
Red Hat JBoss BPM Suite 6.4

User Guide

The User Guide for Red Hat JBoss BPM Suite

Last Updated: 2019-10-23

Red Hat JBoss BPM Suite 6.4 User Guide

The User Guide for Red Hat JBoss BPM Suite

Red Hat Customer Content Services
brms-docs@redhat.com

Emily Murphy

Gemma Sheldon

Michele Haglund

Mikhail Ramendik

Stetson Robinson

Vidya Iyengar

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A guide to defining and managing business processes with Red Hat JBoss BPM Suite.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. USE CASE: PROCESS-BASED SOLUTIONS IN THE LOAN INDUSTRY
1.2. COMPONENTS
1.3. RED HAT JBOSS BPM SUITE AND BRMS
1.4. BUSINESS CENTRAL

1.4.1. Business Central Environment
1.4.2. Perspectives
1.4.3. Embedding Business Central

CHAPTER 2. BASIC CONCEPTS

PART I. MODELING

CHAPTER 3. PROJECT
3.1. CREATING AN ORGANIZATIONAL UNIT
Creating an Organizational Unit in Business Central
Creating an Organizational Unit Using the kie-config-cli Tool
Creating an Organizational Unit Using the REST API

3.2. CREATING A REPOSITORY
Creating a Repository in Business Central
Creating a Repository Using the kie-config-cli Tool
Creating a Repository Using the REST API

3.3. CLONING A REPOSITORY
Cloning a Repository in Business Central
Cloning a Repository Using the REST API

3.4. CREATING A PROJECT
Creating a Project in Business Central
Creating a Project Using the REST API

3.5. ADDING DEPENDENCIES
3.6. DEFINING KIE BASES AND SESSIONS

Defining KIE Bases and Sessions in the Project Editor
Defining KIE Bases and Sessions in kmodule.xml

3.7. CREATING A RESOURCE
3.8. ASSET METADATA AND VERSIONING

Metadata Management
Version Management

3.9. FILTERING ASSETS BY TAG
3.10. ASSET LOCKING SUPPORT
3.11. PROCESS DEFINITION

3.11.1. Creating a Process Definition
3.11.2. Importing a Process Definition
3.11.3. Importing jPDL 3.2 to BPMN2

CHAPTER 4. PROCESS DESIGNER
4.1. CONFIGURING AUTOMATIC SAVING
4.2. DEFINING PROCESS PROPERTIES
4.3. DESIGNING PROCESS

4.3.1. Copying Elements
4.3.2. Aligning Elements
4.3.3. Changing Element Layering
4.3.4. Bending Connection Elements
4.3.5. Resizing Elements

10
10
11
11
11

12
13
14

16

18

19
19
19

20
20
20
20
21
21
22
22
24
24
24
26
26
27
27
28
28
29
29
30
30
31
32
32
33
34

36
37
37
38
39
40
40
40
41

Table of Contents

1

4.3.6. Grouping Elements
4.3.7. Locking Elements
4.3.8. Changing Color Scheme
4.3.9. Recording local history
4.3.10. Enlarging and shrinking canvas
4.3.11. Validating a Process
4.3.12. Correcting Invalid Processes

4.4. EXPORTING PROCESS
4.5. PROCESS ELEMENTS

4.5.1. Generic Properties of Visualized Process Elements
4.5.2. Defining Process Element Properties

4.6. BUSINESS PROCESS SAVE POINTS
4.7. FORMS

4.7.1. Defining Process form
4.7.2. Defining Task form
4.7.3. Defining form fields

4.8. FORM MODELER
4.8.1. Creating a Form in Form Modeler
4.8.2. Opening an Existing Form in Form Modeler
4.8.3. Setting Properties of a Form Field in Form Modeler
4.8.4. Configuring a Process in Form Modeler
4.8.5. Generating Forms from Task Definitions
4.8.6. Editing Forms
4.8.7. Moving a Field in Form Modeler
4.8.8. Adding New Fields to a Form
4.8.9. Configuring Fields of a Form
4.8.10. Creating Subforms with Simple and Complex Field Types
4.8.11. Enabling Document Attachments in a Form or Process

4.8.11.1. Using a Custom Document Marshalling Strategy for a Content Management System (CMS)
4.8.12. Rendering Forms for External Use

4.8.12.1. JavaScript Library for Form Reuse
Blueprint for using the JavaScript Library
Full list of available methods in the JavaScript Library

4.9. VARIABLES
4.9.1. Global Variables

4.9.1.1. Creating Global Variables
4.9.1.2. Process variables

4.9.2. Local Variables
4.9.2.1. Accessing Local Variables

4.9.3. Setting Process Variables From Business Rule Task
4.9.3.1. Mapping Process Variables through Business Rule Task Assigments field
4.9.3.2. Mapping Process Variables through WorkflowProcessInstance

4.10. ACTION SCRIPTS
4.11. INTERCEPTOR ACTIONS
4.12. ASSIGNMENT

4.12.1. Data I/O Editor
4.12.2. Data I/O Editor Example

4.13. CONSTRAINTS
4.14. DOMAIN-SPECIFIC TASKS

4.14.1. Work Item Definition
4.14.2. Creating Custom Work Item Definition

JBoss Developer Studio Process Designer
Web Process Designer

41
41
41

42
42
42
43
43
45
45
45
46
47
47
48
48
48
49
50
50
51
51
52
52
53
57
57
60
63
68
68
68
69
71
71
72
73
74
74
75
75
75
76
77
77
77
78
79
81

82
83
83
83

Red Hat JBoss BPM Suite 6.4 User Guide

2

. .

. .

. .

. .

. .

. .

4.14.3. Work Item Handler
4.14.4. Registering Work Item handler in Business Central
4.14.5. Registering Work Item Handler Outside of Business Central

4.15. SERVICE REPOSITORY
4.15.1. Installing Services from Service Repository

Installing Services in Process Designer
Installing Services During Business Central Startup

4.15.2. Setting up Service Repository
Repository Configuration File
Work Item Configuration File

4.15.3. Retrieving Service Repository Information
4.16. ACTOR ASSIGNMENT CALLS
4.17. LDAP CONNECTION

4.17.1. Connecting to LDAP
4.18. EXCEPTION MANAGEMENT

Business exceptions
Technical exceptions

CHAPTER 5. DATA MODELS
5.1. DATA MODELER
5.2. AVAILABLE FIELD TYPES
5.3. ANNOTATIONS IN DATA MODELER
5.4. CREATING A DATA OBJECT
5.5. PERSISTABLE DATA OBJECTS
5.6. DATA OBJECT DOMAIN SCREENS

Drools & jBPM
Persistence
Advanced

5.7. CONFIGURING RELATIONSHIPS BETWEEN DATA OBJECTS
5.8. PERSISTENCE DESCRIPTOR
5.9. DEPLOYMENT DESCRIPTOR

CHAPTER 6. ADVANCED PROCESS MODELING
6.1. PROCESS MODELING OPTIONS
6.2. WORKFLOW PATTERNS

6.2.1. Defining workflow patterns
6.2.2. Changing workflow patterns for an existing project

CHAPTER 7. SOCIAL EVENTS
Follow User
Activity Timeline

PART II. SIMULATION AND TESTING

CHAPTER 8. PROCESS SIMULATION
8.1. PATH FINDER
8.2. SIMULATING PROCESSES

8.2.1. Defining Simulation Data on Elements
8.2.2. Running Process Simulations
8.2.3. Examining Simulation Results

8.2.3.1. Switching Between Graph Types
8.2.3.2. Filtering in Graphs
8.2.3.3. Viewing Graph Timeline

CHAPTER 9. TESTING

84
86
87
88
89
89
90
90
90
91

92
92
93
94
94
95
95

96
96
97
97
98
98
99
99

100
102
104
104
105

107
107
107
107
108

109
109
109

110

111
111

112
112
112
113
114
116
117

119

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

9.1. TEST SCENARIOS
9.2. CREATING A TEST SCENARIO
9.3. ADDITIONAL TEST SCENARIO FEATURES

PART III. PLUG-IN

CHAPTER 10. CREATING BPM PROJECT

CHAPTER 11. CREATING PROCESS

CHAPTER 12. CHECKING SESSION LOGS

PART IV. DEPLOYMENT AND RUNTIME MANAGEMENT

CHAPTER 13. DEPLOYING AND MANAGING PROJECTS
13.1. DEPLOYING A PROJECT

13.1.1. Duplicate GAV Detection
13.2. PROCESS MANAGEMENT

13.2.1. Process Definitions
13.2.2. Process Instances

13.2.2.1. Searching Process Instances by Partial Correlation Key
13.2.2.2. Searching Process Instances Based on Business Data

13.2.3. Creating a New Process Instance List
13.2.4. Aborting a Process instance

Aborting a Process instance using API
Aborting a Process instance from the Business Central

13.3. SIGNALING PROCESS INSTANCE
Signaling Process Instance Using API
Signaling Process Instance from Business Central

13.4. TASK MANAGEMENT
13.4.1. Tasks List

Task Client
13.4.2. Creating Custom Tasks Filters
13.4.3. Creating a User Task
13.4.4. Task Variables as Expressions

CHAPTER 14. LOGGING

CHAPTER 15. EXAMPLES

PART V. BAM

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER
What is Business Activity Monitoring?
16.1. BASIC CONCEPTS
16.2. ACCESSING DASHBOARD BUILDER
16.3. PROCESS & TASK DASHBOARD

Tasks Dashboard
16.4. DATA SOURCES

16.4.1. Connecting to Data Sources
16.4.2. Security Considerations
16.4.3. Building a Dashboard for Large Volumes of Data
16.4.4. Data Providers

16.4.4.1. Creating Data Providers
16.4.5. Workspace

16.4.5.1. Creating Workspace

119
119
123

127

128

129

130

131

132
132
132
133
134
134
135
136
136
137
137
137
137
137
138
138
139
139
140
141

142

144

145

146

147
147
147
147
148
150
150
150
151
151

153
153
154
154

Red Hat JBoss BPM Suite 6.4 User Guide

4

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

16.4.5.2. Configuring a default workspace
16.4.5.3. Pages

16.4.5.3.1. Creating Pages
16.4.5.3.2. Defining Page Permissions

16.4.5.4. Panels
16.4.5.4.1. Adding Panels

16.5. IMPORT AND EXPORT
16.5.1. Importing and Exporting Workspaces
16.5.2. Importing and Exporting KPIs
16.5.3. Importing Data Sources

16.6. DASHBOARD BUILDER DATA MODEL

CHAPTER 17. DATA SETS
17.1. MANAGING DATA SETS
17.2. CACHING

Client Cache
Backend Cache

17.3. DATA REFRESH

CHAPTER 18. MANAGEMENT CONSOLE

CHAPTER 19. GRAPHIC RESOURCES
Graphic Resources Definitions
19.1. WORKING WITH GRAPHIC RESOURCES

APPENDIX A. PROCESS ELEMENTS

CHAPTER 20. PROCESS
Runtime

CHAPTER 21. EVENTS MECHANISM

CHAPTER 22. COLLABORATION MECHANISMS
22.1. SIGNALS

22.1.1. Triggering Signals
Signalling External Deployments

22.1.2. Catching and Processing Signals
22.1.3. Triggering Signals Using API

22.2. MESSAGES
22.2.1. Sending Messages
22.2.2. Catching Messages
22.2.3. Sending Messages Using API

22.3. ESCALATION
Attributes

CHAPTER 23. TRANSACTION MECHANISMS
23.1. ERRORS

Attributes
23.2. COMPENSATION

CHAPTER 24. TIMING

CHAPTER 25. EVENT TYPES
25.1. START EVENT

25.1.1. Start Event types
25.1.1.1. None Start Event

155
155
155
156
156
157
158
158
159
161

163

167
167
168
168
168
168

169

170
170
170

171

172
172

175

176
176
176
177
180
180
181
181

182
182
183
183

184
184
184
184

186

188
188
188
188

Table of Contents

5

. .

25.1.1.2. Message Start Event
Attributes

25.1.1.3. Timer Start Event
Attributes

25.1.1.4. Escalation Start Event
Attributes

25.1.1.5. Conditional Start Event
Attributes

25.1.1.6. Error Start Event
Attributes

25.1.1.7. Compensation Start Event
25.1.1.8. Signal Start Event

Attributes
25.2. INTERMEDIATE EVENTS

25.2.1. Intermediate Events
25.2.2. Intermediate Event types

25.2.2.1. Timer Intermediate Event
Attributes

25.2.2.2. Conditional Intermediate Event
Attributes

25.2.2.3. Compensation Intermediate Event
25.2.2.4. Message Intermediate Event

Throwing Message Intermediate Event
Attributes

Catching Message Intermediate Event
Attributes

25.2.2.5. Escalation Intermediate Event
Throwing Escalation Intermediate Event
Attributes
Catching Escalation Intermediate Event
Attributes

25.2.2.6. Error Intermediate Event
25.2.2.6.1. Catching Error Intermediate Event

Attributes
25.2.2.7. Signal Intermediate Event

Throwing Signal Intermediate Event
Attributes
25.2.2.7.1. Catching Signal Intermediate Event

Attributes
25.3. END EVENTS

25.3.1. End Event types
25.3.1.1. Simple End Event
25.3.1.2. Message End Event
25.3.1.3. Escalation End Event
25.3.1.4. Terminate End Event
25.3.1.5. Throwing Error End Event

Attributes
25.3.1.6. Cancel End Event
25.3.1.7. Compensation End Event
25.3.1.8. Signal End Event

25.4. SCOPE OF EVENTS

CHAPTER 26. GATEWAYS

188
189
189
189
189
189
190
190
190
190
190
190
190
190
190
192
192
192
192
192
193
193
193
193
193
193
193
194
194
194
194
194
194
194
194
194
195
195
195
195
196
196
196
196
196
196
196
196
196
196
197

198

Red Hat JBoss BPM Suite 6.4 User Guide

6

. .

. .

. .

. .

26.1. GATEWAYS
26.2. GATEWAY TYPES

26.2.1. Event-based Gateway
26.2.2. Parallel Gateway
26.2.3. Inclusive Gateway

Attributes
26.2.4. Data-based Exclusive Gateway

Attributes

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES
27.1. ACTIVITY
27.2. ACTIVITY MECHANISMS

27.2.1. Multiple Instances
27.2.2. Activity Types

27.2.2.1. Call Activity
Attributes

27.3. TASKS
27.3.1. None Task
27.3.2. Send Task

Attributes
27.3.3. Receive Task

Attributes
27.3.4. Manual Task
27.3.5. Service Task

27.3.5.1. Using Service Task to Invoke Web Service
27.3.5.2. Using Service Task to Invoke Java Method

27.3.6. Business Rule Task
Attributes

27.3.7. Script Task
Attributes

27.4. SUB-PROCESS
27.4.1. Embedded Sub-Process
27.4.2. AdHoc Sub-Process

Attributes
27.4.3. Multi-instance Sub-Process

Attributes
27.4.4. Event Sub-Process

27.5. USER TASK
Attributes
27.5.1. User Task lifecycle
27.5.2. Reassignment
27.5.3. Notification

Available variables

CHAPTER 28. CONNECTING OBJECTS
28.1. CONNECTING OBJECTS
28.2. CONNECTING OBJECTS TYPES

28.2.1. Sequence Flow

CHAPTER 29. SWIMLANES
29.1. LANES

CHAPTER 30. ARTIFACTS
30.1. ARTIFACTS

198
198
198
199
199
199

200
200

201
201
201
201
201
201
201

202
202
202
202
202
202
202
202
203
205
208
208
209
209
210
210
211
211
211
211
212
212
212
213
213
214
215

217
217
217
217

218
218

219
219

Table of Contents

7

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

30.2. DATA OBJECTS

APPENDIX B. SERVICE TASKS: WS TASK, EMAIL TASK, REST TASK

CHAPTER 31. WS TASK
31.1. MULTIPLE PARAMETERS
31.2. CUSTOM OBJECTS
31.3. WEB SERVICE TASK EXAMPLE

Input Attributes
Output Attributes

CHAPTER 32. EMAIL TASK
Registering Email Task in Business Central
Registering EmailWorkItemHandler
Configuring Deadline
Input Attributes

CHAPTER 33. REST TASK
Input Attributes
Output Attributes
Handling REST Response Error

APPENDIX C. SIMULATION DATA

CHAPTER 34. PROCESS
Simulation Attributes

CHAPTER 35. ACTIVITIES
Simulation Attributes

CHAPTER 36. START EVENT
Simulation Attributes

CHAPTER 37. CATCHING INTERMEDIATE EVENTS
Simulation Attributes

CHAPTER 38. SEQUENCE FLOW
Simulation Attributes

CHAPTER 39. THROWING INTERMEDIATE EVENTS
Simulation Attributes

CHAPTER 40. HUMAN TASKS
Simulation Attributes

CHAPTER 41. END EVENTS
Simulation Attributes

CHAPTER 42. DISTRIBUTION TYPES
42.1. NORMAL

Normal Distribution Attributes
42.2. UNIFORM

Uniform Distribution Attributes
42.3. POISSON

42.3.1. Poisson Distribution Attributes

APPENDIX D. VERSIONING INFORMATION

219

220

222
222
222
223
223
224

225
225
225
226
226

228
228
229
230

232

233
233

234
234

235
235

236
236

237
237

238
238

239
239

240
240

241
241
241
241
241
241
241

242

Red Hat JBoss BPM Suite 6.4 User Guide

8

Table of Contents

9

CHAPTER 1. INTRODUCTION
Red Hat JBoss BPM Suite is an open source business process management suite that combines
Business Process Management and Business Rules Management and enables business and IT users to
create, manage, validate, and deploy Business Processes and Rules.

To accommodate Business Rules component, JBoss BPM Suite includes integrated Red Hat JBoss
BRMS.

Red Hat JBoss BRMS and Red Hat JBoss BPM Suite use a centralized repository where all resources
are stored. This ensures consistency, transparency, and the ability to audit across the business. Business
users can modify business logic and business processes without requiring assistance from IT personnel.

Business Resource Planner is also included with this release.

1.1. USE CASE: PROCESS-BASED SOLUTIONS IN THE LOAN INDUSTRY

This section describes a use case of deploying JBoss BPM Suite to automate business processes (such
as loan approval process) at a retail bank. This use case is a typical process-based specific deployment
that might be the first step in a wider adoption of JBoss BPM Suite throughout an enterprise. It
leverages features of both business rules and processes of JBoss BPM Suite.

A retail bank offers several types of loan products each with varying terms and eligibility requirements.
Customers requiring a loan must file a loan application with the bank. The bank then processes the
application in several steps, such as verifying eligibility, determining terms, checking for fraudulent
activity, and determining the most appropriate loan product. Once approved, the bank creates and
funds a loan account for the applicant, who can then access funds. The bank must be sure to comply
with all relevant banking regulations at each step of the process, and has to manage its loan portfolio to
maximize profitability. Policies are in place to aid in decision making at each step, and those policies are
actively managed to optimize outcomes for the bank.

Business analysts at the bank model the loan application processes using the BPMN2 authoring tools
(Process Designer) in JBoss BPM Suite. Here is the process flow:

Figure 1.1. High-level loan application process flow

Business rules are developed with the rule authoring tools in JBoss BPM Suite to enforce policies and
make decisions. Rules are linked with the process models to enforce the correct policies at each process
step.

The bank’s IT organization deploys the JBoss BPM Suite so that the entire loan application process can
be automated.

Figure 1.2. Loan Application Process Automation

Red Hat JBoss BPM Suite 6.4 User Guide

10

Figure 1.2. Loan Application Process Automation

The entire loan process and rules can be modified at any time by the bank’s business analysts. The bank
is able to maintain constant compliance with changing regulations, and is able to quickly introduce new
loan products and improve loan policies in order to compete effectively and drive profitability.

1.2. COMPONENTS

Red Hat JBoss BPM Suite has the following components:

Business Central, which is a web-based application (business-central.war and dashbuilder.war
) and provides tools for creating, editing, building, managing, and monitoring of business assets
as well as a Task client

Artifact repository (Knowledge Store), which is the set of data the application operates over and
is accessed by the Execution Server

Execution Server , which provides the runtime environment for business assets

A more detailed description of components is available in the Red Hat JBoss BPM Suite Administration
and Configuration Guide .

1.3. RED HAT JBOSS BPM SUITE AND BRMS

Red Hat JBoss BPM Suite comes with integrated Red Hat JBoss BRMS, a rule engine and rule tooling,
so you can define rules governing Processes or Tasks. Based on a Business Rule Task call, the Process
Engine calls the Rule Engine to evaluate the rule based on specific data from the Process instance. If the
defined rule condition is met, the action defined by the rule is taken (see Section 27.3.6, “Business Rule
Task” and the Red Hat JBoss BRMS documentation for further information).

1.4. BUSINESS CENTRAL

Business Central is a web console that allows you to operate over individual components in a unified
web-based environment: to create, manage, and edit your Processes, to run, manage, and monitor
Process instances, generate reports, and manage the Tasks produced, as well as create new Tasks and
notifications.

CHAPTER 1. INTRODUCTION

11

Process management capabilities allow you to start new process instances, acquire the list of
running process instances, inspect the state of a specific process instances, etc.

User Task management capabilities allow you to work with User Tasks; claim User Tasks,
complete Tasks through Task forms, etc.

Business Central integrates multiple tools:

Process Designer and other editors for modeling Processes and their resources (form item
editor, work item editor, data model editor, etc.), as well as process model simulation tools (see
Chapter 4, Process Designer).

Rules Modeler for designing Business Rules models and their resources (see the Red Hat JBoss
BRMS documentation).

Task client for managing and creating User Tasks (see Section 13.4, “Task Management”).

Process Manager for managing process instances (see Section 13.2.2, “Process Instances”).

Dashboard Builder , the BAM component, for monitoring and reporting (see Chapter 16, Red Hat
JBoss Dashboard Builder).

Business Asset Manager for accessing the Knowledge Repository resources, building and
deploying business assets (see Chapter 3, Project).
Artifact repository (Knowledge Store) is the set of data over which Business Central operates. It
provides a centralized store for your business knowledge, which can consist of multiple
repositories with business assets and resources.

Apart from the project assets, you can also manage your pom artifacts (such as parent pom.xml
files for kjars) from Business Central’s Artifact repository, in case you do not have a separate
repository to manage your artifacts. You can further create a child project to extend the
uploaded pom artifact by adding the <parent>PARENT_GAV</parent> tag to pom.xml of the
given child project. Here, PARENT_GAV denotes group, artifact and version of the previously
uploaded pom artifact.

Business Central can be accessed from your web browser on https://$HOSTNAME/business-central
(for instances running on localhost https://localhost:8080/business-central).

The tools are accessible from the Views and BPM menus on the main menu:

Process Definitions displays the Process Definition List with the Process definitions available
in the connected repository.

Process Instances displays the Process Instance List with the Process instances currently
running on the Process Engine.

Tasks displays a view of the Tasks list for the currently logged-in user. You can call a Task List in
the grid view or in the calendar view from the menu: BPM menu.

1.4.1. Business Central Environment

Figure 1.3. Home page

Red Hat JBoss BPM Suite 6.4 User Guide

12

https://localhost:8080/business-central

Figure 1.3. Home page

The main menu contains the links to the Home page and all available perspectives.

The perspective menu contains menus for the selected perspective.

The perspective area contains the perspective tools (here the home page with links to individual
perspectives and their views), such as views and editors.

1.4.2. Perspectives

Business Central provides the following groups of perspectives accessible from the main menu:

Authoring group:

Project Authoring perspective contains:

The Project Explorer view with the overview of available repository structure, and
information on available resources, such as, business process definitions, form
definitions, and others.

The editor area on the right of the Project Explorer view, where the respective editor
appears when a resource is opened.

The Messages view with validation messages.

Contributors perspective enables you to view the number of commits sorted by the
organizational unit, repository, author, and other criteria.

Artifact Repository perspective contains a list of jars which can be added as dependencies.
The available operations in this perspective are upload/download artifact and open (view)
the pom.xml file.
The view is available for users with the admin role only.

CHAPTER 1. INTRODUCTION

13

Administration perspective contains:

The File Explorer view with available asset repositories

The editor area on the right of the File Explorer view, where the respective editor
appears when a resource is opened.
The Administration perspective allows an administrator to connect a Knowledge Store
to a repository with assets and to create a new repository. For more information, see
the Red Hat JBoss BPM Suite Administration and Configuration Guide .

The view is available for users with the admin role only.

Deploy group:

Process Deployments perspective contains a list of the deployed resources and allows you
to build, deploy, and undeploy new units.

Execution Servers perspective contains a list of the deployed Intelligent Process Server
templates and containers associated with the templates.

Jobs perspective allows you to monitor and trigger asynchronous jobs scheduled for the
Executor Service.

Process Management group:

Process Definitions perspective contains a list of the deployed Process definitions. It allows
you to instantiate and manage the deployed Processes.

Process Instances perspective contains a list of the instantiated Processes. It allows you to
view their execution workflow and its history.

Tasks group:

Task List perspective contains a list of Tasks produced by Human Task of the Process
instances or produced manually. Only Tasks assigned to the logged-in user are visible. It
allows you to claim Tasks assigned to a group you are a member of.

Dashboards group (the BAM component):

Process & Task Dashboard perspective contains a prepared dashboard with statistics on
runtime data of the Execution Server

Business Dashboards perspective contains the full BAM component, the Dashbuilder,
including administration features available for users with the ADMIN role.

Extensions group:

PlugIn Management perspective enables you to customize and create new Business
Central perspectives and plugins.

Apps perspective enables you to browse, categorize and open custom perspective plugins.

Data Sets perspective enables you to define and connect to external data sets.

1.4.3. Embedding Business Central

Business Central provides a set of editors to author assets in different formats. A specialized editor is
used according to the asset format.

Red Hat JBoss BPM Suite 6.4 User Guide

14

Business Central provides the ability to embed it in your own (Web) Applications using standalone
mode. This allows you to edit rules, processes, decision tables, et cetera, in your own applications
without switching to Business Central.

In order to embed Business Central in your application, you will need the Business Central application
deployed and running in a web/application server and, from within your own web applications, an iframe
with proper HTTP query parameters as described in the following table.

Table 1.1. HTTP Query Parameters for Standalone Mode

Parameter
Name

Explanation Allow
Multiple
Values

Example

standalone This parameter switches Business Central to
standalone mode.

no (none)

path Path to the asset to be edited. Note that asset
should already exists.

no git://master@uf-
playground/todo.md

perspective Reference to an existing perspective name. no org.guvnor.m2repo.clien
t.perspectives.GuvnorM
2RepoPerspective

header Defines the name of the header that should be
displayed (useful for context menu headers).

yes ComplementNavArea

The following example demonstrates how to set up an embedded Author Perspective for Business
Central.

X-frame options can be set in web.xml of business-central. The default value for x-frame-options is as
follows:

===test.html===
 <html>
 <head>
 <title>Test</title>
 </head>
 <body>
 <iframe id="ifrm" width="1920" height="1080" src='http://localhost:8080/business-central?
standalone=&perspective=AuthoringPerspective&header=AppNavBar'></iframe>
 </body>
</html>

<param-name>x-frame-options</param-name>
 <param-value>SAMEORIGIN</param-value>

CHAPTER 1. INTRODUCTION

15

CHAPTER 2. BASIC CONCEPTS
Red Hat JBoss BPM Suite provides tools for creating, editing, running, and runtime management of
BPMN process models. The models are defined using the BPMN2 language, either directly in its XML
form or using visual BPMN Elements that represent the Process workflow (see Chapter 4, Process
Designer). Alternatively, you can create Processes from your Java application using the JBoss BPM
Suite API. Some of these capabilities can be used also via REST API (See Red Hat JBoss BPM Suite
Developer Guide).

Process models serve as templates for Process instances. To separate the static Process models from
their dynamic runtime versions (Process instances), they live in two different entities: Process models
live in a Kie Base (or Knowledge Base) and their data cannot be changed by the Process Engine;
Process instances live in a Kie Session(or Knowledge Session) which exists in the Process Engine and
contains the runtime data, which are changed during runtime by the Process Engine.

You can define a Kie Base and its Kie Session in the Project Editor of the GUI application (see
Section 3.6, “Defining KIE Bases and Sessions”).

Note that a single Kie Base can be shared across multiple Kie Sessions. When instantiating a Kie Base
using the respective API call it is usual to create one Kie Base at the start of your application as creating
a Kie Base can be rather heavy-weight as it involves parsing and compiling the process definitions. From
the Kie Base, you can then start multiple Kie Sessions. The underlying Kie Bases can be changed at
runtime so you can add, remove, or migrate process definitions.

To have multiple independent processing units, it might be convenient to create multiple Kie Sessions
on the particular Kie Base (for example, if you want all process instances from one customer to be
independent from process instances for another customer; multiple Sessions might be useful for
scalability reasons as well).

A Kie Session can be either stateful or stateless. Stateful sessions are long-living sessions with explicit
call to dispose them; if the dispose() call is not issued, the session remains alive and causes memory
leaks. Also note that the FireAllRules command is not automatically called at the end of a stateful
session.

Figure 2.1. Kie Base and Kie Session relationship

Red Hat JBoss BPM Suite 6.4 User Guide

16

Figure 2.1. Kie Base and Kie Session relationship

CHAPTER 2. BASIC CONCEPTS

17

PART I. MODELING

Red Hat JBoss BPM Suite 6.4 User Guide

18

CHAPTER 3. PROJECT
A project is a container for asset packages (business processes, rules, work definitions, decision tables,
fact models, data models, and DSLs) that lives in the Knowledge Repository. It is this container that
defines the properties of the KIE Base and KIE Session that are applied to its content. In the GUI, you
can edit these entities in the Project Editor.

As a project is a Maven project, it contains the Project Object Model file (pom.xml) with information on
how to build the output artifact. It also contains the Module Descriptor file, kmodule.xml, that contains
the KIE Base and KIE Session configuration for the assets in the project.

3.1. CREATING AN ORGANIZATIONAL UNIT

It is possible to create an organizational unit in the Administration perspective of Business Central,
using the kie-config-cli tool, or the REST API calls.

Creating an Organizational Unit in Business Central

IMPORTANT

Note that only users with the admin role in Business Central can create organizational
units.

Procedure: Using Business Central to Create an Organizational Unit

1. In Business Central, go to Authoring → Administration.

2. On the perspective menu, click Organizational Units → Manage Organizational Units.

3. In the Organization Unit Manager view, click Add.
The Add New Organizational Unit dialog window opens.

Figure 3.1. Add New Organizational Unit Dialog Window

CHAPTER 3. PROJECT

19

4. Enter the two mandatory parameters (name and default group ID) and click Ok.

Creating an Organizational Unit Using the kie-config-cli Tool
Organizational units can be created using the kie-config-cli tool as well. To do so, run the create-org-
unit command. The tool then guides you through the entire process of creating an organizational unit by
asking for other required parameters. Type help for a list of all commands.

For more information about the kie-config-cli tool, see Red Hat JBoss BPM Suite Administration and
Configuration Guide, chapter Command Line Configuration.

Creating an Organizational Unit Using the REST API

IMPORTANT

Note that only users with the rest-all role can create organizational units.

To create an organizational unit in Knowledge Store, issue the POST REST API call. Details of the
organizational unit are defined by the JSON entity.

Input parameter of the call is an OrganizationalUnit instance. The call returns a
CreateOrganizationalUnitRequest instance.

Example 3.1. Creating an Organizational Unit Using the Curl Utility

Example JSON entity containing details of an organizational unit to be created:

{
 "name" : "helloWorldUnit",
 "owner" : "tester",
 "description" : null,
 "repositories" : []
}

Execute the following command:

curl -X POST 'localhost:8080/business-central/rest/organizationalunits/' -u
USERNAME:PASSWORD -H 'Accept: application/json' -H 'Content-Type: application/json' -d
'{"name":"helloWorldUnit","owner":"tester","description":null,"repositories":[]}'

For further information, see the Red Hat JBoss BPM Suite Development Guide , chapter Knowledge
Store REST API, section Organizational Unit Calls.

3.2. CREATING A REPOSITORY

There are three ways to create a repository: using the Administration perspective of Business Central,
the kie-config-cli tool, or the REST API calls.

Creating a Repository in Business Central

IMPORTANT

Note that only users with the admin role in Business Central can create repositories.

Red Hat JBoss BPM Suite 6.4 User Guide

20

Procedure: Using Business Central to Create a Repository

1. In Business Central, go to Authoring → Administration.

2. On the perspective menu, click Repositories → New repository.
The New Repository pop-up window is displayed.

Figure 3.2. *New Repository*Dialog Window

3. Specify the two mandatory parameters:

repository name

NOTE

Make sure that the repository name is a valid file name. Avoid using a space
or any special character that might lead to an invalid name.

organizational unit: specifies the location of the newly created repository.

4. Click Finish.

You can view the newly created repository either in the File Explorer or the Project Explorer.

Creating a Repository Using the kie-config-cli Tool
To create a new Git repository using the kie-config-cli tool, run the create-repo command. The tool
then guides you through the entire process of creating a repository by asking for other required
parameters. Type help for a list of all commands.

For more information about the kie-config-cli tool, see Red Hat JBoss BPM Suite Administration and
Configuration Guide .

Creating a Repository Using the REST API

IMPORTANT

Note that only users with the rest-all role can create repositories.

To create a repository in the Knowledge Store, issue the POST REST API call. Details of the repository
are defined by the JSON entity. Make sure you established an authenticated HTTP session before
executing this call.

CHAPTER 3. PROJECT

21

Input parameter of the call is a RepositoryRequest instance. The call returns a
CreateOrCloneRepositoryRequest instance.

Example 3.2. Creating a Repository Using the Curl Utility

Example JSON entity containing details of a repository to be created:

{
 "name" : "newRepository",
 "description" : null,
 "gitURL" : null,
 "requestType" : "new",
 "organizationalUnitName" : "helloWorldUnit"
}

Execute the following command:

curl -X POST 'localhost:8080/business-central/rest/repositories/' -u USERNAME:PASSWORD -H
'Accept: application/json' -H 'Content-Type: application/json' -d
'{"name":"newRepository","description":null,"requestType":"new","gitURL":null,"organizationalUnitNa
me":"helloWorldUnit"}'

For further information, see the Red Hat JBoss BPM Suite Development Guide , chapter Knowledge
Store REST API, section Repository Calls.

3.3. CLONING A REPOSITORY

It is possible to clone a repository either in Business Central or using the REST API calls. The kie-config-
cli tool cannot be used to clone arbitrary repositories - run git clone or use one of the following options
instead.

Cloning a Repository in Business Central

IMPORTANT

Note that only users with the admin role in Business Central can clone repositories.

Procedure: Using Business Central to Clone a Repository

1. In Business Central, go to Authoring → Administration.

2. On the perspective menu, choose Repositories → Clone repository.
The Clone Repository pop-up window is displayed.

Figure 3.3. *Clone Repository*Dialog Window

Red Hat JBoss BPM Suite 6.4 User Guide

22

Figure 3.3. *Clone Repository*Dialog Window

3. In the Clone Repository dialog window, enter the repository details:

a. Enter the Repository Name to be used as the repository identifier in the Asset repository
and select the Organizational Unit it should be added to.

b. Enter the URL of the Git repository:

for a local repository, use file:///PATH_TO_REPOSITORY/REPOSITORY_NAME;

NOTE

The file protocol is only supported for READ operations. WRITE
operations are not supported.

for a remote or preexisting repository, use
https://github.com/USERNAME/REPOSITORY_NAME.git or
git://HOST_NAME/REPOSITORY_NAME.

IMPORTANT

It is important to use the HTTPS or Git protocol instead of a SCP-style
SSH URL. Business Central does not support the basic SSH URL and
fails with Invalid URL format .

c. If applicable, enter the User Name and Password of your Git account to be used for
authentication.

CHAPTER 3. PROJECT

23

file:///
https://github.com/

4. Click Clone.
A confirmation prompt with the notification that the repository was created successfully is
displayed.

5. Click Ok.
The repository is now being indexed. Some workbench features may be unavailable until the
indexing has completed.

You can view the cloned repository either in the File Explorer or the Project Explorer.

Cloning a Repository Using the REST API

IMPORTANT

Note that only users with the rest-all role can clone repositories.

To clone a repository, issue the POST REST API call. This call creates or clones (according to the value
of the requestType parameter) the repository defined by the JSON entity.

Input parameter of the call is a RepositoryRequest instance. The call returns a
CreateOrCloneRepositoryRequest instance.

Example 3.3. Cloning a Repository Using the Curl Utility

Example JSON entity containing details of a repository to be cloned:

{
 "name" : "clonedRepository",
 "description" : null,
 "requestType" : "clone",
 "gitURL" : "git://localhost:9418/newRepository",
 "organizationalUnitName" : "helloWorldUnit"
}

Execute the following command:

curl -X POST 'localhost:8080/business-central/rest/repositories/' -u USERNAME:PASSWORD -H
'Accept: application/json' -H 'Content-Type: application/json' -d
'{"name":"clonedRepository","description":null,"requestType":"clone","gitURL":"git://localhost:9418/ne
wRepository","organizationalUnitName":"helloWorldUnit"}'

For further information, see the Red Hat JBoss BPM Suite Development Guide , chapter Knowledge
Store REST API, section Repository Calls.

3.4. CREATING A PROJECT

It is possible to create a project either in the Project Authoring perspective of Business Central or using
the REST API calls.

Creating a Project in Business Central

IMPORTANT

Red Hat JBoss BPM Suite 6.4 User Guide

24

IMPORTANT

Note that only users with the admin role in Business Central can create projects.

Procedure: Using Business Central to Create a Project

1. In Business Central, go to Authoring → Project Authoring.

2. In the Project Explorer, select the organizational unit and the repository in which you want to
create the project.

3. On the perspective menu, click New Item → Project.
The New Project dialog window opens.

4. Define the Project General Settings and Group artifact version details of the new project.
These parameters are stored in the pom.xml Maven configuration file.
See the detailed description of the parameters:

Project Name: name of the project (for example MortgageProject).

Project Description: description of the project, which may be useful for the project
documentation purposes.

Group ID: group ID of the project (for example org.mycompany.commons).

Artifact ID: artifact ID unique in the group (for example myframework). Avoid using a space
or any other special character that might lead to an invalid name.

Version: version of the project (for example 2.1.1).

CHAPTER 3. PROJECT

25

5. Click Finish.
The project screen view is updated with the new project details as defined in the pom.xml file.
You can switch between project descriptor files and edit their content by clicking the Project
Settings: Project General Settings button at the top of the project screen view.

Creating a Project Using the REST API

IMPORTANT

Note that only users with the rest-all or rest-project role can create projects.

To create a project in the repository, issue the POST REST API call. Details of the project are defined by
the corresponding JSON entity.

Input parameter of the call is an Entity instance. The call returns a CreateProjectRequest instance.

Example 3.4. Creating a Project Using the Curl Utility

Example JSON entity containing details of a project to be created:

{
 "name" : "MortgageProject",
 "description" : null,
 "groupId" : "org.mycompany.commons",
 "version" : "2.1.1"
}

Execute the following command:

curl -X POST 'localhost:8080/business-central/rest/repositories/REPOSITORY_NAME/projects/' -
u USERNAME:PASSWORD -H 'Accept: application/json' -H 'Content-Type: application/json' -d
'{"name":"MortgageProject","description":null,"groupId":"org.mycompany.commons","version":"2.1.1"
}'

For further information, see the Repository Calls section of the Knowledge Store REST API chapter in
the Red Hat JBoss BPM Suite Development Guide .

3.5. ADDING DEPENDENCIES

To add dependencies to your project, do the following:

1. Open the Project Editor for the given project:

a. In the Project Explorer view of the Project Authoring perspective, open the project
directory.

b. Click Open Project Editor to open the project view.

2. In the Project Screen view, select in the Project Settings drop-down box the Dependencies
item.

3. On the updated Project Screen, click the Add button to add a maven dependency or click the

Red Hat JBoss BPM Suite 6.4 User Guide

26

3. On the updated Project Screen, click the Add button to add a maven dependency or click the
Add from repository button to add a dependency from the Knowledge Store (Artifact
repository):

a. When adding a maven dependency, a user has to define the Group ID, Artifact ID, and the
Version ID in the Dependency dialogue window.

b. When adding a dependency from the Knowledge Store, select the dependency in the
displayed dialog box: the dependency will be added to the dependency table.

4. To apply the various changes, the dependencies must be saved.

Additionally, you can use the Package white list when working with dependencies. When you add a
repository, you can click the gear icon and select Add all or Add none, which results in including all or
none of the packages from the added dependency.

WARNING

If working with modified artifacts, do not re-upload modified non-snapshot artifacts
as Maven will not know these artifacts have been updated, and it will not work if it is
deployed in this manner.

3.6. DEFINING KIE BASES AND SESSIONS

A KIE base is a repository of the application’s knowledge definitions. It contains rules, processes,
functions, and type models. A KIE base does not contain runtime data, instead sessions are created from
the KIE base into which data can be inserted and process instances started.

A KIE session stores runtime data created from a KIE base. See the KIE Sessions chapter of the Red Hat
JBoss BPM Suite Development Guide for more information.

You can create KIE bases and sessions by editing the kmodule.xml project descriptor file of your
project. You can do so through Business Central or by editing kmodule.xml in the
src/main/resources/META-INF/ folder by navigating through the Repository view.

Defining KIE Bases and Sessions in the Project Editor
To define a KIE base or session in Business Central, do the following:

1. Click Authoring → Project Authoring and navigate to your project.

2. In the Project Explorer window, click Open Project Editor.

3. Click Project Settings: Project General Settings → Knowledge bases and sessions. This view
provides a user interface for changing kmodule.xml.

4. Click Add to define and add your bases.

a. After you enter a name for your Knowledge Base, add Packages. For including all packages,
click Add below Packages and enter asterisk *.

5. Below Knowledge Sessions, click Add and enter the name of your session.

CHAPTER 3. PROJECT

27

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/paged/development-guide/chapter-17-kie-api#sect_kie_sessions

6. Mark it Default and select appropriate state. For Red Hat JBoss BPM Suite, use stateful
sessions.

7. Click Save in the top right corner once you are done.

Defining KIE Bases and Sessions in kmodule.xml
To define a KIE base or session by editing kmodule.xml, do the following:

1. Open the repository view for your project.

Figure 3.4. Changing to Repository View

2. Navigate to /src/main/resources/META-INF. Click on kmodule.xml to edit the file directly.

3. Define your kbases and ksessions. For example:

4. Click Save in the top right corner.

You can switch between the Project Editor view and the Repository view to look at the changes you
make in each view. To do so, close and reopen the view each time a change is made.

NOTE

If you have more than one knowledge base, one of them must be marked default. You also
must define one default stateful knowledge session amongst all the bases and sessions.
Alternatively, you can define no knowledge bases.

3.7. CREATING A RESOURCE

A Project may contain an arbitrary number of packages, which contain files with resources, such as

<kmodule xmlns="http://www.drools.org/xsd/kmodule"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <kbase name="myBase" default="true" eventProcessingMode="stream"
equalsBehavior="identity" packages="*">
 <ksession name="mySession" type="stateless" default="true" clockType="realtime"/>
 </kbase>
</kmodule>

Red Hat JBoss BPM Suite 6.4 User Guide

28

A Project may contain an arbitrary number of packages, which contain files with resources, such as
Process definition, Work Item definition, Form definition, Business Rule definition, etc.

To create a resource, select the Project and the package in the Project Explorer and click New Item on
the perspective menu and select the resource you want to create.

CREATING PACKAGES

It is recommended to create your resources, such as Process definitions, Work Item
definitions, Data Models, etc., inside a package of a Project to allow importing of
resources and referencing their content.

To create a package, do the following:

1. In the Repository view of the Project Explorer, navigate to the
REPOSITORY/PROJECT/src/main/resources/ directory.

2. Go to New Item → Package.

3. In the New resource dialog, define the package name and check the location of
the package in the repository.

3.8. ASSET METADATA AND VERSIONING

Most assets within Business Central have some metadata and versioning information associated with
them. In this section, we will go through the metadata screens and version management for one such
asset (a DRL asset). Similar steps can be used to view and edit metadata and versions for other assets.

Metadata Management
To open up the metadata screen for a DRL asset, click on the Overview tab. If an asset does not have an
Overview tab, it means that there is no metadata associated with that asset.

The Overview section opens up in the Version history tab, and you can switch to the actual metadata
by clicking on the Metadata tab.

The metadata section allows you to view or edit the Categories, Subject, Type, External Link and
Source metadata for that asset. However, the most interesting metadata is the description of the asset
that you can view/edit in the description field and the comments that you and other people with access
to this asset can enter and view.

Comments can be entered in the text box provided in the comments section. Once you have finished
entering a comment, press enter for it to appear in the comments section.

IMPORTANT

You must hit the Save button for all metadata changes to be persisted, including the
comments.

CHAPTER 3. PROJECT

29

Version Management
Every time you make a change in an asset and save it, a new version of the asset is created. You can
switch between different versions of an asset in one of two ways:

Click the Latest Version button in the asset toolbar and select the version that you are
interested in. Business Central will load this version of the asset.

Alternatively, open up the Overview section. The Version history section shows you all the
available versions. Select the version that you want to restore.

In both cases, the Save button will change to Restore . Click this button to persist changes.

3.9. FILTERING ASSETS BY TAG

It is possible to group assets of similar categories in the project explorer. This feature helps you search
through assets of a specific category quickly. To enable this, the metadata management feature
provides creating tags to filter assets by category.

Procedure: Create tags and filter assets by tags

1. Open the Overview tab of an asset and click the Metadata screen.

2. In the Tags field, enter a name of your new tag and click Add a new tag(s) button. You can
assign multiple tags to an asset at once by separating tag names by space.

Figure 3.5. Creating Tags

The assigned tags are displayed as buttons next to the Tags field:

Figure 3.6. Tags in Metadata View

In order to delete any tag, click the respective tag button.

Red Hat JBoss BPM Suite 6.4 User Guide

30

3. Click Save button to save your metadata changes.

4. Once you are done assigning tags to your assets, click the (Customize View) button in the
Project Explorer and select the Enable Tag filtering option:

Figure 3.7. Enable Tag Filtering

This displays a Filter by Tag drop-down list in the Project Explorer.

Figure 3.8. Filter by Tag

You can sort your assets through this filter to display all service tasks that include the selected
metadata tag.

3.10. ASSET LOCKING SUPPORT

The default locking mechanism for locking a BPM and BRMS asset while updating it in Business Central
is pessimistic. Whenever you open and modify an asset in Business Central, it automatically locks the
asset for your exclusive use, in order to avoid conflicts in a multi-user setup. The pessimistic lock is
automatically released when your session ends or when you save or close the asset.

The pessimistic lock feature is provided in order to help prevent users from overwriting each other’s
changes. However, there may be cases when you may want to edit a file locked by another user. Business
Central allows you to force unlock a locked asset. To do this:

Procedure: Unlocking assets

CHAPTER 3. PROJECT

31

1. Open the asset.

2. Click on the Overview tab and open up the Metadata screen.
If the asset is already being edited by another user, the following will be displayed in the Lock
status field: Locked by <user_name>.

3. To edit the asset locked by another user, click Force unclock asset button.
The following confirmation popup message is displayed:

Are you sure you want to release the lock of this asset? This might cause <user_name>
to lose unsaved changes!

4. Click Yes to confirm.
The asset goes back to unlocked state.

3.11. PROCESS DEFINITION

A Process definition is a BPMN 2.0-compliant file that serves as container for a Process and its BPMN
Diagram. A Process definition itself defines the import entry, imported Processes, which can be used by
the Process in the Process definition, and relationship entries. We refer to a Process definition as a
business process.

Example 3.5. BPMN2 source of a Process definition

<definitions id="Definition"
 targetNamespace="http://www.jboss.org/drools"
 typeLanguage="http://www.java.com/javaTypes"
 expressionLanguage="http://www.mvel.org/2.0"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"Rule Task
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"
 xmlns:g="http://www.jboss.org/drools/flow/gpd"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
 xmlns:tns="http://www.jboss.org/drools">

 <process>
 PROCESS
 </process>

 <bpmndi:BPMNDiagram>
 BPMN DIAGRAM DEFINITION
 </bpmndi:BPMNDiagram>

 </definitions>

3.11.1. Creating a Process Definition

Make sure you have logged in to JBoss BPM Suite or you are in JBoss Developer Studio with the
repository connected.

To create a Process, do the following:

Red Hat JBoss BPM Suite 6.4 User Guide

32

1. Open the Project Authoring perspective (Authoring → Project Authoring).

2. In Project Explorer (Project Authoring → Project Explorer), navigate to the project where you
want to create the Process definition (in the Project view, select the respective repository and
project in the drop-down lists; in the Repository view, navigate to
REPOSITORY/PROJECT/src/main/resources/ directory).

CREATING PACKAGES

It is recommended to create your resources, including your Process definitions, in
a package of a Project to allow importing of resources and their referencing. To
create a package, do the following:

1. In the Repository view of the Project Explorer, navigate to the
REPOSITORY/PROJECT/src/main/resources/ directory.

2. Go to New Item → Package.

3. In the New resource dialog, define the package name and check the location
of the package in the repository.

3. From the perspective menu, go to New Item → Business Process.

4. In the New Processes dialog box, enter the Process name and click OK. Wait until the Process
Editor with the Process diagram appears.

3.11.2. Importing a Process Definition

To import an existing BPMN2 or JSON definition, do the following:

1. In the Project Explorer, select a Project and the respective package to which you want to
import the Process definition.

2. Create a new Business Process to work in by going to New Item → Business Process.

3. In the Process Designer toolbar, click the Import icon in the editor toolbar and pick the
format of the imported process definition. Note that you have to choose to overwrite the
existing process definition in order to import.

4. From the Import window, locate the Process file and click Import.

Figure 3.9. Import Window

CHAPTER 3. PROJECT

33

Figure 3.9. Import Window

Whenever a process definition is imported, the existing imported definition is overwritten. Make sure you
are not overwriting a process definition you have edited so as not to lose any changes.

A process can also be imported to the git repository in the filesystem by cloning the repository, adding
the process files, and pushing the changes back to git. In addition to alternative import methods, you can
copy and paste a process or just open a file in the import dialog.

When importing processes, the Process Designer provides visual support for Process elements and
therefore requires information on element positions on the canvas. If the information is not provided in
the imported Process, you need to add it manually.

3.11.3. Importing jPDL 3.2 to BPMN2

To migrate and import a jPDL definition to BPMN2, in the Process Designer, click on the import button
then scroll down and select Migrate jPDL 3.2 to BPMN2.

Figure 3.10. Migrate jPDL 3.2 to BPMN2

In the Migrate to BPMN2 dialog box, select the process definition file and the name of the gpd file.
Confirm by clicking the Migrate button.

Figure 3.11. Migrate to BPMN2 dialog box

Red Hat JBoss BPM Suite 6.4 User Guide

34

Figure 3.11. Migrate to BPMN2 dialog box

IMPORTANT

The migration tool for jPDL 3.2 to BPMN2 is a technical preview feature, and therefore
not currently supported in Red Hat JBoss BPM Suite.

CHAPTER 3. PROJECT

35

CHAPTER 4. PROCESS DESIGNER
The Process Designer is the Red Hat JBoss BPM Suite process modeler. The output of the modeler is a
BPMN 2.0 process definition file, which is saved in the Knowledge Repository, under normal
circumstances with a package of a project. The definition then serves as input for JBoss BPM Suite
Process Engine, which creates a process instance based on the definition.

The editor is delivered in two variants:

JBoss Developer Studio Process Designer

Thick-client version of the Process Designer integrated in the JBoss Developer Studio plug-in

Web Process Designer

Thin-client version of the Process Designer integrated in BPM Central

The graphical user interface of the Process Designer is the same for both the JBoss Developer Studio
Process Designer and the Web Process Designer.

Figure 4.1. Process Designer environment

1. The canvas represents the process diagram. Here you can place the elements from the palette
which will constitute the process. Note that one process definition may contain exactly one
process diagram; therefore a process definition equals to a process diagram (this may differ in
other products).

2. The Object Library (palette) contains groups of BPMN2 elements. Details on execution
semantics and properties of individual BPMN2 shapes are available in Appendix A, Process
Elements.

3. The Properties panel displays the properties of the selected element. If no element is selected,
the panel contains process properties.

4. The editor toolbar enables you, for example, to select an operation to be applied to the
Elements on the canvas. It also contains tools for validation, simulation, saving, and others.

NOTE

Red Hat JBoss BPM Suite 6.4 User Guide

36

NOTE

To enlarge the Process Designer screen (or any screen while working in Business

Central), click on the button shown here: . This will make your
current editor fill the entire Business Central screen. To go back, simply click the button
again.

4.1. CONFIGURING AUTOMATIC SAVING

The automatic saving feature periodically commits every change in Process Designer into a Git

repository. To set an automatic saving, click the button in Process Designer and choose Enable
autosave.

Figure 4.2. Enable Autosave Option in Process Designer

4.2. DEFINING PROCESS PROPERTIES

To define process properties, do the following:

1. Open your process in the Process Designer.

2. Click anywhere on the canvas. Make sure that no process element is selected.

PROCESS PROPERTIES RESTRICTIONS

When creating a new process or copying an existing process with a name that
uses a multibyte encoding (for example in Japanese, Chinese, Russian, or other),
these characters are converted to their URL equivalent when the editor
generates the process ID property.

Due to BPMN2 type restrictions, it is not recommended to use multibyte
encodings when manually changing the process ID.

3. Click to expand the Properties (BPMN-Diagram) panel.

Figure 4.3. Opening Variable Editor

CHAPTER 4. PROCESS DESIGNER

37

Figure 4.3. Opening Variable Editor

4. Define the process properties on the tab by clicking individual entries. For entries that require
other input that just string input, the respective editors can be used by clicking the arrow icon.
Note that editors for complex fields mostly provide validation and auto-completion features.

5. To save your changes, click Save in the top right corner.

4.3. DESIGNING PROCESS

To model a process, do the following:

1. In Business Central, go to Authoring → Project Authoring. Locate your project in the Project
Explorer and choose the respective process under Business Processes.
Alternatively, you can locate the process definition in the Repository View of the Project

Explorer. To show the Repository View, click the button.

The Process Designer opens.

2. Add and edit the required shapes to the process diagram on the canvas.

a. Drag and drop the shapes from the Object Library palette to the required position on the
canvas.

Figure 4.4. Object Library in the Process Designer

Red Hat JBoss BPM Suite 6.4 User Guide

38

Figure 4.4. Object Library in the Process Designer

b. The quick linker menu appears after you select a shape already placed on the canvas. The
menu displays elements that you can connect to the selected shape and connects them
with a valid association element.

NOTE

It is possible to change the type of an already placed element. To do so, select

the element and click the Morph shape () icon from the quick linker menu.

3. Double-click an element to provide or change its name. For multiline names, define the element
properties in the Properties view on the right side of the Process Designer.

4. Repeat the previous steps until the process diagram defines the required workflow.

4.3.1. Copying Elements

You can copy individual elements and finished business processes. To copy your selection into a
different package:

1. On the canvas, click and drag the cursor to select the elements you want to copy.

2. Click to copy your selection.

3. Switch into the second business process where you want to your add the copied elements.

4. In the second business process, create process variables that are used in the business process
you want to copy. Variable Name and Type parameters must be identical in order to preserve
variable mapping.

5. Click to paste your selection.

6. Click Save.

To copy a business process into the same package:

1. Click Copy.

2. The Copy this item dialogue window appears. Name your copy.

CHAPTER 4. PROCESS DESIGNER

39

3. Click Create copy.

4.3.2. Aligning Elements

To align diagram Elements, select the elements and click the respective button in the alignment toolbar:

Bottom: the selected elements will be aligned with the element located at the lowest position

Middle: the selected elements will be aligned to the middle relative to the highest and lowest
element

Top: the selected elements will be aligned with the element located at the highest position

Left: the selected elements will be aligned with the leftmost element

Center: the selected elements will be aligned to the center relative to the leftmost and
rightmost element

Right: the selected elements will be aligned with the rightmost element

Note that dockers of Connection elements are not influenced by aligning and you might need to remove
them.

4.3.3. Changing Element Layering

To change the element layering, select the required element or a group of elements and click the
button in the Process Designer toolbar. Choose one of the following options:

 Bring To Front: bring the selected element to the foreground of the uppermost layer.

 Bring To Back: send the selected element to the background of the lowest layer.

 Bring Forward: bring the selected element to the foreground by one layer.

 Bring Backward: send the selected element to the background by one layer.

Note that the connection elements are not influenced by the layering and remain always visible.

4.3.4. Bending Connection Elements

Red Hat JBoss BPM Suite 6.4 User Guide

40

You can bend the connection elements and create angles in your business process. To do so, click and
drag the connection element in the desired angle and direction. You can also straighten a bent
connection in the same manner, that is clicking on the bent angle and dragging it back to make a straight
line.

4.3.5. Resizing Elements

To resize Elements on the canvas, select the element, and click and pull the blue arrow displayed in the
upper left or lower right corner of the element.

To make the size of multiple elements identical, select the Elements and then click the icon in the
toolbar and then click on Alignment Same Size: all Elements will be resized to the size of the largest
selected Element.

Note that only Activity Elements can be resized.

4.3.6. Grouping Elements

To create and manage an element group:

1. Select the elements on the canvas.

2. Click Groups all selected shapes () to group the elements.

3. Click Deletes the group of all selected shapes () to ungroup the elements.

4.3.7. Locking Elements

When you lock process model elements, the elements cannot be edited or moved.

To lock the elements, select the elements and click Lock Elements ().

To unlock the elements, select the elements and click Unlock Elements ().

4.3.8. Changing Color Scheme

Color schemes define the colors used for individual process elements in a diagram.

Color schemes are stored in the themes.json file, which is located in the global directory of each
repository.

Procedure: Adding New Color Scheme

CHAPTER 4. PROCESS DESIGNER

41

Procedure: Adding New Color Scheme

1. Locate your project in the Project Explorer and switch to the Repository View by clicking the

 button.

2. Open the global directory.

3. Locate and open the themes.json file.

4. Click Download.
The file is downloaded to your computer. You can now open the file in a text editor and update
it locally. Note that it is not possible to update the file directly in Business Central.

5. Upload the updated file. Click Choose file… (), select the themes.json file and click

Upload ().
In order to be able to use the new color schemes, you have to reload the browser.

To apply a new color scheme or any other defined scheme, click the button in the Process
Designer toolbar and select one of the available color schemes from the drop-down menu.

4.3.9. Recording local history

Local history keeps track of any changes, you apply to your process model so as to allow you to restore
any previous status of the process model. By default, this feature is turned off.

To turn on local history recording, click the Local History button and select Enable Local History
entry. From this menu, you can also display the local history records and apply the respective status to
the process as well as disable the feature or clear the current local history log.

4.3.10. Enlarging and shrinking canvas

To change the size of the canvas, click the respective yellow arrow on the canvas edge.

4.3.11. Validating a Process

Process validation can be set up to be continuous or to be only immediate.

To validate your process model continuously, click the Validate () button in the toolbar of the
Process Designer with the process and click Start Validating. If validation errors have been detected,
the elements with errors are highlighted in orange. Click on the invalid element on the canvas to display
a dialog with the summary of its validation errors. To disable continuous validation, click the Validate (

) button in the toolbar of the Process Designer with the process and click Stop Validating.

Also note that errors on the element properties are visualized in further details in the Properties view of
the respective element.

If you want to display the validation errors and not to keep the validation feature activated, click the

Validate () button in the toolbar of the Process Designer with the process and click View all issues.

Additionally after you save your process, any validation errors are also displayed in the Messages view.

Figure 4.5. Stopping continuous validation

Red Hat JBoss BPM Suite 6.4 User Guide

42

Figure 4.5. Stopping continuous validation

4.3.12. Correcting Invalid Processes

If your process is invalid and the Process Designer is unable to render it in the designer canvas, you can
open the process in XML format and make the necessary corrections.

1. In the Project view of the Project Explorer, select your Project and open the process.
If the process is valid, the Process Designer opens process diagram on the canvas.

If the process is invalid, you will see the following prompt:

2. Click OK.
The invalid process opens as XML in a text editor in the Process Designer.

3. You can restore previous correct version of the process by selecting the version either from the
Latest Version drop-down menu or from the Overview tab.
Alternatively, you can edit the XML to correct the business process and click Save.

You can now open the valid process and view it as a diagram on the canvas.

4.4. EXPORTING PROCESS

To export your process definition into one of the supported formats (PNG, PDF, BPMN2, JSON, SVG,
or ERDF), do the following:

1. In Business Central, go to Authoring → Project Authoring.

CHAPTER 4. PROCESS DESIGNER

43

2. Open your process in Process Designer.

3. Click the button and choose one of the following options:

Share Process Image: generates a PNG file into the repository and provides the ability to insert
it in an HTML page using generated HTML tag.

Share Process PDF: generates a PDF file into the repository and provides the ability to insert it
in an HTML page using generated HTML tag.
Note that Internet Explorer 11 does not support PDF objects in HTML.

Download Process PNG: generates a PNG file into the repository and the browser starts
downloading the file.

Download Process PDF: generates a PDF file into the repository and the browser starts
downloading the file.

Download Process SVG: generates an SVG file into the repository and the browser starts
downloading the file.

View Process Sources: opens the Process Sources dialog box that contains the BPMN2,
JSON, SVG, and ERDF source codes. You can download BPMN2 files by clicking Download
BPMN2 at the top. Pressing CTRL+A enables you to select the source code in a particular
format, while pressing CTRL+F enables the find tool (use /re/SYNTAX for a regexp search).

Red Hat JBoss BPM Suite 6.4 User Guide

44

4.5. PROCESS ELEMENTS

4.5.1. Generic Properties of Visualized Process Elements

All process elements have the following visualization properties, which can be defined in their
Properties tab:

Background

The background color of the element in the diagram

Border color

The border color of the element in the diagram

Font color

The color of the font in the element name

Font size

The size of the font in the element name

Name

The element name displayed on the BPMN diagram

4.5.2. Defining Process Element Properties

All process elements, including the process, contain a set of properties that define the following:

CHAPTER 4. PROCESS DESIGNER

45

Core properties, which include properties such as the name, data set, scripts, and others.

Extra properties, which include the properties necessary for element execution (see
Appendix A, Process Elements), data mapping (variable mapping) and local variable definitions
(see Section 4.9.1, “Global Variables”), and properties that represent an extension of the jBPM
engine, such as onExitAction, documentation, and similar.

Graphical properties, which include graphical representation of elements (such as colors, or text
settings).

Simulation properties, which are used by the simulation engine.

In element properties of the String type, use #{expression} to embed a value. The value will be
retrieved on element instantiation, and the substitution expression will be replaced with the result of
calling the toString() method on the variable defined in the expression.

Note that the expression can be the name of a variable, in which case it resolves to the value of the
variable, but more advanced MVEL expressions are possible as well, for example #
{person.name.firstname}.

To define element properties, do the following:

1. Open the process definition in the Process Designer.

2. On the canvas, select an element.

3. Click in the upper right corner of the Process Designer to display the Properties view.

4. In the displayed Properties view, click the property value fields to edit them. Note that where
applicable, you can click the drop-down arrow and the relevant value editor appears in a new
dialog box.

5. Click Save in the upper right corner and fill out the Save this item dialogue to save your
changes.

4.6. BUSINESS PROCESS SAVE POINTS

To ensure the engine will save the state of the process, a save point is created before the following
nodes:

Catch event

Human tasks

Every node marked Is Async

Asynchronous continuation allows process designers to decide what activities should be executed
asynchronously without any additional work. To mark a node as asynchronous:

Procedure: Define a Service Task as Asynchronous

1. Open the Properties menu on the right side of the business process screen.

2. Select Service Task you want to make asynchronous in the Process Modelling window.

3. Under the Extra Properties menu, set the Is Async option to true.

Red Hat JBoss BPM Suite 6.4 User Guide

46

The Is Async feature is available for all task types (Service, Send, Receive, Business Rule, Script, and
User Tasks), subprocesses (embedded and reusable), and multi-instance task and subprocesses. When
marked Is Async, the node execution is started in a separate thread.

When the engine encounters one of the save point nodes, the transaction is commited into the
database before continuing with the execution. This ensures that the state of the process is saved.

NOTE

Asynchronous processing relies on Executor Service component, which must be
configured and running. If you are using Red Hat JBoss BPM Suite in the embedded
mode, additional steps will be required depending on how you utilize the Red Hat JBoss
BPM Suite API.

For fully asynchronous workflow execution, use the Intelligent Process Server configured
with JMS Queues.

4.7. FORMS

A form is a layout definition for a page (defined as HTML) that is displayed as a dialog window to the
user on:

Process instantiation

Task instantiation

The form is then respectively called a process form or a task form. Forms acquire data from a human
user for both the proces instance execution, or the task instance execution:

A process form can take as its input and output process variables.

A task form can take as its input Data Input Assignment variables with assignment defined, and
as its output Data Output Assignments with assignment defined.

For example:

With a process form, a user can provide the input parameters needed for process instantiation.

With a task form, you can use a Human Task to provide input for further process execution.

The input is then mapped to the task using the data input assignment, which you can then use inside of a
task. When the task is completed, the data is mapped as a data output assignment to provide the data
to the parent process instance. For further information, see Section 4.12, “Assignment”.

4.7.1. Defining Process form

A process form is a form that is displayed at process instantiation to the user who instantiated the
process.

To create a process form, do the following:

1. Open your process definition in the Process Designer.

2. In the editor toolbar, click the Form() icon and then Edit Process Form.

3. Select the editor to use to edit the form. Note that this document deals only with the Graphical

CHAPTER 4. PROCESS DESIGNER

47

3. Select the editor to use to edit the form. Note that this document deals only with the Graphical
Modeler option.

Note that the Form is created in the root of your current Project and is available from any other process
definitions in the Projects.

4.7.2. Defining Task form

A task form is a form that is displayed at User Task instantiation, that is, when the execution flow reaches
the task, to the Actor of the User Task.

To create a task form, do the following:

1. Open your process definition with the User Task in the Process Designer.

2. Select the task on the canvas and click the Edit Task Form () in the User Task menu.

3. In the displayed Form Editor, define the task form.

4.7.3. Defining form fields

Once you have created a form definition, you need to define its content: that is its fields and the data
they are bound to. You can add either the pre-defined field types to your form, or define your own data
origin and use the custom field types in your form definition.

NOTE

Automatic form generation is not recursive, which means that when custom data objects
are used, only the top-level form is generated (no subforms). The user is responsible for
creating forms that represent the custom data objects and link them to the parent form.

4.8. FORM MODELER

Red Hat JBoss BPM Suite provides a custom editor for defining forms called Form Modeler.

Form Modeler includes the following key features:

Form Modeling WYSIWYG UI for forms

Form autogeneration from data model / Java objects

Data binding for Java objects

Formula and expressions

Customized forms layouts

Forms embedding

Form Modeler comes with predefined field types, such as Short Text, Long Text, or Integer, which you
place onto the canvas to create a form. In addition to that, Form Modeler also enables you to create
custom types based on data modeler classes, Java classes (must be on the classpath), or primitive Java
data types. For this purpose, the Form data origin tab contains three options: From Basic type, From
Data Model, and From Java Class.

Use the Add fields by origin tab visible in the following figure to select fields based on their source.

Red Hat JBoss BPM Suite 6.4 User Guide

48

Figure 4.6. Adding fields by origin

To view and add Java classes created in Data Modeler in Form Modeler, go to section Form data origin
and select the From Data Model option shown in the following figure.

Figure 4.7. Adding classes from data model

You can adjust the form layout using the Form Properties tab that contains a Predefined layout
selected by default, as well as a Custom option.

When a task or process calls a form, it sends the form a map of objects, which include local variables of
the process or task. Also, when the form is completed, a map is sent back to the process or task with the
data acquired in the form. The form assigns this output data to the local variables of the task or process,
and the output data can therefore be further processed.

4.8.1. Creating a Form in Form Modeler

To create a new form in Form Modeler, do the following:

1. In Business Central, go to Authoring → Project Authoring.

2. On the perspective menu, select New Item → Form.

3. In the Create New Form dialog window, enter the name of your form in Resource Name, select
the package, and click OK.

The newly created form will open up. You can add various fields to it when you select the Add fields by
type option on the Form Modeler tab. Use the button to place the field types onto the canvas, where
you can modify them. To modify the field types, use the icons that display when you place the cursor

CHAPTER 4. PROCESS DESIGNER

49

over a field: First, Move field, Last, Group with previous, Edit, or Clear. The icons enable you to
change the order of the fields in the form, group the fields, or clear and edit their content.

The following figure shows a new form created in Form Modeler.

Figure 4.8. New form

4.8.2. Opening an Existing Form in Form Modeler

To open an existing form in a project that already has a form defined, go to Form Definitions in Project
Explorer and select the form you want to work with from the displayed list.

Figure 4.9. Opening an Existing Form

4.8.3. Setting Properties of a Form Field in Form Modeler

Red Hat JBoss BPM Suite 6.4 User Guide

50

To set the properties of a form field, do the following:

1. In Form Modeler, select the Add fields by type tab and click the arrow button to the right of
a field type. The field type is added to the canvas.

2. On the canvas, place the cursor on the field and click the edit icon.

3. In the Properties dialog window that opens on the right, set the form field properties and click
Apply at the bottom of the dialog window for HTML Labels. For other form field properties, the
properties change once you have removed focus from the property that you are modifying.

4.8.4. Configuring a Process in Form Modeler

You can generate forms automatically from process variables and task definitions and later modify the
forms using the form editor. In runtime, forms receive data from process variables, display it to the user,
capture user input, and update the process variables with the new values. To configure a process in
Form Modeler, do the following:

1. Create process variables to store the form input. Variables can be of a simple type, like String,
or a complex type. You can define complex variables using Data Modeler, or create them in any
Java integrated development environment (Java IDE) as regular plain Java objects.

2. Declare the process variables in the Editor for Variable Property window of the variables
definition property of the business process.

3. Determine which variables you want to set as input parameters for the task, which will receive
response from the form. After you create the variables, map the variables to inputs by setting
Data Input Assignments and Data Output Assignments for a Human Task. To do so, use the
Data I/O form of the Assignments property.

Example 4.1. Defining a Variable using Data Modeler

4.8.5. Generating Forms from Task Definitions

In the Process Designer module, you can generate forms automatically from task and variable
definitions, and easily open concrete forms from Form Modeler by using the following menu option:

Figure 4.10. Generating Forms Automatically

CHAPTER 4. PROCESS DESIGNER

51

Figure 4.10. Generating Forms Automatically

To open and edit a form directly, click the Edit Task Form icon () located above a user task.

Figure 4.11. Editing the Task Form

Forms follow a naming convention that relates them to tasks. If you define a form named TASK_NAME-
taskform in the same package as the process, the human task engine will use the form to display and
capture information entered by the user. If you create a form named PROCESS_ID-task, the application
will use it as the initial form when starting the process.

4.8.6. Editing Forms

After you generate a form, you can start editing it. If the form has been generated automatically, the
Form data origin tab contains the process variables as the origin of the data, which enables you to bind
form fields with them and create data bindings. Data bindings determine the way task input is mapped
to form variables, and when the form is validated and submitted, the way values update output of the
task. You can have as many data origins as required, and use different colors to differentiate them in the
Render color drop down menu. If the form has been generated automatically, the application creates a
data origin for each process variable. For each data origin bindable item, there is a field in the form, and
these automatically generated fields also have defined bindings. When you display the fields in the
editor, the color of the data origin is displayed over the field to give you quick information on correct
binding and implied data origin.

To customize a form, you can for example move fields, add new fields, configure fields, or set values for
object properties.

4.8.7. Moving a Field in Form Modeler

You can place fields in different areas of the form. To move a field, access the field’s contextual menu
and select the Move field option shown on the following screenshot. This option displays the different
regions of the form where you can place the field.

Figure 4.12. Moving a Form Field in Form Modeler

Red Hat JBoss BPM Suite 6.4 User Guide

52

Figure 4.12. Moving a Form Field in Form Modeler

After you click the Move field option, a set of rectangular contextual icons appears. To move a field,
select one of them according to the desired new position of the field.

Figure 4.13. Destination Areas to Move a Field

4.8.8. Adding New Fields to a Form

You can add fields to a form by their origin or by selecting the type of the form field. The Add fields by
origin tab enables you to add fields to the form based on defined data origins.

Figure 4.14. Adding Fields by Origin

CHAPTER 4. PROCESS DESIGNER

53

Figure 4.14. Adding Fields by Origin

The fields then have correct configuration of the Input binding expression and Output binding
expression properties, so when the form is submitted, the values in the fields are stored in the
corresponding data origin. The Add fields by type tab enables you to add fields to the form from the
fields type palette of the Form Modeler. The fields do not store their value for any data origin until they
have correct configuration of the Input binding expression and Output binding expression
properties.

Figure 4.15. Adding Fields by Type

Red Hat JBoss BPM Suite 6.4 User Guide

54

Figure 4.15. Adding Fields by Type

There are three kinds of field types you can use to model your form: simple types, complex types, and
decorators. The simple types are used to represent simple properties like texts, numeric values, or
dates. The following table presents a complete list of supported simple field types:

Table 4.1. Simple Field Types

Name Description Java Type Default on
generated
forms

Short Text Simple input to enter short texts. java.lang.String yes

Long Text Text area to enter long text. java.lang.String no

Rich Text HTML Editor to enter formatted texts. java.lang.Srowing no

Email Simple input to enter short text with email
pattern.

java.lang.String no

Float Input to enter short decimals. java.lang.Float yes

CHAPTER 4. PROCESS DESIGNER

55

Decimal Input to enter number with decimals. java.lang.Double yes

BigDecimal Input to enter big decimal numbers. java.math.BigDecimal yes

BigInteger Input to enter big integers. java.math.BigInteger yes

Short Input to enter short integers. java.lang.Short yes

Integer Input to enter integers. java.lang.Integer yes

Long Integer Input to enter long integers. java.lang.Long yes

Checkbox Checkbox to enter true/false values. java.lang.Boolean yes

Timestamp Input to enter date and time values. java.util.Date yes

Short Date Input to enter date values. java.util.Date no

Document Allows the user to upload documents to the
form.

org.jbpm.document.Doc
ument

No

Name Description Java Type Default on
generated
forms

NOTE

The Document form field requires additional setup to be accessed from the relevant
forms and processes. For information about enabling document attachments, see
Section 4.8.11, “Enabling Document Attachments in a Form or Process” .

Complex field types are designed for work with properties that are not basic types but Java objects. To
use these field types, it is necessary to create extra forms in order to display and write values to the
specified Java objects.

Table 4.2. Complex Field Types

Name Description Java Type Default on
generated forms

Simple subform Renders the form; it is used to deal with 1:1
relationships.

java.lang.Object yes

Multiple subform This field type is used for 1:N relationships.
It allows the user to create, edit, and
delete a set child Objects.Text area to
enter long text.

java.util.List yes

Red Hat JBoss BPM Suite 6.4 User Guide

56

Decorators are a kind of field types that does not store data in the object displayed in the form. You can
use them for decorative purposes.

Table 4.3. Decorators

Name Description

HTML label Allows the user to create HTML code that will be rendered in the form.

Separator Renders an HTML separator.

4.8.9. Configuring Fields of a Form

Each field can be configured to enhance performance of the form. There is a group of common
properties called generic field properties and a group of specific properties that differs by field type.

Generic field properties:

Field Type can change the field type to other compatible field types.

Field Name is used as an identifier in calculating of formulas.

Label is the text that is displayed as a field label.

Error Message is a message displayed when there is a problem with a field, for example in
validation.

Label CSS Class enables you to enter a class css to apply in label visualization.

Label CSS Style enables you to enter the style to be applied to the label.

Help Text is the text displayed as an alternative attribute to help the user in data introduction.

Style Class enables you to enter a class CSS to be applied in field visualization.

CSS Style enables you to directly enter the style to be applied to the label.

Read Only allows reading only, provides no write access to such field.

Input Binding Expression defines the link between the field and the process task input
variable. In runtime, it is used to set the field value to the task input variable data.

Output Binding Expression defines the link between the field and the process task output
variable. In runtime, it is used to set the task output variable.

4.8.10. Creating Subforms with Simple and Complex Field Types

Complex Field types is a category of fields in a form. You can use the complex field types to model form
properties that are Java Objects. Simple subform and Multiple subform are the two types of complex
field types. A simple subform represents a single object and a multiple subform represents an object
array inside a parent form. Once you add one of these fields into a form, you must configure the form
with information on how it must display these objects during execution. For example, if your form has
fields representing an object array, you can define a tabular display of these fields in the form. You
cannot represent them as simple inputs such as text box, checkbox, text area, and date selector.

CHAPTER 4. PROCESS DESIGNER

57

Procedure: To create and insert a subform containing a single object inside a parent form:

1. In Business Central, go to Authoring → Project Authoring.

2. On the perspective menu, select New Item → Form.
A new form opens in the Form Modeler. You must now configure the new form with information
of the object it must contain.

3. Enter the values for the required fields in the Form data origin tab and click Add data holder.

Figure 4.16. Create Subform

4. Click Add fields by origin tab and add the listed fields to the form.

Figure 4.17. Add fields by origin

5. Click the Edit icon on the field in the form to open the Properties tab.

6. In the Properties tab, configure the form by providing required values to the fields and click
Save to save the subform.

7. Open the parent form to configure the properties of the object.

8. In the parent form, click the Add fields by type tab. Select the object on the form and
configure it in the Properties tab.

9. In the Properties tab, select Simple subform for the Field type property. Then select the
newly created subform for the Default form field property.

Figure 4.18. Configure the Parent Form

Red Hat JBoss BPM Suite 6.4 User Guide

58

Figure 4.18. Configure the Parent Form

10. Click Save to save the parent form.
This inserts your subform containing a single Java object inside the parent form.

Procedure: To insert a subform with multiple objects inside a parent form:

1. In Business Central, go to Authoring → Project Authoring.

2. On the perspective menu, select New Item → Form.
A new form opens in the Form Modeler. You must now configure the new form with information
on the object array it must contain.

3. Enter the values for the required fields in the Form data origin tab and click Add data holder.

4. Click Add fields by origin tab and add the listed fields to the form.

5. Click the Edit icon on the field in the form to open the Properties tab.

6. In the Properties tab, configure the form by providing required values to the fields. You can use
the Formula Engine to automatically calculate field values.

7. Click Save to save the subform.

8. Open the parent form to configure the properties of each of the objects.

9. In the parent form, click the Add fields by type tab. Select each object on the form one by one
and configure them in the Properties tab.

10. In the Properties tab, select Multiple subform for the Field type property. Then select the
newly created subform for the Default form field property.

Figure 4.19. Configure the Parent Form

CHAPTER 4. PROCESS DESIGNER

59

Figure 4.19. Configure the Parent Form

11. Click Save to save the parent form.
This inserts your subform containing an array of Java objects inside the parent form.

4.8.11. Enabling Document Attachments in a Form or Process

Red Hat JBoss BPM Suite supports document attachments in forms using the Document form field.
With the Document form field, you can upload documents that are required as part of a form or process.
For information about adding fields to forms, see Section 4.8.8, “Adding New Fields to a Form” .

To enable document attachments in forms and processes, follow these steps:

Set the document marshalling strategy.

Create a document variable in the process.

Map the task inputs and outputs to the variable.

Set the Document Marshalling Strategy

The document marshalling strategy for your project determines where documents are stored for use
with forms and processes. The default document marshalling strategy in Red Hat JBoss BPM Suite is
org.jbpm.document.marshalling.DocumentMarshallingStrategy. This strategy uses a
DocumentStorageServiceImpl class that stores documents locally in your PROJECT_HOME/docs
folder. You can set this document marshalling strategy or a custom document marshalling strategy for
your project in Business Central or in the kie-wb-deployment-descriptor.xml file directly.

1. In Business Central, click Authoring → Project Authoring and navigate to your project.

2. Click Open Project Editor and then click Project Settings: Project General Settings →
Deployment descriptor.

3. Under Marshalling strategies, click Add.

4. In the Identifier value field, click Enter Value and enter
org.jbpm.document.marshalling.DocumentMarshallingStrategy to use the default
document marshalling strategy or enter the identifier of a custom document marshalling
strategy.
For more information about custom document marshalling strategies, see Section 4.8.11.1, “Using
a Custom Document Marshalling Strategy for a Content Management System (CMS)”.

Red Hat JBoss BPM Suite 6.4 User Guide

60

5. Set Resolver type to reflection.

6. Click Save and Validate to ensure correctness of your deployment descriptor file.
Alternatively, you can navigate to ~/META_INF/kie-wb-deployment-descriptor.xml in your
project and edit the deployment descriptor file directly with the required <marshalling-
strategies> elements.

Example kie-wb-deployment-descriptor.xml file with default document marshalling strategy:

Create a Document Variable in the Process

After you set the document marshalling strategy, create a document variable in the related process. This
variable is required for the document to be visible in the Documents tab of the Process Management
→ Process Instances view in Business Central.

1. In Business Central, navigate to your business process and open it in the Business Process
Designer.

2. Click on the canvas and click on the right side of the window to open the Properties tab.

3. Next to Variable Definition, click the empty space and click . The Editor for Variable
Definitions dialog opens.

4. Click Add Variable and enter the following values:

Name: document

Custom Type: org.jbpm.document.Document

5. Click Ok.

<deployment-descriptor
 xsi:schemaLocation="http://www.jboss.org/jbpm deployment-descriptor.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <persistence-unit>org.jbpm.domain</persistence-unit>
 <audit-persistence-unit>org.jbpm.domain</audit-persistence-unit>
 <audit-mode>JPA</audit-mode>
 <persistence-mode>JPA</persistence-mode>
 <runtime-strategy>SINGLETON</runtime-strategy>
 <marshalling-strategies>
 <marshalling-strategy>
 <resolver>reflection</resolver>
 <identifier>
 org.jbpm.document.marshalling.DocumentMarshallingStrategy
 </identifier>
 </marshalling-strategy>
 </marshalling-strategies>

CHAPTER 4. PROCESS DESIGNER

61

Map Task Inputs and Outputs to the Document Variable

If you want to view or modify the attachments inside of the task forms, create assignments inside of the
task inputs and outputs.

1. In Business Central, navigate to your business process and open it in the Business Process
Designer.

2. Click on a User Task and click on the right side of the window to open the Properties tab.

3. Next to Assignments, click the empty space and click . The Data I/O dialog window opens.

4. Next to Data Inputs and Assignments, click Add and enter the following values:

Name: taskdoc_in

Data Type: Object

Source: document

5. Next to Data Outputs and Assignments, click Add and enter the following values:

Name: taskdoc_out

Data Type: Object

Target: document

Note that the Source and Target fields contain the name of the process variable you created
earlier.

6. Click Save.

7. In the Process Designer, click and select Generate all Forms.

8. Click Save to save the process.

Now, when you build and deploy your project, you can see any configured Document attachments in the
Documents tab of the Process Management → Process Instances view.

Red Hat JBoss BPM Suite 6.4 User Guide

62

4.8.11.1. Using a Custom Document Marshalling Strategy for a Content Management System
(CMS)

The document marshalling strategy for your project determines where documents are stored for use
with forms and processes. The default document marshalling strategy in Red Hat JBoss BPM Suite is
org.jbpm.document.marshalling.DocumentMarshallingStrategy. This strategy uses a
DocumentStorageServiceImpl class that stores documents locally in your PROJECT_HOME/docs
folder. If you want to store form and process documents in a custom location, such as in a centralized
content management system (CMS), add a custom document marshalling strategy to your project. You
can set this document marshalling strategy in Business Central or in the kie-deployment-
descriptor.xml file directly.

1. Create a custom marshalling strategy .java file that includes an implementation of the
org.kie.api.marshalling.ObjectMarshallingStrategy interface. This interface enables you to
implement the variable persistence required for your custom document marshalling strategy.
The following methods in this interface help you create your strategy:

boolean accept(Object object): Determines if the given object can be marshalled by the
strategy.

byte[] marshal(Context context, ObjectOutputStream os, Object object): Marshals the
given object and returns the marshalled object as byte[]`.

Object unmarshal(Context context, ObjectInputStream is, byte[] object, ClassLoader
classloader): Reads the object received as byte[]` and returns the unmarshalled object.

void write(ObjectOutputStream os, Object object): Same as marshal method, provided
for backward compatibility.

Object read(ObjectInputStream os): Same as unmarshal, provided for backward
compatibility.

Example ObjectMarshallingStrategy implementation for storing and retrieving data from a
Content Management Interoperability Services (CMIS) system:

package org.jbpm.integration.cmis.impl;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

CHAPTER 4. PROCESS DESIGNER

63

import java.util.HashMap;

import org.apache.chemistry.opencmis.client.api.Folder;
import org.apache.chemistry.opencmis.client.api.Session;
import org.apache.chemistry.opencmis.commons.data.ContentStream;
import org.apache.commons.io.IOUtils;
import org.drools.core.common.DroolsObjectInputStream;
import org.jbpm.document.Document;
import org.jbpm.integration.cmis.UpdateMode;

import org.kie.api.marshalling.ObjectMarshallingStrategy;

public class OpenCMISPlaceholderResolverStrategy extends OpenCMISSupport implements
ObjectMarshallingStrategy {

 private String user;
 private String password;
 private String url;
 private String repository;
 private String contentUrl;
 private UpdateMode mode = UpdateMode.OVERRIDE;

 public OpenCMISPlaceholderResolverStrategy(String user, String password, String url,
String repository) {
 this.user = user;
 this.password = password;
 this.url = url;
 this.repository = repository;
 }

 public OpenCMISPlaceholderResolverStrategy(String user, String password, String url,
String repository, UpdateMode mode) {
 this.user = user;
 this.password = password;
 this.url = url;
 this.repository = repository;
 this.mode = mode;
 }

 public OpenCMISPlaceholderResolverStrategy(String user, String password, String url,
String repository, String contentUrl) {
 this.user = user;
 this.password = password;
 this.url = url;
 this.repository = repository;
 this.contentUrl = contentUrl;
 }

 public OpenCMISPlaceholderResolverStrategy(String user, String password, String url,
String repository, String contentUrl, UpdateMode mode) {
 this.user = user;
 this.password = password;
 this.url = url;
 this.repository = repository;
 this.contentUrl = contentUrl;
 this.mode = mode;

Red Hat JBoss BPM Suite 6.4 User Guide

64

 }

 public boolean accept(Object object) {
 if (object instanceof Document) {
 return true;
 }
 return false;
 }

 public byte[] marshal(Context context, ObjectOutputStream os, Object object) throws
IOException {
 Document document = (Document) object;
 Session session = getRepositorySession(user, password, url, repository);
 try {
 if (document.getContent() != null) {
 String type = getType(document);
 if (document.getIdentifier() == null || document.getIdentifier().isEmpty()) {
 String location = getLocation(document);

 Folder parent = findFolderForPath(session, location);
 if (parent == null) {
 parent = createFolder(session, null, location);
 }
 org.apache.chemistry.opencmis.client.api.Document doc = createDocument(session,
parent, document.getName(), type, document.getContent());
 document.setIdentifier(doc.getId());
 document.addAttribute("updated", "true");
 } else {
 if (document.getContent() != null && "true".equals(document.getAttribute("updated"))) {
 org.apache.chemistry.opencmis.client.api.Document doc = updateDocument(session,
document.getIdentifier(), type, document.getContent(), mode);

 document.setIdentifier(doc.getId());
 document.addAttribute("updated", "false");
 }
 }
 }
 ByteArrayOutputStream buff = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(buff);
 oos.writeUTF(document.getIdentifier());
 oos.writeUTF(object.getClass().getCanonicalName());
 oos.close();
 return buff.toByteArray();
 } finally {
 session.clear();
 }
 }

 public Object unmarshal(Context context, ObjectInputStream ois, byte[] object, ClassLoader
classloader) throws IOException, ClassNotFoundException {
 DroolsObjectInputStream is = new DroolsObjectInputStream(new ByteArrayInputStream(
object), classloader);
 String objectId = is.readUTF();
 String canonicalName = is.readUTF();
 Session session = getRepositorySession(user, password, url, repository);
 try {

CHAPTER 4. PROCESS DESIGNER

65

 org.apache.chemistry.opencmis.client.api.Document doc =
(org.apache.chemistry.opencmis.client.api.Document) findObjectForId(session, objectId);
 Document document = (Document) Class.forName(canonicalName).newInstance();
 document.setAttributes(new HashMap<String, String>());

 document.setIdentifier(objectId);
 document.setName(doc.getName());
 document.setLastModified(doc.getLastModificationDate().getTime());
 document.setSize(doc.getContentStreamLength());
 document.addAttribute("location", getFolderName(doc.getParents()) +
getPathAsString(doc.getPaths()));
 if (doc.getContentStream() != null && contentUrl == null) {
 ContentStream stream = doc.getContentStream();
 document.setContent(IOUtils.toByteArray(stream.getStream()));
 document.addAttribute("updated", "false");
 document.addAttribute("type", stream.getMimeType());
 } else {
 document.setLink(contentUrl + document.getIdentifier());
 }
 return document;
 } catch(Exception e) {
 throw new RuntimeException("Cannot read document from CMIS", e);
 } finally {
 is.close();
 session.clear();
 }
 }

 public Context createContext() {
 return null;
 }

 // For backward compatibility with previous serialization mechanism
 public void write(ObjectOutputStream os, Object object) throws IOException {
 Document document = (Document) object;
 Session session = getRepositorySession(user, password, url, repository);
 try {
 if (document.getContent() != null) {
 String type = document.getAttribute("type");
 if (document.getIdentifier() == null) {
 String location = document.getAttribute("location");

 Folder parent = findFolderForPath(session, location);
 if (parent == null) {
 parent = createFolder(session, null, location);
 }
 org.apache.chemistry.opencmis.client.api.Document doc = createDocument(session,
parent, document.getName(), type, document.getContent());
 document.setIdentifier(doc.getId());
 document.addAttribute("updated", "false");
 } else {
 if (document.getContent() != null && "true".equals(document.getAttribute("updated"))) {
 org.apache.chemistry.opencmis.client.api.Document doc = updateDocument(session,
document.getIdentifier(), type, document.getContent(), mode);

 document.setIdentifier(doc.getId());

Red Hat JBoss BPM Suite 6.4 User Guide

66

2. In Business Central, click Authoring → Project Authoring and navigate to your project.

3. Click Open Project Editor and then click Project Settings: Project General Settings →
Deployment descriptor.

4. Under Marshalling strategies, click Add.

5. In the Identifier value field, click Enter Value and enter the identifier of the custom document
marshalling strategy that you created (for example,
org.jbpm.integration.cmis.impl.OpenCMISPlaceholderResolverStrategy).

6. Set Resolver type to reflection.

 document.addAttribute("updated", "false");
 }
 }
 }
 ByteArrayOutputStream buff = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(buff);
 oos.writeUTF(document.getIdentifier());
 oos.writeUTF(object.getClass().getCanonicalName());
 oos.close();
 } finally {
 session.clear();
 }
 }

 public Object read(ObjectInputStream os) throws IOException, ClassNotFoundException {
 String objectId = os.readUTF();
 String canonicalName = os.readUTF();
 Session session = getRepositorySession(user, password, url, repository);
 try {
 org.apache.chemistry.opencmis.client.api.Document doc =
(org.apache.chemistry.opencmis.client.api.Document) findObjectForId(session, objectId);
 Document document = (Document) Class.forName(canonicalName).newInstance();

 document.setIdentifier(objectId);
 document.setName(doc.getName());
 document.addAttribute("location", getFolderName(doc.getParents()) +
getPathAsString(doc.getPaths()));
 if (doc.getContentStream() != null) {
 ContentStream stream = doc.getContentStream();
 document.setContent(IOUtils.toByteArray(stream.getStream()));
 document.addAttribute("updated", "false");
 document.addAttribute("type", stream.getMimeType());
 }
 return document;
 } catch(Exception e) {
 throw new RuntimeException("Cannot read document from CMIS", e);
 } finally {
 session.clear();
 }
 }

}

CHAPTER 4. PROCESS DESIGNER

67

7. Click Save and Validate to ensure correctness of your deployment descriptor file.
Alternatively, you can navigate to ~/META_INF/kie-wb-deployment-descriptor.xml in your
project and edit the deployment descriptor file directly with the required <marshalling-
strategies> elements.

Example kie-deployment-descriptor.xml file with custom document marshalling strategy:

8. To enable documents stored in a custom location to be attached to forms and processes, create
a document variable in the relevant processes and map task inputs and outputs to that
document variable in Business Central. For instructions, see Section 4.8.11, “Enabling Document
Attachments in a Form or Process”.

4.8.12. Rendering Forms for External Use

Forms generated by the Form Builder can be reused in other client applications with the help of the
REST API and a JavaScript library. The REST API defines the end points for the external client
applications to call and the JavaScript library makes it easy to interact with these endpoints and to
render these forms.

To use this API you will need to integrate the Forms REST JavaScript library in your client application.
The details of the library and the methods that it provides are given in the following section, along with a
simple example. Details of the REST API are present in the Red Hat JBoss BPM Suite Developers Guide ,
although you should probably only use the REST API via the JavaScript library described here.

4.8.12.1. JavaScript Library for Form Reuse

The JavaScript API for Form Reuse makes it easy to use forms created in one Business Central
application to be used in remote applications and allows loading of these forms from different Business
Central instances, submitting them, launching processes or task instances, and executing callback
functions when the actions are completed.

Blueprint for using the JavaScript Library
A simple example of using this API would involve the following steps:

1. Integrate the JavaScript library in the codebase for the external client application so that its
functions are available.

2. Create a new instance of the jBPMFormsAPI class in your own JavaScript code. This is the

<deployment-descriptor
 xsi:schemaLocation="http://www.jboss.org/jbpm deployment-descriptor.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <persistence-unit>org.jbpm.domain</persistence-unit>
 <audit-persistence-unit>org.jbpm.domain</audit-persistence-unit>
 <audit-mode>JPA</audit-mode>
 <persistence-mode>JPA</persistence-mode>
 <runtime-strategy>SINGLETON</runtime-strategy>
 <marshalling-strategies>
 <marshalling-strategy>
 <resolver>reflection</resolver>
 <identifier>
 org.jbpm.integration.cmis.impl.OpenCMISPlaceholderResolverStrategy
 </identifier>
 </marshalling-strategy>
 </marshalling-strategies>

Red Hat JBoss BPM Suite 6.4 User Guide

68

2. Create a new instance of the jBPMFormsAPI class in your own JavaScript code. This is the
starting point for all interactions with this library.

var jbpmRestAPI = new jBPMFormsAPI();

3. Call your desired methods on this instance. For example, if you want to show a form, you would
use the following method:

jbpmRestAPI.showStartProcessForm(hostUrl, deploymentId, processId, divId, onsuccess,
onerror);

and provide the relevant details (hostUrl, deploymentId, processId and so on. A full list of the
methods and parameters follows after this section).

4. Do post processing with the optional onsuccess and onerror methods.

5. Work with the form, starting processes (startProcess()), claiming tasks (claimTask()) starting
tasks (startTask()) or completing tasks (completeTask). Full list of available methods follows
after this section.

6. Once you’re finished with the form, clear the container that displayed it using clearContainer()
method.

Full list of available methods in the JavaScript Library
The JavaScript library is pretty comprehensive and provides several methods to render and process
forms.

1. showStartProcessForm(hostUrl, deploymentId, processId, divId, onsuccessCallback,
onerrorCallback): Makes a call to the REST endpoint to obtain the form URL. If it receives a
valid response, it embeds the process start form in the stated div. You need these parameters:

hostURL: The URL of the Business Central instance that holds the deployments.

deploymentId: The deployment identifier that contains the process to run.

processId: The identifier of the process to run.

divId: The identifier of the div that has to contain the form.

onsuccessCallback (optional): A JavaScript function executed if the form is going to be
rendered. This function will receive the server response as a parameter.

onerrorCallback (optional): A JavaScript function executed if any error occurs and it is
impossible to render the form. This function will receive the server response as a parameter.

2. startProcess(divId, onsuccessCallback, onerrorCallback): Submits the form loaded on the
stated div and starts the process. You need these parameters:

divId: The identifier of the div that contains the form.

onsuccessCallback(optional): A JavaScript function executed after the process is started.
This function receives the server response as a parameter.

onerrorCallback (optional): A JavaScript function executed if any error occurs and it is
impossible to start the process. This function receives the server response as a parameter.

3. showTaskForm(hostUrl, taskId, divId, onsuccessCallback, onerrorCallback): Makes a call

CHAPTER 4. PROCESS DESIGNER

69

3. showTaskForm(hostUrl, taskId, divId, onsuccessCallback, onerrorCallback): Makes a call
to the REST endpoint to obtain the form URL. If it receives a valid response, it embeds the task
form in the stated div. You need these parameters:

hostURL: The URL of the Business Central instance that holds the deployments.

taskId: The identifier of the task to show the form.

divId: The identifier of the div that has to contain the form.

onsuccessCallback (optional): A JavaScript function executed if the form is going to be
rendered. This function receives the server response as a parameter.

onerrorCallback (optional): A JavaScript function executed if any error occurs and it is
impossible to render the form. This function receives the server response as a parameter.

4. claimTask(divId, onsuccessCallback, onerrorCallback): Claims the task whose form is being
rendered. You need these parameters:

divId: The identifier of the div that contains the form.

onsuccessCallback (optional): A JavaScript function executed after the task is claimed.
This function receives the server response as a parameter.

onerrorCallback (optional): A JavaScript function executed if any error occurs and it is
impossible to claim the task. This function receives the server response as a parameter.

5. startTask(divId, onsuccessCallback, onerrorCallback): Starts the task whose form is being
rendered. You need these parameters:

divId: The identifier of the div that contains the form.

onsuccessCallback (optional): A JavaScript function executed after the task is claimed.
This function receives the server response as a parameter.

onerrorCallback (optional): A JavaScript function executed if any error occurs and it is
impossible to claim the task. This function receives the server response as a parameter.

6. releaseTask(divId, onsuccessCallback, onerrorCallback): Releases the task whose form is
being rendered. You need these parameters:

divId: The identifier of the div that contains the form.

onsuccessCallback (optional): A JavaScript function executed after the task is claimed.
This function receives the server response as a parameter.

onerrorCallback (optional): A JavaScript function executed if any error occurs and it is
impossible to claim the task. This function receives the server response as a parameter.

7. saveTask(divId, onsuccessCallback, onerrorCallback): Submits the form and saves the
state of the task whose form is being rendered. You need these parameters:

divId: The identifier of the div that contains the form.

onsuccessCallback (optional): A JavaScript function executed after the task is claimed.
This function receives the server response as a parameter.

onerrorCallback (optional): A JavaScript function executed if any error occurs and it is

Red Hat JBoss BPM Suite 6.4 User Guide

70

onerrorCallback (optional): A JavaScript function executed if any error occurs and it is
impossible to claim the task. This function receives the server response as a parameter.

8. completeTask(divId, onsuccessCallback, onerrorCallback): Submits the form and
completes task whose form is being rendered. You need these parameters:

divId: The identifier of the div that contains the form.

onsuccessCallback (optional): A JavaScript function executed after the task is claimed.
This function receives the server response as a parameter.

onerrorCallback (optional): A JavaScript function executed if any error occurs and it is
impossible to claim the task. This function receives the server response as a parameter.

9. clearContainer(divId): Cleans the div content and the related data stored on the component.
You need these parameters:

divId: The identifier of the div that contains the form.

4.9. VARIABLES

Variables are elements that serve for storing a particular type of data during runtime. The type of data a
variable contains is defined by its data type.

Just like any context data, every variable has its scope that defines its visibility. An element, such as a
process, sub-process, or task can only access variables in its own and parent contexts: variables defined
in the element’s child elements cannot be accessed. Therefore, when an elements requires access to a
variable on runtime, its own context is searched first. If the variable cannot be found directly in the
element’s context, the immediate parent context is searched. The search continues to "level up" until
the process context is reached; in case of global variables, the search is performed directly on the
session container. If the variable cannot be found, a read access request returns null and a write access
produces an error message, and the process continues its execution. Variables are searched for based
on their ID.

In Red Hat JBoss BPM Suite, variables can live in the following contexts:

Session context: Global variables are visible to all process instances and assets in the given
session and are intended to be used primarily by business rules and by constraints. These are
created dynamically by the rules or constraints.

Process context: Process variables are defined as properties in the BPMN2 definition file and are
visible within the process instance. They are initialized at process creation and destroyed on
process finish.

Element context: Local variables are available within their process element, such as an activity.
They are initialized when the element context is initialized, that is, when the execution workflow
enters the node and execution of the onEntry action finished if applicable. They are destroyed
when the element context is destroyed, that is, when the execution workflow leaves the
element.
Values of local variables can be mapped to global or process variables using the assignment
mechanism (for more information, see Section 4.12, “Assignment”). This enables you to
maintain relative independence of the parent element that accommodates the local variable.
Such isolation may help prevent technical exceptions.

4.9.1. Global Variables

Global variables (also known as globals) exist in a knowledge session and can be accessed and are

CHAPTER 4. PROCESS DESIGNER

71

Global variables (also known as globals) exist in a knowledge session and can be accessed and are
shared by all assets in that session. Global variables belong to the particular session of the Knowledge
Base and they are used to pass information to the engine.

Every global variable defines its ID and item subject reference. The ID serves as the variable name and
must be unique within the process definition. The item subject reference defines the data type the
variable stores.

IMPORTANT

The rules are evaluated at the moment the fact is inserted. Therefore, if you are using a
global variable to constrain a fact pattern and the global is not set, the system returns a
NullPointerException.

4.9.1.1. Creating Global Variables

Global variables are initialized either when the process with the variable definition is added to the session
or when the session is initialized with globals as its parameters. Values of global variables can be changed
typically during the assignment, which is a mapping between a process variable and an activity variable.
The global variable is then associated with the local activity context, local activity variable, or by a direct
call to the variable from a child context.

Procedure: Defining Globals in Process Designer

To define a global variable, do the following:

1. In Business Central, go to Authoring → Project Authoring.

2. Open the respective process in Process Designer.

3. Click in the right hand corner of the Process Designer and in the Properties (BPMN-
Diagram) panel that opens, locate the Globals property.

Figure 4.20. Globals property in the Properties (BPMN-Diagram) panel

Red Hat JBoss BPM Suite 6.4 User Guide

72

Figure 4.20. Globals property in the Properties (BPMN-Diagram) panel

4. Click the empty value cell and expand the Editor for Globals window by clicking the arrow on
the right side.

5. In the Editor for Globals window, click Add Global at the top and define the variable details.

Figure 4.21. Editor for Globals window

6. Click Ok to add the global variable.

4.9.1.2. Process variables

CHAPTER 4. PROCESS DESIGNER

73

A process variable is a variable that exists in a process context and can be accessed by its process or its
child elements. Process variables belong to a particular process instance and cannot be accessed by
other process instances. Every process variable defines its ID and item subject reference: the ID serves
as the variable name and must be unique within the process definition. The item subject reference
defines the data type the variable stores.

Process variables are initialized when the process instance is created. Their value can be changed by the
process Activities using the Assignment, when the global variable is associated with the local Activity
context, local Activity variable, or by a direct call to the variable from a child context.

Procedure: Defining Process Variables

1. In Business Central, click Authoring → Project Authoring.

2. Open the respective process in Process Designer.

3. Click on an empty space in the canvas and click .

4. Click on the text field next to Variable Definitions and click .

5. Define your variables in the Editor for Variable Definitions window.

6. Click Ok and Save to save your process.

Note that process variables should be mapped to local variables. See Section 4.9.2, “Local Variables” for
more information.

4.9.2. Local Variables

A local variable is a variable that exists in a child element context of a process and can be accessed only
from within this context: local variables belong to the particular element of a process.

For tasks, with the exception of the Script Task, the user can define Data Input Assignments and Data
Output Assignments in the Assignments property. Data Input Assignment defines variables that enter
the Task and therefore provide the entry data needed for the task execution. The Data Output
Assignments can refer to the context of the Task after execution to acquire output data.

User Tasks present data related to the actor that is executing the User Task. Additionally, User Tasks
also request the actor to provide result data related to the execution.

To request and provide the data, use task forms and map the data in the Data Input Assignment
parameter to a variable. Map the data provided by the user in the Data Output Assignment parameter if
you want to preserve the data as output. For further information, see Section 4.12, “Assignment”.

INITIALIZATION OF LOCAL VARIABLES

Local variables are initialized when the process element instance is created. Their value
can be changed by their parent Activity by a direct call to the variable.

4.9.2.1. Accessing Local Variables

To set a variable value, call the respective setter on the variable field from the Script Activity; for
example, person.setAge(10) sets the Age field of the person global variable to 10.

Red Hat JBoss BPM Suite 6.4 User Guide

74

4.9.3. Setting Process Variables From Business Rule Task

Process variables and rule facts do not share the same context. If a rule has to manipulate a process
variable, you must explicitly map process variable to rule fact. You can access and set process variables
from a business rule task using the folowing approaches:

Mapping process Variables through Business Rule Task Assigments field

Mapping process Variables through WorkflowProcessInstance

4.9.3.1. Mapping Process Variables through Business Rule Task Assigments field

The following example of a domain class called ValidationError containing a boolean attribute isValid
illustrates mapping through the Assigments field:

1. Set a process variable called validationError of type ValidationError.

2. Instantiate the ValidationError object in the ON ENTRY ACTION field or in the Script Tasks
placed before the Business Rule Task:

//Instantiate the object and set the flag to false
demo1.hello1.ValidationError validationError1 = new demo1.hello1.ValidationError();
validationError1.setIsValid(false);

//Assign the object to the process variable
kcontext.setVariable("validationError",validationError1);

1. In the Business Rule Task, click Assignments field and map the task variable in DataInput and
DataOutput:

Name: myvar

Data type: demo1.hello1.ValidationError

Source: validationError

2. Edit the rules belonging to the ruleflow-group and assign it to the Business Rule Task:

rule "HelloAll"
dialect "mvel"
ruleflow-group "validate"
no-loop
when
 _myvar: ValidationError()
then
 _myvar.setIsValid(true);
 update(_myvar);
 System.out.println("The value returned is: " + _myvar.getIsValid());
end

Here, the rule is inserting the fact in the Business Rule Task through DataInput and binding it to _myvar.
You can modify the THEN part of the rule and use it in your process as it is now mapped to
validationError variable in DataOutput.

4.9.3.2. Mapping Process Variables through WorkflowProcessInstance

The following example of setting a process variable, which is used for group attribute in a Human Task,

CHAPTER 4. PROCESS DESIGNER

75

The following example of setting a process variable, which is used for group attribute in a Human Task,
illustrates how you can map process variables through WorkflowProcessInstance:

1. Create a process variable called dynamicGroupId with type String.

2. In the Human Task, set Groups attribute as #{dynamicGroupId}.

3. Put the Business Rule Task ahead of the Human Task and set the ruleflow group value to
dynamic-group.

4. Create a rule under this ruleflow group. This rule sets the process variable dynamicGroupId
dynamically based on its conditions. For example:

import org.kie.api.runtime.process.WorkflowProcessInstance;

 rule "sampleRule"
 no-loop true
 ruleflow-group "dynamic-group"
 when
 $process : WorkflowProcessInstance()
 then
 WorkflowProcessInstance $p =
(WorkflowProcessInstance)kcontext.getKieRuntime().getProcessInstance($process.getId()); //casting
to WorkflowProcessInstance is essential
 $p.setVariable("dynamicGroupId","analyst");
 retract($process);

The WorkflowProcessInstance object is not inserted into the ksession by default. You can insert it
using the following:

kcontext.getKieRuntime().insert(kcontext.getProcessInstance());

NOTE

When a process instance is inserted into ksession as a fact, it can only be used to read
values from it. This is because when using persistence, a process instance is considered
read-only after a transaction is completed. You must reload the process instance before
you attempt to modify it and once the work is done, retract it before the proces is
completed.

4.10. ACTION SCRIPTS

Action scripts are pieces of code that define the Script property of a Script Task or an Element’s
interceptor action. They have access to globals, the process variables, and the predefined variable
kcontext. Accordingly, kcontext is an instance of ProcessContext class and the interface content can
be found at the following location: Interface ProcessContext.

Currently, dialects Java and MVEL are supported for action script definitions. Note that MVEL accepts
any valid Java code and additionally provides support for nested access of parameters, for example, the
MVEL equivalent of Java call person.getName() is person.name. It also provides other improvements
over Java and MVEL expressions are generally more convenient for the business user.

Example 4.2. Action script that prints out the name of the person

Red Hat JBoss BPM Suite 6.4 User Guide

76

http://docs.jboss.org/jbpm/v6.4/javadocs/org/kie/api/runtime/process/ProcessContext.html

// Java dialect
System.out.println(person.getName());

// MVEL dialect
System.out.println(person.name);

4.11. INTERCEPTOR ACTIONS

For every activity, you can define the following actions:

On Entry Actions, which are executed before the activity execution starts, after the activity
receives the token.

On Exit Actions, which are executed after the activity execution, before the outgoing flow is
taken.

You can define both types of actions in the Properties tab of the activity. You can define them either in
Java, Javascript, Drools, or MVEL, and set the language in the Script Language property.

4.12. ASSIGNMENT

The assignment mechanism enables you to pass data into, and retrieve data out of, Activities in business
processes. Assignments that pass data into Activities are executed before the Activity itself is executed.
Assignments map from Business process variables to local data items in activities, known as Data Input
Assignments. Assignments that retrieve data from Activities are executed after the Activity has
executed. They map from local data items in activities, known as Data Output Assignments, to business
process variables.

4.12.1. Data I/O Editor

The Data I/O Editor is the dialog window used to define Activity DataInputs and DataOutputs, as well as
the mappings between them and process variables.

Like process variables, DataInputs and DataOutputs have a name and data-type, such as Integer, String,
or a subclass of Java Object, such as a user-defined Data Object created within JBoss BPM Suite. The
data-types of DataInputs and DataOutputs should match the data-types of the process variables which
they are mapped to or from. Their names may be the same as the corresponding process variables, but
this is not a requirement.

Process Variables are defined in the Variable Definitions property of the business process. Element
DataInputs and DataOutputs are defined in one of three properties of Activities, depending on the
element type:

Elements such as User Tasks and Call Activities, which have both DataInputs and
DataOutputs, use a property called Assignments.

Elements such as Start Events and Intermediate Catch Events, which have DataOutputs but
do not have DataInputs, use a property called DataOutputAssociations.

Elements such as End Events and Intermediate Throw Events, which have DataInputs but do
not have DataOutputs, use a property called DataInputAssociations.

The Assignments, DataOutputAssociations, and DataInputAssociations properties are all edited in

CHAPTER 4. PROCESS DESIGNER

77

The Assignments, DataOutputAssociations, and DataInputAssociations properties are all edited in
the Data I/O Editor. DataInputs can have values assigned to them either by mapping from process
variables or by assigning constant values to them. DataOutputs are mapped to process variables.

To define the DataInputs, DataOutputs and Assignments for an Element, select the Element in the
Business process and click the button to open the Data I/O Editor. Data Input Assignments and Data
Output Assignments can be added by clicking the Add button.

You can also open the Data I/O Editor to edit the Data Inputs and/or Outputs by editing the appropriate
property for the activity: Assignments, DataOutputAssociations, or DataInputAssociations.

NOTE

The Data I/O Editor tool is available in Red Hat JBoss BPM Suite 6.2 or better.

4.12.2. Data I/O Editor Example

In the following example, the Data I/O Editor has been used to create some Data Inputs and Data
Outputs for the user activity Check Invoice. The example makes use of two process variables that have
been defined in the process:

invoice with the type org.kie.test.Invoice;

reason with the type String

Red Hat JBoss BPM Suite 6.4 User Guide

78

The following Data Inputs have been added:

invoice

reason

maxamount

myvar

The Data Inputs and Data Outputs are linked to the corresponding process variables by setting the
Source and Target fields in the dialog window.

The Data I/O Editor enables you to create and assign a constant to a Data Input when setting the
Source column for a Data Input. This is demonstrated by the maxamount Data Input, that has the
constant 1000.00, which will be assigned to it at runtime.

The myvar Data Input and Data Output demonstrates a custom Data Typecom.test.MyType, which is
entered in the dialog window by the user.

4.13. CONSTRAINTS

A constraint is a boolean expression that is evaluated when the element with the constraint is executed.
The workflow depends on the result of the evaluation, that is true or false.

CHAPTER 4. PROCESS DESIGNER

79

There are two types of constraints:

Code constraints, which are defined in Java, Javascript, Drools, or MVEL, and have access to
the data in the working memory, including the global and process variables.

Example 4.3. Java Code Constraint

Example 4.4. MVEL Code Constraint

Example 4.5. Javascript Code Constraint

Rule constraints, which are defined in the form of DRL rule conditions. They have access to
data in the working memory, including the global variables. However, they cannot access the
variables in the process directly, but through the process instance. To retrieve the reference of
the parent process instance, use the processInstance variable of the type
WorkflowProcessInstance. Note that you need to insert the process instance into the session
and update it if necessary, for example, using Java code or an on-entry, on-exit, or explicit
action in your process.

Example 4.6. Rule Constraint with Process Variable Assignment

This rule constraint retrieves the process variable name.

Red Hat JBoss BPM Suite includes a script editor for Java expressions. The constrain condition allows
code constraints for scripts in Java as demonstrated by the editor below.

Figure 4.22. Script Editor

return person.getAge() > 20;

return person.age > 20;

kcontext.setVariable('surname', "tester");
var text = 'Hello ';
print(text + kcontext.getVariable('name') + '\n');

import org.kie.api.runtime.process.ProcessInstance;
import org.kie.api.runtime.process.WorkflowProcessInstance;
...
processInstance : WorkflowProcessInstance()
Person(name == (processInstance.getVariable("name")))

Red Hat JBoss BPM Suite 6.4 User Guide

80

Figure 4.22. Script Editor

When a Java script cannot be represented by the editor, the following alert appears:

4.14. DOMAIN-SPECIFIC TASKS

A domain-specific task is a task with custom properties and handling for a given domain or company.
You can use it repeatedly in different business processes and accommodate interactions with other
technical system.

In Red Hat JBoss BPM Suite, domain-specific task nodes are referred to as custom work items or
custom service nodes.

When creating custom work items, define the following:

Work Item Handler

A work item handler is a Java class that defines how to execute a custom task. Tasks are executed in
the Execution Engine, which contains a work item handler class, that defines how to handle the
particular work item. For the Execution Engine to execute your custom work item, you need to:

Create a work item handler class for the custom work item.

Register the work item handler with the Execution Engine.

Work Item Definition

A work item definition defines how the custom task is presented (its name, icon, parameters, and
similar attributes).

CHAPTER 4. PROCESS DESIGNER

81

4.14.1. Work Item Definition

You can define a work item definition in:

Red Hat JBoss Developer Studio Process Designer

Web Process Designer

A work item has the following properties:

name

A unique name of a service in the given work item set.

description

The description of a service.

version

A version number.

parameters

Defines service data inputs by specifiyng a name and a type. To define service data outputs, you can
add a new property results that follows the same structure.

displayName

The name displayed in a palette.

icon

Refers to a file with the specified name that must be located in the same directory as the work item
configuration file to be used by the import wizard. Icons are used in process diagrams. Icon is a GIF or
PNG file with a size of 16x16 px.

category

Defines a category under which a service is placed when browsing the repository. If the defined
category does not exit, a new category is created.

defaultHandler

Defines the default handler implementation, for example a Java class that implements the
WorkItemHandler interface and can be used to execute the service. The class can be automatically
registered as a handler when importing the service from a repository.

It is also possible to use MVEL to resolve the expression. MVEL provides the additional benefit of
resolving handler’s parameters. For example:

"defaultHandler" : "mvel: new org.jbpm.process.workitem.twitter.TwitterHandler(ksession)"

Available parameters are for example: ksession, taskService, runtimeManager, classLoader, and
entityManagerFactory.

documentation

Refers to an HTML file with the specified name that must be located in the same directory as the
work item configuration file. The file contains a description of the service.

dependencies

The dependencies for the defaultHandler class. It is usually the handler’s implementation JAR, but the
list can contain additional external dependencies as well.

Red Hat JBoss BPM Suite 6.4 User Guide

82

Make sure you provide correct path to the files: use relative path to the directory where the work item
configuration file is located.

If the dependencies are located in a Maven repository, you can define them in the mavenDependencies
property:

"mavenDependencies" : [
 "org.jbpm:jbpm-twitter:1.0",
 "org.twitter4j:twitter4j-core:2.2.2"]

4.14.2. Creating Custom Work Item Definition

JBoss Developer Studio Process Designer
To create a custom work item definition (WID) in JBoss Developer Studio Process Designer, follow
these steps:

1. Create WID_NAME.wid in META-INF. For example,
$PROJECT_HOME/src/main/resources/META-INF/WID_NAME.wid.
This file is identical to a work item definition file created in Business Central.

2. Copy all the icons you want to use into $PROJECT_HOME/src/main/resources/icons.

Web Process Designer
To create a custom work item definition (WID) in the Web Process Designer, follow these steps:

1. Log into Business Central.

2. Click Authoring → Project Authoring.

3. Choose the organizational unit and repository of your project to view the assets in your project.

4. Click WORK ITEM DEFINITIONS → WorkDefinitions.
The WorkDefinitions asset is created by default and contains a number of pre-set work item
definitions.

5. The Work Item Definitions editor opens. Add your WID at the end, for example:

NOTE

The icon defined in the WID must be set and exist in your project. Otherwise, Red
Hat JBoss Developer Studio does not display the custom task.

[
"name" : "Google Calendar",
"description" : "Create a meeting in Google Calendar",
"version" : "1.0",
"parameters" : [
 "FilePath" : new StringDataType(),
 "User" : new StringDataType(),
 "Password" : new StringDataType(),
 "Body" : new StringDataType()
],
"displayName" : "Google Calendar",
"icon" : "calendar.gif"
]

CHAPTER 4. PROCESS DESIGNER

83

Add the imports required by your WID. For example:

NOTE

You have to separate the previous definition with a comma ",". Otherwise, the
validation will fail.

6. Click Validate to make sure your definition is correct.

7. Click Save.

To upload a custom icon for your work item definition, follow these steps:

1. Click New Item → Uploaded file.

2. In the Create new Uploaded file dialog box, define the resource name, including file extension.

3. Click Choose File and upload the file (png or gif, 16x16 pixels).

4. Click Ok.

You can now refer to your icon in your WID. Your WID is in the Process Designer, in the Service Tasks
section by default.

4.14.3. Work Item Handler

A work item handler is a Java class used to execute or abort (during asynchronous execution) work
items. The class defines the business logic of the work item, for example how to contact another system
and request information, which is then parsed into the custom task parameters. Every work item handler
must implement org.kie.api.runtime.process.WorkItemHandler, which is a part of the KIE API.

For more information about work item handlers, see Appendix B. Service Tasks from Red Hat JBoss
BPM Suite User Guide.

DIFFERENT WORK ITEM HANDLER FOR EVERY SYSTEM

You can customize the behavior of your work item by registering different work item
handlers on different systems.

Red Hat JBoss BPM Suite comes with multiple work item handlers in the following modules:

The jbpm-bpm2 module in the org.jbpm.bpmn2.handler package contains the following work
item handlers:

ReceiveTaskHandler (for the BPMN <receiveTask> element)

SendTaskHandler (for the BPMN <sendTask> element)

ServiceTaskHandler (for the BPMN <serviceTask> element)

The jbpm-workitems module in packages within org.jbpm.process.workitem contains, for

import org.drools.core.process.core.datatype.impl.type.StringDataType;
import org.drools.core.process.core.datatype.impl.type.ObjectDataType;

Red Hat JBoss BPM Suite 6.4 User Guide

84

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/paged/user-guide/appendix-b-service-tasks

The jbpm-workitems module in packages within org.jbpm.process.workitem contains, for
example:

ArchiveWorkItemHandler

WebServiceWorkItemHandler

TransformWorkItemHandler

RSSWorkItemHandler

RESTWorkItemHandler

JavaInvocationWorkItemHandler

JabberWorkItemHandler

JavaHandlerWorkItemHandler

FTPUploadWorkItemHandler

ExecWorkItemHandler

EmailWorkItemHandler

The work item handlers must define the executeWorkItem() and abortWorkItem() methods as defined
by the WorkItemHandler interface. These are called during runtime on work item execution.

When a work item is executed, the following is performed:

1. Information about the task is extracted from the WorkItem instance.

2. The work item business logic is performed.

3. The process instance is informed that the work item execution finished (as completed or
aborted) using the respective method of the WorkItemManager:

public class GoogleCalendarHandler implements WorkItemHandler {
 @Override
 public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {
 Map<String, Object> results = new HashMap<String, Object>();
 // obtain parameters
 String filePath = (String) workItem.getParameter("FilePath");
 String user = (String) workItem.getParameter("User");
 // execute the custom logic here
 // pass results to next processing, for example
 Object result;
 results.put("Result", result);
 manager.completeWorkItem(workItem.getId(), results)
 }
 @Override
 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {
 manager.abortWorkItem(workItem.getId());
 }

}

CHAPTER 4. PROCESS DESIGNER

85

If you use the work item in a maven project, you need to declare the following dependency:

To abort the work item, use the WorkItemHandler.abortWorkItem() before it is completed. For more
information about asynchronous execution, see Red Hat JBoss BPM Suite Development Guide .

4.14.4. Registering Work Item handler in Business Central

To register a work item handler in Business Central, follow these steps:

Procedure: Uploading JAR File

1. Log into Business Central.

2. Click Authoring → Artifact repository.

3. Click Upload and select the JAR file of your work item handler.

4. Click Upload.

Procedure: Adding Dependencies

1. Click Authoring → Project Authoring.

2. Click Open Project Editor.

3. Click Project Settings: Project General Settings and select Dependencies list from the menu.

4. Click Add from repository and select the file you have uploaded.

Procedure: Registering Work Item Handler

1. Click Authoring → Project Authoring.

2. Click Open Project Editor.

3. Click Project Settings: Project General Settings and select Deployment descriptor from the
menu.

4. Navigate to Work Item handlers and click Add.

5. Enter the name of your custom work item definition into the first Value field with no white
spaces. For example, GoogleCalendar.

6. Instantiate your work item handler in the second field. For example, if your work item is in the
com.sample package, new com.sample.GoogleCalendarHandler().

7. Click Save.

NOTE

<dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-workitems</artifactId>
 <version>6.5.0.Final-redhat-2</version>
</dependency>

Red Hat JBoss BPM Suite 6.4 User Guide

86

NOTE

If you want your work item handler to be available for all your projects, place the JAR file
in DEPLOY_DIR/business-central.war/WEB-INF/lib/.

If you want to register your work item handler for all your projects, you can do so in
{SERVER_HOME}/business-central.war/WEB-INF/classes/META-INF/kie-wb-
deployment-descriptor.xml.

4.14.5. Registering Work Item Handler Outside of Business Central

To register your Work Item Handler in the kie-deployment-descriptor.xml file:

1. Open the PROJECT_HOME/META_INF/kie-deployment-descriptor.xml file.

2. Locate the <work-item-handlers> tag.

3. Add your Work Item Handler, for example:

4. If your Work Item Handler uses a custom JAR file, include it in your pom.xml as a dependency.

Alternatively, if you use RuntimeManager directly, see the following example:

<work-item-handler>
 <resolver>mvel</resolver>
 <identifier>
 new org.jbpm.process.workitem.rest.RESTWorkItemHandler(classLoader)
 </identifier>
 <parameters/>
 <name>Rest</name>
</work-item-handler>

import java.util.Map;

import org.kie.api.KieServices;
import org.kie.api.io.ResourceType;
import org.kie.api.runtime.process.WorkItemHandler;
import org.kie.api.runtime.manager.RuntimeEngine;
import org.kie.api.runtime.manager.RuntimeEnvironment;
import org.kie.api.runtime.manager.RuntimeEnvironmentBuilder;
import org.kie.api.runtime.manager.RuntimeManagerFactory;
import org.jbpm.executor.impl.wih.AsyncWorkItemHandler;
import org.jbpm.runtime.manager.impl.DefaultRegisterableItemsFactory;

...

RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get().newDefaultBuilder()
 .userGroupCallback(userGroupCallback)
 .addAsset(ResourceFactory.newClassPathResource("BPMN2-ScriptTask.bpmn2"),
ResourceType.BPMN2)
 .registerableItemsFactory(new DefaultRegisterableItemsFactory() {

 @Override
 public Map<String, WorkItemHandler> getWorkItemHandlers(RuntimeEngine runtime) {
 Map<String, WorkItemHandler> handlers = super.getWorkItemHandlers(runtime);
 handlers.put("async", new AsyncWorkItemHandler(executorService,

CHAPTER 4. PROCESS DESIGNER

87

Implementations of the org.kie.api.task.UserGroupCallback interface are in the
org.jbpm.services.task.identity package.

Use CDI injection to get an instance of the org.kie.api.executor.ExecutorService interface. If
your container does not support CDI injection, use factory
org.jbpm.executor.ExecutorServiceFactory.

To include a custom WorkItemHandler, implement the RegisterableItemsFactory interface.
Alternatively, you can extend the following existing implementation and add your handlers:

org.jbpm.runtime.manager.impl.SimpleRegisterableItemsFactory

org.jbpm.runtime.manager.impl.DefaultRegisterableItemsFactory

org.jbpm.runtime.manager.impl.KModuleRegisterableItemsFactory

org.jbpm.runtime.manager.impl.cdi.InjectableRegisterableItemsFactory

For further information about the implementation, see the org.jbpm.runtime.manager.impl.* package.

For a list of Maven dependencies, see example Embedded jBPM Engine Dependencies in chapter
Dependency Management of the Red Hat JBoss BPM Suite Development Guide .

NOTE

The recommended practice is to use the Service API and register your work item handlers
in KJAR in kie-deployment-descriptor.xml.

4.15. SERVICE REPOSITORY

The service repository feature enables you to import an already existing service from a repository
directly into your project. It allows multiple users to reuse generic services, such as work items allowing
integration with Twitter, performing file system operations, and similar. Imported work items are
automatically added to your palette and ready to use.

If you connect to a service repository using its URL, a list of available provided services opens. Each of
the listed services can then be installed into your project. If you install a service:

The service configuration (work item definition file, .wid) is installed into the project as well. This
file can later be edited. If there is already a work item definition file present, it will not be
overwritten.

A service icon defined in the service configuration is installated as well. If the icon does not exist,
a default one is provided.

The service’s Maven dependencies are added into the project’s pom.xml file.

The service default handler is added into the project’s deployment descriptor.

"org.jbpm.executor.commands.PrintOutCommand"));
 return handlers;
 }
 })
 .get();

manager = RuntimeManagerFactory.Factory.get().newSingletonRuntimeManager(environment);

Red Hat JBoss BPM Suite 6.4 User Guide

88

https://access.redhat.com/documentation/en/red-hat-jboss-bpm-suite/6.4/single/development-guide/#dependency_management
https://github.com/droolsjbpm/jbpm/tree/6.5.x/jbpm-services/jbpm-services-api/src/main/java/org/jbpm/services/api

PUBLIC SERVICE REPOSITORY

A public service repository with various predefined work items is available at
http://docs.jboss.org/jbpm/v6.4/repository/.

NOTE

Although you can import any work items, only the following work items are available by
default (and supported) in Red Hat JBoss BPM Suite: Log, Email, Rest, and WS. You can
still import the other work items, but they are not supported by Red Hat.

4.15.1. Installing Services from Service Repository

There are two ways of installing services from a service repository: using Process Designer in Business
Central or during the Business Central startup process.

Installing Services in Process Designer
To import a work item from a service repository directly in Business Central, do the following:

1. Open your process in Process Designer.

2. In the editor menu, click Connect to a Service Repository ().

3. In the Service Repository Connection window, define the location of the repository on the
location input line and click Connect.

Figure 4.23. Establishing Connection to Service Repository

4. To install an asset, click next to the asset you want to install.
After the service is successfully installed, a notification will appear on the screen. To start using
the service, save and reopen your process.

CHAPTER 4. PROCESS DESIGNER

89

http://docs.jboss.org/jbpm/v6.4/repository/

Installing Services During Business Central Startup
The automatic installation enables you to specify the repository URL and a list of services to be installed
during the Business Central startup process. The services are then ready for use after you create or
open a process in Process Designer.

NOTE

Make sure you have the correct service names specified in the service’s .wid file ready.

To install a service (for example Twitter) from the repository located at
http://docs.jboss.org/jbpm/v6.4/repository/, start the server using the following command:

./standalone.sh -Dorg.jbpm.service.repository=http://docs.jboss.org/jbpm/v6.4/repository/ -
Dorg.jbpm.service.servicetasknames=Twitter

You can specify more services at once by separating them with a comma. Install-all option is not
currently available.

./standalone.sh -Dorg.jbpm.service.repository=http://docs.jboss.org/jbpm/v6.4/repository/ -
Dorg.jbpm.service.servicetasknames=Twitter,Jabber

WORK ITEMS MAY NOT APPEAR IN YOUR PALETTE

Every work item must be registered in the DEPLOY_DIRECTORY/business-
central.war/WEB-INF/classes/META-INF/CustomWorkItemHandler.conf file. If a work
item is not registered in the file, it will not be available for use.

4.15.2. Setting up Service Repository

A service repository can be any repository, local or remote, with the index.conf file in its root directory.

Repository Configuration File
The index.conf file must be located in the root directory of the service repository. It contains a list of
folders to be processed when searching for services in the service repository.

Example 4.7. index.conf

Email
FileSystem
ESB
FTP
Google
Java
Jabber
Rest
RSS
Transform
Twitter

Each directory can contain another index.conf file. In that case, a new hierarchical structure is created
and additional subfolders are scanned. Note that the hierarchical structure of the repository is not
shown when browsing the repository using the import wizard, as the category property in the

Red Hat JBoss BPM Suite 6.4 User Guide

90

http://docs.jboss.org/jbpm/v6.4/repository/

configuration file is used for that.

Work Item Configuration File
Directories with work items must contain:

A work item configuration file.

All resources referenced in the work item configuration file: icon, documentation, and
dependencies.

A work item configuration file is a file with the same name as the parent directory, for example
Twitter.wid, that contains details about the work item resources in the service repository. The file is an
extension of the work item definition file (see Section 4.14.1, “Work Item Definition”). Note that the
configuration file must contain references to any dependencies the work item handler requires.
Optionally, it can define the documentation property with a path to documentation and category which
defines the category the custom work item is placed under in the repository.

Example 4.8. Work Item Configuration File (MVEL)

import org.drools.core.process.core.datatype.impl.type.StringDataType;
[
 [
 "name" : "Twitter",
 "description" : "Send a Twitter message.",
 "parameters" : [
 "Message" : new StringDataType()],
 "displayName" : "Twitter",
 "eclipse:customEditor" :
"org.drools.eclipse.flow.common.editor.editpart.work.SampleCustomEditor",
 "icon" : "twitter.gif",
 "category" : "Communication",
 "defaultHandler" : "org.jbpm.process.workitem.twitter.TwitterHandler",
 "documentation" : "index.html",
 "dependencies" : [
 "file:./lib/jbpm-twitter.jar",
 "file:./lib/twitter4j-core-2.2.2.jar"]
]
]

When creating a work item configuration file, it is also possible to use JSON instead of MVEL. See the
previous example written in JSON:

Example 4.9. Work Item Configuration File (JSON)

[
 [
 "java.util.HashMap",
 {
 "name":"TestServiceFour",
 "displayName":"Twitter",
 "description":"Send a Twitter message",
 "parameters":[
 "java.util.HashMap",
 { "Message":["org.drools.core.process.core.datatype.impl.type.StringDataType", {}] }],

CHAPTER 4. PROCESS DESIGNER

91

"eclipse:customEditor":"org.drools.eclipse.flow.common.editor.editpart.work.SampleCustomEditor",

 "defaultHandler" : "org.jbpm.process.workitem.twitter.TwitterHandler",
 "documentation" : "index.html",
 "dependencies":[
 "java.util.ArrayList", ["file:./lib/jbpm-twitter.jar", "file:./lib/twitter4j-core-2.2.2.jar"]]
 }
]
]

4.15.3. Retrieving Service Repository Information

Classes provided in the org.jbpm.process.workitem package allow you to connect to the service and
retrieve service information. For example, to list all the services contained in a repository and declared in
index.conf, use:

NOTE

In the following text, Twitter is used as an example service. To interact with a different
service, replace Twitter with a name declared in the service .wid file.

To get more detailed information about a service, use:

To check whether the correct version of a service is contained in the repository:

IMPORTANT

All operations are read-only. It is not possible to update the service repository
automatically.

4.16. ACTOR ASSIGNMENT CALLS

User Tasks must define either the ActorID or the GroupID parameter, which define the users who can
or should execute the User Tasks. It is in the Task List of these users the Task appears.

Map<String, WorkDefinitionImpl> workitemsFromRepo =
WorkItemRepository.getWorkDefinitions("http://docs.jboss.org/jbpm/v6.4/repository/");

workitemsFromRepo.get("Twitter").getName(); // "Twitter"
workitemsFromRepo.get("Twitter").getDescription(); // "Send a Twitter message."
workitemsFromRepo.get("Twitter").getDefaultHandler(); //
"org.jbpm.process.workitem.twitter.TwitterHandler"
workitemsFromRepo.get("Twitter").getDependencies(); // String["file:./lib/jbpm-
twitter.jar","file:./lib/twitter4j-core-2.2.2.jar"]
...

if(workitemsFromRepo.containsKey("Twitter") &&
workitemsFromRepo.get("Twitter").getVersion().equals("1.0")) {
 // Do something here.
}

Red Hat JBoss BPM Suite 6.4 User Guide

92

If the User Task element defines exactly one user, the User Task appears only in the Task List of that
particular user. If a User Task is assigned to more than one user, that is, to multiple actors or to a group, it
appears in the Task List of all the users and any of the users can claim and execute the User Task. End
users define these properties in the Process Designer.

PREDEFINED ADMINISTRATOR USER

The Administrator can manipulate the life cycle of all Tasks, even if not being their
potential owner. By default, a special user with userId Administrator is the administrator
of each Task. It is therefore recommended to always define at least user Administrator
when registering the list of valid users with the User Task service.

4.17. LDAP CONNECTION

A dedicated UserGroupCallback implementation for LDAP servers is provided with the product to
allow the User Task service to retrieve information on users, and groups and roles directly from an LDAP
service.

The LDAP UserGroupCallback implementation takes the following properties:

ldap.bind.user: username used to connect to the LDAP server (optional if LDAP server accepts
anonymous access)

ldap.bind.pwd: password used to connect to the LDAP server (optional if LDAP server accepts
anonymous access)

ldap.user.ctx: context in LDAP with user information (mandatory)

ldap.role.ctx: context in LDAP with group and role information (mandatory)

ldap.user.roles.ctx: context in LDAP with user group and role membership information
(optional; if not specified, ldap.role.ctx is used)

ldap.user.filter: filter used to search for user information; usually contains substitution keys {0},
which are replaced with parameters (mandatory)

ldap.role.filter: filter used to search for group and role information, usually contains substitution
keys {0}, which are replaced with parameters (mandatory)

ldap.user.roles.filter: filter used to search for user group and role membership information,
usually contains substitution keys {0}, which are replaced with parameters (mandatory)

ldap.user.attr.id: attribute name of the user ID in LDAP (optional; if not specified, uid is used)

ldap.roles.attr.id: attribute name of the group and role ID in LDAP (optional; if not specified cn
is used)

ldap.user.id.dn: user ID in a DN, instructs the callback to query for user DN before searching for
roles (optional, by default false)

java.naming.factory.initial: initial context factory class name (by default
com.sun.jndi.ldap.LdapCtxFactory)

java.naming.security.authentication: authentication type (possible values are none, simple,
strong; by default simple)

CHAPTER 4. PROCESS DESIGNER

93

java.naming.security.protocol: security protocol to be used; for instance ssl

java.naming.provider.url: LDAP url (by default ldap://localhost:389; if the protocol is set to
ssl then ldap://localhost:636)

4.17.1. Connecting to LDAP

To be able to use the LDAP UserGroupCallback implementation configure the respective LDAP
properties (see Section 4.17, “LDAP connection”) in one of the following ways:

programatically: build a Properties object with the respective LDAPUserGroupCallbackImpl
properties and create LDAPUserGroupCallbackImpl with the Properties object as its
parameter.

declaratively: create the jbpm.usergroup.callback.properties file in the root of your
application or specify the file location as a system property: -
Djbpm.usergroup.callback.properties=FILE_LOCATION_ON_CLASSPATH
Make sure to register the LDAP callback when starting the User Task server.

4.18. EXCEPTION MANAGEMENT

When an unexpected event, that deviates from the normative behavior, occurs in a process instance, it is

import org.kie.api.PropertiesConfiguration;
import org.kie.api.task.UserGroupCallback;
...
Properties properties = new Properties();
properties.setProperty(LDAPUserGroupCallbackImpl.USER_CTX, "ou=People,dc=my-
domain,dc=com");
properties.setProperty(LDAPUserGroupCallbackImpl.ROLE_CTX, "ou=Roles,dc=my-
domain,dc=com");
properties.setProperty(LDAPUserGroupCallbackImpl.USER_ROLES_CTX,
"ou=Roles,dc=my-domain,dc=com");
properties.setProperty(LDAPUserGroupCallbackImpl.USER_FILTER, "(uid={0})");
properties.setProperty(LDAPUserGroupCallbackImpl.ROLE_FILTER, "(cn={0})");
properties.setProperty(LDAPUserGroupCallbackImpl.USER_ROLES_FILTER, "(member=
{0})");

UserGroupCallback ldapUserGroupCallback = new
LDAPUserGroupCallbackImpl(properties);

UserGroupCallbackManager.getInstance().setCallback(ldapUserGroupCallback);

#ldap.bind.user=
#ldap.bind.pwd=
ldap.user.ctx=ou\=People,dc\=my-domain,dc\=com
ldap.role.ctx=ou\=Roles,dc\=my-domain,dc\=com
ldap.user.roles.ctx=ou\=Roles,dc\=my-domain,dc\=com
ldap.user.filter=(uid\={0})
ldap.role.filter=(cn\={0})
ldap.user.roles.filter=(member\={0})
#ldap.user.attr.id=
#ldap.roles.attr.id=

Red Hat JBoss BPM Suite 6.4 User Guide

94

When an unexpected event, that deviates from the normative behavior, occurs in a process instance, it is
referred to as an exception. There are two types of exceptions: business exceptions and technical
exceptions.

Business exceptions
Business exceptions relate to the possible incorrect scenarios of the particular process, for example,
trying to debit an empty bank account. Handling of such exceptions is designed directly in the process
model using BPMN process elements.

When modeling business exception management, the following mechanisms are to be used:

Errors

An Error is a signal that an unexpected situation occurred (see Section 23.1, “Errors”). The
mechanism can be used immediately when the problem arises and does not allow for any
compensation.

Compensation

Compensation is equivalent to the Error mechanism; however, it can be used only on sub-processes
when it is required that the execution flow continues after the compensation using the "regular"
outgoing Flow (execution continues after the compensation as if no compensation occurred).

Canceling

Canceling is equivalent to the Error mechanism; however, it can be used only on sub-processes and it
is required that the sub-process takes the flow leaving the respective Cancel Intermediate Event so
that the "normal" execution flow is never taken as opposed to compensation.

Technical exceptions
Technical exceptions happen when a technical component of a business process acts in an unexpected
way. When using Java-based systems, this often results in a Java Exception being thrown by the system.
Technical components used in a process fail in a way that can not be described using BPMN (for further
information, see Red Hat JBoss BPM Suite Development Guide).

CHAPTER 4. PROCESS DESIGNER

95

CHAPTER 5. DATA MODELS
Data models are models of data objects. A data object is a custom complex data type (for example, a
Person object with data fields Name, Address, and Date of Birth).

Data models are saved in data models definitions stored in your Project. Red Hat JBoss BPM Suite
provides the Data modeler, a custom graphical editor, for defining data objects.

5.1. DATA MODELER

The Data Modeler is the built-in editor for creating data objects as part of a Project data model from
Business Central. Data objects are custom data types implemented as POJOs. These custom data
types can then be used in any resource (such as a Process) after importing them.

To open the editor, open the Project Authoring perspective, click New Item → Data Object on the
perspective menu. If you want to edit an existing model, these files are located under Data Objects in
Project Explorer.

You will be prompted to enter the name of this model object when creating a new model, and asked to
select a location for it (in terms of the package). On successful addition, it will bring up the editor where
you can create fields for your model object.

The Data Modeler supports roundtrips between the Editor and Source tabs, along with source code
preservation. This allows you to make changes to your model in external tools, like JBDS, and the Data
Modeler updates the necessary code blocks automatically.

In the main editor window the user can

Add/delete fields

Select a given field. When a field is selected then the field information will be loaded in all the
domain editors.

Select the data object class. For example, by clicking on the data object name (on the main
window) instead of loading the field properties, the domain editors will load the class properties.

Red Hat JBoss BPM Suite 6.4 User Guide

96

5.2. AVAILABLE FIELD TYPES

Data object fields can be assigned to any of the following types:

Java Object Primitive Types:
BigDecimal, BigInteger, Boolean, Byte, Character, Date, Double, Float, Integer, Long, Short,
and String.

Java Primitive Types:
boolean, byte, char, double, float, int, long, and short.

Java Enum Types:
Java enum types defined in current project or imported as a dependency. See Adding
Dependencies.

Current project Data Objects:
Any user defined data object automatically becomes available to be assigned as a field type.

Project Dependencies:
Other Java classes imported as a Java dependency in current project. See Adding
Dependencies.

5.3. ANNOTATIONS IN DATA MODELER

Red Hat JBoss BPM Suite supports all Drools annotations by default, and can be customized using the
Drools & jBPM domain screen. For further information about available domain screens, see Section 5.6,
“Data Object Domain Screens”.

To add or edit custom or pre-defined annotations, switch to the Source tab and modify the source code
directly. You can edit the source code directly in both Red Hat JBoss Developer Studio and Business
Central. Use the Advanced screen to manage arbitrary annotations.

When creating or adding fields to a persistable data object, the JPA annotations that are added by
default will generate a model that can be used by Red Hat JBoss BPM Suite at runtime. In general,
modifying the default configurations where the model will be used by processes is not recommended.

Red Hat JBoss BPM Suite 6.2 onwards supports the use of JPA specific annotations, with Hibernate
available as the default JPA implementation. Other JPA annotations are also supported where the JPA
provider is loaded on the classpath.

NOTE

CHAPTER 5. DATA MODELS

97

NOTE

When adding an annotation in the Data Modeler, the annotation class should be on the
workbench classpath, or a project dependency can be added to a .jar file that has the
annotation. The Data Modeler will run a validation check to confirm that the annotation is
on the classpath, and the project will not build if the annotation is not present.

5.4. CREATING A DATA OBJECT

1. In the Project Authoring perspective, click New Item → Data Object on the perspective menu.

2. Enter the name and select the package. The name must be unique across the package, but it is
possible to have two data objects with the same name in two different packages.

3. To make your Data Object persistable, check the Persistable checkbox.

4. Click Ok.

5. Create fields of the data object:

a. Click add field in the main editor window to add a field to the object with the attributes Id,
Label and Type. Required attributes are marked with *.

Id: The ID of the field unique within the data object.

Label: The label to be used in the Fields panel. This field is optional.

Type: The data type of the field.

b. Click Create to create the new field and close the New field window. Alternatively, click
Create and continue to keep the New field window open.

To edit an attribute, select the attribute and use the general properties screen.

USING A DATA OBJECT

To use a data object, make sure you import the data model into your resource. Unless
both the data model and your resource, for example a guided rule editor, are in the same
package, this is necessary even if both are in the same project.

5.5. PERSISTABLE DATA OBJECTS

Red Hat JBoss BPM Suite 6.4 User Guide

98

From Red Hat JBoss BPM Suite 6.2 onwards, the Data Modeler supports the generation of persistable
data objects. Persistable data objects are based on the JPA specification. When you check the
Persistable checkbox, the platform will use default persistence settings. You can make a data object
persistable in two ways:

When creating a new data object.
When creating a new object, follow the procedure in Section 5.4, “Creating a Data Object” .

When a data object has already been created.

To make an already created data object persistable:

1. Open your data object in Business Central.

2. Click the Editor tab.

3. Select the Persistence icon from the menu on the right:

4. Check Persistable.

5. Click Save to save your changes.

5.6. DATA OBJECT DOMAIN SCREENS

The following domain screen tabs can be selected from the right side of the data object editor screen.

Drools & jBPM
The Drools & jBPM screen allows configuration of Drools-specific attributes.

The Data Modeler in Business Central supports editing of the pre-defined annotations of fact model
classes and attributes. The following Drools annotations are supported, and can be customized using
the Drools & jBPM interface:

TypeSafe

ClassReactive

PropertyReactive

Role

Timestamp

Duration

Expires

CHAPTER 5. DATA MODELS

99

Remotable

Figure 5.1. The Drools & jBPM Class View

For the fields within the fact model, the position and Equals annotations are supported. The Drools &
jBPM screen when a specific field is selected looks as follows:

Figure 5.2. The Drools & jBPM Field View

Persistence
The Persistence screen can be used to configure attributes on basic JPA annotations for persistence.
For fine tuning of annotations, or to add specific annotations, use the Advanced screen.

Figure 5.3. The Class Persistence View

Red Hat JBoss BPM Suite 6.4 User Guide

100

Figure 5.3. The Class Persistence View

The Persistence screen when a specific field is selected looks as follows:

Figure 5.4. The Field Persistence View

The following annotations can be managed via the Persistence screen.

Table 5.1. Type Annotations

Annotation Automatically Generated when the Data Object is Persistable

javax.persistence.Entity Yes

javax.persistence.Table No

Table 5.2. Field Annotations

Annotation Automatically Generated when the
Data Object is Persistable

Responsible UI Element

javax.persistence.Id Yes Is Identifier

javax.persistence.GeneratedV
alue

Yes Generation strategy

CHAPTER 5. DATA MODELS

101

javax.persistence.SequenceG
enerator

Yes Sequence Generator

javax.persistence.Column No Column Properties attributes

javax.persistence.OneToOne No Relationship Type

javax.persistence.OneToMany Yes - when a field has one or multiple
values

Relationship Type

javax.persistence.ManyToOne Yes - when a field has multiple values Relationship Type

javax.persistence.ManyToMan
y

No Relationship Type

javax.persistence.ElementColl
ection

Yes - generated by the UI when a new
field has one or multiple of a base java
type, such as Integer, Boolean, String.
This annotation cannot be edited with the
Persistence screen tool (use the
Advanced screen tool instead).

Created by a field marked as
list.

Annotation Automatically Generated when the
Data Object is Persistable

Responsible UI Element

All other JPA annotations can be added using the Advanced screen.

Advanced
The Advanced screen is used for fine-tuning of annotations. Annotations can be configured, added and
removed using the Advanced Domain screen. These can be any annotation that is on the classpath.

After you click on the add annotation option, the Add new Annotation window is displayed. It is
required to enter a fully qualified class name of an annotation and by pressing the search icon, the
annotation definition is loaded into the wizard. Then it is possible to set different annotation parameters
(required parameters are marked with *).

Red Hat JBoss BPM Suite 6.4 User Guide

102

If possible, the wizard will provide a suitable editor for the given parameters.

If it is not possible to provide a customized editor, the wizard will provide a generic parameter editor.

After you enter all the required parameters, the Finish button is enabled and the annotation can be

CHAPTER 5. DATA MODELS

103

After you enter all the required parameters, the Finish button is enabled and the annotation can be
added to the given field or data object.

5.7. CONFIGURING RELATIONSHIPS BETWEEN DATA OBJECTS

When an attribute type is defined as another data object, the relationship is identified and defined by
the symbol in the object attribute list. You can jump to the data object definition to view and edit by
clicking on the icon.

Relationship customization is only relevant where the data object is persistable.

Relationships can be configured by selecting an attribute with a relationship and choosing the
Persistence button on the right. Under Relationship Properties, click the Relationship Type property
editing option.

Attempting to delete a data object that is used by a different data object will show the Usage Detected
screen. It is still possible to delete the object from here, however this will stop your project from building
successfully until the resulting errors are resolved.

5.8. PERSISTENCE DESCRIPTOR

Business central contains a persistence.xml file with default persistence settings. To configure
persistence settings, click Project Settings: Project General Settings → Persistence descriptor.

Red Hat JBoss BPM Suite 6.4 User Guide

104

Use the Advanced properties section to change or delete or add properties.

If you open the Project persistable Data Objects section in the Persistence Descriptor, you will see two
buttons:

Add class enables the user to add arbitrary classes to the persistence.xml file to be declared as
entities.

Add project persistable classes will automatically load all the persistable data objects in the
current project.

5.9. DEPLOYMENT DESCRIPTOR

Deployment Descriptor editor can also be accessed through the Project Editor menu, and allows
configuration of the kie-deployment-descriptor.xml file for deployment in the jBPM runtime.
Automatic configuration of the JPA Marshalling Strategies is only available in JBoss BPM Suite.

CHAPTER 5. DATA MODELS

105

Red Hat JBoss BPM Suite 6.4 User Guide

106

CHAPTER 6. ADVANCED PROCESS MODELING

6.1. PROCESS MODELING OPTIONS

You can create processes in multiple ways:

Using one of the graphical editors

You can use two delivered graphical editors. Process Designer is available through Business Central
and Eclipse Process Designer.

Using an XML editor

You can use any XML or text editor to create a process specification using the BPMN2 XML schema.
See the Defining Processes Using XML chapter of the Red Hat JBoss BPM Suite Development Guide
for further information.

Using the Process Fluent API

You can use the Red Hat JBoss BPM Suite API directly. The most important process model elements
are defined in the following packages:

org.jbpm.workflow.core

org.jbpm.workflow.core.node

See the Process Fluent API chapter of the Red Hat JBoss BPM Suite Development Guide for further
information.

6.2. WORKFLOW PATTERNS

Workflow patterns are predefined blocks of process elements that enable you to reuse a predefined
combination of process elements. Workflow patterns include multiple nodes that are connected and
form a common executable pattern that can be reused in a process model.

Workflow patterns are available in the Workflow Patterns section of the Object Library and can be
dragged and dropped onto the canvas just like any other elements. To attach a pattern to an element on
the canvas, select the element and drag and drop the pattern from the palette onto the canvas. The
pattern automatically connects to the element.

Multiple predefined workflow patterns are provided by default and you can define your own workflow
patterns as necessary.

The definitions are defined as JSON objects in the EAP_HOME/standalone/deployments/business-
central.war/org.kie.workbench.KIEWebapp/defaults/patterns.json file.

6.2.1. Defining workflow patterns

To define custom workflow patterns:

1. In the Workflow Patterns section of the Object Library, locate a workflow pattern that will
serve as a base for your workflow pattern.

2. Open the EAP_HOME/standalone/deployments/business-
central.war/org.kie.workbench.KIEWebapp/defaults/patterns.json file in a text editor.

3. Locate the JSON object with the description property set to the base workflow pattern name

CHAPTER 6. ADVANCED PROCESS MODELING

107

https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/development_guide/#defining_processes_using_xml
https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/development_guide/#sect_process_fluent_api

3. Locate the JSON object with the description property set to the base workflow pattern name
(for example, "description" : "Sequence Pattern").

4. Copy the JSON object and modify its elements as needed. Note that all the JSON objects are
nested in a pair of square brackets and are comma separated.

6.2.2. Changing workflow patterns for an existing project

You can change the patterns.json file as needed for projects.

1. In Business Central, open the process in the Process Editor.

2. Open the Project Explorer panel on the left side of the editor and switch to the Repository
View.

3. Expand the global folder and download and modify the patterns.json file as needed.

4. Upload the revised file.

5. Close and reopen the business process. You can view the new patterns under the the Workflow
Patterns section of the Object Library.

Red Hat JBoss BPM Suite 6.4 User Guide

108

CHAPTER 7. SOCIAL EVENTS
In Red Hat JBoss BPM Suite, users can follow other users and gain an insight into what activities are
being performed by those users. They can also listen for and follow timelines of regular events. This
capability comes via the implementation of a Social Activities framework. This framework ensures that
event notifications are generated by different activities within the system and that these notifications
are broadcast for registered actors to view.

Multiple activities trigger events. These include: new repository creation, adding and updating resources
and adding and updating processes. With the right credentials, a user can view these notifications once
they are logged into Business Central.

Follow User
To follow a user, search for the user by entering his name in the search box in the People perspective.
You get to this perspective by navigating to it from Home → People.

You must know the login name of the other user that you want to follow. As you enter the name in the
search box, the system will try and auto-complete the name for you and display matches based on your
partial entry. Select the user that you want to follow from these matches and the perspective will update
to display more details about this user.

You can choose to follow the user by clicking on the Follow button. The perspective refreshes to
showcase the user details and their recent activities.

Activity Timeline
Click on Home → Timeline to see a list of recent assets that have been modified (in the left hand
window) and a list of changes made in the selected repository in the right hand side. You can click on the
assets to directly open the editor for the assets (if you have the right permissions).

CHAPTER 7. SOCIAL EVENTS

109

PART II. SIMULATION AND TESTING

Red Hat JBoss BPM Suite 6.4 User Guide

110

CHAPTER 8. PROCESS SIMULATION
Process simulation allows users to simulate a business process based on the simulation parameters and
get a statistical analysis of the process models over time in form of graphs. This helps to optimize pre
and post execution of a process, minimizing the risk of change in business processes, performance
forecast, and promote improvements in performance, quality and resource utilization of a process.

The simulation process runs in the simulation engine extension, which relies on the possible execution
paths rather than process data. On simulation, the engine generates events for every simulated activity,
which are stored in the simulation repository.

Simulation input data include general data about the process simulation as well as simulation data for
individual process elements. Process elements executed by the engine automatically do not require any
input data; however, the process itself, Human Tasks, Intermediate Event, and flows leaving a split
Gateway, need such data: further information on simulation data is available in Chapter 34, Process and
the subsequent sections.

8.1. PATH FINDER

Path Finder is a tool that allows you to identify all possible paths a process execution can take.

Before you identify the paths, make sure your process is valid. Then, on the toolbar, click Process

Simulation () and Process Paths.

NOTE

Note that when you click this button only core process paths are searched for. In order to
view Embedded or Event subprocess paths, you have to click on the subprocess, making
sure that it is selected and then click the Process Path button. This will focus on paths
that are specific to this subprocess.

A dialog with data on individual path appears: to visualize any of the identified paths, select the path in
the dialog and click Show Path.

Figure 8.1. Process Paths

CHAPTER 8. PROCESS SIMULATION

111

Figure 8.1. Process Paths

8.2. SIMULATING PROCESSES

8.2.1. Defining Simulation Data on Elements

To run a process simulation, the input simulation data must be specified for the process and each of its
elements. To specify the simulation data:

1. In Business Central, open the process in the Process Editor.

2. Open the Properties panel on the right.

3. For each individual element and the process itself, specify the simulation data in the Simulation
Properties section.

Figure 8.2. Simulation Properties

4. Save the process.

For more information about the simulation data for individual process elements, see Appendix C,
Simulation Data.

8.2.2. Running Process Simulations

Red Hat JBoss BPM Suite 6.4 User Guide

112

1. Open the corresponding process in the Process Editor.

2. Click → Run Process Simulation.

3. In the Run Process Simulation dialog window, define the simulation session details:

Number of instances: the number of process instances the simulation creates and triggers.

Interval: the interval between individual process instantiations.

Interval units: the time unit in which you defined the interval.

Figure 8.3. Run Process Simulation Dialog Window

4. Click Run Process Simulation.

After the simulation starts, the Simulation Results tab opens. The tab includes the Simulation Graphs
panel where you can select the process, different process elements, or paths to view the corresponding
results. For more information, see Section 8.2.3, “Examining Simulation Results” .

If the simulation fails, a notification message is displayed. To prevent the simulation from failing, make
sure the process is valid and not too complex. You can split complex processes into multiple processes.
See the following examples of complex processes:

Processes that contain a complex series of XOR and AND gateways.

Processes that contain a loop where one instance of the loop is not finished before a new
instance starts.

8.2.3. Examining Simulation Results

In the Simulation Graphs panel that opens after you run a simulation, the results are divided into the
following categories:

CHAPTER 8. PROCESS SIMULATION

113

Category Contains

Process Graphs with general results of a process simulation.

Process Elements Simulation results for individual elements. Each Human Task element in this
category contains the following graphs:

Execution Times with the maximum, minimum, and average execution
times for the given Human Task. The graph is also available for Script
Tasks and Intermediate Events.

Resource Utilization contains information about resource allocations.

Resource Cost with the maximum, minimum, and average resource
costs. To display the graph correctly, set the Cost per time unit property.

Paths Simulation results of the paths used during the simulation.

8.2.3.1. Switching Between Graph Types

To change the type of the displayed graphs, click the corresponding icon at the upper right hand corner
of the Process Editor. The available graph types are:

 Bar Chart

 Horizontal Bar Chart

 Pie Chart

 Table

 Timeline

 Line Chart

Figure 8.4. Different Types of Simulation Graphs

Red Hat JBoss BPM Suite 6.4 User Guide

114

Figure 8.4. Different Types of Simulation Graphs

In line charts, point to a particular place on a line to view the value of the item at the given time.

Figure 8.5. Line Chart

CHAPTER 8. PROCESS SIMULATION

115

Figure 8.5. Line Chart

8.2.3.2. Filtering in Graphs

To filter the displayed data in a chart, click the corresponding coloured radio button in the chart legend.

Figure 8.6. Filtering the Maximum Value

Red Hat JBoss BPM Suite 6.4 User Guide

116

Figure 8.6. Filtering the Maximum Value

8.2.3.3. Viewing Graph Timeline

The timeline feature enables you to view the graph in a particular stage during simulation execution.
Every event is included in the timeline as a new status.

To activate the feature, click at the upper right hand corner. After the timeline opens, you can click
the arrows on the right and left from the chart to move through the timeline. The data for the particular
moment are applied to the chart instantly.

Figure 8.7. Process Simulation Timeline

CHAPTER 8. PROCESS SIMULATION

117

Figure 8.7. Process Simulation Timeline

Red Hat JBoss BPM Suite 6.4 User Guide

118

CHAPTER 9. TESTING

9.1. TEST SCENARIOS

Test Scenarios is a powerful feature that provides the ability for developers to validate the functionality
of rules, models, and events. In short, Test Scenarios provide you the ability to test your knowledge base
before deploying it and putting it into production.

Test Scenarios can be executed one at the time or as a group. The group execution contains all the
Scenarios from one package. Test Scenarios are independent, one Scenario can not affect or modify the
other.

After running all the Test Scenarios a report panel is shown. It contains either a success message or a
failure message for test scenarios that were run.

Figure 9.1. Test Scenario Screen

9.2. CREATING A TEST SCENARIO

Creating a Test Scenario requires you to provide data for conditions which resemble an instance of your
fact or project model. This is matched against a given set of rules and if the expected results are
matched against the actual results, the Test Scenario is deemed to have passed.

Creating a new Test Scenario

1. In Business Central, click Authoring → Project Authoring to open the Projects view.

2. Select a project for your test scenario.

3. Click New Item → Test Scenario.

CHAPTER 9. TESTING

119

4. Enter the name, select the package, and click OK.

5. You will be presented with the Test Scenario edit screen.

Importing a model for the Test Scenario

Data objects from the same package are available by default. For example, given the package structure
org.company.project, and the following:

A data object Fact1 in package org.company.

A Fact2 in package org.company.project.

If you create your test scenario in org.company, org.company.Fact1 is available but you must import
org.company.Fact2. To import data objects:

1. Open your test scenario.

2. Click the Data Objects tab.

3. Click New Item, select your import and click Ok. The imports can be specific to your project’s
data model or generic ones like String or Double objects.

Providing Test Scenario Facts

1. After importing data objects, click the Editor tab. At minimum, there are two sections that
require input: GIVEN and EXPECT.

GIVEN: The input facts for the test.

EXPECT: The expected results given the input facts.
GIVEN the input parameters, EXPECT these rules to be activated or fired. You can also
EXPECT facts to be present and to have specific field values or EXPECT rules not to fire at
all.

If the expectations are met, the test scenario has passed and your rules are correct.
Otherwise, the test scenario fails.

Red Hat JBoss BPM Suite 6.4 User Guide

120

Providing Given Facts

1. To add a new fact, click next to the GIVEN label. Provide your fact data in the New Input
dialog window based on the data models that you have imported in the Data Objects tab.

You can select a particular data object from the model and give it a variable name, called Fact
Name in the window, or choose to activate a rule flow group instead. Activating a rule flow group
allows rules from the specified rule flow group to be tested by activating the group in advance.
To add a given fact and activate a rule flow group:

a. Add the given fact.

b. Click again and add the rule flow group activation.

2. Optionally, add restrictions on the object you will insert.

a. Click Add a field and select a property of your object.

b. Click next to the property.

Click Create a new fact if the property type is another fact object.

Click Literal value otherwise.
See Section 9.3, “Additional Test Scenario Features” for more information.

c. Provide the value. For example:

The example above is equivalent to the following:

Customer fact1 = new Customer();
fact1.setHasInternetService(true);
insert(fact1);

CHAPTER 9. TESTING

121

Providing Expected Rules

1. Once you are satisfied with the GIVEN conditions, you can expect rules that will be fired, facts
created, or field values in existing facts changed. Click next to the EXPECT label to start
adding expected results.

2. You can provide one of three expectations given the set of data that was created in the Given
section:

Rule: enables you to check for firing of a particular rule. Either type the name of a rule that is
expected to be fired or select it from the list of rules. Click the OK when done.

Fact value: enables you to check a specific object instance and its values. In the following
example, given a Customer object with the hasInternetService boolean set to true, we
expect the same object to have the hasPhoneService boolean set to true:

Any fact that matches: enables you to check any objects in the working memory and the
values of their field. In the following example, given a Customer object which has internet
service, a new object RecurringPayment is expected to be inserted into the working
memory with the amount field set to 5:

Reviewing, Saving, and Running a Scenario

1. Click Save in the upper right corner to save your scenario. Ensure you regularly save and review
your scenarios.

2. Click Run scenario in the upper right corner to execute your test. The results are displayed at
the bottom of this screen in a new panel called Reporting.

3. If you created more tests in one file, you can run all the tests in a sequence. Click Run all
scenarios to do so.

4. Also note the Audit log:, which informs you about inserted facts and fired rules:

Red Hat JBoss BPM Suite 6.4 User Guide

122

9.3. ADDITIONAL TEST SCENARIO FEATURES

In addition to the previous Test Scenario features, Test Scenarios include various other features.

Calling Methods

1. Call Method enables you to call a method on an existing fact in the beginning of the rule

execution. This feature is accessed by clicking next to the CALL METHOD label.

Figure 9.2. Call Method

2. After selecting an existing fact from the drop-down list, click Add. The green arrow button
enables you to call a method on the fact.

Figure 9.3. Invoke a Method

Using Globals in a Test Scenario

Globals are named objects that are visible to the rule engine but are different from the objects for facts.
Accordingly, the changes in the object of a global do not trigger the reevaluation of rules. You can use
and validate global fields in a Test Scenario.

To make a global variable accessible for your test scenario:

CHAPTER 9. TESTING

123

1. Click New Item → Global Variable(s) to create a global definition.

2. Define your global variable name and type.

3. Import the object type in your test. If you do not import the type of your global variable, the
variable will not be accessible for your test.

Adding a New Global

1. Click next to the (globals) label to add a global and click Add.

Adding restrictions on fields is similar to adding fields and restrictions in the Given section. See
Providing Given Facts for further information.

Configuring Rules

1. The (configuration) label enables the you to set additional constraints on the firing of rules by
providing the following options:

Allow these rules to fire: enables you to select which rules are allowed to fire.

Prevent these rules from firing: enables you to prevent certain rules from firing for the
test scenario.

All rules may fire allows all the rules to fire for the given test.

Figure 9.4. Configuration

2. If you select one of the following:

Allow these rules to fire:

Prevent these rules from firing:

Enter the rules into the empty field. Clicking next to the empty field to select which rules
are affected by the condition.

Figure 9.5. Selecting rules

Red Hat JBoss BPM Suite 6.4 User Guide

124

Figure 9.5. Selecting rules

3. Choose a rule from the drop-down list and click OK. The selected rules will appear in the field
next to the rules configuration option.

Date and Time Configuration

1. The Use real date and time option uses real time when running the test scenario.

Figure 9.6. Real Date and Time

2. The Use a simulated date and time option enables you to specify the year, month, day, hour,
and minute associated with the test scenario.

Figure 9.7. Title

Advanced Fact Data

1. After providing fields to editable properties as part of your created fact, click to open the
Field value dialogue. You can edit literal values or provide advanced fact data.

Figure 9.8. Advanced Options

CHAPTER 9. TESTING

125

Figure 9.8. Advanced Options

2. In the Advanced Options… section, you can choose between the following, depending on the
type of fact created and the model objects used for the particular test scenario.

Bound variable sets the value of the field to the fact bound to the selected variable. The
field type must match the bound variable type.

Create new fact enables you to create a new fact and assign it as a field value of the parent
fact. Click on the fact to be assigned as a field value to be supplied with a drop down of
various field values. These values may be given further field values.

Adding More Sections

The Editor tab enables you to add GIVEN, CCALL METHOD, and EXPECT sections to the
scenario. Click More below the EXPECT section to do so. This will open a block with all three

sections that can be removed by clicking .

Modifying or Deleting an Existing Fact

When you create more tests in one file, it is recommended to delete facts inserted by previous tests.
When you insert a new GIVEN fact, notice the following fields:

Modify an existing fact enables you to edit a fact between knowledge base executions.

Delete an existing fact enables you to remove facts between executions.

Figure 9.9. Modifying and Deleting Existing Facts

Red Hat JBoss BPM Suite 6.4 User Guide

126

PART III. PLUG-IN
Red Hat JBoss BPM Suite comes with a plug-in for Red Hat JBoss Developer Studio to provide support
for the development of business processes in the Eclipse-based environment, such as debugging and
testing. It also provides a graphical Process Designer for business process editing.

Note that the repository structure follows the maven structure and is described in Chapter 3, Project.

For instructions on how to install and set up the plug-in, see the Red Hat JBoss BPM Suite Installation
Guide.

PART III. PLUG-IN

127

CHAPTER 10. CREATING BPM PROJECT

Prerequisite

Ensure that you have installed Red Hat JBoss BPM Suite and Red Hat JBoss BRMS plug-ins and
runtime environments. For more information, see Red Hat JBoss BPM Suite Installation Guide .

To create a BPM project:

1. On the main menu of Red Hat JBoss Developer Studio, click File → New → Other….

2. Choose jBPM → jBPM project.

3. In the Create New jBPM Project dialog, select the required content and click Next.

4. If you did not decide for project with online examples, specify the project name, location, and
type:

Java and jBPM Runtime classes: select the runtime to be used by the project or click
Manage Runtime Definitions… and define a new runtime (for details on runtime resources,
see the Red Hat JBoss BPM Suite Installation Guide).

Maven: specify maven properties of your project.

Red Hat JBoss BPM Suite 6.4 User Guide

128

CHAPTER 11. CREATING PROCESS
In JBoss Developer Studio with the Red Hat JBoss BPM Suite plug-in, a process is created the same
way as other resources:

1. Choose File → New → Other….

2. Select jBPM → jBPM Process Diagram.

3. In the displayed dialog box, define the name, package, and container of the process. The rest of
the fields is completed automatically. Note that you must follow the Maven structure.

Once created, the process is opened for editing in the graphical Process Designer.

CHAPTER 11. CREATING PROCESS

129

CHAPTER 12. CHECKING SESSION LOGS
You can check the session logs in the audit log, which is a log of all events that were logged from the
session. Audit log is an XML-based log file which contains a log of all the events that occurred while
executing a specific ksession.

Procedure: Creating Logger

1. To create a logger, use KieServices and attach the logger to a ksession, for example:

2. Do not forget to close the logger when you finish using it.

Procedure: Using Audit View

1. To use Audit View, open Window → Show View → Other….

2. Under the Drools category, select Audit.

3. To open a log file in Audit View, select the log file using the Open Log action in the top right
corner, or simply drag and drop the log file from the Package Explorer or Navigator into the
Audit View.

4. A tree-based view is generated based on the data inside the audit log. Depicted below is an
example tree-based view:

Figure 12.1. Tree-Based View

5. An event is shown as a subnode of another event if the child event is caused by a direct
consequence of the parent event.

FILE-BASED LOGGER

The file-based logger will only save the events on close (or when a certain threshhold is
reached). If you want to make sure the events are saved on a regular interval (for example
during debugging), make sure to use a threaded file logger, so the audit view can be
updated to show the latest state. When creating a threaded file logger, you can specify
the interval after which events should be saved to the file (in milliseconds).

KieRuntimeLogger logger =
KieServices.Factory.get().getLoggers().newThreadedFileLogger(ksession, "mylogfile", 1000);
// Do something with the ksession here.
logger.close();

Red Hat JBoss BPM Suite 6.4 User Guide

130

PART IV. DEPLOYMENT AND RUNTIME MANAGEMENT

PART IV. DEPLOYMENT AND RUNTIME MANAGEMENT

131

CHAPTER 13. DEPLOYING AND MANAGING PROJECTS
Once you have created a project with your process definition and relevant resources, you need to build it
and deploy it to the process engine. Once deployed, you can create process instances based on the
deployed resources.

13.1. DEPLOYING A PROJECT

To deploy your project from Business Central, do the following:

1. Open the Project Editor in your project (navigate to your project using Project Explorer and
click Open Project Editor).

2. You can define the Kie Base and Kie Session properties. If not, the default kbase and ksession
will be used.

3. On the title bar, click Build → Build & Deploy.

NOTE

From the 6.1 version of Red Hat JBoss BPM Suite, deployment units are stored inside the
database instead of the GIT repository. To override this behavior, set the
org.kie.git.deployments.enabled property to true.

13.1.1. Duplicate GAV Detection

Every time you perform any of the operations listed below, all Maven repositories are checked for
duplicate GroupId, ArtifactId, and Version. If a duplicate exists, the performed operation is cancelled.

The duplicate GAV detection is executed every time you:

Create a new managed repository.

Save a project definition in the Project Editor.

Add new modules to a managed multi-module repository.

Save the pom.xml file.

Install, build, or deploy a project.

The following Maven repositories are checked for duplicates:

Repositories specified in the <repositories> and <distributionManagement> elements of the
pom.xml file.

Repositories specified in the Maven’s settings.xml configuration file.

Users with the admin role can modify the list of affected repositories. To do so, open your project in the
Project Editor and click Project Settings: Project General Settings → Validation.

Figure 13.1. List of Repositories to Be Checked

Red Hat JBoss BPM Suite 6.4 User Guide

132

Figure 13.1. List of Repositories to Be Checked

Figure 13.2. Duplicate GAV Detected

NOTE

To disable this feature, set the org.guvnor.project.gav.check.disabled system property
to true.

13.2. PROCESS MANAGEMENT

The following sections describe the features provided by the options available under the Process
Management menu in Business Central.

Figure 13.3. Process Management

CHAPTER 13. DEPLOYING AND MANAGING PROJECTS

133

Figure 13.3. Process Management

13.2.1. Process Definitions

Once you have created, configured, and deployed your project comprising your business processes, you
can view the list of all the process definitions in the Process Definition List under Process
Management → Process Definitions. The process definition view comprises two main sections:

Process Definition Lists

Process Definition Details

The process definition list shows all the available process definitions that are deployed into the platform.
If you click on any of the process definition listed in the Process Definitions List, the corresponding
Process Definition details displays information about the process definition such as if there is a sub-
process associated with it, or how many users and groups exist in the process definition. In the Process
Definition details section, you can navigate to Options → View Process Instances to view associated
process instances.

13.2.2. Process Instances

You can create new process instances from the Process Definition List , from the Process Definition
Detail view or from the Process Instance view. When you create a new Process Instance, a new window
opens that requires you to provide information required by the process to be started. Once you provide
the required information and click on the Submit button, the instance is created and the details of the
process instance is displayed in the Process Instance Details on the right.

You can further manage the instance during runtime, monitor its execution, and work with the tasks the
instance produces for users with the proper roles assigned.

Additionally, Business Central allows you to easily sort and filter a list of tasks for any given process. You
can create custom filters that allow you to define queries by user, business attributes (such as amount,
customer segmentation), Process ID, correlation key and so on.

You can view the list of all the running process instances in the Process Instance List under Process
Management → Process Instances. The process instances view comprises two main sections:

Process Instance Lists

Process Instance Details

The process instance list displays the process instances and this view is customizable. The customizable
elements comprise columns that are displayed, number of rows displayed per page, name of the tabs,
and title description. The views are available as tabs. When you click on a tab, the related parameters are
applied to the data grid and the corresponding process instances are listed. You can remove the default
tabs and add your own with the required filter criteria. The Process Instances view also has features like

Red Hat JBoss BPM Suite 6.4 User Guide

134

auto refresh and restore default views. Auto refresh allows you to define how frequently the data grid
refreshes. You can select one of the different values (1, 5 or 10 minutes), or disable this feature by
clicking the Disable button:

Figure 13.4. Features in the Process Instances List View

Each row in the process instance list represents a running process instance from a particular process
definition. Each execution is differentiated from all the others by the internal state of the information
that the process is manipulating. In order to view this information, you can click on any one of the
process instances and view the corresponding details in the Process Instance Details section. The
Process Instance Details provides several tabs with the runtime information related to the process.

The Instance Details tab: This gives you a quick overview about what is going on inside the
process. It displays the current state of the instance and the current activity that is being
executed.

The Process Variables tab: This displays all the process variables that are being manipulated by
the instance, with the exception of the variables that contain documents. You can move the
mouse pointer over the Value field to view a full value of the process variable. Additionally, you
can edit the process variable value and view its history.

The Documents tab: This displays process documents if the process contains a variable of the
type org.jbpm.Document. This enables easy access, download, and manipulation of the
attached documents. You can not attach a new document to currently running instances using
this view, but it can be achieved by Human task form in the tasks perspective.

The Logs tab: This displays business and technical logs for the respective end users. In order to
track a process through the logs, you can also open the Process Model that shows the
completed activies in grey and the current activities highlighted in red.

13.2.2.1. Searching Process Instances by Partial Correlation Key

To create a filter to search by correlation key or partial correlation key, do the following:

1. On the top menu of the Business Central, go to Process Management → Process Instances.

2. In the list on the Process Instances tab, click .
The New Process Instance List dialog box opens.

3. In the New Process Instance List dialog box:

a. Provide the name and description for your search process instance list in the Labels tab.

b. Click the Filter tab to create new query filter.

CHAPTER 13. DEPLOYING AND MANAGING PROJECTS

135

i. Click Add New.

ii. From the list of filter values, select CORRELATIONKEY. If you want to create a search
filter using partial correlationKey, select the like query operator and provide the value as
partial-correlation-key% where partial-correlation-key is the value you are searching
for.

iii. Click Ok.

A new tab is created that displays your custom process instance list.

13.2.2.2. Searching Process Instances Based on Business Data

You can add process variables as columns in the process instance list in order to enable flexible filtering
of definitions based on business data. To achieve this, do the following:

1. On the top menu of the Business Central, go to Process Management → Process Instances.

2. In the list on the Process Instances tab, click . The New Process Instance List dialog box
opens.

3. In the New Process Instance List dialog box, perform the following:

a. Provide the name and description for your search process instance list in the Labels tab.

b. Add a new query filter in the Filter tab:

i. Click Add New.

ii. From the list of filter values, select processId and equalsTo.

iii. Provide a valid processId value and click Ok.

A new tab is created that displays your custom process instance list in a tabular form. This new
tab provides process instance variables (business data) as selectable columns. You can view the
variables corresponding to each process instance in the table by enabling these columns, which
are disabled by default.

13.2.3. Creating a New Process Instance List

To create a custom process instance list, do the following:

1. On the top menu of the Business Central, go to Process Management → Process Instances.

2. In the list on the Process Instances tab, click the button.
The following New Process Instance List dialog box opens:

Figure 13.5. New Process Instance List

Red Hat JBoss BPM Suite 6.4 User Guide

136

Figure 13.5. New Process Instance List

3. In the New Process Instance List dialog box:

a. Provide the name and description for your process instance list in the Labels tab.

b. Click the Filter tab to create new query filter.

i. Click Add New.

ii. From the list of filter values, select the appropriate filter condition and its value. You
can add more filters by clicking Add New.

iii. Once you have specified all your filter conditions, click Ok.

A new tab is created that displays your custom process instance list.

13.2.4. Aborting a Process instance

You can abort a running Process instance either using the provided API or from the Business Central.

Aborting a Process instance using API
To abort a Process instance using the Kie Session API, use the void abortProcessInstance(long
processInstanceId) call on the parent Kie Session.

Aborting a Process instance from the Business Central
To abort a Process instance from the Business Central, do the following:

1. On the top menu of the Business Central, go to Process Management → Process Instances.

2. In the list on the Process Instances tab, locate the required Process instance and click the
Abort button in the instance row.

13.3. SIGNALING PROCESS INSTANCE

You can signal a running process instance using either API or Business Central. For further information
about signals, signalling external deployment, catching and processing signals, and more, see
Chapter 22, Collaboration mechanisms.

Signaling Process Instance Using API

CHAPTER 13. DEPLOYING AND MANAGING PROJECTS

137

To signal a process instance using the KIE Session API, use the void signalEvent(String type, Object
event) call on the parent Kie Session. The call triggers all active signal event nodes waiting for that
event type in the KIE Session. The runtime strategy determines the number of processes which receive
the signal.

If you need to signal a specific process instance, use void signalEvent(String type, Object event, long
processInstanceId).

NOTE

If you use the Throwing Intermediate event of type Signal, the execution engine calls
void signalEvent(String type, Object event).

If you do not want the signal to be delivered to all the listening processes, replace the
Throwing Intermediate event with a Script Task:

Signaling Process Instance from Business Central
To signal a process instance from Business Central, do the following:

1. Log into Business Central.

2. Click Process Management → Process Instances.

3. Locate the required process instance and click Signal in the instance row.

4. Fill the following fields:

Signal Name: corresponds to the SignalRef or MessageRef attributes of the signal. This
field is required.

NOTE

You can also send a Message event to the process. To do so, add the
Message- prefix in front of the MessageRef value.

Signal Data: corresponds to data accompanying the signal. This field is optional.

NOTE

When using the Business Central user interface, you may signal only Signal intermediate
catch events.

13.4. TASK MANAGEMENT

The following sections describe the features provided by the options available under the Tasks menu in
Business Central.

Figure 13.6. Task Management

kcontext.getKieRuntime().signalEvent("signalRefId", data, processInstanceId);

Red Hat JBoss BPM Suite 6.4 User Guide

138

13.4.1. Tasks List

A User Task represents a piece of work the given user can claim and perform. User Tasks can be handled
within the Tasks perspective of the Business Central: the view displays the Task List for the given user.
You can think about it as a to-do item. The User Task appears in your list either because the User Task
element generated the User Task as part of Process execution or because someone has created the
User Task directly in the Business Central console.

A User Task can be assigned to a particular actor, multiple actors, or to a group of actors. If assigned to
multiple actors or a group of actors, it is visible in the Task Lists of all the actors and any of the possible
actors can claim the task and execute it. The moment the Task is claimed by one actor, it disappears
from the Task List of other actors.

Task Client
User Tasks are displayed in the Tasks perspective, that are an implementation of a Task client, in the
Business Central console: to display the Tasks perspective, click Tasks . You can filter out the Tasks
based on their status using the following tabs:

Figure 13.7. Task Lists Tabs

Active: Displays all the active tasks that you can work on. This includes personal and group
tasks.

Personal: Displays all your personal tasks.

Group: Displays all the group tasks that need to be claimed by you in order to start working on
them.

All: Displays all the tasks. This also includes completed tasks but not the ones that belongs to a
process that is already finished.

Admin: Displays all the tasks for which you are the business administrator.

In addition to these, you can create custom filters to filter tasks based on the query parameters you
define. For further information about custom tasks filters, see Section 13.4.2, “Creating Custom Tasks
Filters”.

The Tasks List view is divided into two sections, Task List and Task Details. You can access the Task
Details by clicking on a task row. You can modify the details (such the Due Date, the Priority or the task
description) associated with a task. The Task Details section comprises the following tabs:

Work: Displays basic details about the task and the task owner. You can click the Claim button
to claim the task. To undo the claim process, click the Release button.

Details: Displays information such as task description, status, and due date.

Process Context: If the task is associated with a process, the information about it is shown here.
You can also navigate to process instance details from here.

Assigments: Displays the current owner of the task and allows you to delegate the task to
another person or group.

Comments: Displays comments added by task user(s). It allows you to delete an existing

CHAPTER 13. DEPLOYING AND MANAGING PROJECTS

139

Comments: Displays comments added by task user(s). It allows you to delete an existing
comment and add a new comment.

Logs: Displays task logs containing task lifecycle events (such as task started, claimed,
completed), updates made to task fields (such as task due date and priority).

13.4.2. Creating Custom Tasks Filters

It is possible to create a custom task filter based on a provided query. The newly created filter is then
added as a tab to the Tasks List.

The following procedure shows how to create a custom filter which allows you to view a list of tasks with
a specified name.

Procedure: Filtering Tasks by Name

1. In the main menu of Business Central, click Tasks.

2. Click the button on the right side of the Tasks Lists tabs.
The New filtered list pop-up window is displayed.

3. Fill in the Name (this is the label of the new Tasks Lists tab) and click Filter.

4. Click Add New.

5. In the Select column drop-down menu, choose NAME.
The content of the drop-down menu changes to NAME != value1.

6. Click on the drop-down menu again and choose equals to.
The content of the drop-down menu changes to NAME = value1.

7. Rewrite the value of the text field to the name of the task you want to filter. Note that the name
must match the value defined in the Process Modelling view of a business process. See the
following screenshot:

Red Hat JBoss BPM Suite 6.4 User Guide

140

8. Click Ok.

After the filter with a specified restriction is applied, variables associated with the task appear in
the list of selectable columns.

13.4.3. Creating a User Task

A user task can be created either by a User Task element executed as part of a process instance or

CHAPTER 13. DEPLOYING AND MANAGING PROJECTS

141

A user task can be created either by a User Task element executed as part of a process instance or
directly in Business Central. To create a user task in Business Central, do the following:

1. On the top menu of the Business Central, click Tasks.

2. On the Tasks List tab, click New Task and define the task parameters.
This opens a New Task window with the following tabs:

Figure 13.8. New Task Window

Basic tab

Task Name: The task display name.

Advanced tab

Due On: Add due date of the task.

Priority: Select task priority.

Add User button: Click to add more users. Note that a task cannot be created without a
user or a group.

Add Group button: Click to add more groups.

User: Add the name of the person who executes the task.

Remove User button: Click to remove the existing user.

Form tab

Task form deploymentId: Select the deployment Id of the form from the list of
available deployment Ids.

Task form name: Select the name of the associated task form from the list of available
forms.
If tasks are part of a Business Process, they have an associated form that collects data
from you and propagates that to the business process for further usage. You can create
forms for specific tasks using the Form Modeler. If there is no form provided for a task, a
dynamic form is created based on the information that the task needs to handle. If you
create a task as an ad-hoc task, which is not related with any process, there will be no
such information to generate a form and only basic actions will be provided.

3. Click the Create button.

13.4.4. Task Variables as Expressions

Red Hat JBoss BPM Suite 6.4 User Guide

142

You can refer and use the task variables in task properties as soon as you create a task. For example,
once your task has been created, you can define a task name that refers to a taskId. Task variables are
resolved at both task creation time and notification time, unlike process variables, which are resolved
only at task creation time. The ability of using task variables while creating tasks minimizes your Java
code, such as calling Red Hat JBoss BPM Suite APIs.

Task variables are available as task instances and you can get access to task information using the
following expression:

You can use this expression in data input of user task from within the process definition.

For example, the following expression can be used for accessing the processInstanceId variable:

${task.id}

${task.taskData.processInstanceId}

CHAPTER 13. DEPLOYING AND MANAGING PROJECTS

143

CHAPTER 14. LOGGING
Logs with execution information are created based on events generated by the process engine during
execution. It is the engine providing a generic mechanism listening to events. Information about the
caught event can be extracted from these logs and then persisted in a data storage. To restrain the
logged information, the log filtering mechanism is provided (for further information, see the Red Hat
JBoss BPM Suite Administration and Configuration Guide).

Red Hat JBoss BPM Suite 6.4 User Guide

144

CHAPTER 15. EXAMPLES
Red Hat JBoss BPM Suite comes with a project with assets examples to demonstrate the possible
usage and capabilities of the product.

Also, the project contains Junit tests for each Element, which are simple working examples. These test
processes can serve as simple examples. The entire list can be found in the src/test/resources folder for
the jbpm-bpmn2 module. Note that each of the processes is accompanied by a junit test that tests the
implementation of the construct.

CHAPTER 15. EXAMPLES

145

PART V. BAM

Red Hat JBoss BPM Suite 6.4 User Guide

146

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER
Red Hat JBoss Dashboard Builder is a web-based dashboard application that provides Business Activity
Monitoring (BAM) support, that is, visualization tools for monitored metrics (Key Performance
Indicators, or KPIs) in real time. It comes integrated in the Business Central environment under the
Dashboards menu.

It comes with a dashboard that requests information from the Red Hat JBoss BPM Suite Execution
Engine and provides real-time information on its runtime data; however, you can also create custom
dashboards over other data sources, which leaves the application relatively standalone.

What is Business Activity Monitoring?
Business Activity Monitoring (BAM) software helps to monitor business activities that take place on a
computer system in real time. The software monitors particular metrics, such as the status of running
processes, the number of invoices to be processed, processing times and other. It provides tools for
visualization of the collected data (for example in graphs or tables).

16.1. BASIC CONCEPTS

Dashboard Builder can establish connections to external data sources such as databases. These
connections are then used for creating data providers that obtain data from the data sources.
Dashboard Builder is connected to the local JBoss BPM Suite engine by default and acquires the data
for its JBoss BPM Suite Dashboard indicators (widgets with visualizations of the data available on the
pages of the JBoss BPM Suite Dashboard workspace).

The data providers keep all the data. If operating over a database, the data provider uses an SQL query
to obtain the data. Operating over a CSV file enables the data provider automatically obtain all the data
from the file.

Data from the data providers can then be visualized as graphs or tables in indicators: special panels, that
can be arranged on Dashboard Builder managed pages. Pages are contained within a workspace and can
define permission access rights. The number of pages within a workspace is arbitrary. A set of pages
that presents related information on similar KPIs is referred to as a dashboard.

16.2. ACCESSING DASHBOARD BUILDER

Dashboard Builder is accessible through Business Central and as a standalone application.

Within Business Central, Dashboard Builder can be accessed directly from the Dashboards menu at the
top. The Dashboards menu contains two items:

Process & Task Dashboard displays a pre-defined dashboard based on runtime data from the
Execution Server. To learn more about Process & Task Dashboard, see Section 16.3, “Process &
Task Dashboard”.

Business Dashboards displays an environment in which you can create your own dashboards.
This chapter contains procedures that provide instructions on how to create a custom
dashboard.

Dashboard Builder can be accessed as a standalone application as well.

1. Start the server.

2. After the server has successfully started, navigate to https://HOST_NAME:PORT/dashbuilder
in a web browser. For example https://localhost:8080/dashbuilder.

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

147

https://localhost:8080/dashbuilder

3. Log in with the user credentials created during installation.

After you log in, you are redirected to the Showcase workspace with the welcome page displayed.

At the top of the page, you can change the workspace, the page, as well as find general configuration
buttons. This interface area is common for all workspaces.

Dashboard area with variable content, a lateral menu on the left and the main dashboard area on the
right, is located below the common interface area.

16.3. PROCESS & TASK DASHBOARD

The Process & Task Dashboard contains several performance indicators monitoring the jBPM
Execution Engine. The data used by the dashboard comes from two tables of the database belonging to
the engine: processinstancelog and bamtasksummary.

Figure 16.1. The Process & Task Dashboard Main Screen

Every time the information stored into the database is updated, the data becomes automatically
available to the dashboard indicators.

NOTE

All the metrics are generic and do not belong to any specific business process. However, it
is possible to modify or extend the generic dashboard for your own use: the jBPM
Process Dashboard can serve as a template for building a custom dashboard, which works
with both data of the jBPM Engine and data coming from your own business domain.

At the top of the Process & Task Dashboard main screen, you can choose whether you want to view
indicators related to Processes or Tasks.

Red Hat JBoss BPM Suite 6.4 User Guide

148

You can filter the data by clicking the charts, for example if you want to select a particular process or
status. Every time a filter is applied, all the indicators are automatically updated and synchronized to
show the selected criteria. The following picture shows an example dashboard with the Sales process
and the Active status selected.

Figure 16.2. Active Sales Processes

It is also possible to display a list of instances at any time by clicking the Show Instances link in the
upper right hand corner of the screen. You can then switch to the original screen by clicking the Show
Dashboard link.

Figure 16.3. Process Instances List

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

149

You can sort the instances by clicking any column header. Details about a particular instance are shown
on the right side of the page after selecting a row. Note that the displayed details are not editable. If you
want to manage a process instance, go to Process Management → Process Instances in Business
Central.

Figure 16.4. Process Instance Details Panel

Tasks Dashboard
To view the Tasks dashboard, click the Tasks tab at the top of the screen. This dashboard provides the
same features as introduced above, but related to the tasks only.

16.4. DATA SOURCES

Red Hat JBoss Dashboard Builder can be connected to an external database, either using the
container’s JNDI data source or connecting directly using the JDBC driver to access the database.
Connections to databases can be configured in workspace Showcase on page External Connections.
After you have established the connection to the database, you need to create a data provider that will
collect the data from the database and allow you to visualize it as an indicator in the dashboard area of a
page.

When connecting to CSV files to acquire data, the connection is established directly through the data
provider.

Note that Red Hat JBoss Dashboard Builder makes use of its own local internal database to store its
local data. This database is read-only for Dashboard Builder, but is accessible from outside.

16.4.1. Connecting to Data Sources

You can connect either to a JNDI data source, that is, a data source set up and accessible from the
application container, or directly to the data source as a custom data source, if the application container
has the correct JDBC driver deployed.

To connect to an external data source, do the following:

1. Make sure the data source is up and running and that the application server has access to the
data source. (Check the driver, the login credentials, etc. In Red Hat JBoss EAP 6, you can do so
in the Management Console under Subsystems → Connector → Datasources)

2. In Dashboard Builder, on the Tree Menu (by default located on the of the Showcase

Red Hat JBoss BPM Suite 6.4 User Guide

150

2. In Dashboard Builder, on the Tree Menu (by default located on the of the Showcase
perspective), go to Administration → External connections.

3. On the displayed External Connection panel, click the New DataSource

 button.

4. Select the data source type (JNDI or Custom DataSource) and provide the respective data
source parameters below.

If you wish the jBPM Dashboard to use the new data source, modify also the respective data providers
(jBPM Count Processes, jBPM Process Summary, jBPM Task Summary). Note that the data source
needs to have access to jBPM history.

16.4.2. Security Considerations

IMPORTANT

When creating an external datasource using JBoss Dashboard Builder, it needs to use the
local connection so that the user can be passed through. Otherwise, with a connection
that uses <host>:<port>, every user would have the same virtual database (VDB)
permissions.

16.4.3. Building a Dashboard for Large Volumes of Data

You can connect Red Hat JBoss Dashboard Builder to external databases and load data for generating
reports and charts. Generally, if the volume of data is small (up to 2MB), Red Hat JBoss Dashboard
Builder preloads the data into (local) memory and uses this data for report and chart generation.
However, in case of large volumes of data, it is not possible to load the entire data set into the
Dashboard Builder’s local memory.

Based on the volume of data you are dealing with, you can choose to query the database to build a
dashboard report in any one of the following strategies:

The in-memory strategy
The in-memory strategy is to create a data provider that loads all the required data from the
database by executing a single SQL query on the relevant tables, into the Dashboard Builder’s
memory. In this case, every indicator on the Dashboard Builder shares the same data set. When
you use filters from the Dashboard Builder user interface to access specific data from this data
set, the Dashboard Builder fetches the data from the internal memory and does not execute
another SQL query again on the database. This strategy has a simple data retrieval logic as it
deals with creating a single data provider. As all the data set properties are available to you at
once, it allows you to configure KPIs faster. However, this approach is not suitable for large data
sets as it would lead to poor performance.

The native strategy
The native approach is to create a data provider for every indicator in the Dashboard Builder
and does not require loading all the data into the internal memory at once. So each time you use
a filter from the Dashboard Builder user interface, the corresponding SQL queries get executed
and fetches the required data from the database. So there is no data in the Dashboard Builder’s
internal memory. This strategy works best in case of large volumes of data, however it needs
proper indexing on the database tables. Also, setting up data providers for multiple KPIs is
complicated as compared to creating a single data provider in case of in-memory strategy.

Example

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

151

Let us consider a case when you want to create a stock exchange dashboard comprising the following
charts and reports:

Bar chart for Average price per company

Area chart for Sales price evolution

Pie chart for Companies per country

Table report for Stock prices at closing date

For these charts and reports, let us assume that the Dashboard Builder accesses data from the
following tables:

Company: Comprising columns ID, NAME, and COUNTRY.

Stock: Comprising columns ID, ID_COMPANY, PRICE_PER_SHARE, and CLOSING_DATE.

For the in-memory strategy of building a dashboard, the following SQL query fetches all the required
data from these two tables:

SELECT C.NAME, C.COUNTRY, S.PRICE_PER_SHARE, S.CLOSING_DATE
 FROM COMPANY C JOIN STOCK S ON (C.ID=S.ID_COMPANY)

The output of this query is saved in the Dashboard Builder’s local memory. The Dashboard accesses this
data every time a filter is run.

On the other hand, if you are using the native strategy for huge volumes of data, an SQL query is
executed on every filter request made by the Dashboard Builder and corresponding data is fetched
from the database. In this case here is how each filter accesses the database:

For the bar chart on Average price per company , the following SQL query is executed:

SELECT C.NAME, AVG(S.PRICE_PER_SHARE)
 FROM COMPANY C JOIN STOCK S ON (C.ID=S.ID_COMPANY)
 WHERE {sql_condition, optional, c.country, country}
 AND {sql_condition, optional, c.name, name}
 GROUP BY C.NAME

For the area chart on Sales price evolution , the following SQL query is executed:

SELECT S.CLOSING_DATE, AVG(S.PRICE_PER_SHARE)
 FROM COMPANY C JOIN STOCK S ON (C.ID=S.ID_COMPANY)
 WHERE {sql_condition, optional, c.country, country}
 AND {sql_condition, optional, c.name, name}
 GROUP BY CLOSING_DATE

For the pie chart on Companies per country, the following SQL query is executed:

SELECT COUNTRY, COUNT(ID)
 FROM COMPANY
 WHERE {sql_condition, optional, country, country}
 AND {sql_condition, optional, name, name}
 GROUP BY COUNTRY

Red Hat JBoss BPM Suite 6.4 User Guide

152

For the table report on Stock prices at closing date , the following SQL query is executed:

SELECT C.NAME, C.COUNTRY, S.PRICE_PER_SHARE, S.CLOSING_DATE
 FROM COMPANY C JOIN STOCK S ON (C.ID=S.ID_COMPANY)
 WHERE {sql_condition, optional, c.country, country}
 AND {sql_condition, optional, c.name, name}

For each of these queries, you need to create a separate SQL data provider.

In the examples above, each KPI delegates the filter and group by operations to the database through
the {sql_condition} clauses. The signature of the {sql_condition} clause is the following:

 {sql_condition, [optional | required], [db column], [filter property]}

Here,

optional: This indicates that if there is no filter for the given property, then the condition is
ignored.

required: This indicates that if there is no filter for the given property, then the SQL returns no
data.

db column: This indicates the database column where the current filter is applied.

filter property: This indicates the selected UI filter property.

When a filter occurs in the UI, the Dashboard Builder parses and injects all the SQL data providers
referenced by the KPIs into these SQL statements. Every time a filter occurs in the UI, the Dashboard
Builder gets all the SQL data providers referenced by the KPIs and injects the current filter selections
made by the user into these SQLs.

16.4.4. Data Providers

Data providers are entities that are configured to connect to a data source (a CSV file or database),
collect the required data, and assign them the data type. You can think about them as database queries.

The collected data can be then visualized in indicators on pages, exported as XLS or CSV, etc.

16.4.4.1. Creating Data Providers

To create a new data provider, do the following:

1. In the Tree Menu (the panel in the lateral menu of the Showcase workspace), click
Administration → Data providers.

2. In the Data Providers panel, click the Create new data provider

 button.

3. In the updated Data Providers panel, select in the Type dropdown menu the type of the data
provider depending on the source you want the data provider to operate on.

4. Define the data provider parameters:

Data provider over a CSV file

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

153

Name: user-friendly name and its locale.

CSV file URL: the URL of the file (for example, file:///home/me/example.csv).

Data separator: the symbol used as separator in the CSV file (the default value is
semicolon; if using comma as the separator sign, make sure to adapt the number format
if applicable).

Quoting symbol: the symbol used for quotes (the default value is the double-quotes
symbol; note that the symbol may vary depending on the locale).

Escaping symbol: the symbol used for escaping the following symbol in order to keep its
literal value.

Date format: the date and time format.

Number format: the number format pattern as used in java.text.DecimalFormat.

Data provider over a database (SQL query)

Name: user-friendly name and its locale

Data source: the data source to query (the default value is local, which allows you to
query the Dashboard Builder database)

Query: query that returns the required data

5. Click Attempt data load to verify the parameters are
correct.

6. Click Save.

7. In the table with the detected data, define the data type and if necessary provide a user-
friendly name for the data. Click Save.

The data provider can now be visualized in an indicator on a page of your choice.

16.4.5. Workspace

A workspace is a container for pages with panels or indicators.

By default, the Showcase and Red Hat JBoss BPM Suite Dashboard workspaces are available.

To switch between workspaces, select the required workspace in the Workspace drop-down box in the

top panel on the left. To create a new workspace, click the Create workspace icon () in the top
menu on the left. You can also edit the current workspace properties, delete the current workspace, and
duplicate the current workspace using icons in the top panel.

Every workspace uses a particular skin and envelope, which define the workspace’s graphical properties.

16.4.5.1. Creating Workspace

To create a new workspace, do the following:

Red Hat JBoss BPM Suite 6.4 User Guide

154

file:///home/me/example.csv

1. Click the Create workspace button on the top menu.
The management console with the Workspace node expanded and workspace management
area with workspace details on the right is displayed.

2. In the Create workspace table on the right, set the workspace parameters:

Name: workspace name and its locale

Title: workspace title and its locale

Skin: skin to be applied on the workspace resources

Envelope: envelope to be applied on the workspace resources

3. Click Create workspace.

4. Optionally, click the workspace name in the tree menu on the left and in the area with
workspace properties on the right define additional workspace parameters:

URL: the workspace URL

User home search: the home page setting
If set to Role assigned page, the home page as in the page permissions is applied; that is,
every role can have a different page displayed as its home page. If set to Current page, all
users will use the current home page as their home page.

16.4.5.2. Configuring a default workspace

You can configure a default workspace in Red Hat JBoss BPM Suite Dashboard. For details, see How to
configure default workspace in BPM Suite dashbuilder.

16.4.5.3. Pages

Pages are units that live in a workspace and provide space (dashboard) for panels. By default, you can
display a page by selecting it in the Page dropdown menu in the top panel.

Every page is divided in two main parts: the lateral menu and the central part of the page. The parts are
divided further (the exact division is visible when placing a new panel on a page). Note that the lateral
menu allows you to insert panels only below each other, while in the central part of the page you can
insert panels below each other as well as tab them.

A page also has a customizable header part and logo area.

16.4.5.3.1. Creating Pages

To create a new page, do the following:

1. Make sure you are in the correct workspace.

2. Next to the Page dropdown box in the top menu, click

the Create new page button.

3. The management console with the Pages node expanded and page management area with
page details on the right is displayed.

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

155

https://access.redhat.com/solutions/2988211

4. In the Create new page table on the right, set the page parameters:

Name: page name and its locale

Parent page: parent page of the new page

Skin: skin to be applied on the page

Envelope: envelope to be applied on the page

Page layout: layout of the page

5. Click Create new page.

6. Optionally, click the page name in the tree menu on the left and in the area with workspace
properties on the right define additional page parameters:

URL: the page URL

Visible page: visibility of the page

Spacing between regions and panels

16.4.5.3.2. Defining Page Permissions

Although users are usually authorized using the authorization method setup for the underlying
application container (on Red Hat JBoss EAP, the other security domain by default), the Red Hat JBoss
Dashboard Builder has its own role-based access control (RBAC) management tool to facilitate
permission management on an individual page or multiple pages.

To define permissions on a page or all workspace pages for a role, do the following:

1. On the top menu, click the General configuration button: the management console is
displayed.

2. Under the Workspace node on the left, locate the page or the Pages node.

3. Under the page/pages node, click the Page permissions node.

4. In the Page permissions area on the right, delete previously defined permission definition if
applicable and define the rights for the required role:

a. In the Permission assignation table, locate the Select role dropdown menu and pick the
respective role.

b. In the Actions column of the table, enable or disable individual permissions.

5. Click Save.

16.4.5.4. Panels

A panel is a GUI widget, which can be placed on a page. There are three main types of panels:

Dashboard panels

are the primary BAM panels and include the following:

Data provider manager: a panel with a list of available data providers and data provider

Red Hat JBoss BPM Suite 6.4 User Guide

156

Data provider manager: a panel with a list of available data providers and data provider
management options

Filter and Drill-down: a panel that displays all KPIs and their values to facilitate filtering in
indicators on the given page defined over a data provider

HTML Editor panel: a panel with static content

Key Performance Indicator (indicator): a panel that visualizes the data of a data provider

Navigation panels

are panels that provide navigation functions and include the following:

Breadcrumb: a panel with the full page hierarchy pointing to the current page

Language menu: a panel with available locales (by default in the top center)

Logout panel: a panel with the name of the currently logged-in user and the logout button

Page menu custom: a panel with vertically arranged links to all pages in the workspace (the
list of pages can be adjusted) and general controls for the HTML source of the page

Page menu vertical: a panel with vertically arranged links to all pages in the workspace (the
list of pages can be adjusted)

Page menu horizontal: a panel with horizontally arranged links to all pages in the workspace
(the list of pages can be adjusted)

Tree menu: a panel with the links to essential features such as Administration, Home (on the
Home page of the Showcase workspace displayed on the left, in the lateral menu)

Workspace menu custom: a panel with links to available workspaces (the list of workspaces
can be adjusted) and general controls for the HTML source of the workspace

Workspace menu horizontal: a horizontal panel with links to available workspaces (the list of
workspaces can be adjusted)

Workspace menu vertical: a vertical panel with links to available workspaces (the list of
workspaces can be adjusted)

System panels

are panels that provide access to system setting and administration facilities and include the
following:

Data source manager: a panel for management of external data sources

Export dashboards: a panel export of dashboards

Export/Import workspaces: a panel for exporting and importing of workspaces

16.4.5.4.1. Adding Panels

To add an existing panel to a page or to create a new panel, do the following:

1. Make sure the respective page is open (in the Page dropdown menu of the top menu select the

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

157

1. Make sure the respective page is open (in the Page dropdown menu of the top menu select the
page).

2. In the top menu, click the Create a new panel in current page button.

3. In the displayed dialog box, expand the panel type you want to add (Dashboard, Navigation, or
System) and click the panel you wish to add.

4. From the Components menu on the left, drag and drop the name of an existing panel instance
or the Create panel item into the required location on the page.
If inserting a new indicator, the Panel view with the graph settings will appear.Define the graph
details and close the dialog.

If adding an instance of an already existing indicator, you might not be able to use it, if it is linked
to the KPIs on the particular original page. In such a case, create a new panel.

5. If applicable, edit the content of the newly added panel.

16.5. IMPORT AND EXPORT

Dashboard Builder provides the ability to export and import workspaces, KPIs, and data sources
between two Dashboard Builder installations.

In general, it is possible to export the mentioned assets only using the Dashboard Builder web user
interface. However, you can import the assets either in the web user interface, or by using the
deployment scanner.

The deployment scanner is a subsystem of Red Hat JBoss Enterprise Application Platform that allows
you to place the exported assets into the given folder inside the web application. Once the application
has started, it scans the deployment folder and imports all the available assets. Note that the assets can
be imported only during the deployment and not during the runtime.

16.5.1. Importing and Exporting Workspaces

By importing or exporting workspaces, you can move a set of pages between two Dashboard Builder
installations. The procedure moves an envelope being currently used by the workspace, all the sections
that compose the workspace and all the panels used in the workspace sections.

Procedure: Exporting Workspaces

1. In Business Central, go to Dashboards → Business Dashboards.

2. In the menu on the left, click Administration → Import and export.

3. Choose the Export Workspaces tab.

4. In the list of all existing workspaces that opens, select the ones you want to export and click
Export.

Red Hat JBoss BPM Suite 6.4 User Guide

158

5. Click Download to download a single XML file containing the workspace definitions.

Procedure: Importing Workspaces Using Web UI

1. In Business Central, go to Dashboards → Business Dashboards.

2. In the menu on the left, click Administration → Import and export.

3. Choose the Import Workspace tab.

4. Upload an XML file that contains one or more workspace definitions. Uploading a ZIP archive is
supported as well for backward compatibility.

5. Click Import.

Procedure: Importing Workspaces Using Deployment Scanner

1. Make sure that the XML workspace definition file has the extension .workspace.

2. Move the file into the /jboss-eap-6.4/standalone/deployments/dashbuilder.war/WEB-
INF/deployments directory.
If the workspace already exists (there is a workspace with the same logic identifier), the file will
be overwritten. Note that these two files do not have to have the same name in order to be
replaced.

The workspaces are imported once during the application deployment.

16.5.2. Importing and Exporting KPIs

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

159

By importing and exporting KPIs, you can move key performance indicator definitions (the KPI type, its
columns and display configuration) and their data providers between two Dashboard Builder
installations.

Procedure: Exporting KPIs

1. In Business Central, go to Dashboards → Business Dashboards.

2. In the menu on the left, click Administration → Import and export.

3. Choose the Export Dashboards tab.
A list of all KPI definitions in your application opens. You can export one or more of them into a
single XML file.

4. Select the KPIs you want to export and click Export .

Red Hat JBoss BPM Suite 6.4 User Guide

160

Procedure: Importing KPIs Using Web UI

1. In Business Central, go to Dashboards → Business Dashboards.

2. In the menu on the left, click Administration → Import and export.

3. Choose the Import dashboards tab.

4. Upload an XML file that contains one or more KPI definitions and click Import.

Procedure: Importing KPIs Using Deployment Scanner

1. Make sure that the XML KPI definition file has the extension .kpis.

2. Move the file into the /jboss-eap-6.4/standalone/deployments/dashbuilder.war/WEB-
INF/deployments directory.
If the KPI or the data provider already exists (there is a file that contains a KPI or a data provider
with the same logic identifier), the file will be overwritten. Note that these two files do not have
to have the same name in order to be replaced.

The KPIs are imported once during the application deployment.

16.5.3. Importing Data Sources

NOTE

At present, it is not possible to export data sources.

By importing and exporting data sources, you can move one or more external data source connection
configurations between two Dashboard Builder installations.

Since the data sources definitions consist of a very small number of attributes, it is possible to create
them in your target environment manually by using the External connections panel.

Procedure: Creating Data Sources Manually Using Web UI

1. In Business Central, go to Dashboards → Business Dashboards.

2. In the menu on the left, click Administration → External connections.

3. Select the type of a new data source (either the JNDI or a Custom DataSource) and fill in the

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

161

3. Select the type of a new data source (either the JNDI or a Custom DataSource) and fill in the
data source details.

4. Click Check DataSource to validate the details.
If the validation ends up successfully, the following message appears:

The DataSource is well configured.

5. Click Save.

Procedure: Importing Data Sources Using Deployment Scanner

1. Create the data sources definition files with the following supported properties:

common properties:

type: the type of the data source (JNDI or JDBC),

name: the data source name,

testQuery: a definition of a query used for testing the data source during the
instantiation.

JNDI data source properties:

jndiPath: the data source bean path.

Example 16.1. JNDI Data Source Descriptor

Red Hat JBoss BPM Suite 6.4 User Guide

162

type = JNDI
name = myCompanyDataSource
testQuery = SELECT count(*) FROM CUSTOMER
jndiPath = java:comp/env/jdbc/mycompany

JDBC data source properties:

jdbcUrl: the JDBC URL for the connection,

driverClass: a fully qualified class name of the used driver,

user: the connection user name,

password: the connection password.

Example 16.2. JBDC Data Source Descriptor

type = JDBC
name = myCompanyDataSource
testQuery = SELECT count(*) FROM CUSTOMER
jdbcUrl = jdbc:postgresql://mydomain.com:5432/mycompany
driverClass = org.postgresorg.postgresql.Driver
user = system
password = dba

2. Make sure that the data source definition file has the extension .datasource.

3. Move the file into the /jboss-eap-6.4/standalone/deployments/dashbuilder.war/WEB-
INF/deployments directory.
If the data source already exists (there is a file that contains a data source with the same logic
identifier), the file will be overwritten. Note that these two files do not have to have the same
name in order to be replaced.

The data sources are imported once during the application deployment.

16.6. DASHBOARD BUILDER DATA MODEL

The following image illustrates the Dashboard Builder data model:

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

163

NOTE

Dashboard Builder data model stores only metadata, not actual runtime data.

Table 16.1. Dashboard Builder Data Model

Table Attributes Description

dashb_data_source dbid, ds_type, name,
jndi_path, ds_url,
jdbc_driver_class,
user_name, passwd,
test_query

Stores data source instances,
either JNDI or JDBC.

dashb_data_source_table dbid, name, data_source,
selected

Currently not used. Stores a set
of tables available for a given data
source.

dashb_data_source_column dbid, name, sql_type,
data_source, table_name,
primary_key, identity1

Currently not used. Stores a set
of columns within a table.

dashb_permission id_permission,
principal_class,
principal_name,
permission_class,
permission_resource,
permission_action,
permission_readonly

Stores permissions for different
user interface resources
(workspaces, pages, panels, and
graphic resources).

dashb_graphic_resource dbid, workspace_id,
section_id, panel_id, id,
resource_type, zip, status,
last_modified

Stores graphic resource
definitions (envelopes, layouts,
and skins).

Red Hat JBoss BPM Suite 6.4 User Guide

164

dashb_workspace id_workspace, look,
envelope, url,
default_workspace,
home_search_mode

Stores workspace instances.

dashb_workspace_home id_workspace, id_role,
id_section

Stores a home page for each role.

dashb_workspace_paramete
r

id_workspace, id_parameter,
language, value

Stores workspace-related
parameters.

dashb_allowed_panel id_workspace,
id_panel_provider

Stores a set of panel types a
workspace can use.

dashb_section dbid, id_section,
id_workspace, id_template,
position, visible,
region_spacing,
panel_spacing, id_parent, url,
skin, envelope

Refers to the
dashb_workspace table.

dashb_section_i18n id_section, language, title Stores information for
internationalization and
localization.

dashb_panel_instance dbid, id_instance,
id_workspace, provider,
serialization

Stores reusable panel instances. It
is not tied to any specific page.

dashb_panel dbid, id_panel, id_instance,
id_section, id_region,
position

Stores page panels. Refers to the
dashb_panel_instance and
dashb_section tables. It is tied
to a particular page and layout
region.

dashb_panel_parameter dbid, id_parameter,
id_instance, value, language

Stores page panels and is tied to
a particular page and layout
region.

dashb_panel_html dbid, id_instance Stores an HTML panel definition.

dashb_panel_html_i18n id_text, language, html_text Stores information for
internationalization and
localization.

Table Attributes Description

CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER

165

dashb_data_provider id, code, provider_uid,
provider_xml,
data_properties_xml,
can_edit,
can_edit_properties,
can_delete

Stores data provider definitions
(SQL and CSV).

dashb_data_provider_i18n id_data_provider, language,
description

Stores information for
internationalization and
localization.

dashb_kpi id, id_data_provider, code,
displayer_uid, displayer_xml

Stores all types of KPI definitions
(pie, bar, line, and table).

dashb_kpi_i18n id_kpi, language, description Stores information for
internationalization and
localization.

dashb_installed_module name, version Stores installed or imported
modules used for automatic
importing of assets.

dashb_cluster_node id_node, node_address,
startup_time, node_status

Stores running nodes and is
needed for cluster setups.

Table Attributes Description

Red Hat JBoss BPM Suite 6.4 User Guide

166

CHAPTER 17. DATA SETS
The data set functionality in Business Central defines how to access and parse data. Data sets serve as
a source of data that can be displayed by the Dashbuilder displayer. You can add the Dashbuilder
displayers to a custom perspective in the Plugin Management perspective. Note that the data set
perspective is visible only to users of the Administrator group.

17.1. MANAGING DATA SETS

To add a data set definition:

1. Log into Business Central and click Extensions → Data Sets.

2. Click New Data Set.

3. Select the provider type and click Next. Currently, the following provider types are supported:

Java Class – generate a data set from a Java class.

SQL – generate a data set from an ANSI-SQL compliant database.

CSV – generate a data set from a remote or local CSV file.

Elasticsearch – generate a data set from Elasticsearch nodes.

NOTE

Elasticsearch data set integration support is limited to commercially reasonable efforts.
For details, see What is commercially reasonable support? .

1. Complete the Data Set Creation Wizard and click Test.

2. Depending on what provider you chose, the configuration steps will differ. Once you complete
the steps, click Save to create a data set definition.

To edit a data set:

1. Log into Business Central and click Extensions → Data Sets.

2. In Data Set Explorer, click on an existing data set and click Edit.

3. Data Set Editor opens. You can edit your data set in three tabs. Note that some of the tabs
differ based on the provider type you chose. The following applies to the CSV data provider.

CSV Configuration – allows you to change the name of your data set definition, the source
file, the separator, and other properties.

Preview – after you click Test in the CSV Configuration tab, the system executes the data
set lookup call and if the data is available, you will see a preview. Notice two subtabs:

Data columns – allows you to customize what columns are part of your data set
definition.

Filter – allows you to add a new filter.

Advanced – allows you to manage:

Caching – see Section 17.2, “Caching” for more information.

CHAPTER 17. DATA SETS

167

https://access.redhat.com/solutions/710953

Caching – see Section 17.2, “Caching” for more information.

Cache life-cycle – see Section 17.3, “Data Refresh” for more information.

17.2. CACHING

Red Hat JBoss BPM Suite data set functionality provides two cache levels:

Client level

Back end level

Client Cache
When turned on, the data set is cached in a web browser during the look-up operation. Consequently,
further look-up operations do not perform any request to the backend.

Backend Cache
When turned on, the data set is cached by the Red Hat JBoss BPM Suite engine. This reduces the
number of requests to the remote storage system.

NOTE

The Java and CSV data providers rely on back-end caching. As a result, back-end cache
settings are not always visible in the Advanced tab of the Data Set Explorer.

17.3. DATA REFRESH

The refresh features allow you to invalidate cached data set data after a specified interval of time. The
Refresh on stale data feature invalidates cached data when the back-end data changes.

Red Hat JBoss BPM Suite 6.4 User Guide

168

CHAPTER 18. MANAGEMENT CONSOLE
Click General Configuration at the upper right hand corner of the standalone Dashbuilder application
to access the management console.

The management console is inaccessible through the Process & Task Dashboard in Business Central.

The management console page contains a tree menu with the main administration resources on the left:

Workspaces tree with individual workspaces and their pages (general item settings are
displayed on the right)

Graphic resources tree with options for upload of new graphic resources and management of
the existing ones

General permissions with access roles definitions and access permission management

To switch back to the last workspace page, click Workspace in the upper left
corner.

CHAPTER 18. MANAGEMENT CONSOLE

169

CHAPTER 19. GRAPHIC RESOURCES
Red Hat JBoss Dashboard Builder uses the following components to define the environment
appearance and thus separate the presentation resources from content and data:

Skins define a set of style sheets, images, and icons

Region layouts define layouts of regions for pages

Envelopes define an HTML template used as page frames

Graphic Resources Definitions
All graphics components are deployed as zip files as part of the Red Hat JBoss Dashboard Builder in the
$DEPLOYMENT_LOCATION/dashbuilder.war/WEB-INF/etc/ directory.

Every component definition contains the following:

properties file that defines the name of the component for individual supported locales, the
name of the css file to be applied on the component, and mapping of file to individual
component elements

JSP, HTML, CSS files, and image and icon resources referenced from the properties file

When creating custom graphic resources, it is recommended to download one of the existing
components and modify it as necessary. This will prevent unnecessary mistakes in your definition.

19.1. WORKING WITH GRAPHIC RESOURCES

1. On the top menu, click the General configuration button.

2. Under the Graphic resources node on the left, click the component type you want to work with
(Skins , Layouts , Envelopers). The window on the right will display the content relevant for the
given component type.

3. On the right, you can now do the following:

a. Upload a new component: you need to provide a unique ID for the component and the
resource zip file. Then click Add.

b. Download a component definition or preview the component: in the table below the Add
view, click the respective icon in the Actions column.

Red Hat JBoss BPM Suite 6.4 User Guide

170

APPENDIX A. PROCESS ELEMENTS

DISCLAIMER

This chapter contains introduction to BPMN elements and their semantics. For details
about BPMN, see the Business Process Model and Notation, Version 2.0. The BPMN 2.0
specification is an Object Management Group (OMG) specification that defines
standards on how to graphically represent a business process, defines execution
semantics for the elements along with an XML format of process definitions source.

Note that Red Hat JBoss BPM Suite focuses exclusively on executable processes and
supports a significant subset of the BPMN elements including the most common types
that can be used inside executable processes.

A process element is a node of the process definition. The term covers nodes with execution semantics
as well as those without.

Elements with execution semantics define the execution workflow of the process.

Elements without execution semantics, such as artifacts, allow users to provide notes and further
information on the process or any of its elements to accommodate collaboration of multiple users with
different roles, such as, business analyst, business manager, or process designer.

All elements with execution semantics define their generic properties.

Generic Process Element Properties

ID

The ID defined as a String, unique in the parent knowledge base.

Name

The display name of the element.

APPENDIX A. PROCESS ELEMENTS

171

CHAPTER 20. PROCESS
A process is a named element defined in a process definition. It exists in a knowledge base and is
identified by its ID.

A process represents a namespace and serves as a container for a set of modeling elements. it contains
elements that specify the execution workflow of a business process or its parts using flow objects and
flows. Every process must contain at least one start event and one end event.

A process is accompanied by its BPMN Diagram, which is also part of the process definition, and defines
the visualisation of the process execution workflow, for example in the Process Designer.

Apart from the execution workflow and process attributes, a process can define process variables, which
store process data during runtime. For more information on process variables, see Section 4.9,
“Variables”.

Runtime
During runtime, a process serves as a blueprint for a process instance, similarly to a class and its objects.
A process instance is managed by a session, which may contain multiple process instances. This enables
the instances to share data, for example, using global variables. Global variables are stored in the session
instance, not in the process instance, which enables communication across process instances. Every
process instance has its own context and ID.

Knowledge Runtime, called kcontext, holds all the process runtime data. Use it to retrieve or modify the
runtime data, for example in Action Scripts:

Getting the currently executed element instance. You can then query further element data, such
as its name and type, or cancel the element instance.

Getting the currently executed process instance. You can then query further process instance
data, such as, its name, ID. You can also abort the process instance, or send an event, such as a
Signal Event.

Getting and setting the values of variables.

Execute calls on the Knowledge runtime, for example, start process instances, insert facts, and
similar.

A process instance has the following lifecycle phases:

CREATED

When you call the createProcessInstance method on a process, a new process instance is created.
The process variables are initialized and the status of the process instance is CREATED.

NodeInstance element = kcontext.getNodeInstance();
String name = element.getNodeName();

ProcessInstance proc = kcontext.getProcessInstance();
proc.signalEvent(type, eventObject);

kcontext.setVariable("myVariableName", "myVariableValue");

kcontext.getKnowledgeRuntime().signalEvent(eventType, data,
 kcontext.getProcessInstance().getId());

Red Hat JBoss BPM Suite 6.4 User Guide

172

PENDING

When a process instance is created, but not yet started.

ACTIVE

When you call the start() method on a process instance, its execution is triggered and its status is
ACTIVE. If the process is instantiated using an event, such as Signal, Message, or Error Events, the
flow will start on the respective type of start event. Otherwise, the flow starts on the None Start
Event.

COMPLETED

Once there is no token in the flow the process instance is finished and its status is COMPLETED.
Tokens in the flow are consumed by End Events and destroyed by Terminating Events.

ABORTED

If you call the abortProcessInstance method, the process instance is interrupted and its status is
ABORTED.

The runtime state of a process instance can be made persistent, for example, in a database. This enables
you to restore the state of execution in case of environment failure, or to temporarily remove running
instances from memory and restore them later. By default, process instances are not made persistent.
For more information on persistence see chapter Persistence of the Red Hat JBoss BPM Suite
Administration and Configuration Guide.

Properties

ID

Process ID defined as a String unique in the parent knowledge base.
Example value: org.jboss.exampleProcess.

It is recommended to use the ID form <PACKAGENAME>.<PROCESSNAME>.<VERSION>.

Process Name

Process display name.

Version

Process version.

Package

Parent package to which the process belongs (that is process namespace).
The package attribute contains the location of the modeled process in form of a String value.

Target Namespace

The location of the XML schema definition of the BPMN2 standard.

Executable

Enables or disables the process to be instantiated. Set to false to disable process instantiation.
Possible values: true, false.

Imports

Comma-separated values of imported processes.

Documentation

Contains element description, has no impact on runtime.

AdHoc

CHAPTER 20. PROCESS

173

https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html-single/administration_and_configuration_guide/#chap_persistence

Boolean property defining whether a process is an ad-hoc process.
If set to true, the flow of the process execution is controlled exclusively by a human user.

Globals

Set of global variables visible for other processes to allow data sharing.

Variable Definitions

Enables you to define variables available for the process.

Process Instance Description

Contains description of the process, has no impact on runtime.

TypeLanguage

Identifies a type system used for the process.

Base Currency

Identifies the currency in simulation scenarios. Uses the ISO 4217 standard, for example EUR, GBP,
or USD.

Red Hat JBoss BPM Suite 6.4 User Guide

174

CHAPTER 21. EVENTS MECHANISM
During process execution, the Process Engine ensures that all the relevant tasks are executed according
to the process definition, the underlying work items, and other resources. However, a process instance
often needs to react to a nevent it was not directly requesting. Such events can be created and caught
by the Intermediate Event elements. See Chapter 39, Throwing Intermediate Events for further
information. Using these events in a process enables you to specify how to handle a particular event.

An event must specify the type of event it should handle. It can also define the name of a variable that
will store the data associated with the event. This enables subsequent elements in the process to access
and react to the data.

An event can be signaled to a running instance of a process in a number of ways:

Internal event
Any action inside a process, for example the action of an action node or an on-entry action a
node, can signal the occurrence of an internal event to the process instance.

External event
A process instance can be notified of an event from the outside.

External event using event correlation
You can notify the entire session and use the event correlation to notify particular processes.
Event correlation is determined based on the event type. A process instance that contains an
event element listening to external events is notified whenever such an event occurs. To signal
such an event to the process engine:

You can also use events to start a process. When a Message Start Event defines an event trigger, a new
process instance starts every time the event is signalled to the process engine.

This mechanism is used for implementation of the Intermediate Events, and can be used to define
custom events.

kcontext.getProcessInstance().signalEvent(type, eventData);

processInstance.signalEvent(type, eventData);

ksession.signalEvent(type, eventData);

CHAPTER 21. EVENTS MECHANISM

175

CHAPTER 22. COLLABORATION MECHANISMS
Elements with execution semantics use collaboration mechanisms. Different elements use the
collaboration mechanism differently. For example, if you use signalling, the Throw Signal Intermediate
Event element sends a signal, and the Catch Signal Intermediate Event element receives the signal. That
means Red Hat JBoss BPM Suite provides you with two elements with execution semantics that make
use of the same signal mechanism in a collaborative way.

Collaboration mechanism includes the following:

Signals

General, mainly inter-process instance communication.

Messages

Messages are used to communicate within the process and between process instances. Messages are
implemented as signals, which makes them scoped only for a given KIE session instance.
For external system interaction, use Send and Receive Tasks with proper handler implementation.

Escalations

Used as signalling between processes to trigger escalation handling.

Errors

Used as inter-process signalling of escalation to trigger escalation handling.

All the events are managed by the signaling mechanism. To distinguish individual objects of individual
mechanism the signal use different signal codes or names.

22.1. SIGNALS

Signals in Red Hat JBoss BPM Suite correspond to the Signal Event in the specification BPMN 2.0, and
are the most flexible of the listed mechanisms. Signals can be consumed by an arbitrary number of
elements both within its process instance and outside of it. Signals can also be consumed by any
element in any session within or cross the current deployment, depending on the scope of the event that
throws the signal.

22.1.1. Triggering Signals

The following Throw Events trigger signals:

Intermediate Throw Event

End Throw Event

Every signal defines its signal reference, that is the SignalRef property, which is unique in the
respective session.

A signal can have one of the following scopes, which restricts its propagation to the selected elements:

Default (ksession)

Signal only propagates to elements within the given KIE session. The behavior varies depending on
what runtime strategy is used:

Singleton: All instances available for the KIE session are signalled.

Per Request: Signal propagates within the currently processed process instance and

Red Hat JBoss BPM Suite 6.4 User Guide

176

Per Request: Signal propagates within the currently processed process instance and
process instances with Start Signal Events.

Per Process Instance: Same as per request.

Process Instance

The narrowest possible scope, restricting the propagation of the signal to the given process instance
only. No catch events outside that process instance will be able to consume the signal.

Project

Signals all active process instances of given deployment and start signal events, regardless of the
strategy.

External

Allows to signal elements both within the Project and across deployments. The external scope
requires further setup.

To select the scope in the Process Designer, click Signal Scope under Core Properties of a Signal
Throw Event.

Figure 22.1. Selecting Signal Scope (Default)

Signalling External Deployments
When creating an external signal event, you need to specify the work item handler for the External Send
Task manually. Use the org.jbpm.process.workitem.jms.JMSSendTaskWorkItemHandler work item
handler, which is shipped with Red Hat JBoss BPM Suite. It is not registered by default because each
supported application server handles JMS differently, mainly due to different JNDI names for queues
and connection factories.

Procedure: Registering External Send Task Handler

CHAPTER 22. COLLABORATION MECHANISMS

177

1. In Business Central, open your project in the Project Editor and click Project Settings: Project
General Settings → Deployment descriptor.

2. Find the list of Work Item handlers and click Add.

3. Provide these values:

Name: External Send Task

Value: new org.jbpm.process.workitem.jms.JMSSendTaskWorkItemHandler()

Resolver type: mvel

Figure 22.2. Registered External Send Task Handler

This will generate a corresponding entry in the kie-deployment-descriptor.xml file.

The JMSSendTaskWorkItemHandler handler has five different constructors. The parameterless
constructor used in the procedure above has two default values:

Connection factory: java:/JmsXA

Destination queue: queue/KIE.SIGNAL

You can specify custom values using one of the following constructors instead:

new
org.jbpm.process.workitem.jms.JMSSendTaskWorkItemHandler("CONNECTION_FACTOR
Y_NAME", "DESTINATION_NAME")

new
org.jbpm.process.workitem.jms.JMSSendTaskWorkItemHandler("CONNECTION_FACTOR
Y_NAME", "DESTINATION_NAME", TRANSACTED), where TRANSACTED is true or false.
The argument affects the relevant JMS session. See the Interface Connection Javadoc for
more information.

Both cross-project signalling and process instance signalling within a project is supported. To do so,
specify the following data inputs in the DataInputAssociations property of the signal event in the
Process Designer. See Section 22.1.2, “Catching and Processing Signals” for more information.

Signal: The name of a signal which will be thrown. This value should match the SignalRef
property in the signal definition.
SignalWorkItemId: The ID of a Work Item which will be completed.

These two data inputs are mutually exclusive.

SignalProcessInstanceId: The target process instance ID. The parameter is optional.

SignalDeploymentId: The target deployment ID.
Figure 22.3. Specifying SignalDeploymentId Data Input

Red Hat JBoss BPM Suite 6.4 User Guide

178

https://docs.oracle.com/javaee/7/api/javax/jms/Connection.html#createSession-boolean-int-

Figure 22.3. Specifying SignalDeploymentId Data Input

The data inputs provide information about the signal, target deployment, and target process instance.
For external signalling, the deployment ID is required, because an unrestricted broadcast would
negatively impact the performance in large environments.

To send signals and messages in asynchronous processes, you need to configure a receiver of the
signals, that is to limit a number of sessions for a given endpoint. By default, the receiver message-driven
bean (org.jbpm.process.workitem.jms.JMSSignalReceiver) does not limit a concurrent processing.

Open the EAP_HOME/standalone/deployments/business-central.war/WEB-INF/ejb-jar.xml file and
add the following activation specification property to the JMSSignalReceiver message-driven bean:

The message-driven bean should look like the following:

This setting ensures that all messages, even the ones that were sent concurrently, will be processed

<activation-config-property>
 <activation-config-property-name>maxSession</activation-config-property-name>
 <activation-config-property-value>1</activation-config-property-value>
</activation-config-property>

<message-driven>
 <ejb-name>JMSSignalReceiver</ejb-name>
 <ejb-class>org.jbpm.process.workitem.jms.JMSSignalReceiver</ejb-class>
 <transaction-type>Bean</transaction-type>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>destinationType</activation-config-property-name>
 <activation-config-property-value>javax.jms.Queue</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>destination</activation-config-property-name>
 <activation-config-property-value>java:/queue/KIE.SIGNAL</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>maxSession</activation-config-property-name>
 <activation-config-property-value>1</activation-config-property-value>
 </activation-config-property>
 </activation-config>
</message-driven>

CHAPTER 22. COLLABORATION MECHANISMS

179

This setting ensures that all messages, even the ones that were sent concurrently, will be processed
serially and that notifications sent to the parent process instance will be delivered and will not cause any
conflicts.

22.1.2. Catching and Processing Signals

Signals are caught by the following catch event types:

Start Catch Event

Intermediate Catch Event

Boundary Catch Event

To catch and process a signal, create an appropriate catching signal event in the Process Designer, and
set the following properties:

SignalRef

The signal’s reference.
Value: The same as the Throwing Signal Event’s SignalRef.

DataOutputAssociations

The variables used to store the output of the received signal, if applicable.
To assign a data output:

1. Select the appropriate catch event type in the Process Designer.

2. Click to open the Properties tab.

3. Click the drop down menu next to the DataOutputAssociations property, and click Add.

4. In the new row, enter a name for the association.

5. Select the expected data type from the dropdown menu. Selecting Custom… enables you to
type in any class name.

6. Select the target process variable, where the output will be stored.

7. Click Save to save the association.
For more information about setting process variables, see Section 4.9, “Variables”.

22.1.3. Triggering Signals Using API

To signal a process instance directly, that is equivalent to the process Instance scope, use the following
API function:

ksession.signalEvent(eventType, data, processInstanceId)

Here, the parameters used are as follows:

eventType

The signal’s reference, SignalRef in Process Designer.

Value: A String. You can also reference a process variable using the string #{myVar} for a process

Red Hat JBoss BPM Suite 6.4 User Guide

180

Value: A String. You can also reference a process variable using the string #{myVar} for a process
variable myVar.

data

The signal’s data.
Value: Instance of a data type accepted by the corresponding Catching Signal Event. Typically an
arbitrary Object.

processInstanceId

The process ID of the signalled process.

You can use a more general version of the above function, which does not specify the parameter
processInstanceId. That results in signalling all processes in the given ksession, that is equivalent to the
Default scope:

The usage of the arguments eventType and data is the same as above.

To trigger a Signal from a script, that is a Script Task, or using on-entry or on-exit actions of a node, use
the following API function:

The usage of the arguments eventType and data is the same as above.

22.2. MESSAGES

A Message represents the content of a communication between two Participants. In
BPMN 2.0, a Message is a graphical decorator (it was a supporting element in BPMN
1.2). An ItemDefinition is used to specify the Message structure.[1]

Messages are similar objects to Signals; the main difference is that when you are throwing the message,
you must uniquely identify the recipient of the Message. In Red Hat JBoss BPM Suite, this is achieved
by specifying both the element ID and the Process Instance ID. For this reason, Messages do not benefit
from the scope feature of Signals.

22.2.1. Sending Messages

Like signals, messages are sent by throw events of one of the following types:

Intermediate Throw Event

End Throw Event

Send Task

When creating the appropriate throw event, register a custom handler for the Send Task Work Item. Red
Hat JBoss BPM Suite provides only dummy implementation by default. It is recommended to use the
JMS-based org.jbpm.process.workitem.jms.JMSSendTaskWorkItemHandler.

NOTE

ksession.signalEvent(eventType, data);

kcontext.getKieRuntime().signalEvent(
 eventType, data, kcontext.getProcessInstance().getId());

CHAPTER 22. COLLABORATION MECHANISMS

181

NOTE

If necessary, you can emulate the message-sending mechanism using signals and their
scopes so that only one element can receive the given signal.

22.2.2. Catching Messages

The process for catching messages does not differ from receiving signals, with the exception of using
the MessageRef element property instead of SignalRef. See Section 22.1.2, “Catching and Processing
Signals” for further information.

WARNING

When catching messages through the API, the MessageRef property of the
catching event is not the same as the eventType parameter of the API call. See
Section 22.2.3, “Sending Messages Using API” for further information.

22.2.3. Sending Messages Using API

To send a message using the API, use the following method:

Here, the parameters used are as follows:

eventType

A String that starts with Message- and contains the message’s reference (MessageRef). You can
also reference a process variable using the string #{myVar} for a process variable myVar.
Examples:

Message-SampleMessage1 for MessageRef SampleMessage1.

#{myVar} for process variable myVar. The value of myVar must be a String starting with
Message-.

data

The message’s data.
Value: An arbitrary Object.

processInstanceId

The Process ID of the process being messaged.

To send a message from a Script Task or using on-entry or on-exit actions of a node, use the following
method:

ksession.signalEvent(eventType, data, processInstanceId);

kcontext.getKieRuntime().signalEvent(
 eventType, data, kcontext.getProcessInstance().getId());

Red Hat JBoss BPM Suite 6.4 User Guide

182

The usage of the arguments eventType and data is the same as above.

22.3. ESCALATION

"An Escalation identifies a business situation that a Process might need to react to." [2]

The escalation mechanism is intended for the handling of events that need the attention of someone of
higher rank, or require additional handling.

Escalation is represented by an escalation object that is propagated across the process instances. It is
produced by the Escalation Intermediate Throw Event or Escalation End Event, and can be consumed by
exactly one Escalation Start Event or Escalation Intermediate Catch Event. Once produced, it is
propagated within the current context and then further up the contexts until caught by an Escalation
Start Event or Escalation Intermediate Catch Event, which is waiting for an Escalation with the particular
Escalation Code. If an escalation remains uncaught, the process instance is ABORTED.

Attributes

Mandatory Attributes

Escalation Code

string with the escalation code

[1] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[2] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

CHAPTER 22. COLLABORATION MECHANISMS

183

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0

CHAPTER 23. TRANSACTION MECHANISMS

23.1. ERRORS

An error represents a critical problem in a process execution and is indicated by the Error End Event.
When a process finishes with an Error End Event, the event produces an error object with a particular
error code that identifies the particular error event. The Error End Event represents an unsuccessful
execution of the given process or activity. Once generated, it is propagated as an object within the
current context and then further up the contexts until caught by the respective catching Error
Intermediate Event or Error Start Event, which is waiting for an error with a particular error code. If the
error is not caught and is propagated to the upper-most process context, the Process instance
becomes ABORTED.

Every Error defines its error code, which is unique in the respective process.

Attributes

Error Code

Error code defined as a String unique within the process.

23.2. COMPENSATION

Compensation is a mechanism that allows you to handle business exceptions that might occur in a
process or sub-process, that is in a business transaction. Its purpose is to compensate for a failed
transaction, where the transaction is presented by the process or sub-process, and then continues the
execution using the regular flow path. Note that compensation is triggered only after the execution of
the transaction has finished and that either with a Compensation End Event or with a Cancel End Event.

NOTE

Consider implementing handling of business exceptions in the following cases:

When an interaction with an external party or 3rd party system may fail or be
faulty.

When you cannot fully check the input data received by your process, for
example a client’s address information.

When there are parts of your process that are dependent on one of the following:

Company policy or policy governing certain in-house procedures.

Laws governing the business process, such as age requirements.

If a business transaction finishes with a Compensation End Event, the Event produces a request for
compensation handling. The compensation request is identified by ID and can be consumed only by the
respective Compensation Intermediate Event placed on the boundary of the transaction Elements and
Compensation Start Event. The Compensation Intermediate Event is connected with an Association
Flow to the activity that defines the compensation, such as a sub-process or task. The execution flow
either waits for the compensation activity to finish or resumes depending on the Wait for completion
property set on the Compensation End Event of the business transaction that is being compensated.

If a business transaction contains an event sub-process that starts with a Compensation Start Event, the
Event Sub-Process is run as well if compensation is triggered.

Red Hat JBoss BPM Suite 6.4 User Guide

184

The activity to which the Compensation Intermediate Event points may be a sub-process. Note that the
sub-process must start with the Compensation Start Event.

If running over a multi-instance sub-process, compensation mechanism of individual instances do not
influence each other.

CHAPTER 23. TRANSACTION MECHANISMS

185

CHAPTER 24. TIMING
Timing is a mechanism for scheduling actions and is used by Timer Intermediate and Timer Start events.
It enables you to delay further execution of a process or task.

NOTE

A timer event can be triggered only after the transaction is commited, while the timer
countdown starts right after entering the node, that is the attached node in case of a
boundary event. In other words, a timer event is only designed for those use cases where
there is a wait state, such as a User Task. If you want to be notified of the timeout of a
synchronous operation without a wait state, a boundary timer event is not suitable .

The timing strategy is defined by the following timer properties:

Time Duration

Defines the period for which the execution of the event is put on hold. The execution continues after
the defined period has elapsed. The timer is applied only once.

Time Cycle

This defines the time between subsequent timer activations. If the period is 0, the timer is triggered
only once.

The value for these properties can be provided as either Cron or as an expression by defining the, Time
Cycle Language property.

Cron

[#d][\#h][\#m][\#s][#[ms]]

Example 24.1. Timer Period With Literal Values

1d 2h 3m 4s 5ms

The element will be executed after 1 day, 2 hours, 3 minutes, 4 seconds, and 5 milliseconds.

Any valid ISO8601 date format that supports both one shot timers and repeatable timers can be
used. Timers can be defined as date and time representation, time duration or repeating intervals.
For example:

Date

2013-12-24T20:00:00.000+02:00 - fires exactly at Christmas Eve at 8PM

Duration

PT2S - fires once after 2 seconds

Repetable Intervals

R/PT1S - fires every second, no limit, alternatively R5/PT1S will fire 5 times every second

None

#{expression}

Example 24.2. Timer period with expression

Red Hat JBoss BPM Suite 6.4 User Guide

186

myVariable.getValue()

The element will be executed after time period returned by the call myVariable.getValue().

CHAPTER 24. TIMING

187

CHAPTER 25. EVENT TYPES
Events are triggers that impact a business process. Events are classified as:

Start events
Indicate the beginning of a business process.

End events
Indicate the completion of a business process.

Intermediate events
Drive the flow of a business process.

Every event has an event ID and a name. You can implement triggers for each of these event types to
identify the conditions under which an event is triggered. If the conditions of the triggers are not met,
the events are not initialized, and the process flow does not complete.

25.1. START EVENT

Every process must have at least one start event with no incoming and exactly one outgoing flow.

Multiple start event types are supported:

None Start Event

Signal Start Event

Timer Start Event

Conditional Start Event

Message Start Event

Compensation Start Event

Error Start Event

Escalation Start Event

All start events, except for the None Start Event, define a trigger. When you start a process, the trigger
needs to be fulfilled. If no start event can be triggered, the process is never instantiated.

25.1.1. Start Event types

25.1.1.1. None Start Event

The None Start Event is a start event without a trigger condition. A process or a sub-process can contain
at most one None Start Event, which is triggered on process or sub-process start by default, and the
outgoing flow is taken immediately.

When used in a sub-process, the execution is transferred from the parent process into the sub-process
and the None Start Event is triggered. That means that the token is taken from the parent sub-process
activity and the None Start Event of the sub-process generates a token.

25.1.1.2. Message Start Event

Red Hat JBoss BPM Suite 6.4 User Guide

188

A process or an event sub-process can contain multiple Message Start Events, which are triggered by a
particular message. The process instance with a Message Start Event only starts its execution from this
event after it has received the respective message. After the message is received, the process is
instantiated and its Message Start Event is executed immediately (its outgoing Flow is taken).

As a message can be consumed by an arbitrary number of processes and process elements, including no
elements, one message can trigger multiple Message Start Events and therefore instantiate multiple
Processes.

Attributes

MessageRef

ID of the expected Message object

25.1.1.3. Timer Start Event

The Timer Start Event is a Start Event with a timing mechanism. For more information about timing, see
Chapter 24, Timing.

A process can contain multiple Timer Start Events, which are triggered at the start of the process, after
which the timing mechanism is applied.

When used in a sub-process, the execution is transferred from the parent process into the sub-process
and the Timer Start Event is triggered. The token is taken from the parent sub-process activity and the
Timer Start Event of the sub-process is triggered and waits for the timer to trigger. Once the time
defined by the timing definition has been reached, the outgoing flow is taken.

Attributes

Time Cycle

Repeatedly triggers the timer after a specific time period. If the period is 0, the timer is triggered only
once.

Time Cycle Language

Set to None for the default interval, or Cron for the following Time Cycle property format:

[\#d][\#h][\#m][\#s][#[ms]]

Time Duration

Marks the timer as a one-time expiration timer. It is the delay after which the timer fires. Possible
values are a String interval, a process variable, or the ISO-8601 date format.

Time Date

Starts the process at the specified date and time in the ISO-8601 date format.

25.1.1.4. Escalation Start Event

The Escalation Start Event is a start event that is triggered by an escalation with a particular escalation
code. For further information, see Section 22.3, “Escalation”.

Process can contain multiple Escalation Start Events. The process instance with an Escalation Start
Event starts its execution when it receives the defined escalation object. The process is instantiated and
the Escalation Start Event is executed immediately, which means its outgoing flow is taken.

Attributes

Escalation Code

CHAPTER 25. EVENT TYPES

189

Escalation Code

Expected escalation Code.

25.1.1.5. Conditional Start Event

The Conditional Start Event is a start event with a Boolean condition definition. The execution is
triggered always when the condition is first evaluated to false and then to true. The process execution
starts only if the condition is evaluated to true after the start event has been instantiated.

A process can contain multiple Conditional Start Events.

Attributes

Expression

A Boolean condition that starts the process execution when evaluated to true.

Language

A language of the Expression attribute.

25.1.1.6. Error Start Event

A process or sub-process can contain multiple Error Start Events, which are triggered when an Error
object with a particular ErrorRef property is received. The error object can be produced by an Error End
Event, and it signalizes an incorrect process ending. The process instance with the Error Start Event
starts execution after it has received the respective error object. The Error Start Event is executed
immediately upon receiving the error object, which means its outgoing Flow is taken.

Attributes

ErrorRef

A code of the expected error object.

25.1.1.7. Compensation Start Event

A Compensation Start Event is used to start a Compensation Event sub-process when using a sub-
process as the target activity of a Compensation Intermediate Event.

25.1.1.8. Signal Start Event

The Signal Start Event is is triggered by a signal with a particular signal code. For further information,
see Section 22.1, “Signals”.

A process can contain multiple Signal Start Events. The Signal Start Event only starts its execution
within the Process instance after the instance has received the respective Signal. Then, the Signal Start
Event is executed, which means its outgoing flow is taken.

Attributes

SignalRef

The expected Signal Code.

25.2. INTERMEDIATE EVENTS

25.2.1. Intermediate Events

Red Hat JBoss BPM Suite 6.4 User Guide

190

“... the Intermediate Event indicates where something happens (an Event) somewhere between the start
and end of a Process. It will affect the flow of the Process, but will not start or (directly) terminate the
Process.[3]”

An intermediate event handles a particular situation that occurs during process execution. The situation
is a trigger for an intermediate event.

In a process, intermediate events can be placed as follows:

On an activity boundary with one outgoing flow

If the event occurs while the activity is being executed, the event triggers its execution to the
outgoing flow. One activity may have multiple boundary intermediate events. Note that depending
on the behavior you require from the activity with the boundary intermediate event, you can use
either of the following intermediate event types:

Interrupting: The activity execution is interrupted and the execution of the intermediate
event is triggered.

Non-interrupting: The intermediate event is triggered and the activity execution continues.

Based on the type of the event trigger, the following Intermediate Events are distinguished:

Timer Intermediate Event

Delays the execution of the outgoing flow.

Conditional Intermediate Event

Is triggered when its condition evaluates to true.

Error Intermediate Event

Is triggered by an error object with the given error code.

Escalation Intermediate Event

Has two subtypes:

Catching Escalation Intermediate Event, which is triggered by an escalation event.

Throwing Escalation Intermediate Event, which produces an escalation event when executed.

Signal Intermediate Event

Has two subtypes:

Catching Signal Intermediate Event, which is triggered by a signal.

Throwing Signal Intermediate Event, which produces a signal when executed.

Message Intermediate Event

Has two subtypes:

Catching Message Intermediate Event, which is triggered by a message object.

Throwing Message Intermediate Event, which produces a message object when executed.

Compensation Intermediate Event

Has two subtypes:

Catching Compensation Intermediate Event, which is triggered by a compensation object.

CHAPTER 25. EVENT TYPES

191

Catching Compensation Intermediate Event, which is triggered by a compensation object.

Throwing Compensation Intermediate Event, which produces a compensation object when
executed.

25.2.2. Intermediate Event types

25.2.2.1. Timer Intermediate Event

A timer intermediate event allows you to delay workflow execution or to trigger the workflow execution
periodically. It represents a timer that can trigger one or multiple times after a given period of time.
When triggered, the timer condition, that is the defined time, is checked and the outgoing flow is taken.
For more information about timing, see Chapter 24, Timing.

When placed in the process workflow, a timer intermediate event has one incoming flow and one
outgoing flow. Its execution starts when the incoming flow transfers to the event. When placed on an
activity boundary, the execution is triggered at the same time as the activity execution.

The timer is canceled if the timer element is canceled, for example by completing or aborting the
enclosing process instance.

Attributes

Time Cycle

Repeatedly triggers the timer after a specific time period. If the period is 0, the timer is triggered only
once.

Time Cycle Language

Set to None for the default interval, or Cron for the following Time Cycle property format:

[\#d][\#h][\#m][\#s][#[ms]]

Time Duration

Marks the timer as a one-time expiration timer. It is the delay after which the timer fires. Possible
values are a String interval, a process variable, or the ISO-8601 date format.

Time Date

Triggers the timer at the specified date and time in the ISO-8601 date format.

25.2.2.2. Conditional Intermediate Event

A Conditional Intermediate Event is an intermediate event with a boolean condition as its trigger. The
event triggers further workflow execution when the condition evaluates to true and its outgoing flow is
taken.

The event must define the Expression property. When placed in the process workflow, a Conditional
Intermediate Event has one incoming flow, one outgoing flow, and its execution starts when the
incoming flow transfers to the event. When placed on an activity boundary, the execution is triggered at
the same time as the activity execution. Note that if the event is non-interrupting, the event triggers
continuously while the condition is true.

Attributes

Expression

Red Hat JBoss BPM Suite 6.4 User Guide

192

A Boolean condition that triggers the execution when evaluated to true.

Language

A language of the Expression attribute.

25.2.2.3. Compensation Intermediate Event

A compensation intermediate event is a boundary event attached to an activity in a transaction sub-
process. It can finish with a compensation end event or a cancel end event. The compensation
intermediate event must be associated with a flow, which is connected to the compensation activity.

The activity associated with the boundary compensation intermediate event is executed if the
transaction sub-process finishes with the compensation end event. The execution continues with the
respective flow.

25.2.2.4. Message Intermediate Event

A Message Intermediate Event is an intermediate event that allows you to manage a message object.
Use one of the following events:

Throwing Message Intermediate Event produces a message object based on the defined
properties.

Catching Message Intermediate Event listens for a message object with the defined
properties.

Throwing Message Intermediate Event
When reached during execution, a Throwing Message Intermediate Event produces a message object
and the execution continues to its outgoing Flow.

Attributes

MessageRef

ID of the produced Message object.

Catching Message Intermediate Event
When reached during execution, a Catching Message Intermediate Event awaits a message object
defined in its properties. Once the message object is received, the event triggers execution of its
outgoing flow.

Attributes

MessageRef

ID of the expected Message object.

CancelActivity

If the event is placed on the boundary of an activity and Cancel Activity property is set to true, the
activity execution is canceled when the event receives its escalation object.

25.2.2.5. Escalation Intermediate Event

An Escalation Intermediate Event is an intermediate event that allows you to produce or consume an
escalation object. Depending on the action the event element should perform, you need to use either of
the following:

Throwing Escalation Intermediate Event produces an escalation object based on the defined

CHAPTER 25. EVENT TYPES

193

Throwing Escalation Intermediate Event produces an escalation object based on the defined
properties.

Catching Escalation Intermediate Event listens for an escalation object with the defined
properties.

Throwing Escalation Intermediate Event
When reached during execution, a Throwing Escalation Intermediate Event produces an escalation
object and the execution continues to its outgoing flow.

Attributes

EscalationCode

ID of the produced escalation object.

Catching Escalation Intermediate Event
When reached during execution, a Catching Escalation Intermediate Event awaits an escalation object
defined in its properties. When the object is received, the event triggers execution of its outgoing Flow.

Attributes

EscalationCode

Code of the expected Escalation object.

CancelActivity

If the event is placed on the boundary of an activity and Cancel Activity property is set to true, the
activity execution is canceled when the event receives its escalation object.

25.2.2.6. Error Intermediate Event

An Error Intermediate Event is an intermediate event that can be used only on an activity boundary. It
allows the process to react to an Error End Event in the respective activity. The activity must not be
atomic. When the activity finishes with an Error End Event that produces an error object with the
respective ErrorCode property, the Error Intermediate Event catches the error object and execution
continues to its outgoing flow.

25.2.2.6.1. Catching Error Intermediate Event

When reached during execution, a Catching Error Intermediate Event awaits an error object defined in
its properties. Once the object is received, the event triggers execution of its outgoing Flow.

Attributes

ErrorRef

The reference number of the expected error object.

25.2.2.7. Signal Intermediate Event

A Signal Intermediate Event enables you to produce or consume a signal object. Use either of the
following:

Throwing Signal Intermediate Event produces a signal object based on the defined properties.

Catching Signal Intermediate Event listens for a signal object with the defined properties.

Throwing Signal Intermediate Event

Red Hat JBoss BPM Suite 6.4 User Guide

194

When reached on execution, a Throwing Signal Intermediate Event produces a signal object and the
execution continues to its outgoing flow.

Attributes

SignalRef

The signal code that will be sent.

Signal Scope

You can choose one of the following scopes:

Process Instance: Catch events in the same process instance can catch this signal.

Default: Catch events in a given KIE session can catch this signal. The behavior varies
depending on the KIE session strategy:

Singleton: Signal reaches all the process instances available to the KIE session.

Per request: Signal reaches only the current process instance and start processes with a
Signal Start Event.

Per process: same as per request.

Project: Signal reaches only active process instances of a given deployment and starts
processes with a Signal Start Event.

External: Enables the signal to reach the same process instances as with the Project scope,
as well as process instances across deployments. To send the signal to a process instance
across deployments, create a SignalDeploymentId process variable that provides
information about what deployment or project should be the target of the signal.
Broadcasting the signal would have negative impact on performance in larger environments.

25.2.2.7.1. Catching Signal Intermediate Event

When reached during execution, a Catching Signal Intermediate Event awaits a signal object defined in
its properties. Once the object is received, the event triggers execution of its outgoing flow.

Attributes

SignalRef

Reference code of the expected signal object.

CancelActivity

If the event is placed on the boundary of an activity and Cancel Activity property is set to true, the
activity execution is canceled when the event receives its Escalation object.

25.3. END EVENTS

An end event is a node that ends a particular workflow. It has one or more incoming sequence flows and
no outgoing flow.

A process must contain at least one end event.

During runtime, an end event finishes the process workflow. The end event can finish only the workflow
that reached it, or all workflows in the process instance, depending on the end event type.

CHAPTER 25. EVENT TYPES

195

25.3.1. End Event types

25.3.1.1. Simple End Event

The Simple End Event finishes the incoming workflow, that means it consumes the incoming token. Any
other running workflows in the process or sub-process remain uninfluenced.

TERMINATE PROPERTY ON SIMPLE END EVENT

In Red Hat JBoss BPM Suite, the Simple End Event has the Terminate property in its
Property tab. This is a Boolean property that turns a Simple End Event into a Terminate
End Event when set to true.

25.3.1.2. Message End Event

When a flow enters a Message End Event, the flow finishes and the end event produces a message as
defined in its properties.

25.3.1.3. Escalation End Event

The Escalation End Event finishes the incoming workflow, that means consumes the incoming token,
and produces an escalation signal as defined in its properties, triggering the escalation process.

25.3.1.4. Terminate End Event

The Terminate End Event finishes all execution flows in the given process instance. Activities being
executed are canceled. If a Terminate End Event is reached in a sub-process, the entire process instance
is terminated.

25.3.1.5. Throwing Error End Event

The Throwing Error End Event finishes the incoming workflow, that means consumes the incoming
token, and produces an error object. Any other running workflows in the process or sub-process remain
uninfluenced.

Attributes

ErrorRef

The reference code of the produced error object.

25.3.1.6. Cancel End Event

The Cancel End Event triggers compensation events defined for the namespace, and the process or
sub-process finishes as CANCELED.

25.3.1.7. Compensation End Event

A Compensation End Event is used to finish a transaction sub-process and trigger the compensation
defined by the Compensation Intermediate Event attached to the boundary of the sub-process
activities.

25.3.1.8. Signal End Event

A throwing Signal End Event is used to finish a process or sub-process flow. When the execution flow

Red Hat JBoss BPM Suite 6.4 User Guide

196

A throwing Signal End Event is used to finish a process or sub-process flow. When the execution flow
enters the element, the execution flow finishes and produces a signal identified by its SignalRef
property.

25.4. SCOPE OF EVENTS

An event can send signals globally or be limited to a single process instance. You can use the scope
attribute for events to define if a signal is to be considered internal (only for one process instance) or
external (for all process instances that are waiting). The scope attribute called Signal Scope on the
Properties panel of the process designer allows you to change the scope of the signal throw
intermediate or end events.

The Scope data input is an optional property implemented to provide the following scope of throw
events:

Process Instance: Catch events only in the process instance will be able to catch this signal.

Default: Catch events in a given KIE session will be able to catch this signal. The behavior varies
depending on the KIE session strategy:

Singleton: Signal reaches all process instances available to the KIE session.

Per request: Signal reaches only the current process instance and start processes with a
Signal Start Event.

Per process: same as per request.

Project: Signal reaches all active process instances of a given deployment and start processes
with a Signal Start Event.

External: Enables the signal to reach the same process instances as with the Project scope, as
well as process instances across deployments. To send the signal to a process instance across
deployments, create a SignalDeploymentId process variable that provides information about
what deployment or project should be the target of the signal. Broadcasting the signal would
have negative impact on performance in larger environments.

[3] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

CHAPTER 25. EVENT TYPES

197

http://www.omg.org/spec/BPMN/2.0

CHAPTER 26. GATEWAYS

26.1. GATEWAYS

“Gateways are used to control how Sequence Flows interact as they converge and diverge within a
Process.[4]”

Gateways are used to create or synchronize branches in the workflow using a set of conditions, which is
called the gating mechanism. Gateways are of two types:

Converging, that is merging multiple flows into one flow.

Diverging, that is splitting one Flow into multiple flows.

One Gateway cannot have multiple incoming and multiple outgoing flows.

You can use the following types of gateways:

Parallel (AND)

Converging AND gateway waits for all incoming flows before continuing to the outgoing
flow.

Diverging AND gateway starts all outgoing flows simultaneously.

Inclusive (OR)

Converging OR gateway waits for all incoming flows whose condition evaluates to true.

Diverging OR gateway starts all outgoing flows whose condition evaluates to true.

Exclusive (XOR)

Converging XOR gateway waits for the first incoming flow whose condition evaluates to
true.

Diverging XOR gateway starts only one outgoing flow.

Data-based exclusive gateways, which can be both diverging and converging, and are used
to make decisions based on available data. For further information, see Section 26.2.4,
“Data-based Exclusive Gateway”.

Event-based gateways, which can only be diverging, and are used for reacting to events. For
further information, see Section 26.2.1, “Event-based Gateway” .

26.2. GATEWAY TYPES

26.2.1. Event-based Gateway

“The Event-Based Gateway has pass-through semantics for a set of incoming branches (merging
behavior). Exactly one of the outgoing branches is activated afterwards (branching behavior),
depending on which of Events of the Gateway configuration is first triggered. [5]”

The gateway is only diverging and allows you to react to possible events as opposed to the Data-based

Red Hat JBoss BPM Suite 6.4 User Guide

198

The gateway is only diverging and allows you to react to possible events as opposed to the Data-based
Exclusive Gateway, which reacts to the process data. The outgoing flow is taken based on the event that
occurs. Only one outgoing flow is taken at a time.

The gateway might act as a start event, where the process is instantiated only if one the intermediate
events connected to the Event-Based Gateway occurs.

26.2.2. Parallel Gateway

“A Parallel Gateway is used to synchronize (combine) parallel flows and to create parallel flows.[6]”

Diverging

Once the incoming flow is taken, all outgoing flows are taken simultaneously.

Converging

The gateway waits until all incoming flows have entered and only then triggers the outgoing flow.

26.2.3. Inclusive Gateway

Diverging

Once the incoming flow is taken, all outgoing flows that evaluate to true are taken. Connections with
lower priority numbers are triggered before triggering higher priority ones. Priorities are evaluated
but the BPMN2 specification does not guarantee the priority order. It is recommended that you do
not depend on the priority attribute in your workflow.

IMPORTANT

Ensure that at least one of the outgoing flow evaluates to true at runtime. Otherwise,
the process instance terminates with a runtime exception.

Converging

The gateway merges all incoming Flows previously created by a diverging Inclusive Gateway; that is,
it serves as a synchronizing entry point for the Inclusive Gateway branches.

Attributes

Default gate

The outgoing flow taken by default if no other flow can be taken.

CHAPTER 26. GATEWAYS

199

26.2.4. Data-based Exclusive Gateway

Diverging

The gateway triggers exactly one outgoing flow. The flow with the constraint evaluated to true and
the lowest priority number is taken.

IMPORTANT

Ensure that at least one of the outgoing flow evaluates to true at runtime. Otherwise,
the process instance terminates with a runtime exception.

Converging

The gateway allows a workflow branch to continue to its outgoing flow as soon as it reaches the
gateway. When one of the incoming flows triggers the gateway, the workflow continues to the
outgoing flow of the gateway. If it is triggered from more than one incoming flow, it triggers the next
node for each trigger.

Attributes

Default gate

The outgoing flow taken by default if no other flow can be taken.

[4] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[5] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[6] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

Red Hat JBoss BPM Suite 6.4 User Guide

200

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES

27.1. ACTIVITY

"An Activity is work that is performed within a Business Process." [7]

This is opposed to the execution semantics of other elements that defined the process logic.

An activity can be:

A sub-process; compound, can be broken down into multiple process elements.

A task; atomic, represents a single unit of work.

An activity in Red Hat JBoss BPM Suite expects one incoming and one outgoing flow. If you want to
design an activity with multiple incoming and multiple outgoing flows, set the system property
jbpm.enable.multi.con to true. For more information about system properties, see chapter System
Properties of the Red Hat JBoss BPM Suite Administration and Configuration Guide .

Activities share properties ID and Name. Note that activities, that is all tasks and sub-processes, have
additional properties specific for the given activity or task type.

27.2. ACTIVITY MECHANISMS

27.2.1. Multiple Instances

You can run activities in multiple instances during execution. Individual instances are executed in a
sequence. The instances are run based on a collection of elements. For every element in the collection,
a new activity instance is created.

Every multiple-instance activity has the Collection Expression attribute that maps the input collection
of elements to a single element. The multiple-instance activity then iterates through all the elements of
the collection.

27.2.2. Activity Types

27.2.2.1. Call Activity

“A Call Activity identifies a point in the Process where a global Process or a Global Task is used. The Call
Activity acts as a 'wrapper' for the invocation of a global Process or Global Task within the execution.
The activation of a call Activity results in the transfer of control to the called global Process or Global
Task. [8]”

A call activity, that is a Reusable sub-process, represents an invocation of a process from within a
process. The activity must have one incoming and one outgoing flow.

When the execution flow reaches the activity, the activity creates an instance of a process with the
defined ID.

Attributes

Called Element

The ID of the process to be called and instantiated by the activity.

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES

201

https://access.redhat.com/documentation/en-us/red_hat_jboss_bpm_suite/6.4/html/administration_and_configuration_guide/configuration_properties#system_properties

27.3. TASKS

A task is the smallest unit of work in a process flow. Red Hat JBoss BPM Suite uses the BPMN
guidelines to separate tasks based on the types of inherent behavior that the tasks represent. This
section defines all task types available in Red Hat JBoss BPM Suite except for the User Task. For more
information about the User Task, see Section 27.5, “User Task”.

27.3.1. None Task

"Abstract Task: Upon activation, the Abstract Task completes. This is a conceptual
model only; an Abstract Task is never actually executed by an IT system." [9]

27.3.2. Send Task

"Send Task: Upon activation, the data in the associated Message is assigned from the
data in the Data Input of the Send Task. The Message is sent and the Send Task
completes." [10]

Attributes

MessageRef

The ID of the generated message object.

NOTE

In Red Hat JBoss BPM Suite 6.x, the Send Task is not supported. A custom
WorkItemHandler implementation is needed to use the Send task.

27.3.3. Receive Task

"Upon activation, the Receive Task begins waiting for the associated Message. When
the Message arrives, the data in the Data Output of the Receive Task is assigned from
the data in the Message, and Receive Task completes." [11]

Attributes

MessageRef

ID of the associated message object.

27.3.4. Manual Task

"Upon activation, the Manual Task is distributed to the assigned person or group of
people. When the work has been done, the Manual Task completes. This is a conceptual
model only; a Manual Task is never actually executed by an IT system." [12]

27.3.5. Service Task

Use a Service Task to invoke web services and Java methods.

Table 27.1. Service Task Attributes

Red Hat JBoss BPM Suite 6.4 User Guide

202

Attribute Description

Implementation The underlying technology used for implementing the task. Possible values are
WebService, which is the default value, and unspecified.

OperationRef Specifies the operation that is invoked by the task: typically a particular method of
a Java class or a web service method.

27.3.5.1. Using Service Task to Invoke Web Service

IMPORTANT

The preferred way of invoking web services is to use a WS Task, as opposed to a generic
Service Task. For more information, see Chapter 31, WS Task.

The default implementation of a Service Task in the BPMN2 specification is a web service. The web
service support is based on the Apache CXF dynamic client, which provides a dedicated Service Task
handler that implements the WorkItemHandler interface:

org.jbpm.process.workitem.bpmn2.ServiceTaskHandler

As a part of the process definition, you must first configure the web service:

1. Open the process in Process Editor.

2. Open the Properties panel on the right and click the Value field next to the Imports property.
Click the arrow that appears on the right to open the Editor for Imports window.

3. Click Add Import to import the required WSDL (Web Services Description Language) values.
For example:

Import Type: wsdl

WSDL Location: http://localhost:8080/sample-ws-1/SimpleService?wsdl
The WSDL location points to the WSDL file of your service.

WSDL Namespace: http://bpmn2.workitem.process.jbpm.org/
The WSDL namespace must match targetNamespace from your WSDL file.

4. Drag a Service Task (Tasks → Service) from the Object Library into the canvas.

5. Click the task, and in the Properties panel on the right, set the following:

Service Implementation: Webservice

Service Interface: SimpleService

Service Operation: hello

6. In the Core Properties section, click the Value field next to the Assignments property. Click
the arrow that appears on the right to open the Data I/O window and do the following:

a. Provide a data input named Parameter.

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES

203

http://localhost:8080/sample-ws-1/SimpleService?wsdl
http://bpmn2.workitem.process.jbpm.org/

b. Optionally, provide a data output named Result.

For an example setting in the Service Task Data I/O window, see the image below:

To use a request or a response object of the service as a variable, the objects must all implement the
java.io.Serializable interface to use persistence properly. To add the interface while generating classes
from WSDL, configure the JAXB API:

1. Create an XML binding file with the following contents.

<?xml version="1.0" encoding="UTF-8"?>
<bindings xmlns="http://java.sun.com/xml/ns/jaxb"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
xsi:schemaLocation="http://java.sun.com/xml/ns/jaxb
http://java.sun.com/xml/ns/jaxb/bindingschema_2_0.xsd" version="2.1">
 <globalBindings>
 <serializable uid="1" />
 </globalBindings>
</bindings>

2. Add the Apache CXF Maven plug-in (cxf-codegen-plugin) to the pom.xml file of the project:

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>CXF_VERSION</version>
 ...
 </plugin>
 </plugins>
<build>

Red Hat JBoss BPM Suite 6.4 User Guide

204

27.3.5.2. Using Service Task to Invoke Java Method

You can use a Service Task to invoke a method of a particular Java class. The method can have only one
parameter and returns a single value. If the invoked Java class is not a part of the project, add all the
required dependencies to the pom.xml file of the project.

The following procedures use an example class WeatherService with a method int
getTemperature(String location). The method has one parameter (String location) and returns a
single value (int temperature).

Invoking Java Method in Red Hat JBoss Developer Studio

1. In Red Hat JBoss Developer Studio, open the business process that you want to add a Service
Task to, or create a new process with a start and an end event.

2. Select Window → Show View → Properties, and click Interfaces in the lower-right corner of
the Properties panel.

3. Click the Import icon () to open the Browse for a Java type to Import window. To find
the Java type, start typing WeatherService in the Type field. In the Available Methods list box
below, select the int getTemperature(String) method. Click OK.
Note that it is also possible to select the Create Process Variables check box to automatically
import process variables with generated names. In this procedure, the process variables are
created manually.

4. In the Properties panel, click Data Items. Click the Add icon () to create a local process
variable:

a. Enter the process variable details:

Name: location

Data Type: java.lang.String

b. Create a second process variable:

Name: temperature

Data Type: java.lang.Integer

5. Add a Service Task to the process:

a. Drag a Service Task (Tasks → Service Task) from the Palette panel on the right to the
canvas.

b. Double-click the Service Task on the canvas to open the Edit Service Task window. Click
Service Task and set the following properties:

Implementation: Java

Operation: WeatherService/getTemperature

Source: location

Target: temperature

c. Click OK and save the process.

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES

205

6. The Java application that starts the business process must be available. If you created a new
business process and do not have the application, create a new jBPM project with an example
application:

a. Click File → New → Other → jBPM → jBPM project. Click Next.

b. Select the second option and click Next to create a project and populate it with some
example files to help you get started quickly.

c. Enter a project name and select the Maven radio button. Click Finish.

7. Register work item handlers. In the src/main/resources/META-INF/ directory, create a file
named kie-deployment-descriptor.xml with the following contents:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployment-descriptor xsi:schemaLocation="http://www.jboss.org/jbpm deployment-
descriptor.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <persistence-unit>org.jbpm.domain</persistence-unit>
 <audit-persistence-unit>org.jbpm.domain</audit-persistence-unit>
 <audit-mode>JPA</audit-mode>
 <persistence-mode>JPA</persistence-mode>
 <runtime-strategy>SINGLETON</runtime-strategy>
 <marshalling-strategies/>
 <event-listeners/>
 <task-event-listeners/>
 <globals/>
 <work-item-handlers>
 <work-item-handler>
 <resolver>mvel</resolver>
 <identifier>new
org.jbpm.process.instance.impl.demo.SystemOutWorkItemHandler()</identifier>
 <parameters/>
 <name>Log</name>
 </work-item-handler>
 <work-item-handler>
 <resolver>mvel</resolver>
 <identifier>new org.jbpm.process.workitem.bpmn2.ServiceTaskHandler(ksession,
classLoader)</identifier>
 <parameters/>
 <name>Service Task</name>
 </work-item-handler>
 <work-item-handler>
 <resolver>mvel</resolver>
 <identifier>new
org.jbpm.process.workitem.webservice.WebServiceWorkItemHandler(ksession,
classLoader)</identifier>
 <parameters/>
 <name>WebService</name>
 </work-item-handler>
 <work-item-handler>
 <resolver>mvel</resolver>
 <identifier>new
org.jbpm.process.workitem.rest.RESTWorkItemHandler(classLoader)</identifier>
 <parameters/>
 <name>Rest</name>
 </work-item-handler>

Red Hat JBoss BPM Suite 6.4 User Guide

206

8. Open the ProcessMain.java file that is located in the src/main/java directory, and modify the
code of the application that starts the business process:

a. Initialize the process variables:

b. Start the process:

Invoking Java Method in Business Central

1. The invoked Java class must be available either on the class path or in the dependencies of the
project. To add the class to the dependencies of the project:

a. In Business Central, click Authoring → Artifact Repository.

b. Click Upload to open the Artifact upload window.

c. Choose the .jar file, and click .

d. Click Authoring → Project Authoring, and find or create the project you want to use.

e. Click Open Project Editor and then Project Settings: Project General Settings →
Dependencies.

f. Click Add from repository, locate the uploaded .jar file, and click Select.

g. Save the project.

2. Open or create the business process to which you want to add a Service Task.

3. In Process Editor, open the Properties panel on the right and click the Value field next to the
Imports property. Click the arrow that appears to open the Editor for Imports window. In the
window:

a. Click Add Import and specify the following values:

Import Type: default

Custom Class Name: fully qualified name of the invoked Java class, for example
org.jboss.weather.WeatherService

b. Click Ok.

 </work-item-handlers>
 <environment-entries/>
 <configurations/>
 <required-roles/>
 <remoteable-classes/>
 <limit-serialization-classes>true</limit-serialization-classes>
</deployment-descriptor>

Map<String, Object> arguments = new HashMap<>();
arguments.put("location", "Brno");
arguments.put("temperature", -1);

ksession.startProcess("demo-package.demo-service-task", arguments);

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES

207

4. Create process variables:

a. In the Properties panel, click the Value field next to the Variable Definitions property.
Click the arrow that appears to open the Editor for Variable Definitions window.

b. Click Add Variable to add the following two process variables:

Name: temperature, Defined Types: Integer (or Custom Type: java.lang.Integer)

Name: location, Defined Types: String (or Custom Type: java.lang.String)

c. Click Ok.

5. To add a Service Task into the process, drag and drop a Service Task (Tasks → Service) from
the Object Library panel on the left into the canvas.

6. Click the Service Task on the canvas to open its properties on the right, and set the following
properties:

Service Interface: org.jboss.weather.WeatherService

Service Operation: getTemperature

7. Click the Value field next to the Assignments property. Click the arrow that appears to open
the Data I/O window and do the following:

a. Click Add next to Data Inputs and Assignments and add the following:

Name: Parameter, Data Type: String, Source: location

Name: ParameterType, Data Type: String, Source: java.lang.String (to add this value,
click Constant … and type it manually)

b. Click Add next to Data Outputs and Assignments and add the following:

Name: Result, Data Type: Integer, Target: temperature

c. Click Save.

27.3.6. Business Rule Task

“A Business Rule Task provides a mechanism for the Process to provide input to a Business Rules Engine
and to get the output of calculations that the Business Rules Engine might provide. [13]”

The task defines a set of rules that need to be evaluated and fired on task execution. Any rule defined as
part of the ruleflow group in a rule resource is fired.

When a Business Rule Task is reached in the process, the engine starts executing the rules with the
defined ruleflow group. When there are no more active rules with the ruleflow group, the execution
continues to the next element. During the ruleflow group execution, new activations belonging to the
active ruleflow group can be added to the agenda as these are changed by the other rules. Note that the
process continues immediately to the next element if there are no active rules of the ruleflow group.

If the ruleflow group was already active, the ruleflow group remains active and the execution continues
if all active rules of the ruleflow group have been completed.

Attributes

Ruleflow Group

Red Hat JBoss BPM Suite 6.4 User Guide

208

Ruleflow Group

The name of the ruleflow group that includes the set of rules to be evaluated by the task. This
attribute refers to the ruleflow-group keyword in your DRL file.

27.3.7. Script Task

A Script Task represents a script to be executed during the process execution.

The associated Script can access process variables and global variables. When using a Script Task:

Avoid low-level implementation details in the process. A Script Task could be used to
manipulate variables, but consider using a Service Task when modelling more complex
operations.

The script should be executed immediately. If there is the possibility that the execution could
take some time, use an asynchronous Service Task.

Avoid contacting external services through a Script Task. It would be interacting with external
services without notifying the engine, which can be problematic. Model communication with an
external service using a Service Task.

Scripts should not throw exceptions. Runtime exceptions should be caught and managed, for
example, inside the script or transformed into signals or errors that can then be handled inside
the process.

When a Script Task is reached during execution, the script is executed and the outgoing flow is taken.

Attributes

Script

The script to be executed.

Script Language

The language in which the script is written.

From Red Hat JBoss BPM Suite 6.2 onwards, JavaScript is supported as a dialect in Script Tasks. To
define a Script Task in Business Central and JBoss Developer Studio using the process design tool:

1. Select a Script Task object from the Object Library menu on the left hand side and add it to the
process design tool.

2. In the Properties panel on the right hand side, open the Script property.

3. Write the script to be executed in the Expression Editor window and click Ok.

Example 27.1. Script Task in Business Central using JavaScript

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES

209

27.4. SUB-PROCESS

“A Sub-Process is an Activity whose internal details have been modeled using Activities, Gateways,
Events, and Sequence Flows. A Sub-Process is a graphical object within a Process, but it also can be
'opened up’to show a lower-level Process. [14]”

You can understand a sub-process as a compound activity or a process in a process. When reached
during execution, the element context is instantiated and the encapsulated process triggered. Note that,
if you use a Terminating End Event inside a sub-process, the entire process instance that contains the
sub-process is terminated, not just the sub-process. A sub-process ends when there are no more active
elements in it.

The following sub-process types are supported:

Ad-Hoc sub-process, which has no strict element execution order.

Embedded sub-process, which is a part of the parent process execution and shares its data.

Reusable sub-process, which is independent from its parent process.

Event sub-process, which is only triggered on a start event or a timer.

Note that any sub-process type can be a multi-instance sub-process.

27.4.1. Embedded Sub-Process

An embedded sub-process encapsulates a part of the process.

It must contain a start event and at least one end event. Note that the element allows you to define local
sub-process variables, that are accessible to all elements inside this container.

Red Hat JBoss BPM Suite 6.4 User Guide

210

27.4.2. AdHoc Sub-Process

“An Ad-Hoc Sub-Process is a specialized type of Sub-Process that is a group of Activities that have no
REQUIRED sequence relationships. A set of Activities can be defined for the Process, but the sequence
and number of performances for the Activities is determined by the performers of the Activities. [15]”

“An Ad-Hoc Sub-Process or Process contains a number of embedded inner Activities and is intended to
be executed with a more flexible ordering compared to the typical routing of Processes. Unlike regular
Processes, it does not contain a complete, structured BPMN diagram description--i.e., from Start Event
to End Event. Instead the Ad-Hoc Sub-Process contains only Activities, Sequence Flows, Gateways, and
Intermediate Events. An Ad-Hoc Sub-Process MAY also contain Data Objects and Data Associations.
The Activities within the Ad-Hoc Sub- Process are not REQUIRED to have incoming and outgoing
Sequence Flows. However, it is possible to specify Sequence Flows between some of the contained
Activities. When used, Sequence Flows will provide the same ordering constraints as in a regular
Process. To have any meaning, Intermediate Events will have outgoing Sequence Flows and they can be
triggered multiple times while the Ad-Hoc Sub-Process is active.[16]”

Attributes

AdHocCompletionCondition

When this condition evaluates to true, the execution finishes.

AdHocOrdering

Enables you to choose paralel or sequential execution of elements inside of the sub-process.

Variable Definitions

Enables you to define process variables available only for elements of the sub-process.

27.4.3. Multi-instance Sub-Process

A Multiple Instances Sub-Process is instantiated multiple times when its execution is triggered. The
instances are created in a sequential manner, that means a new sub-process instance is created only
after the previous instance has finished.

A Multiple Instances Sub-Process has one incoming connection and one outgoing connection.

Attributes

MI collection input

A collection to be iterated through. It is used to create individual instances of given activity. The sub-
process will be run with each element of this collection.

MI collection output

A collection of the sub-process execution results.

MI completion condition

An MVEL expression evaluated at the end of every instance. When evaluated as true, the sub-
process is evaluated as finished and the sub-process’s outgoing flow is taken. Possible remaining
sub-process instances are cancelled.

MI data input

A variable name for each element from the collection that will be used in the process.

MI data output

An optional variable name for the collection of the results.

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES

211

27.4.4. Event Sub-Process

An event sub-process becomes active when its start event gets triggered. It can interrupt the parent
process context or run in parallel to it.

With no outgoing or incoming connections, only an event or a timer can trigger the sub-process. The
sub-process is not part of the regular control flow. Although self-contained, it is executed in the context
of the bounding sub-process.

Use an event sub-process within a process flow to handle events that happen outside of the main
process flow. For example, while booking a flight, two events may occur:

Cancel booking (interrupting).

Check booking status (non-interrupting).

Both these events can be modeled using the event sub-process.

27.5. USER TASK

"A User Task is a typical 'workflow' Task where a human performer performs the Task
with the assistance of a software application and is scheduled through a task list
manager of some sort." [17]

The User Task cannot be performed automatically by the system and therefore requires an intervention
of a human user, the actor. The User Task is atomic.

On execution, the User Task element is instantiated as a task that appears in the list of tasks of one or
multiple actors.

If a User Task element defines the Groups attribute, it is displayed in task lists of all users that are
members of the group. Any of the users can claim the task. Once claimed, the task disappears from the
task list of the other users.

Note that User Task is implemented as a domain-specific task and serves as a base for your custom
tasks. For further information, see Section 4.14.1, “Work Item Definition” .

Attributes

Actors

A comma-separated list of users who can perform the generated task.

Content

The data associated with this task. This attribute does not affect TaskService behavior.

CreatedBy

The name of the user or ID of the process that created the task.

Groups

A comma-separated list of groups who can perform the generated task.

Locale

The locale for which the element is defined. This property is not used by the Red Hat JBoss BPM
Suite engine at the moment.

Notifications

A definition of notification applied to the User Task. For further information, see Section 27.5.3,

Red Hat JBoss BPM Suite 6.4 User Guide

212

A definition of notification applied to the User Task. For further information, see Section 27.5.3,
“Notification”.

Priority

An integer value defining the User Task priority. The value influences the User Task ordering in the
user Task list and the simulation outcome.

Reassignment

The definition of escalation applied to the User Task. For further information, see Section 27.5.2,
“Reassignment”.

ScriptLanguage

The language of the script. Choose between Java, MVEL, or Javascript.

Skippable

A Boolean value that defines if the User Task can be skipped. If true, the actor of the User Task can
decide not to complete it and the User Task is never executed.

Task Name

Name of the User Task generated during runtime. It is displayed in the task list in Business Central.

Note that any other displayed attributes are used by features not restricted to the User Task element
and are described in the chapters dealing with the particular mechanism.

27.5.1. User Task lifecycle

When a User Task element is triggered during process execution, a User Task instance is created. The
User Task instance execution is preformed by the User Task service of the Task Execution Engine. For
further information about the Task Execution Engine, see the Red Hat JBoss BPM Suite Administration
and Configuration Guide. The Process instance continues the execution only when the associated User
Task has been completed or aborted.

See the User Task lifecycle:

When the process instance enters the User Task element, the User Task is the Created stage.

This is usually a transient state and the User Task enters the Ready state immediately. The task
appears in the task list of all the actors that are allowed to execute the task.

When one of the actors claims the User Task, the User Task becomes Reserved. If a User Task
has only one potential actor, it is automatically assigned to that actor upon creation.

When the user who has claimed the User Task starts the execution, the User Task status
changes to InProgress.

On completion, the status changes to Completed or Failed depending on the execution
outcome.

Note that the User Task lifecycle can include other statuses if the User Task is reassigned (delegated or
escalated), revoked, suspended, stopped, or skipped. For further details, on the User Task lifecycle see
the Web Services Human Task specification.

27.5.2. Reassignment

The reassignment mechanism implements the escalation and delegation capabilities for User Tasks, that
is, automatic reassignment of a User Task to another actor or group after a User Task has remained
inactive for a certain amount of time.

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES

213

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

A reassignment can start if a User Task is in one of the following states for a defined amount of time:

When not started: READY or RESERVED.

When not completed: IN_PROGRESS.

When the conditions defined in the reassignment are met, the User Task is reassigned to the users or
groups defined in the reassignment. If the actual owner is included in the new users or groups definition,
the User Task is set to the READY state.

Reassignment is defined in the Reassignment property of User Task elements. The property can take
an arbitrary number of reassignment definitions with the following parameters:

Users: A comma-separated list of user IDs that are reassigned to the task on escalation. It can
be a String or an expression, such as #{user-id}.

Groups: A comma separated list of group IDs that are reassigned to the task on escalation. It
can be a String or an expression, such as #{user-id}.

Expires At: A time definition when escalation is triggered. It can be a String or an expression,
such as #{expiresAt}. For further information about time format, see Chapter 24, Timing.

Type: A state in which the task needs to be at the given Expires At time so that the escalation
is triggered.

27.5.3. Notification

The notification mechanism provides the capability to send an e-mail notification if a User Task is in one
of the following states for the specified time:

When not started: READY or RESERVED.

When not completed: IN_PROGRESS.

A notification is defined in the Notification property of User Task elements. The property accepts an
arbitrary number of notification definitions with the following parameters:

Type: The state in which the User Task needs to be at the given Expires At time so that the
notification is triggered.

Expires At: A time definition when notification is triggered. It can be a String value or
expression, such as #{expiresAt}. For information about time format, see Chapter 24, Timing.

From: The user or group ID of users used in the From field of the email notification message. It
can be a String or expression.

To Users: A comma-separated list of user IDs to which the notification is sent. It can be a String
or expression, such as #{user-id}.

To Groups: A comma separated list of group IDs to which the notification is be sent. It can be a
String or expression, such as #{group-id}.

Reply To: A user or group ID that receives any replies to the notification. It can be a String or
expression, such as #{group-id}.

Subject: The subject of the email notification. It can be a String or an expression.

Red Hat JBoss BPM Suite 6.4 User Guide

214

Body: The body of the email notification. It can be a String or an expression.

Available variables
A notification can reference process variables by using the #{processVariable} syntax. Similarly, task
variables use the ${taskVariable} syntax.

In addition to custom task variables, the notification mechanism can use the following local task
variables:

taskId: The internal ID of the User Task instance.

processInstanceId: The internal ID of task’s parent process instance.

workItemId: The internal ID of a work item that created the User Task.

processSessionId: The knowledge session ID of the parent process instance.

owners: A list of users and groups that are potential owners of the User Task.

doc: A map that contains task variables.

Example 27.2. Body of notification with variables

<html>
 <body>
 ${owners[0].id} you have been assigned to a task (task-id ${taskId})

 You can access it in your task
 <a href="http://localhost:8080/jbpm-
console/app.html#errai_ToolSet_Tasks;Group_Tasks.3">inbox

 Important technical information that can be of use when working on it

 - process instance id - ${processInstanceId}

 - work item id - ${workItemId}

 <hr/>

 Here are some task variables available

 ActorId = ${doc['ActorId']}
 GroupId = ${doc['GroupId']}
 Comment = ${doc['Comment']}

 <hr/>
 Here are all potential owners for this task

 $foreach{orgEntity : owners}
 Potential owner = ${orgEntity.id}
 $end{}

 <i>Regards from jBPM team</i>
 </body>
</html>

CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES

215

[7] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[8] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[9] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[10] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[11] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[12] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[13] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[14] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[15] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[16] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

[17] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

Red Hat JBoss BPM Suite 6.4 User Guide

216

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0

CHAPTER 28. CONNECTING OBJECTS

28.1. CONNECTING OBJECTS

Connecting object connect two elements. There are two main types of Connecting object:

Sequence Flow, which connect Flow elements of a Process and define the flow of the execution
(transport the token from one element to another)

Association Flow, which connect any Process elements but have no execution semantics

28.2. CONNECTING OBJECTS TYPES

28.2.1. Sequence Flow

A sequence flow represents the transition between two flow elements. It establishes an oriented
relationship between activities, events, and gateways, and defines their execution order.

Condition Expression

When this condition evaluates to true, the workflow takes the sequence flow.
If a sequence flow has a gateway element as its source, you need to define a conditional expression
that is evaluated before the sequence flow is taken. If evaluated to false, the workflow attempts to
switch to another sequence flow. If evaluated to true, the sequence flow is taken.

When defining the condition in Java, make sure to return a boolean value:

Condition Expression Language

You can use either Java, Javascript, MVEL, or Drools to define the condition expression.

AVAILABLE VARIABLES

When defining a Condition Expression, make sure to call process and global variables. You
can also call the kcontext variable, which holds the process instance information.

return <expression resolving to boolean>;

CHAPTER 28. CONNECTING OBJECTS

217

CHAPTER 29. SWIMLANES
Swimlanes visually group tasks related to one group or user. For example, you can create a marketing
task swimlane to group all User Tasks related to marketing activities into one Lane.

29.1. LANES

"A Lane is a sub-partition within a Process (often within a Pool)… " [18]

A Lane allows you to group some of the process elements and define their common parameters. Note
that a lane may contain another lane.

To add a new Lane:

1. Click the Swimlanes menu item in the Object Library.

2. Drag and drop the Lane artifact to your process model.

This artifact is a box into which you can add your User Tasks.

Lanes should be given unique names and background colors to fully separate them into functional
groups. You can do so in the properties panel of a lane.

During runtime, lanes auto-claim or assign tasks to a user who has completed a different task in that
lane within the same process instance. This user must be eligible for claiming a task, that is, this user
must be a potential owner. If a User Task doesn’t have an actor or group assigned, it marks the task as
having no potential owners. At runtime, the process will stop its execution.

For example, suppose there are two User Tasks, UT1 and UT2, located in the same lane. UT1 and UT2
have group field set to the analyst value. When the process is started, and UT1 is claimed, started, or
completed by an analyst user, UT2 gets claimed and assigned to the user who completed UT1. If only
UT1 has the analyst group assigned, and UT2 has no user or group assignments, the process stops after
UT1 had been completed.

[18] Business Process Model and Notation (BPMN). Version 2.0, OMG Document Number: formal/2011-01-03
http://www.omg.org/spec/BPMN/2.0

Red Hat JBoss BPM Suite 6.4 User Guide

218

http://www.omg.org/spec/BPMN/2.0

CHAPTER 30. ARTIFACTS

30.1. ARTIFACTS

Any object in the BPMN diagram that is not a part of the process workflow is an artifact. Artifacts have
no incoming or outgoing flow objects. The purpose of artifacts is to provide additional information
needed to understand the diagram.

30.2. DATA OBJECTS

Data objects are visualizations of process or sub-process variables. Note that not every process or sub-
process variable must be depicted as a data object in the BPMN diagram. Data Objects have separate
visualization properties and variable properties.

CHAPTER 30. ARTIFACTS

219

APPENDIX B. SERVICE TASKS: WS TASK, EMAIL TASK, REST
TASK

Service task is a task that uses a service, such as a mail service, web service, or another service.

Red Hat JBoss BPM Suite contains the following predefined service tasks:

A Web Service task for invoking a web service from a BPMN2 process.

An Email task for sending emails through a mail server.

A Log task that calls the SystemOutWorkItemHandler class.

A REST task for sending REST calls.

Note that since the tasks extend the service task, their attributes are implemented as Data Input Set
assignments, and Data Output Set assignments, not as separate properties.

To use the service tasks in your process:

1. In Business Central, click Authoring → Project Authoring.

2. In Project Explorer, locate the project and the respective process under BUSINESS
PROCESSES.

3. Open the process in Process Designer and click to expand the Object Library.

4. Expand the Service Tasks section and drag and drop the selected service task to the required
position on the canvas.

Red Hat JBoss BPM Suite 6.4 User Guide

220

For more information about service tasks, see Chapter 31, WS Task, Chapter 32, Email Task, and
Chapter 33, REST Task.

If you require other task types, implement your task as instructed in Section 4.14, “Domain-Specific
Tasks”.

APPENDIX B. SERVICE TASKS: WS TASK, EMAIL TASK, REST TASK

221

CHAPTER 31. WS TASK
The Web Service task implements the WebServiceWorkItemHandler class. The Web Service task
serves as a web service client with the web service response stored as String. To invoke a Web Service
task from a BPMN process, the correct task type must be used.

31.1. MULTIPLE PARAMETERS

The Web Service task can be used to invoke a web service method with multiple parameters. To do so,
the following changes must be made to the BPMN2 process definitions:

1. In the Process Designer, click to open the Properties panel.

2. Select the Variable Definitions property and create a process variable called pVar with the
custom type Object[].

3. Click the WS task in the Process Designer and click to open the Properties panel.

4. Click next to the Assignments property.

5. Change the Parameter input variable from String to Custom and enter Object[]. Select pVar
in the Source field. Click Ok.

6. In the property panel of the WS task, enter the following in the On Entry Actions property:

31.2. CUSTOM OBJECTS

In addition to primitive object types, the WebService task can use custom objects, such as Person or
Employee.

To use custom objects:

1. Create a custom model object using either the Data Modeler in Business Central, or using an
external tool, like Red Hat JBoss Developer Studio.

2. Use this custom model class in one of the WS tasks.

3. Generate WSDL for this web service.

4. Use Red Hat JBoss Developer Studio to generate Java classes from the WSDL.

5. Create a .jar file that includes the model class generated from the WSDL file. Add kmodule.xml
under the META-INF of the .jar.

6. Upload the .jar to the Artifact Repository. In Business Central, add it to the list of project’s
dependencies that includes the configured Web Service task. This Web Service task must have
new classes generated, and cannot rely on the original ones.

7. Modify the project configuration using the Deployment descriptor as follows:

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Object[] params = {"firstParam", "secondParam"}; kcontext.setVariable("pVar", params);

Red Hat JBoss BPM Suite 6.4 User Guide

222

 <kbase name="defaultKieBase" default="true" eventProcessingMode="stream"
equalsBehavior="identity" packages="*">
 <ksession name="defaultKieSession" type="stateful" default="true" clockType="realtime">
 <workItemHandlers>
 <workItemHandler type="new
org.jbpm.process.workitem.webservice.WebServiceWorkItemHandler(ksession,
runtimeManager.getEnvironment().getClassLoader())" name="WebService"/>
 </workItemHandlers>
 </ksession>
 </kbase>
</kmodule>

The above configuration utilizes the WebServiceWorkItemHandler.

31.3. WEB SERVICE TASK EXAMPLE

This example demonstrates a process that obtains a weather forecast for given ZIP codes. The process
looks as follows:

1. In the first human task, the process asks for ZIP codes.

2. Next, the result of the first human task is transformed into a collection that is used as an input
for the service task with multiple instances.

3. Based on the input collection, the process creates several service task instances for querying
the weather forecast service.

4. Once all the service task instances are completed, the result is logged to the console.

5. Another human task then shows the weather forecast for the chosen ZIP codes.

After the process instance is started, the user is prompted to select the mode of the service task:
synchronous or asynchronous. Note that the difference between the two can be noticeable depending
on the particular service.

Input Attributes

Endpoint

The endpoint location of the web service you want to invoke.

Parameter

The object or array to be sent for the operation.

Mode

Can be SYNC, ASYNC, or ONEWAY.

Interface

The name of a service, for example Weather.

Namespace

The namespace of the web service, such as http://ws.cdyne.com/WeatherWS/.

CHAPTER 31. WS TASK

223

http://ws.cdyne.com/WeatherWS/

URL

The web service URL, such as http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL.

Operation

The method name to call.

Output Attributes

Result

An object with the result.

Red Hat JBoss BPM Suite 6.4 User Guide

224

http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL

CHAPTER 32. EMAIL TASK
The Email task sends an email based on the task properties.

Registering Email Task in Business Central
Email task is not registered by default in Business Central, and therefore must be registered by the user.

Follow the procedure below to configure Business Central to use Email service task.

1. Design a BPMN2 process definition in the Process Designer of Business Central. Add the Email
task to the workflow.

2. Select the Email task and click to open the Properties panel.

3. Open Assignments and fill in the To, From, Subject, and Body properties, and any other
relevant input attributes.

Alternatively, values can be mapped to properties using Process Variable to Task Variable
mapping assignments.

From the Process Designer, open the Properties panel and select the Variable Definitions
property to map variables.

Registering EmailWorkItemHandler
EmailWorkItemHandler is the work item handler implementation of the Email Service task. The Email
work item is included in the work item definition file by default, however EmailWorkItemHandler is not a
part of the default kie-deployment-descriptor.xml file, and therefore must be explicitly registered by
the user.

To register EmailWorkItemHandler:

1. Open the Project Editor and click Project Settings: Project General Settings → Deployment
descriptor from the menu.

2. Scroll down to the Work Item handlers list and click Add to add the EmailWorkItemHandler to
the list. For example:

Alternatively, email server parameters can be supplied using a constructor in the
ProcessMain.java file:

new
org.jbpm.process.workitem.email.EmailWorkItemHandler("localhost","25","me@localhost","p
assword");

CHAPTER 32. EMAIL TASK

225

Configuring Deadline
You can configure the Deadline email feature in two ways:

1. Mail Session on Container Level
With this method, the Deadline email feature uses EmailSessionProducer to look up the
mail/jbpmMailSession using JNDI. The following example is for Red Hat JBoss EAP
standalone.xml:

2. Using email.properties
If the mail/jbpmMailSession is not found, Red Hat JBoss BPM Suite searches for
/email.properties on the class path with content similar to the following:

mail.smtp.host=localhost
mail.smtp.port=25
mail.from=xxx@xxx.com
mail.replyto=xxx@xxx.com

Input Attributes
The following parameters are required by default:

To

The email address of the email recipient. Separate multiple addresses by a semicolon (;).

From

The email address of the sender of the email.

Subject

The subject of the email.

Body

The HTML body of the email.

The following parameters are optional, and can be configured by mapping values assigned to these

EmailWorkItemHandler emailWorkItemHandler = new EmailWorkItemHandler("localhost",
"1125", "", "",true); ksession.getWorkItemManager().registerWorkItemHandler("Email",
emailWorkItemHandler);

<system-properties>
...
 <property name="org.kie.mail.session" value="java:jboss/mail/mail/jbpmMailSession"/>
...
</system-properties>
...
<subsystem xmlns="urn:jboss:domain:mail:1.2">
 <mail-session name="default" jndi-name="mail/jbpmMailSession" >
 <smtp-server outbound-socket-binding-ref="mail-smtp" tls="true">
 <login name="email@gmail.com" password="___"/>
 </smtp-server>
 </mail-session>
</subsystem>
...
<outbound-socket-binding name="mail-smtp">
 <remote-destination host="smtp.gmail.com" port="587"/>
</outbound-socket-binding>

Red Hat JBoss BPM Suite 6.4 User Guide

226

The following parameters are optional, and can be configured by mapping values assigned to these
properties using Process Variable to Task Variable mapping in Assignments:

Reply-To

Sets the reply recipient address to the From address of the received message. Separate multiple
addresses by a semicolon (;).

Cc

The email address of the carbon copy recipient. Separate multiple addresses by a semicolon (;).

Bcc

The email address of the blind carbon copy recipient. Separate multiple addresses by a semicolon (;).

Attachments

The URL of the files you want to attach to the email. Multiple attachments can be added to the email
using a comma (,) to separate each URL in the list.

Debug

A boolean value related to the execution of the Email work item. For example:

The Email task is completed immediately and cannot be aborted.

"Success" = true

CHAPTER 32. EMAIL TASK

227

CHAPTER 33. REST TASK
The REST task performs REST calls and outputs the response as an object.

RestWorkItemHandler is capable of interacting with the REST service, and supports both types of
services:

Secured: requires authentication.

Open: does not require authentication.

Authentication methods currently supported are:

BASIC

FORM_BASED

Authentication information can be given on handler initialization and can be overridden using work item
parameters. All other configuration options must be given in the work item parameters map:

Input Attributes

Url

Target URL to be invoked. This attribute is mandatory.
It is often necessary to configure the URL attribute with an expression. This gives you the ability to
change the URL dynamically throughout the runtime. For example:

http://DOMAIN:PORT/restService/getCars?brand=#{carBrand}

In this example, carBrand is replaced by the value of the carBrand process variable during runtime.

Method

The method of the request, such as GET, POST, or other. The default method is GET.

ContentType

The data type if you are sending data. The supported data types are application/json and
application/xml. This attribute is mandatory for POST and PUT requests. If you want to use this
attribute, map it as a data input variable in the Data I/O dialogue of the task.

Content

The data you want to send. This attribute is mandatory for POST and PUT requests. This is an
optional parameter. If you want to use it, map it as a data input variable in the Data I/O dialogue of
the task.

ConnectTimeout

The connection timeout. The default value is 60 seconds.

ReadTimeout

The timeout on response. The default value is 60 seconds.

Username

The user name for authentication. This attribute overrides the handler initialization user name.

Password

The password for authentication. This attribute overrides the handler initialization password.
User name and password for basic authentication can be passed at construction time using the
following:

Red Hat JBoss BPM Suite 6.4 User Guide

228

AuthUrl

The URL that is handling authentication when using the AuthenticationType.FORM_BASED
authentication method.
Use the following constructor for FORM_BASED authentication:

The following is an example of how the constructor must be used in Deployment descriptor:

IMPORTANT

AuthUrl configuration requires the typical implementation for FORM_BASED
authentication in Java EE servers, and therefore should point to the j_security_check
URL. Similarly, inputs for user name and password must be bound to j_username and
j_password when using FORM_BASED authentication, otherwise authentication may
fail.

ResultClass

This attribute determines the class to which the value from the Result attribute will be converted. If
not provided, the default value is String.

HandleResponseErrors

An optional parameter that instructs the handler to throw errors in case of unsuccessful response
codes. For information on how to handle response errors, see the section called “Handling REST
Response Error”.

Output Attributes

Result

The result returned by the REST service.

Status

The variable contains a value from interval 200 to 300 if the REST request was successful, or an
error response code if the request was unsuccessful. This variable is not mapped by default. If you
want to use this variable, map it manually as an output variable of the REST task.

StatusMsg

If the service returned an error response, this variable will contain the error response message. This

RESTWorkItemHandler(String username, String password);

public RESTWorkItemHandler(String username, String password, String authUrl, ClassLoader
classLoader) {
 this();
 this.username = username;
 this.password = password;
 this.type = AuthenticationType.FORM_BASED;
 this.authUrl = authUrl;
 this.classLoader = classLoader;
}

new
org.jbpm.process.workitem.rest.RESTWorkItemHandler("username","password","http://mydomain.
com/my-j-security-check-url",classLoader)

CHAPTER 33. REST TASK

229

If the service returned an error response, this variable will contain the error response message. This
variable is not mapped by default. If you want to use this variable, map it manually as an output
variable of the REST task.

All output attributes are String by default.

Handling REST Response Error
HandleResponseErrors can be handled in two ways:

1. In the Process Definition Workflow

a. Status: When RESTWorkItemHandler produces a Status output variable that includes an
HTTP response code. This can be mapped to a process variable and used in a XOR gateway
to determine the service outcome.

b. StatusMsg: The output variable StatusMsg includes additional messages sent by the
server, and is filled only when the HTTP Code is not between 200 and 300.

2. Using a Boundary Event
To enable this feature, set the REST work item input variable HandleResponseErrors to true.

IMPORTANT

The HandleResponse must have a valid boolean expression or be left empty,
which is equivalent to false. Otherwise, the REST task will throw an exception.

When the REST work item input variable HandleResponseErrors is set to true, the
RESTWorkItemHandler handler will, upon receiving an HTTP response code outside of the
200-300 interval, throw the following Java exception:

With the HandleResponseErrors option enabled, this error can be caught using a boundary
event:

public RESTServiceException(int status, String response, String endpoint) {
 super("Unsuccessful response from REST server (status " + status +", endpoint " + endoint
+", response " + response +"");

Red Hat JBoss BPM Suite 6.4 User Guide

230

The provided example includes:

A WorkItemHandlerRuntimeException restError process variable.

A WorkItemHandlerRuntimeException BoundaryError event-defined output variable
that has been mapped to the restError process variable.

A Script task that includes the following code:

This code allows RestServiceException to be extracted from
WorkItemHandlerRuntimeException. Using RestServiceException provides access to
the following methods:

getResponse

getStatus

getEndpoint
The next line in the Script task is:

This provides the full error message as returned by the server.

org.jbpm.process.workitem.rest.RESTServiceException x =
(org.jbpm.process.workitem.rest.RESTServiceException)
restError.getCause().getCause();

System.out.println("response:"+x.getResponse());

CHAPTER 33. REST TASK

231

APPENDIX C. SIMULATION DATA

Red Hat JBoss BPM Suite 6.4 User Guide

232

CHAPTER 34. PROCESS

Simulation Attributes

Base currency

The currency used for simulation.

Base time unit

The time unit to apply to all the time definitions in the process.

CHAPTER 34. PROCESS

233

CHAPTER 35. ACTIVITIES
All the activities available in Red Hat JBoss BPM Suite, except for the human task, share the following
properties. See Chapter 40, Human Tasks for properties specific to human tasks.

Simulation Attributes

Cost per time unit

The cost for every time unit lapsed during simulation.

Distribution Type

For information about the Distribution type property, and the Processing time property if
applicable, see Chapter 42, Distribution Types.

Red Hat JBoss BPM Suite 6.4 User Guide

234

CHAPTER 36. START EVENT

Simulation Attributes

Distribution Type

For information about the Distribution type property, and the Processing time property if
applicable, see Chapter 42, Distribution Types.

Probability (Boundary Event only)

The probability of triggering the element.

CHAPTER 36. START EVENT

235

CHAPTER 37. CATCHING INTERMEDIATE EVENTS

Simulation Attributes

Distribution Type

For information about the Distribution type property, and the Processing time property if
applicable, see Chapter 42, Distribution Types.

Probability (Boundary Event only)

The probability of triggering the element.

Red Hat JBoss BPM Suite 6.4 User Guide

236

CHAPTER 38. SEQUENCE FLOW

Simulation Attributes

Probability (Boundary Event only)

The percentual probability that the flow is taken.
The probability value is applied only if the flow’s source element is a gateway and there are multiple
flow elements leaving the gateway. When defining flow probabilities, ensure their sum is 100.

CHAPTER 38. SEQUENCE FLOW

237

CHAPTER 39. THROWING INTERMEDIATE EVENTS

Simulation Attributes

Distribution Type

For information about the Distribution type property, and the Processing time property if
applicable, see Chapter 42, Distribution Types.

Red Hat JBoss BPM Suite 6.4 User Guide

238

CHAPTER 40. HUMAN TASKS

Simulation Attributes

Cost per time unit

The cost for every time unit lapsed during simulation.

Distribution Type

For information about the Distribution type property, and the Processing time property if
applicable, see Chapter 42, Distribution Types.

Staff availability

The number of actors available to work on the given task.

Example 40.1. Staff Availability Impact

Assume a simulation of 3 instances of a process. A new instance is created every 30 minutes. The
process contains a None Start Event, a Human Task, and a Simple End Event.

The Human Task takes 3 hours to complete; the Working hours property is set to 3.

Only one person is available to work on the Human Tasks; the Staff availability property
is set to 1.

That results in the following:

The Human Task generated by the first process instance will be executed in 3 hours.

The Human Task generated by the second process instance will be executed in approx. 6
hours. The second process instance is created after 30 minutes. However, the actor is
busy with the first Task and becomes available only after another 2.5 hours. It takes 3
hours to execute the second Task.

The Human Task generated by the third process instance will be executed in approx. 9
hours. The second Human Task instance is finished after 3 hours. The actor needs
another 3 hours to complete the third Human Task.

Working hours

A time period after which the task completes in a simulation. If the task should take an hour to
complete, set this property to 1.

CHAPTER 40. HUMAN TASKS

239

CHAPTER 41. END EVENTS

Simulation Attributes

Distribution Type

For information about the Distribution type property, and the Processing time property if
applicable, see Chapter 42, Distribution Types.

Red Hat JBoss BPM Suite 6.4 User Guide

240

CHAPTER 42. DISTRIBUTION TYPES
The Distribution type property defines the distribution of possible time values, that is scores, of
process elements.

The elements might use one of the following score distribution types on simulation:

Normal: the values are distributed on a bell-shaped, symmetrical curve.

Uniform: the values have a rectangular distribution, that means every value is applied the same
number of times.

Poisson: the values are distributed on a negatively-skewed normal distribution curve.

42.1. NORMAL

The element values are picked based on the normal distribution type, which is bell-shaped and
symmetrical.

Normal Distribution Attributes

Processing time (mean)

The mean processing time that the element needs in order to be processed. The value uses the time
unit defined in the Base time unit property.

Standard deviation

The standard deviation of the processing time. The value uses the time unit defined in the Base time
unit property.

42.2. UNIFORM

The Uniform distribution or rectangular distribution returns the possible values with the same levels of
probability.

Uniform Distribution Attributes

Processing time (max)

The maximum processing time of the element.

Processing time (min)

The minimum processing time of the element.

42.3. POISSON

The Poisson distribution returns the possible values similarly as normal distribution. However, the
distribution is negatively skewed, not symmetrical. The mean and the variant are equal.

42.3.1. Poisson Distribution Attributes

Processing time (mean)

The mean time for the element processing. The value uses the time unit defined in the Base time
unit property.

CHAPTER 42. DISTRIBUTION TYPES

241

APPENDIX D. VERSIONING INFORMATION
Documentation last updated on: Wednesday, Oct 23, 2019.

Red Hat JBoss BPM Suite 6.4 User Guide

242

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. USE CASE: PROCESS-BASED SOLUTIONS IN THE LOAN INDUSTRY
	1.2. COMPONENTS
	1.3. RED HAT JBOSS BPM SUITE AND BRMS
	1.4. BUSINESS CENTRAL
	1.4.1. Business Central Environment
	1.4.2. Perspectives
	1.4.3. Embedding Business Central

	CHAPTER 2. BASIC CONCEPTS
	PART I. MODELING
	CHAPTER 3. PROJECT
	3.1. CREATING AN ORGANIZATIONAL UNIT
	Creating an Organizational Unit in Business Central
	Creating an Organizational Unit Using the kie-config-cli Tool
	Creating an Organizational Unit Using the REST API

	3.2. CREATING A REPOSITORY
	Creating a Repository in Business Central
	Creating a Repository Using the kie-config-cli Tool
	Creating a Repository Using the REST API

	3.3. CLONING A REPOSITORY
	Cloning a Repository in Business Central
	Cloning a Repository Using the REST API

	3.4. CREATING A PROJECT
	Creating a Project in Business Central
	Creating a Project Using the REST API

	3.5. ADDING DEPENDENCIES
	3.6. DEFINING KIE BASES AND SESSIONS
	Defining KIE Bases and Sessions in the Project Editor
	Defining KIE Bases and Sessions in kmodule.xml

	3.7. CREATING A RESOURCE
	3.8. ASSET METADATA AND VERSIONING
	Metadata Management
	Version Management

	3.9. FILTERING ASSETS BY TAG
	3.10. ASSET LOCKING SUPPORT
	3.11. PROCESS DEFINITION
	3.11.1. Creating a Process Definition
	3.11.2. Importing a Process Definition
	3.11.3. Importing jPDL 3.2 to BPMN2

	CHAPTER 4. PROCESS DESIGNER
	4.1. CONFIGURING AUTOMATIC SAVING
	4.2. DEFINING PROCESS PROPERTIES
	4.3. DESIGNING PROCESS
	4.3.1. Copying Elements
	4.3.2. Aligning Elements
	4.3.3. Changing Element Layering
	4.3.4. Bending Connection Elements
	4.3.5. Resizing Elements
	4.3.6. Grouping Elements
	4.3.7. Locking Elements
	4.3.8. Changing Color Scheme
	4.3.9. Recording local history
	4.3.10. Enlarging and shrinking canvas
	4.3.11. Validating a Process
	4.3.12. Correcting Invalid Processes

	4.4. EXPORTING PROCESS
	4.5. PROCESS ELEMENTS
	4.5.1. Generic Properties of Visualized Process Elements
	4.5.2. Defining Process Element Properties

	4.6. BUSINESS PROCESS SAVE POINTS
	4.7. FORMS
	4.7.1. Defining Process form
	4.7.2. Defining Task form
	4.7.3. Defining form fields

	4.8. FORM MODELER
	4.8.1. Creating a Form in Form Modeler
	4.8.2. Opening an Existing Form in Form Modeler
	4.8.3. Setting Properties of a Form Field in Form Modeler
	4.8.4. Configuring a Process in Form Modeler
	4.8.5. Generating Forms from Task Definitions
	4.8.6. Editing Forms
	4.8.7. Moving a Field in Form Modeler
	4.8.8. Adding New Fields to a Form
	4.8.9. Configuring Fields of a Form
	4.8.10. Creating Subforms with Simple and Complex Field Types
	4.8.11. Enabling Document Attachments in a Form or Process
	4.8.11.1. Using a Custom Document Marshalling Strategy for a Content Management System (CMS)

	4.8.12. Rendering Forms for External Use
	4.8.12.1. JavaScript Library for Form Reuse

	4.9. VARIABLES
	4.9.1. Global Variables
	4.9.1.1. Creating Global Variables
	4.9.1.2. Process variables

	4.9.2. Local Variables
	4.9.2.1. Accessing Local Variables

	4.9.3. Setting Process Variables From Business Rule Task
	4.9.3.1. Mapping Process Variables through Business Rule Task Assigments field
	4.9.3.2. Mapping Process Variables through WorkflowProcessInstance

	4.10. ACTION SCRIPTS
	4.11. INTERCEPTOR ACTIONS
	4.12. ASSIGNMENT
	4.12.1. Data I/O Editor
	4.12.2. Data I/O Editor Example

	4.13. CONSTRAINTS
	4.14. DOMAIN-SPECIFIC TASKS
	4.14.1. Work Item Definition
	4.14.2. Creating Custom Work Item Definition
	JBoss Developer Studio Process Designer
	Web Process Designer

	4.14.3. Work Item Handler
	4.14.4. Registering Work Item handler in Business Central
	4.14.5. Registering Work Item Handler Outside of Business Central

	4.15. SERVICE REPOSITORY
	4.15.1. Installing Services from Service Repository
	Installing Services in Process Designer
	Installing Services During Business Central Startup

	4.15.2. Setting up Service Repository
	Repository Configuration File
	Work Item Configuration File

	4.15.3. Retrieving Service Repository Information

	4.16. ACTOR ASSIGNMENT CALLS
	4.17. LDAP CONNECTION
	4.17.1. Connecting to LDAP

	4.18. EXCEPTION MANAGEMENT
	Business exceptions
	Technical exceptions

	CHAPTER 5. DATA MODELS
	5.1. DATA MODELER
	5.2. AVAILABLE FIELD TYPES
	5.3. ANNOTATIONS IN DATA MODELER
	5.4. CREATING A DATA OBJECT
	5.5. PERSISTABLE DATA OBJECTS
	5.6. DATA OBJECT DOMAIN SCREENS
	Drools & jBPM
	Persistence
	Advanced

	5.7. CONFIGURING RELATIONSHIPS BETWEEN DATA OBJECTS
	5.8. PERSISTENCE DESCRIPTOR
	5.9. DEPLOYMENT DESCRIPTOR

	CHAPTER 6. ADVANCED PROCESS MODELING
	6.1. PROCESS MODELING OPTIONS
	6.2. WORKFLOW PATTERNS
	6.2.1. Defining workflow patterns
	6.2.2. Changing workflow patterns for an existing project

	CHAPTER 7. SOCIAL EVENTS
	Follow User
	Activity Timeline

	PART II. SIMULATION AND TESTING
	CHAPTER 8. PROCESS SIMULATION
	8.1. PATH FINDER
	8.2. SIMULATING PROCESSES
	8.2.1. Defining Simulation Data on Elements
	8.2.2. Running Process Simulations
	8.2.3. Examining Simulation Results
	8.2.3.1. Switching Between Graph Types
	8.2.3.2. Filtering in Graphs
	8.2.3.3. Viewing Graph Timeline

	CHAPTER 9. TESTING
	9.1. TEST SCENARIOS
	9.2. CREATING A TEST SCENARIO
	9.3. ADDITIONAL TEST SCENARIO FEATURES

	PART III. PLUG-IN
	CHAPTER 10. CREATING BPM PROJECT
	CHAPTER 11. CREATING PROCESS
	CHAPTER 12. CHECKING SESSION LOGS
	PART IV. DEPLOYMENT AND RUNTIME MANAGEMENT
	CHAPTER 13. DEPLOYING AND MANAGING PROJECTS
	13.1. DEPLOYING A PROJECT
	13.1.1. Duplicate GAV Detection

	13.2. PROCESS MANAGEMENT
	13.2.1. Process Definitions
	13.2.2. Process Instances
	13.2.2.1. Searching Process Instances by Partial Correlation Key
	13.2.2.2. Searching Process Instances Based on Business Data

	13.2.3. Creating a New Process Instance List
	13.2.4. Aborting a Process instance
	Aborting a Process instance using API
	Aborting a Process instance from the Business Central

	13.3. SIGNALING PROCESS INSTANCE
	Signaling Process Instance Using API
	Signaling Process Instance from Business Central

	13.4. TASK MANAGEMENT
	13.4.1. Tasks List
	Task Client

	13.4.2. Creating Custom Tasks Filters
	13.4.3. Creating a User Task
	13.4.4. Task Variables as Expressions

	CHAPTER 14. LOGGING
	CHAPTER 15. EXAMPLES
	PART V. BAM
	CHAPTER 16. RED HAT JBOSS DASHBOARD BUILDER
	What is Business Activity Monitoring?
	16.1. BASIC CONCEPTS
	16.2. ACCESSING DASHBOARD BUILDER
	16.3. PROCESS & TASK DASHBOARD
	Tasks Dashboard

	16.4. DATA SOURCES
	16.4.1. Connecting to Data Sources
	16.4.2. Security Considerations
	16.4.3. Building a Dashboard for Large Volumes of Data
	16.4.4. Data Providers
	16.4.4.1. Creating Data Providers

	16.4.5. Workspace
	16.4.5.1. Creating Workspace
	16.4.5.2. Configuring a default workspace
	16.4.5.3. Pages
	16.4.5.4. Panels

	16.5. IMPORT AND EXPORT
	16.5.1. Importing and Exporting Workspaces
	16.5.2. Importing and Exporting KPIs
	16.5.3. Importing Data Sources

	16.6. DASHBOARD BUILDER DATA MODEL

	CHAPTER 17. DATA SETS
	17.1. MANAGING DATA SETS
	17.2. CACHING
	Client Cache
	Backend Cache

	17.3. DATA REFRESH

	CHAPTER 18. MANAGEMENT CONSOLE
	CHAPTER 19. GRAPHIC RESOURCES
	Graphic Resources Definitions
	19.1. WORKING WITH GRAPHIC RESOURCES

	APPENDIX A. PROCESS ELEMENTS
	CHAPTER 20. PROCESS
	Runtime

	CHAPTER 21. EVENTS MECHANISM
	CHAPTER 22. COLLABORATION MECHANISMS
	22.1. SIGNALS
	22.1.1. Triggering Signals
	Signalling External Deployments

	22.1.2. Catching and Processing Signals
	22.1.3. Triggering Signals Using API

	22.2. MESSAGES
	22.2.1. Sending Messages
	22.2.2. Catching Messages
	22.2.3. Sending Messages Using API

	22.3. ESCALATION
	Attributes

	CHAPTER 23. TRANSACTION MECHANISMS
	23.1. ERRORS
	Attributes

	23.2. COMPENSATION

	CHAPTER 24. TIMING
	CHAPTER 25. EVENT TYPES
	25.1. START EVENT
	25.1.1. Start Event types
	25.1.1.1. None Start Event
	25.1.1.2. Message Start Event
	25.1.1.3. Timer Start Event
	25.1.1.4. Escalation Start Event
	25.1.1.5. Conditional Start Event
	25.1.1.6. Error Start Event
	25.1.1.7. Compensation Start Event
	25.1.1.8. Signal Start Event

	25.2. INTERMEDIATE EVENTS
	25.2.1. Intermediate Events
	25.2.2. Intermediate Event types
	25.2.2.1. Timer Intermediate Event
	25.2.2.2. Conditional Intermediate Event
	25.2.2.3. Compensation Intermediate Event
	25.2.2.4. Message Intermediate Event
	25.2.2.5. Escalation Intermediate Event
	25.2.2.6. Error Intermediate Event
	25.2.2.7. Signal Intermediate Event

	25.3. END EVENTS
	25.3.1. End Event types
	25.3.1.1. Simple End Event
	25.3.1.2. Message End Event
	25.3.1.3. Escalation End Event
	25.3.1.4. Terminate End Event
	25.3.1.5. Throwing Error End Event
	25.3.1.6. Cancel End Event
	25.3.1.7. Compensation End Event
	25.3.1.8. Signal End Event

	25.4. SCOPE OF EVENTS

	CHAPTER 26. GATEWAYS
	26.1. GATEWAYS
	26.2. GATEWAY TYPES
	26.2.1. Event-based Gateway
	26.2.2. Parallel Gateway
	26.2.3. Inclusive Gateway
	Attributes

	26.2.4. Data-based Exclusive Gateway
	Attributes

	CHAPTER 27. ACTIVITIES, TASKS AND SUB-PROCESSES
	27.1. ACTIVITY
	27.2. ACTIVITY MECHANISMS
	27.2.1. Multiple Instances
	27.2.2. Activity Types
	27.2.2.1. Call Activity

	27.3. TASKS
	27.3.1. None Task
	27.3.2. Send Task
	Attributes

	27.3.3. Receive Task
	Attributes

	27.3.4. Manual Task
	27.3.5. Service Task
	27.3.5.1. Using Service Task to Invoke Web Service
	27.3.5.2. Using Service Task to Invoke Java Method

	27.3.6. Business Rule Task
	Attributes

	27.3.7. Script Task
	Attributes

	27.4. SUB-PROCESS
	27.4.1. Embedded Sub-Process
	27.4.2. AdHoc Sub-Process
	Attributes

	27.4.3. Multi-instance Sub-Process
	Attributes

	27.4.4. Event Sub-Process

	27.5. USER TASK
	Attributes
	27.5.1. User Task lifecycle
	27.5.2. Reassignment
	27.5.3. Notification
	Available variables

	CHAPTER 28. CONNECTING OBJECTS
	28.1. CONNECTING OBJECTS
	28.2. CONNECTING OBJECTS TYPES
	28.2.1. Sequence Flow

	CHAPTER 29. SWIMLANES
	29.1. LANES

	CHAPTER 30. ARTIFACTS
	30.1. ARTIFACTS
	30.2. DATA OBJECTS

	APPENDIX B. SERVICE TASKS: WS TASK, EMAIL TASK, REST TASK
	CHAPTER 31. WS TASK
	31.1. MULTIPLE PARAMETERS
	31.2. CUSTOM OBJECTS
	31.3. WEB SERVICE TASK EXAMPLE
	Input Attributes
	Output Attributes

	CHAPTER 32. EMAIL TASK
	Registering Email Task in Business Central
	Registering EmailWorkItemHandler
	Configuring Deadline
	Input Attributes

	CHAPTER 33. REST TASK
	Input Attributes
	Output Attributes
	Handling REST Response Error

	APPENDIX C. SIMULATION DATA
	CHAPTER 34. PROCESS
	Simulation Attributes

	CHAPTER 35. ACTIVITIES
	Simulation Attributes

	CHAPTER 36. START EVENT
	Simulation Attributes

	CHAPTER 37. CATCHING INTERMEDIATE EVENTS
	Simulation Attributes

	CHAPTER 38. SEQUENCE FLOW
	Simulation Attributes

	CHAPTER 39. THROWING INTERMEDIATE EVENTS
	Simulation Attributes

	CHAPTER 40. HUMAN TASKS
	Simulation Attributes

	CHAPTER 41. END EVENTS
	Simulation Attributes

	CHAPTER 42. DISTRIBUTION TYPES
	42.1. NORMAL
	Normal Distribution Attributes

	42.2. UNIFORM
	Uniform Distribution Attributes

	42.3. POISSON
	42.3.1. Poisson Distribution Attributes

	APPENDIX D. VERSIONING INFORMATION

