
JBoss Operations Network 3.1

Configuring JON Servers and Agents

tuning server and agent configuration

Edition 3.1.2

Last Updated: 2017-09-19





JBoss Operations Network 3.1 Configuring JON Servers and Agents

tuning server and agent configuration
Edition 3.1.2

Ella Deon Lackey
dlackey@redhat.com



Legal Notice

Copyright © 2012 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Both servers and agents in JBoss ON can be configured to improve performance within your
specific environment. High availability, affinity, and failover settings all improve performance large
JBoss ON deployments. Other settings related to tasks like discovery and monitoring can be tuned
to provide better performance and quality within your specific environment. This guide provides
information to understand and edit JBoss ON server and agent configuration.

http://creativecommons.org/licenses/by-sa/3.0/


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

1. ABOUT JBOSS OPERATIONS NETWORK
1.1. About JBoss ON Agents
1.2. About JBoss ON Servers

2. GENERAL MANAGEMENT
2.1. JBoss ON File Locations

2.1.1. JBoss ON Server File Locations
2.1.2. JBoss ON Agent File Locations

2.2. Default Server and Agent Ports
2.3. Starting the JBoss ON Server

2.3.1. Starting the JBoss ON Server (Basic)
2.3.2. Running the JBoss ON Server as a Service

2.3.2.1. Configuring the JBoss ON Server as a Service on Red Hat Enterprise Linux
2.3.2.2. Configuring JBoss ON as a Windows Service

2.4. Starting the JBoss ON Agent
2.4.1. Starting the JBoss ON Agent (Basic)
2.4.2. Running the Agent as a Windows Service
2.4.3. Running the Agent as a Daemon or init.d Service
2.4.4. Restarting the Agent and the JVM

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION
3.1. Setting up Encryption
3.2. Setting up Client Authentication Between Servers and Agents
3.3. Troubleshooting SSL Problems

3.3.1. Common SSL Connection Issues
3.3.2. Enabling SSL Debugging
3.3.3. Example SSL Configuration

4. USING HIGH AVAILABILITY AND AGENT LOAD BALANCING
4.1. About Agent-Server Communication and Server Availability

4.1.1. Agents and Server Communication
4.1.2. Server Availability: Multiple Servers in a Single Cloud
4.1.3. Agents and Server Partitions: Distributing Agent Load
4.1.4. Agents and Preferred Servers: Affinity and Load Balancing
4.1.5. Agents and Server Failover

4.2. Creating Affinity Groups
4.3. Putting Servers in Maintenance Mode
4.4. Removing Servers from the High Availability Cloud
4.5. Managing Partition Events

4.5.1. Viewing Partition Events
4.5.2. Removing Partition Events

5. CONFIGURING SERVERS
5.1. Enabling Debug Logging for the JBoss ON Server

5.1.1. Using an Environment Variable
5.1.2. Setting log4j Priorities
5.1.3. Dumping Current Server State to the Logs

5.2. Changing the JBoss ON Server URL
5.3. Editing JBoss ON Server Configuration in rhq-server.properties

5.3.1. Properties Set at Installation
5.3.2. Configuring Communication Settings
5.3.3. Setting Concurrency Limits

4
4
4

5
5
5
7
8
8
9

10
10
11
13
13
14
15
17

17
18
21
26
26
27
27

29
29
29
30
31
32
33
34
36
37
37
37
41

41
42
42
42
44
45
47
47
49
59

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3.4. Configuring the SMTP Server for Email Notifications
5.3.5. Installing a Server Silently

5.4. Synchronizing Server Configuration
5.4.1. Exporting a Server's Configuration
5.4.2. Importing a Server's Configuration

5.4.2.1. Editing the XML Import File
5.4.2.2. Changing the Synchronizer Configuration
5.4.2.3. Importing the Configuration

6. CONFIGURING AGENTS
6.1. Registering and Re-registering the Agent

6.1.1. About the Security Token and Agent Registration
6.1.2. Re-installing a Lost Security Token
6.1.3. Reinstalling the Agent with a New Security Token
6.1.4. Cleaning the Agent Configuration, with the Original Security Token

6.2. Working with the Agent Command Prompt
6.2.1. Opening the Agent Command Prompt
6.2.2. Agent Start Options
6.2.3. Agent Prompt Commands

6.3. Interactions with System Users for Agents and Resources
6.3.1. The Agent User
6.3.2. Agent Users and Discovery
6.3.3. Users and Management Tasks
6.3.4. Using sudo with JBoss ON Operations

6.4. Running the Agent as a Non-Root User
6.5. Enabling Debug Mode for the Agent

6.5.1. Using an Environment Variable
6.5.2. Setting log4j Priorities
6.5.3. Using the Agent debug Prompt Command

6.6. Changing the Agent IP Address
6.7. Managing the Agent as a Resource
6.8. Configuring the Agent Quiet Time (Timeout Period)
6.9. Configuring Agent Update Settings
6.10. Managing the Agent's Persisted Configuration

6.10.1. Viewing the Persisted Configuration
6.10.2. Changing Preferences in the Persisted Configuration (Agent Preferences)
6.10.3. Overriding Persisted Configuration Settings

6.11. Managing the Agent JVM
6.11.1. Setting Options for the Agent JVM
6.11.2. Setting the Agent JVM Memory Size

6.12. Installing Multiple Agents with a Shared Directory or Account
6.12.1. Editing the Configuration Files
6.12.2. Setting a Java Option

6.13. Setting Discovery Scan Intervals
6.14. Viewing the Server Failover Lists for Agents
6.15. Setting the Agent to Detect or Poll the Server

6.15.1. Settings for Polling the JBoss ON Server
6.15.2. Setting up Multicast Detection

6.16. Throttling the Agent
6.17. Setting Guaranteed Delivery for Commands
6.18. Configuring Agent Communication

7. MANAGING DATABASES ASSOCIATED WITH JBOSS ON

62
63
64
64
65
65
66
70

71
71
71
73
73
74
75
75
75
76
78
79
79
80
80
81
83
83
83
84
85
86
87
88
90
91
93
93
94
94
94
95
95
96
97
97
99
99
99

100
102
103

104

Configuring JBoss ON Servers and Agents

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.1. Running SQL Commands from JBoss ON
7.2. Changing Database Passwords
7.3. Editing the JBoss ON Server's Database Configuration

8. DOCUMENT INFORMATION
8.1. Giving Feedback
8.2. Document History

INDEX

104
105
105

107
107
107

109

Table of Contents

3



1. ABOUT JBOSS OPERATIONS NETWORK

The primary use for JBoss ON is to give administrators a single point of access to view their systems.
Functionally, that means that JBoss ON provides a means to develop and monitor a system's inventory.
Every managed resource – from platforms to applications to services – is contained and organized in
the inventory, no matter how complex the IT environment is.

JBoss ON centralizes all of its operations in an installed server. The JBoss ON server communicates
with locally installed JBoss ON agents, which interact directly with the platform and services to carry
out local tasks such as monitoring. The types of resources that can be managed by JBoss ON and the
operations that can be carried out are determined by the server and agent plug-ins which are loaded in
JBoss ON.

The relationships between servers, agents, plug-ins, and resources are what define JBoss ON.

1.1. About JBoss ON Agents

JBoss ON agents are deployed on every machine that JBoss ON manages. The agent is an
intermediary between the resource itself and the central JBoss ON server.

The agents receive updates like configuration changes, updated packages, new settings for alerts, and
operations from the JBoss ON server and then it carries out those tasks on the resource. The agent
also collects information from the resource which it forwards to the server. This allows the server to
process alerts, metrics, and availability information for the resource.

Because the agent is independent of the server, it can continue with its monitoring tasks and gather
information about the resource even if the server is down or the resource loses network connectivity.

Each resource is arranged in a hierarchy, showing relationships between platforms, servers, and
services. Only one agent is required per machine; once the platform is managed as a resource, all or a
subset of installed applications or services can be added as resources, all using the same local agent.

1.2. About JBoss ON Servers

JBoss ON is built around a central server. The server performs two vital functions:

Stores the configuration for both resources and resource groups.

Organizes and responds to the data collect by the agents.

The JBoss ON server is the central location for administrators to manage an operating environment.
The server is used to set baseline configuration and provision applications, to define alerts and
notifications, and to initiate operations. As agents send information back to the server from the
resource, then the server can also perform monitoring tasks (by providing metrics and reporting) and
can also respond to events by sending alerts or launching operations.

The data used by the JBoss ON server is stored in a backend SQL database. These data include:

The inventory of resources

The configured groups

Configuring JBoss ON Servers and Agents

4



Monitoring data

Configuration data

Content available to resources

User and access control information

The JBoss ON server hosts the graphical user interface which is used to interact with JBoss ON.

One very important aspect of JBoss ON servers is this: they only communicate with the backend
database and the JBoss ON agent. As long as JBoss ON servers use the same backend database, they
are automatically included in a server cloud that allows for failover and scalability, without additional
configuration in the servers or the database. JBoss ON agents can be configured to use a list of
preferred JBoss ON servers, which naturally distributes the agent load among the servers and provides
agent-server failover without detailed configuration.

2. GENERAL MANAGEMENT

This section covers the configuration, files, and options for the JBoss Operations Network server and
agents.

2.1. JBoss ON File Locations

This section covers the common files and directories by JBoss ON servers and agents. A basic
reference for these files can make managing and troubleshooting JBoss ON easier.

2.1.1. JBoss ON Server File Locations

All JBoss Operations Network servers are installed in a single, user-defined server root directory. In
the documentation and examples, this is called serverRoot. The directory layout within that server root
directory are the same for every server.

                           serverRoot
                               |
                              jon
                               |
      ----------------------------------------------------------
      |          |     |      |       |        |       |       |
alert-scripts/  bin/  etc/  EULA  jbossas/  LICENSE  logs/  plugins/

The directories and files that are most commonly used to managed JBoss ON servers are listed in
Table 1, “JBoss ON Server Directories and Files” . The server root varies for each installation and each
platform, but the layout of the JBoss ON subdirectories is the same for every platform.

Table 1. JBoss ON Server Directories and Files

Configuration Area Directory or File Location Description

Configuration directory serverRoot/bin/ Contains the server start scripts,
PID files, and configuration file.

2. GENERAL MANAGEMENT

5



Start scripts serverRoot/bin/rhq-
server{.sh|.bat}

The script to start, stop, and
check the status of the server.

Configuration file serverRoot/bin/rhq-
server.properties

The configuration file for all
server settings that are not
stored in the JBoss ON database.

Password hash script serverRoot/bin/generate-db-
password{.sh|.bat}

For a migrated server, it
generates an encoded form of the
database password to use in the 
rhq-server.properties
file.

SNMP files serverRoot/etc/RHQ-mib.txt The JBoss ON MIB file to use for
setting SNMP traps.

Log files serverRoot/logs/ The JBoss ON server log files are
automatically created in this
directory. The current log is
named rhq-server-
log4j.log. Older log files are
named rhq-server-
log4j.log.#, and the higher
the number, the older the log file.

Custom plug-in deployment
directory

serverRoot/plugins/ The directory where custom plug-
in files can be dropped for them to
be automatically detected and
polled by the JBoss ON server.

JBoss AS directory serverRoot/jbossas/ Contains all of the required JBoss
AS client and server libraries.[a]

Server JAR files serverRoot/jbossas/default/deplo
y/rhq.ear/

Contains all of the JAR files used
by JBoss ON servers, web
interface, and clients.

Server-side plug-ins directory serverRoot/jbossas/default/deplo
y/rhq.ear/rhq-serverplugins/

Contains all of the JAR files for
the default JBoss ON server-side
plug-ins.

Agent plug-ins directory serverRoot/jbossas/default/deplo
y/rhq.ear/rhq-downloads/rhq-
plugins/

Contains all of the JAR files for
the default JBoss ON agent plug-
ins.

Server-side plug-ins directory serverRoot/jbossas/default/deplo
y/rhq.ear/rhq-serverplugins/

Contains all of the JAR files for
the default JBoss ON server-side
plug-ins.

Configuration Area Directory or File Location Description

Configuring JBoss ON Servers and Agents

6



Agent package directory serverRoot/jbossas/default/deplo
y/rhq.ear/rhq-downloads/rhq-
agent/

Contains the snapshot packages
for the JBoss ON agent.

Web interface directory serverRoot/jbossas/default/work
/jboss.web/localhost/

Contains the directories that hold
the files for rendering the web
interface.

[a] Most of the libraries and files in this directory don't relate directly to JBoss ON.

Configuration Area Directory or File Location Description

2.1.2. JBoss ON Agent File Locations

Like the server, the JBoss ON agent is installed in a single, user-defined root directory. All of the agent
files and directories are under the rhq-agent/ directory in that root directory.

                   serverRoot
                       |
                  rhq-agent/
                       |
      ------------------------------------
      |      |     |      |      |       |       
     bin/  conf/  data/  lib/  logs/  plugins/

Table 2. JBoss ON Agent Directories and Files

Configuration Area Directory or File Location Description

Start scripts serverRoot/rhq-agent/bin/ Contains the agent start scripts.

Configuration file serverRoot/rhq-
agent/conf/agent-
configuration.xml

The configuration file for basic
agent settings.

Library files serverRoot/rhq-agent/lib/ Contains the libraries used by the
agent to monitor resources.

Start scripts serverRoot/rhq-agent/logs/ The JBoss ON agent log files are
automatically created in this
directory. The current log is
named agent.log. Older log
files are named agent.log.#,
and the higher the number, the
older the log file.

2. GENERAL MANAGEMENT

7



Plug-ins directory serverRoot/rhq-agent/plugins/ Contains the plug-ins used by the
agent for managing resources
(like editing resource
configuration).

Configuration Area Directory or File Location Description

2.2. Default Server and Agent Ports

As with other servers and services, JBoss ON servers and agents communicate with each other by
connecting over system ports. JBoss ON uses ports for three types of connections:

Server to database communication

The server has to be able to connect to its database. The database port number depends on
both the type of database and the specific configuration for the database.

Server to agent communication

The server connects to an agent over a single port configured for the agent. This port is used
for both standard and SSL communications between the server and agent.

Agent to server communication

An agent can talk to multiple JBoss ON servers, even if they use the same port (since each
server is on a different host.) The agent will use either a standard port or an SSL port to
connect to the JBoss ON server, depending on the connection (transport) method that is
configured. The agent will only attempt to use a single port.

NOTE

Servers do not talk to one another directly, so there are no ports for server-to-server
links.

The default port numbers for JBoss ON connections are listed in Table 3, “Default JBoss ON Ports” .
The port numbers can be changed for any of the JBoss ON services or different values can be used at
installation.

Table 3. Default JBoss ON Ports

Connection Type Port Number

Server to agent 16163

Agent to server (standard) 7080

Agent to server (secure) 7443

Server to database 5432 (default PostgreSQL port)

2.3. Starting the JBoss ON Server

Configuring JBoss ON Servers and Agents

8



The JBoss ON server is actually a customized JBoss AS server, included in the JBoss ON installation,
so starting the JBoss ON server means starting that JBoss instance.

The JBoss ON server can be started manually or can be configured to start and run as a system
service.

2.3.1. Starting the JBoss ON Server (Basic)

The JBoss ON server process is started by running a scripting in the serverRoot/bin/ directory. There
is an .sh script for Linux and Unix systems and a .bat script for Windows systems.

The simplest way to start the server is simply to run the script with the start command. This starts
the server process and then exits from the script.

serverRoot/bin/rhq-server.{sh|bat} start
Trying to start the RHQ Server...
RHQ Server (pid 27547) is starting

The rhq-server.{sh|bat} script looks for specific environment variables during its execution,
especially related to the JVM to use with the JBoss AS server instance. A complete list of environment
variables is given in the script itself; defaults based on the installation information are used, so most
environment variables don't need to be reset.

NOTE

The RHQ_SERVER_JAVA_HOME environment variable must be set on Red Hat Enterprise
Linux systems for the server to start. This can be set to a general value like /usr/.

The server can also be started in console mode, which prints detailed information about the server
process to the terminal and leaves the script open as long as the server is running.

serverRoot/bin/rhq-server.{sh|bat} console

Starting RHQ Server in console...
=========================================================================

  JBoss Bootstrap Environment

  JBOSS_HOME: serverRoot/jon-server-3.1.2.GA1/jbossas

  JAVA: /usr/bin/java

  JAVA_OPTS: -Dprogram.name=run.sh -Dapp.name=rhq-server -Xms1024M -
Xmx1024M -XX:PermSize=256M -XX:MaxPermSize=256M -
Djava.net.preferIPv4Stack=true -Djboss.server.log.dir=serverRoot/jon-
server-3.1.2.GA1/logs -Djava.awt.headless=true -
Djboss.platform.mbeanserver -Dsun.lang.ClassLoader.allowArraySyntax=true -
Djava.util.logging.config.file=serverRoot/jon-server-
3.1.2.GA1/jbossas/server/default/conf/logging.properties  -
Djava.net.preferIPv4Stack=true

  CLASSPATH: serverRoot/jon-server-3.1.2.GA1/jbossas/bin/run.jar

=========================================================================

2. GENERAL MANAGEMENT

9



15:51:45,955 INFO  [Server] Starting JBoss (MX MicroKernel)...
15:51:45,956 INFO  [Server] Release ID: JBoss [Trinity] 4.2.3.GA (build: 
SVNTag=JBoss_4_2_3_GA date=200807181417)
15:51:45,957 INFO  [Server] Home Dir: serverRoot/jon-server-
3.1.2.GA1/jbossas
15:51:45,957 INFO  [Server] Home URL: file:serverRoot/jon-server-
3.1.2.GA1/jbossas/
15:51:45,957 INFO  [Server] Patch URL: null
15:51:45,958 INFO  [Server] Server Name: default
15:51:45,958 INFO  [Server] Server Home Dir: serverRoot/jon-server-
3.1.2.GA1/jbossas/server/default
15:51:45,958 INFO  [Server] Server Home URL: file:serverRoot/jon-server-
3.1.2.GA1/jbossas/server/default/
15:51:45,958 INFO  [Server] Server Log Dir: serverRoot/jon-server-
3.1.2.GA1/logs
15:51:45,958 INFO  [Server] Server Temp Dir: serverRoot/jon-server-
3.1.2.GA1/jbossas/server/default/tmp
15:51:45,958 INFO  [Server] Root Deployment Filename: jboss-service.xml
15:51:46,183 INFO  [ServerInfo] Java version: 1.6.0_15,Sun Microsystems 
Inc.
15:51:46,183 INFO  [ServerInfo] Java VM: Java HotSpot(TM) Server VM 14.1-
b02,Sun Microsystems Inc.
15:51:46,184 INFO  [ServerInfo] OS-System: Linux 2.6.18-164.15.1.el5,i386
15:51:46,377 INFO  [Server] Core system initialized
....

2.3.2. Running the JBoss ON Server as a Service

The JBoss ON server can be configured to run as a service, managed with systems tools, on both Red
Hat Enterprise Linux and Windows.

2.3.2.1. Configuring the JBoss ON Server as a Service on Red Hat Enterprise Linux

The rhq-server.sh script can be managed by the init process so that the server starts
automatically when the system boots. This also allows the server process to be managed by services
like service and chkconfig.

1. Copy the rhq-server.sh script into the /etc/init.d/ directory.

cp serverRoot/bin/rhq-server.sh /etc/init.d/

2. Edit the /etc/init.d/rhq-server.sh script to set the RHQ_SERVER_HOME variable to the
JBoss ON server install directory and the RHQ_SERVER_JAVA_HOME variable to the
appropriate directory for the JVM. For example:

RHQ_SERVER_HOME=serverRoot/jon-server-3.1.2.GA1/

RHQ_SERVER_JAVA_HOME=/usr/

3. Edit the /etc/init.d/rhq-server.sh script, and add the following lines to the top of the
file, directly under #!/bin/sh.

Configuring JBoss ON Servers and Agents

10



#!/bin/sh
#chkconfig: 2345 95 20   
#description: JBoss Operations Network Server
#processname: run.sh

The last two numbers in the #chkconfig: 2345 95 20 line specify the start and stop
priority, respectively, for the JBoss ON server.

4. Add the service to the chkconfig service management command, and verify that it was
added properly.

chkconfig --add rhq-server.sh
chkconfig rhq-server.sh --list

5. Set the rhq-server.sh service to run at run level 5.

chkconfig --level 5 rhq-server.sh on

Once the init scripts and chkconfig files are updated, then the JBoss ON server can be started and
stopped using the servicecommand. The status of the process can also be checked.

service rhq-server.sh {start|stop|status}

2.3.2.2. Configuring JBoss ON as a Windows Service

The rhq-server.bat script has an installation option that installs the script as a Windows service.
Once installed, the JBoss ON server can be started, stopped, and managed through Windows tools (Add
and Remove Programs and Services) or through the rhq-server.bat script.

1. Set the environment variable to run the Windows service as.

Every Windows service has to run as some system user. There are two environment variables
in the rhq-server.bat script that set the user to use:

RHQ_SERVER_RUN_AS sets any Windows user to be the JBoss ON server user. The
username given here must be in the standard Windows format, DOMAIN\user, such as 
EXAMPLEDOMAIN\jsmith.

RHQ_SERVER_RUN_AS_ME sets the server to run as whoever the current user is. This
overrides the RHQ_SERVER_RUN_AS, if both as set.

If neither environment variable is set, then the JBoss ON server runs as the system account.

2. Run the rhq-server.bat script with the install option to set up the service. This prompts
for the password of whatever user account is used for the JBoss ON service.

serverRoot\bin\rhq-server.bat install

After the service is set up, the JBoss ON server can be started or stopped using Windows
administrative tools or by using any of the options in Table 4, “rhq-server.bat Options” with the script.

Table 4. rhq-server.bat Options

2. GENERAL MANAGEMENT

11



Option Description

start Starts the server service.

stop Stops the server service.

status Prints the current status (running or stopped) of the
service.

remove Removes, or uninstalls, the JBoss ON server service.

The JBoss ON server Windows service can be modified by changing or adding parameters in the
service wrapper configuration file, serverRoot\bin\wrapper\rhq-server-wrapper.conf. Table 5,
“Common Wrapper Properties” lists some of the wrapper properties that are most commonly edited.

NOTE

Before editing the wrapper file, check out the list of properties in the Java Service
Wrapper documentation at
http://wrapper.tanukisoftware.org/doc/english/properties.html.

Table 5. Common Wrapper Properties

Parameter Description

wrapper.app.parameter.# Passes command-line options to the server (the
JBoss AS container). Each individual option and its
value must be given its own wrapper configuration
property and must be placed in numerical order.

IMPORTANT

Do not change any of the five default
properties, 
wrapper.app.parameter.1.
The number for new properties must
begin at 5.

Configuring JBoss ON Servers and Agents

12

http://wrapper.tanukisoftware.org/doc/english/properties.html


wrapper.java.additional.# Passes additional options to the virtual machine,
such as -Xmx or -D. Increments the parameters
upward numerically.

IMPORTANT

Do not edit the 
wrapper.java.additiona.1
property unless you want to point to
your own log configuration file. Any
other properties can be added,
removed, or modified.

For example:

wrapper.java.additional.5=-
XX:+DisableExplicitGC

wrapper.ntservice.starttype Sets the start type, either automatically when the
system boots (AUTO_START) or manually
(DEMAND_START).

Parameter Description

Alternatively, the wrapper service can be configured by creating a wrapper include file, in the
serverRoot\bin\wrapper\rhq-server-wrapper.inc. An include file augments the service
wrapper configuration file and is the recommended way to add more Java VM.

2.4. Starting the JBoss ON Agent

The JBoss ON agent can be started manually or can be configured to start and run as a system service.

IMPORTANT

The agent's configuration is determined by what user is running the agent. If the agent
is run as one user and then later run as another user, the agent will have a different
configuration that second time because it will use a different backing store for its
configuration settings.

This means that if one user is used to configure the agent when it is installed, that same
user must be used to run the agent subsequently, or the agent will apparently lose its
configuration and need to be reconfigured under the new user.

The agent configuration backing store is described in Section 6.10, “Managing the
Agent's Persisted Configuration”.

2.4.1. Starting the JBoss ON Agent (Basic)

The agent is started and runs using a script in the agent's bin/ directory. Unlike the server start
script, which starts the server process and then exits the script, the agent script remains open, with a
prompt to accept further input if necessary. (Usually, the script can simply be started and left to run in
the background.)

2. GENERAL MANAGEMENT

13



/opt/rhq-agent/bin/rhq-agent.sh

RHQ 3.1.2.0-SNAPSHOT [cda7569] (Tue Apr 13 13:39:16 EDT 2012)
>

Most of the time, the JBoss ON agent can run without any additional options or settings. All of the
available options for the rhq-agent.sh script are listed in Table 13, “Options for the rhq-agent.sh
Script”. Additional configuration options can be set by editing the rhq-agent-env.sh script file.

NOTE

If there are any errors when starting the JBoss ON agent, run the agent start script with
the --cleanconfig to wipe the previous agent configuration and start fresh.

2.4.2. Running the Agent as a Windows Service

IMPORTANT

The agent does not prompt for the configuration when it is started as a service. The
agent must either be pre-configured or have already been started once and the
configuration entered. Both options are described in the Installation Guide.

1. Edit the rhq-agent-wrapper.bat script and set the environment variable to define the
system user as whom the init script will run. There are two options:

RHQ_AGENT_RUN_AS explicitly sets the user account name. This must match the format of
a Windows user account name, DOMAIN\username.

RHQ_AGENT_RUN_AS_ME forces the agent to run as whoever the current user is; this uses
the format . \ %USERNAME %. If both environment variables are defined, this variable
overrides RHQ_AGENT_RUN_AS.

NOTE

Before setting RHQ_AGENT_RUN_AS_ME or RHQ_AGENT_RUN_AS, make sure
that the given user actually has permission to start services. If necessary, assign
the user the appropriate rights. Assigning rights is covered in the Windows
documentation.

If neither variable is set, the agent init script runs as the System user.

Other available environment variables are listed and defined in the comments in the rhq-
agent-wrapper.bat script.

2. Run the rhq-agent-wrapper.bat script to install the init script as a service. Use the 
install command to install the init script.

3. When prompted, fill in the password for the system user as whom the service will run.

The agent service starts automatically when the Windows system boots. The service can be started or
stopped through the Windows Services Administrative Tools.

Configuring JBoss ON Servers and Agents

14



The agent service can also be started and stopped through the rhq-agent-wrapper.bat script
using the start and stop commands. The status command shows whether the agent init script is
installed as a service and whether it is running. The remove command removes the agent init script as
a service.

The JBoss ON agent Windows scripts use the Java Wrapper Service to control the service. A
configuration file, agentRoot\bin\wrapper\rhq-agent-wrapper.conf, contains the service
configuration properties. These are standard wrapper service properties; more information is available
at http://wrapper.tanukisoftware.org/doc/english/properties.html.

There are some common properties to edit to custom the service:

wrapper.app.parameter.# set command-line options to pass to the agent. These are the
same options listed in Section 6.2, “Working with the Agent Command Prompt” . Each option
requires its own configuration property. Properties must be placed in numeric order and the
first two properties (wrapper.app.parameter.1 and wrapper.app.parameter.2) are
reserved. Start with wrapper.app.parameter.3.

wrapper.java.additional.# set additional JVM options that are passed directly to the
VM, corresponding to the -D and -X options. These also must be incremented numerically. 
wrapper.java.additional.1 always specifies the log configuration file.

wrapper.ntservice.starttype sets when to start the service. The default is AUTO_START,
which starts the service when the system boots. To start the service manually, the value is 
DEMAND_START.

2.4.3. Running the Agent as a Daemon or init.d Service

IMPORTANT

The agent does not prompt for the configuration when it is started as a service. The
agent must either be pre-configured or have already been started once and the
configuration entered. Both options are described in the Installation Guide.

The agent's configuration is determined by what user is running the agent. If the agent
is run as one user and then later run as another user, the agent will have a different
configuration that second time because it will use a different backing store for its
configuration settings.

This means that if one user is used to configure the agent when it is installed, that same
user must be used to run the agent subsequently, or the agent will apparently lose its
configuration and need to be reconfigured under the new user.

The agent configuration backing store is described in Section 6.10, “Managing the
Agent's Persisted Configuration”.

Once the agent is configured (or pre-configured), the agent can be started in two ways. The rhq-
agent.sh script starts the agent and opens the command console. The rhq-agent-wrapper.sh
script simply starts the agent daemon and exits. Both methods can have additional environment
variables configured through the rhq-agent-env.sh script file.

The daemon can be started and run as a system service. On Red Hat Enterprise Linux, this is done by
configuring /etc/init.d and then installing it using chkconfig. For Solaris and other Unix systems,
this is done by configuring /etc/init.d and then using other system tools to set up the service.

2. GENERAL MANAGEMENT

15

http://wrapper.tanukisoftware.org/doc/english/properties.html


1. Make sure the agent is fully set up.

2. Open the rhq-agent-env.sh file.

3. Uncomment and configure the required environment variables for the agent's bin directory,
the JDK directory, and the PID directory (which must be writable by the agent user).

NOTE

When setting the PIDFILEDIR on Red Hat Enterprise Linux, edit the pidfile
setting in the rhq-agent-wrapper.sh script file. The wrapper script value is
used by chkconfig.

4. Set any of the optional environment variables.

RHQ_AGENT_DEBUG enables debug logging.

RHQ_AGENT_JAVA_EXE_FILE_PATH specifies a Java executable.

RHQ_AGENT_JAVA_OPTS passes settings to the agent JVM.

RHQ_AGENT_ADDITIONAL_JAVA_OPTS passes additional Java options to the JVM.

5. Log into the system as root.

IMPORTANT

The rest of this procedure describes how to configure the agent init script as a
service on Red Hat Enterprise Linux. For other Unix systems, follow a similar
procedure that corresponds to the specific platform.

6. Make sure the wrapper script is executable.

[root@server rhq-agent]# chmod a+x agentRoot/rhq-agent/bin/rhq-
agent-wrapper.sh

7. Symlink the rhq-agent-wrapper.sh file to /etc/init.d/. For example:

IMPORTANT

On Solaris, symlinking the agent script file requires invoking readlink in rhq-
agent-wrapper.sh. readlink is not supplied by default in some Solaris
installations. Solaris users must download readlink from a source such as
Sunfreeware.

RHQ_AGENT_HOME=agentRoot/rhq-agent/bin/
export RHQ_AGENT_JAVA_HOME=/usr
PIDFILEDIR=/var/run

# ln -s agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh 
/etc/init.d/rhq-agent-wrapper.sh

Configuring JBoss ON Servers and Agents

16



8. Register rhq-agent-wrapper.sh with chkconfig.

9. Enable the agent service to run at boot time and have it stop gracefully at when the system
shuts down.

If the agent service should not be started when the system boots, turn the script off in chkconfig:

2.4.4. Restarting the Agent and the JVM

The agent can be restarted without taking down the agent JVM process. It is also possible to restart
both the agent and its JVM.

The agent is managed through a plug-in container managed by the JBoss ON server. The container
loads and manages the lifecycle of all agents. Restarting the plug-in container restarts the agent and
all its components without destroying the JVM.

1. Select the Resources menu in the top navigation bar, and select the Servers menu item.

2. Click the agent resource in the list.

3. Click the Operations tab.

4. Select and launch the Restart task.

Alternatively, both the agent and its JVM can be restarted (this can be useful if, for instance, the
launcher script or the JVM options have been edited).

1. Select the Resources menu in the top navigation bar, and select the Servers menu item.

2. Click the agent resource in the list.

3. Navigate to the launcher script child resource beneath the agent.

4. Click the Operations tab for the launcher script resource.

5. Select and launch the Restart task.

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT
COMMUNICATION

By default, the JBoss ON server and JBoss ON agents talk to each other in the clear, meaning all
communications traffic is unencrypted and no authentication is performed on either end.

Running servers in the clear, particularly since JBoss ON can perform configuration changes on some
types of resources, can have security considerations for your network. JBoss ON should only be run
without encryption or authentication if JBoss ON is being tested or if all JBoss ON servers and agents
are deployed on a fully secured network, with access limited by a firewall or VPN and restricted to
trusted personnel.

# /sbin/chkconfig --add rhq-agent-wrapper.sh

# /sbin/chkconfig rhq-agent-wrapper.sh on

# /sbin/chkconfig rhq-agent-wrapper.sh off

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

17



JBoss ON uses SSL/TLS to secure connections between agents and servers in two separate ways:

Encryption specially encodes the data sent between agents and servers during a session.

Authentication uses SSL server and client certificates to verify the identity of an agent before it
connects to a server, and vice versa.

NOTE

There is a basic authentication mechanism employed by the server in which it assigns
security tokens to its agents which are used to identify and "authenticate" registered
agents. This token mechanism should not, however, be considered a strong
authentication scheme for the purposes of protecting your JBoss ON network from
infiltration.

Setting up encryption is very simple; it only requires enabling the proper transport mechanism
between servers and agents. This prevents an attacker from intercepting communications or data
between a legitimate JBoss ON server and a legitimate JBoss ON agent, by sniffing data or setting up a
man-in-the-middle attack.

Authentication adds another layer of protection by preventing an attacker from installing a "rogue"
JBoss ON agent and letting it register itself on the JBoss ON system, so that the rogue agent has
access to the network. Although setting up authentication is more complicated than using encryption
alone, it is worth the effort to implement for the additional protection, especially if there are
vulnerabilities in the network setup.

3.1. Setting up Encryption

All that need to be done to set up encryption is to enable the SSL transport connectors in the JBoss
ON server and agent configuration files. There are two transport options for SSL, sslservlet and 
sslsocket.

The JBoss ON server has a default certificate that it can use for encryption and the agent can generate
a self-signed certificate, so it's not necessary to generate or install additional SSL certificates for
encryption alone.

1. First, enable SSL encryption on the JBoss ON server.

1. Shut down the JBoss ON server.

serverRoot/jon-server-3.1.2.GA1/bin/rhq-server.sh stop

2. Open the serverRoot/jon-server-3.1.2.GA1/bin/rhq-server.properties file
for the JBoss ON server.

3. Edit the rhq.communications.connector.* settings to use SSL. To use the 
sslsocket transport method, which is recommended for authentication, update the 
rhq.communications.connector.transport method, set the port number to use for
the socket, and remove the servlet specified in the transport parameters setting.

rhq.communications.connector.transport=sslsocket   
rhq.communications.connector.bind-address=
rhq.communications.connector.bind-port=55555   
rhq.communications.connector.transport-params=

Configuring JBoss ON Servers and Agents

18



To use the sslservlet transport method, all that's necessary is to change the 
rhq.communications.connector.transport method.

rhq.communications.connector.transport=sslservlet   
rhq.communications.connector.bind-address=
rhq.communications.connector.bind-port=
rhq.communications.connector.transport-params=/jboss-remoting-
servlet-invoker/ServerInvokerServlet

4. For setting encryption alone, make sure that certificate-based authentication is disabled:

rhq.server.tomcat.security.client-auth-mode=false
rhq.server.client.security.server-auth-mode-enabled=false

5. Optionally, define the secure protocol to use. The default is TLS (which is usually fine), but
you can set it to SSL.

rhq.server.tomcat.security.secure-socket-protocol=TLS
rhq.server.client.security.secure-socket-protocol=TLS

6. Save the changes, and restart the JBoss ON server.

serverRoot/jon-server-3.1.2.GA1/bin/rhq-server.sh start

7. Verify that the end point address and port number given in the configuration are actually
the settings set for the server in JBoss ON.

1. Click the Administration tab in the top menu.

2. In the Topology box on the left, select the Servers item.

3. Check the port number in the Secure Port column.

4. If the value is wrong, click the name of the server to open the edit page.

5. Click the Edit under the server information, and reset the end point address or port
as necessary.

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

19



2. Then, enable SSL encryption in the agent.

NOTE

This shows how to edit the agent configuration by editing the agent
configuration file. The agent configuration can also be edited by going through
the advanced setup mode in the agent start script:

agentRoot/rhq-agent/bin/rhq-agent.sh --cleanconfig --
setup --advanced

1. Open the agent configuration file:

vim agentRoot/rhq-agent/conf/agent-configuration.xml

2. Change the transport protocol to sslsocket.

<entry key="rhq.communications.connector.transport"        
value="sslsocket" />

3. Set the server connection information so that it matches the configuration for the server.
The bind address for the server is commented out by default, and the other parameters
are set to the JBoss ON server defaults, including using sslservlet for the server's
transport protocol.

<entry key="rhq.communications.connector.transport" 
value="sslsocket" />
<entry key="rhq.agent.server.transport" value="sslservlet" />
<entry key="rhq.agent.server.bind-port" value="55555" />
<entry key="rhq.agent.server.bind-address" 
value="server.example.com" />
<entry key="rhq.agent.server.transport-params" value="" />

Configuring JBoss ON Servers and Agents

20



4. For setting encryption alone, make sure that certificate-based authentication is disabled.
These parameters can be left commented out or can be explicitly set to turn off
authentication.

<entry key="rhq.communications.connector.security.client-auth-
mode"       value="none" />
<entry key="rhq.agent.client.security.server-auth-mode-enabled" 
value="false" />

5. Optionally, define additional protocol settings for the agent. This is necessary if the server
is configured to use transport protocols other than TLS.

<entry key="rhq.communications.connector.security.secure-socket-
protocol" value="TLS" />
<entry key="rhq.agent.client.security.secure-socket-protocol"   
value="TLS" />

6. Exit the agent and restart it, using the --cleanconfig option to load the new
configuration.

agentRoot/rhq-agent/bin/rhq-agent.sh --cleanconfig

3.2. Setting up Client Authentication Between Servers and Agents

Authentication  is the process of verifying something's identity. With certificate-based authentication,
an entity has to obtain a certificate file from a trusted source and, when initiating an SSL connection,
that certificate is used to identify that entity. This ensures that the only parties involved in an SSL
connection are who they say they are.

To set up certificate-based authentication for JBoss ON, several steps need to be taken. Encryption
has to be enabled, certificates have to be issued and stored for the JBoss ON server and agents, and
the servers and agents have to be configured to reject messages from untrusted clients.

SSL authentication for JBoss ON is bi-directional. The agents are configured to authenticate to the
server, and then the server is configured to authentication to the agents.

NOTE

It is possible to configure one-way authentication, where only the server or only the
agents have to authenticate. The best security is with bi-directional authentication,
which is the configuration given here.

There are two transport methods in JBoss ON that allow SSL connections, sslservlet and 
sslsocket.

The procedure below uses sslsocket, which allows the default given port to be used for GUI
connections while a special port is used for server-agent SSL connections.

Using sslservlet leverages the embedded Tomcat server, but this requires GUI users to
authenticate to the server as well as enabling certificate-based authentication for agents. To allow GUI
users to authenticate using their usernames and passwords, set up SSL more or less as outlined below
(with some difference in the configuration file settings) and edit the JBoss ON server's Tomcat
configuration file (serverRoot/jon-server-

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

21



3.1.2.GA1/jbossas/server/default/deploy/jboss-web.deployer/server.xml to
uncomment the <Connector> section which says Provides a secure but un-authenticated https
connector for browsers to use. and set the port for them to use.

1. Enable encryption, as in Section 3.1, “Setting up Encryption”, only make sure that client
authentication is not disabled.

2. SSL socket connections will occur over a user-defined port. If necessary, open the firewall or
VPN to allow access to that port.

3. Generate SSL certificates for each JBoss ON server and agent. For example:

keytool -genkey -dname "CN=server1.example.com"  -keystore server1-
keystore.dat -validity 3650 -alias server1 -keyalg DSA -storetype 
JKS -keypass secret -storepass secret

This creates a self-signed certificate with the following characteristics:

A common name (CN) value that is the same as the server hostname, 
server1.example.com. The -dname value must be the same as the hostname because
during the initial steps of the SSL connection (the SSL handshake), the client will verify
that the same identity which was issued the certificate is the same as the one presenting
it. Meaning, it will match the hostname in the CN against the hostname of the server or
agent presenting the certificate.

A keystore file called server1-keystore.dat

A validity period of 3650 days

An alias of server1

A key algorithm of DSA

Stored in the JKS format in the keystore

Key and storage passwords of secret

Your organization may have a method already for generating or obtaining certificates. This
example uses keytool; other utilities, like certutil, can be used as well. The keytool
documentation is available through the Oracle-Sun site at
http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html.

4. Put each self-signed certificate in a single truststore file.

1. Export the self-signed certificate from each keystore:

keytool -export -keystore server1-keystore.dat -alias server1 -
storetype JKS -storepass secret -file server1-cert

2. Import every certificate into a single truststore file:

keytool -import -keystore truststore.dat -alias server1 -
storetype JKS -file server1-cert -noprompt -keypass secret -
storepass secret

Configuring JBoss ON Servers and Agents

22

http://java.sun.com/javase/6/docs/technotes/tools/windows/keytool.html


-alias is the name to give to the imported certificate in the truststore. For convenience,
this is the same as the alias of the original keystore file.

IMPORTANT

Import every exported server and agent certificate into the same truststore
file.

3. Verify that all the certificates were successfully imported by using the keytool to list the
certificates:

keytool -list -keystore truststore.dat -storepass secret -
storetype JKS
         
Keystore type: JKS
Keystore provider: SUN
         
Your keystore contains 2 entries
         
server2, Feb 25, 2012, trustedCertEntry,
Certificate fingerprint (MD5): 
24:D9:8A:50:BA:1B:26:08:DC:44:A8:2A:9E:8A:43:D9
server, Feb 25, 2012, trustedCertEntry,
Certificate fingerprint (MD5): 
91:F8:78:15:21:E8:0C:73:EC:B6:3B:1D:5A:EC:2B:01

5. Distribute both the keystore and the truststore files to all the JBoss ON and server and agent
machines. Be sure to distribute the keystores only to the machines which match the hostname
in the CN of the certificate; putting the keystore on the wrong machine will cause SSL
connections to fail.

1. For the server, copy the keystore into the serverRoot/jon-server-
3.1.2.GA1/jbossas/server/default/conf/ directory of the JBoss AS server
embedded in the JBoss Operations Network server. Make sure this file is named 
keystore.dat.

2. For the server, copy the truststore into the serverRoot/jon-server-
3.1.2.GA1/jbossas/server/default/conf/ directory of the embedded JBoss AS
server. Make sure this file is named truststore.dat.

3. For the agent, copy the keystore into the agentRoot/rhq-agent/conf directory. Any
certificate file in the agentRoot/rhq-agent/conf directory is retained even after an
automatic update.

6. Shut down the JBoss ON server.

serverRoot/jon-server-3.1.2.GA1/bin/rhq-server.sh stop

7. Open the rhq-server.properties file for the JBoss ON server.

vim serverRoot/jon-server-3.1.2.GA1/bin/rhq-server.properties

8. Enable client authentication by setting the 

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

23



rhq.communications.connector.security.client-auth-mode parameter to need
and the rhq.server.client.security.server-auth-mode-enabled parameter to 
true.

Set the information about the keystore and truststore files.

All of the configuration for incoming messages (agent-to-server communications) is set in 
rhq.communications.connector.security.* parameters. The configuration for
outgoing messages is set in rhq.server.client.security.* parameters.

# Server-side SSL Security Configuration (for incoming messages from 
agents)
# These are used when secure transports other than sslservlet are 
used
rhq.communications.connector.security.secure-socket-protocol=TLS
rhq.communications.connector.security.keystore.file=${jboss.server.h
ome.dir}/conf/keystore.dat
rhq.communications.connector.security.keystore.algorithm=SunX509
rhq.communications.connector.security.keystore.type=JKS
rhq.communications.connector.security.keystore.password=secret
rhq.communications.connector.security.keystore.key-password=secret
rhq.communications.connector.security.keystore.alias=server1
rhq.communications.connector.security.truststore.file=${jboss.server
.home.dir}/conf/truststore.dat
rhq.communications.connector.security.truststore.algorithm=SunX509
rhq.communications.connector.security.truststore.type=JKS
rhq.communications.connector.security.truststore.password=secret
rhq.communications.connector.security.client-auth-mode=need

...

# Client-side SSL Security Configuration (for outgoing messages to 
agents)
rhq.server.client.security.secure-socket-protocol=TLS
rhq.server.client.security.keystore.file=${jboss.server.home.dir}/co
nf/keystore.dat
rhq.server.client.security.keystore.algorithm=SunX509
rhq.server.client.security.keystore.type=JKS
rhq.server.client.security.keystore.password=secret
rhq.server.client.security.keystore.key-password=secret
rhq.server.client.security.keystore.alias=myhost
rhq.server.client.security.truststore.file=${jboss.server.home.dir}/
conf/truststore.dat
rhq.server.client.security.truststore.algorithm=SunX509
rhq.server.client.security.truststore.type=JKS
rhq.server.client.security.truststore.password=secret
rhq.server.client.security.server-auth-mode-enabled=true

9. Save the file and restart the server.

serverRoot/jon-server-3.1.2.GA1/bin/rhq-server.sh start

10. In the agent configuration file, uncomment the lines related to secure connections. These
parameters begin with rhq.communications.connector.security.* and 
rhq.agent.client.security.* for agent-to-server communications and server-to-agent

Configuring JBoss ON Servers and Agents

24



connections, respectively.

Fill in the appropriate values.

<entry key="rhq.communications.connector.security.secure-socket-
protocol" value="TLS" />
<entry key="rhq.communications.connector.security.keystore.file"          
value="conf/keystore.dat" />
<entry 
key="rhq.communications.connector.security.keystore.algorithm"     
value="SunX509" />
<entry key="rhq.communications.connector.security.keystore.type"          
value="JKS" />
<entry key="rhq.communications.connector.security.keystore.password"      
value="rhqpwd" />
<entry key="rhq.communications.connector.security.keystore.key-
password"  value="rhqpwd" />
<entry key="rhq.communications.connector.security.keystore.alias"         
value="rhq" />
<entry key="rhq.communications.connector.security.truststore.file"        
value="conf/truststore.dat" />
<entry 
key="rhq.communications.connector.security.truststore.algorithm"   
value="SunX509" />
<entry key="rhq.communications.connector.security.truststore.type"        
value="JKS" />
<entry 
key="rhq.communications.connector.security.truststore.password"    
value="" />
<entry key="rhq.communications.connector.security.client-auth-mode"       
value="none" />

<entry key="rhq.agent.client.security.secure-socket-protocol"   
value="TLS" />
<entry key="rhq.agent.client.security.keystore.file"            
value="conf/keystore.dat" />
<entry key="rhq.agent.client.security.keystore.algorithm"       
value="SunX509" />
<entry key="rhq.agent.client.security.keystore.type"            
value="JKS" />
<entry key="rhq.agent.client.security.keystore.password"        
value="rhqpwd" />
<entry key="rhq.agent.client.security.keystore.key-password"    
value="rhqpwd" />
<entry key="rhq.agent.client.security.keystore.alias"           
value="rhq" />
<entry key="rhq.agent.client.security.truststore.file"          
value="conf/truststore.dat" />
<entry key="rhq.agent.client.security.truststore.algorithm"     
value="SunX509" />
<entry key="rhq.agent.client.security.truststore.type"          
value="JKS" />
<entry key="rhq.agent.client.security.truststore.password"      
value="" />
<entry key="rhq.agent.client.security.server-auth-mode-enabled" 
value="false" />

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

25



NOTE

This shows how to edit the agent configuration by editing the agent
configuration file. The agent configuration can also be edited by going through
the advanced setup mode in the agent start script:

agentRoot/rhq-agent/bin/rhq-agent.sh --cleanconfig --
setup --advanced

3.3. Troubleshooting SSL Problems

The most common symptom of an SSL connection problem is that the agent will hang when it starts up
because it is unable to establish a connection to the JBoss ON server. There are several different areas
to check when an SSL problem occurs.

3.3.1. Common SSL Connection Issues

An SSL problem is simply a connection problem, which indicates that there is a problem with the agent
or server configuration. There are some general areas to check to make sure that the configuration is
all right:

Make sure that both the agent and the server hostnames are resolvable to the hostnames in
their server certificates.

Make sure that port number given for the server's secure port is actually the port number
configured for the server. Check the Administration > High Availability > 
Servers page and verify that the public endpoint address and port are correct. Edit the server
definition in the UI so they are the same as the SSL configuration.

Figure 1. Server Hostname and Port Configuration

If these values do not match the same values configured for the SSL connection, the agent will
not be able to talk to the server.

Make sure that both the agent and the server hostnames are resolvable to the hostnames in
their server certificates.

Make sure that every certificate that is used for agent-server communication is stored in the
requisite keystores with the proper aliases.

Check that the password is properly set to access the keystore.

Make sure that the communication is set to use TLS.

Validate the server and agent configuration, especially the assigned transport (socket or
servlet) options. There are examples of configuration in Section 3.3.3, “Example SSL
Configuration”.

Configuring JBoss ON Servers and Agents

26



If client authentication is required and the server is using the sslservlet transport option,
make sure that every user who connects to the JBoss ON UI has an installed user certificate so
that they can connect to the server UI using client authentication. As with the agent certificate,
the user certificates must be stored in the server's keystore, Section 3.2, “Setting up Client
Authentication Between Servers and Agents”.

If users are unable to connect using client authentication, then change the server to use 
sslsocket instead of sslservlet.

3.3.2. Enabling SSL Debugging

Enabling verbose logging in the agent can return more details SSL communication messages in the
agent log, which can help diagnose connection problems.

1. Open the agent environment variable file. This defines some settings for the JVM which the
agent runs in, including debug log settings.

2. Add a RHQ_AGENT_ADDITIONAL_JAVA_OPTS line to set a debug environment variable.

3. Restart the agent.

agentRoot/rhq-agent/bin/rhq-agent.sh

3.3.3. Example SSL Configuration

These examples show what correct configuration looks like in both the server and the agent
configuration files for the different encryption and authentication configuration scenarios.

Example 1. Encryption Only: Server (sslservlet) and Agent (sslsocket)

Server Configuration Agent Configuration

rhq.communications.connector.tra
nsport=sslservlet
rhq.communications.connector.bin
d-address=
rhq.communications.connector.bin
d-port=
rhq.communications.connector.tra
nsport-params=/jboss-remoting-
servlet-
invoker/ServerInvokerServlet
rhq.server.tomcat.security.clien
t-auth-mode=false
rhq.server.client.security.serve
r-auth-mode-enabled=false

<entry 
key="rhq.communications.connecto
r.transport" value="sslsocket" 
/>
<entry 
key="rhq.agent.server.transport" 
value="sslservlet" />
<entry 
key="rhq.agent.server.bind-port" 
value="7443" />

vim agentRoot/rhq-agent/bin/rhq-agent-env.sh

RHQ_AGENT_ADDITIONAL_JAVA_OPTS="-Djavax.net.debug=all"

3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION

27



The agent configuration defines the server's connection information, so it can be either 
sslservlet or sslsocket. The agent can only receive incoming messages over sslsocket.

Example 2. Encryption Only: Server (sslsocket) and Agent (sslsocket)

Server Configuration Agent Configuration

rhq.communications.connector.tra
nsport=sslsocket
rhq.communications.connector.bin
d-address=
rhq.communications.connector.bin
d-port=7800
rhq.communications.connector.tra
nsport-params=
rhq.server.tomcat.security.clien
t-auth-mode=false
rhq.server.client.security.serve
r-auth-mode-enabled=false

<entry 
key="rhq.agent.server.transport"
value="sslsocket" />
<entry 
key="rhq.agent.server.bind-port"        
value="7800" />
<entry 
key="rhq.agent.server.transport-
params" value="" />

Because the agent configuration defines the server's connection information, it must match the
configuration in the server's rhq-server.properties file.

Example 3. Encryption and Client Authentication: Server (sslservlet) and Agent (sslsocket)

Server Configuration Agent Configuration

rhq.communications.connector.tra
nsport=sslservlet
rhq.communications.connector.bin
d-address=
rhq.communications.connector.bin
d-port=
rhq.communications.connector.tra
nsport-params=/jboss-remoting-
servlet-
invoker/ServerInvokerServlet
rhq.server.tomcat.security.clien
t-auth-mode=true
rhq.server.client.security.serve
r-auth-mode-enabled=true

<entry 
key="rhq.communications.connecto
r.transport" value="sslsocket" 
/>
<entry 
key="rhq.agent.server.transport"
value="sslservlet" />
<entry 
key="rhq.agent.server.bind-port"        
value="7443" />

Example 4. Encryption and Client Authentication: Server (sslsocket) and Agent (sslsocket)

Configuring JBoss ON Servers and Agents

28



Server Configuration Agent Configuration

rhq.communications.connector.tra
nsport=sslsocket
rhq.communications.connector.bin
d-address=
rhq.communications.connector.bin
d-port=55555
rhq.communications.connector.tra
nsport-params=

rhq.communications.connector.sec
urity.client-auth-mode=true
rhq.server.client.security.serve
r-auth-mode-enabled=true

<entry 
key="rhq.agent.server.transport"
value="sslsocket" />
<entry 
key="rhq.agent.server.bind-port"        
value="55555" />
<entry 
key="rhq.agent.server.transport-
params" value="" />

4. USING HIGH AVAILABILITY AND AGENT LOAD BALANCING

High availability with JBoss ON servers means that all JBoss ON servers which use the same, central
database interact together in a cloud. This allows seamless failover between servers when a server has
to be taken offline for maintenance, and it provides a natural method for load balancing agent and
resource operations.

Having multiple JBoss ON servers in a cloud also allow agents to define a preference for which server
they use for regular communications. This preference (affinity) is a way of load balancing agent-server
communications for better overall performance.

4.1. About Agent-Server Communication and Server Availability

4.1.1. Agents and Server Communication

Part of planning whether to use high availability is understanding how agents and servers
communicate with each other.

Agents and servers have two-way communication. Agents send current monitoring data, configuration
settings, resources, and other current data to the server. The server sends configuration updates, alert
definitions, drift definitions, and other settings to the agent.

When an agent is first installed, the agent configuration prompts for the hostname or IP address of a
server to connect to. That is the registration server (which can be any server in the JBoss ON
deployment). Then, as part of the agent registration, it receives a list of available JBoss ON servers. The
first server in that list is the one that the agent attempts to communicate with most regularly, and it
tries the other servers in the list in order (more on that in Section 4.1.5, “Agents and Server Failover” ).
That first server may be the registration server or it may be a different one; it does not matter.

While there are slight preferences in what server an agent connects to, there are no limits on what
agents can connect to what servers and what servers can communicate with what agents. Any server
can communicate with any agent at any given time, and vice versa.

4. USING HIGH AVAILABILITY AND AGENT LOAD BALANCING

29



NOTE

Because communication must be bidirectional, all servers must be accessible by all
agents, and all agents must be accessible by all servers. Having resolvable hostnames
and IP addresses for servers and agents — which are configured when the server or
agent is installed — is critical.

However, servers never communicate with each other, so it is not necessary for servers
to be able to resolve each other's hostnames or IP addresses.

4.1.2. Server Availability: Multiple Servers in a Single Cloud

In many deployments, there is a single JBoss ON server and all agents communicate with that server.
However, there are a couple of environments where multiple servers are beneficial:

There are problems processing the agent load, which can impact evaluating metrics,
generating alerts or events, or reporting resource availability. This is not necessarily because
of the number of agents; it could be related to network quality or other factors.

You have a geographically distributed environment with multiple data centers or logical
grouping of agents to servers.

Multiple JBoss ON servers in the same deployment are configured to use the same backend database.
When a new JBoss ON server is added to the database, that server is automatically added to the JBoss
ON server high availability cloud.

A high availability configuration does not necessarily imply a large number of JBoss ON agents.
Having multiple servers does not affect the ultimate load on the central database, so it does not have a
huge effect on performance. The purpose of high availability is that the overall JBoss ON deployment
requires responsiveness and availability, as well as fault tolerance, so multiple servers are required.
This can be true even with relatively few agents.

IMPORTANT

Although JBoss ON servers can be added to the high availability server cloud with
relative ease, it should be done cautiously due to the potential impact on the backend
database. Each JBoss ON server limits its concurrent database connections, but there is
no restriction on the total number of connections across the cloud. Adding a second
server can double the potential database connections, even if the number of agents
remains the same. The increase in connections is linear as servers are added.

Basically, high availability is a way of providing natural failover and redundancy for the entire JBoss ON
deployment. Because all servers use the same database backend, they all have access to the same
agents and inventory, monitoring data, resource histories, and other information. This means that all of
the JBoss ON servers are essentially identical.

JBoss ON servers can be added to and removed from the high availability cloud easily. Servers can also
be temporarily removed by being put into maintenance mode.

There are some things to required when planning high availability:

1. All servers must be running the same version of JBoss ON.

2. All servers must be uniquely named. This string is defined during server installation.

3. Each server must define a unique endpoint (hostname or IP address) that is resolvable by all

Configuring JBoss ON Servers and Agents

30



JBoss ON agents running against the high availability server cloud.

4. Optional. Adjust the concurrency limits on the servers to prevent creating too much load on
the database and damaging performance.

4.1.3. Agents and Server Partitions: Distributing Agent Load

When there is only a single server, the agent distribution is pretty simple: all agents communicate with
that one server.

Figure 2. All on a Single Server

Once high availability is introduced, however, then agents have choices in what server to communicate
with. All servers are on a list of available servers which is sent to the agent, but the agent always
attempts to contact the first server in its list, its primary server.

The server list is slight different for each agent because the list is generated in a round-robin pattern.
For example:

A1: S1, S2, S3
A2: S2, S3, S1
A3: S3, S1, S2

This creates a fairly even distribution of agents across the servers. The distribution is a partition.

4. USING HIGH AVAILABILITY AND AGENT LOAD BALANCING

31



Figure 3. Partitions: Agent Load Distributed Among Multiple Servers

As servers are added to the high availability cloud, the agent-server lists are updated. Changing the
agent load distribution is called a partition event.

4.1.4. Agents and Preferred Servers: Affinity and Load Balancing

The natural distribution of the agent load is fairly random and creates an even distribution. However, in
some network environments, a randome distribution doesn't really make sense or provide the best
efficiency. For example, servers and agents in the same region or facility can communicate faster than
servers and agents that are much further away. In that case, an administrator would prefer an explicit,
sensible server-agent relationship instead of a random one.

JBoss ON has the concept of server-agent affinity. An affinity is a defined preference for what server
an agent communicates with. An affinity group is essentially a manual partition. It is a group of servers
and agents, and the agents selectively communicate with servers in their affinity group first.

Figure 4. Affinity Preferences for Agent Load

An affinity group creates a loose preference for an agent on what servers it communicates with — it
does not create a hard rule or restrict what servers the agent can communicate with.

Configuring JBoss ON Servers and Agents

32



NOTE

An affinity group defines a one-way preference, from the agent to the server. Any server
can contact any agent in the JBoss ON topology, regardless of any affinity preference.

When an agent's primary server is unavailable, the agent attempts to round-robin through the other
servers in its affinity group. If none of those servers are available or there are no other servers in the
affinity group, then it iterates through all of the servers in the JBoss ON high availability cloud,
according to its failover list. That is true for all of the agents in the affinity group, so eventually any
agents in one group would be evenly distributed among other JBoss ON servers.

Figure 5. Failover with Affinity

Affinity groups provide (at least) three potential advantages:

Physical or network efficiency.  Generally, if certain agent-server connections clearly run
more efficiently than others, then defining affinity to prefer those connections makes sense.
This could include servers and agents co-located in the same data center, geographic
grouping, or network topology.

Logical organization. There may be organizational reasons, apart from operating efficiency, to
group specific agents and servers together, such as administrative responsibilities or business
unit assignments.

Warm backup. It may be the case that certain machines should not be assigned agent load
unless specifically needed for failover purposes. In this case, all agents should be assigned
affinity to a subset of available servers, leaving some servers without any associated agents in
normal operation.

4.1.5. Agents and Server Failover

There is a central list of servers which is provided to each agent to identify what servers are available
to that agent. This is the failover list. When a new server joins the cloud, it is added to the list and the list
is updated to the agent.

Whatever server is first in the list for the agent is the server it most frequently communicates with — its
primary server. If the agent cannot connect to that server, then it attempts to connect to the next
server in the list, until it finds an available server.

4. USING HIGH AVAILABILITY AND AGENT LOAD BALANCING

33



The agent checks back periodically (every hour) to see when its primary server is back online and
switches back to that server as soon as it is back.

For a regular distribution of agents, the agent runs through all available servers in a (relatively)
random order, according to whatever failover list it was provided. If the agent belongs to an affinity
group, it first tries all of the servers in that affinity group, and then moves on to servers outside the
affinity group in whatever order is set in its failover list.

4.2. Creating Affinity Groups

An affinity group sets a preference for which JBoss ON servers manage which JBoss ON agents. An
affinity group only sets a preference or hint for which server will manage the agent, not an absolute
requirement. All agents are still managed within the JBoss ON server cloud, so any JBoss ON server
can, theoretically, manage any JBoss ON agent based on the current load and performance.

IMPORTANT

Only agents have an affinity preference in high availability. This means that agents have
a preference in which server they attempt to contact. JBoss ON uses two-way
communication, however, so servers also contact agents. Servers — regardless of the
partition or the agent affinity configuration — can contact any agent in JBoss ON even if
the server is not in that agent's affinity group or if the server does not manage the
agent.

The affinity groups page shows the number of agents and servers assigned to each affinity group.

Figure 6. Listing Affinity Groups

NOTE

An agent and a server can only belong to a single affinity group.

To create a new affinity group:

NOTE

To edit an affinity group, click its name, then manage it the same as creating a new
affinity group.

1. Click the Administration tab in the top menu.

Configuring JBoss ON Servers and Agents

34



2. In the Topology menu table on the left, select the Affinity Groups item.

3. Click the CREATE NEW button.

4. Enter a name for the new affinity group, and click OK.

5. In the new affinity group's details page, click the EDIT GROUP AGENTS button.

4. USING HIGH AVAILABILITY AND AGENT LOAD BALANCING

35



6. In the lower section, Agents not part of an affinity group, click the checkboxes by
the agent names to add to the group, and click ADD TO GROUP.

7. Click the Return to Affinity Group Link.

8. As with the agents, click the EDIT GROUP SERVERS button to open the server lists and look
at the list in the lower section of servers which do not currently belong to the affinity group.
Click the checkboxes by the server names to add to the group, and click ADD TO GROUP.

Once both servers and agents have been added to the affinity group, the group is fully configured.

4.3. Putting Servers in Maintenance Mode

Putting a JBoss ON server in maintenance mode temporarily removes it from the high availability cloud
so it no longer processes agent operations. This is useful when the server is offline for upgrades or
because of a service interruption.

1. Click the Administration tab in the top menu.

2. In the Topology menu table, select the Servers item.

3. Select the check box next to the name of the JBoss ON server to put into maintenance mode.

Configuring JBoss ON Servers and Agents

36



4. Click the SET MAINTENANCE button.

The JBoss ON server can be added back to the high availability cloud by clicking SET NORMAL button.
Agents migrate back to the server incrementally.

4.4. Removing Servers from the High Availability Cloud

A JBoss ON server that is in maintenance mode can be permanently removed from the high availability
cloud.

1. Click the Administration tab in the top menu.

2. In the Topology menu table, select the Servers item.

3. Select the check box next to the name of the JBoss ON server to remove from the cloud, and
click SET MAINTENANCE.

4. When the screen refreshes, select the check box next to the name of the JBoss ON server
again, and click the REMOVE SELECTED button.

4.5. Managing Partition Events

When an agent is assigned to be managed by a server, that is a partition. Partition events are almost like
log messages that occur whenever a change in the partition configuration occurs.

4.5.1. Viewing Partition Events

The partition events log is accessed in the high availability configuration.

1. Click the Administration tab in the top menu.

2. In the Topology menu table on the left, select the Partition Events  item.

4. USING HIGH AVAILABILITY AND AGENT LOAD BALANCING

37



3. The partition events page lists all of the events that have been recorded. (Table 7, “Partition
Events Entries” describes the different fields.) Click the type name of any partition event opens
up that record with more information about how the partition assignments were affected.

The partition events log can be filtered to display entries which match the type, status, or
details in the event record.

There are basically four categories of partition events that are recorded.

Configuring JBoss ON Servers and Agents

38



Affinity group changes

Agent events

Server events

Partition changes

All of the recorded events are listed in Table 6, “Types of Partition Events” .

Table 6. Types of Partition Events

Partition Event Description

Affinity Group Changes

AFFINITY_GROUP_CHANGE Registers a change in the agent or server
assignments for an affinity group or that a group
was added.

AFFINITY_GROUP_DELETE Registers an affinity group was deleted from the
JBoss ON configuration.

AGENT_AFFINITY_GROUP_ASSIGN Registers that an agent was added to an affinity
group.

AGENT_AFFINITY_GROUP_REMOVE Registers that an agent was removed from an
affinity group.

SERVER_AFFINITY_GROUP_ASSIGN Registers that a server was added to an affinity
group.

SERVER_AFFINITY_GROUP_REMOVE Registers that a server was removed from an affinity
group.

Agent Events

AGENT_CONNECT Shows that a JBoss ON agent was started.

AGENT_SHUTDOWN Shows that a JBoss ON agent was stopped.

AGENT_LEAVE Shows that a JBoss ON agent was permanently
removed from the JBoss ON configuration.

AGENT_REGISTRATION Shows that a new JBoss ON agent was added to the
JBoss ON configuration.

Server Events

SERVER_DELETION Shows that a JBoss ON server was permanently
removed from the JBoss ON configuration.

4. USING HIGH AVAILABILITY AND AGENT LOAD BALANCING

39



SERVER_COMPUTE_POWER_CHANGE

OPERATION_MODE_CHANGE Shows that a server went stopped, was started, or
was newly installed. The type also shows how the
mode transitioned (such as 
server.example.com: DOWN --> NORMAL).

Partition Changes

SYSTEM_INITIATED_PARTITION Shows that JBoss ON initiated a repartition of the
servers.

ADMIN_INITIATED_PARTITION Shows that a JBoss ON user initiated a repartition of
the servers.

Partition Event Description

Table 7. Partition Events Entries

Field Description

Execution Time The time of the partition event.

Type Shows the partition event type. This indicates what
happened in the system affecting agent partition.

Details Gives detailed information about the partition event;
the type of information given varies based on the
partition event type.

Initiated By Shows the name of the user who initiated the action
generating the partition event. Events initiated by
the JBoss ON server itself show they were initiated
by admin.

Configuring JBoss ON Servers and Agents

40



Execution Status Shows low for status descriptions. There are four
different status settings:

Audit shows that a change was made, but
not an event that affects the partition
topology.

Immediate shows that a partition change
was made at the time of the event.

Requested shows that a partition change
was requested and deferred until the next
execution of the JBoss ON server cloud job
(usually once a minute). Repartition
requests usually have a requested status.

Completed shows that a change has been
completed.

Field Description

4.5.2. Removing Partition Events

There are two ways to remove partition event records:

By selecting individual records and click REMOVE SELECTED

By clicking the PURGE ALL to remove all events

Figure 7. Removing Partition Events

5. CONFIGURING SERVERS

The JBoss ON configuration is edited in one of two areas, depending on the configuration setting:

In the JBoss ON GUI

5. CONFIGURING SERVERS

41



NOTE

Settings that can be edited in the JBoss ON UI must be edited in the JBoss ON
UI.

In the rhq-server.properties configuration file

Additional configuration is stored in the database backend used by the JBoss ON server.

5.1. Enabling Debug Logging for the JBoss ON Server

Debug mode records debugging messages caused or encountered by the start scripts to the server
logs.

Debug messages are in the log file, serverRoot/jon-server-3.1.2.GA1/logs/rhq-server-
log4j.log.

In some cases, you will want debug messages from the JBoss ON server launcher scripts. To do this,
you need to set the environment variable RHQ_SERVER_DEBUG to any value. After setting this variable
when you start the launcher, scripts will output debug messages.

5.1.1. Using an Environment Variable

The quickest way to enable debug logging is to set the RHQ_SERVER_DEBUG environment variable to
any value before starting the server.

5.1.2. Setting log4j Priorities

log4j categories support priorities for logging levels. This means that different areas of the agent can
be configured for different log levels.

NOTE

Do not set the RHQ_SERVER_DEBUG environment variable if you are setting priorities in
the rhq-server-log4j.xml file. The environment variable overrides this rhq-
server-log4j.xml configuration.

WARNING

Do not modify anything else in the jbossas directory. This could adversely affect
the performance of the JBoss ON server.

To enable debug logging for a category, change the priority value to DEBUG:

1. Open the jboss-log4j.xml file:

# vim serverRoot/jon-server-
3.1.2.GA1/jbossas/server/default/conf/jboss-log4j.log



Configuring JBoss ON Servers and Agents

42



2. Uncomment the org.rhq category to set the priority for all JBoss ON server subsystems to
DEBUG.

Alternatively, set DEBUG priorities for individual subsystems in the server. Uncomment the
specific categories and set the priority element for the category to DEBUG. Many
categories are defined for JBoss ON server subsystems, including database upgrades, global
concurrency settings, inventory reports, authorization, alerting, and the UI. There are also
categories for third-party subsystems like JBoss/Remoting and Hibernate. For example:

NOTE

By default, the console window will not display debug messages. This is because
the log4j CONSOLE appender has a threshold at INFO. For debug messages to
appear in the UI, change the CONSOLE appender's threshold setting to DEBUG.

   <appender name="CONSOLE" 
class="org.apache.log4j.ConsoleAppender">
      <errorHandler 
class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
      <param name="Target" value="System.out"/>
    <param name="Threshold" value="DEBUG"/>
    ....

   <category name="org.rhq">
      <priority value="DEBUG"/>
   </category>

   ...
        <!--
   <category name="org.rhq.enterprise.server.alert">
     <priority value="DEBUG"/>
   </category>
   -->

   <!--
   <category name="org.rhq.enterprise.server.authz">
     <priority value="DEBUG"/>
   </category>
   -->

   <!--
   <category name="org.rhq.enterprise.server.event">
     <priority value="DEBUG"/>
   </category>
   -->

   <!--
   <category name="org.rhq.enterprise.server.measurement">
     <priority value="DEBUG"/>
   </category>
   -->
   
   ...

5. CONFIGURING SERVERS

43



3. Restart the server to load the new configuration.

serverRoot/jon-server-3.1.2.GA1/bin/rhq-server.sh stop

The log4j file format is described more in the Apache log4j documentation.

5.1.3. Dumping Current Server State to the Logs

Having a record of the current state of the server configuration can be useful for debugging and
auditing. The current server details — such as its build number, database information, and
measurement schedules — can be exported immediately to the server log.

1. Click the Administration tab in the top menu.

2. In the Configuration menu table on the left, select the System Settings item.

3. In the main window, scroll to the bottom of the server configuration, and click the Dump 
system info button.

Configuring JBoss ON Servers and Agents

44

http://wiki.apache.org/logging-log4j/Log4jXmlFormat


4. All of the current server settings and details are printed to the server log.

2012-05-14 19:44:28,587 INFO  [SystemInfoManager] SystemInformation: 
********
CAM_LDAP_BIND_PW: [- non null -]
AlertDefinitionCount: [2]
CAM_LDAP_BASE_DN: [o=JBoss,c=US]
AVAILABILITY_PURGE: [31536000000]
CAM_JAAS_PROVIDER: [false]
BuildNumber: [ca099bc:3a46aff]
ServerCount: [27]
DATABASE_DRIVER_NAME: [PostgreSQL Native Driver]
RESOURCE_GENERIC_PROPERTIES_UPGRADE: [false]
... 8< ...

5.2. Changing the JBoss ON Server URL

The server URL is the URL used to identify and connect to the server in two ways:

5. CONFIGURING SERVERS

45



Connecting to the GUI

Details on alerts, contained in email notifications of alerts

The server URL does not need to be changed unless the JBoss ON connects to the Internet through a
proxy server.

1. Click the Administration tab in the top menu.

2. In the Configuration menu table on the left, select the System Settings item.

3. Scroll to the JON General Configuration Properties section in the main work area.

4. Change the hostname or IP address in the GUI Console URL field.

Configuring JBoss ON Servers and Agents

46



5. Click Save.

5.3. Editing JBoss ON Server Configuration in rhq-server.properties

JBoss ON server configuration properties are stored either in the rhq-server.properties
configuration file in the serverRoot/jon-server-3.1.2.GA1/bin directory or in the JBoss ON
database. The configuration file contains most of the basic information about the JBoss ON server,
such as the TCP/IP ports it listens on and its hostname or IP address.

The JBoss ON server configuration is loaded from the rhq-server.properties file when the server
starts. The initial configuration is defined by the installer when the JBoss ON program is set up.

NOTE

Because the configuration properties are loaded from rhq-server.properties when
the JBoss ON server starts up, you have to restart the JBoss ON server after making any
changes to that configuration file so the new settings are loaded.

5.3.1. Properties Set at Installation

The defining server properties — such as the server name, port, and the database to use — are set when
the server instance is configured.

Changing the database properties is covered in Section 7, “Managing Databases Associated with
JBoss ON”.

5. CONFIGURING SERVERS

47



Database Type

This sets the type or vendor of the database that is used by the JBoss ON server. This is either
PostgreSQL or Oracle.

Database Connection URL

This gives the JDBC URL that the JBoss ON server uses when connecting to the database, such as
jdbc:postgresql://localhost:5432/rhq or jdbc:oracle:oci:@localhost:1521:orcl.

Database JDBC Driver Class

This gives the fully qualified class name of the JDBC driver that the JBoss ON server uses to
communicate with the database, such as oracle.jdbc.driver.OracleDriver.

Database XA DataSource Class

This gives the fully qualified class name of the JDBC driver that the JBoss ON server uses to
communicate with the database, such as org.postgresql.xa.PGXADataSource or
oracle.jdbc.xa.client.OracleXADatasource.

Database User Name

This gives the name of the user that the JBoss ON server uses when logging into the database. This
user must already exist in the database; according to the basic installation instructions, this is a
specially-created rhqadmin user (not related to the super user in JBoss ON).

Database Password

This gives the password of the database user that is used by the JBoss ON server when logging into the
database. This password is stored in a hash in the rhq-server.properties file. When the password
is changed in the database, then the password must be manually hashed and copied into the rhq-
server.properties file. This is described in Section 7.2, “Changing Database Passwords” .

Server Name

This sets a unique name for the JBoss ON server. The default is the system's hostname, but it can be
any string, as long as it is unique within the JBoss ON server cloud.

NOTE

Unlike other server properties, this is only managed through the JBoss ON UI, not its 
rhq-server.properties file.

Server Public Address

This gives the public IP address to use for the server. This is the address that must be recognized by all
agents needing access to this server. By default, this is the value of the localhost's public IP address.
The public IP address is used with the HTTP/HTTPS ports to provide a high availability endpoint for
agents.

NOTE

Unlike other server properties, this is only managed through the JBoss ON UI, not its 
rhq-server.properties file.

HTTP Port

Configuring JBoss ON Servers and Agents

48



This sets the port that the JBoss ON GUI listens to for unsecured HTTP requests. This is the port
number in the JBoss ON GUI URL, such as the 7080 in http://localhost:7080. This is also the unsecured
port used as the endpoint in high availability.

Secure HTTPS Port

This sets the port that the JBoss ON GUI listens to for secured HTTPS requests. This is the port
number used in the JBoss ON GUI URL, such as the 7443 in https://localhost:7443. This is also the
secure port used as the endpoint in high availability.

Server Bind Address

This gives the IP address for the JBoss ON GUI console, among other services, to bind to. This is the
host in the JBoss ON GUI URL, such as server.example.com in 
http://server.example.com:7080.

Email SMTP Hostname

This sets the hostname of the SMTP server used by the JBoss ON server. Emails are sent primarily for
alert notifications.

Email From Address

This sets the address to use for the From header of all emails sent by the JBoss ON server.

5.3.2. Configuring Communication Settings

JBoss ON servers are configured to communicate to agents by defining and identifying ways that the
server and agent can connect, as well as how other clients (like users accessing the JBoss ON GUI) can
connect to the server. These communication endpoints include identifying the server hostname or IP
address, ports that the server listens on for different types of messages, and protocols used to access
the server. All of the server connection parameters are described in Table 8, “rhq-server.properties
Parameters for Server Connections”.

Connections, or transport methods, for the server are implemented through servlets (HTTP and
HTTPS) or sockets (HTTPS). The servlet (HTTP) and sslservlet (HTTPS) transports route traffic
through the Tomcat server embedded in the JBoss ON server.

IMPORTANT

If the server is using the transport servlet or sslservlet, the agent communication
is over the Tomcat connector. This means rhq.communications.connector.bind-
port is ignored and the Tomcat connector port is used to send messages from agent to
server. By default, the Tomcat connector port is 7080 (servlet) or 7443 (sslservlet).

NOTE

Servlet-based transports leverage the Tomcat connector infrastructure to handle both
agent and GUI requests. Using servlets, however, limits agents and GUI clients to use
the same connection methods; for certificate-based SSL connections, servlets require
users to authenticate to the GUI using a stored browser certificate. For SSL, then, it may
be preferable to use socket connections, which allow different authentication methods
for agent and GUI sessions.

See Section 3.2, “Setting up Client Authentication Between Servers and Agents”  for
setting up SSL sockets.

5. CONFIGURING SERVERS

49



The general configuration settings set the port numbers that users can used to access the server.

# General Properties
rhq.server.startup.web.http.port=7080
rhq.server.startup.web.https.port=7443

Additional connection settings can be added to configure SSL connections for inbound connections to
the server (messages from the agent to the server) and outbound connections (messages from the
server to the agent). For example:

rhq.server.tomcat.security.client-auth-mode=want
rhq.server.tomcat.security.secure-socket-protocol=TLS
rhq.server.tomcat.security.algorithm=SunX509
rhq.server.tomcat.security.keystore.alias=RHQ
rhq.server.tomcat.security.keystore.file=conf/rhq.keystore
rhq.server.tomcat.security.keystore.password=RHQManagement
rhq.server.tomcat.security.keystore.type=JKS
rhq.server.tomcat.security.truststore.file=conf/rhq.truststore
rhq.server.tomcat.security.truststore.password=RHQManagement
rhq.server.tomcat.security.truststore.type=JKS

The third part of JBoss ON server communications provides more control over information the
connection endpoints for JBoss ON servers and agents to use to talk with each other. These are
transport parameters for the server. Both the JBoss ON agent and port use the same remoting
framework, using invocation strings that are similar to URLs. These connection strings have the
format:

protocol://server:port/transportParm1=value1&transportParam2=value2

IMPORTANT

For most communications, the JBoss ON server must use either servlet or sslservlet
protocols. The only instance where socket can be used is for passing transport
parameters. Otherwise, socket and sslsocket are not supported.

The transport configuration first sets up connectors (called endpoints) that the servers and agents
jointly define and use for communications. This means that the same information must be in both the
server and agent configuration files. Each aspect of the remoting URL is built using separate server
configuration parameters.

The standard server configuration has four parts, for the transport method, server IP address, agent
port, and any parameters to append to the URL. For example:

rhq.communications.connector.transport=servlet
rhq.communications.connector.bind-address=192.168.1.2
rhq.communications.connector.bind-port=16163
rhq.communications.connector.transport-params=/jboss-remoting-servlet-
invoker/ServerInvokerServlet

That standard configuration is merged to create this URL:

servlet://192.168.1.2:16163/jboss-remoting-servlet-
invoker/ServerInvokerServlet

Configuring JBoss ON Servers and Agents

50



A corresponding entry, with the same endpoint definition, is also listed in the agent configuration so
that it knows how to send communications to the server, such as sending registration and availability
reports.

RHQ Server IP Address=192.168.1.2
RHQ Server Port=16163
RHQ Server Transport Protocol=servlet
RHQ Server Transport Parameters=/jboss-remoting-servlet-
invoker/ServerInvokerServlet

Example 5. Basic Server-Agent Transport Example

A server with an IP address of 192.168.0.10 will connect to agents over the standard agent port
of 16163. The server configuration has the following configuration to define the server address
(rhq.communications.connector.bind-address), the agent communications port
(rhq.communications.connector.bind-port), and the connection protocol
(rhq.communications.connector.transport):

rhq.communications.connector.transport=servlet
rhq.communications.connector.bind-address=192.168.0.10 
rhq.communications.connector.bind-port=16163 
rhq.communications.connector.transport-
params=enableTcpNoDelay=true&backlog=200

The connection URL, then, is:

servlet://192.169.0.10:16163/enableTcpNoDelay=true&backlog=200

The JBoss ON agent configuration will contain corresponding entries which match the server
configuration:

RHQ Server IP Address=192.168.0.10 
RHQ Server Port=16163 
RHQ Server Transport Protocol=socket 
RHQ Server Transport Parameters=enableTcpNoDelay=true&backlog=200

Transport parameters can pass relevant information about both incoming and outgoing messages
(called server and client messages, respectively, because of how the JBoss ON server handles the
messages). These transport parameters are strung together with ampersands (&), as with a standard
web URL parameters.

Both server and client transport parameters are passed in the same URL; the JBoss ON server only
processes whatever parameters are relevant for the current operation. In Example 5, “Basic Server-
Agent Transport Example”, for instance, the configuration sets two transport parameters, 
enableTcpNoDelay (client) and backlog (server). When the JBoss ON server is receiving messages
— when it function as a communications server — it uses the backlog parameter and ignore 
enableTcpNoDelay because enableTcpNoDelay is only for outgoing (client) messages.

Table 8. rhq-server.properties Parameters for Server Connections

5. CONFIGURING SERVERS

51



Parameter Description

General Connection Parameters

jboss.bind.address[a][b] Gives the IP address for the JBoss ON GUI console,
among other services, to bind to. This is the host in
the JBoss ON GUI URL, such as 
server.example.com in 
http://server.example.com:7080.

rhq.server.startup.web.http.port[a][b] Gives the port that the JBoss ON GUI listens to for
unsecured HTTP requests. This is the port number in
the JBoss ON GUI URL, such as the 7080 in
http://localhost:7080. This is also the unsecured port
used as the endpoint in high availability.

rhq.server.startup.web.https.port[a][b] Gives the port that the JBoss ON GUI listens to for
secured HTTPS requests. This is the port number in
the JBoss ON GUI URL, such as the 7443 in
https://localhost:7443. This is also the secure port
used as the endpoint in high availability.

rhq.server.startup.keystore.filename[b] The JBoss ON GUI can accept browser requests
over HTTPS. If you want to authenticate the JBoss
ON GUI to remote browsers, you need to put an SSL
certificate in a keystore file. This setting points to
the location of the keystore file. Note that this file
name must be a relative file path relative to the 
<JBoss ON server Install 
Dir>/jbossas/server/default/conf
directory. The JBoss ON server ships with a self-
signed certificate in a default keystore file.

rhq.server.startup.keystore.password[b] The password of the keystore file. This is so the
JBoss ON GUI can access the keystore file in order
to be able to serve the certificate to browser clients.

rhq.server.startup.keystore.sslprotocol[b] The protocol that browser clients should use to
communicate with the JBoss ON GUI.

rhq.server.maintenance-mode-at-start Sets whether to start the server in maintenance
mode (true) or whether to start the server in
whatever mode it was in when it shut down (false).
The default is false.

Configuring JBoss ON Servers and Agents

52



rhq.server.startup.webservice.port[a][b]

rhq.server.startup.namingservice.port[a][b]

rhq.server.startup.namingservice.rmiport[a]

[b]

rhq.server.startup.jrmpinvoker.rmiport[a][b]

rhq.server.startup.pooledinvoker.rmiport[a]

[b]

rhq.server.startup.ajp.port[a][b]

rhq.server.startup.unifiedinvoker.port[a][b]

rhq.server.startup.aspectdeployer.bind-
port[a][b]

Ports used by internal services.

SSL Connection Parameters

rhq.communications.connector.security.sec
ure-socket-protocol (agent to server)

rhq.server.client.security.secure-socket-
protocol (server to agent)

The secure protocol that agents must use when
communicating with this JBoss ON server.

rhq.communications.connector.security.ke
ystore.file (agent to server)

rhq.server.client.security.keystore.file
(server to agent)

The keystore file that contains a certificate that
authenticates the JBoss ON server to the agents.

rhq.communications.connector.security.ke
ystore.algorithm (agent to server)

rhq.server.client.security.keystore.algorith
m (server to agent)

 

rhq.communications.connector.security.ke
ystore.type (agent to server)

rhq.server.client.security.keystore.type
(server to agent)

The file format of the keystore.

Parameter Description

5. CONFIGURING SERVERS

53



rhq.communications.connector.security.ke
ystore.password (agent to server)

rhq.server.client.security.keystore.passwor
d (server to agent)

The password that is used to gain access to the
keystore file.

rhq.communications.connector.security.ke
ystore.key-password (agent to server)

rhq.server.client.security.keystore.key-
password (server to agent)

The password that is used to gain access to the key
inside the keystore.

rhq.communications.connector.security.ke
ystore.alias (agent to server)

rhq.server.client.security.keystore.alias
(server to agent)

The alias that identifies the JBoss ON server's key
within its keystore.

rhq.communications.connector.security.tru
ststore.file (agent to server)

rhq.server.client.security.truststore.file
(server to agent)

The truststore file that contains certificates that this
JBoss ON server trusts. If you need the JBoss ON
server to authenticate JBoss ON agents, you must
set this; otherwise it is not needed. This truststore
contains certificates for all JBoss ON agents that
need to communicate with this JBoss ON server.
Refer to the Incoming Client Authentication Mode.

rhq.communications.connector.security.tru
ststore.algorithm (agent to server)

rhq.server.client.security.truststore.algorit
hm (server to agent)

 

rhq.communications.connector.security.tru
ststore.type (agent to server)

rhq.server.client.security.truststore.type
(server to agent)

The file format of the truststore file.

rhq.communications.connector.security.tru
ststore.password (agent to server)

rhq.server.client.security.truststore.passwo
rd (server to agent)

The password that is used to gain access to the
truststore file.

Parameter Description

Configuring JBoss ON Servers and Agents

54



rhq.communications.connector.security.clie
nt-auth-mode (agent to server)

rhq.server.client.security.server-auth-
mode-enabled (server to agent)

Indicates if the JBoss ON server must authenticate
the JBoss ON agents that are sending it messages.
If the server is using secure connections, but does
not have trusted certificates for all of the JBoss ON
agents in a truststore, set this to none. The valid
values are none, want, or need.

Transport Connection Parameters

rhq.communications.connector.transport Defines how the JBoss ON agents need to transport
messages to the JBoss ON server. The allowed
values are either servlet or sslservlet. The agent
requests go through the JBoss ON server web
application layer (i.e. the secure Tomcat Connector).
With sslservlet, not only do agent requests route
through the web application layer, but they are also
secured through the secure Tomcat Connector. The
keystore used for incoming agent message
authentication is the same as that configured in 
rhq.communications.connector.securit
y.keystore.file.

NOTE

This transport setting does not
restrict agents from only going over
that particular connection method.
By default, the JBoss ON server
always deploys the communications
connector that allows for both
servlet and sslservlet traffic. This
setting tells the agent to decide
what transport is used when it sends
messages to the server. If the server
has its transport set to servlet, but
the agent is configured to talk to the
server via sslservlet, the messages
the agent sends will be via sslservlet.

rhq.communications.connector.bind-address This is the address that is placed in the server's
JBoss/Remoting locator URL. This defines the
endpoint that the JBoss ON server will bind its
connector to. It also represents the public endpoint
address that all agents can use to connect to the
server.

Parameter Description

5. CONFIGURING SERVERS

55



rhq.communications.connector.bind-port Defines the endpoint that the JBoss ON server binds
to, as well as the public address that all agents can
use to connect to the server. This is hidden from
view in the installer, although it still appears in the 
rhq-server.properties file. This value can be
blank; the server sets this to either the HTTP or
HTTPS port, depending on the transport configured
for the server.

rhq.communications.connector.transport-params Defines additional transport parameters the JBoss
ON server will set on its connector that will accept
incoming messages from the JBoss ON agents. All of
the possible transport parameters are listed in
Table 9, “Transport Parameters”.

rhq.communications.multicast-detector.enabled If true, the JBoss ON server will attempt to auto-
detect JBoss ON agents coming online and going
offline using multicast detection. Your network must
support multicast traffic for this to work.

rhq.communications.multicast-detector.bind-
address

The address that the multicast detector directly
binds to. This is not used, or needed, if you have not
enabled multicast detection.

rhq.communications.multicast-detector.multicast-
address

The address that the multicast detector will
broadcast messages to. This is not used, or needed,
if you have not enabled multicast detection.

rhq.communications.multicast-detector.port The port that the multicast detector will broadcast
messages to. This is not used, or needed, if you have
not enabled multicast detection.

[a] These settings configure specific IP addresses and ports for the JBoss ON server instance. If there are firewall issues
the require different settings, then these parameters can be changed.

[b] The JBoss ON server has to be restarted for any changes to this value to take effect.

Parameter Description

Table 9. Transport Parameters

Transport Parameter Description For Incoming Messages or for
Outgoing Messages

serverBindAddress The address on which the server
socket binds to listen for
requests. The default is an empty
value which indicates the server
socket should be bound to the
host provided by the
InvokerLocator URL (the host).

Incoming

Configuring JBoss ON Servers and Agents

56



serverBindPort The port to listen for requests on. Incoming

timeout The socket timeout value. The
default on the server side is
60000 (one minute). If the
timeout parameter is set, its
value will also be passed to the
client-side (see below).

Incoming

backlog The preferred number of
unaccepted incoming
connections allowed at a given
time. The actual number may be
greater than the specified
backlog. When the queue is full,
further connection requests are
rejected. Must be a positive value
greater than 0. If the value
passed if equal or less than 0,
then the default value will be
assumed. The default value is
200.

Incoming

numAcceptThreads The number of threads that exist
for accepting client connections.
The default is 1.

Incoming

maxPoolSize The number of server threads for
processing client requests. The
default is 300.

Incoming

socket.check_connection Indicates if the invoker should try
to check the connection before
re-using it by sending a single
byte ping from the client to the
server and then back from the
server. This configuration needs
to be set on both the client and
server to work. The default value
is false.

Incoming

Transport Parameter Description For Incoming Messages or for
Outgoing Messages

5. CONFIGURING SERVERS

57



clientConnectAddress The IP address or hostname the
client will use to connect to the
server-side socket. This would be
needed in the case that the client
will be going through a router
that forwards requests made
externally to a different IP
address or hostname internally. If
no clientConnectAddress or
serverBindAddress is specified,
the local host's address is used.

Outgoing

clientConnectPort The port the client will use to
connect to the server-side
socket. This would be needed in
the case that the client will be
going through a router that
forwards requests made
externally to a different port
internally.

Outgoing

timeout The socket timeout value. The
default on the client side is
1800000 (or 30 minutes).

Outgoing

enableTcpNoDelay Indicates if the client socket
should have TCP_NODELAY
turned on or off. TCP_NODELAY
is for a specific purpose; to
disable the Nagle buffering
algorithm. It should only be set
for applications that send
frequent small bursts of
information without getting an
immediate response. The default
is false.

Outgoing

clientMaxPoolSize The client-side maximum number
of active socket connections.
This basically equates to the
maximum number of concurrent
client calls that can be made from
the socket client invoker. The
default is 50.

Outgoing

Transport Parameter Description For Incoming Messages or for
Outgoing Messages

Configuring JBoss ON Servers and Agents

58



numberOfRetries The number of retries to get a
socket from the pool. This
basically equates to the number
of seconds the client will wait to
get a client socket connection
from the pool before timing out.
If the max retries is reached, a
CannotConnectException will be
thrown. The default is 30.

Outgoing

numberOfCallRetries The number of retries for making
the invocation. This is unrelated
to numberOfRetries in that when
this comes into play is after it has
already received a client socket
connection from the pool.
However, it is possible that the
socket connection timed out
while waiting within the pool.
Since a connection check is not
done by default, the connection is
thrown away and an attempt to
get a new one will be made. This
will happen for however many
numberOfCallRetries is (which
defaults to 3). However, when
(numberOfCallsRetries - 2) is
reached, the entire connection
pool is flushed under the
assumption that all connections
in the pool have timed out and are
invalid and will start over by
creating a new connection. If this
still fails, a MarshalException is
thrown.

Outgoing

socket.check_connection Indicates if the invoker should try
to check the connection before
re-using it by sending a single
byte ping from the client to the
server and then back from the
server. This configuration needs
to be set on both client and
server to work. This if false by
default.

Outgoing

Transport Parameter Description For Incoming Messages or for
Outgoing Messages

5.3.3. Setting Concurrency Limits

JBoss ON can handle large numbers of agents, potentially hundreds. The JBoss ON server can possibly
be flooded with messages if many agents attempt to communicate with the server simultaneously. This

5. CONFIGURING SERVERS

59



can happen if the JBoss ON server is restarted after being down for a period of time; when JBoss ON
agents detect that the JBoss ON server has come back, they all immediately attempt to send it a
backlog of messages.

The JBoss ON server can have a configurable limit on the number of concurrent messages that can be
processed at one time, to mitigate any risk of flooding the server. Any messages that come in past that
limit are dropped and the agent is asked to send them later.

All of the concurrency-related parameters are listed in Table 10, “rhq-server.properties Parameters
for Concurrency Limits”.

Concurrency limits not only limit the number of agent connections, but also the number of connections
to the GUI and other web connections to the server. There are three primary parameters that control
the concurrency limits:

A global limit on the total number of incoming messages to the server
(rhq.communications.global-concurrency-limit).

This is the total number of allowed agent connections. There are other concurrency limits for
specific message types which can help tune performance for content downloads, inventory
synchronization, and other resource-intensive or recurring agent operations. Those
concurrency limits apply only to those specific message types, and those limits are evaluated
independently of each other. The global concurrency limit is the total cap for all agent
connections. This is the effective concurrency limit, even if the sum of the other concurrency
limits is higher.

A limit on the total number of concurrent web connections allowed
(rhq.server.startup.web.max-connections).

This counts any client connection which connects to the JBoss ON server over an HTTP or
HTTPS connection. This includes web GUI connections, of course, but it also includes all agent
connections which use the (default) servlet or ssslservlet transports.

The limit on web connections is the same for both non-secured HTTP requests and HTTPS
requests, but the limit is additive so HTTP and HTTPS connections count against different
pools. The total maximum connections allowed is actually twice whatever the 
rhq.server.startup.web.max-connections value is. For example, if the setting is 300,
then 300 HTTP requests are allowed and 300 HTTPS requests are allowed, for total of 600
concurrent web connections.

Limits on the number of downloads from agents (rhq.server.agent-downloads-limit)
and from other clients (rhq.server.client-downloads-limit).

Example 6. Concurrency Limits

rhq.server.startup.web.max-connections=200
rhq.server.agent-downloads-limit=45
rhq.server.client-downloads-limit=5
rhq.communications.global-concurrency-limit=30

Table 10. rhq-server.properties Parameters for Concurrency Limits

Configuring JBoss ON Servers and Agents

60



Parameter Description

rhq.server.startup.web.max-connections Sets a limit on the number of web connections that
can be concurrently created, including both
connections to the GUI and connections by agents.

NOTE

If agent requests are routed over
web connections, make sure that the
rhq.communications.global
-concurrency-limit value is
slightly lower than the web
connections limit. Otherwise, GUI
users could be blocked from
accessing the JBoss ON UI
whenever there is a high agent load.

The limit on web connections is the same for both
HTTP and HTTPS (secure) requests, so the total max
connections allowed is actually twice what this
setting is. For example, if the max web connections
is set to 300, then 300 HTTP requests will be
allowed and 300 HTTPS requests will be allowed, for
a total of 600 concurrent web connections.

rhq.communications.global-concurrency-limit Sets the total number of agent messages that come
into the server. This only affected incoming agent
messages, not GUI requests. If this global
concurrency limit is set to 300, no more than 300
total agent messages can be processed at any one
time, regardless of what kinds of messages are
coming in.

Even if the sum of the other concurrency limits are
higher than this global limit, they are capped at this
global limit since there can never be more messages
processed than the global limit.

This value should be slightly lower than the number
of allowed web connections so that web connections
to the GUI are not blocked when there is a high
agent load.

rhq.server.concurrency-limit.inventory-report Inventory reports are sent from the agent when the
agent starts up, and periodically thereafter.
Inventory reports can be large, depending on the
number of resources on the agent machine.

rhq.server.concurrency-limit.availability-report Availability reports are regularly sent from the
agent, typically every 60 seconds. Availability
reports are usually very small, but occur in large
numbers due to the high frequency of their
transmission.

5. CONFIGURING SERVERS

61



rhq.server.concurrency-limit.inventory-sync Inventory synchronizations occur when the agent
needs to synchronize its inventory with that of the
server. Agents typically synchronize at startup.
Traffic that flows as part of inventory
synchronizations is usually large, depending upon
the number of resources managed by the agent.

rhq.server.concurrency-limit.content-report Content reports are similar to inventory reports
except they contain information about discovered
content (i.e., installed packages of software). These
reports can be large depending on the number of
installed software the agent has discovered and is
managing.

rhq.server.concurrency-limit.content-download Content downloads occur when a resource on an
agent needs to ask for the content of a package
version, usually for the purpose of installing the
package.

rhq.server.concurrency-limit.measurement-report Measurement reports are periodically sent to the
server whenever the agent completes measurement
collections. The number and size of measurement
reports can vary, depending on the number and
frequency of measurements scheduled to be
collected. The greater the number of schedule
measurements the agent needs to collect, the more
frequently measurement reports are sent, and the
larger the reports will be.

rhq.server.concurrency-limit.measurement-
schedule-request

Similar to inventory synchronization, measurement
schedule requests are sent to the agent asking the
server for an up-to-date set of measurement
schedules that have to be collected.

Parameter Description

5.3.4. Configuring the SMTP Server for Email Notifications

Each JBoss ON server talks to a specific SMTP server. The SMTP server is defined in the rhq-
server.properties file. The default configuration points to the local JBoss ON server hosts.

# Email
rhq.server.email.smtp-host=localhost
rhq.server.email.smtp-port=25
rhq.server.email.from-address=rhqadmin@localhost

These settings can be edited to use a different SMTP server or email account.

NOTE

To confirm that the SMTP settings are correct and the server can send emails
successfully, go to the test email page at http://server/admin/test/email.jsp.

Configuring JBoss ON Servers and Agents

62



Table 11. rhq-server.properties Parameters for SMTP

Parameter Description

rhq.server.email.smtp-host Sets the hostname of the SMTP server used by the
JBoss ON server.

rhq.server.email.smtp-port Sets the port of the SMTP server used by the JBoss
ON server.

rhq.server.email.from-address Sets the address to use for the From header of all
emails sent by the JBoss ON server.

5.3.5. Installing a Server Silently

Some options in the rhq-server.properties file tell the installation process to load the server
configuration from the file rather than the from the web-based installer.

IMPORTANT

The autoinstaller options are only evaluated once, when the JBoss ON server is first
installed. After that initial configuration, the autoinstaller is disabled. These properties
are ignored once the server is set up and cannot be used to initiate a re-install of an
existing instance.

To re-install the server, first delete the server installation directory, then unzip the
original JBoss ON server archive and install the server as if it were new.

Table 12. rhq-server.properties Parameters for Silent Installation

Parameter Description

rhq.autoinstall.enabled Tells the installation process whether to load the
configuration from the rhq-
server.properties file (true) or from the
web-based installer (false).

# Auto-Install Pre-Configuration Settings
rhq.autoinstall.enabled=true
rhq.autoinstall.database=auto
rhq.autoinstall.public-endpoint-address=

5. CONFIGURING SERVERS

63



rhq.autoinstall.database Tells the install process how to load or add database
schema. There are three options:

auto creates a new schema for new
installation or upgrades existing schema
without overwriting the data.

overwrite overwrites the database and
creates a new, empty schema.

skip skips the entire database process so
no database is created or updated.

rhq.autoinstall.public-endpoint-address Sets the IP address or hostname to use for the
server. If no value is given, then the server detects
and sets its own value when it starts.

Parameter Description

5.4. Synchronizing Server Configuration

Even in different environments, JBoss ON servers can share a lot of the same configuration. For
example, different JBoss ON servers may manage a development environment, staging environment,
and production environment, yet on all three, the servers use similar metric templates and
configuration settings.

To simplify managing separate but similar environments, JBoss ON can export the configuration for a
server and then import that configuration into another server.

Any user with permissions to manage settings can export the server configuration. There are two
categories of data:

System settings, which include how long alerts, events, and monitoring metrics are stored; the
baseline calculation schedule; and the LDAP server configuration.

Metric collection settings for each resource types.

The information is exported to dumped to a gzipped XML file, which can be easily edited before being
imported into another server.

NOTE

Syncing server configuration is only necessary when servers use different backend
databases. Servers which share a database (in the high availability cloud) already share
their configuration.

Import and export operations are only done through the JBoss ON CLI. This API is available with the
other JBoss ON documentation. Running the CLI is covered more in Running JBoss ON Command-Line
Scripts.

5.4.1. Exporting a Server's Configuration

Configuring JBoss ON Servers and Agents

64

http://docs.redhat.com/docs/en-US/JBoss_Operations_Network/100/html/API/index.html
http://docs.redhat.com/docs/en-US/JBoss_Operations_Network/100/html/Running_JON_Command-Line_Scripts/index.html


1. Log into the JBoss ON CLI.

[root@server bin]#  installDir/bin/rhq-cli.sh -u rhqadmin -p 
rhqadmin

2. Export the data to a database object:

3. Convert that object into an export file. The file extension should be .xml.gz because the
export format is a GZIP'ed XML file.

NOTE

The user must have the manage settings permission to export the server data.

5.4.2. Importing a Server's Configuration

Server configuration is exported into an XML file. Administrators can edit this file to control what kind
of information is imported into the other JBoss ON servers, so there is a lot of adaptability in the
import process. When the file is imported, it first runs through a series of validation tests to make sure
that the configuration data can actually be imported into the server. Then, two classes or
synchronizers, one for system settings and one for metric templates, are used to import the data.

The import process can be changed by administrators, so there are several common import scenarios:

The configuration data are imported directly into the server, using all of the default settings.

The XML file can be edited so that the configuration values are adapted to the target JBoss ON
servers.

The synchronizer behavior is changed, which changes what data elements are imported.

5.4.2.1. Editing the XML Import File

All of the data are dumped to a single XML file, which contains the system settings, metric settings for
each resource type, and some processing instructions.

The configuration entries all defined in two large <entities> elements.

Metric templates list each metric separately in individual <entity> elements, with the metric itself
identified by its name, resource type, and plug-in as arguments for the element. The entity ID identifies
the template in the JBoss ON database, but is ignored during import because the IDs do not need to
match between servers.

rhqadmin@localhost:7080$ var ex = 
SynchronizationManager.exportAllSubsystems();

rhqadmin@localhost:7080$ saveBytesToFile(ex.exportFile, 
'export.xml.gz');

<entities id="org.rhq.enterprise.server.sync.MetricTemplateSynchronizer">
 <entity>
  <data>
   <metricTemplate 

5. CONFIGURING SERVERS

65



System settings, on the other hand, are all defined in a single <entity> element, and each
configuration parameter is given as a key on the entry. Not all of these keys are imported into the
target server; the keys which are imported depend on the synchronizer configuration.

5.4.2.2. Changing the Synchronizer Configuration

JBoss ON uses synchronizers to set what elements — like what metric schedules — are imported into the
JBoss ON server and how to apply them to the server. The synchronizer has a default template which
applies configuration changes programmatically to every import operation. There is also synchronizer
configuration in the exported XML file, which are applied to that specific import operation.

NOTE

Custom settings in the XML file override the programmatic template settings.
Programmatic settings passed with the CLI commands override the settings in the XML
file.

To print the configuration for a specific synchronizer, specify the synchronizer name in 
SynchronizationManager.getImportConfigurationDefinition(). For example:

To print all of the configuration for both synchronizers:

    enabled="false" 
    defaultInterval="300000"
    perMinute="false" 
    metricName="trap_count" 
    resourceTypePlugin="snmptrapd"
    resourceTypeName="SnmpTrapd" 
    referencedEntityId="10001">
   </metricTemplate>
  </data>
 </entity>
 .....

<entities id="org.rhq.enterprise.server.sync.SystemSettingsSynchronizer">
 <entity>
  <data>
   <systemSettings referencedEntityId="0">
    <entry key="CAM_BASE_URL">http://10.16.65.121:7080/</entry>
    <entry key="CAM_DATA_PURGE_6H">2678400000</entry>
    <entry key="CAM_LDAP_BIND_DN"></entry>
    .....
   </systemSettings>
  </data>
 </entity>
</entities>

rhqadmin@localhost:7080$ var configDef = 
SynchronizationManager.getImportConfigurationDefinition('org.rhq.enterpris
e.server.sync.SystemSettingsSynchronizer')

rhqadmin@localhost:7080$ var configDefs = 
SynchronizationManager.importConfigurationDefinitionOfAllSynchronizers 
rhqadmin@localhost:7080$ configDef = configDefs.get(0)

Configuring JBoss ON Servers and Agents

66



5.4.2.2.1. Changing the Synchronizer Settings in the XML File

The simplest way to customize the synchronizer configuration is to change the configuration in the
exported XML file. The settings and metrics synchronizers use XML elements that are very similar to
the resource plug-in configuration. The root element for a synchronizer is <default-
configuration>, and the configuration settings are listed as properties within that element.

The settings synchronizer has the simplest configuration. It has a single <ci:simple-property>
element, and the list of settings to import is given in the value= flag on the <ci:simple-property>
element.

NOTE

The values for the settings are the names used in the JBoss ON database for the server
settings.

The metrics schedules settings are much more complex because the potential metrics schedules are
different for each resource. A metric schedule can be defined in any of three ways (or a combination):

A simple list, which has a <ci:list-property> list members defined by a property
(<ci:simple-property>) and a list of values

rhqadmin@localhost:7080$ 
pretty.print(configDef.configurationDefinition.defaultTemplate.configurati
on)

<default-configuration>
    <ci:simple-property value="AGENT_MAX_QUIET_TIME_ALLOWED, 
ENABLE_AGENT_AUTO_UPDATE, ENABLE_DEBUG_MODE, ENABLE_EXPERIMENTAL_FEATURES,  
CAM_DATA_PURGE_1H, CAM_DATA_PURGE_6H, CAM_DATA_PURGE_1D, 
CAM_DATA_MAINTENANCE, DATA_REINDEX_NIGHTLY, RT_DATA_PURGE, ALERT_PURGE, 
EVENT_PURGE, 
TRAIT_PURGE, AVAILABILITY_PURGE, CAM_BASELINE_FREQUENCY, 
CAM_BASELINE_DATASET" type="string" name="propertiesToImport">
        <c:description>The names of the properties that should be 
imported. Note that these are the INTERNAL names as used in the RHQ 
database</c:description>
    </ci:simple-property>
</default-configuration>

<default-configuration>
    <ci:list-property name="my-list">
        <c:simple-property name="element" type="string"/>
        <ci:values>
           <ci:simple-value value="a"/>
           <ci:simple-value value="b"/>
           <ci:simple-value value="c"/>
        </ci:values>
    </ci:list-property>
</default-configuration>

5. CONFIGURING SERVERS

67



A map of values, which is very similar to a simple list in that it uses a list of properties
(<ci:simple-property>) and a corresponding list of values ( <ci:simple-value>), except
that each value corresponds to a single, specified property based on the name

A table, which is a list of maps. Each set of maps specifies one table in the row.

For example, this uses a map to import only the metric schedule for the free memory metric for a
JBoss AS 5 server:

<default-configuration>
    <ci:map-property name="my-map">
        <c:simple-property name="prop1" type="integer"/>
        <c:simple-property name="prop2" type="string"/>
        <c:simple-property name="prop3" type"boolean"/>
        <ci:values>
            <ci:simple-value property-name="prop1" value="1"/>
            <ci:simple-value property-name="prop2" value="abc"/>
            <ci:simple-value property-name="prop3" value="true"/>
        </ci:values>
    </ci:map-property>
</default-configuration>

<default-configuration>
    <ci:list-property name="table">
        <c:map-property name="row">
            <c:simple-property name="column1" type="integer"/>
            <c:simple-property name="column2" type="boolean"/>
            <c:simple-property name="column3" type="string"/>
        </c:map-property>
        <ci:values>
            <ci:map-value>
               <ci:simple-value property-name="column1" value="1"/>
               <ci:simple-value property-name="column2" 
value="true"/>
               <ci:simple-value property-name="column3" value="a"/>
            </ci:map-value>
            <ci:map-value>
               <ci:simple-value property-name="column1" value="2"/>
               <ci:simple-value property-name="column2" 
value="true"/>
               <ci:simple-value property-name="column3" value="b"/>
            </ci:map-value>
            <ci:map-value>
               <ci:simple-value property-name="column1" value="3"/>
               <ci:simple-value property-name="column2" 
value="false"/>
               <ci:simple-value property-name="column3" value="c"/>
            </ci:map-value>
        </ci:values>
    </ci:list-property>
</default-configuration>

<default-configuration>
    <ci:simple-property value="false" type="boolean" 
name="updateAllSchedules" />

Configuring JBoss ON Servers and Agents

68



To update all metrics schedules, set the <ci:simple-property> element to 
name="updateAllSchedules".

To update a single metric schedule, then set the property element's name to 
metricUpdateOverride and set the updateSchedules property value to true.

5.4.2.2.2. Changing the Synchronizer Settings Programmatically

To change the configuration, create a new instance of the default and use the setValue configuration
object to add or remove keys from the list. For the settings synchronizer, this lists the key name to
import:

configurationObject.getSimple('propertiesToImport').setValue(defaultSettin
gsToImport + ', keyName')

For metrics schedules, it lists the metric schedule per resource type, based on a properties list or a
properties map:

var update = new PropertyMap('metricUpdateOverrides')
update.put(new PropertySimple('propertyName', 'resourcePluginName'))

1. Get the default definition.

    <ci:list-property name="metricUpdateOverrides">
        <c:map-property summary="false" required="true" readOnly="false" 
name="metricUpdateOverride">
            <c:simple-property type="string" summary="false" 
required="true" readOnly="false" name="metricName" />
            <c:simple-property type="string" summary="false" 
required="true" readOnly="false" name="resourceTypeName" />
            <c:simple-property type="string" summary="false" 
required="true" readOnly="false" name="resourceTypePlugin" />
            <c:simple-property type="boolean" summary="false" 
required="true" readOnly="false" name="updateSchedules" />
        </c:map-property>
        <ci:values>
           <ci:map-value>
               <ci:simple-value name="metricName" 
value="MCBean|ServerInfo|*|freeMemory"/>
               <ci:simple-value name="resourceTypeName" value="JBoss AS 
Server"/>
               <ci:simple-value name="resourceTypePlugin" 
value="JBossAS5"/>
               <ci:simple-value name="updateSchedules" value="true"/>
           </ci:map-value>
        </ci:values>
    </ci:list-property>
</default-configuration>

rhqadmin@localhost:7080$ var 
systemSettingsImportConfigurationDefinition = 
SynchronizationManager.getImportConfigurationDefinition('org.rhq.ent
erprise.server.sync.SystemSettingsSynchronizer')

5. CONFIGURING SERVERS

69



2. Create a new configuration instance.

3. Change the settings in the new instance.

For example, for the server settings synchronizer:

For the metrics template synchronizer:

5.4.2.3. Importing the Configuration

1. Log into the JBoss ON CLI.

[root@server bin]#  installDir/bin/rhq-cli.sh -u rhqadmin -p 
rhqadmin

2. Import the XML file containing the configuration:

The null parameter means that the import process uses the default settings in the XML file or,
if the defaults are missing from the XML, that it uses the settings defined on the target server.
If alternate settings were constructed in Section 5.4.2.2, “Changing the Synchronizer

rhqadmin@localhost:7080$ var configurationObject = 
systemSettingsImportConfigurationDefinition.configurationDefinition.
defaultTemplate.createConfiguration()

rhqadmin@localhost:7080$ var systemSettingsImportConfiguration = new 
ImportConfiguration(systemSettingsImportConfigurationDefinition.sync
hronizerClassName, configurationObject)

rhqadmin@localhost:7080$ var defaultSettingsToImport = 
configurationObject.getSimple('propertiesToImport').stringValue
 
rhqadmin@localhost:7080$ 
configurationObject.getSimple('propertiesToImport').setValue(default
SettingsToImport + ', CAM_BASE_URL')

configurationObject.getSimple('updateAllSchedules').setBooleanValue(
true)
var updateList = new PropertyList('metricUpdateOverrides')
var update = new PropertyMap('metricUpdateOverride')
update.put(new PropertySimple('metricName', 
'MCBean|ServerInfo|*|freeMemory'))
update.put(new PropertySimple('resourceTypeName', 'JBossAS Server'))
update.put(new PropertySimple('resourceTypePlugin', 'JBossAS5'))
update.put(new PropertySimple('updateSchedules', 'true'))

updateList.add(update)

configurationObject.put(updateList)

rhqadmin@localhost:7080$ var data = getFileBytes('export.xml.gz');
rhqadmin@localhost:7080$  
SynchronizationManager.importAllSubsystems(ex, null);

Configuring JBoss ON Servers and Agents

70



Configuration”, then they can be specified programmatically instead. For example:

6. CONFIGURING AGENTS

The agent can be configured and managed through the agent prompt, which is opened through the 
rhq-agent.sh script.

6.1. Registering and Re-registering the Agent

When an agent registers with the JBoss ON server, the agent name is used as a unique resource key to
identify the agent. In addition, the server generates a random string which it sends to the agent to use
as a registration token or security token.

6.1.1. About the Security Token and Agent Registration

When the JBoss ON agent starts up, it registers with the JBoss ON server and sends the server its
information. The JBoss ON server creates an entry based on the given agent name, IP address, and
port number.

The JBoss ON server also creates a randomly-generated string, a security token, which is also
associated with the agent name and with the IP address and port number pair.

Figure 8. Agent Registration

The agent sends its security token to the server when it restarts as a form of pseudo-authentication.
The JBoss ON server uses the unique resource key (the agent's name) and its security token as a way
to verify the agent identity.

rhqadmin@localhost:7080$ var configsToImport = new 
java.util.ArrayList()
rhqadmin@localhost:7080$ 
configsToImport.add(systemSettingsImportConfiguration);
rhqadmin@localhost:7080$ 
configsToImport.add(metricTemplatesImportConfiguration);
rhqadmin@localhost:7080$ 
SynchronizationManager.importAllSubsystems(ex, configToImport);

6. CONFIGURING AGENTS

71



The JBoss ON server associates the agent name and its security token every time the agent starts up
and registers with the server. If the agent-supplied information does not match the information that
the JBoss ON server has for that agent, then it rejects the agent's connection attempt.

Figure 9. Different Agent Connection Attempts

That means that there are a few rules about when the JBoss ON server will accept changes to the
agent's registration information:

An agent cannot register with an existing agent name without the corresponding security
token.

To register an agent with an existing agent name, you must first install the corresponding
security token, as described in Section 6.1.2, “Re-installing a Lost Security Token” .

An agent cannot register with an existing IP address/port combination without having the
corresponding security token and using the original agent name.

This essentially means that you cannot rename an agent. If an agent is registered with an
existing IP address/port combination, then both the original security token and the original
name must also be used. This re-establishes the original identity of the agent and prevents one
agent from effectively stealing the identity of another agent.

An agent can register with an existing name and a new IP address/port combination if it has
the security token which corresponds to that agent name.

While the agent name cannot be changed during re-registration, the agent IP address, the
agent port, or both can be changed. This is a common and useful scenario in cloud, virtual, or
DHCP environments where an existing agent needs to re-register with a new IP address or

Configuring JBoss ON Servers and Agents

72



port.

NOTE

The security token is stored in the agent's Java preferences. This security token
persists even if the agent is restarted, is uninstalled, or has its configuration wiped with 
--cleanconfig. This allows the agent to re-register easily.

6.1.2. Re-installing a Lost Security Token

If a security token is accidentally deleted from the agent's configuration, then the agent can no longer
communicate with the server. Any attempt fails with a failure to authenticate error.

A lost security token can be re-added to the agent's configuration manually.

1. Stop the agent.

2. Log into the web UI as a user with manage security permissions.

3. Click the Administration tab and select the Agents link under the Topology section on
the left.

4. Select the agent from the list, and click its name to open its details page.

5. Copy the security token.

6. Restart the agent, and use the -D option to set the rhq.agent.security-token property
to the security token.

agentRoot/rhq-agent/bin/rhq-agent.sh -Drhq.agent.security-
token=abcd1234

6.1.3. Reinstalling the Agent with a New Security Token

An agent can be re-installed and re-registered, with completely fresh configuration. There are three
points of configuration for the agent: the agent's (local) persisted configuration, the agent inventory
(and associated resource data), and the platform entry in the server inventory. Both the configuration
on the local machine and the agent and resource configuration on the JBoss ON server need to be
cleared for the agent to reinstalled successfully:

The agent's persisted Java configuration should be purged.

The agent's inventory should be purged, along with any resource history and configuration.

6. CONFIGURING AGENTS

73



The agent (via the platform entry) must be removed from the JON inventory.

IMPORTANT

If the agent was configured, but the platform was never imported into the
inventory, then you must import the platform from the discovery queue first, and
then delete the platform. The discovery queue is a halfway point in the
inventory. Even if the agent is removed, the platform could still linger in the
discovery queue as a ghost entry.

The agent's original identifying information (name, IP address, and port) can be changed.

To reinstall the agent:

1. Make sure that the original agent instance is properly removed.

1. Stop the agent process.

2. Remove the platform entry from the JBoss ON server inventory.

2. Restart the agent with the --fullcleanconfig option. This registers the agent with a new
security token and fresh configuration settings.

agentRoot/rhq-agent/bin/rhq-agent.sh --fullcleanconfig

NOTE

If the agent was not removed from the JBoss ON inventory, then the re-installation fails
with an error that the agent has an invalid security token.

6.1.4. Cleaning the Agent Configuration, with the Original Security Token

An alternative re-registration path cleans the agent configuration except for its security token. The
agent uses that existing security token to register with the server, so it essentially refreshes its
registration instead of re-registering.

In this case, almost all of the original agent configuration is preserved:

The agent's persisted Java configuration is purged.

The agent's inventory, along with any resource history and configuration, is saved.

The agent (via the platform entry) remains in the JON inventory.

The agent's name must remain the same (though the IP address or port number can be
changed).

The main action, then, is the the agent configuration is refreshed, while the agent entry itself is
preserved.

To clean the agent configuration, restart the agent with the --cleanconfig option. This registers
the agent with fresh configuration settings (from the conf/agent-configuration.xml file) and
reuses its previous security token.

Configuring JBoss ON Servers and Agents

74



agentRoot/rhq-agent/bin/rhq-agent.sh --fullcleanconfig

NOTE

If the agent name is different, then this re-registration attempt fails because the
existing security token cannot be validated with the given (new) agent name.

6.2. Working with the Agent Command Prompt

When the agent is started in a terminal, then (along with starting the agent process) the script starts
the agent command prompt. The agent prompt can be used to managed the agent by checking
configuration, executing some tasks, or editing the agent setup.

6.2.1. Opening the Agent Command Prompt

The agent command prompt opens when the agent start script is run.

$ rhq-agent.sh

6.2.2. Agent Start Options

Some agent management can be performed by passing options with the rhq-agent.sh start script;
these mainly relate to passing persistent configuration options to the server by loading external
preferences through input files or passed parameters. These options are listed in Table 13, “Options for
the rhq-agent.sh Script”.

Table 13. Options for the rhq-agent.sh Script

Short Argument Long Argument Description

-a --advanced Runs the agent script in setup
mode, rather than basic start
mode.

-c --config=filename Specifies an agent configuration
preferences file on filesystem or
classpath.

-d --daemon Runs the agent in daemon mode,
which means it will not read
additional commands from stdin.

-Dname[=value] Overrides an agent configuration
preference and sets a system
property.

-e --console=type Specifies the implementation to
use when reading console input.
The three available values are
jline, sigar, and java.

6. CONFIGURING AGENTS

75



-h --help Opens the help message.

-i --input=filename Specifies a script file to use for
input.

-l --cleanconfig Clears out any existing
configuration and data files so the
agent starts with blank
configuration, with the exception
of the agent security token, which
is preserved.

-L --fullcleanconfig Clears out any existing
configuration and data files so the
agent starts with a totally clean
slate, including purging the
security token.

-n --nostart Runs the agent script without
starting the agent process.

-o --output=filename Specifies a file to write all output
from the script, excluding log
messages (which are always
written to the agent logs).

-p --pref=preferences_name Specifies the Java preference
node to use for the agent
configuration.

-s --setup Forces the agent to ask setup
questions.

-t --nonative Forces the agent to disable the
native system.

-u --purgedata Purges persistent inventory and
other data files.

-- Stops the agent from processing
options.

Short Argument Long Argument Description

6.2.3. Agent Prompt Commands

The agent processes prompt commands that are passed to it, either interactively through the agent
prompt or from an input file that can be passed when the start script is launched. Agent prompt
commands (listed in Table 14, “Agent Prompt Commands”) can be used to manage resource (by

Configuring JBoss ON Servers and Agents

76



checking availability, running discovery, or checking monitoring information) or to manage the agent
itself (such as registering with a server, loading plug-ins, or viewing or reloading configuration
settings).

Table 14. Agent Prompt Commands

Prompt Command Description

avail Provides availability of inventoried resources.

config Manages the agent configuration.

debug Provides features to help debug the agent.

discovery Asks a plug-in to run a server scan discovery.

download Downloads a file from the JBoss ON server.

dumpspool Shows the entries found in the command spool file.

exit Shuts down the agent's communications services
and kills the agent.

failover Shows or updates the high availability server failover
list.

gc Helps free up memory by invoking the garbage
collector.

getconfig Displays one, several or all agent configuration
preferences.

help Shows help for a given command.

identify Asks to identify a remote server.

inventory Provides information about the current inventory of
resources.

log Configures some settings for the log messages.

metrics Shows the agent metrics.

native Accesses native system information.

pc Starts and stops the plug-in container and all
deployed plug-ins.

ping Pings the JBoss ON server.

piql Executes a PIQL query to search for running
processes.

6. CONFIGURING AGENTS

77



plugins Updates the agent plug-ins with the latest versions
from the server.

quit Exits the agent prompt (without stopping the agent).

register Registers this agent with the JBoss ON server.

schedules Retrieves measurement schedule information for
the specified resource.

sender Controls the command sender to start or stop
sending commands.

setconfig Sets an agent configuration preference.

setup Sets up the agent configuration by asking a series of
questions.

shutdown Shuts down all communications services without
killing the agent.

sleep Puts the agent prompt to sleep for a given amount of
seconds.

start Starts the agent comm services so it can accept
remote requests.

timer Times how long it takes to execute another prompt
command.

update Provides agent update functionality.

version Shows the agent version information.

Prompt Command Description

6.3. Interactions with System Users for Agents and Resources

The agent runs as a specific system user, and so do servers such as JBoss and Apache which are
managed by JBoss ON. The general assumption with many of the agent management tasks, including
discovery, is that the agent user is the same as the resource user. If the users are different, then that
can have an impact on how resources can be discovered and managed.

The common types of servers which JBoss ON manages are:

JBoss EAP servers

PostgreSQL databases

Tomcat servers

Apache servers

Configuring JBoss ON Servers and Agents

78



Generic JVMs

For some management operations initiated by the JBoss ON agent, the agent system user is never
even involved. For example, the JBoss EAP plug-in connects to the EAP instance using authentication
mechanisms managed by JBoss EAP itself, so no system ACLs or user permissions are required. As
long as the user can access the JBoss EAP instance, everything works.

Table 15. Cheat Sheet for Agent and Resource Users

Resource User Information

PostgreSQL No effect for monitoring and discovery.
The agent user must have read/write permissions to
the PostgreSQL configuration file for configuration
viewing and editing.

Apache No effect for monitoring and discovery.
The agent user must have read/write permissions to
the Apache configuration file for configuration
viewing and editing.

Tomcat Must use the same user or can't be discovered

JMX server or JVM Different users are fine when using JMX remoting;
cannot be discovered with different users and the
attach API

JBoss AS/EAP Different users are all right, but requires read
permissions on run.jar and execute and search
permission on all ancestor directories for run.jar

6.3.1. The Agent User

There is a general assumption that the agent runs as the same user as the managed resources, and this
is the cleanest option for configuration.

When the JBoss ON agent is installed from the agent installer JAR file, the system user and group who
own the agent installation files is the same user who installs the JAR. So, a special system user can be
created or selected, and then the agent can be installed by that user.

6.3.2. Agent Users and Discovery

An agent discovers a resource by searching for certain common properties, such as PIDs and
processes or start scripts.

It does not necessarily matter whether the agent has superior privileges as the resource user.

For most resources, the agent simply requires read access to that resource's configuration. For
resources like Apache and Postgres, as long as the agent can read the resource configuration, the
resources can be discovered.

For some other resources, the agent user has to have very specific permissions:

6. CONFIGURING AGENTS

79



For JBoss EAP resources, the agent must have read permissions to the run.jar file, plus
execute and search permissions for every directory in the path to the run.jar file.

Tomcat servers can only be discovered if the JBoss ON agent and the Tomcat server are
running as the same user. Even if the agent is running as root, the Tomcat server cannot be
discovered if it is running as a different user than the agent.

If a JVM or JMX server is running with JMX remoting, then it can be discovered if the agent is
running as a different user. However, if it is running with using the attach API, it has to be
running as the same user as the agent for the resource to be discovered.

6.3.3. Users and Management Tasks

The system user which the agent runs as impacts several common agent tasks:

Discovery

Deploying applications

Executing scripts

Running start, stop, and restart operations

Creating child resources through the JBoss ON UI

Viewing and editing resource configuration

The key thing to determine is what tasks need to be performed and who needs to perform that
operation, based on limits on the resource or the operating system for permissions or authorization.

For some actions — discovery, deploying applications, or creating child resources — setting system
ACLs that grant the agent user permission are sufficient. This is covered in Section 6.4, “Running the
Agent as a Non-Root User”.

For running operations or executing scripts, it may be necessary to run the task as a user other than
the agent user. This can be done using sudo.

Whatever method, the goal is to grant the JBoss ON user all of the required system permissions
necessary to carry out the operations.

6.3.4. Using sudo with JBoss ON Operations

The time to use sudo is for long-running operations, such as starting a service or a process, or for
scripts which are owned by a resource user. The user which executes the script should be the same as
the resource user because that user already has the proper authorization and permissions.

The user can really be the same, or the JBoss ON user can be granted sudo rights to the given
command.

When elevating the agent user's permissions, two things must be true:

There can be no required interaction from the user, including no password prompts.

It should be possible for the agent to pass variables to the script.

To set up sudo for resource scripts:

Configuring JBoss ON Servers and Agents

80



1. Grant the JBoss ON agent user sudo rights to the specific script or command. For example, to
run a script as the jbossadmin user:

[root@server ~]# visudo

jbosson-agent     hostname=(jbossadmin)  NOPASSWD: /opt/jboss-
eap/jboss-as/bin/*myScript*.sh

Using the NOPASSWD option runs the command without prompting for a password.

IMPORTANT

JBoss ON passes command-line arguments with the start script when it starts
an EAP instance. This can be done either by including the full command-line
script (including arguments) in the sudoers entry or by using the sudo -u user
command in a wrapper script or a script prefix.

The second option has a simpler sudoers entry

2. Create or edit a wrapper script to use. Instead of invoking the resource's script directly, invoke
the wrapper script which uses sudo to run the script.

NOTE

For the EAP start script, it is possible to set a script prefix in the connection
settings, instead of creating a separate wrapper script:

/usr/bin/sudo -u jbosson-agent

For example, for a start script wrapper, start-myScript.sh:

#!/bin/sh
# start-myScript.sh
# Helper script to execute start-myConfig.sh as the user jbosson-
agent
#
sudo -u jbosson-agent /opt/jboss-eap/jboss-as/bin/start-myConfig.sh

3. Create the start script, with any arguments or settings to pass with the run.sh script. For
example, for start-myConfig.sh:

nohup ./run.sh -c MyConfig -b jonagent-host 2>&1> jboss-MyConfig.out 
&

6.4. Running the Agent as a Non-Root User

To access some resource information, the agent must have root access to the resource itself. However,
for security, many administrators do not want to run the agent process as root.

6. CONFIGURING AGENTS

81



On Red Hat Enterprise Linux, it is possible to grant access to the agent to specific resources while
running the agent as a non-root user. This is done by setting local access control rules to the local
directories or files for the resource.

NOTE

This example sets ACLs for a PostgreSQL database; the directories and files to specify
in the setfacl command will vary depending on the resource type.

1. Log into the system as root.

2. Make sure that the acl package is installed on the system.

# rpm -q acl
acl-2.2.39-6.el5

The acl option must be applied to the filesystem. This can be done by editing the 
/etc/fstab file or using tune2fs. For example:

# vim /etc/fstab

LABEL=/           /             ext3    defaults,acl    1 1
...

Then re-mount the filesystem.

# mount -o remount /

3. Optionally, create a system user to use for the agent.

useradd jbosson-agent

4. For PostgreSQL, the agent needs to be able to access the postgresql.conf file. Open the
PostgreSQL directory:

# cd /var/lib/pgsql

5. Grant read and write access to the postgresql.conf file to the agent user. For example:

# setfacl -m u:jbosson-agent:rw $PGDATA/postgresql.conf

6. Then, grant access to the data/ directory to the agent user. For example:

# setfacl -m u:jbosson-agent:x $PGDATA

7. Check that the new ACLs were added properly using the getfacl command:

# getfacl .
# file: .
# owner: postgres
# group: postgres

Configuring JBoss ON Servers and Agents

82



user::rwx
user:jbosson-agent:--x
group::---
mask::--x
other::---

6.5. Enabling Debug Mode for the Agent

The JBoss ON agent, like the JBoss ON server, uses log4j for its logging. To troubleshoot agent
performance or server-agent communication, enable debug logging for the agent, which enables the 
log4j debug log.

The log files are in the agentRoot/rhq-agent/logs directory.

6.5.1. Using an Environment Variable

The quickest way to enable debug logging is to set the RHQ_AGENT_DEBUG environment variable to
any value before starting the agent. When you start the agent, both the launcher scripts and the agent
itself will output debug messages.

If the JBoss ON agent is running on Microsoft Windows using the service wrapper, set 
RHQ_AGENT_DEBUG and then install the service:

rhq-agent-wrapper.bat install

6.5.2. Setting log4j Priorities

log4j categories support priorities for logging levels. This means that different areas of the agent can
be configured for different log levels.

NOTE

Do not set the RHQ_AGENT_DEBUG environment variable if you are setting priorities in
the log4j.xml file. The environment variable overrides this log4j.xml configuration.

To enable debug logging for a category, change the priority value to DEBUG:

1. Open the agent log4j file:

# vim agentRoot/rhq-agent/conf/log4j.xml

2. Reset the priority element for the category. By default, the agent configuration has logging
for both incoming and outgoing server-agent communication and for the base org.rhq class.
Optionally, logging can be enabled for plug-in class loaders and JBoss remoting
communication.

   <!-- ================ -->
   <!-- Limit categories -->
   <!-- ================ -->

   <!-- RHQ -->
   <category name="org.rhq">

6. CONFIGURING AGENTS

83



3. Restart the agent to load the new configuration.

The log4j file format is described more in the Apache log4j documentation.

6.5.3. Using the Agent debug Prompt Command

Debug logging can be enabled using the debug command in the agent command prompt ( Section 6.2.1,
“Opening the Agent Command Prompt”).

Using the --enable option enables the log4j debug log.

> debug --enable
log4j:WARN No appenders could be found for logger 
(org.rhq.core.pc.measurement.MeasurementCollectorRunner).
log4j:WARN Please initialize the log4j system properly.
Switched to log file [log4j-debug.xml]. Root log level is [DEBUG]
started>

To enable debug logging specifically for server-agent communication layers, set the --comm option to
true.

> debug --comm=true 
Agent-server communications tracing has been enabled.
You may set the following, additional configuration settings
to collect more detailed trace data. You can set these
using the setconfig prompt command. Please refer to the
documentation for more information on these settings. The
values you see here are the current settings:
   rhq.trace-command-config=true
   rhq.trace-command-response-results=256
   rhq.trace-command-size-threshold=99999
   rhq.trace-command-response-size-threshold=99999

The debug command can also be used to check all of the agent threads, to the server and to the
system management handlers, using the --threaddump option. This prints the information for each
thread, whether the thread is running or any errors that the agent is encountering, per thread. For
example:

> debug --threaddump
"DestroyJavaVM" Id=47 RUNNABLE

      <priority value="INFO"/>
   </category>

   <!-- RHQ outgoing command tracing  - set to TRACE to trace 
commands sent by the agent -->
   <category 
name="org.rhq.enterprise.communications.command.client.OutgoingComma
ndTrace">
      <priority value="NONE"/>
      <appender-ref ref="COMMANDTRACE"/>
   </category>
   ...

Configuring JBoss ON Servers and Agents

84

http://wiki.apache.org/logging-log4j/Log4jXmlFormat


"RHQ Agent Prompt Input Thread" Id=46 RUNNABLE

"EventManager.sender-2" Id=49 TIMED_WAITING on 
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject@17d7
c01
        at sun.misc.Unsafe.park(Native Method)
        -  waiting on 
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject@17d7
c01
        at 
java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:226)
        at 
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awai
tNanos(AbstractQueuedSynchronizer.java:2081)
        at java.util.concurrent.DelayQueue.take(DelayQueue.java:193)
        at 
java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(Sch
eduledThreadPoolExecutor.java:688)
        at 
java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(Sch
eduledThreadPoolExecutor.java:681)
        at 
java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:10
43)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:
1103)
 ...

6.6. Changing the Agent IP Address

The agent IP address is set in the rhq.communications.connector.bind-address configuration
preference. This is the IP address the agent binds to when it starts its server socket, meaning this is
the site that the agent uses to listen for incoming messages from the server.

NOTE

Do not attempt to edit the agent-configuration.xml file. The agent does not use
this file once the initial setup is complete, so any changes to this file aren't loaded
automatically by the agent.

1. Open the agent prompt. For example, if the agent process is already running, the prompt can
be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Send the setconfig with the rhq.communications.connector.bind-address
configuration preference and new value.

> setconfig rhq.communications.connector.bind-address=1.2.3.4

6. CONFIGURING AGENTS

85



3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6.7. Managing the Agent as a Resource

The agent can be added as a resource to the JBoss ON inventory, so its behavior and metrics can be
monitored to ensure that it is working properly and it can have alerts and operations launched, as with
any other resource.

IMPORTANT

If the agent is shut down, the JBoss ON GUI cannot be used to restart it because there is
no active agent available to issue the start command. To restart the agent, use the
restart operation on the agent's child resource of the launcher script, rather than the
agent resource itself.

The shutdown operation kills the agent process if it is running as a daemon. If the agent
is running as a command prompt, the shutdown operation stops the agent but not the
JVM, so that prompt commands can still be run through the agent command prompt.

When the agent is imported into the inventory, several child resources are automatically added as well.
These are listed in Table 16, “Agent Child Resources”.

Table 16. Agent Child Resources

Child Resource Description

The agent itself Provides monitoring, configuration, and control
functionality for the agent and its internal
components. These configuration settings
correspond to the preferences defined in the 
agent-configuration.xml file and are
persisted on the agent machine as Java preferences.

IMPORTANT

The operations for the agent
resource normally do not affect the
agent process directory. These do
not provide control over the JVM
settings or process or the JRE
options. Controlling the JVM is done
through the agent child resources,
not the agent resource.

Agent measurement subsystem Provides data on the measurement collection and
reporting components in the agent.

Configuring JBoss ON Servers and Agents

86



Agent JVM Provides fine-grained monitoring and management
of the JVM that is running the agent and all its
plugins, which includes the classloader, threading
and memory management subsystems, among
others. This is a child server.

Agent environment setup script Configured environment variables that server set
when the agent launcher script is started.

Agent plug-in container Provides a view into the embedded plug-in
container and gives management data related
directly to the plug-in container. The plug-in
container runs within the agent and handles the
deployment of all management plug-ins and
infrastructure necessary to run those plug-ins.

Java service wrapper launcher (Windows) Controls the Java service wrapper. This is a third-
party library that installs and runs the agent as a
Windows service. There is one primary configuration
file for the Java service wrapper, the read-only 
rhq-agent-wrapper.conf file. This defines the
base set of configuration settings necessary for the
agent to start and operate properly. Two additional
groups of configuration settings can customize the
agent's environment. The Environment group
defines environment variables that are used by the
main configuration in addition to the environment
variables defined by the common Environment Setup
Script. The Includes group defines any of the
wrapper configuration settings. These groups should
almost never be edited except to configure
debugging or to pass new JVM options to the agent
JVM.

Agent launcher script (UNIX) Controls the agent. If the agent is running as a
background daemon process that was spawned by
the launcher script, the launcher script stops or
restarts it. There is no additional configuration. The
launcher script is configured by the Environment
Setup Script.

Child Resource Description

6.8. Configuring the Agent Quiet Time (Timeout Period)

The JBoss ON server waits a certain amount of time to hear from the agent before it considers that the
agent is down. With the default settings, the agent sends a heartbeat to the server every minute. If the
agent is quiet for five minutes, then the server reckons that the agent is down and marks the platform
and all children as unavailable.

This setting, the agent quiet time, is a JBoss ON-wide setting. Every JBoss ON server in the cloud uses
the same core settings.

6. CONFIGURING AGENTS

87



1. Click the Administration tab in the top menu.

2. In the Configuration menu table on the left, select the System Settings item.

3. Scroll to the JON General Configuration Properties section in the main work area.

4. Change the Agent Max Quiet Time Allowed to the desired interval for the server to wait
for the agent heartbeat before marking the agent as down.

5. Click the Save button. The changes are applied to all servers immediately.

6.9. Configuring Agent Update Settings

When an agent is installed from a JAR file, it has a configuration property that allows the agent to
receive a version update automatically from the server. This means that every time the server is
updated, all of the agents managed by that server will automatically be updated to the same version as
the server. (This is beneficial because the server and the agent must be running as the same JBoss ON
version.)

For a single agent, this is configured in the agent configuration file:

A value of true means that the agent is allows to receive updates from the server.

IMPORTANT

This value is set to false for all agents installed by RPM. If an agent is installed from an
RPM, the agent update setting must always be false.

<entry key="rhq.agent.agent-update.enabled" value="true" />

Configuring JBoss ON Servers and Agents

88



The agent update setting for a single agent can be reset by editing the configuration property.

1. Open the agent prompt. For example, if the agent process is already running, the prompt can
be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Send the setconfig command with the new value for rhq.agent.agent-
update.enabled configuration preference.

> setconfig rhq.agent.agent-update.enabled=false

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

If all agents are installed using an RPM or if there is some environmental reason to prevent automatic
upgrades for all agents, then automatic upgrades can be disabled in the JBoss ON server cloud. This
means that no JBoss ON server will make updated packages available to the agents, regardless of the
agent setting.

To change the agent update server setting:

1. Click the Administration tab in the top menu.

2. In the Configuration menu table on the left, select the System Settings item.

3. Scroll to the JON General Configuration Properties section in the main work area.

6. CONFIGURING AGENTS

89



4. Set the Enable Agent Auto-Updates radio button to No. This prevents the server from
sending new binaries to installed agents.

5. Click the Save button. The changes are applied to all servers immediately.

6.10. Managing the Agent's Persisted Configuration

The agent uses Java preferences in the Java platform to store its configuration. Java preferences in
general are described in the Java documentation at
http://download.oracle.com/javase/1.5.0/docs/guide/preferences/index.html. JBoss ON stores user
preferences in the backing store's root node.

The location of the backing store depends on the system:

On Windows, the backing store is located in the Windows registry.

On Linux and Unix systems, the backing store is in the agent user's home directory, in 
~/.java.

Configuring JBoss ON Servers and Agents

90

http://download.oracle.com/javase/1.5.0/docs/guide/preferences/index.html


IMPORTANT

The agent's configuration is determined by what user is running the agent. If the
agent is run as one user and then later run as another user, the agent will have a
different configuration that second time because it will use a different backing
store for its configuration settings.

For example, if the agent is configured by a system user named jsmith, its
persisted configuration is in ~jsmith/.java. If the agent is then configured to
run as a background service as the root user, the agent looks for its
configuration in ~root/.java, and it finds different configuration settings.

This means that if one user is used to configure the agent when it is installed,
that same user must be used to run the agent subsequently, or the agent will
apparently lose its configuration and need to be reconfigured under the new
user.

The agent gets the configuration that it uses to run from its backing store. It only reads configuration
settings from the agent-configuration.xml file when the agent needs to initialize its backing
store, either at its first configuration or if the agent was started with --cleanconfig and fresh
configuration settings should be loaded.

6.10.1. Viewing the Persisted Configuration

Agent configuration is comprised of Java preferences, which are persisted for each JBoss ON user. The
way that the configuration is persisted depends on the operating system; Windows stores the
configuration in the registry, for example, while Unix keeps it in the user's home directory.

The agent configuration is loaded when it is first set up and then persisted in the database, with the
exception of a few parameters which can be set and loaded through the rhq-agent-env.sh file. The
agent's persisted configuration can be viewed in several different ways:

1. If the agent is in the JBoss ON inventory, then its complete configuration settings are visible
through the Configuration tab, with collapsible tables that display each configuration area.

6. CONFIGURING AGENTS

91



2. The configuration can also be returned through the getconfig or config prompt commands
for the agent. These commands can be run through a terminal, if the agent is running through a
command prompt, or through the Execute Command Prompt operation in the JBoss ON UI
for the agent resource.

> getconfig  
rhq.agent.agent-update.enabled=true
rhq.agent.client.command-preprocessors=org.rhq.enterprise.agent. 
SecurityTokenCommandPreprocessor: org.rhq.enterprise.agent. 
ExternalizableStrategyCommandPreprocessor
rhq.agent.client.command-spool-file.compressed=true
rhq.agent.client.command-spool-file.name=command-spool.dat
rhq.agent.client.command-spool-file.params=10000000:75
rhq.agent.client.command-timeout-msecs=600000
rhq.agent.client.max-concurrent=5
rhq.agent.client.max-retries=10
rhq.agent.client.queue-size=50000
rhq.agent.client.queue-throttling=200:2000
rhq.agent.client.retry-interval-msecs=15000
rhq.agent.client.send-throttling=100:1000
rhq.agent.client.server-polling-interval-msecs=60000
rhq.agent.configuration-schema-version=5
rhq.agent.configuration-setup-flag=true
rhq.agent.data-directory=data
rhq.agent.disable-native-system=false
rhq.agent.name=localhost.localdomain
rhq.agent.plugins.directory=plugins
...

Configuring JBoss ON Servers and Agents

92



3. The agent configuration is persisted in Java preferences, so any tool which examines Java
preferences can be used to view the persisted configuration.

WARNING

Do not attempt to change the values of the preferences using third-party tools.
Setting an agent preference to a bad value can completely disable the agent.

6.10.2. Changing Preferences in the Persisted Configuration (Agent Preferences)

The agent's configuration is initially read from agent-configuration.xml and overlaid with the
values entered at the setup prompts at start up. After the agent is initially configured, the agent
persists that configuration and never refers to the agent-configuration.xml again, unless the
configuration is purged and reloaded. Most configuration changes are made to the rhq-agent-
env.sh file, which is loaded every time the agent starts.

It is possible to change the persisted configuration (without editing the configuration files) using the 
setconfig command at the agent prompt.

1. Open the agent prompt.

agentRoot/rhq-agent/bin/rhq-agent.sh

2. Send the setconfig with the name of the preference to edit and its new value. The
preference name is whatever the entry name is in the agent-configuration.xml file. For
example:

> setconfig rhq.agent.client.max-concurrent=20

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6.10.3. Overriding Persisted Configuration Settings

The settings in the Java backing store and in the agent-configuration.xml file for the agent can
be overridden using the -D option, the configuration parameter name, and the new value when the
agent is started.

For example, to set a temporary value for how long the agent waits at startup to detect the JBoss ON
server (rhq.agent.wait-for-server-at-startup-msecs), pass this argument with the start
command:

agentRoot/rhq-agent/bin/rhq-agent.sh -Drhq.agent.wait-for-server-at-
startup-msecs=90000



6. CONFIGURING AGENTS

93



6.11. Managing the Agent JVM

6.11.1. Setting Options for the Agent JVM

The agent runs in a Java Virtual Machine, and aspects of its behavior can be defined in the rhq-
agent-env.sh file and passed to the JVM.

There are two arguments that set JVM options:

RHQ_AGENT_JAVA_OPTS resets the any of the default JVM settings.

RHQ_AGENT_ADDITIONAL_JAVA_OPTS adds JVM settings without changing any of the default
settings.

For more information on JVM settings, see
http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp and other Sun JVM documentation.

NOTE

Restart the agent after making changes to the JVM settings to load the new settings.

6.11.2. Setting the Agent JVM Memory Size

When an agent manages a large number of resources, it can begin running out of memory with the
default settings of its JVM. This can cause errors like memory has crossed the threshold and is low to be
recorded in the agent log, and the agent is automatically rebooted. This is usually caused by the
agent's heap size begin set too low, but it can also be related to a low perm gen size.

To change the agent's memory settings, use the RHQ_AGENT_JAVA_OPTS in the rhq-agent-env.sh
file to set the appropriate JVM settings.

1. Open the agent prompt. For example, if the agent process is already running, the prompt can
be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Use the setconfig command to set the RHQ_AGENT_JAVA_OPTS value with the -Xms and -
Xmx parameters for the minimum and maximum bounds of the heap size for the agent JVM. For
example:

> setconfig RHQ_AGENT_JAVA_OPTS="-Xms1024m -Xmx1024m -
XX:PermSize=256M -XX:MaxPermSize=256M -
Djava.net.preferIPv4Stack=true"

3. Optionally, use -XX:PermSize and -XX:MaxPermSize to set the perm gen size.

4. Restart the agent process to load the new configuration. For example, if the agent is running
as a service:

[root@server ~]# service rhq-agent-wrapper.sh stop

[root@server ~]# service rhq-agent-wrapper.sh start

Configuring JBoss ON Servers and Agents

94

http://java.sun.com/javase/technologies/hotspot/vmoptions.jsp


NOTE

It is also possible to stop the agent, edit the rhq-agent-env.sh file directly, and then
restart the agent.

6.12. Installing Multiple Agents with a Shared Directory or Account

Multiple agents, running on multiple systems, can share the same system user accounts. If the same
user is used for a JBoss ON agent on different systems and those system users all use the same shared
home directory, then they all share the same agent configuration location and preference node by
default. Because of the way the agent uses Java preferences, this requires special agent configuration
to prevent the agents from overwriting each other's preferences.

A similar situation can occur on Windows systems if the same domain user is used for the JBoss ON
agent. In that case, the Java preferences are stored in a registry key which is used by the domain user
and is loaded into the local user's profile. If there are multiple agents using the same domain user, then
they will overwrite each other's registry keys.

All of the agent configuration, after setup, is stored in a Java preferences node, as described in
Section 6.10, “Managing the Agent's Persisted Configuration” . With the default configuration, the node
name is default, and the node location is agentUserHomeDir/.java/.userPrefs/rhq-
agent/default.

If multiple agents are installed using the same file share, then all of them attempt to use the same
default node and location.

When multiple agents attempt to use the same Java preferences node, each new agent overwrites the
previous agent's configuration as it is set up. This means that only the newest agent's configuration is
saved, so only the newest agent can be started. Starting any of the previous agents fails because they
cannot find their own configuration.

The preferences node is uniquely identified by two settings:

Its name, which is defined as an agent configuration setting

Its location, which is itself a Java option

To run multiple agents with the same home directory, the preferences node has to be uniquely
identified for each agent. There are a couple of different ways to do that:

Editing the agent configuration files directly

Setting an explicit Java option

6.12.1. Editing the Configuration Files

When the agent is first set up, the name of the agent preferences node is set in the agent-
configuration.xml file and is loaded from there. The node location is derived from the node name
setting.

1. Edit the agent-configuration.xml file to use the new node name:

[rhquser@server ~]$ vim agentRoot/rhq-agent/conf/agent-
configuration.xml

<node name="agent01-node">

6. CONFIGURING AGENTS

95



2. Then, start the agent with the --config option to load the edited configuration file and the -
-prefs option to point to the specific node location:

[rhquser@server ~]$ agentRoot/rhq-agent/bin/rhq-agent.sh --
prefs=agent01-node --config=agent-configuration.xml

IMPORTANT

If the custom Java preferences node is specified by editing the agent-
configuration.xml file, then every time the agent restarts, the node location has to
be passed to the agent using the --prefs option.

6.12.2. Setting a Java Option

Editing the agent-configuration.xml file only sets the node name; the node location still has to be
passed every time the agent is started.

By setting a Java option in the rhq-agent-env.sh file, the Java preferences node information is set
once and then persisted, so you can restart the agent as a service, without having to pass --prefs
options or edit and reload the configuration.

1. Open the agent prompt. For example, if the agent process is already running, the prompt can
be opened by re-running the rhq-agent.sh script with the -n option.

[rhquser@server ~]$ agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Use the setconfig command to set the RHQ_AGENT_ADDITIONAL_JAVA_OPTS value with
the preference node. For example:

> setconfig RHQ_AGENT_ADDITIONAL_JAVA_OPTS="-
Djava.util.prefs.userRoot=agentUserHomeDir/.java/.userPrefs/rhq-
agent/agent01-node"

The preference node can be in the user preferences directory with a different name, such as 
agent01-node, or it can be in an entirely different location, such as /etc/agent-
preferences, which is not a shared or filesystem-mounted location.

3. Restart the agent process to load the new configuration. For example, if the agent is running
as a service:

[rhquser@server ~]$ service rhq-agent-wrapper.sh stop

[rhquser@server ~]$ service rhq-agent-wrapper.sh start

NOTE

It is also possible to stop the agent, edit the rhq-agent-env.sh file directly, and then
restart the agent.

Configuring JBoss ON Servers and Agents

96



IMPORTANT

Do not set the Java option within the rhq-agent runtime directory because this file is
overwritten during JBoss ON agent updates. The default location for the rhq-agent
runtime is $USERHOME/.java/.userPrefs/rhq-agent/default.

6.13. Setting Discovery Scan Intervals

The agent scans a platform routinely to look for new servers or services to add to the discovery queue
and, subsequently, to inventory. There are two parameters which set scan intervals:

The scan interval for servers, set in the rhq.agent.plugins.server-
discovery.period-secs. The default is 900 seconds (15 minutes).

The scan interval for services, set in the rhq.agent.plugins.service-
discovery.period-secs. The default is 86400 seconds (24 hours).

These are set in the agent-configuration.xml file, so the configuration must be cleanly reloaded
before the changes take effect.

1. Open the agent prompt. For example, if the agent process is already running, the prompt can
be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Use the setconfig command to reset the two discovery scan intervals. The preference name
is whatever the entry name is in the agent-configuration.xml file. For example:

> setconfig rhq.agent.plugins.server-discovery.period-secs=600

> setconfig rhq.agent.plugins.service-discovery.period-secs=1440

3. Restart the agent process to load the new configuration. For example, if the agent is running
as a service:

[root@server ~]# service rhq-agent-wrapper.sh stop

[root@server ~]# service rhq-agent-wrapper.sh start

6.14. Viewing the Server Failover Lists for Agents

JBoss ON agents are automatically included in high availability in order to assign them to servers for
management. Agent-server preferences are assigned through affinity groups (Section 4.2, “Creating
Affinity Groups”). The agent high availability settings show its affinity groups, the server currently
managing it, and any servers available for failover.

The first server that an agent contacts is defined in its agent-configuration.xml file, and that is
the server that the agent sends its initial registration request. After registration, the agent joins the
high availability cloud, and it sends its updates — monitoring information, resource changes — to any
server in the cloud. At registration, the agent gets its first affinity group assignment. If its primary
server is different than its registration server, then the agent switches communication over to the
primary server.

6. CONFIGURING AGENTS

97



The high availability server cloud helps define the relationships between servers and agents once the
agent is running normally.

The group of servers that an agent sends updates to can be loosely restricted by defining an affinity
group. The affinity group creates a list of servers that the agent prefers to access. This list is ordered;
the first server entry is the primary server that the agent connects to. If that primary server is
unavailable, then the agent cycles through the other servers in the list in order. This allows the agent
to connect to defined servers in the high availability cloud gracefully and automatically, without
interrupting JBoss ON performance.

If the agent cannot connect to any server in the failover list, then the agent temporarily stops
communication and spools its messages. After a period of time, it will run through the failover list again,
beginning with its primary server.

An agent always try to ensure that it is connected to its primary server. Once an hour, by default, it
checks its connection to verify that the server it is using is its primary server. If it is not, then the agent
tries to reconnect to its primary server.

The actual failover list for an agent is generated by the server and edited in the affinity group
configuration for the server. Any changes to the affinity group, like new servers or agents, changed
server priority, or new group assignments, are sent to the agent hourly when the agent polls the server
for configuration changes.

To view the agent's failover list from the agent command prompt:

To view the failover list from the UI:

1. Click the Administration tab in the top menu.

2. In the High Availability menu, select the Agents item.

3. The agent high availability page shows information about the agents, including three things
that are relevant for high availability:

The JBoss ON server that the agent is currently connected to (or the one it was most
recently connected to).

The time that the last agent availability report was sent to the server.

The affinity group that the agent is assigned to.

4. Click the name of the agent. This opens the agent's server failover list. The first server listed is
the primary server for the agent; all other servers are available in the high availability cloud.
The connected server is usually also the primary server, unless the primary is offline.

> failover --list localhost.localdomain:7080/7443 
server2.example.com:7080/7443 1.2.34.56:7080/7443

Configuring JBoss ON Servers and Agents

98



6.15. Setting the Agent to Detect or Poll the Server

The agent has to stay in contact with a JBoss ON server. This can either be done by using multicast
detection to monitor when its primary JBoss ON server comes online or goes offline or by simply
polling the JBoss ON server at intervals to see if the server is online.

These polling methods aren't exclusive; they can both be set, so that the agent can use whatever
method is convenient or available to poll the server.

Polling the server allows the agent to stop sending commands and data to the server if the server goes
offline and then to resume automatically when the server is back online. If server polling is not enabled
on the agent, then the agent always assumes that the server is online and sends its information to the
server. If the server goes down, then the agent records repeated connection refused errors, which (if the
server is down for a long time) can make the agent log grow very large.

6.15.1. Settings for Polling the JBoss ON Server

The simplest configuration is to set a polling interval for the agent. With this method, the agent simply
pings the server at the predefined interval.

1. Open the agent prompt. For example, if the agent process is already running, the prompt can
be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Send the setconfig with the rhq.agent.client.server-polling-interval-msecs
setting and a value (in milliseconds). Setting this value to zero (0) or a negative number
disables server polling.

> setconfig rhq.agent.client.server-polling-interval-msecs=500

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6.15.2. Setting up Multicast Detection

6. CONFIGURING AGENTS

99



Multicast detection uses JBoss's Remoting framework, which allows the agent to detect whenever a
server comes on or goes off line within a few seconds. Using the Remoting framework requires support
for multicast traffic; otherwise, the agent cannot detect the server. This has more configuration
parameters than simple polling:

Setting to enable both server detection and multicast traffic (rhq.agent.server-auto-
detection and rhq.communications.multicast-detector.enabled, respectively).

A wait interval between server communications (rhq.communications.multicast-
detector.default-time-delay); if the server is silent longer than that interval, then the
server is considered offline.

Await, or heartbeat, interval for the agent's own messages
(rhq.communications.multicast-detector.heartbeat-time-delay). This value
must be shorter than the JBoss ON server's heartbeat interval
(rhq.communications.multicast-detector.default-time-delay), or it results in
unnecessary messages and network traffic.

To enable multicast detection:

1. Open the agent prompt. For example, if the agent process is already running, the prompt can
be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Send the setconfig with the multicast settings. The time-delay values are in milliseconds.

> setconfig rhq.agent.server-auto-detection=true
> setconfig rhq.communications.multicast-detector.enabled=true
> setconfig rhq.communications.multicast-detector.default-time-
delay=75000
> setconfig rhq.communications.multicast-detector.heartbeat-time-
delay=60000

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6.16. Throttling the Agent

Some agent settings control how many resources the agent can access and how many tasks it can
perform at one time. Throttling the agent has a twofold purpose: it limits how many resources on its
host it can monopolize (which can improve performance on the host machine) and it keeps the agent
from flooding the server with data and overloading or monopolizing the server.

Several different settings (listed in Table 17, “Agent Parameters for Throttling Agent Operations” ) can
be used to throttle different aspects of the agent performance. These settings operate independently
of each other, but they can be more effective when the settings are made after considering the other
values. For example, the queue size should be set larger then the command timeout period, unless the
max-concurrent setting is increased. Changing one of these values has a different effect than adjusting
all of these values.

Configuring JBoss ON Servers and Agents

100



Table 17. Agent Parameters for Throttling Agent Operations

Parameter Description

rhq.agent.client.queue-size Sets the maximum number of commands the agent
can queue up for sending to the JBoss ON server.
The larger the number, the more memory the agent
can use, and setting this to zero (0) means the
queue size is unlimited. Setting this to 0 could allow
the agent to queue up more commands than the
machine has memory for, if the server goes offline
for a long time.

rhq.agent.client.max-concurrent Sets the maximum number of messages the agent
can send to the server at any one time. A larger
number allows the agent to process its queue more
quickly, but this can also set the agent to use more
CPU cycles.

rhq.agent.client.command-timeout-msecs Sets the amount of time the agent waits for a reply
from the JBoss ON server for an agent command
before it aborts the command. A long interval can
give the server the time it needs to complete some
commands, but it also means that other messages
are queued up waiting to be processed.

rhq.agent.client.retry-interval-msecs Sets the time that the agent waits before retrying a
command. Only commands with the guaranteed
delivery tag are retried.

rhq.agent.client.send-throttling Sets a limit on the number of commands than an
agent can send before it enters a quiet period, when
the agent suspends sending commands. This setting
only affects commands which can be throttled, which
are commands that are sent to the server frequently
and in large numbers, such as metric collection.
Send-throttling prevents messages storms to the
server.

This parameter sets both the number of commands
and the quiet period, in the form
commands:timeout_milliseconds. For example, 
50:10000 sets a limit of 50 commands and a quiet
period of 10000 milliseconds.

6. CONFIGURING AGENTS

101



rhq.agent.client.queue-throttling Limits the amount of commands that can be
dequeued in a given amount of time; this is the burst
period. If more commands are attempted to be
dequeued during the burst period than allowed,
those dequeue requests are blocked until the next
burst period begins.

As with send throttling, this parameter sets both the
number of commands and the quiet period, in the
form commands:timeout_milliseconds. For example, 
50:10000 sets a limit of 50 commands and a quiet
period of 10000 milliseconds.

Queue throttling prevents the agent from spinning
the CPU by trying to process and send commands as
fast as possible. Queue throttling is one way to
reduce the amount of CPU required by the agent.

When setting the queue throttling value, be sure to
set the queue size to a large enough value that the
agent has room to queue up the additional
commands.

Parameter Description

6.17. Setting Guaranteed Delivery for Commands

Many commands, like pings between the agent and server, are not critical to JBoss ON functions.
These are volatile commands. Volatile commands are sent once; if they fail, the failure is logged, the
agent drops the command, and the next command is processed.

Critical commands, however, must be sent to the JBoss ON server and successfully processed. The
agent must guarantee that these commands are delivered. These are guaranteed commands. The agent
guarantees, as far as possible, that these commands reach the server (although outside events, such
as a JVM crashing, can keep the commands from being sent). Guaranteed commands persist in a
command spool file even if the agent shuts down, so that the next time the agent starts, it can be loaded
and queued to be delivered to the server.

There are four parameters that are related to guaranteed delivery:

A time interval that sets how frequently the agent should try to resend a failed command
(rhq.agent.client.retry-interval-msecs)

A filename for the spool file (rhq.agent.client.command-spool-file.name)

A setting that configures the spool file (rhq.agent.client.command-spool-
file.params). This settings has the format max_file_size:purge_percentage. The file size is
defined in bytes; once the file hits that file size, then a purge operation trims the file down to
whatever the percentage is. So, if the file is set to be 100 KB (100000) and the purge
percentage is 90, then the file is trimmed back to 90 KB after a purge operation. The purge
operation first tries to compress unused space, and then begins purging commands, starting
with the oldest.

An optional setting that allows the spool file to be compressed
(rhq.agent.client.command-spool-file.compressed). Compressing the spool file can
reduce its size 30-40%, but in some corner cases, it can adversely affect agent performance

Configuring JBoss ON Servers and Agents

102



(such as when the agent shuts down before all of the guaranteed commands have been sent).

Guaranteed delivery is configured by default, allowing both the agent to resend critical commands and
to compress spool file.

rhq.agent.client.command-spool-file.compressed=true
rhq.agent.client.command-spool-file.name=command-spool.dat
rhq.agent.client.command-spool-file.params=10000000:75
rhq.agent.client.retry-interval-msecs=15000

To change any of the guaranteed delivery settings:

1. Open the agent prompt. For example, if the agent process is already running, the prompt can
be opened by re-running the rhq-agent.sh script with the -n option.

agentRoot/rhq-agent/bin/rhq-agent.sh -n

2. Send the setconfig with the new guaranteed delivery settings.

> setconfig rhq.agent.client.command-spool-file.compressed=true
rhq.agent.client.command-spool-file.name=my-spool.dat
rhq.agent.client.command-spool-file.params=25000000:67
rhq.agent.client.retry-interval-msecs=25000

3. Restart the agent process to load the new configuration.

agentRoot/rhq-agent/bin/rhq-agent-wrapper.sh stop

agentRoot/rhq-agent/bin/rhq-agent.sh

6.18. Configuring Agent Communication

Both the JBoss ON agent and server use the same underlying communications services. The types of
connections used for agent-server communication are defined through agent preferences and can be
edited by changing those preferences. The agent uses two settings for communications:

A parameter which defines the protocol that the agent uses to talk to the server
(rhq.agent.server.transport) and any additional transport parameters
(rhq.agent.server.transport-params)

A parameter which defines the protocol that the agent expects for incoming communications
from the server (rhq.communications.connector.transport) and then any optional
transport parameters (rhq.communications.connector.transport-params)

Both JBoss ON servers and agents use communications layers that are build on the JBoss Remoting
framework. Agents support four different transport types:

servlet (only for agent to server communications)

sslservlet

socket (only for server to agent communications)

sslsocket

6. CONFIGURING AGENTS

103



NOTE

Unlike JBoss ON servers, JBoss ON agents do not host a servlet container. This means
that servlets cannot be used for server-to-agent communications; these connections
use sockets. Only agent-to-server connections use servlets.

The behavior of connections between agents and servers can be controlled by setting transport
parameters. The connections between agents and servers are defined by strings which look, roughly,
like URLs, with this basic format:

protocol://hostname:port/?param1=value&param2=value

For example:

socket://server.example.com:16163/?
serverBindAddress=127.0.0.1&serverBindPort=16163&numAcceptThreads=3&maxPoo
lSize=303&clientMaxPoolSize=304&socketTimeout=60000&enableTcpNoDelay=true&
backlog=200

Both servers and agents have a rhq.communications.connector.transport-params
configuration settings which allows transport parameters to be set. These parameters are appended to
the end of the URL and can configure both server-side and client-side behavior. For example, the 
backlog parameter is used by JBoss ON servers; with this URL, the server sets its backlog value to
200, but this setting is ignored by agents since they are clients. Likewise, the enableTcpNoDelay
parameter is used by agents when they connect to servers, but is ignored by the servers themselves.

For more information on all available transport parameters, see the JBoss Remoting documentation at
http://labs.jboss.com/portal/jbossremoting/docs/guide/ch05.html.

7. MANAGING DATABASES ASSOCIATED WITH JBOSS ON

There are several basic tasks that can be done to manage the Oracle or PostgreSQL databases that
are used by the JBoss ON server.

7.1. Running SQL Commands from JBoss ON

SQL commands can be run through the JBoss ON web UI on any database that the JBoss ON server is
using for its data.

NOTE

The database management page is not accessible through the normal JBoss ON GUI.
Administrators must manually navigate to the admin area of the JBoss ON UI.

NOTE

Whatever JBoss ON user you are logged in as must have adequate user rights on the
database to execute the SQL commands.

1. Open the administrative page, with the location admin/test/sql.jsp. For example:

http://server.example.com:7080/admin/test/sql.jsp

Configuring JBoss ON Servers and Agents

104

http://labs.jboss.com/portal/jbossremoting/docs/guide/ch05.html


2. Enter the SQL commands, as appropriate for the JBoss ON Oracle or PostgreSQL database
instance. If there are multiple commands, make sure the Continue if statements fail?
checkbox is selected. That way, even if one command fails, the other commands will be
submitted. Otherwise, the series will be terminated at the first failure.

3. Click the Execute SQL button.

7.2. Changing Database Passwords

The JBoss ON server connects to its database instance as a database user. It does this automatically,
using the credentials given in its rhq-server.properties file. The database password is encoded
automatically by the installer before it is stored in the rhq-server.properties file, to provide some
extra protection against unauthorized access to the database password.

It's possible that the password for that database user account is changed. This change always occurs
at the database, not in JBoss ON, so the password in the rhq-server.properties file has to be
manually encoded and updated for JBoss ON to continue to function.

1. Change the password for the JBoss ON user (rhqadmin by default) in the database.

2. Use the generate-db-password.sh script to encode the password.

serverRoot/bin/generate-db-password.sh mypassword
Encoded password: 1d31b70b3650168f79edee9e04977e34

JBoss ON stores its database password in an encoded form in the rhq-server-properties
file. Therefore, the new database has to be properly encoded before it's added to the rhq-
server-properties file so that the server reads it correctly.

3. Edit the rhq.server.database.password value in the rhq-server.properties file so
that it has the new encoded password value.

vim serverRoot/bin/rhq-server.properties

rhq.server.database.password=1d31b70b3650168f79edee9e04977e34

7.3. Editing the JBoss ON Server's Database Configuration

The JBoss ON server is always connected to a backend database to store most of its data, such as
agents and resources in its inventory and plug-in configuration. The parameters for connecting with
the database are defined in rhq-server.properties.

Example 7. Default Configuration for a PostgreSQL Database

# Database
rhq.server.database.connection-url=jdbc:postgresql://127.0.0.1:5432/rhq
rhq.server.database.driver-class=org.postgresql.Driver
rhq.server.database.xa-datasource-class=org.postgresql.xa.PGXADataSource
rhq.server.database.user-name=rhqadmin
rhq.server.database.password=1eeb2f255e832171df8592078de921bc
rhq.server.database.type-mapping=PostgreSQL
rhq.server.database.server-name=127.0.0.1
rhq.server.database.port=5432

7. MANAGING DATABASES ASSOCIATED WITH JBOSS ON

105



rhq.server.database.db-name=rhq
hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect

Table 18. rhq-server.properties Parameters for Database Configuration

Parameter Description

rhq.server.database.type-mapping Gives the type or vendor of the database that is used
by the JBoss ON server. This is either PostgreSQL or
Oracle.

rhq.server.database.connection-url The JDBC URL that the JBoss ON server uses when
connecting to the database, such as
jdbc:postgresql://localhost:5432/rhq or
jdbc:oracle:oci:@localhost:1521:orcl.

rhq.server.database.driver-class The fully qualified class name of the JDBC driver
that the JBoss ON server uses to communicate with
the database, such as oracle.jdbc.driver.OracleDriver.

rhq.server.database.xa-datasource-class The fully qualified class name of the JDBC driver
that the JBoss ON server uses to communicate with
the database, such as
org.postgresql.xa.PGXADataSource or
oracle.jdbc.xa.client.OracleXADatasource.

rhq.server.database.user-name The name of the user that the JBoss ON server uses
when logging into the database.

rhq.server.database.password The password of the database user that is used by
the JBoss ON server when logging into the
database. This password is stored in a hash in the 
rhq-server.properties file. When the
password is changed in the database, then the
password must be manually hashed and copied into
the rhq-server.properties file. This is
described in Section 7.2, “Changing Database
Passwords”.

rhq.server.database.server-name The server name where the database is found. This
must match the server in the connection URL. This is
currently only used when connecting to
PostgreSQL.

rhq.server.database.port The port on which the database is listening. This
must match the port in the connection URL. This is
currently only used when connecting to
PostgreSQL.

Configuring JBoss ON Servers and Agents

106



rhq.server.database.db-name The name of the database. This must match the
name found in the connection URL. This is currently
only used when connecting to PostgreSQL.

rhq.server.quartz.driverDelegateClass The Quartz driver used for connections between the
server and the database. The value of this is set by
the installer and depends on the type of database
used to store the JBoss ON information. For
PostgreSQL, this is 
org.quartz.impl.jdbcjobstore.Postgre
SQLDelegate, and for Oracle, this is 
org.quartz.impl.jdbcjobstore.oracle.
OracleDelegate.

Parameter Description

8. DOCUMENT INFORMATION

This guide is part of the overall set of guides for users and administrators of JBoss ON. Our goal is
clarity, completeness, and ease of use.

8.1. Giving Feedback

If there is any error in this Admin Tasks: Configuring JBoss ON Servers and Agents or there is any way to
improve the documentation, please let us know. Bugs can be filed against the documentation for the
community-based RHQ Project in Bugzilla, http://bugzilla.redhat.com/bugzilla. Make the bug report as
specific as possible, so we can be more effective in correcting any issues:

1. Select the Other products group.

2. Select RHQ Project from the list.

3. Set the component to Documentation.

4. Set the version number to 3.1.2.

5. For errors, give the page number (for the PDF) or URL (for the HTML), and give a succinct
description of the problem, such as incorrect procedure or typo.

For enhancements, put in what information needs to be added and why.

6. Give a clear title for the bug. For example, "Incorrect command example for setup 
script options" is better than "Bad example".

We appreciate receiving any feedback — requests for new sections, corrections, improvements,
enhancements, even new ways of delivering the documentation or new styles of docs. You are welcome
to contact Red Hat Content Services directly at docs@redhat.com.

8.2. Document History

Revision 3.1.2-1.400 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

8. DOCUMENT INFORMATION

107

http://bugzilla.redhat.com/bugzilla
mailto:docs@redhat.com


Revision 3.1.2-1 January 23, 2013 Ella Deon Lackey
Writing a new description to high availability and agent affinity.
Adding a line to the SSL setup to set the agent sslsocket parameter.
Fixing typos.

Revision 3.1.1-3 October 3, 2012 Ella Deon Lackey
Updating and clarifying agent registration and configuration paths.

Revision 3.1-0 June 12, 2012 Ella Deon Lackey
Initial release of JBoss ON 3.1.

Configuring JBoss ON Servers and Agents

108



INDEX

A

affinity groups

high availability, Creating Affinity Groups

agent

persisted configuration

location, Managing the Agent's Persisted Configuration

quiet time, Configuring the Agent Quiet Time (Timeout Period)

update settings, Configuring Agent Update Settings

agents

load balancing

round robin, Agents and Server Partitions: Distributing Agent Load

load balancing communication with server, Using High Availability and Agent Load Balancing

authentication

between JBoss ON servers and JBoss ON agents, Setting up Client Authentication Between
Servers and Agents

C

communication

settings, Configuring Communication Settings

configuration

JBoss ON server, Configuring Servers

rhq.server properties, Editing JBoss ON Server Configuration in rhq-server.properties

D

database

changing passwords, Changing Database Passwords

editing configuration, Editing the JBoss ON Server's Database Configuration

management, Managing Databases Associated with JBoss ON

running SQL commands from JBoss ON, Running SQL Commands from JBoss ON

discovery

scan interval, Setting Discovery Scan Intervals

E

encryption

INDEX

109



configuring, Setting up Encryption

events

partitions, Managing Partition Events

F

failover

JBoss ON server and high availability, Viewing the Server Failover Lists for Agents

files

JBoss ON files locations, JBoss ON File Locations

G

groups

high availability and affinity, Creating Affinity Groups

guaranteed delivery

JBoss ON agent, Setting Guaranteed Delivery for Commands

H

high availability

configuring, Using High Availability and Agent Load Balancing

creating affinity groups, Creating Affinity Groups

database impact, Server Availability: Multiple Servers in a Single Cloud

JBoss ON agent, Viewing the Server Failover Lists for Agents

listing affinity groups, Creating Affinity Groups

maintenance mode, Putting Servers in Maintenance Mode

removing JBoss ON servers from the cloud, Removing Servers from the High Availability Cloud

removing partition events, Removing Partition Events

viewing partition events, Managing Partition Events

J

JBoss ON agent

authentication with JBoss ON servers, Setting up Client Authentication Between Servers and
Agents

changing the IP address, Changing the Agent IP Address

configuration, Configuring Agents

default ports, Default Server and Agent Ports

directories and files, JBoss ON Agent File Locations

discovery scan, Setting Discovery Scan Intervals

failover, Viewing the Server Failover Lists for Agents

Configuring JBoss ON Servers and Agents

110



guaranteed delivery, Setting Guaranteed Delivery for Commands

JVM options, Setting Options for the Agent JVM

persistent configuration, Viewing the Persisted Configuration

prompt commands, Agent Prompt Commands

running as a daemon, Running the Agent as a Daemon or init.d Service

starting, Starting the JBoss ON Agent

starting (basic), Starting the JBoss ON Agent (Basic)

starting as a Windows service, Running the Agent as a Windows Service

starting command console, Starting the JBoss ON Agent (Basic)

starting with init.d, Running the Agent as a Daemon or init.d Service

throttling, Throttling the Agent

transport parameters, Configuring Agent Communication

transports, Configuring Agent Communication

Windows service configuration, Running the Agent as a Windows Service

JBoss ON server

authentication with JBoss ON agents, Setting up Client Authentication Between Servers and
Agents

changing the URL, Changing the JBoss ON Server URL

concurrency limits, Setting Concurrency Limits

configuration, Configuring Servers

configuring as a Windows service, Configuring JBoss ON as a Windows Service

configuring as Red Hat Enterprise Linux service, Configuring the JBoss ON Server as a Service
on Red Hat Enterprise Linux

configuring communication settings, Configuring Communication Settings

configuring rhq.server.properties, Editing JBoss ON Server Configuration in rhq-
server.properties

debug logging, Enabling Debug Logging for the JBoss ON Server

default ports, Default Server and Agent Ports

directories and files, JBoss ON Server File Locations

maintenance mode, Putting Servers in Maintenance Mode

removing JBoss ON servers from high availability, Removing Servers from the High Availability
Cloud

starting, Starting the JBoss ON Server, Starting the JBoss ON Server (Basic)

starting as a Windows service, Running the JBoss ON Server as a Service

JVM

options in the JBoss ON agent, Setting Options for the Agent JVM

L

load balancing

agent-server communication, Using High Availability and Agent Load Balancing

round robin, Agents and Server Partitions: Distributing Agent Load

INDEX

111



P

persisted configuration

location, Managing the Agent's Persisted Configuration

ports

defaults for servers and agents, Default Server and Agent Ports

R

Red Hat Enterprise Linux

JBoss ON running as a service, Configuring the JBoss ON Server as a Service on Red Hat
Enterprise Linux

S

server

configuring SMTP for email notifications, Configuring the SMTP Server for Email Notifications

detection and polling, Setting the Agent to Detect or Poll the Server

high availability, Using High Availability and Agent Load Balancing

silent install, Installing a Server Silently

servers

agent load balancing

round robin, Agents and Server Partitions: Distributing Agent Load

load balancing communication with agent, Using High Availability and Agent Load Balancing

SSL

authentication between servers and agents, Setting up Client Authentication Between Servers
and Agents

configuring connections for server-agent communication, Configuring SSL Connections for
Server-Agent Communication

setting up encryption, Setting up Encryption

T

throttling

JBoss ON agent, Throttling the Agent

W

Windows

JBoss ON running as a service, Configuring JBoss ON as a Windows Service

Configuring JBoss ON Servers and Agents

112



INDEX

113


	Table of Contents
	1. ABOUT JBOSS OPERATIONS NETWORK
	1.1. About JBoss ON Agents
	1.2. About JBoss ON Servers

	2. GENERAL MANAGEMENT
	2.1. JBoss ON File Locations
	2.1.1. JBoss ON Server File Locations
	2.1.2. JBoss ON Agent File Locations

	2.2. Default Server and Agent Ports
	2.3. Starting the JBoss ON Server
	2.3.1. Starting the JBoss ON Server (Basic)
	2.3.2. Running the JBoss ON Server as a Service
	2.3.2.1. Configuring the JBoss ON Server as a Service on Red Hat Enterprise Linux
	2.3.2.2. Configuring JBoss ON as a Windows Service


	2.4. Starting the JBoss ON Agent
	2.4.1. Starting the JBoss ON Agent (Basic)
	2.4.2. Running the Agent as a Windows Service
	2.4.3. Running the Agent as a Daemon or init.d Service
	2.4.4. Restarting the Agent and the JVM


	3. CONFIGURING SSL CONNECTIONS FOR SERVER-AGENT COMMUNICATION
	3.1. Setting up Encryption
	3.2. Setting up Client Authentication Between Servers and Agents
	3.3. Troubleshooting SSL Problems
	3.3.1. Common SSL Connection Issues
	3.3.2. Enabling SSL Debugging
	3.3.3. Example SSL Configuration


	4. USING HIGH AVAILABILITY AND AGENT LOAD BALANCING
	4.1. About Agent-Server Communication and Server Availability
	4.1.1. Agents and Server Communication
	4.1.2. Server Availability: Multiple Servers in a Single Cloud
	4.1.3. Agents and Server Partitions: Distributing Agent Load
	4.1.4. Agents and Preferred Servers: Affinity and Load Balancing
	4.1.5. Agents and Server Failover

	4.2. Creating Affinity Groups
	4.3. Putting Servers in Maintenance Mode
	4.4. Removing Servers from the High Availability Cloud
	4.5. Managing Partition Events
	4.5.1. Viewing Partition Events
	4.5.2. Removing Partition Events


	5. CONFIGURING SERVERS
	5.1. Enabling Debug Logging for the JBoss ON Server
	5.1.1. Using an Environment Variable
	5.1.2. Setting log4j Priorities
	5.1.3. Dumping Current Server State to the Logs

	5.2. Changing the JBoss ON Server URL
	5.3. Editing JBoss ON Server Configuration in rhq-server.properties
	5.3.1. Properties Set at Installation
	5.3.2. Configuring Communication Settings
	5.3.3. Setting Concurrency Limits
	5.3.4. Configuring the SMTP Server for Email Notifications
	5.3.5. Installing a Server Silently

	5.4. Synchronizing Server Configuration
	5.4.1. Exporting a Server's Configuration
	5.4.2. Importing a Server's Configuration
	5.4.2.1. Editing the XML Import File
	5.4.2.2. Changing the Synchronizer Configuration
	5.4.2.3. Importing the Configuration



	6. CONFIGURING AGENTS
	6.1. Registering and Re-registering the Agent
	6.1.1. About the Security Token and Agent Registration
	6.1.2. Re-installing a Lost Security Token
	6.1.3. Reinstalling the Agent with a New Security Token
	6.1.4. Cleaning the Agent Configuration, with the Original Security Token

	6.2. Working with the Agent Command Prompt
	6.2.1. Opening the Agent Command Prompt
	6.2.2. Agent Start Options
	6.2.3. Agent Prompt Commands

	6.3. Interactions with System Users for Agents and Resources
	6.3.1. The Agent User
	6.3.2. Agent Users and Discovery
	6.3.3. Users and Management Tasks
	6.3.4. Using sudo with JBoss ON Operations

	6.4. Running the Agent as a Non-Root User
	6.5. Enabling Debug Mode for the Agent
	6.5.1. Using an Environment Variable
	6.5.2. Setting log4j Priorities
	6.5.3. Using the Agent debug Prompt Command

	6.6. Changing the Agent IP Address
	6.7. Managing the Agent as a Resource
	6.8. Configuring the Agent Quiet Time (Timeout Period)
	6.9. Configuring Agent Update Settings
	6.10. Managing the Agent's Persisted Configuration
	6.10.1. Viewing the Persisted Configuration
	6.10.2. Changing Preferences in the Persisted Configuration (Agent Preferences)
	6.10.3. Overriding Persisted Configuration Settings

	6.11. Managing the Agent JVM
	6.11.1. Setting Options for the Agent JVM
	6.11.2. Setting the Agent JVM Memory Size

	6.12. Installing Multiple Agents with a Shared Directory or Account
	6.12.1. Editing the Configuration Files
	6.12.2. Setting a Java Option

	6.13. Setting Discovery Scan Intervals
	6.14. Viewing the Server Failover Lists for Agents
	6.15. Setting the Agent to Detect or Poll the Server
	6.15.1. Settings for Polling the JBoss ON Server
	6.15.2. Setting up Multicast Detection

	6.16. Throttling the Agent
	6.17. Setting Guaranteed Delivery for Commands
	6.18. Configuring Agent Communication

	7. MANAGING DATABASES ASSOCIATED WITH JBOSS ON
	7.1. Running SQL Commands from JBoss ON
	7.2. Changing Database Passwords
	7.3. Editing the JBoss ON Server's Database Configuration

	8. DOCUMENT INFORMATION
	8.1. Giving Feedback
	8.2. Document History

	INDEX

