
Misha Husnain Ali Supriya Bharadwaj
Red Hat Developer Group Documentation
Team

Red Hat JBoss Developer Studio
10.2
Getting Started with Container and
Cloud-based Development

Starting Development of Container and Cloud-based Applications Using
Red Hat JBoss Developer Studio

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and
Cloud-based Development

Starting Development of Container and Cloud-based Applications Using
Red Hat JBoss Developer Studio

Misha Husnain Ali
mhusnain@redhat.com

Supriya Bharadwaj
sbharadw@redhat.com

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This compilation of topics contains information on how to start developing containerized applications
and applications for cloud deployment.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD
1.1. USING CONTAINER DEVELOPMENT KIT TOOLING IN JBOSS DEVELOPER STUDIO 10.X

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3
2.1. CREATING AN OPENSHIFT CONTAINER PLATFORM APPLICATION IN RED HAT JBOSS DEVELOPER
STUDIO
2.2. SETTING UP AND REMOTELY MONITORING AN OPENSHIFT CONTAINER PLATFORM APPLICATION
2.3. BUILDING AND DEPLOYING DOCKER-FORMATTED CONTAINER IMAGE TO CONTAINER
DEVELOPMENT KIT OPENSHIFT REGISTRY

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2
3.1. CREATING YOUR FIRST OPENSHIFT ONLINE APPLICATION
3.2. DEVELOPING AN EXISTING OPENSHIFT APPLICATION
3.3. CUSTOM PUBLISHING YOUR OPENSHIFT APPLICATION
3.4. DEBUGGING AN OPENSHIFT JAVA APPLICATION
3.5. DEPLOYING A WORKSPACE PROJECT TO OPENSHIFT ONLINE
3.6. CONFIGURING SSH KEYS FOR OPENSHIFT

CHAPTER 4. DEVELOPING WITH DOCKER
4.1. CONFIGURING DOCKER TOOLING BASICS

3
3

11

11

18
22

28
28
34
38
43
46
49

56
56

Table of Contents

1

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

2

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE
CLOUD

1.1. USING CONTAINER DEVELOPMENT KIT TOOLING IN JBOSS
DEVELOPER STUDIO 10.X

1.1.1. About Using Red Hat Container Development Kit with the IDE

Red Hat Container Development Kit is a pre-built container development environment based on Red
Hat Enterprise Linux. Red Hat Container Development Kit helps you get started with developing
container-based applications quickly. You can easily set up Red Hat Container Development Kit and
then use toolings, such as, OpenShift Container Platform and Docker, through
JBoss Developer Studio, without spending any additional time in setting up and configuring the
supplementary tooling.

There are two ways to install Red Hat Container Development Kit with JBoss Developer Studio:

1. Section 1.1.2, “Installing Red Hat Container Development Kit and JBoss Developer Studio
Using the Red Hat Development Suite Installer”

2. Section 1.1.3, “Installing Red Hat Container Development Kit and JBoss Developer Studio
as Separate Entities”

Once installed, you can use the installed components with the Docker Tooling.

1.1.2. Installing Red Hat Container Development Kit and
JBoss Developer Studio Using the Red Hat Development Suite Installer

Use the Red Hat Development Suite Installer to install Red Hat Container Development Kit,
JBoss Developer Studio, and other relevant components. The Installer automatically configures
these components for use together. This option is currently available for Windows and macOS.

For instructions about using the Red Hat Development Suite Installer, see Red Hat
Development Suite Istallation Guide.

After using the Red Hat Development Suite Installer to install Red Hat Container Development Kit
and JBoss Developer Studio, manually run the Container Development Environment tooling, which
also creates an OpenShift and a Docker connection.

1.1.3. Installing Red Hat Container Development Kit and
JBoss Developer Studio as Separate Entities

You can download and install Red Hat Container Development Kit and the JBoss Developer Studio
separately. This option requires some additional configuration steps before the two can be used
together.

1.1.3.1. Prerequisites

Ensure that the following are installed on your system:

A virtualization system such as VirtualBox, VMWare, or Linux KVM/libvirt

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD

3

https://access.redhat.com/documentation/en/red-hat-development-suite/1.2/paged/installation-guide/

Vagrant, which is an open source tool to create and distribute portable development
environments

Red Hat Container Development Kit 2.3

JBoss Developer Studio 10.x

For details about installing these prerequisites, see the Red Hat Container Development Kit
Installation Guide.

1.1.3.2. Set Up Red Hat Container Development Kit in the IDE

To set up Red Hat Container Development Kit in the IDE:

1. Start the IDE.

2. Press Ctrl+3 and in the Quick Access bar, type CDK.

3. From the results, click Launch Container Development Environment using Red Hat
CDK.

4. If asked, enter your user credentials.

5. In the New Server dialog box:

a. Ensure that Red Hat Container Development is selected by default.

b. In the Server’s host name field, type the desired server host name.

c. In the Server Name field, type the desired server name.

d. Click Next to continue.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

4

https://access.redhat.com/documentation/en/red-hat-container-development-kit/2.3/paged/installation-guide/

6. In the New Server Red Hat Container Development Environment window, add the
security information and your access.redhat.com credentials:

a. In the Username field, click Add to add a new username for the Red Hat Customer
Portal or select an existing user from the drop-down menu.

b. In the Folder field, navigate to the directory that contains your local Vagrantfile.
You can also use the Vagrantfile supplied in the cdk.zip file to initialize the
Red Hat Container Development Kit box.

7. Click Finish to conclude setting up the Red Hat Container Development Kit server adapter.

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD

5

8. Open the Servers view, right-click Container Development Environment and click Start.

9. If asked, enter the password.

10. In the Untrusted SSL Certificate dialog box, click Yes.

11. The Servers view shows the server adapter started. To monitor the status of the server
adapter, read the log in the built-in terminal.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

6

You can open the OpenShift Explorer view to see the IP address and the port of the
OpenShift Conatiner Platform that you have connected to (example: openshift-dev
https://10.1.2.2:8443). Expand the connection to see the sample projects. You can also
open the Docker Explorer view to view the Container Development Environment
connection and expand the connection to see the Containers and Images.

Choose to continue working with OpenShift Container Platform within JBoss Developer Studio or
view instructions for Container-Based Development with JBoss Developer Studio.

1.1.4. Using the Docker Tooling

After starting the Red Hat Container Development Kit server in the IDE, you can follow one of the
two container development workflows:

Section 1.1.4.1, “Use Docker for Container-based Development”

Section 1.1.4.2, “Build Docker Using the Container Development Environment”

1.1.4.1. Use Docker for Container-based Development

Use Docker for Container-based Development as follows:

1. Create a new project with your Dockerfile.

a. Click File > New > Project.

b. Type java in the search field and from the results, select Java Project and click
Next to continue.

c. Add a name for the new project and click Finish. The Project Explorer view shows
the project that you just created.

d. Click File > New > File.

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD

7

https://10.1.2.2:8443

e. In the New File window:

i. In the Enter or select the parent folder field, click the project name that
you created.

ii. In the File name field, type Dockerfile and click Finish.

iii. Edit the Dockerfile as desired and then save (for example, by creating a
new Docker image to customize a given version of JBoss/WildFly by adding
a datasource definition and its associated driver). The Dockerfile may
also package your application as a war file via a Maven command, and
copy it into the container in the WildFly deployments directory. See
https://docs.docker.com/engine/reference/builder for more information
about the Dockerfile instructions.

1.1.4.2. Build Docker Using the Container Development Environment

Do a Docker build using the Container Development Environment as follows:

1. In the Project Explorer view, right-click the Dockerfile and select Run As > Docker
Image Build.

2. In the dialog box:

a. In the Connection field, select your Container Development Environment server
adapter.

b. In the Repository Name field, enter the desired name for the docker image and
click OK. After the build is done, a new image with the given name will be listed in
the Docker Explorer view and in the Docker Images view.

3. Do a Docker run using the Container Development Environment:

a. Open the Docker Explorer view by typing Ctrl+3 in the quick access menu.

b. Navigate to the Images node under the Docker connection.

c. Right-click your image and click Run.

d. Fill in the necessary details and click Finish to run your image. It is optional to give
the container a name, but it is recommended to name it. This name helps locate the
specific container in a list of containers in the future.

4. In the Docker Explorer view, select the container and expand its node and select the 8080
port and click Show In > Web Browser to access the application deployed in the Docker
container.

1.1.4.2.1. Next Steps for the Docker Tooling

For further information about the basics of Docker Tooling, see Configure Docker Tooling (Basic).

1.1.5. Using OpenShift Container Platform Tooling

Use OpenShift for Container-based Development as follows:

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

8

https://docs.docker.com/engine/reference/builder
https://access.redhat.com/documentation/en/red-hat-jboss-developer-studio/10.2/paged/getting-started-with-container-and-cloud-based-development/docker_basics.html

1. Create a new OpenShift Container Platform project. These projects are like namespaces for
OpenShift applications. They are different from how Eclipse projects relate to Eclipse
applications. Additionally, Eclipse projects can be mapped to OpenShift applications.

a. In the OpenShift Explorer view, right-click the name of the connection and select
New > Project to create a new OpenShift Container Platform project.

Note

The CDK server adapter creates the OpenShift Container Platform
connection when you start the CDK server adapter in the preceding
sections.

b. Add the name and any other relevant details for the new project and click Finish.

2. Create an application in your OpenShift Container Platform project using the templates:

a. Right-click your new project name and click New > Application.

b. In the Select Template dialog box, search box, type the application type required.
For example, for a node.js application, type nodejs and from the displayed list,
select the relevant nodejs template and click Finish.

c. Click OK to accept the results of the application creation process.

d. When prompted, enter a new git location or click Finish in the dialog box to use the
listed default git location for your application.

3. Create a new OpenShift Container Platform server adapter for your project and application:

a. In the OpenShift Explorer view, expand the connection and then the project.

b. Right-click the service and click Server Adapter.

c. In the OpenShift Adapter Settings window:

i. Ensure that the Eclipse Project field, shows the relevant project or click
Browse to locate the project.

ii. In the Services field, select the relevant service.

iii. Click Finish.

4. Debug the application, if required.

a. In the Servers view, right-click the server adapter and click Restart in Debug.

1.1.5.1. Next Steps for the OpenShift Tooling

See the Developing for the Cloud with OpenShift 3 section in the index for additional tasks using the
OpenShift Container Platform tooling.

1.1.6. Known Issues

CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD

9

https://access.redhat.com/documentation/en/red-hat-jboss-developer-studio/10.2/paged/getting-started-with-container-and-cloud-based-development/chapter-2-developing-for-the-cloud-with-openshift-3

When the Docker Explorer is first started, attempting to extend the Containers or Images
causes the explorer to fail and throw an exception. To work around this issue, restart
Eclipse/JBoss Developer Studio. Details are in JBIDE-21983.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

10

https://issues.jboss.org/browse/JBIDE-21983

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH
OPENSHIFT 3

2.1. CREATING AN OPENSHIFT CONTAINER PLATFORM
APPLICATION IN RED HAT JBOSS DEVELOPER STUDIO

Using the OpenShift Container Platform Tooling you can create, import, and modify OpenShift
Container Platform applications by:

1. Creating a New OpenShift Container Platform Connection

2. Creating a New OpenShift Container Platform Project

3. Creating a New OpenShift Container Platform Application

4. Importing an Existing OpenShift Container Platform Application into the IDE

5. Deploying an Application Using the Server Adapter

6. Viewing an Existing Application in a Web Browser

7. Deleting an OpenShift Container Platform Project

2.1.1. Creating a New OpenShift Container Platform Connection

To use the OpenShift Container Platform tooling in the IDE, you must first create an OpenShift
Container Platform connection. To create a new connection:

1. In the OpenShift Explorer view, click New Connection Wizard. If the OpenShift
Explorer view is not available, click Window → Show View → Other and then in the
Show View window search for OpenShift Explorer and after you find it, click OK.

2. In the New OpenShift Connection wizard:

a. In the Connection list, click <New Connection>.

b. In the Server type list, click OpenShift 3.

c. In the Server field, type the URL for an OpenShift Container Platform server.

d. In the Authentication section, in the Protocol list, click OAuth to authenticate
using the token or click Basic to authenticate using login credentials.

3. Click Finish.

Figure 2.1. Set up a New OpenShift Container Platform Connection

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3

11

Result: The connection is listed in the OpenShift Explorer view.

2.1.2. Creating a New OpenShift Container Platform Project

To create a new OpenShift Container Platform project:

1. In the OpenShift Explorer view, right-click the connection and click New → Project.

2. In the Create OpenShift Project window:

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

12

a. In the Project Name field, type a name for the project. Project names must be
alphanumeric and can contain the character “-” but must not begin or end with this
character.

b. In the Display Name field, type a display name for the project. This name is used
as the display name for your project in the OpenShift Explorer view and on the
OpenShift Container Platform web console after the project is created.

c. In the Description field, type a description of the project.

3. Click Finish.

Result: The project is listed in the OpenShift Explorer view, under the relevant connection.

2.1.3. Creating a New OpenShift Container Platform Application

Use the New OpenShift Application wizard to create OpenShift Container Platform
applications from default or custom templates. Using a template to create an application is useful
because the same template can be used to create multiple similar applications with different or
identical configurations for each of them.

Note

To learn more about using and creating templates with OpenShift Container Platform, see
Templates.

1. In the OpenShift Explorer view, right-click the connection and click New →
Application.

2. If required, in the New OpenShift Application wizard, sign into your OpenShift
Container Platform server using the Basic protocol (username and password) or the
OAuth protocol (token) and click Next.

3. In the Select Template window, click the Server application source tab.

Note

To create an application from the a local template, click the Local template
tab and then click Browse File System or Browse Workspace to locate the
template that you want to base the project on.

4. From the list, click the template that you want to base your project on. You can also use the
type filter text field to search for specific templates.

5. Click Next.

Figure 2.2. Select a Template for Project Creation

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3

13

https://docs.openshift.org/latest/dev_guide/templates.html

6. In the Template Parameters window, confirm the parameter values and click Next.

7. In the Resource Labels window, confirm the labels that you want to add to each
resource. You can also click Add or Edit to add labels or edit the existing ones.

8. Click Finish.

9. In the Results of creating the resources from the [template_name]
window, review the details and click OK.

10. In the Import Application window, click Use default clone destination to
clone the application at the default location or in the Git Clone Location field, type or

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

14

browse for the location where you want to clone the application and click Finish.

Figure 2.3. Select a Git Clone Location

Note

If the Git location chosen to clone the application already contains a folder with
the application name that you are trying to import, you must select a new location
for the Git clone. If you do not select a new location, the existing repository will be
reused with the changes you made being retained but not reflected on the
OpenShift Container Platform console.

Figure 2.4. Git Clone Location Reuse

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3

15

Result: The application appears in the Project Explorer view.

2.1.4. Importing an Existing OpenShift Container Platform Application into the
IDE

Note

Only an application that has its source specified in the build config file can be
imported in the workspace.

Applications associated with your OpenShift Container Platform account(s) are listed in the
OpenShift Explorer view. The source code for these applications can be individually imported
into the IDE using the Import OpenShift Application wizard. Once imported, the user can
easily modify the application source code, as required, build the application and view it in a web
browser.

To import an existing OpenShift Container Platform application as a new project in the existing IDE
workspace:

1. If required, sign into your OpenShift Container Platform server using the Basic protocol or
the OAuth protocol.

2. In the OpenShift Explorer view, expand the connection to locate the application to
import.

3. Right-click {project name} and click Import Application.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

16

Note

To import a particular application from a service, right-click the service and then
click Import Application. If you right-click a project and click Import
Application, and if there are more than one build configs with source code
under a project, you will be prompted to select the desired application for import
because of existence of several applications under one project.

4. In the Import OpenShift Application wizard, Existing Build Configs list, click
the application that you want to import and click Next.

5. Ensure the location in the Git Clone Destination field corresponds to where you want
to make a local copy of the application Git repository and click Finish.

Result: The application is listed in the Project Explorer view.

2.1.5. Deploying an Application Using the Server Adapter

The server adapter allows incremental deployment of applications directly into the deployed pods on
OpenShift Container Platform.

To deploy an application:

1. In the OpenShift Explorer view, expand the connection, the project, and then the
application.

2. Right-click the and click Server Adapter. In the Server Settings window, Services
section, select the service.

Note

A workspace project will be selected automatically, if the OpenShift service has a
Build Config with a git URL matching the git remote URL of one of the workspace
projects.

3. Click Finish.

Result: The Servers view is the view in focus with the server showing [Started,
Publishing…] followed by the Console view showing the progress of application publishing.

Figure 2.5. Console View Showing Application Publication Progress

2.1.6. Viewing an Existing Application in a Web Browser

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3

17

To view an application in the internal web browser, after it has been successfully deployed, in the
OpenShift Explorer view, right-click the application, and click Show In → Web browser.

Result: The application displays in the built-in web browser.

2.1.7. Deleting an OpenShift Container Platform Project

You may choose to delete a project from the workspace to make a fresh start in project development
or after you have concluded development in a project. All resources associated with a project get
deleted when the project is deleted.

To delete a project:

1. In the OpenShift Explorer view, expand the connection and then the project to locate
the application you want to delete.

2. Right-click {project name} and click Delete Project.

3. In the OpenShift resource deletion window, click OK.

Note

To delete more than one project (and the containing applications), in the OpenShift
Explorer view, click the project to select it and while holding the Control key select
another project that you want to delete and then press Delete.

2.1.8. Did You Know

Scale the project deployment, using the context menu for the service (the first node below the
project). You can also scale the deployment from the Properties tab of a deployment
(replication controller) and deploymentconfig.

View the rsync output in the Console view. You can also see the progress of the file transfer
after you publish local changes to OpenShift Container Platform.

2.2. SETTING UP AND REMOTELY MONITORING AN OPENSHIFT
CONTAINER PLATFORM APPLICATION

In some scenarios, the user already has a remote instance of OpenShift Container Platform running
with various applications on it and may want to monitor it. The IDE allows users to set up a
connection to a remote instance of OpenShift Container Platform and then use logs (application logs
and build logs) to troubleshoot and monitor running applications. Connect to and work with a remote
OpenShift Container Platform instance by:

1. Setting up OpenShift Client Binaries

2. Setting up Port Forwarding

3. Streaming Pod Logs

4. Streaming Build Logs

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

18

2.2.1. Setting up OpenShift Client Binaries

Before setting up port forwarding or streaming application and build logs, it is mandatory to set up
OpenShift Client Binaries as follows:

1. In the IDE, click Windows > Preferences > JBoss Tools > OpenShift v3.

2. Click the here link.

3. In the Download from GitHub section, click the Release page link.

4. Scroll to the Downloads section and click the appropriate link to begin the client tools
download for the binary for your operating system.

5. After the download is complete, extract the contents of the file.

6. Click Windows > Preferences > JBoss Tools > OpenShift v3.

7. Click Browse and select the location of the OpenShift Client executable file.

8. Click Apply and then click OK.

Result: OpenShift Client Binaries are now set up for your IDE.

2.2.2. Setting up Port Forwarding

Using the Application Port Forwarding window, you can connect the local ports to their
remote counterparts to access data or debug the application. Port forwarding automatically stops
due to any one of the following reasons:

The OpenShift Container Platform connection terminates

The IDE shuts down

The workspace is changed

Port forwarding must be enabled each time to connect to OpenShift Container Platform from the
IDE.

Prerequisite: Ensure that the OpenShift Client Binaries are set up (see Setting up OpenShift
Client Binaries for instructions).

Set up port forwarding as follows:

1. In the OpenShift Explorer view, expand the connection and then expand the project,
the services, and then the Pods.

2. Right-click the relevant pod and then click Port Forwarding.

Figure 2.6. Set up Port Forwarding

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3

19

3. In the Application Port Forwarding window, click the Find free local ports
for remote ports check box.

4. Click Start All.

Result: The Status column shows Started, indicating that port forwarding is now active.
Additionally, the Console view shows the status of port forwarding for the particular service.

Figure 2.7. Start Port Forwarding

2.2.3. Streaming Pod Logs

Pod logs are general logs for an application running on a remote OpenShift Container Platform
instance. The streaming application logs feature in the IDE is used to monitor applications and use
the previous pod log to troubleshoot if the application fails or returns errors.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

20

Prerequisite: Ensure that the OpenShift Client Binaries are set up (see Setting up OpenShift
Client Binaries for instructions).

To stream the application logs:

1. In the OpenShift Explorer view, expand the project, the services, and then the Pods.

2. Right-click the relevant Pod and then click Pod Log.

Figure 2.8. Stream Pod Log

Result: The Console view displays the Pod log.

2.2.4. Streaming Build Logs

Build logs are logs documenting changes to applications running on a remote OpenShift Container
Platform instance. The streaming build logs feature in the IDE is used to view the progress of the
application build process and to debug the application.

Prerequisite: Ensure that the OpenShift Client Binaries are set up (see Setting up OpenShift
Client Binaries for instructions).

To stream build logs:

1. In the OpenShift Explorer view, expand the project, the services, and then the build.

2. Right-click the relevant build instance and click Build Log.

Figure 2.9. Stream Build Log

Result: The Console view is now the view in focus showing the build log.

2.3. BUILDING AND DEPLOYING DOCKER-FORMATTED
CONTAINER IMAGE TO CONTAINER DEVELOPMENT KIT

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3

21

CONTAINER IMAGE TO CONTAINER DEVELOPMENT KIT
OPENSHIFT REGISTRY

In this article we deploy the Docker based microservices, frontend and bonjour, into an OpenShift
Container Platform instance running on Red Hat Container Development Kit, in
JBoss Developer Studio 10. We use the Helloworld-MSA tutorial available in GitHub at:
https://github.com/redhat-helloworld-msa/helloworld-msa.

The article shows how you can easily build a local Docker image, not present on Docker Hub, to
Container Development Environment and then deploy that image to an OpenShift Container
Platform instance, using JBoss Developer Studio. frontend and bonjour microservices, used here,
are examples of such private images that are not present in Docker Hub.

You can build and deploy a Docker-formatted Container Image to Container Development Kit
OpenShift Registry by:

1. Section 2.3.2, “Installing the javascript Modules”

2. Section 2.3.3, “Building the frontend Microservice”

a. Section 2.3.3.1, “Deploying the frontend Microservice”

3. Section 2.3.4, “Connecting the frontend and bonjour Microservices”

a. Section 2.3.4.1, “Deploying the bonjour Microservice”

b. Section 2.3.4.2, “Scalling the Pod”

4. Section 2.3.5, “Editing the bonjour Microservice”

a. Section 2.3.5.1, “Viewing the Edited bonjour Microservice on the frontend
Microservice”

2.3.1. Prerequisites

1. Install nmp: Before running JBoss Developer Studio, install npm on your system. See the
npm documentation for instructions for various platforms: https://docs.npmjs.com/getting-
started/what-is-npm.

2. Download and install JDK 8.

3. Install JBoss Developer Studio and Red Hat Container Development Kit.

a. On a Windows system: Install Red Hat Development Suite to automatically install
both: JBoss Developer Studio and Red Hat Container Development Kit (for
installation instructions, see https://access.redhat.com/documentation/en/red-hat-
development-suite/1.1/paged/installation-guide/).

b. On other operating systems: Install JBoss Developer Studio (for installation
instructions, see: https://access.redhat.com/documentation/en/red-hat-jboss-
developer-studio/10.1/paged/installation-guide/) and install Red Hat
Container Development Kit (for installation instructions, see
https://access.redhat.com/documentation/en/red-hat-container-development-
kit/2.2/paged/installation-guide/).

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

22

https://github.com/redhat-helloworld-msa/helloworld-msa
https://docs.npmjs.com/getting-started/what-is-npm
https://access.redhat.com/documentation/en/red-hat-development-suite/1.1/paged/installation-guide/
https://access.redhat.com/documentation/en/red-hat-jboss-developer-studio/10.1/paged/installation-guide/
https://access.redhat.com/documentation/en/red-hat-container-development-kit/2.2/paged/installation-guide/

4. Clone the following projects and then import them into JBoss Developer Studio using the
Import wizard (from File > Open Projects from File System).

a. bonjour project from: https://github.com/redhat-helloworld-msa/bonjour

b. frontend project from: https://github.com/redhat-helloworld-msa/frontend

5. Set up the oc client binaries in the IDE from Window > Preferences, expand JBoss Tools,
and then click OpenShift 3.

2.3.2. Installing the javascript Modules

To download and install all the required javascript modules:

1. In the Project Explorer view, expand frontend and right-click package.json.

2. Click Run As > npm Install to download and install the required javascript modules in the
project.

Result: After the build is complete, a new node_modules folder is listed under the project in the
Project Explorer view.

2.3.3. Building the frontend Microservice

In this section we build the frontend microservice which is the landing page for the application being
built. The frontend microservice calls other microservices (bonjour, in this case) and displays the
results from these calls.

To build the Docker-formatted Container image:

1. In the Project Explorer view, expand frontend and right-click Dockerfile and then click
Run As > Docker Image Build.

2. In the Docker Image Build Configuration window:

a. In the Connection list, select Container Development Environment.

b. In the Repository Name field, type demo/frontend.

3. Click OK.

Result: The Docker-formatted Container image starts building against the Docker Daemon running
in the Container Development Environment.

2.3.3.1. Deploying the frontend Microservice

After the build is complete, the Docker-formatted Container image demo/frontend is available in the
Docker Explorer under Container Development Environment.

To deploy the frontend microservice:

1. In the Docker Explorer view, Container Development Environment > Images, right-click
demo/frontend and click Deploy to OpenShift.

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3

23

https://github.com/redhat-helloworld-msa/bonjour
https://github.com/redhat-helloworld-msa/frontend

2. In the Deploy an Image window, click New.

3. In the Create OpenShift Project window:

a. In the Project Name field, type the name of the new project, demo.

b. Optionally, in the Display Name and Description fields, enter the required details.

c. Click OK.

4. In the Deploy an Image window, click the Push Image to Registry check box and click
Next.

5. In the Deployment Configuration & Scalability window, change the following environment
variables:

a. Click OS_PROJECT to open the Environment Variable window and in the Value
field, type demo (from step 5) and click OK.

6. In the Deployment Configuration & Scalability window, click Next and then click Finish.
After the Docker-formatted Container image is pushed to the Docker Registry on OpenShift
Container Platform, the Eclipse plugin generates all the required OpenShift Container
Platform resources for the application to run.

7. In the Deploy Image to OpenShift window, review the details of deploying the image and
click OK.

8. In the OpenShift Explorer view, expand the connection > > Service > Pod to see the Pod
running. Right-click the Pod and click Pod Log. The Console view shows the
frontend service running. In the OpenShift Explorer view, expand the application and
right-click the service and click Show In > Web Browser.

Result: The frontend microservice, in the Bonjour Service shows: Error getting value from
service <microservice> meaning the bonjour microservice must be connected.

2.3.4. Connecting the frontend and bonjour Microservices

In this section we build the bonjour microservice and then view it on the frontend
microservice. The bonjour microservice is a simple node.js application that returns the
string bonjour-de-<pod_ID>.

To connect the Microservices:

1. In the Project Explorer view, expand bonjour and right-click package.json.

2. Click Run As > npm Install.

3. In the Project Explorer view, expand bonjour and right-click Dockerfile.

4. Click Run As > Docker Image Build.

5. In the Docker Image Build Configuration window:

a. In the Connectio*n list, select *Container Development Environment.

b. In the Repository Name field, type demo/bonjour.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

24

6. Click OK.

2.3.4.1. Deploying the bonjour Microservice

You can either deploy the Docker-formatted Container image from the Docker Explorer (as
done in step 3 of the Building a Docker-formatted Container Image section above), or in the
following way from the OpenShift Explorer view:

1. In the OpenShift Explorer view, right-click the project (demo), and click Deploy
Docker Image.

2. In the Deploy an Image window:

a. In the Docker Connection list, click the Docker connection.

b. In the Image Name field, type demo/bonjour.

c. Click the Push Image to Registry check box.

3. Click Next.

4. In the Deployment Configuration & Scalability window, click Next.

5. In the Services and Routing Settings window, click Finish.

6. In the Deploy Image to OpenShift window, click OK.

2.3.4.2. Scalling the Pod

To see the bonjour service with the Pod running:

1. In the OpenShift Explorer view, expand the application name (demo).

2. Right-click the pod and click Pod Log to check if the pod is running.

3. Navigate to the browser where you have the application running and click Refresh
Results. You will see a greeting from the bonjour service with a hostname that
matches the Pod name in the OpenShift Explorer view.

4. In the OpenShift Explorer view, right-click the service and click Scale > Up. You now
have two Pods running on OpenShift Container Platform.

Result: Navigate to the browser and click Refresh Results to see the service balancing
between the two Pods.

2.3.5. Editing the bonjour Microservice

In this section we edit the bonjour microservice and then view the results on the frontend
microservice.

To edit the bonjour microservice:

1. In the Project Explorer view, expand bonjour, and double-click bonjour.js to open it
in the default editor.

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3

25

2. Find

function say_bonjour(){
 Return “Bonjour de “ + os.hostname();

3. Change it to:

 function say_bonjour(){
 Return “Salut de “ + os.hostname();

4. Save the file.

2.3.5.1. Viewing the Edited bonjour Microservice on the frontend Microservice

After you have edited the bonjour microservice:

1. In the Project Explorer view, expand bonjour, and right-click Dockerfile.

2. Click Run As > Docker Image Build.

Note

Here, the Docker run configuration, the connection, and the repository
name used earlier are being reused. To edit the configuration, open the Run
Configuration window.

After the Console view shows that the Docker-formatted Container image has been
successfully pushed to the Docker Daemon:

3. In the Docker Explorer view, expand Container Development Environment > Images.

4. Right-click the image and click Deploy to OpenShift.

5. In the Deploy an Image window, click Push Image to Registry and then click Next.

6. In the Deployment Configuration & Scalability window, click Finish. The OpenShift
Explorer view, under bonjour shows the Pods being added and then running.
Navigate to the browser and click Refresh Results.

Result: The new greeting appears.

2.3.6. Troubleshooting

2.3.6.1. No Docker Connection Available

Error message: No Docker Connection available to build the image.

Issue: You have installed JBoss Developer Studio through Red Hat Development Suite and
you must start Red Hat Container Development Kit for it to be available. Resolution:

1. In the Servers view, right-click Container Development Environment and click Start.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

26

2. Enter your credentials in the box provided.

If, after doing this the Container Development Environment does not start and you get the
following error: Error message: Server Container Development Environment failed to start.

On the command prompt, cd to cdk/components/rhel/rhel-ose and run the vagrant
destroy command. After it is destroyed, run the vagrant up command. In the IDE, in the
Servers view, right-click Container Development Environment and click Start once again.

CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3

27

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH
OPENSHIFT 2

3.1. CREATING YOUR FIRST OPENSHIFT ONLINE APPLICATION

OpenShift Tools provides an all-in-one New OpenShift Application wizard for creating
new OpenShift applications from templates and existing projects. This wizard is the starting
point for creating all new OpenShift Online applications from the IDE and also for importing
OpenShift Online applications to your workspace.

The New OpenShift Application wizard is an ideal starting point for new users to
OpenShift and OpenShift Tools as it guides you through all the steps necessary to set up the
IDE to use your OpenShift Online account and configure your account ready for applications.

The instructions here demonstrate how to use this wizard and a default OpenShift
application template to create a basic OpenShift Online application. This includes one-time
steps, such as signing up for an OpenShift Online account, creating an OpenShift Online
domain and uploading SSH keys. If you have previously used OpenShift Online or OpenShift
Tools, you can omit unnecessary one-time steps as appropriate.

3.1.1. Starting the New OpenShift Application Wizard

1. In JBoss Central, under Start from scratch, click OpenShift Application.

3.1.2. Signing up for an OpenShift Online Account

If you do not have an OpenShift Online account, you should complete the following steps:

1. Click the link provided to sign up for an OpenShift account and follow the
instructions on the OpenShift website.

Figure 3.1. Link to Sign up for a New OpenShift Online User Account

2. When you have completed the sign-up process, restart the OpenShift Application
wizard from JBoss Central.

3.1.3. Connecting to OpenShift Online

1. Complete the fields about your OpenShift Online account as follows:

a. From the Connection list, select New Connection.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

28

b. Ensure the disabled Server field states https://openshift.redhat.com.

c. In the Username and Password fields, type your account credentials.

Figure 3.2. Connection Information Provided for OpenShift Online Account

2. Click Next.

3.1.4. Enabling Communication between the IDE and OpenShift

If your OpenShift Online account has no SSH public keys stored, you are prompted with the
Add SSH Keys wizard and you should complete the following steps:

1. Click New.

2. Complete the fields about the SSH Keys to be created as follows:

a. In the Name field, type a name for the SSH key pair.

b. From the Key Type list, ensure SSH_RSA is selected.

c. In the SSH2 Home field, ensure your .ssh directory path is correct.

d. In the Private Key File Name field, type a name for the private key file
name. The Public Key File Name field populates automatically with the
name of the private key file name with .pub appended.

Figure 3.3. New SSH Key Information for OpenShift Online Provided

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

29

https://openshift.redhat.com

3. Click Finish.

4. Click Finish to close the Add SSH Keys window.

3.1.5. Creating a Domain

If your OpenShift Online account has no domains, you are prompted with the Create
Domain wizard and you should complete the following step:

1. In the Domain Name field, type an alphanumeric name for your new OpenShift Online
domain and click Finish. The provided domain name must be unique across all
domains on OpenShift Online; if it is not unique, you are directed back to the Create
Domain window to provide a unique domain name.

Figure 3.4. New OpenShift Domain Name Provided

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

30

3.1.6. Providing Essential New Application Details

1. Complete the fields about the type of OpenShift application you want to create as
follows:

a. Ensure Create a new OpenShift application is selected.

b. Expand Basic Cartridges and select JBoss Application Server 7.

Figure 3.5. Basic Cartridge Selected for the New OpenShift Online Application

2. Click Next.

3. Complete the fields about your OpenShift application as follows:

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

31

a. Ensure the Domain field displays the OpenShift Online domain with which
you want to host your application.

b. In the Name field, type an alphanumeric name for your application.

c. From the Gear profile list, select small.

d. Select the Enable scaling check box.

Figure 3.6. New OpenShift Application Information Provided

4. Click Next.

3.1.7. Configuring the Corresponding Workspace Project for the New
Application

1. Complete the fields about the corresponding workspace project as follows:

a. Ensure the Create a new project check box is selected.

b. Ensure the Create and set up a server for easy publishing check
box is selected. This automatically creates an OpenShift server adapter for
the application, enabling you to easily publish project changes to the
OpenShift server.

2. Click Next.

3. Ensure the location in the Git Clone Destination field corresponds to where you
want to make a local git repository for the project source code.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

32

Figure 3.7. Git Clone Destination Specified

3.1.8. Creating the OpenShift Online Application

18. Click Finish for the wizard to start generating the new OpenShift application. This
process may take some time to complete.

19. If you are prompted that the authenticity of the host cannot be established and asked
whether you want to continue connecting, ensure that the host name matches that of
your application and domain and click Yes.

3.1.9. Viewing the OpenShift Online Application

20. In the OpenShift Explorer view, expand the connection and domain.

21. Right-click {application name} and click Show In → Web Browser.

Your OpenShift Online application is displayed in the IDE default web browser.

3.1.10. Some OpenShift Terminology

Gear: A server container with a set of resources that allow you to run your application

Cartridge: Plug-ins that house the framework or components that can be used to create
and run your application

Standalone cartridge: Languages and application servers that serve your
application

Embedded cartridge: Functionality to enhance your application

Scaling: Enables your application to react to changes in traffic and automatically allocate
the necessary resources to handle the current demand

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

33

3.1.11. Did You Know?

You can also start the New OpenShift Application wizard from the OpenShift
Explorer view by right-clicking a connection, domain or existing application and
clicking New → Application or from the IDE main menus by clicking File → New →
OpenShift Application.

To save time when logging in to OpenShift Online in future, you can click the Save
Password check box in the Sign in to OpenShift window. The password is retained
in secure storage provided by the IDE and automatically populates the Password field for
the associated connection.

Using the New OpenShift Application wizard, you can also create a new OpenShift
application from an existing workspace project or a Git source.

Each time you start the IDE or switch workspaces the IDE is initially disconnected from
OpenShift. When you attempt to complete an action that requires an active OpenShift
connection, you are automatically prompted to reconnect.

3.2. DEVELOPING AN EXISTING OPENSHIFT APPLICATION

OpenShift Tools enables you to import existing OpenShift Online applications into the IDE so
that you can take advantage of the IDE features in further developing your applications. As
illustrated in this article, during the import process you can configure the IDE for easy
republishing to OpenShift Online.

Develop an existing OpenShift application by:

1. Importing an Existing OpenShift Online Application

2. Modifying the Application Source Code

3. Republishing the Modified Application

4. Viewing the Modified Application

3.2.1. Importing an Existing OpenShift Online Application

Applications associated with your OpenShift Online account(s) are listed in the OpenShift
Explorer view. The source code for these applications can be individually imported into the
IDE using the OpenShift Tools Import OpenShift Application wizard.

To import an existing OpenShift Online application as a new project in the existing IDE
workspace, complete the following steps:

1. In the OpenShift Explorer view, ensure your OpenShift Online connection is listed

or click the Connection icon and complete your OpenShift Online account
details to create a new connection.

2. In the OpenShift Explorer view, expand the connection and domain to locate the
application you want to import.

3. Right-click {application name} and click Import Application.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

34

4. Complete the fields about the application to be imported as follows:

a. Ensure that Use my existing OpenShift application is selected.

b. Ensure that the name of the application you want to import is listed. If this is
not the case, type the name of the application or click Browse to select the
application.

Figure 3.8. Existing OpenShift Online Application Information Provided

5. Click Next.

6. Complete the fields about the corresponding new workspace project as follows:

a. Ensure the Create a new project check box is selected.

b. Ensure the Create and set up a server adapter for easy
publishing check box is selected.

7. Click Next.

8. Ensure the location in the Git Clone Destination field corresponds to where you
want to make a local copy of the OpenShift Online application Git repository.

9. Ensure a public SSH key is uploaded to OpenShift Online and private key location is
specified in the IDE preferences by clicking SSH Keys Wizard and reviewing the
information.

10. Click Finish.

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

35

If you are prompted that the authenticity of the host cannot be established and asked
whether you want to continue connecting, ensure that the host name matches that of your
application and domain and click Yes.

When the import process is complete, the project is listed in the Project Explorer view
and a server adapter is listed for the application in the Servers view.

OpenShift Tools makes a number of small changes to the application source code on import.
It adds several IDE-specific files to the project and modifies the .gitignore file so that you
are not prompted about these files each time you commit project changes to the Git
repository.

3.2.2. Modifying the Application Source Code

The files contained in your project depend on the type of project that you have imported.
Here a common OpenShift application file, index.html, is changed as an example of
modifying the project source code. You can opt to change this file or another file of your
project.

To modify the index.html file, complete the following steps:

1. In the Project Explorer view, expand {project name} → src → main →
webapp.

2. Double-click index.html to open it in the JBoss Tools HTML Editor.

3. After the opening <body> tag add the following line:

4. Save the index.html file by pressing Ctrl+S (or Cmd+S).

Note that in the Project Explorer view, index.html has > prepended to show that the
source code has changed since the last Git commit.

3.2.3. Republishing the Modified Application

You must commit and push any changes you have made to the project source code and then
republish the application before you can see changes reflected in the OpenShift Online
application. As an example of committing and pushing source code changes to the
OpenShift Online application repository and republishing the application, here the
index.html file changed earlier is used. You can opt to use the project file that you changed
earlier.

To commit and push the index.html changes and republish the application to OpenShift
Online, complete the following steps:

1. In the Servers view, right-click {application name} at OpenShift and click
Publish. Or you can drag the from the Project Explorer view and drop it on the
server adapter in the Servers view.

2. Complete the fields about the project changes to commit and push to the OpenShift
Online application Git repository as follows:

<h1>This is a change made to my OpenShift Online app from the
IDE.</h1>

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

36

a. In the Commit message field, type the following message

Added new heading in body of index.html

b. In the table of files, ensure the index.html file is selected.

Figure 3.9. Commit Message Provided and Changed Project File Selected

3. Click Commit and Publish.

The republishing process can take some time. When the Console view shows Deployment
completed with status: success, the republishing process is complete.

3.2.4. Viewing the Modified Application

After the modified application is republished, you can view the live updated version at the
OpenShift Online application URL.

To view the modified OpenShift Online application in the IDE default web browser, complete
the following steps:

1. In the OpenShift Explorer view, expand the connection and the domain.

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

37

2. Right-click {application name} and click Show In → Web Browser.

Your modified and republished OpenShift Online application is displayed in the IDE default
web browser.

3.2.5. Did You Know?

On the first occasion that you republish your application to OpenShift Online, you may be
prompted to provide a username and email address for use by Git. The IDE looks for a
default Git configuration file on your system from which to obtain this information and if
the IDE cannot find the file it prompts you to provide the values. You can specify the
location of your system Git configuration file in the IDE Preferences, under Team → Git →
Configuration.

You can review the progress of republishing applications to OpenShift Online in the
Console view.

You can also open the OpenShift application in a web browser from the Servers view by
right-clicking {application name} at OpenShift and clicking Show In → Web
Browser.

You can change the IDE default web browser to be either the IDE internal web browser,
BrowserSim (when installed) or an external web browser. Click Window → Web Browser
and select from the available web browser options or click Window → Preferences →
General → Web Browser to extend the list of available external web browsers.

3.3. CUSTOM PUBLISHING YOUR OPENSHIFT APPLICATION

Through the IDE you can manage your OpenShift Online application beyond simply its
source code. OpenShift Online allows customization of the build and deployment process
with markers and action hooks, each of which can be added to the application configuration
files using OpenShift Tools and existing IDE functionality. Further, the Git commit and push
processes for your changed application source code and configuration files can be
customized through the IDE preferences to meet your needs.

Custom publish your OpenShift application by:

1. Adding a Marker to the Application

2. Adding an Action Hook to the Application

3. Extending the Git Remote Connection Timeout

4. Republishing the Application

3.3.1. Adding a Marker to the Application

OpenShift Tools provides the Configure Markers wizard for adding markers to and
removing them from your OpenShift application. The wizard lists markers that are already
applied to your application and those that are available to add given the cartridge
configuration of your application. The wizard manages the adding and removing of markers
from your application, creating or deleting marker files and adding or removing them from
the Git index respectively.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

38

As an example, here the hot deploy marker is added to the application, which triggers
OpenShift to publish application changes without first restarting the application cartridges
and hence making the republishing faster.

To add the hot deploy marker to the application, complete the following steps:

1. In the Project Explorer view, right-click {project name} and click OpenShift →
Configure Markers.

2. From the Marker table, select Hot Deploy and click OK.

Figure 3.10. Hot Deploy Marker Selected

An empty .openshift/markers/hot_deploy file is added to the application.
OpenShift Tools automatically completes the git add action so that this new file is
added to the Git index and can be committed and pushed to the OpenShift
application repository when ready.

3.3.2. Adding an Action Hook to the Application

Using IDE features, you can quickly add action hooks to your OpenShift application. Adding
an action hook requires creating a script file named according to the phase in which it is to
run, locating it in the application .openshift/action_hooks directory, adding the file to
the Git index and ensuring the file is executable by all.

As an example, here a post deploy action hook is added to the application, which triggers a
simple bash script to execute on the application main gear after the application is deployed.

To add a post deploy action hook to the application, complete the following steps:

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

39

Create the post deploy action hook

1. In the Navigator view, expand {project name} → .openshift.

2. Right-click action_hooks and click New → File.

3. In the File name field, type post_deploy and click Finish.

4. In the file editor, add the following lines to the post_deploy file:

5. Save the file by pressing Ctrl+S (or Cmd+S).

Make the post deploy action hook executable

6. In the Navigator view, right-click the post_deploy file and click Properties.

7. In the Permissions table, select the Execute check boxes for all user types.

Figure 3.11. Execute Permissions Check Boxes Selected for All Users

8. Click Apply and click OK.

3.3.3. Extending the Git Remote Connection Timeout

As your application source code grows in size, the remote connection from the IDE to the
OpenShift Online application Git repository may not remain open long enough for the push
process to complete. The default Git remote connection timeout is set to 30 seconds after
which the connection is closed. But you can extend the Git timeout through the IDE
preferences to ensure that the push process is provided with sufficient time to complete.

#!/bin/bash
echo "This is my post-deploy bash script”

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

40

To extend the Git remote connection timeout, complete the following steps:

1. Click Window → Preferences → Team → Git.

2. In the Remote connection timeout (seconds) field, type a value in seconds.

Figure 3.12. Git Remote Connection Timeout Set

3. Click Apply and click OK to close the Preferences window.

3.3.4. Republishing the Application

Before markers and action hooks take effect on your application building and deployment
process you must commit the files and push changes to the OpenShift application
repository. OpenShift Tools assists you to perform these Git actions as part of the
republishing process.

To republish the application, complete the following steps:

1. In the Servers view, right-click {application name} at OpenShift and click
Publish.

2. Complete the fields about the application changes to commit and push to the
OpenShift Online application repository as follows:

a. In the Commit message field, type the following message:

Added hot_deploy marker and post_deploy bash script

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

41

b. In the Files table, ensure the hot_deploy file is selected and select the
post_deploy file.

Figure 3.13. Commit Message Supplied and Files Selected for Committing and
Publishing

3. Click Commit and Publish.

The Console view becomes the view in focus showing the application publication progress.
A snippet of the output demonstrating the effect of the hot deploy marker and post deploy
action hook is shown here for the sample application:

Not stopping cartridge xyz because hot deploy is enabled
Building git ref 'master', commit abc123

Activating deployment
Deploying xyz cartridge
Not starting cartridge xyz because hot deploy is enabled
This is my post-deploy bash script

Git Post-Receive Result: success
Activation status: success
Deployment completed with status: success

Note that the server has not been stopped and restarted because hot deploy is enabled and
the bash script is run post application deployment as required.

3.3.5. Terminology

Git: The revision control system used by OpenShift.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

42

Marker: A set-named empty file added in the OpenShift application in the
.openshift/markers directory; markers are used to specify configuration to the
OpenShift server.

Action hook: A user-specified script that is added to the OpenShift application, in the
.openshift/action_hooks directory; scripts are run by OpenShift at specified stages
of the application build and deploy process as denoted by the file name.

3.3.6. Did You Know?

You can also access the Configure Markers wizard from the Server view by right-
clicking {application name} at OpenShift and clicking OpenShift → Configure
Markers.

You can add files to the Git index at any time by right-clicking the file in, for example, the
Navigator view and clicking Team → Add to Index.

You can see more information relating to the application Git repository by opening the
Git perspective or individual Git views. All of these can be assessed from the Window
menu.

3.4. DEBUGGING AN OPENSHIFT JAVA APPLICATION

OpenShift Tools enables you to debug your deployed OpenShift applications within the IDE,
enabling you to take advantage of the IDE debugging tools. This article specifically details
the steps needed to set up an OpenShift Online Java application for debugging. A number of
configuration tasks are required both locally and remotely to enable the IDE debugger to
connect to the OpenShift server and OpenShift Tools for achieving this. Some tasks only
need to be completed once for each OpenShift Online application but others must be
completed every time you reconnect to OpenShift Online from the IDE.

Debug an OpenShift Java application by:

1. Configuring the OpenShift Application for Debugging

2. Enabling Port Forwarding for the Local and Remote Debug Ports

3. Configuring and Connecting the IDE Debugger

This article guides you through each of these configuration requirements and must be
completed in the given order.

Note

Your application must be deployed on OpenShift before attempting to configure the
OpenShift application for debugging and enabling port forwarding.

3.4.1. Configuring the OpenShift Application for Debugging

You must first configure your OpenShift application for debugging, which requires setting
the Enable JPDA (Java Platform Debugger Architecture) marker in your application source
code and republishing the application. Marker information is retained with the application so
you only need to complete this task once for each OpenShift Online application:

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

43

To configure the OpenShift application for debugging, complete the following steps:

1. In the Project Explorer view, right-click {project name} and click OpenShift →
Configure Markers.

2. In the Configure OpenShift Markers window, select the Enable JPDA check box
and click OK.

Figure 3.14. OpenShift Enable JPDA Marker Selected

3. In the Servers view, right-click {application name} at OpenShift and click
Publish.

4. In the Publish Changes window, in the Commit message field type a message for
the commit.

5. From the Files list, ensure the .openshift/markers/enable_jpda check box is
selected and click Commit and Publish.

The project changes are pushed to the remote Git repository and the application is
automatically updated on the OpenShift server.

Note

When debugging is enabled on the OpenShift application a debug port is assigned;
for default Java applications the debug port is 8787. To perform the remaining
tasks, it is important to know which port is the debug port. To identify the debug
port for other applications, see the cartridge documentation.

3.4.2. Enabling Port Forwarding for the Local and Remote Debug Ports

After the OpenShift application is configured for debugging, you must enable port
forwarding for the local (IDE) and remote (OpenShift server) debug ports. You can achieve
this with the OpenShift Tools Application port forwarding wizard, which connects all
local ports to their remote counterpart ports, including the local and remote debug ports.

Port forwarding is automatically stopped when your OpenShift Online connection closes;
this includes closing the IDE or changing workspaces. You must enable port forwarding

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

44

every time you reconnect to OpenShift Online from the IDE.

To enable port forwarding, complete the following steps:

1. In the OpenShift Explorer view, right-click {application name} and click Port
Forwarding.

2. In the Application port forwarding window, click Start All. Ensure the
Status value shows Started for the debug ports and click OK to close the
Application port forwarding window.

Figure 3.15. Port Forwarding Started for All Ports

3.4.3. Configuring and Connecting the IDE Debugger

With port forwarding configured for the debug ports, you must create a debug configuration
for the OpenShift server and connect the IDE debugger. You can then review debug output in
the Debug and Console views. The debug configuration is retained with the workspace so
you only need to create a new debug configuration once for each OpenShift Online
application. But you must restart each debug configuration every time you reconnect to
OpenShift Online from the IDE.

To configure and connect the IDE Debugger, complete the following steps:

1. In the global toolbar of the JBoss perspective, click the drop-down list for the Debug
icon and select Debug Configurations.

2. From the debug configurations list, select Remote Java Application and click the

New launch configuration icon

3. In the Connect tab, complete the following fields:

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

45

a. In the Project field, type the name of the workspace project associated with
the OpenShift application or click Browse to locate the project.

b. In the Port field, type the value of the debug port.

c. Click Apply and then click Debug.

Figure 3.16. Debug Configuration Ready for Your OpenShift Application

Connecting to the OpenShift server may take some time to complete and you can monitor
the progress in the Progress bar or Progress view.

3.4.4. Did You Know?

Setting the Enable JPDA marker adds an .openshift/markers/enable_jpda file to
your project. To locate the hidden .openshift directory and access the file, open the
Navigator view.

You can also access the Port Forwarding wizard by right-clicking {application
name} at OpenShift in the Servers view, and clicking OpenShift → Port forwarding.

The Debug perspective automatically arranges useful views for debugging. To open the
Debug perspective, click Window → Open Perspective → Debug.

You can set the debugger to look up source code for classes it encounters that are not
contained in your project, for example classes used by application servers defined in the
IDE. When inputing values for the launch configuration, in the Source tab click Add. From
the list of source containers, select JBoss Maven Source Container and click OK. The
JBoss Maven Source Container uses indexes available from Maven repositories to locate
the source code. From the list, select a runtime server, the libraries of which will be
indexed in the JBoss Maven Source Container, and click OK.

3.5. DEPLOYING A WORKSPACE PROJECT TO OPENSHIFT ONLINE

OpenShift Tools enables you to deploy existing workspace projects to OpenShift Online
using the OpenShift Application wizard. The wizard creates a templated OpenShift
application based on your cartridge choices, modifies the project as necessary for use with
OpenShift Online and commits the project code to the local application Git repository ready

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

46

for publishing. The wizard can also generate a server adapter for easy publishing of the
application both for first deployment and for future changes.

Deploy a workspace project to OpenShift Online by:

1. Preparing a Workspace Project for OpenShift Online Deployment

2. Deploying the OpenShift Online Application

3. Viewing the Deployed OpenShift Online Application

3.5.1. Preparing a Workspace Project for OpenShift Online Deployment

In preparing workspace projects for OpenShift Online, the OpenShift Application wizard
merges the existing project content with the key metadata files from a new OpenShift
application and connects the project to the OpenShift application Git repository.

To prepare an existing workspace project for OpenShift Online, complete the following
steps:

1. In the Project Explorer, right-click {project name} and click Configure →
New/Import OpenShift Application.

2. Complete the fields about your OpenShift Online account as follows:

a. In the Connection list, select the connection.

b. In the Password field, type your OpenShift Online account password.

3. Click Next.

4. Complete the fields about the type of OpenShift application you want to create as
follows:

a. Ensure Create a new OpenShift application is selected.

b. Expand Basic Cartridges and select the core cartridge to match the
application type; for example, for applications with Java-based server-side
functionality select jbossas-7, jboss-wildfly-8, or jbosseap-6.

5. Click Next.

6. Complete the fields about your OpenShift application as follows:

a. Ensure that the 'Domain' list displays the domain in which you want to host
your application.

b. Ensure the Name field contains a valid alphanumeric name for your
application.

c. In the Gear profile field, select the gear size that you want for your
application or leave blank to use the default gear profile.

d. Select the Enable Scaling check box to make your application scalable.

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

47

7. Click Next.

8. Complete the fields about the corresponding workspace project as follows:

a. Ensure the Create a new project check box is clear.

b. Ensure the Use existing project field lists the workspace project that
you want to deploy on OpenShift.

c. Ensure the Create and set up a server adapter for easy
publishing check box is selected.

Figure 3.17. Existing Workspace Project Selected for the New OpenShift
Application

9. Click Next.

10. Ensure the location in the Git Clone Destination field exists and corresponds to
where you want to make a local git repository for the project source code.

11. Ensure a public SSH key is uploaded to OpenShift Online and private key location
specified in the IDE preferences by clicking SSH Keys wizard and reviewing the
information.

12. Click Finish.

13. At the prompt informing that changes will be made to the workspace project, click
OK.

If you are prompted that the authenticity of the host cannot be established and asked
whether you want to continue connecting, ensure that the host name matches that of your
application and domain and click Yes.

3.5.2. Deploying the OpenShift Online Application

When the workspace project is prepared, you must republish the OpenShift Online
application to push the project source code to your waiting OpenShift Online application and

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

48

trigger a build and redeployment of the application. Republishing can be achieved using the
server adapter created by the OpenShift Application wizard and completes the
deployment of the workspace project to OpenShift Online.

To deploy the OpenShift Online application, complete the following steps:

1. In the Servers view, right-click {application name} at OpenShift and click
Full Publish.

2. When prompted if you want to publish the committed project changes to OpenShift,
click Yes.

The Console view becomes the view in focus showing the application publication progress.
After the workspace project is published at OpenShift Online, the following message
displays in the Console view:

3.5.3. Viewing the Deployed OpenShift Online Application

After the application is published, you can view the live version at the OpenShift Online
application URL.

To view the OpenShift Online application in a web browser, complete the following steps:

1. In the OpenShift Explorer view, expand the connection and the domain.

2. Right-click {application name} and click Show In → Web Browser.

Your deployed OpenShift Online application is displayed in the IDE default web browser.

3.5.4. Did You Know?

You can find the URL of your OpenShift Online application from the OpenShift
Explorer view by right-clicking {application name} and clicking Details or from the
Servers view by right-clicking {application name} on OpenShift and clicking
OpenShift → Details.

You can set the preference for which type of web browser the IDE opens by default. Click
Window → Web Browser and click the type of web browser.

If your project is large, it may require more time than the default set by the IDE to push
changes to the application OpenShift Online Git repository. You can increase the Git
timeout by clicking Windows → Preferences → JBoss Tools → OpenShift and changing
the OpenShift request timeout (in seconds) value.

You can also access the same wizard for deploying an existing workspace project to
OpenShift Online from JBoss Central by click OpenShift Application under Start
from scratch.

3.6. CONFIGURING SSH KEYS FOR OPENSHIFT

Deployment completed with status: success

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

49

OpenShift Online uses SSH authentication for development tasks that interact directly with
gears such as pushing code changes to application OpenShift Online Git repositories,
reading application log files, listing and setting environment variables, and port forwarding.

You must have an SSH key pair configured for your OpenShift Online account before using
OpenShift Tools features to create, edit and manage OpenShift Online applications. This
requires a private-public key pair, with the private key stored on your local system and its
location specified in the IDE and the associated public key stored on the OpenShift Online
server and associated with your account.

OpenShift Tools enables you to quickly complete these requirements with the assistance of
a multipurpose SSH wizard. If you are new to OpenShift Online, the wizards can help you
configure a new or existing SSH key pair. If you are already using OpenShift Online through
the web interface or RHC client tools, you only need to specify the private key location in the
IDE preferences to complete the SSH key configuration.

Configure the SSH keys for OpenShift by:

A. Creating and Using a New SSH Key Pair

B. Using an Existing SSH Key Pair

C. Specifying an Existing Private Key File

3.6.1. Option A: Creating and Using a New SSH Key Pair

You can use the OpenShift Tools Manage SSH Keys wizard to create a new SSH key pair. In
addition to creating an SSH key pair, this wizard completes the OpenShift Online SSH
configuration process by automatically uploading the public key to the OpenShift Online
server and setting the location of the corresponding private key in the IDE preferences. This
option may be applicable if you have not used your system with OpenShift Online before.

To create and use a new SSH key pair, complete the following steps:

1. In the OpenShift Explorer view, right-click the connection and click Manage SSH
Keys.

2. In the Manage SSH Keys wizard, click New.

3. Complete the fields about the new SSH keys as follows:

In the Name field, type a name to distinguish the key pair from any other keys
associated with the connection.

From the Key Type list, select SSH_RSA.

Ensure that the SSH2 Home field contains the location where you want to create
the files associated with the key pair. To change the location, clear the Default
check box and type the location in the SSH2 Home field or click Browse to
navigate to the desired location.

In the Private Key File Name field, type a name for the private key file. The
Public Key File Name field is automatically completed and displays the private
key file name appended with .pub.

Figure 3.18. Completed Fields for the New SSH Key Pair

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

50

4. Click Finish and click OK to close the Manage SSH Keys wizard.

3.6.2. Option B: Using an Existing SSH Key Pair

You can use the OpenShift Tools Manage SSH Keys wizard to use an already generated SSH
key pair with OpenShift Online. This wizard uploads the public key to the OpenShift Online
server and sets the location of the corresponding private key in the IDE preferences. This
option may be applicable if you have removed a SSH key pair from your OpenShift account,
still have the generated key files available on your system and want to reassociate them with
your OpenShift account.

To use an existing SSH key pair, complete the following steps:

1. In the OpenShift Explorer view, right-click the connection and click Manage SSH
Keys.

2. Click Add Existing.

3. Complete the fields about the existing public SSH key as follows:

In the Name field, type a name for the SSH key.

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

51

In the Public Key field, type the path of the public key file or click Browse to
locate the public key file.

Figure 3.19. Completed Fields for Adding an Existing SSH Public Key

4. Click the SSH2 Preferences link.

5. In the Private keys field, click Add Private Key and locate the private key file.

6. Click Apply and click OK to close the Preferences window.

7. Click Finish and click OK.

3.6.3. Option C: Specifying an Existing Private Key File

When using a public key that is already uploaded to OpenShift Online, you must ensure the
location of the corresponding private key is set in the IDE preferences. This option may be
applicable if you are an existing OpenShift Online user and you have not yet accessed
OpenShift Online from your IDE workspace or you are using multiple IDE workspaces.

To specify an existing private key file, complete the following steps:

1. Click Window → Preferences → General → Network Connections → SSH2.

2. In the General tab, click Add Private Key and locate the private key file.

3. Click Apply and click OK to close the Preferences window.

3.6.4. Did You Know?

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

52

To quickly open the OpenShift Explorer view, in the IDE Quick Access field type
OpenShift Explorer and choose OpenShift Explorer view from the list of items.

For added security, you can add a passphrase to the private SSH keys associated with
your OpenShift account when you create them. You must enter the passphrase for the
specific key for each OpenShift Tools action that uses the SSH key for authentication with
OpenShift Online.

IDE preferences are workspace specific and therefore you must specify private key
location under Preferences for each workspace.

You can remove an existing public SSH key from your OpenShift Online account with the
Manage SSH Keys wizard. Note that this only disassociates keys with your OpenShift
account. The files associated with a removed SSH key pair still exist in the local location
where they were generated and the private key is still set in the IDE preferences.

If you are using the OpenShift Online web interface or RHC client tools to manage SSH
keys simultaneously with OpenShift Tools, the information specified by OpenShift Tools
about keys may be out of sync. You can resync the information in the Manage SSH Keys
wizard with the Refresh button.

You can change the default location used by the IDE to store newly created SSH keys.
Click Window → Preferences → General → Network Connections → SSH2. In the General
tab, in the SSH2 home field type the new location.

3.6.5. Troubleshoot SSH Key Issues

3.6.5.1. “You have no SSH public keys in your OpenShift account”

Error Message

You have no SSH public keys in your OpenShift account user@example.com
yet, please add your key(s) or create new one(s).

Figure 3.20. No SSH Keys Window Displaying the Error Message

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

53

mailto:user@example.com

Issue

There are no SSH public keys assigned to your OpenShift account. After you have connected
to OpenShift Online from the IDE, the No SSH Keys window appears informing you that there
are no SSH public keys associated with your account.

Resolution

In the No SSH Keys window, click Add Existing or New and add an SSH public key to your
OpenShift Online account as detailed in Option A, Create and Use a New SSH Key Pair and
Option B, Use an Existing SSH Key Pair above.

3.6.5.2. “Please make sure that you added your private key to the ssh preferences.”

Error Message

Could not clone the repository. Authentication failed. Please make sure
that you added your private key to the ssh preferences.

Figure 3.21. Problem Occured Window Displaying the Error Message

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

54

Issue

An SSH public key is associated with your OpenShift Online account but the IDE cannot
locate the companion private key. Consequently, the IDE cannot complete actions for the
OpenShift applications associated with your account. This error may be encountered when
creating new OpenShift applications or importing existing OpenShift applications into the
IDE.

Resolution

Click OK to close the Problem Occurred window. The OpenShift Application wizard
opens. Click the SSH2 Preferences link to add the private key as detailed in Option C,
Specify an Existing Private Key Location above.

CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2

55

CHAPTER 4. DEVELOPING WITH DOCKER

4.1. CONFIGURING DOCKER TOOLING BASICS

Docker offers images that can be managed in one of two ways: build/create your own image
using a script file, or pull down an existing image file from public or private registries online.
This procedure contains instructions for pulling down an image from the JBoss registry.
Such registries are useful to share images between developers or between environments to
ensure a standardized software stack for development or testing requirements. Once the
Docker Container is created and running, users can manage the container.

JBoss Tools 4.3.0 Beta1 includes the Docker tooling out of the box. This article introduces
the basic usage for the Docker tooling, such as:

1. Prerequisites for Docker Tooling

2. Pulling Docker Images from a Docker Registry

3. Managing Docker Containers

4.1.1. Prerequisites for Docker Tooling

Ensure that the following prerequisites are met when using the Docker tooling with the IDE:

1. Install and set up JBoss Tools 4.3.0 Beta1 or higher.

2. Install and set up Docker.

3. Establish a connection to a Docker daemon within JBoss Tools as follows:

a. Click Window → Show View → Other… .

b. In the View window, type docker in the filter text box to view Docker-related
options in the list.

c. Expand the Docker item in the results and select Docker Explorer.

d. In the Docker Explorer view, if no connection is configured, a message
appears stating that "No connection to a Docker daemon is available. Click
this link to create a new connection…”. Click the link to start configuring a
new Docker daemon connection.

Figure 4.1. No Connection to a Docker Daemon is Available

e. In the Connect to a Docker daemon wizard:

i. Use the default value or set a desired connection name in the
Connection Name field.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

56

ii. Check the Use custom connection settings field.

iii. Add the relevant socket information for your host. If you are unsure
about this step, use the default Unix socket Location value.

iv. Click Test Connection to test the connection.

v. When a connection is successfully established, the following
message appears:

Figure 4.2. Ping Success Message

vi. This message indicates that the Docker daemon connection is
successfully established.

4.1.2. Pulling Docker Images from a Docker Registry

The following instructions detail how to pull a new WildFly Docker Image from the JBoss
registry.

1. Click Window → Show View → Other… .

2. Type Docker in the filter text field to view Docker-related options in the list.

3. Expand the Docker entry and double click Docker Images.

4. In the listed entries for the Docker Images view, locate the entry that ends with
wildfly:latest. If this entry is not listed, pull the Wildfly image as follows:

a. Click the Pull Image icon at the top bar of the Docker Images view.

b. In the resulting wizard, type jboss/wildfly and click finish.

Figure 4.3. Pull WildFly Image from JBoss Registry

CHAPTER 4. DEVELOPING WITH DOCKER

57

c. The bottom right corner displays the progress as the image is pulled down
from the registry. When the pulling process completes, the appropriate entry
appears on the Docker Images list as follows:

Figure 4.4. The Docker WildFly Image

Result: You have now pulled a new image for Wildfly from the JBoss registry
and run the Docker Image.

4.1.3. Managing Docker Containers

Docker containers are isolated processes that are based on Docker Images. Once created,
users can stop, start, pause, unpause, kill, or remove the containers, or read their logs.

1. Click Window → Show View → Other… .

2. Type Docker in the filter text field to view Docker-related options in the list.

3. In the search results, expand the Docker entry and double-click Docker
Containers.

4. The Docker Containers view appears, displaying a list of all containers running on
the Docker host.

5. Click the desired container to select it. You can now manage your containers using
the following operations:

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

58

a. Click the pause button from the icons on the top right corner of the view to
pause the container.

b. Click the green triangle icon in the row to unpause the container.

c. To view the container logs, right click the container name and click Display
Log.

d. To view a list of all containers, click on the right-most icon in the list of icons
in the view, which displays a drop-down option to view all containers. Click
this option to view all available containers.

Result: You have performed various management operations on your Docker container.

4.1.4. Troubleshooting

Attempting to connect to a running local Docker instance as a non-root user results in errors
being logged, but not displayed in the User Interface, which results in the error being non-
obvious. The following workarounds are available for this problem:

Connect to the Docker instance manually. Define a custom configuration file and specify
the TCP URL displayed by the systemctl status docker service. As an example, you can
use a TCP URL such as tcp://0.0.0.0:2375 to connect to the running Docker instance
instead of the default unix:///var/run/docker.sock configuration file.

Figure 4.5. Connect to a Docker Daemon

CHAPTER 4. DEVELOPING WITH DOCKER

59

Run Eclipse as root. This solution avoids the problem but is not the recommended
solution.

Red Hat JBoss Developer Studio 10.2 Getting Started with Container and Cloud-based Development

60

	Table of Contents
	CHAPTER 1. DEVELOPING USING CONTAINERS AND THE CLOUD
	1.1. USING CONTAINER DEVELOPMENT KIT TOOLING IN JBOSS DEVELOPER STUDIO 10.X
	1.1.1. About Using Red Hat Container Development Kit with the IDE
	1.1.2. Installing Red Hat Container Development Kit and JBoss Developer Studio Using the Red Hat Development Suite Installer
	1.1.3. Installing Red Hat Container Development Kit and JBoss Developer Studio as Separate Entities
	1.1.3.1. Prerequisites
	1.1.3.2. Set Up Red Hat Container Development Kit in the IDE

	1.1.4. Using the Docker Tooling
	1.1.4.1. Use Docker for Container-based Development
	1.1.4.2. Build Docker Using the Container Development Environment

	1.1.5. Using OpenShift Container Platform Tooling
	1.1.5.1. Next Steps for the OpenShift Tooling

	1.1.6. Known Issues

	CHAPTER 2. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 3
	2.1. CREATING AN OPENSHIFT CONTAINER PLATFORM APPLICATION IN RED HAT JBOSS DEVELOPER STUDIO
	2.1.1. Creating a New OpenShift Container Platform Connection
	2.1.2. Creating a New OpenShift Container Platform Project
	2.1.3. Creating a New OpenShift Container Platform Application
	2.1.4. Importing an Existing OpenShift Container Platform Application into the IDE
	2.1.5. Deploying an Application Using the Server Adapter
	2.1.6. Viewing an Existing Application in a Web Browser
	2.1.7. Deleting an OpenShift Container Platform Project
	2.1.8. Did You Know

	2.2. SETTING UP AND REMOTELY MONITORING AN OPENSHIFT CONTAINER PLATFORM APPLICATION
	2.2.1. Setting up OpenShift Client Binaries
	2.2.2. Setting up Port Forwarding
	2.2.3. Streaming Pod Logs
	2.2.4. Streaming Build Logs

	2.3. BUILDING AND DEPLOYING DOCKER-FORMATTED CONTAINER IMAGE TO CONTAINER DEVELOPMENT KIT OPENSHIFT REGISTRY
	2.3.1. Prerequisites
	2.3.2. Installing the javascript Modules
	2.3.3. Building the frontend Microservice
	2.3.3.1. Deploying the frontend Microservice

	2.3.4. Connecting the frontend and bonjour Microservices
	2.3.4.1. Deploying the bonjour Microservice
	2.3.4.2. Scalling the Pod

	2.3.5. Editing the bonjour Microservice
	2.3.5.1. Viewing the Edited bonjour Microservice on the frontend Microservice

	2.3.6. Troubleshooting
	2.3.6.1. No Docker Connection Available

	CHAPTER 3. DEVELOPING FOR THE CLOUD WITH OPENSHIFT 2
	3.1. CREATING YOUR FIRST OPENSHIFT ONLINE APPLICATION
	3.1.1. Starting the New OpenShift Application Wizard
	3.1.2. Signing up for an OpenShift Online Account
	3.1.3. Connecting to OpenShift Online
	3.1.4. Enabling Communication between the IDE and OpenShift
	3.1.5. Creating a Domain
	3.1.6. Providing Essential New Application Details
	3.1.7. Configuring the Corresponding Workspace Project for the New Application
	3.1.8. Creating the OpenShift Online Application
	3.1.9. Viewing the OpenShift Online Application
	3.1.10. Some OpenShift Terminology
	3.1.11. Did You Know?

	3.2. DEVELOPING AN EXISTING OPENSHIFT APPLICATION
	3.2.1. Importing an Existing OpenShift Online Application
	3.2.2. Modifying the Application Source Code
	3.2.3. Republishing the Modified Application
	3.2.4. Viewing the Modified Application
	3.2.5. Did You Know?

	3.3. CUSTOM PUBLISHING YOUR OPENSHIFT APPLICATION
	3.3.1. Adding a Marker to the Application
	3.3.2. Adding an Action Hook to the Application
	3.3.3. Extending the Git Remote Connection Timeout
	3.3.4. Republishing the Application
	3.3.5. Terminology
	3.3.6. Did You Know?

	3.4. DEBUGGING AN OPENSHIFT JAVA APPLICATION
	3.4.1. Configuring the OpenShift Application for Debugging
	3.4.2. Enabling Port Forwarding for the Local and Remote Debug Ports
	3.4.3. Configuring and Connecting the IDE Debugger
	3.4.4. Did You Know?

	3.5. DEPLOYING A WORKSPACE PROJECT TO OPENSHIFT ONLINE
	3.5.1. Preparing a Workspace Project for OpenShift Online Deployment
	3.5.2. Deploying the OpenShift Online Application
	3.5.3. Viewing the Deployed OpenShift Online Application
	3.5.4. Did You Know?

	3.6. CONFIGURING SSH KEYS FOR OPENSHIFT
	3.6.1. Option A: Creating and Using a New SSH Key Pair
	3.6.2. Option B: Using an Existing SSH Key Pair
	3.6.3. Option C: Specifying an Existing Private Key File
	3.6.4. Did You Know?
	3.6.5. Troubleshoot SSH Key Issues
	3.6.5.1. “You have no SSH public keys in your OpenShift account”
	3.6.5.2. “Please make sure that you added your private key to the ssh preferences.”

	CHAPTER 4. DEVELOPING WITH DOCKER
	4.1. CONFIGURING DOCKER TOOLING BASICS
	4.1.1. Prerequisites for Docker Tooling
	4.1.2. Pulling Docker Images from a Docker Registry
	4.1.3. Managing Docker Containers
	4.1.4. Troubleshooting

