
Red Hat Integration 2021.Q2

Service Registry User Guide

Service Registry 2.0 - Technology Preview

Last Updated: 2021-05-07

Red Hat Integration 2021.Q2 Service Registry User Guide

Service Registry 2.0 - Technology Preview

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Service Registry and explains how to manage event schemas and API designs
using the Service Registry web console, REST API, Maven plug-in, or Java client. This guide also
explains how to to use Kafka client serializers and deserializers in your Java consumer and producer
applications. It also describes the supported Service Registry content types, and optional rule
configuration.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
1.1. SERVICE REGISTRY OVERVIEW

Service Registry capabilities
1.2. SCHEMA AND API ARTIFACTS AND GROUPS IN SERVICE REGISTRY

Schema and API groups
1.3. MANAGE CONTENT USING SERVICE REGISTRY WEB CONSOLE
1.4. REGISTRY CORE REST API OVERVIEW

Compatibility with other schema registry REST APIs
1.5. SERVICE REGISTRY STORAGE OPTIONS
1.6. VALIDATE SCHEMAS WITH KAFKA CLIENT SERIALIZERS/DESERIALIZERS
1.7. STREAM DATA TO EXTERNAL SYSTEMS WITH KAFKA CONNECT CONVERTERS
1.8. SERVICE REGISTRY DEMONSTRATION EXAMPLES
1.9. SERVICE REGISTRY AVAILABLE DISTRIBUTIONS

CHAPTER 2. SERVICE REGISTRY CONTENT RULES
2.1. GOVERN REGISTRY CONTENT USING RULES
2.2. WHEN RULES ARE APPLIED
2.3. HOW RULES WORK
2.4. CONTENT RULE CONFIGURATION

Configure artifact rules
Configure global rules

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE
3.1. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
3.2. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
3.3. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY WEB CONSOLE

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API
4.1. MANAGING SCHEMA AND API ARTIFACTS USING REGISTRY REST API COMMANDS
4.2. MANAGING SCHEMA AND API ARTIFACT VERSIONS USING REGISTRY REST API COMMANDS
4.3. EXPORTING AND IMPORTING REGISTRY CONTENT USING REGISTRY REST API COMMANDS

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN
5.1. ADDING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
5.2. DOWNLOADING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
5.3. TESTING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING A JAVA CLIENT
6.1. SERVICE REGISTRY JAVA CLIENT
6.2. WRITING SERVICE REGISTRY CLIENT APPLICATIONS
6.3. SERVICE REGISTRY JAVA CLIENT CONFIGURATION

Custom header configuration
TLS configuration options

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA
7.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY

Service Registry schema technologies
Producer schema configuration
Consumer schema configuration

7.2. STRATEGIES TO LOOK UP A SCHEMA IN SERVICE REGISTRY

4
4

5
5
6
6
7
7
8
9
9
9

10
11

12

14
14
14
14
15
15
15

17
17
18

20

22
22
23
24

26
26
27
28

30
30
30
31
31
31

33
33
34
34
34
35

Table of Contents

1

. .

. .

ArtifaceResolverStrategy interface
Strategies to return an artifact reference
DefaultSchemaResolver interface
Strategies to return a global ID

7.3. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONFIGURATION
Configuration for SerDe services
Configuration for SerDe lookup strategies
Configuration for Kafka converters
Configuration for different schema types

7.4. USING DIFFERENT CLIENT SERIALIZER/DESERIALIZER TYPES
Kafka application configuration for serializers/deserializers
7.4.1. Configure Avro SerDe with Service Registry
7.4.2. Configure JSON Schema SerDe with Service Registry
7.4.3. Configure Protobuf SerDe with Service Registry

7.5. REGISTERING A SCHEMA IN SERVICE REGISTRY
Service Registry web console
Curl command example
Maven plug-in example
Configuration using a producer client example

7.6. USING A SCHEMA FROM A KAFKA CONSUMER CLIENT
7.7. USING A SCHEMA FROM A KAFKA PRODUCER CLIENT
7.8. USING A SCHEMA FROM A KAFKA STREAMS APPLICATION

CHAPTER 8. SERVICE REGISTRY ARTIFACT REFERENCE
8.1. SERVICE REGISTRY ARTIFACT TYPES
8.2. SERVICE REGISTRY ARTIFACT STATES
8.3. SERVICE REGISTRY ARTIFACT METADATA
8.4. SERVICE REGISTRY CONTENT RULE TYPES
8.5. SERVICE REGISTRY CONTENT RULE MATURITY

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading ZIP and TAR files
Registering your system for packages

36
36
36
36
37
37
38
38
38
38
38
40
42
43
44
44
44
45
46
46
47
47

49
49
49
50
51
52

54
54
54
54
54

Red Hat Integration 2021.Q2 Service Registry User Guide

2

Table of Contents

3

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Integration 2021.Q2 Service Registry User Guide

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
This chapter introduces Service Registry concepts and features and provides details on the supported
artifact types that are stored in the registry:

Section 1.1, “Service Registry overview”

Section 1.2, “Schema and API artifacts and groups in Service Registry”

Section 1.3, “Manage content using Service Registry web console”

Section 1.4, “Registry core REST API overview”

Section 1.5, “Service Registry storage options”

Section 1.6, “Validate schemas with Kafka client serializers/deserializers”

Section 1.7, “Stream data to external systems with Kafka Connect converters”

Section 1.8, “Service Registry demonstration examples”

Section 1.9, “Service Registry available distributions”

IMPORTANT

Service Registry is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

1.1. SERVICE REGISTRY OVERVIEW

Service Registry is a datastore for sharing standard event schemas and API designs across API and
event-driven architectures. You can use Service Registry to decouple the structure of your data from
your client applications, and to share and manage your data types and API descriptions at runtime using
a REST interface.

For example, client applications can dynamically push or pull the latest schema updates to or from
Service Registry at runtime without needing to redeploy. Developer teams can query the registry for
existing schemas required for services already deployed in production, and can register new schemas
required for new services in development.

You can enable client applications to use schemas and API designs stored in Service Registry by
specifying the registry URL in your client application code. For example, the registry can store schemas
used to serialize and deserialize messages, which can then be referenced from your client applications to
ensure that the messages that they send and receive are compatible with those schemas.

Using Service Registry to decouple your data structure from your applications reduces costs by
decreasing overall message size, and creates efficiencies by increasing consistent reuse of schemas and
API designs across your organization. Service Registry provides a web console to make it easy for
developers and administrators to manage registry content.

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

5

https://access.redhat.com/support/offerings/techpreview

In addition, you can configure optional rules to govern the evolution of your registry content. For
example, these include rules to ensure that uploaded content is syntactically and semantically valid, or is
backwards and forwards compatible with other versions. Any configured rules must pass before new
versions can be uploaded to the registry, which ensures that time is not wasted on invalid or
incompatible schemas or API designs.

Service Registry is based on the Apicurio Registry open source community project. For details, see
https://github.com/apicurio/apicurio-registry.

Service Registry capabilities

Multiple payload formats for standard event schemas and API specifications

Pluggable registry storage options in AMQ Streams or PostgreSQL database

Registry content management using a web console, REST API command, Maven plug-in, or
Java client

Rules for content validation and version compatibility to govern how registry content evolves
over time

Full Apache Kafka schema registry support, including integration with Kafka Connect for
external systems

Kafka client serializers/deserializers (Serdes) to validate message types at runtime

Cloud-native Quarkus Java runtime for low memory footprint and fast deployment times

Compatibility with existing Confluent or IBM schema registry client applications

Operator-based installation of Service Registry on OpenShift

OpenID Connect (OIDC) authentication using Red Hat Single Sign-On

1.2. SCHEMA AND API ARTIFACTS AND GROUPS IN SERVICE
REGISTRY

The items stored in Service Registry, such as event schemas and API designs, are known as registry
artifacts. The following shows an example of an Apache Avro schema artifact in JSON format for a
simple share price application:

{
 "type": "record",
 "name": "price",
 "namespace": "com.example",
 "fields": [
 {
 "name": "symbol",
 "type": "string"
 },
 {
 "name": "price",
 "type": "string"
 }
]
}

Red Hat Integration 2021.Q2 Service Registry User Guide

6

https://github.com/apicurio/apicurio-registry

When a schema or API design is added as an artifact in the registry, client applications can then use that
schema or API design to validate that the client messages conform to the correct data structure at
runtime.

Service Registry supports a wide range of message payload formats for standard event schemas and
API specifications. For example, supported formats include Apache Avro, Google Protobuf, GraphQL,
AsyncAPI, OpenAPI, and others. For more details, see Chapter 8, Service Registry artifact reference .

Schema and API groups
An artifact group is an optional named collection of schema or API artifacts. Each group contains a
logically related set of schemas or API designs, typically managed by a single entity, belonging to a
particular application or organization.

You can create optional artifact groups when adding your schemas and API designs to organize them in
Service Registry. For example, you could create groups to match your development and production
application environments, or your sales and engineering organizations.

Schema and API groups can contain multiple artifact types. For example, you could have Protobuf, Avro,
JSON Schema, OpenAPI, and AsyncAPI schema and API artifacts all in the same group.

You can create schema and API artifacts and optional groups using the Service Registry web console,
core REST API, Maven plug-in, or Java client application. The following simple example shows using the
REST API:

This example adds an Avro schema with an artifact ID of share-price in an artifact group named my-
group.

NOTE

Specifying a group is optional when using the Service Registry web console, where a
default group is automatically created. When using the v2 REST API or Maven plug-in,
you can specify the default group in the API path if you do not want to create a unique
group.

Additional resources

For more details on schemas and groups, see the Cloud Native Computing Foundation (CNCF)
Schema Registry API Version 0.1.

1.3. MANAGE CONTENT USING SERVICE REGISTRY WEB CONSOLE

You can use the Service Registry web console to browse and search the schema and API artifacts and
optional groups stored in the registry, and to add new schema and API artifacts, groups, and versions.
You can search for artifacts by label, name, group, and description. You can view an artifact’s content or
its available versions, or download an artifact file locally.

You can also use the web console to configure optional rules for registry content, both globally and for
each schema and API artifact. These optional rules for content validation and compatibility are applied
when new schema and API artifacts or versions are uploaded to the registry. For more details, see

$ curl -X POST -H "Content-type: application/json; artifactType=AVRO" \
 -H "X-Registry-ArtifactId: share-price" \
 --data '{"type":"record","name":"price","namespace":"com.example", \
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}' \
 https://my-registry.example.com/apis/registry/v2/groups/my-group/artifacts

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

7

https://github.com/cloudevents/spec/blob/master/schemaregistry/schemaregistry.md

Chapter 8, Service Registry artifact reference .

Figure 1.1. Service Registry web console

The Service Registry web console is available from the main endpoint of your Service Registry
deployment, for example, on http://MY-REGISTRY-URL/ui.

Additional resources

Chapter 3, Managing Service Registry content using the web console

1.4. REGISTRY CORE REST API OVERVIEW

Using the Service Registry core REST API, client applications can manage the schema and API artifacts
in Service Registry. This API provides create, read, update, and delete operations for:

Artifacts

Manage schema and API artifacts stored in the registry. You can also manage the lifecycle state of an
artifact: enabled, disabled, or deprecated.

Artifact versions

Manage versions that are created when a schema or API artifact is updated. You can also manage the
lifecycle state of an artifact version: enabled, disabled, or deprecated.

Artifact metadata

Manage details about a schema or API artifact, such as when it was created or modified, and its
current state. You can edit the artifact name, description, or label. The artifact group and when the
artifact was created or modified are read-only.

Artifact rules

Configure rules to govern the content evolution of a specific schema or API artifact to prevent invalid
or incompatible content from being added to the registry. Artifact rules override any global rules
configured.

Global rules

Configure rules to govern the content evolution of all schema and API artifacts artifacts to prevent

Red Hat Integration 2021.Q2 Service Registry User Guide

8

Configure rules to govern the content evolution of all schema and API artifacts artifacts to prevent
invalid or incompatible content from being added to the registry. Global rules are applied only if an
artifact does not have its own specific artifact rules configured.

Search

Browse or search for schema and API artifacts and versions, for example, by name, group,
description, or label.

Admin

Export or import registry content in a .zip file, and manage logging levels for the registry server
instance at runtime.

Compatibility with other schema registry REST APIs
Service Registry version 2 provides API compatibility with the following schema registries by including
implementations of their respective REST APIs:

Service Registry version 1

Confluent schema registry version 6

IBM schema registry version 1

Cloud Native Computing Foundation schema registry version 0

Applications using Confluent client libraries can use Service Registry as a drop-in replacement. For more
details, see Replacing Confluent Schema Registry with Red Hat Integration Service Registry .

Additional resources

For detailed information, see the Apicurio Registry REST API documentation .

API documentation for the core Service Registry REST API and for all compatible APIs is
available from the main endpoint of your Service Registry deployment, for example, on
http://MY-REGISTRY-URL/apis.

1.5. SERVICE REGISTRY STORAGE OPTIONS

Service Registry provides the following options for the underlying storage of registry data:

PostgreSQL 12 database

AMQ Streams 1.7

Additional resources

For more details on storage options, see Installing and deploying Service Registry on OpenShift

1.6. VALIDATE SCHEMAS WITH KAFKA CLIENT
SERIALIZERS/DESERIALIZERS

Kafka producer applications can use serializers to encode messages that conform to a specific event
schema. Kafka consumer applications can then use deserializers to validate that messages have been
serialized using the correct schema, based on a specific schema ID.

Figure 1.2. Service Registry and Kafka client SerDe architecture

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

9

https://developers.redhat.com/blog/2019/12/17/replacing-confluent-schema-registry-with-red-hat-integration-service-registry/
files/registry-rest-api.htm
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q2/html-single/installing_and_deploying_service_registry_on_openshift/index

Figure 1.2. Service Registry and Kafka client SerDe architecture

Service Registry provides Kafka client serializers/deserializers (SerDes) to validate the following
message types at runtime:

Apache Avro

Google protocol buffers

JSON Schema

The Service Registry Maven repository and source code distributions include the Kafka SerDe
implementations for these message types, which Kafka client developers can use to integrate with the
registry. These implementations include custom Java classes for each supported message type, for
example, io.apicurio.registry.serde.avro, which client applications can use to pull schemas from the
registry at runtime for validation.

Additional resources

Chapter 7, Validating schemas using Kafka client serializers/deserializers in Java

1.7. STREAM DATA TO EXTERNAL SYSTEMS WITH KAFKA CONNECT
CONVERTERS

You can use Service Registry with Apache Kafka Connect to stream data between Kafka and external
systems. Using Kafka Connect, you can define connectors for different systems to move large volumes
of data into and out of Kafka-based systems.

Figure 1.3. Service Registry and Kafka Connect architecture

Red Hat Integration 2021.Q2 Service Registry User Guide

10

Figure 1.3. Service Registry and Kafka Connect architecture

Service Registry provides the following features for Kafka Connect:

Storage for Kafka Connect schemas

Kafka Connect converters for Apache Avro and JSON Schema

Registry REST API to manage schemas

You can use the Avro and JSON Schema converters to map Kafka Connect schemas into Avro or JSON
schemas. Those schemas can then serialize message keys and values into the compact Avro binary
format or human-readable JSON format. The converted JSON is also less verbose because the
messages do not contain the schema information, only the schema ID.

Service Registry can manage and track the Avro and JSON schemas used in the Kafka topics. Because
the schemas are stored in Service Registry and decoupled from the message content, each message
must only include a tiny schema identifier. For an I/O bound system like Kafka, this means more total
throughput for producers and consumers.

The Avro and JSON Schema serializers and deserializers (SerDes) provided by Service Registry are also
used by Kafka producers and consumers in this use case. Kafka consumer applications that you write to
consume change events can use the Avro or JSON Serdes to deserialize these change events. You can
install these Serdes into any Kafka-based system and use them along with Kafka Connect, or with Kafka
Connect-based systems such as Debezium and Camel Kafka Connector.

Additional resources

Apache Kafka Connect documentation

Avro serialization in Debezium User Guide

Getting Started with Camel Kafka Connector

Demonstration of using Kafka Connect with Debezium and Apicurio Registry

1.8. SERVICE REGISTRY DEMONSTRATION EXAMPLES

Service Registry provides open source example applications that demonstrate how to use the registry in
different use case scenarios. For example, these include storing schemas used by Kafka serializer and

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

11

https://kafka.apache.org/documentation/#connect
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q1/html-single/debezium_user_guide/index#avro-serialization
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q1/html-single/getting_started_with_camel_kafka_connector/index
https://debezium.io/blog/2020/04/09/using-debezium-wit-apicurio-api-schema-registry/

deserializer (SerDe) classes. These Java classes fetch the schema from the registry for use when
producing or consuming operations to serialize, deserialize, or validate the Kafka message payload.

These example applications include the following:

Simple Avro

Simple JSON Schema

Confluent SerDes integration

Avro bean

Custom ID strategy

Simple Avro Maven

REST client

Mix Avro schemas

Cloud Events

For more details, see https://github.com/Apicurio/apicurio-registry-examples

1.9. SERVICE REGISTRY AVAILABLE DISTRIBUTIONS

Table 1.1. Service Registry Operator and images

Distribution Location Release category

Service Registry Operator OpenShift web console under
Operators → OperatorHub

Technology Preview

Container image for Service Registry
Operator

Red Hat Ecosystem Catalog Technology Preview

Container image for Kafka storage in
AMQ Streams

Red Hat Ecosystem Catalog Technology Preview

Container image for database storage
in PostgreSQL

Red Hat Ecosystem Catalog Technology Preview

Table 1.2. Service Registry zip downloads

Distribution Location Release category

Example custom resource definitions
for installation

Software Downloads for Red Hat
Integration

Technology Preview

Kafka Connect converters Software Downloads for Red Hat
Integration

Technology Preview

Red Hat Integration 2021.Q2 Service Registry User Guide

12

https://github.com/Apicurio/apicurio-registry-examples
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration

Maven repository Software Downloads for Red Hat
Integration

Technology Preview

Source code Software Downloads for Red Hat
Integration

Technology Preview

Distribution Location Release category

NOTE

You must have a subscription for Red Hat Integration and be logged into the Red Hat
Customer Portal to access the available Service Registry distributions.

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

13

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration

CHAPTER 2. SERVICE REGISTRY CONTENT RULES
This chapter introduces the optional rules used to govern registry content and provides details on the
available rule configuration:

Section 2.1, “Govern registry content using rules”

Section 2.2, “When rules are applied”

Section 2.3, “How rules work”

Section 2.4, “Content rule configuration”

2.1. GOVERN REGISTRY CONTENT USING RULES

To govern the evolution of registry content, you can configure optional rules for artifact content added
to the registry. All configured global rules or artifact rules must pass before a new artifact version can be
uploaded to the registry. Configured artifact rules override any configured global rules.

The goal of these rules is to prevent invalid content from being added to the registry. For example,
content can be invalid for the following reasons:

Invalid syntax for a given artifact type (for example, AVRO or PROTOBUF)

Valid syntax, but semantics violate a specification

Incompatibility, when new content includes breaking changes relative to the current artifact
version

You can add these optional content rules using the Service Registry web console, REST API commands,
or a Java client application.

2.2. WHEN RULES ARE APPLIED

Rules are applied only when content is added to the registry. This includes the following REST
operations:

Adding an artifact

Updating an artifact

Adding an artifact version

If a rule is violated, Service Registry returns an HTTP error. The response body includes the violated rule
and a message showing what went wrong.

NOTE

If no rules are configured for an artifact, the set of currently configured global rules are
applied, if any.

2.3. HOW RULES WORK

Each rule has a name and optional configuration information. The registry storage maintains the list of

Red Hat Integration 2021.Q2 Service Registry User Guide

14

Each rule has a name and optional configuration information. The registry storage maintains the list of
rules for each artifact and the list of global rules. Each rule in the list consists of a name and a set of
configuration properties, which are specific to the rule implementation.

A rule is provided with the content of the current version of the artifact (if one exists) and the new
version of the artifact being added. The rule implementation returns true or false depending on whether
the artifact passes the rule. If not, the registry reports the reason why in an HTTP error response. Some
rules might not use the previous version of the content. For example, compatibility rules use previous
versions, but syntax or semantic validity rules do not.

Additional resources

For more details, see Chapter 8, Service Registry artifact reference .

2.4. CONTENT RULE CONFIGURATION

You can configure rules individually for each artifact, as well as globally. Service Registry applies the
rules configured for the specific artifact. If no rules are configured at that level, Service Registry applies
the globally configured rules. If no global rules are configured, no rules are applied.

Configure artifact rules
You can configure artifact rules using the Service Registry web console or REST API. For details, see the
following:

Chapter 3, Managing Service Registry content using the web console

Apicurio Registry REST API documentation

Configure global rules
You can configure global rules in several ways:

Use the /rules operations in the REST API

Use the Service Registry web console

Set default global rules using Service Registry application properties

Configure default global rules

You can configure Service Registry at the application level to enable or disable global rules. You can
configure default global rules at installation time without post-install configuration using the following
application property format:

registry.rules.global.<ruleName>

The following rule names are currently supported:

compatibility

validity

The value of the application property must be a valid configuration option that is specific to the rule
being configured. The following table shows the valid values for each rule:

Table 2.1. Service Registry content rules

CHAPTER 2. SERVICE REGISTRY CONTENT RULES

15

files/registry-rest-api.htm

Rule Value

Validity FULL

 SYNTAX_ONLY

 NONE

Compatibility BACKWARD

 BACKWARD_TRANSITIVE

 FORWARD

 FORWARD_TRANSITIVE

 FULL

 FULL_TRANSITIVE

 NONE

NOTE

You can configure these application properties as Java system properties or include
them in the Quarkus application.properties file. For more details, see the Quarkus
documentation.

Red Hat Integration 2021.Q2 Service Registry User Guide

16

https://quarkus.io/guides/config#overriding-properties-at-runtime

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT
USING THE WEB CONSOLE

This chapter explains how to manage schema and API artifacts stored in the registry using the Service
Registry web console. This includes uploading and browsing registry content, and configuring optional
rules:

Section 3.1, “Adding artifacts using the Service Registry web console”

Section 3.2, “Viewing artifacts using the Service Registry web console”

Section 3.3, “Configuring content rules using the Service Registry web console”

3.1. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB
CONSOLE

You can use the Service Registry web console to upload event schema and API design artifacts to the
registry. For more details on the artifact types that you can upload, see Chapter 8, Service Registry
artifact reference. This section shows simple examples of uploading Service Registry artifacts, applying
artifact rules, and adding new artifact versions.

Prerequisites

Service Registry must be installed and running in your environment.

Procedure

1. Connect to the Service Registry web console on:
http://MY_REGISTRY_URL/ui

2. Click Upload artifact, and specify the following:

Group & ID: Use the default empty settings to automatically generate an ID and default
group, or enter an optional artifact group or ID.

Type: Use the default Auto-Detect setting to automatically detect the artifact type, or
select the artifact type from the drop-down, for example, Avro Schema or OpenAPI.

NOTE

The Service Registry server cannot automatically detect the Kafka Connect
Schema artifact type. You must manually select this artifact type.

Artifact: Drag and drop or click Browse to upload a file, for example, my-schema.json or
my-openapi.json.

3. Click Upload and view the Artifact Details:

Figure 3.1. Artifact Details in Service Registry web console

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

17

Figure 3.1. Artifact Details in Service Registry web console

Info: Displays the artifact name and optional group, description, lifecycle status, when
created, and last modified. Click the Edit Artifact Metadata pencil icon to edit the artifact
name and description or add labels, and click Download to download the artifact file locally.
Also displays artifact Content Rules that you can enable and configure.

Documentation (OpenAPI only): Displays automatically-generated REST API
documentation.

Content: Displays a read-only view of the full artifact content.

4. In Content Rules, click Enable to configure a Validity Rule or Compatibility Rule, and select
the appropriate rule configuration from the drop-down. For more details, see Chapter 8, Service
Registry artifact reference.

5. Click Upload new version to add a new artifact version, and drag and drop or click Browse to
upload the file, for example, my-schema.json or my-openapi.json.

6. To delete an artifact, click the trash icon next to Upload new version.

WARNING

Deleting an artifact deletes the artifact and all of its versions, and cannot be
undone. Artifact versions are immutable and cannot be deleted individually.

Additional resources

Section 3.2, “Viewing artifacts using the Service Registry web console”

Section 3.3, “Configuring content rules using the Service Registry web console”

3.2. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB
CONSOLE

You can use the Service Registry web console to browse the event schema and API design artifacts
stored in the registry. This section shows simple examples of viewing Service Registry artifacts, groups,
versions, and artifact rules. For more details on the artifact types stored in the registry, see Chapter 8,
Service Registry artifact reference .



Red Hat Integration 2021.Q2 Service Registry User Guide

18

Prerequisites

Service Registry must be installed and running in your environment.

Artifacts must have been added to the registry using the Service Registry web console, REST
API commands, Maven plug-in, or a Java client application.

Procedure

1. Connect to the Service Registry web console on:
http://MY_REGISTRY_URL/ui

2. Browse the list of artifacts stored in the registry, or enter a search string to find an artifact. You
can select to search by a specific Name, Group, Description, or Labels.

Figure 3.2. Browse artifacts in Service Registry web console

3. Click View artifact to view the Artifact Details:

Info: Displays the artifact name and optional group, description, lifecycle status, when
created, and last modified. Click the Edit Artifact Metadata pencil icon to edit the artifact
name and description or add labels, and click Download to download the artifact file locally.
Also displays artifact Content Rules that you can enable and configure.

Documentation (OpenAPI only): Displays automatically-generated REST API
documentation.

Content: Displays a read-only view of the full artifact content.

4. Select to view a different artifact Version from the drop-down, if additional versions have been
added.

Additional resources

Section 3.1, “Adding artifacts using the Service Registry web console”

Section 3.3, “Configuring content rules using the Service Registry web console”

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

19

3.3. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY
WEB CONSOLE

You can use the Service Registry web console to configure optional rules to prevent invalid content
from being added to the registry. All configured artifact rules or global rules must pass before a new
artifact version can be uploaded to the registry. Configured artifact rules override any configured global
rules. For more details, see Chapter 2, Service Registry content rules .

This section shows a simple example of configuring global and artifact rules. For details on the different
rule types and associated configuration settings that you can select, see Chapter 8, Service Registry
artifact reference.

Prerequisites

Service Registry must be installed and running in your environment.

For artifact rules, artifacts must have been added to the registry using the Service Registry web
console, REST API commands, Maven plug-in, or a Java client application.

Procedure

1. Connect to the Service Registry web console on:
http://MY_REGISTRY_URL/ui

2. For artifact rules, browse the list of artifacts stored in the registry, or enter a search string to find
an artifact. You can select to search by a specific artifact Name, Group, Description, or Labels.

3. Click View artifact to view the Artifact Details.

4. In Content Rules, click Enable to configure an artifact Validity Rule or Compatibility Rule, and
select the appropriate rule configuration from the drop-down. For more details, see Chapter 8,
Service Registry artifact reference .

Figure 3.3. Configure content rules in Service Registry web console

5. For global rules, click Manage global rules at the top right of the toolbar, and click Enable to
configure a global Validity Rule or Compatibility Rule, and select the appropriate rule
configuration from the drop-down. For more details, see Chapter 8, Service Registry artifact
reference.

6. To disable an artifact rule or global rule, click the trash icon next to the rule.

Additional resources

Red Hat Integration 2021.Q2 Service Registry User Guide

20

Section 3.1, “Adding artifacts using the Service Registry web console”

CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

21

1

2

3

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT
USING THE REST API

Client applications can use Registry REST API operations to manage schema and API artifacts in Service
Registry, for example, in a CI/CD pipeline deployed in production. The Registry REST API provides
create, read, update, and delete operations for artifacts, versions, metadata, and rules stored in the
registry. For detailed information, see the Apicurio Registry REST API documentation .

This chapter describes the Service Registry core REST API and shows how to use it to manage schema
and API artifacts stored in the registry:

Section 4.1, “Managing schema and API artifacts using Registry REST API commands”

Section 4.2, “Managing schema and API artifact versions using Registry REST API commands”

Section 4.3, “Exporting and importing registry content using Registry REST API commands”

Prerequisites

Section 1.4, “Registry core REST API overview”

Additional resources

Apicurio Registry REST API documentation

4.1. MANAGING SCHEMA AND API ARTIFACTS USING REGISTRY REST
API COMMANDS

This section shows a simple curl-based example of using the registry v2 core REST API to add and
retrieve an Apache Avro schema artifact in the registry.

Prerequisites

Service Registry must be installed and running in your environment.

Procedure

1. Add an artifact to the registry using the /groups/{group}/artifacts operation. The following
example curl command adds a simple artifact for a share price application:

This example adds an Avro schema artifact with an artifact ID of share-price. If you do not
specify a unique artifact ID, Service Registry generates one automatically as a UUID.

MY-REGISTRY-HOST is the host name on which Service Registry is deployed. For
example: my-cluster-service-registry-myproject.example.com.

This example specifies a group ID of my-group in the API path. If you do not specify a

$ curl -X POST -H "Content-type: application/json; artifactType=AVRO" \
 -H "X-Registry-ArtifactId: share-price" \ 1
 --data '{"type":"record","name":"price","namespace":"com.example", \
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}' \ 2
 http://MY-REGISTRY-HOST/apis/registry/v2/groups/my-group/artifacts 3

Red Hat Integration 2021.Q2 Service Registry User Guide

22

files/registry-rest-api.htm
files/registry-rest-api.htm

1

2

This example specifies a group ID of my-group in the API path. If you do not specify a
unique group ID, you must specify ../groups/default in the API path.

2. Verify that the response includes the expected JSON body to confirm that the artifact was
added. For example:

No version was specified when adding the artifact, so the default version 1 is created
automatically.

This was the second artifact added to the registry, so the global ID and content ID have a
value of 2.

3. Retrieve the artifact content from the registry using its artifact ID in the API path. In this
example, the specified ID is share-price:

Additional resources

For more REST API sample requests, see the Apicurio Registry REST API documentation .

4.2. MANAGING SCHEMA AND API ARTIFACT VERSIONS USING
REGISTRY REST API COMMANDS

If you do not specify an artifact version when adding schema and API artifacts to Service Registry using
the v2 REST API, Service Registry generates one automatically. The default version when creating a new
artifact is 1.

Service Registry also supports custom versioning where you can specify a version using the X-Registry-
Version HTTP request header as a string. Specifying a custom version value overrides the default
version normally assigned when creating or updating an artifact. You can then use this version value
when executing REST API operations that require a version.

This section shows a simple curl-based example of using the registry v2 core REST API to add and
retrieve a custom Apache Avro schema version in the registry. You can specify custom versions when
using the REST API to add or update artifacts or to add artifact versions.

Prerequisites

Service Registry must be installed and running in your environment.

Procedure

1. Add an artifact version in the registry using the /groups/{group}/artifacts operation. The
following example curl command adds a simple artifact for a share price application:

{"createdBy":"","createdOn":"2021-04-16T09:07:51+0000","modifiedBy":"",
"modifiedOn":"2021-04-16T09:07:51+0000","id":"share-price","version":"1", 1
"type":"AVRO","globalId":2,"state":"ENABLED","groupId":"my-group","contentId":2} 2

$ curl http://MY-REGISTRY-URL/apis/registry/v2/groups/my-group/artifacts/share-price \
{"type":"record","name":"price","namespace":"com.example", \
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

23

files/registry-rest-api.htm

1

2

3

1

2

This example adds an Avro schema artifact with an artifact ID of my-share-price and
version of 1.1.1. If you do not specify a version, Service Registry automatically generates a
default version of 1.

MY-REGISTRY-HOST is the host name on which Service Registry is deployed. For
example: my-cluster-service-registry-myproject.example.com.

This example specifies a group ID of my-group in the API path. If you do not specify a
unique group ID, you must specify ../groups/default in the API path.

2. Verify that the response includes the expected JSON body to confirm that the custom artifact
version was added. For example:

A custom version of 1.1.1 was specified when adding the artifact.

This was the third artifact added to the registry, so the global ID and content ID have a
value of 3.

3. Retrieve the artifact content from the registry using its artifact ID and version in the API path. In
this example, the specified ID is my-share-price and the version is 1.1.1:

Additional resources

For more REST API sample requests, see the Apicurio Registry REST API documentation .

4.3. EXPORTING AND IMPORTING REGISTRY CONTENT USING
REGISTRY REST API COMMANDS

This section shows a simple curl-based example of using the registry v2 core REST API to export and
import existing registry data in .zip format from one Service Registry instance to another. For example,
this is useful when migrating or upgrading from one Service Registry v2.x instance to another.

Prerequisites

Service Registry must be installed and running in your environment.

Procedure

$ curl -X POST -H "Content-type: application/json; artifactType=AVRO" \
 -H "X-Registry-ArtifactId: my-share-price" -H "X-Registry-Version: 1.1.1" \ 1
 --data '{"type":"record","name":" p","namespace":"com.example", \
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}' \ 2
 http://MY-REGISTRY-HOST/apis/registry/v2/groups/my-group/artifacts 3

{"createdBy":"","createdOn":"2021-04-16T10:51:43+0000","modifiedBy":"",
"modifiedOn":"2021-04-16T10:51:43+0000","id":"my-share-price","version":"1.1.1", 1
"type":"AVRO","globalId":3,"state":"ENABLED","groupId":"my-group","contentId":3} 2

$ curl http://MY-REGISTRY-URL/apis/registry/v2/groups/my-group/artifacts/my-share-
price/versions/1.1.1 \
{"type":"record","name":"price","namespace":"com.example", \
 "fields":[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}

Red Hat Integration 2021.Q2 Service Registry User Guide

24

files/registry-rest-api.htm

Procedure

1. Export the registry data from your existing source Service Registry instance:

MY-REGISTRY-HOST is the host name on which the source Service Registry is deployed. For
example: my-cluster-source-registry-myproject.example.com.

2. Import the registry data into your target Service Registry instance:

MY-REGISTRY-HOST is the host name on which the target Service Registry is deployed. For
example: my-cluster-target-registry-myproject.example.com.

Additional resources

For more details, see the admin endpoint in the Apicurio Registry REST API documentation .

For details on export tools for migrating from Service Registry version 1.x to 2.x, see Apicurio
Registry export utility for 1.x versions

$ curl http://MY-REGISTRY-HOST/apis/registry/v2/admin/export \
 --output my-registry-data.zip

$ curl -X POST "http://MY-REGISTRY-HOST/apis/registry/v2/admin/import" \
 -H "Content-Type: application/zip" --data-binary @my-registry-data.zip

CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

25

files/registry-rest-api.htm
https://github.com/Apicurio/apicurio-registry/tree/master/utils/exportV1

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT
USING THE MAVEN PLUG-IN

This chapter explains how to manage schema and API artifacts stored in the registry using the Service
Registry Maven plug-in:

Section 5.1, “Adding schema and API artifacts using the Maven plug-in”

Section 5.2, “Downloading schema and API artifacts using the Maven plug-in”

Section 5.3, “Testing schema and API artifacts using the Maven plug-in”

Prerequisites

See Chapter 1, Introduction to Service Registry

Service Registry must be installed and running in your environment

Maven must be installed and configured in your environment

5.1. ADDING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-
IN

The most common use case for the Maven plug-in is adding artifacts during a build. You can accomplish
this by using the register execution goal.

Procedure

Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to register an
artifact. The following example shows registering Apache Avro and GraphQL schemas:

<plugin>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>register</goal> 1
 </goals>
 <configuration>
 <registryUrl>http://REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <artifacts>
 <artifact>
 <groupId>TestGroup</groupId> 3
 <artifactId>FullNameRecord</artifactId>
 <file>${project.basedir}/src/main/resources/schemas/record.avsc</file>
 <ifExists>FAIL</ifExists>
 </artifact>
 <artifact>
 <groupId>TestGroup</groupId>
 <artifactId>ExampleAPI</artifactId> 4

Red Hat Integration 2021.Q2 Service Registry User Guide

26

1

2

3

4

Specify register as the execution goal to upload the schema artifact to the registry.

Specify the Service Registry URL with the ../apis/registry/v2 endpoint.

Specify the Service Registry artifact group ID. You can specify the default group if you do
not want to use a unique group.

You can upload multiple artifacts using the specified group ID, artifact ID, and location.

Additional resources

For more details on the Service Registry Maven plug-in, see the Registry demonstration
example

5.2. DOWNLOADING SCHEMA AND API ARTIFACTS USING THE
MAVEN PLUG-IN

You can use the Maven plug-in to download artifacts from Service Registry. This is often useful, for
example, when generating code from a registered schema.

Procedure

Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to download an
artifact. The following example shows downloading Apache Avro and GraphQL schemas.

 <type>GRAPHQL</type>
 <file>${project.basedir}/src/main/resources/apis/example.graphql</file>
 <ifExists>RETURN_OR_UPDATE</ifExists>
 <canonicalize>true</canonicalize>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>

<plugin>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>download</goal> 1
 </goals>
 <configuration>
 <registryUrl>http://REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <artifacts>
 <artifact>
 <groupId>TestGroup</groupId> 3
 <artifactId>FullNameRecord</artifactId> 4
 <file>${project.build.directory}/classes/record.avsc</file>

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN

27

https://github.com/Apicurio/apicurio-registry-demo

1

2

3

4

Specify download as the execution goal.

Specify the Service Registry URL with the ../apis/registry/v2 endpoint.

Specify the Service Registry artifact group ID. You can specify the default group if you do
not want to use a unique group.

You can download multiple artifacts to a specified directory using the artifact ID.

Additional resources

For more details on the Service Registry Maven plug-in, see the Registry demonstration
example

5.3. TESTING SCHEMA AND API ARTIFACTS USING THE MAVEN
PLUG-IN

You might want to verify that an artifact can be registered without actually making any changes. This is
often useful when rules are configured in Service Registry. Testing the artifact results in a failure if the
artifact content violates any of the configured rules.

NOTE

Even if the artifact passes the test, no content is added to Service Registry.

Procedure

Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to test an artifact.
The following example shows testing an Apache Avro schema:

 <overwrite>true</overwrite>
 </artifact>
 <artifact>
 <groupId>TestGroup</groupId>
 <artifactId>ExampleAPI</artifactId>
 <version>1</version>
 <file>${project.build.directory}/classes/example.graphql</file>
 <overwrite>true</overwrite>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
</plugin>

<plugin>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>

Red Hat Integration 2021.Q2 Service Registry User Guide

28

https://github.com/Apicurio/apicurio-registry-demo

1

2

3

4

Specify test-update as the execution goal to test the schema artifact.

Specify the Service Registry URL with the ../apis/registry/v2 endpoint.

Specify the Service Registry artifact group ID. You can specify the default group if you do
not want to use a unique group.

You can test multiple artifacts from specified directory using the artifact ID.

Additional resources

For more details on the Service Registry Maven plug-in, see the Registry demonstration
example

 <goal>test-update</goal> 1
 </goals>
 <configuration>
 <registryUrl>http://REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <artifacts>
 <artifact>
 <groupId>TestGroup</groupId> 3
 <artifactId>FullNameRecord</artifactId>
 <file>${project.basedir}/src/main/resources/schemas/record.avsc</file> 4
 </artifact>
 <artifact>
 <groupId>TestGroup</groupId>
 <artifactId>ExampleAPI</artifactId>
 <type>GRAPHQL</type>
 <file>${project.basedir}/src/main/resources/apis/example.graphql</file>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN

29

https://github.com/Apicurio/apicurio-registry-demo

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT
USING A JAVA CLIENT

This chapter explains how to use the Service Registry Java client:

Section 6.1, “Service Registry Java client”

Section 6.2, “Writing Service Registry client applications”

Section 6.3, “Service Registry Java client configuration”

6.1. SERVICE REGISTRY JAVA CLIENT

You can manage artifacts stored in Service Registry using a Java client application. You can create, read,
update, or delete artifacts stored in the registry using the Service Registry Java client classes. You can
also perform admin functions using the client, such as managing global rules or importing and exporting
registry data.

You can access the Service Registry Java client by adding the correct dependency to your project. For
more details, see Section 6.2, “Writing Service Registry client applications” .

The Service Registry client is implemented using the HTTP client provided by the JDK. This gives you the
ability to customize its use, for example, by adding custom headers or enabling options for Transport
Layer Security (TLS) authentication. For more details, see Section 6.3, “Service Registry Java client
configuration”.

6.2. WRITING SERVICE REGISTRY CLIENT APPLICATIONS

This section explains how to manage artifacts stored in Service Registry using a Java client application.

Prerequisites

See Chapter 1, Introduction to Service Registry

Service Registry must be installed and running in your environment

Procedure

1. Add the following dependency to your Maven project:

2. Create a registry client as follows:

<dependency>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-client</artifactId>
 <version>${apicurio-registry.version}</version>
</dependency>

public class ClientExample {

 private static final RegistryRestClient client;

 public static void main(String[] args) throws Exception {

Red Hat Integration 2021.Q2 Service Registry User Guide

30

1

2

If you specify an example registry URL of https://my-registry.my-domain.com, the client
will automatically append /apis/registry/v2.

For more options when creating a Service Registry client, see the Java client configuration
in the next section.

3. When the client is created, you can use all the operations from the Service Registry REST API
through the client. For more details, see the Apicurio Registry REST API documentation .

Additional resources

For an open source example of how to use and customize the Service Registry client, see the
Registry REST client demonstration example .

For details on how to use the Service Registry Kafka client serializers/deserializers (SerDes) in
producer and consumer applications, see Chapter 7, Validating schemas using Kafka client
serializers/deserializers in Java

6.3. SERVICE REGISTRY JAVA CLIENT CONFIGURATION

The Service Registry Java client includes the following configuration options, based on the client
factory:

Table 6.1. Service Registry Java client configuration options

Option Description Arguments

Plain client Basic REST client used to interact with a running
registry.

baseUrl

Client with custom
configuration

Registry client using the configuration provided by
the user.

baseUrl, Map<String
Object> configs

Client with custom
configuration and
authentication

Registry client that accepts a map containing custom
configuration. This is useful, for example, to add
custom headers to the calls. This also requires
providing an auth instance used to authenticate
requests.

baseUrl, Map<String
Object> configs,
Auth auth

Custom header configuration
To configure custom headers, you must add the apicurio.registry.request.headers prefix to the
configs map key. For example, a key of apicurio.registry.request.headers.Authorization with a value
of Basic: xxxxx results in a header of Authorization with value of Basic: xxxxx.

TLS configuration options

You can configure Transport Layer Security (TLS) authentication for the Service Registry Java client

 // Create a registry client
 String registryUrl = "https://my-registry.my-domain.com/apis/registry/v2"; 1
 RegistryClient client = RegistryClientFactory.create(registryUrl); 2
 }
}

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING A JAVA CLIENT

31

https://my-registry.my-domain.com
files/registry-rest-api.htm
https://github.com/Apicurio/apicurio-registry-examples

You can configure Transport Layer Security (TLS) authentication for the Service Registry Java client
using the following properties:

apicurio.registry.request.ssl.truststore.location

apicurio.registry.request.ssl.truststore.password

apicurio.registry.request.ssl.truststore.type

apicurio.registry.request.ssl.keystore.location

apicurio.registry.request.ssl.keystore.password

apicurio.registry.request.ssl.keystore.type

apicurio.registry.request.ssl.key.password

Red Hat Integration 2021.Q2 Service Registry User Guide

32

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT
SERIALIZERS/DESERIALIZERS IN JAVA

Service Registry provides client serializers/deserializers (SerDes) for Kafka producer and consumer
applications written in Java. Kafka producer applications use serializers to encode messages that
conform to a specific event schema. Kafka consumer applications use deserializers to validate that
messages have been serialized using the correct schema, based on a specific schema ID. This ensures
consistent schema use and helps to prevent data errors at runtime.

This chapter explains how to use Kafka client SerDe in your producer and consumer client applications:

Section 7.1, “Kafka client applications and Service Registry”

Section 7.2, “Strategies to look up a schema in Service Registry”

Section 7.3, “Service Registry serializer/deserializer configuration”

Section 7.4, “Using different client serializer/deserializer types”

Section 7.4.1, “Configure Avro SerDe with Service Registry”

Section 7.4.2, “Configure JSON Schema SerDe with Service Registry”

Section 7.4.3, “Configure Protobuf SerDe with Service Registry”

Section 7.5, “Registering a schema in Service Registry”

Section 7.6, “Using a schema from a Kafka consumer client”

Section 7.7, “Using a schema from a Kafka producer client”

Section 7.8, “Using a schema from a Kafka Streams application”

Prerequisites

You have read Chapter 1, Introduction to Service Registry

You have installed Service Registry

You have created Kafka producer and consumer client applications
For more details on Kafka client applications, see Using AMQ Streams on Openshift .

7.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY

Service Registry decouples schema management from client application configuration. You can enable a
Java client application to use a schema from Service Registry by specifying its URL in your client code.

You can store the schemas in the registry to serialize and deserialize messages, which are referenced
from your client applications to ensure that the messages that they send and receive are compatible
with those schemas. Kafka client applications can push or pull their schemas from Service Registry at
runtime.

Schemas can evolve, so you can define rules in Service Registry, for example, to ensure that schema
changes are valid and do not break previous versions used by applications. Service Registry checks for
compatibility by comparing a modified schema with previous schema versions.

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA

33

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/using_amq_streams_on_openshift

Service Registry schema technologies
Service Registry provides schema registry support for schema technologies such as:

Avro

Protobuf

JSON Schema

These schema technologies can be used by client applications through the Kafka client
serializer/deserializer (SerDe) services provided by Service Registry. The maturity and usage of the
SerDe classes provided by Service Registry might vary. The sections that follow provide more details
about each schema type.

Producer schema configuration
A producer client application uses a serializer to put the messages that it sends to a specific broker topic
into the correct data format.

To enable a producer to use Service Registry for serialization:

Define and register your schema with Service Registry (if it does not already exist).

Configure your producer client code with the following:

URL of Service Registry

Service Registry serializer to use with messages

Strategy to map the Kafka message to a schema artifact in Service Registry

Strategy to look up or register the schema used for serialization in Service Registry

After registering your schema, when you start Kafka and Service Registry, you can access the schema to
format messages sent to the Kafka broker topic by the producer. Alternatively, depending on
configuration, the producer can automatically register the schema on first use.

If a schema already exists, you can create a new version using the registry REST API based on
compatibility rules defined in Service Registry. Versions are used for compatibility checking as a schema
evolves. A group ID, artifact ID, and version represents a unique tuple that identifies a schema.

Consumer schema configuration
A consumer client application uses a deserializer to get the messages that it consumes from a specific
broker topic into the correct data format.

To enable a consumer to use Service Registry for deserialization:

Define and register your schema with Service Registry (if it does not already exist)

Configure the consumer client code with the following:

URL of Service Registry

Service Registry deserializer to use with the messages

Input data stream for deserialization

Retrieve schemas using a global ID

Red Hat Integration 2021.Q2 Service Registry User Guide

34

By default, the schema is retrieved from Service Registry by the deserializer using a global ID, which is
specified in the message being consumed. The schema global ID can be located in the message headers
or in the message payload, depending on the configuration of the producer application.

When locating the global ID in the message payload, the format of the data begins with a magic byte,
used as a signal to consumers, followed by the global ID, and the message data as normal. For example:

Then when you start Kafka and Service Registry, you can access the schema to format messages
received from the Kafka broker topic.

Retrieve schemas using a content ID

Alternatively, you can configure to retrieve schemas from Service Registry based on the content ID,
which is the unique ID of the artifact content. While the global ID is the unique ID of an artifact version.

The content ID does not uniquely identify a version, but uniquely identifies the version content only. If
multiple versions share the exact same content, they have a different global ID but the same content ID.
The Confluent schema registry uses content ID by default.

7.2. STRATEGIES TO LOOK UP A SCHEMA IN SERVICE REGISTRY

The Kafka client serializer uses lookup strategies to determine the artifact ID and global ID under which
the message schema is registered in Service Registry. For a given topic and message, you can use
different implementations of the ArtifactResolverStrategy Java interface to return a reference to an
artifact in the registry.

The classes for each strategy are in the io.apicurio.registry.serde.strategy package. Specific strategy
classes for Avro SerDe are in the io.apicurio.registry.serde.avro.strategy package. The default
strategy is the TopicIdStrategy, which looks for Service Registry artifacts with the same name as the
Kafka topic receiving messages.

Example

The topic parameter is the name of the Kafka topic receiving the message.

The isKey parameter is true when the message key is serialized, and false when the message
value is serialized.

The schema parameter is the schema of the message serialized or deserialized.

The ArtifactReference returned contains the artifact ID under which the schema is registered.

Which lookup strategy you use depends on how and where you store your schema. For example, you

...
[MAGIC_BYTE]
[GLOBAL_ID]
[MESSAGE DATA]

public ArtifactReference artifactReference(String topic, boolean isKey, T schema) {
 return ArtifactReference.builder()
 .groupId(null)
 .artifactId(String.format("%s-%s", topic, isKey ? "key" : "value"))
 .build();

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA

35

Which lookup strategy you use depends on how and where you store your schema. For example, you
might use a strategy that uses a record ID if you have different Kafka topics with the same Avro
message type.

ArtifaceResolverStrategy interface
The artifact resolver strategy provides a way to map the Kafka topic and message information to an
artifact in Service Registry. The common convention for the mapping is to combine the Kafka topic
name with the key or value, depending on whether the serializer is used for the Kafka message key or
value.

However, you can use alternative conventions for the mapping by using a strategy provided by Service
Registry, or by creating a custom Java class that implements
io.apicurio.registry.serde.strategy.ArtifactResolverStrategy.

Strategies to return an artifact reference
Service Registry provides the following strategies to return an artifact reference based on an
implementation of ArtifaceResolverStrategy:

RecordIdStrategy

Avro-specific strategy that uses the full name of the schema.

TopicRecordIdStrategy

Avro-specific strategy that uses the topic name and the full name of the schema.

TopicIdStrategy

Default strategy that uses the topic name and key or value suffix.

SimpleTopicIdStrategy

Simple strategy that only uses the topic name.

DefaultSchemaResolver interface
The default schema resolver locates and identifies the specific version of the schema registered under
the artifact reference provided by the artifact resolver strategy. Every version of every artifact has a
single globally unique identifier that can be used to retrieve the content of that artifact. This global ID is
included in every Kafka message so that a deserializer can properly fetch the schema from Apicurio
Registry.

The default schema resolver can look up an existing artifact version, or it can register one if not found,
depending on which strategy is used. You can also provide your own strategy by creating a custom Java
class that implements io.apicurio.registry.serde.SchemaResolver. However, it is recommended to
use the DefaultSchemaResolver and specify configuration properties instead.

Strategies to return a global ID
When using the DefaultSchemaResolver, you can configure its behavior using application properties.
The following table shows some commonly used examples:

Table 7.1. Service Registry global ID configuration options

Property Type Description Default

apicurio.registry.find-latest boolean Specify whether the serializer tries to
find the latest artifact in the registry
for the corresponding group ID and
artifact ID.

false

Red Hat Integration 2021.Q2 Service Registry User Guide

36

1

2

3

apicurio.registry.use-id String Instructs the serializer to write the
specified ID to Kafka and instructs
the deserializer to use this ID to find
the schema.

-

apicurio.registry.auto-register boolean Specify whether the serializer tries to
create an artifact in the registry. The
JSON Schema serializer does not
support this.

false

apicurio.registry.check-period-
ms

String Specify how long to cache the global
ID in milliseconds. If not configured,
the global ID is fetched every time.

-

Property Type Description Default

TIP

You can configure application properties as Java system properties or include them in the Quarkus
application.properties file. For more details, see the Quarkus documentation.

Additional resources

For more details, see the SerdeConfig Java class

7.3. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONFIGURATION

You can configure specific client serializer/deserializer (SerDe) services and schema lookup strategies
directly in a client application using the example constants shown in this section. Alternatively, you can
configure the corresponding Service Registry application properties in a file or an instance.

The following sections show examples of SerDe constants and configuration options.

Configuration for SerDe services

The required URL of Service Registry.

Extends ID handling to support other ID formats and make them compatible with Service Registry
SerDe services. For example, changing the default ID format from Long to Integer supports the
Confluent ID format.

Simplifies the handling of Confluent IDs. If set to true, an Integer is used for the global ID lookup.
The setting should not be used with the ID_HANDLER option.

Additional resources

public class SerdeConfig {

 public static final String REGISTRY_URL = "apicurio.registry.url"; 1
 public static final String ID_HANDLER = "apicurio.registry.id-handler"; 2
 public static final String ENABLE_CONFLUENT_ID_HANDLER = "apicurio.registry.as-confluent";
3

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA

37

https://quarkus.io/guides/config#overriding-properties-at-runtime
https://github.com/Apicurio/apicurio-registry/blob/master/serdes/serde-common/src/main/java/io/apicurio/registry/serde/SerdeConfig.java

1

2

Additional resources

For more details, see the SerdeConfig Java class

Configuration for SerDe lookup strategies

Additional resources

For more details, see Section 7.2, “Strategies to look up a schema in Service Registry”

Configuration for Kafka converters

The required serializer to use with the Service Registry Kafka converter.

The required deserializer to use with the Service Registry Kafka converter.

Additional resources

For more details, see the SerdeBasedConverter Java class

Configuration for different schema types
For details on how to configure SerDe for different schema technologies, see the following:

Section 7.4.1, “Configure Avro SerDe with Service Registry”

Section 7.4.2, “Configure JSON Schema SerDe with Service Registry”

Section 7.4.3, “Configure Protobuf SerDe with Service Registry”

7.4. USING DIFFERENT CLIENT SERIALIZER/DESERIALIZER TYPES

When using schemas in your Kafka client applications, you must choose which specific schema type to
use, depending on your use case. Service Registry provides SerDe Java classes for Apache Avro, JSON
Schema, and Google Protobuf. The following sections explain how to configure Kafka applications to
use each type.

You can also use Kafka to implement custom serializer and deserializer classes, and leverage Service
Registry functionality using the Service Registry REST Java client.

Kafka application configuration for serializers/deserializers

public class SerdeConfig {

 public static final String ARTIFACT_RESOLVER_STRATEGY = "apicurio.registry.artifact-resolver-
strategy";
...

public class SerdeBasedConverter<S, T> extends SchemaResolverConfigurer<S, T> implements
Converter, Closeable {

 public static final String REGISTRY_CONVERTER_SERIALIZER_PARAM =
"apicurio.registry.converter.serializer"; 1
 public static final String REGISTRY_CONVERTER_DESERIALIZER_PARAM =
"apicurio.registry.converter.deserializer"; 2

Red Hat Integration 2021.Q2 Service Registry User Guide

38

https://github.com/Apicurio/apicurio-registry/blob/master/serdes/serde-common/src/main/java/io/apicurio/registry/serde/SerdeConfig.java
https://github.com/Apicurio/apicurio-registry/blob/master/utils/converter/src/main/java/io/apicurio/registry/utils/converter/SerdeBasedConverter.java

Using the SerDe classes provided by Service Registry in your Kafka application involves setting the
correct configuration properties. The following simple Avro examples show how to configure a serializer
in a Kafka producer application and how to configure a deserializer in a Kafka consumer application.

Example serializer configuration in a Kafka producer

Example deserializer configuration in a Kafka consumer

// Create the Kafka producer
private static Producer<Object, Object> createKafkaProducer() {
 Properties props = new Properties();

 // Configure standard Kafka settings
 props.putIfAbsent(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, SERVERS);
 props.putIfAbsent(ProducerConfig.CLIENT_ID_CONFIG, "Producer-" + TOPIC_NAME);
 props.putIfAbsent(ProducerConfig.ACKS_CONFIG, "all");

 // Use Service Registry-provided Kafka serializer for Avro
 props.putIfAbsent(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName());
 props.putIfAbsent(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
AvroKafkaSerializer.class.getName());

 // Configure the Service Registry location
 props.putIfAbsent(SerdeConfig.REGISTRY_URL, REGISTRY_URL);

 // Register the schema artifact if not found in the registry.
 props.putIfAbsent(SerdeConfig.AUTO_REGISTER_ARTIFACT, Boolean.TRUE);

 // Create the Kafka producer
 Producer<Object, Object> producer = new KafkaProducer<>(props);
 return producer;
}

// Create the Kafka consumer
private static KafkaConsumer<Long, GenericRecord> createKafkaConsumer() {
 Properties props = new Properties();

 // Configure standard Kafka settings
 props.putIfAbsent(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, SERVERS);
 props.putIfAbsent(ConsumerConfig.GROUP_ID_CONFIG, "Consumer-" + TOPIC_NAME);
 props.putIfAbsent(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
 props.putIfAbsent(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
 props.putIfAbsent(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");

 // Use Service Registry-provided Kafka deserializer for Avro
 props.putIfAbsent(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
StringDeserializer.class.getName());
 props.putIfAbsent(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
AvroKafkaDeserializer.class.getName());

 // Configure the Service Registry location
 props.putIfAbsent(SerdeConfig.REGISTRY_URL, REGISTRY_URL);

 // No other configuration needed because the schema globalId the deserializer uses is sent

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA

39

Additional resources

For an example application, see the Simple Avro example

7.4.1. Configure Avro SerDe with Service Registry

Service Registry provides the following Kafka client serializer and deserializer classes for Apache Avro:

io.apicurio.registry.serde.avro.AvroKafkaSerializer

io.apicurio.registry.serde.avro.AvroKafkaDeserializer

Configure the Avro serializer

You can configure the Avro serializer class with the following:

Service Registry URL

Artifact resolver strategy

ID location

ID encoding

Avro datum provider

Avro encoding

ID location

The serializer passes the unique ID of the schema as part of the Kafka message so that consumers can
use the correct schema for deserialization. The ID can be in the message payload or in the message
headers. The default location is the message payload. To send the ID in the message headers, set the
following configuration property:

props.putIfAbsent(SerdeConfig.ENABLE_HEADERS, "true")

The property name is apicurio.registry.headers.enabled.

ID encoding

You can customize how the schema ID is encoded when passing it in the Kafka message body. Set the
apicurio.registry.id-handler configuration property to a class that implements the
io.apicurio.registry.serde.IdHandler interface. Service Registry provides the following
implementations:

io.apicurio.registry.serde.DefaultIdHandler: Stores the ID as an 8-byte long

io.apicurio.registry.serde.Legacy4ByteIdHandler: Stores the ID as an 4-byte integer

 // in the payload. The deserializer extracts the globalId and uses it to look up the schema
 // from the registry.

 // Create the Kafka consumer
 KafkaConsumer<Long, GenericRecord> consumer = new KafkaConsumer<>(props);
 return consumer;
}

Red Hat Integration 2021.Q2 Service Registry User Guide

40

https://github.com/Apicurio/apicurio-registry-examples

Service Registry represents the schema ID as a long, but for legacy reasons, or for compatibility with
other registries or SerDe classes, you might want to use 4 bytes when sending the ID.

Avro datum provider

Avro provides different datum writers and readers to write and read data. Service Registry supports
three different types:

Generic

Specific

Reflect

The Service Registry AvroDatumProvider is the abstraction of which type is used, where
DefaultAvroDatumProvider is used by default.

You can set the following configuration options:

apicurio.registry.avro-datum-provider: Specifies a fully-qualified Java class name of the
AvroDatumProvider implementation, for example
io.apicurio.registry.serde.avro.ReflectAvroDatumProvider

apicurio.registry.use-specific-avro-reader: Set to true to use a specific type when using
DefaultAvroDatumProvider

Avro encoding

When using Avro to serialize data, you can use the Avro binary encoding format to ensure the data is
encoded in as efficient a format as possible. Avro also supports encoding the data as JSON, which
makes it easier to inspect the payload of each message, for example, for logging or debugging.

You can set the Avro encoding by configuring the apicurio.registry.avro.encoding property with a
value of JSON or BINARY. The default is BINARY.

Configure the Avro deserializer

You must configure the Avro deserializer class to match the following configuration settings of the
serializer:

Service Registry URL

ID encoding

Avro datum provider

Avro encoding

See the serializer section for these configuration options. The property names and values are the same.

NOTE

The following options are not required when configuring the deserializer:

Artifact resolver strategy

ID location

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA

41

The deserializer class can determine the values for these options from the message. The strategy is not
required because the serializer is responsible for sending the ID as part of the message.

The ID location is determined by checking for the magic byte at the start of the message payload. If that
byte is found, the ID is read from the message payload using the configured handler. If the magic byte is
not found, the ID is read from the message headers.

Additional resources

For more details on Avro configuration, see the AvroKafkaSerdeConfig Java class

For an example application, see the Simple Avro example

7.4.2. Configure JSON Schema SerDe with Service Registry

Service Registry provides the following Kafka client serializer and deserializer classes for JSON Schema:

io.apicurio.registry.serde.jsonschema.JsonSchemaKafkaSerializer

io.apicurio.registry.serde.jsonschema.JsonSchemaKafkaDeserializer

Unlike Apache Avro, JSON Schema is not a serialization technology, but is instead a validation
technology. As a result, configuration options for JSON Schema are quite different. For example, there
is no encoding option, because data is always encoded as JSON.

Configure the JSON Schema serializer

You can configure the JSON Schema serializer class as follows:

Service Registry URL

Artifact resolver strategy

Schema validation

The only non-standard configuration property is JSON Schema validation, which is enabled by default.
You can disable this by setting apicurio.registry.serde.validation-enabled to "false". For example:

props.putIfAbsent(SerdeConfig.VALIDATION_ENABLED, Boolean.FALSE)

Configure the JSON Schema deserializer

You can configure the JSON Schema deserializer class as follows:

Service Registry URL

Schema validation

Class for deserializing data

You must provide the location of Service Registry so that the schema can be loaded. The other
configuration is optional.

NOTE

Red Hat Integration 2021.Q2 Service Registry User Guide

42

https://github.com/Apicurio/apicurio-registry/blob/master/serdes/avro-serde/src/main/java/io/apicurio/registry/serde/avro/AvroKafkaSerdeConfig.java
https://github.com/Apicurio/apicurio-registry-examples

NOTE

Deserializer validation only works if the serializer passes the global ID in the Kafka
message, which will only happen when validation is enabled in the serializer.

Additional resources

For more details, see the JsonSchemaKafkaDeserializerConfig Java class

For an example application, see the Simple JSON Schema example

7.4.3. Configure Protobuf SerDe with Service Registry

Service Registry provides the following Kafka client serializer and deserializer classes for Google
Protobuf:

io.apicurio.registry.serde.protobuf.ProtobufKafkaSerializer

io.apicurio.registry.serde.protobuf.ProtobufKafkaDeserializer

Configure the Protobuf serializer

You can configure the Protobuf serializer class as follows:

Service Registry URL

Artifact resolver strategy

ID location

ID encoding

Schema validation

For details on these configuration options, see the following sections:

Section 7.3, “Service Registry serializer/deserializer configuration”

Section 7.4.1, “Configure Avro SerDe with Service Registry”

Configure the Protobuf deserializer

You must configure the Protobuf deserializer class to match the following configuration settings in the
serializer:

Service Registry URL

ID encoding

The configuration property names and values are the same as for the serializer.

NOTE

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA

43

https://github.com/Apicurio/apicurio-registry/blob/master/serdes/jsonschema-serde/src/main/java/io/apicurio/registry/serde/jsonschema/JsonSchemaKafkaDeserializerConfig.java
https://github.com/Apicurio/apicurio-registry-examples

NOTE

The following options are not required when configuring the deserializer:

Artifact resolver strategy

ID location

The deserializer class can determine the values for these options from the message. The strategy is not
required because the serializer is responsible for sending the ID as part of the message.

The ID location is determined by checking for the magic byte at the start of the message payload. If that
byte is found, the ID is read from the message payload using the configured handler. If the magic byte is
not found, the ID is read from the message headers.

NOTE

The Protobuf deserializer does not deserialize to your exact Protobuf Message
implementation, but rather to a DynamicMessage instance. There is no appropriate API
to do otherwise.

Additional resources

For example applications, see the Protobuf Bean and Protobuf Find Latest examples

7.5. REGISTERING A SCHEMA IN SERVICE REGISTRY

After you have defined a schema in the appropriate format, such as Apache Avro, you can add the
schema to Service Registry.

You can add the schema using the following approaches:

Service Registry web console

curl command using the Service Registry REST API

Maven plug-in supplied with Service Registry

Schema configuration added to your client code

Client applications cannot use Service Registry until you have registered your schemas.

Service Registry web console
When Service Registry is installed, you can connect to the web console from the ui endpoint:

http://MY-REGISTRY-URL/ui

From the console, you can add, view and configure schemas. You can also create the rules that prevent
invalid content being added to the registry.

Curl command example

 curl -X POST -H "Content-type: application/json; artifactType=AVRO" \
 -H "X-Registry-ArtifactId: share-price" \ 1
 --data '{

Red Hat Integration 2021.Q2 Service Registry User Guide

44

https://github.com/Apicurio/apicurio-registry-examples

1

2

1

2

3

4

Simple Avro schema artifact.

OpenShift route name that exposes Service Registry.

Maven plug-in example

Specify register as the execution goal to upload the schema artifact to the registry.

Specify the Service Registry URL with the ../apis/registry/v2 endpoint.

Specify the Service Registry artifact group ID.

You can upload multiple artifacts using the specified group ID, artifact ID, and location.

 "type":"record",
 "name":"price",
 "namespace":"com.example",
 "fields":[{"name":"symbol","type":"string"},
 {"name":"price","type":"string"}]}'
 https://my-cluster-my-registry-my-project.example.com/apis/registry/v2/groups/my-group/artifacts -s
2

<plugin>
 <groupId>io.apicurio</groupId>
 <artifactId>apicurio-registry-maven-plugin</artifactId>
 <version>${apicurio.version}</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>register</goal> 1
 </goals>
 <configuration>
 <registryUrl>http://REGISTRY-URL/apis/registry/v2</registryUrl> 2
 <artifacts>
 <artifact>
 <groupId>TestGroup</groupId> 3
 <artifactId>FullNameRecord</artifactId>
 <file>${project.basedir}/src/main/resources/schemas/record.avsc</file>
 <ifExists>FAIL</ifExists>
 </artifact>
 <artifact>
 <groupId>TestGroup</groupId>
 <artifactId>ExampleAPI</artifactId> 4
 <type>GRAPHQL</type>
 <file>${project.basedir}/src/main/resources/apis/example.graphql</file>
 <ifExists>RETURN_OR_UPDATE</ifExists>
 <canonicalize>true</canonicalize>
 </artifact>
 </artifacts>
 </configuration>
 </execution>
 </executions>
 </plugin>

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA

45

1

2

Configuration using a producer client example

You can register properties against more than one URL node.

Check to see if the schema already exists based on the artifact ID.

7.6. USING A SCHEMA FROM A KAFKA CONSUMER CLIENT

This procedure describes how to configure a Kafka consumer client written in Java to use a schema from
Service Registry.

Prerequisites

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Configure the client with the URL of Service Registry. For example:

2. Configure the client with the Service Registry deserializer. For example:

String registryUrl_node1 = PropertiesUtil.property(clientProperties, "registry.url.node1",
 "https://my-cluster-service-registry-myproject.example.com/apis/registry/v2"); 1
try (RegistryService service = RegistryClient.create(registryUrl_node1)) {
 String artifactId = ApplicationImpl.INPUT_TOPIC + "-value";
 try {
 service.getArtifactMetaData(artifactId); 2
 } catch (WebApplicationException e) {
 CompletionStage <ArtifactMetaData> csa = service.createArtifact(
 ArtifactType.AVRO,
 artifactId,
 new ByteArrayInputStream(LogInput.SCHEMA$.toString().getBytes())
);
 csa.toCompletableFuture().get();
 }
}

String registryUrl = "https://registry.example.com/apis/registry/v2";
Properties props = new Properties();
props.putIfAbsent(SerdeConfig.REGISTRY_URL, registryUrl);

// Configure Kafka settings
props.putIfAbsent(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, SERVERS);
props.putIfAbsent(ConsumerConfig.GROUP_ID_CONFIG, "Consumer-" + TOPIC_NAME);
props.putIfAbsent(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
props.putIfAbsent(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
props.putIfAbsent(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
// Configure deserializer settings
props.putIfAbsent(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,

Red Hat Integration 2021.Q2 Service Registry User Guide

46

1

2

1

2

3

The deserializer provided by Service Registry.

The deserialization is in Apache Avro JSON format.

7.7. USING A SCHEMA FROM A KAFKA PRODUCER CLIENT

This procedure describes how to configure a Kafka producer client written in Java to use a schema from
Service Registry.

Prerequisites

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Configure the client with the URL of Service Registry. For example:

2. Configure the client with the serializer, and the strategy to look up the schema in Service
Registry. For example:

The serializer for the message key provided by Service Registry.

The serializer for the message value provided by Service Registry.

The lookup strategy to find the global ID for the schema.

7.8. USING A SCHEMA FROM A KAFKA STREAMS APPLICATION

This procedure describes how to configure a Kafka Streams client written in Java to use an Apache Avro
schema from Service Registry.

Prerequisites

 AvroKafkaDeserializer.class.getName()); 1
props.putIfAbsent(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
 AvroKafkaDeserializer.class.getName()); 2

String registryUrl = "https://registry.example.com/apis/registry/v2";
Properties props = new Properties();
props.putIfAbsent(SerdeConfig.REGISTRY_URL, registryUrl);

props.put(CommonClientConfigs.BOOTSTRAP_SERVERS_CONFIG, "my-cluster-kafka-
bootstrap:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
AvroKafkaSerializer.class.getName()); 1
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
AvroKafkaSerializer.class.getName()); 2
props.put(SerdeConfig.FIND_LATEST_ARTIFACT, FindLatestIdStrategy.class.getName());
3

CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA

47

1

2

3

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Create and configure a Java client with the Service Registry URL:

2. Configure the serializer and deserializer:

The Avro serializer provided by Service Registry.

The Avro deserializer provided by Service Registry.

Configures the Service Registry URL and the Avro reader for deserialization in Avro
format.

3. Create the Kafka Streams client:

String registryUrl = "https://registry.example.com/apis/registry/v2";

RegistryService client = RegistryClient.cached(registryUrl);

Serializer<LogInput> serializer = new AvroKafkaSerializer<LogInput>(); 1

Deserializer<LogInput> deserializer = new AvroKafkaDeserializer <LogInput>(); 2

Serde<LogInput> logSerde = Serdes.serdeFrom(
 serializer,
 deserializer
);

Map<String, Object> config = new HashMap<>();
config.put(SerdeConfig.REGISTRY_URL, registryUrl);
config.put(AvroKafkaSerdeConfig.USE_SPECIFIC_AVRO_READER, true);
logSerde.configure(config, false); 3

KStream<String, LogInput> input = builder.stream(
 INPUT_TOPIC,
 Consumed.with(Serdes.String(), logSerde)
);

Red Hat Integration 2021.Q2 Service Registry User Guide

48

CHAPTER 8. SERVICE REGISTRY ARTIFACT REFERENCE
This chapter provides details on the supported artifact types, states, metadata, and content rules that
are stored in Service Registry.

Section 8.1, “Service Registry artifact types”

Section 8.2, “Service Registry artifact states”

Section 8.3, “Service Registry artifact metadata”

Section 8.4, “Service Registry content rule types”

Section 8.5, “Service Registry content rule maturity”

Additional resources

For more detailed information, see the Apicurio Registry REST API documentation

8.1. SERVICE REGISTRY ARTIFACT TYPES

You can store and manage the following artifact types in Service Registry:

Table 8.1. Service Registry artifact types

Type Description

ASYNCAPI AsyncAPI specification

AVRO Apache Avro schema

GRAPHQL GraphQL schema

JSON JSON Schema

KCONNECT Apache Kafka Connect schema

OPENAPI OpenAPI specification

PROTOBUF Google protocol buffers schema

WSDL Web Services Definition Language

XSD XML Schema Definition

8.2. SERVICE REGISTRY ARTIFACT STATES

These are the valid artifact states in Service Registry:

Table 8.2. Service Registry artifact states

CHAPTER 8. SERVICE REGISTRY ARTIFACT REFERENCE

49

files/registry-rest-api.htm

State Description

ENABLED Basic state, all the operations are available.

DISABLED The artifact and its metadata is viewable and
searchable using the Service Registry web console,
but its content cannot be fetched by any client.

DEPRECATED The artifact is fully usable but a header is added to
the REST API response whenever the artifact
content is fetched. The Service Registry Rest Client
will also log a warning whenever it sees deprecated
content.

8.3. SERVICE REGISTRY ARTIFACT METADATA

When an artifact is added to Service Registry, a set of metadata properties is stored along with the
artifact content. This metadata consists of a set of generated read-only properties, along with some
properties that you can set.

Table 8.3. Service Registry metadata properties

Property Type Editable

id string false

type ArtifactType false

state ArtifactState true

version integer false

createdBy string false

createdOn date false

modifiedBy string false

modifiedOn date false

name string true

description string true

labels array of string true

properties map true

Red Hat Integration 2021.Q2 Service Registry User Guide

50

Updating artifact metadata

You can use the Service Registry REST API to update the set of editable properties using the
metadata endpoints.

You can edit the state property only by using the state transition API. For example, you can
mark an artifact as deprecated or disabled.

Additional resources

For more details, see the /artifacts/{artifactId}/meta sections in the Apicurio Registry REST API
documentation.

8.4. SERVICE REGISTRY CONTENT RULE TYPES

You can specify the following rule types to govern content evolution in Service Registry:

Table 8.4. Service Registry content rule types

Type Description

VALIDITY Validate data before adding it to the registry. The
possible configuration values for this rule are:

FULL: The validation is both syntax and
semantic.

SYNTAX_ONLY: The validation is syntax
only.

CHAPTER 8. SERVICE REGISTRY ARTIFACT REFERENCE

51

files/registry-rest-api.htm

COMPATIBILITY Ensure that newly added artifacts are compatible
with previously added versions. The possible
configuration values for this rule are:

FULL: The new artifact is forward and
backward compatible with the most recently
added artifact.

FULL_TRANSITIVE: The new artifact is
forward and backward compatible with all
previously added artifacts.

BACKWARD: Clients using the new
artifact can read data written using the most
recently added artifact.

BACKWARD_TRANSITIVE: Clients
using the new artifact can read data written
using all previously added artifacts.

FORWARD: Clients using the most
recently added artifact can read data
written using the new artifact.

FORWARD_TRANSITIVE: Clients using
all previously added artifacts can read data
written using the new artifact.

NONE: All backward and forward
compatibility checks are disabled.

Type Description

8.5. SERVICE REGISTRY CONTENT RULE MATURITY

Not all content rules are fully implemented for every artifact type supported by Service Registry. The
following table shows the current maturity level for each rule and artifact type.

Table 8.5. Service Registry content rule maturity matrix

Artifact type Validity rule Compatibility rule

Avro Full Full

Protobuf Full None

JSON Schema Full Full

OpenAPI Full None

AsyncAPI Syntax Only None

GraphQL Syntax Only None

Red Hat Integration 2021.Q2 Service Registry User Guide

52

Kafka Connect Syntax Only None

WSDL Syntax Only None

XSD Syntax Only None

Artifact type Validity rule Compatibility rule

CHAPTER 8. SERVICE REGISTRY ARTIFACT REFERENCE

53

APPENDIX A. USING YOUR SUBSCRIPTION
Service Registry is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat Integration entries in the Integration and Automation category.

3. Select the desired Service Registry product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
ZIP or TAR files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

Red Hat Integration 2021.Q2 Service Registry User Guide

54

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
	1.1. SERVICE REGISTRY OVERVIEW
	Service Registry capabilities

	1.2. SCHEMA AND API ARTIFACTS AND GROUPS IN SERVICE REGISTRY
	Schema and API groups

	1.3. MANAGE CONTENT USING SERVICE REGISTRY WEB CONSOLE
	1.4. REGISTRY CORE REST API OVERVIEW
	Compatibility with other schema registry REST APIs

	1.5. SERVICE REGISTRY STORAGE OPTIONS
	1.6. VALIDATE SCHEMAS WITH KAFKA CLIENT SERIALIZERS/DESERIALIZERS
	1.7. STREAM DATA TO EXTERNAL SYSTEMS WITH KAFKA CONNECT CONVERTERS
	1.8. SERVICE REGISTRY DEMONSTRATION EXAMPLES
	1.9. SERVICE REGISTRY AVAILABLE DISTRIBUTIONS

	CHAPTER 2. SERVICE REGISTRY CONTENT RULES
	2.1. GOVERN REGISTRY CONTENT USING RULES
	2.2. WHEN RULES ARE APPLIED
	2.3. HOW RULES WORK
	2.4. CONTENT RULE CONFIGURATION
	Configure artifact rules
	Configure global rules

	CHAPTER 3. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE
	3.1. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
	3.2. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
	3.3. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY WEB CONSOLE

	CHAPTER 4. MANAGING SERVICE REGISTRY CONTENT USING THE REST API
	4.1. MANAGING SCHEMA AND API ARTIFACTS USING REGISTRY REST API COMMANDS
	4.2. MANAGING SCHEMA AND API ARTIFACT VERSIONS USING REGISTRY REST API COMMANDS
	4.3. EXPORTING AND IMPORTING REGISTRY CONTENT USING REGISTRY REST API COMMANDS

	CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE MAVEN PLUG-IN
	5.1. ADDING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
	5.2. DOWNLOADING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN
	5.3. TESTING SCHEMA AND API ARTIFACTS USING THE MAVEN PLUG-IN

	CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING A JAVA CLIENT
	6.1. SERVICE REGISTRY JAVA CLIENT
	6.2. WRITING SERVICE REGISTRY CLIENT APPLICATIONS
	6.3. SERVICE REGISTRY JAVA CLIENT CONFIGURATION
	Custom header configuration
	TLS configuration options

	CHAPTER 7. VALIDATING SCHEMAS USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS IN JAVA
	7.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY
	Service Registry schema technologies
	Producer schema configuration
	Consumer schema configuration

	7.2. STRATEGIES TO LOOK UP A SCHEMA IN SERVICE REGISTRY
	ArtifaceResolverStrategy interface
	Strategies to return an artifact reference
	DefaultSchemaResolver interface
	Strategies to return a global ID

	7.3. SERVICE REGISTRY SERIALIZER/DESERIALIZER CONFIGURATION
	Configuration for SerDe services
	Configuration for SerDe lookup strategies
	Configuration for Kafka converters
	Configuration for different schema types

	7.4. USING DIFFERENT CLIENT SERIALIZER/DESERIALIZER TYPES
	Kafka application configuration for serializers/deserializers
	7.4.1. Configure Avro SerDe with Service Registry
	7.4.2. Configure JSON Schema SerDe with Service Registry
	7.4.3. Configure Protobuf SerDe with Service Registry

	7.5. REGISTERING A SCHEMA IN SERVICE REGISTRY
	Service Registry web console
	Curl command example
	Maven plug-in example
	Configuration using a producer client example

	7.6. USING A SCHEMA FROM A KAFKA CONSUMER CLIENT
	7.7. USING A SCHEMA FROM A KAFKA PRODUCER CLIENT
	7.8. USING A SCHEMA FROM A KAFKA STREAMS APPLICATION

	CHAPTER 8. SERVICE REGISTRY ARTIFACT REFERENCE
	8.1. SERVICE REGISTRY ARTIFACT TYPES
	8.2. SERVICE REGISTRY ARTIFACT STATES
	8.3. SERVICE REGISTRY ARTIFACT METADATA
	8.4. SERVICE REGISTRY CONTENT RULE TYPES
	8.5. SERVICE REGISTRY CONTENT RULE MATURITY

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files
	Registering your system for packages

