& RedHat

Red Hat JBoss Fuse 6.3

Deploying into Apache Karaf

Deploying application packages into the Apache Karaf container

Last Updated: 2020-10-26

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Deploying application packages into the Apache Karaf container

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The guide describes the options for deploying applications into a Red Hat JBoss Fuse container.

Table of Contents

Table of Contents
PART I. THE RED HAT JBOSS FUSE CONTAINER ...\ vttt e e e et 4

CHAPTER1.RED HAT JBOSS FUSE OVERVIEW i 5
11. RED HAT JBOSS FUSE CONTAINER ARCHITECTURE
1.2. DEPLOYMENT MODELS
1.3. DEPENDENCY INJECTION FRAMEWORKS
1.4. SYNCHRONOUS COMMUNICATION
1.5. ASYNCHRONOUS COMMUNICATION 10
1.6. FUSE FABRIC il

O 0 O Ul

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS i 13
2.1. SPRING AND BLUEPRINT FRAMEWORKS 13
2.2.HOT DEPLOYMENT 15
2.3. USING OSGI CONFIGURATION PROPERTIES 17

CHAPTER 3. BUILDING WITH MAVEN .. i i e it ittt 19
3.1. MAVEN DIRECTORY STRUCTURE 19
3.2. PREPARING TO USE MAVEN 21

CHAPTER 4. LOCATING ARTIFACTS WITHMAVENAND HTTP ... e 25
4.1. LOCATING HTTP ARTIFACTS 25
4.2. LOCATING MAVEN ARTIFACTS AT BUILD TIME 26
4.3. LOCATING MAVEN ARTIFACTS AT RUN TIME 27

PART Il. OSGI BUNDLE DEPLOYMENT MODEL ... i i 40

CHAPTERS.INTRODUCTION TO OSGI ... i i 41
5.1. RED HAT JBOSS FUSE 41
5.2. OSGI FRAMEWORK 42
5.3. OSGI SERVICES 43
5.4. OSGI BUNDLES 45

CHAPTER 6. BUILDING AN OSGIBUNDLE i 47
6.1. GENERATING A BUNDLE PROJECT 47
6.2. MODIFYING AN EXISTING MAVEN PROJECT 48
6.3. PACKAGING A WEB SERVICE IN A BUNDLE 50
6.4. CONFIGURING THE BUNDLE PLUG-IN 52

CHAPTER7.DEPLOYING AN OSGIBUNDLE ... e 57
71.HOT DEPLOYMENT 57
7.2. MANUAL DEPLOYMENT 57
7.3. LIFECYCLE MANAGEMENT 59
7.4. TROUBLESHOOTING DEPENDENCIES 61

CHAPTER 8. DEPLOYING FEATURES i i e it 64
8.1. CREATING A FEATURE 64
8.2. DEPLOYING A FEATURE 67

CHAPTER 9. DEPLOYING APLAIN JAR .. i i i e e ittt 72
9.1. CONVERTING A JAR USING THE WRAP SCHEME 72

CHAPTER10. OSGIBUNDLE TUTORIALS .. i i e i ittt n 74
10.1. GENERATING AND RUNNING AN EIP BUNDLE 74
10.2. GENERATING AND RUNNING A WEB SERVICES BUNDLE 76

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

PART IIl. WARDEPLOYMENT MODEL ...ttt ittt e et aaaen 79
CHAPTER L BUILDING AWAR .t i e i i et e et i e eeaas 80
11.1. MODIFYING AN EXISTING MAVEN PROJECT 80
11.2. BOOTSTRAPPING A CXF SERVLET IN A WAR 83
11.3. BOOTSTRAPPING A SPRING CONTEXT IN A WAR 84
CHAPTER 12. DEPLOYING AWAR . i i i et e et ettt it i e n e eas 86
12.1. CONVERTING THE WAR USING THE WAR SCHEME 86
12.2. CONFIGURING THE WEB CONTAINER 87
PART IV. CDIDEPLOYMENT MODEL ...ttt ittt i 89
CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)iiiiiiiiiiiiiii i 90
13.1. INTRODUCTION TO CDI 90
13.2. USE CDI 90
CHAPTER 14. PAXCDIAND OSGISERVICES ... ittt ittt 108
14.1. PAX CDI ARCHITECTURE 108
14.2. ENABLING PAX CDI 109
14.3. OSGI SERVICES EXTENSION m
CHAPTER 15. CAMEL CDI .o i i e e e e i et et ettt i s eaas ns
15.1. BASIC FEATURES 15
15.2. CAMEL BEAN INTEGRATION 123
15.3. CDI EVENTS IN CAMEL 125
15.4. OSGI INTEGRATION 127
PART V. OSGISERVICE LAYER ..t i i e i et ettt e 129
CHAPTER16. OSGISERVICESot i i e e e i it 130
16.1. THE BLUEPRINT CONTAINER 130
16.2. PUBLISHING AN OSGI SERVICE 144
16.3. ACCESSING AN OSGI SERVICE 148
16.4. INTEGRATION WITH APACHE CAMEL 151
CHAPTER17.UJMS BROKER .. .t i i e e i et i 154
17.1. WORKING WITH THE DEFAULT BROKER 154
17.2. JMS ENDPOINTS IN A ROUTER APPLICATION 156
APPENDIX A.URL HANDLERS .. i i i e e et ettt 160
Al FILE URL HANDLER 160
A2.HTTP URL HANDLER 160
A.3. MVN URL HANDLER 160
A.4. WRAP URL HANDLER 163
A.5. WAR URL HANDLER 164
APPENDIX B. OSGIBEST PRACTICES ...\ttt ittt ittt 167
B.1. OSGI TOOLING 167
B.2. BUILDING OSGI BUNDLES 168
B.3. SAMPLE POM FILE 173
IN D E X i e e e e e e e 174

Table of Contents

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

PART I. THE RED HAT JBOSS FUSE CONTAINER

Abstract

The Red Hat JBoss Fuse container is a flexible container that supports a variety of different deployment
models: OSGi bundle deployment and WAR deployment. The container is also integrated with Apache
Maven, so that required artifacts can be downloaded and installed dynamically at deploy time.

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

Abstract
Red Hat JBoss Fuse is a flexible container that allows you to deploy applications in a range of different

package types (WAR or OSGi bundle) and has support for both synchronous and asynchronous
communication.

1.1. RED HAT JBOSS FUSE CONTAINER ARCHITECTURE

Overview

Figure 1.1, "Red Hat JBoss Fuse Container Architecture” shows a high-level overview of the Red Hat
JBoss Fuse container architecture, showing the variety of deployment models that are supported.

Figure 1.1. Red Hat JBoss Fuse Container Architecture

4]

S

Bundle

hd

Deployment models

Red Hat JBoss Fuse is a multi-faceted container that supports a variety of deployment models. You can
deploy any of the following kinds of deployment unit:

OSGi bundle

An OSGi bundle is a JAR file augmented with metadata in the JAR's META-INF/MANIFEST.MF file.
Because the Red Hat JBoss Fuse container is fundamentally an OSGi container, the OSGi bundle is
also the native format for the container. Ultimately, after deployment, all of the other deployment
unit types are converted into OSGi bundles.

WAR

A Web application ARchive (WAR) is the standard archive format for applications that run inside a
Web server. As originally conceived by the Java servlet specification, a WAR packages Web pages,
JSP pages, Java classes, servlet code, and so on, as required for a typical Web application. More
generally, however, a WAR can be any deployment unit that obeys the basic WAR packaging rules
(which, in particular, require the presence of a Web application deployment descriptor, web.xml).

Spring framework

The Spring framework is a popular dependency injection framework, which is fully integrated into the
JBoss Fuse container. In other words, Spring enables you to create instances of Java objects and wire

http://www.springsource.org/

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

them together by defining a file in XML format. In addition, you can also access a wide variety of utilities
and services (such as security, persistence, and transactions) through the Spring framework.

Blueprint framework

The blueprint framework is a dependency injection framework defined by the OSGi Alliance. It is similar
to Spring (in fact, it was originally sponsored by SpringSource), but is a more lightweight framework that
is optimized for the OSGi environment.

OSGi core framework

At its heart, Red Hat JBoss Fuse is an OSGi container, based on Apache Karaf, whose architecture is
defined by the OSGi Service Platform Core Specification (available from
http://www.osgi.org/Release4/Download). OSGi is a flexible and dynamic container, whose particular
strengths include: sophisticated management of version dependencies; sharing libraries between
applications; and support for dynamically updating libraries at run time (hot fixes).

For more details about the OSGi framework, see Chapter 5, Introduction to OSGi.

Red Hat JBoss Fuse kernel

The JBoss Fuse kernel extends the core framework of OSGi, adding features such as the runtime
console, administration, logging, deployment, provisioning, management, and so on. For more details,
see Section 5.1, "Red Hat JBoss Fuse”.

1.2. DEPLOYMENT MODELS

Overview

Although Red Hat JBoss Fuse is an OSGi container at heart, it supports a variety of different
deployment models. You can think of these as virtual containers, which hide the details of the OSGi
framework. In this section we compare the deployment models to give you some idea of the weaknesses
and strengths of each model.

Table 1.1, “Alternative Deployment Packages” shows an overview of the package types associated with
each deployment model.

Table 1.1. Alternative Deployment Packages

Package Metadata Maven Plug-in URI Scheme File Suffix

Bundle MANIFEST.MF maven-bundle- None Jjar
plugin

WAR web.xml maven-war- war: .war
plugin

OSGi bundle deployment model

Figure 1.2, “Installing an OSGi Bundle” gives an overview of what happens when you install an OSGi
bundle into the Red Hat JBoss Fuse container, where the bundle depends on several other bundles.

http://www.osgi.org
http://www.osgi.org/Release4/Download

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

Figure 1.2. Installing an OSGi Bundle

OSGi Container

[App J\ install >[AEE]
T~

// —
DepA] [DepB]

,
2
T
-

insta
insta

Gl ([

Maven Repository

Implicitly, a bundle shares all of its dependencies. This is a flexible approach to deployment, which
minimizes resource consumption. But it also introduces a degree of complexity when working with large
applications. A bundle does not automatically load all of its requisite dependencies, so a bundle might fail
to resolve, due to missing dependencies. The recommended way to remedy this is to use features to
deploy the bundle together with its dependencies (see Chapter 8, Deploying Features).

WAR deployment model

Figure 1.3, “Installing a WAR" gives an overview of what happens when you install a WAR into the JBoss
Fuse container.

Figure 1.3. Installing a WAR

WAR File (OSG; Container

App [osgi:install > App

DepA DepB DepA DepB

J

The WAR has a relatively simple deployment model, because the WAR is typically packaged together
with all of its dependencies. Hence, the container usually does not have to do any work to resolve the
WAR's dependencies. The drawback of this approach, however, is that the WAR is typically large and it
duplicates libraries already available in the container (thus consuming more resources).

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

1.3. DEPENDENCY INJECTION FRAMEWORKS

Dependency injection

Dependency injection or inversion of control (IOC) is a design paradigm for initializing and configuring
applications. Instead of writing Java code that explicitly finds and sets the properties and attributes
required by an object, you declare setter methods for all of the properties and objects that this object
depends on. The framework takes responsibility for injecting dependencies and properties into the
object, using the declared setter methods. This approach reduces dependencies between components
and reduces the amount of code that must be devoted to retrieving configuration properties.

There are many popular dependency injection frameworks in current use. In particular, the Spring
framework and the blueprint framework are fully integrated with Red Hat JBoss Fuse.

OSGi framework extensions

One of the important characteristics of the OSGi framework is that it is extensible. OSGi provides a
framework extension API, which makes it possible to implement OSGi plug-ins that are tightly integrated
with the OSGi core. An OSGi extension can be deployed into the OSGi container as an extension bundle,
which is a special kind of bundle that enjoys privileged access to the OSGi core framework.

Red Hat JBoss Fuse defines extension bundles to integrate the following dependency injection
frameworks with OSGi:

® Blueprint—the blueprint extensor is based on the blueprint implementation from Apache Karaf.

® Spring—the Spring extensor is based on Spring Dynamic Modules (Spring-DM), which is the
OSGi integration component from SpringSource.

NOTE

The Spring-DM module is now deprecated. If you need an injection framework
with OSGi integration, use Blueprint instead.

Activating a framework

The framework extension mechanism enables both the Spring extensor and the blueprint extensor to be
integrated with the bundle lifecycle. In particular, the extenders receive notifications whenever a bundle
is activated (using the command, osgi:start) or de-activated (using the command, osgi:stop). This
gives the extenders a chance to scan the bundle, look for configuration files of the appropriate type and,
if necessary, activate the dependency injection framework for that bundle.

For example, when we use Spring configuration, the spring extensor scans the bundle package, looking

for any blueprint XML files in the standard location and, if it finds one or more such files, it activates the
blueprint framework for this bundle.

Blueprint XML file location

The blueprint extensor searches a bundle for blueprint XML files whose location matches the following
pattern:

I OSGI-INF/blueprint/*.xml

http://karaf.apache.org/
http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

NOTE

A blueprint XML file can also be placed in a non-standard location, by specifying the
location in a bundle header (see the section called "Custom Blueprint file locations™).

Spring XML file location

The Spring extensor searches a bundle for Spring XML files whose location matches the following
pattern:

I META-INF/spring/*.xml

NOTE

A WAR package uses a different mechanism to specify the location of Spring XML files
(see Section 11.3, “Bootstrapping a Spring Context in a WAR").

1.4. SYNCHRONOUS COMMUNICATION

Overview

Synchronous communication between bundles in the OSGi container is realized by publishing a Java
object as an OSGi service. Clients of the OSGi service can then invoke the methods of the published
object.

OSGi services

An OSGi service is a plain Java object, which is published to make it accessible to other bundles
deployed in the OSGi container. Other bundles then bind to the Java object and invoke its methods
synchronously, using the normal Java syntax. OSGi services thus support a model of synchronous
communication between bundles.

One of the strengths of this model is that the OSGi service is a perfectly ordinary Java object. The

object is not required to inherit from specific interfaces nor is it required to have any annotations. In
other words, your application code is not polluted by the OSGi deployment model.

OSGi registry

To publish an OSGi service, you must register it in the OSGi registry. The OSGi specification defines a
Java API for registering services, but the simplest way to publish an OSGi service is to exploit the special
syntax provided by the blueprint framework. Use the blueprint service element to register a Java object

in the OSGi registry. For example, to create a SavingsAccountlmpl object and export it as an OSGi
service (exposing it through the org.fusesource.example.Account Java interface)

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">
<bean id="savings" class="org.fusesource.example.SavingsAccountimpl"/>
<service ref="savings" interface="org.fusesource.example.Account"/>

</blueprint>

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Another bundle in the container can then bind to the published OSGi service, by defining a blueprint
reference element that searches the OSGi registry for a service that supports the
org.fusesource.example.Account interface.

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">

<reference id="savingsRef"
interface="org.fusesource.example.Account’/>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAccount" ref="savingsRef"/>
</bean>

</blueprint>

For more details, see Section 16.1.2, "“Defining a Service Bean”.

NOTE

Spring XML also supports the publication and binding of OSGi services.

Dynamic interaction between bundles

Another important feature of OSGi services is that they are tightly integrated with the bundle lifecycle.
When a bundle is activated (for example, using the console command, osgi:start), its OSGi services are
published to the OSGi registry. And when a bundle is de-activated (for example, using the console
command, osgi:stop), its OSGi services are removed from the OSGi registry. Clients of a service can
elect to receive notifications whenever a service is published to or removed from the OSGi registry.

Consequently, the presence or absence of an OSGi service in the registry can serve as a flag that signals
to other bundles whether or not a particular bundle is available (active). With appropriate programming,
clients can thus be implemented to respond flexibly as other bundles are uninstalled and re-installed in
the container. For example, a client could be programmed to suspend certain kinds of processing until a
bundle is re-activated, thus facilitating dynamic reconfiguration or updating of that dependent bundle.

1.5. ASYNCHRONOUS COMMUNICATION

JMS broker

You can optionally install a broker instance, typically Apache ActiveMQ, into the Red Hat JBoss Fuse
container, to provide support for asynchronous communication between bundles in the container.
Apache ActiveMQ is a sophisticated implementation of a JMS broker, which supports asynchronous
communication using either queues or topics (publish-subscribe model). Some of the basic features of
this JMS broker are as follows:

® /M protocol—the Virtual Machine (VM) transport protocol is ideal for communicating within the
container. VM is optimized for sending messages within the same JVM instance.

® Persistent or non-persistent messaging—you can choose whether the broker should persist
messages or not, depending on the requirements of your application.

® [ase of use—there is no need to create and configure destinations (that is, queues or topics)

before you can use them. After connecting to a broker, you can immediately start sending and
receiving messages. If you start sending messages to a queue that does not exist yet, Apache

10

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

ActiveMQ creates it dynamically.

® [Fxternal communication—you can also configure a TCP port on the broker, opening it up to
external JMS clients or other brokers.

For details of how to set up a JMS broker in Red Hat JBoss Fuse, see Chapter 17, JMS Broker.

1.6. FUSE FABRIC

Overview

Fuse Fabric is a technology layer that allows a group of containers to form a cluster that shares a
common set of configuration information and a common set of repositories from which to access
runtime artifacts. Fabric containers are managed by a Fabric Agent that installs a set of bundles that are
specified in the profiles assigned to the container. The agent requests artifacts from the Fabric
Ensemble. The ensemble has a list of repositories that it can access. These repositories are managed
using a Maven proxy and include a repository that is local to the ensemble.

The added layer imposed on fabric containers does not change the basic deployment models, but it
does impact how you specify what needs to be deployed. It also impacts how dependencies are located.

Bundle deployment

In a fabric container, you cannot directly deploy bundles to a container. A container's configuration is
managed by a Fabric Agent that updates its contents and configuration based on one or more profiles.
So to add a bundle to a container, you must either add the bundle to an existing profile or create a new
profile containing the bundle. When the profile is applied to a container the Fuse Agent will install the
bundle.

The installation process will download the bundle from a Maven repository and use the appropriate
install command to load it into the container. Once the bundle is installed, the dependency resolution
process proceeds as it would in a standalone container.

Things to consider

While installing bundles to a fabric container is not radically different from installing bundles in a
standalone container, there are a number of things to consider when thinking about creating profiles to
deploy your applications:

e Bundles must be accessible through the fabric's Maven proxy

When a Fabric Agent installs a bundle, it must first copy the bundle to the container's host
computer. To do so, the agent uses the fabric's Maven Proxy to locate the bundle in one of the
accessible Maven repositories and downloads it. This mechanism ensures that all of the
containers in the fabric have access to the same set of bundles.

To address this issue, you need to ensure that the fabric's Maven proxy is configured to have
access to all of the repositories from which your applications will need to download bundles. For
more information see section "Configuring Maven Proxies Directly” in "Fabric Guide" .

® Fabric Agents only load the bundles specified in a profile
A fabric container's contents is completely controlled by the profiles associated with it. The

fabric agent managing the container inspects each of the profiles associated with the container,
downloads the listed bundles, and features, and installs them. If one of the bundles in a profile

1

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Fabric_Guide/FabricMavenProxy-ConfigDirect.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

depends on a bundle that is not specified in the profile, or one of the other profiles associated
with the container, the bundle will not be able to resolve that dependency.

To address this issue you can do one of the following:

o construct your profiles to ensure that it contains all of the required bundles and their
dependencies

o deploy the application as a feature that contains all of the required bundles and their
dependencies

12

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS

Abstract

Red Hat JBoss Fuse supports two alternative dependency injection frameworks: Spring and OSGi
blueprint. These frameworks are fully integrated with the Red Hat JBoss Fuse container, so that Spring
XML files and blueprint XML files are automatically activated at the same time the corresponding
bundle is activated.

2.1. SPRING AND BLUEPRINT FRAMEWORKS

Overview

The OSGi framework allows third-party frameworks to be piggybacked on top of it. In particular, Red
Hat JBoss Fuse enables the Spring framework and the blueprint framework, by default. In the case of
the Spring framework, OSGi automatically activates any Spring XML files under the META-INF/spring/
directory in a JAR, and Spring XML files can also be hot-deployed to the ESBInstallDir/deploy
directory. In the case of the blueprint framework, OSGi automatically activates any blueprint XML files
under the OSGI-INF/blueprint/ directory in a JAR, and blueprint XML files can also be hot-deployed to
the ESBiInstallDir/deploy directory.

Prefer Blueprint over Spring-DM

The Blueprint container is now the preferred framework for instantiating, registering, and referencing
OSGi services, because this container has now been adopted as an OSGi standard. This ensures greater
portability for your OSGi service definitions in the future.

Spring Dynamic Modules (Spring-DM) provided much of the original impetus for the definition of the

Blueprint standard, but should now be regarded as obsolescent. Using the Blueprint container does not
prevent you from using the Spring framework: the latest version of Spring is compatible with Blueprint.

Configuration files

There are two kinds of file that you can use to configure your project:

® Spring configuration—in the standard Maven directory layout, Spring XML configuration files are
located under ProjectDir'src/main/resources/META-INF/spring.

® Blueprint configuration—in the standard Maven directory layout, blueprint XML configuration
files are located under ProjectDir'src/main/resources/OSGI-INF/blueprint.

If you decide to use the blueprint configuration, you can embed camelContext elements in the
blueprint file, as described in the section called "Blueprint configuration file”.

Prerequisites for blueprint configuration

If you decide to configure your Apache Camel application using blueprint, you must ensure that the
camel-blueprint feature is installed. If necessary, install it by entering the following console command:

I JBossFuse:karaf@root> features:install camel-blueprint

13

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Spring configuration file

You can deploy a camelContext using a Spring configuration file, where the root element is a Spring
beans element and the camelContext element is a child of the beans element. In this case, the
camelContext namespace must be http://camel.apache.org/schema/spring.

For example, the following Spring configuration defines a route that generates timer messages every
two seconds, sending the messages to the ExampleRouter log (which get incorporated into the
console log file, InstallDir/data/log/fuse.log):

<?xml version="1.0" encoding="UTF-8"7?>

<beans xmins="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

<camelContext xmins="http://camel.apache.org/schema/spring">
<route>
<from uri="timer://myTimer?fixedRate=true&period=2000"/>
<to uri="log:ExampleRouter"/>
</route>
</camelContext>

</beans>

It is not necessary to specify schema locations in the configuration. But if you are editing the
configuration file with an XML editor, you might want to add the schema locations in order to support
schema validation and content completion in the editor. For the preceding example, you could specify
the schema locations as follows:

<beans xmiIns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">

Blueprint configuration file

Before deploying routes in a blueprint configuration file, check that the camel-blueprint feature is already
installed.

You can deploy a camelContext using a blueprint configuration file, where the root elementis blueprint
and the camelContext element is a child of the blueprint element. In this case, the camelContext
namespace must be http://camel.apache.org/schema/blueprint.

For example, the following blueprint configuration defines a route that generates timer messages every
two seconds, sending the messages to the ExampleRouter log (which get incorporated into the
console log file, InstallDir/data/log/fuse.log):

<?xml version="1.0" encoding="UTF-8"7?>

<blueprint xmIns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

14

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS

<camelContext xmins="http://camel.apache.org/schema/blueprint">
<route>
<from uri="timer://myTimer?fixedRate=true&period=2000"/>
<to uri="log:ExampleRouter"/>
</route>
</camelContext>

</blueprint>

NOTE

Blueprint is a dependency injection framework, defined by the OSGi standard, which is
similar to Spring in many respects. For more details about blueprint, see Section 16.1, “The
Blueprint Container”.

2.2. HOT DEPLOYMENT

Types of configuration file
You can hot deploy the following types of configuration file:
® Spring XML file, deployable with the suffix, .xml.

® Blueprint XML file, deployable with the suffix, .xml.

Hot deploy directory

If you have an existing Spring XML or blueprint XML configuration file, you can deploy the configuration
file directly by copying it into the following hot deploy directory:

I InstallDir/deploy

After deploying, the configuration file is activated immediately.

Hot undeploying an XML file

To undeploy a Spring XML file or a Blueprint XML file from the hot deploy directory, simply delete the
XML file from the InstallDir/deploy directory while the Apache Karaf container is running .

IMPORTANT

The hot undeploy mechanism does not work while the container is shut down. If you shut
down the Karaf container, delete the XML file from deploy/, and then restart the Karaf
container, the automatically generated bundle corresponding to the XML file will not be
undeployed after you restart the container (you can, however, undeploy the bundle
manually using the osgi:uninstall console command).

Prerequisites

If you want to deploy Apache Camel routes in a blueprint configuration file, the camel-blueprint feature
must be installed (which it is by default). If the camel-blueprint feature has been disabled, however, you
can re-install it by entering the following console command:

15

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf
I JBossFuse:karaf@root> features:install camel-blueprint

Default bundle version

When a Spring XML file or a Blueprint XML file is hot deployed, the XML file is automatically wrapped in
an OSGi bundle and deployed as a bundle in the OSGi container. By default, the generated bundle has
the version, 0.0.0.

Customizing the bundle version

If you prefer to customize the bundle version, use the manifest element in the XML file. The manifest
element enables you to override any of the headers in the generated bundle's META-
INF/MANIFEST.MF file. In particular, you can use it to specify the bundle version.

Specifying the bundle version in a Spring XML file

To specify the bundle version in a hot-deployed Spring XML file, define a manifest element as follows:

<?xml version="1.0" encoding="UTF-8"7?>

<beans xmiIns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

<manifest xmins="http://karaf.apache.org/xmins/deployer/spring/v1.0.0">
Bundle-Version = 1.2.3.4
</manifest>

<camelContext xmins="http://camel.apache.org/schema/spring">
<route>
<from uri="timer://myTimer?fixedRate=true&period=2000"/>
<to uri="log:ExampleRouter"/>
</route>
</camelContext>

</beans>

The manifest element for Spring XML files belongs to the following schema namespace:

I http://karaf.apache.org/xmins/deployer/spring/v1.0.0

The contents of the manifest element are specified using the syntax of a Java properties file.

Specifying the bundle version in a Blueprint XML file

To specify the bundle version in a hot-deployed Blueprint XML file, define a manifest element as
follows:

<?xml version="1.0" encoding="UTF-8"7?>

<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

<manifest xmins="http://karaf.apache.org/xmins/deployer/blueprint/v1.0.0">

16

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS

Bundle-Version = 1.2.3.4
</manifest>

<camelContext xmIns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="timer://myTimer?fixedRate=true&period=2000"/>
<to uri="log:ExampleRouter"/>
</route>
</camelContext>

</blueprint>

The manifest element for Blueprint XML files belongs to the following schema namespace:

I http://karaf.apache.org/xmins/deployer/blueprint/v1.0.0

The contents of the manifest element are specified using the syntax of a Java properties file.

2.3. USING OSGI CONFIGURATION PROPERTIES

Overview

The OSGi Configuration Admin service defines a mechanism for passing configuration settings to an
OSGi bundle. You do not have to use this service for configuration, but it is typically the most convenient
way of configuring applications deployed in Red Hat JBoss Fuse.

Persistent ID

In the OSGi Configuration Admin service, a persistent ID is a name that identifies a group of related
configuration properties. In JBoss Fuse, every persistent ID, Persistent/D, is implicitly associated with a
file named PersistentlID.cfqg in the ESBInstallDir/etc/ directory. If the corresponding file exists, it can be
used to initialize the values of properties belonging to the Persistent/D property group.

For example, the etc/org.opséj.pax.url.mvn.cfg file is used to set the properties associated with the
org.opsdj.pax.url.mvn persistent ID (for the PAX Mvn URL handler).

Blueprint example

Example 2.1, “"Using OSGi Configuration Properties in Blueprint” shows how to pass the value of the
prefix variable to the constructor of the myTransform bean in blueprint XML, where the value of prefix
is set by the OSGi Configuration Admin service.

xmlins:cm="http://aries.apache.org/blueprint/xmins/blueprint-cm/v1.1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

<cm:property-placeholder persistent-id="org.fusesource.example">
<cm:default-properties>

Example 2.1. Using OSGi Configuration Properties in Blueprint
<cm:property name="prefix" value="Blueprint-Example"/>

<blueprint
xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0"

17

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

</cm:default-properties>
</cm:property-placeholder>
<bean id="myTransform" class="org.example.camel.MyTransform">

<property name="prefix" value="${prefix}" />
</bean>

</blueprint>

The syntax, {{prefix}}, substitutes the value of the prefix variable into the blueprint XML file. The OSGi
properties are set up using the following XML elements:

cm:property-placeholder

This element gives you access to the properties associated with the specified persistent ID. After
defining this element, you can use the syntax, {{ PropName}}, to substitute variables belonging to the
specified persistent ID.

cm:property-placeholder/cm:default-properties

You can optionally specify default values for properties by defining em:property elements inside the
cm:default-properties element. If the corresponding etc/PersistentlD.cfg file defines property
values, however, these will be used instead.

Using multiple property placeholders in Blueprint

Itis legal to define multiple property placeholders in a Blueprint XML file (that is, defining multiple
cm:property-placeholder elements that reference different persistent IDs). One thing that you need
to be aware of, however, is that there can be a clash if two properties from different property
placeholders have the same name. In this case, the following rules determine which property takes
precedence:

1. Explicitly defined property settings (for example, defined in a etc/PersistentiD.cfg file) take
precedence over default property settings (defined in a cm:default-properties element).

2. If there is more than one explicit setting for a given property, the setting from the last property
placeholder in the Blueprint file takes precedence.

3. Default property settings (defined in a cm:default-properties element) have the lowest
priority.

18

CHAPTER 3. BUILDING WITH MAVEN

CHAPTER 3. BUILDING WITH MAVEN

Abstract

Maven is an open source build system which is available from the Apache Maven project. This chapter
explains some of the basic Maven concepts and describes how to set up Maven to work with Red Hat
JBoss Fuse. In principle, you could use any build system to build an OSGi bundle. But Maven is strongly
recommended, because it is well supported by Red Hat JBoss Fuse.

3.1. MAVEN DIRECTORY STRUCTURE

Overview

One of the most important principles of the Maven build system is that there are standard locations for
all of the files in the Maven project. There are several advantages to this principle. One advantage is
that Maven projects normally have an identical directory layout, making it easy to find files in a project.
Another advantage is that the various tools integrated with Maven need almost no initial configuration.
For example, the Java compiler knows that it should compile all of the source files under src/main/java
and put the results into target/classes.

Standard directory layout

Example 3.1, “Standard Maven Directory Layout” shows the elements of the standard Maven directory
layout that are relevant to building OSGi bundle projects. In addition, the standard locations for Spring
and Blueprint configuration files (which are not defined by Maven) are also shown.

Example 3.1. Standard Maven Directory Layout
ProjectDir/
pom.xml
src/
main/
java/
resources/
META-INF/
spring/
*.xml
OSGI-INF/

blueprint/
*.xml
test/
java/
resources/
target/

19

http://maven.apache.org/

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

NOTE

It is possible to override the standard directory layout, but this is not a recommended
practice in Maven.

-

pom.xml file

The pom.xml file is the Project Object Model (POM) for the current project, which contains a complete
description of how to build the current project. A pom.xml file can be completely self-contained, but
frequently (particular for more complex Maven projects) it can import settings from a parent POM file.

After building the project, a copy of the pom.xml file is automatically embedded at the following
location in the generated JAR file:

I META-INF/maven/groupld artifactld/pom.xml

src and target directories

The sre/ directory contains all of the code and resource files that you will work on while developing the
project.

The target/ directory contains the result of the build (typically a JAR file), as well as all all of the
intermediate files generated during the build. For example, after performing a build, the target/classes/
directory will contain a copy of the resource files and the compiled Java classes.

main and test directories

The src/main/ directory contains all of the code and resources needed for building the artifact.

The src/test/ directory contains all of the code and resources for running unit tests against the compiled
artifact.

java directory

Each java/ sub-directory contains Java source code (*.java files) with the standard Java directory
layout (that is, where the directory pathnames mirror the Java package names, with / in place of the .
character). The src/main/java/ directory contains the bundle source code and the src/test/java/
directory contains the unit test source code.

resources directory

If you have any configuration files, data files, or Java properties to include in the bundle, these should be
placed under the src/main/resources/ directory. The files and directories under src/main/resources/
will be copied into the root of the JAR file that is generated by the Maven build process.

The files under src/test/resources/ are used only during the testing phase and will not be copied into
the generated JAR file.

Spring integration

By default, Red Hat JBoss Fuse installs and activates support for Spring Dynamic Modules (Spring DM),
which integrates Spring with the OSGi container. This means that it is possible for you to include Spring
configuration files, META-INF/spring/*.xml, in your bundle. One of the key consequences of having

20

http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/

CHAPTER 3. BUILDING WITH MAVEN

Spring DM enabled in the OSGi container is that the lifecycle of the Spring application context is
automatically synchronized with the OSGi bundle lifecycle:

® Activation—when a bundle is activated, Spring DM automatically scans the bundle to look for
Spring configuration files in the standard location (any .xml files found under the META-
INF/spring/ directory). If any Spring files are found, Spring DM creates an application context
for the bundle and creates the beans defined in the Spring configuration files.

® Stopping—when a bundle is stopped, Spring DM automatically shuts down the bundle's Spring
application context, causing any Spring beans to be deleted.

In practice, this means that you can treat your Spring-enabled bundle as if it is being deployedin a
Spring container. Using Spring DM, the features of the OSGi container and a Spring container are
effectively merged. In addition, Spring DM provides additional features to support the OSGi container
environment—some of these features are discussed in Chapter 16, OSG/ Services.

Blueprint container

OSGi R4.2 defines a blueprint container, which is effectively a standardized version of Spring DM. Red
Hat JBoss Fuse has built-in support for the blueprint container, which you can enable simply by including
blueprint configuration files, OSGI-INF/blueprint/*.xml, in your project. For more details about the
blueprint container, see Chapter 16, OSGi Services.

3.2. PREPARING TO USE MAVEN

Overview

This section gives a brief overview of how to prepare Maven for building Red Hat JBoss Fuse projects
and introduces the concept of Maven coordinates, which are used to locate Maven artifacts.
Prerequisites

In order to build a project using Maven, you must have the following prerequisites:

® Maven installation—Maven is a free, open source build tool from Apache. You can download the
latest version from the Maven download page.

® Network connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. By default, Maven looks for
repositories that are accessed over the Internet. You can change this behavior so that Maven
will prefer searching repositories that are on a local network.

NOTE
Maven can run in an offline mode. In offline mode Maven will only look for
artifacts in its local repository.

Adding the Red Hat JBoss Fuse repository

In order to access artifacts from the Red Hat JBoss Fuse Maven repository, you need to add it to
Maven's settings.xml file. Maven looks for your settings.xml file in the .m2 directory of the user's home
directory. If there is not a user specified settings.xml file, Maven will use the system-level settings.xml
file at M2_HOME/conf/settings.xml.

21

http://maven.apache.org/download.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

To add the JBoss Fuse repository to Maven's list of repositories, you can either create a new
.m2/settings.xml file or modify the system-level settings. In the settings.xml file, add the repository
element for the JBoss Fuse repository as shown in bold text in Example 3.2, “Adding the Red Hat JBoss

</repository>

<repository>

</repository>

<repository>

Fuse Repositories to Maven”.
Example 3.2. Adding the Red Hat JBoss Fuse Repositories to Maven
<?xml version="1.0"?>
<settings>
<profiles>
<profile>
<id>extra-repos</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<repositories>
<repository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
<id>redhat-ea-repository</id>
<url>https://maven.repository.redhat.com/earlyaccess/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
<id>jboss-public</id>
<name>JBoss Public Repository Group</name>
<url>https://repository.jboss.org/nexus/content/groups/public/</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
<pluginRepository>
<id>redhat-ea-repository</id>

22

</snapshots>

</pluginRepository>
<url>https://repository.jboss.org/nexus/content/groups/public</url>

</pluginRepository>

CHAPTER 3. BUILDING WITH MAVEN
<pluginRepository>
<id>jboss-public</id>
</pluginRepositories>
</profile>

<url>https://maven.repository.redhat.com/earlyaccess/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
<name>JBoss Public Repository Group</name>
</profiles>

<activeProfiles>
<activeProfile>extra-repos</activeProfile>
</activeProfiles>

</settings>

Artifacts

The basic building block in the Maven build system is an artifact. The output of an artifact, after
performing a Maven build, is typically an archive, such as a JAR or a WAR.

Maven coordinates

A key aspect of Maven functionality is the ability to locate artifacts and manage the dependencies
between them. Maven defines the location of an artifact using the system of Maven coordinates, which
uniquely define the location of a particular artifact. A basic coordinate tuple has the form, {groupld,
artifactld, version}. Sometimes Maven augments the basic set of coordinates with the additional
coordinates, packaging and classifier. A tuple can be written with the basic coordinates, or with the
additional packaging coordinate, or with the addition of both the packaging and classifier coordinates, as
follows:

groupdld.artifactld:version
groupdld.:artifactld:packaging:version
groupdld.artifactld:packaging:classifier:version

Each coordinate can be explained as follows:

groupdld

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID—for example, org.fusesource.example.

artifactld

Defines the artifact name (relative to the group ID).

version

23

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Specifies the artifact's version. A version number can have up to four parts: n.n.n.n, where the last
part of the version number can contain non-numeric characters (for example, the last part of 1.0-
SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT).

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

The group ID, artifact ID, packaging, and version are defined by the corresponding elements in an
artifact's POM file. For example:

<project ... >

<groupld>org.fusesource.example</groupld>
<artifactld>bundle-demo</artifactld>
<packaging>bundle</packaging>
<version>1.0-SNAPSHOT</version>

</project>

For example, to define a dependency on the preceding artifact, you could add the following
dependency element to a POM:

<project ... >

<dependencies>
<dependency>
<groupld>org.fusesource.example</groupld>
<artifactld>bundle-demo</artifactld>
<version>1.0-SNAPSHOT</ersion>
</dependency>
</dependencies>

</project>

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,
because a bundle is just a particular kind of JAR file and jar is the default Maven package
type. If you do need to specify the packaging type explicitly in a dependency, however,
you can use the type element.

24

CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP

CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP

Abstract

In Red Hat JBoss Fuse, Maven is the primary mechanism for locating artifacts and dependencies, both
at build time and at run time. Normally, Maven requires Internet connectivity, so that dependencies can
be downloaded from remote repositories on demand. But, as explained here, it is also possible to
provide dependencies locally, so that the need for Internet connectivity is reduced.

4.1. LOCATING HTTP ARTIFACTS

Overview

You can specify the location of an OSGi bundle (and other kinds of resource) usinga HTTP URL—for
example, by specifying a HTTP URL as the argument to the osgi:install command. This approach is
perhaps not as common as using Maven URLs, but it means that you have the option of providing OSGi
resources through a Web server.

HTTP URL protocol

The HTTP URL protocol specifies the location of an OSGi bundle (or other resource) using a standard
HTTP (or HTTPS) URL. Typically, a HTTP URL has a syntax like the following:

I http[s]: Host[: Porfl/[Path][#AnchorName][? Query]

In a standalone (non-Fabric) container, a HTTP URL lookup can be triggered by either of the following
events:

® When osgi:install is invoked on a Maven URL to install an OSGi bundle;

o When features:install is invoked to install a Karaf feature (a Karaf feature typically includes one
or more Maven URL references).

HTTP URL handler
JBoss Fuse uses Java's built-in HTTP protocol handler to resolve HTTP URLs. Hence, HTTP URL
resolution behaves exactly as you would expect in standard Java.

Karaf bundle cache

When you pass a HTTP URL as the argument to the osgi:install command (or embedded in a Karaf
feature description), JBoss Fuse downloads the referenced OSGi bundle resource, saves it in the Karaf
bundle cache (under the data/cache directory), and loads the bundle into the Karaf container runtime.
The Karaf bundle cache is used to persist all of the bundles currently installed in the Karaf runtime.

NOTE

When a Karaf container is stopped and restarted, it loads its installed bundles directly
from the Karaf bundle cache, not from the local Maven repository (or anywhere else).
Hence, if you have updated any artifacts in the local Maven repository in the meantime,
those changes are not automatically reflected in the state of the Karaf container.

25

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Configuring a HTTP proxy for HTTP URLs

To configure a HTTP proxy (which will be used when resolving HTTP URLSs), open the
InstallDirletc/system.properties file in a text editor and set the http.proxyHost and http.proxyPort
system properties with the host and port of the proxy—for example:

http.proxyHost=192.0.2.0
http.proxyPort=8080

You can optionally specify a list of non-proxy hosts (hosts that can be reached without going through
the proxy) using the http.nonProxyHosts property—for example:

I http.nonProxyHosts=Iocalhost|*.redhat.com|*.jboss.org

NOTE

An advantage of using the system properties approach to configuring the proxy is that
these settings will be used both by the mvn URL protocol handler and by the http URL
protocol handler (see the section called “Configuring a HTTP proxy for Maven URLs").

4.2. LOCATING MAVEN ARTIFACTS AT BUILD TIME

Overview

When building projects, Maven implements a simple caching scheme: artifacts are downloaded from
remote repositories on the Internet and then cached in the local repository. Figure 4.1, "How Maven
Locates Artifacts at Build Time" shows an overview of the procedure that Maven follows when locating
artifacts at build time.

Figure 4.1. How Maven Locates Artifacts at Build Time

Maven
Project

I
(D build

]] instalfl

Local Repository

@ S{user.home}/.mZ2/repository

Repositories v Maven
\'
@ |rile://...
@ http://. ..
) download

Locating artifacts at build time

26

CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP

While building a project, Maven locates required artifacts (OSGi bundles, Karaf features, required plug-
ins, and so on) as follows:

1. The first place that Maven looks for artifacts is in the local repository, ~.m2/repository/ (which
is effectively a cache where Maven stores the artifacts it has already downloaded or found
elsewhere).

2. If an artifact is not available in the local repository, Maven attempts to download the artifact
from one of the repositories listed in its configuration. This repository list can include both
internal and remote repositories.

3. If the artifact is not available from an internal repository, the next repositories to try are the
remote repositories (accessible through HTTP or HTTPS).

4. When a Maven project is built locally using the mvn install command, the project's Maven
artifacts are installed into the local repository.
Adding a remote Maven repository
Remote repositories are configured in the same way as internal repositories, except that they should be
listed after any internal repositories.
Adding an internal Maven repository

Maven enables you to specify the location of internal repositories either in your settings.xml file (which
applies to all projects) or in a pom.xml (which applies to that project only). Typically, the location of an
internal repository is specified using either a file:// URL or a http:// URL (assuming you have set up a
local Web server to serve up the artifacts) and you should generally ensure that internal repositories are
listed before remote repositories. Otherwise, there is nothing special about an internal repository: it is
just a repository that happens to be located in your internal network.

For an example of how to specify a repository in your settings.xml file, see the section called “Adding
the Red Hat JBoss Fuse repository”.

Customizing the location of the local repository

Maven resolves the location of the local repository, by checking the following settings:

1. The location specified by the localRepository element in the ~/.m2/settings.xml file (UNIX
and Linux) or C:\Documents and Settings\UserName\.m2\settings.xml (Windows).

2. Otherwise, the location specified by the localRepository element in the
M2_HOME/conf/settings.xml file.

3. Otherwise, the default location is in the user's home directory, ~/.m2/repository/ (UNIX and
Linux) or C:\Documents and Settings\UserName\.m2\repository (Windows).

4.3. LOCATING MAVEN ARTIFACTS AT RUN TIME

Abstract

At run time, the process of locating Maven artifacts is implemented by the Eclipse Aether library, which
is bundled with the Karaf container (so that it is not necessary for Apache Maven to be installed on the
container host). It is possible to customize the Karaf container's Maven configuration by editing the

27

https://eclipse.org/aether/

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

etc/org.opsdj.pax.url.mvn.cfg file. For example, you can customize the list of remote Maven
repositories and you can configure a HTTP proxy, if required.

4.3.1. Maven URL Handler Architecture

Overview

You can specify the location of an OSGi bundle using a Maven URL—for example, as the argument to
the osgi:install command. When resolution of a Maven URL is triggered, JBoss Fuse uses a

combination of the Pax URL Aether component and the Eclipse Aether component to implement artifact
resolution. The basic strategy is to search the system/ directory, then search the local Maven repository,
and then search the configured remote Maven repositories.

Maven URL protocol

The Maven URL protocol specifies the location of a Maven artifact, which can be retrieved either from
local or remote Maven repositories. For example, an artifact with the Maven coordinates,
Groupld: Artifactld: Version, can be referenced by the following Maven URL:

I mvn:Groupld/Artifactld Version

In a standalone (non-Fabric) container, a Maven URL lookup can be triggered by either of the following
events:

® When osgi:install is invoked on a Maven URL to install an OSGi bundle;

o When features:install is invoked to install a Karaf feature (a Karaf feature typically includes one
or more Maven URL references).

Pax URL Aether layer

In Apache Karaf, the framework for resolving Maven URLs is the URL protocol handler mechanism,
which is a standard feature of the Java language and JVM. To handle URLs prefixed by the mvn:
scheme, Karaf registers the OPS4J Pax URL Aether protocol handler. The Pax URL Aether layer is thus
responsible for resolving all mvn URLs in the JVM. This layer can be configured through one or both of
the following configuration files:

InstallDir/etc/org.opséj.pax.url.mvn.cfg

Stores the OSGi Config Admin properties used to configure the Pax URL Aether layer. In particular, it
is possible to specify the locations of local and remote Maven repositories through the settings in
this file. For details of the available settings, see Section 4.3.5, “Pax URL Aether Reference”.

UserHomel/.m2/settings.xml

(Optional) You can optionally configure the Pax URL Aether layer to read its configuration from a
standard Maven settings.xml file (by configuring the relevant settings in
org.opsédj.pax.url.mvn.cfg).

The main purpose of the Pax URL Aether layer is to facilitate configuration. The Pax URL Aether layer
does not actually implement resolution of Maven artifacts. That responsibility is delegated to the Eclipse
Aether layer instead.

28

https://ops4j1.jira.com/wiki/display/paxurl
https://eclipse.org/aether/

CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP

NOTE

In some old org.opsdj.pax.url.mvn.cfg configuration files, you might see the setting
disableAether=false. This setting is obsolete, however, and has no effect on the pax-url-
aether component. The current implementation of Pax URL Aether (previously called Pax
URL Maven) is completely dependent on Eclipse Aether.

Eclipse Aether layer

The Eclipse Aether layer is fundamental to Maven artifact resolution in Apache Karaf. Ultimately,
resolution of Maven artifacts for the Karaf container is always performed by the Aether layer. Note that
the Aether layer itself is stateless: the parameters required to perform resolution of a Maven artifact are
passed to the Aether layer with every invocation.

Locating artifacts at run time

Figure 4.2, "How the Container Locates Artifacts at Run Time” shows the mechanism for handling a
Maven URL and resolving a Maven artifact at run time.

Figure 4.2. How the Container Locates Artifacts at Run Time

S{karaf.home}/system

Karaf Console

Y
&)
@[csgl:install mvn:.../ .../ ...]

etc/org.opsdj.pax.url.mvn.cfg : :

| System Directory |

/path/to/custom/repository

|
|
|
|
|
|
|
| Custom Repository | |
|
|
|
|
|
|

@ ${user.home}/.mZ/repository
.localRepository=
.defaultRepositories= —}| Local Maven Reposito |
epositorieas ... T Pax URL Aether i pository
.settings= ... e e e e e e e |
o
~f’.m2£sett1lngs.xm]_ Eclipse Aether
. , Stateless
Maven settings file ()

\ I Remote
@ : [Maven

Repositories

® Install

Karaf bundle

cache

The steps followed to locate the required Maven artifacts are:

1. Resolution of a Maven artifact is triggered when a user invokes the osgi:install command on a
Maven URL (or if a user invokes the features:install command on a feature that references
some Maven URLSs).

2. Toresolve the Maven URL, the JVM calls back on the protocol handler registered against the
mvn scheme, which happens to be the Pax URL Aether component.

3. The Pax URL Aether component reads its configuration from the
InstallDirletc/org.opsdj.pax.url.mvn.cfg file (and possibly also from a Maven settings.xml file,
if so configured). The Pax URL Aether layer parses the requested Maven URL and combines
this information with the specified configuration in order to invoke the Eclipse Aether library.

29

https://eclipse.org/aether/

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

4. When the Aether library is invoked, the first step is to look up any local Maven repositories to try

and find the Maven artifact. The following local repositories are configured by default:

InstallDir/system

The JBoss Fuse system directory, which contains all of the Maven artifacts that are bundled
with the JBoss Fuse distribution.

UserHomel/.m2/repository

The user's own local Maven repository in the user's home directory, UserHome.

If you like, you can customize the list of local repositories to add your own custom Maven
repository.

If the Maven artifact is found locally, skip straight to step 7.

. If the Maven artifact cannot be found in one of the local repositories, Aether tries to look up the

specified remote repositories (using the list of remote repositories specified in the Pax URL
Aether configuration). Because the remote repositories are typically located on the Internet
(accessed through the HTTP protocol), it is necessary to have Internet access for this step to
succeed.

NOTE

If your local network requires you to use a HTTP proxy to access the Internet, it is
possible to configure Pax URL Aether to use a HTTP proxy. For example, see the
section called "Configuring a HTTP proxy for Maven URLs" for details.

. If the Maven artifact is found in a remote repository, Aether automatically installs the artifact

into the user's local Maven repository, so that another remote lookup will not be required.

. Finally, assuming that the Maven artifact has been successfully resolved, Karaf installs the

artifact in the Karaf bundle cache, InstallDir/data/cache, and loads the artifact (usually, an OSGi
bundle) into the container runtime. At this point, the artifact is effectively installed in the
container.

4.3.2. Redeploying Maven Artifacts in a Development Environment

Overview

An important aspect of the Karaf container architecture is that deployed Maven artifacts are stored in
the container cache, which is separate from the local Maven repository. Bundles and features get copied
from the local Maven repository into the cache at the time they are first deployed. After that, any
changes to the artifact in the local Maven repository are ignored.

Immutable artifacts

Usually, it makes sense to ignore changes in the local Maven repository, because Maven requires each
specific version of an artifact to be immutable: that is, once you make a particular version of a Maven
artifact available in a Maven repository, it must never change. Hence, it should never be necessary to go
back and check the Maven repository for changes to the artifact.

SNAPSHOT artifacts

30

CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP

On the other hand, there is a partial exception to this convention: in a development environment, the
same artifacts are constantly being rebuilt and retested, which requires them to be redeployed into the
Karaf container. The correct way to deal with this is to attach the suffix-SNAPSHOT to the Maven
version specifier. Maven treats these artifacts differently: for example, by periodically checking remote
Maven repositories for updates and downloading the changed artifacts to the local repository.

Explicitly redeploying

When working with SNAPSHOT artifacts, you will also need to redeploy the changed artifacts to the
Karaf container. One approach is explicit redeployment.

For example, say you have already deployed the org.example/myfoobundle/1.0.0-SNAPSHOT Maven
artifact into the Karaf container and this bundle has the bundle ID, 751. If you now rebuild this bundle
(for example, by executing mvn install in the bundle's Maven project), you can redeploy the changed
bundle with the following console commands:

osgi:uninstall 751
osgi:install mvn:org.example/myfoobundle/1.0.0-SNAPSHOT

dev:watch command

Typically, a more convenient approach to redeploying SNAPSHOT artifacts is to enable automatic
redeployment, using the dev:watch command. For example, given a particular bundle—with bundle ID,
751—you can enable automatic redeployment by entering the command:

I dev:watch 751

Now, whenever you rebuild and install the Maven artifact into your local Maven repository (for example,
by executing mvn install in your Maven project), the Karaf container automatically re-installs the
changed Maven artifact. For more details, see section "deviwatch, watch" in "Console Reference" .

IMPORTANT

Using the dev:watch command is intended for a development environment only. Itis not
recommended for use in a production environment.

4.3.3. Configuring Pax URL Aether Directly

Overview

The default approach to configuring the Pax URL Aether component is to edit the property settings in
the InstallDirletc/org.opséj.pax.url.mvn.cfg file directly. This approach is particularly convenient for a
production environment, because the Maven configuration is colocated with the rest of the container
configuration.

NOTE

In order to use the direct configuration approach, you must at least set the
org.opsdj.pax.url.mvn.repositories property. If this property is not set, Pax URL Aether
falls back to reading configuration from the Maven settings.xml file.

Adding a remote Maven repository

31

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Console_Reference/ConsoleDevWatch.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

To add a remote Maven repository to the Pax URL Aether configuration, open the
InstallDir/etc/org.opséj.pax.url.mvn.cfg configuration file in a text editor and edit the
org.opsdj.pax.url.mvn.repositories property setting. The default is as follows:

org.ops4j.pax.url.mvn.repositories= \
http://repo1.maven.org/maven2@id=maven.central.repo, \
https://maven.repository.redhat.com/ga@id=redhat.ga.repo, \
https://maven.repository.redhat.com/earlyaccess/all@id=redhat.ea.repo, \
https://repository.jboss.org/nexus/content/groups/ea@id=fuseearlyaccess

Where the org.ops4j.pax.url.mvn.repositories property is defined as a comma-separated list of
Maven repository URLs. The backslash character, \, functions as a (UNIX style) line continuation
character and must be followed immediately by the newline character. The Pax URL Aether component
supports special repository URL options, defined using the @ Option=Value syntax—see the section
called "Pax URL Aether repository URL syntax”.

NOTE

The @id option specifies the name of the repository and is required by the Aether layer.

NOTE

The presence of the org.ops4j.pax.url.mvn.repositories property setting has an
important side effect: it signals that the Pax URL Aether component takes its
configuration from the etc/org.opsdj.pax.url.mvn.cfg, not from a settings.xml file
(even if the org.opsdj.pax.url.mvn.settings property has been set).

Adding a default Maven repository

The default repositories are a list of repositories that the container always checks first. To add a default
Maven repository to the Pax URL Aether configuration, open the
InstallDir/etc/org.opséj.pax.url.mvn.cfg configuration file in a text editor and edit the
org.opsdj.pax.url.mvn.defaultRepositories property setting. The default is as follows:

org.ops4j.pax.url.mvn.defaultRepositories=\
file:${runtime.home}/${karaf.default.repository}@snapshots@id=Kkaraf.${karaf.default.repository},\
file:${runtime.home}/local-repo@snapshots@id=karaf.local-repo,\
file:${karaf.base}/${karaf.default.repository}@snapshots@id=child.karaf.${karaf.default.repository}

Where the org.ops4j.pax.url.mvn.defaultRepositories property is defined as a comma-separated list
of Maven repository URLs. The backslash character, \, functions as a (UNIX style) line continuation
character and must be followed immediately by the newline character. Local repositories should be
defined using a URL with the file: scheme. The Pax URL Aether component supports special repository
URL options, defined using the @ Option=Value syntax—see the section called “Pax URL Aether
repository URL syntax”.

NOTE

It is recommended that you leave the container's system repository as the first entry in
the list.

Customizing the location of the local Maven repository

The local Maven repository plays a special role, because it is the primary local cache of Maven artifacts:

32

CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP

whenever Maven downloads an artifact from a remote repository, it installs the artifact into the local
repository. The usual location of the local Maven repository is . m2/repository/ under the user's home
directory. You can optionally customize the location by setting the
org.opsdj.pax.url.mvn.localRepository property in the InstallDirletc/org.ops4j.pax.url.mvn.cfg
configuration file. For example:

I org.ops4j.pax.url.mvn.localRepository= /home/jbloggs/path/to/local/repository

By default, this property is not set.

Configuring a HTTP proxy for Maven URLs

To configure a HTTP proxy (which will be used when connecting to remote Maven repositories), open
the InstallDirletc/system.properties file in a text editor and set the http.proxyHost and
http.proxyPort system properties with the host and port of the proxy—for example:

http.proxyHost=192.0.2.0
http.proxyPort=8080

You can optionally specify a list of non-proxy hosts (hosts that can be reached without going through

the proxy) using the http.nonProxyHosts property—for example:

I http.nonProxyHosts=Iocalhost|*.redhat.com|*.jboss.org

NOTE

An advantage of using the system properties approach to configuring the proxy is that
these settings will be used both by the mvn URL protocol handler and by the http URL
protocol handler (see Section 4.1, “Locating HTTP Artifacts”).

4.3.4. Configuring Pax URL Aether through settings.xml

Overview

You can optionally configure Pax URL Aether using a standard Maven settings.xml file. This approach is
particularly convenient in a development environment, because it makes it possible to store your build
time settings and your run time settings all in one place.

Enabling the settings.xml configuration approach

To configure Pax URL Aether to read its configuration from a Maven settings.xml file, you must remove
or comment out the org.ops4j.pax.url.mvn.repositories setting in the
InstallDir/etc/org.opséj.pax.url.mvn.cfg file. For example, you can comment out the default
repositories setting by inserting a hash, #, at the start of the line, as follows:

#org.ops4j.pax.url.mvn.repositories=\
http://repo1.maven.org/maven2@id=maven.central.repo, \
https://maven.repository.redhat.com/ga@id=redhat.ga.repo, \
https://maven.repository.redhat.com/earlyaccess/all@id=redhat.ea.repo, \
https://repository.jboss.org/nexus/content/groups/ea@id=fuseearlyaccess

33

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

When the repositories setting is absent, Pax URL Aether implicitly switches to the settings.xml
configuration approach.

Location of the settings.xml file

By default, Pax URL Aether looks in the standard locations for the Maven settings.xml file (usually
UserHomel/.m2/settings.xml). If you like, you can specify the location explicitly using the
org.opsdj.pax.url.mvn.settings property. For example:

I org.ops4j.pax.url.mvn.settings= /home/fuse/settings.xml

For full details of the search order for settings.xml, see the description of
org.opsdj.pax.url.mvn.settings in the section called "Pax URL Aether configuration reference” .

Adding a remote Maven repository

To add a new remote Maven repository to your settings.xml file, open the settings.xml file in a text
editor and add a new repository XML element. For example, to create an entry for the JBoss Fuse
public Maven repository, add a repository element as shown:

<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">

<profiles>
<profile>
<id>my-fuse-profile</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<repositories>
<l--
| Add new remote Maven repositories here
-->
<repository>
<id>redhat-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>

</repositories>
</profiles>

</settings>

The preceding example additionally specifies that release artifacts can be downloaded, but snapshot
artifacts cannot be downloaded from the repository.

34

CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP

Customizing the location of the local Maven repository

To customize the location of your local Maven repository, open the settings.xml file in a text editor and
add (or modify) the localRepository XML element. For example, to select the directory,
/home/fuse/.m2/repository, as your local Maven repository:

<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">

<!I-- localRepository

| The path to the local repository Maven will use to store artifacts.
/

| Default: ~/.m2/repository -->
<localRepository>/home/fuse/.m2/repository</localRepository>

</settings>

For a detailed explanation of the search order for the local Maven repository, see the section called
“Local Maven repository search order”.

Configuring a HTTP proxy for Maven URLs

To configure a HTTP proxy (which will be used when connecting to remote Maven repositories), open
the settings.xml file in a text editor and add a new proxy XML element as a child of the proxies XML
element. The definition of the proxy follows the standard Maven syntax. For example, to create a proxy
for the HTTP (insecure) protocol with host, 192.0.2.0, and port, 8080, add a proxy element as follows:

<settings xmIns="http://maven.apache.org/SETTINGS/1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd">

<proxies>
<proxy>
<id>fuse-proxy-1</id>
<active>true</active>
<protocol>http</protocol>
<host>192.0.2.0</host>
<port>8080</port>
</proxy>
</proxies>

</settings>

You can also add a proxy for secure HTTPS connections by adding a proxy element configured with the
https protocol.

Reference

For a detailed description of the syntax of the Maven settings.xml file, see the Maven Settings
Reference. But please note that not all of the features documented there are necessarily supported by
the Pax URL Aether component.

35

https://maven.apache.org/settings.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

4.3.5. Pax URL Aether Reference

Overview

This section provides a configuration reference for the Pax URL Aether component, which is used to
configure the runtime behaviour of Maven in the Karaf container.

NOTE

The prefix appearing in the property names, org.ops4j.pax.url.mvn.* reflects the old
name of this component, which was previously called Pax URL Mvn,

Local Maven repository search order

Pax URL Aether resolves the location of the local repository in the following order:

1. The location specified by the org.ops4j.pax.url.mvn.localRepository property in the
org.opsdj.pax.url.mvn.cfg file.

2. Otherwise, the location specified by the localRepository element in the settings.xml file
specified by the org.ops4j.pax.url.mvn.settings property in the org.ops4j.pax.url.mvn.cfg
file.

3. Otherwise, the location specified by the localRepository element in the .m2/settings.xml file
located under the user's home directory.

4. Otherwise, the location specified by the localRepository element in the
M2_HOME/conf/settings.xml file.

5. Otherwise, the default location is .m2/repository/ under the user's home directory.

Pax URL Aether Maven URL syntax

The protocol handler registered by Pax URL Aether supports the following Maven URL syntax:

I mvn:[RepositoryUrl|Groupld/ Artifactld]/ Version/ Typel]

Where RepositoryUrl has the syntax specified by the section called “Pax URL Aether repository URL
syntax”; and Groupld, Artifactld, Version, Type are the standard Maven location coordinates.

Pax URL Aether repository URL syntax

You specify a repository location using a URL with a file:, http:, or https: scheme, optionally appending
one or more of the following suffixes:

@snapshots

Allow snapshot versions to be read from the repository.

@noreleases

Do not allow release versions to be read from the repository.

@id=RepoName
(Required) Specifies the repository name. This setting is required by the Aether handler.

36

CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP

@multi

Marks the path as a parent directory of multiple repository directories. At run time the parent
directory is scanned for subdirectories and each subdirectory is used as a remote repository.

@update=UpdatePolicy

Specifies the Maven updatePolicy, overriding the value of
org.opsdj.pax.url.mvn.globalUpdatePolicy.

@releasesUpdate=UpdatePolicy

Specifies the Maven updatePolicy specifically for release artifacts (overriding the value of
@update).

@snapshotsUpdate=UpdatePolicy

Specifies the Maven updatePolicy specifically for snapshot artifacts (overriding the value of
@update).

@checksum=ChecksumPolicy

Specifies the Maven checksumPolicy, which specifies how to react if a downloaded Maven artifact
has a missing or incorrect checksum. The policy value can be: ignore, fail, or warn.

@releasesChecksum=ChecksumPolicy

Specifies the Maven checksumPolicy specifically for release artifacts (overriding the value of
@checksum).

@snapshotsChecksum=ChecksumPolicy

Specifies the Maven checksumPolicy specifically for snapshot artifacts (overriding the value of
@checksum).

For example:

I https://repo.example.org/maven/repository@id=example.repo

Pax URL Aether configuration reference

The Pax URL Aether component can be configured by editing the etc/org.ops4j.pax.url.mvn.cfg
configuration file (uses OSGi Config Admin service). In pax-url-aether version 2.4.2, the following
configuration properties are supported:

org.opsdj.pax.url.mvn.certificateCheck

If true, enable the SSL certificate check when connecting to a remote repository through the HTTPS
protocol. If false, skip the SSL certificate check. Default is false.

org.opsédj.pax.url.mvn.defaultRepositories
Specifies a list of default (local) Maven repositories that are checked before looking up the remote

repositories. Specified as a comma-separated list of file: repository URLs, where each repository
URL has the syntax defined in the section called "Pax URL Aether repository URL syntax” .

org.opséj.pax.url.mvn.globalUpdatePolicy

37

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Specifies the Maven updatePolicy, which determines how often Aether attempts to update local
Maven artifacts from remote repositories. Can take the following values:

e always—always resolve the latest SNAPSHOT from remote Maven repositories.
® never—never check for newer remote SNAPSHOTS.

e daily—check on the first run of the day (local time).

® interval:Mins—check every Mins minutes.

Default is daily.

org.opsdj.pax.url.mvn.localRepository

Specifies the location of the local Maven repository on the file system, overriding the default value
(which is usually UserHome/.m2/repository).

org.opsédj.pax.url.mvn.proxies

Can be used to specify a HTTP proxy, a HTTPS proxy, and non-proxy host lists. The value consists of
a semicolon, ;, separated list of entries. You can include the following entries (where each entry is
optional):

e http:host=Host port=Pori[,nonProxyHosts=NonProxyHosts]

e https:host=Host port=Pori[,nonProxyHosts=NonProxyHosts]
The nonProxyHosts setting is optional and, if included, specifies a list of hosts that can be reached
without going through the proxy. The list of non-proxy hosts has its entries separated by a pipe, |,

symbol—for example, nonProxyHosts=localhost|example.org.

Here is a sample org.opsdj.pax.url.mvn.proxies setting:

I org.ops4j.pax.url.mvn.proxies= http:host=gateway,port=8080;https:host=sslgateway,port=8453

org.opséj.pax.url.mvn.proxySupport

If true, enable HTTP proxy support through property settings. When this setting is enabled, the
HTTP proxy can be configured in either of the following ways:

® Through the org.ops4j.pax.url.mvn.proxies property (takes precedence), or

® Through the http.proxyHost, http.proxyPort, and http.nonProxyHosts Java system
properties, set in the etc/system.properties file.

If false, the preceding property settings are ignored. Default is true.

NOTE

This setting has no effect on proxy support when a Maven settings.xml file is selected
to configure Pax URL Aether.

A

org.opsédj.pax.url.mvn.repositories

38

CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP

Specifies a list of remote Maven repositories that can be searched for Maven artifacts. Specified as a
comma-separated list of http: or https: repository URLs, where each repository URL has the syntax
defined in the section called "Pax URL Aether repository URL syntax” .

IMPORTANT

If the org.ops4j.pax.url.mvn.repositories property is not set, Pax URL Aether reads
its Maven settings from the relevant Maven settings.xml file instead (usually, from
UserHomel/.m2/settings.xml by default). In other words, the absence of the
org.opsdj.pax.url.mvn.repositories property implicitly enables the settings.xml
configuration approach.

org.opséj.pax.url.mvn.security

Specifies the path to a Maven settings-security.xml file. This can be used to enable server
password encryption. Default is ${user.home}/.m2/settings-security.xml.

org.opsédj.pax.url.mvn.settings

Specifies a path on the file system to override the default location of the Maven settings.xml file.
Pax URL Aether resolves the location of the Maven settings.xml file in the following order:

1. The location specified by org.ops4j.pax.url.mvn.settings.
2. ${user.home}/.m2/settings.xml
3. ${maven.home}/conf/settings.xml

4. M2_HOME/conf/settings.xml

NOTE

All settings.xml files are ignored, if the org.opsdj.pax.url.mvn.repositories property
is set.

org.opséj.pax.url.mvn.timeout

Specifies the timeout to use while downloading artifacts, in units of milliseconds. Default is 5000 (five
seconds).

39

https://maven.apache.org/guides/mini/guide-encryption.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

PART Il. OSGI BUNDLE DEPLOYMENT MODEL

Abstract
The OSGi bundle is the underlying unit of deployment for the Red Hat JBoss Fuse container. You can

either package and deploy your applications directly as bundles or use one of the alternative
deployment models (WAR).

40

CHAPTER 5. INTRODUCTION TO OSGI

CHAPTER 5. INTRODUCTION TO OSGl

Abstract

The OSGi specification supports modular application development by defining a runtime framework
that simplifies building, deploying, and managing complex applications.

5.1. RED HAT JBOSS FUSE

Overview
Red Hat JBoss Fuse has the following layered architecture:
® Technology layer—includes technologies such as JAX-WS, JAX-RS, JMS, Spring, and JEE
e the section called “Red Hat JBoss Fuse”—a wrapper layer around the OSGi container
implementation, which provides support for deploying the OSGi container as a runtime server.
Runtime features provided by the JBoss Fuse include hot deployment, management, and

administration features.

® OSGiframework —implements OSGi functionality, including managing dependencies and
bundle lifecycles

Red Hat JBoss Fuse
Figure 5.1 shows the architecture of JBoss Fuse.

Figure 5.1. Red Hat JBoss Fuse Architecture

Red Hat JBoss Fuse

4 ™
Console J [Logging J [DeploymantJ [FAB J [Pruvisiuning} E:::nﬂguratiuﬂ [Blueprint J [Springl.‘.lhnl
\ w

Service

Bundles .
Lifecycle

Security

Module

Execution Environment

OSGi Framework

JBoss Fuse is based on Apache Karaf, a powerful, lightweight, OSGi-based runtime container for

41

http://karaf.apache.org/

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

deploying and managing bundles to facilitate componentization of applications. JBoss Fuse also
provides native OS integration and can be integrated into the operating system as a service so that the
lifecycle is bound to the operating system.

As shown in Figure 5.1, JBoss Fuse extends the OSGi layers with:

® Console— an extensible Gogo console manages services, installs and manages applications and
libraries, and interacts with the JBoss Fuse runtime. It provides console commands to
administer instances of JBoss Fuse. See the "Console Reference".

® | ogging—a powerful, unified logging subsystem provides console commands to display, view
and change log levels. See "Configuring and Running JBoss Fuse".

® Deployment—supports both manual deployment of OSGi bundles using the osgi:install and
osgi:start commands and hot deployment of applications. When a JAR file, WAR file, or OSGi
bundle is copied into the hot deployment folder InstallDir/deploy, it's automatically installed on-
the-fly inside the Red Hat JBoss Fuse runtime. When you update or delete these files or
bundles, the changes are made automatically (but only while the container is running!). See
Section 7.1, “"Hot Deployment”.

® Provisioning—provides multiple mechanisms for installing applications and libraries. See
Chapter 8, Deploying Features.

® Configuration—the properties files stored in the InstallDirletc folder are continuously
monitored, and changes to them are automatically propagated to the relevant services at
configurable intervals.

® Spring DM—simplifies building Spring applications that run in an OSGi framework. When a
Spring configuration file is copied to the hot deployment folder, Red Hat JBoss Fuse generates
an OSGi bundle on-the-fly and instantiates the Spring application context.

® Blueprint—is essentially a standardized version of Spring DM. It is a dependency injection
framework that simplifies interaction with the OSGi container—for example, providing standard
XML elements to import and export OSGi services. When a Blueprint configuration file is copied
to the hot deployment folder, Red Hat JBoss Fuse generates an OSGi bundle on-the-fly and
instantiates the Blueprint context.

5.2. OSGI FRAMEWORK

Overview

The OSGi Alliance is an independent organization responsible for defining the features and capabilities
of the OSGi Service Platform Release 4. The OSGi Service Platform is a set of open specifications that
simplify building, deploying, and managing complex software applications.

OSGi technology is often referred to as the dynamic module system for Java. OSGi is a framework for
Java that uses bundles to modularly deploy Java components and handle dependencies, versioning,
classpath control, and class loading. OSGi's lifecycle management allows you to load, start, and stop
bundles without shutting down the JVM.

OSGi provides the best runtime platform for Java, a superior class loading architecture, and a registry

for services. Bundles can export services, run processes, and have their dependencies managed. Each
bundle can have its requirements managed by the OSGi container.

42

http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Console_Reference/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Configuring_and_Running_JBoss_Fuse/
http://www.osgi.org
http://www.osgi.org/Specifications/HomePage?section=2

CHAPTER 5. INTRODUCTION TO OSGI

JBoss Fuse uses Apache Felix as its default OSGi implementation. The framework layers form the
container where you install bundles. The framework manages the installation and updating of bundles in
a dynamic, scalable manner, and manages the dependencies between bundles and services.

OSGi architecture

As shown in Figure 5.1, “Red Hat JBoss Fuse Architecture”, the OSGi framework contains the following:
® Bundles — Logical modules that make up an application. See Section 5.4, "OSGi Bundles”.

® Service layer— Provides communication among modules and their contained components. This
layer is tightly integrated with the lifecycle layer. See Section 5.3, “OSGi Services”.

e Lifecycle layer — Provides access to the underlying OSGi framework. This layer handles the
lifecycle of individual bundles so you can manage your application dynamically, including starting
and stopping bundles.

® Module layer — Provides an API to manage bundle packaging, dependency resolution, and class
loading.

® Execution environment — A configuration of a JVM. This environment uses profiles that define
the environment in which bundles can work.

® Security layer — Optional layer based on Java 2 security, with additional constraints and
enhancements.

Each layer in the framework depends on the layer beneath it. For example, the lifecycle layer requires
the module layer. The module layer can be used without the lifecycle and service layers.

5.3. OSGI SERVICES

Overview

An OSGi service is a Java class or service interface with service properties defined as name/value pairs.
The service properties differentiate among service providers that provide services with the same service
interface.

An OSGi service is defined semantically by its service interface, and it is implemented as a service object.
A service's functionality is defined by the interfaces it implements. Thus, different applications can

implement the same service.

Service interfaces allow bundles to interact by binding interfaces, not implementations. A service
interface should be specified with as few implementation details as possible.

OSGi service registry

In the OSGi framework, the service layer provides communication between bundles and their contained
components using the publish, find, and bind service model. The service layer contains a service registry
where:

® Service providers register services with the framework to be used by other bundles

® Service requesters find services and bind to service providers

Services are owned by, and run within, a bundle. The bundle registers an implementation of a service with

43

http://felix.apache.org/

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

the framework service registry under one or more Java interfaces. Thus, the service's functionality is
available to other bundles under the control of the framework, and other bundles can look up and use
the service. Lookup is performed using the Java interface and service properties.

Each bundle can register multiple services in the service registry using the fully qualified name of its
interface and its properties. Bundles use names and properties with LDAP syntax to query the service
registry for services.

A bundle is responsible for runtime service dependency management activities including publication,
discovery, and binding. Bundles can also adapt to changes resulting from the dynamic availability (arrival
or departure) of the services that are bound to the bundle.

Event notification

Service interfaces are implemented by objects created by a bundle. Bundles can:
® Register services
® Search for services
® Receive notifications when their registration state changes

The OSGi framework provides an event notification mechanism so service requesters can receive
notification events when changes in the service registry occur. These changes include the publication or
retrieval of a particular service and when services are registered, modified, or unregistered.

Service invocation model

When a bundle wants to use a service, it looks up the service and invokes the Java object as a normal
Java call. Therefore, invocations on services are synchronous and occur in the same thread. You can use
callbacks for more asynchronous processing. Parameters are passed as Java object references. No
marshalling or intermediary canonical formats are required as with XML. OSGi provides solutions for the
problem of services being unavailable.

OSGi framework services

In addition to your own services, the OSGi framework provides the following optional services to
manage the operation of the framework:

® Package Admin service—allows a management agent to define the policy for managing Java
package sharing by examining the status of the shared packages. It also allows the management
agent to refresh packages and to stop and restart bundles as required. This service enables the
management agent to make decisions regarding any shared packages when an exporting bundle
is uninstalled or updated.

The service also provides methods to refresh exported packages that were removed or updated
since the last refresh, and to explicitly resolve specific bundles. This service can also trace
dependencies between bundles at runtime, allowing you to see what bundles might be affected
by upgrading.

e Start Level service—enables a management agent to control the starting and stopping order of
bundles. The service assigns each bundle a start level. The management agent can modify the
start level of bundles and set the active start level of the framework, which starts and stops the
appropriate bundles. Only bundles that have a start level less than, or equal to, this active start
level can be active.

44

CHAPTER 5. INTRODUCTION TO OSGI

® URL Handlers service—dynamically extends the Java runtime with URL schemes and content
handlers enabling any component to provide additional URL handlers.

® Permission Admin service—enables the OSGi framework management agent to administer the
permissions of a specific bundle and to provide defaults for all bundles. A bundle can have a
single set of permissions that are used to verify that it is authorized to execute privileged code.
You can dynamically manipulate permissions by changing policies on the fly and by adding new
policies for newly installed components. Policy files are used to control what bundles can do.

® Conditional Permission Admin service—extends the Permission Admin service with permissions
that can apply when certain conditions are either true or false at the time the permission is
checked. These conditions determine the selection of the bundles to which the permissions
apply. Permissions are activated immediately after they are set.

The OSGi framework services are described in detail in separate chapters in the OSGi Service Platform
Release 4 specification available from the release 4 download page on the OSGi Alliance web site.

OSGi Compendium services

In addition to the OSGi framework services, the OSGi Alliance defines a set of optional, standardized
compendium services. The OSGi compendium services provide APIs for tasks such as logging and
preferences. These services are described in the OSGi Service Platform, Service Compendium available
from the release 4 download page on the OSGi Alliance Web site.

The Configuration Admin compendium service is like a central hub that persists configuration
information and distributes it to interested parties. The Configuration Admin service specifies the
configuration information for deployed bundles and ensures that the bundles receive that data when
they are active. The configuration data for a bundle is a list of name-value pairs. See the section called
"Red Hat JBoss Fuse”.

5.4. OSGI BUNDLES

Overview

With OSGi, you modularize applications into bundles. Each bundle is a tightly coupled, dynamically
loadable collection of classes, JARs, and configuration files that explicitly declare any external
dependencies. In OSGi, a bundle is the primary deployment format. Bundles are applications that are
packaged in JARs, and can be installed, started, stopped, updated, and removed.

OSGi provides a dynamic, concise, and consistent programming model for developing bundles.
Development and deployment are simplified by decoupling the service's specification (Java interface)
from its implementation.

The OSGi bundle abstraction allows modules to share Java classes. This is a static form of reuse. The
shared classes must be available when the dependent bundle is started.

A bundle is a JAR file with metadata in its OSGi manifest file. A bundle contains class files and,
optionally, other resources and native libraries. You can explicitly declare which packages in the bundle
are visible externally (exported packages) and which external packages a bundle requires (imported
packages).

The module layer handles the packaging and sharing of Java packages between bundles and the hiding
of packages from other bundles. The OSGi framework dynamically resolves dependencies among
bundles. The framework performs bundle resolution to match imported and exported packages. It can
also manage multiple versions of a deployed bundle.

45

https://www.osgi.org/developer/downloads/
https://www.osgi.org/developer/downloads/

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Class Loading in OSGi

OSGi uses a graph model for class loading rather than a tree model (as used by the JVM). Bundles can
share and re-use classes in a standardized way, with no runtime class-loading conflicts.

Each bundle has its own internal classpath so that it can serve as an independent unit if required.
The benefits of class loading in OSGi include:

® Sharing classes directly between bundles. There is no requirement to promote JARs to a parent
class-loader.

® You can deploy different versions of the same class at the same time, with no conflict.

46

CHAPTER 6. BUILDING AN OSGI BUNDLE

CHAPTER 6. BUILDING AN OSGI BUNDLE

Abstract

This chapter describes how to build an OSGi bundle using Maven. For building bundles, the Maven
bundle plug-in plays a key role, because it enables you to automate the generation of OSGi bundle
headers (which would otherwise be a tedious task). Maven archetypes, which generate a complete
sample project, can also provide a starting point for your bundle projects.

6.1. GENERATING A BUNDLE PROJECT

Generating bundle projects with Maven archetypes

To help you get started quickly, you can invoke a Maven archetype to generate the initial outline of a
Maven project (a Maven archetype is analogous to a project wizard). The following Maven archetypes
can generate projects for building OSGi bundles:

® the section called “"Apache CXF karaf-soap-archetype archetype” .

® the section called "Apache Camel archetype”.

Apache CXF karaf-soap-archetype archetype

The Apache CXF karaf-soap-archetype archetype creates a project for building a service from Java. To
generate a Maven project with the coordinates, Groupld:Artifactld:Version, enter the following
command:

mvn archetype:generate \
-DarchetypeGroupld=io.fabric8.archetypes \
-DarchetypeAtrtifactld=karaf-soap-archetype \
-DarchetypeVersion=1.2.0.redhat-630xxx \
-Dgroupld=Groupld \
-Dartifactld=Artifactld \
-Dversion= Version\
-Dfabric8-profile=ProfileName

NOTE

The backslash character,)\, indicates line continuation on Linux and UNIX operating
systems. On Windows platforms, you must omit the backslash character and put all of the
arguments on a single line.

Apache Camel archetype

The Apache Camel OSGi archetype creates a project for building a route that can be deployed into the
OSGi container. To generate a Maven project with the coordinates, Groupld:Artifactld:Version, enter
the following command:

mvn archetype:generate \
-DarchetypeGroupld=org.apache.camel.archetypes \
-DarchetypeAtrtifactld=camel-archetype-blueprint \

47

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

-DarchetypeVersion=2.17.0.redhat-630xxx \
-Dgroupld=Groupld \

-Dartifactld=Artifactld \

-Dversion= Version

Building the bundle

By default, the preceding archetypes create a project in a new directory, whose names is the same as
the specified artifact ID, Artifactld. To build the bundle defined by the new project, open a command
prompt, go to the project directory (that is, the directory containing the pom.xml file), and enter the
following Maven command:

I mvn install

The effect of this command is to compile all of the Java source files, to generate a bundle JAR under
the Artifactld/target directory, and then to install the generated JAR in the local Maven repository.

6.2. MODIFYING AN EXISTING MAVEN PROJECT

Overview

If you already have a Maven project and you want to modify it so that it generates an OSGi bundle,
perform the following steps:

1. the section called “Change the package type to bundle” .
2. the section called “Add the bundle plug-in to your POM" .
3. the section called “Customize the bundle plug-in".

4. the section called “"Customize the JDK compiler version” .

Change the package type to bundle

Configure Maven to generate an OSGi bundle by changing the package type to bundle in your project's
pom.xml file. Change the contents of the packaging element to bundle, as shown in the following
example:

<project ... >
;backaging>bund|e</packaging>
<}broject>
The effect of this setting is to select the Maven bundle plug-in, maven-bundle-plugin, to perform

packaging for this project. This setting on its own, however, has no effect until you explicitly add the
bundle plug-in to your POM.

Add the bundle plug-in to your POM

To add the Maven bundle plug-in, copy and paste the following sample plugin element into the
project/build/plugins section of your project's pom.xml file:

48

CHAPTER 6. BUILDING AN OSGI BUNDLE

<project ... >

<build>
<defaultGoal>install</defaultGoal>
<plugins>

<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactid>
<version>2.3.7</version>
<extensions>true</extensions>
<configuration>
<instructions>
<Bundle-SymbolicName>${project.groupld}.${project.artifactid}</Bundle-
SymbolicName>
<Import-Package>*</Import-Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

</project>

Where the bundle plug-in is configured by the settings in the instructions element.

Customize the bundle plug-in

For some specific recommendations on configuring the bundle plug-in for Apache CXF, see Section 6.3,
“Packaging a Web Service in a Bundle”.

For an in-depth discussion of bundle plug-in configuration, in the context of the OSGi framework and
versioning policy, see "Managing OSGi Dependencies”.

Customize the JDK compiler version

It is almost always necessary to specify the JDK version in your POM file. If your code uses any modern
features of the Java language—such as generics, static imports, and so on—and you have not
customized the JDK version in the POM, Maven will fail to compile your source code. It is not sufficient
to set the JAVA_HOME and the PATH environment variables to the correct values for your JDK, you
must also modify the POM file.

To configure your POM file, so that it accepts the Java language features introduced in JDK 1.7, add the
following maven-compiler-plugin plug-in settings to your POM (if they are not already present):

<project ... >

<build>
<defaultGoal>install</defaultGoal>
<plugins>

<plugin>
<groupld>org.apache.maven.plugins</groupld>

<artifactld>maven-compiler-plugin</artifactld>
<configuration>

49

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Managing_OSGi_Dependencies/

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
</plugins>
</build>

</project>

6.3. PACKAGING A WEB SERVICE IN ABUNDLE

Overview

This section explains how to modify an existing Maven project for a Apache CXF application, so that the
project generates an OSGi bundle suitable for deployment in the Red Hat JBoss Fuse OSGi container.
To convert the Maven project, you need to modify the project's POM file and the project's Spring XML
file(s) (located in META-INF/spring).

Modifying the POM file to generate a bundle

To configure a Maven POM file to generate a bundle, there are essentially two changes you need to
make: change the POM's package type to bundle; and add the Maven bundle plug-in to your POM. For
details, see Section 6.1, “Generating a Bundle Project”.

Mandatory import packages

In order for your application to use the Apache CXF components, you need to import their packages into
the application's bundle. Because of the complex nature of the dependencies in Apache CXF, you
cannot rely on the Maven bundle plug-in, or the bnd tool, to automatically determine the needed
imports. You will need to explicitly declare them.

You need to import the following packages into your bundle:

javax.jws

javax.wsdl

javax.xml.bind
javax.xml.bind.annotation
javax.xml.namespace
javax.xml.ws

org.apache.cxf.bus
org.apache.cxf.bus.spring
org.apache.cxf.bus.resource
org.apache.cxf.configuration.spring
org.apache.cxf.resource
org.apache.cxf.jaxws
org.springframework.beans.factory.config

Sample Maven bundle plug-in instructions

Example 6.1, “Configuration of Mandatory Import Packages” shows how to configure the Maven bundle
plug-inin your POM to import the mandatory packages. The mandatory import packages appear as a
comma-separated list inside the Import-Package element. Note the appearance of the wildcard, *, as

50

CHAPTER 6. BUILDING AN OSGI BUNDLE

the last element of the list. The wildcard ensures that the Java source files from the current bundle are
scanned to discover what additional packages need to be imported.

javax.wsdl,

javax.xml.bind,

javax.xml.ws,
org.apache.cxf.bus,

Example 6.1. Configuration of Mandatory Import Packages
<project ... >
<build>
<plugins>
<plugin>

<groupld>org.apache.felix</groupld>

<artifactld>maven-bundle-plugin</artifactld>

<extensions>true</extensions>

<configuration>

<instructions>
<Import-Package>

javax.xml.bind.annotation,
org.apache.cxf.bus.spring,

javax.jws,

javax.xml.namespace,
org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring,
org.apache.cxf.resource,

org.apache.cxf.jaxws,
org.springframework.beans.factory.config,

</Import-Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

</project>

Add a code generation plug-in

A Web services project typically requires code to be generated. Apache CXF provides two Maven plug-
ins for the JAX-WS front-end, which enable tyou to integrate the code generation step into your build.
The choice of plug-in depends on whether you develop your service using the Java-first approach or the
WSDL-first approach, as follows:

® Java-first approach—use the cxf-java2ws-plugin plug-in.

® WSDL-first approach—use the cxf-codegen-plugin plug-in.

OSGi configuration properties

51

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

The OSGi Configuration Admin service defines a mechanism for passing configuration settings to an
OSGi bundle. You do not have to use this service for configuration, but it is typically the most convenient
way of configuring bundle applications. Both Spring DM and Blueprint provide support for OSGi
configuration, enabling you to substitute variables in a Spring XML file or a Blueprint file using values
obtained from the OSGi Configuration Admin service.

For details of how to use OSGi configuration properties, see Section 6.4, “Configuring the Bundle Plug-
In” and the section called “Add OSGi configurations to the feature” .

6.4. CONFIGURING THE BUNDLE PLUG-IN

Overview

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in's instructions element.

Configuration properties
Some of the commonly used configuration properties are:
® Bundle-SymbolicName
® Bundle-Name
® Bundle-Version
® Export-Package
® Private-Package

® Import-Package

Setting a bundle's symbolic name

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupld +"." +
artifactld, with the following exceptions:

e |f groupl/d has only one section (no dots), the first package name with classes is returned.

For example, if the group Id is commons-logging:commons-logging, the bundle's symbolic
name is org.apache.commons.logging.

e |f artifactl/d is equal to the last section of groupld, then groupldis used.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle's symbolic name is org.apache.maven.

e |[f artifactld starts with the last section of groupld, that portion is removed.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven-
core, the bundle's symbolic name is org.apache.maven.core.

52

CHAPTER 6. BUILDING AN OSGI BUNDLE

To specify your own value for the bundle's symbolic name, add a Bundle-SymbolicName child in the

plug-in's instructions element, as shown in Example 6.2.

<artifactld>maven-bundle-plugin</artifactld>
<configuration>
<instructions>

<Bundle-SymbolicName>${project.artifactld}</Bundle-SymbolicName>

</instructions>
</configuration>

<plugin>
<groupld>org.apache.felix</groupld>
</plugin>

| Example 6.2. Setting a bundle's symbolic name

Setting a bundle's name

By default, a bundle's name is set to ${project.name}.

To specify your own value for the bundle's name, add a Bundle-Name child to the plug-in's instructions

element, as shown in Example 6.3.
Example 6.3. Setting a bundle's name
<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>
<configuration>
<instructions>

<Bundle-Name>JoeFred</Bundle-Name>
</instructions>

</configuration>
</plugin>

Setting a bundle's version

By default, a bundle's version is set to ${project.version}. Any dashes (-) are replaced with dots (.) and
the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes 4.2.0.SNAPSHOT.

To specify your own value for the bundle's version, add a Bundle-Version child to the plug-in's

instructions element, as shown in Example 6.4.

<artifactld>maven-bundle-plugin</artifactld>
<configuration>

Example 6.4. Setting a bundle's version
<instructions>

<plugin>
<groupld>org.apache.felix</groupld>

53

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

</instructions>
</configuration>

<Bundle-Version>1.0.3.1</Bundle-Version>
</plugin>

Specifying exported packages

By default, the OSGi manifest's Export-Package list is populated by all of the packages in your local
Java source code (under sre/main/java), except for the deault package, ., and any packages containing
.impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages listed
in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export-Package child to the plug-in's
instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and that
are to be exported. The package names can be specified using the * wildcard symbol. For example, the
entry com.fuse.demo.* includes all packages on the project's classpath that start with com.fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For example, the entry
lcom.fuse.demo.private excludes the package com.fuse.demo.private.

When excluding packages, the order of entries in the list is important. The list is processed in order from
the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except the package
com.fuse.demo.private, list the packages using:

I lcom.fuse.demo.private,com.fuse.demo.*

However, if you list the packages using com.fuse.demo.* lcom.fuse.demo.private, then
com.fuse.demo.private is included in the bundle because it matches the first pattern.

Specifying private packages

If you want to specify a list of packages to include in a bundle without exporting them, you can add a
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a
Private-Package instruction, all packages in your local Java source are included in the bundle.

IMPORTANT

If a package matches an entry in both the Private-Package element and the Export-
Package element, the Export-Package element takes precedence. The package is
added to the bundle and exported.

54

CHAPTER 6. BUILDING AN OSGI BUNDLE

The Private-Package element works similarly to the Export-Package element in that you specify a list
of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project's classpath that are to be included in the bundle. These packages are packaged in the bundle, but
not exported (unless they are also selected by the Export-Package instruction).

Example 6.5 shows the configuration for including a private package in a bundle

<artifactld>maven-bundle-plugin</artifactld>

<configuration>

<instructions>
<Private-Package>org.apache.cxf.wsdIFirst.impl</Private-Package>

</instructions>
</configuration>

<plugin>
<groupld>org.apache.felix</groupld>
</plugin>

| Example 6.5. Including a private package in a bundle

Specifying imported packages

By default, the bundle plug-in populates the OSGi manifest's Import-Package property with a list of all
the packages referred to by the contents of the bundle.

While the default behavior is typically sufficient for most projects, you might find instances where you
want to import packages that are not automatically added to the list. The default behavior can also
result in unwanted packages being imported.

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-in's
instructions element. The syntax for the package list is the same as for the Export-Package element
and the Private-Package element.

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan the
bundle's contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example 6.6 shows the configuration for specifying the packages imported by a bundle

<artifactld>maven-bundle-plugin</artifactld>
<configuration>
<instructions>
<Import-Package>javax.jws,
javax.wsdl,
org.apache.cxf.bus,

Example 6.6. Specifying the packages imported by a bundle
org.apache.cxf.bus.spring,

<plugin>
<groupld>org.apache.felix</groupld>

55

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring,
org.apache.cxf.resource,
org.springframework.beans.factory.config,
</Import-Package>
</instructions>

</configuration>
</plugin>

More information

For more information on configuring a bundle plug-in, see:
® "Managing OSGi Dependencies”
® Apache Felix documentation

® Peter Kriens' aQute Software Consultancy web site

56

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Managing_OSGi_Dependencies/
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

Abstract

Apache Karaf provides two different approaches for deploying a single OSGi bundle: hot deployment or
manual deployment. If you need to deploy a collection of related bundles, on the other hand, itis
recommended that you deploy them together as a feature, rather than singly (see Chapter 8, Deploying
Features).

7.1.HOT DEPLOYMENT

Hot deploy directory

JBoss Fuse monitors JAR files in the InstallDir/deploy directory and hot deploys everything in this
directory. Each time a JAR file is copied to this directory, it is installed in the runtime and also started.
You can subsequently update or delete the JARs, and the changes are handled automatically.

For example, if you have just built the bundle, ProjectDir/target/foo-1.0-SNAPSHOT.jar, you can deploy
this bundle by copying it to the InstallDir/deploy directory as follows (assuming you are working on a
UNIX platform):

I % cp ProjectDirltarget/foo-1.0-SNAPSHOT .jar InstallDir/deploy

Hot undeploying a bundle

To undeploy a bundle from the hot deploy directory, simply delete the bundle file from the
InstallDir/deploy directory while the Apache Karaf container is running .

IMPORTANT

The hot undeploy mechanism does not work while the container is shut down. If you shut
down the Karaf container, delete the bundle file from deploy/, and then restart the Karaf
container, the bundle will not be undeployed after you restart the container (you can,
however, undeploy the bundle manually using the osgi:uninstall console command).

7.2. MANUAL DEPLOYMENT

Overview

You can manually deploy and undeploy bundles by issuing commands at the Red Hat JBoss Fuse
console.

Installing a bundle

Use the osgi:install command to install one or more bundles in the OSGi container. This command has
the following syntax:

I osgi:install [-s] [--start] [--help] UrlList

57

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Where UrlList is a whitespace-separated list of URLs that specify the location of each bundle to deploy.
The following command arguments are supported:

-S

Start the bundle after installing.

--start

Same as -S.

--help

Show and explain the command syntax.

For example, to install and start the bundle, ProjectDir/target/foo-1.0-SNAPSHOT.jar, enter the
following command at the Karaf console prompt:

I osgi:install -s file: ProjectDirtarget/foo-1.0-SNAPSHOT .jar

NOTE

On Windows platforms, you must be careful to use the correct syntax for the file URL in
this command. See Section A1, “File URL Handler” for details.

Uninstalling a bundle

To uninstall a bundle, you must first obtain its bundle ID using the osgi:list command. You can then
uninstall the bundle using the osgi:uninstall command (which takes the bundle ID as its argument).

For example, if you have already installed the bundle named A Camel OSGi Service Unit, entering
osgi:list at the console prompt might produce output like the following:

I [181] [Resolved] 1l 1[60] A Camel OSGi Service Unit (1.0.0.SNAPSHOT)

You can now uninstall the bundle with the ID, 181, by entering the following console command:

I osgi:uninstall 181

URL schemes for locating bundles

When specifying the location URL to the osgi:install command, you can use any of the URL schemes
supported by Red Hat JBoss Fuse, which includes the following scheme types:

® Section Al, “File URL Handler”.
® Section A2, "HTTP URL Handler”.

® Section A3, “Mvn URL Handler”.

Redeploying bundles automatically using dev:watch

In a development environment—where a developer is constantly changing and rebuilding a bundle—it is

58

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

typically necessary to re-install the bundle multiple times. Using the dev:watch command, you can
instruct Karaf to monitor your local Maven repository and re-install a particular bundle automatically, as
soon as it changes in your local Maven repository.

For example, given a particular bundle—with bundle ID, 751—you can enable automatic redeployment by
entering the command:

I dev:watch 751

Now, whenever you rebuild and install the Maven artifact into your local Maven repository (for example,
by executing mvn install in your Maven project), the Karaf container automatically re-installs the
changed Maven artifact. For more details, see section "deviwatch, watch" in "Console Reference" .

IMPORTANT

Using the dev:watch command is intended for a development environment only. Itis not
recommended for use in a production environment.

7.3. LIFECYCLE MANAGEMENT

Bundle lifecycle states

Applications in an OSGi environment are subject to the lifecycle of its bundles. Bundles have six lifecycle
states:

1. Installed — All bundles start in the installed state. Bundles in the installed state are waiting for all
of their dependencies to be resolved, and once they are resolved, bundles move to the resolved
state.

2. Resolved — Bundles are moved to the resolved state when the following conditions are met:
® The runtime environment meets or exceeds the environment specified by the bundle.
e All of the packages imported by the bundle are exposed by bundles that are either in the
resolved state or that can be moved into the resolved state at the same time as the current

bundle.

® All of the required bundles are either in the resolved state or they can be resolved at the
same time as the current bundle.

IMPORTANT

All of an application's bundles must be in the resolved state before the
application can be started.

If any of the above conditions ceases to be satisfied, the bundle is moved back into the installed
state. For example, this can happen when a bundle that contains an imported package is
removed from the container.

3. Starting — The starting state is a transitory state between the resolved state and the active

state. When a bundle is started, the container must create the resources for the bundle. The
container also calls the start() method of the bundle's bundle activator when one is provided.

59

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Console_Reference/ConsoleDevWatch.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

4. Active — Bundles in the active state are available to do work. What a bundle does in the active
state depends on the contents of the bundle. For example, a bundle containing a JAX-WS
service provider indicates that the service is available to accept requests.

5. Stopping — The stopping state is a transitory state between the active state and the resolved
state. When a bundle is stopped, the container must clean up the resources for the bundle. The
container also calls the stop() method of the bundle's bundle activator when one is provided.

6. Uninstalled — When a bundle is uninstalled it is moved from the resolved state to the uninstalled
state. A bundle in this state cannot be transitioned back into the resolved state or any other
state. It must be explicitly re-installed.

The most important lifecycle states for application developers are the starting state and the stopping
state. The endpoints exposed by an application are published during the starting state. The published
endpoints are stopped during the stopping state.

Installing and resolving bundles

When you install a bundle using the osgi:install command (without the -s flag), the kernel installs the
specified bundle and attempts to put it into the resolved state. If the resolution of the bundle fails for
some reason (for example, if one of its dependencies is unsatisfied), the kernel leaves the bundle in the
installed state.

At a later time (for example, after you have installed missing dependencies) you can attempt to move
the bundle into the resolved state by invoking the osgi:resolve command, as follows:

I osgi:resolve 181
Where the argument (181, in this example) is the ID of the bundle you want to resolve.

Starting and stopping bundles

You can start one or more bundles (from either the installed or the resolved state) using the osgi:start
command. For example, to start the bundles with IDs, 181, 185, and 186, enter the following console
command:

I osgi:start 181 185 186

You can stop one or more bundles using the osgi:stop command. For example, to stop the bundles with
IDs, 181, 185, and 186, enter the following console command:

I osgi:stop 181 185 186

You can restart one or more bundles (that is, moving from the started state to the resolved state, and
then back again to the started state) using the osgi:restart command. For example, to restart the
bundles with IDs, 181, 185, and 186, enter the following console command:

I osgi:restart 181 185 186

Bundle start level

A start level is associated with every bundle. The start level is a positive integer value that controls the
order in which bundles are activated/started. Bundles with a low start level are started before bundles
with a high start level. Hence, bundles with the start level, 1, are started first and bundles belonging to

60

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

the kernel tend to have lower start levels, because they provide the prerequisites for running most other
bundles.

Typically, the start level of user bundles is 60 or higher.

Specifying a bundle's start level

Use the osgi:bundle-level command to set the start level of a particular bundle. For example, to
configure the bundle with ID, 181, to have a start level of 70, enter the following console command:

I osgi:bundle-level 181 70

System start level

The OSGi container itself has a start level associated with it and this system start level determines which
bundles can be active and which cannot: only those bundles whose start level is less than or equal to the
system start level can be active.

To discover the current system start level, enter osgi:start-level in the console, as follows:

JBossFuse:karaf@root> osgi:start-level
Level 100

If you want to change the system start level, provide the new start level as an argument to the
osgi:start-level command, as follows:

I osgi:start-level 200

7.4. TROUBLESHOOTING DEPENDENCIES

Missing dependencies

The most common issue that can arise when you deploy an OSGi bundle into the Red Hat JBoss Fuse
container is that one or more dependencies are missing. This problem shows itself when you try to
resolve the bundle in the OSGi container, usually as a side effect of starting the bundle. The bundle fails
to resolve (or start) and a ClassNotFound error is logged (to view the log, use the log:display console
command or look at the log file in the InstallDir/data/log directory).

There are two basic causes of a missing dependency: either a required feature or bundle is not installed
in the container; or your bundle's Import-Package header is incomplete.

Required features or bundles are not installed

Evidently, all features and bundles required by your bundle must already be installed in the OSGi
container, before you attempt to resolve your bundle. In particular, because Apache Camel has a
modular architecture, where each component is installed as a separate feature, it is easy to forget to
install one of the required components.

61

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

NOTE

Consider packaging your bundle as a feature. Using a feature, you can package your
bundle together with all of its dependencies and thus ensure that they are all installed
simultaneously. For details, see Chapter 8, Deploying Features.

Import-Package header is incomplete

If all of the required features and bundles are already installed and you are still getting a ClassNotFound
error, this means that the Import-Package header in your bundle's MANIFEST.MF file is incomplete.
The maven-bundle-plugin (see Section 6.2, “"Modifying an Existing Maven Project”) is a great help
when it comes to generating your bundle's Import-Package header, but you should note the following
points:

® Make sure that you include the wildcard, *, in the Import-Package element of the Maven bundle
plug-in configuration. The wildcard directs the plug-in to scan your Java source code and
automatically generates a list of package dependencies.

® The Maven bundle plug-in is not able to figure out dynamic dependencies. For example, if your
Java code explicitly calls a class loader to load a class dynamically, the bundle plug-in does not
take this into account and the required Java package will not be listed in the generated Import-
Package header.

e |f you define a Spring XML file (for example, in the META-INF/spring directory), the Maven
bundle plug-in is not able to figure out dependencies arising from the Spring XML
configuration. Any dependencies arising from Spring XML must be added manually to the
bundle plug-in's Import-Package element.

e |f you define a blueprint XML file (for example, in the OSGI-INF/blueprint directory), any
dependencies arising from the blueprint XML file are automatically resolved at run time . This is
an important advantage of blueprint over Spring.

How to track down missing dependencies

To track down missing dependencies, perform the following steps:

1. Perform a quick check to ensure that all of the required bundles and features are actually
installed in the OSGi container. You can use osgi:list to check which bundles are installed and
features:list to check which features are installed.

2. Install (but do not start) your bundle, using the osgi:install console command. For example:
I JBossFuse:karaf@root> osgi:install MyBundleURL

3. Use the dev:dynamic-import console command to enable dynamic imports on the bundle you
just installed. For example, if the bundle ID of your bundle is 218, you would enable dynamic
imports on this bundle by entering the following command:

I JBossFuse:karaf@root> dev:dynamic-import 218

This setting allows OSGi to resolve dependencies using any of the bundles already installed in
the container, effectively bypassing the usual dependency resolution mechanism (based on the
Import-Package header). This is not recommemded for normal deployment, because it
bypasses version checks: you could easily pick up the wrong version of a package, causing your
application to malfunction.

62

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

4. You should now be able to resolve your bundle. For example, if your bundle ID is 218, enter the
followng console command:

I JBossFuse:karaf@root> osgi:resolve 218

5. Assuming your bundle is now resolved (check the bundle status using osgi:list), you can get a
complete list of all the packages wired to your bundle using the package:imports command.
For example, if your bundle ID is 218, enter the following console command:

I JBossFuse:karaf@root> package:imports 218

You should see a list of dependent packages in the console window (where the package names
are highlighted in this example):

Spring Beans (67): org.springframework.beans.factory.xml; version=3.0.5.RELEASE
Web Services Metadata 2.0 (104): javax.jws; version=2.0.0

Apache CXF Bundle Jar (125): org.apache.cxf.helpers; version=2.4.2.fuse-00-08

Apache CXF Bundle Jar (125): org.apache.cxf.transport.jms.wsdl11; version=2.4.2.fuse-
00-08

6. Unpack your bundle JAR file and look at the packages listed under the Import-Package header
in the META-INF/MANIFEST.MF file. Compare this list with the list of packages found in the
previous step. Now, compile a list of the packages that are missing from the manifest's Import-
Package header and add these package names to the Import-Package element of the Maven
bundle plug-in configuration in your project's POM file.

7. To cancel the dynamic import option, you must uninstall the old bundle from the OSGi
container. For example, if your bundle ID is 218, enter the following command:

I JBossFuse:karaf@root> osgi:uninstall 218

8. You can now rebuild your bundle with the updated list of imported packages and test it in the
OSGi container.

63

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

CHAPTER 8. DEPLOYING FEATURES

Abstract

Because applications and other tools typically consist of multiple OSGi bundles, it is often convenient to
aggregate inter-dependent or related bundles into a larger unit of deployment. Red Hat JBoss Fuse
therefore provides a scalable unit of deployment, the feature, which enables you to deploy multiple
bundles (and, optionally, dependencies on other features) in a single step.

8.1. CREATING A FEATURE

Overview

Essentially, a feature is created by adding a new feature element to a special kind of XML file, known as a
feature repository. To create a feature, perform the following steps:

1. the section called “"Create a custom feature repository”.

2. the section called "Add a feature to the custom feature repository” .

3. the section called "Add the local repository URL to the features service” .
4. the section called "Add dependent features to the feature”.

5. the section called "Add OSGi configurations to the feature” .

Create a custom feature repository

If you have not already defined a custom feature repository, you can create one as follows. Choose a
convenient location for the feature repository on your file system—for example,
C:\Projects\features.xml—and use your favorite text editor to add the following lines to it:

<?xml version="1.0" encoding="UTF-8"7?>
<features name="CustomRepository'>
</features>

Where you must specify a name for the repository, CustomRepository, by setting the name attribute.

NOTE

In contrast to a Maven repository or an OBR, a feature repository does not provide a
storage location for bundles. A feature repository merely stores an aggregate of
references to bundles. The bundles themselves are stored elsewhere (for example, in the
file system or in a Maven repository).

Add a feature to the custom feature repository

To add a feature to the custom feature repository, insert a new feature element as a child of the root
features element. You must give the feature a name and you can list any number of bundles belonging
to the feature, by inserting bundle child elements. For example, to add a feature named example-
camel-bundle containing the single bundle, C:\Projects\camel-bundle\target\camel-bundle-1.0-
SNAPSHOT.jar, add a feature element as follows:

64

CHAPTER 8. DEPLOYING FEATURES

<?xml version="1.0" encoding="UTF-8"7?>
<features name="MyFeaturesRepo">
<feature name="example-camel-bundle">
<bundle>file:C:/Projects/camel-bundle/target/camel-bundle-1.0-SNAPSHOT .jar</bundle>
</feature>
</features>

The contents of the bundle element can be any valid URL, giving the location of a bundle (see
Appendix A, URL Handlers). You can optionally specify a version attribute on the feature element, to
assign a non-zero version to the feature (you can then specify the version as an optional argument to
the features:install command).

To check whether the features service successfully parses the new feature entry, enter the following
pair of console commands:

JBossFuse:karaf@root> features:refreshUrl
JBossFuse:karaf@root> features:list

[uninstalled] [0.0.0] example-camel-bundle MyFeaturesRepo

The features:list command typically produces a rather long listing of features, but you should be able to
find the entry for your new feature (in this case, example-camel-bundle) by scrolling back through the
listing. The features:refreshUrl command forces the kernel to reread all the feature repositories: if you
did not issue this command, the kernel would not be aware of any recent changes that you made to any
of the repositories (in particular, the new feature would not appear in the listing).

To avoid scrolling through the long list of features, you can grep for the example-camel-bundie
feature as follows:

JBossFuse:karaf@root> features:list | grep example-camel-bundle
[uninstalled] [0.0.0] example-camel-bundle MyFeaturesRepo

Where the grep command (a standard UNIX pattern matching utility) is built into the shell, so this
command also works on Windows platforms.

Add the local repository URL to the features service

In order to make the new feature repository available to Apache Karaf, you must add the feature
repository using the features:addUrl console command. For example, to make the contents of the
repository, C:\Projects\features.xml, available to the kernel, you would enter the following console
command:

I features:addUrl file:C:/Projects/features.xml

Where the argument to features:addUrl can be specified using any of the supported URL formats (see
Appendix A, URL Handlers).

You can check that the repository's URL is registered correctly by entering the features:listUrl console
command, to get a complete listing of all registered feature repository URLSs, as follows:

JBossFuse:karaf@root> features:listUrl
file:C:/Projects/features.xml
mvn:org.apache.ode/ode-jbi-karaf/1.3.3-fuse-01-00/xml/features

65

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

I mvn:org.apache.felix.karaf/apache-felix-karaf/1.2.0-fuse-01-00/xml/features

Add dependent features to the feature

If your feature depends on other features, you can specify these dependencies by adding feature
elements as children of the original feature element. Each child feature element contains the name of a
feature on which the current feature depends. When you deploy a feature with dependent features, the
dependency mechanism checks whether or not the dependent features are installed in the container. If
not, the dependency mechanism automatically installs the missing dependencies (and any recursive
dependencies).

For example, for the custom Apache Camel feature, example-camel-bundle, you can specify explicitly
which standard Apache Camel features it depends on. This has the advantage that the application could
now be successfully deployed and run, even if the OSGi container does not have the required features
pre-deployed. For example, you can define the example-camel-bundle feature with Apache Camel
dependencies as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<features name="MyFeaturesRepo">
<feature name="example-camel-bundle">
<bundle>file:C:/Projects/camel-bundle/target/camel-bundle-1.0-SNAPSHOT .jar</bundle>
<feature version="6.3.0.redhat-xxx">camel-core</feature>
<feature version="6.3.0.redhat-xxx">camel-spring-osgi</feature>
</feature>
</features>

Specifying the version attribute is optional. When present, it enables you to select the specified version
of the feature.

Add OSGi configurations to the feature

If your application uses the OSGi Configuration Admin service, you can specify configuration settings for
this service using the config child element of your feature definition. For example, to specify that the
prefix property has the value, MyTransform, add the following config child element to your feature's
configuration:

<?xml version="1.0" encoding="UTF-8"7?>
<features name="MyFeaturesRepo">
<feature name="example-camel-bundle">
<config name="org.fusesource.fuseesb.example">
prefix=MyTransform
</config>
</feature>
</features>

Where the name attribute of the config element specifies the persistent ID of the property settings
(where the persistent ID acts effectively as a name scope for the property names). The content of the
config element is parsed in the same way as a Java properties file.

The settings in the config element can optionally be overridden by the settings in the Java properties
file located in the InstallDirletc directory, which is named after the persistent ID, as follows:

I InstallDir/etc/org.fusesource.fuseesb.example.cfg

66

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html#load%28java.io.InputStream%29

CHAPTER 8. DEPLOYING FEATURES

As an example of how the preceding configuration properties can be used in practice, consider the
following Blueprint XML file that accesses the OSGi configuration properties:

<?xml version="1.0" encoding="UTF-8"7?>

<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmins/blueprint-cm/v1.1.0">

<!-- osgi blueprint property placeholder -->
<cm:property-placeholder id="placeholder"
persistent-id="org.fusesource.fuseesb.example">
<cm:default-properties>
<cm:property name="prefix" value="DefaultValue"/>
</cm:default-properties>
</cm:property-placeholder>

<bean id="myTransform" class="org.fusesource.fuseesb.example.MyTransform">
<property name="prefix" value="${prefix}"/>
</bean>

</blueprint>

When this Blueprint XML file is deployed in the example-camel-bundle bundle, the property reference,
${prefix}, is replaced by the value, MyTransform, which is specified by the config element in the feature
repository.

Automatically deploy an OSGi configuration

By adding a configfile element to a feature, you can ensure that an OSGi configuration file gets added
to the InstallDirletc directory at the same time that the feature is installed. This means that you can
conveniently install a feature and its associated configuration at the same time.

For example, given that the org.fusesource.fuseesb.example.cfg configuration file is archived in a

Maven repository at mvn:org.fusesource.fuseesb.example/configadmin/1.0/cfg, you could deploy
the configuration file by adding the following element to the feature:

<configfile finalname="etc/org.fusesource.fuseesb.example.cfg">
mvn:org.fusesource.fuseesb.example/configadmin/1.0/cfg
</configfile>

8.2. DEPLOYING A FEATURE

Overview

You can deploy a feature in one of the following ways:
® |[nstall at the console, using features:install.
® Use hot deployment.

® Modify the boot configuration (first boot only!).

Installing at the console

67

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

After you have created a feature (by adding an entry for it in a feature repository and registering the
feature repository), it is relatively easy to deploy the feature using the features:install console
command. For example, to deploy the example-camel-bundle feature, enter the following pair of
console commands:

JBossFuse:karaf@root> features:refreshUrl
JBossFuse:karaf@root> features:install example-camel-bundle

It is recommended that you invoke the features:refreshUrl command before calling features:install, in
case any recent changes were made to the features in the feature repository which the kernel has not
picked up yet. The features:install command takes the feature name as its argument (and, optionally,
the feature version as its second argument).

NOTE

Features use a flat namespace. So when naming your features, be careful to avoid name
clashes with existing features.

Uninstalling at the console

To uninstall a feature, invoke the features:uninstall command as follows:

I JBossFuse:karaf@root> features:uninstall example-camel-bundle

NOTE

After uninstalling, the feature will still be visible when you invoke features:list, but its
status will now be flagged as [uninstalled].

Hot deployment

You can hot deploy all of the features in a feature repository simply by copying the feature repository
file into the InstallDir/deploy directory.

As it is unlikely that you would want to hot deploy an entire feature repository at once, it is often more
convenient to define a reduced feature repository or feature descriptor, which references only those
features you want to deploy. The feature descriptor has exactly the same syntax as a feature repository,
but it is written in a different style. The difference is that a feature descriptor consists only of references
to existing features from a feature repository.

For example, you could define a feature descriptor to load the example-camel-bundle feature as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<features name="CustomDescriptor'>
<repository>RepositoryURL</repository>
<feature name="hot-example-camel-bundle">
<feature>example-camel-bundle</feature>
</feature>
</features>

68

CHAPTER 8. DEPLOYING FEATURES

The repository element specifies the location of the custom feature repository, RepositoryURL (where
you can use any of the URL formats described in Appendix A, URL Handlers). The feature, hot-
example-camel-bundle, is just a reference to the existing feature, example-camel-bundile.

Hot undeploying a features file

To undeploy a features file from the hot deploy directory, simply delete the features file from the
InstallDir/deploy directory while the Apache Karaf container is running .

IMPORTANT

The hot undeploy mechanism does not work while the container is shut down. If you shut
down the Karaf container, delete the features file from deploy/, and then restart the
Karaf container, the features will not be undeployed after you restart the container (you
can, however, undeploy the features manually using the features:uninstall console
command).

Adding a feature to the boot configuration

If you want to provision copies of Apache Karaf for deployment on multiple hosts, you might be
interested in adding a feature to the boot configuration, which determines the collection of features
that are installed when Apache Karaf boots up for the very first time.

The configuration file, /etc/org.apache.karaf.features.cfg, in your install directory contains the
following settings:

#

Comma separated list of features repositories to register by default

#

featuresRepositories=\
mvn:org.apache.karaf.assemblies.features/standard/2.4.0.redhat-630187/xml/features,\
mvn:org.apache.karaf.assemblies.features/spring/2.4.0.redhat-630187/xml/features,\
mvn:org.apache.karaf.assemblies.features/enterprise/2.4.0.redhat-630187/xml/features,\
mvn:org.apache.cxf.karaf/apache-cxf/3.1.5.redhat-630187/xml/features,\
mvn:org.apache.camel.karaf/apache-camel/2.17.0.redhat-630187/xml/features,\
mvn:org.apache.activemg/activemqg-karaf/5.11.0.redhat-630187/xml/features-core,\
mvn:io.fabric8/fabric8-karaf/1.2.0.redhat-630187/xml/features,\
mvn:org.jboss.fuse/jboss-fuse/6.3.0.redhat-187/xml/features,\
mvn:io.fabric8.patch/patch-features/1.2.0.redhat-630187/xml/features,\
mvn:io.hawt/hawtio-karaf/1.4.0.redhat-630187/xml/features,\
mvn:io.fabric8.support/support-features/1.2.0.redhat-630187/xml/features,\
mvn:org.fusesource/camel-sap/6.3.0.redhat-187/xml/features,\
mvn:org.switchyard.karaf/switchyard/2.1.0.redhat-630187/xml/core-features

#
Comma separated list of features to install at startup
#
featuresBoot=\
jasypt-encryption,\
pax-url-classpath,\
deployer,\
config,\
management,\
fabric-cxf,\

69

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

fabric,\
fabric-maven-proxy,\
patch,\

transaction,\
jms-spec;version=2.0,\
mgq-fabric,\
swagger,\

camel,\

camel-cxf,\
camel-jms,\
camel-amgq,\
camel-blueprint,\
camel-csv,\
camel-ftp,\
camel-bindy,\
camel-jdbc,\
camel-exec,\
camel-jasypt,\
camel-saxon,\
camel-snmp,\
camel-ognl,\
camel-routebox,\
camel-script,\
camel-spring-javaconfig,\
camel-jaxb,\
camel-jmx,\
camel-mail)\
camel-paxlogging,\
camel-rmi,\

war,\

fabric-redirect,\
hawtio-offline,\
support,\
hawtio-redhat-fuse-branding,\
jsr-311

featuresBlackList=\
pax-cdi-openwebbeans,\
pax-cdi-web-openwebbeans,\
spring-struts,\
cxf-bean-validation-java6,\
pax-cdi-1.2-web,\
pax-jsf-support,\
camel-ignite,\
camel-jetty8,\
camel-ironmq,\
camel-gae

This configuration file has two properties:
o featuresRepositories—comma separated list of feature repositories to load at startup.
o featuresBoot—comma separated list of features to install at startup.

e featuresBlackList—comma separated list of features that are prevented from being installed
(to protect against unsupported or buggy features).

70

CHAPTER 8. DEPLOYING FEATURES

You can modify the configuration to customize the features that are installed as JBoss Fuse starts up.
You can also modify this configuration file, if you plan to distribute JBoss Fuse with pre-installed
features.

IMPORTANT

This method of adding a feature is only effective the first time a particular Apache Karaf
instance boots up. Any changes made subsequently to the featuresRepositories setting
and the featuresBoot setting are ignored, even if you restart the container.

You could force the container to revert back to its initial state, however, by deleting the
complete contents of the InstallDir/data/cache (thereby losing all of the container's
custom settings).

71

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

CHAPTER 9. DEPLOYING A PLAIN JAR

Abstract

This chapter explains how to deal with plain JAR files (typically libraries) that contain no deployment
metadata whatsoever. That is, a plain JAR is neither a WAR, nor an OSGi bundle.

If the plain JAR occurs as a dependency of a bundle, you must add bundle headers to the JAR . If the
JAR exposes a public API, typically the best solution is to convert the existing JAR into a bundle,
enabling the JAR to be shared with other bundles. This chapter describes how to perform the
conversion process automatically, using the open source Bnd tool.

For more information on Bnd tool, see Bnd tools website.

9.1. CONVERTING A JAR USING THE WRAP SCHEME

Overview

You also have the option of converting a JAR into a bundle using the wrap scheme, which can be
prefixed to any existing URL format. The wrap scheme is also based on the Bnd utility.

Syntax

The wrap scheme has the following basic syntax:

I wrap:LocationURL

The wrap scheme can prefix any URL that locates a JAR. The locating part of the URL, LocationURL, is
used to obtain the (non-bundlized) JAR and the URL handler for the wrap scheme then converts the
JAR automatically into a bundle.

NOTE

The wrap scheme also supports a more elaborate syntax, which enables you to customize
the conversion by specifying a Bnd properties file or by specifying individual Bnd
properties in the URL. Typically, however, the wrap scheme is used just with its default
settings.

Default properties

Because the wrap scheme is based on the Bnd utility, it uses exactly the same default properties to

generate the bundle as Bnd does—see ?77.

Wrap and install

The following example shows how you can use a single console command to download the plain
commons-logging JAR from a remote Maven repository, convert it into an OSGi bundle on the fly, and
then install it and start it in the OSGi container:

I JBossFuse:karaf@root> osgi:install -s wrap:mvn:commons-logging/commons-logging/1.1.1

72

http://http//bndtools.org/

CHAPTER 9. DEPLOYING A PLAIN JAR

Reference

The wrap scheme is provided by the Pax project, which is the umbrella project for a variety of open
source OSGi utilities. For full documentation on the wrap scheme, see the Wrap Protocol reference

page.

73

http://team.ops4j.org/wiki/display/ops4j/Pax
http://team.ops4j.org/wiki/display/paxurl/Wrap+Protocol

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

CHAPTER 10. OSGI BUNDLE TUTORIALS

Abstract

This chapter presents tutorials for Apache Camel and Apache CXF applications. Each tutorial describes
how to generate, build, run, and deploy an application as an OSGi bundle.

10.1. GENERATING AND RUNNING AN EIP BUNDLE

Overview

This section explains how to generate, build, and run a complete Apache Camel example as an OSGi
bundle, where the starting point code is generated with the help of a Maven archetype.

Prerequisites

In order to generate a project using an Red Hat JBoss Fuse Maven archetype, you must have the
following prerequisites:

® Maven installation—Maven is a free, open source build tool from Apache. You can download the
latest version from http://maven.apache.org/download.html (minimum is 3.x).

® |nternet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your build
machine must be connected to the Internet.

® fusesource Maven repository is configured—in order to locate the archetypes, Maven's
settings.xml file must be configured with the location of the fusesource Maven repository. For
details of how to set this up, see the section called “Adding the Red Hat JBoss Fuse repository” .

Generating an EIP bundle

The karaf-camel-cbr-archetype archetype creates a router project, which is configured to deploy as a
bundle. To generate a Maven project with the coordinates, org.fusesource.example:camel-bundle,
enter the following command:

mvn archetype:generate \
-DarchetypeGroupld=io.fabric8.archetypes \
-DarchetypeArtifactld=karaf-camel-cbr-archetype \
-DarchetypeVersion=1.2.0.redhat-630xxx \
-Dgroupld=org.fusesource.example \
-Dartifactld=camel-bundle \
-Dversion=1.0-SNAPSHOT \
-Dfabric8-profile=camel-bundle-profile

NOTE

The backslash character,)\, indicates line continuation on Linux and UNIX operating
systems. On Windows platforms, you must omit the backslash character and put all of the
arguments on a single line.

74

http://maven.apache.org/download.html

CHAPTER 10. OSGI BUNDLE TUTORIALS

The result of this command is a directory, ProjectDircamel-bundle, containing the files for the
generated bundle project.

Running the EIP bundle

To install and run the generated camel-bundle project, perform the following steps:

1. Build the project—open a command prompt and change directory to ProjectDircamel-bundle.
Use Maven to build the demonstration by entering the following command:

I mvn install

If this command runs successfully, the ProjectDirlcamel-bundle/target directory should contain
the bundle file, camel-bundle.jar and the bundle will also be installed in the local Maven
repository.

2. Install prerequisite features (optional) —by default, the camel-core feature and some related
features are pre-installed in the OSGi container. But many of the Apache Camel components
are not installed by default. To check which features are available and whether or not they are
installed, enter the following console command:

I JBossFuse:karaf@root> features:list

Apache Camel features are identifiable by the camel- prefix. For example, if one of your routes
requires the HTTP component, you can make sure that it is installed in the OSGi container by
issuing the following console command:

I JBossFuse:karaf@root> features:install camel-http

3. Install and start the camel-bundle bundle —at the Red Hat JBoss Fuse console, enter the
following command to install the bundle from the local Maven repository (see Section A.3, “Mvn
URL Handler"):

JBossFuse:karaf@root> osgi:install -s mvn:org.fusesource.example/camel-bundle/1.0-
SNAPSHOT

4. Provide the route with file data to process —after the route has started, you should find the
following directory under your JBoss Fuse installation:

I InstallDir/work/cbr/input

To initiate content routing in this example, copy the provided data files from the
ProjectDir'camel-bundle/src/main/fabric8/data directory into the InstallDir/work/cbr/input
directory.

5. View the output—after a second or two, the data files disappear from the work/cbr/input
directory, as the route moves the data files into various sub-directories of the work/cbr/output

directory.

6. Stop the camel-bundle bundle —to stop the camel-bundle bundle, you first need to discover the
relevant bundle number. To find the bundle number, enter the following console command:

I JBossFuse:karaf@root> osgi:list

75

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

At the end of the listing, you should see an entry like the following:

[265] [Active][Created][][80] JBoss Fuse Quickstart: camel-cbr
(1.0.0.SNAPSHQOT)

Where, in this example, the bundle number is 265. To stop this bundle, enter the following
console command:

I JBossFuse:karaf@root> osgi:stop 265

10.2. GENERATING AND RUNNING A WEB SERVICES BUNDLE

Overview

This section explains how to generate, build, and run a complete Apache CXF example as a bundle in the
OSGi container, where the starting point code is generated with the help of a Maven archetype.

Prerequisites

In order to generate a project using a Red Hat JBoss Fuse Maven archetype, you must have the
following prerequisites:

® Maven installation—Maven is an open source build tool from Apache. You can download the
latest version from http://maven.apache.org/download.html (minimum is 3.x).

® |nternet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your build
machine must be connected to the Internet.

® fusesource Maven repository is configured—in order to locate the archetypes, Maven's
settings.xml file must be configured with the location of the fusesource Maven repository. For
details of how to set this up, see the section called “Adding the Red Hat JBoss Fuse repository” .

Generating a Web services bundle

The karaf-soap-archetype archetype creates a project for building a Java-first JAX-WS application
that can be deployed into the OSGi container. To generate a Maven project with the coordinates,
org.fusesource.example:cxf-code-first-bundle, enter the following command:

mvn archetype:generate \
-DarchetypeGroupld=io.fabric8.archetypes \
-DarchetypeAtrtifactld=karaf-soap-archetype \
-DarchetypeVersion=1.2.0.redhat-630xxx \
-Dgroupld=org.fusesource.example \
-Dartifactld=cxf-code-first-bundle \
-Dversion=1.0-SNAPSHOT \
-Dfabric8-profile=cxf-code-first-bundle-profile

76

http://maven.apache.org/download.html

The result of this command is a directory, ProjectDircxf-code-first-bundle, containing the files for the

CHAPTER 10. OSGI BUNDLE TUTORIALS

NOTE

The backslash character,)\, indicates line continuation on Linux and UNIX operating

systems. On Windows platforms, you must omit the backslash character and put all of the

arguments on a single line.

generated bundle project.

Modifying the bundle instructions

Typically, you will need to modify the instructions for the Maven bundle plug-in in the POM file. In

particular, the default Import-Package element generated by the karaf-soap-archetype archetype is

not configured to scan the project’'s Java source files. In most cases, however, you would want the

Maven bundle plug-in to perform this automatic scanning in order to ensure that the bundle imports all

of the packages needed by your code.

To enable the Import-Package scanning feature, simply add the wildcard, *, as the last item in the
comma-separated list inside the Import-Package element, as shown in the following example:

Example 10.1. Import-Package Instruction with Wildcard

<project ... >

<build>
<plugins>
<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>
<version>${version.maven-bundle-plugin}</version>
<extensions>true</extensions>
<configuration>
<instructions>
<Import-Package>javax.jws;version="[0,3)",
javax.wsdl,
javax.xml.namespace,
org.apache.cxf.helpers,
org.osgi.service.blueprint,
io.fabric8.cxf.endpoint,
org.apache.cxf.transport.http,

</Import-Package>
<Ilmport-Service>org.apache.aries.blueprint. NamespaceHandler;

osgi.service.blueprint.namespace=http://cxf.apache.org/transports/http/configuration</Import-
Service>
<Export-Package>org.fusesource.example</Export-Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

</project>

77

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Running the Web services bundle

To install and run the generated cxf-code-first-bundle project, perform the following steps:

78

1. Build the project—open a command prompt and change directory to ProjectDircxf-code-first-

bundle. Use Maven to build the demonstration by entering the following command:

I mvn install

If this command runs successfully, the ProjectDircxf-code-first-bundle/target directory should
contain the bundle file, cxf-code-first-bundle.jar.

. Install and start the cxf-code-first-bundle bundle —at the Red Hat JBoss Fuse console, enter the

following command to install the bundle from your local Maven repository:

JBossFuse:karaf@root> osgi:install -s mvn:org.fusesource.example/cxf-code-first-bundle/1.0-
SNAPSHOT

. Test the Web serivce —to test the Web service deployed in the previous step, you can use a web

browser to query the service's WSDL. Open your favourite web browser and navigate to the
following URL:

I http://localhost:8181/cxf/HelloWorld ?wsdl

When the web service receives the query, ?wsdl, it returns a WSDL description of the running
service.

. Stop the cxf-code-first-bundle bundle —to stop the cxf-code-first-bundle bundle, you first need

to discover the relevant bundle number. To find the bundle number, enter the following console
command:

I JBossFuse:karaf@root> osgi:list
At the end of the listing, you should see an entry like the following:

I [266] [Active][Created][][80] JBoss Fuse Quickstart: soap (1.0.0.SNAPSHOT)

Where, in this example, the bundle number is 266. To stop this bundle, enter the following
console command:

I JBossFuse:karaf@root> osgi:stop 266

PART Ill. WAR DEPLOYMENT MODEL

PART Ill. NAR DEPLOYMENT MODEL

Abstract

The Web application ARchive (WAR) is a tried and tested model for packaging and deploying
applications. This approach is simple and reliable, thought not as flexible as the OSGi bundle model.

79

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

CHAPTER 11. BUILDING A WAR

Abstract

This chapter describes how to build and package a WAR using Maven.

11.1. MODIFYING AN EXISTING MAVEN PROJECT

Overview

If you already have a Maven project and you want to modify it so that it generates a WAR, perform the
following steps:

1. the section called “Change the package type to WAR" .
2. the section called "Customize the JDK compiler version” .
3. the section called “Store resources under webapp/WEB-INF" .

4. the section called “Customize the Maven WAR plug-in" .

Change the package type to WAR

Configure Maven to generate a WAR by changing the package type to war in your project's pom.xml
file. Change the contents of the packaging element to war, as shown in the following example:

<project ... >
<packaging>war</packaging>
</project>

The effect of this setting is to select the Maven WAR plug-in, maven-war-plugin, to perform packaging
for this project.

Customize the JDK compiler version

It is almost always necessary to specify the JDK version in your POM file. If your code uses any modern
features of the Java language—such as generics, static imports, and so on—and you have not
customized the JDK version in the POM, Maven will fail to compile your source code. It is not sufficient
to set the JAVA_HOME and the PATH environment variables to the correct values for your JDK, you
must also modify the POM file.

To configure your POM file, so that it accepts the Java language features introduced in JDK 1.7, add the
following maven-compiler-plugin plug-in settings to your POM (if they are not already present):

<project ... >
<build>

<defaultGoal>install</defaultGoal>
<plugins>

80

CHAPTER 11. BUILDING A WAR

<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-compiler-plugin</artifactld>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
</plugins>
</build>

</project>

Store resources under webapp/WEB-INF

Resource files for the Web application are stored under the /WEB-INF directory in the standard WAR
directory layout. In order to ensure that these resources are copied into the root of the generated WAR
package, store the WEB-INF directory under ProjectDir'src/main/webapp in the Maven directory tree,
as follows:

ProjectDir/
pom.xml
src/
main/
webapp/
WEB-INF/
web.xml
classes/
lib/

In particular, note that the web.xml file is stored at ProjectDir'src/main/webapp/WEB-INF/web.xml.

Customize the Maven WAR plug-in

It is possible to customize the Maven WAR plug-in by adding an entry to the plugins section of the
pom.xml file. Most of the configuration options are concerned with adding additonal resources to the
WAR package. For example, to include all of the resources under the src/main/resources directory
(specified relative to the location of pom.xml) in the WAR package, you could add the following WAR
plug-in configuration to your POM:

<project ...>
<build>

<plugins>
<plugin>
<artifactld>maven-war-plugin</artifactld>
<version>2.1.1</version>
<configuration>
<!-- Optionally specify where the web.xml file comes from -->
<webXml>src/main/webapp/WEB-INF/web.xml</webXml>
<!-- Optionally specify extra resources to include -->
<webResources>
<resource>

81

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

<directory>src/main/resources</directory>
<targetPath>WEB-INF</targetPath>
<includes>
<include>**/*</include>
</includes>
</resource>
</webResources>
</configuration>
</plugin>

</plugins>
</build>
</project>

The preceding plug-in configuration customizes the following settings:

webXml

Specifies where to find the web.xml file in the current Maven project, relative to the location of
pom.xml. The default is src/main/webapp/WEB-INF/web.xml.

webResources

Specifies additional resource files that are to be included in the generated WAR package. It can

contain the following sub-elements:

e webResources/resource—each resource elements specifies a set of resource files to

include in the WAR.

e webResources/resource/directory—specifies the base directory from which to copy
resource files, where this directory is specified relative to the location of pom.xml.

e webResources/resource/targetPath—specifies where to put the resource files in the

generated WAR package.

e webResources/resource/includes—uses an Ant-style wildcard pattern to specify explicitly
which resources should be included in the WAR.

e webResources/resource/excludes—uses an Ant-style wildcard pattern to specify explicitly
which resources should be excluded from the WAR (exclusions have priority over inclusions).

For complete details of how to configure the Maven WAR plug-in, see
http://maven.apache.org/plugins/maven-war-plugin/index.html.

NOTE

Do not use version 2.1 of the maven-war-plugin plug-in, which has a bug that causes two
copies of the web.xml file to be inserted into the generated .war file.

Building the WAR

To build the WAR defined by the Maven project, open a command prompt, go to the project directory
(that is, the directory containing the pom.xml file), and enter the following Maven command:

I mvn install

82

http://maven.apache.org/plugins/maven-war-plugin/index.html

CHAPTER 11. BUILDING A WAR

The effect of this command is to compile all of the Java source files, to generate a WAR under the
ProjectDintarget directory, and then to install the generated WAR in the local Maven repository.

11.2. BOOTSTRAPPING A CXF SERVLET IN A WAR

Overview

A simple way to bootstrap Apache CXF in a WAR is to configure web.xml to use the standard CXF
servlet, org.apache.cxf.transport.serviet. CXFServlet.

Example

For example, the following web.xml file shows how to configure the CXF servlet, where all Web service
addresses accessed through this servlet would be prefixed by /services/ (as specified by the value of
serviet-mapping/url-pattern):

<?xml version="1.0" encoding="UTF-8"7?>

</DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<display-name>cxf</display-name>
<description>cxf</description>

<servlet>
<servlet-name>cxf</servlet-name>
<display-name>cxf</display-name>
<description>Apache CXF Endpoint</description>
<servlet-class>org.apache.cxf.transport.serviet. CXFServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</serviet>

<servlet-mapping>
<servlet-name>cxf</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

<session-config>
<session-timeout>60</session-timeout>
</session-config>

</web-app>

cxf-servlet.xml file

In addition to configuring the web.xml file, it is also necessary to configure your Web services by
defining a exf-servlet.xml file, which must be copied into the root of the generated WAR.

Alternatively, if you do not want to put exf-servlet.xml in the default location, you can customize its
name and location, by setting the contextConfigLocation context parameter in the web.xml file. For
example, to specify that Apache CXF configuration is located in WEB-INF/cxf-servlet.xml, set the
following context parameter in web.xml:

83

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>WEB-INF/cxf-servlet.xml</param-value>
</context-param>

</web-app>

11.3. BOOTSTRAPPING A SPRING CONTEXT IN A WAR

Overview

You can bootstrap a Spring context in a WAR using Spring's ContextlLoaderListener class.

Bootstrapping a Spring context in a WAR

For example, the following web.xml file shows how to boot up a Spring application context that is
initialized by the XML file, /WEB-INF/applicationContext.xml (which is the location of the context file in
the generated WAR package):

<?xml version="1.0" encoding="ISO-8859-1"7>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xmi/ns/j2ee/web-

app_2_4.xsd">

<display-name>Camel Routes</display-name>

<!-- location of spring xml files -->

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/applicationContext.xml</param-value>

</context-param>

<!-- the listener that kick-starts Spring -->

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

</web-app>

Maven dependency

In order to access the ContextLoaderListener class from the Spring framework, you must add the
following dependency to your project's pom.xml file:

I <dependency>

84

http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/web-integration.html

CHAPTER 11. BUILDING A WAR

<groupld>org.springframework</groupld>

<artifactld>spring-web</artifactld>

<version>${spring-version}</version>
</dependency>

Where the spring-version property specifies the version of the Spring framework you are using.

85

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

CHAPTER 12. DEPLOYING A WAR

Abstract

This chapter explains how to deploy a Web archive (WAR) file as a bundle in the OSGi container.
Conversion to a bundle is performed automatically by the PAX War URL, which is based on the open
source Bnd tool. The presence of a web.xml file in the bundle signals to the container that the bundle
should be deployed as a Web application.

IMPORTANT

The information in this chapter pertains to deploying standard JEE WAR files into an
OSGi container. For complex War files, those which combine components, such as
Apache Camel and Spring, the easiest and most efficient way to deploy them into a
JBoss Fuse container is to use JBoss Fuse on EAP. For details, see the JBoss Fuse on
EAP documention listed under Getting Started and Adminisration on JBoss EAP on
the Red Hat Customer Portal .

12.1. CONVERTING THE WAR USING THE WAR SCHEME

Overview

To convert a WAR file into a bundle suitable for deployment in the OSGi container, add the war: prefix to
the WAR URL. The PAX War URL handler acts as a wrapper, which adds the requisite manifest headers
to the WAR file.

Syntax

The war scheme has the following basic syntax:

I war:LocationURL[?Options]

The location URL, LocationURL, can be any of the location URLs described in Appendix A, URL Handlers
(for example, an mvn: or a file: URL). Options can be appended to the URL in the following format:

I ?Option=Value&Option=Value&...
Or if the war URL appears in an XML file:

I ?Option=Value&Option=Value&...

Prerequisite

The Apache Karaf war feature is required to convert and deploy WARs using the war: scheme. It can be
installed from the container's command console using features:install war.

Deploying a WAR file

If the WAR file is stored in a Maven repository, you can deploy it into the OSGi container using the
osgi:install command, taking a war:mvn: URL as its argument. For example, to deploy the wicket-

86

https://access.redhat.com/documentation/en/red-hat-jboss-fuse/

CHAPTER 12. DEPLOYING A WAR

example WAR file from a Maven repository, where the application should be accessible from the wicket
Web application context, enter the following console command:

JBossFuse:karaf@root> install war:mvn:org.apache.wicket/wicket-examples/1.4.7/war?Web-
ContextPath=wicket

Alternatively, if the WAR file is stored on the filesystem, you can deploy it into the OSGi container by
specifying a war:file: URL. For example, to deploy the WAR file, wicket-example-1.4.6.war, enter the
following console command:

I JBossFuse:karaf@root> install war:file://wicket-examples-1.4.7.war?Web-ContextPath=wicket

Accessing the Web application

The WAR file is automatically installed into a Web container, which listens on the TCP port 8181 by
default, and the Web container uses the Web application context specified by the Web-ContextPath
option. For example, the wicket-example WAR deployed in the preceding examples, would be
accessible from the following URL:

I http://localhost:8181/wicket

Default conversion parameters

The PAX War URL handler converts a WAR file to a special kind of OSGi bundle, which includes
additional Manifest headers to support WAR deployment (for example, the Web-ContextPath Manifest
header). By default, the deployed WAR is configured as an isolated bundle (neither importing nor
exporting any packages). This mimics the deployment model of a WAR inside a J2EE container, where
the WAR is completely self-contained, including all of the JAR files it needs.

For details of the default conversion parameters, see Table A.2, “Default Instructions for Wrapping a
WAR File”.
Customizing the conversion parameters

The PAX War URL handler is layered over Bnd. If you want to customize the bundle headers in the
Manifest file, you can either add a Bnd instruction as a URL option or you can specify a Bnd instructions
file for the War URL handler to use—for details, see Section A.5, “War URL Handler” .

In particular, you might sometimes find it necessary to customize the entry for the Bundle-ClassPath,

because the default value of Bundle-ClassPath does notinclude all of the resources in the WAR file
(see Table A.2, “Default Instructions for Wrapping a WAR File”).

References

Support for running WARs in the OSGi container is provided by the PAX WAR Extender, which monitors
each bundle as it starts and, if the bundle contains a web.xml file, automatically deploys the WAR in a
Web container. The War Protocol page has the original reference documentation for the War URL
handler.

12.2. CONFIGURING THE WEB CONTAINER
Overview

87

http://team.ops4j.org/wiki/display/paxweb/WAR+Extender
http://team.ops4j.org/wiki/display/paxurl/War+Protocol

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Red Hat JBoss Fuse automatically deploys WAR files into a Web container, which is implemented by the
PAX Web library. You can configure the Web container through the OSGi Configuration Admin service.

Configuration file

The Web container uses the following configuration file:

I EsblinstallDir/etc/org.ops4j.pax.web.cfg

You must create this file, if it does not already exist in the EsblinstallDirletc/ directory.

Customizing the HTTP port

By default, the Web container listens on the TCP port, 8181. You can change this value by editing the
etc/org.opsdj.pax.web.cfg file and setting the value of the org.osgi.service.http.port property, as
follows:

Configure the Web container
org.osgi.service.http.port=8181

Enabling SSL/TLS security

The Web container is also used for deploying the Fuse Management Console. The instructions for
securing the Web container with SSL/TLS are identical to the instructions for securing the Fuse
Management Console with SSL/TLS. See chapter "Securing the Jetty HTTP Server" in "Security Guide"
for details.

' WARNING
A If you are planning to enable SSL/TLS security, you must ensure that you explicitly

disable the SSLv3 protocol, in order to safeguard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

Reference

The properties that you can set in the Web container's configuration file are defined by the PAX Web
library. You can set the following kinds of property:

® Basic
e SSL

e JSP

88

http://team.ops4j.org/wiki/display/paxweb/Pax+Web
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Security_Guide/WebConsole.html
https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613
http://team.ops4j.org/wiki/display/paxweb/Basic+Configuration
https://ops4j1.jira.com/wiki/display/paxweb/SSL+Configuration
http://team.ops4j.org/wiki/display/paxweb/JSP+Configuration

PART IV. CDI DEPLOYMENT MODEL

PART IV. CDI DEPLOYMENT MODEL

Abstract

Contexts and Dependency Injection (CDI) is a dependency injection framework based entirely on the
Java language (making use of Java annotations). Although originally developed for J2EE platforms
(such as JBoss EAP), CDl is also supported in Apache Karaf. Pax CDI provides an adapter layer that
makes it possible to integrate CDI applications in the OSGi container.

89

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION
(CDI)

13.1. INTRODUCTION TO CDI

13.1.1. About Contexts and Dependency Injection (CDI)

Contexts and Dependency Injection (CDI) 1.2 is a JSR specification, which defines a general-purpose
dependency injection framework in the Java language. Although originally conceived for the Java EE
platform, CDI can also be used in the context of an OSGi container, provided the requisite adapter layer
(a combination of Pax CDI and JBoss Weld) is installed and enabled.

CDl 1.2 release is treated as a maintenance release of 1.1. Details about CDI 1.1 can be found in JSR 346:
Contexts and Dependency Injection for Java™ EE 1.1.

JBoss Fuse includes Weld, which is the reference implementation of JSR-346:Contexts and
Dependency Injection for Java™ EE 1.1.

Benefits of CDI
The benefits of CDI include:

e Simplifying and shrinking your code base by replacing big chunks of code with annotations.

® Flexibility, allowing you to disable and enable injections and events, use alternative beans, and
inject non-CDI objects easily.

e Optionally, allowing you to include beans.xml in your META-INF/ or WEB-INF/ directory if you
need to customize the configuration to differ from the default. The file can be empty.

e Simplifying packaging and deployments and reducing the amount of XML you need to add to
your deployments.

® Providing lifecycle management via contexts. You can tie injections to requests, sessions,
conversations, or custom contexts.

® Providing type-safe dependency injection, which is safer and easier to debug than string-based
injection.

® Decoupling interceptors from beans.

® Providing complex event notification.

13.1.2. JBoss Weld CDI Implementation

Weld is the reference implementation of CDI, which is defined in JSR 346: Contexts and Dependency
Injection for Java™ EE 1.1. Weld was inspired by Seam 2 and other dependency injection frameworks, and
is included in JBoss Fuse.

13.2. USE CDiI

13.2.1. Enable CDI in the Apache Karaf Container

90

https://www.jcp.org/en/jsr/detail?id=346
https://www.jcp.org/en/jsr/detail?id=346
https://www.jcp.org/en/jsr/detail?id=346

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)

CDl is not enabled by default in the Apache Karaf container. To enable CDI in Karaf, follow the
instructions in Section 14.2, “Enabling Pax CDI".

13.2.2. Use CDI to Develop an Application

Contexts and Dependency Injection (CDI) gives you tremendous flexibility in developing applications,
reusing code, adapting your code at deployment or run-time, and unit testing. JBoss Fuse includes
Weld, the reference implementation of CDI. These tasks show you how to use CDl in your enterprise
applications.

13.2.2.1. Exclude Beans From the Scanning Process

One of the features of Weld, the JBoss Fuse implementation of CDI, is the ability to exclude classes in
your archive from scanning, having container lifecycle events fired, and being deployed as beans. This is
not part of the JSR-346 specification.

The following example has several <weld:exclude> tags:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmins="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:weld="http://jboss.org/schema/weld/beans"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee http://docs.jboss.org/cdi/beans_1_0.xsd
http://jboss.org/schema/weld/beans http://jboss.org/schema/weld/beans_1_1.xsd">

<weld:scan>

<!-- Don't deploy the classes for the swing app! -->
<weld:exclude name="com.acme.swing.**" />

<!-- Don't include GWT support if GWT is not installed -->
<weld:exclude name="com.acme.gwt.**"> 9

<weld:if-class-available name="lcom.google. GWT"/>
</weld:exclude>

<!l--
Exclude classes which end in Blether if the system property verbosity is set to low
ie.
java ... -Dverbosity=low
-—->

<weld:exclude pattern=""(.*)Blether$"> 6
<weld:if-system-property name="verbosity" value="low"/>
</weld:exclude>

<l--
Don't include JSF support if Wicket classes are present, and the viewlayer system
property is not set

-—>

<weld:exclude name="com.acme.jsf.**"> ﬂ
<weld:if-class-available name="org.apache.wicket.Wicket"/>
<weld:if-system-property name="lviewlayer"/>

</weld:exclude>

</weld:scan>
</beans>

o1

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

ﬂ The first one excludes all Swing classes.
9 The second excludes Google Web Toolkit classes if Google Web Toolkit is not installed.

9 The third excludes classes which end in the string Blether (using a regular expression), if the
system property verbosity is set to low.

Q The fourth excludes Java Server Faces (JSF) classes if Wicket classes are present and the

viewlayer system property is not set.

The formal specification of Weld-specific configuration options can be found at
http://jboss.org/schema/weld/beans_1_1.xsd.

13.2.2.2. Use an Injection to Extend an Implementation

You can use an injection to add or change a feature of your existing code.
The following example adds a translation ability to an existing class, and assumes you already have a
Welcome class, which has a method buildPhrase. The buildPhrase method takes as an argument the

name of a city, and outputs a phrase like "Welcome to Boston!".

Example: Inject a Translator Bean Into the Welcome Class

The following injects a hypothetical Translator object into the Welcome class. The Translator object
can be an EJB stateless bean or another type of bean, which can translate sentences from one language
to another. In this instance, the Translator is used to translate the entire greeting, without modifying the
original Welcome class. The Translator is injected before the buildPhrase method is called.

public class TranslatingWelcome extends Welcome {
@Inject Translator translator;

public String buildPhrase(String city) {
return translator.translate("Welcome to " + city + "!I");

}

13.2.3. Ambiguous or Unsatisfied Dependencies

Ambiguous dependencies exist when the container is unable to resolve an injection to exactly one bean.
Unsatisfied dependencies exist when the container is unable to resolve an injection to any bean at all.
The container takes the following steps to try to resolve dependencies:

1. It resolves the qualifier annotations on all beans that implement the bean type of an injection
point.

2. It filters out disabled beans. Disabled beans are @Alternative beans which are not explicitly
enabled.

In the event of an ambiguous or unsatisfied dependency, the container aborts deployment and throws
an exception.

92

http://jboss.org/schema/weld/beans_1_1.xsd

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)

To fix an ambiguous dependency, see Use a Qualifier to Resolve an Ambiguous Injection .

13.2.3.1. Qualifiers

Qualifiers are annotations used to avoid ambiguous dependencies when the container can resolve
multiple beans, which fit into an injection point. A qualifier declared at an injection point provides the set
of eligible beans, which declare the same Qualifier.

Qualifiers have to be declared with a retention and target as shown in the example below.

Example: Define the @Synchronous and @Asynchronous Qualifiers

@AQualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Synchronous {}

@AQualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Asynchronous {}

Example: Use the @Synchronous and @Asynchronous Qualifiers

@Synchronous
public class SynchronousPaymentProcessor implements PaymentProcessor {
public void process(Payment payment) { ... }

}

@Asynchronous
public class AsynchronousPaymentProcessor implements PaymentProcessor {
public void process(Payment payment) { ... }

}

13.2.3.2. Use a Qualifier to Resolve an Ambiguous Injection

You can resolve an ambiguous injection using a qualifier. Read more about ambiguous injections at
Ambiguous or Unsatisfied Dependencies.

The following example is ambiguous and features two implementations of Welcome, one which
translates and one which does not. The injection needs to be specified to use the translating Welcome.

Example: Ambiguous injection

public class Greeter {
private Welcome welcome;

@Inject
void init(Welcome welcome) {
this.welcome = welcome;

}

93

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Resolve an Ambiguous Injection with a Qualifier

1. To resolve the ambiguous injection, create a qualifier annotation called @ Translating:

@AQualifier

@Retention(RUNTIME)
@Target({TYPE,METHOD,FIELD,PARAMETERS})
public @interface Translating{}

2. Annotate your translating Welcome with the @Translating annotation:

@Translating
public class TranslatingWelcome extends Welcome {
@Inject Translator translator;
public String buildPhrase(String city) {
return translator.translate("Welcome to " + city + "!I");

}

3. Request the translating Welcome in your injection. You must request a qualified implementation
explicitly, similar to the factory method pattern. The ambiguity is resolved at the injection point.

public class Greeter {

private Welcome welcome;

@Inject

void init(@Translating Welcome welcome) {
this.welcome = welcome;

}

public void welcomeVisitors() {
System.out.printin(welcome.buildPhrase("San Francisco"));

}
}

13.2.4. Managed Beans

Managed Beans are defined as container-managed objects with minimal programming restrictions,
otherwise known by the acronym POJO (Plain Old Java Object). They support a small set of basic
services, such as resource injection, lifecycle callbacks, and interceptors. Companion specifications, such
as EJB and CDI, build on this basic model.

With very few exceptions, almost every concrete Java class that has a constructor with no parameters
(or a constructor designated with the annotation @Inject) is a bean.

13.2.4.1. Types of Classes That are Beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by the
Managed Beans specification. You can explicitly declare a managed bean by annotating the bean class
@ManagedBean, but in CDI you do not need to. According to the specification, the CDI container treats
any class that satisfies the following conditions as a managed bean:

® |tis not a non-static inner class.

® |tis aconcrete class, or is annotated @Decorator.

94

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)

® |tis not annotated with an EJB component-defining annotation or declared as an EJB bean
class in ejb-jar.xml.

® |t does notimplement interface javax.enterprise.inject.spi.Extension.
® |t has either a constructor with no parameters, or a constructor annotated with @Inject.

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and all
interfaces it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @Dependent.

13.2.4.2. Use CDI to Inject an Object Into a Bean

CDl is activated automatically if CDI components are detected in an application. If you wish to customize
your configuration to differ from the default, you can include META-INF/beans.xml or WEB-
INF/beans.xml to your deployment archive.

Inject Objects into Other Objects

1. To obtain aninstance of a class, annotate the field with @Inject within your bean:

public class TranslateController {
@Inject TextTranslator textTranslator;

2. Use your injected object’s methods directly. Assume that TextTranslator has a method
translate:

//in TranslateController class

public void translate() {
translation = textTranslator.translate(inputText);

}

3. Use aninjection in the constructor of a bean. You can inject objects into the constructor of a
bean as an alternative to using a factory or service locator to create them:

public class TextTranslator {

private SentenceParser sentenceParser;
private Translator sentenceTranslator;

@Inject

TextTranslator(SentenceParser sentenceParser, Translator sentenceTranslator) {
this.sentenceParser = sentenceParser;
this.sentenceTranslator = sentenceTranslator;

}

// Methods of the TextTranslator class

4. Use the Instance(<T>) interface to getinstances programatically. The Instance interface can
return an instance of TextTranslator when parameterized with the bean type.

95

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

@Inject Instance<TextTranslator> textTranslatorInstance;

public void translate() {
textTranslatorInstance.get().translate(inputText);

}

When you inject an object into a bean, all of the object’s methods and properties are available to your
bean. If you inject into your bean’s constructor, instances of the injected objects are created when your
bean’s constructor is called, unless the injection refers to an instance that already exists. For instance, a
new instance would not be created if you inject a session-scoped bean during the lifetime of the session.

13.2.5. Contexts and Scopes

A context, in terms of CDlI, is a storage area that holds instances of beans associated with a specific
scope.

A scope is the link between a bean and a context. A scope/context combination may have a specific

lifecycle. Several pre-defined scopes exist, and you can create your own. Examples of pre-defined
scopes are @RequestScoped, @SessionScoped, and @ConversationScope.

13.2.5.1. Available Contexts

Table 13.1. Available contexts

Context Description

@Dependent The bean is bound to the lifecycle of the bean holding
the reference.

@ApplicationScoped The bean is bound to the lifecycle of the application.
@RequestScoped The bean is bound to the lifecycle of the request.
@SessionScoped The bean is bound to the lifecycle of the session.
@ConversationScoped The bean is bound to the lifecycle of the

conversation. The conversation scope is between the
lengths of the request and the session, and is
controlled by the application.

Custom scopes If the above contexts do not meet your needs, you
can define custom scopes.

13.2.6. Bean Lifecycle

This task shows you how to save a bean for the life of a request.
The default scope for an injected bean is @Dependent. This means that the bean'’s lifecycle is
dependent upon the lifecycle of the bean that holds the reference. Several other scopes exist, and you

can define your own scopes. For more information, see “Contexts and Scopes”.

Manage Bean Lifecycles

96

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)

Annotate the bean with the desired scope:

@RequestScoped
@Named("greeter")
public class GreeterBean {
private Welcome welcome;
private String city; // getter & setter not shown
@Inject void init(Welcome welcome) {
this.welcome = welcome;
}
public void welcomeVisitors() {
System.out.printin(welcome.buildPhrase(city));

}
}

Your bean is saved in the context relating to the scope that you specify, and lasts as long as the scope
applies.

13.2.6.1. Use a Producer Method

This task shows how to use producer methods to produce a variety of different objects that are not
beans for injection.

Example: Use a producer method instead of an alternative, to allow polymorphism after
deployment

The @Preferred annotation in the example is a qualifier annotation. For more information about
qualifiers, see Qualifiers.

@SessionScoped
public class Preferences implements Serializable {
private PaymentStrategy Type paymentStrategy;

@Produces @Preferred
public PaymentStrategy getPaymentStrategy() {
switch (paymentStrategy) {
case CREDIT_CARD: return new CreditCardPaymentStrategy();
case CHECK: return new CheckPaymentStrategy();
default: return null;

}
}
}

The following injection point has the same type and qualifier annotations as the producer method, so it
resolves to the producer method using the usual CDI injection rules. The producer method is called by
the container to obtain an instance to service this injection point.

I @Inject @Preferred PaymentStrategy paymentStrategy;

Example: Assign a scope to a producer method

The default scope of a producer method is @Dependent. If you assign a scope to a bean, it is bound to
the appropriate context. The producer method in this example is only called once per session.

I @Produces @Preferred @SessionScoped

97

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

public PaymentStrategy getPaymentStrategy() {
}

Example: Use an injection inside a producer method

Objects instantiated directly by an application cannot take advantage of dependency injection and do
not have interceptors. However, you can use dependency injection into the producer method to obtain
bean instances.

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy (CreditCardPaymentStrategy ccps,
CheckPaymentStrategy cps) {
switch (paymentStrategy) {
case CREDIT_CARD: return ccps;
case CHEQUE: return cps;
default: return null;
}
}

If you inject a request-scoped bean into a session-scoped producer, the producer method promotes the
current request-scoped instance into session scope. This is almost certainly not the desired behavior, so
use caution when you use a producer method in this way.

NOTE

The scope of the producer method is not inherited from the bean that declares the
producer method.

-

Producer methods allow you to inject non-bean objects and change your code dynamically.

13.2.7. Named Beans

You can name a bean by using the @Named annotation. Naming a bean allows you to use it directly in
Java Server Faces (JSF) and Expression Language (EL).

The @Named annotation takes an optional parameter, which is the bean name. If this parameter is
omitted, the bean name defaults to the class name of the bean with its first letter converted to lower-
case.

13.2.7.1. Use Named Beans
Configure Bean Names Using the @Named Annotation

1. Use the @Named annotation to assign a name to a bean.

@Named("greeter")
public class GreeterBean {
private Welcome welcome;

@Inject
void init (Welcome welcome) {
this.welcome = welcome;

}

98

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)

public void welcomeVisitors() {
System.out.printin(welcome.buildPhrase("San Francisco"));

}
}

In the example above, the default name would be greeterBean if no name had been specified.

2. In the context of Camel CDI, the named bean is automatically added to the registry and can be
accessed from a Camel route, as follows:

I from("direct:inbound").bean("greeter");

13.2.8. Alternative Beans

Alternatives are beans whose implementation is specific to a particular client module or deployment
scenario.

By default, @Alternative beans are disabled. They are enabled for a specific bean archive by editing its
beans.xml file.

Example: Defining Alternatives

This alternative defines a implementation of both @Synchronous PaymentProcessor and
@Asynchronous PaymentProcessor, all in one:

@Alternative @Synchronous @Asynchronous
public class MockPaymentProcessor implements PaymentProcessor {

public void process(Payment payment) { ... }

13.2.8.1. Override an Injection with an Alternative

You can use alternative beans to override existing beans. They can be thought of as a way to plugin a
class which fills the same role, but functions differently. They are disabled by default.

This task shows you how to specify and enable an alternative.

Override an Injection

This task assumes that you already have a TranslatingWelcome class in your project, but you want to
override it with a "mock” TranslatingWelcome class. This would be the case for a test deployment, where
the true Translator bean cannot be used.

1. Define the alternative.

@Alternative
@Translating
public class MockTranslatingWelcome extends Welcome {
public String buildPhrase(string city) {
return "Bienvenue A " + city + "I");
}
}

99

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

2. Activate the substitute implementation by adding the fully-qualified class name to your META-
INF/beans.xml or WEB-INF/beans.xml file.

<beans>
<alternatives>
<class>com.acme.MockTranslatingWelcome</class>
</alternatives>
</beans>

The alternative implementation is now used instead of the original one.

13.2.9. Stereotypes

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype
allows you to identify such a role and declare some common metadata for beans with that role in a
central place.
A stereotype encapsulates any combination of:

® Default scope

e Aset of interceptor bindings
A stereotype can also specify either:

® All beans where the stereotypes are defaulted bean EL names

® All beans where the stereotypes are alternatives
A bean may declare zero, one, or multiple stereotypes. A stereotype is an @Stereotype annotation that
packages several other annotations. Stereotype annotations may be applied to a bean class, producer

method, or field.

A class that inherits a scope from a stereotype may override that stereotype and specify a scope directly
on the bean.

In addition, if a stereotype has a @Named annotation, any bean it is placed on has a default bean name.
The bean may override this name if the @Named annotation is specified directly on the bean. For more
information about named beans, see Named Beans.

13.2.9.1. Use Stereotypes

Without stereotypes, annotations can become cluttered. This task shows you how to use stereotypes to
reduce the clutter and streamline your code.

Example: Annotation clutter

@Secure
@Transactional
@RequestScoped
@Named
public class AccountManager {
public boolean transfer(Account a, Account b) {

100

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)

Define and Use Stereotypes

1. Define the stereotype.

@Secure

@Transactional

@RequestScoped

@Named

@Stereotype

@Retention(RUNTIME)
@Target(TYPE)

public @interface BusinessComponent {

}...

2. Use the stereotype.

@BusinessComponent
public class AccountManager {
public boolean transfer(Account a, Account b) {

.
}

13.2.10. Observer Methods

Observer methods receive notifications when events occur.

CDl also provides transactional observer methods, which receive event notifications during the before
completion or after completion phase of the transaction in which the event was fired.

13.2.10.1. Transactional Observers

Transactional observers receive the event notifications before or after the completion phase of the
transaction in which the event was raised. Transactional observers are important in a stateful object
model because state is often held for longer than a single atomic transaction.

There are five kinds of transactional observers:

® |N_PROGRESS: By default, observers are invoked immediately.

o AFTER_SUCCESS: Observers are invoked after the completion phase of the transaction, but
only if the transaction completes successfully.

o AFTER_FAILURE: Observers are invoked after the completion phase of the transaction, but only
if the transaction fails to complete successfully.

e AFTER_COMPLETION: Observers are invoked after the completion phase of the transaction.
e BEFORE_COMPLETION: Observers are invoked before the completion phase of the

transaction.

101

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

The following observer method refreshes a query result set cached in the application context, but only
when transactions that update the Category tree are successful:

I public void refreshCategoryTree(@Observes(during = AFTER_SUCCESS) CategoryUpdateEvent
event) { ...}

Assume we have cached a JPA query result set in the application scope:

import javax.ejb.Singleton;
import javax.enterprise.inject.Produces;

@ApplicationScoped @Singleton

public class Catalog {
@PersistenceContext EntityManager em;
List<Product> products;
@Produces @Catalog
List<Product> getCatalog() {
if (products==null) {
products = em.createQuery("select p from Product p where p.deleted = false")
.getResultList();
}
return products;
}
}

Occasionally a Product is created or deleted. When this occurs, we need to refresh the Product catalog.
But we have to wait for the transaction to complete successfully before performing this refresh.

The bean that creates and deletes Products triggers events, for example:

import javax.enterprise.event.Event;
@Stateless

public class ProductManager {
@PersistenceContext EntityManager em;
@Inject @Any Event<Product> productEvent;
public void delete(Product product) {
em.delete(product);
productEvent.select(new AnnotationLiteral<Deleted>(){}).fire(product);

}

public void persist(Product product) {
em.persist(product);
productEvent.select(new AnnotationLiteral<Created>(){}).fire(product);

}
-

The Catalog can now observe the events after successful completion of the transaction:
import javax.ejb.Singleton;

@ApplicationScoped @Singleton

102

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)

public class Catalog {

void addProduct(@Observes(during = AFTER_SUCCESS) @Created Product product) {
products.add(product);

}

void removeProduct(@Observes(during = AFTER_SUCCESS) @Deleted Product product) {
products.remove(product);

}

13.2.10.2. Fire and Observe Events
Example: Fire an event

The following code shows an event being injected and used in a method.

public class AccountManager {
@Inject Event<Withdrawal> event;

public boolean transfer(Account a, Account b) {

event.fire(new Withdrawal(a));

}
}

Example: Fire an event with a qualifier

You can annotate your event injection with a qualifier, to make it more specific. For more information
about qualifiers, see Qualifiers.

public class AccountManager {
@Inject @Suspicious Event <Withdrawal> event;

public boolean transfer(Account a, Account b) {

event.fire(new Withdrawal(a));

}
}

Example: Observe an event

To observe an event, use the @Observes annotation.

public class AccountObserver {
void checkTran(@Observes Withdrawal w) {

.
}

You can use qualifiers to observe only specific types of events.

public class AccountObserver {
void checkTran(@Observes @Suspicious Withdrawal w) {

103

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

13.2.11. Interceptors

Interceptors allow you to add functionality to the business methods of a bean without modifying the
bean’s method directly. The interceptor is executed before any of the business methods of the bean.
Interceptors are defined as part of the Enterprise JavaBeans specification, which can be found at
https://jcp.org/aboutJava/communityprocess/final/jsr318/index.html.

CDI enhances this functionality by allowing you to use annotations to bind interceptors to beans.
Interception points

® Business method interception: A business method interceptor applies to invocations of
methods of the bean by clients of the bean.

e | ifecycle callback interception: A lifecycle callback interceptor applies to invocations of lifecycle
callbacks by the container.

® Timeout method interception: A timeout method interceptor applies to invocations of the EJB
timeout methods by the container.

13.2.11.1. Use Interceptors with CDI

CDI can simplify your interceptor code and make it easier to apply to your business code.
Without CDlI, interceptors have two problems:
® The bean must specify the interceptor implementation directly.

® Every bean in the application must specify the full set of interceptors in the correct order. This
makes adding or removing interceptors on an application-wide basis time-consuming and error-
prone.

Example: Interceptors without CDI

@Interceptors({
SecurityInterceptor.class,
TransactionInterceptor.class,
Logginglnterceptor.class

})

@Stateful public class BusinessComponent {
}

Use interceptors with CDI

1. Define the interceptor binding type:

@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHODY})
public @interface Secure {}

104

https://jcp.org/aboutJava/communityprocess/final/jsr318/index.html

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)

2. Mark the interceptor implementation:

@Secure
@Interceptor
public class Securitylnterceptor {
@AroundInvoke
public Object aroundinvoke (InvocationContext ctx) throws Exception {
// enforce security ...
return ctx.proceed();

}
}

3. Use the interceptor in your business code:

@Secure
public class AccountManager {
public boolean transfer(Account a, Account b) {

.
}

4. Enable the interceptor in your deployment, by adding it to META-INF/beans.xml or WEB-
INF/beans.xmil:

<beans>
<interceptors>
<class>com.acme.Securitylnterceptor</class>
<class>com.acme.TransactionInterceptor</class>
</interceptors>
</beans>

The interceptors are applied in the order listed.

13.2.12. Decorators

A decorator intercepts invocations from a specific Java interface, and is aware of all the semantics
attached to that interface. Decorators are useful for modeling some kinds of business concerns, but do
not have the generality of interceptors. A decorator is a bean, or even an abstract class, that implements
the type it decorates, and is annotated with @Decorator. To invoke a decorator in a CDI application, it
must be specified in the beans.xml file.

A decorator must have exactly one @Delegate injection point to obtain a reference to the decorated
object.

Example: Example Decorator

@Decorator
public abstract class LargeTransactionDecorator implements Account {

@Inject @Delegate @Any Account account;
@PersistenceContext EntityManager em;

public void withdraw(BigDecimal amount) {

105

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

}

public void deposit(BigDecimal amount);

-
}

13.2.13. Portable Extensions

CDlis intended to be a foundation for frameworks, extensions, and for integration with other
technologies. Therefore, CDI exposes a set of SPIs for the use of developers of portable extensions to
CDI.
Extensions can provide the following types of functionality:

® Integration with Business Process Management engines

® |ntegration with third-party frameworks, such as Spring, Seam, GWT, or Wicket

® New technology based upon the CDI programming model

According to the JSR-346 specification, a portable extension can integrate with the container in the
following ways:

® Providing its own beans, interceptors, and decorators to the container
® [njecting dependencies into its own objects using the dependency injection service
® Providing a context implementation for a custom scope

® Augmenting or overriding the annotation-based metadata with metadata from another source

13.2.14. Bean Proxies

Clients of an injected bean do not usually hold a direct reference to a bean instance. Unless the beanis a
dependent object (scope @Dependent), the container must redirect all injected references to the bean
using a proxy object.
A bean proxy, which can be referred to as client proxy, is responsible for ensuring the bean instance that
receives a method invocation is the instance associated with the current context. The client proxy also
allows beans bound to contexts, such as the session context, to be serialized to disk without recursively
serializing other injected beans.
Due to Java limitations, some Java types cannot be proxied by the container. If an injection point
declared with one of these types resolves to a bean with a scope other than @Dependent, the container
aborts the deployment.
Certain Java types cannot be proxied by the container. These include:

® (Classes that do not have a non-private constructor with no parameters

® (lasses that are declared final or have a final method

® Arrays and primitive types
13.2.15. Use a Proxy in an Injection

106

CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)

A proxy is used for injection when the lifecycles of the beans are different from each other. The proxy is
a subclass of the bean that is created at run-time, and overrides all the non-private methods of the
bean class. The proxy forwards the invocation onto the actual bean instance.

In this example, the PaymentProcessor instance is not injected directly into Shop. Instead, a proxy is
injected, and when the processPayment() method is called, the proxy looks up the current
PaymentProcessor bean instance and calls the processPayment() method on it.

Example: Proxy Injection

@ConversationScoped
class PaymentProcessor

{

public void processPayment(int amount)

{

System.out.printin("I'm taking $" + amount);
}
}

@ApplicationScoped
public class Shop

{

@Inject
PaymentProcessor paymentProcessor;

public void buyStuff()
{

paymentProcessor.processPayment(100);
}
}

107

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

CHAPTER 14. PAX CDI AND OSGI SERVICES

14.1. PAX CDI ARCHITECTURE

Overview
Figure 14.1, “Pax CDI Architecture” gives an overview of the technology stack underlying Pax CDI.

Figure 14.1. Pax CDI Architecture

Bean Bundle
Bean Bundle

Camel CDI

CDI API

JBoss Weld

Pax CDI

Apache Karaf / OSGi

Pax CDI

Pax CDl is the integration layer that makes it possible to deploy a CDI container within the Apache Karaf
OSGi container.

JBoss Weld

JBoss Weld provides the CDI implementation for the Pax CDI integration. JBoss Weld is the reference
implementation for CDI and comes with its own extensive documentation, CDI Reference
Implementation.

Bean bundle

A bean bundle is an OSGi bundle that has been enabled to use Pax CDI. A bundle cannot use CDI by
default, it must be explicitly enabled to do so (see the section called “Requirements and capabilities”).

108

https://ops4j1.jira.com/wiki/display/PAXCDI/Pax+CDI
http://weld.cdi-spec.org/
https://docs.jboss.org/weld/reference/2.3.4.Final/en-US/html/

CHAPTER 14. PAX CDI AND OSGI SERVICES

CDI container

A CDI container effectively defines the scope for a collection of managed beans under CDI, which are
capable of being published and injected within this scope. In the context of OSGi, a CDI container maps
to a single bundle. That is, each bean bundle gets its own CDI container.

Camel CDI and other customizations

JBoss Fuse provides additional features that define CDI customizations (that is, non-standard CDI
annotations) targeted at different aspects of middleware development. For example:

camel-cdi

Provides custom annotations for defining and injecting Camel contexts and routes. See Chapter 15,
Camel CDI.

switchyard-cdi

Provides custom annotations for use with SwitchYard. For example, see the quickstart example
under the following directory of your JBoss Fuse installation:

I quickstarts/switchyard/camel-bus-cdi

For more information, see chapter "Service Implementations” in "SwitchYard Development Guide" .

cxf-jaxrs-cdi
Provides support for CDI in JAX-RS, as defined in the JAX-RS 2.0 Specification (see section 10.2.3).

deltaspike

Apache Deltaspike is a general-purpose collection of CDI customizations.

14.2. ENABLING PAX CDI

Overview

Pax CDl is not enabled by default in the Karaf container in JBoss Fuse, so you must enable it explicitly.
There are two aspects of enabling Pax CDl in the Karaf container: first, installing the requisite Karaf
features in the container; second, enabling CDI for a particular bundle, by adding the Require-
Capability header to the bundle's manifest (turning the bundle into a bean bundle).

Pax CDI features

To make Pax CDI functionality available in the Karaf container, install the requisite Karaf features into
your container. JBoss Fuse provides the following Karaf features for Pax CDI:

pax-cdi

Deploys the core components of Pax CDI. This feature must be combined with the pax-cdi-weld
CDIl implementation.

pax-cdi-weld

Deploys the JBoss Weld CDI implementation (which is the only CDI implementation supported on
JBoss Fuse)

109

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/SwitchYard_Development_Guide/chap-Service_Implementations.html
http://download.oracle.com/otn-pub/jcp/jaxrs-2_0-pfd-spec/339-spec.pdf
https://deltaspike.apache.org/

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

pax-cdi-web
Adds support for deploying a CDI application as a Web application (that is, deploying the CDI
application into the Pax Web Jetty container). This enables support for the CDI features associated
with servlet deployment, such as session-scoped beans, request-scoped beans, injection into
servlets, and so on. This feature must be combined with the pax-cdi-web-weld feature (CDI
implementation).

pax-cdi-web-weld
Deploys the JBoss Weld CDI implementation for Web applications.

Requirements and capabilities

CDI requires you to organize your Java code in a very specific way, so it cannot be enabled arbitrarily for
any bundle. It only makes sense to enable CDI for each bundle that needs it, not for the entire container.
Hence, it is necessary to use an OSGi extension mechanism that switches on the CDI capability on a
bundle-by-bundle basis. The relevant OSGi mechanism is known as the requirements and capabilities
mechanism.

The CDI capability is provided by the relevant Pax CDI packages (installed as Karaf features); and the
CDl requirement is specified for each bundle by adding a Require-Capability bundle header to the
bundle's manifest file. For example, to enable the base Pax CDI functionality, you would add the
following Require-Capability header to the bundle's manifest file:

I Require-Capability : osgi.extender; filter:="(osgi.extender=pax.cdi)"

A bundle that includes the preceding Require-Capability bundle header effectively becomes a bean
bundle (a CDI enabled bundle).

How to enable Pax CDI in Apache Karaf

To enable Pax CDIl in Apache Karaf, perform the following steps:

1. Add the required pax-cdi and pax-cdi-weld features to the Karaf container, as follows:
I JBossFuse:karaf@root> features:install pax-cdi pax-cdi-weld

2. When the Pax CDI features are installed in the Karaf container, this is not sufficient to enable
CDI. You must also explicitly enable Pax CDI in each bundle that uses CDI (so that it becomes a
bean bundle). To enable Pax CDl in a bundle, open the pom.xml file in your bundle's Maven
project and add the following Require-Capability element to the configuration of the Maven
bundle plug-in:

<project ...>

<build>
<plugins>

<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>
<extensions>true</extensions>
<configuration>

110

CHAPTER 14. PAX CDI AND OSGI SERVICES

<instructions>

<Bundle-SymbolicName>${project.groupld}.${project.artifactld}</Bundle-
SymbolicName>
<Import-Package>*</Import-Package>
<Require-Capability>
osgi.extender; filter:="(osgi.extender=pax.cdi)"

</Require-Capability>

</instructions>

</configuration>
</plugin>

</plugins>
</build>

</project>

3. To access the CDI annotations in Java, you must add a dependency on the CDI API package.
Edit your bundle's POM file, pom.xml, to add the CDI APl package as a Maven dependency:

<project ...>
<dependencies>
<!l-- CDI API -->
<dependency>
<groupld>javax.enterprise</groupld>
<artifactld>cdi-api</artifactld>
<version>${cdi-api-1.2-version}</version>
<scope>provided</scope>
</dependency>
</dependencies>

</project>
4. Rebuild your bundle in the usual way for your Maven project. For example, using the command:
I mvn clean install

5. Deploy the bundle to the Karaf container in the usual way (for example, using the osgi:install
console command).

14.3. OSGI SERVICES EXTENSION

Overview

Pax CDlI also provides an integration with OSGi services, enabling you to reference an OSGi service or to
publish an OSGi service using CDI annotations. This capability is provided by the Pax CDI OSGi Services
Extension, which is not enabled by default.

Enabling the OSGi Services Extension

m

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

To enable the Pax CDI OSGi Services Extension, you must include the following bundle header in the
manifest file:

I Require-Capability : org.ops4j.pax.cdi.extension; filter:="(extension=pax-cdi-extension)"

In a Maven project, you would normally add a Require-Capability element to the configuration of the
Maven bundle plug-in. For example, to add both the Pax CDI Extender and the Pax CDI OSGi Services
Extension to the bundle, configure your project's POM file, pom.xml, as follows:

<project ...>

<build>
<plugins>

<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>
<extensions>true</extensions>
<configuration>
<instructions>
<Bundle-SymbolicName>${project.groupld}.${project.artifactld}</Bundle-SymbolicName>
<Import-Package>*</Import-Package>
<Require-Capability>
osgi.extender; filter:="(osgi.extender=pax.cdi)",
org.ops4j.pax.cdi.extension; filter:="(extension=pax-cdi-extension)"
</Require-Capability>
</instructions>
</configuration>
</plugin>

</plugins>
</build>

</project>

Maven dependency for the OSGi Services extensions API
To access the OSGi Services annotations in your Java code, you need to add a dependency on the pax-

cdi-api package. Edit your bundle's POM file, pom.xml, to add the Pax CDI API package as a Maven
dependency:

<project ...>
<dependencies>
<!l-- CDI API -->
<dependency>
<groupld>org.ops4j.pax.cdi</groupld>
<artifactld>pax-cdi-api</artifactld>
<version>1.0.0.RC1</version>
</dependency>
</dependencies>

</project>

12

CHAPTER 14. PAX CDI AND OSGI SERVICES

Injecting an OSGi Service

You can inject an OSGi service into a field using the following annotation:

@Inject @OsgiService
private IceCreamService iceCream;

Pax CDI finds the OSGi service to inject by matching the type of the OSGi service to the type of the
field.

Disambiguating OSGi Services

If there exists more than one OSGi service of a particular type, you can disambiguate the match by
filtering on the OSGi service properties—for example:

@Inject @OsgiService(filter = "(&(flavour=chocolate)(lactose=false))")
private IceCreamService iceCream;

As usual for OSGi services, the properties filter is defined using LDAP filter syntax (see the section
called "“Matching service properties with a filter” for more details). For an example of how to set
properties on an OSGi service, see the section called “Setting OSGi Service properties”.

Selecting OSGi Services at run time

You can reference an OSGi service dynamically by injecting it as follows:

@Inject
@O0sgiService(dynamic = true)
private Instance<lceCreamService> iceCreamServices;

Calling iceCreamServices.get() will return an instance of the lceCreamService service at run time.
With this approach, it is possible to reference an OSGi service that is created after your bean is created.

Publishing a bean as OSGi Service with singleton scope
You can publish an OSGi service with OSGi singleton scope (which is the default), as follows:

@O0sgiServiceProvider
public class ChocolateService implements IceCreamService {

}

OSGi singleton scope means that the bean manager creates a single instance of the bean and returns
that instance every time a bean instance is requested.

Publishing a bean as OSGi Service with prototype scope

You can publish an OSGi service with OSGi prototype scope, as follows:

@O0sgiServiceProvider
@PrototypeScoped

13

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

public class ChocolateService implements IceCreamService {

}

OSGi prototype scope means that the bean manager creates a new bean instance every time a bean
instance is requested.

Publishing a bean as OSGi Service with bundle scope

You can publish an OSGi service with bundle scope, as follows:

@O0sgiServiceProvider
@BundleScoped
public class ChocolateService implements IceCreamService {

}

Bundle scope means that the bean manger creates a new bean instance for every client bundle. That is,
the @BundleScoped beans are registered with an org.osgi.framework.ServiceFactory.

Setting OSGi Service properties

You can set properties on an OSGi service by annotating the service bean as follows:

@O0sgiServiceProvider

@Properties({
@Property(name = "flavour", value = "chocolate"),
@Property(name = "lactose”, value = "false")

b

public class ChocolateService implements IceCreamService {

}

Publishing an OSGi Service with explicit interfaces

You can explicitly specify the Java interfaces supported by an OSGi Service bean, as follows:

@O0sgiServiceProvider(classes = {ChocolateService.class, lceCreamService.class})
public class ChocolateService implements IceCreamService {

}

14

CHAPTER 15. CAMEL CDI

CHAPTER 15. CAMEL CDI

15.1. BASIC FEATURES

Overview

The Camel CDI component provides auto-configuration for Apache Camel using CDI as the dependency
injection framework, based on convention-over-configuration. It auto-detects Camel routes available in
the application and provides beans for common Camel primitives like Endpoint, ProducerTemplate or
TypeConverter. It implements standard Camel bean integration so that Camel annotations like
@Consume, @Produce and @Propertylnject can be used seamlessly in CDI beans. Besides, it bridges
Camel events (for example RouteAddedEvent, CamelContextStartedEvent,
ExchangeCompletedEvent, ...) as CDI events and provides a CDI events endpoint that can be used to
consume / produce CDI events from / to Camel routes.

How to enable Camel CDI in Apache Karaf

To enable Camel CDI in Apache Karaf, perform the following steps:

1. Add the required pax-cdi, pax-cdi-weld, and camel-cdi features to the Karaf container, as
follows:

I JBossFuse:karaf@root> features:install pax-cdi pax-cdi-weld camel-cdi

2. To enable Camel CDl in a bundle, open the pom.xml file in your bundle's Maven project and add
the following Require-Capability element to the configuration of the Maven bundle plug-in:

<project ...>

<build>
<plugins>

<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>
<extensions>true</extensions>
<configuration>
<instructions>
<Bundle-SymbolicName>${project.groupld}.${project.artifactld}</Bundle-
SymbolicName>
<Import-Package>*</Import-Package>
<Require-Capability>
osgi.extender; filter:="(osgi.extender=pax.cdi)",
org.ops4j.pax.cdi.extension; filter:="(extension=camel-cdi-extension)"
</Require-Capability>
</instructions>
</configuration>
</plugin>

</plugins>
</build>

</project>

115

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

3. To access the CDI annotations in Java, you must add a dependency on the CDI API package and
on the Camel CDI package. Edit your bundle's POM file, pom.xml, to add the CDI API package
as a Maven dependency:

<project ...>
<dependencies>

<!l-- CDI API -->

<dependency>
<groupld>javax.enterprise</groupld>
<artifactld>cdi-api</artifactld>
<version>${cdi-api-1.2-version}</version>
<scope>provided</scope>

</dependency>

<!-- Camel CDI API -->

<dependency>
<groupld>org.apache.camel</groupld>
<artifactld>camel-cdi</artifactld>
<version>2.17.0.redhat-630xxx</version>

</dependency>

</dependencies>

</project>
4. Rebuild your bundle in the usual way for your Maven project. For example, using the command:
I mvn clean install

5. Deploy the bundle to the Karaf container in the usual way (for example, using the osgi:install
console command).
Auto-configured Camel context

Camel CDI automatically deploys and configures a CamelContext bean. That CamelContext bean is
automatically instantiated, configured and started (resp. stopped) when the CDI container initialises
(resp. shuts down). It can be injected in the application, for example:

CamelContext context;

I @Inject

The default CamelContext bean is qualified with the built-in @Default qualifier, is scoped
@ApplicationScoped and is of type DefaultCamelContext.

Note that this bean can be customised programmatically and other Camel context beans can be
deployed in the application as well.
Auto-detecting Camel routes

Camel CDI automatically collects all the RoutesBuilder beans in the application, instantiates and add
them to the CamelContext bean instance when the CDI container initialises. For example, adding a
Camel route is as simple as declaring a class, for example:

16

CHAPTER 15. CAMEL CDI

class MyRouteBean extends RouteBuilder {

@Override
public void configure() {
from("jms:invoices").to("file:/invoices");
}
}

Note that you can declare as many RoutesBuilder beans as you want. Besides, RouteContainer beans
are also automatically collected, instantiated and added to the CamelContext bean instance managed
by Camel CDI when the container initialises.

Auto-configured Camel primitives

Camel CDI provides beans for common Camel primitives that can be injected in any CDI beans, for
example:

@Inject
@Uri("direct:inbound")
ProducerTemplate producerTemplate;

@Inject
MockEndpoint outbound; // URI defaults to the member name, i.e. mock:outbound

@Inject
@Uri("direct:inbound")
Endpoint endpoint;

@Inject
TypeConverter converter;

Camel context configuration

If you just want to change the name of the default CamelContext bean, you can used the
@ContextName qualifier provided by Camel CDI, for example:

@ContextName("camel-context")
class MyRouteBean extends RouteBuilder {

@Override
public void configure() {
from("jms:invoices").to("file:/invoices");
}
}

Else, if more customisation is needed, any CamelContext class can be used to declare a custom Camel
context bean. Then, the @PostConstruct and @PreDestroy lifecycle callbacks can be done to do the
customisation, for example:

@ApplicationScoped
class CustomCamelContext extends DefaultCamelContext {

@PostConstruct
void customize() {

17

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

/I Set the Camel context name
setName("custom");

// Disable JMX

disableJMX();

}

@PreDestroy
void cleanUp() {
/...
}
}

Producer and disposer methods can also be used as well to customize the Camel context bean, for
example:

class CamelContextFactory {

@Produces

@ApplicationScoped

CamelContext customize() {
DefaultCamelContext context = new DefaultCamelContext();
context.setName("custom");
return context;

}

void cleanUp(@Disposes CamelContext context) {
/...

}

Similarly, producer fields can be used, for example:

@Produces
@ApplicationScoped
CamelContext context = new CustomCamelContext();

class CustomCamelContext extends DefaultCamelContext {

CustomCamelContext() {
setName("custom");

}
}

This pattern can be used for example to avoid having the Camel context routes started automatically
when the container initialises by calling the setAutoStartup method, for example:

@ApplicationScoped
class ManualStartupCamelContext extends DefaultCamelContext {

@PostConstruct
void manual() {
setAutoStartup(false);
}
}

18

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#producer_method
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#disposer_method
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#producer_field

CHAPTER 15. CAMEL CDI

Multiple Camel contexts

Any number of CamelContext beans can actually be declared in the application as documented above.
In that case, the CDI qualifiers declared on these CamelContext beans are used to bind the Camel
routes and other Camel primitives to the corresponding Camel contexts. From example, if the following
beans get declared:

@ApplicationScoped
@ContextName("foo")
class FooCamelContext extends DefaultCamelContext {

}

@ApplicationScoped
@BarContextQualifier
class BarCamelContext extends DefaultCamelContext {

}

@ContextName("foo")
class RouteAdddedToFooCamelContext extends RouteBuilder {

@Override
public void configure() {
...

}
}

@BarContextQualifier
class RouteAdddedToBarCamelContext extends RouteBuilder {

@Override
public void configure() {
...

}
}

@ContextName("baz")
class RouteAdddedToBazCamelContext extends RouteBuilder {

@Override
public void configure() {
...

}
}

@MyOtherQualifier
class RouteNotAddedToAnyCamelContext extends RouteBuilder {

@Override
public void configure() {
...

}
}

The RoutesBuilder beans qualified with @ContextName are automatically added to the corresponding
CamelContext beans by Camel CDI. If no such CamelContext bean exists, it gets automatically created,
as for the RouteAddedToBazCamelContext bean. Note this only happens for the @ContextName

19

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

qualifier provided by Camel CDI. Hence the RouteNotAddedToAnyCamelContext bean qualified with
the user-defined @MyOtherQualifier qualifier does not get added to any Camel contexts. That may be
useful, for example, for Camel routes that may be required to be added later during the application
execution.

Since Camel version 2.17.0, Camel CDl is capable of managing any kind of CamelContext beans. In
previous versions, it is only capable of managing beans of type CdiCamelContext so it is required to
extend it.

The CDI qualifiers declared on the CamelContext beans are also used to bind the corresponding Camel
primitives, for example:

@Inject

@ContextName("foo")
@Uri("direct:inbound")
ProducerTemplate producerTemplate;

@Inject
@BarContextQualifier
MockEndpoint outbound; // URI defaults to the member name, i.e. mock:outbound

@Inject
@ContextName("baz")
@Uri("direct:inbound")
Endpoint endpoint;

Configuration properties

To configure the sourcing of the configuration properties used by Camel to resolve properties
placeholders, you can declare a PropertiesComponent bean qualified with @Named("properties"), for
example:

@Produces

@ApplicationScoped

@Named("properties”)

PropertiesComponent propertiesComponent() {
Properties properties = new Properties();
properties.put("property”, "value");
PropertiesComponent component = new PropertiesComponent();
component.setinitialProperties(properties);
component.setLocation("classpath:placeholder.properties");
return component;

}

If you want to use DeltaSpike configuration mechanism you can declare the following
PropertiesComponent bean:

@Produces

@ApplicationScoped

@Named("properties”)

PropertiesComponent properties(PropertiesParser parser) {
PropertiesComponent component = new PropertiesComponent();
component.setPropertiesParser(parser);
return component;

}

120

http://deltaspike.apache.org/documentation/configuration.html

CHAPTER 15. CAMEL CDI

/I PropertiesParser bean that uses DeltaSpike to resolve properties
static class DeltaSpikeParser extends DefaultPropertiesParser {
@Override
public String parseProperty(String key, String value, Properties properties) {
return ConfigResolver.getPropertyValue(key);
}
}

You can see the camel-example-cdi-properties example for a working example of a Camel CDI
application using DeltaSpike configuration mechanism.

Auto-configured type converters

CDI beans annotated with the @Converter annotation are automatically registered into the deployed
Camel contexts, for example:

@Converter
public class MyTypeConverter {

@Converter
public Output convert(Input input) {
/...
}
}

Note that CDl injection is supported within the type converters.

Lazy Injection / Programmatic Lookup

Available as of Camel 2.17

While the CDI programmatic model favors a type-safe resolution mechanism that occurs at application
initialization time, it is possible to perform dynamic / lazy injection later during the application execution
using the programmatic lookup mechanism.

Camel CDI provides for convenience the annotation literals corresponding to the CDI qualifiers that you
can use for standard injection of Camel primitives. These annotation literals can be used in conjunction
with thejavax.enterprise.inject.Instance interface which is the CDI entry point to perform lazy injection
/ programmatic lookup.

For example, you can use the provided annotation literal for the @Uriqualifier to lazily lookup for Camel
primitives, for example for ProducerTemplatebeans:

@Any
@Inject
Instance<ProducerTemplate> producers;

ProducerTemplate inbound = producers
.select(Uri.Literal.of("direct:inbound"))
-get();

Or for Endpoint beans, for example:

121

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#typesafe_resolution
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#programmatic_lookup

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

@Any
@Inject
Instance<Endpoint> endpoints;

MockEndpoint outbound = endpoints
.select(MockEndpoint.class, Uri.Literal.of("mock:outbound"))

.get();

Similarly, you can use the provided annotation literal for the@ContextName qualifier to lazily lookup for
CamelContext beans, for example:

@Any
@Inject
Instance<CamelContext> contexts;

CamelContext context = contexts
.select(ContextName.Literal.of("foo"))

.get();

You can also refined the selection based on the Camel context type, for example:

@Any
@Inject
Instance<CamelContext> contexts;

/I Refine the selection by type
Instance<DefaultCamelContext> context = contexts.select(DefaultCamelContext.class);

// Check if such a bean exists then retrieve a reference
if (Icontext.isUnsatisfied())
context.get();

Or even iterate over a selection of Camel contexts, for example:

@Any
@Inject
Instance<CamelContext> contexts;

for (CamelContext context : contexts)
context.setUseBreadcrumb(true);

Injecting a Camel context from Spring XML

While CDI favors a type safe dependency injection mechanism, it may be useful to reuse existing Camel
XML configurations by injecting them into a Camel CDI application. In other use cases, it might be handy
to rely on the Camel XML DSL to configure its Camel context(s).

To inject by CDI a camelContext defined in Spring XML, you need to use the Java @Resource
annotation, instead of the @Inject @ContextName annotations in the Camel CDI extension. For
example,

public class RouteCaller {

122

CHAPTER 15. CAMEL CDI

@Resource(name = "java:jboss/camel/context/simple-context")
private CamelContext context;

The string java:jboss/camel/context/simple-context is the name of the deployed context registered in
the JNDI registry. simple-context is the xml:id of the camelContext element in the Spring XML file.

IMPORTANT

lookups to fail.

15.2. CAMEL BEAN INTEGRATION

Camel annotations

Using the @Inject @ContextName annotations can result in the creation of a new
camelContext instead of injecting the named context, which later causes endpoint

As part of the Camel bean integration, Camel comes with a set of annotations that are seamlessly
supported by Camel CDI. So you can use any of these annotations in your CDI beans, for example:

Configuration property

Producer template injection
(default Camel context)

Endpoint injection (default Camel
context)

Endpoint injection (Camel
context by name)

Camel annotation

@Propertylnject("key")
String value;

@Produce(uri =
"mock:outbound")
ProducerTemplate
producer;

@Endpointinject(uri =
"direct:inbound")
Endpoint endpoint;

@EndpointInject(uri =
"direct:inbound", context =
llfooll)

Endpoint contextEndpoint;

CDI equivalent

If using DeltaSpike configuration
mechanism:

@Inject
@ConfigProperty(name =
llkey")

String value;

See configuration properties for
more details.

@Inject
@Uri("direct:outbound")
ProducerTemplate
producer;

@Inject
@Uri("direct:inbound")
Endpoint endpoint;

@Inject
@ContextName("foo")
@Uri("direct:inbound")
Endpoint contextEndpoint;

123

http://camel.apache.org/bean-integration.html
http://camel.apache.org/bean-integration.html#BeanIntegration-Annotations
http://deltaspike.apache.org/documentation/configuration.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Bean injection (by type)

@Beanlnject @Inject

MyBean bean; MyBean bean;
Bean injection (by name)

@Beanlnject("foo") @Inject

MyBean bean; @Named("foo")

MyBean bean;

POJO consuming
@Consume(uri =
"seda:inbound")
void consume(@Body
String body) {
/...

}

Bean component

You can refer to CDI beans, either by type or name, From the Camel DSL, for example with the Java
Camel DSL:

class MyBean {
/...

}

from("direct:inbound").bean(MyBean.class);

Or to lookup a CDI bean by name from the Java DSL:

@Named("foo")
class MyNamedBean {
/...

}

from("direct:inbound").bean("foo");

Referring beans from Endpoint URIs

When configuring endpoints using the URI syntax you can refer to beans in the Registry using the #
notation. If the URI parameter value starts with a # sign then Camel CDI will lookup for a bean of the
given type by name, for example:

from("jms:queue:{{destination}}?
transacted=true&transactionManager=#jtaTransactionManager").to("...");

Having the following CDI bean qualified with @Named("jtaTransactionManager"):

I @Produces

124

CHAPTER 15. CAMEL CDI

@Named("jtaTransactionManager")
PlatformTransactionManager createTransactionManager(TransactionManager transactionManager,
UserTransaction userTransaction) {
JtaTransactionManager jtaTransactionManager = new JtaTransactionManager();
jtaTransactionManager.setUserTransaction(userTransaction);
jtaTransactionManager.setTransactionManager(transactionManager);
jtaTransactionManager.afterPropertiesSet();
return jtaTransactionManager;

}

15.3. CDI EVENTS IN CAMEL

Camel events to CDI events

Camel provides a set of management events that can be subscribed to for listening to Camel context,
service, route and exchange events. Camel CDI seamlessly translates these Camel events into CDI
events that can be observed using CDIl observer methods, for example:

void onContextStarting(@Observes CamelContextStartingEvent event) {
/I Called before the default Camel context is about to start

}

When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like
@ContextName, can be used to refine the observer method resolution to a particular Camel context as
specified in observer resolution, for example:

void onRouteStarted(@Observes @ContextName("foo") RouteStartedEvent event) {
/I Called after the route 'event.getRoute()' for the Camel context 'foo' has started

}

void onContextStarted(@Observes @Manual CamelContextStartedEvent event) {
/I Called after the the Camel context qualified with '@Manual’ has started

}

Similarly, the @Default qualifier can be used to observe Camel events for the default Camel context if
multiples contexts exist, for example:

void onExchangeCompleted(@Observes @Default ExchangeCompletedEvent event) {
/I Called after the exchange 'event.getExchange()' processing has completed

}

In that example, if no qualifier is specified, the @Any qualifier is implicitly assumed, so that
corresponding events for all the Camel contexts get received.

Note that the support for Camel events translation into CDI events is only activated if observer
methods listening for Camel events are detected in the deployment, and that per Camel context.

CDI events endpoint

The CDI event endpoint bridges the CDI events with the Camel routes so that CDI events can be
seamlessly observed / consumed (resp. produced / fired) from Camel consumers (resp. by Camel
producers).

125

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/management/event/package-summary.html
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_methods
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_resolution
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#events

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

The CdiEventEndpoint<T> bean provided by Camel CDI can be used to observe / consume CDI events
whose event type is T, for example:

@Inject
CdiEventEndpoint<String> cdiEventEndpoint;

from(cdiEventEndpoint).log("CDI event received: ${body}");

This is equivalent to writing:

@Inject
@Uri("direct:event")
ProducerTemplate producer;

void observeCdiEvents(@Observes String event) {
producer.sendBody(event);

}

from("direct:event").log("CDI event received: ${body}");

Conversely, the CdiEventEndpoint<T> bean can be used to produce / fire CDI events whose event
type is T, for example:

@Inject
CdiEventEndpoint<String> cdiEventEndpoint;

from("direct:event").to(cdiEventEndpoint).log("CDI event sent: ${body}");

This is equivalent to writing:

@Inject
Event<String> event;

from("direct:event").process(new Processor() {
@Override
public void process(Exchange exchange) {
event.fire(exchange.getBody(String.class));

}
1)-log("CDI event sent: ${body}");

Or using a Java 8 lambda expression:

@Inject
Event<String> event;

from("direct:event")
.process(exchange -> event.fire(exchange.getin().getBody(String.class)))
Jog("CDI event sent: ${body}");

The type variable T (resp. the qualifiers) of a particular CdiEventEndpoint<Ts injection point are
automatically translated into the parameterized event type (resp. into the event qualifiers) for example:

@Inject
@FooQualifier

126

CHAPTER 15. CAMEL CDI

CdiEventEndpoint<List<String>> cdiEventEndpoint;
from("direct:event").to(cdiEventEndpoint);

void observeCdiEvents(@Observes @FooQualifier List<String> event) {
logger.info("CDI event: {}", event);

}

When multiple Camel contexts exist in the CDI container, the Camel context bean qualifiers, like
@ContextName, can be used to qualify the CdiEventEndpoint<Ts injection points, for example:

@Inject

@ContextName("foo")

CdiEventEndpoint<List<String>> cdiEventEndpoint;

/I Only observes / consumes events having the @ContextName("foo") qualifier
from(cdiEventEndpoint).log("Camel context (foo) > CDI event received: ${body}");
/I Produces / fires events with the @ContextName("foo") qualifier
from("...").to(cdiEventEndpoint);

void observeCdiEvents(@Observes @ContextName("foo") List<String> event) {
logger.info("Camel context (foo) > CDI event: {}", event);

}

Note that the CDI event Camel endpoint dynamically adds an observer method for each unique
combination of event type and event qualifiers and solely relies on the container typesafe observer
resolution, which leads to an implementation as efficient as possible.

Besides, as the impedance between the typesafe nature of CDI and the dynamic nature of the Camel
component model is quite high, it is not possible to create an instance of the CDI event Camel endpoint
via URIs. Indeed, the URI format for the CDI event component is:

I cdi-event://PayloadType<T1,...,Tn>[?qualifiers=QualifierType1[,...[,QualifierTypeN]...]]

With the authority PayloadType (resp. the QualifierType) being the URI escaped fully qualified name
of the payload (resp. qualifier) raw type followed by the type parameters section delimited by angle
brackets for payload parameterized type. Which leads to unfriendly URIs, for example:

cdi-event://org.apache.camel.cdi.example.EventPayload%3Cjava.lang.Integer%3E?
qualifiers=org.apache.camel.cdi.example.FooQualifier%2Corg.apache.camel.cdi.example.BarQualifier

But more fundamentally, that would prevent efficient binding between the endpoint instances and the
observer methods as the CDI container doesn't have any ways of discovering the Camel context model
during the deployment phase.

15.4. OSGI INTEGRATION

Auto-configured OSGi integration

The Camel context beans are automatically adapted by Camel CDI so that they are registered as OSGi
services and the various resolvers (like ComponentResolver and DataFormatResolver) integrate with
the OSGi registry. That means that the Karaf Camel commands can be used to operate the Camel
contexts auto-configured by Camel CDI, for example:

127

http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_methods
http://docs.jboss.org/cdi/spec/1.2/cdi-spec.html#observer_resolution
http://camel.apache.org/component.html
http://camel.apache.org/uris.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

karaf@root()> camel:context-list
Context Status Total # Failed # Inflight # Uptime

camel-cdi Started 1 0 0 1 minute

See the camel-example-cdi-osgi example, available in the list of camel examples for a working example
of the Camel CDI OSGi integration.

128

https://github.com/apache/camel/tree/master/examples/camel-example-cdi-osgi

PART V. OSGI SERVICE LAYER

PART V. OSGI SERVICE LAYER

Abstract

In Red Hat JBoss Fuse, the natural way to communicate between deployed bundles is to use OSGi
services. An OSGi service exposes Java methods that can be invoked by other bundles in the container.

129

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

CHAPTER 16. OSGI SERVICES

Abstract

The OSGi core framework defines the OSGi Service Layer, which provides a simple mechanism for
bundles to interact by registering Java objects as services in the OSGi service registry. One of the
strengths of the OSGi service model is that any Java object can be offered as a service: there are no
particular constraints, inheritance rules, or annotations that must be applied to the service class. This
chapter describes how to deploy an OSGi service using the OSGi blueprint container.

16.1. THE BLUEPRINT CONTAINER

Abstract

The blueprint container is a dependency injection framework that simplifies interaction with the OSGi
container. In particular, the blueprint container supports a configuration-based approach to using the
OSGi service registry—for example, providing standard XML elements to import and export OSGi
services.

16.1.1. Blueprint Configuration

Location of blueprint files in a JAR file

Relative to the root of the bundle JAR file, the standard location for blueprint configuration files is the
following directory:

I OSGI-INF/blueprint

Any files with the suffix, .xml, under this directory are interpreted as blueprint configuration files; in
other words, any files that match the pattern, OSGI-INF/blueprint/*.xml.

Location of blueprint files in a Maven project

In the context of a Maven project, ProjectDir, the standard location for blueprint configuration files is
the following directory:

I ProjectDir/src/main/resources/OSGI-INF/blueprint

Blueprint namespace and root element

Blueprint configuration elements are associated with the following XML namespace:
I http://www.osgi.org/xmlns/blueprint/v1.0.0

The root element for blueprint configuration is blueprint, so a blueprint XML configuration file normally
has the following outline form:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">

130

CHAPTER 16. OSGI SERVICES

I </blueprint>

NOTE

In the blueprint root element, there is no need to specify the location of the blueprint
schema using an xsi:schemalLocation attribute, because the schema location is already
known to the blueprint framework.

Blueprint Manifest configuration

There are a few aspects of blueprint configuration that are controlled by headers in the JAR's manifest
file, META-INF/MANIFEST.MF, as follows:

® the section called “Custom Blueprint file locations” .

® the section called “"Mandatory dependencies”.

Custom Blueprint file locations

If you need to place your blueprint configuration files in a non-standard location (that is, somewhere
other than OSGI-INF/blueprint/*.xml), you can specify a comma-separated list of alternative locations
in the Bundle-Blueprint header in the manifest file—for example:

I Bundle-Blueprint: lib/account.xml, security.bp, cnf/*.xml

Mandatory dependencies

Dependencies on an OSGi service are mandatory by default (although this can be changed by setting
the availability attribute to optional on a reference element or a reference-list element). Declaring a
dependency to be mandatory means that the bundle cannot function properly without that dependency
and the dependency must be available at all times.

Normally, while a blueprint container is initializing, it passes through a grace period, during which time it
attempts to resolve all mandatory dependencies. If the mandatory dependencies cannot be resolved in
this time (the default timeout is 5 minutes), container initialization is aborted and the bundle is not
started. The following settings can be appended to the Bundle-SymbolicName manifest header to
configure the grace period:

blueprint.graceperiod

If true (the default), the grace period is enabled and the blueprint container waits for mandatory
dependencies to be resolved during initialization; if false, the grace period is skipped and the
container does not check whether the mandatory dependencies are resolved.

blueprint.timeout

Specifies the grace period timeout in milliseconds. The default is 300000 (5 minutes).

For example, to enable a grace period of 10 seconds, you could define the following Bundle-
SymbolicName header in the manifest file:

131

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Bundle-SymbolicName: org.fusesource.example.osgi-client;
blueprint.graceperiod:=true;
blueprint.timeout:= 10000

The value of the Bundle-SymbolicName header is a semi-colon separated list, where the first item is
the actual bundle symbolic name, the second item, blueprint.graceperiod:=true, enables the grace
period and the third item, blueprint.timeout:= 10000, specifies a 10 second timeout.

16.1.2. Defining a Service Bean

Overview

Similarly to the Spring container, the blueprint container enables you to instantiate Java classes using a
bean element. You can create all of your main application objects this way. In particular, you can use the
bean element to create a Java object that represents an OSGi service instance.

Blueprint bean element

The blueprint bean element is defined in the blueprint schema namespace,
http://www.osgi.org/xmins/blueprint/v1.0.0. The blueprint
{http://www.osgi.org/xmins/blueprint/v1.0.0}bean element should not be confused with the Spring
{http://www.springframework.org/schema/beans}bean element, which has a similar syntax but is
defined in a different namespace.

NOTE

The Spring DM specification version 2.0 or later, allows you to mix both kinds of bean
element under the beans root element, (as long as you define each bean elements using
the appropriate namespace prefix).

Sample beans

The blueprint bean element enables you to create objects using a similar syntax to the conventional
Spring bean element. One significant difference, however, is that blueprint constructor arguments are
specified using the argument child element, in contrast to Spring's constructor-arg child element. The
following example shows how to create a few different types of bean using blueprint's bean element:

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">

<bean id="label" class="java.lang.String">
<argument value="LABEL_VALUE"/>
</bean>

<bean id="myList" class="java.util.ArrayList">
<argument type="int" value="10"/>
</bean>

<bean id="account" class="org.fusesource.example.Account">
<property name="accountName" value="john.doe"/>
<property name="balance" value="10000"/>

</bean>

</blueprint>

132

Where the Account class referenced by the last bean example could be defined as follows:

package org.fusesource.example;

public class Account

{

private String accountName;
private int balance;

public Account () { }

public void setAccountName(String name) {
this.accountName = name;

}

public void setBalance(int bal) {
this.balance = bal;

}

Differences between Blueprint and Spring

CHAPTER 16. OSGI SERVICES

Althought the syntax of the blueprint bean element and the Spring bean element are similar, there are a
few differences, as you can see from Table 16.1, “Comparison of Spring bean with Blueprint bean” . In this
table, the XML tags (identifiers enclosed in angle brackets) refer to child elements of bean and the plain

identifiers refer to attributes.

Table 16.1. Comparison of Spring bean with Blueprint bean

Spring DM Attributes/Tags Blueprint Attributes/Tags

id

name/<alias>

class

scope

lazy-init=("true"|"false")

depends-on

init-method

destroy-method

factory-method

factory-bean

id

N/A

class

scope=("singleton"|"prototype")

activation=("eager"|"lazy")

depends-on

init-method

destroy-method

factory-bean

factory-ref

133

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Spring DM Attributes/Tags Blueprint Attributes/Tags

<constructor-arg> <argument>

<property> <property>

Where the default value of the blueprint scope attribute is singleton and the default value of the
blueprint activation attribute is eager.

References
For more details on defining blueprint beans, consult the following references:
® Spring Dynamic Modules Reference Guide v2.0 (see the blueprint chapters).
® Section 121 Blueprint Container Specification, from the OSGi Compendium Services R4.2
specification.

16.1.3. Exporting a Service

Overview

This section describes how to export a Java object to the OSGi service registry, thus making it
accessible as a service to other bundles in the OSGi container.

Exporting with a single interface

To export a service to the OSGi service registry under a single interface name, define a service element
that references the relevant service bean, using the ref attribute, and specifies the published interface,
using the interface attribute.

For example, you could export an instance of the SavingsAccountlmpl class under the
org.fusesource.example.Account interface name using the blueprint configuration code shown in
Example 16.1, “Sample Service Export with a Single Interface”.

<bean id="savings" class="org.fusesource.example.SavingsAccountimpl"/>

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">
<service ref="savings" interface="org.fusesource.example.Account"/>

Example 16.1. Sample Service Export with a Single Interface
</blueprint>

Where the ref attribute specifies the ID of the corresponding bean instance and the interface attribute
specifies the name of the public Java interface under which the service is registered in the OSGi service
registry. The classes and interfaces used in this example are shown in Example 16.2, “Sample Account
Classes and Interfaces”

134

http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/
http://www.osgi.org/Release4/Download

CHAPTER 16. OSGI SERVICES

public interface SavingsAccount { ... }
public interface CheckingAccount { ... }

public class SavingsAccountimpl implements SavingsAccount

{
}

public class CheckingAccountlmpl implements CheckingAccount

{

Example 16.2. Sample Account Classes and Interfaces
package org.fusesource.example

public interface Account { ... }

}

Exporting with multiple interfaces

To export a service to the OSGi service registry under multiple interface names, define a service
element that references the relevant service bean, using the ref attribute, and specifies the published
interfaces, using the interfaces child element.

For example, you could export an instance of the SavingsAccountlmpl class under the list of public
Java interfaces, org.fusesource.example.Account and org.fusesource.example.SavingsAccount,
using the following blueprint configuration code:

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">
<bean id="savings" class="org.fusesource.example.SavingsAccountimpl"/>
<service ref="savings">
<interfaces>
<value>org.fusesource.example.Account</value>
<value>org.fusesource.example.SavingsAccount</value>
</interfaces>
</service>

</blueprint>

NOTE

The interface attribute and the interfaces element cannot be used simultaneously in the
same service element. You must use either one or the other.

Exporting with auto-export

If you want to export a service to the OSGi service registry under all of its implemented public Java
interfaces, there is an easy way of accomplishing this using the auto-export attribute.

For example, to export an instance of the SavingsAccountlmpl class under all of its implemented public
interfaces, use the following blueprint configuration code:

135

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">
<bean id="savings" class="org.fusesource.example.SavingsAccountimpl"/>
<service ref="savings" auto-export="interfaces"/>

</blueprint>

Where the interfaces value of the auto-export attribute indicates that blueprint should register all of
the public interfaces implemented by SavingsAccountimpl. The auto-export attribute can have the
following valid values:

disabled

Disables auto-export. This is the default.

interfaces

Registers the service under all of its implemented public Java interfaces.

class-hierarchy

Registers the service under its own type (class) and under all super-types (super-classes), except for
the Object class.

all-classes

Like the class-hierarchy option, but including all of the implemented public Java interfaces as well.

Setting service properties

The OSGi service registry also allows you to associate service properties with a registered service.
Clients of the service can then use the service properties to search for or filter services. To associate
service properties with an exported service, add a service-properties child element that contains one or
more beans:entry elements (one beans:entry element for each service property).

For example, to associate the bank.name string property with a savings account service, you could use
the following blueprint configuration:

<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"
xmins:beans="http://www.springframework.org/schema/beans"
>

<service ref="savings" auto-export="interfaces">
<service-properties>
<beans:entry key="bank.name" value="HighStreetBank"/>
</service-properties>
</service>

</blueprint>
Where the bank.name string property has the value, HighStreetBank. It is possible to define service
properties of type other than string: that is, primitive types, arrays, and collections are also supported.

For details of how to define these types, see Controlling the Set of Advertised Properties. in the Spring
Reference Guide.

136

http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/service-registry.html#service-registry:export:props

CHAPTER 16. OSGI SERVICES

NOTE

Strictly speaking, the entry element ought to belong to the blueprint namespace. The
use of the beans:entry element in Spring's implementation of blueprint is non-standard.

Default service properties

There are two service properties that might be set automatically when you export a service using the
service element, as follows:

e osgi.service.blueprint.compname—is always set to the id of the service's bean element,
unless the bean is inlined (that is, the bean is defined as a child element of the service element).
Inlined beans are always anonymous.

e service.ranking—is automatically set, if the ranking attribute is non-zero.

Specifying a ranking attribute

If a bundle looks up a service in the service registry and finds more than one matching service, you can
use ranking to determine which of the services is returned. The rule is that, whenever a lookup matches
multiple services, the service with the highest rank is returned. The service rank can be any non-
negative integer, with 0 being the default. You can specify the service ranking by setting the ranking
attribute on the service element—for example:

I <service ref="savings" interface="org.fusesource.example.Account" ranking="10"/>

Specifying a registration listener

If you want to keep track of service registration and unregistration events, you can define a registration
listener callback bean that receives registration and unregistration event notifications. To define a
registration listener, add a registration-listener child element to a service element.

For example, the following blueprint configuration defines a listener bean, listenerBean, which is
referenced by a registration-listener element, so that the listener bean receives callbacks whenever an
Account service is registered or unregistered:

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0" ...>
<bean id="listenerBean" class="org.fusesource.example.Listener"/>

<service ref="savings" auto-export="interfaces">
<registration-listener
ref="listenerBean"
registration-method="register"
unregistration-method="unregister"/>
</service>

</blueprint>
Where the registration-listener element's ref attribute references the id of the listener bean, the
registration-method attribute specifies the name of the listener method that receives the registration

callback, and unregistration-method attribute specifies the name of the listener method that receives
the unregistration callback.

137

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

The following Java code shows a sample definition of the Listener class that receives notifications of
registration and unregistration events:

package org.fusesource.example;

public class Listener

{

public void register(Account service, java.util.Map serviceProperties) {

}

public void unregister(Account service, java.util.Map serviceProperties) {

}
}

The method names, register and unregister, are specified by the registration-method and
unregistration-method attributes respectively. The signatures of these methods must conform to the
following syntax:

® first method argument —any type T that is assignable from the service object's type. In other
words, any supertype class of the service class or any interface implemented by the service
class. This argument contains the service instance, unless the service bean declares the scope
to be prototype, in which case this argument is null (when the scope is prototype, no service
instance is available at registration time).

® Second method argument —must be of either java.util.Map type or java.util.Dictionary type.
This map contains the service properties associated with this service registration.

16.1.4. Importing a Service

Overview

This section describes how to obtain and use references to OSGi services that have been exported to
the OSGi service registry. Essentially, you can use either the reference element or the reference-list
element to import an OSGi service. The key difference between these elements is not (as you might at
first be tempted to think) that reference returns a single service reference, while reference-list returns
a list of service references. Rather, the real difference is that the reference element is suitable for
accessing stateless services, while the reference-list element is suitable for accessing stateful services.

Managing service references
The following models for obtaining OSGi services references are supported:
® the section called “Reference manager”.

® the section called “Reference list manager”.

Reference manager

A reference manager instance is created by the blueprint reference element. This element returns a
single service reference and is the preferred approach for accessing stateless services. Figure 16.1,
"Reference to Stateless Service” shows an overview of the model for accessing a stateless service using
the reference manager.

138

CHAPTER 16. OSGI SERVICES

Figure 16.1. Reference to Stateless Service

Injected Proxy Backing
beans services

Beans in the client blueprint container get injected with a proxy object (the provided object), which is
backed by a service object (the backing service) from the OSGi service registry. This model explicitly
takes advantage of the fact that stateless services are interchangeable, in the following ways:

e |f multiple services instances are found that match the criteria in the reference element, the
reference manager can arbitrarily choose one of them as the backing instance (because they
are interchangeable).

e |f the backing service disappears, the reference manager can immediately switch to using one of
the other available services of the same type. Hence, there is no guarantee, from one method
invocation to the next, that the proxy remains connected to the same backing service.

The contract between the client and the backing service is thus stateless, and the client must not
assume that it is always talking to the same service instance. If no matching service instances are
available, the proxy will wait for a certain length of time before throwing the ServiceUnavailable
exception. The length of the timeout is configurable by setting the timeout attribute on the reference
element.

Reference list manager

A reference list manager instance is created by the blueprint reference-list element. This element
returns a list of service references and is the preferred approach for accessing stateful services.
Figure 16.2, “List of References to Stateful Services” shows an overview of the model for accessing a
stateful service using the reference list manager.

139

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Figure 16.2. List of References to Stateful Services

Injected Backing

Proxy list

beans services
*|-————- -i i
*—-————- — . i .
L i L]
L ! L

Beans in the client blueprint container get injected with a java.util.List object (the provided object),
which contains a list of proxy objects. Each proxy is backed by a unique service instance in the OSGi
service registry. Unlike the stateless model, backing services are not considered to be interchangeable
here. In fact, the lifecycle of each proxy in the list is tightly linked to the lifecycle of the corresponding
backing service: when a service gets registered in the OSGi registry, a corresponding proxy is
synchronously created and added to the proxy list; and when a service gets unregistered from the OSGi
registry, the corresponding proxy is synchronously removed from the proxy list.

The contract between a proxy and its backing service is thus stateful, and the client may assume when it
invokes methods on a particular proxy, that it is always communicating with the same backing service. It
could happen, however, that the backing service becomes unavailable, in which case the proxy becomes
stale. Any attempt to invoke a method on a stale proxy will generate the ServiceUnavailable exception.

Matching by interface (stateless)

The simplest way to obtain a stateles service reference is by specifying the interface to match, using the
interface attribute on the reference element. The service is deemed to match, if the interface attribute
value is a super-type of the service or if the attribute value is a Java interface implemented by the
service (the interface attribute can specify either a Java class or a Java interface).

For example, to reference a stateless SavingsAccount service (see Example 16.1, “Sample Service
Export with a Single Interface”), define a reference element as follows:

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"/>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAccount" ref="savingsRef"/>

140

CHAPTER 16. OSGI SERVICES

</bean>

</blueprint>

Where the reference element creates a reference manager bean with the ID, savingsRef. To use the
referenced service, inject the savingsRef bean into one of your client classes, as shown.

The bean property injected into the client class can be any type that is assignable from
SavingsAccount. For example, you could define the Client class as follows:

package org.fusesource.example.client;
import org.fusesource.example.SavingsAccount;

public class Client {
SavingsAccount savingsAccount;

// Bean properties
public SavingsAccount getSavingsAccount() {
return savingsAccount;

}

public void setSavingsAccount(SavingsAccount savingsAccount) {
this.savingsAccount = savingsAccount;

}

Matching by interface (stateful)

The simplest way to obtain a stateful service reference is by specifying the interface to match, using the
interface attribute on the reference-list element. The reference list manager then obtains a list of all
the services, whose interface attribute value is either a super-type of the service or a Java interface
implemented by the service (the interface attribute can specify either a Java class or a Java interface).

For example, to reference a stateful SavingsAccount service (see Example 16.1, “Sample Service
Export with a Single Interface”), define a reference-list element as follows:

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">

<reference-list id="savingsListRef"
interface="org.fusesource.example.SavingsAccount"/>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAccountList" ref="savingsListRef"/>
</bean>

</blueprint>

Where the reference-list element creates a reference list manager bean with the ID, savingsListRef.
To use the referenced service list, inject the savingsListRef bean reference into one of your client
classes, as shown.

By default, the savingsAccountList bean property is a list of service objects (for example,
java.util.List<SavingsAccount>). You could define the client class as follows:

141

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

package org.fusesource.example.client;
import org.fusesource.example.SavingsAccount;

public class Client {
java.util.List<SavingsAccount> accountList;

// Bean properties
public java.util.List<SavingsAccount> getSavingsAccountList() {
return accountList;

}

public void setSavingsAccountList(
java.util.List<SavingsAccount> accountList

)4

this.accountList = accountList;

}

Matching by interface and component name

To match both the interface and the component name (bean ID) of a stateless service, specify both the
interface attribute and the component-name attribute on the reference element, as follows:

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
component-name="savings"/>

To match both the interface and the component name (bean ID) of a stateful service, specify both the
interface attribute and the component-name attribute on the reference-list element, as follows:

<reference-list id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
component-name="savings"/>

Matching service properties with a filter

You can select services by matching service properties against a filter. The filter is specified using the
filter attribute on the reference element or on the reference-list element. The value of the filter
attribute must be an LDAP filter expression . For example, to define a filter that matches when the
bank.name service property equals HighStreetBank, you could use the following LDAP filter
expression:

I (bank.name=HighStreetBank)

To match two service property values, you can use & conjunction, which combines expressions with a
logical and.For example, to require that the foo property is equal to FooValue and the bar property is
equal to BarValue, you could use the following LDAP filter expression:

I (&(foo=FooValue)(bar=BarValue))

For the complete syntax of LDAP filter expressions, see section 3.2.7 of the OSGi Core Specification.

142

CHAPTER 16. OSGI SERVICES

Filters can also be combined with the interface and component-name settings, in which case all of the
specified conditions are required to match.

For example, to match a stateless service of SavingsAccount type, with a bank.name service property
equal to HighStreetBank, you could define a reference element as follows:

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
filter="(bank.name=HighStreetBank)"/>

To match a stateful service of SavingsAccount type, with a bank.name service property equal to
HighStreetBank, you could define a reference-list element as follows:

<reference-list id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
filter="(bank.name=HighStreetBank)"/>

Specifying whether mandatory or optional

By default, a reference to an OSGi service is assumed to be mandatory (see the section called
“Mandatory dependencies”). It is possible, however, to customize the dependency behavior of a
reference element or a reference-list element by setting the availability attribute on the element.
There are two possible values of the availability attribute: mandatory (the default), means that the
dependency must be resolved during a normal blueprint container initialization; and optional, means
that the dependency need not be resolved during initialization.

The following example of a reference element shows how to declare explicitly that the reference is a
mandatory dependency:

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
availability="mandatory"/>

Specifying a reference listener

To cope with the dynamic nature of the OSGi environment—for example, if you have declared some of
your service references to have optional availability—it is often useful to track when a backing service
gets bound to the registry and when it gets unbound from the registry. To receive notifications of
service binding and unbinding events, you can define a reference-listener element as the child of either
the reference element or the reference-list element.

For example, the following blueprint configuration shows how to define a reference listener as a child of
the reference manager with the ID, savingsRef:

<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
>
<reference-listener bind-method="onBind" unbind-method="onUnbind">
<bean class="org.fusesource.example.client.Listener"/>
</reference-listener>
</reference>

143

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAcc" ref="savingsRef"/>
</bean>

</blueprint>

The preceding configuration registers an instance of org.fusesource.example.client.Listener type as a
callback that listens for bind and unbind events. Events are generated whenever the savingsRef
reference manager's backing service binds or unbinds.

The following example shows a sample implementation of the Listener class:

package org.fusesource.example.client;
import org.osgi.framework.ServiceReference;
public class Listener {

public void onBind(ServiceReference ref) {
System.out.printin("Bound service: " + ref);

}

public void onUnbind(ServiceReference ref) {
System.out.printin("Unbound service: " + ref);

}

The method names, onBind and onUnbind, are specified by the bind-method and unbind-method
attributes respectively. Both of these callback methods take an org.osgi.framework.ServiceReference
argument.

16.2. PUBLISHING AN OSGI SERVICE

Overview

This section explains how to generate, build, and deploy a simple OSGi service in the OSGi container.
The service is a simple Hello World Java class and the OSGi configuration is defined using a blueprint
configuration file.

Prerequisites

In order to generate a project using the Maven Quickstart archetype, you must have the following
prerequisites:

® Maven installation—Maven is a free, open source build tool from Apache. You can download the
latest version from http://maven.apache.org/download.html (minimum is 2.0.9).

® |nternet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your build
machine must be connected to the Internet.

Generating a Maven project

144

http://maven.apache.org/download.html

CHAPTER 16. OSGI SERVICES

The maven-archetype-quickstart archetype creates a generic Maven project, which you can then
customize for whatever purpose you like. To generate a Maven project with the coordinates,
org.fusesource.example:osgi-service, enter the following command:

mvn archetype:create
-DarchetypeAtrtifactld=maven-archetype-quickstart
-Dgroupld=org.fusesource.example
-Dartifactld=osgi-service

The result of this command is a directory, ProjectDinosgi-service, containing the files for the
generated project.

NOTE

Be careful not to choose a group ID for your artifact that clashes with the group ID of an
existing product! This could lead to clashes between your project's packages and the
packages from the existing product (because the group ID is typically used as the root of
a project's Java package names).

Customizing the POM file

You must customize the POM file in order to generate an OSGi bundle, as follows:
1. Follow the POM customization steps described in Section 6.1, “Generating a Bundle Project”.

2. In the configuration of the Maven bundle plug-in, modify the bundle instructions to export the
org.fusesource.example.service package, as follows:

<project ... >
<build>
<plugins>

<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>
<extensions>true</extensions>
<configuration>
<instructions>
<Bundle-SymbolicName>${pom.groupld}.${pom.artifactld}</Bundle-SymbolicName>
<Export-Package>org.fusesource.example.service</Export-Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

</project>

Writing the service interface

145

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Create the ProjectDirosgi-service/src/main/java/org/fusesource/example/service sub-directory. In
this directory, use your favorite text editor to create the file, HelloWorldSvc.java, and add the code
from Example 16.3, “The HelloWorldSvc Interface” to it.

package org.fusesource.example.service;
public interface HelloWorldSvc

Example 16.3. The HelloWorldSvc Interface
{
public void sayHello();
}

Writing the service class

Create the ProjectDirosgi-service/src/main/java/org/fusesource/example/service/impl sub-
directory. In this directory, use your favorite text editor to create the file, HelloWorldSvclmpl.java, and
add the code from Example 16.4, “The HelloWorldSvclmpl Class” to it.

package org.fusesource.example.service.impl;

import org.fusesource.example.service.HelloWorldSvc;

public class HelloWorldSvclmpl implements HelloWorldSvc {
public void sayHello()

System.out.printin("Hello World!");

Example 16.4. The HelloWorldSvcimpl Class
{
}

}

Writing the blueprint file

The blueprint configuration file is an XML file stored under the OSGI-INF/blueprint directory on the
class path. To add a blueprint file to your project, first create the following sub-directories:

ProjectDirlosgi-service/src/main/resources
ProjectDirlosgi-service/src/main/resources/OSGI-INF
ProjectDirosgi-service/src/main/resources/OSGI-INF/blueprint

Where the src/main/resources is the standard Maven location for all JAR resources. Resource files
under this directory will automatically be packaged in the root scope of the generated bundle JAR.

Example 16.5, “Blueprint File for Exporting a Service” shows a sample blueprint file that creates a

HelloWorldSvc bean, using the bean element, and then exports the bean as an OSGi service, using the
service element.

146

CHAPTER 16. OSGI SERVICES

Under the ProjectDirnosgi-service/src/main/resources/OSGI-INF/blueprint directory, use your
favorite text editor to create the file, config.xml, and add the XML code from Example 16.5, "Blueprint
File for Exporting a Service”.

<blueprint xmins="http://www.osgi.org/xmlIns/blueprint/v1.0.0">
<bean id="hello" class="org.fusesource.example.service.impl.HelloWorldSvcimpl"/>
<service ref="hello" interface="org.fusesource.example.service.HelloWorldSvc"/>

<?xml version="1.0" encoding="UTF-8"7>
</blueprint>

‘ Example 16.5. Blueprint File for Exporting a Service

Running the service bundle

To install and run the osgi-service project, perform the following steps:

1. Build the project—open a command prompt and change directory to ProjectDirosgi-service.
Use Maven to build the demonstration by entering the following command:

I mvn install

If this command runs successfully, the ProjectDirosgi-service/target directory should contain
the bundle file, osgi-service-1.0-SNAPSHOT.jar.

2. Install and start the osgi-service bundle —at the Red Hat JBoss Fuse console, enter the following
command:

JBossFuse:karaf@root> osgi:install -s file: ProjectDirlosgi-service/target/osgi-service-1.0-
SNAPSHOT .jar

Where ProjectDir is the directory containing your Maven projects and the -s flag directs the
container to start the bundle right away. For example, if your project directory is C:\Projects on
a Windows machine, you would enter the following command:

JBossFuse:karaf@root> osgi:install -s file:C:/Projects/osgi-service/target/osgi-service-1.0-
SNAPSHOT .jar

NOTE

On Windows machines, be careful how you format the file URL—for details of the
syntax understood by the file URL handler, see Section A1, “File URL Handler”.

3. Check that the service has been created —to check that the bundle has started successfully,
enter the following Red Hat JBoss Fuse console command:

I JBossFuse:karaf@root> osgi:list

Somewhere in this listing, you should see a line for the osgi-service bundle, for example:

147

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

I [236] [Active][Created][][60] osgi-service (1.0.0.SNAPSHOT)

To check that the service is registered in the OSGi service registry, enter a console command
like the following:

I JBossFuse:karaf@root> osgi:ls 236

Where the argument to the preceding command is the osgi-service bundle ID. You should see
some output like the following at the console:

osgi-service (236) provides:

osgi.service.blueprint.compname = hello

objectClass = org.fusesource.example.service.HelloWorldSvc

service.id = 272

osgi.blueprint.container.version = 1.0.0.SNAPSHOT
osgi.blueprint.container.symbolicname = org.fusesource.example.osgi-service
objectClass = org.osgi.service.blueprint.container.BlueprintContainer
service.id = 273

16.3. ACCESSING AN OSGI SERVICE

Overview

This section explains how to generate, build, and deploy a simple OSGi client in the OSGi container. The
client finds the simple Hello World service in the OSGi registry and invokes the sayHello() method on it.

Prerequisites

In order to generate a project using the Maven Quickstart archetype, you must have the following
prerequisites:

® Maven installation—Maven is a free, open source build tool from Apache. You can download the
latest version from http://maven.apache.org/download.html (minimum is 2.0.9).

® |nternet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your build
machine must be connected to the Internet.

Generating a Maven project

The maven-archetype-quickstart archetype creates a generic Maven project, which you can then
customize for whatever purpose you like. To generate a Maven project with the coordinates,
org.fusesource.example:osgi-client, enter the following command:

mvn archetype:create
-DarchetypeAtrtifactld=maven-archetype-quickstart
-Dgroupld=org.fusesource.example
-Dartifactld=osgi-client

148

http://maven.apache.org/download.html

CHAPTER 16. OSGI SERVICES

The result of this command is a directory, ProjectDirosgi-client, containing the files for the generated
project.

NOTE

Be careful not to choose a group ID for your artifact that clashes with the group ID of an

existing product! This could lead to clashes between your project's packages and the

packages from the existing product (because the group ID is typically used as the root of
- a project's Java package names).

Customizing the POM file

You must customize the POM file in order to generate an OSGi bundle, as follows:
1. Follow the POM customization steps described in Section 6.1, “Generating a Bundle Project”.

2. Because the client uses the HelloWorldSve Java interface, which is defined in the osgi-service
bundle, it is necessary to add a Maven dependency on the osgi-service bundle. Assuming that
the Maven coordinates of the osgi-service bundle are org.fusesource.example:osgi-
service:1.0-SNAPSHOT, you should add the following dependency to the client's POM file:

<project ... >
<dependencies>

<dependency>
<groupld>org.fusesource.example</groupld>
<artifactld>osgi-service</artifactld>
<version>1.0-SNAPSHOT</version>
</dependency>
</dependencies>

</project>

Writing the Blueprint file

To add a blueprint file to your client project, first create the following sub-directories:

ProjectDirlosgi-client/src/main/resources
ProjectDir/osgi-client/src/main/resources/OSGI-INF
ProjectDirlosgi-client/src/main/resources/OSGI-INF/blueprint

Under the ProjectDirosgi-client/src/main/resources/OSGI-INF/blueprint directory, use your favorite

text editor to create the file, config.xml, and add the XML code from Example 16.6, “Blueprint File for
Importing a Service”.

<blueprint xmins="http://www.osgi.org/xmlIns/blueprint/v1.0.0">

<reference id="helloWorld"

Example 16.6. Blueprint File for Importing a Service
interface="org.fusesource.example.service.HelloWorldSvc"/>

| <?xml version="1.0" encoding="UTF-8"7>

149

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

<bean id="client"
class="org.fusesource.example.client.Client"
init-method="init">
<property name="helloWorldSvc" ref="helloWorld"/>
</bean>

</blueprint>

Where the reference element creates a reference manager that finds a service of HelloWorldSve type
in the OSGi registry. The bean element creates an instance of the Client class and injects the service
reference as the bean property, helloWorldSvc. In addition, the init-method attribute specifies that the
Client.init() method is called during the bean initialization phase (that is, after the service reference has
been injected into the client bean).

Writing the client class

Under the ProjectDirosgi-client/src/main/java/org/fusesource/example/client directory, use your
favorite text editor to create the file, Client.java, and add the Java code from Example 16.7, “The Client
Class”.

Example 16.7. The Client Class
package org.fusesource.example.client;
import org.fusesource.example.service.HelloWorldSvc;
public class Client {
HelloWorldSvc helloWorldSvc;
}

// Bean properties
public HelloWorldSvc getHelloWorldSvc() {
return helloWorldSvc;

public void setHelloWorldSvc(HelloWorldSvc helloWorldSvc) {
this.helloWorldSvc = helloWorldSvc;

}

public void init() {
System.out.printin("OSGi client started.");
if (helloWorldSvc != null) {
System.out.printin("Calling sayHello()");
helloWorldSvc.sayHello(); // Invoke the OSGi service!
}
}

}

The Client class defines a getter and a setter method for the helloWorldSve bean property, which
enables it to receive the reference to the Hello World service by injection. The init() method is called
during the bean initialization phase, after property injection, which means that it is normally possible to
invoke the Hello World service within the scope of this method.

150

CHAPTER 16. OSGI SERVICES

Running the client bundle

To install and run the osgi-client project, perform the following steps:

1. Build the project—open a command prompt and change directory to ProjectDirosgi-client. Use
Maven to build the demonstration by entering the following command:

I mvn install

If this command runs successfully, the ProjectDirosgi-client/target directory should contain
the bundle file, osgi-client-1.0-SNAPSHOT. jar.

2. Install and start the osgi-service bundle —at the Red Hat JBoss Fuse console, enter the following
command:

JBossFuse:karaf@root> osgi:install -s file: ProjectDir/osgi-client/target/osgi-client-1.0-
SNAPSHOT .jar

Where ProjectDir is the directory containing your Maven projects and the -s flag directs the
container to start the bundle right away. For example, if your project directory is C:\Projects on
a Windows machine, you would enter the following command:

JBossFuse:karaf@root> osgi:install -s file:C:/Projects/osgi-client/target/osgi-client-1.0-
SNAPSHOT .jar

NOTE

On Windows machines, be careful how you format the file URL—for details of the
syntax understood by the file URL handler, see Section A1, “File URL Handler".

3. Client output—f the client bundle is started successfully, you should immediately see output like
the following in the console:

Bundle ID: 239
OSGii client started.
Calling sayHello()
Hello World!

16.4. INTEGRATION WITH APACHE CAMEL

Overview

Apache Camel provides a simple way to invoke OSGi services using the Bean language. This feature is
automatically available whenever a Apache Camel application is deployed into an OSGi container and
requires no special configuration.

Registry chaining

When a Apache Camel route is deployed into the OSGi container, the CamelContext automatically sets
up a registry chain for resolving bean instances: the registry chain consists of the OSGi registry, followed
by the blueprint (or Spring) registry. Now, if you try to reference a particular bean class or bean instance,
the registry resolves the bean as follows:

151

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf
1. Look up the bean in the OSGi registry first. If a class name is specified, try to match this with the
interface or class of an OSGi service.
2. If no match is found in the OSGi registry, fall back on the blueprint registry (or the Spring
registry, if you are using the Spring container).
Sample OSGi service interface

Consider the OSGi service defined by the following Java interface, which defines the single method,
getGreeting():

package org.fusesource.example.hello.boston;

public interface HelloBoston {
public String getGreeting();

}

Sample service export

When defining the bundle that implements the HelloBoston OSGi service, you could use the following
blueprint configuration to export the service:

<?xml version="1.0" encoding="UTF-8"7?>
<blueprint xmlns="http://www.osgi.org/xmins/blueprint/v1.0.0">

<bean id="hello" class="org.fusesource.example.hello.boston.HelloBostonImpl"/>
<service ref="hello" interface="org.fusesource.example.hello.boston.HelloBoston"/>

</blueprint>

Where it is assumed that the HelloBoston interface is implemented by the HelloBostonlmpl class (not
shown).

Invoking the OSGi service from Java DSL

After you have deployed the bundle containing the HelloBoston OSGi service, you can invoke the
service from a Apache Camel application using the Java DSL. In the Java DSL, you invoke the OSGi
service through the Bean language, as follows:

from("timer:foo?period=5000")
.bean(org.fusesource.example.hello.boston.HelloBoston.class, "getGreeting')
Jog("The message contains: ${body}")

In the bean command, the first argument is the OSGi interface or class, which must match the interface
exported from the OSGi service bundle. The second argument is the name of the bean method you
want to invoke. For full details of the bean command syntax, see section "Bean Integration" in "Apache
Camel Development Guide".

NOTE

When you use this approach, the OSGi service is implicitly imported. It is not necessary to
import the OSGi service explicitly in this case.

152

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Apache_Camel_Development_Guide/BasicPrinciples-BeanIntegration.html

CHAPTER 16. OSGI SERVICES

Invoking the OSGi service from XML DSL

In the XML DSL, you can also use the Bean language to invoke the HelloBoston OSGi service, but the
syntax is slightly different. In the XML DSL, you invoke the OSGi service through the Bean language,
using the method element, as follows:

<beans ...>
<camelContext xmins="http://camel.apache.org/schema/spring">
<route>
<from uri="timer:foo?period=5000"/>
<setBody>
<method ref="org.fusesource.example.hello.boston.HelloBoston"
method="getGreeting"/>
</setBody>
<log message="The message contains: ${body}"/>
</route>
</camelContext>
</beans>

NOTE

When you use this approach, the OSGi service is implicitly imported. It is not necessary to
import the OSGi service explicitly in this case.

153

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

CHAPTER 17. JMS BROKER

Abstract

Red Hat JBoss Fuse supports the deployment of JMS brokers. By default, it deploys an Apache
ActiveMQ JMS broker. It includes all of the required bundles to deploy additional Apache ActiveMQ
instances by deploying a new broker configuration.

17.1. WORKING WITH THE DEFAULT BROKER

Abstract

Red Hat JBoss Fuse starts up with a message broker by default. You can use this broker as it is for your
application, or you can update its configuration to suite the needs of your application.

Overview

When you deploy a Red Hat JBoss Fuse instance, whether as a standalone container or as a part of a
fabric, the default behavior is for a Apache ActiveMQ instance to be started in the container. The
default broker creates an Openwire port that listens on port 61616. The broker remains installed in the
container and activates whenever you restart the container.

Broker configuration

The default broker's configuration is controlled by two files:

e etc/activemq.xml-a standard Apache ActiveMQ configuration file that serves as a template for
the default broker's configuration. It contains property place holders, specified using the syntax
${propName}, that allow you to set the values of the actual property using the OSGi Admin
service.

e etc/io.fabric8.mq.fabric.server-broker.cfg—the OSGi configuration file that specifies the
values for the properties in the broker's template configuration file.

For details on how to edit the default broker's configuration see the JBoss A-MQ documentation.

Broker data

The default broker's data is stored in data/activemq. You can change this location using the config
command to change the broker's data property as shown in Example 17.1, “Configuring the Default
Broker's Data Directory”.

024c1fac1c3f
JBossFuse:karaf@root> config:propset data dataStore

JBossFuse:karaf@root> config:edit io.fabric8.mq.fabric.server.3e3d0055-1c5f-40e3-987e-
JBossFuse:karaf@root> config:update

‘ Example 17.1. Configuring the Default Broker's Data Directory

154

CHAPTER 17. JMS BROKER

Disabling the default broker

If you do not want to use the default broker, you can disable it by removing its OSGi configuration file.
There are two procedures to follow, depending on whether a Karaf container has been started:

If no Karaf container has been started:
® Delete FUSE_HOME/etc/io.fabric8.mq.fabric.server-broker.cfg.
If you have already started a Karaf container, use the following instructions whilst JBoss Fuse is running.
1. From the JBoss Fuse command console, list the JBoss Fuse brokers: activemq:list

The result should look like this:
I brokerName = amq

2. List the configuration PID files: config:list | grep io.fabric8.mq.fabric

The result will look like this:

Pid: io.fabric8.mq.fabric.server.cd4295e7-1db9-44b6-9118-69011a0f09a3
FactoryPid: io.fabric8.mq.fabric.server

fabric.zookeeper.pid = io.fabric8.mq.fabric.server

felix.fileinstall.flename = file:/home/username/product/fuse-630/jboss-fuse-6.3.0.redhat-
187/etc/io.fabric8.mq.fabric.server-broker.cfg

service.factoryPid = io.fabric8.mq.fabric.server

service.pid = io.fabric8.mq.fabric.server.cd4295e7-1db9-44b6-9118-69011a0f09a3
Pid: io.fabric8.mq.fabric.standalone.server.4de976b1-2fae-4391-97d9-3a08876e39ab
FactoryPid: io.fabric8.mq.fabric.standalone.server

felix.fileinstall.flename = file:/home/username/product/fuse-630/jboss-fuse-6.3.0.redhat-
187/etc/io.fabric8.mq.fabric.server-broker.cfg

mq.fabric.server.pid = io.fabric8.mq.fabric.server.cd4295e7-1db9-44b6-9118-69011a0f09a3

service.factoryPid = io.fabric8.mq.fabric.standalone.server

service.pid = io.fabric8.mq.fabric.standalone.server.4de976b1-2fae-4391-97d9-
3a08876e39ab

3. Delete the configuration PID files labeled Pid: in the example above.

config:delete io.fabric8.mq.fabric.server.cd4295e7-1db9-44b6-9118-69011a0f09a3
config:delete io.fabric8.mq.fabric.standalone.server.4de976b1-2fae-4391-97d9-
3a08876e39ab

Note that your files will have the same names as those shown above until the last numeric
portion of the the file name, which is a system generated ID for the broker. Replace the
filenames in the instructions with your actual filename.

4. List the JBoss Fuse brokers again: activemq:list
The deleted broker will not appear.

5. To permanently delete the default broker:

Stop the JBoss Fuse instance.

155

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Delete file FUSE_HOME/etc/io.fabric8.mq.fabric.server-broker.cfg.

Restart the JBoss Fuse instance and run the activemq:list command. The deleted broker will
not appear.

17.2. JMS ENDPOINTS IN A ROUTER APPLICATION

Overview

The following example shows how you can integrate a JMS broker into a router application. The
example generates messages using a timer; sends the messages through the camel.timer queue in the
JMS broker; and then writes the messages to a specific directory in the file system.

Prerequisites

In order to run the sample router application, you need to have the activemg-camel feature installed in
the OSGi container. The activemqg-camel component is needed for defining Apache ActiveMQ-based
JMS endpoints in Apache Camel. This feature is not installed by default, so you must install it using the
following console command:

I JBossFuse:karaf@root> features:install activemqg-camel

You also need the activemq feature, but this feature is normally available, because Red Hat JBoss Fuse
installs it by default.

TIP

Most of the Apache Camel components are notinstalled by default. Whenever you are about to define
an endpoint in a Apache Camel route, remember to check whether the corresponding component
feature is installed. Apache Camel component features generally have the same name as the
corresponding Apache Camel component artifact ID, camel-ComponentName.

Router configuration

Example 17.2, "Sample Route with JMS Endpoints” gives an example of a Apache Camel route defined
using the Spring XML DSL. Messages generated by the timer endpoint are propagated through the JMS
broker and then written out to the file system.

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:camel="http://camel.apache.org/schema/spring">

<bean id="activemq" class="org.apache.activemq.camel.component.ActiveMQComponent">
<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

<camelContext xmins="http://camel.apache.org/schema/spring">
<route>
<from uri="timer://MyTimer?fixedRate=true&period=4000"/>

Example 17.2. Sample Route with JMS Endpoints
<setBody><constant>Hello World!</constant></setBody>

<?xml version="1.0"?>
<beans xmiIns="http://www.springframework.org/schema/beans"

156

CHAPTER 17. JMS BROKER

<to uri="file:C:/temp/sandpit/timer"/>
</route>
</camelContext>

<to uri="activemq:camel.timer"/>
</route>
<route>
<from uri="activemqg:camel.timer"/>
</beans>

Camel activemq component

In general, it is necessary to create a custom instance of the Apache Camel activemq component,
because you need to specify the connection details for connecting to the broker. The preceding
example uses Spring syntax to instantiate the activemq bean which connects to the broker URL,
tep://localhost:61616. The broker URL must correspond to one of the transport connectors defined in
the broker configuration file, deploy/test-broker.xml.

Sample routes

Example 17.2, "Sample Route with JMS Endpoints” defines two routes, as follows:

1. The first route uses a timer endpoint to generate messages at four-second intervals. The
setBody element places a dummy string in the body of the message (which would otherwise be
null). The messages are then sent to the camel.timer queue on the broker (the
activemq:camel.timer endpoint).

NOTE

The activemq scheme in activemq:camel.timer is resolved by looking up
activemq in the bean registry, which resolves to the locally instantiated bean with
ID, activemq.

2. The second route pulls messages off the camel.timer queue and then writes the messages to
the specified directory, C:\temp\sandpit\timer, in the file system.
Steps to run the example

To run the sample router application, perform the following steps:

1. Using your favorite text editor, copy and paste the router configuration from Example 17.2,
"Sample Route with JMS Endpoints”into a file called camel-timer.xml.

Edit the file endpoint in the second route, in order to change the target directory to a suitable
location on your file system:

<route>
<from uri="activemqg:camel.timer"/>
<to uri="file: YourDirectoryHere!"/>
</route>

157

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

158

2. Start up alocal instance of the Red Hat JBoss Fuse runtime by entering the following at a

command prompt:

I J/bin/fuse

. Make sure the requisite features are installed in the OSGi container. To install the activemq-

camel feature, enter the following command at the console:

I JBossFuse:karaf@root> features:install activemqg-camel

To ensure that the activemaq-broker feature is not installed, enter the following command at
the console:

I JBossFuse:karaf@root> features:uninstall activemqg-broker

. Use one of the following alternatives to obtain a broker instance for this demonstration:

® Use the default broker—assuming you have not disabled the default broker, you can use it
for this demonstration, because it is listening on the correct port, 61616.

® Create a new broker instance using the console —if you prefer not to use the default broker,

you can disable it (as described in Section 17.1, “Working with the Default Broker”) and then
create a new JMS broker instance by entering the following command at the console:

I JBossFuse:karaf@root> activemq:create-broker --name test

After executing this command, you should see the broker configuration file, test-
broker.xml, in the InstallDir/deploy directory.

. Hot deploy the router configuration you created in step 1. Copy the camel-timer.xml file into

the InstallDir/deploy directory.

. Within a few seconds, you should start to see files appearing in the target directory (which is

C:\temp\sandpit\timer, by default). The file component automatically generates a unique
filename for each message that it writes.

It is also possible to monitor activity in the JMS broker by connecting to the Red Hat JBoss Fuse
runtime's JMX port. To monitor the broker using JMX, perform the following steps:

a. To monitor the JBoss Fuse runtime, start a JConsole instance (a standard Java utility) by
entering the following command:

I jconsole

b. Initially, a JConsole: Connect to Agent dialog prompts you to connect to a JMX port. From
the Local tab, select the org.apache.felix.karaf.main.Bootstrap entry and click Connect.

c. In the main JConsole window, click on the MBeans tab and then drill down to
org.apache.activemq|test|Queue in the MBean tree (assuming that test is the name of
your broker).

d. Under the Queue folder, you should see the camel.timer queue. Click on the camel.timer
queue to view statistics on the message throughput of this queue.

CHAPTER 17. JMS BROKER

7. To shut down the router application, delete the camel-timer.xml file from the InstallDir/deploy
directory while the Karaf container is running .

159

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

APPENDIX A. URL HANDLERS

Abstract

There are many contexts in Red Hat JBoss Fuse where you need to provide a URL to specify the
location of a resource (for example, as the argument to a console command). In general, when specifying
a URL, you can use any of the schemes supported by JBoss Fuse's built-in URL handlers. This appendix
describes the syntax for all of the available URL handlers.

Al FILE URL HANDLER

Syntax

A file URL has the syntax, file:PathName, where PathName is the relative or absolute pathname of a file
that is available on the Classpath. The provided PathName is parsed by Java's built-in file URL handler.
Hence, the PathName syntax is subject to the usual conventions of a Java pathname: in particular, on
Windows, each backslash must either be escaped by another backslash or replaced by a forward slash.

Examples

For example, consider the pathname, C:\Projects\camel-bundle\target\foo-1.0-SNAPSHOT.jar, on
Windows. The following example shows the correct alternatives for the file URL on Windows:

file:C:/Projects/camel-bundle/target/foo-1.0-SNAPSHOT .jar
file:C:\\Projects\\camel-bundle\\target\\foo-1.0-SNAPSHOT .jar

The following example shows some incorrect alternatives for the file URL on Windows:

file:C:\Projects\camel-bundle\target\foo-1.0-SNAPSHOT .jar // WRONG!
file://C:/Projects/camel-bundle/target/foo-1.0-SNAPSHOT.jar // WRONG!
file://C:\\Projects\\camel-bundle\\target\\foo-1.0-SNAPSHOT .jar // WRONG!

A.2. HTTP URL HANDLER

Syntax

AHTTP URL has the standard syntax, http:Hosf[:Port]/[Path][#AnchorName][? Query]. You can also
specify a secure HTTP URL using the https scheme. The provided HTTP URL is parsed by Java's built-in
HTTP URL handler, so the HTTP URL behaves in the normal way for a Java application.

A.3. MVN URL HANDLER

Overview

If you use Maven to build your bundles or if you know that a particular bundle is available from a Maven
repository, you can use the Mvn handler scheme to locate the bundle.

160

APPENDIX A. URL HANDLERS

NOTE

To ensure that the Mvn URL handler can find local and remote Maven artifacts, you
might find it necessary to customize the Mvn URL handler configuration. For details, see
the section called “Configuring the Mvn URL handler” .

Syntax

An Mvn URL has the following syntax:

I mvn:[repositoryUrlgroupld artifactld]/[version|[/[packagingl][/[classifier]]]]

Where repositoryUrl optionally specifies the URL of a Maven repository. The groupld, artifactld, version,
packaging, and classifier are the standard Maven coordinates for locating Maven artifacts (see the
section called “Maven coordinates”).

Omitting coordinates

When specifying an Mvn URL, only the group/d and the artifactld coordinates are required. The following
examples reference a Maven bundle with the groupld, org.fusesource.example, and with the artifactid,
bundle-demo:

mvn:org.fusesource.example/bundle-demo
mvn:org.fusesource.example/bundle-demo/1.1

When the version is omitted, as in the first example, it defaults to LATEST, which resolves to the latest
version based on the available Maven metadata.

In order to specify a classifier value without specifying a packaging or a version value, it is permissible to
leave gaps in the Mvn URL. Likewise, if you want to specify a packaging value without a version value.
For example:

mvn:groupld artifactldl//classifier
mvn:groupld artifactld/version//classifier
mvn:groupld artifactld//packaging/ classifier
mvn:groupld artifactld//packaging

Specifying a version range

When specifying the version value in an Mvn URL, you can specify a version range (using standard
Maven version range syntax) in place of a simple version number. You use square brackets—[and]-to
denote inclusive ranges and parentheses—(and)—to denote exclusive ranges. For example, the range,
[1.0.4,2.0), matches any version, v, that satisfies 1.0.4 <= v < 2.0. You can use this version range in an
Mvn URL as follows:

I mvn:org.fusesource.example/bundle-demo/[1.0.4,2.0)

Configuring the Mvn URL handler

Before using Mvn URLSs for the first time, you might need to customize the Mvn URL handler settings, as
follows:

1. the section called “Check the Mvn URL settings”.

161

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

2. the section called "Edit the configuration file” .

3. the section called "Customize the location of the local repository” .

Check the Mvn URL settings

The Mvn URL handler resolves a reference to a local Maven repository and maintains a list of remote
Maven repositories. When resolving an Mvn URL, the handler searches first the local repository and then
the remote repositories in order to locate the specified Maven artifiact. If there is a problem with
resolving an Mvn URL, the first thing you should do is to check the handler settings to see which local
repository and remote repositories it is using to resolve URLs.

To check the Mvn URL settings, enter the following commands at the console:

JBossFuse:karaf@root> config:edit org.ops4j.pax.url.mvn
JBossFuse:karaf@root> config:proplist

The config:edit command switches the focus of the config utility to the properties belonging to the
org.opsdj.pax.url.mvn persistent ID. The config:proplist command outputs all of the property settings
for the current persistent ID. With the focus on org.ops4j.pax.url.mvn, you should see a listing similar to
the following:

org.ops4j.pax.url.mvn.defaultRepositories = file:/path/to/JBossFuse/jboss-fuse-6.3.0.redhat-
xxx/system@snapshots@id=karaf.system,file:/home/userid/.m2/repository@snapshots@id=local,file:/pa
h/to/JBossFuse/jboss-fuse-6.3.0.redhat-xxx/local-repo@snapshots@id=Kkaraf.local-
repo,file:/path/to/JBossFuse/jboss-fuse-6.3.0.redhat-xxx/system@snapshots@id=child.karaf.system

org.ops4j.pax.url.mvn.globalChecksumPolicy = warn

org.ops4j.pax.url.mvn.globalUpdatePolicy = daily

org.ops4j.pax.url.mvn.localRepository = /path/to/JBossFuse/jboss-fuse-6.3.0.redhat-
xxx/data/repository

org.ops4j.pax.url.mvn.repositories = http://repo1.maven.org/maven2@id=maven.central.repo,
https://maven.repository.redhat.com/ga@id=redhat.ga.repo,
https://maven.repository.redhat.com/earlyaccess/all@id=redhat.ea.repo,
https://repository.jboss.org/nexus/content/groups/ea@id=fuseearlyaccess

org.ops4j.pax.url.mvn.settings = /home/fbolton/Programs/JBossFuse/jboss-fuse-6.3.0.redhat-
xxx/etc/maven-settings.xml

org.ops4j.pax.url.mvn.useFallbackRepositories = false

service.pid = org.ops4j.pax.url.mvn

Where the localRepository setting shows the local repository location currently used by the handler
and the repositories setting shows the remote repository list currently used by the handler.

Edit the configuration file

To customize the property settings for the Mvn URL handler, edit the following configuration file:

I InstallDir/etc/org.ops4j.pax.url.mvn.cfg

The settings in this file enable you to specify explicitly the location of the local Maven repository,
remove Maven repositories, Maven proxy server settings, and more. Please see the comments in the
configuration file for more details about these settings.

Customize the location of the local repository

162

APPENDIX A. URL HANDLERS

In particular, if your local Maven repository is in a non-default location, you might find it necessary to
configure it explicitly in order to access Maven artifacts that you build locally. In your
org.opsdj.pax.url.mvn.cfg configuration file, uncomment the org.ops4j.pax.url.mvn.localRepository
property and set it to the location of your local Maven repository. For example:

Path to the local maven repository which is used to avoid downloading
artifacts when they already exist locally.

The value of this property will be extracted from the settings.xml file

above, or defaulted to:

System.getProperty("user.home") + "/.m2/repository"

#

org.ops4j.pax.url.mvn.localRepository=file:E:/Data/.m2/repository

Reference

For more details about the mvn URL syntax, see the original Pax URL Mvn Protocol documentation.

A.4. WRAP URL HANDLER

Overview

If you need to reference a JAR file that is not already packaged as a bundle, you can use the Wrap URL
handler to convert it dynamically. The implementation of the Wrap URL handler is based on Peter Krien's
open source Bnd utility.

Syntax

A Wrap URL has the following syntax:

I wrap:locationURL][,instructionsURL][$instructions]

The locationURL can be any URL that locates a JAR (where the referenced JARis not formatted as a
bundle). The optional instructionsURL references a Bnd properties file that specifies how the bundle
conversion is performed. The optional instructions is an ampersand, &, delimited list of Bnd properties
that specify how the bundle conversion is performed.

Default instructions

In most cases, the default Bnd instructions are adequate for wrapping an APl JAR file. By default, Wrap
adds manifest headers to the JAR's META-INF/Manifest.mf file as shown in Table A1, “Default
Instructions for Wrapping a JAR".

Table A.1. Default Instructions for Wrapping a JAR

Manifest Header Default Value

Import-Package *;resolution:=optional

Export-Package All packages from the wrapped JAR.

163

http://team.ops4j.org/wiki/display/paxurl/Mvn+Protocol

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Manifest Header Default Value

Bundle-SymbolicName The name of the JAR file, where any characters notin
the set [@-zA-Z0-9_-] are replaced by underscore, _.

Examples

The following Wrap URL locates version 1.1 of the commons-logging JAR in a Maven repository and
converts it to an OSGi bundle using the default Bnd properties:

I wrap:mvn:commons-logging/commons-logging/1.1

The following Wrap URL uses the Bnd properties from the file, E:\Data\Examples\commons-logging-
1.1.bnd:

I wrap:mvn:commons-logging/commons-logging/1.1.file:E:/Data/Examples/commons-logging-1.1.bnd
The following Wrap URL specifies the Bundle-SymbolicName property and the Bundle-Version

property explicitly:

wrap:mvn:commons-logging/commons-logging/1.1$Bundle-SymbolicName=apache-comm-
log&Bundle-Version=1.1

If the preceding URL is used as a command-line argument, it might be necessary to escape the dollar
sign, \$, to prevent it from being processed by the command line, as follows:

wrap:mvn:commons-logging/commons-logging/1.1\$Bundle-SymbolicName=apache-comm-
log&Bundle-Version=1.1

Reference

For more details about the wrap URL handler, see the following references:
® The Bnd tool documentation, for more details about Bnd properties and Bnd instruction files.

® The original Pax URL Wrap Protocol documentation.

A.5. WAR URL HANDLER

Overview

If you need to deploy a WAR file in an OSGi container, you can automatically add the requisite manifest
headers to the WAR file by prefixing the WAR URL with war:, as described here.

Syntax

A War URL is specified using either of the following syntaxes:

war:warURL
warref:instructionsURL

164

http://bndtools.org/
http://team.ops4j.org/wiki/display/paxurl/Wrap+Protocol

APPENDIX A. URL HANDLERS

The first syntax, using the war scheme, specifies a WAR file that is converted into a bundle using the
default instructions. The warURL can be any URL that locates a WAR file.

The second syntax, using the warref scheme, specifies a Bnd properties file, instructionsURL, that
contains the conversion instructions (including some instructions that are specific to this handler). In this
syntax, the location of the referenced WAR file does not appear explicitly in the URL. The WAR file is
specified instead by the (mandatory) WAR-URL property in the properties file.

WAR-specific properties/instructions

Some of the properties in the .bnd instructions file are specific to the War URL handler, as follows:
WAR-URL

(Mandatory) Specifies the location of the War file that is to be converted into a bundle.

Web-ContextPath

Specifies the piece of the URL path that is used to access this Web application, after it has been
deployed inside the Web container.

NOTE

N

Earlier versions of PAX Web used the property, Webapp-Context, which is now
deprecated.

ol

Default instructions

By default, the War URL handler adds manifest headers to the WAR's META-INF/Manifest.mf file as
shown in Table A.2, "Default Instructions for Wrapping a WAR File” .

Table A.2. Default Instructions for Wrapping a WAR File

Manifest Header Default Value

Import-Package javax.*,org.xml.*,org.w3c.*
Export-Package No packages are exported.
Bundle-SymbolicName The name of the WAR file, where any characters not

in the set [@-zA-Z0-9 _-\.] are replaced by period,..

Web-ContextPath No default value. But the WAR extender will use the
value of Bundle-SymbolicName by default.

165

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Manifest Header Default Value

Bundle-ClassPath In addition to any class path entries specified
explicitly, the following entries are added
automatically:

[]
o WEB-INF/classes

o All of the JARs from the WEB-INF/lib
directory.

Examples

The following War URL locates version 1.4.7 of the wicket-examples WAR in a Maven repository and
converts it to an OSGi bundle using the default instructions:

I war:mvn:org.apache.wicket/wicket-examples/1.4.7/war
The following Wrap URL specifies the Web-ContextPath explicitly:
I war:mvn:org.apache.wicket/wicket-examples/1.4.7/war?Web-ContextPath=wicket

The following War URL converts the WAR file referenced by the WAR-URL property in the wicket-
examples-1.4.7.bnd file and then converts the WAR into an OSGi bundle using the other instructions in
the .bnd file:

I warref:file:E:/Data/Examples/wicket-examples-1.4.7.bnd

Reference

For more details about the war URL syntax, see the original Pax URL War Protocol documentation.

166

http://team.ops4j.org/wiki/display/paxurl/War+Protocol

APPENDIX B. OSGI BEST PRACTICES

APPENDIX B. OSGI BEST PRACTICES

Abstract

The combination of Maven and the OSGi framework provides a sophisticated framework for building
and deploying enterprise applications. In order to use this framework effectively, however, it is necessary
to adopt certain conventions and best practices. The practices described in this appendix are intended
to optimize the manageability and scalability of your OSGi applications.

B.1. OSGI TOOLING

Overview
The following best practices are recommended for OSGi related tools and utilities:
® the section called "Use the Maven bundle plug-in to generate the Manifest” .
® the section called "Avoid using the OSGi API directly” .
® the section called “Prefer Blueprint over Spring-DM” .
® the section called “Use Apache Karaf features to group bundles together” .

® the section called “"Use the OSGi Configuration Admin service” .

® the section called “Use PAX-Exam for testing”.

Use the Maven bundle plug-in to generate the Manifest

Even for a moderately sized bundle project, it is usually impractical to create and maintain a bundle
Manifest by hand. The Maven bundle plug-in is the most effective tool for automating the generation of
bundle Manifests in a Maven project. See Section B.2, “Building OSGi Bundles”.

Avoid using the OSGi API directly

Avoid using the OSGi Java API directly. Prefer a higher level technology, for example: Blueprint (from
the OSGi Compendium Specification), Spring-DM, Declarative Services (DS), iPojo, and so on.

Prefer Blueprint over Spring-DM

The Blueprint container is now the preferred framework for instantiating, registering, and referencing
OSGi services, because this container has now been adopted as an OSGi standard. This ensures greater
portability for your OSGi service definitions in the future.

Spring Dynamic Modules (Spring-DM) provided much of the original impetus for the definition of the

Blueprint standard, but should now be regarded as obsolescent. Using the Blueprint container does not
prevent you from using the Spring framework: the latest version of Spring is compatible with Blueprint.

Use Apache Karaf features to group bundles together

When an application is composed of a large number of bundles, it becomes essential to group bundles
together in order to deploy them efficiently. Apache Karaf features is a mechanism that is designed just

167

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://www.osgi.org/Specifications/HomePage
http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/
http://www.osgi.org/Specifications/HomePage
http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

for this purpose. It is easy to use and supported by a variety of different tools. See Chapter 8, Deploying
Features for details.

Use the OSGi Configuration Admin service

The OSGi Configuration Admin service is the preferred mechanism for providing configuration
properties to your application. This configuration mechanism enjoys better tooling support than other
approaches. For example, in Red Hat JBoss Fuse the OSGi Configuration Admin service is supported in
the following ways:

® Properties integrated with Spring XML files.

® Properties automatically read from configuration files, etc/persistendid.cfg

® Properties can be set in feature repositories.

Use PAX-Exam for testing

In order for testing to be really effective, you should run at least some of your tests in an OSGi
container. This requires you to start an OSGi container, configure its environment, install prerequisite
bundles, and install the actual test. Performing these steps manually for every test would make testing
prohibitively difficult and time-consuming. Pax-Exam solves this problem by providing a testing
framework that is capable of automatically initializing an OSGi container before running tests in the
container.

B.2. BUILDING OSGI BUNDLES

Overview

The following best practices are recommended when building OSGi bundles using Maven:
® the section called “"Use package prefix as the bundle symbolic name” .
® the section called "Artifact ID should be derived from the bundle symbolic name” .
® the section called “Always export packages with a version” .
® the section called “Use naming convention for private packages” .
® the section called “Import packages with version ranges”.
® the section called "Avoid importing packages that you export”.

® the section called "Use optional imports with caution” .

the section called “Avoid using the Require-Bundle header” .

Use package prefix as the bundle symbolic name

Use your application's package prefix as the bundle symbolic name. For example, if all of your Java
source code is located in sub-packages of org.fusesource.fooProject, use org.fusesource.fooProject
as the bundle symbolic name.

Artifact ID should be derived from the bundle symbolic name

168

APPENDIX B. OSGI BEST PRACTICES

It makes sense to identify a Maven artifact with an OSGi bundle. To show this relationship as clearly as
possible, you should use base the artifact ID on the bundle symbolic name. Two conventions are
commonly used:

® The artifact ID is identical to the bundle symbolic name —this enables you to define the bundle
symbolic name in terms of the artifact ID, using the following Maven bundle instruction:

I <Bundle-SymbolicName>${project.artifactld}</Bundle-SymbolicName>

® The bundle symbolic name is composed of the group ID and the artifact ID, joined by a dot —this
enables you to define the bundle symbolic name in terms of the group ID and the artifact ID,
using the following Maven bundle instruction:

I <Bundle-SymbolicName>${project.groupld}.${project.artifactld}</Bundle-SymbolicName>

NOTE

Properties of the form project.” can be used to reference the value of any elementin the
current POM. To construct the name of a POM property, take the XPath name of any
POM element (for example, project/artifactld) and replace occurrences of / with the .
character. Hence, ${project.artifactld} references the artifactld element from the
current POM.

L

Always export packages with a version

One of the key advantages of the OSGi framework is its ability to manage bundle versions and the
possibility of deploying multiple versions of a bundle in the same container. In order to take advantage
of this capability, however, it is essential that you associate a version with any packages that you export.

For example, you can configure the maven-bundle-plugin plug-in to export packages with the current
artifact version (given by the project.version property) as follows:

<Export-Package>
${project.artifactld}*;version=${project.version}
</Export-Package>

Notice how this example exploits the convention that packages use the artifact ID, project.artifactld, as
their package prefix. The combination of package prefix and wildcard, ${project.artifactld}*, enables
you to reference all of the source code in your bundle.

Use naming convention for private packages

If you define any private packages in your bundle (packages that you do not want to export), it is
recommended that you identify these packages using a strict naming convention. For example, if your
bundle includes implementation classes that you do not want to export, you should place these classes in
packages prefixed by ${project.artifactld}.impl or ${project.artifactid}.internal.

NOTE

If you do not specify any Export-Package instruction, the default behavior of the Maven
bundle plug-in is to exclude any packages that contain a path segment equal to impl or
internal.

L

169

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

To ensure that the private packages are not exported, you can add an entry of the form
1PackagePattern to the Maven bundle plug-in's export instructions. The effect of this entry is to
exclude any matching packages. For example, to exclude any packages prefixed by
${project.artifactld}.impl, you could add the following instruction to the Maven bundle plug-in
configuration:

<Export-Package>
I${project.artifactld}.impl.*,
${project.artifactld}*;version=${project.version}
</Export-Package>

NOTE

The order of entries in the Export-Package element is significant. The first match in the
list determines whether a package is included or excluded. Hence, in order for exclusions
to be effective, they should appear at the start of the list.

Import packages with version ranges

In order to benefit from OSGi version management capabilities, it is important to restrict the range of
acceptable versions for imported packages. You can use either of the following approaches:

® Manual version ranges—you can manually specify the version range for an imported package
using the version qualifier, as shown in the following example:

<Import-Package>
org.springframework.*;version="[2.5,4)",
org.apache.commons.logging.*;version="[1.1,2)",

*

</Import-Package>

Version ranges are specified using the standard OSGi version range syntax, where square
brackets—that is, [and]—denote inclusive ranges and parentheses—that is, (and)—denote
exclusive ranges. Hence the range, [2.5,4), means that the version, v, is restricted to the range,
2.5 <= v < 4. Note the special case of a range written as a simple number—for example,
version="2.5", which is equivalent to the range, [2.5,infinity).

® Automatic version ranges—if packages are imported from a Maven dependency and if the
dependency is packaged as an OSGi bundle, the Maven bundle plug-in automatically adds the
version range to the import instructions.

The default behavior is as follows. If your POM depends on a bundle that is identified as version
1.2.4.8, the generated manifest will import version 1.2 of the bundle's exported packages (that is,
the imported version number is truncated to the first two parts, major and minor).

Itis also possible to customize how imported version ranges are generated from the bundle
dependency. When setting the version property, you can use the ${@} macro (which returns
the original export version) and the ${version} macro (which modifies a version number) to
generate a version range. For example, consider the following version settings:

*;version="${@}"

If a particular package has export version 1.2.4.8, the generated import version resolves to
1.24.8.

170

APPENDIX B. OSGI BEST PRACTICES

*;version="${version;==;${@}}"

If a particular package has export version 1.2.4.8, the generated import version resolves to
1.2

*;version="[${version;==;${@}},${version;=+;${@}})"

If a particular package has export version 1.2.4.8, the generated import version range
resolves to [1.2,1.3).

*;version="[${version;==;${@}},${version;+;${@}})"

If a particular package has export version 1.2.4.8, the generated import version range
resolves to [1.2,2).

The middle part of the version macro—for example, == or =+—formats the returned version
number. The equals sign, =, returns the corresponding version part unchanged; the plus sign, +,
returns the corresponding version part plus one; and the minus sign, =, returns the
corresponding version part minus one. For more details, consult the Bnd documentation for the
version macro and the -versionpolicy option.

NOTE

In practice, you are likely to find that the majority of imported packages can be
automatically versioned by Maven. It is, typically, only occasionally necessary to specify a
version manually.

Avoid importing packages that you export

Normally, it is not good practice to import the packages that you export (though there are exceptions to
this rule). Here are some guidelines to follow:

If the bundle is a pure library (providing interfaces and classes, but not instantiating any classes
or OSGi services), do not import the packages that you export.

If the bundle is a pure API (providing interfaces and abstract classes, but no implementation
classes), do not import the packages that you export.

If the bundle is a pure implementation (implementing and registering an OSGi service, but not
providing any API), you do not need to export any packages at all.

NOTE

The registered OSGi service must be accessible through an APl interface or
class, but it is presumed that this APl is provided in a separate APl bundle. The
implementation bundle therefore needs to import the corresponding API
packages.

A special case arises, if an implementation and its corresponding APl are combined into the
same bundle. In this case, the APl packages must be listed amongst the export packages and
amongst the import packages. This configuration is interpreted in a special way by the OSGi
framework: it actually means that the APl packages will either be exported or imported at run
time (but not both).

The reason for this special configuration is that, in a complex OSGi application, it is possible that

171

http://bnd.bndtools.org/chapters/850-macros.html
http://bnd.bndtools.org/chapters/170-versioning.html

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

an API package might be provided by more than one bundle. But you do not want multiple
copies of an APl to be exported into OSGi, because that can lead to technical problems like
class cast exceptions. When a package is listed both in the exports and in the imports, the OSGi
resolver proceeds as follows:

1. First of all, the resolver checks whether the package has already been exported from
another bundle. If so, the resolver imports the package, but does not export it.

2. Otherwise, the resolver uses the local API package and exports this package, but it does not
import the package.

Assuming you want to avoid importing the packages that you export, there are two alternative
approaches you can take, as follows:

® (Recommended) The most effective way of suppressing the import of exported packages is to
append the -noimport:=true setting to package patternsin the Export-Package instruction.
For example:

<Export-Package>
${project.artifactld}*;version=${project.version};-noimport:=true
</Export-Package>

The marked packages are now not imported, irrespective of what is contained in the Import-
Package instruction.

® An alternative way of avoiding the import is to add one or more package exclusions to the
Maven bundle plug-in's Import-Package element (this was the only possibility in earlier versions
of the Maven bundle plug-in). For example, the following Import-Package element instructs
the Maven bundle plug-in to exclude all packages prefixed by the artifact ID,
${project.artifactid}:

<Import-Package>
I${project.artifactld}*,
org.springframework.*;version="[2.5,4)",
org.apache.commons.logging.*;version="[1.1,2)",

*

</Import-Package>

Use optional imports with caution

When an imported package is specified with optional resolution, this allows the bundle to be resolved
without resolving the optional package. This affects the resolution order of the bundles which, in turn,
can affect the runtime behavior. You should therefore be careful with optional imports, in case they have
some unintended side effects.

A package is optional when it appears in the Import-Package manifest header with the
resolution:="optional" setting appended to it. For example, the following example shows an Import-
Package instruction for the Maven bundle plug-in that specifies an optional import:

<Import-Package>
org.springframework.*;version="[2.5,4)",
org.apache.commons.logging.*;version="[1.1,2)";resolution:="optional",

*

</Import-Package>

172

APPENDIX B. OSGI BEST PRACTICES

Avoid using the Require-Bundle header

Avoid using the Require-Bundle header, if possible. The trouble with using the Require-Bundle header
is that it forces the OSGi resolver to use packages from the specified bundle. Importing at the
granularity of packages, on the other hand, allows the resolver to be more flexible, because there are
fewer constraints: if a package is already available and resolved from another bundle, the resolver could
use that package instead.

B.3. SAMPLE POM FILE

POM file

Example B.1, “Sample POM File lllustrating Best Practices” shows a sample POM that illustrates the best
practices for building an OSGi bundle using Maven.

Example B.1. Sample POM File lllustrating Best Practices
<?xml version="1.0" encoding="UTF-8"7?>
<project xmins="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4 0 _0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupld>org.fusesource</groupld>
<artifactld>org.fusesource.fooProject</artifactld>
<packaging>bundle</packaging>
<version>1.0-SNAPSHOT</version>

<name>A fooProject OSGi Bundle</name>
<url>http://www.myorganization.org</url>

<dependencies>...</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>
<configuration>
<instructions>
<Bundle-SymbolicName>${project.artifactld}</Bundle-SymbolicName>
<Export-Package>
I${project.artifactld}.impl.*,
${project.artifactld}*;version=${project.version};-noimport:=true
</Export-Package>
<Import-Package>
org.springframework.*;version="[2.5,4)",
org.apache.commons.logging.*;version="[1.1,2)",
</Import-Package>
</instructions>
</configuration>
</plugin>
</plugins>

173

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf
</build>
</project>

B

INDEX

broker.xml, Broker configuration

Bundle-Name, Setting a bundle's name
Bundle-SymbolicName, Setting a bundle's symbolic name
Bundle-Version, Setting a bundle's version

bundles, OSGi Bundles
exporting packages, Specifying exported packages

importing packages,Specifying imported packages
lifecycle states, Bundle lifecycle states

name, Setting a bundle's name

private packages, Specifying private packages
symbolic name, Setting a bundle's symbolic name

version, Setting a bundle's version

C

class loading, Class Loading in OSGi
Conditional Permission Admin service,0SGi framework services
Configuration Admin service, OSGi Compendium services

console, Red Hat JBoss Fuse

D

default broker

configuration, Broker configuration
data directory, Broker data

disabling, Disabling the default broker

default repositories, Adding a default Maven repository

E

execution environment, OSGi architecture

Export-Package, Specifying exported packages

174

INDEX

|
Import-Package, Specifying imported packages

io.fabric8.mq.fabric.server-default.cfg, Broker configuration

J

JBoss Fuse, Red Hat JBoss Fuse

console, Red Hat JBoss Fuse

L

lifecycle layer, OSGi architecture

lifecycle states, Bundle lifecycle states

M

Maven

local repository, Customizing the location of the local Maven repository

remote repositories, Adding a remote Maven repository

module layer, OSGi architecture

o

org.ops4j.pax.url.mvn.localRepository.localRepository, Customizing the location of the local Maven
repository

org.ops4j.pax.url.mvn.localRepository.settings, Customizing the location of the local Maven
repository

org.ops4j.pax.url.mvn.repositories, Adding a remote Maven repository, Adding a default Maven
repository

OSGi Compendium services, OSGi Compendium services

Configuration Admin service, 0SGi Compendium services

OSGi framework, OSGi Framework
bundles, OSGi architecture

execution environment, OSGi architecture
lifecycle layer, OSGi architecture

module layer, OSGi architecture

security layer, OSGi architecture

service layer, OSGi architecture

OSGi framework services, OSGi framework services

175

Red Hat JBoss Fuse 6.3 Deploying into Apache Karaf

Conditional Permission Admin service,0SGi framework services
Package Admin service,OSGi framework services

Permission Admin service, OSGi framework services

Start Level service,0SGi framework services

URL Handlers service,0SGi framework services

OSGi service registry, OSGi service registry

OSGi services, OSGi Services

service invocation model, Service invocation model

service registry, OSGi service registry

P
Package Admin service,OSGi framework services
Permission Admin service, OSGi framework services

Private-Package, Specifying private packages

R

remote repositories, Adding a remote Maven repository

repositories

default, Adding a default Maven repository

remote, Adding a remote Maven repository

S

security layer, OSGi architecture
service layer, OSGi architecture

Start Level service,0SGi framework services

U

URL Handlers service,0SGi framework services

176

	Table of Contents
	PART I. THE RED HAT JBOSS FUSE CONTAINER
	CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW
	1.1. RED HAT JBOSS FUSE CONTAINER ARCHITECTURE
	Overview
	Deployment models
	Spring framework
	Blueprint framework
	OSGi core framework
	Red Hat JBoss Fuse kernel

	1.2. DEPLOYMENT MODELS
	Overview
	OSGi bundle deployment model
	WAR deployment model

	1.3. DEPENDENCY INJECTION FRAMEWORKS
	Dependency injection
	OSGi framework extensions
	Activating a framework
	Blueprint XML file location
	Spring XML file location

	1.4. SYNCHRONOUS COMMUNICATION
	Overview
	OSGi services
	OSGi registry
	Dynamic interaction between bundles

	1.5. ASYNCHRONOUS COMMUNICATION
	JMS broker

	1.6. FUSE FABRIC
	Overview
	Bundle deployment
	Things to consider

	CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS
	2.1. SPRING AND BLUEPRINT FRAMEWORKS
	Overview
	Prefer Blueprint over Spring-DM
	Configuration files
	Prerequisites for blueprint configuration
	Spring configuration file
	Blueprint configuration file

	2.2. HOT DEPLOYMENT
	Types of configuration file
	Hot deploy directory
	Hot undeploying an XML file
	Prerequisites
	Default bundle version
	Customizing the bundle version
	Specifying the bundle version in a Spring XML file
	Specifying the bundle version in a Blueprint XML file

	2.3. USING OSGI CONFIGURATION PROPERTIES
	Overview
	Persistent ID
	Blueprint example
	Using multiple property placeholders in Blueprint

	CHAPTER 3. BUILDING WITH MAVEN
	3.1. MAVEN DIRECTORY STRUCTURE
	Overview
	Standard directory layout
	pom.xml file
	src and target directories
	main and test directories
	java directory
	resources directory
	Spring integration
	Blueprint container

	3.2. PREPARING TO USE MAVEN
	Overview
	Prerequisites
	Adding the Red Hat JBoss Fuse repository
	Artifacts
	Maven coordinates

	CHAPTER 4. LOCATING ARTIFACTS WITH MAVEN AND HTTP
	4.1. LOCATING HTTP ARTIFACTS
	Overview
	HTTP URL protocol
	HTTP URL handler
	Karaf bundle cache
	Configuring a HTTP proxy for HTTP URLs

	4.2. LOCATING MAVEN ARTIFACTS AT BUILD TIME
	Overview
	Locating artifacts at build time
	Adding a remote Maven repository
	Adding an internal Maven repository
	Customizing the location of the local repository

	4.3. LOCATING MAVEN ARTIFACTS AT RUN TIME
	4.3.1. Maven URL Handler Architecture
	Overview
	Maven URL protocol
	Pax URL Aether layer
	Eclipse Aether layer
	Locating artifacts at run time

	4.3.2. Redeploying Maven Artifacts in a Development Environment
	Overview
	Immutable artifacts
	SNAPSHOT artifacts
	Explicitly redeploying
	dev:watch command

	4.3.3. Configuring Pax URL Aether Directly
	Overview
	Adding a remote Maven repository
	Adding a default Maven repository
	Customizing the location of the local Maven repository
	Configuring a HTTP proxy for Maven URLs

	4.3.4. Configuring Pax URL Aether through settings.xml
	Overview
	Enabling the settings.xml configuration approach
	Location of the settings.xml file
	Adding a remote Maven repository
	Customizing the location of the local Maven repository
	Configuring a HTTP proxy for Maven URLs
	Reference

	4.3.5. Pax URL Aether Reference
	Overview
	Local Maven repository search order
	Pax URL Aether Maven URL syntax
	Pax URL Aether repository URL syntax
	Pax URL Aether configuration reference

	PART II. OSGI BUNDLE DEPLOYMENT MODEL
	CHAPTER 5. INTRODUCTION TO OSGI
	5.1. RED HAT JBOSS FUSE
	Overview
	Red Hat JBoss Fuse

	5.2. OSGI FRAMEWORK
	Overview
	OSGi architecture

	5.3. OSGI SERVICES
	Overview
	OSGi service registry
	Event notification
	Service invocation model
	OSGi framework services
	OSGi Compendium services

	5.4. OSGI BUNDLES
	Overview
	Class Loading in OSGi

	CHAPTER 6. BUILDING AN OSGI BUNDLE
	6.1. GENERATING A BUNDLE PROJECT
	Generating bundle projects with Maven archetypes
	Apache CXF karaf-soap-archetype archetype
	Apache Camel archetype
	Building the bundle

	6.2. MODIFYING AN EXISTING MAVEN PROJECT
	Overview
	Change the package type to bundle
	Add the bundle plug-in to your POM
	Customize the bundle plug-in
	Customize the JDK compiler version

	6.3. PACKAGING A WEB SERVICE IN A BUNDLE
	Overview
	Modifying the POM file to generate a bundle
	Mandatory import packages
	Sample Maven bundle plug-in instructions
	Add a code generation plug-in
	OSGi configuration properties

	6.4. CONFIGURING THE BUNDLE PLUG-IN
	Overview
	Configuration properties
	Setting a bundle's symbolic name
	Setting a bundle's name
	Setting a bundle's version
	Specifying exported packages
	Specifying private packages
	Specifying imported packages
	More information

	CHAPTER 7. DEPLOYING AN OSGI BUNDLE
	7.1. HOT DEPLOYMENT
	Hot deploy directory
	Hot undeploying a bundle

	7.2. MANUAL DEPLOYMENT
	Overview
	Installing a bundle
	Uninstalling a bundle
	URL schemes for locating bundles
	Redeploying bundles automatically using dev:watch

	7.3. LIFECYCLE MANAGEMENT
	Bundle lifecycle states
	Installing and resolving bundles
	Starting and stopping bundles
	Bundle start level
	Specifying a bundle's start level
	System start level

	7.4. TROUBLESHOOTING DEPENDENCIES
	Missing dependencies
	Required features or bundles are not installed
	Import-Package header is incomplete
	How to track down missing dependencies

	CHAPTER 8. DEPLOYING FEATURES
	8.1. CREATING A FEATURE
	Overview
	Create a custom feature repository
	Add a feature to the custom feature repository
	Add the local repository URL to the features service
	Add dependent features to the feature
	Add OSGi configurations to the feature
	Automatically deploy an OSGi configuration

	8.2. DEPLOYING A FEATURE
	Overview
	Installing at the console
	Uninstalling at the console
	Hot deployment
	Hot undeploying a features file
	Adding a feature to the boot configuration

	CHAPTER 9. DEPLOYING A PLAIN JAR
	9.1. CONVERTING A JAR USING THE WRAP SCHEME
	Overview
	Syntax
	Default properties
	Wrap and install
	Reference

	CHAPTER 10. OSGI BUNDLE TUTORIALS
	10.1. GENERATING AND RUNNING AN EIP BUNDLE
	Overview
	Prerequisites
	Generating an EIP bundle
	Running the EIP bundle

	10.2. GENERATING AND RUNNING A WEB SERVICES BUNDLE
	Overview
	Prerequisites
	Generating a Web services bundle
	Modifying the bundle instructions
	Running the Web services bundle

	PART III. WAR DEPLOYMENT MODEL
	CHAPTER 11. BUILDING A WAR
	11.1. MODIFYING AN EXISTING MAVEN PROJECT
	Overview
	Change the package type to WAR
	Customize the JDK compiler version
	Store resources under webapp/WEB-INF
	Customize the Maven WAR plug-in
	Building the WAR

	11.2. BOOTSTRAPPING A CXF SERVLET IN A WAR
	Overview
	Example
	cxf-servlet.xml file

	11.3. BOOTSTRAPPING A SPRING CONTEXT IN A WAR
	Overview
	Bootstrapping a Spring context in a WAR
	Maven dependency

	CHAPTER 12. DEPLOYING A WAR
	12.1. CONVERTING THE WAR USING THE WAR SCHEME
	Overview
	Syntax
	Prerequisite
	Deploying a WAR file
	Accessing the Web application
	Default conversion parameters
	Customizing the conversion parameters
	References

	12.2. CONFIGURING THE WEB CONTAINER
	Overview
	Configuration file
	Customizing the HTTP port
	Enabling SSL/TLS security
	Reference

	PART IV. CDI DEPLOYMENT MODEL
	CHAPTER 13. CONTEXTS AND DEPENDENCY INJECTION (CDI)
	13.1. INTRODUCTION TO CDI
	13.1.1. About Contexts and Dependency Injection (CDI)
	Benefits of CDI

	13.1.2. JBoss Weld CDI Implementation

	13.2. USE CDI
	13.2.1. Enable CDI in the Apache Karaf Container
	13.2.2. Use CDI to Develop an Application
	13.2.2.1. Exclude Beans From the Scanning Process
	13.2.2.2. Use an Injection to Extend an Implementation

	13.2.3. Ambiguous or Unsatisfied Dependencies
	13.2.3.1. Qualifiers
	13.2.3.2. Use a Qualifier to Resolve an Ambiguous Injection

	13.2.4. Managed Beans
	13.2.4.1. Types of Classes That are Beans
	13.2.4.2. Use CDI to Inject an Object Into a Bean

	13.2.5. Contexts and Scopes
	13.2.5.1. Available Contexts

	13.2.6. Bean Lifecycle
	Manage Bean Lifecycles
	13.2.6.1. Use a Producer Method

	13.2.7. Named Beans
	13.2.7.1. Use Named Beans

	13.2.8. Alternative Beans
	13.2.8.1. Override an Injection with an Alternative

	13.2.9. Stereotypes
	13.2.9.1. Use Stereotypes

	13.2.10. Observer Methods
	13.2.10.1. Transactional Observers
	13.2.10.2. Fire and Observe Events

	13.2.11. Interceptors
	13.2.11.1. Use Interceptors with CDI

	13.2.12. Decorators
	13.2.13. Portable Extensions
	13.2.14. Bean Proxies
	13.2.15. Use a Proxy in an Injection

	CHAPTER 14. PAX CDI AND OSGI SERVICES
	14.1. PAX CDI ARCHITECTURE
	Overview
	Pax CDI
	JBoss Weld
	Bean bundle
	CDI container
	Camel CDI and other customizations

	14.2. ENABLING PAX CDI
	Overview
	Pax CDI features
	Requirements and capabilities
	How to enable Pax CDI in Apache Karaf

	14.3. OSGI SERVICES EXTENSION
	Overview
	Enabling the OSGi Services Extension
	Maven dependency for the OSGi Services extensions API
	Injecting an OSGi Service
	Disambiguating OSGi Services
	Selecting OSGi Services at run time
	Publishing a bean as OSGi Service with singleton scope
	Publishing a bean as OSGi Service with prototype scope
	Publishing a bean as OSGi Service with bundle scope
	Setting OSGi Service properties
	Publishing an OSGi Service with explicit interfaces

	CHAPTER 15. CAMEL CDI
	15.1. BASIC FEATURES
	Overview
	How to enable Camel CDI in Apache Karaf
	Auto-configured Camel context
	Auto-detecting Camel routes
	Auto-configured Camel primitives
	Camel context configuration
	Multiple Camel contexts
	Configuration properties
	Auto-configured type converters
	Lazy Injection / Programmatic Lookup
	Injecting a Camel context from Spring XML

	15.2. CAMEL BEAN INTEGRATION
	Camel annotations
	Bean component
	Referring beans from Endpoint URIs

	15.3. CDI EVENTS IN CAMEL
	Camel events to CDI events
	CDI events endpoint

	15.4. OSGI INTEGRATION
	Auto-configured OSGi integration

	PART V. OSGI SERVICE LAYER
	CHAPTER 16. OSGI SERVICES
	16.1. THE BLUEPRINT CONTAINER
	16.1.1. Blueprint Configuration
	Location of blueprint files in a JAR file
	Location of blueprint files in a Maven project
	Blueprint namespace and root element
	Blueprint Manifest configuration
	Custom Blueprint file locations
	Mandatory dependencies

	16.1.2. Defining a Service Bean
	Overview
	Blueprint bean element
	Sample beans
	Differences between Blueprint and Spring
	References

	16.1.3. Exporting a Service
	Overview
	Exporting with a single interface
	Exporting with multiple interfaces
	Exporting with auto-export
	Setting service properties
	Default service properties
	Specifying a ranking attribute
	Specifying a registration listener

	16.1.4. Importing a Service
	Overview
	Managing service references
	Reference manager
	Reference list manager
	Matching by interface (stateless)
	Matching by interface (stateful)
	Matching by interface and component name
	Matching service properties with a filter
	Specifying whether mandatory or optional
	Specifying a reference listener

	16.2. PUBLISHING AN OSGI SERVICE
	Overview
	Prerequisites
	Generating a Maven project
	Customizing the POM file
	Writing the service interface
	Writing the service class
	Writing the blueprint file
	Running the service bundle

	16.3. ACCESSING AN OSGI SERVICE
	Overview
	Prerequisites
	Generating a Maven project
	Customizing the POM file
	Writing the Blueprint file
	Writing the client class
	Running the client bundle

	16.4. INTEGRATION WITH APACHE CAMEL
	Overview
	Registry chaining
	Sample OSGi service interface
	Sample service export
	Invoking the OSGi service from Java DSL
	Invoking the OSGi service from XML DSL

	CHAPTER 17. JMS BROKER
	17.1. WORKING WITH THE DEFAULT BROKER
	Overview
	Broker configuration
	Broker data
	Disabling the default broker

	17.2. JMS ENDPOINTS IN A ROUTER APPLICATION
	Overview
	Prerequisites
	Router configuration
	Camel activemq component
	Sample routes
	Steps to run the example

	APPENDIX A. URL HANDLERS
	A.1. FILE URL HANDLER
	Syntax
	Examples

	A.2. HTTP URL HANDLER
	Syntax

	A.3. MVN URL HANDLER
	Overview
	Syntax
	Omitting coordinates
	Specifying a version range
	Configuring the Mvn URL handler
	Check the Mvn URL settings
	Edit the configuration file
	Customize the location of the local repository
	Reference

	A.4. WRAP URL HANDLER
	Overview
	Syntax
	Default instructions
	Examples
	Reference

	A.5. WAR URL HANDLER
	Overview
	Syntax
	WAR-specific properties/instructions
	Default instructions
	Examples
	Reference

	APPENDIX B. OSGI BEST PRACTICES
	B.1. OSGI TOOLING
	Overview
	Use the Maven bundle plug-in to generate the Manifest
	Avoid using the OSGi API directly
	Prefer Blueprint over Spring-DM
	Use Apache Karaf features to group bundles together
	Use the OSGi Configuration Admin service
	Use PAX-Exam for testing

	B.2. BUILDING OSGI BUNDLES
	Overview
	Use package prefix as the bundle symbolic name
	Artifact ID should be derived from the bundle symbolic name
	Always export packages with a version
	Use naming convention for private packages
	Import packages with version ranges
	Avoid importing packages that you export
	Use optional imports with caution
	Avoid using the Require-Bundle header

	B.3. SAMPLE POM FILE
	POM file

	INDEX

