& RedHat

Red Hat JBoss Fuse 6.3

Developing and Deploying Applications

In-depth examples of how to create, build, and run JBoss Fuse applications

Last Updated: 2020-10-26

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

In-depth examples of how to create, build, and run JBoss Fuse applications

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides an introduction to developing applications with Red Hat JBoss Fuse.

Table of Contents

Table of Contents

CHAPTER1.RED HAT JBOSS FUSE OVERVIEW i i 3
1.1. COMPONENTS 3
1.2. CONTAINERS 4
1.3. USE CASES 4

CHAPTER 2. BASIC CONCEPTS FORDEVELOPERS e n

2.1. DEVELOPMENT ENVIRONMENT il
2.2. DEVELOPMENT MODEL il

2.3. MAVEN ESSENTIALS 13
2.4. DEPENDENCY INJECTION FRAMEWORKS 18
CHAPTER 3. GETTING STARTED WITHDEVELOPING i 22
3.1. CREATE A WEB SERVICES PROJECT 22
3.2. CREATE AROUTER PROJECT 27
3.3. CREATE AN AGGREGATE MAVEN PROJECT 30
3.4. DEFINE A FEATURE FOR THE APPLICATION 32
3.5. CONFIGURE THE APPLICATION 35
3.6. TROUBLESHOOTING 38
CHAPTER 4. GETTING STARTED WITHDEPLOYING ... i 40
4.1. SCALABLE DEPLOYMENT WITH FUSE FABRIC 40
4.2. DEPLOYING TO AFABRIC 42
CHAPTER 5. GETTING STARTED WITH RED HAT JBOSSFUSEONEAP i 50
5.1 INTEGRATING APACHE CAMEL WITH JBOSS EAP 50
5.2. EXAMPLES OF JBOSS FUSE ON EAP 50
APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXTEDITORot 66
A1 EDITING AGENT PROPERTIES 66
A.2. EDITING OSGI CONFIG ADMIN PROPERTIES 69
A.3.EDITING OTHER RESOURCES 70
A.4. PROFILE ATTRIBUTES 72

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

Abstract

Red Hat JBoss Fuse is an open source Enterprise Service Bus (ESB) that focuses on mediating,
transforming, and routing data across multiple applications, services, or devices for both internal
systems and external services. By implementing the Open Source Gateway initiative (OSGi)
specification it allows bundles, or modules of functionality, to be loosely coupled and highly reusable; in
addition, bundles may be remotely installed, started, stopped, updated, and uninstalled without
rebooting, and multiple versions of each bundle may run simultaneously.

Though no canonical definition of an ESB exists, David Chappell states in his book Enterprise Server
Bus,

An ESB is a standards-based integration platform that combines messaging, web
services, data transformation, and intelligent routing to reliably connect and coordinate
the interaction of significant numbers of diverse applications across extended
enterprises with transactional integrity.

--David A. Chapell

An ESB simplifies the complexity of integration by providing a single, standards-based infrastructure
into which applications can be plugged. Once plugged into the ESB, an application or service has access
to all of the infrastructure services provided by the ESB and can access any other applications that are
also plugged into the ESB. For example, you could plug a billing system based on JMS into an ESB and
use the ESBs transport mediation features to expose the billing system over the Web using
SOAP/HTTP. You could also route internal purchase orders directly into the billing system by plugging
the Purchase Order system into the ESB.

1.1. COMPONENTS

Apache Camel

Red Hat JBoss Fuse utilizes Apache Camel for building integration and routing solutions using
Enterprise Integration Patterns (EIPs). Each route defines an integration path between endpoints,
where a system can either send or receive messages, and while data is in these routes it may be
transformed, validated, intercepted, and so on. Routes may change endpoints dynamically, either as
additional bundles are activated, based on the content of the message, or through additional methods.
With over 140 defined endpoints Red Hat JBoss Fuse allows for integration with a variety of services
immediately upon deployment.

For further reading see the Apache Camel Development Guide.

Apache CXF

Red Hat JBoss Fuse's embedded Web and RESTful services framework is based on Apache CXF, and
provides a small footprint engine for creating reusable web services along with service-enabling new and
legacy applications as part of an integration solution. Red Hat JBoss Fuse supports a variety of
standards and protocols for creating web services, such as SOAP and WSDL among others, and allows
for Contract-first or Code-first development with JAX-WS. In addition, Red Hat JBoss Fuse provides a
standard way to build RESTful services in Java with JAX-RS.

For further reading see the Apache CXF Development Guide.

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Apache_Camel_Development_Guide/FuseMREIP.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Apache_CXF_Development_Guide/WSDLGuide.html

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

Apache ActiveMQ

Red Hat JBoss Fuse's embedded messaging service is based on Apache ActiveMQ. It supports the
standard JMS 1.1 features and provides a wide range of extended JMS features for building robust and
reliable messaging applications. Red Hat JBoss Fuse consists of both a messaging broker and client-
side libraries that enable remote communication among distributed client applications. Red Hat JBoss
Fuse supports Point-to-Point and Publish/Subscribe messaging along with both persistent and
nonpersistent messages; in addition, ActiveMQ can be scaled both vertically and horizontally to allow for
processing of a large volume of messages for a large number of concurrently connected clients.

For further reading, see Red Hat JBoss A-MQ Product Introduction.

Fabric8

Fuse Fabric is a technology layer that allows a group of containers to form a cluster that shares a
common set of configuration information and a common set of repositories from which to access
runtime artifacts. This allows one to run a number of containers either on your own hardware or in the
open hybrid cloud, and allows for configuration management, service discovery failover, load balancing,
centralized monitoring among other benefits.

For further reading see Fabric Guide.

Switchyard

Switchyard is a lightweight service delivery framework providing full life-cycle support for developing,
deploying, and managing service-oriented applications. It allows you to deploy and run services with
limited dependencies, and consists of components such as composite services and composite
references.

For further reading, see Switchyard Development Guide: Application Basics.

1.2. CONTAINERS

Apache Karaf

Red Hat JBoss Fuse is based on Apache Karaf, a powerful, lightweight, OSGi-based runtime container
for deploying and managing bundles to facilitate componentization of applications. Red Hat JBoss Fuse
also provides native OS integration and can be integrated into the operating system as a service so that
the lifecycle is bound to the operating system. Furthermore, Red Hat JBoss Fuse extends the OSGi
layers with an extensible console for managing applications and administering instances, a unified
logging subsystem supported by Log4J, both manual and hot deployment of OSGi bundles, and
multiple mechanisms for installing applications and libraries among others.

For further reading see Apache Karaf.

JBoss Enterprise Application Platform

Red Hat JBoss EAP 6 is a JEE certified container that leverages a flexible, modular architecture, and it
integrates EJB components, web services, security, and clustering. By utilizing a JEE container you have
full access to JEE components such as persistence and the injection framework.

For further reading, see Chapter 5, Getting Started with Red Hat JBoss Fuse on EAP .

1.3. USE CASES

https://access.redhat.com/documentation/en-us/red_hat_jboss_a-mq/6.3/html/product_introduction/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Fabric_Guide/PartBasic.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/SwitchYard_Development_Guide/chap-Application_Basics.html
http://karaf.apache.org

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

1.3.1. Major Widgets Use Case
1.3.1.1. Major Widgets Introduction

Major Widgets Overview

Major Widgets is a single-store auto-parts company that recently decided to purchase three more auto
part supply stores and are currently needing to integrate the systems located in all four stores.

Major Widgets Business Model

Major Widgets, and each of the three stores it bought, routinely supply a number of auto repair shops
that are located near them. Each store delivers parts to customers free-of-charge, as long as the
customer is located within twenty-five miles of the store. Each store has its own database for storing
auto repair customer accounts, store inventory, and part suppliers.

Business was done over the phone, but now Major Widgets wants to implement an online order service
to enable their auto repair customers to order parts more quickly and efficiently. The Web-based
service will coordinate orders and deliveries, bill customers, track and update each store's inventory, and
order parts from suppliers. Customers can use it to check the status of their orders.

All four stores also sell parts over-the-counter to walk-in customers, for whom they do not typically
establish customer accounts. Each of the in-store ordering systems will also tie into its store's central
order processing system.

1.3.1.2. Major Widgets Integration Plan

Figure 1.1, "Major Widgets Integration Plan” shows a high-level view of how Red Hat JBoss Fuse will
provide an integration solution to implement Major Widgets' new business model.

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

Figure 1.1. Major Widgets Integration Plan

Web Access

| |
ay _{li«/

On-line Order Walk-in Service
Service (CXF client)

RED HAT JBOSS FUSE RED HAT JBOSS FUSE

SLAVE
MESSAGING
ol ROUTING AGENT D

ROUTING AGENT C
RED HAT JBOSS FUSE
MASTER

MESSAGING ROUTING AGENT B

AGENT

ROUTING AGENT

ROUTING AGENT A
-------------- Backend

1 I
Web ! Store Select [Queues] I Process
> 1 Product Lookup
Service] Processor ! : Procesear : > %@
______________ B i e s >
: Error Generator i » ‘ﬂ
: Processor | Error
— hosmmnonmenne = Alert
SAN/
STORE A (Headquarters) Database STORES A-D

This plan creates:

® asingle order entry point into the order processing system that can be accessed via the Web
and by the in-store terminals

® anintelligent order entry system that routes Web-based orders to the store closest to the
delivery destination

® an order processing system (instances running locally at each store) that receives and
processes orders, maintains customer accounts, and tracks and maintains inventory

® a master/slave broker cluster that provides a highly available, reliable messaging backbone for
the integration solution

This plan allows each store to retain their existing internal systems, but enables them to function as a
single unit.
1.3.1.3. Major Widgets Implementation

Figure 1.2, "Major Widgets Implementation Diagram” shows how a Major Widgets integration plan might
be implemented.

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

Figure 1.2. Major Widgets Implementation Diagram

SOAP/HTML

| |
0_{|? o ur

On-line Order Walk-in Service
Service (CXF client)

Process notifies order originator €4— D%LT“

RED HAT JBOSS FUSE

RED HAT JBOSS FUSE

RED HAT JBOSS FUSE

MASTER / Product Lookup
BROKER L I R T T e

ROUTING AGENT A_queue
- ROUTING AGENT

B_queue

Camel-CXF
Endpoint

3

Content-based
Router

C_queue Dynamic

Router

D_queue

deadOrders

@
N B =
©

SAN/
STORE A (Headquarters) Database STORES A-D

Notification email to order originator ¢—————

Major Widgets Components

The Red Hat JBoss Fuse kernel provides a runtime environment that provides enterprise support
(management, logging, provisioning, security) for the main store (Store A), where most of the
integration applications run. Its embedded services provide the frameworks for implementing these
components of the solution:

® RESTful service—for creating a JAX-RS application that runs on each auto repair shop terminal
(1), enabling customers to input part orders, via an order entry form, over the internet.

® Web service—for creating a JAX-WS front end to implement the order entry functionality on
each of the in-store terminals, which receive orders from walk-in customers (2) who purchase
parts over-the-counter.

e camel-cxf component—a routing and integration service component that creates an entry
endpoint (3) that exposes Major Widgets routing logic to the outside world as a web service or a
RESTful service.

® Routing and integration service—for creating routes (4, 6) that direct orders received from the
web/RESTful service entry point through the appropriate store's order processing back end.

® Messaging service—for creating a persistent, fault-tolerant clustered messaging system (5, 5a),
which ensures that no order is ever lost due to failure of the system, the message broker, or the
connections between the message broker and its various clients—the front end content-based
router (4) and the back end dynamic router (6).

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

Major Widgets Integration Flow

At Major Widgets main store (Store A), the order entry front end (routing and messaging agents
running inside Red Hat JBoss Fuse) is running on that store's main computer system. At each of the four
stores (Stores A-D), an instance of the order entry back end (routing agent and back end processing
running in JBoss Fuse) is running on the local computer system.

When the front end web service (3) receives an online order, the routing agent passes it to a content-
based router (4) to determine which store to route the part order for further processing. Normally, the
order then enters the target store's queue (5), where it waits until the target store retrieves it (6). (With
fault tolerance built into the system, if the master broker (5) fails, the system can continue to function
with no loss of orders.)

In the case of auto repair shops (1), the content-based router routes order requests to the store nearest
the customer, based on the submitted zip code. In the case of walk-in customers (2), the auto supply
store submits its own zip code to the front end, so the order is always routed to the local store.

When the back end receives the submitted part order, the application employs a dynamic router (6) to
look up the parts in the store's database to see if they are in stock. Results depend on whether the
customer is an auto repair shop or a walk-in:

® Auto repair show customers

If the parts are available, the order is submitted to the store's back end processing software (8),
which informs and bills the customer (1), schedules delivery, updates inventory, and reorders
parts accordingly.

If the parts are unavailable, the order is submitted to a processor that generates an error
message, which is emailed (9) to the customer (1).

o Walk-in customers

If the parts are available, the order is submitted to the store's back end processing software (8),
which informs the store clerk (2), updates inventory, and orders parts accordingly. The store
clerk retrieves the parts from stock and sells them to the customer over-the-counter.

If the parts are unavailable, the order is submitted to a processor that generates an error
message, which is emailed (9) to the local store's email account (2). The store clerk informs the
customer, who can then decide whether he wants the store clerk to search the other stores for
his parts.

1.3.2. Loans Consolidated Use Case

1.3.2.1. Loans Consolidated Introduction

Loans Consolidated Overview

Loans Consolidated is a new company that focuses on consolidating other vendors' home and customer
information and compare this with local schools to allow customers and vendors to view a variety of
homes and compare them.

Loans Consolidated Business Model

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

Loans Consolidated will take in customer data and home information from several home loan vendors;
these vendors will regularly provide information concerning new homes and customers along with
updated information for existing entries.

Customers will be able to view a home's appraisal online, and this appraisal will be calculated by Loans
Consolidated based on the home's information along with the number of surrounding schools.

The home loans vendors have requested that a service be provided that returns all of the data with the
updated appraisal value back to them.

1.3.2.2. Loans Consolidated Integration Plan

A high-level plan utilizing Red Hat JBoss Fuse will provide an integration solution to implement Loans
Consolidated's new business model; this solution creates:

® asingle entry point into the order processing system where files are deposited either viaa FTP
server or a batch job overnight.

® anintelligent system that routes the XML files and, for house files, appraises the value of the
house before sending it to a messaging broker.

® asystem that retrieves information from the surrounding area to provide a better appraisal.

® the ability to provide the results of the appraisal back to the vendors.

1.3.2.3. Loans Consolidated Implementation

Figure 1.3, “Loans Consolidated Implementation Diagram” shows how a Loans Consolidated plan might
be implemented.

Figure 1.3. Loans Consolidated Implementation Diagram

RED HAT JBOSS FUSE

o LOANS CONSOLIDATED o
o — =
| Directory A — eT ﬁ
House e g Queue ! Calculate —_—p ﬁ
4
Xml Files Postgres

l Database

_{Ii’/x

RESTful WS Google App
Json Engine

Loans Consolidated Components

The Red Hat JBoss Fuse kernel provides a runtime environment that provides enterprise support
(management, logging, provisioning, security), and its embedded services provide the framework for
implementing these components:

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

® Routing and integration service-for creating routes that dynamically examine the contents of
the deposited XML files to determine the appropriate destination.

® Integration with the Google App Engine to pull the number of surrounding schools that will be
used to update each home's appraised value.

® RESTful service-for providing all of the data with the updated appraisal back to the vendors.

Loans Consolidated Integration Flow

Multiple vendors will be placing their XML files (1) into a directory either via a FTP server or a batch
process overnight. These files will be read into a content-based router (2) which will separate the files
based on if they contain Customer or House information.

Once separated the files containing Customer information will be placed into an in-memory queue (3)
before being passed into a backend database for persistence (6).

The files containing House information will be placed into a separate queue (4) before having their value
estimated (5). As part of this calculation the location is provided to the Google App Engine (7) which
will look up nearby schools to determine an appraised value. The appraised value is then stored in the
backend database (6).

A RESTful Web Service (8) is used to relay the information from the database in a JSon format, so
vendors may easily query it.

10

CHAPTER 2. BASIC CONCEPTS FOR DEVELOPERS

CHAPTER 2. BASIC CONCEPTS FOR DEVELOPERS

Abstract

A typical Red Hat JBoss Fuse application is based on a specific development model, which is based
around the Java language, Spring or blueprint dependency injection frameworks, and the Apache
Maven build system.

2.1. DEVELOPMENT ENVIRONMENT

JDK

The basic requirement for development with Red Hat JBoss Fuse is the Java Development Kit (JDK)
from Oracle. For details of which JDK version is supported and for more platform-specific details, see
the Supported Configurations page.

Apache Maven

The recommended build system for developing JBoss Fuse applications is Apache Maven version 3.0.x.
See "Installation on Apache Karaf", Maven Repositories.

Maven is more than a build system, however. Just as importantly, Maven also provides an infrastructure
for distributing application components (typically JAR files; formally called artifacts). When you build an
application, Maven automatically searches repositories on the Internet to find the JAR dependencies
needed by your application, and then downloads the needed dependencies. See Section 2.3, “Maven
Essentials” for more details.

Red Hat JBoss Fuse Tooling for Eclipse

Red Hat JBoss Fuse Tooling for Eclipse is an eclipse-based development tool for developing Red Hat
JBoss Fuse applications and is available either as a standalone binary or as an Eclipse plug-in. Using Red
Hat JBoss Fuse Tooling for Eclipse, you can quickly create new JBoss Fuse projects with the built-in
project wizard and then edit Apache Camel routes with the drag-and-drop graphical Ul. For instructions
on how to install the tooling, see "Installation on Apache Karaf".

2.2. DEVELOPMENT MODEL

Overview
Figure 2.1, "Developing a JBoss Fuse Project” shows an overview of the development model for building

an OSGi bundle or a Fuse Application Bundle that will be deployed into the Red Hat JBoss Fuse
container.

1

https://access.redhat.com/articles/310603
http://maven.apache.org/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Installation_on_Apache_Karaf/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Installation_on_Apache_Karaf/

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

Figure 2.1. Developing a JBoss Fuse Project

Fe= " |

\ [Dep. Spring Java o
! ! Maven S
: Dep | POM ..g
. : Blueprint Resources s
T

|
Project

Maven

Apache Maven, which is the recommended build system for JBoss Fuse, affects the development model
in the following important ways:

® Maven directory layout—Maven has a standard directory layout that determines where you put
your Java code, associated resources, XML configuration files, unit test code, and so on.

® Accessing dependencies through the Internet —Maven has the ability to download dependencies
automatically through the Internet, by searching through known Maven repositories. This implies
that you must have access to the Internet, when building with Maven. See the section called
“Maven repositories”.

Maven archetypes

An easy way to get started with development is by using Maven archetypes, which is analogous to a new
project wizard (except that it must be invoked from the command line). A Maven archetype typically
creates a complete new Maven project, with the correct directory layout and some sample code. For
example, see Section 3.1, “Create a Web Services Project” and Section 3.2, “Create a Router Project”.

Maven POM files

The Maven Project Object Model (POM) file, pom.xml, provides the description of how to build your
project. The initial version of a POM is typically generated by a Maven archetype. You can then
customise the POM as needed.

For larger Maven projects, there are two special kind of POM files that you might also need:

® Aggregator POM—a complete application is typically composed of multiple Maven projects,
which must be built in a certain order. To simplify building multi-project applications, Maven
enables you to define an aggregator POM, which can build all of the sub-projects in a single step.
For more details, see Section 3.3, “Create an Aggregate Maven Project”.

® Parent POM—in a multi-project application, the POMs for the sub-projects typically contain a
lot of the same information. Over the long term, maintaining this information, which is spread
across multiple POM files, would time-consuming and error-prone. To make the POMs more
manageable, you can define a parent POM, which encapsulates all of the shared information.

Java code and resources

Maven reserves a standard location, sre/main/java, for your Java code, and for the associated resource

12

CHAPTER 2. BASIC CONCEPTS FOR DEVELOPERS

files, sre/main/resources. When Maven builds a JAR file, it automatically compiles all of the Java code
and adds it to the JAR package. Likewise, all of the resource files found under src/main/resources are
copied into the JAR package.

Dependency injection frameworks

JBoss Fuse has built-in support for two dependency injection frameworks: Spring XML and Blueprint
XML. You can use one or the other, or both at the same time. The projects underlying JBoss Fuse
(Apache Camel, Apache CXF, Apache ActiveMQ, and Apache Karaf) all strongly support XML
configuration. In fact, in many cases, it is possible to develop a complete application written in XML,
without any Java code whatsoever.

For more details, see Section 2.4, "Dependency Injection Frameworks”.

Deployment metadata

Depending on how a project is packaged and deployed (as an OSGi bundle, or a WAR), there are a few
different files embedded in the JAR package that can be interpreted as deployment metadata, for
example:

META-INF/MANIFEST.MF

The JAR manifest can be used to provide deployment metadata for an OSGi bundle (in bundle
headers).

META-INF/maven/groupld)artifactld/pom.xml
The POM file is normally embedded in any Maven-built JAR file.

WEB-INF/web.xml
The web.xml file is the standard descriptor for an application packaged as a Web ARchive (WAR).

Administrative metadata

The following kinds of metadata are accessible to administrators, who can use them to customize or
change the behavior of bundle at run time:

® Apache Karaf features—a feature specifies a related collection of packages that can be deployed
together. By selecting which features to install (or uninstall), an administrator can easily control
which blocks of functionality are deployed in the container.

® OSGi Config Admin properties —the OSGi Config Admin service exposes configuration

properties to the administrator at run time, making it easy to customize application behavior
(for example, by customizing the TCP port numbers on a server).

2.3. MAVEN ESSENTIALS

Overview

This section provides a quick introduction to some essential Maven concepts, enabling you to
understand the fundamental ideas of the Maven build system.

Build lifecycle phases

13

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

Maven defines a standard set of phases in the build lifecycle, where the precise sequence of phases
depends on what type of package you are building. For example, a JAR package includes the phases
(amongst others): compile, test, package, and install.

When running Maven, you normally specify the phase as an argument to the mvn command, in order to
indicate how far you want the build to proceed. To get started, the following are the most commonly
used Maven commands:

® Build the project, run the unit tests, and install the resulting package in the local Maven
repository:

I mvn install
® Clean the project (deleting temporary and intermediate files):
I mvn clean
® Build the project and run the unit tests:
I mvn test
® Build and install the project, skipping the unit tests:
I mvn install -Dmaven.test.skip=true
® Build the project in offline mode:

I mvn -o install

Offline mode (selected by the -0 option) is useful in cases where you know that you already
have all of the required dependencies in your local repository. It prevents Maven from
(unnecessarily) checking for updates to SNAPSHOT dependencies, enabling the build to
proceed more quickly.

Maven directory structure

Example 2.1, “Standard Maven Directory Layout” shows the standard Maven directory layout. Most
important is the Maven POM file, pom.xml, which configures the build for this Maven project.

resources/
META-INF/

spring/
*xml

OSGI-INF/

Example 2.1. Standard Maven Directory Layout
blueprint/

ProjectDir/
pom.xml
src/

main/
java/

14

CHAPTER 2. BASIC CONCEPTS FOR DEVELOPERS

*.xml
test/
java/
resources/
target/

The project's Java source files must be stored under ProjectDir'src/main/java/ and any resource files
should be stored under ProjectDir'src/main/resources/. In particular, Spring XML files (matching the
pattern *.xml) should be stored under the following directory:

I ProjectDir'src/main/resources/META-INF/spring/

Blueprint XML files (matching the pattern *.xml) should be stored under the following directory:

I ProjectDir/'src/main/resources/OSGI-INF/blueprint/

Convention over configuration

An important principle of Maven is that of convention over configuration. What this means is that
Maven's features and plug-ins are initialized with sensible default conventions, so that the basic
functionality of Maven requires little or no configuration.

In particular, the location of the files within Maven's standard directory layout effectively determines
how they are processed. For example, if you have a Maven project for building a JAR, all of the Java files
under the sre/main/java directory are automatically compiled and added to the JAR. All of the resource
files under the src/main/resources directory are also added to the JAR.

NOTE

Although it is possible to alter the default Maven conventions, this practice is strongly
discouraged. Using non-standard Maven conventions makes your projects more difficult
to configure and more difficult to understand.

Maven packaging type

Maven defines a variety of packaging types, which determine the basic build behavior. The most
common packaging types are as follows:

jar

(Default) This packaging type is used for JAR files and is the default packaging type in Maven.

bundle
This packaging type is used for OSGi bundles. To use this packaging type, you must also configure
the maven-bundle-plugin in the POM file.

war
This packaging type is used for WAR files. To use this packaging type, you must also configure the

maven-war-plugin in the POM file.

pom

15

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

When you build with this packaging type, the POM file itself gets installed into the local Maven
repository. This packaging type is typically used for parent POM files.

Maven artifacts

The end product of a Maven build is a Maven artifact (for example, a JAR file). Maven artifacts are
normally installed into a Maven repository, from where they can be accessed and used as building blocks
for other Maven projects (by declaring them as dependencies).

Maven coordinates

Artifacts are uniquely identified by a tuple of Maven coordinates, usually consisting of
groupld:artifactld:version. For example, when deploying a Maven artifact into the Red Hat JBoss Fuse
container, you can reference it using a Maven URI of the form, mvn:groupld/artifactid/ version.

For more details about Maven coordinates, see chapter "Building with Maven" in "Deploying into Apache
Karaf".

Maven dependencies

The most common modification you will need to make to your project's POM file is adding or removing
Maven dependencies. A dependency is simply a reference to a Maven artifact (typically a JAR file) that
is needed to build and run your project. In fact, in the context of a Maven build, managing the collection
of dependencies in the POM effectively takes the place of managing the collection of JAR files in a
Classpath.

The following snippet from a POM file shows how to specify a dependency on the camel-blueprint
artifact:

<project ...>

<dependencies>
<dependency>
<groupld>org.apache.camel</groupld>
<artifactld>camel-blueprint</artifactld>
<version>2.17.0.redhat-630xxx</version>
<scope>provided</scope>
</dependency>
</dependencies>

</project>

dependency element

The dependency element declares a dependency on the Maven artifact with coordinates
org.apache.camel:camel-blueprint:6.3.0.redhat-xxx. You can add as many dependency elements as
you like inside the dependencies element.

dependency/scope element

The scope element is optional and provides some additional information about when this dependency is
needed. By default (with the scope element omitted), it is assumed that the dependency is needed at
build time, at unit test time, and at run time. With scope set to the value, provided, the effect depends

16

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Deploying_into_Apache_Karaf/Build.html

CHAPTER 2. BASIC CONCEPTS FOR DEVELOPERS

on what kind of artifact you are building:

® (OSGibundle—(when the POM's packaging element is specified as bundle) the provided scope
setting has no effect.

Transitive dependencies

To simplify the list of dependencies in your POM and to avoid having to list every single dependency
explicitly, Maven employs a recursive algorithm to figure out the dependencies needed for your project.

For example, if your project, A, depends on B1and B2; Bl depends on C1, C2, and C3; and B2 depends on
D1and D2; Maven will automatically pull in all of the explicitly and implicitly required dependencies at
build time, constructing a classpath that includes the dependencies, B1, B2, C1, C2, C3, D1, and D2. Of
these dependencies, only B1and B2 appear explicitly in A's POM file. The rest of the dependencies—
which are figured out by Maven—are known as transitive dependencies.

Maven repositories

A Maven repository is a place where Maven can go to search for artifacts. Because Maven repositories
can be anywhere—and that includes anywhere on the Internet—the Maven build system is inherently
distributed. The following are the main categories of Maven repository:

® [ocal repository—the local repository (by default, located at ~/.m2/repository on *NIX or
C:\Documents and Settings\UserName\.m2\repository on Windows) is used by Maven as
follows:

o First search location —the local repository is the first place that Maven looks when searching
for a dependency.

o Cache of downloaded dependencies—any artifacts that have ever been downloaded from a
remote repository are stored permanently in the local repository, so that they can be
retrieved quickly next time they are needed.

o Store of locally-built artifacts —any time that you build a local project (using mvn install),
the resulting artifact gets stored in your local repository.

® Remote repository—Maven can also search for and download artifacts from remote repositories.
By default, Maven automatically tries to download an artifact from remote repositories, if it
cannot find the artifact in the local repository (you can suppress this behavior by specifying the
-o flag—for example, mvn -o install).

® System repository—(Red Hat JBoss Fuse container only; not used by the mvn command-line
tool) at run time, the Red Hat JBoss Fuse container can access artifacts from the JBoss Fuse

system repository, which is located at InstallDir/system/.

For more details about Maven repositories, see chapter "Building with Maven" in "Deploying into Apache
Karaf".

Specifying remote repositories

If you need to customise the remote repositories accessible to Maven, you must separately configure
the build-time and runtime repository locations, as follows:

® Build time—to customize the remote repositories accessible at build time (when running the
mvn command), edit the Maven settings.xml file, at the following location:

17

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Deploying_into_Apache_Karaf/Build.html

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

o *Nix: default location is ~/.m2/settings.xml.
o Windows: default location is C:\Documents and Settings\UserName\.m2\settings.xml.

® Run time—to customize the remote repositories accessible at run time (from within Red Hat
JBoss Fuse container), edit the relevant property settings in the
InstallDirletc/org.opséj.pax.url.mvn.cfg.

2.4. DEPENDENCY INJECTION FRAMEWORKS

Overview
Red Hat JBoss Fuse offers a choice between the following built-in dependency injection frameworks:
® the section called "Spring XML" .

® the section called “Blueprint XML".

Blueprint or Spring?

When trying to decide between the blueprint and Spring dependency injection frameworks, bear in mind
that blueprint offers one major advantage over Spring: when new dependencies are introduced in
blueprint through XML schema namespaces, blueprint has the capability to resolve these dependencies
automatically at run time. By contrast, when packaging your project as an OSGi bundle, Spring requires
you to add new dependencies explicitly to the maven-bundle-plugin configuration.

Bean registries

A fundamental capability of the dependency injection frameworks is the ability to create Java bean
instances. Every Java bean created in a dependency injection framework is added to a bean registry by
default. The bean registry is a map that enables you to look up a bean's object reference using the bean
ID. This makes it possible to reference bean instances within the framework's XML configuration file and
to reference bean instances from your Java code.

For example, when defining Apache Camel routes, you can use the bean() and beanRef() DSL
commands to access the bean registry of the underlying dependency injection framework (or
frameworks).

Spring XML

Spring is fundamentally a dependency injection framework, but it also includes a suite of services and
APls that enable it to act as a fully-fledged container. A Spring XML configuration file can be used in the
following ways:

® Aninjection framework—Spring is a classic injection framework, enabling you to instantiate Java
objects using the bean element and to wire beans together, either explicitly or automatically.
For details, see The loC Container from the Spring Reference Manual.

® A generic XML configuration file —Spring has an extensibility mechanism that makes it possible to
use third-party XML configuration schemas in a Spring XML file. Spring uses the schema
namespace as a hook for finding an extension: it searches the classpath for a JAR file that
implements that particular namespace extension. In this way, it is possible to embed the
following XML configurations inside a Spring XML file:

18

http://www.springsource.org/
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html

CHAPTER 2. BASIC CONCEPTS FOR DEVELOPERS

o Apache Camel configuration—usually introduced by the camelContext element in the
schema namespace, http://camel.apache.org/schema/spring.

o Apache CXF configuration—uses several different schema namespaces, depending on
whether you are configuring the Bus, http://cxf.apache.org/core, a JAX-WS binding,
http://cxf.apache.org/jaxws, a JAX-RS binding, http://cxf.apache.org/jaxrs, or a Simple
binding, http://cxf.apache.org/simple.

o Apache ActiveMQ configuration—usually introduced by the broker element in the schema
namespace, http://activemq.apache.org/schemaj/core.

NOTE

When packaging your project as an OSGi bundle, the Spring XML extensibility
mechanism can introduce additional dependencies. Because the Maven bundle
plug-in does not have the ability to scan the Spring XML file and automatically
discover the dependencies introduced by schema namespaces, it is generally
necessary to add the additional dependencies explicitly to the maven-bundle-
plugin configuration (by specifying the required Java packages) .

® An OSGi toolkit—Spring also has features (provided by Spring Dynamic Modules) to simplify
integrating your application with the OSGi container. In particular, Spring DM provides XML
elements that make it easy to export and consume OSGi services. For details, see The Service
Registry from the Spring DM Reference Manual.

® A provider of container services —Spring also supports typical container services, such as
security, persistence, and transactions. Before using such services, however, you should
compare what is available from the JBoss Fuse container itself. In some cases, the JBoss Fuse
container already layers a service on top of Spring (as with the transaction service, for example).

In other cases, the JBoss Fuse container might provide an alternative implementation of the
same service.

Spring XML file location

In your Maven project, Spring XML files must be placed in the following location:

I InstallDir/src/main/resources/META-INF/spring/*.xml

Spring XML sample

The following example shows the bare outline of a Spring XML file:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<!I-- Define Camel routes here -->

</camelContext>

</beans>

19

http://docs.spring.io/osgi/docs/current/reference/html/
http://static.springsource.org/osgi/docs/1.2.1/reference/html/service-registry.html

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

You can use a Spring XML file like this to configure Apache ActiveMQ, Apache CXF, and Apache Camel
applications. For example, the preceding example includes a camelContext element, which could be
used to define Apache Camel routes. For a more detailed example of Spring XML, see the section called
“Customize the Web client test message”.

Blueprint XML

Blueprint is a dependency injection framework defined in the OSGi specification. Historically, blueprint
was originally sponsored by Spring and was based loosely on Spring DM. Consequently, the functionality
offered by blueprint is quite similar to Spring XML, but blueprint is a more lightweight framework and it
has been specially tailored for the OSGi container.

® Aninjection framework—blueprint is a classic injection framework, enabling you to instantiate
Java objects using the bean element and to wire beans together, either explicitly or
automatically. For details, see section "Dependency Injection Frameworks" in "Deploying into
Apache Karaf".

® A generic XML configuration file —blueprint has an extensibility mechanism that makes it possible
to use third-party XML configuration schemas in a blueprint XML file. Blueprint uses the schema
namespace as a hook for finding an extension: it searches the classpath for a JAR file that
implements that particular namespace extension. In this way, it is possible to embed the
following XML configurations inside a blueprint XML file:

o Apache Camel configuration—usually introduced by the camelContext element in the
schema namespace, http://camel.apache.org/schema/blueprint.

o Apache CXF configuration—uses several different schema namespaces, depending on
whether you are configuring the Bus, http://cxf.apache.org/blueprint/core, a JAX-WS
binding, http://cxf.apache.org/blueprint/jaxws, a JAX-RS binding,
http://cxf.apache.org/blueprint/jaxrs, or a Simple binding,
http://cxf.apache.org/blueprint/simple.

o Apache ActiveMQ configuration—usually introduced by the broker element in the schema
namespace, http://activemq.apache.org/schemaj/core.

NOTE

When packaging your project as an OSGi bundle, the blueprint XML extensibility
mechanism can introduce additional dependencies, through the schema
namespaces. Blueprint automatically resolves the dependencies implied by the
schema namespaces at run time.

® An OSGi toolkit—blueprint also has features to simplify integrating your application with the
OSGi container. In particular, blueprint provides XML elements that make it easy to export and
consume OSGi services. For details, see section "Dependency Injection Frameworks" in
"Deploying into Apache Karaf".

Blueprint XML file location

In your Maven project, blueprint XML files must be placed in the following location:

I InstallDir/src/main/resources/OSGI-INF/blueprint/*.xml

Blueprint XML sample

20

http://www.osgi.org
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Deploying_into_Apache_Karaf/IntroEsb-IOC.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Deploying_into_Apache_Karaf/IntroEsb-IOC.html

CHAPTER 2. BASIC CONCEPTS FOR DEVELOPERS

The following example shows the bare outline of a blueprint XML file:

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmins="http://www.osgi.org/xmlIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<!I-- Define Camel routes here -->

</camelContext>

</blueprint>

You can use a blueprint XML file like this to configure Apache ActiveMQ, Apache CXF, and Apache
Camel applications. For example, the preceding example includes a camelContext element, which could
be used to define Apache Camel routes. For a more detailed example of blueprint XML, see Example 3.1,
“Configuring the Port Number in Blueprint XML".

NOTE

The schema namespace used for Apache Camel in blueprint,
http://camel.apache.org/schema/blueprint, is different from the namespace used for
Apache Camel in Spring XML. The two schemas are almost identical, however.

21

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

CHAPTER 3. GETTING STARTED WITH DEVELOPING

Abstract

This chapter explains how to get started with Maven-based development, with a two-part project that
illustrates how to develop applications using Apache CXF and Apache Camel.

3.1. CREATE A WEB SERVICES PROJECT

Overview

This section describes how to generate a simple Web services project, which includes complete
demonstration code for a server and a test client. The starting point for this project is the karaf-soap-
archetype Maven archetype, which is a command-line wizard that creates the entire project from
scratch. Instructions are then given to build the project, deploy the server to the Red Hat JBoss Fuse
container, and run the test client.

Prerequisites

In order to access artifacts from the Maven repository, you need to add the fusesource repository to
Maven's settings.xml file. Maven looks for your settings.xml file in the following standard location:

® UNIX: home/User..m2/settings.xml
® Windows: Documents and Settings\UseA.m2\settings.xml

If there is currently no settings.xml file at this location, you need to create a new settings.xml file.
Modify the settings.xml file by adding the repository element and the pluginRepository element for
the Maven Red Hat repository, as shown in the following example:

<?xml version="1.0"?>
<settings>

<profiles>
<profile>
<id>extra-repos</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<repositories>
<repository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>redhat-ea-repository</id>
<url>https://maven.repository.redhat.com/earlyaccess/all</url>

22

CHAPTER 3. GETTING STARTED WITH DEVELOPING

<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<repository>
<id>jboss-public</id>
<name>JBoss Public Repository Group</name>
<url>https://repository.jboss.org/nexus/content/groups/public/</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>redhat-ea-repository</id>
<url>https://maven.repository.redhat.com/earlyaccess/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>jboss-public</id>
<name>JBoss Public Repository Group</name>
<url>https://repository.jboss.org/nexus/content/groups/public</url>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

<activeProfiles>
<activeProfile>extra-repos</activeProfile>

</activeProfiles>

</settings>

Create project from the command line

You can create a Maven project directly from the command line, by invoking the archetype:generate
goal. First of all, create a directory to hold your getting started projects. Open a command prompt,
navigate to a convenient location in your file system, and create the get-started directory, as follows:

23

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

mkdir get-started

cd get-started
You can now use the archetype:generate goal to invoke the karaf-soap-archetype archetype, which
generates a simple Apache CXF demonstration, as follows:

mvn archetype:generate \
-DarchetypeGroupld=io.fabric8.archetypes \
-DarchetypeArtifactld=karaf-soap-archetype \
-DarchetypeVersion=1.2.0.redhat-630xxx \
-Dgroupld=org.fusesource.example \
-Dartifactld=cxf-basic \
-Dversion=1.0-SNAPSHOT \
-Dfabric8-profile=cxf-basic-profile

NOTE

The arguments of the preceding command are shown on separate lines for readability,
but when you are actually entering the command, the entire command must be entered
on a single line.

You will be prompted to confirm the project settings, with a message similar to this one:

[INFO] Using property: groupld = org.fusesource.example
[INFQO] Using property: artifactld = cxf-basic

[INFO] Using property: version = 1.0-SNAPSHOT

[INFO] Using property: package = org.fusesource.example
[INFO] Using property: fabric8-profile = cxf-basic-profile
Confirm properties configuration:

groupld: org.fusesource.example

artifactld: cxf-basic

version: 1.0-SNAPSHOT

package: org.fusesource.example

fabric8-profile: cxf-basic-profile

Y::

Type Return to accept the settings and generate the project. When the command finishes, you should
find a new Maven project in the get-started/cxf-basic directory.

Customize the Web client test message

Customize the sample client test message, so that it uses the correct XML namespace. Edit the cxf-
basic/src/test/resources/request.xml file, replacing the
xmlns:ns2="http://soap.quickstarts.fabric8.io/" namespace setting by
xmins:ns2="http://example.fusesource.org/".

After editing the request.xml file, the contents should look like the following:

<?xml version="1.0" encoding="UTF-8"7?>
<soap:Envelope xmins:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ns2:sayHi xmIns:ns2="http://example.fusesource.org/">
<arg0>John Doe</arg0>

24

CHAPTER 3. GETTING STARTED WITH DEVELOPI

</ns2:sayHi>
</soap:Body>
</soap:Envelope>

Build the Web services project

Build the Web services project and install the generated JAR file into your local Maven repository. From
a command prompt, enter the following commands:

cd cxf-basic
mvn install

Initialize container security

If you have not already done so, create one (or more) users by adding a line of the following form to the
InstallDirletc/users.properties file:

I Username=Password[,RoleA][,RoleB]...

At least one of the users must have the Administrator role, to enable administration of the fabric. For
example:

I admin=secretpassword,Administrator

Start up the container

Start up the JBoss Fuse container. Open a new command prompt and enter the following commands:

cd InstallDir/bin
Jfuse

You will see a welcome screen similar to this:

D1 __II_____

|| _</_ B I/\

||_|||)|()__\|||||\ \ _/
NN T A

JBoss Fuse (6.3.0.redhat-xxx)
http://www.redhat.com/products/joossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.

Open a browser to http://localhost:8181 to access the management console
Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss Fuse.

JBossFuse:karaf@root>

NG

25

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

Deploy and start the WS server

To install and start up the cxf-basic Web service as an OSGi bundle, enter the following console
command:

I JBossFuse:karaf@root> install -s mvn:org.fusesource.example/cxf-basic/1.0-SNAPSHOT

NOTE

If your local Maven repository is stored in a non-standard location, you might need to
customize the value of the org.ops4j.pax.url.mvn.localRepository property in the
InstallDir/etc/org.opséj.pax.url.mvn.cfg file, before you can use the mvn: scheme to
access Maven artifacts.

If the bundle is successfully resolved and installed, the container responds by giving you the ID of the
newly created bundle—for example:

I Bundle ID: 265

Check that the bundle has started

To check that the bundle has started, enter the list console command, which gives the status of all the
bundles installed in the container:

I JBossFuse:karaf@root> list

Near the end of the listing, you should see a status line like the following:

I [265] [Active][Created][][80] JBoss Fuse Quickstart: soap (1.0.0.SNAPSHOT)

NOTE

Actually, to avoid clutter, the list command only shows the bundles with a start level of 50
or greater (which excludes most of the system bundles).

Run the WS client

The cxf-basic project also includes a simple WS client, which you can use to test the deployed Web
service. In a command prompt, navigate to the cxf-basic directory and run the simple WS client as
follows:

cd get-started/cxf-basic
mvn -Ptest

If the client runs successfully, you should see output like the following:

Running org.fusesource.example.SoapTest

the response is ====>

<soap:Envelope xmIns:soap="http://schemas.xmlsoap.org/soap/envelope/"><soap:Body>
<ns2:sayHiResponse xmins:ns2="http://example.fusesource.org/"><return>Hello John Doe</return>

26

CHAPTER 3. GETTING STARTED WITH DEVELOPING

</ns2:sayHiResponse></soap:Body></soap:Envelope>
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.184 sec - in
org.fusesource.example.SoapTest

Troubleshooting

If you have trouble running the client, there is an even simpler way to connect to the Web service. Open
your favourite Web browser and navigate to the following URL to contact the JBoss Fuse Jetty
container:

I http://localhost:8181/cxf

To query the WSDL directly from the HelloWorld Web service, navigate to the following URL:

I http://localhost:8181/cxf/HelloWorld ?wsdl

3.2. CREATE A ROUTER PROJECT

Overview

This section describes how to generate a router project, which acts as a proxy for the WS server
described in Section 3.1, “Create a Web Services Project”. The starting point for this project is the karaf-
camel-cbr-archetype Maven archetype.

Prerequisites

This project depends on the cxf-basic project and requires that you have already generated and built
the exf-basic project, as described in Section 3.1, “Create a Web Services Project”.

Create project from the command line

Open a command prompt and change directory to the get-started directory. You can now use the
archetype:generate goal to invoke the karaf-camel-cbr-archetype archetype, which generates a
simple Apache Camel demonstration, as follows:

mvn archetype:generate \
-DarchetypeGroupld=io.fabric8.archetypes \
-DarchetypeArtifactld=karaf-camel-cbr-archetype \
-DarchetypeVersion=1.2.0.redhat-630xxx \
-Dgroupld=org.fusesource.example \
-Dartifactld=camel-basic \
-Dversion=1.0-SNAPSHOT \
-Dfabric8-profile=camel-basic-profile

NOTE

The arguments of the preceding command are shown on separate lines for readability,
but when you are actually entering the command, the entire command must be entered
on a single line.

You will be prompted to confirm the project settings, with a message similar to this one:

27

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

[INFQO] Using property: groupld = org.fusesource.example
[INFO] Using property: artifactld = camel-basic

[INFO] Using property: version = 1.0-SNAPSHOT

[INFQO] Using property: package = org.fusesource.example
[INFQO] Using property: fabric8-profile = camel-basic-profile
Confirm properties configuration:

groupld: org.fusesource.example

artifactld: camel-basic

version: 1.0-SNAPSHOT

package: org.fusesource.example

fabric8-profile: camel-basic-profile

Y::

Type Return to accept the settings and generate the project. When the command finishes, you should
find a new Maven project in the get-started/camel-basic directory.

Add the required Maven dependency

Because the route uses the Apache Camel Jetty component, you must add a Maven dependency on the
camel-jetty artifact, so that the requisite JAR files are added to the classpath. To add the dependency,
edit the camel-basic/pom.xml file and add the following highlighted dependency as a child of the
dependencies element:

<project ...>

<dependencies>

<dependency>
<groupld>org.apache.camel</groupld>
<artifactld>camel-blueprint</artifactld>

</dependency>

<dependency>
<groupld>org.apache.camel</groupld>
<artifactld>camel-jetty</artifactid>

</dependency>

</dependencies>

</project>

Modify the route

You are going to modify the default route generated by the archetype and change it into a route that
implements a HTTP bridge. This bridge will be interposed between the WS client and Web service,
enabling us to apply some routing logic to the WSDL messages that pass through the route.

Using your favourite text editor, open camel-basic/src/main/resources/OSGI-INF/blueprint/cbr.xml.
Remove the existing camelContext element and replace it with the camelContext element highlighted
in the following example:

<?xml version="1.0" encoding="UTF-8"7?>

<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/blueprint"
xsi:schemal.ocation="

28

CHAPTER 3. GETTING STARTED WITH DEVELOPING

http://www.osgi.org/xmlins/blueprint/v1.0.0
https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd

http://camel.apache.org/schema/blueprint http://camel.apache.org/schema/blueprint/camel-
blueprint.xsd">

<camelContext id="blueprintContext"
trace="false"
xmins="http://camel.apache.org/schema/blueprint">
<route id="httpBridge'>
<from uri="jetty:http://0.0.0.0:8282/cxf/HelloWorld?matchOnUriPrefix=true"/>
<delay><constant>5000</constant></delay>
<to uri="jetty:http://localhost:8181/cxf/HelloWorld?
bridgeEndpoint=true&throwExceptionOnFailure=false"/>
</route>
</camelContext>

</blueprint>

The from element defines a new HTTP server port, which listens on TCP port 8282. The to element
defines a HTTP client endpoint that attempts to connect to the real Web service, which is listening on
TCP port 8181. To make the route a little more interesting, we add a delay element, which imposes a five
second (5000 millisecond) delay on all requests passing through the route.

For a detailed discussion and explanation of the HTTP bridge, see Proxying with HTTP.

Change the port in the Web client test

By default, the Web client connects directly to the Web server on port 8181. In order to test the HTTP
bridge, however, we want the Web client to connect to the Jetty port exposed by the HTTP bridge,
which listens on port 8282. Hence, we need to edit the following file in the exf-basic project:

I cxf-basic/src/test/java/org/fusesource/example/SoapTest.java
Open the SoapTest.java file in your favourite text editor, and search for the following line:
I URLConnection connection = new URL("http://localhost:8181/cxf/HelloWorld").openConnection();

Change the port number in this line from 8181to 8282, as highlighted in the following extract:

I URLConnection connection = new URL("http://localhost:8282/cxf/HelloWorld").openConnection();

Build the router project

Build the router project and install the generated JAR file into your local Maven repository. From a
command prompt, enter the following commands:

cd camel-basic
mvn install

Install the camel-jetty feature

Install the required camel-jetty feature as follows:

29

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Apache_Camel_Development_Guide/Proxying.html#Proxying-HTTP

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

I JBossFuse:karaf@root> features:install camel-jetty

Deploy and start the route

If you have not already started the Red Hat JBoss Fuse container and deployed the Web services
bundle, you should do so now—see the section called “Deploy and start the WS server” .

To install and start up the camel-basic route as an OSGi bundle, enter the following console command:
I JBossFuse:karaf@root> install -s mvn:org.fusesource.example/camel-basic/1.0-SNAPSHOT

If the bundle is successfully resolved and installed, the container responds by giving you the ID of the
newly created bundle—for example:

I Bundle ID: 230

Test the route with the WS client
The cxf-basic project includes a simple WS client, which you can use to test the deployed route and

Web service. In a command prompt, navigate to the cxf-basic directory and run the simple WS client as
follows:

cd ../cxf-basic
mvn -Ptest

If the client runs successfully, you should see output like the following:

TESTS

Running org.fusesource.example.SoapTest

After a five second delay, you will see the following response:

the response is ====>

<soap:Envelope xmIns:soap="http://schemas.xmlsoap.org/soap/envelope/"><soap:Body>
<ns2:sayHiResponse xmins:ns2="http://example.fusesource.org/"><return>Hello John Doe</return>
</ns2:sayHiResponse></soap:Body></soap:Envelope>

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 5.153 sec - in
org.fusesource.example.SoapTest

3.3. CREATE AN AGGREGATE MAVEN PROJECT

Aggregate POM

A complete application typically consists of multiple Maven projects. As the number of projects grows
larger, however, it becomes a nuisance to build each project separately. Moreover, it is usually necessary
to build the projects in a certain order and the developer must remember to observe the correct build
order.

To simplify building multiple projects, you can optionally create an aggregate Maven project. This
consists of a single POM file (the aggregate POM), usually in the parent directory of the individual

30

CHAPTER 3. GETTING STARTED WITH DEVELOPING

projects. The POM file specifies which sub-projects (or modules) to build and builds them in the
specified order.

Parent POM

Maven also supports the notion of a parent POM. A parent POM enables you to define an inheritance
style relationship between POMs. POM files at the bottom of the hierarchy declare that they inherit
from a specific parent POM. The parent POM can then be used to share certain properties and details
of configuration.

IMPORTANT

The details of how to define and use a parent POM are beyond the scope of this guide,
but it is important to be aware that a parent POM and an aggregate POM are not the
same thing.

Recommended practice

Quite often, you will see examples where a POM is used both as a parent POM and an aggregate POM.
This is acceptable for small, relatively simple applications, but is not recommended. In general, it is better
to define separate POM files for the parent POM and the aggregate POM.

Create an aggregate POM

To create an aggregate POM for your getting started application, use a text editor to create a pom.xml
file in the get-started directory and add the following contents to the file:

<?xml version="1.0" encoding="UTF-8"?>

<project xmins="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4 0 _0.xsd">

<groupld>org.fusesource.example</groupld>
<artifactld>get-started</artifactld>
<version>1.0-SNAPSHOT</ersion>
<packaging>pom</packaging>
<modelVersion>4.0.0</modelVersion>

<name>Getting Started :: Aggregate POM</name>
<description>Getting Started example</description>

<modules>
<module>cxf-basic</module>
<module>camel-basic</module>
</modules>

</project>

As with any other POM, the groupld, artifactld, and version must be defined, in order to identify this
artifact uniquely. But the packaging must be set to pom. The key portion of the aggregate POM is the
modules element, which defines the list of Maven sub-projects to build and defines the order in which

31

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

the projects are built. The content of each module element is the relative path of a directory containing
a Maven project.
Building with the aggregate POM

Using the aggregate POM you can build all of sub-projects in one go, by entering the following at a
command prompt:

cd get-started
mvn install

3.4.DEFINE A FEATURE FOR THE APPLICATION

Why do you need a feature?

An OSGi bundle is not a convenient unit of deployment to use with the Red Hat JBoss Fuse container.
Applications typically consist of multiple OSGi bundles and complex applications may consist of a very
large number of bundles. Usually, you want to deploy or undeploy multiple OSGi bundles at the same
time and you need a deployment mechanism that supports this.

Apache Karaf features are designed to address this problem. A feature is essentially a way of
aggregating multiple OSGi bundles into a single unit of deployment. When defined as a feature, you can
simultaneously deploy or undeploy a whole collection of bundles.

What to put in a feature

At a minimum, a feature should contain the basic collection of OSGi bundles that make up the core of
your application. In addition, you might need to specify some of the dependencies of your application
bundles, in case those bundles are not predeployed in the container.

Ultimately, the decision about what to include in your custom feature depends on what bundles and
features are predeployed in your container. Using a standardised container like Red Hat JBoss Fuse
makes it easier to decide what to include in your custom feature.

Deployment options

You have a few different options for deploying features, as follows:

® Hot deploy—the simplest deployment option; just drop the XML features file straight into the
hot deploy directory, InstallDir/deploy.

® Add a repository URL —you can tell the Red Hat JBoss Fuse container where to find your
features repository file using the features:addUrl console command (see Add the local
repository URL to the features service). You can then install the feature at any time using the
features:install console command.

® Through a Fuse Fabric profile —you can use the management console to deploy a feature inside
a Fuse Fabric profile.

For more details about the feature deployment options, see Deploying Into Apache Karaf, Deploying
Features.

Features and Fuse Fabric

32

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Deploying_into_Apache_Karaf/DeployFeatures.html#DeployFeatures-Create-AddUrl
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Deploying_into_Apache_Karaf/DeployFeatures.html

CHAPTER 3. GETTING STARTED WITH DEVELOPING

It turns out that a feature is a particularly convenient unit of deployment to use with Fuse Fabric. A Fuse
Fabric profile typically consists of a list of features and a collection of related configuration settings.
Hence, a Fuse Fabric profile makes it possible to deploy a completely configured application to any
container in a single atomic operation.

Create a custom features repository

Create a sub-directory to hold the features repository. Under the get-started project directory, create
all of the directories in the following path:

I features/src/main/resources/

Under the get-started/features/src/main/resources directory, use a text editor to create the get-
started.xml file and add the following contents:

<?xml version="1.0" encoding="UTF-8"7?>
<features name="get-started">
<feature name="get-started-basic">
<bundle>mvn:org.fusesource.example/cxf-basic/1.0-SNAPSHOT</bundle>
<bundle>mvn:org.fusesource.example/camel-basic/1.0-SNAPSHOT</bundle>
</feature>
<feature name="get-started-cxf">
<bundle>mvn:org.fusesource.example/cxf-basic/1.0-SNAPSHOT</bundle>
</feature>
</features>

Under the get-started/features/ directory, use a text editor to create the Maven POM file, pom.xml, and
add the following contents to it:

<?xml version="1.0" encoding="UTF-8"7>
<project xmins="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupld>org.fusesource.example</groupld>
<artifactld>get-started</artifactld>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>

<name>Getting Started Feature Repository</name>

<build>
<plugins>
<!-- Attach the generated features file as an artifact,
and publish to the maven repository -->
<plugin>
<groupld>org.codehaus.mojo</groupld>
<artifactld>build-helper-maven-plugin</artifactld>
<version>1.5</version>
<executions>
<execution>

33

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

<id>attach-artifacts</id>
<phase>package</phase>
<goals>
<goal>attach-artifact</goal>
</goals>
<configuration>
<artifacts>
<artifact>
<file>target/classes/get-started.xml</file>
<type>xmi</type>
<classifier>features</classifier>
</artifact>
</artifacts>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

</project>

Install the features repository

You need to install the features repository into your local Maven repository, so that it can be located by
the Red Hat JBoss Fuse container. To install the features repository, open a command prompt, change
directory to get-started/features, and enter the following command:

cd features
mvn install

Deploy the custom feature

To deploy the get-started-basic feature into the container, perform the following steps:

34

1. If the exf-basic and camel-basic bundles are already installed in the JBoss Fuse container, you

must first uninstall them. At the console prompt, use the list command to discover the bundle
IDs for the cxf-basic and camel-basic bundles, and then uninstall them both using the console
command, uninstall BundlelD.

. Before you can access features from a features repository, you must tell the container where to

find the features repository. Add the features repository URL to the container, by entering the
following console command:

JBossFuse:karaf@root> features:addurl mvn:org.fusesource.example/get-started/1.0-
SNAPSHOT/xml/features

You can check whether the container knows about the new features by entering the console
command features:list. If necessary, you can use the features:refreshurl console command,
which forces the container to re-read its features repositories.

3. Toinstall the get-started-basic feature, enter the following console command:

I JBossFuse:karaf@root> features:install get-started-basic

CHAPTER 3. GETTING STARTED WITH DEVELOPING

4. After waiting a few seconds for the bundles to start up, you can test the application as described
in the section called “Test the route with the WS client” .

5. To uninstall the feature, enter the following console command:

I JBossFuse:karaf@root> features:uninstall get-started-basic

3.5. CONFIGURE THE APPLICATION

OSGi Config Admin service

The OSGi Config Admin service is a standard OSGi configuration mechanism that enables
administrators to modify application configuration at deployment time and at run time. This contrasts
with settings made directly in a Blueprint XML file, because these XML files are accessible only to the
developer.

The OSGi Config Admin service relies on the following basic concepts:

Persistent ID

A persistent ID (PID) identifies a group of related properties. Conventionally, a PID is normally written
in the same format as a Java package name. For example, the org.opsdj.pax.web PID configures
the Red Hat JBoss Fuse container's default Jetty Web server.

Properties

A property is a name-value pair, which always belongs to a specific PID.

Setting configuration properties

There are two main ways to customise the properties in the OSGi Config Admin service, as follows:

® ForagivenaPID, PersistentID, you can create a text file under the InstallDirletc directory,
which obeys the following naming convention:

I InstallDir/etc/ PersistentlD.cfg

You can then set the properties belonging to this PID by editing this file and adding entries of
the form:

I Property=Value

® Fuse Fabric supports another mechanism for customising OSGi Config Admin properties. In
Fuse Fabric, you set OSGi Config Admin properties in a fabric profile (where a profile
encapsulates the data required to deploy an application). There are two alternative ways of
modifying configuration settings in a profile:
o Using the management console

o Using the fabric:profile-edit command in a container console (see Section 4.2.2, “Create
Fabric Profiles").

Replace TCP port with a property placeholder

35

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

As an example of how the OSGi Config Admin service might be used in practice, consider the TCP port
used by the HelloWorld Web service from the exf-basic project. By modifying the Blueprint XML file
that defines this Web service, you can make the Web service's TCP port customisable through the OSGi
Config Admin service.

The TCP port number in the Blueprint XML file is replaced by a property placeholder, which resolves the
port number at run time by looking up the property in the OSGi Config Admin service.

Blueprint XML example

In the exf-basic project, any XML files from the following location are treated as Blueprint XML files
(the standard Maven location for Blueprint XML files):

I cxf-basic/src/main/resources/OSGI-INF/blueprint/*.xml

Edit the blueprint.xml file from the preceding directory and add or modify the highlighted content
shown in Example 3.1, “Configuring the Port Number in Blueprint XML" .

Example 3.1. Configuring the Port Number in Blueprint XML
<?xml version="1.0" encoding="UTF-8"7>
<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:jaxws="http://cxf.apache.org/blueprint/jaxws"

xmlins:cxf="http://cxf.apache.org/blueprint/core"
xmlns:cm="http://aries.apache.org/blueprint/xmins/blueprint-cm/v1.1.0"
xsi:schemal.ocation="
http://cxf.apache.org/blueprint/core http://cxf.apache.org/schemas/blueprint/core.xsd
http://cxf.apache.org/blueprint/jaxws http://cxf.apache.org/schemas/blueprint/jaxws.xsd">

<cxf:bus>
<l--
In this example, we're enabling the logging feature. This will ensure that both the inbound
and outbound
XML message are being logged for every web service invocation.
-->
<cxf:features>
<cxf:logging/>
</cxf:features>
</cxf:bus>

<!-- osgi blueprint property placeholder -->
<cm:property-placeholder id="placeholder"
persistent-id="org.fusesource.example.get.started">
<cm:default-properties>
<cm:property name="portNumber" value="8181"/>
</cm:default-properties>
</cm:property-placeholder>

<jaxws:endpoint id="helloWorld"
implementor="org.fusesource.example.HelloWorldImpl"
address="http://0.0.0.0:${portNumber}/cxf/HelloWorld">
</jaxws:endpoint>

</blueprint>

36

CHAPTER 3. GETTING STARTED WITH DEVELOPING

The highlighted text shows the parts of the blueprint configuration that are relevant to the OSGi Config
Admin service. Apart from defining the em namespace, the main changes are as follows:

1. The cm:property-placeholder bean contacts the OSGi Config Admin service and retrieves all
of the property settings from the org.fusesource.example.get.started PID. The key-value
pairs in the cm:default-properties/cm:property elements specify default values for the
properties (which are overridden, if corresponding settings can be retrieved from the OSGi
Config Admin service).

2. The ${portNumber} placeholder is used to specify the TCP port number used by the
HelloWorld Web service.

NOTE

For the Blueprint XML configuration, you must ensure that the instructions for the
maven-bundle-plugin in the project's pom.xml file include the wildcard, *, in the
packages listed in the Import-Package element (if the Import-Package element is not
present, the wildcard is implied by default). Otherwise, you will get the error: Unresolved

references to [org.osgi.service.blueprint] by class(es) on the Bundle-
Classpath[Jar:dot]: [].

Deploying the configurable application

To deploy the configurable Web service from the exf-basic project, perform the following steps:

1. Edit the Blueprint XML file, blueprint.xml, to integrate the OSGi Config Admin service, as
described in Example 3.1, “Configuring the Port Number in Blueprint XML" .

2. Rebuild the exf-basic project with Maven. Open a command prompt, change directory to the
get-started/cxf-basic directory, and enter the following Maven command:

I mvn clean install

3. Create the following configuration file in the ete/ directory of your Red Hat JBoss Fuse
installation:

I InstallDir/etc/org.fusesource.example.get.started.cfg

Edit the org.fusesource.example.get.started.cfg file with a text editor and add the following
contents:

I portNumber=8182

4. If you have previously deployed the get-started-basic feature (as described in Section 3.4,
“Define a Feature for the Application”), uninstall it now:

I JBossFuse:karaf@root> features:uninstall get-started-basic
5. Deploy the get-started-cxf feature, by entering the following console command:

I JBossFuse:karaf@root> features:install get-started-cxf

37

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

6. Deploy the exf-commands feature, by entering the following console command:
I JBossFuse:karaf@root> features:install cxf-commands

7. After waiting a few seconds for the bundles to start up, you can check the port used by the
HelloWorld service, by entering the following console command:

JBossFuse:karaf@root> cxf:list-endpoints

Name State Address BusID
[HelloWorldimplPort] [Started] [http://0.0.0.0:8182/cxf/HelloWorld]
[org.fusesource.example.cxf-basic-cxf1456001875]

You can see from this that the HelloWorld service is listening on port 8182.
8. If you want to run the Web client test against this Web service, you must customize the URL
used by the client. Using a text editor, open the SoapTest.java file from the cxf-

basic/src/test/java/org/fusesource/example directory, and change the connection URL as
highlighted in the following fragment:

URLConnection connection = new
URL("http://localhost:8182/cxf/HelloWorld").openConnection();

9. You can then test the application by opening a command prompt, changing directory to get-
started/cxf-basic, and entering the following command:

I mvn -Ptest
10. To uninstall the feature, enter the following console command:

I features:uninstall get-started-cxf

3.6. TROUBLESHOOTING

Check the status of a deployed bundle

After deploying an OSGi bundle, you can check its status using the osgi:list console command. For
example:

I JBossFuse:karaf@root> osgi:list

The most recently deployed bundles appear at the bottom of the listing. For example, a successfully
deployed exf-basic bundle has a status line like the following:

[232] [Active]]] [Started] [60]
Fabric8 :: CXF Code First OSGi Bundle (1.0.0.SNAPSHOT)
The second column indicates the status of the OSGi bundle lifecycle (usually Installed, Resolved, or
Active). A bundle that is successfully installed and started has the status Active. If the bundle contains a
blueprint XML file, the third column indicates whether the blueprint context has been successfully
Created or not. If the bundle contains a Spring XML file, the fourth column indicates whether the Spring
context has been successfully Started or not.

38

CHAPTER 3. GETTING STARTED WITH DEVELOPING

Logging

If a bundle fails to start up properly, an error message is usually sent to the log. To view the most recent
messages from the log, enter the log:display console command. Usually, you will be able to find a stack
trace for the failed bundle in the log.

You can easily change the logging level using the log:set console command. For example:

I JBossFuse:karaf@root> log:set DEBUG

Redeploying bundles with dev:watch

If there is an error in one of your bundles and you need to redeploy it, the best approach is to use the
dev:watch command. For example, given that you have already deployed the cxf-basic bundle and it
has the bundle ID, 232, you can tell the runtime to watch the bundle by entering the following console
command:

JBossFuse:karaf@root> dev:watch 232
Watched URLSs/IDs:
232

Now, whenever you rebuild the bundle using Maven:

cd cxf-basic
mvn clean install

The runtime automatically redeploys the bundle, as soon as it notices that the corresponding JAR in the
local Maven repository has been updated. In the console window, the following message appears:

I [Watch] Updating watched bundle: cxf-basic (1.0.0.SNAPSHOT)

39

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

CHAPTER 4. GETTING STARTED WITH DEPLOYING

Abstract

This chapter introduces the Fuse Fabric technology layer and provides a detailed example of how to
deploy an application in a fabric, based on the application developed in Chapter 3, Getting Started with
Developing.

4.1. SCALABLE DEPLOYMENT WITH FUSE FABRIC

Why Fuse Fabric?
A single Red Hat JBoss Fuse container deployed on one host provides a flexible and sophisticated
environment for deploying your applications, with support for versioning, deployment of various
package types (OSGi bundle, FAB, WAR), container services and so on. But when you start to roll out a
large-scale deployment of a product based on JBoss Fuse, where multiple containers are deployed on
multiple hosts across a network, you are faced with an entire new set of challenges. Some of the
capabilities typically needed for managing a large-scale deployment are:

® Monitoring the state of all the containers in the network

® Starting and stopping remote containers

® Provisioning remote containers to run particular applications

® Upgrading applications and rolling out patches in a live system

® Starting up and provisioning new containers quickly—for example, to cope with an increased load
on the system

The Fuse Fabric technology layer handles these kinds of challenges in a large-scale production system.

A sample fabric

Figure 4.1, "Containers in a Fabric” shows an example of a distributed collection of containers that
belong to a single fabric.

40

CHAPTER 4. GETTING STARTED WITH DEPLOYING

Figure 4.1. Containers in a Fabric

managed R = fabric registry agent
container managed - '
anritelsar A = fabric agent
@ RDB = registry database
fabric server fabric server

managed
container
managed
e container
H~1 fabric server

managed
cantainer

managed

container

Fabric

The Fuse Fabric technology layer supports the scalable deployment of JBoss Fuse containers across a
network. It enables a variety of advanced features, such as remote installation and provisioning of
containers; phased rollout of new versions of libraries and applications; load-balancing and failover of
deployed endpoints.

A fabric is a collection of containers that share a fabric registry, where the fabric registry is a replicated
database that stores all information related to provisioning and managing the containers. A fabric is
intended to manage a distributed network of containers, where the containers are deployed across
multiple hosts.

Fabric Ensemble

A Fabric Ensemble is a collection of Fabric Servers that collectively maintain the state of the fabric
registry. The Fabric Ensemble implements a replicated database and uses a quorum-based voting
system to ensure that data in the fabric registry remains consistent across all of the fabric's containers.
To guard against network splits in a quorum-based system, it is a requirement that the number of Fabric
Servers in a Fabric Ensemble is always an odd number.

The number of Fabric Servers in a fabric is typically 1, 3, or 5. A fabric with just one Fabric Server is

suitable for experimentation only. A live production system should have at least 3 or 5 Fabric Servers,
installed on separate hosts, to provide fault tolerance.

Fabric Server

A Fabric Server has a special status in the fabric, because it is responsible for maintaining a replica of the

41

http://en.wikipedia.org/wiki/Quorum_(distributed_computing)

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

fabric registry. In each Fabric Server, a registry service is installed (labeled R in Figure 4.1, “Containers in
a Fabric”). The registry service (based on Apache ZooKeeper) maintains a replica of the registry
database and provides a ZooKeeper server, which ordinary agents can connect to in order to retrieve
registry data.

Fabric Container

A Fabric Container is aware of the locations of all of the Fabric Servers, and it can retrieve registry data
from any Fabric Server in the Fabric Ensemble. A Fabric Agent (labeled Ain Figure 4.1, “Containersin a
Fabric”) is installed in each Fabric Container. The Fabric Agent actively monitors the fabric registry, and
whenever a relevant modification is made to the registry, it immediately updates its container to keep
the container consistent with the registry settings.

Profile

A Fabric profile is an abstract unit of deployment, which is capable of holding all of the data required for
deploying an application into a Fabric Container. Profiles are used exclusively in the context of fabrics.
Features or bundles deployed directly to Fabric Containers are short lived.

IMPORTANT

The presence of a Fabric Agent in a container completely changes the deployment
model, requiring you to use profiles exclusively as the unit of deployment. Although it is
still possible to deploy an individual bundle or feature (using osgi:install or
features:install, respectively), these modifications are impermanent. As soon as you
restart the container or refresh its contents, the Fabric Agent replaces the container's
existing contents with whatever is specified by the deployed profiles.

4.2. DEPLOYING TO A FABRIC

4.2.1. Create a Fabric

Overview

Figure 4.2 shows an overview of a sample fabric that you will create. The Fabric Ensemble consists of
just one Fabric Server (making this fabric suitable only for experimental use) and two managed child
containers.

42

CHAPTER 4. GETTING STARTED WITH DEPLOYING

Figure 4.2. A Sample Fabric with Child Containers

fabric server

managed managed
container container

Fabric server

A Fabric Server (or servers) forms the backbone of a fabric. It hosts a registry service, which maintains a
replicable database of information about the state of the fabric. Initially, when you create the fabric,
there is just a single Fabric Server.

Child containers

Creating one or more child containers is the simplest way to extend a fabric. As shown in Figure 4.2, “A
Sample Fabric with Child Containers”, the first container in the fabric is a root container, and both child
containers are descended from it.

Each child container is an independent Red Hat JBoss Fuse container instance, which runs in its own
JVM instance. The data files for the child containers are stored under the InstallDirlinstances directory.

Make Quickstart Examples Available

The default behavior is that profiles for quickstart examples are not available in a new fabric. To create a
fabric in which you can run the quickstart examples, edit the
$FUSE_HOME/fabric/io.fabric8.import.profiles.properties file by uncommenting the line that starts
with the following:

importProfileURLs =

If you create a fabric without doing this and you want to run the quickstart examples, follow these steps
to make them available:

1. Edit the $FUSE_HOME/quickstarts/pom.xml file to add a fabric I/O plugin, for example:

<plugin>
<groupld>io.fabric8</groupld>

43

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

<artifactld>fabric8-maven-plugin</artifactld>
<version>1.2.0.redhat-630187</version>
</plugin>

2. In the $FUSE_HOME/quickstarts directory, change to the directory for the quickstart example
you want to run, for example:

cd beginner
3. In that directory, execute the following command:
mvn fabric8:deploy

You would need to run this command in each directory that contains a quickstart example that
you want to run.
Steps to create the fabric

To create the simple fabric shown in Figure 4.2, “A Sample Fabric with Child Containers”, follow these
steps:

1. (Optional) Customise the name of the root container by editing the
InstallDirletc/system.properties file and specifying a different name for this property:

I karaf.name=root

NOTE

For the first container in your fabric, this step is optional. But at some later stage,
if you want to join a root container to the fabric, you must customise the new
container's name to prevent it from clashing with any existing root containers in
the fabric.

2. To create the first fabric container, which acts as the seed for the new fabric, enter this console
command:

JBossFuse:karaf@root> fabric:create --new-user AdminUser
--new-user-password AdminPass
--new-user-role Administrator
--resolver manualip
--manual-ip 127.0.0.1
--zookeeper-password ZooPass
--wait-for-provisioning

The current container, named root by default, becomes a Fabric Server with a registry service
installed. Initially, this is the only container in the fabric. The --new-user, --new-user-password,
and --new-user-role options specify the credentials for a new administrator user. The
Zookeeper password is used to protect sensitive data in the Fabric registry service (all of the
nodes under /fabric).

44

CHAPTER 4. GETTING STARTED WITH DEPLOYING

NOTE

Most of the time, you are not prompted to enter the Zookeeper password when
accessing the registry service, because it is cached in the current session. When
you join a container to a fabric , however, you must provide the fabric's Zookeeper
password.

NOTE

It is recommended that you assign a static IP address to the machine that hosts a
Fabric server and that you specify this port explicitly using the --resolver and --
manual-ip options when you create the fabric. For simple tests and
demonstrations, you can specify the loopback address, 127.0.0.1 (as here). For
more details, see chapter "Creating a New Fabric" in "Fabric Guide" .

3. Create two child containers. Assuming that your root container is named root, enter this console
command:

JBossFuse:karaf@root> fabric:container-create-child root child 2

Creating new instance on SSH port 8102 and RMI ports 1100/44445 at:
/home/jdoe/Programs/JBossFuse/jboss-fuse-6.2.0.redhat-123/instances/child2
Creating new instance on SSH port 8103 and RMI ports 1101/44446 at:
/home/jdoe/Programs/JBossFuse/jboss-fuse-6.2.0.redhat-123/instances/child
The following containers have been created successfully:

Container: child1.

Container: child2.

If you are prompted to enter a JMX username and password, enter one of the
username/password combinations that you defined in step 2.

4. Invoke the fabric:container-list command to see a list of all containers in your new fabric. You
should see a listing something like this:

JBossFuse:karaf@root> fabric:container-list
[i[d] [version] [type] [connected] [profiles] [provision status]
root* 1.0 karaf yes fabric success
fabric-ensemble-0000-1
jooss-fuse-full
child1 1.0 karaf yes default success
child2 1.0 karaf yes default success

Shutting down the containers

Because the child containers run in their own JVMs, they do not automatically stop when you shut down
the root container. To shut down a container and its children, first stop its children using the
fabric:container-stop command. For example, to shut down the current fabric completely, enter these
console commands:

JBossFuse:karaf@root> fabric:container-stop child1
JBossFuse:karaf@root> fabric:container-stop child2
JBossFuse:karaf@root> shutdown

After you restart the root container, you must explicitly restart the children using the fabric:container-
start console command.

45

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Fabric_Guide/ESBRuntimeFabricCreate.html

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

4.2.2. Create Fabric Profiles

Overview

A profile is the basic unit of deployment in a fabric. You can deploy one or more profiles to a container,
and the content of those deployed profiles determines what is installed in the container.

Contents of a profile

A profile encapsulates the following kinds of information:
® The URL locations of features repositories
® Alist of features to install

e Alist of bundles to install (or, more generally, any suitable JAR package—including OSGi
bundles, Fuse Application Bundles, and WAR files)

® A collection of configuration settings for the OSGi Config Admin service

® Java system properties that affect the Apache Karaf container (analogous to editing
etc/config.properties)

® Java system properties that affect installed bundles (analogous to editing
etc/system.properties)

Base profile

Profiles support inheritance. This can be useful in cases where you want to deploy a cluster of similar
servers—for example, where the servers differ only in the choice of TCP port number. For this, you would
typically define a base profile, which includes all of the deployment data that the servers have in
common. Each individual server profile would inherit from the common base profile, but add
configuration settings specific to its server instance.

Create a base profile

To create the gs-cxf-base profile, follow these steps:

1. Create the gs-cxf-base profile by entering this console command:
I JBossFuse:karaf@root> fabric:profile-create --parent feature-cxf gs-cxf-base

2. Add the get-started features repository (see Define a Feature for the Application) to the gs-
cxf-base profile by entering this console command:

JBossFuse:karaf@root> profile-edit -r mvn:org.fusesource.example/get-started/1.0-
SNAPSHOT/xml/features gs-cxf-base

3. Add the cxf-http-jetty feature (which provides support for the HTTP Jetty endpoint) to the gs-

cxf-base profile. Enter the following console command:

I JBossFuse:karaf@root> profile-edit --feature cxf-http-jetty gs-cxf-base

46

CHAPTER 4. GETTING STARTED WITH DEPLOYING

4. Add the get-started-cxf feature (which provides the Web service example server) to the gs-
cxf-base profile. Enter the following console command:

I JBossFuse:karaf@root> profile-edit --feature get-started-cxf gs-cxf-base

5. Add the exf-commands feature (which makes the CXF console commands available) to the gs-
cxf-base profile. Enter the following console command:

I JBossFuse:karaf@root> profile-edit --feature cxf-commands gs-cxf-base

Create the derived profiles

You create two derived profiles, gs-cxf-01 and gs-cxf-02, which configure different TCP ports for the
Web service. To do so, follow these steps:

1. Create the gs-cxf-01 profile—which derives from gs-cxf-base—by entering this console
command:

I JBossFuse:karaf@root> profile-create --parent gs-cxf-base gs-cxf-01

2. Create the gs-cxf-02 profile—which derives from gs-cxf-base—by entering this console
command:

I JBossFuse:karaf@root> profile-create --parent gs-cxf-base gs-cxf-02

3. Inthe gs-cxf-01 profile, set the portNumber configuration property to 8185, by entering this
console command:

I JBossFuse:karaf@root> profile-edit -p org.fusesource.example.get.started/portNumber=8185
gs-cxf-01

4. In the gs-cxf-02 profile, set the portNumber configuration property to 8186, by entering this
console command:

I JBossFuse:karaf@root> profile-edit -p org.fusesource.example.get.started/portNumber=8186
gs-cxf-02

4.2.3. Deploy the Profiles

Deploy profiles to the child containers

Having created the child containers, as described in Section 4.2.1, “Create a Fabric”, and the profiles, as
described in Section 4.2.2, “Create Fabric Profiles”, you can now deploy the profiles. To do so, follow
these steps:

1. Deploy the gs-cxf-01 profile into the child1 container by entering this console command:
I JBossFuse:karaf@root> fabric:container-change-profile child1 gs-cxf-01

2. Deploy the gs-cxf-02 profile into the child2 container by entering this console command:

47

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications
I JBossFuse:karaf@root> fabric:container-change-profile child2 gs-cxf-02

Check that the Web service is running

To check that the Web service has successfully launched on the child container, perform the following
steps:

1. If the child container is not already running, start it by entering the following command:
I JBossFuse:karaf@root> container-start child1

2. Wait until the child1 container has finished starting up. You can observe the provisioning status
using the watch command, as follows:

I JBossFuse:karaf@root> watch container-list
3. Connect to the child container, as follows:
I JBossFuse:karaf@root> container-connect child1

4. After connecting to the child container, list the active CXF endpoints, by entering the following
command:

JBossFuse:admin@child1> cxf:list-endpoints

Name State Address BusID
[HelloWorldimplPort] [Started] [http://0.0.0.0:8185/cxf/HelloWorld]
[org.fusesource.example.cxf-basic-cxf481246446]

4.2.4. Update a Profile

Upgrading containers atomically

Normally, when you edit a profile that is already deployed in a container, the modification takes effect
immediately. This is so because the Fabric Agent in the affected container (or containers) actively
monitors the fabric registry in real time.

In practice, however, immediate propagation of profile modifications is often undesirable. In a
production system, you typically want to roll out changes incrementally: for example, initially trying out
the change on just one container to check for problems, before you make changes globally to all
containers. Moreover, sometimes several edits must be made together to reconfigure an application in a
consistent way.

Profile versioning

For quality assurance and consistency, it is typically best to modify profiles atomically, where several
modifications are applied simultaneously. To support atomic updates, fabric implements profile
versioning. Initially, the container points at version 1.0 of a profile. When you create a new profile version
(for example, version 1.1), the changes are invisible to the container until you upgrade it. After you are
finished editing the new profile, you can apply all of the modifications simultaneously by upgrading the
container to use the new version 1.1 of the profile.

48

CHAPTER 4. GETTING STARTED WITH DEPLOYING

Upgrade to a new profile

For example, to modify the gs-cxf-01 profile, when it is deployed and running in a container, follow the
recommended procedure:

1. Create a new version, 1.1, to hold the pending changes by entering this console command:

JBossFuse:karaf@root> fabric:version-create
Created version: 1.1 as copy of: 1.0

The new version is initialised with a copy of all of the profiles from version 1.0.

2. Use the fabric:profile-edit command to change the portNumber of gs-cxf-01 to the value
8187 by entering this console command:

JBossFuse:karaf@root> fabric:profile-edit -p
org.fusesource.example.get.started/portNumber=8187 gs-cxf-01 1.1

Remember to specify version 1.1 to the fabric:profile-edit command, so that the modifications
are applied to version 1.1 of the gs-cxf-01 profile.

3. Upgrade the child1 container to version 1.1 by entering this console command:
I JBossFuse:karaf@root> fabric:container-upgrade 1.1 child1

Roll back to an old profile

You can easily roll back to the old version of the gs-cxf-01 profile, using the fabric:container-rollback
command like this:

I JBossFuse:karaf@root> fabric:container-rollback 1.0 child1

49

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

CHAPTERS5. GETTING STARTED WITH RED HAT JBOSS FUSE
ON EAP

Abstract
Apache Camel in JBoss Fuse enables you to to develop an integrated application in your own way. This

chapter explains how to get started with Red Hat JBoss Fuse on EAP. It illustrates several ways of
developing Camel applications on EAP.

51. INTEGRATING APACHE CAMEL WITH JBOSS EAP
Red Hat JBoss Fuse supports Apache Camel as an EAP subsystem. Integration of Camel with EAP

allows you to add Camel routes as part of the EAP configuration. You can deploy routes as a part of
Java EE applications.

NOTE

Apache Camel is adaptable and does not force you to deploy into any particular container
or JVM technology. You can choose your preferred container.

5.2. EXAMPLES OF JBOSS FUSE ON EAP

This section includes the working examples that demonstrate various features of JBoss on Fuse EAP.
These examples will help you get started with the EAP Camel subsystem.

9’ NOTE

You can access the $JBOSS_HOME/quickstarts/camel directory to view the full source
code of all the examples.

To run the given examples, ensure that you install the following on your machine:

® Maven 3.2.3 or greater
® Javal7 or greater
® Red Hat JBoss Fuse 6.3

® RedHat JBoss EAP 6.4

NOTE

To install JBoss Fuse on EAP, see chapter "Install JBoss Fuse on JBoss EAP" in
"Installation on JBoss EAP".

-

5.2.1. Camel ActiveMQ

The following example describes how to use the camel-activemq component with JBoss Fuse on EAP,
to produce and consume JMS messages.

In this example, a camel route consumes files from the ${JBOSS_HOME}/standalone/data/orders

50

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Installation_on_JBoss_EAP/Installing_Red_Hat_JBoss_Fuse_on_EAP.html

CHAPTER 5. GETTING STARTED WITH RED HAT JBOSS FUSE ON EAF

directory and place the content to an external ActiveMQ JMS queue. A second route consumes
messages from the OrdersQueue and then via a content based router, it sorts the directory of each
country that are located within the $JBOSS_HOME/standalone/data/orders/processed directory.

NOTE

The CLlI script automatically configure the ActiveMQ resource adapter. These scripts are
located within the src/main/resources/cli directory.

5.2.1.1. Running the Application
Before you start running the application, make sure that the following are installed on your machine:

® Maven 3.2.3 or greater
® JBoss Fuse on EAP

® An ActiveMQ broker

Procedure 5.1. To run the application

Perform the following steps:

1. Start the application server in standalone mode.

I ${JBOSS_HOME}/bin/standalone.sh -c standalone-full.xml

2. Run the following command to build and deploy the project.

I mvn install -Pdeploy

5.2.1.2. Configuring ActiveMQ

Here are the details to configure the ActiveMQ component:

@Startup

@CamelAware

@ApplicationScoped

public class ActiveMQRouteBuilder extends RouteBuilder {

o
* Inject the ActiveMQConnectionFactory that has been configured through the ActiveMQ Resource
Adapter
Y/
@Resource(mappedName = "java:/ActiveMQConnectionFactory")
private ConnectionFactory connectionFactory;

@Override
public void configure() throws Exception {

/**
* Configure the ActiveMQ component
Y/
ActiveMQComponent activeMQComponent = ActiveMQComponent.activeMQComponent();

51

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

activeMQComponent.setConnectionFactory(connectionFactory);
getContext().addComponent("activemq", activeMQComponent);

o
* This route reads files placed within $JBOSS HOME/standalone/data/orders
*and places them to ActiveMQ queue 'ordersQueue’
Y/
from("file://{{jboss.server.data.dir}}/orders")
.convertBodyTo(String.class)
// Remove headers to ensure we end up with unique file names being generated in the next
route
.removeHeaders("*")
to("activemq:queue:OrdersQueue");

o
* This route consumes messages from the 'ordersQueue’. Then, based on the
* message payload XML content it uses a content based router to output
* orders into appropriate country directories
Y/

from("activemq:queue:OrdersQueue")

.choice()
.when(xpath("/order/customer/country = 'UK™))
Jog("Sending order ${file:name} to the UK")
to("file:{{jboss.server.data.dir}}/orders/processed/UK")
.when(xpath("/order/customer/country = 'US™))
Jog("Sending order ${file:name} to the US")
to("file:{{jboss.server.data.dir}}/orders/processed/US")
.otherwise()
Jog("Sending order ${file:name} to another country")
to("file://{{jboss.server.data.dir}}/orders/processed/Others");

5.2.1.3. Undeploy the Application

Run the following command to undeploy the application:

I mvn clean -Pdeploy

It removes the ActiveMQ resource adapter configuration. However, you need to restart the application
after you execute the undeploy command.

5.2.2. Camel CDI

The following example describes how to use the camel-cdi component with JBoss Fuse on EAP, to
integrate CDI beans with camel routes.

In this example, a camel route takes a message payload from a servlet HTTP GET request and passes it

to the direct endpoint. However, you can pass the payload to a Camel CDI bean invocation to produce a
message response. It displays the message response on the web browser page.

5.2.2.1. Running the Application

Before you start running the application, make sure that the following are installed on your machine:

52

CHAPTER 5. GETTING STARTED WITH RED HAT JBOSS FUSE ON EAF

® Maven 3.2.3 or greater

® JBoss Fuse on EAP

Procedure 5.2. To run the application

Perform the following steps:

1. Start the application server in standalone mode.

I ${JBOSS_HOME}/bin/standalone.sh -c standalone-full.xml

2. Run the following command to build and deploy the project.

I mvn install -Pdeploy

5.2.2.2. Configuring Camel CDI

Here are the details to configure the camel-cdi component:

@Startup

@CamelAware

@ApplicationScoped

public class MyRouteBuilder extends RouteBuilder {

@Override
public void configure() throws Exception {
from("direct:start").bean("helloBean");

}
}

@SuppressWarnings("serial")

@WebServlet(name = "HttpServiceServlet", urlPatterns = { "/*" }, loadOnStartup = 1)
public class SimpleServlet extends HttpServlet

{

@Inject

private CamelContext camelctx;

@Override
protected void doGet(HttpServietRequest req, HttpServietResponse res) throws ServletException,
IOException {
String name = req.getParameter("name");
ServletOutputStream out = res.getOutputStream();
ProducerTemplate producer = camelctx.createProducerTemplate();
String result = producer.requestBody("direct:start", name, String.class);
out.print(result);
}
}

5.2.2.3. Undeploy the Application

Run the following command to undeploy the application:

53

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

I mvn clean -Pdeploy

5.2.3. Camel JMS

The following example describes how to use the camel-jms component with JBoss Fuse on EAP to
produce and consume JMS messages.

In this example, a Camel route consumes files from the ${JBOSS_HOME}/standalone/data/orders
directory and place the content in the OrdersQueue. A second route consumes messages from the
OrdersQueue and through a content based router.

5.2.3.1. Running the Application
Before you start running the application, make sure that the following are installed on your machine:

® Maven 3.2.3 or greater

® JBoss Fuse on EAP

Procedure 5.3. To run the application

Perform the following steps:

1. Start the application server in standalone mode.

I ${JBOSS_HOME}/bin/standalone.sh -c standalone-full.xml

2. Run the following command to build and deploy the project.

I mvn install -Pdeploy

5.2.3.2. Configuring Camel JMS

Here are the details to configure the camel-jms component.

@Startup

@CamelAware

@ApplicationScoped

public class JmsRouteBuilder extends RouteBuilder {

@Resource(mappedName = "java:/ConnectionFactory")
private ConnectionFactory connectionFactory;

@Override
public void configure() throws Exception {
/**
* Configure the JMSComponent to use the connection factory
* injected into this class
Y/
JmsComponent component = new JmsComponent();
component.setConnectionFactory(connectionFactory);

getContext().addComponent("jms", component);

54

CHAPTER 5. GETTING STARTED WITH RED HAT JBOSS FUSE ON EAF

o
* This route reads files placed within $JBOSS HOME/standalone/data/orders
* and places them onto JMS queue ‘ordersQueue’ within the WildFly
* internal HornetQ broker.
Y/
from("file://{{jposs.server.data.dir}}/orders")
.convertBodyTo(String.class)
// Remove headers to ensure we end up with unique file names being generated in the next
route
.removeHeaders("*")
to("jms:queue:OrdersQueue");

o
* This route consumes messages from the 'ordersQueue’. Then, based on the
* message payload XML content it uses a content based router to output
* orders into appropriate country directories
Y/

from("jms:queue:OrdersQueue”)

.choice()
.when(xpath("/order/customer/country = 'UK™))
Jog("Sending order ${file:name} to the UK")
to("file:{{jboss.server.data.dir}}/orders/processed/UK")
.when(xpath("/order/customer/country = 'US™))
Jog("Sending order ${file:name} to the US")
to("file:{{jboss.server.data.dir}}/orders/processed/US")
.otherwise()
Jog("Sending order ${file:name} to another country")
to("file://{{jposs.server.data.dir}}/orders/processed/others");

5.2.3.3. Undeploy the Application

Run the following command to undeploy the application:

I mvn clean -Pdeploy

5.2.4. Camel JPA

The following example describes how to use the camel-jpa component with JBoss Fuse on EAP to
persist entities to the in-memory database.

In this example, a camel route consumes XML files from the

${JBOSS HOME}/standalone/data/customers directory. Camel then uses JAXB to unmarshal the
data to a Customer entity. However, the entity is then passed to the JPA endpoint and is persisted to
the customer database.

5.2.4.1. Running the Application
Before you start running the application, make sure that the following are installed on your machine:

® Maven 3.2.3 or greater

55

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

® JBoss Fuse on EAP

Procedure 5.4. To run the application

Perform the following steps:

1. Start the application server in standalone mode.

I ${JBOSS_HOME}/bin/standalone.sh -c standalone-full.xml

2. Run the following command to build and deploy the project.

I mvn install -Pdeploy

5.2.4.2. Configuring Camel JPA

Here are the details to configure the camel-jpa component.

@Startup

@CamelAware

@ApplicationScoped

public class JpaRouteBuilder extends RouteBuilder {

@Inject
private EntityManager em;

@Inject
UserTransaction userTransaction;

@Override

public void configure() throws Exception {
// Configure our JaxbDataFormat to point at our ‘'model’ package
JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setContextPath(Customer.class.getPackage().getName());

EntityManagerFactory entityManagerFactory = em.getEntityManagerFactory();

// Configure a JtaTransactionManager by looking up the JBoss transaction manager from JND/
JtaTransactionManager transactionManager = new JtaTransactionManager(userTransaction);
transactionManager.afterPropertiesSet();

// Configure the JPA endpoint to use the correct EntityManagerfFactory and
JtaTransactionManager

JpaEndpoint jpaEndpoint = new JpaEndpoint();

jpaEndpoint.setCamelContext(getContext());

jpaEndpoint.setEntity Type(Customer.class);

jpaEndpoint.setEntityManagerFactory(entityManagerFactory);

jpaEndpoint.setTransactionManager(transactionManager);

/*
* Simple route to consume customer record files from directory input/customers,
* unmarshall XML file content to a Customer entity and then use the JPA endpoint
* to persist the it to the 'ExampleDS' datasource (see standalone.camel.xml for datasource
config).
Y/

56

CHAPTER 5. GETTING STARTED WITH RED HAT JBOSS FUSE ON EAF

from("file://{{jboss.server.data.dir}}/customers")
.unmarshal(jaxbDataFormat)
.to(jpaEndpoint)
to("log:input?showAll=true");

public class CustomerRepository {

@Inject
private EntityManager em;

/**
* Find all customer records

*

* @return A list of customers
Y/
public List<Customer> findAlICustomers() {
CriteriaBuilder criteriaBuilder = em.getCriteriaBuilder();
CriteriaQuery<Customer> query = criteriaBuilder.createQuery(Customer.class);
query.select(query.from(Customer.class));

return em.createQuery(query).getResultList();

5.2.4.3. Undeploy the Application

Run the following command to undeploy the application:

I mvn clean -Pdeploy

5.2.5. Camel Mail

The following example describes how to use the camel-mail component with JBoss Fuse on EAP to
send and receive email.

In this example, you can configure a local mail server on your machine. This eliminates the need to use

any external mail services. You can access the src/main/resources/cli directory to see the EAP mail
subsystem configuration.

NOTE

Here the mail session used is bound to JNDI at the java:jboss/mail/ location. You can
configure the server entries for SMTP and POP3 protocols.

5.2.5.1. Running the Application

Before you start running the application, make sure that the following are installed on your machine:

57

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

® Maven 3.2.3 or greater

® JBoss Fuse on EAP

Procedure 5.5. To run the application

Perform the following steps:

1. Start the application server in standalone mode.

I ${JBOSS_HOME}/bin/standalone.sh -c standalone-full.xml

2. Run the following command to build and deploy the project.

I mvn install -Pdeploy

NOTE

If you want to deploy the application multiple times, ensure that you run the undeploy
command and restart the application server.

5.2.5.2. Configuring Camel Mail

Here are the configurations details to configure the camel-mail component.

public class MailSessionProducer {
@Resource(lookup = "java:jboss/mail/greenmail”)
private Session mailSession;

@Produces
@Named
public Session getMailSession() {
return mailSession;
}
}

@Startup

@CamelAware

@ApplicationScoped

public class MailRouteBuilder extends RouteBuilder {

@Override

public void configure() throws Exception {
// Configure routes and endpoints to send and receive email over SMTP and POP3
from("direct:sendmail").to("smtp://localhost:10025?session=#mailSession");

from("pop3://user2@localhost:101107?
consumer.delay=30000&session=#mailSession").to("log:emails ?showAll=true&multiline=true");

}
}

5.2.5.3. Undeploy the Application

58

CHAPTER 5. GETTING STARTED WITH RED HAT JBOSS FUSE ON EAF

Run the following command to undeploy the application:

I mvn clean -Pdeploy

5.2.6. Camel REST

The following example describes how to write the JAX-RS REST routes with JBoss Fuse on EAP.

It includes two methods of implementing Camel REST consumers. Requests made to paths under the
/example-camel-rest/camel are handled by the Camel REST DSL and requests made to paths
>/example-camel-rest/rest are handled by the EAP JAX-RS subsystem along with the CamelProxy.
5.2.6.1. Running the Application

Before you start running the application, make sure that the following are installed on your machine:

® Maven 3.2.3 or greater

® JBoss Fuse on EAP

Procedure 5.6. To run the application

Perform the following steps:

1. Start the application server in standalone mode.

I ${JBOSS_HOME}/bin/standalone.sh -c standalone-full.xml

2. Run the following command to build and deploy the project.

I mvn install -Pdeploy

5.2.6.2. Configuring Camel REST

Here are the configurations details to configure the Camel REST routes.

@Startup

@CamelAware

@ApplicationScoped

public class RestConsumerRouteBuilder extends RouteBuilder {

/**
* Inject a service for interacting with the EAP exampleDS in-memory database.
Y/

@Inject

private CustomerRepository customerRepository;

@Override
public void configure() throws Exception {
/**
* Configure the Camel REST DSL to use the camel-serviet component for handling HTTP
requests.

*

59

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

* Whenever a POST request is made to /customer it is accompanied with a JSON string
representation

* of a Customer object. Note that the binding mode is set to RestBindingMode.json. This will
enable

* Camel to unmarshal JSON to the desired object type.

* Note that the contextPath setting below has no effect on how the application server handles
HTTP traffic.

* The context root and required serviet mappings are configured in WEB-INF/jboss-web.xml and
WEB-INF/web.xml.

Y/
restConfiguration().component("servlet").contextPath("/camel-example-
rest/camel").port(8080).bindingMode(RestBindingMode.json);

/**
* Handles requests to a base URL of /camel-example-rest/camel/customer
Y/
rest("/customer")
/**
* Handles GET requests to URLs such as /camel-example-rest/camel/customer/1
Y/
.get("Aid}")
/**
* Marshalls the response to JSON
Y/
.produces(MediaType.APPLICATION_JSON)
.to("direct:readCustomer™)
/**
* Handles POST requests to /camel-example-rest/camel/customer
Y/
.post()
/**
* Unmarshalls the JSON data sent with the POST request to a Customer object.
Y/
.type(Customer.class)
.to("direct:createCustomer");
/**

* This route returns a JSON representation of any customers matching the id
* that was sent with the GET request.
*If no customer was found, an HTTP 404 response code is returned to the calling client.
Y/
from("direct:readCustomer")
.bean(customerRepository, "readCustomer(${header.id})")
.choice()
.when(simple("${body} == null"))
.setHeader(Exchange.HTTP_RESPONSE_CODE, constant(404));

/**
* This route handles persistence of new customers.
Y/
from("direct:createCustomer")
.bean(customerRepository, "createCustomer");

60

CHAPTER 5. GETTING STARTED WITH RED HAT JBOSS FUSE ON EAF

/**
* This route handles REST requests that have been made fo the REST{ul services defined
within
* CustomerServicelmpl.
* These services are running under the WildFly RESTEasy JAX-RS subsystem. A CamelProxy
proxies the direct:rest
* route so that requests can be handled from within a Camel route.
Y/
from("direct:rest")
.process(new Processor() {
@Override
public void process(Exchange exchange) throws Exception {
/**
* Retrieve the message payload. Since we are using camel-proxy to proxy the direct:rest
* endpoint the payload will be of type Beanlnvocation.
Y/
Beanlnvocation beanlnvocation = exchange.getin().getBody(Beanlnvocation.class);

/**
* Get the invoked REST service method name and build a response to send
* back to the client.
Y/

String methodName = beanlnvocation.getMethod().getName();

if (methodName.equals("getCustomers")) {
/**
* Retrieve all customers and send back a JSON response
Y/
List<Customer> customers = customerRepository.findAllCustomers();
exchange.getOut().setBody(Response.ok(customers).build());
} else if(methodName.equals("updateCustomer")) {
/**
* Get the customer that was sent on this method call
Y/
Customer updatedCustomer = (Customer) beanlnvocation.getArgs()[0];
Customer existingCustomer =
customerRepository.readCustomer(updatedCustomer.getld());

if(existingCustomer = null){
if(existingCustomer.equals(updatedCustomer)) {
/**
* Nothing to be updated so return HTTP 304 - Not Modified.
Y/
exchange.getOut().setBody(Response.notModified().build());
} else {
customerRepository.updateCustomer(updatedCustomer);
exchange.getOut().setBody(Response.ok().build());
}
} else {
/**
* No customer exists for the provided id, so return HTTP 404 - Not Found.
Y/

exchange.getOut().setBody(Response.status(Response.Status.NOT_FOUND).build());

61

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

}

} else if(methodName.equals("deleteCustomer")) {
Long customerld = (Long) beanlnvocation.getArgs()[0];

Customer customer = customerRepository.readCustomer(customerld);
if(customer = null) {
customerRepository.deleteCustomer(customerld);
exchange.getOut().setBody(Response.ok().build());
} else {
/**
* No customer exists for the provided id, so return HTTP 404 - Not Found.
Y/

exchange.getOut().setBody(Response.status(Response.Status.NOT_FOUND).build());
}
} else if(methodName.equals("deleteCustomers")) {
customerRepository.deleteCustomers();

/**

* Return HTTP status OK.

Y/
exchange.getOut().setBody(Response.ok().build());

@Startup

@CamelAware

@ApplicationScoped

public class RestProducerRouteBuilder extends RouteBuilder {

@Override
public void configure() throws Exception {
/**
* This route demonstrates a JAX-RS producer using the camel-restlet component.
* Every 30 seconds, a call is made to the REST API for retrieving all customers at
* the URL http.//localhost:8080/example-camel-rest/rest/customer.

*

* The results of the REST service call are written to a file at:
*$JBOSS_HOME/standalone/data/customer-records/customers.json
Y/
from("timer://outputCustomers?period=30000")
to("restlet://http://localhost:8080/example-camel-rest/rest/customer")
.choice()

.when(simple("${header.CamelHttpResponseCode} == 200"))
Jog("Updating customers.json")
.setHeader(Exchange.FILE_NAME, constant("customers.json"))
to("file:{{jboss.server.data.dir}}/customer-records/")

.otherwise()

Jog("REST request failed. HTTP status ${header.CamelHttpResponseCode}");

62

CHAPTER 5. GETTING STARTED WITH RED HAT JBOSS FUSE ON EAF

5.2.6.3. Undeploy the Application

Run the following command to undeploy the application:

I mvn clean -Pdeploy

5.2.7. Camel Transacted JMS

The following example describes how to use the camel-jms component with JBoss Fuse on EAP to
produce and consume JMS messages in a transacted session.

In this example, a camel route consumes files from the ${JBOSS_HOMEY}/standalone/data/orders

directory and place the content in the OrdersQueue. A second route consumes messages from the
OrdersQueue, converts the message body to the Order entity and persists it.

5.2.7.1. Running the Application
Before you start running the application, make sure that the following are installed on your machine:

® Maven 3.2.3 or greater

® JBoss Fuse on EAP

Procedure 5.7. To run the application

Perform the following steps:

1. Start the application server in standalone mode.

I ${JBOSS_HOME}/bin/standalone.sh -c standalone-full.xml

2. Run the following command to build and deploy the project.

I mvn install -Pdeploy

3. When the server starts, navigate to the example-camel-transacted-jms/orders directory.

The application displays the Orders Received page. It includes the list of processed orders.

5.2.7.2. Configuring Transacted JMS

Here are the details to configure the camel-jms component in a transacted session.

@Startup

@CamelAware

@ApplicationScoped

public class JmsRouteBuilder extends RouteBuilder {

/**

* Inject the resources required to configure the JMS and JPA Camel
* components. The JPA EntityManager, JMS TransactionManager and a JMS

63

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

64

* ConnectionFactory bound to the JNDI name java:/JmsXA
Y/

@Inject

private EntityManager entityManager;

@Inject
private JmsTransactionManager transactionManager;

@Resource(mappedName = "java:/JmsXA")
private ConnectionFactory connectionFactory;

@Override
public void configure() throws Exception {
Jox
* Create an instance of the Camel JmsComponent and configure it to support JMS
* transactions.
Y/
JmsComponent jmsComponent =
JmsComponent.jmsComponentTransacted(connectionFactory, transactionManager);
getContext().addComponent("jms", jnsComponent);

/**
* Create an instance of the Camel JpaComponent and configure it to support transactions.
Y/
JpaComponent jpaComponent = new JpaComponent();
jpaComponent.setEntityManagerFactory(entityManager.getEntityManagerFactory());
jpaComponent.setTransactionManager(transactionManager);
getContext().addComponent("jpa", jpaComponent);

/**

* Configure JAXB so that it can discover model classes.

Y/
JaxbDataFormat jaxbDataFormat = new JaxbDataFormat();
jaxbDataFormat.setContextPath(Order.class.getPackage().getName());

Jox
* Configure a simple dead letter strategy. Whenever an lllegalStateException
* is encountered this takes care of rolling back the JMS and JPA transactions. The
* problem message is sent to the WildFly dead letter JMS queue (DLQ).
Y/
onException(lllegalStateException.class)
.maximumRedeliveries(1)
.handled(true)
to("jms:queue:DLQ")
.markRollbackOnly();

/**
* This route consumes XML files from $JBOSS HOME/standalone/data/orders and sends
* the file content to JMS destination OrdersQueue.
*/
from("file:{{jooss.server.data.dir}}/orders")
ransacted()
to("jms:queue:OrdersQueue");

/**
* This route consumes messages from JMS destination OrdersQueue, unmarshalls the XML

CHAPTER 5. GETTING STARTED WITH RED HAT JBOSS FUSE ON EAF

* message body using JAXB to an Order entity object. The order is then sent to the JPA
* endpoint for persisting within an in-memory database.
* Whenever an order quantity greater than 10 is encountered, the route throws an
lllegalStateException
* which forces the JMS / JPA transaction to be rolled back and the message to be delivered to
the dead letter
*queue.
7
from("jms:queue:OrdersQueue”)
.unmarshal(jaxbDataFormat)
to("jpa:Order")
.choice()
.when(simple("${body.quantity} > 10"))
Jog("Order quantity is greater than 10 - rolling back transaction!")
.throwException(new lllegalStateException())
.otherwise()
Jog("Order processed successfully");

5.2.7.3. Undeploy the Application

Run the following command to undeploy the application:

I mvn clean -Pdeploy

65

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT
EDITOR

Abstract

When you have a lot of changes and additions to make to a profile's configuration, it is usually more
convenient to do this interactively, using the built-in text editor for profiles. The editor can be accessed
by entering the profile-edit command with no arguments except for the profile's name (and optionally,
version); or adding the --pid option for editing OSGi PID properties; or adding the --resource option for
editing general resources.

A.1. EDITING AGENT PROPERTIES

Overview

This section explains how to use the built-in text editor to modify a profile's agent properties, which are
mainly used to define what bundles and features are deployed by the profile.

Open the agent properties resource

To start editing a profile's agent properties using the built-in text editor, enter the following console
command:

I JBossFuse:karaf@root> profile-edit Profile [Version]

Where Profile is the name of the profile to edit and you can optionally specify the profile version,
Version, as well. The text editor opens in the console window, showing the current profile name and
version in the top-left corner of the Window. The bottom row of the editor screen summarizes the
available editing commands and you can use the arrow keys to move about the screen.

Specifying feature repository locations
To specify the location of a feature repository, add a line in the following format:
I repository./D=URL

Where IDis an arbitrary unique identifier and URL gives the location of a single feature repository (only
one repository URL can be specified on a line).

Specifying deployed features

To specify a feature to deploy (which must be available from one of the specified feature repositories),
add aline in the following format:

I feature./D=FeatureName

Where IDis an arbitrary unique identifier and FeatureName is the name of a feature.

Specifying deployed bundles

66

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOFR

To specify a bundle to deploy, add a line in the following format:
I bundle./D=URL
Where IDis an arbitrary unique identifier and URL specifies the bundle's location.

NOTE

A bundle entry can be used in combination with a blueprint: (or spring:) URL handler to
deploy a Blueprint XML resource (or a Spring XML resource) as an OSGi bundle.

Specifying bundle overrides

To specify a bundle override, add a line in the following format:
I override./ID=URL
Where IDis an arbitrary unique identifier and URL specifies the bundle's location.

NOTE

A bundle override is used to override a bundle installed by a feature, replacing it with a
different version of the bundle. For example, this functionality is used by the patching
system to install a patched bundle in a container.

Specifying etc/config.properties properties

To specify Java system properties that affect the Apache Karaf container (analogous to editing
etc/config.properties in a standalone container), add a line in the following format:

I config.Property=Value

Specifying etc/system.properties properties

To specify Java system properties that affect the bundles deployed in the container (analogous to
editing etc/system.properties in a standalone container), add a line in the following format:

I system. Property=Value

If the system property, Property, is already set at the JVM level (for example, through the --jvm-opts
option to the fabric:container-create command), the preceding fabric:profile-edit command will not
override the JVM level setting. To override a JVM level setting, set the system property as follows:

I system.karaf.override. Property=Value

Specifying libraries to add to Java runtime lib/

To specify a Java library to deploy (equivalent to adding a library to the lib/ directory of the underlying
Java runtime), add a line in the following format:

I lib./D=URL

67

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications
Where IDis an arbitrary unique identifier and URL specifies the library's location.

Specifying libraries to add to Java runtime lib/ext/

To specify a Java extension library to deploy (equivalent to adding a library to the lib/ext/ directory of
the underlying Java runtime), add a line in the following format:

I ext.ID=URL

Where IDis an arbitrary unique identifier and URL specifies the extension library's location.

Specifying libraries to add to Java runtime lib/endorsed/

To specify a Java endorsed library to deploy (equivalent to adding a library to the lib/endorsed/
directory of the underlying Java runtime), add a line in the following format:

I endorsed./D=URL

Where IDis an arbitrary unique identifier and URL specifies the endorsed library's location.

Example

To open the mg-client profile's agent properties for editing, enter the following console command:

I JBossFuse:karaf@root> profile-edit mqg-client

The text editor starts up, and you should see the following screen in the console window:

Profile:mg-client 1.0 L:1 C:

#

Copyright (C) Red Hat, Inc.

http://redhat.com

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

#

repository.activemg=mvn:org.apache.activemg/activemqg-karaf/${version:activemq}/xml/features
repository.karaf-standard=mvn\:org.apache.karaf.assemblies.features/standard/${version:karaf}/

xml/features

AX Quit "SSave "ZUndo "R Redo "G GoTo "FFind "N Next "P Previous

Type AX to quit the text editor and get back to the console prompt.

68

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOFR

A.2. EDITING OSGI CONFIG ADMIN PROPERTIES

Overview

This section explains how to use the built-in text editor to edit the property settings associated with a
specific persistent ID.

Persistent ID

In the context of the OSGi Config Admin service, a persistent ID (PID) refers to and identifies a set of
related properties. In particular, when defining PID property settings in a profile, the properties
associated with the PID persistent ID are defined in the PID.properties resource.

Open the Config Admin properties resource

To start editing the properties associated with the PID persistent ID, enter the following console
command:

I JBossFuse:karaf@root> profile-edit --pid PID Profile [Version]

NOTE

Itis also possible to edit PID properties by specifying --resource PID.properties in the
profile-edit command, instead of using the --pid PID option.

Specifying OSGi config admin properties

The text editor opens, showing the contents of the specified profile's PID.properties resource (which is
actually stored in the ZooKeeper registry). To edit the properties, add, modify, or delete lines of the
following form:

I Property=Value

Example

To edit the properties for the io.fabric8.hadoop PID in the hadoop-base profile, enter the following
console command:

I JBossFuse:karaf@root> profile-edit --resource io.fabric8.hadoop.properties hadoop-base 1.0

The text editor starts up, and you should see the following screen in the console window:

Profile:hadoop-base 1.0 L:1 C:1
#

Copyright (C) Red Hat, Inc.

http://redhat.com

#

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

#

http://www.apache.org/licenses/LICENSE-2.0

69

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

#

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

#

fs.default.name=hdfs\://localhost\:9000
dfs.replication=1
mapred.job.tracker=localhost\:9001
dfs.name.dir=${karaf.data}/hadoop/dfs/name
dfs.http.address=0.0.0.0\:9002
dfs.data.dir=${karaf.data}/hadoop/dfs/data
dfs.name.edits.dir=${karaf.data}/hadoop/dfs/name

AX Quit "SSave "ZUndo "R Redo "G GoTo "FFind "N Next *P Previous

You might notice that colon characters are escaped in this example (as in\:). Strictly speaking, it is only
necessary to escape a colon if it appears as part of a property name (left hand side of the equals sign),
but the profile-edit command automatically escapes all colons when it writes to a resource. When
manually editing resources using the text editor, however, you do not need to escape colons in URLs
appearing on the right hand side of the equals sign.

Type AX to quit the text editor and get back to the console prompt.

A.3. EDITING OTHER RESOURCES

Overview

In addition to agent properties and PID properties, the built-in text editor makes it possible for you edit
any resource associated with a profile. This is particularly useful, if you need to store additional
configuration files in a profile. The extra configuration files can be stored as profile resources (which are
stored in a Fabric server's built-in Git repository) and then can be accessed by your applications at run
time.

Creating and editing an arbitrary resource
You can create and edit arbitrary profile resources using the following command syntax:

I JBossFuse:karaf@root> profile-edit --resource Resource Profile [Version]

Where Resourceis the name of the profile resource you want to edit. If Resource does not already
exist, it will be created.

broker.xml example

For example, the mg-base profile has the broker.xml resource, which stores the contents of an Apache
ActiveMQ broker configuration file. To edit the broker.xml resource, enter the following console
command:

I JBossFuse:karaf@root> profile-edit --resource broker.xml mqg-base 1.0

70

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOFR

The text editor starts up, and you should see the following screen in the console window:

Profile:mg-base 1.0 L:1 C:1
<l--

Copyright (C) FuseSource, Inc.

http://fusesource.com

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<beans
xmins="http://www.springframework.org/schema/beans"
xmlns:amqg="http://activemq.apache.org/schema/core"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/activemqg-
core.xsd">

<!-- Allows us to use system properties and fabric as variables in this configuration file -->
<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<property name="properties">
<bean class="io.fabric8.mq.fabric.ConfigurationProperties"/>
</property>

AX Quit "SSave "ZUndo "R Redo "G GoTo “FFind "N Next *P Previous

Any changes you make to this file will take effect whenever the broker restarts.

Type AX to quit the text editor and get back to the console prompt.

Referencing a profile resource

In order to use an arbitrary profile resource, you must be able to reference it. You can use the profile
URL to access resources stored under the current profile or parent profile. It has the following format:
profile:ResourceName A key characteristic of the profile URL is that the location of a resource can
change dynamically at run time, as follows:

® The profile URL handler first tries to find the named resource, ResourceName, in the current
version of the current profile (where the current version is a property of the container in which
the profile is running).

e |f the specified resource is not found under the current profile, the profile URL tries to find the
resource in the current version of the parent profile.

For example, the default profile provides the jetty.xml resource and this resource is accessed by setting
the

71

Red Hat JBoss Fuse 6.3 Developing and Deploying Applications

I org.opsé4j.pax.web.config.url=${profile:jetty.xml}

A.4. PROFILE ATTRIBUTES

Overview

In addition to the resources described in the other sections, a profile also has certain attributes that
affect its behavior. You cannot edit profile attributes directly using the text editor.

For completeness, this section describes what the profile attributes are and what console commands
you can use to modify them.
parents attribute

The parents attribute is a list of one or more parent profiles. This attribute can be set using the profile-
change-parents console command. For example, to assign the parent profiles camel and exf to the
my-camel-cxf-profile profile, you would enter the following console command:

I JBossFuse:karaf@root> profile-change-parents --version 1.0 my-camel-cxf-profile camel cxf

abstract attribute

When a profile's abstract attribute is set to true, the profile cannot be directly deployed to a container.
This is useful for profiles that are only intended to be the parents of other profiles—for example, mg-
base. You can set the abstract attribute from the Management Console.

locked attribute

A locked profile cannot be changed or edited until it is unlocked. You can lock or unlock a profile from
the Management Console.

hidden attribute

The hidden attribute is a flag that is typically set on profiles that Fabric creates automatically (for
example, to customize the setup of a registry server). By default, hidden profiles are not shown when you
run the profile-list command, but you can see them when you add the --hidden flag, as follows:

JBossFuse:karaf@root> profile-list --hidden

fabric 1 karaf
fabric-ensemble-0000 0

fabric-ensemble-0000-1 1 fabric-ensemble-0000
fme 0 default

72

	Table of Contents
	CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW
	1.1. COMPONENTS
	Apache Camel
	Apache CXF
	Apache ActiveMQ
	Fabric8
	Switchyard

	1.2. CONTAINERS
	Apache Karaf
	JBoss Enterprise Application Platform

	1.3. USE CASES
	1.3.1. Major Widgets Use Case
	1.3.1.1. Major Widgets Introduction
	1.3.1.2. Major Widgets Integration Plan
	1.3.1.3. Major Widgets Implementation

	1.3.2. Loans Consolidated Use Case
	1.3.2.1. Loans Consolidated Introduction
	1.3.2.2. Loans Consolidated Integration Plan
	1.3.2.3. Loans Consolidated Implementation

	CHAPTER 2. BASIC CONCEPTS FOR DEVELOPERS
	2.1. DEVELOPMENT ENVIRONMENT
	JDK
	Apache Maven
	Red Hat JBoss Fuse Tooling for Eclipse

	2.2. DEVELOPMENT MODEL
	Overview
	Maven
	Maven archetypes
	Maven POM files
	Java code and resources
	Dependency injection frameworks
	Deployment metadata
	Administrative metadata

	2.3. MAVEN ESSENTIALS
	Overview
	Build lifecycle phases
	Maven directory structure
	Convention over configuration
	Maven packaging type
	Maven artifacts
	Maven coordinates
	Maven dependencies
	dependency element
	dependency/scope element
	Transitive dependencies
	Maven repositories
	Specifying remote repositories

	2.4. DEPENDENCY INJECTION FRAMEWORKS
	Overview
	Blueprint or Spring?
	Bean registries
	Spring XML
	Spring XML file location
	Spring XML sample
	Blueprint XML
	Blueprint XML file location
	Blueprint XML sample

	CHAPTER 3. GETTING STARTED WITH DEVELOPING
	3.1. CREATE A WEB SERVICES PROJECT
	Overview
	Prerequisites
	Create project from the command line
	Customize the Web client test message
	Build the Web services project
	Initialize container security
	Start up the container
	Deploy and start the WS server
	Check that the bundle has started
	Run the WS client
	Troubleshooting

	3.2. CREATE A ROUTER PROJECT
	Overview
	Prerequisites
	Create project from the command line
	Add the required Maven dependency
	Modify the route
	Change the port in the Web client test
	Build the router project
	Install the camel-jetty feature
	Deploy and start the route
	Test the route with the WS client

	3.3. CREATE AN AGGREGATE MAVEN PROJECT
	Aggregate POM
	Parent POM
	Recommended practice
	Create an aggregate POM
	Building with the aggregate POM

	3.4. DEFINE A FEATURE FOR THE APPLICATION
	Why do you need a feature?
	What to put in a feature
	Deployment options
	Features and Fuse Fabric
	Create a custom features repository
	Install the features repository
	Deploy the custom feature

	3.5. CONFIGURE THE APPLICATION
	OSGi Config Admin service
	Setting configuration properties
	Replace TCP port with a property placeholder
	Blueprint XML example
	Deploying the configurable application

	3.6. TROUBLESHOOTING
	Check the status of a deployed bundle
	Logging
	Redeploying bundles with dev:watch

	CHAPTER 4. GETTING STARTED WITH DEPLOYING
	4.1. SCALABLE DEPLOYMENT WITH FUSE FABRIC
	Why Fuse Fabric?
	A sample fabric
	Fabric
	Fabric Ensemble
	Fabric Server
	Fabric Container
	Profile

	4.2. DEPLOYING TO A FABRIC
	4.2.1. Create a Fabric
	Overview
	Fabric server
	Child containers
	Make Quickstart Examples Available
	Steps to create the fabric
	Shutting down the containers

	4.2.2. Create Fabric Profiles
	Overview
	Contents of a profile
	Base profile
	Create a base profile
	Create the derived profiles

	4.2.3. Deploy the Profiles
	Deploy profiles to the child containers
	Check that the Web service is running

	4.2.4. Update a Profile
	Upgrading containers atomically
	Profile versioning
	Upgrade to a new profile
	Roll back to an old profile

	CHAPTER 5. GETTING STARTED WITH RED HAT JBOSS FUSE ON EAP
	5.1. INTEGRATING APACHE CAMEL WITH JBOSS EAP
	5.2. EXAMPLES OF JBOSS FUSE ON EAP
	5.2.1. Camel ActiveMQ
	5.2.1.1. Running the Application
	5.2.1.2. Configuring ActiveMQ
	5.2.1.3. Undeploy the Application

	5.2.2. Camel CDI
	5.2.2.1. Running the Application
	5.2.2.2. Configuring Camel CDI
	5.2.2.3. Undeploy the Application

	5.2.3. Camel JMS
	5.2.3.1. Running the Application
	5.2.3.2. Configuring Camel JMS
	5.2.3.3. Undeploy the Application

	5.2.4. Camel JPA
	5.2.4.1. Running the Application
	5.2.4.2. Configuring Camel JPA
	5.2.4.3. Undeploy the Application

	5.2.5. Camel Mail
	5.2.5.1. Running the Application
	5.2.5.2. Configuring Camel Mail
	5.2.5.3. Undeploy the Application

	5.2.6. Camel REST
	5.2.6.1. Running the Application
	5.2.6.2. Configuring Camel REST
	5.2.6.3. Undeploy the Application

	5.2.7. Camel Transacted JMS
	5.2.7.1. Running the Application
	5.2.7.2. Configuring Transacted JMS
	5.2.7.3. Undeploy the Application

	APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR
	A.1. EDITING AGENT PROPERTIES
	Overview
	Open the agent properties resource
	Specifying feature repository locations
	Specifying deployed features
	Specifying deployed bundles
	Specifying bundle overrides
	Specifying etc/config.properties properties
	Specifying etc/system.properties properties
	Specifying libraries to add to Java runtime lib/
	Specifying libraries to add to Java runtime lib/ext/
	Specifying libraries to add to Java runtime lib/endorsed/
	Example

	A.2. EDITING OSGI CONFIG ADMIN PROPERTIES
	Overview
	Persistent ID
	Open the Config Admin properties resource
	Specifying OSGi config admin properties
	Example

	A.3. EDITING OTHER RESOURCES
	Overview
	Creating and editing an arbitrary resource
	broker.xml example
	Referencing a profile resource

	A.4. PROFILE ATTRIBUTES
	Overview
	parents attribute
	abstract attribute
	locked attribute
	hidden attribute

