary content
to the server.

4. Example: Deploying an Application with Bundles (JBoss EAP 4, 5, and
6)

Writing JBoss ON Command-Line Scripts

80

Bundles are a very clean and easy way to deploy updated applications to JBoss EAP 6 servers. The bundles
system maintains multiple versions of a given package and can deploy any of those versions to a specified
compatible group. This is a great workflow for application lifecycles, since a stable version can be deployed
to production servers while a development version can be deployed to test machines.

The deploy-to-and-restart-JBAS.js script in the cliRoot/rhq-remoting-cli-3.1.2.GA/samples
directory defines a set of custom functions that quickly create a bundle version and definition and then deploy
it to the given JBoss servers.

4.1. Creating a New Application

The deploy-to-and-restart-JBAS.js script requires the util.js and bundles.js scripts for
supporting functions. This is easiest to do when running the CLI interactively, because all of the scripts can
be loaded using the exec command.

[root@server bin]# ./rhq-cli.sh -u rhqadmin -p rhqadmin
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/util.js
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/bundles.js
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/deploy-to-and-restart-JBAS.js

The deploy-to-and-restart-JBAS.js script defines a function called createAppAndRestartJBAS
that creates and then deploys a bundle. The function takes seven parameters:

The path to the bundle archive file.

A configuration object that contains any tokens or variables required for the bundle configuration. In this
example, no properties are passed, so the value is null. Details about the configuration are in the
comments in the bundles.js file and general configuration information is in Section 6.2, “Changing
Simple Configuration Properties”.

The name of the compatible group to which to deploy the bundle.

A name of the bundle destination.

A description for the bundle destination.

The base directory to which to deploy the bundle and, optionally, a subdirectory to deploy the bundle to.

For example:

rhqadmin@localhost:7080$ var bundleZipFile = /export/bundles/myBundle.zip
rhqadmin@localhost:7080$ var deploymentConfiguration = null
rhqadmin@localhost:7080$ var groupName = "JBoss EAP 6 Group"
rhqadmin@localhost:7080$ var destinationName = "My App - JBoss EAP 6
Destination"
rhqadmin@localhost:7080$ var destinationDescription = "For my application"
rhqadmin@localhost:7080$ var baseDirName = "Install Directory"
rhqadmin@localhost:7080$ var deployDir = "deploy"
rhqadmin@localhost:7080$ createAppAndRestartJBAS(bundleZipFile,
deploymentConfiguration, groupName, destinationName, destinationDescription,
baseDirName, deployDir)

Part III. Extended Examples and Use Scenarios

81

There are a number of private functions defined in the deploy-to-and-restart-JBAS.js script which
provide support to the createAppAndRestartJBAS function. Those are explained in the comments in the
deploy-to-and-restart-JBAS.js file.

Note

The baseDirName variable must have a value of Install Directory or Profile Directory.
Those two locations are then identified based on the connection information for the specified JBoss
EAP resource which is accessed by the script.

The createAppAndRestartJBAS function has three parts: finding the resource group, creating the bundle,
and restarting the JBoss servers in the group.

The first part searches for the specific group by the given group name, and it must match only a single
resource group. Otherwise, it returns an error.

function createAppAndRestartJBAS(bundleZipFile, deploymentConfiguration,
groupName, destinationName, destinationDescription, baseDirName, deployDir)
{
 var gcrit = new ResourceGroupCriteria;
 gcrit.addFilterName(groupName);
 gcrit.fetchResourceType(true);

 var groups = ResourceGroupManager.findResourceGroupsByCriteria(gcrit);
 if (groups.empty) {
 throw "Could not find a resource group called " + groupName;
 } else if (groups.size() > 1) {
 throw "There are more than 1 groups called " + groupName;
 }

 var group = groups.get(0);
 var targetResourceType = group.resourceType;

Part of the search instruction is to fetch the resource type for the given compatible group. That resource type
is then used to create the bundle destination, which is associated with a group.

The next part creates the bundle and restarts the server resources.

 var deployFn = function(restartFn) {

The first part of create a bundle deployment is uploading the bundle archive to create a bundle version in the
JBoss ON configuration.

 var bundleVersion = createBundleVersion(bundleZipFile);

Next, it creates the destination, which is the definition of where the bundle is to be deployed (the base and
deployment directories), associated with a compatible group and with the bundle version.

 var destination =
BundleManager.createBundleDestination(bundleVersion.bundle.id,
destinationName, destinationDescription, baseDirName, deployDir, group.id);

Once the destination and the version are defined, then they can be saved and deployed to the target resource

Writing JBoss ON Command-Line Scripts

82

group.

 var deployment = deployBundle(destination,bundleVersion,
deploymentConfiguration, "Web application", false);

 if (deployment.status != BundleDeploymentStatus.SUCCESS) {
 throw "Deployment wasn't successful: " + deployment;
 }

When the deployment completes, then the script iterates through the group members (defined in one of the
help functions in the deploy-to-and-restart-JBAS.js script) and restarts each resource. It then prints
the deployment information.

 restartFn(group);

 return deployment;
 };

The deploy-to-and-restart-JBAS.js script can deploy content to any supported version of JBoss
EAP: 4, 5, or 6. The bundle system uses the configuration defined in the resource plug-in, based on the
resource type of the group. For the restart operation, different restart function are defined for each version of
JBoss EAP.

 if (targetResourceType.plugin == "JBossAS" && targetResourceType.name ==
"JBossAS Server") {
 return deployFn(_restartAS4);
 } else if (targetResourceType.plugin == "JBossAS5" &&
targetResourceType.name == "JBossAS Server") {
 return deployFn(_restartAS5);
 } else if (targetResourceType.plugin == "JBossAS7" &&
 (targetResourceType.name == "JBossAS7 Standalone Server" ||
 targetResourceType.name == "JBossAS-Managed")) {
 return deployFn(_restartAS7);
 }

 throw "The resource group the destination targets doesn't seem to be a
JBoss AS server group.";
}

4.2. Updating Applications

Updating an application is simpler than creating one because the bundle definition already exists.

As with creating a new application, all three scripts — util.js, bundles.js, and deploy-to-and-
restart-JBAS.js — need to be loaded using the exec command.

[root@server bin]# ./rhq-cli.sh -u rhqadmin -p rhqadmin
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/util.js
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/bundles.js
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/deploy-to-and-restart-JBAS.js

Part III. Extended Examples and Use Scenarios

83

To update an application, give the path to the updated bundle archive, any tokens or properties to set, and
the existing bundle destination.

rhqadmin@localhost:7080$ var bundleZipFile = /export/bundles/myBundle.zip
rhqadmin@localhost:7080$ var deploymentConfiguration = null
rhqadmin@localhost:7080$ var jbasDestination = "My App - JBoss EAP 6
Destination"
rhqadmin@localhost:7080$ updateAppAndRestartJBAS(bundleZipFile,
jbasDestination, deploymentConfiguration)

If the bundle requires any tokens to be realized, like a port number to be entered, then you must create a
configuration object and pass the values to that. In this example, no properties are passed, so the value is
null. Details about the configuration are in the comments in the bundles.js file and general configuration
information is in Section 6.2, “Changing Simple Configuration Properties”.

The destination identifier — which could be the destination name or the ID — is used in a criteria search to
fetch the resource type for the compatible group. This, as with the create function, identifies which version of
JBoss EAP is being used.

function updateAppAndRestartJBAS(bundleZipFile, jbasDestination,
deploymentConfiguration) {
 // first figure out the jbas version we are deploying to
 var destinationId = jbasDestination;
 if (typeof(jbasDestination) == 'object') {
 destinationId = jbasDestination.id;
 }

 var destCrit = new BundleDestinationCriteria
 destCrit.fetchGroup(true)

It uses the name to search for the destination ID. When it retrieves the destination entry (in the get(0) call),
the destination configuration contains the resource type.

 var destinations =
BundleManager.findBundleDestinationsByCriteria(destCrit);

 if (destinations.empty) {
 throw "No destinations corresponding to " + jbasDestination + "
found on the server.";
 }

 var destination = destinations.get(0);

 var targetResourceType = destination.group.resourceType;

 if (targetResourceType == null) {
 throw "This function expects a compatible group of JBoss AS (4,5,6
or 7) resources but the provided destination is connected with " +
destination.group;
 }

Then, it uploads the new bundle archive as a new bundle version, in the createBundleVersion method.

 var deployFn = function(restartFn) {
 var bundleVersion = createBundleVersion(bundleZipFile);

Writing JBoss ON Command-Line Scripts

84

Then, it deploys the new bundle version to the existing destination, along with any defined or required tokens
in a configuration object (deploymentConfiguration). When the deployment completes, it restarts the JBoss
resources in the group and prints the deployment information.

 var deployment = deployBundle(destination,bundleVersion,
deploymentConfiguration, "Web application", false);

 if (deployment.status != BundleDeploymentStatus.SUCCESS) {
 throw "Deployment wasn't successful: " + deployment;
 }

 restartFn(destination.group);

 return deployment;
 };

As with the creation function, there are version-specific restart methods for any supported version of JBoss
EAP: 4, 5, or 6. The bundle system uses the configuration defined in the resource plug-in, based on the
resource type of the group.

 if (targetResourceType.plugin == "JBossAS" && targetResourceType.name ==
"JBossAS Server") {
 return deployFn(_restartAS4);
 } else if (targetResourceType.plugin == "JBossAS5" &&
targetResourceType.name == "JBossAS Server") {
 return deployFn(_restartAS5);
 } else if (targetResourceType.plugin == "JBossAS7" &&
 (targetResourceType.name == "JBossAS7 Standalone Server" ||
 targetResourceType.name == "JBossAS-Managed")) {
 return deployFn(_restartAS7);
 }

 throw "The resource group the destination targets doesn't seem to be a
JBoss AS server group.";
}

5. Example: JNDI Lookups After an Alert (JBoss EAP 5)

Important

This script is intended to be run directly on the server, such as using the -f parameter or through a
server-side alert script. This cannot be run using the interactive CLI.

For information on running server-side scripts in response to alerts, see "Setting up Monitoring, Alerts,
and Operations".

The alert system can run a script in response to a fired alert. One possible response for a JBoss AS 5 server
is to check the JNDI directory and look up the JMX information.

This script first connects to the JNDI directory over JNP, then uses the assertNotNull method to get the
JMX object. The script then prints the JMX information.

Part III. Extended Examples and Use Scenarios

85

http://docs.redhat.com/docs/en-US/JBoss_Operations_Network/3.0/html/Setting_up_Monitoring_Alerts_and_Operations/alerts.html#init-cli-script-alerts

//This test requires a remote JBoss AS 5 server running with JNDI directory
remotely accessible using JNP (without authz)
//This script assumes that there is a bound object called "jmx" in the
directory (which it should be)
var jbossHost = 'localhost';
var jbossJnpPort = 1299;

var env = new java.util.Hashtable();
env.put('java.naming.factory.initial',
'org.jboss.naming.NamingContextFactory');
env.put('java.naming.provider.url', "jnp://" + jbossHost + ":" +
jbossJnpPort);
var ctx = new javax.naming.InitialContext(env);
var jmx = ctx.lookup('jmx');
assertNotNull(jmx);
pretty.print(jmx);

6. Example: Managing Grouped Servers (JBoss EAP 5)

A lot of enterprise servers have a concept of managed servers. A managed server means that there is a
central instance that deploys content or sends configuration to all registered application servers. Using
managed servers helps administrators ensure that all active application servers have the same version of the
deployed packages and configuration.

JBoss ON can imitate the behavior of managed or clustered servers for applications like Tomcat or JBoss
EAP 5 by creating a management script that can be invoked to perform actions simultaneously on all
members of a JBoss ON group. All of the EAP 5 instances are functionally managed servers, while JBoss ON
itself acts as the domain controller.

Note

JBoss EAP 6 has a very different server topology than JBoss EAP 5, so domain controllers, managed
servers, and domain configuration are defined and manageable by default.

6.1. The Plan for the Scripts

The JBoss ON CLI can run defined JavaScripts using the -f parameter. The idea here is to create a series
of small management scripts that perform specific tasks on a group of JBoss EAP servers. This example has
seven scripts for:

Creating a group

Adding EAP instances to the group

Checking EAP status

Starting the EAP instance

Scheduling an operation

Deploying new content to the group

Checking metrics

Writing JBoss ON Command-Line Scripts

86

A wrapper script and configuration file will be set up so that only one command needs to be run; the wrapper
invokes the appropriate JBoss ON CLI script depending on the command passed to the wrapper.

6.2. Creating the Wrapper Script and .conf File

The wrapper script takes command-line arguments and calls the JBoss ON CLI with one of the scripts as
argument. The command-line arguments themselves are defined in the JBoss ON JavaScript files.

This wrapper script makes a few assumptions:

The wrapper script is run as a regular user, which means that any JavaScript files must be accessible to a
regular user.

The scripts are located in a scripts/ directory that is in the same directory as the wrapper script.

A separate configuration file defines connection information for the JBoss ON server.

Each JavaScript file is invoked by a separate CLI command invocation, defined in the wrapper.

Any options or information required by the JBoss ON CLI command is defined in the JavaScript file and
can, potentially, be passed with the wrapper script as an option.

#!/bin/bash
#
groupcontrol

This is a simple wrapper script for all the java script scripts in this
folder.
Start this script with some parameters to automate group handling from
within the
command line.

With groupcontrol you can do the following:
create : Create a new group
addMember: Add a new EAP instance to the specified group
status : Print the status of all resources of a group
start : start all EAP instances specified by group name
deploy : Deploys an application to all AS instances specified by group
name
avail : Runs an availability operation on all discovered agent
instances
metrics : Gets the specified metric value for all AS instances
specified by group name
#

Should not be run as root.
if ["$EUID" = "0"]; then
 echo " Please use a normal user account and not the root account"
 exit 1
fi

Figure out script home
MY_HOME=$(cd `dirname $0` && pwd)
SCRIPT_HOME=$MY_HOME/scripts

Source some defaults

Part III. Extended Examples and Use Scenarios

87

. $MY_HOME/groupcontrol.conf

Check to see if we have a valid CLI home
if [! -d ${JON_CLI_HOME}]; then
 echo "JON_CLI_HOME not correctly set. Please do so in the file"
 echo $MY_HOME/groupcontrol.conf
 exit 1
fi

RHQ_OPTS="-s $JON_HOST -u $JON_USER -t $JON_PORT"
If JBoss ON_PWD is given then use it as argument. Else let the user enter
the password
if ["x$JON_PWD" == "x"]; then
 RHQ_OPTS="$RHQ_OPTS -P"
else
 RHQ_OPTS="$RHQ_OPTS -p $JON_PWD"
fi

#echo "Calling groupcontrol with $RHQ_OPTS"

usage() {
 echo " Usage $0:"
 echo " Use this tool to control most group related tasks with a simple
script."
 echo " ---
-------------- "
}

Each command that the wrapper should define has a doCommand() section which defines the JBoss ON
CLI command to run and the JavaScript file to use.

doDeploy() {
 $JON_CLI_HOME/bin/rhq-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/deploy.js $2 $3
}

doCreate() {
 $JON_CLI_HOME/bin/rhq-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/group.js $2
}

doAddMember() {
 $JON_CLI_HOME/bin/rhq-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/addMember.js $2
$3 $4
}

doStatus() {
 $JON_CLI_HOME/bin/rhq-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/status.js $2
}

doRestart() {
 $JON_CLI_HOME/bin/rhq-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/restart.js $2
}

doAvail() {
 $JON_CLI_HOME/bin/rhq-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/avail.js
}

Writing JBoss ON Command-Line Scripts

88

doMetrics() {
 $JON_CLI_HOME/bin/rhq-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/metrics.js $2 $3
}

case "$1" in
'deploy')
 doDeploy $*
 ;;
'create')
 doCreate $*
 ;;
'addMember')
 doAddMember $*
 ;;
'status')
 doStatus $*
 ;;
'restart')
 doRestart $*
 ;;
'avail')
 doAvail $*
 ;;
'metrics')
 doMetrics $*
 ;;
*)
 usage $*
 ;;
esac

This script uses a configuration file, groupcontrol.conf, which defines the connection information to
connect to the JBoss ON server (which is required by the JBoss ON CLI).

This file contains some defaults for the groupcontrol script
##
JON_CLI_HOME=cliRoot/rhq-remoting-cli-3.1.2.GA
JON_HOST=localhost
JON_PORT=7080

The user you want to connect with
JON_USER=rhqadmin

if you omit the password here, you'll be prompted for it.
JON_PWD=rhqadmin

6.3. Defining Arguments and Other Parameters for the CLI Scripts

There may be multiple groups or some tasks (like searching for resources or running an operation) may have
multiple options.

Each JavaScript file can define its own script options in args methods. At a minimum, each script should
accept the name of the group on which to perform the task.

Part III. Extended Examples and Use Scenarios

89

It is also a really good idea to define a usage function, so that each command can print what options are
expected. For example:

function usage() {
 println("Usage: deploy groupName");
 throw "Illegal arguments";
}

if(args.length < 1) usage();
var groupName = args[0];

Note

When adding arguments for a script, be sure to set the proper number of tokens in the wrapper script
for the CLI invocation. For example, for groupName and fileName, add $2 $3.

doDeploy() {
 $JON_CLI_HOME/bin/rhq-cli.sh $RHQ_OPTS -f $SCRIPT_HOME/deploy.js
$2 $3
}

Aside from the script for creating a group, every script must also include a search for the group to perform the
operations on. For example:

groupcriteria = new ResourceGroupCriteria();
groupcriteria.addFilterName(groupName);

var groups =
ResourceGroupManager.findResourceGroupsByCriteria(groupcriteria);
if(groups != null) {
 if(groups.size() > 1) {
 println("Found more than one group.");
 }
 else if(groups.size() == 1) {
 group = groups.get(0);
 }
}

6.4. Creating a Group: group.js

Set up the script. This script only uses a single argument, for the name of the new group (groupName). The
resource type in the example is hard-coded to JBossAS5, which is a JBoss AS 5 server; optionally, it is
possible to also add arguments to set the plug-in name and type so that other JBoss versions could be
specified.

function usage() {
 println("Usage: deploy groupName");
 throw "Illegal arguments";
}

Writing JBoss ON Command-Line Scripts

90

if(args.length < 1) usage();
var groupName = args[0];

Create the group:

var rg = new ResourceGroup(resType);
rg.setRecursive(false);
rg.setDescription("Created via groupcontrol scripts on " + new
java.util.Date().toString());
rg.setName(groupName);

rg = ResourceGroupManager.createResourceGroup(rg);

var resType = ResourceTypeManager.getResourceTypeByNameAndPlugin("JBossAS 5
Server","JBossAS5");

6.5. Adding Resources to a Group: addMember.js

Set up the script. This identifies three required arguments for the script:

groupName for the group to add the resources to

resourceName for the name of the resource to add; this is one of the search criteria

resourceTypeName for the type of resource to add; this is one of the search criteria

This also includes a search to find the group specified in the argument.

function usage() {
 println("Usage: addMember groupName resourceName resourceTypeName");
 throw "Illegal arguments";
}

if(args.length < 3) usage();
var groupName = args[0];
var resourceName = args[1];
var resourceTypeName = args[2];

groupcriteria = new ResourceGroupCriteria();
groupcriteria.addFilterName(groupName);

var groups =
ResourceGroupManager.findResourceGroupsByCriteria(groupcriteria);
if(groups != null) {
 if(groups.size() > 1) {
 println("Found more than one group.");
 }
 else if(groups.size() == 1) {
 group = groups.get(0);
 }
}

Search for the resources to add to the group. The script is designed to add only a single resource to the
group, so the given search criteria, resourceName and resourceTypeName, must be specific enough to
match only a single resource.

Part III. Extended Examples and Use Scenarios

91

criteria = new ResourceCriteria();
criteria.addFilterName(resourceName);
criteria.addFilterResourceTypeName(resourceTypeName);

var resources = ResourceManager.findResourcesByCriteria(criteria);
if(resources != null) {
 if(resources.size() > 1) {
 println("Found more than one JBossAS Server instance. Try to
specialize.");
 for(i =0; i < resources.size(); ++i) {
 var resource = resources.get(i);
 println(" found " + resource.name);
 }
 }
 else if(resources.size() == 1) {
 resource = resources.get(0);
 println("Found one JBossAS Server instance. Trying to add it.");
 println(" " + resource.name);
 ResourceGroupManager.addResourcesToGroup(group.id, [resource.id]);
 println(" Added to " + group.name + "!");
 }
 else {
 println("Did not find any JBossAS Server instance matching your
pattern. Try again.");
 }
}

When this script is run, it prints the name of the found JBoss instance and that it was added to the group.

[jsmith@server cli]$./wrapper.sh addMember myGroup "JBossAS App 1" "JBossAS
Server"
Remote server version is: 3.0.1.GA (b2cb23b:859b914)
Login successful
Found one JBossAS Server instance. Trying to add it.
 AS server.example.com JBossAS App 1
 Added to myGroup!

6.6. Getting Inventory and Status Information: status.js

This is a simple little script, just to print the current status of all the JBoss instances in the group.

As with the other scripts, set up the group information.

function usage() {
 println("Usage: status groupName");
 throw "Illegal arguments";
}

if(args.length < 1) usage();
var groupName = args[0];

groupcriteria = new ResourceGroupCriteria();
groupcriteria.addFilterName(groupName);

Writing JBoss ON Command-Line Scripts

92

var groups =
ResourceGroupManager.findResourceGroupsByCriteria(groupcriteria);
if(groups != null) {
 if(groups.size() > 1) {
 println("Found more than one group.");
 }
 else if(groups.size() == 1) {
 group = groups.get(0);
 }
}

Also include information to search for the resources, based on the group:

criteria = new ResourceCriteria();
criteria.addFilterExplicitGroupIds(group.id);

var resources = ResourceManager.findResourcesByCriteria(criteria);
for(i =0; i < resources.size(); ++i) {
 var resource = resources.get(i);
 println(" found " + resource.name);
}

Then, run through the resources and print their availability.

var server = ProxyFactory.getResource(resource.id);
var avail =
AvailabilityManager.getCurrentAvailabilityForResource(server.id);

println(" " + server.name);
println(" - Availability: " + avail.availabilityType.getName());
println(" - Started : " + avail.startTime.toGMTString());
println("");

var avail =
AvailabilityManager.getCurrentAvailabilityForResource(server.id);

if(avail.availabilityType.toString() == "DOWN") {
 println(" Server is DOWN. Please first start the server and run
this script again!");
 println("");
}

When the script is run, it prints the availability and last start time for the servers.

[jsmith@server cli]$./wrapper.sh status myGroup
Remote server version is: 3.0.1.GA (b2cb23b:859b914)
Login successful
 found AS server.example.com JBossAS App 1
 AS server.example.com JBossAS App 1
 - Availability: UP
 - Started : 11 Feb 2012 04:07:37 GMT

6.7. Starting, Stopping, and Restarting the Server: restart.js

Part III. Extended Examples and Use Scenarios

93

Set up the script with the usage information and the group search, as in Section 6.6, “Getting Inventory and
Status Information: status.js”.

This example only performs one operation, restarting a JBoss server. It iterates through all the resources in
the group.

It is possible to write similar scripts for starting and stopping the server.

shutdown() for AS4 servers and shutDown() for AS5 servers

start()

criteria = new ResourceCriteria();
criteria.addFilterExplicitGroupIds(group.id);

var resources = ResourceManager.findResourcesByCriteria(criteria);
for(i =0; i < resources.size(); ++i) {
 var resource = resources.get(i);
 var resType = resource.resourceType.name;
 println(" found " + resource.name);

 if(resType != "JBossAS Server") {
 println(" ---> Resource not of required type. Exiting!");
 usage();
 }

 var server = ProxyFactory.getResource(resource.id);
 println(" stopping " + server.name + "....");
 try {
 server.shutdown()
 }
 catch(ex) {
 println(" --> Caught " + ex);
 }

 println(" restarting " + server.name + ".....");
 try {
 server.start();
 }
 catch(ex) {
 println(" --> Caught " + ex);
 }
}

6.8. Deploying Applications to the Group Members: deploy.js

Set up the usage information and the group search as in the other scripts, then use the deployment script
described in Section 3, “Example: Scripting Resource Deployments (JBoss EAP 5)”.

The script uses two parameters, one for the group name and one for the file to upload.

As one easy improvement, the last part of Section 3.2, “Checking the JBoss ON Groups and Inventory” stops
the JBoss server, uploads the content, and restarts it. Instead, simply check that the server is running first,
and then upload the content:

// we need check to see if the given server is up and running

Writing JBoss ON Command-Line Scripts

94

var avail =
AvailabilityManager.getCurrentAvailabilityForResource(server.id);

// unfortunately, we can only proceed with deployment if the server is
running. Why?
if(avail.availabilityType.toString() == "DOWN") {
 println(" Server is DOWN. Please first start the server and run this
script again!");
 println("");
 continue;
}

6.9. Scheduling an Availability Operation: avail.js

Unlike the other tasks in this script set, the operation task is run on the agent, so it is not necessary to search
for the group or JBoss resource. This runs an availability scan on the agent; it is also possible to run a
specific command on the agent using the Execute prompt command operation.

First, get a list of all agent resources:

println("Scanning all RHQ Agent instances");
var rc = ResourceCriteria();
var resType = ResourceTypeManager.getResourceTypeByNameAndPlugin("RHQ
Agent", "RHQAgent");
rc.addFilterPluginName("RHQAgent");
rc.addFilterResourceTypeName("RHQ Agent");
rc.addFilterParentResourceTypeId("10001");

var resources = ResourceManager.findResourcesByCriteria(rc).toArray();

var idx=0;
for(i in resources) {
 if(resources[i].resourceType.id == resType.id) {
 resources[idx] = resources[i];
 idx = idx + 1;
 }
}

Then, traverse the agents array and schedule the operation:

for(a in resources) {
 var agent = resources[a]

 var resType = agent.resourceType.name;
 println(" Found resource " + agent.name + " of type " + resType + "
and ID " + agent.id);

 println(" executing availability scan on agent");
 println(" -> " + agent.name + " / " + agent.id);
 var config = new Configuration();
 config.put(new PropertySimple("changesOnly", "true"));
 var ros = OperationManager.scheduleResourceOperation(
 agent.id,
 "executeAvailabilityScan",
 0,

Part III. Extended Examples and Use Scenarios

95

 1,
 0,
 10000000,
 config,
 "test from cli"
);

 println(ros);
 println("");
}

6.10. Gathering Metric Data of Managed Servers: metrics.js

JBoss ON collects a number of metrics for each resource type. This information can be retrieved by using the
findLiveData method, which returns the current active value for the resource.

This script takes two arguments, the groupName and the metricName. As with the other scripts, this searches
for the group and then the resource by the group ID.

function usage() {
 println("Usage: metrics groupName metricName");
 throw "Illegal arguments";
}

if(args.length < 2) usage();
var groupName = args[0];
var metricName = args[1];

groupcriteria = new ResourceGroupCriteria();
groupcriteria.addFilterName(groupName);

var groups =
ResourceGroupManager.findResourceGroupsByCriteria(groupcriteria);
if(groups != null) {
 if(groups.size() > 1) {
 println("Found more than one group.");
 }
 else if(groups.size() == 1) {
 group = groups.get(0);
 }
}

criteria = new ResourceCriteria();
criteria.addFilterExplicitGroupIds(group.id);

The actual metric search looks for the metrics available to the resource type (hard-coded to JBoss AS 5 in
this example). The metric itself is identified solely by the metricName argument.

var rt = ResourceTypeManager.getResourceTypeByNameAndPlugin("JBossAS 5
Server","JBossAS5");
var mdc = MeasurementDefinitionCriteria();
mdc.addFilterDisplayName(metricName);
mdc.addFilterResourceTypeId(rt.id);
var mdefs =
MeasurementDefinitionManager.findMeasurementDefinitionsByCriteria(mdc);

Writing JBoss ON Command-Line Scripts

96

var resources = ResourceManager.findResourcesByCriteria(criteria);
var metrics = MeasurementDataManager.findLiveData(resources.get(0).id,
[mdefs.get(0).id]);

if(metrics !=null) {
 println(" Metric value for " + resources.get(0).id + " is " +
metrics);
}

When the script is run, it prints the resource ID and the current value for the metric.

[jsmith@server cli]$./wrapper.sh metrics myGroup "Active Thread Count"
Remote server version is: 3.0.1.GA (b2cb23b:859b914)
Login successful
 Metric value for 10003 is [MeasurementDataNumeric[value=[64.0],
MeasurementData [MeasurementDataPK: timestamp=[Wed Feb 15 22:14:38 EST 2012],
scheduleId=[1]]]]

7. Example: Deploying a Standalone Server to a Cluster (JBoss EAP 6)

There is a sample script in the cliRoot/rhq-remoting-cli-3.1.2.GA/samples directory the defines a series of
functions that allow a JBoss EAP 6 standalone server to be added to an existing cluster.

JBoss EAP 6 has the idea of domains, which can be subdivided into server groups which share
configuration. Server groups allows multiple server instances to have consistent, uniform configuration
settings, to share profiles, and to deploy the same applications through a central command point.

However, JBoss EAP 6 still has the idea of a classic standalone server, a single JBoss instance that is
unaffiliated with a domain or server group. A standalone server can be joined in a cluster, a loose association
of standalone servers that work together to distribute the work load, either for load balancing or high
availability. Unlike a domain, a cluster does not manage configuration or content.

JBoss ON provides the centralized management over configuration and content for standalone servers,
introducing some of the ease of maintenance that EAP 6 domains offer. The add-as7-standalone-
server-to-cluster.js file defines some useful functions that simplify identifying cluster servers,
deployed content, and relevant configuration settings.

The bulk of the functions defined are private and are well-documented within the add-as7-standalone-
server-to-cluster.js file, so they are out of the scope of this example. The main purpose of this is
example is to review the two public functions which perform two distinct cluster management tasks:

addToCluster

copyDeployments

7.1. Adding a Standalone EAP 6 Server to a Cluster

A cluster is defined by servers which use the same multicast properties on the same network. If the servers
are configured with the same settings, they all automatically associate with each other in a cluster.

There are three configuration properties for a standalone server within a cluster:

An identifying name for the JBoss instance to use within the cluster (the node-name)

Multicast settings, including the multicast port, a UDP port, and multicast address

Part III. Extended Examples and Use Scenarios

97

Socket-binding group information used by mod_cluster

A cluster does not directly manage either configuration properties or deployed content. However, if two EAP
6 standalone servers are in the JBoss ON inventory, then JBoss ON can work somewhat as a bridge,
comparing the configuration and content deployments between servers and copying between them. That
comparison is what the addToCluster function uses to add a standalone server to a cluster. It uses the
configuration properties in an existing cluster member and copies them over to the standalone server.

Actually running the script requires the name of the standalone server, the name of an existing cluster
member, a node name for the standalone server, and a boolean that sets whether to copy over the
deployments from the existing cluster to the new member. In interactive mode, you can run the add-as7-
standalone-server-to-cluster.js script to load the function.

Assuming that you already know resource IDs of the standalone server and an existing cluster member:

[root@server bin]# ./rhq-cli.sh -u rhqadmin -p rhqadmin
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/add-as7-standalone-server-to-cluster.js
rhqadmin@localhost:7080$ var newAs7Resource =
ProxyFactory.getResource(10381)
rhqadmin@localhost:7080$ var existingClusterMemberResource =
ProxyFactory.getResource(10577)
rhqadmin@localhost:7080$ var newNodeName = jbas7-standalone1
rhqadmin@localhost:7080$ addToCluster(newAs7Resource, newNodeName,
existingClusterMemberResource, true)

The addToCluster function makes some assumptions that the cache configuration between the two
servers is compatible, both for concrete caches and the cache containers for individual subsystems.

The script runs through a few steps to copy the configuration from the cluster to the standalone server:

1. It checks the plug-in connection properties in the cluster server and compares them to the plug-in
connection properties in the standalone server. If necessary, it copies over the plug-in configuration
from the cluster server and restarts the standalone server, loading the new configuration.

2. It checks the given node name for the standalone server. If necessary, it changes the default node
name to the one passed with the function.

3. It then compares the socket-binding settings for the cluster and standalone servers. If necessary, it
copies over the socket-binding configuration for the jgroups, messaging, and mod_cluster bindings
from the cluster server and restarts the standalone server.

4. If set, then the script copies the deployments from the cluster server to the standalone server and
restarts the standalone server.

The first part of the function pulls the plug-in configuration (defined by the private function
_getClusterSignificantConfig) for the cluster and then for the standalone server.

function addToCluster(newAs7Resource, newNodeName,
existingClusterMemberResource, copyDeployments) {
 println("Reading config of the existing cluster member");
 var clusterConfig =
_getClusterSignificantConfig(existingClusterMemberResource);

Writing JBoss ON Command-Line Scripts

98

 println("Reading config of the new member");
 var memberConfig = _getClusterSignificantConfig(newAs7Resource);

 var memberResourceConfiguration = newAs7Resource.resourceConfiguration;

If the configuration properties are different, then the script copies over the new plug-in configuration and
restarts the standalone server to load the new connection settings.

 if (memberConfig['config'] != clusterConfig['config']) {
 println("The configurations of the servers differ.\n" +
 "The new cluster member's configuration will be changed to match
the configuration of the existing member.");

 //switch to the same configuration
 var pluginConfig = newAs7Resource.pluginConfiguration;
 pluginConfig.getSimple('config').setValue(clusterConfig['config']);
 newAs7Resource.updatePluginConfiguration(pluginConfig);

 //we need to restart straight away so that we see the changes to the
 //rest of the configuration caused by the change of current config.
 println("Restarting the new cluster member to switch it to the new
configuration.");
 newAs7Resource.restart();

 //refresh the resource
 newAs7Resource = ProxyFactory.getResource(newAs7Resource.id);

 //refresh the cluster specific config after the restart with the new
 //config
 memberConfig = _getClusterSignificantConfig(newAs7Resource);
 memberResourceConfiguration = newAs7Resource.resourceConfiguration;
 }

It then applies the node name that was given with the script, if it is different than the one set by default.

 //now check what's the node name we see
 if (memberConfig['node-name'] != newNodeName) {
 println("Updating the node name of the new cluster member from '" +
memberConfig['node-name'] + "' to '" + newNodeName + "'");
 _updateNodeName(memberResourceConfiguration, newNodeName);

newAs7Resource.updateResourceConfiguration(memberResourceConfiguration);
 }

The next configuration area for the cluster is the socket-binding settings for important subsystems, jgroups,
messaging, and mod_cluster.

 //now apply the socket binding changes for jgroups and other cluster
 //significant subsystems
 //first find the socket binding group config in the new member
 for(i in newAs7Resource.children) {
 var child = newAs7Resource.children[i];
 if (child.resourceType.name == 'SocketBindingGroup' &&
 child.resourceType.plugin == 'jboss-as-7') {

Part III. Extended Examples and Use Scenarios

99

 println("Updating socket bindings of jgroups, messaging and
modcluster subsystems");

 var portOffset =
javascriptString(child.resourceConfiguration.getSimpleValue('port-offset',
'0'));
 var clusterMemberPortOffset = clusterConfig['port-offset'];

 var newConfig = child.resourceConfiguration.deepCopy(false);

 _updateSocketBindings(newConfig, portOffset,
clusterMemberPortOffset, clusterConfig['jgroups']);
 _updateSocketBindings(newConfig, portOffset,
clusterMemberPortOffset, clusterConfig['messaging']);
 _updateSocketBindings(newConfig, portOffset,
clusterMemberPortOffset, clusterConfig['modcluster']);

 child.updateResourceConfiguration(newConfig);
 }
 }

 println("Restarting the new member for the new socket bindings to take
effect.");
 newAs7Resource.restart();

Although not strictly part of the cluster configuration, part of what JBoss ON can do is compare other parts of
the resource setup, like deployed applications. Synchronizing the deployed applications between one server
and another, even standalone instances, helps maintain consistency, and this can be done conveniently at
the time that a server is added to a cluster simply by syncing the given cluster server's deployments.

 if (copyDeployments) {
 println("Copying the deployments to the new cluster member...");
 copyDeployments(existingClusterMemberResource, newAs7Resource);

 println("Restarting the new cluster member.");
 newAs7Resource.restart();
 }
}

7.2. Copying Deployed Applications Between Standalone Servers

While EAP 6 server groups manage content centrally for all group members, standalone servers are on their
own. JBoss ON can help as an intermediary to sync application content between separate server instances.
The addToCluster function has this as an option when joining a standalone server to a cluster. The
copyDeployments function can copy deployments between any two standalone instances.

Invoking the function requires only the name of the source EAP 6 server (the one to copy the deployments
from) and then the name of the target EAP 6 server (the one to copy the deployments to).

Assuming that you already know resource IDs of the two EAP 6 server resources, load the add-as7-
standalone-server-to-cluster.js script and then set the source and target resources. For example,
in interactive mode:

[root@server bin]# ./rhq-cli.sh -u rhqadmin -p rhqadmin

Writing JBoss ON Command-Line Scripts

100

rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/add-as7-standalone-server-to-cluster.js
rhqadmin@localhost:7080$ var source = ProxyFactory.getResource(10381)
rhqadmin@localhost:7080$ var target = ProxyFactory.getResource(10577)
rhqadmin@localhost:7080$ copyDeployments(source, target)

The first part of the function gets the server resource IDs.

function copyDeployments(sourceAS7, targetAS7) {
 if (typeof sourceAS7 == 'object') {
 sourceAS7 = sourceAS7.id;
 }

 if (typeof targetAS7 == 'object') {
 targetAS7 = targetAS7.id;
 }

All of the deployed applications are listed as children of the source JBoss EAP 6 server. The
copyDeployments function retrieves each deployment by searching for all of the children of the server that
are of a deployment resource type.

 var deploymentResourceType =
ResourceTypeManager.getResourceTypeByNameAndPlugin('Deployment', 'jboss-as-
7');

 var deploymentsCrit = new ResourceCriteria;
 deploymentsCrit.addFilterParentResourceId(sourceAS7);
 deploymentsCrit.addFilterResourceTypeId(deploymentResourceType.id);

 var unlimitedPageControl = PageControl.unlimitedInstance;

 var sourceDeployments =
ResourceManager.findResourcesByCriteria(deploymentsCrit);
 var iterator = sourceDeployments.iterator();
 while (iterator.hasNext()) {
 var deploymentResource = iterator.next();
 //get a resource proxy for easy access to configurations, etc.
 deploymentResource =
ProxyFactory.getResource(deploymentResource.id);

 println("Copying deployment " + deploymentResource.name);

Each discovered deployment is then copied over as a new child resource to the target server. These are
content-backed resources, so they are exported and uploaded as content. The function also searches for and
pulls in the content metadata and the content history, so that any important historical information about the
deployment is also copied over.

 var installedPackage =
ContentManager.getBackingPackageForResource(deploymentResource.id);
 var content = ContentManager.getPackageBytes(deploymentResource.id,
installedPackage.id);

 var runtimeName =
deploymentResource.resourceConfiguration.getSimpleValue('runtime-name',
deploymentResource.name);

Part III. Extended Examples and Use Scenarios

101

 var deploymentConfiguration = new Configuration;
 deploymentConfiguration.put(new PropertySimple('runtimeName',
runtimeName));

 //so now we have both metadata and the data of the deployment, let's
 //push a copy of it to the target server
 var history =
ResourceFactoryManager.createPackageBackedResource(targetAS7,
 deploymentResourceType.id, deploymentResource.name,
 deploymentResource.pluginConfiguration,
 installedPackage.packageVersion.generalPackage.name,
 installedPackage.packageVersion.version,
 installedPackage.packageVersion.architecture.id,
 deploymentConfiguration, content, null);

 while (history.status.name() == 'IN_PROGRESS') {
 java.lang.Thread.sleep(1000);
 //the API for checking the create histories is kinda weird..
 var histories =
ResourceFactoryManager.findCreateChildResourceHistory(targetAS7, null, null,
unlimitedPageControl);
 var hit = histories.iterator();
 var found = false;
 while(hit.hasNext()) {
 var h = hit.next();

 if (h.id == history.id) {
 history = h;
 found = true;
 break;

 }
 }

 if (!found) {
 throw "The history object for the deployment seems to have
disappeared, this is very strange.";
 }
 }

 println("Deployment finished with status: " +
history.status.toString() +
 (history.status.name() == 'SUCCESS' ? "." : (", error message: "
+ history.errorMessage + ".")));
 }
}

8. Example: Deploying Applications Through Bundles (General)

Bundles are a very clean and easy way to deploy full applications, configuration files, or other content to
resources. Whether a given resource type supports bundles is defined in its plug-in descriptor. By default,
platform resources and JBoss AS 4, 5, and 6 resources all support bundles.

Bundles are convenient from an administrative perspective because all of the content is maintained in a

Writing JBoss ON Command-Line Scripts

102

single place that is resource-agnostic. The main bundle entry or bundle definition contains a set of versions of
the actual bundle files and a set of destinations for where that content can be deployed. A destination is a
combination of a compatible group, resource type, and directory path. When a version is actually deployed to
a destination, it is saved as a specific deployment for that destination.

The bundles system maintains multiple versions of a given package and can deploy any of those versions to
any destination. This is a great workflow for application lifecycles, since a stable version can be deployed to
production servers while a development version can be deployed to test machines. Having each deployment
represented as a different child of the destination makes it easy to revert changes; you can move from the
live version to a previous version and know exactly what that previous deployment looked like.

8.1. Setting up Bundle Versions and Destinations

There are two parts to the bundle definition: the bundle version and the destination. Both of these parts are
set up independently, and then saved into the final definition.

The bundles.js script in the cliRoot/rhq-remoting-cli-3.1.2.GA/samples directory defines a set of custom
functions that quickly create a bundle version and definition.

Using the bundles.js script also requires the util.js script. This is easiest to do when running the CLI
interactively, because all of the scripts can be loaded using the exec command.

[root@server bin]# ./rhq-cli.sh -u rhqadmin -p rhqadmin
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/util.js
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/bundles.js

To create the destination, give the absolute path on the local system to the bundle archive to upload.

rhqadmin@localhost:7080$ var path = '/export/files/myApp.zip'
rhqadmin@localhost:7080$ createBundleVersion(path)

The createBundleVersion function in the bundles.js file uploads the files as a byte array.

function createBundleVersion(pathToBundleZipFile) {
 var bytes = getFileBytes(pathToBundleZipFile)
 return BundleManager.createBundleVersionViaByteArray(bytes)
}

The second part of the bundle definition is creating at least one destination where the bundle version could be
deployed. Creating a destination requires two things to exist already:

A bundle version (which was just created with createBundleVersion)

A compatible group

A destination is a combination of a compatible group and the directory to deploy to. Each resource type
defines its own available base directory, then a subdirectory beneath that root can be specified as the
deployment directory.

The other configuration properties are details for the entry, such as the destination name and description.

rhqadmin@localhost:7080$ var destinationName = 'New Destination'
rhqadmin@localhost:7080$ var description = 'My new example destination'
rhqadmin@localhost:7080$ var bundleName = 'myApp'

Part III. Extended Examples and Use Scenarios

103

rhqadmin@localhost:7080$ var groupName = 'Linux Group'
rhqadmin@localhost:7080$ var baseDirName = '/'
rhqadmin@localhost:7080$ var deployDir = 'var/www/html/'
rhqadmin@localhost:7080$ createBundleDestination(destinationName,
description, bundleName, groupName, baseDirName, deployDir)

The createBundleDestination function runs the searches for the group and the bundle based on the
specified names, which makes it possible to set up the destination without having to run additional searches.

function createBundleDestination(destinationName, description, bundleName,
groupName, baseDirName, deployDir) {
 var groupCrit = new ResourceGroupCriteria;
 groupCrit.addFilterName(groupName);
 var groups =
ResourceGroupManager.findResourceGroupsByCriteria(groupCrit);

... 8< ...

 var group = groups.get(0);

 var bundleCrit = new BundleCriteria;
 bundleCrit.addFilterName(bundleName);
 var bundles = BundleManager.findBundlesByCriteria(bundleCrit);

... 8< ...
}

8.2. Deploying Bundles

Deploying a bundle sends a bundle version to a specific destination. The bundles.js file has a function,
deployBundle, which makes this pretty easy, but you need to obtain some information first.

First, load the required scripts.

[root@server bin]# ./rhq-cli.sh -u rhqadmin -p rhqadmin
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/util.js
rhqadmin@localhost:7080$ exec -f cliRoot/rhq-remoting-cli-
3.1.2.GA/samples/bundles.js

Get the ID for the destination. This searches for the destination by name.

rhqadmin@localhost:7080$ var destinationName = "New Destination"
rhqadmin@localhost:7080$ var destcrit = new BundleDestinationCriteria()
rhqadmin@localhost:7080$ destcrit.addFilterName(destinationName)

var dest = BundleManager.findBundleDestinationsByCriteria(destcrit)

Then, get the ID number for the bundle version to deploy. Any version can be deployed, not just the most
recent. This little script prints all of the versions for the bundle, with their ID numbers.

rhqadmin@localhost:7080$ var crit = new BundleVersionCriteria()

rhqadmin@localhost:7080$ crit.addFilterBundleName(name)

Writing JBoss ON Command-Line Scripts

104

rhqadmin@localhost:7080$ var vers =
BundleManager.findBundleVersionsByCriteria(crit)

rhqadmin@localhost:7080$ if(vers != null) { \
rhqadmin@localhost:7080$ if(vers.size() > 1) { \
rhqadmin@localhost:7080$ for(i =0; i < vers.size(); ++i) { \
rhqadmin@localhost:7080$ ver = vers.get(i); \
rhqadmin@localhost:7080$ println("Version: " + ver.version + " "
+ "ID: " + ver.id) \
rhqadmin@localhost:7080$ } \
rhqadmin@localhost:7080$ } \
rhqadmin@localhost:7080$ else if(vers.size() == 1) { \
rhqadmin@localhost:7080$ ver = vers.get(0); \
rhqadmin@localhost:7080$ println("Version: " + ver.version + + " " +
"ID: " + ver.id) \
rhqadmin@localhost:7080$ } \
rhqadmin@localhost:7080$ }
Version: 2.0 ID: 10021
Version: 1.0 ID: 10012

With those two ID numbers, you can deploy the bundle. The first parameter is the destination ID, then the
bundle version ID, then a configuration object if the bundle configuration has any tokens to realize. In this
example, no properties are passed, so the value is null. Details about the configuration are in the comments
in the bundles.js file and general configuration information is in Section 6.2, “Changing Simple
Configuration Properties”.

rhqadmin@localhost:7080$ deployBundle(dest.get(0).id,10021,null,'my
description',true)
BundleDeployment:
 bundleVersion:
BundleVersion[id=10021,name=null,version=null]
 configuration: Configuration[id=15021]
 ctime: 1337286719259
 description: my description
 destination: BundleDestination[id=10021,
bundle=driftBundle, group=Linux Group - Thu May 10 15:10:28 EDT 2012,
name=NewDestination]
 duration: 0
 errorMessage:
 id: 10051
 live: true
 mtime: 1337286719259
 name: Deployment [1] of Version [2.0] to
[NewDestination]
 replacedBundleDeploymentId:
 resourceDeployments: [BundleResourceDeployment: bdd=
[BundleDeployment[id=10051, name=Deployment [1] of Version [2.0] to [new-
test]]], resource=[Resource[id=10001, uuid=535b3f54-0bd8-4653-bdd3-
323ea69b98fd, type={Platforms}Linux, key=gs-dl585g2-
01.rhts.eng.bos.redhat.com, name=server.example.com, parent=<null>,
version=Linux 2.6.32-220.el6.x86_64]]]
 status: Failure
 subjectName: rhqadmin
 tags:

Part III. Extended Examples and Use Scenarios

105

The deployBundle function runs through a couple of steps to manage the deployment. This uses one of the
functions from the util.js file to convert the deployment configuration (if any is sent) into the proper into a
hash.

... 8< ...

 var deploymentConfig = deploymentConfiguration;
 if (!(deploymentConfiguration instanceof Configuration)) {
 deploymentConfig = asConfiguration(deploymentConfiguration);
 }

The next creates the deployment (through the remote API) and then schedules the deployment.

... 8< ...
 var deployment =
BundleManager.createBundleDeployment(bundleVersionId, destinationId,
description, deploymentConfig);

 deployment = BundleManager.scheduleBundleDeployment(deployment.id,
isCleanDeployment);
... 8< ...

8.3. Reverting a Bundle

Reverting a bundle automatically moves a destination one step backward, from whatever version is currently
deployed to whatever version was last deployed.

This is done only with the remote API, not using any functions from the bundles.js file.

The method to run is scheduleRevertBundleDeployment. This requires two interesting pieces of
information. The first is the destination ID, which can be retrieved with a simple criteria search.

rhqadmin@localhost:7080$ var destinationName = "NewDestination"
rhqadmin@localhost:7080$ var destCrit = new BundleDestinationCriteria()
rhqadmin@localhost:7080$ destCrit.addFilterName(destinationName)

rhqadmin@localhost:7080$ var dest =
BundleManager.findBundleDestinationsByCriteria(destCrit)

The next, and more interesting, piece of information is the deployment description. The description is what is
passed to the revert method to help identify the deployment to revert.

rhqadmin@localhost:7080$ var depCrit = new BundleDeploymentCriteria()
rhqadmin@localhost:7080$ depCrit.addFilterDestinationName(destinationName)
rhqadmin@localhost:7080$ var deploy =
BundleManager.findBundleDeploymentsByCriteria(depCrit)
rhqadmin@localhost:7080$ var dep = deploy.get(0);
rhqadmin@localhost:7080$ var description = dep.description;

The last part actually invokes the method.

rhqadmin@localhost:7080$
BundleManager.scheduleRevertBundleDeployment(dest.get(0).id, description,
true)

Writing JBoss ON Command-Line Scripts

106

9. Example: Remedying Resource Drift

Maintain servers, particularly production or business critical servers and applications, requires keeping rein
on the configuration files and packages on those systems. When an unexpected change occurs, the system
moves away from the administrator-defined state. That is configuration drift.

JBoss ON can monitor configuration files and target directories and track any changes to those area. This
uses a drift definition which sets where the JBoss ON agent monitors configuration and at what frequency. If
drift is detected, then the JBoss ON server can fire an alert and run an alert CLI script that reverts, or
remedies, the changed configuration files.

9.1. The Plan for the Scripts

There are two different scripts in play because there are two different sets of situations for managing drift:

First, there is a script to set up drift for a resource. This shell script runs through a series of setup steps at
once:

It creates the drift definition for a resource (through the driftDef.js CLI script).

It creates a generic deploy.xml recipe, zips the drift directory, and creates a new bundle and
bundle deployment (through the createBundle.js CLI script).

After waiting for the initial snapshot, it then pins the snapshot to the definition (through the
snapshot.js CLI script).

All of those files are generated by the shell script.

An alert definition has to be created through the UI (not the CLI), but it can be configured to use any drift
detection as a condition and then to run a server-side script in response. This second script simply
deploys the bundle that was made of the pristine base directory and overwrites the drift.

9.2. Setting up the Drift Definition and Preparing the Bundle

The setup script actually runs through three CLI scripts and some system commands. Having all of the steps
in a single script makes it possible to set up a drift definition and a backup bundle by running a single
command:

[root@server ~]# ./driftBundle.sh

Note

Both drift definitions and bundle deployments take a lot of resource- and infrastructure-specific
settings. The driftBundle.sh script in this example defines a lot of variables in the script to
account for each piece of information.

The variables could be defined using a .conf or even a set of .conf files (cf. Section 6.2, “Creating
the Wrapper Script and .conf File”), but for simplicity in this example, all of the variables are defined in
the driftBundle.sh script itself.

Part III. Extended Examples and Use Scenarios

107

The first part of the script simply defines the connection settings to use when running the JBoss ON CLI. This
example only defines a username and password, so it assumes that the script is run on a system which also
has a JBoss ON server running locally. The options could be edited to supply a remote JBoss ON server
hostname and port.

There are three general variables defined:

The location of the rhq-cli.sh script

Any options, such as the username and password, to pass with the CLI command

The directory to use both to save the generated JavaScript files and to use for the path to JavaScript files

#!/bin/bash
options for the CLI
CLI='cliRoot/rhq-remoting-cli-3.1.2.GA/bin/rhq-cli.sh'
OPTS=' -u rhqadmin -p rhqadmin'
SCRIPTS='/opt'

The first part of the script sets up the drift definition. By default, drift is only enabled for a handful of resource
types — JBoss servers, Tomcat servers, and platforms — so it is easiest to identify the resource based on a
combination of its resource type and name.

Once the resource is identified, then the definition can be created. The full list of possible definition settings is
covered in the drift documentation, but a general definition will identify the base directory to monitor, set some
rules about what files or subdirectories to ignore (like log files), and set an interval or frequency for drift
detection scans.

All of these definition parameters are defined as individual variables in the shell script. In this example, drift is
configured for a platform.

set parameters for the drift definition
RESTYPE='Linux'
RESPLUGIN='Platforms'
RESNAME="server.example.com"
NAME='example drift'
DESC='drift from script'
BASEDIR='/opt/drift'
BASEDIRTYPE='fileSystem'
EXCLUDE='./logs/'
PATTERN=
MODE='normal'
INTERVAL='3600'

The shell script will eventually create a CLI script that is run automatically in the CLI. The first part of the CLI
script defines a resource type criteria search for the platform, and then the resource platform itself.

driftDef() {
cat <<-EOF

//set the resource type
var resType =
ResourceTypeManager.getResourceTypeByNameAndPlugin("$RESTYPE","$RESPLUGIN");

//get the resource to associate with the drift definition
rcrit = ResourceCriteria()

Writing JBoss ON Command-Line Scripts

108

../../html/Managing_Resource_Configuration/drift-config.html#about-drift

rcrit.addFilterResourceTypeName("$RESTYPE")
rcrit.addFilterName("$RESNAME")
var resources = ResourceManager.findResourcesByCriteria(rcrit)
var res = resources.get(0)

Note

This script searches for a single resource to configure for drift. You could also create the script to
search for multiple resource and add them to a compatible group, and the iterate through the
compatible group to add the drift definition to each resource.

The next part configures the drift definition itself. The DriftDefinitionManager is a wrapper for a
Configuration() object. The CLI script first calls for the default drift template for the given resource type
and then creates a definition object based on that template.

//get the default template for the resource type
criteria = DriftDefinitionTemplateCriteria()
criteria.addFilterResourceTypeId(resType.id)
templates = DriftTemplateManager.findTemplatesByCriteria(criteria)
template = templates.get(0)
//create a new drift definition instance, based on the template
definition = template.createDefinition()

Once the configuration object is created, then the definition options are assigned values.

This script creates a real drift definition with one exception: it sets a very low scan interval, 30 seconds. In
fact, that is the shortest configurable interval. This allows the agent to collect the initial snapshot fairly quickly,
which helps the overall setup go faster. This interval will be reset to a more reasonable value (the one defined
in the variables) at the end of the script execution.

//set the drift definition configuration options
definition.resource = res
definition.name = '$NAME'
definition.description = '$DESC'
definition.setAttached(false) // this is false so that template changes
don't affect the definition
// this is set low to trigger an early initial detection run
definition.setInterval(30)
var basedir = new
DriftDefinition.BaseDirectory(DriftConfigurationDefinition.BaseDirValueConte
xt.valueOf('$BASEDIRTYPE'),'$BASEDIR')
definition.basedir = basedir

// there can be multiple exclude statements made, as desired
var f = new Filter("$EXCLUDE", "$PATTERN") // location, pattern
definition.addExclude(f)

//this defaults to normal, which means that any changes will
// trigger an alert. plannedChanges is the other option, which
// disables alerting for drift changes.
definition.setDriftHandlingMode(DriftConfigurationDefinition.DriftHandlingMo
de.valueOf('$MODE'))

Part III. Extended Examples and Use Scenarios

109

Once the configuration is complete, it needs to be written to the definition.

//apply the new definition to the resource
DriftManager.updateDriftDefinition(EntityContext.forResource(res.id),definit
ion)

EOF
}

Note

The drift definition uses an entity context rather than the resource ID alone to identify the resource. An
entity context first identifies the type of object (the entity) and then its associated inventory ID.

There are actually several different steps for creating a "bundle" because there is no one part to a "bundle."
The script makes a ZIP archive of the given drift base directory, and that makes the bundle archive. Then, for
defining the bundle, there are two steps. There is defining the bundle destination, which is a compatible group
to which bundles (any bundles) can be deployed plus the location on the resources for deploying the bundles.
Then the package itself is uploaded as a bundle version.

The variables define both the information for the bundle version and bundle archive and for the bundle
destination.

There is one other variable included: the path to the CLI's samples directory. Helper functions to create
bundle versions, to create bundle destinations, and to deploy specified bundles are already defined in the
bundles.js sample script. Using those functions makes deploying bundles very easy.

options for the bundle
SAMPLES='cliRoot/rhq-remoting-cli-3.1.2.GA/samples'
DESTNAME='drift destination'
BUNDLEDESC='bundle to remediate drift'
BUNDLENAME='driftBundle'
GROUPNAME='Linux Group'
ZIP='driftBundle.zip'
BVER='1.0'
BUNDLE='/opt/bundles/'$ZIP
ARCHIVE='/opt/bundles/'$ZIP

This particular bundle deployment is pretty simple. The target bundle destination is the same as the drift base
directory.

Since there are no tokens to realize or external content to pull in, just the backup archive itself, the recipe can
be pretty simple. This script creates the recipe (deploy.xml) which is used in the bundle archive.

deploy() {
cat << _EOF_
<?xml version="1.0"?>
<project name="$BUNDLENAME" default="main"
 xmlns:rhq="antlib:org.rhq.bundle">
 <rhq:bundle name="$BUNDLENAME" version="$BVER"
description="$BUNDLEDESC">
 <rhq:deployment-unit name="drift" manageRootDir="true">
 <rhq:archive name="$ZIP" exploded="true">

Writing JBoss ON Command-Line Scripts

110

 </rhq:archive>
 </rhq:deployment-unit>
 </rhq:bundle>
<target name="main" />

</project>
EOF
}

The bundles.js sample script already defines all of the functions required to deploy bundles, but it relies on
the util.js sample script. When the CLI is run non-interactively, there is no way to import an external script
that another script requires.

So, this shell script first concatenates the bundles.js and util.js scripts together, and then appends the
calls to create the bundle version and the bundle destination.

createBundle() {
cat $SAMPLES/util.js $SAMPLES/bundles.js
cat << _EOF_

// set the location of the bundle archive
var path = '$BUNDLE'

// create the bundle version in JON
createBundleVersion(path)

// set all of the variables for the bundle destination
var destinationName = '$DESTNAME'
var description = '$BUNDLEDESC'
var bundleName = '$BUNDLENAME'
var groupName = '$GROUPNAME'
var baseDirName = '$BASEDIR'
var deployDir = "."

// create the new destinition in JON
createBundleDestination(destinationName, description, bundleName, groupName,
baseDirName, deployDir)

EOF
}

Note

Make sure that the resource already belongs to a compatible group and that the compatible group has
a unique enough name so that it is the only one returned in the search.

The last CLI script created by the shell script pins the initial snapshot to the new drift definition. A snapshot,
as the name implies, is a picture of the current settings of the base directory. Pinning a snapshot to a
definition sets a baseline, or comparison, for the agent to use to evaluate drift. A pinned snapshot is a
specific and identified configuration that must be maintained (as opposed to rolling changes).

Once the snapshot is pinned, this script then resets the drift definition configuration so that it uses a longer
(more realistic) interval between scans.

Part III. Extended Examples and Use Scenarios

111

snapshot() {
cat <<- _EOF_
//find the resource
rcrit = ResourceCriteria()
rcrit.addFilterResourceTypeName("$RESTYPE")
rcrit.addFilterName("$RESNAME")
var resources = ResourceManager.findResourcesByCriteria(rcrit)
var res = resources.get(0)

//find the new drift definition
criteria = DriftDefinitionCriteria()
criteria.addFilterName('$NAME')
criteria.addFilterResourceIds(res.id)
def = DriftManager.findDriftDefinitionsByCriteria(criteria)
definition = def.get(0)
definition.setInterval($INTERVAL)

// it is necessary to redefine the complete configuration when you're
// resetting the interval or the other values will be overwritten with
default
// or set to null
var basedir = new
DriftDefinition.BaseDirectory(DriftConfigurationDefinition.BaseDirValueConte
xt.valueOf('$BASEDIRTYPE'),'$BASEDIR')
definition.basedir = basedir
definition.name = '$NAME'
// there can be multiple exclude statements made, as desired
var f = new Filter("$EXCLUDE", "$PATTERN") // location, pattern
definition.addExclude(f)
DriftManager.updateDriftDefinition(EntityContext.forResource(res.id),definit
ion)

// pin to the initial snapshot, which is version 0
// this gets the most recent snapshot if that is the better version to use
// snap = DriftManager.getSnapshot(DriftSnapshotRequest(definition.id))
DriftManager.pinSnapshot(definition.id,0)
EOF
}

The last part of the script actually runs all of the defined JBoss ON CLI scripts and sets up both the drift
definition and the bundle definition (as a backup in case any drift is detected).

There are two system commands sandwiched between the JBoss ON CLI scripts. The first is the zip
commands to create the bundle archive. The second is a sleep command which pauses the script to give
the JBoss ON agent time to collect the initial snapshot for drift before attempting to pin the snapshot.

create the drift definition

driftDef > $SCRIPTS/driftDef.js
$CLI $OPTS -f $SCRIPTS/driftDef.js

create the recipe file and then zip up the
drift base directory to make the bundle archive

deploy > /deploy.xml

Writing JBoss ON Command-Line Scripts

112

zip $ARCHIVE $BASEDIR
zip $BUNDLE $ARCHIVE /deploy.xml

create the bundle from the recipe and archive
and then create the bundle definition

createBundle > $SCRIPTS/createBundle.js
$CLI $OPTS -f $SCRIPTS/createBundle.js

sleep to allow the server to get the first snapshot
this only sleeps for a minute, but it really depends on your environment
whether that is long enough

sleep 1m

this pins the new snapshot to the new drift definition
and then changes the drift interval to the longer, variable-specified
value

snapshot > $SCRIPTS/snapshot.js
$CLI $OPTS -f $SCRIPTS/snapshot.js

There is no error handling in this shell script. If any step fails, like the initial snapshot taking longer than the
sleep period, there is no indication of what went wrong aside from malformed drift or bundle configuration.

9.3. Remedying Drift

To remediate drift, define an alert in the UI and upload a CLI script which can be run, automatically, whenever
drift is detected. All the script has to do is deploy the backup bundle to the resource, and there are several
different ways to do that.

This example goes through all the basic steps: it pulls the resource information from the alert, searches for
the bundle version, and then deploys it to the resource. One nifty thing about this script is that it writes a log
file, capturing the alert information that triggered the remediation.

This script can be uploaded directly when the alert definition is created. Before uploading the script, be sure to
set the variables to the bundle destination and bundle version that you created when the drift definition was
set up.

// - The 'alert' variable is seeded by the alert sender

// SET THESE VARIABLES
var bundleDestinationName = 'drift destination'
var bundleVersion = 1.0
var logFile = '/tmp/alert-cli-demo/logs/alert-' + alert.id + '.log'

// Log what we're doing to a file tied to the fired alert id
//
var e = exporter
e.setTarget('raw', logFile)

// Dump the alert
//
e.write(alert)

Part III. Extended Examples and Use Scenarios

113

// get a proxy for the alerted-on Resource
//
var alertResource =
ProxyFactory.getResource(alert.alertDefinition.resource.id)

// Dump the resource
//
e.write(" ")
e.write(alertResource)

// Remediate file

// Find the Bundle Destination
//
var destCrit = new BundleDestinationCriteria()
destCrit.addFilterName(bundleDestinationName)
var result = BundleManager.findBundleDestinationsByCriteria(destCrit)
var dest = result.get(0)

// Find the Bundle Version
//
var versionCrit = new BundleVersionCriteria()
versionCrit.addFilterVersion(bundleVersion)
result = BundleManager.findBundleVersionsByCriteria(versionCrit)
var ver = result.get(0)

// Create a new Deployment for the bundle version and the destination
//
var deployment = BundleManager.createBundleDeployment(ver.getId(),
dest.getId(), 'remediate drift', new Configuration())

// Schedule a clean deploy of the deployment. This will wipe out the edited
file and lay down a clean copy
//
BundleManager.scheduleBundleDeployment(deployment.getId(), true)

e.write(" ")
e.write("REMEDIATION COMPLETE!")

10. Example: Managing JBoss ON Server Configuration

Even in different environments, JBoss ON servers can share a lot of the same configuration. For example,
different JBoss ON servers may manage a development environment, staging environment, and production
environment, yet on all three, the servers use similar metric templates and configuration settings. To simplify
managing separate but similar environments, JBoss ON can export the configuration for a server and then
import that configuration into another server.

Any user with permissions to manage settings can export the server configuration.

10.1. Simple Export/Import Synchronization

At its simplest, synchronizing server settings exports all metrics and server configuration settings and then
imports that information directly, without any adjustment to the data before its imported or filters on what data
to import.

Writing JBoss ON Command-Line Scripts

114

Note

This can be automated by including login information for both JBoss ON servers, and then running the
script. This could also be broken into two scripts, one run against server1 and the other against
server2. Using a wrapper script would allow you to run the export script, then to run a utility like SCP
to copy over the archive, and then to run the import script.

The first part of the script exports the data from server1 and creates a zipped XML archive.

//log into the first server
rhq.login('rhqadmin','rhqadmin','server1.example.com','7080');

//export the settings
var ex = SynchronizationManager.exportAllSubsystems();
rhqadmin@localhost:7080$ saveBytesToFile(ex.exportFile, 'export.xml.gz');

// log out of the first server
rhq.logout()

The archive file then needs to be copied over to server2 in some way.

When the archive is copied over, it can then be imported into server2. The null parameter means that the
import process uses the default settings in the XML file or, if the defaults are missing from the XML, that it
uses the settings defined on the target server.

// log into the second server
rhq.login('rhqadmin','rhqadmin','server2.example.com','7080');

// import the settings
var data = getFileBytes('export.xml.gz');
SynchronizationManager.importAllSubsystems(ex, null);

// log out of the second server
rhq.logout()

10.2. Changing Server Configuration Before Importing

Metrics schedules and server configuration are applied through synchronizers. Synchronizers control what
elements are imported into the JBoss ON server and how to apply them to the server. The synchronizer has
a default template which applies configuration changes to every import operation.

The synchronizer configuration can be changed to change what settings are imported into the target server.

The first part of the script would export the XML archive, as before.

//log into the first server
rhq.login('rhqadmin','rhqadmin','server1.example.com','7080');

//export the settings
var ex = SynchronizationManager.exportAllSubsystems();

Part III. Extended Examples and Use Scenarios

115

rhqadmin@localhost:7080$ saveBytesToFile(ex.exportFile, 'export.xml.gz');

// log out of the first server
rhq.logout()

The XML file contains the full configuration information, so just checking that file can give you an idea of what
settings to change.

On the second server, change the synchronizer settings.

1. Get the default definition.

rhqadmin@localhost:7080$ var
systemSettingsImportConfigurationDefinition =
SynchronizationManager.getImportConfigurationDefinition('org.rhq.enter
prise.server.sync.SystemSettingsSynchronizer')

2. Create a new configuration instance.

rhqadmin@localhost:7080$ var configurationObject =
systemSettingsImportConfigurationDefinition.configurationDefinition.de
faultTemplate.createConfiguration()

rhqadmin@localhost:7080$ var systemSettingsImportConfiguration = new
ImportConfiguration(systemSettingsImportConfigurationDefinition.synchr
onizerClassName, configurationObject)

3. Change the settings.

For example, this edits the server synchronizer so that it imports only the database settings for
storing monitoring data.

rhqadmin@localhost:7080$
configurationObject.getSimple('propertiesToImport').setValue('CAM_DATA
_PURGE_1H, CAM_DATA_PURGE_6H, CAM_DATA_PURGE_1D,
CAM_DATA_MAINTENANCE')

For the metrics template synchronizer, define which metric schedules to import per resource type,
based on a properties list or a properties map. For example:

rhqadmin@localhost:7080$
configurationObject.getSimple('updateAllSchedules').setBooleanValue(tr
ue)
rhqadmin@localhost:7080$ var updateList = new
PropertyList('metricUpdateOverrides')
rhqadmin@localhost:7080$ var update = new
PropertyMap('metricUpdateOverride')
rhqadmin@localhost:7080$ update.put(new PropertySimple('metricName',
'MCBean|ServerInfo|*|freeMemory'))
rhqadmin@localhost:7080$ update.put(new
PropertySimple('resourceTypeName', 'JBossAS Server'))
rhqadmin@localhost:7080$ update.put(new
PropertySimple('resourceTypePlugin', 'JBossAS5'))
rhqadmin@localhost:7080$ update.put(new
PropertySimple('updateSchedules', 'true'))

Writing JBoss ON Command-Line Scripts

116

rhqadmin@localhost:7080$ updateList.add(update)

rhqadmin@localhost:7080$ configurationObject.put(updateList)

After changing the synchronizer settings, then import the configuration.

rhqadmin@localhost:7080$ var configsToImport = new java.util.ArrayList()
rhqadmin@localhost:7080$
configsToImport.add(systemSettingsImportConfiguration);
rhqadmin@localhost:7080$
configsToImport.add(metricTemplatesImportConfiguration);
rhqadmin@localhost:7080$ SynchronizationManager.importAllSubsystems(ex,
configToImport);

11. Example: Writing a Custom Java Client

As alluded to in Chapter 1, Understanding How Scripts Work with the JBoss ON Server and CLI, the clients in
JBoss ON use either the JBoss Remoting framework or the JBoss ON remote APIs to access server
functionality. The JBoss ON CLI is essentially a Java skin over the remote API. Any application written in
Java or a JVM-compatible language can access the JBoss ON remote API.

This example creates an LDAP integration for LDAP group-based authorization for JBoss ON. The sample
Java class pulls in the authorization and search classes from the JBoss ON API, and then the script starts a
simple synchronization service that maps the LDAP groups and users to the JBoss ON roles and users.

Note

LDAP-based group authorization is already configured in JBoss ON. This client is simply used as an
example to show how a remote Java client can interact with the JBoss ON server.

11.1. Creating SampleLdapClientMain.class

This Java class uses the JBoss ON API for users, permissions, roles, and searching and sorting resource
entries. The class then sets up a mapping between the LDAP database and the JBoss ON database, so that
the user and role information in each is synchronized.

The JBoss ON CLI exposes a number of libraries, including domain classes for searching and remote
classes for handling resources. The SampleLdapClientMain.java file requires these remote client JARs
to be in its classpath:

cliRoot/rhq-remoting-cli-3.1.2.GA/lib/rhq-remoting-client-api-4.4.0-
SNAPSHOT.jar

cliRoot/rhq-remoting-cli-3.1.2.GA/lib/rhq-core-domain-4.4.0-SNAPSHOT.jar

cliRoot/rhq-remoting-cli-3.1.2.GA/lib/persistence-api-1.0.jar

cliRoot/rhq-remoting-cli-3.1.2.GA/lib/rhq-enterprise-server-4.4.0-SNAPSHOT-
client.jar

cliRoot/rhq-remoting-cli-3.1.2.GA/lib/hibernate-annotations-3.2.1.GA.jar

Part III. Extended Examples and Use Scenarios

117

Example 1, “SampleLdapClientMain.java” is annotated to show what each step of the class is doing.

Example 1. SampleLdapClientMain.java

package org.rhq.sample.client.java.ldap;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.rhq.core.domain.auth.Subject;
import org.rhq.core.domain.authz.Permission;
import org.rhq.core.domain.authz.Role;
import org.rhq.core.domain.criteria.ResourceCriteria;
import org.rhq.core.domain.criteria.ResourceGroupCriteria;
import org.rhq.core.domain.criteria.RoleCriteria;
import org.rhq.core.domain.resource.Resource;
import org.rhq.core.domain.resource.group.ResourceGroup;
import org.rhq.core.domain.util.PageList;
import org.rhq.enterprise.clientapi.RemoteClient;
import org.rhq.enterprise.server.auth.SubjectManagerRemote;
import org.rhq.enterprise.server.authz.RoleManagerRemote;
import org.rhq.enterprise.server.resource.ResourceManagerRemote;
import
org.rhq.enterprise.server.resource.group.ResourceGroupManagerRemote;

/**
 * This sample program utilizes the RHQ Remote API via a Java Client.
 *
 * The RHQ CLI is the preferred remote client approach for script-based
clients. Programmatic Java clients
 * can utilize the Remote API via the same mechanism used by the CLI,
making use of ClientMain object, as
 * done in this sample. This is the recommended mechanism although a
remote Java client could also use the
 * remote API exposed as WebServices.
 *
 * @author Jay Shaughnessy
 */
public class SampleLdapClientMain {
 // A remote session always starts with a login, define default
user/password/server/port
 private static String username = "rhqadmin";
 private static String password = "rhqadmin";
 private static String host = "localhost";
 private static int port = 7080;

 /**
 * This is a standalone remote client but calls to the remote API
could be embedded into another application.
 */
 public static void main(String[] args) {
 if (args.length > 0) {
 if ((args.length != 2) && (args.length != 4)) {

Writing JBoss ON Command-Line Scripts

118

 System.out
 .println("\nUsage: SampleLdapClientMain [[username
password] | [username password host port]]");
 System.out.println("\n\nDefault credentials:
rhqadmin/rhqadmin");
 System.out.println("\n\nDefault host: determined from
wsconsume of WSDL");
 return;
 } else {
 username = args[0];
 password = args[1];

 if (args.length == 4) {
 host = args[2];
 port = Integer.valueOf(args[3]);
 }
 }
 }

 LdapClient ldapClient = null;

 try {
 ldapClient = new LdapClient();
 ldapClient.synchLdapJbasManagers();

 } catch (Throwable t) {
 System.out.println("Error: " + t);
 t.printStackTrace();
 } finally {
 if (null != ldapClient) {
 // clean up the session by logging out from the RHQ
server
 ldapClient.logout();
 }
 }
 }

 /**
 * The LdapClient interacts with the RHQ Server to help synchronize a
(fake) LDAP server with RHQ.
 */
 public static class LdapClient {
 // group containing all jbas resources
 private static final String JBAS_GROUP = "jbas-resource-group";

 // role for jbas managers
 private static final String JBAS_MANAGER_ROLE = "jbas-manager-
role";

 // the users that should be assigned the JBAS_MANAGER_ROLE
 private static final List<String> JBAS_MANAGERS = new
ArrayList<String>();

 // the prmissions that should be assigned the JBAS_MANAGER_ROLE
 private static final Set<Permission> JBAS_MANAGER_PERMISSIONS =
new HashSet<Permission>();

Part III. Extended Examples and Use Scenarios

119

 // jbas AS Server resource type (note, this picks up AS4 and AS5
resources as they share the same type name)
 private static final String JBAS_SERVER_NAME = "JBossAS Server";

 /* The Remote API offers different remote "managers" roughly
broken down by subsystem/function
 * Below are the managers needed by this client, there are several
others that offer
 * interfaces into areas such as operations, alerting, content,
etc. See the API.
 */
 private ResourceGroupManagerRemote resourceGroupManager;
 private ResourceManagerRemote resourceManager;
 private RoleManagerRemote roleManager;
 private SubjectManagerRemote subjectManager;

 /* This represents the RHQ user that is logged in and making the
remote calls. This user must
 * already exist. For the work being done here the user must also
have SECURITY_MANAGER permissions.
 */
 private Subject subject;

 /* This is the object through which we access the remote API */
 private RemoteClient remoteClient;

 static {
 // add some fake users since we're not actually hooked into an
ldap server
 JBAS_MANAGERS.add("mgr-1");
 JBAS_MANAGERS.add("mgr-2");

 // add some permissions since we're not actually hooked into
an ldap server
 JBAS_MANAGER_PERMISSIONS.addAll(Permission.RESOURCE_ALL);
 }

 public LdapClient() throws Exception {
 this.remoteClient = new RemoteClient(null, host, port);
 this.subject = remoteClient.login(username, password);

 this.resourceGroupManager =
this.remoteClient.getResourceGroupManager();
 this.resourceManager = this.remoteClient.getResourceManager();
 this.roleManager = this.remoteClient.getRoleManager();
 this.subjectManager = this.remoteClient.getSubjectManager();
 }

 /*
 * This method simulates a sync between an Ldap server that has
defined a group of JBAS managers
 * and wants to associate them with a role allowing jbas
management. Meaning, a role that
 * has the proper permissions and is associated with the jbas
resources.

Writing JBoss ON Command-Line Scripts

120

 */
 private void synchLdapJbasManagers() throws Exception {

 // create the jbas manager role if necessary
 // use a criteria search with a name filter to look for the
role
 RoleCriteria roleCriteria = new RoleCriteria();
 roleCriteria.addFilterName(JBAS_MANAGER_ROLE);
 PageList<Role> jbasManagerRoles =
roleManager.findRolesByCriteria(subject, roleCriteria);
 Role jbasManagerRole;
 if (1 == jbasManagerRoles.size()) {
 jbasManagerRole = jbasManagerRoles.get(0);
 } else {
 // if it doesn't exist, create it
 jbasManagerRole = new Role(JBAS_MANAGER_ROLE);
 jbasManagerRole = roleManager.createRole(subject,
jbasManagerRole);
 }
 // ensure the proper permissions are granted to the role by
using an update
 jbasManagerRole.setPermissions(JBAS_MANAGER_PERMISSIONS);
 roleManager.updateRole(subject, jbasManagerRole);

 // create, populate and associate the jbas group if necessary
 ResourceGroupCriteria resourceGroupCriteria = new
ResourceGroupCriteria();
 resourceGroupCriteria.addFilterName(JBAS_GROUP);
 PageList<ResourceGroup> jbasGroups =
resourceGroupManager.findResourceGroupsByCriteria(subject,
 resourceGroupCriteria);
 ResourceGroup jbasGroup;
 if (1 == jbasGroups.size()) {
 jbasGroup = jbasGroups.get(0);
 } else {
 jbasGroup = new ResourceGroup(JBAS_GROUP);
 jbasGroup =
resourceGroupManager.createResourceGroup(subject, jbasGroup);
 // Ensure the group is recursive to make all the children
available.
 // In this case a specific method is available, so a
general update call is not needed.
 resourceGroupManager.setRecursive(subject,
jbasGroup.getId(), true);
 }

 // Now find all of the JBAS server resources by adding a
criteria filter on resource type name
 ResourceCriteria resourceCriteria = new ResourceCriteria();
 resourceCriteria.addFilterResourceTypeName(JBAS_SERVER_NAME);
 PageList<Resource> jbasServers =
resourceManager.findResourcesByCriteria(subject, resourceCriteria);
 if (!jbasServers.isEmpty()) {
 int[] jbasServerIds = new int[jbasServers.size()];
 int i = 0;
 for (Resource jbasServer : jbasServers) {

Part III. Extended Examples and Use Scenarios

121

 jbasServerIds[i++] = jbasServer.getId();
 }

 // ..and add them to the group which will be associated
with the manager role
 resourceGroupManager.addResourcesToGroup(subject,
jbasGroup.getId(), jbasServerIds);
 }

 // Now, associate the mixed group of Jbas servers to the
manager role
 roleManager.addResourceGroupsToRole(subject,
jbasManagerRole.getId(), new int[] { jbasGroup.getId() });

 // sync managers with the role
 // 1. remove obsolete managers
 roleCriteria = new RoleCriteria();
 roleCriteria.addFilterId(jbasManagerRole.getId());
 // add a fetch criteria to the criteria object to get the
optionally returned subjects for the role.
 roleCriteria.fetchSubjects(true);
 jbasManagerRole = roleManager.findRolesByCriteria(subject,
roleCriteria).get(0);
 Set<Subject> subjects = jbasManagerRole.getSubjects();
 if ((null != subjects) && !subjects.isEmpty()) {
 for (Subject subject : subjects) {
 if (!JBAS_MANAGERS.contains(subject.getName())) {
 roleManager.removeSubjectsFromRole(subject,
jbasManagerRole.getId(), new int[] { subject
 .getId() });
 }
 }
 }

 // 2. add new managers, create subjects for the managers, if
necessary
 Subject jbasManagerSubject;
 for (String jbasManager : JBAS_MANAGERS) {
 jbasManagerSubject =
subjectManager.getSubjectByName(jbasManager);
 // add the required fields for a subject, note that we
skip credentials since this is
 // simulating ldap
 if (null == jbasManagerSubject) {
 jbasManagerSubject = new Subject();
 jbasManagerSubject.setName(jbasManager);

jbasManagerSubject.setEmailAddress("jbas.manager@sample.com");
 jbasManagerSubject.setFactive(true);
 jbasManagerSubject.setFsystem(false);
 jbasManagerSubject =
subjectManager.createSubject(subject, jbasManagerSubject);
 }

 // Finally, make sure my current set of jbas managers is
associated with the manager role.

Writing JBoss ON Command-Line Scripts

122

 roleManager.addSubjectsToRole(subject,
jbasManagerRole.getId(),
 new int[] { jbasManagerSubject.getId() });
 }
 }

 public void logout() {
 if ((null != subjectManager) && (null != subject)) {
 try {
 subjectManager.logout(subject);
 } catch (Exception e) {
 // just suppress the exception, nothing else we can
do
 }
 }
 }
 }
}

11.2. Sample LDAP Script

The sample .bat script invokes the custom Java class.

@echo off

rem
===
rem RHQ Remote Client LDAP Example Startup Script
rem
rem The following variables must be set
rem
rem RHQ_CLIENT_HOME The home directory of the RHQ Client Installation.
The
rem RHQ Client can be downloaded from the RHQ GUI under
rem the Administration->Downloads menu.
rem
===

rem --
--
rem Set Environment Variables
rem --
--
set RHQ_CLIENT_HOME=*MUST BE SET*

rem --
--
rem Prepare the classpath
rem Add all jar files supplied by the RHQ remote client install
rem --
--

set CLASSPATH=.

Part III. Extended Examples and Use Scenarios

123

call :append_classpath "%RHQ_CLIENT_HOME%\conf"
for /R "%RHQ_CLIENT_HOME%\lib" %%G in ("*.jar") do (
 call :append_classpath "%%G"
)

rem --
--
rem Prepare the VM command line options to be passed in
rem --
--

if not defined RHQ_CLIENT_JAVA_OPTS (
 set RHQ_CLIENT_JAVA_OPTS=-Xms64m -Xmx128m -Djava.net.preferIPv4Stack=true
)

rem --
--
rem Uncomment For debugging on port 9999
rem --
--

rem set RHQ_CLIENT_ADDITIONAL_JAVA_OPTS=-
agentlib:jdwp=transport=dt_socket,address=9999,server=y,suspend=y

rem --
--
rem Execute the VM which starts the CLIENT
rem --
--

set CMD="%JAVA_HOME%\bin\java.exe" %RHQ_CLIENT_JAVA_OPTS%
%RHQ_CLIENT_ADDITIONAL_JAVA_OPTS% -cp "%CLASSPATH%"
org.rhq.sample.client.java.ldap.SampleLdapClientMain
%RHQ_CLIENT_CMDLINE_OPTS% %*

cmd.exe /S /C "%CMD%"

goto :done

rem --
--
rem CALL subroutine that appends the first argument to CLASSPATH
rem --
--

:append_classpath
set _entry=%1
if not defined CLASSPATH (
 set CLASSPATH=%_entry:"=%
) else (
 set CLASSPATH=%CLASSPATH%;%_entry:"=%
)
goto :eof

rem --

Writing JBoss ON Command-Line Scripts

124

--
rem CALL subroutine that exits this script normally
rem --
--

:done

endlocal

exit /B 0

Part III. Extended Examples and Use Scenarios

125

	Table of Contents
	About This Guide
	1. Audience and Intent
	2. Document History

	Part I. Getting Started
	Chapter 1. Understanding How Scripts Work with the JBoss ON Server and CLI
	1.1. A Summary of JBoss ON Public APIs
	1.2. The JBoss ON Server and Its Interfaces
	1.3. JBoss ON CLI Scripts and JBoss ON Server Scripts
	1.4. Differences Between the JBoss ON CLI and JBoss ON GUI Operations
	1.5. Using Other Clients
	1.6. Additional Resources

	Chapter 2. Installing the JBoss ON CLI
	2.1. Installing the CLI
	2.2. Setting CLI Environment Variables
	2.3. CLI Files and Directories

	Part II. Basic Examples for Running JBoss ON Scripts Through the CLI
	1. Compatible CLI and Server Versions
	2. The JBoss ON CLI Command Syntax
	2.1. The CLI Script
	2.2. CLI Script Options
	2.3. Interactive CLI Commands
	2.3.1. login
	2.3.2. logout
	2.3.3. quit
	2.3.4. exec
	2.3.5. record

	3. Available Implicit Variables in the JBoss ON API
	4. Methods Specific to the JBoss ON CLI
	4.1. Methods Available to the CLI and Server Scripts
	4.1.1. Assert
	4.1.2. Subject
	4.1.3. pretty
	4.1.4. unlimitedPC and pageControl
	4.1.5. exporter
	4.1.6. ProxyFactory
	4.1.7. scriptUtil

	4.2. Methods Available to Proxy Resources

	5. Common Actions with JBoss ON CLI Scripts
	5.1. Logging In
	5.2. Using Resource Proxies
	5.3. Passing Command and Script Arguments
	5.4. Displaying Pretty-Print Output
	5.5. Exporting Output

	6. Tips and Tricks for Using the CLI
	6.1. Using Tab Complete
	6.2. Differences Between Running the CLI Interactively and with Files
	6.3. API Differences Between Resources Types and Versions
	6.4. Available Utility and Sample Scripts
	6.5. Defining Custom Functions
	6.6. Script Dependencies and Loading Functions
	6.7. Scheduling Script Runs with Cron
	6.8. Using Wrapper Scripts
	6.9. Permissions and Setup for JBoss ON Users

	1. Searches
	1.1. Setting Basic Search Criteria
	1.2. Using Sorting
	1.3. Using Filtering
	1.4. Fetching Associations
	1.5. Setting Page Sizes

	2. Getting the JBoss ON ID for an Object
	3. Getting Data for Single and Multiple Resources
	4. Setting Method Variables to String
	5. Resources and Groups
	5.1. Creating and Updating Content-Backed Resources (Web Apps)
	5.2. Creating a Resource Group and Adding Members

	6. Resource Configuration
	6.1. Viewing Current Configuration
	6.2. Changing Simple Configuration Properties

	7. Operations
	7.1. Starting and Stopping a Resource
	7.2. Scheduling Operations
	7.3. Retrieving the Results of an Operation
	7.4. Checking a Resource's Operations History

	8. Monitoring
	8.1. Getting Resource Availability
	8.2. Getting Specific Metrics
	8.3. Exporting Metric Data for a Resource
	8.4. Getting Baseline Calculations

	9. Alerts
	9.1. Using Alerts with Scripts
	9.2. Acknowledging Alerts
	9.3. Enabling or Disabling Alert Definitions

	10. Users and Roles
	10.1. Creating Roles
	10.2. Creating Users

	Part III. Extended Examples and Use Scenarios
	1. Example: Scripts to Manage Inventory (All Resource Types)
	1.1. Automatically Import New Resources: autoimport.js
	1.2. Simple Inventory Count: inventoryCount.js
	1.3. Uninventory a Resource After an Alert: uninventory.js

	2. Example: Scripts to Manage Resources of a Specific Type
	3. Example: Scripting Resource Deployments (JBoss EAP 5)
	3.1. Declaring Custom Functions
	3.2. Checking the JBoss ON Groups and Inventory
	3.3. Deploying the New Resource

	4. Example: Deploying an Application with Bundles (JBoss EAP 4, 5, and 6)
	4.1. Creating a New Application
	4.2. Updating Applications

	5. Example: JNDI Lookups After an Alert (JBoss EAP 5)
	6. Example: Managing Grouped Servers (JBoss EAP 5)
	6.1. The Plan for the Scripts
	6.2. Creating the Wrapper Script and .conf File
	6.3. Defining Arguments and Other Parameters for the CLI Scripts
	6.4. Creating a Group: group.js
	6.5. Adding Resources to a Group: addMember.js
	6.6. Getting Inventory and Status Information: status.js
	6.7. Starting, Stopping, and Restarting the Server: restart.js
	6.8. Deploying Applications to the Group Members: deploy.js
	6.9. Scheduling an Availability Operation: avail.js
	6.10. Gathering Metric Data of Managed Servers: metrics.js

	7. Example: Deploying a Standalone Server to a Cluster (JBoss EAP 6)
	7.1. Adding a Standalone EAP 6 Server to a Cluster
	7.2. Copying Deployed Applications Between Standalone Servers

	8. Example: Deploying Applications Through Bundles (General)
	8.1. Setting up Bundle Versions and Destinations
	8.2. Deploying Bundles
	8.3. Reverting a Bundle

	9. Example: Remedying Resource Drift
	9.1. The Plan for the Scripts
	9.2. Setting up the Drift Definition and Preparing the Bundle
	9.3. Remedying Drift

	10. Example: Managing JBoss ON Server Configuration
	10.1. Simple Export/Import Synchronization
	10.2. Changing Server Configuration Before Importing

	11. Example: Writing a Custom Java Client
	11.1. Creating SampleLdapClientMain.class
	11.2. Sample LDAP Script

