
Red Hat Integration 2020-Q3

Debezium User Guide

For use with Debezium 1.2

Last Updated: 2020-10-20

Red Hat Integration 2020-Q3 Debezium User Guide

For use with Debezium 1.2

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use the connectors provided with Debezium.

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. HIGH LEVEL OVERVIEW OF DEBEZIUM
1.1. DEBEZIUM FEATURES
1.2. DESCRIPTION OF DEBEZIUM ARCHITECTURE

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL
2.1. OVERVIEW OF HOW THE MYSQL CONNECTOR WORKS

2.1.1. How the MySQL connector uses database schemas
2.1.2. How the MySQL connector performs database snapshots

2.1.2.1. What happens if the connector fails?
2.1.2.2. What if Global Read Locks are not allowed?

2.1.3. How the MySQL connector exposes schema changes
2.1.3.1. Schema change topic structure
2.1.3.2. Important tips about the schema change topic

2.1.4. MySQL connector events
2.1.4.1. Change event keys
2.1.4.2. Change event values

2.1.4.2.1. create events
2.1.4.2.2. update events
2.1.4.2.3. Primary key updates
2.1.4.2.4. delete events

2.1.5. How the MySQL connector maps data types
2.1.5.1. Temporal values
2.1.5.2. Decimal values
2.1.5.3. Boolean values
2.1.5.4. Spatial data types

2.1.6. The MySQL connector and Kafka topics
2.1.7. MySQL supported topologies

2.2. SETTING UP MYSQL SERVER
2.2.1. Creating a MySQL user for Debezium
2.2.2. Enabling the MySQL binlog for Debezium
2.2.3. Enabling MySQL Global Transaction Identifiers for Debezium
2.2.4. Setting up session timeouts for Debezium
2.2.5. Enabling query log events for Debezium

2.3. DEPLOYING THE MYSQL CONNECTOR
2.3.1. Installing the MySQL connector
2.3.2. Configuring the MySQL connector
2.3.3. Adding MySQL connector configuration to Kafka Connect
2.3.4. MySQL connector configuration properties

2.3.4.1. Advanced MySQL connector properties
2.3.4.2. Pass-through configuration properties
2.3.4.3. Pass-through properties for database drivers

2.3.5. MySQL connector monitoring metrics
2.3.5.1. Snapshot metrics
2.3.5.2. Binlog metrics
2.3.5.3. Schema history metrics

2.4. MYSQL CONNECTOR COMMON ISSUES
2.4.1. Configuration and startup errors
2.4.2. MySQL is unavailable

2.4.2.1. Using GTIDs

7

8
8
9

10
10
10
10
11

12
13
13
15
16
18
19

20
25
27
28
30
32
34
35
35
35
36
36
37
38
39
40
41

42
42
42
43
45
52
58
59
59
59
61

63
64
64
64
64

Table of Contents

1

. .

. .

2.4.2.2. Not Using GTIDs
2.4.3. Kafka Connect stops

2.4.3.1. Kafka Connect stops gracefully
2.4.3.2. Kafka Connect process crashes
2.4.3.3. Kafka becomes unavailable

2.4.4. MySQL purges binlog files

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL
3.1. OVERVIEW OF DEBEZIUM POSTGRESQL CONNECTOR
3.2. HOW DEBEZIUM POSTGRESQL CONNECTORS WORK

3.2.1. How Debezium PostgreSQL connectors perform database snapshots
3.2.2. How Debezium PostgreSQL connectors stream change event records
3.2.3. Default names of Kafka topics that receive Debezium PostgreSQL change event records
3.2.4. Metadata in Debezium PostgreSQL change event records
3.2.5. Debezium PostgreSQL connector-generated events that represent transaction boundaries

3.3. DESCRIPTIONS OF DEBEZIUM POSTGRESQL CONNECTOR DATA CHANGE EVENTS
3.3.1. About keys in Debezium PostgreSQL change events
3.3.2. About values in Debezium PostgreSQL change events

3.4. HOW DEBEZIUM POSTGRESQL CONNECTORS MAP DATA TYPES
3.5. SETTING UP POSTGRESQL TO RUN A DEBEZIUM CONNECTOR

3.5.1. Configuring a replication slot for the Debezium pgoutput plug-in
3.5.2. Setting up PostgreSQL permissions required by Debezium connectors
3.5.3. Configuring PostgreSQL to manage Debezium WAL disk space consumption

3.6. DEPLOYING AND MANAGING DEBEZIUM POSTGRESQL CONNECTORS
3.6.1. Deploying Debezium PostgreSQL connectors
3.6.2. Monitoring Debezium PostgreSQL connector performance

3.6.2.1. Monitoring Debezium during snapshots of PostgreSQL databases
3.6.2.2. Monitoring Debezium PostgreSQL connector record streaming

3.6.3. Description of Debezium PostgreSQL connector configuration properties
3.7. HOW DEBEZIUM POSTGRESQL CONNECTORS HANDLE FAULTS AND PROBLEMS

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB
4.1. OVERVIEW
4.2. SETTING UP MONGODB
4.3. SUPPORTED MONGODB TOPOLOGIES

4.3.1. MongoDB replica set
4.3.2. MongoDB sharded cluster
4.3.3. MongoDB standalone server

4.4. HOW THE MONGODB CONNECTOR WORKS
4.4.1. Logical connector name
4.4.2. Performing a snapshot
4.4.3. Streaming changes
4.4.4. Topics names
4.4.5. Partitions
4.4.6. Data change events

4.4.6.1. Change event keys
4.4.6.2. Change event values
4.4.6.3. create events
4.4.6.4. update events
4.4.6.5. delete events

4.4.7. Transaction Metadata
4.4.7.1. Transaction boundaries
4.4.7.2. Data events enrichment

64
64
64
65
65
65

66
66
67
68
69
70
71
72
73
75
76
87
97
97
98
99
99

100
103
103
105
106
124

127
127
128
128
128
128
129
129
129
129
130
131
131
131

133
135
135
139
141

143
143
144

Red Hat Integration 2020-Q3 Debezium User Guide

2

. .

. .

4.5. DEPLOYING THE MONGODB CONNECTOR
4.5.1. Example configuration
4.5.2. Adding connector configuration
4.5.3. Monitoring

4.5.3.1. Snapshot Metrics
4.5.3.2. Streaming Metrics

4.5.4. Connector properties
4.6. MONGODB CONNECTOR COMMON ISSUES

4.6.1. Configuration and startup errors
4.6.2. MongoDB becomes unavailable
4.6.3. Kafka Connect process stops gracefully
4.6.4. Kafka Connect process crashes
4.6.5. Kafka becomes unavailable
4.6.6. Connector is stopped for a duration
4.6.7. MongoDB loses writes

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER
5.1. OVERVIEW
5.2. SETTING UP SQL SERVER

5.2.1. SQL Server on Azure
5.3. HOW THE SQL SERVER CONNECTOR WORKS

5.3.1. Snapshots
5.3.2. Reading the change data tables
5.3.3. Topic names
5.3.4. Schema change topic
5.3.5. Change data events

5.3.5.1. Change Event Keys
5.3.5.2. Change event values

5.3.5.2.1. create events
5.3.5.2.2. update events
5.3.5.2.3. delete events

5.3.6. Transaction Metadata
5.3.6.1. Transaction boundaries
5.3.6.2. Data events enrichment

5.3.7. Database schema evolution
5.3.7.1. Cold schema update
5.3.7.2. Hot schema update
5.3.7.3. Example

5.3.8. Data types
5.3.8.1. Temporal values

5.3.8.1.1. Timestamp values
5.3.8.2. Decimal values

5.4. DEPLOYMENT
5.4.1. Example configuration
5.4.2. Adding connector configuration
5.4.3. Monitoring

5.4.3.1. Snapshot Metrics
5.4.3.2. Streaming Metrics
5.4.3.3. Schema History Metrics

5.4.4. Connector properties

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2
6.1. OVERVIEW OF DEBEZIUM DB2 CONNECTOR

145
145
146
148
148
150
151
157
157
158
159
159
159
160
160

161
161
161

162
162
162
163
163
163
167
168
170
170
175
178
179
179
180
181

182
182
182
184
185
187
187
188
189
190
192
192
194
195
196

207
208

Table of Contents

3

. .

. .

. .

6.2. HOW DEBEZIUM DB2 CONNECTORS WORK
6.2.1. How Debezium Db2 connectors perform database snapshots
6.2.2. How Debezium Db2 connectors read change-data tables
6.2.3. Default names of Kafka topics that receive Debezium Db2 change event records
6.2.4. About the Debezium Db2 connector schema change topic
6.2.5. Debezium Db2 connector-generated events that represent transaction boundaries

6.3. DESCRIPTIONS OF DEBEZIUM DB2 CONNECTOR DATA CHANGE EVENTS
6.3.1. About keys in Debezium db2 change events
6.3.2. About values in Debezium Db2 change events

6.4. HOW DEBEZIUM DB2 CONNECTORS MAP DATA TYPES
6.5. SETTING UP DB2 TO RUN A DEBEZIUM CONNECTOR
6.6. DEPLOYING DEBEZIUM DB2 CONNECTORS

6.6.1. Steps for installing Debezium Db2 connectors
6.6.2. Debezium db2 connector configuration example
6.6.3. Adding Debezium Db2 connector configuration to Kafka Connect
6.6.4. Description of Debezium Db2 connector configuration properties

6.7. MONITORING DEBEZIUM DB2 CONNECTOR PERFORMANCE
6.8. MANAGING DEBEZIUM DB2 CONNECTORS
6.9. UPDATING SCHEMAS FOR DB2 TABLES IN CAPTURE MODE FOR DEBEZIUM CONNECTORS

6.9.1. Performing offline schema updates for Debezium Db2 connectors
6.9.2. Performing online schema updates for Debezium Db2 connectors

CHAPTER 7. MONITORING DEBEZIUM
7.1. MONITORING DEBEZIUM ON RHEL

7.1.1. Zookeeper JMX environment variables
7.1.2. Kafka JMX environment variables
7.1.3. Kafka Connect JMX environment variables

7.2. MONITORING DEBEZIUM ON OPENSHIFT

CHAPTER 8. DEBEZIUM LOGGING
8.1. LOGGING CONCEPTS

Loggers
Log levels
Appenders

8.2. UNDERSTANDING THE DEFAULT LOGGING CONFIGURATION
8.3. CONFIGURING LOGGING

8.3.1. Changing the logging level
8.3.2. Adding mapped diagnostic contexts

8.4. DEBEZIUM LOGGING ON OPENSHIFT

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION
9.1. ROUTING CHANGE EVENT RECORDS TO TOPICS THAT YOU SPECIFY

9.1.1. Use case for routing records to topics that you specify
9.1.2. Example of routing records for multiple tables to one topic
9.1.3. Ensuring unique keys across records routed to the same topic
9.1.4. Options for configuring topic routing transformation

9.2. ROUTING CHANGE EVENT RECORDS TO TOPICS ACCORDING TO EVENT CONTENT
9.2.1. Setting up the Debezium content-based-routing SMT
9.2.2. Example: Debezium basic content-based routing configuration
9.2.3. Variables for use in Debezium content-based routing expressions
9.2.4. Configuration of content-based routing conditions for other scripting languages
9.2.5. Options for configuring the content-based routing transformation

9.3. FILTERING DEBEZIUM CHANGE EVENT RECORDS
9.3.1. Setting up the Debezium filter SMT

208
209
209
210
210
214
215
217
218
227
232
234
234
235
236
237
249
253
254
254
255

257
257
257
257
258
258

259
259
259
259
259
259
260
260
262
263

264
264
265
265
266
267
268
268
269
269
270
271

272
273

Red Hat Integration 2020-Q3 Debezium User Guide

4

9.3.2. Example: Debezium basic filter SMT configuration
9.3.3. Variables for use in filter expressions
9.3.4. Filter condition configuration for other scripting languages
9.3.5. Options for configuring filter transformation

9.4. EXTRACTING SOURCE RECORD AFTER STATE FROM DEBEZIUM CHANGE EVENTS
9.4.1. Description of Debezium change event structure
9.4.2. Behavior of Debezium ExtractNewRecordState transformation
9.4.3. Configuration of ExtractNewRecordState transformation
9.4.4. Example of adding metadata to the Kafka record
9.4.5. Options for configuring ExtractNewRecordState transformation

9.5. CONFIGURING DEBEZIUM CONNECTORS TO USE AVRO SERIALIZATION
9.5.1. About the Service Registry
9.5.2. Overview of deploying a Debezium connector that uses Avro serialization
9.5.3. Deploying connectors that use Avro in Debezium containers
9.5.4. About Avro name requirements

9.6. CONFIGURING DEBEZIUM CONNECTORS TO USE THE OUTBOX PATTERN
9.6.1. Example of a Debezium outbox message
9.6.2. Outbox table structure expected by Debezium outbox event router SMT
9.6.3. Basic Debezium outbox event router SMT configuration
9.6.4. Using Avro as the payload format in Debezium outbox messages
9.6.5. Emitting additional fields in Debezium outbox messages
9.6.6. Options for configuring outbox event router transformation

9.7. EMITTING CHANGE EVENT RECORDS IN CLOUDEVENTS FORMAT
9.7.1. Example change event records in CloudEvents format
9.7.2. Example of configuring CloudEventsConverter
9.7.3. CloudEventsConverter configuration properties

273
274
274
275
276
277
277
278
279
280
282
283
283
284
288
288
289
290
291
291
291
292
295
296
298
298

Table of Contents

5

Red Hat Integration 2020-Q3 Debezium User Guide

6

PREFACE
Debezium is a set of distributed services that capture row-level changes in your databases so that your
applications can see and respond to those changes. Debezium records all row-level changes committed
to each database table. Each application reads the transaction logs of interest to view all operations in
the order in which they occurred.

This guide provides details about using Debezium connectors:

Chapter 1, High level overview of Debezium

Chapter 2, Debezium connector for MySQL

Chapter 3, Debezium connector for PostgreSQL

Chapter 4, Debezium connector for MongoDB

Chapter 5, Debezium connector for SQL Server

Chapter 6, Debezium connector for Db2

Chapter 8, Debezium logging

Chapter 7, Monitoring Debezium

Chapter 9, Configuring Debezium connectors for your application

PREFACE

7

CHAPTER 1. HIGH LEVEL OVERVIEW OF DEBEZIUM
Debezium is a set of distributed services that capture changes in your databases. Your applications can
consume and respond to those changes. Debezium captures each row-level change in each database
table in a change event record and streams these records to Kafka topics. Applications read these
streams, which provide the change event records in the same order in which they were generated.

More details are in the following sections:

Section 1.1, “Debezium features”

Section 1.2, “Description of Debezium architecture”

1.1. DEBEZIUM FEATURES

Debezium is a set of source connectors for Apache Kafka Connect, ingesting changes from different
databases using change data capture (CDC). Unlike other approaches such as polling or dual writes, log-
based CDC as implemented by Debezium:

Makes sure that all data changes are captured

Produces change events with a very low delay (for example, ms range for MySQL or Postgres)
while avoiding increased CPU usage of frequent polling

Requires no changes to your data model (such as "Last Updated" column)

Can capture deletes

Can capture old record state and further metadata such as transaction id and causing query
(depending on the database’s capabilities and configuration)

To learn more about the advantages of log-based CDC, refer to this blog post .

The actual change data capture feature of Debezium is amended with a range of related capabilities
and options:

Snapshots: optionally, an initial snapshot of a database’s current state can be taken if a
connector gets started up and not all logs still exist (typically the case when the database has
been running for some time and has discarded any transaction logs not needed any longer for
transaction recovery or replication); different modes exist for snapshotting, refer to the docs of
the specific connector you’re using to learn more

Filters: the set of captured schemas, tables and columns can be configured via
whitelist/blacklist filters

Masking: the values from specific columns can be masked, for example, for sensitive data

Monitoring: most connectors can be monitored using JMX

Different ready-to-use message transformations: for example, for message routing, extraction
of new record state (relational connectors, MongoDB) and routing of events from a
transactional outbox table

Refer to the connector documentation for a list of all supported databases and detailed information
about the features and configuration options of each connector.

Red Hat Integration 2020-Q3 Debezium User Guide

8

/blog/2018/07/19/advantages-of-log-based-change-data-capture/
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
{link-connectors}

1.2. DESCRIPTION OF DEBEZIUM ARCHITECTURE

You deploy Debezium by means of Apache Kafka Connect. Kafka Connect is a framework and runtime
for implementing and operating:

Source connectors such as Debezium that send records into Kafka

Sink connectors that propagate records from Kafka topics to other systems

The following image shows the architecture of a change data capture pipeline based on Debezium:

As shown in the image, the Debezium connectors for MySQL and PostgresSQL are deployed to capture
changes to these two types of databases. Each Debezium connector establishes a connection to its
source database:

The MySQL connector uses a client library for accessing the binlog.

The PostgreSQL connector reads from a logical replication stream.

Kafka Connect operates as a separate service besides the Kafka broker.

By default, changes from one database table are written to a Kafka topic whose name corresponds to
the table name. If needed, you can adjust the destination topic name by configuring Debezium’s topic
routing transformation. For example, you can:

Route records to a topic whose name is different from the table’s name

Stream change event records for multiple tables into a single topic

After change event records are in Apache Kafka, different connectors in the Kafka Connect eco-system
can stream the records to other systems and databases such as Elasticsearch, data warehouses and
analytics systems, or caches such as Infinispan. Depending on the chosen sink connector, you might
need to configure Debezium’s new record state extraction transformation. This Kafka Connect SMT
propagates the after structure from Debezium’s change event to the sink connector. This is in place of
the verbose change event record that is propagated by default.

CHAPTER 1. HIGH LEVEL OVERVIEW OF DEBEZIUM

9

https://kafka.apache.org/documentation/#connect
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL
MySQL has a binary log (binlog) that records all operations in the order in which they are committed to
the database. This includes changes to table schemas and the data within tables. MySQL uses the binlog
for replication and recovery.

The MySQL connector reads the binlog and produces change events for row-level INSERT, UPDATE,
and DELETE operations and records the change events in a Kafka topic. Client applications read those
Kafka topics.

As MySQL is typically set up to purge binlogs after a specified period of time, the MySQL connector
performs and initial consistent snapshot of each of your databases. The MySQL connector reads the
binlog from the point at which the snapshot was made.

2.1. OVERVIEW OF HOW THE MYSQL CONNECTOR WORKS

The Debezium MySQL connector tracks the structure of the tables, performs snapshots, transforms
binlog events into Debezium change events and records where those events are recorded in Kafka.

2.1.1. How the MySQL connector uses database schemas

When a database client queries a database, the client uses the database’s current schema. However, the
database schema can be changed at any time, which means that the connector must be able to identify
what the schema was at the time each insert, update, or delete operation was recorded. Also, a
connector cannot just use the current schema because the connector might be processing events that
are relatively old and may have been recorded before the tables' schemas were changed.

To handle this, MySQL includes in the binlog the row-level changes to the data and the DDL statements
that are applied to the database. As the connector reads the binlog and comes across these DDL
statements, it parses them and updates an in-memory representation of each table’s schema. The
connector uses this schema representation to identify the structure of the tables at the time of each
insert, update, or delete and to produce the appropriate change event. In a separate database history
Kafka topic, the connector also records all DDL statements along with the position in the binlog where
each DDL statement appeared.

When the connector restarts after having crashed or been stopped gracefully, the connector starts
reading the binlog from a specific position, that is, from a specific point in time. The connector rebuilds
the table structures that existed at this point in time by reading the database history Kafka topic and
parsing all DDL statements up to the point in the binlog where the connector is starting.

This database history topic is for connector use only. The connector can optionally generate schema
change events on a different topic that is intended for consumer applications. This is described in how
the MySQL connector exposes schema changes.

When the MySQL connector captures changes in a table to which a schema change tool such as gh-ost
or pt-online-schema-change is applied then helper tables created during the migration process need
to be included among whitelisted tables.

If downstream systems do not need the messages generated by the temporary table then a simple
message transform can be written and applied to filter them out.

For information about topic naming conventions, see MySQL connector and Kafka topics .

2.1.2. How the MySQL connector performs database snapshots

When your Debezium MySQL connector is first started, it performs an initial consistent snapshot of your

Red Hat Integration 2020-Q3 Debezium User Guide

10

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#how-the-mysql-connector-exposes-schema-changes
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#the-mysql-connector-and-kafka-topics_debezium

When your Debezium MySQL connector is first started, it performs an initial consistent snapshot of your
database. The following flow describes how this snapshot is completed.

NOTE

This is the default snapshot mode which is set as initial in the snapshot.mode property.
For other snapshots modes, please check out the MySQL connector configuration
properties.

The connector…​

Step Action

1 Grabs a global read lock that blocks writes by other database clients.

NOTE

The snapshot itself does not prevent other clients from applying DDL which might
interfere with the connector’s attempt to read the binlog position and table
schemas. The global read lock is kept while the binlog position is read before
released in a later step.

2 Starts a transaction with repeatable read semantics to ensure that all subsequent reads within the
transaction are done against the consistent snapshot.

3 Reads the current binlog position.

4 Reads the schema of the databases and tables allowed by the connector’s configuration.

5 Releases the global read lock. This now allows other database clients to write to the database.

6 Writes the DDL changes to the schema change topic, including all necessary DROP… ​ and
CREATE… ​ DDL statements.

NOTE

This happens if applicable.

7 Scans the database tables and generates CREATE events on the relevant table-specific Kafka
topics for each row.

8 Commits the transaction.

9 Records the completed snapshot in the connector offsets.

2.1.2.1. What happens if the connector fails?

If the connector fails, stops, or is rebalanced while making the initial snapshot, the connector creates a

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

11

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-connector-configuration-properties_debezium
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html

If the connector fails, stops, or is rebalanced while making the initial snapshot, the connector creates a
new snapshot once restarted. Once that intial snapshot is completed, the Debezium MySQL connector
restarts from the same position in the binlog so it does not miss any updates.

NOTE

If the connector stops for long enough, MySQL could purge old binlog files and the
connector’s position would be lost. If the position is lost, the connector reverts to the
initial snapshot for its starting position. For more tips on troubleshooting the Debezium
MySQL connector, see MySQL connector common issues .

2.1.2.2. What if Global Read Locks are not allowed?

Some environments do not allow a global read lock. If the Debezium MySQL connector detects that
global read locks are not permitted, the connector uses table-level locks instead and performs a
snapshot with this method.

IMPORTANT

The user must have LOCK_TABLES privileges.

The connector…​

Step Action

1 Starts a transaction with repeatable read semantics to ensure that all subsequent reads within the
transaction are done against the consistent snapshot.

2 Reads and filters the names of the databases and tables.

3 Reads the current binlog position.

4 Reads the schema of the databases and tables allowed by the connector’s configuration.

5 Writes the DDL changes to the schema change topic, including all necessary DROP… ​ and
CREATE… ​ DDL statements.

NOTE

This happens if applicable.

6 Scans the database tables and generates CREATE events on the relevant table-specific Kafka
topics for each row.

7 Commits the transaction.

8 Releases the table-level locks.

9 Records the completed snapshot in the connector offsets.

Red Hat Integration 2020-Q3 Debezium User Guide

12

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#connector-common-issues
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html

2.1.3. How the MySQL connector exposes schema changes

You can configure the Debezium MySQL connector to produce schema change events that include all
DDL statements applied to databases in the MySQL server. The connector writes all of these events to
a Kafka topic named <serverName> where serverName is the name of the connector as specified in
the database.server.name configuration property.

IMPORTANT

If you choose to use schema change events, use the schema change topic and do not
consume the database history topic.

NOTE

It is vital that there is a global order of the events in the database schema history.
Therefore, the database history topic must not be partitioned. This means that a partition
count of 1 must be specified when creating this topic. When relying on auto topic creation,
make sure that Kafka’s num.partitions configuration option (the default number of
partitions) is set to 1.

2.1.3.1. Schema change topic structure

Each message that is written to the schema change topic contains a message key which includes the
name of the connected database used when applying DDL statements:

The schema change event message value contains a structure that includes the DDL statements, the
database to which the statements were applied, and the position in the binlog where the statements
appeared:

{
 "schema": {
 "type": "struct",
 "name": "io.debezium.connector.mysql.SchemaChangeKey",
 "optional": false,
 "fields": [
 {
 "field": "databaseName",
 "type": "string",
 "optional": false
 }
]
 },
 "payload": {
 "databaseName": "inventory"
 }
}

{
 "schema": {
 "type": "struct",
 "name": "io.debezium.connector.mysql.SchemaChangeValue",
 "optional": false,
 "fields": [
 {

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

13

 "field": "databaseName",
 "type": "string",
 "optional": false
 },
 {
 "field": "ddl",
 "type": "string",
 "optional": false
 },
 {
 "field": "source",
 "type": "struct",
 "name": "io.debezium.connector.mysql.Source",
 "optional": false,
 "fields": [
 {
 "type": "string",
 "optional": true,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "server_id"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "string",
 "optional": true,
 "field": "gtid"
 },
 {
 "type": "string",
 "optional": false,
 "field": "file"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "pos"
 },
 {
 "type": "int32",
 "optional": false,
 "field": "row"
 },
 {

Red Hat Integration 2020-Q3 Debezium User Guide

14

2.1.3.2. Important tips about the schema change topic

The ddl field may contain multiple DDL statements. Every statement applies to the database in the
databaseName field and appears in the same order as they were applied in the database. The source

 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "thread"
 },
 {
 "type": "string",
 "optional": true,
 "field": "db"
 },
 {
 "type": "string",
 "optional": true,
 "field": "table"
 },
 {
 "type": "string",
 "optional": true,
 "field": "query"
 }
]
 }
]
 },
 "payload": {
 "databaseName": "inventory",
 "ddl": "CREATE TABLE products (id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
name VARCHAR(255) NOT NULL, description VARCHAR(512), weight FLOAT); ALTER TABLE
products AUTO_INCREMENT = 101;",
 "source" : {
 "version": "1.2.4.Final",
 "name": "mysql-server-1",
 "server_id": 0,
 "ts_ms": 0,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 154,
 "row": 0,
 "snapshot": true,
 "thread": null,
 "db": null,
 "table": null,
 "query": null
 }
 }
}

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

15

field is structured exactly as a standard data change event written to table-specific topics. This field is
useful to correlate events on different topic.

What if a client submits DDL statements to multiple databases?

If MySQL applies them atomically, the connector takes the DDL statements in order, groups
them by database, and creates a schema change event for each group.

If MySQL applies them individually, the connector creates a separate schema change event
for each statement.

Additional resources

If you do not use the schema change topics detailed here, check out the database history topic.

2.1.4. MySQL connector events

The Debezium MySQL connector generates a data change event for each row-level INSERT, UPDATE,
and DELETE operation. Each event contains a key and a value. The structure of the key and the value
depends on the table that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the
structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a
schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converver and you configure it to produce all
four basic change event parts, change events have this structure:

....
 "payload": {
 "databaseName": "inventory",
 "ddl": "CREATE TABLE products (id INTEGER NOT NULL AUTO_INCREMENT PRIMARY
KEY,...
 "source" : {

 }
 }
....

{
 "schema": { 1
 ...
 },
 "payload": { 2
 ...
 },
 "schema": { 3
 ...

Red Hat Integration 2020-Q3 Debezium User Guide

16

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#how-the-mysql-connector-uses-database-schemas_debezium

Table 2.1. Overview of change event basic content

Item Field name Description

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the primary key, or
the unique key if the table does not have a primary key, for the table that
was changed.

It is possible to override the table’s primary key by setting the
message.key.columns connector configuration property. In this case,
the first schema field describes the structure of the key identified by that
property.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the row
that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
row that was changed. Typically, this schema contains nested schemas.

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the row that was changed.

By default, the connector streams change event records to topics with names that are the same as the
event’s originating table. See MySQL connector and Kafka topics .

WARNING

The MySQL connector ensures that all Kafka Connect schema names adhere to the
Avro schema name format . This means that the logical server name must start with
a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining character in the
logical server name and each character in the database and table names must be a
Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If there is an invalid
character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a database name, or
a table name contains invalid characters, and the only characters that distinguish
names from one another are invalid and thus replaced with underscores.

 },
 "payload": { 4
 ...
 },
}



CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

17

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-property-message-key-columns
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#the-mysql-connector-and-kafka-topics_debezium
http://avro.apache.org/docs/current/spec.html#names

2.1.4.1. Change event keys

A change event’s key contains the schema for the changed table’s key and the changed row’s actual
key. Both the schema and its corresponding payload contain a field for each column in the changed
table’s PRIMARY KEY (or unique constraint) at the time the connector created the event.

Consider the following customers table, which is followed by an example of a change event key for this
table.

Example table

Example change event key

Every change event that captures a change to the customers table has the same event key schema.
For as long as the customers table has the previous definition, every change event that captures a
change to the customers table has the following key structure. In JSON, it looks like this:

Table 2.2. Description of change event key

Item Field name Description

1 schema The schema portion of the key specifies a Kafka
Connect schema that describes what is in the key’s
payload portion.

CREATE TABLE customers (
 id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL UNIQUE KEY
) AUTO_INCREMENT=1001;

{
 "schema": { 1
 "type": "struct",
 "name": "mysql-server-1.inventory.customers.Key", 2
 "optional": false, 3
 "fields": [4
 {
 "field": "id",
 "type": "int32",
 "optional": false
 }
]
 },
 "payload": { 5
 "id": 1001
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

18

2 mysql-server-1.
 inventory.customers.Key

Name of the schema that defines the structure of
the key’s payload. This schema describes the
structure of the primary key for the table that was
changed. Key schema names have the format
connector-name.database-name.table-name.Key. In
this example:

mysql-server-1 is the name of the
connector that generated this event.

inventory is the database that contains
the table that was changed.

customers is the table that was updated.

3 optional Indicates whether the event key must contain a
value in its payload field. In this example, a value in
the key’s payload is required. A value in the key’s
payload field is optional when a table does not have
a primary key.

4 fields Specifies each field that is expected in the payload,
including each field’s name, type, and whether it is
required.

5 payload Contains the key for the row for which this change
event was generated. In this example, the key,
contains a single id field whose value is 1001.

Item Field name Description

2.1.4.2. Change event values

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,
update or delete data all have a value payload with an envelope structure.

Consider the same sample table that was used to show an example of a change event key:

The value portion of a change event for a change to this table is described for each event type:

create events

update events

CREATE TABLE customers (
 id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL UNIQUE KEY
) AUTO_INCREMENT=1001;

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

19

delete events

2.1.4.2.1. create events

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers table:

{
 "schema": { 1
 "type": "struct",
 "fields": [
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "mysql-server-1.inventory.customers.Value", 2
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,

Red Hat Integration 2020-Q3 Debezium User Guide

20

 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "mysql-server-1.inventory.customers.Value",
 "field": "after"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {
 "type": "string",
 "optional": true,
 "field": "table"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "server_id"
 },

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

21

 {
 "type": "string",
 "optional": true,
 "field": "gtid"
 },
 {
 "type": "string",
 "optional": false,
 "field": "file"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "pos"
 },
 {
 "type": "int32",
 "optional": false,
 "field": "row"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "thread"
 },
 {
 "type": "string",
 "optional": true,
 "field": "query"
 }
],
 "optional": false,
 "name": "io.debezium.connector.mysql.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "mysql-server-1.inventory.customers.Envelope" 4
 },
 "payload": { 5
 "op": "c", 6
 "ts_ms": 1465491411815, 7
 "before": null, 8
 "after": { 9
 "id": 1004,

Red Hat Integration 2020-Q3 Debezium User Guide

22

Table 2.3. Descriptions of create event value fields

Item Field name Description

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular table.

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

mysql-server-1.inventory.customers.Value is the schema for the
payload’s before and after fields. This schema is specific to the
customers table.

Names of schemas for before and after fields are of the form
logicalName.tableName.Value, which ensures that the schema name is
unique in the database. This means that when using the Avro converter, the
resulting Avro schema for each table in each logical source has its own
evolution and history.

3 name io.debezium.connector.mysql.Source is the schema for the payload’s
source field. This schema is specific to the MySQL connector. The
connector uses it for all events that it generates.

4 name mysql-server-1.inventory.customers.Envelope is the schema for the
overall structure of the payload, where mysql-server-1 is the connector
name, inventory is the database, and customers is the table.

 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": { 10
 "version": "1.2.4.Final",
 "connector": "mysql",
 "name": "mysql-server-1",
 "ts_ms": 0,
 "snapshot": false,
 "db": "inventory",
 "table": "customers",
 "server_id": 0,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 154,
 "row": 0,
 "thread": 7,
 "query": "INSERT INTO customers (first_name, last_name, email) VALUES ('Anne', 'Kretchmar',
'annek@noanswer.org')"
 }
 }
}

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

23

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that the JSON representations of the events are much larger
than the rows they describe. This is because the JSON representation must
include the schema and the payload portions of the message. However, by
using the Avro converter, you can significantly decrease the size of the
messages that the connector streams to Kafka topics.

6 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a row. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

7 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

8 before An optional field that specifies the state of the row before the event
occurred. When the op field is c for create, as it is in this example, the
before field is null since this change event is for new content.

9 after An optional field that specifies the state of the row after the event
occurred. In this example, the after field contains the values of the new row’s
id, first_name, last_name, and email columns.

Item Field name Description

Red Hat Integration 2020-Q3 Debezium User Guide

24

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

10 source Mandatory field that describes the source metadata for the event. This field
contains information that you can use to compare this event with other
events, with regard to the origin of the events, the order in which the events
occurred, and whether events were part of the same transaction. The
source metadata includes:

Debezium version

Connector name

binlog name where the event was recorded

binlog position

Row within the event

If the event was part of a snapshot

Name of the database and table that contain the new row

ID of the MySQL thread that created the event (non-snapshot
only)

MySQL server ID (if available)

Timestamp for when the change was made in the database

If the binlog_rows_query_log_events MySQL configuration option is
enabled and the connector configuration include.query property is
enabled, the source field also provides the query field, which contains the
original SQL statement that caused the change event.

Item Field name Description

2.1.4.2.2. update events

The value of a change event for an update in the sample customers table has the same schema as a
create event for that table. Likewise, the event value’s payload has the same structure. However, the
event value payload contains different values in an update event. Here is an example of a change event
value in an event that the connector generates for an update in the customers table:

{
 "schema": { ... },
 "payload": {
 "before": { 1
 "id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "after": { 2
 "id": 1004,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": { 3

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

25

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#enable-query-log-events-for-cdc_debezium

Table 2.4. Descriptions of update event value fields

Item Field name Description

1 before An optional field that specifies the state of the row before the event
occurred. In an update event value, the before field contains a field for each
table column and the value that was in that column before the database
commit. In this example, the first_name value is Anne.

2 after An optional field that specifies the state of the row after the event
occurred. You can compare the before and after structures to determine
what the update to this row was. In the example, the first_name value is
now Anne Marie.

 "version": "1.2.4.Final",
 "name": "mysql-server-1",
 "connector": "mysql",
 "name": "mysql-server-1",
 "ts_ms": 1465581,
 "snapshot": false,
 "db": "inventory",
 "table": "customers",
 "server_id": 223344,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 484,
 "row": 0,
 "thread": 7,
 "query": "UPDATE customers SET first_name='Anne Marie' WHERE id=1004"
 },
 "op": "u", 4
 "ts_ms": 1465581029523 5
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

26

3 source Mandatory field that describes the source metadata for the event. The
source field structure has the same fields as in a create event, but some
values are different, for example, the sample update event is from a
different position in the binlog. The source metadata includes:

Debezium version

Connector name

binlog name where the event was recorded

binlog position

Row within the event

If the event was part of a snapshot

Name of the database and table that contain the updated row

ID of the MySQL thread that created the event (non-snapshot
only)

MySQL server ID (if available)

Timestamp for when the change was made in the database

If the binlog_rows_query_log_events MySQL configuration option is
enabled and the connector configuration include.query property is
enabled, the source field also provides the query field, which contains the
original SQL statement that caused the change event.

4 op Mandatory string that describes the type of operation. In an update event
value, the op field value is u, signifying that this row changed because of an
update.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

NOTE

Updating the columns for a row’s primary/unique key changes the value of the row’s key.
When a key changes, Debezium outputs three events: a DELETE event and a tombstone
event with the old key for the row, followed by an event with the new key for the row.
Details are in the next section.

2.1.4.2.3. Primary key updates

An UPDATE operation that changes a row’s primary key field(s) is known as a primary key change. For a

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

27

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#enable-query-log-events-for-cdc_debezium
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-tombstone-events

primary key change, in place of an UPDATE event record, the connector emits a DELETE event record
for the old key and a CREATE event record for the new (updated) key. These events have the usual
structure and content, and in addition, each one has a message header related to the primary key
change:

The DELETE event record has __debezium.newkey as a message header. The value of this
header is the new primary key for the updated row.

The CREATE event record has __debezium.oldkey as a message header. The value of this
header is the previous (old) primary key that the updated row had.

2.1.4.2.4. delete events

The value in a delete change event has the same schema portion as create and update events for the
same table. The payload portion in a delete event for the sample customers table looks like this:

Table 2.5. Descriptions of delete event value fields

Item Field name Description

1 before Optional field that specifies the state of the row before the event occurred.
In a delete event value, the before field contains the values that were in the
row before it was deleted with the database commit.

{
 "schema": { ... },
 "payload": {
 "before": { 1
 "id": 1004,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "after": null, 2
 "source": { 3
 "version": "1.2.4.Final",
 "connector": "mysql",
 "name": "mysql-server-1",
 "ts_ms": 1465581,
 "snapshot": false,
 "db": "inventory",
 "table": "customers",
 "server_id": 223344,
 "gtid": null,
 "file": "mysql-bin.000003",
 "pos": 805,
 "row": 0,
 "thread": 7,
 "query": "DELETE FROM customers WHERE id=1004"
 },
 "op": "d", 4
 "ts_ms": 1465581902461 5
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

28

2 after Optional field that specifies the state of the row after the event occurred. In
a delete event value, the after field is null, signifying that the row no longer
exists.

3 source Mandatory field that describes the source metadata for the event. In a
delete event value, the source field structure is the same as for create and
update events for the same table. Many source field values are also the
same. In a delete event value, the ts_ms and pos field values, as well as
other values, might have changed. But the source field in a delete event
value provides the same metadata:

Debezium version

Connector name

binlog name where the event was recorded

binlog position

Row within the event

If the event was part of a snapshot

Name of the database and table that contain the updated row

ID of the MySQL thread that created the event (non-snapshot
only)

MySQL server ID (if available)

Timestamp for when the change was made in the database

If the binlog_rows_query_log_events MySQL configuration option is
enabled and the connector configuration include.query property is
enabled, the source field also provides the query field, which contains the
original SQL statement that caused the change event.

4 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this row was deleted.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

A delete change event record provides a consumer with the information it needs to process the removal
of this row. The old values are included because some consumers might require them in order to
properly handle the removal.

MySQL connector events are designed to work with Kafka log compaction. Log compaction enables

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

29

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#enable-query-log-events-for-cdc_debezium
https://kafka.apache.org/documentation/#compaction

removal of some older messages as long as at least the most recent message for every key is kept. This
lets Kafka reclaim storage space while ensuring that the topic contains a complete data set and can be
used for reloading key-based state.

Tombstone events

When a row is deleted, the delete event value still works with log compaction, because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
same key, the message value must be null. To make this possible, after Debezium’s MySQL connector
emits a delete event, the connector emits a special tombstone event that has the same key but a null
value.

2.1.5. How the MySQL connector maps data types

The Debezium MySQL connector represents changes to rows with events that are structured like the
table in which the row exists. The event contains a field for each column value. The MySQL data type of
that column dictates how the value is represented in the event.

Columns that store strings are defined in MySQL with a character set and collation. The MySQL
connector uses the column’s character set when reading the binary representation of the column values
in the binlog events. The following table shows how the connector maps the MySQL data types to both
literal and semantic types.

literal type : how the value is represented using Kafka Connect schema types

semantic type : how the Kafka Connect schema captures the meaning of the field (schema
name)

MySQL type Literal type Semantic type

BOOLEAN, BOOL BOOLEAN n/a

BIT(1) BOOLEAN n/a

BIT(>1) BYTES io.debezium.data.Bits

The length schema parameter contains an integer that
represents the number of bits. The byte[] contains the
bits in little-endian form and is sized to contain the
specified number of bits. For example, where n is bits:

numBytes = n/8 + (n%8== 0 ? 0 : 1)

TINYINT INT16 n/a

SMALLINT[(M)] INT16 n/a

MEDIUMINT[(M)] INT32 n/a

INT, INTEGER[(M)] INT32 n/a

Red Hat Integration 2020-Q3 Debezium User Guide

30

BIGINT[(M)] INT64 n/a

REAL[(M,D)] FLOAT32 n/a

FLOAT[(M,D)] FLOAT64 n/a

DOUBLE[(M,D)] FLOAT64 n/a

CHAR(M)] STRING n/a

VARCHAR(M)] STRING n/a

BINARY(M)] BYTES or
STRING

n/a

Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the binary
handling mode setting

VARBINARY(M)] BYTES or
STRING

n/a

Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the binary
handling mode setting

TINYBLOB BYTES or
STRING

n/a

Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the binary
handling mode setting

TINYTEXT STRING n/a

BLOB BYTES or
STRING

n/a

Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the binary
handling mode setting

TEXT STRING n/a

MEDIUMBLOB BYTES or
STRING

n/a

Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the binary
handling mode setting

MEDIUMTEXT STRING n/a

MySQL type Literal type Semantic type

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

31

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode

LONGBLOB BYTES or
STRING

n/a

Either the raw bytes (the default), a base64-encoded
String, or a hex-encoded String, based on the binary
handling mode setting

LONGTEXT STRING n/a

JSON STRING io.debezium.data.Json

Contains the string representation of a JSON document,
array, or scalar.

ENUM STRING io.debezium.data.Enum

The allowed schema parameter contains the comma-
separated list of allowed values.

SET STRING io.debezium.data.EnumSet

The allowed schema parameter contains the comma-
separated list of allowed values.

YEAR[(2|4)] INT32 io.debezium.time.Year

TIMESTAMP[(M)] STRING io.debezium.time.ZonedTimestamp

In ISO 8601 format with microsecond precision. MySQL
allows M to be in the range of 0-6.

MySQL type Literal type Semantic type

2.1.5.1. Temporal values

Excluding the TIMESTAMP data type, MySQL temporal types depend on the value of the
time.precision.mode configuration property. For TIMESTAMP columns whose default value is
specified as CURRENT_TIMESTAMP or NOW, the value 1970-01-01 00:00:00 is used as the default
value in the Kafka Connect schema.

MySQL allows zero-values for DATE, `DATETIME, and TIMESTAMP columns because zero-values are
sometimes preferred over null values. The MySQL connector represents zero-values as null values when
the column definition allows null values, or as the epoch day when the column does not allow null values.

Temporal values without time zones

The DATETIME type represents a local date and time such as "2018-01-13 09:48:27". As you can see,
there is no time zone information. Such columns are converted into epoch milli-seconds or micro-
seconds based on the column’s precision by using UTC. The TIMESTAMP type represents a timestamp
without time zone information and is converted by MySQL from the server (or session’s) current time
zone into UTC when writing and vice versa when reading back the value. For example:

DATETIME with a value of 2018-06-20 06:37:03 becomes 1529476623000.

Red Hat Integration 2020-Q3 Debezium User Guide

32

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-property-binary-handling-mode
https://www.iso.org/iso-8601-date-and-time-format.html

TIMESTAMP with a value of 2018-06-20 06:37:03 becomes 2018-06-20T13:37:03Z.

Such columns are converted into an equivalent io.debezium.time.ZonedTimestamp in UTC based on
the server (or session’s) current time zone. The time zone will be queried from the server by default. If
this fails, it must be specified explicitly by the database.serverTimezone connector configuration
property. For example, if the database’s time zone (either globally or configured for the connector by
means of the database.serverTimezone property) is "America/Los_Angeles", the TIMESTAMP value
"2018-06-20 06:37:03" is represented by a ZonedTimestamp with the value "2018-06-20T13:37:03Z".

Note that the time zone of the JVM running Kafka Connect and Debezium does not affect these
conversions.

More details about properties related to termporal values are in the documentation for MySQL
connector configuration properties.

time.precision.mode=adaptive_time_microseconds(default)

The MySQL connector determines the literal type and semantic type based on the column’s data
type definition so that events represent exactly the values in the database. All time fields are in
microseconds. Only positive TIME field values in the range of 00:00:00.000000 to 23:59:59.999999
can be captured correctly.

MySQL type Literal type Semantic type

DATE INT32 io.debezium.time.Date

Represents the number of days since the epoch.

TIME[(M)] INT64 io.debezium.time.MicroTime

Represents the time value in microseconds and does not
include time zone information. MySQL allows M to be in
the range of 0-6.

DATETIME,
DATETIME(0),
DATETIME(1),
DATETIME(2),
DATETIME(3)

INT64 io.debezium.time.Timestamp

Represents the number of milliseconds since the epoch
and does not include time zone information.

DATETIME(4),
DATETIME(5),
DATETIME(6)

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds since the epoch
and does not include time zone information.

time.precision.mode=connect

The MySQL connector uses the predefined Kafka Connect logical types. This approach is less
precise than the default approach and the events could be less precise if the database column has a
fractional second precision value of greater than 3. Only values in the range of 00:00:00.000 to
23:59:59.999 can be handled. Set time.precision.mode=connect only if you can ensure that the
TIME values in your tables never exceed the supported ranges. The connect setting is expected to
be removed in a future version of Debezium.

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

33

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-connector-configuration-properties_debezium

MySQL type Literal type Semantic type

DATE INT32 org.apache.kafka.connect.data.Date

Represents the number of days since the epoch.

TIME[(M)] INT64 org.apache.kafka.connect.data.Time

Represents the time value in microseconds since
midnight and does not include time zone information.

DATETIME[(M)] INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since epoch, and
does not include time zone information.

2.1.5.2. Decimal values

Decimals are handled via the decimal.handling.mode property. See MySQL connector configuration
properties for more details.

decimal.handling.mode=precise

MySQL type Literal type Semantic type

NUMERIC[(M[,D])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point shifted.

DECIMAL[(M[,D])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point shifted.

decimal.handling.mode=double

MySQL type Literal type Semantic type

NUMERIC[(M[,D])] FLOAT64 n/a

DECIMAL[(M[,D])] FLOAT64 n/a

decimal.handling.mode=string

Red Hat Integration 2020-Q3 Debezium User Guide

34

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-connector-configuration-properties_debezium

MySQL type Literal type Semantic type

NUMERIC[(M[,D])] STRING n/a

DECIMAL[(M[,D])] STRING n/a

2.1.5.3. Boolean values

MySQL handles the BOOLEAN value internally in a specific way. The BOOLEAN column is internally
mapped to TINYINT(1) datatype. When the table is created during streaming then it uses proper
BOOLEAN mapping as Debezium receives the original DDL. During snapshot Debezium executes
SHOW CREATE TABLE to obtain table definition which returns TINYINT(1) for both BOOLEAN and
TINYINT(1) columns.

Debezium then has no way how to obtain the original type mapping and will map to TINYINT(1).

An example configuration is

converters=boolean
boolean.type=io.debezium.connector.mysql.converters.TinyIntOneToBooleanConverter
boolean.selector=db1.table1.*, db1.table2.column1

2.1.5.4. Spatial data types

Currently, the Debezium MySQL connector supports the following spatial data types:

MySQL type Literal type Semantic type

GEOMETRY,
 LINESTRING,
 POLYGON,
 MULTIPOINT,
 MULTILINESTRING,
 MULTIPOLYGON,
 GEOMETRYCOLLECTION

STRUCT io.debezium.data.geometry.Geometry

Contains a structure with two fields:

srid (INT32: a spatial reference system id
that defines the type of geometry object
stored in the structure

wkb (BYTES): a binary representation of
the geometry object encoded in the Well-
Known-Binary (wkb) format. See the Open
Geospatial Consortium for more details.

2.1.6. The MySQL connector and Kafka topics

The Debezium MySQL connector writes events for all INSERT, UPDATE, and DELETE operations from
a single table to a single Kafka topic. The Kafka topic naming convention is as follows:

serverName.databaseName.tableName

For example, suppose that fulfillment is the server name and inventory is the database that contains

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

35

https://www.opengeospatial.org/standards/sfa

For example, suppose that fulfillment is the server name and inventory is the database that contains
three tables: orders, customers, and products. The Debezium MySQL connector emits events to three
Kafka topics, one for each table in the database:

2.1.7. MySQL supported topologies

The Debezium MySQL connector supports the following MySQL topologies:

Standalone

When a single MySQL server is used, the server must have the binlog enabled (and optionally GTIDs
enabled) so the Debezium MySQL connector can monitor the server. This is often acceptable, since
the binary log can also be used as an incremental backup. In this case, the MySQL connector always
connects to and follows this standalone MySQL server instance.

Master and slave

The Debezium MySQL connector can follow one of the masters or one of the slaves (if that slave has
its binlog enabled), but the connector only sees changes in the cluster that are visible to that server.
Generally, this is not a problem except for the multi-master topologies.
The connector records its position in the server’s binlog, which is different on each server in the
cluster. Therefore, the connector will need to follow just one MySQL server instance. If that server
fails, it must be restarted or recovered before the connector can continue.

High available clusters

A variety of high availability solutions exist for MySQL, and they make it far easier to tolerate and
almost immediately recover from problems and failures. Most HA MySQL clusters use GTIDs so that
slaves are able to keep track of all changes on any of the master.

Multi-master

A multi-master MySQL topology uses one or more MySQL slaves that each replicate from multiple
masters. This is a powerful way to aggregate the replication of multiple MySQL clusters, and requires
using GTIDs.
The Debezium MySQL connector can use these multi-master MySQL slaves as sources, and can fail
over to different multi-master MySQL slaves as long as thew new slave is caught up to the old slave
(e.g., the new slave has all of the transactions that were last seen on the first slave). This works even if
the connector is only using a subset of databases and/or tables, as the connector can be configured
to include or exclude specific GTID sources when attempting to reconnect to a new multi-master
MySQL slave and find the correct position in the binlog.

Hosted

There is support for the Debezium MySQL connector to use hosted options such as Amazon RDS
and Amazon Aurora.

IMPORTANT

Because these hosted options do not allow a global read lock, table-level locks are
used to create the consistent snapshot.

2.2. SETTING UP MYSQL SERVER

fulfillment.inventory.orders
fulfillment.inventory.customers
fulfillment.inventory.products

Red Hat Integration 2020-Q3 Debezium User Guide

36

https://dev.mysql.com/doc/refman/8.0/en/backup-methods.html
https://dev.mysql.com/doc/mysql-ha-scalability/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-replication-multi-master.html

2.2.1. Creating a MySQL user for Debezium

You have to define a MySQL user with appropriate permissions on all databases that the Debezium
MySQL connector monitors.

Prerequisites

You must have a MySQL server.

You must know basic SQL commands.

Procedure

1. Create the MySQL user:

2. Grant the required permissions to the user:

See permissions explained for notes on each permission.

IMPORTANT

If using a hosted option such as Amazon RDS or Amazon Aurora that do not allow
a global read lock, table-level locks are used to create the consistent snapshot. In
this case, you need to also grant LOCK_TABLES permissions to the user that
you create. See Overview of how the MySQL connector works for more details.

3. Finalize the user’s permissions:

Table 2.6. Permissions explained

Permission/item Description

SELECT Enables the connector to select rows from tables in databases

NOTE

This is only used when performing a snapshot.

RELOAD When performing a snapshot, enables the connector to use the FLUSH
statement to clear or reload internal caches, flush tables, or acquire locks.

SHOW DATABASES When performing a snapshot, enables the connector to see database
names by issuing the SHOW DATABASE statement.

mysql> CREATE USER 'user'@'localhost' IDENTIFIED BY 'password';

mysql> GRANT SELECT, RELOAD, SHOW DATABASES, REPLICATION SLAVE,
REPLICATION CLIENT ON *.* TO 'user' IDENTIFIED BY 'password';

mysql> FLUSH PRIVILEGES;

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

37

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#permissions-explained-mysql-connector
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#overview-of-how-the-mysql-connector-works

REPLICATION SLAVE Enables the connector to connect to and read the MySQL server binlog.

REPLICATION CLIENT Enables the connector to run the following commands:

SHOW MASTER STATUS

SHOW SLAVE STATUS

SHOW BINARY LOGS

IMPORTANT

This is always required for the connector.

ON Identifies the database to which the permission apply.

TO 'user' Specifies the user to which the permissions are granted.

IDENTIFIED BY
'password'

Specifies the password for the user.

Permission/item Description

2.2.2. Enabling the MySQL binlog for Debezium

You must enable binary logging for MySQL replication. The binary logs record transaction updates for
replication tools to propagate changes.

Prerequisites

You must have a MySQL server.

You should have appropriate MySQL user privileges.

Procedure

1. Check if the log-bin option is already on or not.

2. If OFF, configure your MySQL server configuration file with the following binlog config
properties:

mysql> SELECT variable_value as "BINARY LOGGING STATUS (log-bin) ::"
FROM information_schema.global_variables WHERE variable_name='log_bin';

server-id = 223344 1
log_bin = mysql-bin 2
binlog_format = ROW 3
binlog_row_image = FULL 4
expire_logs_days = 10 5

Red Hat Integration 2020-Q3 Debezium User Guide

38

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#binlog-configuration-properties-mysql-connector

3. Confirm your changes by checking the binlog status:

Table 2.7. Binlog configuration properties

Number Property Description

1 server-id The value for the server-id must be unique for
each server and replication client within the
MySQL cluster. When the MySQL connector is
setup, we assign the connector a unique server
ID.

2 log_bin The value of log_bin is the base name of the
sequence of binlog files.

3 binlog_format The binlog-format must be set to ROW or
row.

4 binlog_row_image The binlog_row_image must be set to
FULL or full.

5 expire_logs_days This is the number of days for automatic binlog
file removal. The default is 0 which means no
automatic removal. Set the value to match the
needs of your environment.

2.2.3. Enabling MySQL Global Transaction Identifiers for Debezium

Global transaction identifiers (GTIDs) uniquely identify transactions that occur on a server within a
cluster. Though not required for the Debezium MySQL connector, using GTIDs simplifies replication and
allows you to more easily confirm if master and slave servers are consistent.

NOTE

GTIDs are only available from MySQL 5.6.5 and later. See the MySQL documentation for
more details.

Prerequisites

You must have a MySQL server.

You must know basic SQL commands.

You must have access to the MySQL configuration file.

Procedure

1. Enable gtid_mode:

mysql> SELECT variable_value as "BINARY LOGGING STATUS (log-bin) ::"
FROM information_schema.global_variables WHERE variable_name='log_bin';

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

39

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#option_mysqld_gtid-mode

2. Enable enforce_gtid_consistency:

3. Confirm the changes:

response

Table 2.8. Options explained

Permission/item Description

gtid_mode Boolean that specifies whether GTID mode of the
MySQL server is enabled or not.

ON = enabled

OFF = disabled

enforce_gtid_consistency Boolean that instructs the server whether to enforce
GTID consistency by allowing the execution of
statements that can be logged in a transactionally
safe manner. Required when using GTIDs.

ON = enabled

OFF = disabled

2.2.4. Setting up session timeouts for Debezium

When an initial consistent snapshot is made for large databases, your established connection could
timeout while the tables are being read. You can prevent this behavior by configuring
interactive_timeout and wait_timeout in your MySQL configuration file.

Prerequisites

You must have a MySQL server.

You must know basic SQL commands.

mysql> gtid_mode=ON

mysql> enforce_gtid_consistency=ON

mysql> show global variables like '%GTID%';

+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| enforce_gtid_consistency | ON |
| gtid_mode | ON |
+--------------------------+-------+

Red Hat Integration 2020-Q3 Debezium User Guide

40

You must have access to the MySQL configuration file.

Procedure

1. Configure interactive_timeout:

2. Configure wait_timeout:

Table 2.9. Options explained

Permission/item Description

interactive_timeout The number of seconds the server waits for activity
on an interactive connection before closing it. See
MySQL’s documentation for more details.

wait_timeout The number of seconds the server waits for activity
on a noninteractive connection before closing it. See
MySQL’s documentation for more details.

2.2.5. Enabling query log events for Debezium

You might want to see the original SQL statement for each binlog event. Enabling the
binlog_rows_query_log_events option in the MySQL configuration file allows you to do this.

NOTE

This option is available for MySQL 5.6 and later.

Prerequisites

You must have a MySQL server.

You must know basic SQL commands.

You must have access to the MySQL configuration file.

Procedure

Enable binlog_rows_query_log_events:

Additional information

binlog_rows_query_log_events is set to a Boolean value that enables/disables support for including
the original SQL statement in the binlog entry.

mysql> interactive_timeout=<duration-in-seconds>

mysql> wait_timeout= <duration-in-seconds>

mysql> binlog_rows_query_log_events=ON

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

41

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_interactive_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_wait_timeout

ON = enabled

OFF = disabled

2.3. DEPLOYING THE MYSQL CONNECTOR

2.3.1. Installing the MySQL connector

Installing the Debezium MySQL connector is a simple process whereby you only need to download the
JAR, extract it to your Kafka Connect environment, and ensure the plug-in’s parent directory is specified
in your Kafka Connect environment.

Prerequisites

Kafka and Kafka Connect are installed.

MySQL Server is installed and set up to run the Debezium MySQL connector.

Procedure

1. Download the Debezium MySQL connector.

2. Extract the files into your Kafka Connect environment.

3. Add the plug-in’s parent directory to your Kafka Connect plugin.path:

plugin.path=/kafka/connect

This example assumes you have extracted the Debezium MySQL connector to the
/kafka/connect/debezium-connector-mysql path.

4. Restart your Kafka Connect process. This ensures the new JARs are picked up.

2.3.2. Configuring the MySQL connector

Typically, you configure the Debezium MySQL connector in a .yaml file using the configuration
properties available for the connector.

Prerequisites

You should have completed the installation process for the connector.

Procedure

1. Set the "name" of the connector in the .yaml file.

2. Set the configuration properties that you require for your Debezium MySQL connector.

TIP

For a complete list of configuration properties, see MySQL connector configuration properties .

MySQL connector example configuration

Red Hat Integration 2020-Q3 Debezium User Guide

42

http://kafka.apache.org/
https://kafka.apache.org/documentation.html#connect
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#install-the-mysql-connector_debezium
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-connector-configuration-properties_debezium

Table 2.10. Descriptions of connector configuration settings

Item Description

1 The name of the connector.

2 Only one task should operate at any one time. Because the MySQL connector reads the
MySQL server’s binlog, using a single connector task ensures proper order and event handling.
The Kafka Connect service uses connectors to start one or more tasks that do the work, and it
automatically distributes the running tasks across the cluster of Kafka Connect services. If any
of the services stop or crash, those tasks will be redistributed to running services.

3 The connector’s configuration.

4 The database host, which is the name of the container running the MySQL server (mysql).

5 A unique server ID and name. The server name is the logical identifier for the MySQL server or
cluster of servers. This name will be used as the prefix for all Kafka topics.

6 Only changes in the inventory database will be detected.

7 The connector will store the history of the database schemas in Kafka using this broker (the
same broker to which you are sending events) and topic name. Upon restart, the connector will
recover the schemas of the database that existed at the point in time in the binlog when the
connector should begin reading.

2.3.3. Adding MySQL connector configuration to Kafka Connect

You can use a provided Debezium container to deploy a Debezium MySQL connector. In this procedure,

 apiVersion: kafka.strimzi.io/v1beta1
 kind: KafkaConnector
 metadata:
 name: inventory-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster
 spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 1 2
 config: 3
 database.hostname: mysql 4
 database.port: 3306
 database.user: debezium
 database.password: dbz
 database.server.id: 184054 5
 database.server.name: dbserver1 6
 database.whitelist: inventory 7
 database.history.kafka.bootstrap.servers: my-cluster-kafka-bootstrap:9092 8
 database.history.kafka.topic: schema-changes.inventory 9

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

43

You can use a provided Debezium container to deploy a Debezium MySQL connector. In this procedure,
you build a custom Kafka Connect container image for Debezium, configure the Debezium connector as
needed, and then add your connector configuration to your Kafka Connect environment.

Prerequisites

Podman or Docker is installed and you have sufficient rights to create and manage containers.

You installed the Debezium MySQL connector archive.

Procedure

1. Extract the Debezium MySQL connector archive to create a directory structure for the
connector plug-in, for example:

tree ./my-plugins/
./my-plugins/
├── debezium-connector-mysql
│ ├── ...

2. Create and publish a custom image for running your Debezium connector:

a. Create a new Dockerfile by using registry.redhat.io/amq7/amq-streams-kafka-25-
rhel7:1.5.0 as the base image. In the following example, you would replace my-plugins with
the name of your plug-ins directory:

FROM registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Before Kafka Connect starts running the connector, Kafka Connect loads any third-party
plug-ins that are in the /opt/kafka/plugins directory.

b. Build the container image. For example, if you saved the Dockerfile that you created in the
previous step as debezium-container-for-mysql, and if the Dockerfile is in the current
directory, then you would run the following command:
podman build -t debezium-container-for-mysql:latest .

c. Push your custom image to your container registry, for example:
podman push debezium-container-for-mysql:latest

d. Point to the new container image. Do one of the following:

Edit the spec.image property of the KafkaConnector custom resource. If set, this
property overrides the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in
the Cluster Operator. For example:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: my-connect-cluster
spec:
 #...
 image: debezium-container-for-mysql

Red Hat Integration 2020-Q3 Debezium User Guide

44

In the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file,
edit the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable to point to the new
container image and reinstall the Cluster Operator. If you edit this file you must apply it
to your OpenShift cluster.

3. Create a KafkaConnector custom resource that defines your Debezium MySQL connector
instance. See the connector configuration example .

4. Apply the connector instance, for example:
oc apply -f inventory-connector.yaml

This registers inventory-connector and the connector starts to run against the inventory
database.

5. Verify that the connector was created and has started to capture changes in the specified
database. You can verify the connector instance by watching the Kafka Connect log output as,
for example, inventory-connector starts.

a. Display the Kafka Connect log output:

b. Review the log output to verify that the initial snapshot has been executed. You should see
something like the following lines:

Results

When the connector starts, it performs a consistent snapshot of the MySQL databases that the
connector is configured for. The connector then starts generating data change events for row-level
operations and streaming change event records to Kafka topics.

2.3.4. MySQL connector configuration properties

The configuration properties listed here are required to run the Debezium MySQL connector. There are
also advanced MySQL connector properties whose default value rarely needs to be changed and
therefore, they do not need to be specified in the connector configuration.

The Debezium MySQL connector supports pass-through configuration when creating the Kafka
producer and consumer. See information about pass-through properties at the end of this section, and
also see the Kafka documentation for more details about pass-through properties.

Property Default Description

name Unique name for the connector. Attempting to
register again with the same name will fail. (This
property is required by all Kafka Connect
connectors.)

oc logs $(oc get pods -o name -l strimzi.io/name=my-connect-cluster-connect)

... INFO Starting snapshot for ...

... INFO Snapshot is using user 'debezium' ...

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

45

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#configure-the-mysql-connector_debezium
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#how-the-mysql-connector-performs-database-snapshots_debezium
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-connector-pass-through-properties
https://kafka.apache.org/documentation.html

connector.class The name of the Java class for the connector. Always
use a value of io.debezium ​
.connector.mysql.MySqlConnector for the
MySQL connector.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The MySQL connector
always uses a single task and therefore does not use
this value, so the default is always acceptable.

database.hostname IP address or hostname of the MySQL database
server.

database.port 3306 Integer port number of the MySQL database server.

database.user Name of the MySQL database to use when
connecting to the MySQL database server.

database.password Password to use when connecting to the MySQL
database server.

database.server.name Logical name that identifies and provides a
namespace for the particular MySQL database
server/cluster being monitored. The logical name
should be unique across all other connectors, since it
is used as a prefix for all Kafka topic names
emanating from this connector. Only alphanumeric
characters and underscores should be used.

database.server.id random A numeric ID of this database client, which must be
unique across all currently-running database
processes in the MySQL cluster. This connector joins
the MySQL database cluster as another server (with
this unique ID) so it can read the binlog. By default, a
random number is generated between 5400 and
6400, though we recommend setting an explicit
value.

database.history.kafka.topic The full name of the Kafka topic where the connector
will store the database schema history.

database.history ​
.kafka.bootstrap ​.servers

 A list of host/port pairs that the connector will use
for establishing an initial connection to the Kafka
cluster. This connection will be used for retrieving
database schema history previously stored by the
connector, and for writing each DDL statement read
from the source database. This should point to the
same Kafka cluster used by the Kafka Connect
process.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

46

database.whitelist empty string An optional comma-separated list of regular
expressions that match database names to be
monitored; any database name not included in the
whitelist will be excluded from monitoring. By default
all databases will be monitored. May not be used with
database.blacklist.

database.blacklist empty string An optional comma-separated list of regular
expressions that match database names to be
excluded from monitoring; any database name not
included in the blacklist will be monitored. May not be
used with database.whitelist.

table.whitelist empty string An optional comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables to be monitored; any table not
included in the whitelist will be excluded from
monitoring. Each identifier is of the form
databaseName.tableName. By default the connector
will monitor every non-system table in each
monitored database. May not be used with
table.blacklist.

table.blacklist empty string An optional comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables to be excluded from monitoring;
any table not included in the blacklist will be
monitored. Each identifier is of the form
databaseName.tableName. May not be used with
table.whitelist.

column.blacklist empty string An optional comma-separated list of regular
expressions that match the fully-qualified names of
columns that should be excluded from change event
message values. Fully-qualified names for columns
are of the form
databaseName.tableName.columnName, or
databaseName.schemaName.tableName.columnName
.

column.truncate.to ​
.length.chars

n/a An optional comma-separated list of regular
expressions that match the fully-qualified names of
character-based columns whose values should be
truncated in the change event message values if the
field values are longer than the specified number of
characters. Multiple properties with different lengths
can be used in a single configuration, although in
each the length must be a positive integer. Fully-
qualified names for columns are of the form
databaseName.tableName.columnName.

Property Default Description

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

47

column.mask.with ​
.length.chars

n/a An optional comma-separated list of regular
expressions that match the fully-qualified names of
character-based columns whose values should be
replaced in the change event message values with a
field value consisting of the specified number of
asterisk (*) characters. Multiple properties with
different lengths can be used in a single
configuration, although in each the length must be a
positive integer or zero. Fully-qualified names for
columns are of the form
databaseName.tableName.columnName.

column.mask ​
.hash.hashAlgorithm ​
.with.salt.salt

n/a An optional comma-separated list of regular
expressions that match the fully-qualified names of
character-based columns whose values should be
pseudonyms in the change event message values
with a field value consisting of the hashed value using
the algorithm hashAlgorithm and salt salt. Based
on the used hash function referential integrity is kept
while data is pseudonymized. Supported hash
functions are described in the {link-java7-standard-
names}[MessageDigest section] of the Java
Cryptography Architecture Standard Algorithm
Name Documentation. The hash is automatically
shortened to the length of the column.

Multiple properties with different lengths can be
used in a single configuration, although in each the
length must be a positive integer or zero. Fully-
qualified names for columns are of the form
databaseName.tableName.columnName.

Example:

column.mask.hash.SHA-
256.with.salt.CzQMA0cB5K =
inventory.orders.customerName,
inventory.shipment.customerName

where CzQMA0cB5K is a randomly selected salt.

Note: Depending on the hashAlgorithm used, the
salt selected and the actual data set, the resulting
masked data set may not be completely anonymized.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

48

column.propagate ​
.source.type

n/a An optional comma-separated list of regular
expressions that match the fully-qualified names of
columns whose original type and length should be
added as a parameter to the corresponding field
schemas in the emitted change messages. The
schema parameters
__Debezium.source.column.type,
__Debezium.source.column.length and
_Debezium.source.column.scale will be used to
propagate the original type name and length (for
variable-width types), respectively. Useful to properly
size corresponding columns in sink databases. Fully-
qualified names for columns are of the form
databaseName.tableName.columnName, or
databaseName.schemaName.tableName.columnName
.

datatype.propagate ​
.source.type

n/a An optional comma-separated list of regular
expressions that match the database-specific data
type name of columns whose original type and length
should be added as a parameter to the
corresponding field schemas in the emitted change
messages. The schema parameters
__debezium.source.column.type,
__debezium.source.column.length and
__debezium.source.column.scale will be used
to propagate the original type name and length (for
variable-width types), respectively. Useful to properly
size corresponding columns in sink databases. Fully-
qualified data type names are of the form
databaseName.tableName.typeName, or
databaseName.schemaName.tableName.typeName.
See how the MySQL connector maps data types for
the list of MySQL-specific data type names.

time.precision.mode adaptive_tim
e ​
_microsecon
ds

Time, date, and timestamps can be represented with
different kinds of precision, including:
adaptive_time_microseconds (the default)
captures the date, datetime and timestamp values
exactly as in the database using either millisecond,
microsecond, or nanosecond precision values based
on the database column’s type, with the exception of
TIME type fields, which are always captured as
microseconds; or connect always represents time
and timestamp values using Kafka Connect’s built-in
representations for Time, Date, and Timestamp,
which uses millisecond precision regardless of the
database columns' precision.

Property Default Description

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

49

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#how-the-mysql-connector-maps-data-types_debezium

decimal.handling.mode precise Specifies how the connector should handle values for
DECIMAL and NUMERIC columns: precise (the
default) represents them precisely using
java.math.BigDecimal values represented in
change events in a binary form; or double
represents them using double values, which may
result in a loss of precision but will be far easier to
use. string option encodes values as formatted
string which is easy to consume but a semantic
information about the real type is lost.

bigint.unsigned ​
.handling.mode

long Specifies how BIGINT UNSIGNED columns should be
represented in change events, including: precise
uses java.math.BigDecimal to represent values,
which are encoded in the change events using a
binary representation and Kafka Connect’s
org.apache.kafka.connect.data.Decimal type;
long (the default) represents values using Java’s
long, which may not offer the precision but will be
far easier to use in consumers. long is usually the
preferable setting. Only when working with values
larger than 2^63, the precise setting should be used
as those values cannot be conveyed using long.

include.schema ​.changes true Boolean value that specifies whether the connector
should publish changes in the database schema to a
Kafka topic with the same name as the database
server ID. Each schema change will be recorded using
a key that contains the database name and whose
value includes the DDL statement(s). This is
independent of how the connector internally records
database history. The default is true.

include.query false Boolean value that specifies whether the connector
should include the original SQL query that generated
the change event.
Note: This option requires MySQL be configured
with the binlog_rows_query_log_events option set to
ON. Query will not be present for events generated
from the snapshot process.
WARNING: Enabling this option may expose tables or
fields explicitly blacklisted or masked by including the
original SQL statement in the change event. For this
reason this option is defaulted to 'false'.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

50

event.processing ​
.failure.handling.mode

fail Specifies how the connector should react to
exceptions during deserialization of binlog events.
fail will propagate the exception (indicating the
problematic event and its binlog offset), causing the
connector to stop.
warn will cause the problematic event to be skipped
and the problematic event and its binlog offset to be
logged.
skip will cause problematic event will be skipped.

inconsistent.schema ​
.handling.mode

fail Specifies how the connector should react to binlog
events that relate to tables that are not present in
internal schema representation (i.e. internal
representation is not consistent with database) fail
will throw an exception (indicating the problematic
event and its binlog offset), causing the connector to
stop.
warn will cause the problematic event to be skipped
and the problematic event and its binlog offset to be
logged.
skip will cause the problematic event to be skipped.

max.queue.size 8192 Positive integer value that specifies the maximum
size of the blocking queue into which change events
read from the database log are placed before they
are written to Kafka. This queue can provide
backpressure to the binlog reader when, for example,
writes to Kafka are slower or if Kafka is not available.
Events that appear in the queue are not included in
the offsets periodically recorded by this connector.
Defaults to 8192, and should always be larger than
the maximum batch size specified in the
max.batch.size property.

max.batch.size 2048 Positive integer value that specifies the maximum
size of each batch of events that should be
processed during each iteration of this connector.
Defaults to 2048.

poll.interval.ms 1000 Positive integer value that specifies the number of
milliseconds the connector should wait during each
iteration for new change events to appear. Defaults
to 1000 milliseconds, or 1 second.

connect.timeout.ms 30000 A positive integer value that specifies the maximum
time in milliseconds this connector should wait after
trying to connect to the MySQL database server
before timing out. Defaults to 30 seconds.

Property Default Description

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

51

gtid.source.includes A comma-separated list of regular expressions that
match source UUIDs in the GTID set used to find the
binlog position in the MySQL server. Only the GTID
ranges that have sources matching one of these
include patterns will be used. May not be used with
gtid.source.excludes.

gtid.source.excludes A comma-separated list of regular expressions that
match source UUIDs in the GTID set used to find the
binlog position in the MySQL server. Only the GTID
ranges that have sources matching none of these
exclude patterns will be used. May not be used with
gtid.source.includes.

tombstones.on.delete true Controls whether a tombstone event should be
generated after a delete event.
When true the delete operations are represented by
a delete event and a subsequent tombstone event.
When false only a delete event is sent.
Emitting the tombstone event (the default behavior)
allows Kafka to completely delete all events
pertaining to the given key once the source record
got deleted.

message.key.columns empty string A semi-colon list of regular expressions that match
fully-qualified tables and columns to map a primary
key.
Each item (regular expression) must match the
<fully-qualified table>:<a comma-separated
list of columns> representing the custom key.
Fully-qualified tables could be defined as
databaseName.tableName.

binary.handling.mode bytes Specifies how binary (blob, binary, varbinary, etc.)
columns should be represented in change events,
including: bytes represents binary data as byte array
(default), base64 represents binary data as base64-
encoded String, hex represents binary data as hex-
encoded (base16) String

Property Default Description

2.3.4.1. Advanced MySQL connector properties

The following table describes advanced MySQL connector properties .

Property Default Description

connect.keep.alive true A boolean value that specifies whether a separate
thread should be used to ensure the connection to
the MySQL server/cluster is kept alive.

Red Hat Integration 2020-Q3 Debezium User Guide

52

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#advanced-mysql-connector-properties

table.ignore ​.builtin true Boolean value that specifies whether built-in system
tables should be ignored. This applies regardless of
the table whitelist or blacklists. By default system
tables are excluded from monitoring, and no events
are generated when changes are made to any of the
system tables.

database.history ​
.kafka.recovery ​
.poll.interval.ms

100 An integer value that specifies the maximum number
of milliseconds the connector should wait during
startup/recovery while polling for persisted data. The
default is 100ms.

database.history ​
.kafka.recovery ​.attempts

4 The maximum number of times that the connector
should attempt to read persisted history data before
the connector recovery fails with an error. The
maximum amount of time to wait after receiving no
data is recovery.attempts x
recovery.poll.interval.ms.

database.history ​
.skip.unparseable ​.ddl

false Boolean value that specifies if connector should
ignore malformed or unknown database statements
or stop processing and let operator to fix the issue.
The safe default is false. Skipping should be used
only with care as it can lead to data loss or mangling
when binlog is processed.

database.history ​
.store.only ​
.monitored.tables ​.ddl

false Boolean value that specifies if connector should
should record all DDL statements or (when true)
only those that are relevant to tables that are
monitored by Debezium (via filter configuration). The
safe default is false. This feature should be used
only with care as the missing data might be
necessary when the filters are changed.

Property Default Description

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

53

database.ssl.mode disabled Specifies whether to use an encrypted connection.
The default is disabled, and specifies to use an
unencrypted connection.

The preferred option establishes an encrypted
connection if the server supports secure connections
but falls back to an unencrypted connection
otherwise.

The required option establishes an encrypted
connection but will fail if one cannot be made for any
reason.

The verify_ca option behaves like required but
additionally it verifies the server TLS certificate
against the configured Certificate Authority (CA)
certificates and will fail if it doesn’t match any valid
CA certificates.

The verify_identity option behaves like verify_ca
but additionally verifies that the server certificate
matches the host of the remote connection.

binlog.buffer.size 0 The size of a look-ahead buffer used by the binlog
reader.
Under specific conditions it is possible that MySQL
binlog contains uncommitted data finished by a
ROLLBACK statement. Typical examples are using
savepoints or mixing temporary and regular table
changes in a single transaction.
When a beginning of a transaction is detected then
Debezium tries to roll forward the binlog position and
find either COMMIT or ROLLBACK so it can
decide whether the changes from the transaction will
be streamed or not. The size of the buffer defines
the maximum number of changes in the transaction
that Debezium can buffer while searching for
transaction boundaries. If the size of transaction is
larger than the buffer then Debezium needs to
rewind and re-read the events that has not fit into
the buffer while streaming. Value 0 disables
buffering.
Disabled by default.
Note: This feature should be considered an
incubating one. We need a feedback from customers
but it is expected that it is not completely polished.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

54

snapshot.mode initial Specifies the criteria for running a snapshot upon
startup of the connector. The default is initial, and
specifies the connector can run a snapshot only when
no offsets have been recorded for the logical server
name. The when_needed option specifies that the
connector run a snapshot upon startup whenever it
deems it necessary (when no offsets are available, or
when a previously recorded offset specifies a binlog
location or GTID that is not available in the server).
The never option specifies that the connect should
never use snapshots and that upon first startup with
a logical server name the connector should read from
the beginning of the binlog; this should be used with
care, as it is only valid when the binlog is guaranteed
to contain the entire history of the database. If you
don’t need the topics to contain a consistent
snapshot of the data but only need them to have the
changes since the connector was started, you can
use the schema_only option, where the connector
only snapshots the schemas (not the data).

schema_only_recovery is a recovery option for
an existing connector to recover a corrupted or lost
database history topic, or to periodically "clean up" a
database history topic (which requires infinite
retention) that may be growing unexpectedly.

Property Default Description

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

55

snapshot.locking ​.mode minimal Controls if and how long the connector holds onto
the global MySQL read lock (preventing any updates
to the database) while it is performing a snapshot.
There are three possible values minimal, extended,
and none.

minimal The connector holds the global read lock
for just the initial portion of the snapshot while the
connector reads the database schemas and other
metadata. The remaining work in a snapshot involves
selecting all rows from each table, and this can be
done in a consistent fashion using the REPEATABLE
READ transaction even when the global read lock is
no longer held and while other MySQL clients are
updating the database.

extended In some cases where clients are
submitting operations that MySQL excludes from
REPEATABLE READ semantics, it may be desirable
to block all writes for the entire duration of the
snapshot. For these such cases, use this option.

none Will prevent the connector from acquiring any
table locks during the snapshot process. This value
can be used with all snapshot modes but it is safe to
use if and only if no schema changes are happening
while the snapshot is taken. Note that for tables
defined with MyISAM engine, the tables would still be
locked despite this property being set as MyISAM
acquires a table lock. This behavior is unlike InnoDB
engine which acquires row level locks.

snapshot.select ​
.statement ​.overrides

 Controls which rows from tables will be included in
snapshot.
This property contains a comma-separated list of
fully-qualified tables (DB_NAME.TABLE_NAME).
Select statements for the individual tables are
specified in further configuration properties, one for
each table, identified by the id
snapshot.select.statement.overrides.
[DB_NAME].[TABLE_NAME]. The value of those
properties is the SELECT statement to use when
retrieving data from the specific table during
snapshotting. A possible use case for large append-
only tables is setting a specific point where to start
(resume) snapshotting, in case a previous
snapshotting was interrupted.
Note: This setting has impact on snapshots only.
Events captured from binlog are not affected by it at
all.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

56

min.row.count.to ​
.stream.results

1000 During a snapshot operation, the connector will
query each included table to produce a read event
for all rows in that table. This parameter determines
whether the MySQL connection will pull all results for
a table into memory (which is fast but requires large
amounts of memory), or whether the results will
instead be streamed (can be slower, but will work for
very large tables). The value specifies the minimum
number of rows a table must contain before the
connector will stream results, and defaults to 1,000.
Set this parameter to '0' to skip all table size checks
and always stream all results during a snapshot.

heartbeat.interval ​.ms 0 Controls how frequently the heartbeat messages are
sent.
This property contains an interval in milli-seconds
that defines how frequently the connector sends
heartbeat messages into a heartbeat topic. Set this
parameter to 0 to not send heartbeat messages at
all.
Disabled by default.

heartbeat.topics ​.prefix __debezium-
heartbeat

Controls the naming of the topic to which heartbeat
messages are sent.
The topic is named according to the pattern
<heartbeat.topics.prefix>.<server.name>.

database.initial ​
.statements

 A semicolon separated list of SQL statements to be
executed when a JDBC connection (not the
transaction log reading connection) to the database
is established. Use doubled semicolon (';;') to use a
semicolon as a character and not as a delimiter.
Note: The connector may establish JDBC connections
at its own discretion, so this should typically be used
for configuration of session parameters only, but not
for executing DML statements.

snapshot.delay.ms An interval in milli-seconds that the connector should
wait before taking a snapshot after starting up;
Can be used to avoid snapshot interruptions when
starting multiple connectors in a cluster, which may
cause re-balancing of connectors.

snapshot.fetch.size Specifies the maximum number of rows that should
be read in one go from each table while taking a
snapshot. The connector will read the table contents
in multiple batches of this size.

Property Default Description

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

57

snapshot.lock ​.timeout.ms 10000 Positive integer value that specifies the maximum
amount of time (in milliseconds) to wait to obtain
table locks when performing a snapshot. If table
locks cannot be acquired in this time interval, the
snapshot will fail. See How the MySQL connector
performs database snapshots.

enable.time ​.adjuster MySQL allows user to insert year value as either 2-
digit or 4-digit. In case of two digits the value is
automatically mapped to 1970 - 2069 range. This is
usually done by database.
Set to true (the default) when Debezium should do
the conversion.
Set to false when conversion is fully delegated to
the database.

sanitize.field ​.names true when
connector
configuration
explicitly specifies
the
key.converter or
value.converter
parameters to use
Avro, otherwise
defaults to false.

Whether field names will be sanitized to adhere to
Avro naming requirements.

skipped.operations comma-separated list of oplog operations that will
be skipped during streaming. The operations include:
c for inserts, u for updates, and d for deletes. By
default, no operations are skipped.

Property Default Description

2.3.4.2. Pass-through configuration properties

The MySQL connector also supports pass-through configuration properties that are used when creating
the Kafka producer and consumer. Specifically, all connector configuration properties that begin with
the database.history.producer. prefix are used (without the prefix) when creating the Kafka producer
that writes to the database history. All properties that begin with the prefix
database.history.consumer. are used (without the prefix) when creating the Kafka consumer that
reads the database history upon connector start-up.

For example, the following connector configuration properties can be used to secure connections to the
Kafka broker:

database.history.producer.security.protocol=SSL
database.history.producer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.producer.ssl.keystore.password=test1234
database.history.producer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.producer.ssl.truststore.password=test1234
database.history.producer.ssl.key.password=test1234
database.history.consumer.security.protocol=SSL

Red Hat Integration 2020-Q3 Debezium User Guide

58

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#how-the-mysql-connector-performs-database-snapshots_debezium
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-connector-pass-through-properties

database.history.consumer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.consumer.ssl.keystore.password=test1234
database.history.consumer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.consumer.ssl.truststore.password=test1234
database.history.consumer.ssl.key.password=test1234

2.3.4.3. Pass-through properties for database drivers

In addition to the pass-through properties for the Kafka producer and consumer, there are pass-through
properties for database drivers. These properties have the database. prefix. For example,
database.tinyInt1isBit=false is passed to the JDBC URL.

2.3.5. MySQL connector monitoring metrics

The Debezium MySQL connector has three metric types in addition to the built-in support for JMX
metrics that Zookeeper, Kafka, and Kafka Connect have.

snapshot metrics; for monitoring the connector when performing snapshots

binlog metrics; for monitoring the connector when reading CDC table data

schema history metrics; for monitoring the status of the connector’s schema history

Refer to the monitoring documentation for details of how to expose these metrics via JMX.

2.3.5.1. Snapshot metrics

The MBean is debezium.mysql:type=connector-metrics,context=snapshot,server=
<database.server.name>.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

59

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-connector-pass-through-properties-for-database-drivers
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#monitoring-debezium

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

Attributes Type Description

The Debezium MySQL connector also provides the following custom snapshot metrics:

Attribute Type Description

HoldingGlobalLock boolean Whether the connector currently holds a global or
table write lock.

Red Hat Integration 2020-Q3 Debezium User Guide

60

2.3.5.2. Binlog metrics

The MBean is debezium.mysql:type=connector-metrics,context=binlog,server=
<database.server.name>.

NOTE

The transaction-related attributes are only available if binlog event buffering is enabled.
See binlog.buffer.size in the advanced connector configuration properties for more
details.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

61

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mysql-connector-configuration-properties_debezium

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

Attributes Type Description

The Debezium MySQL connector also provides the following custom binlog metrics:

Attribute Type Description

BinlogFilename string The name of the binlog filename that the connector
has most recently read.

BinlogPosition long The most recent position (in bytes) within the binlog
that the connector has read.

IsGtidModeEnabled boolean Flag that denotes whether the connector is currently
tracking GTIDs from MySQL server.

GtidSet string The string representation of the most recent GTID
set seen by the connector when reading the binlog.

NumberOfSkipped ​Events long The number of events that have been skipped by the
MySQL connector. Typically events are skipped due
to a malformed or unparseable event from MySQL’s
binlog.

NumberOfDisconnects long The number of disconnects by the MySQL
connector.

NumberOfRolledBack ​
Transactions

long The number of processed transactions that were
rolled back and not streamed.

Red Hat Integration 2020-Q3 Debezium User Guide

62

NumberOfNotWell ​
FormedTransactions

long The number of transactions that have not conformed
to expected protocol BEGIN +
COMMIT/ROLLBACK. Should be 0 under normal
conditions.

NumberOfLarge ​
Transactions

long The number of transactions that have not fitted into
the look-ahead buffer. Should be significantly smaller
than NumberOfCommittedTransactions and
NumberOfRolledBackTransactions for optimal
performance.

Attribute Type Description

2.3.5.3. Schema history metrics

The MBean is debezium.mysql:type=connector-metrics,context=schema-history,server=
<database.server.name>.

Attributes Type Description

Status string One of STOPPED,
RECOVERING (recovering
history from the storage),
RUNNING describing the
state of the database history.

RecoveryStartTime long The time in epoch seconds at
what recovery has started.

ChangesRecovered long The number of changes that
were read during recovery
phase.

ChangesApplied long the total number of schema
changes applied during
recovery and runtime.

MilliSecondsSinceLast ​
RecoveredChange

long The number of milliseconds
that elapsed since the last
change was recovered from
the history store.

MilliSecondsSinceLast ​AppliedChange long The number of milliseconds
that elapsed since the last
change was applied.

LastRecoveredChange string The string representation of
the last change recovered
from the history store.

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

63

LastAppliedChange string The string representation of
the last applied change.

Attributes Type Description

2.4. MYSQL CONNECTOR COMMON ISSUES

2.4.1. Configuration and startup errors

The Debezium MySQL connector fails, reports an error, and stops running when the following startup
errors occur:

The connector’s configuration is invalid.

The connector cannot connect to the MySQL server using the specified connectivity
parameters.

The connector is attempting to restart at a position in the binlog where MySQL no longer has
the history available.

If you receive any of these errors, you receive more details in the error message. The error message also
contains workarounds where possible.

2.4.2. MySQL is unavailable

If your MySQL server becomes unavailable, the Debezium MySQL connector fails with an error and the
connector stops. You simply need to restart the connector when the server is available.

2.4.2.1. Using GTIDs

If you have GTIDs enabled and a highly available MySQL cluster, restart the connector immediately as
the connector will simply connect to a different MySQL server in the cluster, find the location in the
server’s binlog that represents the last transaction, and begin reading the new server’s binlog from that
specific location.

2.4.2.2. Not Using GTIDs

If you do not have GTIDs enabled, the connector only records the binlog position of the MySQL server
to which it was connected. In order to restart from the correct binlog position, you must reconnect to
that specific server.

2.4.3. Kafka Connect stops

There are three scenarios that cause some issues when Kafka Connect stops:

Section 2.4.3.1, “Kafka Connect stops gracefully”

Section 2.4.3.2, “Kafka Connect process crashes”

Section 2.4.3.3, “Kafka becomes unavailable”

2.4.3.1. Kafka Connect stops gracefully

Red Hat Integration 2020-Q3 Debezium User Guide

64

When Kafka Connect stops gracefully, there is only a short delay while the Debezium MySQL connector
tasks are stopped and restarted on new Kafka Connect processes.

2.4.3.2. Kafka Connect process crashes

If Kafka Connect crashes, the process stops and any Debezium MySQL connector tasks terminate
without their most recently-processed offsets being recorded. In distributed mode, Kafka Connect
restarts the connector tasks on other processes. However, the MySQL connector resumes from the last
offset recorded by the earlier processes. This means that the replacement tasks may generate some of
the same events processed prior to the crash, creating duplicate events.

TIP

Each change event message includes source-specific information about:

the event origin

the MySQL server’s event time

the binlog filename and position

GTIDs (if used)

2.4.3.3. Kafka becomes unavailable

The Kafka Connect framework records Debezium change events in Kafka using the Kafka producer API.
If the Kafka brokers become unavailable, the Debezium MySQL connector pauses until the connection is
reestablished and the connector resumes where it last left off.

2.4.4. MySQL purges binlog files

If the Debezium MySQL connector stops for too long, the MySQL server purges older binlog files and
the connector’s last position may be lost. When the connector is restarted, the MySQL server no longer
has the starting point and the connector performs another initial snapshot. If the snapshot is disabled,
the connector fails with an error.

TIP

See How the MySQL connector performs database snapshots for more information on initial snapshots.

CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL

65

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#how-the-mysql-connector-performs-database-snapshots_debezium

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL
Debezium’s PostgreSQL connector captures row-level changes in the schemas of a PostgreSQL
database. PostgreSQL versions 10, 11, and 12 are supported.

The first time it connects to a PostgreSQL server or cluster, the connector takes a consistent snapshot
of all schemas. After that snapshot is complete, the connector continuously captures row-level changes
that insert, update, and delete database content and that were committed to a PostgreSQL database.
The connector generates data change event records and streams them to Kafka topics. For each table,
the default behavior is that the connector streams all generated events to a separate Kafka topic for
that table. Applications and services consume data change event records from that topic.

Information and procedures for using a Debezium PostgreSQL connector is organized as follows:

Section 3.1, “Overview of Debezium PostgreSQL connector”

Section 3.2, “How Debezium PostgreSQL connectors work”

Section 3.3, “Descriptions of Debezium PostgreSQL connector data change events”

Section 3.4, “How Debezium PostgreSQL connectors map data types”

Section 3.5, “Setting up PostgreSQL to run a Debezium connector”

Section 3.6, “Deploying and managing Debezium PostgreSQL connectors”

Section 3.7, “How Debezium PostgreSQL connectors handle faults and problems”

3.1. OVERVIEW OF DEBEZIUM POSTGRESQL CONNECTOR

PostgreSQL’s logical decoding feature was introduced in version 9.4. It is a mechanism that allows the
extraction of the changes that were committed to the transaction log and the processing of these
changes in a user-friendly manner with the help of an output plug-in . The output plug-in enables clients
to consume the changes.

The PostgreSQL connector contains two main parts that work together to read and process database
changes:

pgoutput is the standard logical decoding output plug-in in PostgreSQL 10+. This is the only
supported logical decoding output plug-in in this Debezium release. This plug-in is maintained
by the PostgreSQL community, and used by PostgreSQL itself for logical replication. This plug-
in is always present so no additional libraries need to be installed. The Debezium connector
interprets the raw replication event stream directly into change events.

Java code (the actual Kafka Connect connector) that reads the changes produced by the
logical decoding output plug-in by using PostgreSQL’s streaming replication protocol and the
PostgreSQL JDBC driver.

The connector produces a change event for every row-level insert, update, and delete operation that
was captured and sends change event records for each table in a separate Kafka topic. Client
applications read the Kafka topics that correspond to the database tables of interest, and can react to
every row-level event they receive from those topics.

PostgreSQL normally purges write-ahead log (WAL) segments after some period of time. This means
that the connector does not have the complete history of all changes that have been made to the
database. Therefore, when the PostgreSQL connector first connects to a particular PostgreSQL

Red Hat Integration 2020-Q3 Debezium User Guide

66

https://www.postgresql.org/docs/current/static/logicaldecoding-explanation.html
https://www.postgresql.org/docs/current/static/logicaldecoding-output-plugin.html
https://www.postgresql.org/docs/current/logical-replication-architecture.html
https://www.postgresql.org/docs/current/static/logicaldecoding-walsender.html
https://github.com/pgjdbc/pgjdbc

database, it starts by performing a consistent snapshot of each of the database schemas. After the
connector completes the snapshot, it continues streaming changes from the exact point at which the
snapshot was made. This way, the connector starts with a consistent view of all of the data, and does not
omit any changes that were made while the snapshot was being taken.

The connector is tolerant of failures. As the connector reads changes and produces events, it records
the WAL position for each event. If the connector stops for any reason (including communication
failures, network problems, or crashes), upon restart the connector continues reading the WAL where it
last left off. This includes snapshots. If the connector stops during a snapshot, the connector begins a
new snapshot when it restarts.

IMPORTANT

The connector relies on and reflects the PostgreSQL logical decoding feature, which has
the following limitations:

Logical decoding does not support DDL changes. This means that the connector
is unable to report DDL change events back to consumers.

Logical decoding replication slots are supported on only primary servers. When
there is a cluster of PostgreSQL servers, the connector can run on only the active
primary server. It cannot run on hot or warm standby replicas. If the primary
server fails or is demoted, the connector stops. After the primary server has
recovered, you can restart the connector. If a different PostgreSQL server has
been promoted to primary, adjust the connector configuration before restarting
the connector.

Behavior when things go wrong describes what the connector does when there is a
problem.

IMPORTANT

Debezium currently supports databases with UTF-8 character encoding only. With a
single byte character encoding, it is not possible to correctly process strings that contain
extended ASCII code characters.

3.2. HOW DEBEZIUM POSTGRESQL CONNECTORS WORK

To optimally configure and run a Debezium PostgreSQL connector, it is helpful to understand how the
connector performs snapshots, streams change events, determines Kafka topic names, and uses
metadata.

Details are in the following topics:

Section 3.2.1, “How Debezium PostgreSQL connectors perform database snapshots”

Section 3.2.2, “How Debezium PostgreSQL connectors stream change event records”

Section 3.2.3, “Default names of Kafka topics that receive Debezium PostgreSQL change event
records”

Section 3.2.4, “Metadata in Debezium PostgreSQL change event records”

Section 3.2.5, “Debezium PostgreSQL connector-generated events that represent transaction
boundaries”

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

67

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-when-things-go-wrong

3.2.1. How Debezium PostgreSQL connectors perform database snapshots

Most PostgreSQL servers are configured to not retain the complete history of the database in the WAL
segments. This means that the PostgreSQL connector would be unable to see the entire history of the
database by reading only the WAL. Consequently, the first time that the connector starts, it performs an
initial consistent snapshot of the database. The default behavior for performing a snapshot consists of
the following steps. You can change this behavior by setting the snapshot.mode connector
configuration property to a value other than initial.

1. Start a transaction with a SERIALIZABLE, READ ONLY, DEFERRABLE isolation level to ensure
that subsequent reads in this transaction are against a single consistent version of the data. Any
changes to the data due to subsequent INSERT, UPDATE, and DELETE operations by other
clients are not visible to this transaction.

2. Obtain an ACCESS SHARE MODE lock on each of the tables being tracked to ensure that no
structural changes can occur to any of the tables while the snapshot is taking place. These locks
do not prevent table INSERT, UPDATE and DELETE operations from taking place during the
snapshot.
This step is omitted when snapshot.mode is set to exported, which allows the connector to
perform a lock-free snapshot.

3. Read the current position in the server’s transaction log.

4. Scan the database tables and schemas, generate a READ event for each row and write that
event to the appropriate table-specific Kafka topic.

5. Commit the transaction.

6. Record the successful completion of the snapshot in the connector offsets.

If the connector fails, is rebalanced, or stops after Step 1 begins but before Step 6 completes, upon
restart the connector begins a new snapshot. After the connector completes its initial snapshot, the
PostgreSQL connector continues streaming from the position that it read in step 3. This ensures that
the connector does not miss any updates. If the connector stops again for any reason, upon restart, the
connector continues streaming changes from where it previously left off.

WARNING

It is strongly recommended that you configure a PostgreSQL connector to set
snapshot.mode to exported. The initial, initial only and always modes can lose a
few events while a connector switches from performing the snapshot to streaming
change event records when a database is under heavy load. This is a known issue
and the affected snapshot modes will be reworked to use exported mode internally
(DBZ-2337).

Table 3.1. Settings for snapshot.mode connector configuration property

Setting Description



Red Hat Integration 2020-Q3 Debezium User Guide

68

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-property-snapshot-mode
https://www.postgresql.org/docs/current/static/sql-set-transaction.html
https://issues.redhat.com/browse/DBZ-2337

always The connector always performs a snapshot when it starts. After the snapshot
completes, the connector continues streaming changes from step 3 in the above
sequence. This mode is useful in these situations:

It is known that some WAL segments have been deleted and are no longer
available.

After a cluster failure, a new primary has been promoted. The always
snapshot mode ensures that the connector does not miss any changes that
were made after the new primary had been promoted but before the
connector was restarted on the new primary.

never The connector never performs snapshots. When a connector is configured this way, its
behavior when it starts is as follows. If there is a previously stored LSN in the Kafka
offsets topic, the connector continues streaming changes from that position. If no LSN
has been stored, the connector starts streaming changes from the point in time when
the PostgreSQL logical replication slot was created on the server. The never snapshot
mode is useful only when you know all data of interest is still reflected in the WAL.

initial only The connector performs a database snapshot and stops before streaming any change
event records. If the connector had started but did not complete a snapshot before
stopping, the connector restarts the snapshot process and stops when the snapshot
completes.

exported The connector performs a database snapshot based on the point in time when the
replication slot was created. This mode is an excellent way to perform a snapshot in a
lock-free way.

Setting Description

3.2.2. How Debezium PostgreSQL connectors stream change event records

The PostgreSQL connector typically spends the vast majority of its time streaming changes from the
PostgreSQL server to which it is connected. This mechanism relies on PostgreSQL’s replication protocol .
This protocol enables clients to receive changes from the server as they are committed in the server’s
transaction log at certain positions, which are referred to as Log Sequence Numbers (LSNs).

Whenever the server commits a transaction, a separate server process invokes a callback function from
the logical decoding plug-in. This function processes the changes from the transaction, converts them
to a specific format (Protobuf or JSON in the case of Debezium plug-in) and writes them on an output
stream, which can then be consumed by clients.

The Debezium PostgreSQL connector acts as a PostgreSQL client. When the connector receives
changes it transforms the events into Debezium create, update, or delete events that include the LSN
of the event. The PostgreSQL connector forwards these change events in records to the Kafka
Connect framework, which is running in the same process. The Kafka Connect process asynchronously
writes the change event records in the same order in which they were generated to the appropriate
Kafka topic.

Periodically, Kafka Connect records the most recent offset in another Kafka topic. The offset indicates

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

69

https://www.postgresql.org/docs/current/static/protocol-replication.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-output-plugin

Periodically, Kafka Connect records the most recent offset in another Kafka topic. The offset indicates
source-specific position information that Debezium includes with each event. For the PostgreSQL
connector, the LSN recorded in each change event is the offset.

When Kafka Connect gracefully shuts down, it stops the connectors, flushes all event records to Kafka,
and records the last offset received from each connector. When Kafka Connect restarts, it reads the last
recorded offset for each connector, and starts each connector at its last recorded offset. When the
connector restarts, it sends a request to the PostgreSQL server to send the events starting just after
that position.

NOTE

The PostgreSQL connector retrieves schema information as part of the events sent by
the logical decoding plug-in. However, the connector does not retrieve information about
which columns compose the primary key. The connector obtains this information from
the JDBC metadata (side channel). If the primary key definition of a table changes (by
adding, removing or renaming primary key columns), there is a tiny period of time when
the primary key information from JDBC is not synchronized with the change event that
the logical decoding plug-in generates. During this tiny period, a message could be
created with an inconsistent key structure. To prevent this inconsistency, update primary
key structures as follows:

1. Put the database or an application into a read-only mode.

2. Let Debezium process all remaining events.

3. Stop Debezium.

4. Update the primary key definition in the relevant table.

5. Put the database or the application into read/write mode.

6. Restart Debezium.

PostgreSQL 10+ logical decoding support (pgoutput)

As of PostgreSQL 10+, there is a logical replication stream mode, called pgoutput that is natively
supported by PostgreSQL. This means that a Debezium PostgreSQL connector can consume that
replication stream without the need for additional plug-ins. This is particularly valuable for environments
where installation of plug-ins is not supported or not allowed.

See Setting up PostgreSQL for more details.

3.2.3. Default names of Kafka topics that receive Debezium PostgreSQL change
event records

The PostgreSQL connector writes events for all insert, update, and delete operations on a single table
to a single Kafka topic. By default, the Kafka topic name is serverName.schemaName.tableName where:

serverName is the logical name of the connector as specified with the database.server.name
connector configuration property.

schemaName is the name of the database schema where the operation occurred.

tableName is the name of the database table in which the operation occurred.

For example, suppose that fulfillment is the logical server name in the configuration for a connector

Red Hat Integration 2020-Q3 Debezium User Guide

70

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#setting-up-postgresql

For example, suppose that fulfillment is the logical server name in the configuration for a connector
that is capturing changes in a PostgreSQL installation that has a postgres database and an inventory
schema that contains four tables: products, products_on_hand, customers, and orders. The
connector would stream records to these four Kafka topics:

fulfillment.inventory.products

fulfillment.inventory.products_on_hand

fulfillment.inventory.customers

fulfillment.inventory.orders

Now suppose that the tables are not part of a specific schema but were created in the default public
PostgreSQL schema. The names of the Kafka topics would be:

fulfillment.public.products

fulfillment.public.products_on_hand

fulfillment.public.customers

fulfillment.public.orders

3.2.4. Metadata in Debezium PostgreSQL change event records

In addition to a database change event, each record produced by a PostgreSQL connector contains
some metadata. Metadata includes where the event occurred on the server, the name of the source
partition and the name of the Kafka topic and partition where the event should go, for example:

sourcePartition always defaults to the setting of the database.server.name connector
configuration property.

sourceOffset contains information about the location of the server where the event occurred:

lsn represents the PostgreSQL Log Sequence Number or offset in the transaction log.

txId represents the identifier of the server transaction that caused the event.

ts_ms represents the server time at which the transaction was committed in the form of the
number of milliseconds since the epoch.

kafkaPartition with a setting of null means that the connector does not use a specific Kafka
partition. The PostgreSQL connector uses only one Kafka Connect partition and it places the
generated events into one Kafka partition.

3.2.5. Debezium PostgreSQL connector-generated events that represent

"sourcePartition": {
 "server": "fulfillment"
 },
 "sourceOffset": {
 "lsn": "24023128",
 "txId": "555",
 "ts_ms": "1482918357011"
 },
 "kafkaPartition": null

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

71

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-events
https://www.postgresql.org/docs/current/static/datatype-pg-lsn.html

3.2.5. Debezium PostgreSQL connector-generated events that represent
transaction boundaries

Debezium can generate events that represent transaction boundaries and that enrich data change
event messages. For every transaction BEGIN and END, Debezium generates an event that contains
the following fields:

status - BEGIN or END

id - string representation of unique transaction identifier

event_count (for END events) - total number of events emitted by the transaction

data_collections (for END events) - an array of pairs of data_collection and event_count that
provides the number of events emitted by changes originating from given data collection

Example

Transaction events are written to the topic named database.server.name.transaction.

Change data event enrichment

When transaction metadata is enabled the data message Envelope is enriched with a new transaction
field. This field provides information about every event in the form of a composite of fields:

id - string representation of unique transaction identifier

total_order - absolute position of the event among all events generated by the transaction

data_collection_order - the per-data collection position of the event among all events that
were emitted by the transaction

Following is an example of a message:

{
 "status": "BEGIN",
 "id": "571",
 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "571",
 "event_count": 2,
 "data_collections": [
 {
 "data_collection": "s1.a",
 "event_count": 1
 },
 {
 "data_collection": "s2.a",
 "event_count": 1
 }
]
}

Red Hat Integration 2020-Q3 Debezium User Guide

72

3.3. DESCRIPTIONS OF DEBEZIUM POSTGRESQL CONNECTOR DATA
CHANGE EVENTS

The Debezium PostgreSQL connector generates a data change event for each row-level INSERT,
UPDATE, and DELETE operation. Each event contains a key and a value. The structure of the key and
the value depends on the table that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the
structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a
schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converver and you configure it to produce all
four basic change event parts, change events have this structure:

Table 3.2. Overview of change event basic content

{
 "before": null,
 "after": {
 "pk": "2",
 "aa": "1"
 },
 "source": {
...
 },
 "op": "c",
 "ts_ms": "1580390884335",
 "transaction": {
 "id": "571",
 "total_order": "1",
 "data_collection_order": "1"
 }
}

{
 "schema": { 1
 ...
 },
 "payload": { 2
 ...
 },
 "schema": { 3
 ...
 },
 "payload": { 4
 ...
 },
}

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

73

Item Field name Description

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the primary key, or
the unique key if the table does not have a primary key, for the table that
was changed.

It is possible to override the table’s primary key by setting the
message.key.columns connector configuration property. In this case,
the first schema field describes the structure of the key identified by that
property.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the row
that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
row that was changed. Typically, this schema contains nested schemas.

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the row that was changed.

By default behavior is that the connector streams change event records to topics with names that are
the same as the event’s originating table.

NOTE

Starting with Kafka 0.10, Kafka can optionally record the event key and value with the
timestamp at which the message was created (recorded by the producer) or written to
the log by Kafka.

WARNING

The PostgreSQL connector ensures that all Kafka Connect schema names adhere
to the Avro schema name format . This means that the logical server name must
start with a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining
character in the logical server name and each character in the schema and table
names must be a Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If
there is an invalid character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a schema name, or a
table name contains invalid characters, and the only characters that distinguish
names from one another are invalid and thus replaced with underscores.



Red Hat Integration 2020-Q3 Debezium User Guide

74

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-property-message-key-columns
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-topic-names
https://kafka.apache.org/documentation.html#upgrade_10_performance_impact
http://avro.apache.org/docs/current/spec.html#names

Details are in the following topics:

Section 3.3.1, “About keys in Debezium PostgreSQL change events”

Section 3.3.2, “About values in Debezium PostgreSQL change events”

3.3.1. About keys in Debezium PostgreSQL change events

For a given table, the change event’s key has a structure that contains a field for each column in the
primary key of the table at the time the event was created. Alternatively, if the table has REPLICA
IDENTITY set to FULL or USING INDEX there is a field for each unique key constraint.

Consider a customers table defined in the public database schema and the example of a change event
key for that table.

Example table

Example change event key

If the database.server.name connector configuration property has the value PostgreSQL_server,
every change event for the customers table while it has this definition has the same key structure,
which in JSON looks like this:

Table 3.3. Description of change event key

CREATE TABLE customers (
 id SERIAL,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL,
 PRIMARY KEY(id)
);

{
 "schema": { 1
 "type": "struct",
 "name": "PostgreSQL_server.public.customers.Key", 2
 "optional": false, 3
 "fields": [4
 {
 "name": "id",
 "index": "0",
 "schema": {
 "type": "INT32",
 "optional": "false"
 }
 }
]
 },
 "payload": { 5
 "id": "1"
 },
}

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

75

Item Field name Description

1 schema The schema portion of the key specifies a Kafka Connect
schema that describes what is in the key’s payload portion.

2 PostgreSQL_server ​
.inventory.customers ​.Key

Name of the schema that defines the structure of the key’s
payload. This schema describes the structure of the primary key
for the table that was changed. Key schema names have the
format connector-name.database-name.table-name.Key. In this
example:

PostgreSQL_server is the name of the connector
that generated this event.

inventory is the database that contains the table that
was changed.

customers is the table that was updated.

3 optional Indicates whether the event key must contain a value in its
payload field. In this example, a value in the key’s payload is
required. A value in the key’s payload field is optional when a
table does not have a primary key.

4 fields Specifies each field that is expected in the payload, including
each field’s name, index, and schema.

5 payload Contains the key for the row for which this change event was
generated. In this example, the key, contains a single id field
whose value is 1.

NOTE

Although the column.blacklist and column.whitelist connector configuration properties
allow you to capture only a subset of table columns, all columns in a primary or unique key
are always included in the event’s key.

WARNING

If the table does not have a primary or unique key, then the change event’s key is
null. The rows in a table without a primary or unique key constraint cannot be
uniquely identified.

3.3.2. About values in Debezium PostgreSQL change events

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,



Red Hat Integration 2020-Q3 Debezium User Guide

76

update or delete data all have a value payload with an envelope structure.

Consider the same sample table that was used to show an example of a change event key:

The value portion of a change event for a change to this table varies according to the REPLICA
IDENTITY setting and the operation that the event is for.

Details follow in these sections:

Replica identity

create events

update events

Primary key updates

delete events

Tombstone events

Replica identity

REPLICA IDENTITY is a PostgreSQL-specific table-level setting that determines the amount of
information that is available to the logical decoding plug-in for UPDATE and DELETE events. More
specifically, the setting of REPLICA IDENTITY controls what (if any) information is available for the
previous values of the table columns involved, whenever an UPDATE or DELETE event occurs.

There are 4 possible values for REPLICA IDENTITY:

DEFAULT - The default behavior is that UPDATE and DELETE events contain the previous
values for the primary key columns of a table if that table has a primary key. For an UPDATE
event, only the primary key columns with changed values are present.
If a table does not have a primary key, the connector does not emit UPDATE or DELETE events
for that table. For a table without a primary key, the connector emits only create events.
Typically, a table without a primary key is used for appending messages to the end of the table,
which means that UPDATE and DELETE events are not useful.

NOTHING - Emitted events for UPDATE and DELETE operations do not contain any
information about the previous value of any table column.

FULL - Emitted events for UPDATE and DELETE operations contain the previous values of all
columns in the table.

INDEX index-name - Emitted events for UPDATE and DELETE operations contain the
previous values of the columns contained in the specified index. UPDATE events also contain
the indexed columns with the updated values.

create events

CREATE TABLE customers (
 id SERIAL,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL,
 PRIMARY KEY(id)
);

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

77

https://www.postgresql.org/docs/current/static/sql-altertable.html#SQL-CREATETABLE-REPLICA-IDENTITY

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers table:

{
 "schema": { 1
 "type": "struct",
 "fields": [
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "PostgreSQL_server.inventory.customers.Value", 2
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,

Red Hat Integration 2020-Q3 Debezium User Guide

78

 "field": "email"
 }
],
 "optional": true,
 "name": "PostgreSQL_server.inventory.customers.Value",
 "field": "after"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {
 "type": "string",
 "optional": false,
 "field": "schema"
 },
 {
 "type": "string",
 "optional": false,
 "field": "table"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "txId"
 },

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

79

 {
 "type": "int64",
 "optional": true,
 "field": "lsn"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "xmin"
 }
],
 "optional": false,
 "name": "io.debezium.connector.postgresql.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "PostgreSQL_server.inventory.customers.Envelope" 4
 },
 "payload": { 5
 "before": null, 6
 "after": { 7
 "id": 1,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": { 8
 "version": "1.2.4.Final",
 "connector": "postgresql",
 "name": "PostgreSQL_server",
 "ts_ms": 1559033904863,
 "snapshot": true,
 "db": "postgres",
 "schema": "public",
 "table": "customers",
 "txId": 555,
 "lsn": 24023128,
 "xmin": null
 },
 "op": "c", 9
 "ts_ms": 1559033904863 10
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

80

Table 3.4. Descriptions of create event value fields

Item Field name Description

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular table.

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

PostgreSQL_server.inventory.customers.Value is the schema for
the payload’s before and after fields. This schema is specific to the
customers table.

Names of schemas for before and after fields are of the form
logicalName.tableName.Value, which ensures that the schema name is
unique in the database. This means that when using the Avro converter, the
resulting Avro schema for each table in each logical source has its own
evolution and history.

3 name io.debezium.connector.postgresql.Source is the schema for the
payload’s source field. This schema is specific to the PostgreSQL
connector. The connector uses it for all events that it generates.

4 name PostgreSQL_server.inventory.customers.Envelope is the schema
for the overall structure of the payload, where PostgreSQL_server is the
connector name, inventory is the database, and customers is the table.

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that the JSON representations of the events are much larger
than the rows they describe. This is because the JSON representation must
include the schema and the payload portions of the message. However, by
using the Avro converter, you can significantly decrease the size of the
messages that the connector streams to Kafka topics.

6 before An optional field that specifies the state of the row before the event
occurred. When the op field is c for create, as it is in this example, the
before field is null since this change event is for new content.

NOTE

Whether or not this field is available is dependent on the
REPLICA IDENTITY setting for each table.

7 after An optional field that specifies the state of the row after the event
occurred. In this example, the after field contains the values of the new row’s
id, first_name, last_name, and email columns.

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

81

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-replica-identity

8 source Mandatory field that describes the source metadata for the event. This field
contains information that you can use to compare this event with other
events, with regard to the origin of the events, the order in which the events
occurred, and whether events were part of the same transaction. The
source metadata includes:

Debezium version

Connector type and name

Database and table that contains the new row

Schema name

If the event was part of a snapshot

ID of the transaction in which the operation was performed

Offset of the operation in the database log

Timestamp for when the change was made in the database

9 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a row. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

10 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

update events

The value of a change event for an update in the sample customers table has the same schema as a
create event for that table. Likewise, the event value’s payload has the same structure. However, the
event value payload contains different values in an update event. Here is an example of a change event
value in an event that the connector generates for an update in the customers table:

{
 "schema": { ... },

Red Hat Integration 2020-Q3 Debezium User Guide

82

Table 3.5. Descriptions of update event value fields

Item Field name Description

1 before An optional field that contains values that were in the row before the
database commit. In this example, only the primary key column, id, is present
because the table’s REPLICA IDENTITY setting is, by default, DEFAULT.
+ For an update event to contain the previous values of all columns in the
row, you would have to change the customers table by running ALTER
TABLE customers REPLICA IDENTITY FULL.

2 after An optional field that specifies the state of the row after the event
occurred. In this example, the first_name value is now Anne Marie.

 "payload": {
 "before": { 1
 "id": 1
 },
 "after": { 2
 "id": 1,
 "first_name": "Anne Marie",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
 },
 "source": { 3
 "version": "1.2.4.Final",
 "connector": "postgresql",
 "name": "PostgreSQL_server",
 "ts_ms": 1559033904863,
 "snapshot": null,
 "db": "postgres",
 "schema": "public",
 "table": "customers",
 "txId": 556,
 "lsn": 24023128,
 "xmin": null
 },
 "op": "u", 4
 "ts_ms": 1465584025523 5
 }
}

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

83

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-replica-identity

3 source Mandatory field that describes the source metadata for the event. The
source field structure has the same fields as in a create event, but some
values are different. The source metadata includes:

Debezium version

Connector type and name

Database and table that contains the new row

Schema name

If the event was part of a snapshot

ID of the transaction in which the operation was performed

Offset of the operation in the database log

Timestamp for when the change was made in the database

4 op Mandatory string that describes the type of operation. In an update event
value, the op field value is u, signifying that this row changed because of an
update.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

NOTE

Updating the columns for a row’s primary/unique key changes the value of the row’s key.
When a key changes, Debezium outputs three events: a DELETE event and a tombstone
event with the old key for the row, followed by an event with the new key for the row.
Details are in the next section.

Primary key updates

An UPDATE operation that changes a row’s primary key field(s) is known as a primary key change. For a
primary key change, in place of sending an UPDATE event record, the connector sends a DELETE
event record for the old key and a CREATE event record for the new (updated) key. These events have
the usual structure and content, and in addition, each one has a message header related to the primary
key change:

The DELETE event record has __debezium.newkey as a message header. The value of this
header is the new primary key for the updated row.

The CREATE event record has __debezium.oldkey as a message header. The value of this
header is the previous (old) primary key that the updated row had.

Red Hat Integration 2020-Q3 Debezium User Guide

84

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-tombstone-events

delete events

The value in a delete change event has the same schema portion as create and update events for the
same table. The payload portion in a delete event for the sample customers table looks like this:

Table 3.6. Descriptions of delete event value fields

Item Field name Description

1 before Optional field that specifies the state of the row before the event occurred.
In a delete event value, the before field contains the values that were in the
row before it was deleted with the database commit.

In this example, the before field contains only the primary key column
because the table’s REPLICA IDENTITY setting is DEFAULT.

2 after Optional field that specifies the state of the row after the event occurred. In
a delete event value, the after field is null, signifying that the row no longer
exists.

{
 "schema": { ... },
 "payload": {
 "before": { 1
 "id": 1
 },
 "after": null, 2
 "source": { 3
 "version": "1.2.4.Final",
 "connector": "postgresql",
 "name": "PostgreSQL_server",
 "ts_ms": 1559033904863,
 "snapshot": null,
 "db": "postgres",
 "schema": "public",
 "table": "customers",
 "txId": 556,
 "lsn": 46523128,
 "xmin": null
 },
 "op": "d", 4
 "ts_ms": 1465581902461 5
 }
}

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

85

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-replica-identity

3 source Mandatory field that describes the source metadata for the event. In a
delete event value, the source field structure is the same as for create and
update events for the same table. Many source field values are also the
same. In a delete event value, the ts_ms and lsn field values, as well as
other values, might have changed. But the source field in a delete event
value provides the same metadata:

Debezium version

Connector type and name

Database and table that contains the new row

Schema name

If the event was part of a snapshot

ID of the transaction in which the operation was performed

Offset of the operation in the database log

Timestamp for when the change was made in the database

4 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this row was deleted.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

A delete change event record provides a consumer with the information it needs to process the removal
of this row.

WARNING

For a consumer to be able to process a delete event generated for a table that does
not have a primary key, set the table’s REPLICA IDENTITY to FULL. When a table
does not have a primary key and the table’s REPLICA IDENTITY is set to
DEFAULT or NOTHING, a delete event has no before field.

PostgreSQL connector events are designed to work with Kafka log compaction. Log compaction
enables removal of some older messages as long as at least the most recent message for every key is
kept. This lets Kafka reclaim storage space while ensuring that the topic contains a complete data set



Red Hat Integration 2020-Q3 Debezium User Guide

86

https://kafka.apache.org/documentation#compaction

and can be used for reloading key-based state.

Tombstone events

When a row is deleted, the delete event value still works with log compaction, because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
same key, the message value must be null. To make this possible, the PostgreSQL connector follows a
delete event with a special tombstone event that has the same key but a null value.

3.4. HOW DEBEZIUM POSTGRESQL CONNECTORS MAP DATA TYPES

The PostgreSQL connector represents changes to rows with events that are structured like the table in
which the row exists. The event contains a field for each column value. How that value is represented in
the event depends on the PostgreSQL data type of the column. This section describes these mappings.

Details are in the following sections:

Basic types

Temporal types

TIMESTAMP type

Decimal types

HSTORE type

Domain types

Network address types

PostGIS types

Toasted values

Basic types

The following table describes how the connector maps basic PostgreSQL data types to a literal type and
a semantic type in event fields.

literal type describes how the value is literally represented using Kafka Connect schema types:
INT8, INT16, INT32, INT64, FLOAT32, FLOAT64, BOOLEAN, STRING, BYTES, ARRAY, MAP,
and STRUCT.

semantic type describes how the Kafka Connect schema captures the meaning of the field using
the name of the Kafka Connect schema for the field.

Table 3.7. Mappings for PostgreSQL basic data types

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

BOOLEAN BOOLEAN n/a

BIT(1) BOOLEAN n/a

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

87

BIT(> 1) BYTES io.debezium.data.Bits

The length schema parameter contains an integer that
represents the number of bits. The resulting byte[]
contains the bits in little-endian form and is sized to
contain the specified number of bits. For example,
numBytes = n/8 + (n % 8 == 0 ? 0 : 1) where n is the
number of bits.

BIT VARYING[(M)] BYTES io.debezium.data.Bits

The length schema parameter contains an integer that
represents the number of bits (2^31 - 1 in case no length is
given for the column). The resulting byte[] contains the
bits in little-endian form and is sized based on the content.
The specified size (M) is stored in the length parameter of
the io.debezium.data.Bits type.

SMALLINT,
SMALLSERIAL

INT16 n/a

INTEGER, SERIAL INT32 n/a

BIGINT, BIGSERIAL INT64 n/a

REAL FLOAT32 n/a

DOUBLE PRECISION FLOAT64 n/a

CHAR[(M)] STRING n/a

VARCHAR[(M)] STRING n/a

CHARACTER[(M)] STRING n/a

CHARACTER
VARYING[(M)]

STRING n/a

TIMESTAMPTZ,
TIMESTAMP WITH
TIME ZONE

STRING io.debezium.time.ZonedTimestamp

A string representation of a timestamp with timezone
information, where the timezone is GMT.

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

Red Hat Integration 2020-Q3 Debezium User Guide

88

TIMETZ, TIME WITH
TIME ZONE

STRING io.debezium.time.ZonedTime

A string representation of a time value with timezone
information, where the timezone is GMT.

INTERVAL [P] INT64 io.debezium.time.MicroDuration
(default)

The approximate number of microseconds for a time
interval using the 365.25 / 12.0 formula for days per
month average.

INTERVAL [P] STRING io.debezium.time.Interval
(when interval.handling.mode is set to string)

The string representation of the interval value that follows
the pattern
P<years>Y<months>M<days>DT<hours>H<minute
s>M<seconds>S, for example,
P1Y2M3DT4H5M6.78S.

BYTEA BYTES or
STRING

n/a

Either the raw bytes (the default), a base64-encoded
string, or a hex-encoded string, based on the connector’s
binary handling mode setting.

JSON, JSONB STRING io.debezium.data.Json

Contains the string representation of a JSON document,
array, or scalar.

XML STRING io.debezium.data.Xml

Contains the string representation of an XML document.

UUID STRING io.debezium.data.Uuid

Contains the string representation of a PostgreSQL UUID
value.

POINT STRUCT io.debezium.data.geometry.Point

Contains a structure with two FLOAT64 fields, (x,y). Each
field represents the coordinates of a geometric point.

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

89

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-property-binary-handling-mode

LTREE STRING io.debezium.data.Ltree

Contains the string representation of a PostgreSQL
LTREE value.

CITEXT STRING n/a

INET STRING n/a

INT4RANGE STRING n/a

Range of integer.

INT8RANGE STRING n/a

Range of bigint.

NUMRANGE STRING n/a

Range of numeric.

TSRANGE STRING n/a

Contains the string representation of a timestamp range
without a time zone.

TSTZRANGE STRING n/a

Contains the string representation of a timestamp range
with the local system time zone.

DATERANGE STRING n/a

Contains the string representation of a date range. It
always has an exclusive upper-bound.

ENUM STRING io.debezium.data.Enum

Contains the string representation of the PostgreSQL
ENUM value. The set of allowed values is maintained in the
allowed schema parameter.

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

Temporal types

Other than PostgreSQL’s TIMESTAMPTZ and TIMETZ data types, which contain time zone information,
how temporal types are mapped depends on the value of the time.precision.mode connector
configuration property. The following sections describe these mappings:

Red Hat Integration 2020-Q3 Debezium User Guide

90

time.precision.mode=adaptive

time.precision.mode=adaptive_time_microseconds

time.precision.mode=connect

time.precision.mode=adaptive

When the time.precision.mode property is set to adaptive, the default, the connector determines the
literal type and semantic type based on the column’s data type definition. This ensures that events
exactly represent the values in the database.

Table 3.8. Mappings when time.precision.mode is adaptive

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

DATE INT32 io.debezium.time.Date

Represents the number of days since the epoch.

TIME(1), TIME(2),
TIME(3)

INT32 io.debezium.time.Time

Represents the number of milliseconds past midnight, and
does not include timezone information.

TIME(4), TIME(5),
TIME(6)

INT64 io.debezium.time.MicroTime

Represents the number of microseconds past midnight,
and does not include timezone information.

TIMESTAMP(1),
TIMESTAMP(2),
TIMESTAMP(3)

INT64 io.debezium.time.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

TIMESTAMP(4),
TIMESTAMP(5),
TIMESTAMP(6),
TIMESTAMP

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds since the epoch,
and does not include timezone information.

time.precision.mode=adaptive_time_microseconds

When the time.precision.mode configuration property is set to adaptive_time_microseconds, the
connector determines the literal type and semantic type for temporal types based on the column’s data
type definition. This ensures that events exactly represent the values in the database, except all TIME
fields are captured as microseconds.

Table 3.9. Mappings when time.precision.mode is adaptive_time_microseconds

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

91

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

DATE INT32 io.debezium.time.Date

Represents the number of days since epoch.

TIME([P]) INT64 io.debezium.time.MicroTime

Represents the time value in microseconds and does not
include timezone information. PostgreSQL allows precision
P to be in the range 0-6 to store up to microsecond
precision.

TIMESTAMP(1) ,
TIMESTAMP(2),
TIMESTAMP(3)

INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past epoch, and
does not include timezone information.

TIMESTAMP(4) ,
TIMESTAMP(5),
TIMESTAMP(6),
TIMESTAMP

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds past epoch, and
does not include timezone information.

time.precision.mode=connect

When the time.precision.mode configuration property is set to connect, the connector uses Kafka
Connect logical types. This may be useful when consumers can handle only the built-in Kafka Connect
logical types and are unable to handle variable-precision time values. However, since PostgreSQL
supports microsecond precision, the events generated by a connector with the connect time precision
mode results in a loss of precision when the database column has a fractional second precision value
that is greater than 3.

Table 3.10. Mappings when time.precision.mode is connect

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

DATE INT32 org.apache.kafka.connect.data.Date

Represents the number of days since the epoch.

TIME([P]) INT64 org.apache.kafka.connect.data.Time

Represents the number of milliseconds since midnight, and
does not include timezone information. PostgreSQL allows
P to be in the range 0-6 to store up to microsecond
precision, though this mode results in a loss of precision
when P is greater than 3.

Red Hat Integration 2020-Q3 Debezium User Guide

92

TIMESTAMP([P]) INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information. PostgreSQL
allows P to be in the range 0-6 to store up to microsecond
precision, though this mode results in a loss of precision
when P is greater than 3.

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

TIMESTAMP type

The TIMESTAMP type represents a timestamp without time zone information. Such columns are
converted into an equivalent Kafka Connect value based on UTC. For example, the TIMESTAMP value
"2018-06-20 15:13:16.945104" is represented by an io.debezium.time.MicroTimestamp with the value
"1529507596945104" when time.precision.mode is not set to connect.

The timezone of the JVM running Kafka Connect and Debezium does not affect this conversion.

Decimal types

The setting of the PostgreSQL connector configuration property, decimal.handling.mode determines
how the connector maps decimal types.

When the decimal.handling.mode property is set to precise, the connector uses the Kafka Connect
org.apache.kafka.connect.data.Decimal logical type for all DECIMAL and NUMERIC columns. This is
the default mode.

Table 3.11. Mappings when decimal.handling.mode is precise

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

NUMERIC[(M[,D])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer
representing how many digits the decimal point was
shifted.

DECIMAL[(M[,D])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer
representing how many digits the decimal point was
shifted.

There is an exception to this rule. When the NUMERIC or DECIMAL types are used without scale
constraints, the values coming from the database have a different (variable) scale for each value. In this
case, the connector uses io.debezium.data.VariableScaleDecimal, which contains both the value and
the scale of the transferred value.

Table 3.12. Mappings of decimal types when there are no scale constraints

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

93

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

NUMERIC STRUCT io.debezium.data.VariableScaleDecimal

Contains a structure with two fields: scale of type INT32
that contains the scale of the transferred value and value
of type BYTES containing the original value in an unscaled
form.

DECIMAL STRUCT io.debezium.data.VariableScaleDecimal

Contains a structure with two fields: scale of type INT32
that contains the scale of the transferred value and value
of type BYTES containing the original value in an unscaled
form.

When the decimal.handling.mode property is set to double, the connector represents all DECIMAL
and NUMERIC values as Java double values and encodes them as shown in the following table.

Table 3.13. Mappings when decimal.handling.mode is double

PostgreSQL data type Literal type (schema type) Semantic type (schema name)

NUMERIC[(M[,D])] FLOAT64

DECIMAL[(M[,D])] FLOAT64

The last possible setting for the decimal.handling.mode configuration property is string. In this case,
the connector represents DECIMAL and NUMERIC values as their formatted string representation, and
encodes them as shown in the following table.

Table 3.14. Mappings when decimal.handling.mode is string

PostgreSQL data type Literal type (schema type) Semantic type (schema name)

NUMERIC[(M[,D])] STRING

DECIMAL[(M[,D])] STRING

PostgreSQL supports NaN (not a number) as a special value to be stored in DECIMAL/NUMERIC values
when the setting of decimal.handling.mode is string or double. In this case, the connector encodes
NaN as either Double.NaN or the string constant NAN.

HSTORE type

When the hstore.handling.mode connector configuration property is set to json (the default), the
connector represents HSTORE values as string representations of JSON values and encodes them as
shown in the following table. When the hstore.handling.mode property is set to map, the connector
uses the MAP schema type for HSTORE values.

Red Hat Integration 2020-Q3 Debezium User Guide

94

Table 3.15. Mappings for HSTORE data type

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

HSTORE STRING io.debezium.data.Json

Example: output representation using the JSON converter
is {\"key\" : \"val\"}

HSTORE MAP n/a

Example: output representation using the JSON converter
is {"key" : "val"}

Domain types

PostgreSQL supports user-defined types that are based on other underlying types. When such column
types are used, Debezium exposes the column’s representation based on the full type hierarchy.

IMPORTANT

Capturing changes in columns that use PostgreSQL domain types requires special
consideration. When a column is defined to contain a domain type that extends one of
the default database types and the domain type defines a custom length or scale, the
generated schema inherits that defined length or scale.

When a column is defined to contain a domain type that extends another domain type
that defines a custom length or scale, the generated schema does not inherit the defined
length or scale because that information is not available in the PostgreSQL driver’s
column metadata.

Network address types

PostgreSQL has data types that can store IPv4, IPv6, and MAC addresses. It is better to use these types
instead of plain text types to store network addresses. Network address types offer input error checking
and specialized operators and functions.

Table 3.16. Mappings for network address types

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

INET STRING n/a

IPv4 and IPv6 networks

CIDR STRING n/a

IPv4 and IPv6 hosts and networks

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

95

MACADDR STRING n/a

MAC addresses

MACADDR8 STRING n/a

MAC addresses in EUI-64 format

PostgreSQL data type Literal type
(schema type)

Semantic type (schema name)

PostGIS types

The PostgreSQL connector supports all PostGIS data types.

Table 3.17. Mappings of PostGIS data types

PostGIS data type Literal type
(schema type)

Semantic type (schema name)

GEOMETRY
(planar)

STRUCT io.debezium.data.geometry.Geometry

Contains a structure with two fields:

srid (INT32) - Spatial Reference System
Identifier that defines what type of geometry
object is stored in the structure.

wkb (BYTES) - A binary representation of the
geometry object encoded in the Well-Known-
Binary format.

For format details, see Open Geospatial Consortium
Simple Features Access specification.

GEOGRAPHY
(spherical)

STRUCT io.debezium.data.geometry.Geography

Contains a structure with two fields:

srid (INT32) - Spatial Reference System
Identifier that defines what type of geography
object is stored in the structure.

wkb (BYTES) - A binary representation of the
geometry object encoded in the Well-Known-
Binary format.

For format details, see Open Geospatial Consortium
Simple Features Access specification.

Toasted values

PostgreSQL has a hard limit on the page size. This means that values that are larger than around 8 KBs

Red Hat Integration 2020-Q3 Debezium User Guide

96

http://postgis.net
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

need to be stored by using link::https://www.postgresql.org/docs/current/storage-toast.html[TOAST
storage]. This impacts replication messages that are coming from the database. Values that were stored
by using the TOAST mechanism and that have not been changed are not included in the message,
unless they are part of the table’s replica identity. There is no safe way for Debezium to read the missing
value out-of-bands directly from the database, as this would potentially lead to race conditions.
Consequently, Debezium follows these rules to handle toasted values:

Tables with REPLICA IDENTITY FULL - TOAST column values are part of the before and after
fields in change events just like any other column.

Tables with REPLICA IDENTITY DEFAULT - When receiving an UPDATE event from the
database, any unchanged TOAST column value that is not part of the replica identity is not
contained in the event. Similarly, when receiving a DELETE event, no TOAST columns, if any, are
in the before field. As Debezium cannot safely provide the column value in this case, the
connector returns a placeholder value as defined by the connector configuration property,
toasted.value.placeholder.

3.5. SETTING UP POSTGRESQL TO RUN A DEBEZIUM CONNECTOR

This release of Debezium supports only the native pgoutput logical replication stream. To set up
PostgreSQL so that it uses the pgoutput plug-in, you must enable a replication slot, and configure a
user with sufficient privileges to perform the replication.

Details are in the following topics:

Section 3.5.1, “Configuring a replication slot for the Debezium pgoutput plug-in”

Section 3.5.2, “Setting up PostgreSQL permissions required by Debezium connectors”

Section 3.5.3, “Configuring PostgreSQL to manage Debezium WAL disk space consumption”

3.5.1. Configuring a replication slot for the Debezium pgoutput plug-in

PostgreSQL’s logical decoding uses replication slots. To configure a replication slot, specify the
following in the postgresql.conf file:

wal_level=logical
max_wal_senders=1
max_replication_slots=1

These settings instruct the PostgreSQL server as follows:

wal_level - Use logical decoding with the write-ahead log.

max_wal_senders - Use a maximum of one separate process for processing WAL changes.

max_replication_slots - Allow a maximum of one replication slot to be created for streaming
WAL changes.

Replication slots are guaranteed to retain all WAL entries that are required for Debezium even during
Debezium outages. Consequently, it is important to closely monitor replication slots to avoid:

Too much disk consumption

Any conditions, such as catalog bloat, that can happen if a replication slot stays unused for too

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

97

Any conditions, such as catalog bloat, that can happen if a replication slot stays unused for too
long

For more information, see the PostgreSQL documentation for replication slots .

NOTE

Familiarity with the mechanics and configuration of the PostgreSQL write-ahead log is
helpful for using the Debezium PostgreSQL connector.

3.5.2. Setting up PostgreSQL permissions required by Debezium connectors

Setting up a PostgreSQL server to run a Debezium connector requires a database user who can perform
replications. Replication can be performed only by a database user who has appropriate permissions and
only for a configured number of hosts. Also, you must configure the PostgreSQL server to allow
replication to take place between the server machine and the host on which the PostgreSQL connector
is running.

Prerequisites

PostgreSQL administrative permissions.

Procedure

1. To give replication permissions to a user, define a PostgreSQL role that has at least the
REPLICATION and LOGIN permissions. For example:

By default, superusers have both of the above roles.

2. Configure the PostgreSQL server to allow replication to take place between the server machine
and the host on which the PostgreSQL connector is running.

pg_hba.conf file example:

Table 3.18. Description of entries

Item Description

1 Instructs the server to allow replication for <youruser> locally, that is, on the
server machine.

2 Instructs the server to allow <youruser> on localhost to receive replication
changes using IPV4.

CREATE ROLE name REPLICATION LOGIN;

...
local replication <youruser> trust 1
host replication <youruser> 127.0.0.1/32 trust 2
host replication <youruser> ::1/128 trust 3
...

Red Hat Integration 2020-Q3 Debezium User Guide

98

https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION-SLOTS
https://www.postgresql.org/docs/current/static/wal-configuration.html

3 Instructs the server to allow <youruser> on localhost to receive replication
changes using IPV6.

Item Description

For more information about network masks, see the PostgreSQL documentation.

3.5.3. Configuring PostgreSQL to manage Debezium WAL disk space consumption

In certain cases, it is possible for PostgreSQL disk space consumed by WAL files to spike or increase out
of usual proportions. There are several possible reasons for this situation:

The LSN up to which the connector has received data is available in the confirmed_flush_lsn
column of the server’s pg_replication_slots view. Data that is older than this LSN is no longer
available, and the database is responsible for reclaiming the disk space.
Also in the pg_replication_slots view, the restart_lsn column contains the LSN of the oldest
WAL that the connector might require. If the value for confirmed_flush_lsn is regularly
increasing and the value of restart_lsn lags then the database needs to reclaim the space.

The database typically reclaims disk space in batch blocks. This is expected behavior and no
action by a user is necessary.

There are many updates in a database that is being tracked but only a tiny number of updates
are related to the table(s) and schema(s) for which the connector is capturing changes. This
situation can be easily solved with periodic heartbeat events. Set the heartbeat.interval.ms
connector configuration property.

The PostgreSQL instance contains multiple databases and one of them is a high-traffic
database. Debezium captures changes in another database that is low-traffic in comparison to
the other database. Debezium then cannot confirm the LSN as replication slots work per-
database and Debezium is not invoked. As WAL is shared by all databases, the amount used
tends to grow until an event is emitted by the database for which Debezium is capturing
changes. To overcome this, it is necessary to:

Enable periodic heartbeat record generation with the heartbeat.interval.ms connector
configuration property.

Regularly emit change events from the database for which Debezium is capturing changes.

A separate process would then periodically update the table by either inserting a new row or
repeatedly updating the same row. PostgreSQL then invokes Debezium, which confirms the
latest LSN and allows the database to reclaim the WAL space. This task can be automated by
means of the heartbeat.action.query connector configuration property.

3.6. DEPLOYING AND MANAGING DEBEZIUM POSTGRESQL
CONNECTORS

To deploy a Debezium PostgreSQL connector, add the connector files to Kafka Connect, create a
custom container to run the connector, and add connector configuration to your container. Details are in
the following topics:

Section 3.6.1, “Deploying Debezium PostgreSQL connectors”

Section 3.6.2, “Monitoring Debezium PostgreSQL connector performance”

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

99

https://www.postgresql.org/docs/current/static/datatype-net-types.html
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-property-heartbeat-interval-ms
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-property-heartbeat-action-query

Section 3.6.3, “Description of Debezium PostgreSQL connector configuration properties”

3.6.1. Deploying Debezium PostgreSQL connectors

To deploy a Debezium PostgreSQL connector, you need to build a custom Kafka Connect container
image that contains the Debezium connector archive and push this container image to a container
registry.You then need to create two custom resources (CRs):

A KafkaConnect CR that configures your Kafka Connector and that specifies the name of the
image that you created to run your Debezium connector. You apply this CR to the OpenShift
Kafka instance.

A KafkaConnector CR that configures your Debezium PostgreSQL connector. You apply this
CR to the OpenShift instance where Red Hat AMQ Streams is deployed.

Prerequisites

PostgreSQL is running and you performed the steps to set up PostgreSQL to run a Debezium
connector.

Red Hat AMQ Streams was used to set up and start running Apache Kafka and Kafka Connect
on OpenShift. AMQ Streams offers operators and images that bring Kafka to OpenShift.

Podman or Docker is installed.

You have an account and permissions to create and manage containers in the container registry
(such as quay.io or docker.io) to which you plan to add the container that will run your
Debezium connector.

Procedure

1. Create the Debezium PostgreSQL container for Kafka Connect:

a. Download the Debezium PostgreSQL connector archive.

b. Extract the Debezium PostgreSQL connector archive to create a directory structure for the
connector plug-in, for example:

./my-plugins/
├── debezium-connector-postgresql
│ ├── ...

c. Create a Docker file that uses registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0
as the base image. For example, from a terminal window, enter the following:

cat <<EOF >debezium-container-for-postgresql.yaml 1
FROM {DockerKafkaConnect}
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/ 2
USER 1001
EOF

(1) - You can specify any file name that you want.

(2) - Replace my-plugins with the name of your plug-ins directory.

The command creates a Docker file with the name debezium-container-for-

Red Hat Integration 2020-Q3 Debezium User Guide

100

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#setting-up-postgresql-to-run-a-debezium-connector
https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

The command creates a Docker file with the name debezium-container-for-
postgresql.yaml in the current directory.

d. Build the container image from the debezium-container-for-postgresql.yaml Docker file
that you created in the previous step. From the directory that contains the file, run the
following command:

This command builds a container image with the name debezium-container-for-
postgresql.

e. Push your custom image to a container registry such as quay.io or any internal container
registry. Ensure that this registry is reachable from your OpenShift instance. For example:

f. Create a new Debezium PostgreSQL KafkaConnect custom resource (CR). For example,
create a KafkaConnect CR with the name dbz-connect.yaml that specifies annotations
and image properties as shown in the following example:

(1) - metadata.annotations indicates to the Cluster Operator that KafkaConnector
resources are used to configure connectors in this Kafka Connect cluster.

(2) - spec.image specifies the name of the image that you created to run your Debezium
connector. This property overrides the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE
variable in the Cluster Operator.

g. Apply your KafkaConnect CR to the OpenShift Kafka instance by running the following
command:

This updates your Kafka Connect environment in OpenShift to add a Kafka Connector
instance that specifies the name of the image that you created to run your Debezium
connector.

2. Create a KafkaConnector custom resource that configures your Debezium PostgreSQL
connector instance.
You configure a Debezium PostgreSQL connector in a .yaml file that sets connector
configuration properties. A connector configuration might instruct Debezium to produce events
for a subset of the schemas and tables, or it might set properties so that Debezium ignores,
masks, or truncates values in specified columns that are sensitive, too large, or not needed. See
the complete list of PostgreSQL connector properties that can be specified in these
configurations.

The following example configures a Debezium connector that connects to a PostgreSQL server

podman build -t debezium-container-for-postgresql:latest .

podman push debezium-container-for-postgresql:latest

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect-cluster
 annotations: strimzi.io/use-connector-resources: "true" 1
spec:
 image: debezium-container-for-postgresql 2

oc create -f dbz-connect.yaml

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

101

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-connector-properties

The following example configures a Debezium connector that connects to a PostgreSQL server
host, 192.168.99.100, on port 5432. This host has a database named sampledb, a schema
named public, and fulfillment is the server’s logical name.

fulfillment-connector.yaml

(1) - The name of the connector.

(2) - Only one task should operate at any one time. Because the PostgreSQL connector reads
the PostgreSQL server’s binlog, using a single connector task ensures proper order and event
handling. The Kafka Connect service uses connectors to start one or more tasks that do the
work, and it automatically distributes the running tasks across the cluster of Kafka Connect
services. If any of the services stop or crash, those tasks will be redistributed to running services.

(3) - The connector’s configuration.

(4) - The name of the database host that is running the PostgreSQL server. In this example, the
database host name is 192.168.99.100.

(5) - A unique server name. The server name is the logical identifier for the PostgreSQL server
or cluster of servers. This name is used as the prefix for all Kafka topics that receive change
event records.

(6) - The connector captures changes in only the public schema. It is possible to configure the
connector to capture changes in only the tables that you choose. See table.include.list
connector configuration property.

(7) - The name of the PostgreSQL logical decoding plug-in installed on the PostgreSQL server.
While the only supported value for PostgreSQL 10 and later is pgoutput, you must explicitly set
plugin.name to pgoutput.

3. Create your connector instance with Kafka Connect. For example, if you saved your
KafkaConnector resource in the fulfillment-connector.yaml file, you would run the following
command:

apiVersion: kafka.strimzi.io/v1alpha1
 kind: KafkaConnector
 metadata:
 name: fulfillment-connector 1
 labels:
 strimzi.io/cluster: my-connect-cluster
 spec:
 class: io.debezium.connector.postgresql.PostgresConnector
 tasksMax: 1 2
 config: 3
 database.hostname: 192.168.99.100 4
 database.port: 5432
 database.user: debezium
 database.password: dbz
 database.dbname: sampledb
 database.server.name: fulfillment 5
 schema.include.list: public 6
 plugin.name: pgoutput 7

oc apply -f fulfillment-connector.yaml

Red Hat Integration 2020-Q3 Debezium User Guide

102

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-property-table-include-list
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-output-plugin

This registers fulfillment-connector and the connector starts to run against the sampledb
database as defined in the KafkaConnector CR.

4. Verify that the connector was created and has started:

a. Display the Kafka Connect log output to verify that the connector was created and has
started to capture changes in the specified database:

b. Review the log output to verify that the initial snapshot has been executed. You should see
something like this:

If the connector starts correctly without errors, it creates a topic for each table whose
changes the connector is capturing. For the example CR, there would be a topic for each
table in the public schema. Downstream applications can subscribe to these topics.

c. Verify that the connector created the topics by running the following command:

Results

When the connector starts, it performs a consistent snapshot of the PostgreSQL server databases that
the connector is configured for. The connector then starts generating data change events for row-level
operations and streaming change event records to Kafka topics.

3.6.2. Monitoring Debezium PostgreSQL connector performance

The Debezium PostgreSQL connector provides two types of metrics that are in addition to the built-in
support for JMX metrics that Zookeeper, Kafka, and Kafka Connect provide.

Snapshot metrics provide information about connector operation while performing a snapshot.

Streaming metrics provide information about connector operation when the connector is
capturing changes and streaming change event records.

Debezium monitoring documentation provides details for how to expose these metrics by using JMX.

3.6.2.1. Monitoring Debezium during snapshots of PostgreSQL databases

The MBean is debezium.postgres:type=connector-
metrics,context=snapshot,server=<database.server.name>.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

oc logs $(oc get pods -o name -l strimzi.io/cluster=my-connect-cluster)

... INFO Starting snapshot for ...

... INFO Snapshot is using user 'debezium' ...

oc get kafkatopics

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

103

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-snapshot-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-streaming-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#monitoring-debezium

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

Attributes Type Description

Red Hat Integration 2020-Q3 Debezium User Guide

104

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

Attributes Type Description

3.6.2.2. Monitoring Debezium PostgreSQL connector record streaming

The MBean is debezium.postgres:type=connector-
metrics,context=streaming,server=<database.server.name>.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

105

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

Attributes Type Description

3.6.3. Description of Debezium PostgreSQL connector configuration properties

The Debezium PostgreSQL connector has many configuration properties that you can use to achieve
the right connector behavior for your application. Many properties have default values. Information
about the properties is organized as follows:

Required configuration properties

Advanced configuration properties

Pass-through configuration properties

The following configuration properties are required unless a default value is available.

Table 3.19. Required connector configuration properties

Property Default Description

name Unique name for the connector. Attempting to
register again with the same name will fail. This
property is required by all Kafka Connect
connectors.

Red Hat Integration 2020-Q3 Debezium User Guide

106

connector.class The name of the Java class for the connector.
Always use a value of
io.debezium.connector.postgresql.Post
gresConnector for the PostgreSQL
connector.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The PostgreSQL
connector always uses a single task and
therefore does not use this value, so the default
is always acceptable.

plugin.name decoderbufs The name of the PostgreSQL logical decoding
plug-in installed on the PostgreSQL server.

The only supported value is pgoutput. You
must explicitly set plugin.name to pgoutput.

slot.name debezium The name of the PostgreSQL logical decoding
slot that was created for streaming changes
from a particular plug-in for a particular
database/schema. The server uses this slot to
stream events to the Debezium connector that
you are configuring.

Slot names must conform to PostgreSQL
replication slot naming rules, which state: "Each
replication slot has a name, which can contain
lower-case letters, numbers, and the
underscore character."

slot.drop.on.stop false Whether or not to delete the logical replication
slot when the connector stops in a graceful,
expected way. The default behavior is that the
replication slot remains configured for the
connector when the connector stops. When the
connector restarts, having the same replication
slot enables the connector to start processing
where it left off.

Set to true in only testing or development
environments. Dropping the slot allows the
database to discard WAL segments. When the
connector restarts it performs a new snapshot
or it can continue from a persistent offset in the
Kafka Connect offsets topic.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

107

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-output-plugin
https://www.postgresql.org/docs/current/static/warm-standby.html#STREAMING-REPLICATION-SLOTS-MANIPULATION

publication.name dbz_ ​publication The name of the PostgreSQL publication
created for streaming changes when using
pgoutput.

This publication is created at start-up if it does
not already exist and it includes all tables.
Debezium then applies its own
whitelist/blacklist filtering, if configured, to limit
the publication to change events for the
specific tables of interest. The connector user
must have superuser permissions to create this
publication, so it is usually preferable to create
the publication before starting the connector
for the first time.

If the publication already exists, either for all
tables or configured with a subset of tables,
Debezium uses the publication as it is defined.

database.hostname IP address or hostname of the PostgreSQL
database server.

database.port 5432 Integer port number of the PostgreSQL
database server.

database.user Name of the PostgreSQL database user for
connecting to the PostgreSQL database
server.

database.password Password to use when connecting to the
PostgreSQL database server.

database.dbname The name of the PostgreSQL database from
which to stream the changes.

database.server ​.name Logical name that identifies and provides a
namespace for the particular PostgreSQL
database server or cluster in which Debezium is
capturing changes. Only alphanumeric
characters and underscores should be used in
the database server logical name. The logical
name should be unique across all other
connectors, since it is used as a topic name
prefix for all Kafka topics that receive records
from this connector.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

108

schema.whitelist An optional, comma-separated list of regular
expressions that match names of schemas for
which you want to capture changes. Any
schema name not included in the whitelist is
excluded from having its changes captured. By
default, all non-system schemas have their
changes captured. Do not also set the
schema.blacklist property.

schema.blacklist An optional, comma-separated list of regular
expressions that match names of schemas for
which you do not want to capture changes. Any
schema whose name is not included in the
blacklist has its changes captured, with the
exception of system schemas. Do not also set
the schema.whitelist property.

table.whitelist An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables whose changes you want
to capture. Any table not included in the
whitelist does not have its changes captured.
Each identifier is of the form
schemaName.tableName. By default, the
connector captures changes in every non-
system table in each schema whose changes
are being captured. Do not also set the
table.blacklist property.

table.blacklist An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables whose changes you do not
want to capture. Any table not included in the
blacklist has it changes captured. Each
identifier is of the form
schemaName.tableName. Do not also set the
table.whitelist property.

column.whitelist An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns that should be included in
change event record values. Fully-qualified
names for columns are of the form
schemaName.tableName.columnName. Do not
also set the column.blacklist property.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

109

column.blacklist An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns that should be excluded
from change event record values. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. Do not
also set the column.whitelist property.

time.precision.mode adaptive Time, date, and timestamps can be
represented with different kinds of precision:

adaptive captures the time and timestamp
values exactly as in the database using either
millisecond, microsecond, or nanosecond
precision values based on the database
column’s type.

adaptive_time_microseconds captures
the date, datetime and timestamp values
exactly as in the database using either
millisecond, microsecond, or nanosecond
precision values based on the database
column’s type. An exception is TIME type
fields, which are always captured as
microseconds.

connect always represents time and
timestamp values by using Kafka Connect’s
built-in representations for Time, Date, and
Timestamp, which use millisecond precision
regardless of the database columns' precision.
See temporal values.

decimal.handling ​.mode precise Specifies how the connector should handle
values for DECIMAL and NUMERIC columns:

precise represents values by using
java.math.BigDecimal to represent values
in binary form in change events.

double represents values by using double
values, which might result in a loss of precision
but which is easier to use.

string encodes values as formatted strings,
which are easy to consume but semantic
information about the real type is lost. See
Decimal types.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

110

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-temporal-values
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-decimal-types

hstore.handling ​.mode map Specifies how the connector should handle
values for hstore columns:

map represents values by using MAP.

json represents values by using json string.
This setting encodes values as formatted
strings such as {"key" : "val"}. See
PostgreSQL HSTORE type.

interval.handling ​.mode numeric Specifies how the connector should handle
values for interval columns:

numeric represents intervals using
approximate number of microseconds.

string represents intervals exactly by using the
string pattern representation
P<years>Y<months>M<days>DT<hours>
H<minutes>M<seconds>S. For example:
P1Y2M3DT4H5M6.78S. See PostgreSQL
basic types.

database.sslmode disable Whether to use an encrypted connection to the
PostgreSQL server. Options include:

disable uses an unencrypted connection.

require uses a secure (encrypted) connection,
and fails if one cannot be established.

verify-ca behaves like require but also
verifies the server TLS certificate against the
configured Certificate Authority (CA)
certificates, or fails if no valid matching CA
certificates are found.

verify-full behaves like verify-ca but also
verifies that the server certificate matches the
host to which the connector is trying to
connect. See the PostgreSQL documentation
for more information.

database.sslcert The path to the file that contains the SSL
certificate for the client. See the PostgreSQL
documentation for more information.

database.sslkey The path to the file that contains the SSL
private key of the client. See the PostgreSQL
documentation for more information.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

111

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-hstore-type
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-basic-types
https://www.postgresql.org/docs/current/static/libpq-connect.html
https://www.postgresql.org/docs/current/static/libpq-connect.html
https://www.postgresql.org/docs/current/static/libpq-connect.html

database ​.sslpassword The password to access the client private key
from the file specified by database.sslkey.
See the PostgreSQL documentation for more
information.

database ​.sslrootcert The path to the file that contains the root
certificate(s) against which the server is
validated. See the PostgreSQL documentation
for more information.

database ​.tcpKeepAlive true Enable TCP keep-alive probe to verify that the
database connection is still alive. See the
PostgreSQL documentation for more
information.

tombstones.on ​.delete true Controls whether a tombstone event should be
generated after a delete event.

true - delete operations are represented by a
delete event and a subsequent tombstone
event.

false - only a delete event is sent.

After a delete operation, emitting a tombstone
event enables Kafka to delete all change event
records that have the same key as the deleted
row.

column.truncate.to.length
.chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In
change event records, values in these columns
are truncated if they are longer than the
number of characters specified by length in the
property name. You can specify multiple
properties with different lengths in a single
configuration. Length must be a positive
integer, for example,
column.truncate.to.20.chars.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

112

https://www.postgresql.org/docs/current/static/libpq-connect.html
https://www.postgresql.org/docs/current/static/libpq-connect.html
https://www.postgresql.org/docs/current/static/libpq-connect.html

column.mask.with ​
.length.chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In
change event values, the values in the specified
table columns are replaced with length number
of asterisk (*) characters. You can specify
multiple properties with different lengths in a
single configuration. Length must be a positive
integer or zero. When you specify zero, the
connector replaces a value with an empty
string.

column.mask ​
.hash.hashAlgorithm ​
.with.salt.salt

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In
change event values, the values in the specified
columns are replaced with pseudonyms.

A pseudonym consists of the hashed value that
results from applying the specifed
hashAlgorithm and salt. Based on the hash
function that is used, referential integrity is
kept while column values are replaced with
pseudonyms. Supported hash functions are
described in the {link-java7-standard-names}
[MessageDigest section] of the Java
Cryptography Architecture Standard Algorithm
Name Documentation.

If necessary, the pseudonym is automatically
shortened to the length of the column. You can
specify multiple properties with different hash
algorithms and salts in a single configuration. In
the following example, CzQMA0cB5K is a
randomly selected salt.

column.mask.hash.SHA-
256.with.salt.CzQMA0cB5K
=inventory.orders.customerName,invent
ory.shipment.customerName

Depending on the hashAlgorithm used, the salt
selected, and the actual data set, the resulting
masked data set might not be completely
masked.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

113

column.propagate ​
.source.type

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns. Fully-qualified names for
columns are of the form
databaseName.tableName.columnName, or
databaseName.schemaName.tableName.colum
nName.

For each specified column, the connector adds
the column’s original type and original length as
parameters to the corresponding field schemas
in the emitted change records. The following
added schema parameters propagate the
original type name and also the original length
for variable-width types:

__debezium.source.column.type +
__debezium.source.column.length +
__debezium.source.column.scale

This property is useful for properly sizing
corresponding columns in sink databases.

datatype.propagate ​
.source.type

n/a An optional, comma-separated list of regular
expressions that match the database-specific
data type name for some columns. Fully-
qualified data type names are of the form
databaseName.tableName.typeName, or
databaseName.schemaName.tableName.typeN
ame.

For these data types, the connector adds
parameters to the corresponding field schemas
in emitted change records. The added
parameters specify the original type and length
of the column:

__debezium.source.column.type +
__debezium.source.column.length +
__debezium.source.column.scale

These parameters propagate a column’s
original type name and length, for variable-
width types, respectively. This property is useful
for properly sizing corresponding columns in
sink databases.

See the list of PostgreSQL-specific data type
names.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

114

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-data-types

message.key ​.columns empty string A semicolon separated list of tables with
regular expressions that match table column
names. The connector maps values in matching
columns to key fields in change event records
that it sends to Kafka topics. This is useful when
a table does not have a primary key, or when
you want to order change event records in a
Kafka topic according to a field that is not a
primary key.

Separate entries with semicolons. Insert a
colon between the fully-qualified table name
and its regular expression. The format is:

schema-name.table-name:_regexp_;…​

For example,

schemaA.table_a:regex_1;schemaB.tabl
e_b:regex_2;schemaC.table_c:regex_3

If table_a has a an id column, and regex_1 is
^i (matches any column that starts with i), the
connector maps the value in table_a's id
column to a key field in change events that the
connector sends to Kafka.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

115

publication ​
.autocreate.mode

all_tables Applies only when streaming changes by using
the pgoutput plug-in. The setting determines
how creation of a publication should work.
Possible settings are:

all_tables - If a publication exists, the
connector uses it. If a publication does not
exist, the connector creates a publication for all
tables in the database for which the connector
is capturing changes. This requires that the
database user who has permission to perform
replications also has permission to create a
publication. This is granted with CREATE
PUBLICATION <publication_name> FOR
ALL TABLES;.

disabled - The connector does not attempt
to create a publication. A database
administrator or the user configured to
perform replications must have created the
publication before running the connector. If the
connector cannot find the publication, the
connector throws an exception and stops.

filtered - If a publication exists, the connector
uses it. If no publication exists, the connector
creates a new publication for tables that match
the current filter configuration as specified by
the database.exclude.list,
database.include.list, table.exclude.list,
and table.include.list connector
configuration properties. For example:
CREATE PUBLICATION
<publication_name> FOR TABLE <tbl1,
tbl2, tbl3>.

binary.handling ​.mode bytes Specifies how binary (bytea) columns should
be represented in change events:

bytes represents binary data as byte array.

base64 represents binary data as base64-
encoded strings.

hex represents binary data as hex-encoded
(base16) strings.

Property Default Description

The following advanced configuration properties have defaults that work in most situations and
therefore rarely need to be specified in the connector’s configuration.

Table 3.20. Advanced connector configuration properties

Red Hat Integration 2020-Q3 Debezium User Guide

116

https://www.postgresql.org/docs/current/sql-createpublication.html
https://www.postgresql.org/docs/current/logical-replication-publication.html

Property Default Description

snapshot.mode initial Specifies the criteria for performing a
snapshot when the connector starts:

initial - The connector performs a
snapshot only when no offsets have been
recorded for the logical server name.

always - The connector performs a
snapshot each time the connector starts.

never - The connector never performs
snapshots. When a connector is configured
this way, its behavior when it starts is as
follows. If there is a previously stored LSN in
the Kafka offsets topic, the connector
continues streaming changes from that
position. If no LSN has been stored, the
connector starts streaming changes from
the point in time when the PostgreSQL
logical replication slot was created on the
server. The never snapshot mode is useful
only when you know all data of interest is
still reflected in the WAL.

initial_only - The connector performs an
initial snapshot and then stops, without
processing any subsequent changes.

exported - The connector performs a
snapshot based on the point in time when
the replication slot was created. This is an
excellent way to perform the snapshot in a
lock-free way.

Thereference table for snapshot mode
settings has more details.

snapshot.lock ​.timeout.ms 10000 Positive integer value that specifies the
maximum amount of time (in milliseconds)
to wait to obtain table locks when
performing a snapshot. If the connector
cannot acquire table locks in this time
interval, the snapshot fails. How the
connector performs snapshots provides
details.

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

117

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#snapshot-mode-settings
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-snapshots

snapshot.select ​
.statement ​.overrides

 Controls which table rows are included in
snapshots. This property affects snapshots
only. It does not affect events that are
generated by the logical decoding plug-in.
Specify a comma-separated list of fully-
qualified table names in the form
databaseName.tableName.

For each table that you specify, also specify
another configuration property:
snapshot.select.statement.overrides.
DB_NAME.TABLE_NAME, for example:
snapshot.select.statement.overrides.
customers.orders. Set this property to a
SELECT statement that obtains only the
rows that you want in the snapshot. When
the connector performs a snapshot, it
executes this SELECT statement to
retrieve data from that table.

A possible use case for setting these
properties is large, append-only tables. You
can specify a SELECT statement that sets
a specific point for where to start a
snapshot, or where to resume a snapshot if
a previous snapshot was interrupted.

event.processing ​
.failure.handling ​.mode

fail Specifies how the connector should react
to exceptions during processing of events:

fail propagates the exception, indicates the
offset of the problematic event, and causes
the connector to stop.

warn logs the offset of the problematic
event, skips that event, and continues
processing.

skip skips the problematic event and
continues processing.

max.queue.size 20240 Positive integer value for the maximum size
of the blocking queue. The connector
places change events received from
streaming replication in the blocking queue
before writing them to Kafka. This queue
can provide backpressure when, for
example, writing records to Kafka is slower
that it should be or Kafka is not available.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

118

max.batch.size 10240 Positive integer value that specifies the
maximum size of each batch of events that
the connector processes.

poll.interval.ms 1000 Positive integer value that specifies the
number of milliseconds the connector
should wait for new change events to
appear before it starts processing a batch
of events. Defaults to 1000 milliseconds, or 1
second.

include.unknown ​
.datatypes

false Specifies connector behavior when the
connector encounters a field whose data
type is unknown. The default behavior is
that the connector omits the field from the
change event and logs a warning.

Set this property to true if you want the
change event to contain an opaque binary
representation of the field. This lets
consumers decode the field. You can
control the exact representation by setting
the binary handling mode property.

Consumers risk backward compatibility
issues when
include.unknown.datatypes is set to
true. Not only may the database-specific
binary representation change between
releases, but if the data type is eventually
supported by Debezium, the data type will
be sent downstream in a logical type, which
would require adjustments by consumers. In
general, when encountering unsupported
data types, create a feature request so that
support can be added.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

119

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-property-binary-handling-mode

database.initial ​
.statements

 A semicolon separated list of SQL
statements that the connector executes
when it establishes a JDBC connection to
the database. To use a semicolon as a
character and not as a delimiter, specify two
consecutive semicolons, ;;.

The connector may establish JDBC
connections at its own discretion.
Consequently, this property is useful for
configuration of session parameters only,
and not for executing DML statements.

The connector does not execute these
statements when it creates a connection for
reading the transaction log.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

120

heartbeat.interval ​.ms 0 Controls how frequently the connector
sends heartbeat messages to a Kafka topic.
The default behavior is that the connector
does not send heartbeat messages.

Heartbeat messages are useful for
monitoring whether the connector is
receiving change events from the database.
Heartbeat messages might help decrease
the number of change events that need to
be re-sent when a connector restarts. To
send heartbeat messages, set this property
to a positive integer, which indicates the
number of milliseconds between heartbeat
messages.

Heartbeat messages are needed when
there are many updates in a database that
is being tracked but only a tiny number of
updates are related to the table(s) and
schema(s) for which the connector is
capturing changes. In this situation, the
connector reads from the database
transaction log as usual but rarely emits
change records to Kafka. This means that
no offset updates are committed to Kafka
and the connector does not have an
opportunity to send the latest retrieved
LSN to the database. The database retains
WAL files that contain events that have
already been processed by the connector.
Sending heartbeat messages enables the
connector to send the latest retrieved LSN
to the database, which allows the database
to reclaim disk space being used by no
longer needed WAL files.

heartbeat.topics ​.prefix __debezium-heartbeat Controls the name of the topic to which the
connector sends heartbeat messages. The
topic name has this pattern:

<heartbeat.topics.prefix>.<server.name>

For example, if the database server name is
fullfillment, the default topic name is
__debezium-heartbeat.fulfillment.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

121

heartbeat.action ​.query Specifies a query that the connector
executes on the source database when the
connector sends a heartbeat message.

This is useful for resolving the situation
described in WAL disk space consumption,
where capturing changes from a low-traffic
database on the same host as a high-traffic
database prevents Debezium from
processing WAL records and thus
acknowledging WAL positions with the
database. To address this situation, create a
heartbeat table in the low-traffic database,
and set this property to a statement that
inserts records into that table, for example:

INSERT INTO test_heartbeat_table
(text) VALUES ('test_heartbeat')

This allows the connector to receive
changes from the low-traffic database and
acknowledge their LSNs, which prevents
unbounded WAL growth on the database
host.

schema.refresh ​.mode columns_diff Specify the conditions that trigger a refresh
of the in-memory schema for a table.

columns_diff is the safest mode. It
ensures that the in-memory schema stays
in sync with the database table’s schema at
all times.

columns_diff_exclude_unchanged_t
oast instructs the connector to refresh the
in-memory schema cache if there is a
discrepancy with the schema derived from
the incoming message, unless unchanged
TOASTable data fully accounts for the
discrepancy.

This setting can significantly improve
connector performance if there are
frequently-updated tables that have
TOASTed data that are rarely part of
updates. However, it is possible for the in-
memory schema to become outdated if
TOASTable columns are dropped from the
table.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

122

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-wal-disk-space

snapshot.delay.ms An interval in milliseconds that the
connector should wait before performing a
snapshot when the connector starts. If you
are starting multiple connectors in a cluster,
this property is useful for avoiding snapshot
interruptions, which might cause re-
balancing of connectors.

snapshot.fetch.size 10240 During a snapshot, the connector reads
table content in batches of rows. This
property specifies the maximum number of
rows in a batch.

slot.stream.params Semicolon separated list of parameters to
pass to the configured logical decoding
plug-in. For example, add-
tables=public.table,public.table2;incl
ude-lsn=true.

sanitize.field ​.names true
if connector configuration
sets the
key.converter
or
value.converter
property to the Avro
converter.

false if not.

Indicates whether field names are sanitized
to adhere to Avro naming requirements.

slot.max.retries 6 If connecting to a replication slot fails, this is
the maximum number of consecutive
attempts to connect.

slot.retry ​.delay.ms 10000 (10 seconds) The number of milliseconds to wait between
retry attempts when the connector fails to
connect to a replication slot.

toasted.value ​.placeholder __debezium ​
_unavailable ​_value

Specifies the constant that the connector
provides to indicate that the original value is
a toasted value that is not provided by the
database. If the setting of
toasted.value.placeholder starts with
the hex: prefix it is expected that the rest
of the string represents hexadecimally
encoded octets. See toasted values for
additional details.

Property Default Description

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

123

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#avro-naming
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-toasted-values

provide.transaction ​
.metadata

false Determines whether the connector
generates events with transaction
boundaries and enriches change event
envelopes with transaction metadata.
Specify true if you want the connector to
do this. See Transaction metadata for
details.

Property Default Description

Pass-through connector configuration properties

The connector also supports pass-through configuration properties that are used when creating the
Kafka producer and consumer.

Be sure to consult the Kafka documentation for all of the configuration properties for Kafka producers
and consumers. The PostgreSQL connector does use the new consumer configuration properties .

3.7. HOW DEBEZIUM POSTGRESQL CONNECTORS HANDLE FAULTS
AND PROBLEMS

Debezium is a distributed system that captures all changes in multiple upstream databases; it never
misses or loses an event. When the system is operating normally or being managed carefully then
Debezium provides exactly once delivery of every change event record.

If a fault does happen then the system does not lose any events. However, while it is recovering from the
fault, it might repeat some change events. In these abnormal situations, Debezium, like Kafka, provides
at least once delivery of change events.

Details are in the following sections:

Configuration and startup errors

PostgreSQL becomes unavailable

Cluster failures

Kafka Connect process stops gracefully

Kafka Connect process crashes

Kafka becomes unavailable

Connector is stopped for a duration

Configuration and startup errors

In the following situations, the connector fails when trying to start, reports an error/exception in the log,
and stops running:

The connector’s configuration is invalid.

The connector cannot successfully connect to PostgreSQL by using the specified connection
parameters.

The connector is restarting from a previously-recorded position in the PostgreSQL WAL (by

Red Hat Integration 2020-Q3 Debezium User Guide

124

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#postgresql-transaction-metadata
https://kafka.apache.org/documentation.html
https://kafka.apache.org/documentation.html#consumerconfigs

The connector is restarting from a previously-recorded position in the PostgreSQL WAL (by
using the LSN) and PostgreSQL no longer has that history available.

In these cases, the error message has details about the problem and possibly a suggested workaround.
After you correct the configuration or address the PostgreSQL problem, restart the connector.

PostgreSQL becomes unavailable

When the connector is running, the PostgreSQL server that it is connected to could become unavailable
for any number of reasons. If this happens, the connector fails with an error and stops. When the server
is available again, restart the connector.

The PostgreSQL connector externally stores the last processed offset in the form of a PostgreSQL
LSN. After a connector restarts and connects to a server instance, the connector communicates with
the server to continue streaming from that particular offset. This offset is available as long as the
Debezium replication slot remains intact. Never drop a replication slot on the primary server or you will
lose data. See the next section for failure cases in which a slot has been removed.

Cluster failures

As of release 12, PostgreSQL allows logical replication slots only on primary servers . This means that you
can point a Debezium PostgreSQL connector to only the active primary server of a database cluster.
Also, replication slots themselves are not propagated to replicas. If the primary server goes down, a new
primary must be promoted.

The new primary must have a replication slot that is configured for use by the pgoutput plug-in and the
database in which you want to capture changes. Only then can you point the connector to the new server
and restart the connector.

There are important caveats when failovers occur and you should pause Debezium until you can verify
that you have an intact replication slot that has not lost data. After a failover:

There must be a process that re-creates the Debezium replication slot before allowing the
application to write to the new primary. This is crucial. Without this process, your application can
miss change events.

You might need to verify that Debezium was able to read all changes in the slot before the old
primary failed.

One reliable method of recovering and verifying whether any changes were lost is to recover a backup
of the failed primary to the point immediately before it failed. While this can be administratively difficult,
it allows you to inspect the replication slot for any unconsumed changes.

Kafka Connect process stops gracefully

Suppose that Kafka Connect is being run in distributed mode and a Kafka Connect process is stopped
gracefully. Prior to shutting down that process, Kafka Connect migrates the process’s connector tasks
to another Kafka Connect process in that group. The new connector tasks start processing exactly
where the prior tasks stopped. There is a short delay in processing while the connector tasks are
stopped gracefully and restarted on the new processes.

Kafka Connect process crashes

If the Kafka Connector process stops unexpectedly, any connector tasks it was running terminate
without recording their most recently processed offsets. When Kafka Connect is being run in distributed
mode, Kafka Connect restarts those connector tasks on other processes. However, PostgreSQL
connectors resume from the last offset that was recorded by the earlier processes. This means that the

CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL

125

new replacement tasks might generate some of the same change events that were processed just prior
to the crash. The number of duplicate events depends on the offset flush period and the volume of data
changes just before the crash.

Because there is a chance that some events might be duplicated during a recovery from failure,
consumers should always anticipate some duplicate events. Debezium changes are idempotent, so a
sequence of events always results in the same state.

In each change event record, Debezium connectors insert source-specific information about the origin
of the event, including the PostgreSQL server’s time of the event, the ID of the server transaction, and
the position in the write-ahead log where the transaction changes were written. Consumers can keep
track of this information, especially the LSN, to determine whether an event is a duplicate.

Kafka becomes unavailable

As the connector generates change events, the Kafka Connect framework records those events in Kafka
by using the Kafka producer API. Periodically, at a frequency that you specify in the Kafka Connect
configuration, Kafka Connect records the latest offset that appears in those change events. If the Kafka
brokers become unavailable, the Kafka Connect process that is running the connectors repeatedly tries
to reconnect to the Kafka brokers. In other words, the connector tasks pause until a connection can be
re-established, at which point the connectors resume exactly where they left off.

Connector is stopped for a duration

If the connector is gracefully stopped, the database can continue to be used. Any changes are recorded
in the PostgreSQL WAL. When the connector restarts, it resumes streaming changes where it left off.
That is, it generates change event records for all database changes that were made while the connector
was stopped.

A properly configured Kafka cluster is able to handle massive throughput. Kafka Connect is written
according to Kafka best practices, and given enough resources a Kafka Connect connector can also
handle very large numbers of database change events. Because of this, after being stopped for a while,
when a Debezium connector restarts, it is very likely to catch up with the database changes that were
made while it was stopped. How quickly this happens depends on the capabilities and performance of
Kafka and the volume of changes being made to the data in PostgreSQL.

Red Hat Integration 2020-Q3 Debezium User Guide

126

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB
Debezium’s MongoDB connector tracks a MongoDB replica set or a MongoDB sharded cluster for
document changes in databases and collections, recording those changes as events in Kafka topics. The
connector automatically handles the addition or removal of shards in a sharded cluster, changes in
membership of each replica set, elections within each replica set, and awaiting the resolution of
communications problems.

4.1. OVERVIEW

MongoDB’s replication mechanism provides redundancy and high availability, and is the preferred way to
run MongoDB in production. MongoDB connector captures the changes in a replica set or sharded
cluster.

A MongoDB replica set consists of a set of servers that all have copies of the same data, and replication
ensures that all changes made by clients to documents on the replica set’s primary are correctly applied
to the other replica set’s servers, called secondaries. MongoDB replication works by having the primary
record the changes in its oplog (or operation log), and then each of the secondaries reads the primary’s
oplog and applies in order all of the operations to their own documents. When a new server is added to a
replica set, that server first performs an snapshot of all of the databases and collections on the primary,
and then reads the primary’s oplog to apply all changes that might have been made since it began the
snapshot. This new server becomes a secondary (and able to handle queries) when it catches up to the
tail of the primary’s oplog.

The MongoDB connector uses this same replication mechanism, though it does not actually become a
member of the replica set. Just like MongoDB secondaries, however, the connector always reads the
oplog of the replica set’s primary. And, when the connector sees a replica set for the first time, it looks at
the oplog to get the last recorded transaction and then performs a snapshot of the primary’s databases
and collections. When all the data is copied, the connector then starts streaming changes from the
position it read earlier from the oplog. Operations in the MongoDB oplog are idempotent, so no matter
how many times the operations are applied, they result in the same end state.

As the MongoDB connector processes changes, it periodically records the position in the oplog where
the event originated. When the MongoDB connector stops, it records the last oplog position that it
processed, so that upon restart it simply begins streaming from that position. In other words, the
connector can be stopped, upgraded or maintained, and restarted some time later, and it will pick up
exactly where it left off without losing a single event. Of course, MongoDB’s oplogs are usually capped
at a maximum size, which means that the connector should not be stopped for too long, or else some of
the operations in the oplog might be purged before the connector has a chance to read them. In this
case, upon restart the connector will detect the missing oplog operations, perform a snapshot, and then
proceed with streaming the changes.

The MongoDB connector is also quite tolerant of changes in membership and leadership of the replica
sets, of additions or removals of shards within a sharded cluster, and network problems that might cause
communication failures. The connector always uses the replica set’s primary node to stream changes, so
when the replica set undergoes an election and a different node becomes primary, the connector will
immediately stop streaming changes, connect to the new primary, and start streaming changes using
the new primary node. Likewise, if connector experiences any problems communicating with the replica
set primary, it will try to reconnect (using exponential backoff so as to not overwhelm the network or
replica set) and continue streaming changes from where it last left off. In this way the connector is able
to dynamically adjust to changes in replica set membership and to automatically handle communication
failures.

Additional resources

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

127

https://docs.mongodb.com/manual/core/replica-set-sync/
https://docs.mongodb.com/manual/core/replica-set-oplog/

Replication mechanism

Replica set

Replica set elections

Sharded cluster

Shard addition

Shard removal

4.2. SETTING UP MONGODB

The MongoDB connector uses MongoDB’s oplog to capture the changes, so the connector works only
with MongoDB replica sets or with sharded clusters where each shard is a separate replica set. See the
MongoDB documentation for setting up a replica set or sharded cluster. Also, be sure to understand
how to enable access control and authentication with replica sets.

You must also have a MongoDB user that has the appropriate roles to read the admin database where
the oplog can be read. Additionally, the user must also be able to read the config database in the
configuration server of a sharded cluster and must have listDatabases privilege action.

4.3. SUPPORTED MONGODB TOPOLOGIES

The MongoDB connector can be used with a variety of MongoDB topologies.

4.3.1. MongoDB replica set

The MongoDB connector can capture changes from a single MongoDB replica set. Production replica
sets require a minimum of at least three members.

To use the MongoDB connector with a replica set, provide the addresses of one or more replica set
servers as seed addresses through the connector’s mongodb.hosts property. The connector will use
these seeds to connect to the replica set, and then once connected will get from the replica set the
complete set of members and which member is primary. The connector will start a task to connect to
the primary and capture the changes from the primary’s oplog. When the replica set elects a new
primary, the task will automatically switch over to the new primary.

NOTE

When MongoDB is fronted by a proxy (such as with Docker on OS X or Windows), then
when a client connects to the replica set and discovers the members, the MongoDB client
will exclude the proxy as a valid member and will attempt and fail to connect directly to
the members rather than go through the proxy.

In such a case, set the connector’s optional mongodb.members.auto.discover
configuration property to false to instruct the connector to forgo membership discovery
and instead simply use the first seed address (specified via the mongodb.hosts
property) as the primary node. This may work, but still make cause issues when election
occurs.

4.3.2. MongoDB sharded cluster

Red Hat Integration 2020-Q3 Debezium User Guide

128

https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/tutorial/deploy-replica-set/
https://docs.mongodb.com/manual/core/replica-set-elections/
https://docs.mongodb.com/manual/core/sharded-cluster-components/
https://docs.mongodb.com/manual/tutorial/add-shards-to-shard-cluster/
https://docs.mongodb.com/manual/tutorial/remove-shards-from-cluster/
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/tutorial/deploy-replica-set-with-keyfile-access-control/#deploy-repl-set-with-auth
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/core/replica-set-architecture-three-members/

A MongoDB sharded cluster consists of:

One or more shards, each deployed as a replica set;

A separate replica set that acts as the cluster’s configuration server

One or more routers (also called mongos) to which clients connect and that routes requests to
the appropriate shards

To use the MongoDB connector with a sharded cluster, configure the connector with the host addresses
of the configuration server replica set. When the connector connects to this replica set, it discovers that
it is acting as the configuration server for a sharded cluster, discovers the information about each replica
set used as a shard in the cluster, and will then start up a separate task to capture the changes from
each replica set. If new shards are added to the cluster or existing shards removed, the connector will
automatically adjust its tasks accordingly.

4.3.3. MongoDB standalone server

The MongoDB connector is not capable of monitoring the changes of a standalone MongoDB server,
since standalone servers do not have an oplog. The connector will work if the standalone server is
converted to a replica set with one member.

NOTE

MongoDB does not recommend running a standalone server in production.

4.4. HOW THE MONGODB CONNECTOR WORKS

When a MongoDB connector is configured and deployed, it starts by connecting to the MongoDB
servers at the seed addresses, and determines the details about each of the available replica sets. Since
each replica set has its own independent oplog, the connector will try to use a separate task for each
replica set. The connector can limit the maximum number of tasks it will use, and if not enough tasks are
available the connector will assign multiple replica sets to each task, although the task will still use a
separate thread for each replica set.

NOTE

When running the connector against a sharded cluster, use a value of tasks.max that is
greater than the number of replica sets. This will allow the connector to create one task
for each replica set, and will let Kafka Connect coordinate, distribute, and manage the
tasks across all of the available worker processes.

4.4.1. Logical connector name

The connector configuration property mongodb.name serves as a logical name for the MongoDB
replica set or sharded cluster. The connector uses the logical name in a number of ways: as the prefix for
all topic names, and as a unique identifier when recording the oplog position of each replica set.

You should give each MongoDB connector a unique logical name that meaningfully describes the
source MongoDB system. We recommend logical names begin with an alphabetic or underscore
character, and remaining characters that are alphanumeric or underscore.

4.4.2. Performing a snapshot

When a task starts up using a replica set, it uses the connector’s logical name and the replica set name to

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

129

https://docs.mongodb.com/manual/sharding/
https://docs.mongodb.com/manual/core/replica-set-architectures/

When a task starts up using a replica set, it uses the connector’s logical name and the replica set name to
find an offset that describes the position where the connector previously stopped reading changes. If an
offset can be found and it still exists in the oplog, then the task immediately proceeds with streaming
changes, starting at the recorded offset position.

However, if no offset is found or if the oplog no longer contains that position, the task must first obtain
the current state of the replica set contents by performing a snapshot. This process starts by recording
the current position of the oplog and recording that as the offset (along with a flag that denotes a
snapshot has been started). The task will then proceed to copy each collection, spawning as many
threads as possible (up to the value of the initial.sync.max.threads configuration property) to perform
this work in parallel. The connector will record a separate read event for each document it sees, and that
read event will contain the object’s identifier, the complete state of the object, and source information
about the MongoDB replica set where the object was found. The source information will also include a
flag that denotes the event was produced during a snapshot.

This snapshot will continue until it has copied all collections that match the connector’s filters. If the
connector is stopped before the tasks' snapshots are completed, upon restart the connector begins the
snapshot again.

NOTE

Try to avoid task reassignment and reconfiguration while the connector is performing a
snapshot of any replica sets. The connector does log messages with the progress of the
snapshot. For utmost control, run a separate cluster of Kafka Connect for each
connector.

4.4.3. Streaming changes

Once the connector task for a replica set has an offset, it uses the offset to determine the position in
the oplog where it should start streaming changes. The task will then connect to the replica set’s primary
node and start streaming changes from that position, processing all of the create, insert, and delete
operations and converting them into Debezium change events. Each change event includes the position
in the oplog where the operation was found, and the connector periodically records this as its most
recent offset. The interval at which the offset is recorded is governed by offset.flush.interval.ms, which
is a Kafka Connect worker configuration property.

When the connector is stopped gracefully, the last offset processed is recorded so that, upon restart,
the connector will continue exactly where it left off. If the connector’s tasks terminate unexpectedly,
however, then the tasks may have processed and generated events after it last records the offset but
before the last offset is recorded; upon restart, the connector begins at the last recorded offset,
possibly generating some the same events that were previously generated just prior to the crash.

NOTE

When everything is operating nominally, Kafka consumers will actually see every message
exactly once. However, when things go wrong Kafka can only guarantee consumers will
see every message at least once. Therefore, your consumers need to anticipate seeing
messages more than once.

As mentioned above, the connector tasks always use the replica set’s primary node to stream changes
from the oplog, ensuring that the connector sees the most up-to-date operations as possible and can
capture the changes with lower latency than if secondaries were to be used instead. When the replica
set elects a new primary, the connector immediately stops streaming changes, connects to the new
primary, and starts streaming changes from the new primary node at the same position. Likewise, if the
connector experiences any problems communicating with the replica set members, it trys to reconnect,

Red Hat Integration 2020-Q3 Debezium User Guide

130

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mongodb-streaming-changes
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mongodb-events
https://kafka.apache.org/documentation/#offset.flush.interval.ms

by using exponential backoff so as to not overwhelm the replica set, and once connected it continues
streaming changes from where it last left off. In this way, the connector is able to dynamically adjust to
changes in replica set membership and automatically handle communication failures.

To summarize, the MongoDB connector continues running in most situations. Communication problems
might cause the connector to wait until the problems are resolved.

4.4.4. Topics names

The MongoDB connector writes events for all insert, update, and delete operations to documents in
each collection to a single Kafka topic. The name of the Kafka topics always takes the form
logicalName.databaseName.collectionName, where logicalName is the logical name of the connector as
specified with the mongodb.name configuration property, databaseName is the name of the database
where the operation occurred, and collectionName is the name of the MongoDB collection in which the
affected document existed.

For example, consider a MongoDB replica set with an inventory database that contains four collections:
products, products_on_hand, customers, and orders. If the connector monitoring this database were
given a logical name of fulfillment, then the connector would produce events on these four Kafka
topics:

fulfillment.inventory.products

fulfillment.inventory.products_on_hand

fulfillment.inventory.customers

fulfillment.inventory.orders

Notice that the topic names do not incorporate the replica set name or shard name. As a result, all
changes to a sharded collection (where each shard contains a subset of the collection’s documents) all
go to the same Kafka topic.

You can set up Kafka to auto-create the topics as they are needed. If not, then you must use Kafka
administration tools to create the topics before starting the connector.

4.4.5. Partitions

The MongoDB connector does not make any explicit determination of the topic partitions for events.
Instead, it allows Kafka to determine the partition based on the key. You can change Kafka’s partitioning
logic by defining in the Kafka Connect worker configuration the name of the Partitioner
implementation.

Kafka maintains total order only for events written to a single topic partition. Partitioning the events by
key does mean that all events with the same key always go to the same partition. This ensures that all
events for a specific document are always totally ordered.

4.4.6. Data change events

The Debezium MongoDB connector generates a data change event for each document-level operation
that inserts, updates, or deletes data. Each event contains a key and a value. The structure of the key
and the value depends on the collection that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the
structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

131

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mongodb-logical-connector-name
https://kafka.apache.org/documentation.html#basic_ops_add_topic

schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converver and you configure it to produce all
four basic change event parts, change events have this structure:

Table 4.1. Overview of change event basic content

Item Field name Description

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the key for the
document that was changed.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the
document that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
document that was changed. Typically, this schema contains nested
schemas.

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the document that was changed.

By default, the connector streams change event records to topics with names that are the same as the
event’s originating collection. See topic names.

{
 "schema": { 1
 ...
 },
 "payload": { 2
 ...
 },
 "schema": { 3
 ...
 },
 "payload": { 4
 ...
 },
}

Red Hat Integration 2020-Q3 Debezium User Guide

132

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mongodb-topic-names

WARNING

The MongoDB connector ensures that all Kafka Connect schema names adhere to
the Avro schema name format . This means that the logical server name must start
with a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining character
in the logical server name and each character in the database and collection names
must be a Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If there is
an invalid character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a database name, or
a collection name contains invalid characters, and the only characters that
distinguish names from one another are invalid and thus replaced with underscores.

4.4.6.1. Change event keys

A change event’s key contains the schema for the changed document’s key and the changed
document’s actual key. For a given collection, both the schema and its corresponding payload contain a
single id field. The value of this field is the document’s identifier represented as a string that is derived
from MongoDB extended JSON serialization strict mode .

Consider a connector with a logical name of fulfillment, a replica set containing an inventory database,
and a customers collection that contains documents such as the following.

Example document

Example change event key

Every change event that captures a change to the customers collection has the same event key
schema. For as long as the customers collection has the previous definition, every change event that
captures a change to the customers collection has the following key structure. In JSON, it looks like
this:



{
 "_id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
}

{
 "schema": { 1
 "type": "struct",
 "name": "fulfillment.inventory.customers.Key", 2
 "optional": false, 3
 "fields": [4
 {
 "field": "id",
 "type": "string",
 "optional": false
 }
]

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

133

http://avro.apache.org/docs/current/spec.html#names
https://docs.mongodb.com/manual/reference/mongodb-extended-json/

Table 4.2. Description of change event key

Item Field name Description

1 schema The schema portion of the key specifies a Kafka Connect schema that
describes what is in the key’s payload portion.

2 fulfillment ​
.inventory ​
.customers ​.Key

Name of the schema that defines the structure of the key’s payload. This
schema describes the structure of the key for the document that was
changed. Key schema names have the format connector-name.database-
name.collection-name.Key. In this example:

fulfillment is the name of the connector that generated this
event.

inventory is the database that contains the collection that was
changed.

customers is the collection that contains the document that was
updated.

3 optional Indicates whether the event key must contain a value in its payload field. In
this example, a value in the key’s payload is required. A value in the key’s
payload field is optional when a document does not have a key.

4 fields Specifies each field that is expected in the payload, including each field’s
name, type, and whether it is required.

5 payload Contains the key for the document for which this change event was
generated. In this example, the key contains a single id field of type string
whose value is 1004.

This example uses a document with an integer identifier, but any valid MongoDB document identifier
works the same way, including a document identifier. For a document identifier, an event key’s
payload.id value is a string that represents the updated document’s original _id field as a MongoDB
extended JSON serialization that uses strict mode. The following table provides examples of how
different types of _id fields are represented.

Table 4.3. Examples of representing document _id fields in event key payloads

Type MongoDB _id Value Key’s payload

Integer 1234 { "id" : "1234" }

Float 12.34 { "id" : "12.34" }

 },
 "payload": { 5
 "id": "1004"
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

134

String "1234" { "id" : "\"1234\"" }

Document { "hi" : "kafka", "nums" :
[10.0, 100.0, 1000.0] }

{ "id" : "{\"hi\" : \"kafka\",
\"nums\" : [10.0, 100.0,
1000.0]}" }

ObjectId ObjectId("596e275826f08b27
30779e1f")`

{ "id" : "{\"$oid\" :
\"596e275826f08b2730779e1f\
"}" }

Binary BinData("a2Fma2E=",0) { "id" : "{\"$binary\" :
\"a2Fma2E=\", \"$type\" :
\"00\"}" }

Type MongoDB _id Value Key’s payload

4.4.6.2. Change event values

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,
update or delete data all have a value payload with an envelope structure.

Consider the same sample document that was used to show an example of a change event key:

Example document

The value portion of a change event for a change to this document is described for each event type:

create events

update events

delete events

4.4.6.3. create events

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers collection:

{
 "_id": 1004,
 "first_name": "Anne",
 "last_name": "Kretchmar",
 "email": "annek@noanswer.org"
}

{
 "schema": { 1
 "type": "struct",
 "fields": [

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

135

 {
 "type": "string",
 "optional": true,
 "name": "io.debezium.data.Json", 2
 "version": 1,
 "field": "after"
 },
 {
 "type": "string",
 "optional": true,
 "name": "io.debezium.data.Json",
 "version": 1,
 "field": "patch"
 },
 {
 "type": "string",
 "optional": true,
 "name": "io.debezium.data.Json",
 "version": 1,
 "field": "filter"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {

Red Hat Integration 2020-Q3 Debezium User Guide

136

 "type": "string",
 "optional": false,
 "field": "rs"
 },
 {
 "type": "string",
 "optional": false,
 "field": "collection"
 },
 {
 "type": "int32",
 "optional": false,
 "field": "ord"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "h"
 }
],
 "optional": false,
 "name": "io.debezium.connector.mongo.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": true,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "dbserver1.inventory.customers.Envelope" 4
 },
 "payload": { 5
 "after": "{\"_id\" : {\"$numberLong\" : \"1004\"},\"first_name\" : \"Anne\",\"last_name\" :
\"Kretchmar\",\"email\" : \"annek@noanswer.org\"}", 6
 "patch": null,
 "source": { 7
 "version": "1.2.4.Final",
 "connector": "mongodb",
 "name": "fulfillment",
 "ts_ms": 1558965508000,
 "snapshot": false,
 "db": "inventory",
 "rs": "rs0",
 "collection": "customers",
 "ord": 31,
 "h": 1546547425148721999
 },
 "op": "c", 8

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

137

Table 4.4. Descriptions of create event value fields

Item Field name Description

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular collection.

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

io.debezium.data.Json is the schema for the payload’s after, patch, and
filter fields. This schema is specific to the customers collection. A create
event is the only kind of event that contains an after field. An update event
contains a filter field and a patch field. A delete event contains a filter
field, but not an after field nor a patch field.

3 name io.debezium.connector.mongo.Source is the schema for the
payload’s source field. This schema is specific to the MongoDB connector.
The connector uses it for all events that it generates.

4 name dbserver1.inventory.customers.Envelope is the schema for the
overall structure of the payload, where dbserver1 is the connector name,
inventory is the database, and customers is the collection. This schema
is specific to the collection.

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that the JSON representations of the events are much larger
than the documents they describe. This is because the JSON
representation must include the schema and the payload portions of the
message. However, by using the Avro converter, you can significantly
decrease the size of the messages that the connector streams to Kafka
topics.

6 after An optional field that specifies the state of the document after the event
occurred. In this example, the after field contains the values of the new
document’s _id, first_name, last_name, and email fields. The after
value is always a string. By convention, it contains a JSON representation of
the document. MongoDB’s oplog entries contain the full state of a
document only for _create_ events; in other words, a create event is the only
kind of event that contains an after field.

 "ts_ms": 1558965515240 9
 }
 }

Red Hat Integration 2020-Q3 Debezium User Guide

138

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

7 source Mandatory field that describes the source metadata for the event. This field
contains information that you can use to compare this event with other
events, with regard to the origin of the events, the order in which the events
occurred, and whether events were part of the same transaction. The
source metadata includes:

Debezium version.

Name of the connector that generated the event.

Logical name of the MongoDB replica set, which forms a
namespace for generated events and is used in Kafka topic names
to which the connector writes.

Names of the collection and database that contain the new
document.

If the event was part of a snapshot.

Timestamp for when the change was made in the database and
ordinal of the event within the timestamp.

Unique identifier of the MongoDB operation, which depends on
the version of MongoDB. It is either the h field in the oplog event,
or a field named stxnid, which represents the lsid and
txnNumber fields from the oplog event.

8 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a document. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

9 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

4.4.6.4. update events

The value of a change event for an update in the sample customers collection has the same schema as
a create event for that collection. Likewise, the event value’s payload has the same structure. However,
the event value payload contains different values in an update event. An update event does not have an
after value. Instead, it has these two fields:

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

139

patch is a string field that contains the JSON representation of the idempotent update
operation

filter is a string field that contains the JSON representation of the selection criteria for the
update. The filter string can include multiple shard key fields for sharded collections.

Here is an example of a change event value in an event that the connector generates for an update in
the customers collection:

Table 4.5. Descriptions of update event value fields

Item Field name Description

1 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, u indicates that the
operation updated a document.

2 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

3 patch Contains the JSON string representation of the actual MongoDB
idempotent change to the document. In this example, the update changed
the first_name field to a new value.

An update event value does not contain an after field.

{
 "schema": { ... },
 "payload": {
 "op": "u", 1
 "ts_ms": 1465491461815, 2
 "patch": "{\"$set\":{\"first_name\":\"Anne Marie\"}}", 3
 "filter": "{\"_id\" : {\"$numberLong\" : \"1004\"}}", 4
 "source": { 5
 "version": "1.2.4.Final",
 "connector": "mongodb",
 "name": "fulfillment",
 "ts_ms": 1558965508000,
 "snapshot": true,
 "db": "inventory",
 "rs": "rs0",
 "collection": "customers",
 "ord": 6,
 "h": 1546547425148721999
 }
 }
 }

Red Hat Integration 2020-Q3 Debezium User Guide

140

4 filter Contains the JSON string representation of the MongoDB selection criteria
that was used to identify the document to be updated.

5 source Mandatory field that describes the source metadata for the event. This field
contains the same information as a create event for the same collection, but
the values are different since this event is from a different position in the
oplog. The source metadata includes:

Debezium version.

Name of the connector that generated the event.

Logical name of the MongoDB replica set, which forms a
namespace for generated events and is used in Kafka topic names
to which the connector writes.

Names of the collection and database that contain the updated
document.

If the event was part of a snapshot.

Timestamp for when the change was made in the database and
ordinal of the event within the timestamp.

Unique identifier of the MongoDB operation, which depends on
the version of MongoDB. It is either the h field in the oplog event,
or a field named stxnid, which represents the lsid and
txnNumber fields from the oplog event.

Item Field name Description

WARNING

In a Debezium change event, MongoDB provides the content of the patch field.
The format of this field depends on the version of the MongoDB database.
Consequently, be prepared for potential changes to the format when you upgrade
to a newer MongoDB database version. Examples in this document were obtained
from MongoDB 3.4, In your application, event formats might be different.

NOTE

In MongoDB’s oplog, update events do not contain the before or after states of the
changed document. Consequently, it is not possible for a Debezium connector to provide
this information. However, a Debezium connector provides a document’s starting state in
create and read events. Downstream consumers of the stream can reconstruct document
state by keeping the latest state for each document and comparing the state in a new
event with the saved state. Debezium connector’s are not able to keep this state.

4.4.6.5. delete events

The value in a delete change event has the same schema portion as create and update events for the



CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

141

same collection. The payload portion in a delete event contains values that are different from create
and update events for the same collection. In particular, a delete event contains neither an after value
nor a patch value. Here is an example of a delete event for a document in the customers collection:

Table 4.6. Descriptions of delete event value fields

Item Field name Description

1 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this document was deleted.

2 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

3 filter Contains the JSON string representation of the MongoDB selection criteria
that was used to identify the document to be deleted.

{
 "schema": { ... },
 "payload": {
 "op": "d", 1
 "ts_ms": 1465495462115, 2
 "filter": "{\"_id\" : {\"$numberLong\" : \"1004\"}}", 3
 "source": { 4
 "version": "1.2.4.Final",
 "connector": "mongodb",
 "name": "fulfillment",
 "ts_ms": 1558965508000,
 "snapshot": true,
 "db": "inventory",
 "rs": "rs0",
 "collection": "customers",
 "ord": 6,
 "h": 1546547425148721999
 }
 }
 }

Red Hat Integration 2020-Q3 Debezium User Guide

142

4 source Mandatory field that describes the source metadata for the event. This field
contains the same information as a create or update event for the same
collection, but the values are different since this event is from a different
position in the oplog. The source metadata includes:

Debezium version.

Name of the connector that generated the event.

Logical name of the MongoDB replica set, which forms a
namespace for generated events and is used in Kafka topic names
to which the connector writes.

Names of the collection and database that contained the deleted
document.

If the event was part of a snapshot.

Timestamp for when the change was made in the database and
ordinal of the event within the timestamp.

Unique identifier of the MongoDB operation, which depends on
the version of MongoDB. It is either the h field in the oplog event,
or a field named stxnid, which represents the lsid and
txnNumber fields from the oplog event.

Item Field name Description

MongoDB connector events are designed to work with Kafka log compaction. Log compaction enables
removal of some older messages as long as at least the most recent message for every key is kept. This
lets Kafka reclaim storage space while ensuring that the topic contains a complete data set and can be
used for reloading key-based state.

Tombstone events

All MongoDB connector events for a uniquely identified document have exactly the same key. When a
document is deleted, the delete event value still works with log compaction because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
key, the message value must be null. To make this possible, after Debezium’s MongoDB connector
emits a delete event, the connector emits a special tombstone event that has the same key but a null
value. A tombstone event informs Kafka that all messages with that same key can be removed.

4.4.7. Transaction Metadata

Debezium can generate events that represents tranaction metadata boundaries and enrich data
messages.

4.4.7.1. Transaction boundaries

Debezium generates events for every transaction BEGIN and END. Every event contains

status - BEGIN or END

id - string representation of unique transaction identifier

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

143

https://kafka.apache.org/documentation/#compaction

event_count (for END events) - total number of events emmitted by the transaction

data_collections (for END events) - an array of pairs of data_collection and event_count that
provides number of events emitted by changes originating from given data collection

Following is an example of what a message looks like:

The transaction events are written to the topic named <database.server.name>.transaction.

4.4.7.2. Data events enrichment

When transaction metadata is enabled the data message Envelope is enriched with a new transaction
field. This field provides information about every event in the form of a composite of fields:

id - string representation of unique transaction identifier

total_order - the absolute position of the event among all events generated by the transaction

data_collection_order - the per-data collection position of the event among all events that
were emitted by the transaction

Following is an example of what a message looks like:

{
 "status": "BEGIN",
 "id": "1462833718356672513",
 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "1462833718356672513",
 "event_count": 2,
 "data_collections": [
 {
 "data_collection": "rs0.testDB.tablea",
 "event_count": 1
 },
 {
 "data_collection": "rs0.testDB.tableb",
 "event_count": 1
 }
]
}

{
 "before": null,
 "after": {
 "pk": "2",
 "aa": "1"
 },
 "source": {
...
 },
 "op": "c",

Red Hat Integration 2020-Q3 Debezium User Guide

144

4.5. DEPLOYING THE MONGODB CONNECTOR

To deploy a Debezium MongoDB connector, install the Debezium MongoDB connector archive,
configure the connector, and start the connector by adding its configuration to Kafka Connect.

To install the MongoDB connector, follow the procedures in Installing Debezium on OpenShift. The main
steps are:

1. Use Red Hat AMQ Streams to set up Apache Kafka and Kafka Connect on OpenShift. AMQ
Streams offers operators and images that bring Kafka to OpenShift.

2. Download the Debezium MongoDB connector.

3. Extract the connector files into your Kafka Connect environment.

4. Add the connector plug-in’s parent directory to your Kafka Connect plugin.path, for example:

plugin.path=/kafka/connect

The above example assumes that you extracted the Debezium MongoDB connector to the
/kafka/connect/Debezium-connector-mongodb path.

5. Restart your Kafka Connect process to ensure that the new JAR files are picked up.

You also need to set up MongoDB to run a Debezium connector.

Additional resources

For more information about the deployment process, and deploying connectors with AMQ Streams, see
the Debezium installation guides.

Installing Debezium on OpenShift

Installing Debezium on RHEL

4.5.1. Example configuration

To use the connector to produce change events for a particular MongoDB replica set or sharded cluster,
create a configuration file in JSON. When the connector starts, it will perform a snapshot of the
collections in your MongoDB replica sets and start reading the replica sets' oplogs, producing events for
every inserted, updated, and deleted document. Optionally filter out collections that are not needed.

Following is an example of the configuration for a MongoDB connector that monitors a MongoDB
replica set rs0 at port 27017 on 192.168.99.100, which we logically name fullfillment. Typically, you
configure the Debezium MongoDB connector in a .yaml file using the configuration properties available
for the connector.

 "ts_ms": "1580390884335",
 "transaction": {
 "id": "1462833718356672513",
 "total_order": "1",
 "data_collection_order": "1"
 }
}

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

145

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/installing_debezium_on_openshift/
https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#setting-up-mongodb
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/installing_debezium_on_openshift/
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/installing_debezium_on_rhel/

Table 4.7. Description of settings

Item Description

1 The name of our connector when we register it with a Kafka Connect service.

2 The name of the MongoDB connector class.

3 The host addresses to use to connect to the MongoDB replica set.

4 The logical name of the MongoDB replica set, which forms a namespace for generated
events and is used in all the names of the Kafka topics to which the connector writes, the
Kafka Connect schema names, and the namespaces of the corresponding Avro schema
when the Avro converter is used.

5 A list of regular expressions that match the collection namespaces (for example,
<dbName>.<collectionName>) of all collections to be monitored. This is optional.

See the complete list of connector properties that can be specified in these configurations.

This configuration can be sent via POST to a running Kafka Connect service, which will then record the
configuration and start up the one connector task that will connect to the MongoDB replica set or
sharded cluster, assign tasks for each replica set, perform a snapshot if necessary, read the oplog, and
record events to Kafka topics.

4.5.2. Adding connector configuration

You can use a provided Debezium container to deploy a Debezium MongoDB connector. In this
procedure, you build a custom Kafka Connect container image for Debezium, configure the Debezium
connector as needed, and then add your connector configuration to your Kafka Connect environment.

Prerequisites

Podman or Docker is installed and you have sufficient rights to create and manage containers.

You installed the Debezium MongoDB connector archive.

Procedure

apiVersion: kafka.strimzi.io/v1beta1
 kind: KafkaConnector
 metadata:
 name: inventory-connector 1
 labels: strimzi.io/cluster: my-connect-cluster
 spec:
 class: io.debezium.connector.mongodb.MongoDbConnector 2
 config:
 mongodb.hosts: rs0/192.168.99.100:27017 3
 mongodb.name: fulfillment 4
 collection.whitelist: inventory[.]* 5

Red Hat Integration 2020-Q3 Debezium User Guide

146

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mongodb-connector-properties

1. Extract the Debezium MongoDB connector archive to create a directory structure for the
connector plug-in, for example:

tree ./my-plugins/
./my-plugins/
├── debezium-connector-mongodb
│ ├── ...

2. Create and publish a custom image for running your Debezium connector:

a. Create a new Dockerfile by using registry.redhat.io/amq7/amq-streams-kafka-25-
rhel7:1.5.0 as the base image. In the following example, you would replace my-plugins with
the name of your plug-ins directory:

FROM registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Before Kafka Connect starts running the connector, Kafka Connect loads any third-party
plug-ins that are in the /opt/kafka/plugins directory.

b. Build the container image. For example, if you saved the Dockerfile that you created in the
previous step as debezium-container-for-mongodb, and if the Dockerfile is in the current
directory, then you would run the following command:
podman build -t debezium-container-for-mongodb:latest .

c. Push your custom image to your container registry, for example:
podman push debezium-container-for-mongodb:latest

d. Point to the new container image. Do one of the following:

Edit the spec.image property of the KafkaConnector custom resource. If set, this
property overrides the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in
the Cluster Operator. For example:

In the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file,
edit the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable to point to the new
container image and reinstall the Cluster Operator. If you edit this file you must apply it
to your OpenShift cluster.

3. Create a KafkaConnector custom resource that defines your Debezium MongoDB connector
instance. See the connector configuration example .

4. Apply the connector instance, for example:
oc apply -f inventory-connector.yaml

This registers inventory-connector and the connector starts to run against the inventory

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: my-connect-cluster
spec:
 #...
 image: debezium-container-for-mongodb

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

147

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mongodb-example-configuration

This registers inventory-connector and the connector starts to run against the inventory
database.

5. Verify that the connector was created and has started to capture changes in the specified
database. You can verify the connector instance by watching the Kafka Connect log output as,
for example, inventory-connector starts.

a. Display the Kafka Connect log output:

b. Review the log output to verify that the initial snapshot has been executed. You should see
something like the following lines:

Results

When the connector starts, it performs a consistent snapshot of the MongoDB databases that the
connector is configured for. The connector then starts generating data change events for document-
level operations and streaming change event records to Kafka topics.

4.5.3. Monitoring

The Debezium MongoDB connector has two metric types in addition to the built-in support for JMX
metrics that Zookeeper, Kafka, and Kafka Connect have.

snapshot metrics; for monitoring the connector when performing snapshots

streaming metrics; for monitoring the connector when processing oplog events

Please refer to the monitoring documentation for details of how to expose these metrics via JMX.

4.5.3.1. Snapshot Metrics

The MBean is debezium.mongodb:type=connector-
metrics,context=snapshot,server=<mongodb.name>.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

oc logs $(oc get pods -o name -l strimzi.io/name=my-connect-cluster-connect)

... INFO Starting snapshot for ...

... INFO Snapshot is using user 'debezium' ...

Red Hat Integration 2020-Q3 Debezium User Guide

148

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mongodb-performing-a-snapshot
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#monitoring-debezium

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

Attributes Type Description

The Debezium MongoDB connector also provides the following custom snapshot metrics:

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

149

Attribute Type Description

NumberOfDisconnects long Number of database disconnects.

4.5.3.2. Streaming Metrics

The MBean is debezium.sql_server:type=connector-
metrics,context=streaming,server=<mongodb.name>.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

Red Hat Integration 2020-Q3 Debezium User Guide

150

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

Attributes Type Description

The Debezium MongoDB connector also provides the following custom streaming metrics:

Attribute Type Description

NumberOfDisconnects long Number of database disconnects.

NumberOfPrimaryElections long Number of primary node elections.

4.5.4. Connector properties

The following configuration properties are required unless a default value is available.

Property Default Description

name Unique name for the connector. Attempting to
register again with the same name will fail. (This
property is required by all Kafka Connect
connectors.)

connector.class The name of the Java class for the connector.
Always use a value of
io.debezium.connector.mongodb.Mong
oDbConnector for the MongoDB connector.

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

151

mongodb.hosts The comma-separated list of hostname and
port pairs (in the form 'host' or 'host:port') of
the MongoDB servers in the replica set. The list
can contain a single hostname and port pair. If
mongodb.members.auto.discover is set
to false, then the host and port pair should be
prefixed with the replica set name (e.g.,
rs0/localhost:27017).

mongodb.name A unique name that identifies the connector
and/or MongoDB replica set or sharded cluster
that this connector monitors. Each server
should be monitored by at most one Debezium
connector, since this server name prefixes all
persisted Kafka topics emanating from the
MongoDB replica set or cluster. Only
alphanumeric characters and underscores
should be used.

mongodb.user Name of the database user to be used when
connecting to MongoDB. This is required only
when MongoDB is configured to use
authentication.

mongodb.password Password to be used when connecting to
MongoDB. This is required only when
MongoDB is configured to use authentication.

mongodb.authsource admin Database (authentication source) containing
MongoDB credentials. This is required only
when MongoDB is configured to use
authentication with another authentication
database than admin.

mongodb.ssl.enabled false Connector will use SSL to connect to
MongoDB instances.

mongodb.ssl.invalid.host
name.allowed

false When SSL is enabled this setting controls
whether strict hostname checking is disabled
during connection phase. If true the
connection will not prevent man-in-the-middle
attacks.

database.whitelist empty string An optional comma-separated list of regular
expressions that match database names to be
monitored; any database name not included in
the whitelist is excluded from monitoring. By
default all databases is monitored. May not be
used with database.blacklist.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

152

database.blacklist empty string An optional comma-separated list of regular
expressions that match database names to be
excluded from monitoring; any database name
not included in the blacklist is monitored. May
not be used with database.whitelist.

collection ​.whitelist empty string An optional comma-separated list of regular
expressions that match fully-qualified
namespaces for MongoDB collections to be
monitored; any collection not included in the
whitelist is excluded from monitoring. Each
identifier is of the form
databaseName.collectionName. By default the
connector will monitor all collections except
those in the local and admin databases. May
not be used with collection.blacklist.

collection ​.blacklist empty string An optional comma-separated list of regular
expressions that match fully-qualified
namespaces for MongoDB collections to be
excluded from monitoring; any collection not
included in the blacklist is monitored. Each
identifier is of the form
databaseName.collectionName. May not be
used with collection.whitelist.

snapshot.mode initial Specifies the criteria for running a snapshot
upon startup of the connector. The default is
initial, and specifies the connector reads a
snapshot when either no offset is found or if
the oplog no longer contains the previous
offset. The never option specifies that the
connector should never use snapshots, instead
the connector should proceed to tail the log.

field.blacklist empty string An optional comma-separated list of the fully-
qualified names of fields that should be
excluded from change event message values.
Fully-qualified names for fields are of the form
databaseName.collectionName.fieldName.neste
dFieldName, where databaseName and
collectionName may contain the wildcard (*)
which matches any characters.

Property Default Description

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

153

field.renames empty string An optional comma-separated list of the fully-
qualified replacements of fields that should be
used to rename fields in change event message
values. Fully-qualified replacements for fields
are of the form
databaseName.collectionName.fieldName.neste
dFieldName:newNestedFieldName, where
databaseName and collectionName may
contain the wildcard (*) which matches any
characters, the colon character (:) is used to
determine rename mapping of field. The next
field replacement is applied to the result of the
previous field replacement in the list, so keep
this in mind when renaming multiple fields that
are in the same path.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The MongoDB
connector will attempt to use a separate task
for each replica set, so the default is
acceptable when using the connector with a
single MongoDB replica set. When using the
connector with a MongoDB sharded cluster, we
recommend specifying a value that is equal to
or more than the number of shards in the
cluster, so that the work for each replica set can
be distributed by Kafka Connect.

initial.sync ​.max.threads 1 Positive integer value that specifies the
maximum number of threads used to perform
an intial sync of the collections in a replica set.
Defaults to 1.

tombstones.on ​.delete true Controls whether a tombstone event should be
generated after a delete event.
When true the delete operations are
represented by a delete event and a
subsequent tombstone event. When false only
a delete event is sent.
Emitting the tombstone event (the default
behavior) allows Kafka to completely delete all
events pertaining to the given key once the
source record got deleted.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

154

snapshot.delay ​.ms An interval in milli-seconds that the connector
should wait before taking a snapshot after
starting up;
Can be used to avoid snapshot interruptions
when starting multiple connectors in a cluster,
which may cause re-balancing of connectors.

snapshot.fetch ​.size 0 Specifies the maximum number of documents
that should be read in one go from each
collection while taking a snapshot. The
connector will read the collection contents in
multiple batches of this size.
Defaults to 0, which indicates that the server
chooses an appropriate fetch size.

Property Default Description

The following advanced configuration properties have good defaults that will work in most situations
and therefore rarely need to be specified in the connector’s configuration.

Property Default Description

max.queue.size 8192 Positive integer value that specifies the
maximum size of the blocking queue into which
change events read from the database log are
placed before they are written to Kafka. This
queue can provide backpressure to the oplog
reader when, for example, writes to Kafka are
slower or if Kafka is not available. Events that
appear in the queue are not included in the
offsets periodically recorded by this connector.
Defaults to 8192, and should always be larger
than the maximum batch size specified in the
max.batch.size property.

max.batch.size 2048 Positive integer value that specifies the
maximum size of each batch of events that
should be processed during each iteration of
this connector. Defaults to 2048.

poll.interval.ms 1000 Positive integer value that specifies the
number of milliseconds the connector should
wait during each iteration for new change
events to appear. Defaults to 1000
milliseconds, or 1 second.

connect.backoff ​
.initial.delay.ms

1000 Positive integer value that specifies the initial
delay when trying to reconnect to a primary
after the first failed connection attempt or
when no primary is available. Defaults to 1
second (1000 ms).

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

155

connect.backoff ​
.max.delay.ms

1000 Positive integer value that specifies the
maximum delay when trying to reconnect to a
primary after repeated failed connection
attempts or when no primary is available.
Defaults to 120 seconds (120,000 ms).

connect.max ​.attempts 16 Positive integer value that specifies the
maximum number of failed connection
attempts to a replica set primary before an
exception occurs and task is aborted. Defaults
to 16, which with the defaults for
connect.backoff.initial.delay.ms and
connect.backoff.max.delay.ms results in
just over 20 minutes of attempts before failing.

mongodb.members ​
.auto.discover

true Boolean value that specifies whether the
addresses in 'mongodb.hosts' are seeds that
should be used to discover all members of the
cluster or replica set (true), or whether the
address(es) in mongodb.hosts should be
used as is (false). The default is true and
should be used in all cases except where
MongoDB is fronted by a proxy.

heartbeat.interval ​.ms 0 Controls how frequently heartbeat messages
are sent.
This property contains an interval in milli-
seconds that defines how frequently the
connector sends messages into a heartbeat
topic. This can be used to monitor whether the
connector is still receiving change events from
the database. You also should leverage
heartbeat messages in cases where only
records in non-captured collections are
changed for a longer period of time. In such
situation the connector would proceed to read
the oplog from the database but never emit
any change messages into Kafka, which in turn
means that no offset updates are committed
to Kafka. This will cause the oplog files to be
rotated out but connector will not notice it so
on restart some events are no longer available
which leads to the need of re-execution of the
initial snapshot.

Set this parameter to 0 to not send heartbeat
messages at all.
Disabled by default.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

156

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mongodb-replicaset

heartbeat.topics ​.prefix __debezium-
heartbeat

Controls the naming of the topic to which
heartbeat messages are sent.
The topic is named according to the pattern
<heartbeat.topics.prefix>.
<server.name>.

sanitize.field ​.names true
when connector
configuration explicitly
specifies the
key.converter
or
value.converter
parameters to use Avro.
Otherwise defaults to
false.

Whether field names are sanitized to adhere to
Avro naming requirements.

skipped.operations comma-separated list of oplog operations that
will be skipped during streaming. The
operations include: i for inserts, u for updates,
and d for deletes. By default, no operations are
skipped.

provide.transaction ​
.metadata

false When set to true Debezium generates events
with transaction boundaries and enriches data
events envelope with transaction metadata.

See Transaction Metadata for additional
details.

Property Default Description

4.6. MONGODB CONNECTOR COMMON ISSUES

Debezium is a distributed system that captures all changes in multiple upstream databases, and will
never miss or lose an event. Of course, when the system is operating nominally or being administered
carefully, then Debezium provides exactly once delivery of every change event. However, if a fault does
happen then the system will still not lose any events, although while it is recovering from the fault it may
repeat some change events. Thus, in these abnormal situations Debezium (like Kafka) provides at least
once delivery of change events.

The rest of this section describes how Debezium handles various kinds of faults and problems.

4.6.1. Configuration and startup errors

The connector will fail upon startup, report an error/exception in the log, and stop running when the
connector’s configuration is invalid, or when the connector repeatedly fails to connect to MongoDB
using the specified connectivity parameters. Reconnection is done using exponential backoff, and the
maximum number of attempts is configurable.

In these cases, the error will have more details about the problem and possibly a suggested work around.
The connector can be restarted when the configuration has been corrected or the MongoDB problem
has been addressed.

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

157

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#mongodb-transaction-metadata

4.6.2. MongoDB becomes unavailable

Once the connector is running, if the primary node of any of the MongoDB replica sets become
unavailable or unreachable, the connector will repeatedly attempt to reconnect to the primary node,
using exponential backoff to prevent saturating the network or servers. If the primary remains
unavailable after the configurable number of connection attempts, the connector will fail.

The attempts to reconnect are controlled by three properties:

connect.backoff.initial.delay.ms - The delay before attempting to reconnect for the first
time, with a default of 1 second (1000 milliseconds).

connect.backoff.max.delay.ms - The maximum delay before attempting to reconnect, with a
default of 120 seconds (120,000 milliseconds).

connect.max.attempts - The maximum number of attempts before an error is produced, with a
default of 16.

Each delay is double that of the prior delay, up to the maximum delay. Given the default values, the
following table shows the delay for each failed connection attempt and the total accumulated time
before failure.

Reconnection attempt
number

Delay before attempt, in
seconds

Total delay before attempt, in minutes
and seconds

1 1 00:01

2 2 00:03

3 4 00:07

4 8 00:15

5 16 00:31

6 32 01:03

7 64 02:07

8 120 04:07

9 120 06:07

10 120 08:07

11 120 10:07

12 120 12:07

13 120 14:07

Red Hat Integration 2020-Q3 Debezium User Guide

158

14 120 16:07

15 120 18:07

16 120 20:07

Reconnection attempt
number

Delay before attempt, in
seconds

Total delay before attempt, in minutes
and seconds

4.6.3. Kafka Connect process stops gracefully

If Kafka Connect is being run in distributed mode, and a Kafka Connect process is stopped gracefully,
then prior to shutdown of that processes Kafka Connect will migrate all of the process' connector tasks
to another Kafka Connect process in that group, and the new connector tasks will pick up exactly where
the prior tasks left off. There is a short delay in processing while the connector tasks are stopped
gracefully and restarted on the new processes.

If the group contains only one process and that process is stopped gracefully, then Kafka Connect will
stop the connector and record the last offset for each replica set. Upon restart, the replica set tasks will
continue exactly where they left off.

4.6.4. Kafka Connect process crashes

If the Kafka Connector process stops unexpectedly, then any connector tasks it was running will
terminate without recording their most recently-processed offsets. When Kafka Connect is being run in
distributed mode, it will restart those connector tasks on other processes. However, the MongoDB
connectors will resume from the last offset recorded by the earlier processes, which means that the new
replacement tasks may generate some of the same change events that were processed just prior to the
crash. The number of duplicate events depends on the offset flush period and the volume of data
changes just before the crash.

NOTE

Because there is a chance that some events may be duplicated during a recovery from
failure, consumers should always anticipate some events may be duplicated. Debezium
changes are idempotent, so a sequence of events always results in the same state.

Debezium also includes with each change event message the source-specific information
about the origin of the event, including the MongoDB event’s unique transaction
identifier (h) and timestamp (sec and ord). Consumers can keep track of other of these
values to know whether it has already seen a particular event.

4.6.5. Kafka becomes unavailable

As the connector generates change events, the Kafka Connect framework records those events in Kafka
using the Kafka producer API. Kafka Connect will also periodically record the latest offset that appears in
those change events, at a frequency that you have specified in the Kafka Connect worker configuration.
If the Kafka brokers become unavailable, the Kafka Connect worker process running the connectors will
simply repeatedly attempt to reconnect to the Kafka brokers. In other words, the connector tasks will
simply pause until a connection can be reestablished, at which point the connectors will resume exactly
where they left off.

CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB

159

4.6.6. Connector is stopped for a duration

If the connector is gracefully stopped, the replica sets can continue to be used and any new changes are
recorded in MongoDB’s oplog. When the connector is restarted, it will resume streaming changes for
each replica set where it last left off, recording change events for all of the changes that were made
while the connector was stopped. If the connector is stopped long enough such that MongoDB purges
from its oplog some operations that the connector has not read, then upon startup the connector will
perform a snapshot.

A properly configured Kafka cluster is capable of massive throughput. Kafka Connect is written with
Kafka best practices, and given enough resources will also be able to handle very large numbers of
database change events. Because of this, when a connector has been restarted after a while, it is very
likely to catch up with the database, though how quickly will depend upon the capabilities and
performance of Kafka and the volume of changes being made to the data in MongoDB.

NOTE

If the connector remains stopped for long enough, MongoDB might purge older oplog
files and the connector’s last position may be lost. In this case, when the connector
configured with initial snapshot mode (the default) is finally restarted, the MongoDB
server will no longer have the starting point and the connector will fail with an error.

4.6.7. MongoDB loses writes

It is possible for MongoDB to lose commits in specific failure situations. For example, if the primary
applies a change and records it in its oplog before it then crashes unexpectedly, the secondary nodes
may not have had a chance to read those changes from the primary’s oplog before the primary crashed.
If one such secondary is then elected as primary, its oplog is missing the last changes that the old
primary had recorded and no longer has those changes.

In these cases where MongoDB loses changes recorded in a primary’s oplog, it is possible that the
MongoDB connector may or may not capture these lost changes. At this time, there is no way to prevent
this side effect of MongoDB.

Red Hat Integration 2020-Q3 Debezium User Guide

160

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER
Debezium’s SQL Server Connector can monitor and record the row-level changes in the schemas of a
SQL Server database.

The first time it connects to a SQL Server database/cluster, it reads a consistent snapshot of all of the
schemas. When that snapshot is complete, the connector continuously streams the changes that were
committed to SQL Server and generates corresponding insert, update and delete events. All of the
events for each table are recorded in a separate Kafka topic, where they can be easily consumed by
applications and services.

5.1. OVERVIEW

The functionality of the connector is based upon change data capture feature provided by SQL Server
Standard (since SQL Server 2016 SP1) or Enterprise edition. Using this mechanism a SQL Server capture
process monitors all databases and tables the user is interested in and stores the changes into
specifically created CDC tables that have stored procedure facade.

The database operator must enable CDC for the table(s) that should be captured by the connector.
The connector then produces a change event for every row-level insert, update, and delete operation
that was published via the CDC API , recording all the change events for each table in a separate Kafka
topic. The client applications read the Kafka topics that correspond to the database tables they’re
interested in following, and react to every row-level event it sees in those topics.

The database operator normally enables CDC in the mid-life of a database an/or table. This means that
the connector does not have the complete history of all changes that have been made to the database.
Therefore, when the SQL Server connector first connects to a particular SQL Server database, it starts
by performing a consistent snapshot of each of the database schemas. After the connector completes
the snapshot, it continues streaming changes from the exact point at which the snapshot was made.
This way, we start with a consistent view of all of the data, yet continue reading without having lost any
of the changes made while the snapshot was taking place.

The connector is also tolerant of failures. As the connector reads changes and produces events, it
records the position in the database log (LSN / Log Sequence Number), that is associated with CDC
record, with each event. If the connector stops for any reason (including communication failures,
network problems, or crashes), upon restart it simply continues reading the CDC tables where it last left
off. This includes snapshots: if the snapshot was not completed when the connector is stopped, upon
restart it begins a new snapshot.

5.2. SETTING UP SQL SERVER

Before using the SQL Server connector to monitor the changes committed on SQL Server, first enable
CDC on a monitored database. Please bear in mind that CDC cannot be enabled for the master
database.

Then enable CDC for each table that you plan to monitor.

-- ====
-- Enable Database for CDC template
-- ====
USE MyDB
GO
EXEC sys.sp_cdc_enable_db
GO

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

161

https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/about-change-data-capture-sql-server?view=sql-server-2017
https://blogs.msdn.microsoft.com/sqlreleaseservices/sql-server-2016-service-pack-1-sp1-released/
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/enable-and-disable-change-data-capture-sql-server?view=sql-server-2017

Verify that the user have access to the CDC table.

If the result is empty then please make sure that the user has privileges to access both the capture
instance and CDC tables.

5.2.1. SQL Server on Azure

The SQL Server plug-in has not been tested with SQL Server on Azure. We welcome any feedback from
a user to try the plug-in with database in managed environments.

5.3. HOW THE SQL SERVER CONNECTOR WORKS

5.3.1. Snapshots

SQL Server CDC is not designed to store the complete history of database changes. It is thus necessary
that Debezium establishes the baseline of current database content and streams it to the Kafka. This is
achieved via a process called snapshotting.

By default (snapshotting mode initial) the connector will upon the first startup perform an initial
consistent snapshot of the database (meaning the structure and data within any tables to be captured as
per the connector’s filter configuration).

Each snapshot consists of the following steps:

1. Determine the tables to be captured

2. Obtain a lock on each of the monitored tables to ensure that no structural changes can occur to
any of the tables. The level of the lock is determined by snapshot.isolation.mode configuration
option.

3. Read the maximum LSN ("log sequence number") position in the server’s transaction log.

4. Capture the structure of all relevant tables.

5. Optionally release the locks obtained in step 2, i.e. the locks are held usually only for a short

-- ====
-- Enable a Table Specifying Filegroup Option Template
-- ====
USE MyDB
GO

EXEC sys.sp_cdc_enable_table
@source_schema = N'dbo',
@source_name = N'MyTable',
@role_name = N'MyRole',
@filegroup_name = N'MyDB_CT',
@supports_net_changes = 0
GO

-- ====
-- Verify the user of the connector have access, this query should not have empty result
-- ====

EXEC sys.sp_cdc_help_change_data_capture
GO

Red Hat Integration 2020-Q3 Debezium User Guide

162

5. Optionally release the locks obtained in step 2, i.e. the locks are held usually only for a short
period of time.

6. Scan all of the relevant database tables and schemas as valid at the LSN position read in step 3,
and generate a READ event for each row and write that event to the appropriate table-specific
Kafka topic.

7. Record the successful completion of the snapshot in the connector offsets.

5.3.2. Reading the change data tables

Upon first start-up, the connector takes a structural snapshot of the structure of the captured tables
and persists this information in its internal database history topic. Then the connector identifies a
change table for each of the source tables and executes the main loop

1. For each change table read all changes that were created between last stored maximum LSN
and current maximum LSN

2. Order the read changes incrementally according to commit LSN and change LSN. This ensures
that the changes are replayed by Debezium in the same order as were made to the database.

3. Pass commit and change LSNs as offsets to Kafka Connect.

4. Store the maximum LSN and repeat the loop.

After a restart, the connector will resume from the offset (commit and change LSNs) where it left off
before.

The connector is able to detect whether CDC is enabled or disabled for whitelisted source tables and
adjust its behavior.

5.3.3. Topic names

The SQL Server connector writes events for all insert, update, and delete operations on a single table to
a single Kafka topic. The name of the Kafka topics always takes the form
serverName.schemaName.tableName, where serverName is the logical name of the connector as
specified with the database.server.name configuration property, schemaName is the name of the
schema where the operation occurred, and tableName is the name of the database table on which the
operation occurred.

For example, consider a SQL Server installation with an inventory database that contains four tables:
products, products_on_hand, customers, and orders in schema dbo. If the connector monitoring this
database were given a logical server name of fulfillment, then the connector would produce events on
these four Kafka topics:

fulfillment.dbo.products

fulfillment.dbo.products_on_hand

fulfillment.dbo.customers

fulfillment.dbo.orders

5.3.4. Schema change topic

For a table for which CDC is enabled, the Debezium SQL Server connector stores the history of schema

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

163

changes to that table in a database history topic. This topic reflects an internal connector state and you
should not use it. If your application needs to track schema changes, there is a public schema change
topic. The name of the schema change topic is the same as the logical server name specified in the
connector configuration.

WARNING

The format of messages that a connector emits to its schema change topic is in an
incubating state and can change without notice.

Debezium emits a message to the schema change topic when:

You enable CDC for a table.

You disable CDC for a table.

You alter the structure of a table for which CDC is enabled by following the schema evolution
procedure.

A message to the schema change topic contains a logical representation of the table schema, for
example:



{
 "schema": {
 ...
 },
 "payload": {
 "source": {
 "version": "1.2.4.Final",
 "connector": "sqlserver",
 "name": "server1",
 "ts_ms": 1588252618953,
 "snapshot": "true",
 "db": "testDB",
 "schema": "dbo",
 "table": "customers",
 "change_lsn": null,
 "commit_lsn": "00000025:00000d98:00a2",
 "event_serial_no": null
 },
 "databaseName": "testDB", 1
 "schemaName": "dbo",
 "ddl": null, 2
 "tableChanges": [3
 {
 "type": "CREATE", 4
 "id": "\"testDB\".\"dbo\".\"customers\"", 5
 "table": { 6
 "defaultCharsetName": null,
 "primaryKeyColumnNames": [7

Red Hat Integration 2020-Q3 Debezium User Guide

164

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-schema-evolution

 "id"
],
 "columns": [8
 {
 "name": "id",
 "jdbcType": 4,
 "nativeType": null,
 "typeName": "int identity",
 "typeExpression": "int identity",
 "charsetName": null,
 "length": 10,
 "scale": 0,
 "position": 1,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "first_name",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 2,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "last_name",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 3,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "email",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 4,
 "optional": false,

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

165

Table 5.1. Descriptions of fields in messages emitted to the schema change topic

Item Field name(s) Description

1 databaseName
schemaName

Identifies the database and the schema that contain
the change.

2 ddl Always null for the SQL Server connector. For other
connectors, this field contains the DDL responsible
for the schema change. This DDL is not available to
SQL Server connectors.

3 tableChanges An array of one or more items that contain the
schema changes generated by a DDL command.

4 type Describes the kind of change. The value is one of the
following:

CREATE - table created

ALTER - table modified

DROP - table deleted

5 id Full identifier of the table that was created, altered,
or dropped.

6 table Represents table metadata after the applied change.

7 primaryKeyColumnNames List of columns that compose the table’s primary key.

8 columns Metadata for each column in the changed table.

In messages to the schema change topic, the key is the name of the database that contains the schema
change. In the following example, the payload field contains the key:

 "autoIncremented": false,
 "generated": false
 }
]
 }
 }
]
 }
}

{
 "schema": {
 "type": "struct",
 "fields": [
 {
 "type": "string",

Red Hat Integration 2020-Q3 Debezium User Guide

166

5.3.5. Change data events

The Debezium SQL Server connector generates a data change event for each row-level INSERT,
UPDATE, and DELETE operation. Each event contains a key and a value. The structure of the key and
the value depends on the table that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the
structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a
schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converver and you configure it to produce all
four basic change event parts, change events have this structure:

Table 5.2. Overview of change event basic content

Item Field name Description

 "optional": false,
 "field": "databaseName"
 }
],
 "optional": false,
 "name": "io.debezium.connector.sqlserver.SchemaChangeKey"
 },
 "payload": {
 "databaseName": "testDB"
 }
}

{
 "schema": { 1
 ...
 },
 "payload": { 2
 ...
 },
 "schema": { 3
 ...
 },
 "payload": { 4
 ...
 },
}

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

167

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the primary key, or
the unique key if the table does not have a primary key, for the table that
was changed.

It is possible to override the table’s primary key by setting the
message.key.columns connector configuration property. In this case,
the first schema field describes the structure of the key identified by that
property.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the row
that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
row that was changed. Typically, this schema contains nested schemas.

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the row that was changed.

Item Field name Description

By default, the connector streams change event records to topics with names that are the same as the
event’s originating table. See topic names.

WARNING

The SQL Server connector ensures that all Kafka Connect schema names adhere to
the Avro schema name format . This means that the logical server name must start
with a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining character
in the logical server name and each character in the database and table names must
be a Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If there is an
invalid character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a database name, or
a table name contains invalid characters, and the only characters that distinguish
names from one another are invalid and thus replaced with underscores.

5.3.5.1. Change Event Keys

A change event’s key contains the schema for the changed table’s key and the changed row’s actual
key. Both the schema and its corresponding payload contain a field for each column in the changed
table’s primary key (or unique key constraint) at the time the connector created the event.



Red Hat Integration 2020-Q3 Debezium User Guide

168

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-property-message-key-columns
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-topic-names
http://avro.apache.org/docs/current/spec.html#names

Consider the following customers table, which is followed by an example of a change event key for this
table.

Example table

Example change event key

Every change event that captures a change to the customers table has the same event key schema.
For as long as the customers table has the previous definition, every change event that captures a
change to the customers table has the following key structure, which in JSON, looks like this:

Table 5.3. Description of change event key

Item Field name Description

1 schema The schema portion of the key specifies a Kafka Connect schema that
describes what is in the key’s payload portion.

2 fields Specifies each field that is expected in the payload, including each field’s
name, type, and whether it is required. In this example, there is one required
field named id of type int32.

3 optional Indicates whether the event key must contain a value in its payload field. In
this example, a value in the key’s payload is required. A value in the key’s
payload field is optional when a table does not have a primary key.

CREATE TABLE customers (
 id INTEGER IDENTITY(1001,1) NOT NULL PRIMARY KEY,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL UNIQUE
);

{
 "schema": { 1
 "type": "struct",
 "fields": [2
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 }
],
 "optional": false, 3
 "name": "server1.dbo.customers.Key" 4
 },
 "payload": { 5
 "id": 1004
 }
}

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

169

4 server1.dbo ​
.customers ​.Key

Name of the schema that defines the structure of the key’s payload. This
schema describes the structure of the primary key for the table that was
changed. Key schema names have the format connector-name.database-
schema-name.table-name.Key. In this example:

server1 is the name of the connector that generated this event.

dbo is the database schema for the table that was changed.

customers is the table that was updated.

5 payload Contains the key for the row for which this change event was generated. In
this example, the key, contains a single id field whose value is 1004.

Item Field name Description

5.3.5.2. Change event values

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,
update or delete data all have a value payload with an envelope structure.

Consider the same sample table that was used to show an example of a change event key:

The value portion of a change event for a change to this table is described for each event type.

create events

update events

delete events

5.3.5.2.1. create events

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers table:

CREATE TABLE customers (
 id INTEGER IDENTITY(1001,1) NOT NULL PRIMARY KEY,
 first_name VARCHAR(255) NOT NULL,
 last_name VARCHAR(255) NOT NULL,
 email VARCHAR(255) NOT NULL UNIQUE
);

{
 "schema": { 1
 "type": "struct",
 "fields": [
 {

Red Hat Integration 2020-Q3 Debezium User Guide

170

 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "server1.dbo.customers.Value", 2
 "field": "before"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "id"
 },
 {
 "type": "string",
 "optional": false,
 "field": "first_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "last_name"
 },
 {
 "type": "string",
 "optional": false,
 "field": "email"
 }
],
 "optional": true,
 "name": "server1.dbo.customers.Value",
 "field": "after"
 },
 {

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

171

 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },
 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {
 "type": "string",
 "optional": false,
 "field": "schema"
 },
 {
 "type": "string",
 "optional": false,
 "field": "table"
 },
 {
 "type": "string",
 "optional": true,
 "field": "change_lsn"
 },
 {
 "type": "string",
 "optional": true,
 "field": "commit_lsn"
 },
 {
 "type": "int64",
 "optional": true,

Red Hat Integration 2020-Q3 Debezium User Guide

172

Table 5.4. Descriptions of create event value fields

Item Field name Description

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular table.

 "field": "event_serial_no"
 }
],
 "optional": false,
 "name": "io.debezium.connector.sqlserver.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "server1.dbo.customers.Envelope" 4
 },
 "payload": { 5
 "before": null, 6
 "after": { 7
 "id": 1005,
 "first_name": "john",
 "last_name": "doe",
 "email": "john.doe@example.org"
 },
 "source": { 8
 "version": "1.2.4.Final",
 "connector": "sqlserver",
 "name": "server1",
 "ts_ms": 1559729468470,
 "snapshot": false,
 "db": "testDB",
 "schema": "dbo",
 "table": "customers",
 "change_lsn": "00000027:00000758:0003",
 "commit_lsn": "00000027:00000758:0005",
 "event_serial_no": "1"
 },
 "op": "c", 9
 "ts_ms": 1559729471739 10
 }
}

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

173

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

server1.dbo.customers.Value is the schema for the payload’s before
and after fields. This schema is specific to the customers table.

Names of schemas for before and after fields are of the form
logicalName.database-schemaName.tableName.Value, which
ensures that the schema name is unique in the database. This means that
when using the Avro converter, the resulting Avro schema for each table in
each logical source has its own evolution and history.

3 name io.debezium.connector.sqlserver.Source is the schema for the
payload’s source field. This schema is specific to the SQL Server
connector. The connector uses it for all events that it generates.

4 name server1.dbo.customers.Envelope is the schema for the overall
structure of the payload, where server1 is the connector name, dbo is the
database schema name, and customers is the table.

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that the JSON representations of the events are much larger
than the rows they describe. This is because the JSON representation must
include the schema and the payload portions of the message. However, by
using the Avro converter, you can significantly decrease the size of the
messages that the connector streams to Kafka topics.

6 before An optional field that specifies the state of the row before the event
occurred. When the op field is c for create, as it is in this example, the
before field is null since this change event is for new content.

7 after An optional field that specifies the state of the row after the event
occurred. In this example, the after field contains the values of the new row’s
id, first_name, last_name, and email columns.

Item Field name Description

Red Hat Integration 2020-Q3 Debezium User Guide

174

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

8 source Mandatory field that describes the source metadata for the event. This field
contains information that you can use to compare this event with other
events, with regard to the origin of the events, the order in which the events
occurred, and whether events were part of the same transaction. The
source metadata includes:

Debezium version

Connector type and name

Database and schema names

Timestamp for when the change was made in the database

If the event was part of a snapshot

Name of the table that contains the new row

Server log offsets

9 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a row. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

10 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

5.3.5.2.2. update events

The value of a change event for an update in the sample customers table has the same schema as a
create event for that table. Likewise, the event value’s payload has the same structure. However, the
event value payload contains different values in an update event. Here is an example of a change event
value in an event that the connector generates for an update in the customers table:

{
 "schema": { ... },
 "payload": {
 "before": { 1

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

175

Table 5.5. Descriptions of update event value fields

Item Field name Description

1 before An optional field that specifies the state of the row before the event
occurred. In an update event value, the before field contains a field for each
table column and the value that was in that column before the database
commit. In this example, the email value is john.doe@example.org.

2 after An optional field that specifies the state of the row after the event
occurred. You can compare the before and after structures to determine
what the update to this row was. In the example, the email value is now
noreply@example.org.

 "id": 1005,
 "first_name": "john",
 "last_name": "doe",
 "email": "john.doe@example.org"
 },
 "after": { 2
 "id": 1005,
 "first_name": "john",
 "last_name": "doe",
 "email": "noreply@example.org"
 },
 "source": { 3
 "version": "1.2.4.Final",
 "connector": "sqlserver",
 "name": "server1",
 "ts_ms": 1559729995937,
 "snapshot": false,
 "db": "testDB",
 "schema": "dbo",
 "table": "customers",
 "change_lsn": "00000027:00000ac0:0002",
 "commit_lsn": "00000027:00000ac0:0007",
 "event_serial_no": "2"
 },
 "op": "u", 4
 "ts_ms": 1559729998706 5
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

176

3 source Mandatory field that describes the source metadata for the event. The
source field structure has the same fields as in a create event, but some
values are different, for example, the sample update event has a different
offset. The source metadata includes:

Debezium version

Connector type and name

Database and schema names

Timestamp for when the change was made in the database

If the event was part of a snapshot

Name of the table that contains the new row

Server log offsets

The event_serial_no field differentiates events that have the same
commit and change LSN. Typical situations for when this field has a value
other than 1:

update events have the value set to 2 because the update
generates two events in the CDC change table of SQL Server (see
the source documentation for details). The first event contains the
old values and the second contains contains new values. The
connector uses values in the first event to create the second event.
The connector drops the first event.

When a primary key is updated SQL Server emits two evemts. A
delete event for the removal of the record with the old primary key
value and a create event for the addition of the record with the
new primary key. Both operations share the same commit and
change LSN and their event numbers are 1 and 2, respectively.

4 op Mandatory string that describes the type of operation. In an update event
value, the op field value is u, signifying that this row changed because of an
update.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

NOTE

Updating the columns for a row’s primary/unique key changes the value of the row’s key.
When a key changes, Debezium outputs three events: a delete event and a tombstone
event with the old key for the row, followed by a create event with the new key for the
row.

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

177

https://docs.microsoft.com/en-us/sql/relational-databases/system-tables/cdc-capture-instance-ct-transact-sql?view=sql-server-2017
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-tombstone-events

5.3.5.2.3. delete events

The value in a delete change event has the same schema portion as create and update events for the
same table. The payload portion in a delete event for the sample customers table looks like this:

Table 5.6. Descriptions of delete event value fields

Item Field name Description

1 before Optional field that specifies the state of the row before the event occurred.
In a delete event value, the before field contains the values that were in the
row before it was deleted with the database commit.

2 after Optional field that specifies the state of the row after the event occurred. In
a delete event value, the after field is null, signifying that the row no longer
exists.

{
 "schema": { ... },
 },
 "payload": {
 "before": { 1
 "id": 1005,
 "first_name": "john",
 "last_name": "doe",
 "email": "noreply@example.org"
 },
 "after": null, 2
 "source": { 3
 "version": "1.2.4.Final",
 "connector": "sqlserver",
 "name": "server1",
 "ts_ms": 1559730445243,
 "snapshot": false,
 "db": "testDB",
 "schema": "dbo",
 "table": "customers",
 "change_lsn": "00000027:00000db0:0005",
 "commit_lsn": "00000027:00000db0:0007",
 "event_serial_no": "1"
 },
 "op": "d", 4
 "ts_ms": 1559730450205 5
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

178

3 source Mandatory field that describes the source metadata for the event. In a
delete event value, the source field structure is the same as for create and
update events for the same table. Many source field values are also the
same. In a delete event value, the ts_ms and pos field values, as well as
other values, might have changed. But the source field in a delete event
value provides the same metadata:

Debezium version

Connector type and name

Database and schema names

Timestamp for when the change was made in the database

If the event was part of a snapshot

Name of the table that contains the new row

Server log offsets

4 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this row was deleted.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

SQL Server connector events are designed to work with Kafka log compaction. Log compaction enables
removal of some older messages as long as at least the most recent message for every key is kept. This
lets Kafka reclaim storage space while ensuring that the topic contains a complete data set and can be
used for reloading key-based state.

Tombstone events

When a row is deleted, the delete event value still works with log compaction, because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
same key, the message value must be null. To make this possible, after Debezium’s SQL Server
connector emits a delete event, the connector emits a special tombstone event that has the same key
but a null value.

5.3.6. Transaction Metadata

Debezium can generate events that represents tranaction metadata boundaries and enrich data
messages.

5.3.6.1. Transaction boundaries

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

179

https://kafka.apache.org/documentation/#compaction

Debezium generates events for every transaction BEGIN and END. Every event contains

status - BEGIN or END

id - string representation of unique transaction identifier

event_count (for END events) - total number of events emmitted by the transaction

data_collections (for END events) - an array of pairs of data_collection and event_count that
provides number of events emitted by changes originating from given data collection

Following is an example of what a message looks like:

The transaction events are written to the topic named <database.server.name>.transaction.

5.3.6.2. Data events enrichment

When transaction metadata is enabled the data message Envelope is enriched with a new transaction
field. This field provides information about every event in the form of a composite of fields:

id - string representation of unique transaction identifier

total_order - the absolute position of the event among all events generated by the transaction

data_collection_order - the per-data collection position of the event among all events that
were emitted by the transaction

Following is an example of what a message looks like:

{
 "status": "BEGIN",
 "id": "00000025:00000d08:0025",
 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "00000025:00000d08:0025",
 "event_count": 2,
 "data_collections": [
 {
 "data_collection": "testDB.dbo.tablea",
 "event_count": 1
 },
 {
 "data_collection": "testDB.dbo.tableb",
 "event_count": 1
 }
]
}

{
 "before": null,
 "after": {
 "pk": "2",

Red Hat Integration 2020-Q3 Debezium User Guide

180

5.3.7. Database schema evolution

Debezium is able to capture schema changes over time. Due to the way CDC is implemented in SQL
Server, it is necessary to work in co-operation with a database operator in order to ensure the
connector continues to produce data change events when the schema is updated.

As was already mentioned before, Debezium uses SQL Server’s change data capture functionality. This
means that SQL Server creates a capture table that contains all changes executed on the source table.
Unfortunately, the capture table is static and needs to be updated when the source table structure
changes. This update is not done by the connector itself but must be executed by an operator with
elevated privileges.

There are generally two procedures how to execute the schema change:

cold - this is executed when Debezium is stopped

hot - executed while Debezium is running

Both approaches have their own advantages and disadvantages.

WARNING

In both cases, it is critically important to execute the procedure completely before a
new schema update on the same source table is made. It is thus recommended to
execute all DDLs in a single batch so the procedure is done only once.

NOTE

Not all schema changes are supported when CDC is enabled for a source table. One such
exception identified is renaming a column or changing its type, SQL Server will not allow
executing the operation.

NOTE

 "aa": "1"
 },
 "source": {
...
 },
 "op": "c",
 "ts_ms": "1580390884335",
 "transaction": {
 "id": "00000025:00000d08:0025",
 "total_order": "1",
 "data_collection_order": "1"
 }
}



CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

181

NOTE

Although not required by SQL Server’s CDC mechanism itself, a new capture instance
must be created when altering a column from NULL to NOT NULL or vice versa. This is
required so that the SQL Server connector can pick up that changed information.
Otherwise, emitted change events will have the optional value for the corresponding
field (true or false) set to match the original value.

5.3.7.1. Cold schema update

This is the safest procedure but might not be feasible for applications with high-availability
requirements. The operator should follow this sequence of steps

1. Suspend the application that generates the database records

2. Wait for Debezium to stream all unstreamed changes

3. Stop the connector

4. Apply all changes to the source table schema

5. Create a new capture table for the update source table using sys.sp_cdc_enable_table
procedure with a unique value for parameter @capture_instance

6. Resume the application

7. Start the connector

8. When Debezium starts streaming from the new capture table it is possible to drop the old one
using sys.sp_cdc_disable_table stored procedure with parameter @capture_instance set to
the old capture instance name

5.3.7.2. Hot schema update

The hot schema update does not require any downtime in application and data processing. The
procedure itself is also much simpler than in case of cold schema update

1. Apply all changes to the source table schema

2. Create a new capture table for the update source table using sys.sp_cdc_enable_table
procedure with a unique value for parameter @capture_instance

3. When Debezium starts streaming from the new capture table it is possible to drop the old one
using sys.sp_cdc_disable_table stored procedure with parameter @capture_instance set to
the old capture instance name

The hot schema update has one drawback. There is a period of time between the database schema
update and creating the new capture instance. All changes that will arrive during this period are
captured by the old instance with the old structure. For instance this means that in case of a newly
added column any change event produced during this time will not yet contain a field for that new
column. If your application does not tolerate such a transition period we recommend to follow the cold
schema update.

5.3.7.3. Example

In this example, a column phone_number is added to the customers table.

Red Hat Integration 2020-Q3 Debezium User Guide

182

Kafka Connect log will contain messages like these:

Eventually, there is a new field in the schema and value of the messages written to the Kafka topic.

Start the database shell
docker-compose -f docker-compose-sqlserver.yaml exec sqlserver bash -c '/opt/mssql-
tools/bin/sqlcmd -U sa -P $SA_PASSWORD -d testDB'

-- Modify the source table schema
ALTER TABLE customers ADD phone_number VARCHAR(32);

-- Create the new capture instance
EXEC sys.sp_cdc_enable_table @source_schema = 'dbo', @source_name = 'customers',
@role_name = NULL, @supports_net_changes = 0, @capture_instance = 'dbo_customers_v2';
GO

-- Insert new data
INSERT INTO customers(first_name,last_name,email,phone_number) VALUES
('John','Doe','john.doe@example.com', '+1-555-123456');
GO

connect_1 | 2019-01-17 10:11:14,924 INFO || Multiple capture instances present for the same
table: Capture instance "dbo_customers" [sourceTableId=testDB.dbo.customers,
changeTableId=testDB.cdc.dbo_customers_CT, startLsn=00000024:00000d98:0036,
changeTableObjectId=1525580473, stopLsn=00000025:00000ef8:0048] and Capture instance
"dbo_customers_v2" [sourceTableId=testDB.dbo.customers,
changeTableId=testDB.cdc.dbo_customers_v2_CT, startLsn=00000025:00000ef8:0048,
changeTableObjectId=1749581271, stopLsn=NULL]
[io.debezium.connector.sqlserver.SqlServerStreamingChangeEventSource]
connect_1 | 2019-01-17 10:11:14,924 INFO || Schema will be changed for ChangeTable
[captureInstance=dbo_customers_v2, sourceTableId=testDB.dbo.customers,
changeTableId=testDB.cdc.dbo_customers_v2_CT, startLsn=00000025:00000ef8:0048,
changeTableObjectId=1749581271, stopLsn=NULL]
[io.debezium.connector.sqlserver.SqlServerStreamingChangeEventSource]
...
connect_1 | 2019-01-17 10:11:33,719 INFO || Migrating schema to ChangeTable
[captureInstance=dbo_customers_v2, sourceTableId=testDB.dbo.customers,
changeTableId=testDB.cdc.dbo_customers_v2_CT, startLsn=00000025:00000ef8:0048,
changeTableObjectId=1749581271, stopLsn=NULL]
[io.debezium.connector.sqlserver.SqlServerStreamingChangeEventSource]

...
 {
 "type": "string",
 "optional": true,
 "field": "phone_number"
 }
...
 "after": {
 "id": 1005,
 "first_name": "John",
 "last_name": "Doe",

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

183

5.3.8. Data types

As described above, the SQL Server connector represents the changes to rows with events that are
structured like the table in which the row exist. The event contains a field for each column value, and how
that value is represented in the event depends on the SQL data type of the column. This section
describes this mapping.

The following table describes how the connector maps each of the SQL Server data types to a literal
type and semantic type within the events' fields. Here, the literal type describes how the value is literally
represented using Kafka Connect schema types, namely INT8, INT16, INT32, INT64, FLOAT32,
FLOAT64, BOOLEAN, STRING, BYTES, ARRAY, MAP, and STRUCT. The semantic type describes how
the Kafka Connect schema captures the meaning of the field using the name of the Kafka Connect
schema for the field.

SQL Server data type Literal type (schema
type)

Semantic type (schema name)

BIT BOOLEAN n/a

TINYINT INT16 n/a

SMALLINT INT16 n/a

INT INT32 n/a

BIGINT INT64 n/a

REAL FLOAT32 n/a

FLOAT[(N)] FLOAT64 n/a

CHAR[(N)] STRING n/a

VARCHAR[(N)] STRING n/a

TEXT STRING n/a

NCHAR[(N)] STRING n/a

NVARCHAR[(N)] STRING n/a

 "email": "john.doe@example.com",
 "phone_number": "+1-555-123456"
 },

-- Drop the old capture instance
EXEC sys.sp_cdc_disable_table @source_schema = 'dbo', @source_name = 'dbo_customers',
@capture_instance = 'dbo_customers';
GO

Red Hat Integration 2020-Q3 Debezium User Guide

184

NTEXT STRING n/a

XML STRING io.debezium.data.Xml

Contains the string representation of an XML
document

DATETIMEOFFSET[(P)] STRING io.debezium.time.ZonedTimestamp

A string representation of a timestamp with
timezone information, where the timezone is
GMT

SQL Server data type Literal type (schema
type)

Semantic type (schema name)

Other data type mappings are described in the following sections.

If present, a column’s default value is propagated to the corresponding field’s Kafka Connect schema.
Change messages will contain the field’s default value (unless an explicit column value had been given),
so there should rarely be the need to obtain the default value from the schema.

5.3.8.1. Temporal values

Other than SQL Server’s DATETIMEOFFSET data type (which contain time zone information), the
other temporal types depend on the value of the time.precision.mode configuration property. When
the time.precision.mode configuration property is set to adaptive (the default), then the connector
will determine the literal type and semantic type for the temporal types based on the column’s data
type definition so that events exactly represent the values in the database:

SQL Server data type Literal type (schema
type)

Semantic type (schema name)

DATE INT32 io.debezium.time.Date

Represents the number of days since epoch.

TIME(0), TIME(1), TIME(2),
TIME(3)

INT32 io.debezium.time.Time

Represents the number of milliseconds past
midnight, and does not include timezone
information.

TIME(4), TIME(5), TIME(6) INT64 io.debezium.time.MicroTime

Represents the number of microseconds past
midnight, and does not include timezone
information.

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

185

TIME(7) INT64 io.debezium.time.NanoTime

Represents the number of nanoseconds past
midnight, and does not include timezone
information.

DATETIME INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past
epoch, and does not include timezone
information.

SMALLDATETIME INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past
epoch, and does not include timezone
information.

DATETIME2(0),
DATETIME2(1),
DATETIME2(2),
DATETIME2(3)

INT64 io.debezium.time.Timestamp

Represents the number of milliseconds past
epoch, and does not include timezone
information.

DATETIME2(4),
DATETIME2(5),
DATETIME2(6)

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds past
epoch, and does not include timezone
information.

DATETIME2(7) INT64 io.debezium.time.NanoTimestamp

Represents the number of nanoseconds past
epoch, and does not include timezone
information.

SQL Server data type Literal type (schema
type)

Semantic type (schema name)

When the time.precision.mode configuration property is set to connect, then the connector will use
the predefined Kafka Connect logical types. This may be useful when consumers only know about the
built-in Kafka Connect logical types and are unable to handle variable-precision time values. On the
other hand, since SQL Server supports tenth of microsecond precision, the events generated by a
connector with the connect time precision mode will result in a loss of precision when the database
column has a fractional second precision value greater than 3:

Red Hat Integration 2020-Q3 Debezium User Guide

186

SQL Server data type Literal type
(schema type)

Semantic type (schema name)

DATE INT32 org.apache.kafka.connect.data.Date

Represents the number of days since the epoch.

TIME([P]) INT64 org.apache.kafka.connect.data.Time

Represents the number of milliseconds since midnight, and
does not include timezone information. SQL Server allows
P to be in the range 0-7 to store up to tenth of
microsecond precision, though this mode results in a loss
of precision when P > 3.

DATETIME INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since epoch, and
does not include timezone information.

SMALLDATETIME INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds past epoch, and
does not include timezone information.

DATETIME2 INT64 org.apache.kafka.connect.data.Timestamp

+ Represents the number of milliseconds since epoch, and
does not include timezone information. SQL Server allows
P to be in the range 0-7 to store up to tenth of
microsecond precision, though this mode results in a loss
of precision when P > 3.

5.3.8.1.1. Timestamp values

The DATETIME, SMALLDATETIME and DATETIME2 types represent a timestamp without time zone
information. Such columns are converted into an equivalent Kafka Connect value based on UTC. So for
instance the DATETIME2 value "2018-06-20 15:13:16.945104" is represented by a
io.debezium.time.MicroTimestamp with the value "1529507596945104".

Note that the timezone of the JVM running Kafka Connect and Debezium does not affect this
conversion.

5.3.8.2. Decimal values

SQL Server data type Literal type
(schema type)

Semantic type (schema name)

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

187

NUMERIC[(P[,S])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer
representing how many digits the decimal point was
shifted. The connect.decimal.precision schema
parameter contains an integer representing the
precision of the given decimal value.

DECIMAL[(P[,S])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer
representing how many digits the decimal point was
shifted. The connect.decimal.precision schema
parameter contains an integer representing the
precision of the given decimal value.

SMALLMONEY BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer
representing how many digits the decimal point was
shifted. The connect.decimal.precision schema
parameter contains an integer representing the
precision of the given decimal value.

MONEY BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer
representing how many digits the decimal point was
shifted. The connect.decimal.precision schema
parameter contains an integer representing the
precision of the given decimal value.

SQL Server data type Literal type
(schema type)

Semantic type (schema name)

5.4. DEPLOYMENT

To deploy a Debezium SQL Server connector, install the Debezium SQL Server connector archive,
configure the connector, and start the connector by adding its configuration to Kafka Connect.

To install the SQL Server connector, follow the procedures in Installing Debezium on OpenShift. The
main steps are:

1. Use Red Hat AMQ Streams to set up Apache Kafka and Kafka Connect on OpenShift. AMQ
Streams offers operators and images that bring Kafka to OpenShift.

2. Download the Debezium SQL Server connector.

3. Extract the connector files into your Kafka Connect environment.

4. Add the connector plug-in’s parent directory to your Kafka Connect plugin.path, for example:

plugin.path=/kafka/connect

Red Hat Integration 2020-Q3 Debezium User Guide

188

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/installing_debezium_on_openshift/
https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

The above example assumes that you extracted the Debezium SQL Server connector to the
/kafka/connect/Debezium-connector-sqlserver path.

5. Restart your Kafka Connect process to ensure that the new JAR files are picked up.

You also need to set up SQL Server to run a Debezium connector.

Additional resources

For more information about the deployment process, and deploying connectors with AMQ Streams, see
the Debezium installation guides.

Installing Debezium on OpenShift

Installing Debezium on RHEL

5.4.1. Example configuration

To use the connector to produce change events for a particular SQL Server database or cluster:

1. Enable the CDC on SQL Server to publish the CDC events in the database.

2. Create a configuration file for the SQL Server connector.

When the connector starts, it will grab a consistent snapshot of the schemas in your SQL Server
database and start streaming changes, producing events for every inserted, updated, and deleted row.
You can also choose to produce events for a subset of the schemas and tables. Optionally ignore, mask,
or truncate columns that are sensitive, too large, or not needed.

Following is an example of the configuration for a connector instance that monitors a SQL Server server
at port 1433 on 192.168.99.100, which we logically name fullfillment. Typically, you configure the
Debezium SQL Server connector in a .yaml file using the configuration properties available for the
connector.

Table 5.7. Descriptions of connector configuration settings

apiVersion: kafka.strimzi.io/v1beta1
 kind: KafkaConnector
 metadata:
 name: inventory-connector 1
 labels: strimzi.io/cluster: my-connect-cluster
 spec:
 class: io.debezium.connector.sqlserver.SqlServerConnector 2
 config:
 database.hostname: 192.168.99.100 3
 database.port: 1433 4
 database.user: debezium 5
 database.password: dbz 6
 database.dbname: testDB 7
 database.server.name: fullfullment 8
 database.whitelist: dbo.customers 9
 database.history.kafka.bootstrap.servers: my-cluster-kafka-bootstrap:9092 10
 database.history.kafka.topic: dbhistory.fullfillment 11

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

189

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#setting-up-sqlserver
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/installing_debezium_on_openshift/
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/installing_debezium_on_rhel/
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#setting-up-sqlserver

Item Description

1 The name of our connector when we register it with a Kafka Connect service.

2 The name of this SQL Server connector class.

3 The address of the SQL Server instance.

4 The port number of the SQL Server instance.

5 The name of the SQL Server user.

6 The password for the SQL Server user.

7 The name of the database to capture changes from.

8 The logical name of the SQL Server instance/cluster, which forms a namespace and is used in
all the names of the Kafka topics to which the connector writes, the Kafka Connect schema
names, and the namespaces of the corresponding Avro schema when the Avro converter is
used.

9 A list of all tables whose changes Debezium should capture.

10 The list of Kafka brokers that this connector will use to write and recover DDL statements to the
database history topic.

11 The name of the database history topic where the connector will write and recover DDL
statements. This topic is for internal use only and should not be used by consumers.

See the complete list of connector properties that can be specified in these configurations.

This configuration can be sent via POST to a running Kafka Connect service, which will then record the
configuration and start up the one connector task that will connect to the SQL Server database, read
the transaction log, and record events to Kafka topics.

5.4.2. Adding connector configuration

You can use a provided Debezium container to deploy a Debezium SQL Server connector. In this
procedure, you build a custom Kafka Connect container image for Debezium, configure the Debezium
connector as needed, and then add your connector configuration to your Kafka Connect environment.

Prerequisites

Podman or Docker is installed and you have sufficient rights to create and manage containers.

You installed the Debezium SQL Server connector archive.

Procedure

1. Extract the Debezium SQL Server connector archive to create a directory structure for the

Red Hat Integration 2020-Q3 Debezium User Guide

190

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-connector-properties

1. Extract the Debezium SQL Server connector archive to create a directory structure for the
connector plug-in, for example:

tree ./my-plugins/
./my-plugins/
├── debezium-connector-sqlserver
│ ├── ...

2. Create and publish a custom image for running your Debezium connector:

a. Create a new Dockerfile by using registry.redhat.io/amq7/amq-streams-kafka-25-
rhel7:1.5.0 as the base image. In the following example, you would replace my-plugins with
the name of your plug-ins directory:

FROM registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Before Kafka Connect starts running the connector, Kafka Connect loads any third-party
plug-ins that are in the /opt/kafka/plugins directory.

b. Build the container image. For example, if you saved the Dockerfile that you created in the
previous step as debezium-container-for-sqlserver, and if the Dockerfile is in the current
directory, then you would run the following command:
podman build -t debezium-container-for-sqlserver:latest .

c. Push your custom image to your container registry, for example:
podman push debezium-container-for-sqlserver:latest

d. Point to the new container image. Do one of the following:

Edit the spec.image property of the KafkaConnector custom resource. If set, this
property overrides the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in
the Cluster Operator. For example:

In the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file,
edit the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable to point to the new
container image and reinstall the Cluster Operator. If you edit this file you must apply it
to your OpenShift cluster.

3. Create a KafkaConnector custom resource that defines your Debezium SQL Server connector
instance. See the connector configuration example .

4. Apply the connector instance, for example:
oc apply -f inventory-connector.yaml

This registers inventory-connector and the connector starts to run against the inventory

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: my-connect-cluster
spec:
 #...
 image: debezium-container-for-sqlserver

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

191

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-example-configuration

This registers inventory-connector and the connector starts to run against the inventory
database.

5. Verify that the connector was created and has started to capture changes in the specified
database. You can verify the connector instance by watching the Kafka Connect log output as,
for example, inventory-connector starts.

a. Display the Kafka Connect log output:

b. Review the log output to verify that the initial snapshot has been executed. You should see
something like the following lines:

Results

When the connector starts, it performs a consistent snapshot of the SQL Server databases that the
connector is configured for. The connector then starts generating data change events for row-level
operations and streaming change event records to Kafka topics.

5.4.3. Monitoring

The Debezium SQL Server connector has three metric types in addition to the built-in support for JMX
metrics that Zookeeper, Kafka, and Kafka Connect have.

snapshot metrics; for monitoring the connector when performing snapshots

streaming metrics; for monitoring the connector when reading CDC table data

schema history metrics; for monitoring the status of the connector’s schema history

Please refer to the monitoring documentation for details of how to expose these metrics via JMX.

5.4.3.1. Snapshot Metrics

The MBean is debezium.sql_server:type=connector-
metrics,context=snapshot,server=<database.server.name>.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

oc logs $(oc get pods -o name -l strimzi.io/name=my-connect-cluster-connect)

... INFO Starting snapshot for ...

... INFO Snapshot is using user 'debezium' ...

Red Hat Integration 2020-Q3 Debezium User Guide

192

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-snapshots
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

Attributes Type Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

193

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

Attributes Type Description

5.4.3.2. Streaming Metrics

The MBean is debezium.sql_server:type=connector-
metrics,context=streaming,server=<database.server.name>.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

Red Hat Integration 2020-Q3 Debezium User Guide

194

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

Attributes Type Description

5.4.3.3. Schema History Metrics

The MBean is debezium.sql_server:type=connector-metrics,context=schema-
history,server=<database.server.name>.

Attributes Type Description

Status string One of STOPPED,
RECOVERING (recovering
history from the storage),
RUNNING describing the
state of the database history.

RecoveryStartTime long The time in epoch seconds at
what recovery has started.

ChangesRecovered long The number of changes that
were read during recovery
phase.

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

195

ChangesApplied long the total number of schema
changes applied during
recovery and runtime.

MilliSecondsSinceLast ​
RecoveredChange

long The number of milliseconds
that elapsed since the last
change was recovered from
the history store.

MilliSecondsSinceLast ​AppliedChange long The number of milliseconds
that elapsed since the last
change was applied.

LastRecoveredChange string The string representation of
the last change recovered
from the history store.

LastAppliedChange string The string representation of
the last applied change.

Attributes Type Description

5.4.4. Connector properties

The following configuration properties are required unless a default value is available.

Property Default Description

name Unique name for the connector. Attempting to
register again with the same name will fail. (This
property is required by all Kafka Connect
connectors.)

connector.class The name of the Java class for the connector.
Always use a value of
io.debezium.connector.sqlserver.SqlSer
verConnector for the SQL Server connector.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The SQL Server
connector always uses a single task and
therefore does not use this value, so the default
is always acceptable.

database.hostname IP address or hostname of the SQL Server
database server.

database.port 1433 Integer port number of the SQL Server
database server.

Red Hat Integration 2020-Q3 Debezium User Guide

196

database.user Username to use when connecting to the SQL
Server database server.

database.password Password to use when connecting to the SQL
Server database server.

database.dbname The name of the SQL Server database from
which to stream the changes

database.server ​.name Logical name that identifies and provides a
namespace for the particular SQL Server
database server being monitored. The logical
name should be unique across all other
connectors, since it is used as a prefix for all
Kafka topic names emanating from this
connector. Only alphanumeric characters and
underscores should be used.

database.history ​
.kafka.topic

 The full name of the Kafka topic where the
connector will store the database schema
history.

database.history ​
.kafka.bootstrap ​.servers

 A list of host/port pairs that the connector will
use for establishing an initial connection to the
Kafka cluster. This connection is used for
retrieving database schema history previously
stored by the connector, and for writing each
DDL statement read from the source database.
This should point to the same Kafka cluster
used by the Kafka Connect process.

table.whitelist An optional comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables to be monitored; any table
not included in the whitelist is excluded from
monitoring. Each identifier is of the form
schemaName.tableName. By default the
connector will monitor every non-system table
in each monitored schema. May not be used
with table.blacklist.

table.blacklist An optional comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables to be excluded from
monitoring; any table not included in the
blacklist is monitored. Each identifier is of the
form schemaName.tableName. May not be used
with table.whitelist.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

197

column.blacklist empty string An optional comma-separated list of regular
expressions that match the fully-qualified
names of columns that should be excluded
from change event message values. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. Note
that primary key columns are always included in
the event’s key, also if blacklisted from the
value.

column.mask ​
.hash.hashAlgorithm ​
.with.salt.salt

n/a An optional comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns whose
values should be pseudonyms in the change
event message values with a field value
consisting of the hashed value using the
algorithm hashAlgorithm and salt salt.
Based on the used hash function referential
integrity is kept while data is pseudonymized.
Supported hash functions are described in the
{link-java7-standard-names}[MessageDigest
section] of the Java Cryptography Architecture
Standard Algorithm Name Documentation. The
hash is automatically shortened to the length
of the column.

Multiple properties with different lengths can
be used in a single configuration, although in
each the length must be a positive integer or
zero. Fully-qualified names for columns are of
the form
schemaName.tableName.columnName.

Example:

column.mask.hash.SHA-
256.with.salt.CzQMA0cB5K =
dbo.orders.customerName,
dbo.shipment.customerName

where CzQMA0cB5K is a randomly selected
salt.

Note: Depending on the hashAlgorithm
used, the salt selected and the actual data set,
the resulting masked data set may not be
completely anonymized.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

198

time.precision.mode adaptive Time, date, and timestamps can be
represented with different kinds of precision,
including: adaptive (the default) captures the
time and timestamp values exactly as in the
database using either millisecond, microsecond,
or nanosecond precision values based on the
database column’s type; or connect always
represents time and timestamp values using
Kafka Connect’s built-in representations for
Time, Date, and Timestamp, which uses
millisecond precision regardless of the
database columns' precision. See temporal
values.

include.schema ​.changes true Boolean value that specifies whether the
connector should publish changes in the
database schema to a Kafka topic with the
same name as the database server ID. Each
schema change is recorded with a key that
contains the database name and a value that is
a JSON structure that describes the schema
update. This is independent of how the
connector internally records database history.
The default is true.

tombstones.on ​.delete true Controls whether a tombstone event should be
generated after a delete event.
When true the delete operations are
represented by a delete event and a
subsequent tombstone event. When false only
a delete event is sent.
Emitting the tombstone event (the default
behavior) allows Kafka to completely delete all
events pertaining to the given key once the
source record got deleted.

column.truncate.to ​
.length.chars

n/a An optional comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns whose
values should be truncated in the change event
message values if the field values are longer
than the specified number of characters.
Multiple properties with different lengths can
be used in a single configuration, although in
each the length must be a positive integer.
Fully-qualified names for columns are of the
form schemaName.tableName.columnName.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

199

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-temporal-values

column.mask.with ​
.length.chars

n/a An optional comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns whose
values should be replaced in the change event
message values with a field value consisting of
the specified number of asterisk (*) characters.
Multiple properties with different lengths can
be used in a single configuration, although in
each the length must be a positive integer or
zero. Fully-qualified names for columns are of
the form
schemaName.tableName.columnName.

column.propagate ​
.source.type

n/a An optional comma-separated list of regular
expressions that match the fully-qualified
names of columns whose original type and
length should be added as a parameter to the
corresponding field schemas in the emitted
change messages. The schema parameters
__debezium.source.column.type,
__debezium.source.column.length and
__debezium.source.column.scale is used
to propagate the original type name and length
(for variable-width types), respectively. Useful
to properly size corresponding columns in sink
databases. Fully-qualified names for columns
are of the form
schemaName.tableName.columnName.

datatype.propagate ​
.source.type

n/a An optional comma-separated list of regular
expressions that match the database-specific
data type name of columns whose original type
and length should be added as a parameter to
the corresponding field schemas in the emitted
change messages. The schema parameters
__debezium.source.column.type,
__debezium.source.column.length and
__debezium.source.column.scale will be
used to propagate the original type name and
length (for variable-width types), respectively.
Useful to properly size corresponding columns
in sink databases. Fully-qualified data type
names are of the form
schemaName.tableName.typeName. See SQL
Server data types for the list of SQL Server-
specific data type names.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

200

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-data-types

message.key.columns empty string A semi-colon list of regular expressions that
match fully-qualified tables and columns to
map a primary key.
Each item (regular expression) must match the
fully-qualified <fully-qualified table>:<a
comma-separated list of columns>
representing the custom key.
Fully-qualified tables could be defined as
schemaName.tableName.

Property Default Description

The following advanced configuration properties have good defaults that will work in most situations
and therefore rarely need to be specified in the connector’s configuration.

Property Default Description

snapshot.mode initial A mode for taking an initial snapshot of the
structure and optionally data of captured
tables. Once the snapshot is complete, the
connector will continue reading change events
from the database’s redo logs.

Supported values are:
initial: Takes a snapshot of structure and data
of captured tables; useful if topics should be
populated with a complete representation of
the data from the captured tables.
schema_only: Takes a snapshot of the
structure of captured tables only; useful if only
changes happening from now onwards should
be propagated to topics.

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

201

snapshot.isolation ​.mode repeatable_read Mode to control which transaction isolation
level is used and how long the connector locks
the monitored tables. There are five possible
values: read_uncommitted,
read_committed, repeatable_read,
snapshot, and exclusive (in fact, exclusive
mode uses repeatable read isolation level,
however, it takes the exclusive lock on all tables
to be read).

It is worth documenting that snapshot,
read_committed and read_uncommitted
modes do not prevent other transactions from
updating table rows during initial snapshot,
while exclusive and repeatable_read do.

Another aspect is data consistency. Only
exclusive and snapshot modes guarantee
full consistency, that is, initial snapshot and
streaming logs constitute a linear history. In
case of repeatable_read and
read_committed modes, it might happen
that, for instance, a record added appears
twice - once in initial snapshot and once in
streaming phase. Nonetheless, that
consistency level should do for data mirroring.
For read_uncommitted there are no data
consistency guarantees at all (some data might
be lost or corrupted).

source.timestamp ​.mode commit String representing the criteria of the attached
timestamp within the source record (ts_ms).
commit will set the source timestamp to the
instant where the record was committed in the
database (default and current behavior).
processing will set the source timestamp to
the instant where the record was processed by
Debezium. This option could be used when
either we want to set the top level ts_ms value
here or when we want to skip the query to
extract the timestamp of that LSN.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

202

event.processing ​
.failure.handling ​.mode

fail Specifies how the connector should react to
exceptions during processing of events. fail will
propagate the exception (indicating the offset
of the problematic event), causing the
connector to stop.
warn will cause the problematic event to be
skipped and the offset of the problematic
event to be logged.
skip will cause the problematic event to be
skipped.

poll.interval.ms 1000 Positive integer value that specifies the
number of milliseconds the connector should
wait during each iteration for new change
events to appear. Defaults to 1000
milliseconds, or 1 second.

max.queue.size 8192 Positive integer value that specifies the
maximum size of the blocking queue into which
change events read from the database log are
placed before they are written to Kafka. This
queue can provide backpressure to the CDC
table reader when, for example, writes to Kafka
are slower or if Kafka is not available. Events
that appear in the queue are not included in the
offsets periodically recorded by this connector.
Defaults to 8192, and should always be larger
than the maximum batch size specified in the
max.batch.size property.

max.batch.size 2048 Positive integer value that specifies the
maximum size of each batch of events that
should be processed during each iteration of
this connector. Defaults to 2048.

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

203

heartbeat.interval ​.ms 0 Controls how frequently heartbeat messages
are sent.
This property contains an interval in milli-
seconds that defines how frequently the
connector sends messages into a heartbeat
topic. This can be used to monitor whether the
connector is still receiving change events from
the database. You also should leverage
heartbeat messages in cases where only
records in non-captured tables are changed for
a longer period of time. In such situation the
connector would proceed to read the log from
the database but never emit any change
messages into Kafka, which in turn means that
no offset updates are committed to Kafka. This
may result in more change events to be re-sent
after a connector restart. Set this parameter to
0 to not send heartbeat messages at all.
Disabled by default.

heartbeat.topics ​.prefix __debezium-
heartbeat

Controls the naming of the topic to which
heartbeat messages are sent.
The topic is named according to the pattern
<heartbeat.topics.prefix>.
<server.name>.

snapshot.delay.ms An interval in milli-seconds that the connector
should wait before taking a snapshot after
starting up;
Can be used to avoid snapshot interruptions
when starting multiple connectors in a cluster,
which may cause re-balancing of connectors.

snapshot.fetch.size 2000 Specifies the maximum number of rows that
should be read in one go from each table while
taking a snapshot. The connector will read the
table contents in multiple batches of this size.
Defaults to 2000.

snapshot.lock ​.timeout.ms 10000 An integer value that specifies the maximum
amount of time (in milliseconds) to wait to
obtain table locks when performing a snapshot.
If table locks cannot be acquired in this time
interval, the snapshot will fail (also see
snapshots).
When set to 0 the connector will fail
immediately when it cannot obtain the lock.
Value -1 indicates infinite waiting.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

204

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-snapshots

snapshot.select ​
.statement ​.overrides

 Controls which rows from tables are included in
snapshot.
This property contains a comma-separated list
of fully-qualified tables
(SCHEMA_NAME.TABLE_NAME). Select
statements for the individual tables are
specified in further configuration properties,
one for each table, identified by the id
snapshot.select.statement.overrides.
[SCHEMA_NAME].[TABLE_NAME]. The
value of those properties is the SELECT
statement to use when retrieving data from the
specific table during snapshotting. A possible
use case for large append-only tables is setting
a specific point where to start (resume)
snapshotting, in case a previous snapshotting
was interrupted.
Note: This setting has impact on snapshots
only. Events captured during log reading are
not affected by it.

sanitize.field ​.names true
when connector
configuration explicitly
specifies the
key.converter
or
value.converter
parameters to use Avro.
Otherwise defaults to
false.

Whether field names are sanitized to adhere to
Avro naming requirements.

database.server ​.timezone Timezone of the server.

This is used to define the timezone of the
transaction timestamp (ts_ms) retrieved from
the server (which is actually not zoned).
Default value is unset. Should only be specified
when running on SQL Server 2014 or older and
using different timezones for the database
server and the JVM running the Debezium
connector.
When unset, default behavior is to use the
timezone of the VM running the Debezium
connector. In this case, when running on on
SQL Server 2014 or older and using different
timezones on server and the connector,
incorrect ts_ms values may be produced.
Possible values include "Z", "UTC", offset values
like "+02:00", short zone ids like "CET", and
long zone ids like "Europe/Paris".

Property Default Description

CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER

205

provide.transaction ​
.metadata

false When set to true Debezium generates events
with transaction boundaries and enriches data
events envelope with transaction metadata.

See Transaction Metadata for additional
details.

Property Default Description

The connector also supports pass-through configuration properties that are used when creating the
Kafka producer and consumer. Specifically, all connector configuration properties that begin with the
database.history.producer. prefix are used (without the prefix) when creating the Kafka producer that
writes to the database history, and all those that begin with the prefix database.history.consumer. are
used (without the prefix) when creating the Kafka consumer that reads the database history upon
connector startup.

For example, the following connector configuration properties can be used to secure connections to the
Kafka broker:

In addition to the pass-through to the Kafka producer and consumer, the properties starting with
database., e.g. database.applicationName=debezium are passed to the JDBC URL.

Be sure to consult the Kafka documentation for all of the configuration properties for Kafka producers
and consumers. (The SQL Server connector does use the new consumer.)

database.history.producer.security.protocol=SSL
database.history.producer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.producer.ssl.keystore.password=test1234
database.history.producer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.producer.ssl.truststore.password=test1234
database.history.producer.ssl.key.password=test1234
database.history.consumer.security.protocol=SSL
database.history.consumer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.consumer.ssl.keystore.password=test1234
database.history.consumer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.consumer.ssl.truststore.password=test1234
database.history.consumer.ssl.key.password=test1234

Red Hat Integration 2020-Q3 Debezium User Guide

206

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#sqlserver-transaction-metadata
https://kafka.apache.org/documentation.html#security_configclients
https://kafka.apache.org/documentation.html
https://kafka.apache.org/documentation.html#newconsumerconfigs

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

IMPORTANT

The Debezium Db2 connector is a Technology Preview feature. Technology Preview
features are not supported with Red Hat production service-level agreements (SLAs) and
might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

Debezium’s Db2 connector can capture row-level changes in the tables of a Db2 database. This
connector is strongly inspired by the Debezium implementation of SQL Server, which uses a SQL-based
polling model that puts tables into "capture mode". When a table is in capture mode, the Debezium Db2
connector generates and streams a change event for each row-level update to that table.

A table that is in capture mode has an associated change-data table, which Db2 creates. For each
change to a table that is in capture mode, Db2 adds data about that change to the table’s associated
change-data table. A change-data table contains an entry for each state of a row. It also has special
entries for deletions. The Debezium Db2 connector reads change events from change-data tables and
emits the events to Kafka topics.

The first time a Debezium Db2 connector connects to a Db2 database, the connector reads a consistent
snapshot of the tables for which the connector is configured to capture changes. By default, this is all
non-system tables. There are connector configuration properties that let you specify which tables to put
into capture mode, or which tables to exclude from capture mode.

When the snapshot is complete the connector begins emitting change events for committed updates to
tables that are in capture mode. By default, change events for a particular table go to a Kafka topic that
has the same name as the table. Applications and services consume change events from these topics.

The connector uses the abstract syntax notation (ASN) libraries that come as a standard part of Db2
LUW (Db2 for Linux, UNIX and Windows) and which you can add to Db2 zOS. To use ASN and hence this
connector, you must have a license for the IBM InfoSphere Data Replication (IIDR) product. However,
IIDR does not need to be installed.

The Db2 connector has been tested with Db2/Linux {linux-version}. It is expected that the connector
would also work on Windows, AIX and zOS.

Information and procedures for using a Debezium Db2 connector is organized as follows:

Section 6.1, “Overview of Debezium Db2 connector”

Section 6.2, “How Debezium Db2 connectors work”

Section 6.3, “Descriptions of Debezium Db2 connector data change events”

Section 6.4, “How Debezium Db2 connectors map data types”

Section 6.5, “Setting up Db2 to run a Debezium connector”

Section 6.6, “Deploying Debezium Db2 connectors”

Section 6.7, “Monitoring Debezium Db2 connector performance”

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

207

https://access.redhat.com/support/offerings/techpreview/

Section 6.8, “Managing Debezium Db2 connectors”

Section 6.9, “Updating schemas for Db2 tables in capture mode for Debezium connectors”

6.1. OVERVIEW OF DEBEZIUM DB2 CONNECTOR

The Debezium Db2 connector is based on the ASN Capture/Apply agents that enable SQL Replication
in Db2. A capture agent:

Generates change-data tables for tables that are in capture mode.

Monitors tables in capture mode and stores change events for updates to those tables in their
corresponding change-data tables.

The Debezium connector uses a SQL interface to query change-data tables for change events.

The database administrator must put the tables for which you want to capture changes into capture
mode. For convenience and for automating testing, there are Debezium user-defined functions (UDFs)
in C that you can compile and then use to do the following management tasks:

Start, stop, and reinitialize the ASN agent

Put tables into capture mode

Create the replication (ASN) schemas and change-data tables

Remove tables from capture mode

Alternatively, you can use Db2 control commands to accomplish these tasks.

After the tables of interest are in capture mode, the connector reads their corresponding change-data
tables to obtain change events for table updates. The connector emits a change event for each row-
level insert, update, and delete operation to a Kafka topic that has the same name as the changed table.
This is default behavior that you can modify. Client applications read the Kafka topics that correspond
to the database tables of interest and can react to each row-level change event.

Typically, the database administrator puts a table into capture mode in the middle of the life of a table.
This means that the connector does not have the complete history of all changes that have been made
to the table. Therefore, when the Db2 connector first connects to a particular Db2 database, it starts by
performing a consistent snapshot of each table that is in capture mode. After the connector completes
the snapshot, the connector streams change events from the point at which the snapshot was made. In
this way, the connector starts with a consistent view of the tables that are in capture mode, and does not
drop any changes that were made while it was performing the snapshot.

Debezium connectors are tolerant of failures. As the connector reads and produces change events, it
records the log sequence number (LSN) of the change-data table entry. The LSN is the position of the
change event in the database log. If the connector stops for any reason, including communication
failures, network problems, or crashes, upon restarting it continues reading the change-data tables
where it left off. This includes snapshots. That is, if the snapshot was not complete when the connector
stopped, upon restart the connector begins a new snapshot.

6.2. HOW DEBEZIUM DB2 CONNECTORS WORK

To optimally configure and run a Debezium Db2 connector, it is helpful to understand how the connector
performs snapshots, streams change events, determines Kafka topic names, and handles schema
changes.

Red Hat Integration 2020-Q3 Debezium User Guide

208

https://www.ibm.com/support/pages/q-replication-and-sql-replication-product-documentation-pdf-format-version-101-linux-unix-and-windows
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#managing-debezium-db2-connectors

Details are in the following topics:

Section 6.2.1, “How Debezium Db2 connectors perform database snapshots”

Section 6.2.2, “How Debezium Db2 connectors read change-data tables”

Section 6.2.3, “Default names of Kafka topics that receive Debezium Db2 change event
records”

Section 6.2.4, “About the Debezium Db2 connector schema change topic”

Section 6.2.5, “Debezium Db2 connector-generated events that represent transaction
boundaries”

6.2.1. How Debezium Db2 connectors perform database snapshots

Db2`s replication feature is not designed to store the complete history of database changes.
Consequently, when a Debezium Db2 connector connects to a database for the first time, it takes a
consistent snapshot of tables that are in capture mode and streams this state to Kafka. This establishes
the baseline for table content.

By default, when a Db2 connector performs a snapshot, it does the following:

1. Determines which tables are in capture mode, and thus must be included in the snapshot. By
default, all non-system tables are in capture mode. Connector configuration properties, such as
table.blacklist and table.whitelist let you specify which tables should be in capture mode.

2. Obtains a lock on each of the tables in capture mode. This ensures that no schema changes can
occur in those tables during the snapshot. The level of the lock is determined by the
snapshot.isolation.mode connector configuration property.

3. Reads the highest (most recent) LSN position in the server’s transaction log.

4. Captures the schema of all tables that are in capture mode. The connector persists this
information in its internal database history topic.

5. Optional, releases the locks obtained in step 2. Typically, these locks are held for only a short
time.

6. At the LSN position read in step 3, the connector scans the capture mode tables as well as their
schemas. During the scan, the connector:

a. Confirms that the table was created before the start of the snapshot. If it was not, the
snapshot skips that table. After the snapshot is complete, and the connector starts emitting
change events, the connector produces change events for any tables that were created
during the snapshot.

b. Produces a read event for each row in each table that is in capture mode. All read events
contain the same LSN position, which is the LSN position that was obtained in step 3.

c. Emits each read event to the Kafka topic that has the same name as the table.

7. Records the successful completion of the snapshot in the connector offsets.

6.2.2. How Debezium Db2 connectors read change-data tables

After a complete snapshot, when a Debezium Db2 connector starts for the first time, the connector

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

209

After a complete snapshot, when a Debezium Db2 connector starts for the first time, the connector
identifies the change-data table for each source table that is in capture mode. The connector does the
following for each change-data table:

1. Reads change events that were created between the last stored, highest LSN and the current,
highest LSN.

2. Orders the change events according to the commit LSN and the change LSN for each event.
This ensures that the connector emits the change events in the order in which the table
changes occurred.

3. Passes commit and change LSNs as offsets to Kafka Connect.

4. Stores the highest LSN that the connector passed to Kafka Connect.

After a restart, the connector resumes emitting change events from the offset (commit and change
LSNs) where it left off. While the connector is running and emitting change events, if you remove a table
from capture mode or add a table to capture mode, the connector detects this and modifies its behavior
accordingly.

6.2.3. Default names of Kafka topics that receive Debezium Db2 change event
records

By default, the Db2 connector writes change events for all insert, update, and delete operations on a
single table to a single Kafka topic. The name of the Kafka topic has the following format:

databaseName.schemaName.tableName

databaseName

The logical name of the connector as specified with the database.server.name connector
configuration property.

schemaName

The name of the schema in which the operation occurred.

tableName

The name of the table in which the operation occurred.

For example, consider a Db2 installation with the mydatabase database, which contains four tables:
PRODUCTS, PRODUCTS_ON_HAND, CUSTOMERS, and ORDERS that are in the MYSCHEMA
schema. The connector would emit events to these four Kafka topics:

mydatabase.MYSCHEMA.PRODUCTS

mydatabase.MYSCHEMA.PRODUCTS_ON_HAND

mydatabase.MYSCHEMA.CUSTOMERS

mydatabase.MYSCHEMA.ORDERS

To configure a Db2 connector to emit change events to differently-named Kafka topics, see the
documentation for the topic routing transformation.

6.2.4. About the Debezium Db2 connector schema change topic

For a table that is in capture mode, the Debezium Db2 connector stores the history of schema changes
to that table in a database history topic. This topic reflects an internal connector state and you should

Red Hat Integration 2020-Q3 Debezium User Guide

210

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#topic-routing

not use it. If your application needs to track schema changes, there is a public schema change topic. The
name of the schema change topic is the same as the logical server name specified in the connector
configuration.

WARNING

The format of messages that a connector emits to its schema change topic is in an
incubating state and can change without notice.

Debezium emits a message to the schema change topic when:

A new table goes into capture mode.

A table is removed from capture mode.

During a database schema update, there is a change in the schema for a table that is in capture
mode.

A message to the schema change topic contains a logical representation of the table schema, for
example:



{
 "schema": {
 ...
 },
 "payload": {
 "source": {
 "version": "1.2.4.Final",
 "connector": "db2",
 "name": "db2",
 "ts_ms": 1588252618953,
 "snapshot": "true",
 "db": "testdb",
 "schema": "DB2INST1",
 "table": "CUSTOMERS",
 "change_lsn": null,
 "commit_lsn": "00000025:00000d98:00a2",
 "event_serial_no": null
 },
 "databaseName": "TESTDB", 1
 "schemaName": "DB2INST1",
 "ddl": null, 2
 "tableChanges": [3
 {
 "type": "CREATE", 4
 "id": "\"DB2INST1\".\"CUSTOMERS\"", 5
 "table": { 6
 "defaultCharsetName": null,
 "primaryKeyColumnNames": [7
 "ID"

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

211

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-schema-evolution

],
 "columns": [8
 {
 "name": "ID",
 "jdbcType": 4,
 "nativeType": null,
 "typeName": "int identity",
 "typeExpression": "int identity",
 "charsetName": null,
 "length": 10,
 "scale": 0,
 "position": 1,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "FIRST_NAME",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 2,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "LAST_NAME",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 3,
 "optional": false,
 "autoIncremented": false,
 "generated": false
 },
 {
 "name": "EMAIL",
 "jdbcType": 12,
 "nativeType": null,
 "typeName": "varchar",
 "typeExpression": "varchar",
 "charsetName": null,
 "length": 255,
 "scale": null,
 "position": 4,
 "optional": false,
 "autoIncremented": false,

Red Hat Integration 2020-Q3 Debezium User Guide

212

Table 6.1. Descriptions of fields in messages emitted to the schema change topic

Item Field name(s) Description

1 databaseName
schemaName

Identifies the database and the schema that contain the
change.

2 ddl Always null for the Db2 connector. For other connectors,
this field contains the DDL responsible for the schema
change. This DDL is not available to Db2 connectors.

3 tableChanges An array of one or more items that contain the schema
changes generated by a DDL command.

4 type Describes the kind of change. The value is one of the
following:

CREATE - table created

ALTER - table modified

DROP - table deleted

5 id Full identifier of the table that was created, altered, or
dropped.

6 table Represents table metadata after the applied change.

7 primaryKeyColumnNames List of columns that compose the table’s primary key.

8 columns Metadata for each column in the changed table.

In messages to the schema change topic, the key is the name of the database that contains the schema
change. In the following example, the payload field contains the key:

 "generated": false
 }
]
 }
 }
]
 }
}

{
 "schema": {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "databaseName"

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

213

6.2.5. Debezium Db2 connector-generated events that represent transaction
boundaries

Debezium can generate events that represent transaction boundaries and that enrich change data
event messages. For every transaction BEGIN and END, Debezium generates an event that contains
the following fields:

status - BEGIN or END

id - string representation of unique transaction identifier

event_count (for END events) - total number of events emitted by the transaction

data_collections (for END events) - an array of pairs of data_collection and event_count that
provides the number of events emitted by changes originating from the given data collection

Example

The connector emits transaction events to the database.server.name.transaction topic.

Data change event enrichment

When transaction metadata is enabled the connector enriches the change event Envelope with a new

 }
],
 "optional": false,
 "name": "io.debezium.connector.db2.SchemaChangeKey"
 },
 "payload": {
 "databaseName": "TESTDB"
 }
}

{
 "status": "BEGIN",
 "id": "00000025:00000d08:0025",
 "event_count": null,
 "data_collections": null
}

{
 "status": "END",
 "id": "00000025:00000d08:0025",
 "event_count": 2,
 "data_collections": [
 {
 "data_collection": "testDB.dbo.tablea",
 "event_count": 1
 },
 {
 "data_collection": "testDB.dbo.tableb",
 "event_count": 1
 }
]
}

Red Hat Integration 2020-Q3 Debezium User Guide

214

When transaction metadata is enabled the connector enriches the change event Envelope with a new
transaction field. This field provides information about every event in the form of a composite of fields:

id - string representation of unique transaction identifier

total_order - absolute position of the event among all events generated by the transaction

data_collection_order - the per-data collection position of the event among all events that
were emitted by the transaction

Following is an example of a message:

6.3. DESCRIPTIONS OF DEBEZIUM DB2 CONNECTOR DATA CHANGE
EVENTS

The Debezium Db2 connector generates a data change event for each row-level INSERT, UPDATE, and
DELETE operation. Each event contains a key and a value. The structure of the key and the value
depends on the table that was changed.

Debezium and Kafka Connect are designed around continuous streams of event messages . However, the
structure of these events may change over time, which can be difficult for consumers to handle. To
address this, each event contains the schema for its content or, if you are using a schema registry, a
schema ID that a consumer can use to obtain the schema from the registry. This makes each event self-
contained.

The following skeleton JSON shows the basic four parts of a change event. However, how you configure
the Kafka Connect converter that you choose to use in your application determines the representation
of these four parts in change events. A schema field is in a change event only when you configure the
converter to produce it. Likewise, the event key and event payload are in a change event only if you
configure a converter to produce it. If you use the JSON converver and you configure it to produce all
four basic change event parts, change events have this structure:

{
 "before": null,
 "after": {
 "pk": "2",
 "aa": "1"
 },
 "source": {
...
 },
 "op": "c",
 "ts_ms": "1580390884335",
 "transaction": {
 "id": "00000025:00000d08:0025",
 "total_order": "1",
 "data_collection_order": "1"
 }
}

{
 "schema": { 1
 ...
 },
 "payload": { 2

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

215

Table 6.2. Overview of change event basic content

Item Field name Description

1 schema The first schema field is part of the event key. It specifies a Kafka Connect
schema that describes what is in the event key’s payload portion. In other
words, the first schema field describes the structure of the primary key, or
the unique key if the table does not have a primary key, for the table that
was changed.

It is possible to override the table’s primary key by setting the
message.key.columns connector configuration property. In this case,
the first schema field describes the structure of the the key identified by
that property.

2 payload The first payload field is part of the event key. It has the structure
described by the previous schema field and it contains the key for the row
that was changed.

3 schema The second schema field is part of the event value. It specifies the Kafka
Connect schema that describes what is in the event value’s payload
portion. In other words, the second schema describes the structure of the
row that was changed. Typically, this schema contains nested schemas.

4 payload The second payload field is part of the event value. It has the structure
described by the previous schema field and it contains the actual data for
the row that was changed.

By default, the connector streams change event records to topics with names that are the same as the
event’s originating table. See topic names.

 ...
 },
 "schema": { 3
 ...
 },
 "payload": { 4
 ...
 },
}

Red Hat Integration 2020-Q3 Debezium User Guide

216

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-property-message-key-columns
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-topic-names

WARNING

The Debezium Db2 connector ensures that all Kafka Connect schema names
adhere to the Avro schema name format . This means that the logical server name
must start with a Latin letter or an underscore, that is, a-z, A-Z, or _. Each remaining
character in the logical server name and each character in the database and table
names must be a Latin letter, a digit, or an underscore, that is, a-z, A-Z, 0-9, or _. If
there is an invalid character it is replaced with an underscore character.

This can lead to unexpected conflicts if the logical server name, a database name, or
a table name contains invalid characters, and the only characters that distinguish
names from one another are invalid and thus replaced with underscores.

Also, Db2 names for databases, schemas, and tables can be case sensitive. This
means that the connector could emit event records for more than one table to the
same Kafka topic.

Details are in the following topics:

Section 6.3.1, “About keys in Debezium db2 change events”

Section 6.3.2, “About values in Debezium Db2 change events”

6.3.1. About keys in Debezium db2 change events

A change event’s key contains the schema for the changed table’s key and the changed row’s actual
key. Both the schema and its corresponding payload contain a field for each column in the changed
table’s PRIMARY KEY (or unique constraint) at the time the connector created the event.

Consider the following customers table, which is followed by an example of a change event key for this
table.

Example table

Example change event key

Every change event that captures a change to the customers table has the same event key schema.
For as long as the customers table has the previous definition, every change event that captures a
change to the customers table has the following key structure. In JSON, it looks like this:



CREATE TABLE customers (
 ID INTEGER IDENTITY(1001,1) NOT NULL PRIMARY KEY,
 FIRST_NAME VARCHAR(255) NOT NULL,
 LAST_NAME VARCHAR(255) NOT NULL,
 EMAIL VARCHAR(255) NOT NULL UNIQUE
);

{
 "schema": { 1
 "type": "struct",
 "fields": [2

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

217

http://avro.apache.org/docs/current/spec.html#names

Table 6.3. Description of change event key

Item Field name Description

1 schema The schema portion of the key specifies a Kafka Connect schema that
describes what is in the key’s payload portion.

2 fields Specifies each field that is expected in the payload, including each field’s
name, type, and whether it is required.

3 optional Indicates whether the event key must contain a value in its payload field. In
this example, a value in the key’s payload is required. A value in the key’s
payload field is optional when a table does not have a primary key.

4 mydatabase ​
.MYSCHEMA ​
.CUSTOMERS ​
.Key

Name of the schema that defines the structure of the key’s payload. This
schema describes the structure of the primary key for the table that was
changed. Key schema names have the format connector-name.database-
name.table-name.Key. In this example:

mydatabase is the name of the connector that generated this
event.

MYSCHEMA is the database schema that contains the table that
was changed.

CUSTOMERS is the table that was updated.

5 payload Contains the key for the row for which this change event was generated. In
this example, the key, contains a single ID field whose value is 1004.

6.3.2. About values in Debezium Db2 change events

The value in a change event is a bit more complicated than the key. Like the key, the value has a schema
section and a payload section. The schema section contains the schema that describes the Envelope
structure of the payload section, including its nested fields. Change events for operations that create,
update or delete data all have a value payload with an envelope structure.

Consider the same sample table that was used to show an example of a change event key:

 {
 "type": "int32",
 "optional": false,
 "field": "ID"
 }
],
 "optional": false, 3
 "name": "mydatabase.MYSCHEMA.CUSTOMERS.Key" 4
 },
 "payload": { 5
 "ID": 1004
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

218

Example table

The event value portion of every change event for the customers table specifies the same schema.
The event value’s payload varies according to the event type:

create events

update events

delete events

create events

The following example shows the value portion of a change event that the connector generates for an
operation that creates data in the customers table:

CREATE TABLE customers (
 ID INTEGER IDENTITY(1001,1) NOT NULL PRIMARY KEY,
 FIRST_NAME VARCHAR(255) NOT NULL,
 LAST_NAME VARCHAR(255) NOT NULL,
 EMAIL VARCHAR(255) NOT NULL UNIQUE
);

{
 "schema": { 1
 "type": "struct",
 "fields": [
 {
 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "ID"
 },
 {
 "type": "string",
 "optional": false,
 "field": "FIRST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "LAST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "EMAIL"
 }
],
 "optional": true,
 "name": "mydatabase.MYSCHEMA.CUSTOMERS.Value", 2
 "field": "before"
 },
 {

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

219

 "type": "struct",
 "fields": [
 {
 "type": "int32",
 "optional": false,
 "field": "ID"
 },
 {
 "type": "string",
 "optional": false,
 "field": "FIRST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "LAST_NAME"
 },
 {
 "type": "string",
 "optional": false,
 "field": "EMAIL"
 }
],
 "optional": true,
 "name": "mydatabase.MYSCHEMA.CUSTOMERS.Value",
 "field": "after"
 },
 {
 "type": "struct",
 "fields": [
 {
 "type": "string",
 "optional": false,
 "field": "version"
 },
 {
 "type": "string",
 "optional": false,
 "field": "connector"
 },
 {
 "type": "string",
 "optional": false,
 "field": "name"
 },
 {
 "type": "int64",
 "optional": false,
 "field": "ts_ms"
 },
 {
 "type": "boolean",
 "optional": true,
 "default": false,
 "field": "snapshot"
 },

Red Hat Integration 2020-Q3 Debezium User Guide

220

 {
 "type": "string",
 "optional": false,
 "field": "db"
 },
 {
 "type": "string",
 "optional": false,
 "field": "schema"
 },
 {
 "type": "string",
 "optional": false,
 "field": "table"
 },
 {
 "type": "string",
 "optional": true,
 "field": "change_lsn"
 },
 {
 "type": "string",
 "optional": true,
 "field": "commit_lsn"
 },
],
 "optional": false,
 "name": "io.debezium.connector.db2.Source", 3
 "field": "source"
 },
 {
 "type": "string",
 "optional": false,
 "field": "op"
 },
 {
 "type": "int64",
 "optional": true,
 "field": "ts_ms"
 }
],
 "optional": false,
 "name": "mydatabase.MYSCHEMA.CUSTOMERS.Envelope" 4
 },
 "payload": { 5
 "before": null, 6
 "after": { 7
 "ID": 1005,
 "FIRST_NAME": "john",
 "LAST_NAME": "doe",
 "EMAIL": "john.doe@example.org"
 },
 "source": { 8
 "version": "1.2.4.Final",
 "connector": "db2",

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

221

Table 6.4. Descriptions of create event value fields

Item Field name Description

1 schema The value’s schema, which describes the structure of the value’s payload. A
change event’s value schema is the same in every change event that the
connector generates for a particular table.

2 name In the schema section, each name field specifies the schema for a field in
the value’s payload.

mydatabase.MYSCHEMA.CUSTOMERS.Value is the schema for the
payload’s before and after fields. This schema is specific to the
customers table. The connector uses this schema for all rows in the
MYSCHEMA.CUSTOMERS table.

Names of schemas for before and after fields are of the form
logicalName.schemaName.tableName.Value, which ensures that the
schema name is unique in the database. This means that when using the
Avro converter, the resulting Avro schema for each table in each logical
source has its own evolution and history.

3 name io.debezium.connector.db2.Source is the schema for the payload’s
source field. This schema is specific to the Db2 connector. The connector
uses it for all events that it generates.

4 name mydatabase.MYSCHEMA.CUSTOMERS.Envelope is the schema for
the overall structure of the payload, where mydatabase is the database,
MYSCHEMA is the schema, and CUSTOMERS is the table.

5 payload The value’s actual data. This is the information that the change event is
providing.

It may appear that JSON representations of events are much larger than
the rows they describe. This is because a JSON representation must include
the schema portion and the payload portion of the message. However, by
using the Avro converter, you can significantly decrease the size of the
messages that the connector streams to Kafka topics.

 "name": "myconnector",
 "ts_ms": 1559729468470,
 "snapshot": false,
 "db": "mydatabase",
 "schema": "MYSCHEMA",
 "table": "CUSTOMERS",
 "change_lsn": "00000027:00000758:0003",
 "commit_lsn": "00000027:00000758:0005",
 },
 "op": "c", 9
 "ts_ms": 1559729471739 10
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

222

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

6 before An optional field that specifies the state of the row before the event
occurred. When the op field is c for create, as it is in this example, the
before field is null since this change event is for new content.

7 after An optional field that specifies the state of the row after the event
occurred. In this example, the after field contains the values of the new row’s
ID, FIRST_NAME, LAST_NAME, and EMAIL columns.

8 source Mandatory field that describes the source metadata for the event. The
source structure shows Db2 information about this change, which provides
traceability. It also has information you can use to compare to other events
in the same topic or in other topics to know whether this event occurred
before, after, or as part of the same commit as other events. The source
metadata includes:

Debezium version

Connector type and name

Timestamp for when the change was made in the database

Whether the event is part of an ongoing snapshot

Name of the database, schema, and table that contain the new row

Change LSN

Commit LSN (omitted if this event is part of a snapshot)

9 op Mandatory string that describes the type of operation that caused the
connector to generate the event. In this example, c indicates that the
operation created a row. Valid values are:

c = create

u = update

d = delete

r = read (applies to only snapshots)

10 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

update events

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

223

The value of a change event for an update in the sample customers table has the same schema as a
create event for that table. Likewise, the update event value’s payload has the same structure. However,
the event value payload contains different values in an update event. Here is an example of a change
event value in an event that the connector generates for an update in the customers table:

Table 6.5. Descriptions of update event value fields

Item Field name Description

1 before An optional field that specifies the state of the row before the event
occurred. In an update event value, the before field contains a field for each
table column and the value that was in that column before the database
commit. In this example, note that the EMAIL value is
john.doe@example.com.

2 after An optional field that specifies the state of the row after the event
occurred. You can compare the before and after structures to determine
what the update to this row was. In the example, the EMAIL value is now
noreply@example.com.

{
 "schema": { ... },
 "payload": {
 "before": { 1
 "ID": 1005,
 "FIRST_NAME": "john",
 "LAST_NAME": "doe",
 "EMAIL": "john.doe@example.org"
 },
 "after": { 2
 "ID": 1005,
 "FIRST_NAME": "john",
 "LAST_NAME": "doe",
 "EMAIL": "noreply@example.org"
 },
 "source": { 3
 "version": "1.2.4.Final",
 "connector": "db2",
 "name": "myconnector",
 "ts_ms": 1559729995937,
 "snapshot": false,
 "db": "mydatabase",
 "schema": "MYSCHEMA",
 "table": "CUSTOMERS",
 "change_lsn": "00000027:00000ac0:0002",
 "commit_lsn": "00000027:00000ac0:0007",
 },
 "op": "u", 4
 "ts_ms": 1559729998706 5
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

224

3 source Mandatory field that describes the source metadata for the event. The
source field structure contains the same fields as in a create event, but
some values are different, for example, the sample update event has
different LSNs. You can use this information to compare this event to other
events to know whether this event occurred before, after, or as part of the
same commit as other events. The source metadata includes:

Debezium version

Connector type and name

Timestamp for when the change was made in the database

Whether the event is part of an ongoing snapshot

Name of the database, schema, and table that contain the new row

Change LSN

Commit LSN (omitted if this event is part of a snapshot)

4 op Mandatory string that describes the type of operation. In an update event
value, the op field value is u, signifying that this row changed because of an
update.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

NOTE

Updating the columns for a row’s primary/unique key changes the value of the row’s key.
When a key changes, Debezium outputs three events: a DELETE event and a tombstone
event with the old key for the row, followed by an event with the new key for the row.

delete events

The value in a delete change event has the same schema portion as create and update events for the
same table. The event value payload in a delete event for the sample customers table looks like this:

{
 "schema": { ... },
 },
 "payload": {
 "before": { 1

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

225

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-tombstone-events

Table 6.6. Descriptions of delete event value fields

Item Field name Description

1 before Optional field that specifies the state of the row before the event occurred.
In a delete event value, the before field contains the values that were in the
row before it was deleted with the database commit.

2 after Optional field that specifies the state of the row after the event occurred. In
a delete event value, the after field is null, signifying that the row no longer
exists.

3 source Mandatory field that describes the source metadata for the event. In a
delete event value, the source field structure is the same as for create and
update events for the same table. Many source field values are also the
same. In a delete event value, the ts_ms and LSN field values, as well as
other values, might have changed. But the source field in a delete event
value provides the same metadata:

Debezium version

Connector type and name

Timestamp for when the change was made in the database

Whether the event is part of an ongoing snapshot

Name of the database, schema, and table that contain the new row

Change LSN

Commit LSN (omitted if this event is part of a snapshot)

 "ID": 1005,
 "FIRST_NAME": "john",
 "LAST_NAME": "doe",
 "EMAIL": "noreply@example.org"
 },
 "after": null, 2
 "source": { 3
 "version": "1.2.4.Final",
 "connector": "db2",
 "name": "myconnector",
 "ts_ms": 1559730445243,
 "snapshot": false,
 "db": "mydatabase",
 "schema": "MYSCHEMA",
 "table": "CUSTOMERS",
 "change_lsn": "00000027:00000db0:0005",
 "commit_lsn": "00000027:00000db0:0007"
 },
 "op": "d", 4
 "ts_ms": 1559730450205 5
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

226

4 op Mandatory string that describes the type of operation. The op field value is
d, signifying that this row was deleted.

5 ts_ms Optional field that displays the time at which the connector processed the
event. The time is based on the system clock in the JVM running the Kafka
Connect task.

In the source object, ts_ms indicates the time that the change was made
in the database. By comparing the value for payload.source.ts_ms with
the value for payload.ts_ms, you can determine the lag between the
source database update and Debezium.

Item Field name Description

A delete change event record provides a consumer with the information it needs to process the removal
of this row. The old values are included because some consumers might require them in order to
properly handle the removal.

Db2 connector events are designed to work with Kafka log compaction. Log compaction enables
removal of some older messages as long as at least the most recent message for every key is kept. This
lets Kafka reclaim storage space while ensuring that the topic contains a complete data set and can be
used for reloading key-based state.

When a row is deleted, the delete event value still works with log compaction, because Kafka can remove
all earlier messages that have that same key. However, for Kafka to remove all messages that have that
same key, the message value must be null. To make this possible, after Debezium’s Db2 connector
emits a delete event, the connector emits a special tombstone event that has the same key but a null
value.

6.4. HOW DEBEZIUM DB2 CONNECTORS MAP DATA TYPES

Db2’s data types are described in Db2 SQL Data Types.

The Db2 connector represents changes to rows with events that are structured like the table in which
the row exists. The event contains a field for each column value. How that value is represented in the
event depends on the Db2 data type of the column. This section describes these mappings.

Details are in the following sections:

Basic types

Temporal types

Timestamp types

Decimal types

Basic types

The following table describes how the connector maps each of the Db2 data types to a literal type and a
semantic type in event fields.

literal type describes how the value is represented using Kafka Connect schema types: INT8,

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

227

https://kafka.apache.org/documentation/#compaction
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.5.0/com.ibm.db2.luw.sql.ref.doc/doc/r0008483.html

literal type describes how the value is represented using Kafka Connect schema types: INT8,
INT16, INT32, INT64, FLOAT32, FLOAT64, BOOLEAN, STRING, BYTES, ARRAY, MAP, and
STRUCT.

semantic type describes how the Kafka Connect schema captures the meaning of the field using
the name of the Kafka Connect schema for the field.

Table 6.7. Mappings for Db2 basic data types

Db2 data type Literal type
(schema type)

Semantic type (schema name)

BOOLEAN BOOLEAN n/a

BIGINT INT64 n/a

BINARY BYTES n/a

BLOB BYTES n/a

CHAR[(N)] STRING n/a

CLOB STRING n/a

DATE INT32 io.debezium.time.Date

String representation of a timestamp without timezone
information

DECFLOAT BYTES org.apache.kafka.connect.data.Decimal

DECIMAL BYTES org.apache.kafka.connect.data.Decimal

DBCLOB STRING n/a

DOUBLE FLOAT64 n/a

INTEGER INT32 n/a

REAL FLOAT32 n/a

SMALLINT INT16 n/a

TIME INT32 io.debezium.time.Time+
String representation of a time without timezone
information

Red Hat Integration 2020-Q3 Debezium User Guide

228

TIMESTAMP INT64 io.debezium.time.MicroTimestamp

String representation of a timestamp without timezone
information

VARBINARY BYTES n/a

VARCHAR[(N)] STRING n/a

VARGRAPHIC STRING n/a

XML STRING io.debezium.data.Xml

String representation of an XML document

Db2 data type Literal type
(schema type)

Semantic type (schema name)

If present, a column’s default value is propagated to the corresponding field’s Kafka Connect schema.
Change events contain the field’s default value unless an explicit column value had been given.
Consequently, there is rarely a need to obtain the default value from the schema.

Temporal types

Other than Db2’s DATETIMEOFFSET data type, which contains time zone information, how temporal
types are mapped depends on the value of the time.precision.mode connector configuration property.
The following sections describe these mappings:

time.precision.mode=adaptive

time.precision.mode=connect

time.precision.mode=adaptive

When the time.precision.mode configuration property is set to adaptive, the default, the connector
determines the literal type and semantic type based on the column’s data type definition. This ensures
that events exactly represent the values in the database.

Table 6.8. Mappings when time.precision.mode is adaptive

Db2 data type Literal type
(schema type)

Semantic type (schema name)

DATE INT32 io.debezium.time.Date

Represents the number of days since the epoch.

TIME(0), TIME(1),
TIME(2), TIME(3)

INT32 io.debezium.time.Time

Represents the number of milliseconds past midnight, and
does not include timezone information.

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

229

TIME(4), TIME(5),
TIME(6)

INT64 io.debezium.time.MicroTime

Represents the number of microseconds past midnight,
and does not include timezone information.

TIME(7) INT64 io.debezium.time.NanoTime

Represents the number of nanoseconds past midnight,
and does not include timezone information.

DATETIME INT64 io.debezium.time.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

SMALLDATETIME INT64 io.debezium.time.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

DATETIME2(0),
DATETIME2(1),
DATETIME2(2),
DATETIME2(3)

INT64 io.debezium.time.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

DATETIME2(4),
DATETIME2(5),
DATETIME2(6)

INT64 io.debezium.time.MicroTimestamp

Represents the number of microseconds since the epoch,
and does not include timezone information.

DATETIME2(7) INT64 io.debezium.time.NanoTimestamp

Represents the number of nanoseconds past the epoch,
and does not include timezone information.

Db2 data type Literal type
(schema type)

Semantic type (schema name)

time.precision.mode=connect

When the time.precision.mode configuration property is set to connect, the connector uses Kafka
Connect logical types. This may be useful when consumers can handle only the built-in Kafka Connect
logical types and are unable to handle variable-precision time values. However, since Db2 supports tenth
of a microsecond precision, the events generated by a connector with the connect time precision
results in a loss of precision when the database column has a fractional second precision value that is
greater than 3.

Table 6.9. Mappings when time.precision.mode is connect

Red Hat Integration 2020-Q3 Debezium User Guide

230

Db2 data type Literal type
(schema type)

Semantic type (schema name)

DATE INT32 org.apache.kafka.connect.data.Date

Represents the number of days since the epoch.

TIME([P]) INT64 org.apache.kafka.connect.data.Time

Represents the number of milliseconds since midnight, and
does not include timezone information. Db2 allows P to be
in the range 0-7 to store up to tenth of a microsecond
precision, though this mode results in a loss of precision
when P is greater than 3.

DATETIME INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

SMALLDATETIME INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information.

DATETIME2 INT64 org.apache.kafka.connect.data.Timestamp

Represents the number of milliseconds since the epoch,
and does not include timezone information. Db2 allows P
to be in the range 0-7 to store up to tenth of a
microsecond precision, though this mode results in a loss
of precision when P is greater than 3.

Timestamp types

The DATETIME, SMALLDATETIME and DATETIME2 types represent a timestamp without time zone
information. Such columns are converted into an equivalent Kafka Connect value based on UTC. For
example, the DATETIME2 value "2018-06-20 15:13:16.945104" is represented by an
io.debezium.time.MicroTimestamp with the value "1529507596945104".

The timezone of the JVM running Kafka Connect and Debezium does not affect this conversion.

Table 6.10. Decimal types

Db2 data type Literal type
(schema type)

Semantic type (schema name)

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

231

NUMERIC[(P[,S])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point is shifted.
The connect.decimal.precision schema parameter
contains an integer that represents the precision of the
given decimal value.

DECIMAL[(P[,S])] BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point is shifted.
The connect.decimal.precision schema parameter
contains an integer that represents the precision of the
given decimal value.

SMALLMONEY BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point iss shifted.
The connect.decimal.precision schema parameter
contains an integer that represents the precision of the
given decimal value.

MONEY BYTES org.apache.kafka.connect.data.Decimal

The scale schema parameter contains an integer that
represents how many digits the decimal point is shifted.
The connect.decimal.precision schema parameter
contains an integer that represents the precision of the
given decimal value.

Db2 data type Literal type
(schema type)

Semantic type (schema name)

6.5. SETTING UP DB2 TO RUN A DEBEZIUM CONNECTOR

A database administrator must put tables into capture mode before you can run a Debezium Db2
connector to capture changes that are committed to a Db2 database. To put tables into capture mode,
Debezium provides a set of user-defined functions (UDFs) for your convenience. The procedure here
shows how to install and run these management UDFs. Alternatively, you can run Db2 control commands
to put tables into capture mode.

This procedure assumes that you are logged in as the db2instl user, which is the default instance and
user name when using the Db2 docker container image.

Prerequisites

On the machine on which Db2 is running, the content in debezium-connector-
db2/src/test/docker/db2-cdc-docker is available in the $HOME/asncdctools/src directory.

Procedure

Red Hat Integration 2020-Q3 Debezium User Guide

232

Procedure

1. Compile the Debezium management UDFs on the Db2 server host by using the bldrtn
command provided with Db2:

2. Start the database if it is not already running. Replace DB_NAME with the name of the
database that you want Debezium to connect to.

3. Ensure that JDBC can read the Db2 metadata catalog:

4. Ensure that the database was recently backed-up. The ASN agents must have a recent starting
point to read from. If you need to perform a backup, run the following commands, which prune
the data so that only the most recent version is available. If you do not need to retain the older
versions of the data, specify dev/null for the backup location.

a. Back up the database. Replace DB_NAME and BACK_UP_LOCATION with appropriate
values:

b. Restart the database:

5. Connect to the database to install the Debezium management UDFs. It is assumed that you are
logged in as the db2instl user so the UDFs should be installed on the db2inst1 user.

6. Copy the Debezium management UDFs and set permissions for them:

7. Enable the Debezium UDF that starts and stops the ASN capture agent:

8. Create the ASN control tables:

cd $HOME/asncdctools/src

./bldrtn asncdc

db2 start db DB_NAME

cd $HOME/sqllib/bnd

db2 bind db2schema.bnd blocking all grant public sqlerror continue

db2 backup db DB_NAME to BACK_UP_LOCATION

db2 restart db DB_NAME

db2 connect to DB_NAME

cp $HOME/asncdctools/src/asncdc $HOME/sqllib/function

chmod 777 $HOME/sqllib/function

db2 -tvmf $HOME/asncdctools/src/asncdc_UDF.sql

$ db2 -tvmf $HOME/asncdctools/src/asncdctables.sql

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

233

9. Enable the Debezium UDF that adds tables to capture mode and removes tables from capture
mode:

After you set up the Db2 server, use the UDFs to control Db2 replication (ASN) with SQL
commands. Some of the UDFs expect a return value in which case you use the SQL VALUE
statement to invoke them. For other UDFs, use the SQL CALL statement.

10. Start the ASN agent:

11. Put tables into capture mode. Invoke the following statement for each table that you want to
put into capture. Replace MYSCHEMA with the name of the schema that contains the table you
want to put into capture mode. Likewise, replace MYTABLE with the name of the table to put
into capture mode:

12. Reinitialize the ASN service:

Additional resource

Reference table for Debezium Db2 management UDFs

6.6. DEPLOYING DEBEZIUM DB2 CONNECTORS

To deploy a Debezium Db2 connector, install the Debezium Db2 connector archive, configure the
connector, and start the connector by adding its configuration to Kafka Connect. Details are in the
following topics:

Section 6.6.1, “Steps for installing Debezium Db2 connectors”

Section 6.6.2, “Debezium db2 connector configuration example”

Section 6.6.3, “Adding Debezium Db2 connector configuration to Kafka Connect”

Section 6.6.4, “Description of Debezium Db2 connector configuration properties”

6.6.1. Steps for installing Debezium Db2 connectors

To install the Db2 connector, follow the procedures in Installing Debezium on OpenShift. The main steps
are:

1. Set up Db2 to run a Debezium connector . This enables Db2 replication to expose change-data
for tables that are in capture mode.

2. Use Red Hat AMQ Streams to set up Apache Kafka and Kafka Connect on OpenShift. AMQ
Streams offers operators and images that bring Kafka to OpenShift.

3. Download the Debezium Db2 connector.

$ db2 -tvmf $HOME/asncdctools/src/asncdcaddremove.sql

VALUES ASNCDC.ASNCDCSERVICES('start','asncdc');

CALL ASNCDC.ADDTABLE('MYSCHEMA', 'MYTABLE');

VALUES ASNCDC.ASNCDCSERVICES('reinit','asncdc');

Red Hat Integration 2020-Q3 Debezium User Guide

234

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#managing-debezium-db2-connectors
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/installing_debezium_on_openshift/
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#setting-up-db2-to-run-a-debezium-connector
https://access.redhat.com/products/red-hat-amq#streams
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

4. Extract the files into your Kafka Connect environment.

5. Add the plug-in’s parent directory to your Kafka Connect plugin.path, for example:

plugin.path=/kafka/connect

The above example assumes that you extracted the Debezium Db2 connector to the
/kafka/connect/Debezium-connector-db2 path.

6. Restart your Kafka Connect process to ensure that the new JAR files are picked up.

6.6.2. Debezium db2 connector configuration example

Following is an example of the configuration for a Db2 connector that connects to a Db2 server on port
50000 at 192.168.99.100, whose logical name is fullfillment. Typically, you configure a Debezium Db2
connector in a .yaml file using the configuration properties available for the connector.

You can choose to produce events for a subset of the schemas and tables. Optionally, ignore, mask, or
truncate columns that are sensitive, too large, or not needed.

Table 6.11. Descriptions of connector configuration settings

Item Description

1 The name of the connector.

2 Only one task should operate at any one time.

3 The connector’s configuration.

4 The database host, which is the address of the Db2 instance.

5 The logical name of the Db2 instance/cluster, which forms a namespace and is used in the
names of the Kafka topics to which the connector writes, the names of Kafka Connect schemas,
and the namespaces of the corresponding Avro schema when the Avro Connector is used.

apiVersion: kafka.strimzi.io/v1beta1
 kind: KafkaConnector
 metadata:
 name: inventory-connector 1
 labels: strimzi.io/cluster: my-connect-cluster
 spec:
 class: io.debezium.connector.db2.Db2Connector
 tasksMax: 1 2
 config: 3
 database.hostname: 192.168.99.100 4
 database.port: 50000
 database.user: db2inst1
 database.password: Password!
 database.dbname: mydatabase
 database.server.name: fullfillment 5
 database.whitelist: public.inventory 6

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

235

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

6 Changes in only the public.inventory database are captured.

Item Description

See the complete list of connector properties that you can specify in these configurations.

You can send this configuration with a POST command to a running Kafka Connect service. The service
records the configuration and starts one connector task that connects to the Db2 database, reads
change-data tables for tables in capture mode, and streams change event records to Kafka topics.

6.6.3. Adding Debezium Db2 connector configuration to Kafka Connect

You can use a provided Debezium container to deploy a Debezium Db2 connector. In this procedure, you
build a custom Kafka Connect container image for Debezium, configure the Debezium connector as
needed, and then add your connector configuration to your Kafka Connect environment.

Prerequisites

Podman or Docker is installed and you have sufficient rights to create and manage containers.

You installed the Debezium Db2 connector archive.

Procedure

1. Extract the Debezium Db2 connector archive to create a directory structure for the connector
plug-in, for example:

tree ./my-plugins/
./my-plugins/
├── debezium-connector-db2
│ ├── ...

2. Create and publish a custom image for running your Debezium connector:

a. Create a new Dockerfile by using registry.redhat.io/amq7/amq-streams-kafka-25-
rhel7:1.5.0 as the base image. In the following example, you would replace my-plugins with
the name of your plug-ins directory:

FROM registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Before Kafka Connect starts running the connector, Kafka Connect loads any third-party
plug-ins that are in the /opt/kafka/plugins directory.

b. Build the container image. For example, if you saved the Dockerfile that you created in the
previous step as debezium-container-for-db2, and if the Dockerfile is in the current
directory, then you would run the following command:
podman build -t debezium-container-for-db2:latest .

c. Push your custom image to your container registry, for example:
podman push debezium-container-for-db2:latest

Red Hat Integration 2020-Q3 Debezium User Guide

236

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-connector-properties

d. Point to the new container image. Do one of the following:

Edit the spec.image property of the KafkaConnector custom resource. If set, this
property overrides the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable in
the Cluster Operator. For example:

In the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file,
edit the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable to point to the new
container image and reinstall the Cluster Operator. If you edit this file you must apply it
to your OpenShift cluster.

3. Create a KafkaConnector custom resource that defines your Debezium Db2 connector
instance. See the connector configuration example .

4. Apply the connector instance, for example:
oc apply -f inventory-connector.yaml

This registers inventory-connector and the connector starts to run against the inventory
database.

5. Verify that the connector was created and has started to capture changes in the specified
database. You can verify the connector instance by watching the Kafka Connect log output as,
for example, inventory-connector starts.

a. Display the Kafka Connect log output:

b. Review the log output to verify that the initial snapshot has been executed. You should see
something like the following lines:

Results

When the connector starts, it performs a consistent snapshot of the Db2 database tables that the
connector is configured to capture changes for. The connector then starts generating data change
events for row-level operations and streaming change event records to Kafka topics.

6.6.4. Description of Debezium Db2 connector configuration properties

The Debezium Db2 connector has numerous configuration properties that you can use to achieve the
right connector behavior for your application. Many properties have default values. Information about
the properties is organized as follows:

Required configuration properties

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: my-connect-cluster
spec:
 #...
 image: debezium-container-for-db2

oc logs $(oc get pods -o name -l strimzi.io/name=my-connect-cluster-connect)

... INFO Starting snapshot for ...

... INFO Snapshot is using user 'debezium' ...

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

237

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#debezium-db2-connector-configuration-example
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-snapshots

Advanced configuration properties

Pass-through configuration properties

The following configuration properties are required unless a default value is available.

Table 6.12. Required connector configuration properties

Property Default Description

name Unique name for the connector. Attempting to
register again with the same name will fail. This
property is required by all Kafka Connect
connectors.

connector.class The name of the Java class for the connector.
Always use a value of
io.debezium.connector.db2.Db2Connect
or for the Db2 connector.

tasks.max 1 The maximum number of tasks that should be
created for this connector. The Db2 connector
always uses a single task and therefore does
not use this value, so the default is always
acceptable.

database.hostname IP address or hostname of the Db2 database
server.

database.port 50000 Integer port number of the Db2 database
server.

database.user Name of the Db2 database user for connecting
to the Db2 database server.

database.password Password to use when connecting to the Db2
database server.

database.dbname The name of the Db2 database from which to
stream the changes

database.server ​.name Logical name that identifies and provides a
namespace for the particular Db2 database
server that hosts the database for which
Debezium is capturing changes. Only
alphanumeric characters and underscores
should be used in the database server logical
name. The logical name should be unique
across all other connectors, since it is used as a
topic name prefix for all Kafka topics that
receive records from this connector.

Red Hat Integration 2020-Q3 Debezium User Guide

238

database.history ​
.kafka.topic

 The full name of the Kafka topic where the
connector stores the database schema history.

database.history ​
.kafka.bootstrap ​.servers

 A list of host/port pairs that the connector uses
to establish an initial connection to the Kafka
cluster. This connection is used for retrieving
database schema history previously stored by
the connector, and for writing each DDL
statement read from the source database. Each
pair should point to the same Kafka cluster
used by the Debezium Kafka Connect process.

table.whitelist An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables whose changes you want
the connector to capture. Any table not
included in the include list does not have its
changes captured. Each identifier is of the form
schemaName.tableName. By default, the
connector captures changes in every non-
system table. Do not also set the
table.blacklist property.

table.blacklist An optional, comma-separated list of regular
expressions that match fully-qualified table
identifiers for tables whose changes you do not
want the connector to capture. The connector
captures changes in each non-system table
that is not included in the exclude list. Each
identifier is of the form
schemaName.tableName. Do not also set the
table.whitelist property.

column.blacklist empty string An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns to exclude from change
event values. Fully-qualified names for columns
are of the form
schemaName.tableName.columnName. Primary
key columns are always included in the event’s
key, even if they are excluded from the value.

Property Default Description

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

239

column.mask ​
.hash.hashAlgorithm ​
.with.salt.salt

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns whose
values should be pseudonyms in change event
values. A pseudonym is a field value that
consists of the hashed value obtained by
applying the hashAlgorithm algorithm and
the salt salt that you specify in the property
name.

Based on the hash algorithm applied,
referential integrity is kept while data is
masked. Supported hash algorithms are
described in the {link-java7-standard-names}
[MessageDigest section] of the Java
Cryptography Architecture Standard Algorithm
Name Documentation. The hash value is
automatically shortened to the length of the
column.

You can specify multiple instances of this
property with different algorthims and salts.
Fully-qualified names for columns are of the
form schemaName.tableName.columnName.
For example:

column.mask.hash.SHA-
256.with.salt.CzQMA0cB5K = +
inventory.orders.customerName,
inventory.shipment.customerName

where CzQMA0cB5K is a randomly selected
salt.
Depending on the hashAlgorithm used, the
salt selected, and the actual data set, the field
value may not be completely masked.

time.precision.mode adaptive Time, date, and timestamps can be
represented with different kinds of precision:

adaptive captures the time and timestamp
values exactly as in the database using either
millisecond, microsecond, or nanosecond
precision values based on the database
column’s type.

connect always represents time and
timestamp values by using Kafka Connect’s
built-in representations for Time, Date, and
Timestamp, which uses millisecond precision
regardless of the database columns' precision.
See temporal values.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

240

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-temporal-values

tombstones.on ​.delete true Controls whether a tombstone event should be
generated after a delete event.

true - delete operations are represented by a
delete event and a subsequent tombstone
event.

false - only a delete event is sent.

After a delete operation, emitting a tombstone
event enables Kafka to delete all change event
records that have the same key as the deleted
row.

include.schema ​.changes true Boolean value that specifies whether the
connector should publish changes in the
database schema to a Kafka topic with the
same name as the database server ID. Each
schema change is recorded with a key that
contains the database name and a value that is
a JSON structure that describes the schema
update. This is independent of how the
connector internally records database history.

column.truncate.to ​
.length.chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In
change event records, values in these columns
are truncated if they are longer than the
number of characters specified by length in the
property name. You can specify multiple
properties with different lengths in a single
configuration. Length must be a positive
integer, for example,
column.truncate.to.20.chars.

Property Default Description

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

241

column.mask ​
.with.length.chars

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of character-based columns. Fully-
qualified names for columns are of the form
schemaName.tableName.columnName. In
change event values, the values in the specified
table columns are replaced with length number
of asterisk (*) characters. You can specify
multiple properties with different lengths in a
single configuration. Length must be a positive
integer or zero. When you specify zero, the
connector replaces a value with an empty
string.

column.propagate ​
.source.type

n/a An optional, comma-separated list of regular
expressions that match the fully-qualified
names of columns. Fully-qualified names for
columns are of the form
databaseName.tableName.columnName, or
databaseName.schemaName.tableName.colum
nName.

For each specified column, the connector adds
the column’s original type and original length as
parameters to the corresponding field schemas
in the emitted change records. The following
added schema parameters propagate the
original type name and also the original length
for variable-width types:

__debezium.source.column.type +
__debezium.source.column.length +
__debezium.source.column.scale

This property is useful for properly sizing
corresponding columns in sink databases.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

242

datatype.propagate ​
.source.type

n/a An optional, comma-separated list of regular
expressions that match the database-specific
data type name for some columns. Fully-
qualified data type names are of the form
databaseName.tableName.typeName, or
databaseName.schemaName.tableName.typeN
ame.

For these data types, the connector adds
parameters to the corresponding field schemas
in emitted change records. The added
parameters specify the original type and length
of the column:

__debezium.source.column.type +
__debezium.source.column.length +
__debezium.source.column.scale

These parameters propagate a column’s
original type name and length, for variable-
width types, respectively. This property is useful
for properly sizing corresponding columns in
sink databases.

See Db2 data types for the list of Db2-specific
data type names.

Property Default Description

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

243

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-data-types

message.key ​.columns empty string A semicolon separated list of tables with
regular expressions that match table column
names. The connector maps values in matching
columns to key fields in change event records
that it sends to Kafka topics. This is useful when
a table does not have a primary key, or when
you want to order change event records in a
Kafka topic according to a field that is not a
primary key.

Separate entries with semicolons. Insert a
colon between the fully-qualified table name
and its regular expression. The format is:

schema-name.table-name:_regexp_;…​

For example,

schemaA.table_a:regex_1;schemaB.tabl
e_b:regex_2;schemaC.table_c:regex_3

If table_a has a an id column, and regex_1 is
^i (matches any column that starts with i), the
connector maps the value in table_a's id
column to a key field in change events that the
connector sends to Kafka.

Property Default Description

The following advanced configuration properties have defaults that work in most situations and
therefore rarely need to be specified in the connector’s configuration.

Table 6.13. Advanced connector configuration properties

Property Default Description

snapshot.mode initial Specifies the criteria for performing a snapshot
when the connector starts:

initial - For tables in capture mode, the
connector takes a snapshot of the schema for
the table and the data in the table. This is useful
for populating Kafka topics with a complete
representation of the data.

schema_only - For tables in capture mode,
the connector takes a snapshot of only the
schema for the table. This is useful when only
the changes that are happening from now on
need to be emitted to Kafka topics. After the
snapshot is complete, the connector continues
by reading change events from the database’s
redo logs.

Red Hat Integration 2020-Q3 Debezium User Guide

244

snapshot.isolation ​.mode repeatable_read During a snapshot, controls the transaction
isolation level and how long the connector
locks the tables that are in capture mode. The
possible values are:

read_uncommitted - Does not prevent other
transactions from updating table rows during
an initial snapshot. This mode has no data
consistency guarantees; some data might be
lost or corrupted.

read_committed - Does not prevent other
transactions from updating table rows during
an initial snapshot. It is possible for a new
record to appear twice: once in the initial
snapshot and once in the streaming phase.
However, this consistency level is appropriate
for data mirroring.

repeatable_read - Prevents other
transactions from updating table rows during
an initial snapshot. It is possible for a new
record to appear twice: once in the initial
snapshot and once in the streaming phase.
However, this consistency level is appropriate
for data mirroring.

exclusive - Uses repeatable read isolation
level but takes an exclusive lock for all tables to
be read. This mode prevents other transactions
from updating table rows during an initial
snapshot. Only exclusive mode guarantees
full consistency; the initial snapshot and
streaming logs constitute a linear history.

event.processing ​
.failure.handling ​.mode

fail Specifies how the connector handles
exceptions during processing of events. The
possible values are:

fail - The connector logs the offset of the
problematic event and stops processing.

warn - The connector logs the offset of the
problematic event and continues processing
with the next event.

skip - The connector skips the problematic
event and continues processing with the next
event.

Property Default Description

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

245

poll.interval.ms 1000 Positive integer value that specifies the
number of milliseconds the connector should
wait for new change events to appear before it
starts processing a batch of events. Defaults to
1000 milliseconds, or 1 second.

max.queue.size 8192 Positive integer value for the maximum size of
the blocking queue. The connector places
change events that it reads from the database
log into the blocking queue before writing them
to Kafka. This queue can provide backpressure
for reading change-data tables when, for
example, writing records to Kafka is slower than
it should be or Kafka is not available. Events
that appear in the queue are not included in the
offsets that are periodically recorded by the
connector. The max.queue.size value should
always be larger than the value of the
max.batch.size connector configuration
property.

max.batch.size 2048 Positive integer value that specifies the
maximum size of each batch of events that the
connector processes.

heartbeat.interval ​.ms 0 Controls how frequently the connector sends
heartbeat messages to a Kafka topic. The
default behavior is that the connector does not
send heartbeat messages.

Heartbeat messages are useful for monitoring
whether the connector is receiving change
events from the database. Heartbeat
messages might help decrease the number of
change events that need to be re-sent when a
connector restarts. To send heartbeat
messages, set this property to a positive
integer, which indicates the number of
milliseconds between heartbeat messages.

Heartbeat messages are useful when there are
many updates in a database that is being
tracked but only a tiny number of updates are
in tables that are in capture mode. In this
situation, the connector reads from the
database transaction log as usual but rarely
emits change records to Kafka. This means
that the connector has few opportunities to
send the latest offset to Kafka. Sending
heartbeat messages enables the connector to
send the latest offset to Kafka.

Property Default Description

Red Hat Integration 2020-Q3 Debezium User Guide

246

heartbeat.topics ​.prefix __debezium-
heartbeat

Specifies the prefix for the name of the topic to
which the connector sends heartbeat
messages. The format for this topic name is
<heartbeat.topics.prefix>.
<server.name>.

snapshot.delay.ms An interval in milliseconds that the connector
should wait before performing a snapshot when
the connector starts. If you are starting
multiple connectors in a cluster, this property is
useful for avoiding snapshot interruptions,
which might cause re-balancing of connectors.

snapshot.fetch.size 2000 During a snapshot, the connector reads table
content in batches of rows. This property
specifies the maximum number of rows in a
batch.

snapshot.lock ​.timeout.ms 10000 Positive integer value that specifies the
maximum amount of time (in milliseconds) to
wait to obtain table locks when performing a
snapshot. If the connector cannot acquire table
locks in this interval, the snapshot fails. How the
connector performs snapshots provides
details. Other possible settings are:

0 - The connector immediately fails when it
cannot obtain a lock.

-1 - The connector waits infinitely.

Property Default Description

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

247

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-snapshots

snapshot.select ​
.statement ​.overrides

 Controls which table rows are included in
snapshots. This property affects snapshots
only. It does not affect events that the
connector reads from the log. Specify a
comma-separated list of fully-qualified table
names in the form schemaName.tableName.

For each table that you specify, also specify
another configuration property:
snapshot.select.statement.overrides.SC
HEMA_NAME.TABLE_NAME. For example:
snapshot.select.statement.overrides.cu
stomers.orders. Set this property to a
SELECT statement that obtains only the rows
that you want in the snapshot. When the
connector performs a snapshot, it executes this
SELECT statement to retrieve data from that
table.

A possible use case for setting these properties
is large, append-only tables. You can specify a
SELECT statement that sets a specific point
for where to start a snapshot, or where to
resume a snapshot if a previous snapshot was
interrupted.

sanitize.field ​.names true if connector
configuration sets the
key.converter or
value.converter
property to the Avro
converter.

false if not.

Indicates whether field names are sanitized to
adhere to Avro naming requirements.

provide.transaction ​
.metadata

false Determines whether the connector generates
events with transaction boundaries and
enriches change event envelopes with
transaction metadata. Specify true if you want
the connector to do this. See Transaction
metadata for details.

Property Default Description

Pass-through connector configuration properties

The connector also supports pass-through configuration properties that it uses when it creates Kafka
producers and consumers:

All connector configuration properties that begin with the database.history.producer. prefix
are used (without the prefix) when creating the Kafka producer that writes to the database
history topic.

All connector configuration properties that begin with the database.history.consumer. prefix

Red Hat Integration 2020-Q3 Debezium User Guide

248

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#avro-naming
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-transaction-metadata

All connector configuration properties that begin with the database.history.consumer. prefix
are used (without the prefix) when creating the Kafka consumer that reads the database history
when the connector starts.

For example, the following connector configuration properties secure connections to the Kafka broker :

database.history.producer.security.protocol=SSL
database.history.producer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.producer.ssl.keystore.password=test1234
database.history.producer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.producer.ssl.truststore.password=test1234
database.history.producer.ssl.key.password=test1234
database.history.consumer.security.protocol=SSL
database.history.consumer.ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
database.history.consumer.ssl.keystore.password=test1234
database.history.consumer.ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
database.history.consumer.ssl.truststore.password=test1234
database.history.consumer.ssl.key.password=test1234

Be sure to consult the Kafka documentation for all of the configuration properties for Kafka producers
and consumers. Note that the Db2 connector uses the new consumer.

Also, the connector passes configuration properties that start with database. to the JDBC URL, for
example, database.applicationName=debezium.

6.7. MONITORING DEBEZIUM DB2 CONNECTOR PERFORMANCE

The Debezium Db2 connector provides three types of metrics that are in addition to the built-in support
for JMX metrics that Zookeeper, Kafka, and Kafka Connect provide.

Snapshot metrics provide information about connector operation while performing a snapshot.

Streaming metrics provide information about connector operation when the connector is
capturing changes and streaming change event records.

Schema history metrics provide information about the status of the connector’s schema history.

Debezium monitoring documentation provides details for how to expose these metrics by using JMX.

Snapshot metrics

The MBean is debezium.db2:type=connector-
metrics,context=snapshot,server=<database.server.name>.

Attributes Type Description

LastEvent string The last snapshot event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

249

https://kafka.apache.org/documentation.html#security_configclients
https://kafka.apache.org/documentation.html
https://kafka.apache.org/documentation.html#newconsumerconfigs
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-snapshot-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-streaming-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-schema-history-metrics
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
snapshotter and the main
Kafka Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the snapshotter and
the main Kafka Connect loop.

TotalTableCount int The total number of tables
that are being included in the
snapshot.

RemainingTableCount int The number of tables that the
snapshot has yet to copy.

SnapshotRunning boolean Whether the snapshot was
started.

SnapshotAborted boolean Whether the snapshot was
aborted.

SnapshotCompleted boolean Whether the snapshot
completed.

SnapshotDurationInSeconds long The total number of seconds
that the snapshot has taken
so far, even if not complete.

Attributes Type Description

Red Hat Integration 2020-Q3 Debezium User Guide

250

RowsScanned Map<String, Long> Map containing the number of
rows scanned for each table in
the snapshot. Tables are
incrementally added to the
Map during processing.
Updates every 10,000 rows
scanned and upon completing
a table.

Attributes Type Description

Streaming metrics

The MBean is debezium.db2:type=connector-
metrics,context=streaming,server=<database.server.name>.

Attributes Type Description

LastEvent string The last streaming event that
the connector has read.

MilliSecondsSinceLastEvent long The number of milliseconds
since the connector has read
and processed the most
recent event.

TotalNumberOfEventsSeen long The total number of events
that this connector has seen
since last started or reset.

NumberOfEventsFiltered long The number of events that
have been filtered by whitelist
or blacklist filtering rules
configured on the connector.

MonitoredTables string[] The list of tables that are
monitored by the connector.

QueueTotalCapacity int The length the queue used to
pass events between the
streamer and the main Kafka
Connect loop.

QueueRemainingCapacity int The free capacity of the
queue used to pass events
between the streamer and the
main Kafka Connect loop.

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

251

Connected boolean Flag that denotes whether the
connector is currently
connected to the database
server.

MilliSecondsBehindSource long The number of milliseconds
between the last change
event’s timestamp and the
connector processing it. The
values will incoporate any
differences between the
clocks on the machines where
the database server and the
connector are running.

NumberOfCommittedTransactions long The number of processed
transactions that were
committed.

SourceEventPosition Map<String, String> The coordinates of the last
received event.

LastTransactionId string Transaction identifier of the
last processed transaction.

Attributes Type Description

Schema history metrics

The MBean is debezium.db2:type=connector-metrics,context=schema-
history,server=<database.server.name>.

Attributes Type Description

Status string One of STOPPED,
RECOVERING (recovering
history from the storage),
RUNNING describing the
state of the database history.

RecoveryStartTime long The time in epoch seconds at
what recovery has started.

ChangesRecovered long The number of changes that
were read during recovery
phase.

ChangesApplied long the total number of schema
changes applied during
recovery and runtime.

Red Hat Integration 2020-Q3 Debezium User Guide

252

MilliSecondsSinceLastRecoveredChange long The number of milliseconds
that elapsed since the last
change was recovered from
the history store.

MilliSecondsSinceLastAppliedChange long The number of milliseconds
that elapsed since the last
change was applied.

LastRecoveredChange string The string representation of
the last change recovered
from the history store.

LastAppliedChange string The string representation of
the last applied change.

Attributes Type Description

6.8. MANAGING DEBEZIUM DB2 CONNECTORS

After you deploy a Debezium Db2 connector, use the Debezium management UDFs to control Db2
replication (ASN) with SQL commands. Some of the UDFs expect a return value in which case you use
the SQL VALUE statement to invoke them. For other UDFs, use the SQL CALL statement.

Table 6.14. Descriptions of Debezium management UDFs

Task Command

Start the ASN
agent

VALUES ASNCDC.ASNCDCSERVICES('start','asncdc');

Stop the ASN
agent

VALUES ASNCDC.ASNCDCSERVICES('stop','asncdc');

Check the status
of the ASN agent

VALUES ASNCDC.ASNCDCSERVICES('status','asncdc');

Put a table into
capture mode

CALL ASNCDC.ADDTABLE('MYSCHEMA', 'MYTABLE');

Replace MYSCHEMA with the name of the schema that contains the table you want
to put into capture mode. Likewise, replace MYTABLE with the name of the table to
put into capture mode.

Remove a table
from capture
mode

CALL ASNCDC.REMOVETABLE('MYSCHEMA', 'MYTABLE');

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

253

Reinitialize the
ASN service

VALUES ASNCDC.ASNCDCSERVICES('reinit','asncdc');

Do this after you put a table into capture mode or after you remove a table from
capture mode.

Task Command

6.9. UPDATING SCHEMAS FOR DB2 TABLES IN CAPTURE MODE FOR
DEBEZIUM CONNECTORS

While a Debezium Db2 connector can capture schema changes, to update a schema, you must
collaborate with a database administrator to ensure that the connector continues to produce change
events. This is required by the way that Db2 implements replication.

For each table in capture mode, Db2’s replication feature creates a change-data table that contains all
changes to that source table. However, change-data table schemas are static. If you update the schema
for a table in capture mode then you must also update the schema of its corresponding change-data
table. A Debezium Db2 connector cannot do this. A database administrator with elevated privileges
must update schemas for tables that are in capture mode.

WARNING

It is vital to execute a schema update procedure completely before there is a new
schema update on the same table. Consequently, the recommendation is to
execute all DDLs in a single batch so the schema update procedure is done only
once.

There are generally two procedures for updating table schemas:

Offline - executed while Debezium is stopped

Online - executed while Debezium is running

Each approach has advantages and disadvantages.

6.9.1. Performing offline schema updates for Debezium Db2 connectors

You stop the Debezium Db2 connector before you perform an offline schema update. While this is the
safer schema update procedure, it might not be feasible for applications with high-availability
requirements.

Prerequisites

One or more tables that are in capture mode require schema updates.

Procedure

1. Suspend the application that updates the database.



Red Hat Integration 2020-Q3 Debezium User Guide

254

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-offline-schema-update
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#db2-online-schema-update

2. Wait for the Debezium connector to stream all unstreamed change event records.

3. Stop the Debezium connector.

4. Apply all changes to the source table schema.

5. In the ASN register table, mark the tables with updated schemas as INACTIVE.

6. Reinitialize the ASN capture service .

7. Remove the source table with the old schema from capture mode by running the Debezium
UDF for removing tables from capture mode.

8. Add the source table with the new schema to capture mode by running the Debezium UDF for
adding tables to capture mode.

9. In the ASN register table, mark the updated source tables as ACTIVE.

10. Reinitialize the ASN capture service.

11. Resume the application that updates the database.

12. Restart the Debezium connector.

6.9.2. Performing online schema updates for Debezium Db2 connectors

An online schema update does not require application and data processing downtime. That is, you do not
stop the Debezium Db2 connector before you perform an online schema update. Also, an online schema
update procedure is simpler than the procedure for an offline schema update.

However, when a table is in capture mode, after a change to a column name, the Db2 replication feature
continues to use the old column name. The new column name does not appear in Debezium change
events. You must restart the connector to see the new column name in change events.

Prerequisites

One or more tables that are in capture mode require schema updates.

Procedure when adding a column to the end of a table

1. Lock the source tables whose schema you want to change.

2. In the ASN register table, mark the locked tables as INACTIVE.

3. Reinitialize the ASN capture service.

4. Apply all changes to the schemas for the source tables.

5. Apply all changes to the schemas for the corresponding change-data tables.

6. In the ASN register table, mark the source tables as ACTIVE.

7. Reinitialize the ASN capture service.

8. Optional. Restart the connector to see updated column names in change events.

CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2

255

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#debezium-db2-remove-capture-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#debezium-db2-put-capture-mode
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service

Procedure when adding a column to the middle of a table

1. Lock the source table(s) to be changed.

2. In the ASN register table, mark the locked tables as INACTIVE.

3. Reinitialize the ASN capture service.

4. For each source table to be changed:

a. Export the data in the source table.

b. Truncate the source table.

c. Alter the source table and add the column.

d. Load the exported data into the altered source table.

e. Export the data in the source table’s corresponding change-data table.

f. Truncate the change-data table.

g. Alter the change-data table and add the column.

h. Load the exported data into the altered change-data table.

5. In the ASN register table, mark the tables as INACTIVE. This marks the old change-data tables
as inactive, which allows the data in them to remain but they are no longer updated.

6. Reinitialize the ASN capture service.

7. Optional. Restart the connector to see updated column names in change events.

Red Hat Integration 2020-Q3 Debezium User Guide

256

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#debezium-db2-reinitialize-asn-service

CHAPTER 7. MONITORING DEBEZIUM
You can use the JMX metrics provided by Zookeeper and Kafka to monitor Debezium. To use these
metrics, you must enable them when you start the Zookeeper, Kafka, and Kafka Connect services.
Enabling JMX involves setting the correct environment variables.

NOTE

If you are running multiple services on the same machine, be sure to use distinct JMX
ports for each service.

7.1. MONITORING DEBEZIUM ON RHEL

7.1.1. Zookeeper JMX environment variables

Zookeeper has built-in support for JMX. When running Zookeeper using a local installation, the
zkServer.sh script recognizes the following environment variables:

JMXPORT

Enables JMX and specifies the port number that will be used for JMX. The value is used to specify
the JVM parameter -Dcom.sun.management.jmxremote.port=$JMXPORT.

JMXAUTH

Whether JMX clients must use password authentication when connecting. Must be either true or
false. The default is false. The value is used to specify the JVM parameter -
Dcom.sun.management.jmxremote.authenticate=$JMXAUTH.

JMXSSL

Whether JMX clients connect using SSL/TLS. Must be either true or false. The default is false. The
value is used to specify the JVM parameter -Dcom.sun.management.jmxremote.ssl=$JMXSSL.

JMXLOG4J

Whether the Log4J JMX MBeans should be disabled. Must be either true (default) or false. The
default is true. The value is used to specify the JVM parameter -
Dzookeeper.jmx.log4j.disable=$JMXLOG4J.

7.1.2. Kafka JMX environment variables

When running Kafka using a local installation, the kafka-server-start.sh script recognizes the following
environment variables:

JMX_PORT

Enables JMX and specifies the port number that will be used for JMX. The value is used to specify
the JVM parameter -Dcom.sun.management.jmxremote.port=$JMX_PORT.

KAFKA_JMX_OPTS

The JMX options, which are passed directly to the JVM during startup. The default options are:

-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

CHAPTER 7. MONITORING DEBEZIUM

257

https://zookeeper.apache.org/doc/r3.1.2/zookeeperJMX.html
http://docs.confluent.io/3.0.0/kafka/monitoring.html

7.1.3. Kafka Connect JMX environment variables

When running Kafka using a local installation, the connect-distributed.sh script recognizes the
following environment variables:

JMX_PORT

Enables JMX and specifies the port number that will be used for JMX. The value is used to specify
the JVM parameter -Dcom.sun.management.jmxremote.port=$JMX_PORT.

KAFKA_JMX_OPTS

The JMX options, which are passed directly to the JVM during startup. The default options are:

-Dcom.sun.management.jmxremote

-Dcom.sun.management.jmxremote.authenticate=false

-Dcom.sun.management.jmxremote.ssl=false

7.2. MONITORING DEBEZIUM ON OPENSHIFT

If you are using Debezium on OpenShift, you can obtain JMX metrics by opening a JMX port on 9999.
For more information, see JMX Options.

In addition, you can use Prometheus and Grafana to monitor the JMX metrics. For more information,
see Introducing Metrics.

Red Hat Integration 2020-Q3 Debezium User Guide

258

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#assembly-jmx-options-deployment-configuration-kafka
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index/#assembly-metrics-setup-str

CHAPTER 8. DEBEZIUM LOGGING
Debezium has extensive logging built into its connectors, and you can change the logging configuration
to control which of these log statements appear in the logs and where those logs are sent. Debezium (as
well as Kafka, Kafka Connect, and Zookeeper) use the Log4j logging framework for Java.

By default, the connectors produce a fair amount of useful information when they start up, but then
produce very few logs when the connector is keeping up with the source databases. This is often
sufficient when the connector is operating normally, but may not be enough when the connector is
behaving unexpectedly. In such cases, you can change the logging level so that the connector generates
much more verbose log messages describing what the connector is doing and what it is not doing.

8.1. LOGGING CONCEPTS

Before configuring logging, you should understand what Log4J loggers, log levels, and appenders are.

Loggers
Each log message produced by the application is sent to a specific logger (for example,
io.debezium.connector.mysql). Loggers are arranged in hierarchies. For example, the
io.debezium.connector.mysql logger is the child of the io.debezium.connector logger, which is the
child of the io.debezium logger. At the top of the hierarchy, the root logger defines the default logger
configuration for all of the loggers beneath it.

Log levels
Every log message produced by the application will also have a specific log level:

1. ERROR - errors, exceptions, and other significant problems

2. WARN - potential problems and issues

3. INFO - status and general activity (usually low-volume)

4. DEBUG - more detailed activity that would be useful in diagnosing unexpected behavior

5. TRACE - very verbose and detailed activity (usually very high-volume)

Appenders
An appender is essentially a destination where log messages will be written. Each appender controls the
format of its log messages, giving you even more control over what the log messages look like.

To configure logging, you specify the desired level for each logger and the appender(s) where those log
messages should be written. Since loggers are hierarchical, the configuration for the root logger serves
as a default for all of the loggers below it, although you can override any child (or descendant) logger.

8.2. UNDERSTANDING THE DEFAULT LOGGING CONFIGURATION

If you are running Debezium connectors in a Kafka Connect process, then Kafka Connect will use the
Log4j configuration file (for example, /opt/kafka/config/connect-log4j.properties) in the Kafka
installation. By default, this file contains the following configuration:

connect-log4j.properties

...
log4j.rootLogger=INFO, stdout 1

CHAPTER 8. DEBEZIUM LOGGING

259

https://logging.apache.org/log4j/1.2/

log4j.appender.stdout=org.apache.log4j.ConsoleAppender 2
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout 3
log4j.appender.stdout.layout.ConversionPattern=[%d] %p %m (%c)%n 4
...

Table 8.1. Descriptions of log settings

Item Description

1 The root logger, which defines the default logger configuration. By default, loggers will include
INFO, WARN, and ERROR messages. These log messages will be written to the stdout
appender.

2 The stdout appender will write log messages to the console (as opposed to a file).

3 The stdout appender will use a pattern matching algorithm to format the log messages.

4 The pattern for the stdout appender (see the Log4j documentation for details).

Unless you configure other loggers, all of the loggers used by Debezium will inherit the rootLogger
configuration.

8.3. CONFIGURING LOGGING

By default, Debezium connectors write all INFO, WARN, and ERROR messages to the console.
However, you can change this configuration in the following ways:

Change the logging level

Add mapped diagnostic contexts

NOTE

This section only covers a couple methods you can use to configure Debezium logging
with Log4j. For more information about using Log4j, search for tutorials to set up and use
appenders to send log messages to specific destinations.

8.3.1. Changing the logging level

The default Debezium logging level provides sufficient information to show whether a connector is
healthy or not. However, if a connector is not healthy, you can change its logging level to troubleshoot
the issue.

In general, Debezium connectors send their log messages to loggers with names that match the fully-
qualified name of the Java class that is generating the log message. Debezium uses packages to
organize code with similar or related functions. This means that you can control all of the log messages
for a specific class or for all of the classes within or under a specific package.

Procedure

1. Open the log4j.properties file.

Red Hat Integration 2020-Q3 Debezium User Guide

260

https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

2. Configure a logger for the connector.
This example configures loggers for the MySQL connector and the database history
implementation used by the connector, and sets them to log DEBUG level messages:

Table 8.2. Descriptions of log settings

Item Description

1 Configures the logger named io.debezium.connector.mysql to send DEBUG,
INFO, WARN, and ERROR messages to the stdout appender.

2 Configures the logger named io.debezium.relational.history to send DEBUG,
INFO, WARN, and ERROR messages to the stdout appender.

3, 4 Turns off additivity, which means that the log messages will not be sent to appenders
of parent loggers (this can prevent seeing duplicate log messages when using multiple
appenders).

3. If necessary, change the logging level for a specific subset of the classes within the connector.
Increasing the logging level for the entire connector increases the log verbosity, which can make
it difficult to understand what is happening. In these cases, you can change the logging level just
for the subset of classes that are related to the issue that you are troubleshooting.

a. Set the connector’s logging level to either DEBUG or TRACE.

b. Review the connector’s log messages.
Find the log messages that are related to the issue that you are troubleshooting. The end of
each log message shows the name of the Java class that produced the message.

c. Set the connector’s logging level back to INFO.

d. Configure a logger for each Java class that you identified.
For example, consider a scenario in which you are unsure why the MySQL connector is
skipping some events when it is processing the binlog. Rather than turn on DEBUG or
TRACE logging for the entire connector, you can keep the connector’s logging level at
INFO and then configure DEBUG or TRACE on just the class that is reading the binlog:

log4j.properties

...
log4j.logger.io.debezium.connector.mysql=DEBUG, stdout 1
log4j.logger.io.debezium.relational.history=DEBUG, stdout 2

log4j.additivity.io.debezium.connector.mysql=false 3
log4j.additivity.io.debezium.relational.history=false 4
...

...
log4j.logger.io.debezium.connector.mysql=INFO, stdout
log4j.logger.io.debezium.connector.mysql.BinlogReader=DEBUG, stdout
log4j.logger.io.debezium.relational.history=INFO, stdout

log4j.additivity.io.debezium.connector.mysql=false

CHAPTER 8. DEBEZIUM LOGGING

261

8.3.2. Adding mapped diagnostic contexts

Most Debezium connectors (and the Kafka Connect workers) use multiple threads to perform different
activities. This can make it difficult to look at a log file and find only those log messages for a particular
logical activity. To make the log messages easier to find, Debezium provides several mapped diagnostic
contexts (MDC) that provide additional information for each thread.

Debezium provides the following MDC properties:

dbz.connectorType

A short alias for the type of connector. For example, MySql, Mongo, Postgres, and so on. All threads
associated with the same type of connector use the same value, so you can use this to find all log
messages produced by a given type of connector.

dbz.connectorName

The name of the connector or database server as defined in the connector’s configuration. For
example products, serverA, and so on. All threads associated with a specific connector instance use
the same value, so you can find all of the log messages produced by a specific connector instance.

dbz.connectorContext

A short name for an activity running as a separate thread running within the connector’s task. For
example, main, binlog, snapshot, and so on. In some cases, when a connector assigns threads to
specific resources (such as a table or collection), the name of that resource could be used instead.
Each thread associated with a connector would use a distinct value, so you can find all of the log
messages associated with this particular activity.

To enable MDC for a connector, you configure an appender in the log4j.properties file.

Procedure

1. Open the log4j.properties file.

2. Configure an appender to use any of the supported Debezium MDC properties.
In this example, the stdout appender is configured to use these MDC properties:

log4j.properties

This will produce log messages similar to these:

log4j.additivity.io.debezium.relational.history=false
log4j.additivity.io.debezium.connector.mysql.BinlogReader=false
...

...
log4j.appender.stdout.layout.ConversionPattern=%d{ISO8601} %-5p
%X{dbz.connectorType}|%X{dbz.connectorName}|%X{dbz.connectorContext} %m [%c]%n
...

...
2017-02-07 20:49:37,692 INFO MySQL|dbserver1|snapshot Starting snapshot for
jdbc:mysql://mysql:3306/?
useInformationSchema=true&nullCatalogMeansCurrent=false&useSSL=false&useUnicode=true
&characterEncoding=UTF-8&characterSetResults=UTF-
8&zeroDateTimeBehavior=convertToNull with user 'debezium'
[io.debezium.connector.mysql.SnapshotReader]

Red Hat Integration 2020-Q3 Debezium User Guide

262

Each line in the log includes the connector type (for example, MySQL), the name of the
connector (for example, dbserver1), and the activity of the thread (for example, snapshot).

8.4. DEBEZIUM LOGGING ON OPENSHIFT

If you are using Debezium on OpenShift, you can use the Kafka Connect loggers to configure the
Debezium loggers and logging levels. For more information, see Kafka Connect loggers .

2017-02-07 20:49:37,696 INFO MySQL|dbserver1|snapshot Snapshot is using user
'debezium' with these MySQL grants: [io.debezium.connector.mysql.SnapshotReader]
2017-02-07 20:49:37,697 INFO MySQL|dbserver1|snapshot GRANT SELECT, RELOAD,
SHOW DATABASES, REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO
'debezium'@'%' [io.debezium.connector.mysql.SnapshotReader]
...

CHAPTER 8. DEBEZIUM LOGGING

263

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_amq_streams_on_openshift/index#con-kafka-connect-logging-deployment-configuration-kafka-connect

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR
YOUR APPLICATION

When default Debezium connector behavior is not right for your application, you can use the following
Debezium features to configure the behavior you need.

Topic router SMT re-routes data change event records to topics that you specify.

Content-based router SMT evaluates data change event record content and re-routes event
records to particular topics according to content.

Filter SMT uses an expression that you specify to evaluate data change event records. The
connector streams only those events that evaluate to true.

Event flattening SMT flattens the complex structure of a data change event record into the
simplified format that might be required by some Kafka consumers.

Avro serialization for PostgreSQL, MongoDB, or SQL Server connectors makes it easier for
change event record consumers to adapt to a changing record schema.

Outbox event router SMT provides support for the outbox pattern.

CloudEvents converter enables a Debezium connector to emit change event records that
conform to the CloudEvents specification.

9.1. ROUTING CHANGE EVENT RECORDS TO TOPICS THAT YOU
SPECIFY

Each Kafka record that contains a data change event has a default destination topic. If you need to, you
can re-route records to topics that you specify before the records reach the Kafka Connect converter.
To do this, Debezium provides the ByLogicalTableRouter single message transformation (SMT).
Configure this transformation in the Debezium connector’s Kafka Connect configuration. Configuration
options enable you to specify the following:

An expression for identifying the records to re-route

An expression that resolves to the destination topic

How to ensure a unique key among the records being re-routed to the destination topic

It is up to you to ensure that the transformation configuration provides the behavior that you want.
Debezium does not validate the behavior that results from your configuration of the transformation.

The ByLogicalTableRouter transformation is a Kafka Connect SMT.

The following topics provide details:

Section 9.1.1, “Use case for routing records to topics that you specify”

Section 9.1.2, “Example of routing records for multiple tables to one topic”

Section 9.1.3, “Ensuring unique keys across records routed to the same topic”

Section 9.1.4, “Options for configuring topic routing transformation”

Red Hat Integration 2020-Q3 Debezium User Guide

264

https://kafka.apache.org/documentation/#connect_transforms

9.1.1. Use case for routing records to topics that you specify

The default behavior is that a Debezium connector sends each change event record to a topic whose
name is formed from the name of the database and the name of the table in which the change was
made. In other words, a topic receives records for one physical table. When you want a topic to receive
records for more than one physical table, you must configure the Debezium connector to re-route the
records to that topic.

Logical tables

A logical table is a common use case for routing records for multiple physical tables to one topic. In a
logical table, there are multiple physical tables that all have the same schema. For example, sharded
tables have the same schema. A logical table might consist of two or more sharded tables:
db_shard1.my_table and db_shard2.my_table. The tables are in different shards and are physically
distinct but together they form a logical table. You can re-route change event records for tables in any
of the shards to the same topic.

Partitioned PostgreSQL tables

When the Debezium PostgreSQL connector captures changes in a partitioned table, the default
behavior is that change event records are routed to a different topic for each partition. To emit records
from all partitions to one topic, configure the ByLogicalTableRouter SMT. Because each key in a
partitioned table is guaranteed to be unique, configure key.enforce.uniqueness=false so that the SMT
does not add a key field to ensure unique keys. The addition of a key field is default behavior.

9.1.2. Example of routing records for multiple tables to one topic

To route change event records for multiple physical tables to the same topic, configure the
ByLogicalTableRouter transformation in the Kafka Connect configuration for the Debezium connector.
Configuration of the ByLogicalTableRouter SMT requires you to specify regular expressions that
determine:

The tables for which to route records. These tables must all have the same schema.

The destination topic name.

For example, configuration in a .properties file looks like this:

transforms=Reroute
transforms.Reroute.type=io.debezium.transforms.ByLogicalTableRouter
transforms.Reroute.topic.regex=(.*)customers_shard(.*)
transforms.Reroute.topic.replacement=$1customers_all_shards

topic.regex

Specifies a regular expression that the transformation applies to each change event record to
determine if it should be routed to a particular topic.
In the example, the regular expression, (.)customers_shard(.) matches records for changes to
tables whose names include the customers_shard string. This would re-route records for tables
with the following names:

myserver.mydb.customers_shard1
myserver.mydb.customers_shard2
myserver.mydb.customers_shard3

topic.replacement

Specifies a regular expression that represents the destination topic name. The transformation routes

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

265

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#by-logical-table-router-key-enforce-uniqueness

Specifies a regular expression that represents the destination topic name. The transformation routes
each matching record to the topic identified by this expression. In this example, records for the three
sharded tables listed above would be routed to the myserver.mydb.customers_all_shards topic.

9.1.3. Ensuring unique keys across records routed to the same topic

A Debezium change event key uses the table columns that make up the table’s primary key. To route
records for multiple physical tables to one topic, the event key must be unique across all of those tables.
However, it is possible for each physical table to have a primary key that is unique within only that table.
For example, a row in the myserver.mydb.customers_shard1 table might have the same key value as a
row in the myserver.mydb.customers_shard2 table.

To ensure that each event key is unique across the tables whose change event records go to the same
topic, the ByLogicalTableRouter transformation inserts a field into change event keys. By default, the
name of the inserted field is __dbz__physicalTableIdentifier. The value of the inserted field is the
default destination topic name.

If you want to, you can configure the ByLogicalTableRouter transformation to insert a different field
into the key. To do this, specify the key.field.name option and set it to a field name that does not clash
with existing primary key field names. For example:

transforms=Reroute
transforms.Reroute.type=io.debezium.transforms.ByLogicalTableRouter
transforms.Reroute.topic.regex=(.*)customers_shard(.*)
transforms.Reroute.topic.replacement=$1customers_all_shards
transforms.Reroute.key.field.name=shard_id

This example adds the shard_id field to the key structure in routed records.

If you want to adjust the value of the key’s new field, configure both of these options:

key.field.regex

Specifies a regular expression that the transformation applies to the default destination topic name
to capture one or more groups of characters.

key.field.replacement

Specifies a regular expression for determining the value of the inserted key field in terms of those
captured groups.

For example:

transforms.Reroute.key.field.regex=(.*)customers_shard(.*)
transforms.Reroute.key.field.replacement=$2

With this configuration, suppose that the default destination topic names are:

myserver.mydb.customers_shard1
myserver.mydb.customers_shard2
myserver.mydb.customers_shard3

The transformation uses the values in the second captured group, the shard numbers, as the value of
the key’s new field. In this example, the inserted key field’s values would be 1, 2, or 3.

If your tables contain globally unique keys and you do not need to change the key structure, you can set
the key.enforce.uniqueness property to false:

Red Hat Integration 2020-Q3 Debezium User Guide

266

...
transforms.Reroute.key.enforce.uniqueness=false
...

9.1.4. Options for configuring topic routing transformation

Option Default Description

topic.regex Specifies a regular expression that the
transformation applies to each change event
record to determine if it should be routed to a
particular topic.

topic.replacement Specifies a regular expression that represents
the destination topic name. The transformation
routes each matching record to the topic
identified by this expression. This expression
can refer to groups captured by the regular
expression that you specify for topic.regex.
To refer to a group, specify $1, $2, and so on.

key.enforce ​.uniqueness true Indicates whether to add a field to the record’s
change event key. Adding a key field ensures
that each event key is unique across the tables
whose change event records go to the same
topic. This helps to prevent collisions of change
events for records that have the same key but
that originate from different source tables.

Specify false if you do not want the
transformation to add a key field. For example,
if you are routing records from a partitioned
PostgreSQL table to one topic, you can
configure key.enforce.uniqueness=false
because unique keys are guaranteed in
partitioned PostgreSQL tables.

key.field.name __dbz__physicalTabl
eIdentifier

Name of a field to be added to the change
event key. The value of this field identifies the
original table name. For the SMT to add this
field, key.enforce.uniqueness must be
true, which is the default.

key.field.regex Specifies a regular expression that the
transformation applies to the default
destination topic name to capture one or more
groups of characters. For the SMT to apply this
expression, key.enforce.uniqueness must
be true, which is the default.

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

267

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#by-logical-table-router-topic-replacement
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#by-logical-table-router-key-enforce-uniqueness
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#by-logical-table-router-key-field-name
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#by-logical-table-router-key-field-regex

key.field ​.replacement Specifies a regular expression for determining
the value of the inserted key field in terms of
the groups captured by the expression
specified for key.field.regex. For the SMT to
apply this expression,
key.enforce.uniqueness must be true,
which is the default.

Option Default Description

9.2. ROUTING CHANGE EVENT RECORDS TO TOPICS ACCORDING TO
EVENT CONTENT

By default, Debezium streams all of the change events that it reads from a table to a single static topic.
However, there might be situations in which you might want to reroute selected events to other topics,
based on the event content. The process of routing messages based on their content is described in the
Content-based routing messaging pattern. To apply this pattern in Debezium, you use the content-
based routing single message transform (SMT) to write expressions that are evaluated for each event.
Depending how an event is evaluated, the SMT either routes the event message to the original
destination topic, or reroutes it to the topic that you specify in the expression.

IMPORTANT

The Debezium content-based routing SMT is a Technology Preview feature. Technology
Preview features are not supported with Red Hat production service-level agreements
(SLAs) and might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

While it is possible to use Java to create a custom SMT to encode routing logic, using a custom-coded
SMT has its drawbacks. For example:

It is necessary to compile the transformation up front and deploy it to Kafka Connect.

Every change needs code recompilation and redeployment, leading to inflexible operations.

The content-based routing SMT supports scripting languages that integrate with JSR 223 (Scripting
for the Java™ Platform).

Debezium does not come with any implementations of the JSR 223 API. To use an expression language
with Debezium, you must download the JSR 223 script engine implementation for the language, and add
to your Debezium connector plug-in directories, along any other JAR files used by the language
implementation. For example, for Groovy 3, you can download its JSR 223 implementation from
https://groovy-lang.org/. The JSR 223 implementation for GraalVM JavaScript is available at
https://github.com/graalvm/graaljs.

9.2.1. Setting up the Debezium content-based-routing SMT

For security reasons, the content-based routing SMT is not included with the Debezium connector

Red Hat Integration 2020-Q3 Debezium User Guide

268

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#by-logical-table-router-key-field-replacement
https://www.enterpriseintegrationpatterns.com/patterns/messaging/ContentBasedRouter.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-66%3A+Single+Message+Transforms+for+Kafka+Connect
https://access.redhat.com/support/offerings/techpreview/
https://jcp.org/en/jsr/detail?id=223
https://groovy-lang.org/
https://github.com/graalvm/graaljs

archives. Instead, it is provided in a separate artifact, debezium-scripting-1.2.4.Final.tar.gz. To use the
content-based routing SMT with a Debezium connector plug-in, you must explicitly add the SMT
artifact to your Kafka Connect environment.

IMPORTANT

After the routing SMT is present in a Kafka Connect instance, any user who is allowed to
add a connector to the instance can run scripting expressions. To ensure that scripting
expressions can be run only by authorized users, be sure to secure the Kafka Connect
instance and its configuration interface before you add the routing SMT.

Procedure

1. Download the Debezium scripting SMT archive (debezium-scripting-1.2.4.Final.tar.gz) from
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?
product=red.hat.integration&downloadType=distributions.

2. Extract the contents of the archive into the Debezium plug-in directories of your Kafka Connect
environment.

3. Obtain a JSR-223 script engine implementation and add its contents to the Debezium plug-in
directories of your Kafka Connect environment.

4. Restart the Kafka Connect process to pick up the new JAR files.

9.2.2. Example: Debezium basic content-based routing configuration

To configure a Debezium connector to route change event records based on the event content, you
configure the ContentBasedRouter SMT in the Kafka Connect configuration for the connector.

Configuration of the content-based routing SMT requires you to specify a regular expression that
defines the filtering criteria. In the configuration, you create a regular expression that defines routing
criteria. The expression defines a pattern for evaluating event records. It also specifies the name of a
destination topic where events that match the pattern are routed. The pattern that you specify might
designate an event type, such as a table insert, update, or delete operation. You might also define a
pattern that matches a value in a specific column or row.

For example, to reroute all update (u) records to an updates topic, you might add the following
configuration to your connector configuration:

...
transforms=route
transforms.route.type=io.debezium.transforms.ContentBasedRouter
transforms.route.language=jsr223.groovy
transforms.route.topic.expression=value.op == 'u' ? 'updates' : null
...

The preceding example specifies the use of the Groovy expression language.

Records that do not match the pattern are routed to the default topic.

9.2.3. Variables for use in Debezium content-based routing expressions

Debezium binds certain variables into the evaluation context for the SMT. When you create expressions

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

269

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

Debezium binds certain variables into the evaluation context for the SMT. When you create expressions
to specify conditions to control the routing destination, the SMT can look up and interpret the values of
these variables to evaluate conditions in an expression.

The following table lists the variables that Debezium binds into the evaluation context for the content-
based routing SMT:

Table 9.1. Content-based routing expression variables

Name Description Type

key A key of the message. org.apache.kafka.connect ​.data ​
.Struct

value A value of the message. org.apache.kafka.connect ​.data ​
.Struct

keySchema Schema of the message key. org.apache.kafka.connect ​.data ​
.Schema

valueSchema Schema of the message value. org.apache.kafka.connect ​.data ​
.Schema

topic Name of the target topic. String

headers A Java map of message headers.
The key field is the header name.
The headers variable exposes the
following properties:

value (of type Object)

schema (of type
org.apache.kafka ​
.connect.data ​.Schema)

java.util.Map ​<String, io.debezium ​
.transforms ​.scripting ​
.RecordHeader>

An expression can invoke arbitrary methods on its variables. Expressions should resolve to a Boolean
value that determines how the SMT dispositions the message. When the routing condition in an
expression evaluates to true, the message is retained. When the routing condition evaluates to false,
the message is removed.

Expressions should not result in any side-effects. That is, they should not modify any variables that they
pass.

9.2.4. Configuration of content-based routing conditions for other scripting
languages

The way that you express content-based routing conditions depends on the scripting language that you
use. For example, as shown in this basic Debezium content-based routing SMT example , when you use
Groovy as the expression language, the following expression reroutes all update (u) records to the
updates topic, while routing other records to the default topic:

value.op == 'u' ? 'updates' : null

Red Hat Integration 2020-Q3 Debezium User Guide

270

{link-content-based-routing}#example-debezium-basic-content-based-routing-configuration

Other languages use different methods to express the same condition.

TIP

The Debezium MongoDB connector emits the after and patch fields as serialized JSON documents
rather than as structures. To use the ContentBasedRouting SMT with the MongoDB connector, you
must first unwind the fields by applying the ExtractNewDocumentState SMT.

You could also take the approach of using a JSON parser within the expression. For example, if you use
Groovy as the expression language, add the groovy-json artifact to the classpath, and then add an
expression such as (new groovy.json.JsonSlurper()).parseText(value.after).last_name ==
'Kretchmar'.

Javascript

When you use JavaScript as the expression language, you can call the Struct#get() method to specify
the content-based routing condition, as in the following example:

Javascript with Graal.js

When you create coentent-based routing conditions by using JavaScript with Graal.js, you use an
approach that is similar to the one use with Groovy. For example:

9.2.5. Options for configuring the content-based routing transformation

Property Default Description

topic.regex An optional regular expression that evaluates
the name of the destination topic for an event
to determine whether to apply the condition
logic. If the name of the destination topic
matches the value in topic.regex, the
transformation applies the condition logic
before it passes the event to the topic. If the
name of the topic does not match the value in
topic.regex, the SMT passes the event to the
topic unmodified.

language The language in which the expression is written.
Must begin with jsr223., for example,
jsr223.groovy, or jsr223.graal.js. Debezium
supports bootstrapping through the JSR 223
API ("Scripting for the Java ™ Platform") only.

value.get('op') == 'u' ? 'updates' : null

value.op == 'u' ? 'updates' : null

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

271

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index
https://jcp.org/en/jsr/detail?id=223

topic.expression The expression to be evaluated for every
message. Must evaluate to a String value
where a result of non-null reroutes the
message to a new topic, and a null value
routes the message to the default topic.

null.handling.mode keep Specifies how the transformation handles null
(tombstone) messages. You can specify one of
the following options:

keep
(Default) Pass the messages through.

drop
Remove the messages completely.

evaluate
Apply the condition logic to the messages.

Property Default Description

9.3. FILTERING DEBEZIUM CHANGE EVENT RECORDS

By default, Debezium delivers every data change event that it receives to the Kafka broker. However, in
many cases, you might be interested in only a subset of the events emitted by the producer. To enable
you to process only the records that are relevant to you, Debezium provides the filter simple message
transform (SMT).

IMPORTANT

The Debezium filter SMT is a Technology Preview feature. Technology Preview features
are not supported with Red Hat production service-level agreements (SLAs) and might
not be functionally complete; therefore, Red Hat does not recommend implementing any
Technology Preview features in production environments. This Technology Preview
feature provides early access to upcoming product innovations, enabling you to test
functionality and provide feedback during the development process. For more
information about support scope, see Technology Preview Features Support Scope .

While it is possible to use Java to create a custom SMT to encode filtering logic, using a custom-coded
SMT has its drawbacks. For example:

It is necessary to compile the transformation up front and deploy it to Kafka Connect.

Every change needs code recompilation and redeployment, leading to inflexible operations.

The filter SMT supports scripting languages that integrate with JSR 223 (Scripting for the Java™
Platform).

Debezium does not come with any implementations of the JSR 223 API. To use an expression language
with Debezium, you must download the JSR 223 script engine implementation for the language, and add
to your Debezium connector plug-in directories, along any other JAR files used by the language

Red Hat Integration 2020-Q3 Debezium User Guide

272

https://cwiki.apache.org/confluence/display/KAFKA/KIP-66%3A+Single+Message+Transforms+for+Kafka+Connect
https://access.redhat.com/support/offerings/techpreview/
https://jcp.org/en/jsr/detail?id=223

implementation. For example, for Groovy 3, you can download its JSR 223 implementation from
https://groovy-lang.org/. The JSR223 implementation for GraalVM JavaScript is available at
https://github.com/graalvm/graaljs.

9.3.1. Setting up the Debezium filter SMT

For security reasons, the filter SMT is not included with the Debezium connector archives. Instead, it is
provided in a separate artifact, debezium-scripting-1.2.4.Final.tar.gz. To use the filter SMT with a
Debezium connector plug-in, you must explicitly add the SMT artifact to your Kafka Connect
environment.

IMPORTANT

After the filter SMT is present in a Kafka Connect instance, any user who is allowed to add
a connector to the instance can run scripting expressions. To ensure that scripting
expressions can be run only by authorized users, be sure to secure the Kafka Connect
instance and its configuration interface before you add the filter SMT.

Procedure

1. Download the Debezium scripting SMT archive (debezium-scripting-1.2.4.Final.tar.gz) from
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?
product=red.hat.integration&downloadType=distributions.

2. Extract the contents of the archive into the Debezium plug-in directories of your Kafka Connect
environment.

3. Obtain a JSR-223 script engine implementation and add its contents to the Debezium plug-in
directories of your Kafka Connect environment.

4. Restart the Kafka Connect process to pick up the new JAR files.

9.3.2. Example: Debezium basic filter SMT configuration

You configure the filter transformation in the Debezium connector’s Kafka Connect configuration. In the
configuration, you specify the events that you are interested in by defining filter conditions that are
based on business rules. As the filter SMT processes the event stream, it evaluates each event against
the configured filter conditions. Only events that meet the criteria of the filter conditions are passed to
the broker.

To configure a Debezium connector to filter change event records, configure the Filter SMT in the
Kafka Connect configuration for the Debezium connector. Configuration of the filter SMT requires you
to specify a regular expression that defines the filtering criteria.

For example, you might add the following configuration in your connector configuration.

...
transforms=filter
transforms.filter.type=io.debezium.transforms.Filter
transforms.filter.language=jsr223.groovy
transforms.filter.condition=value.op == 'u' && value.before.id == 2
...

The preceding example specifies the use of the Groovy expression language. The regular expression

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

273

https://groovy-lang.org/
https://github.com/graalvm/graaljs
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

The preceding example specifies the use of the Groovy expression language. The regular expression
value.op == 'u' && value.before.id == 2 removes all messages, except those that represent update (u)
records with id values that are equal to 2.

9.3.3. Variables for use in filter expressions

Debezium binds certain variables into the evaluation context for the filter SMT. When you create
expressions to specify filter conditions, you can use the variables that Debezium binds into the
evaluation context. By binding variables, Debezium enables the SMT to look up and interpret their values
as it evaluates the conditions in an expression.

The following table lists the variables that Debezium binds into the evaluation context for the filter SMT:

Table 9.2. Filter expression variables

Name Description Type

key A key of the message. org.apache.kafka.connect ​.data ​
.Struct

value A value of the message. org.apache.kafka.connect ​.data ​
.Struct

keySchema Schema of the message key. org.apache.kafka.connect ​.data ​
.Schema

valueSchema Schema of the message value. org.apache.kafka.connect ​.data ​
.Schema

topic Name of the target topic. String

headers A Java map of message headers.
The key field is the header name.
The headers variable exposes the
following properties:

value (of type Object)

schema (of type
org.apache.kafka ​
.connect ​.data ​.Schema)

java.util.Map ​<String, ​ io.debezium ​
.transforms ​.scripting ​
.RecordHeader>

An expression can invoke arbitrary methods on its variables. Expressions should resolve to a Boolean
value that determines how the SMT dispositions the message. When the filter condition in an expression
evaluates to true, the message is retained. When the filter condition evaluates to false, the message is
removed.

Expressions should not result in any side-effects. That is, they should not modify any variables that they
pass.

9.3.4. Filter condition configuration for other scripting languages

Red Hat Integration 2020-Q3 Debezium User Guide

274

The way that you express filtering conditions depends on the scripting language that you use.

For example, as shown in this basic filter SMT example , when you use Groovy as the expression
language, the following expression removes all messages, except for update records that have id values
set to 2:

Other languages use different methods to express the same condition.

TIP

The Debezium MongoDB connector emits the after and patch fields as serialized JSON documents
rather than as structures. To use the filter SMT with the MongoDB connector, you must first unwind the
fields by applying the ExtractNewDocumentState SMT.

You could also take the approach of using a JSON parser within the expression. For example, if you use
Groovy as the expression language, add the groovy-json artifact to the classpath, and then add an
expression such as (new groovy.json.JsonSlurper()).parseText(value.after).last_name ==
'Kretchmar'.

Javascript

If you use JavaScript as the expression language, you can call the Struct#get() method to specify the
filtering condition, as in the following example:

Javascript with Graal.js

If you use JavaScript with Graal.js to define filtering conditions, you use an approach that is similar to
the one that you use with Groovy. For example:

9.3.5. Options for configuring filter transformation

The following table lists the configuration options that you can use with the filter SMT.

Table 9.3. filter SMT configuration options

Property Default Description

topic.regex An optional regular expression that evaluates
the name of the destination topic for an event
to determine whether to apply filtering logic. If
the name of the destination topic matches the
value in topic.regex, the transformation
applies the filter logic before it passes the
event to the topic. If the name of the topic
does not match the value in topic.regex, the
SMT passes the event to the topic unmodified.

value.op == 'u' && value.before.id == 2

value.get('op') == 'u' && value.get('before').get('id') == 2

value.op == 'u' && value.before.id == 2

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

275

{link-filtering}#example-basic-debezium-filter-smt-configuration
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index

language The language in which the expression is written.
Must begin with jsr223., for example,
jsr223.groovy, or jsr223.graal.js. Debezium
supports bootstrapping through the JSR 223
API ("Scripting for the Java ™ Platform") only.

condition The expression to be evaluated for every
message. Must evaluate to a Boolean value
where a result of true keeps the message, and
a result of false removes it.

null.handling.mode keep Specifies how the transformation handles null
(tombstone) messages. You can specify one of
the following options:

keep
(Default) Pass the messages through.

drop
Remove the messages completely.

evaluate
Apply the filter condition to the messages.

Property Default Description

9.4. EXTRACTING SOURCE RECORD AFTER STATE FROM DEBEZIUM
CHANGE EVENTS

A Debezium data change event has a complex structure that provides a wealth of information. Kafka
records that convey Debezium change events contain all of this information. However, parts of a Kafka
ecosystem might expect Kafka records that provide a flat structure of field names and values. To
provide this kind of record, Debezium provides the ExtractNewRecordState single message
transformation (SMT). Configure this transformation when consumers need Kafka records that have a
format that is simpler than Kafka records that contain Debezium change events.

The ExtractNewRecordState transformation is a Kafka Connect SMT.

The transformation is available to only SQL database connectors.

The following topics provide details:

Section 9.4.1, “Description of Debezium change event structure”

Section 9.4.2, “Behavior of Debezium ExtractNewRecordState transformation”

Section 9.4.3, “Configuration of ExtractNewRecordState transformation”

Section 9.4.4, “Example of adding metadata to the Kafka record”

Section 9.4.5, “Options for configuring ExtractNewRecordState transformation”

Red Hat Integration 2020-Q3 Debezium User Guide

276

https://jcp.org/en/jsr/detail?id=223
https://kafka.apache.org/documentation/#connect_transforms

9.4.1. Description of Debezium change event structure

Debezium generates data change events that have a complex structure. Each event consists of three
parts:

Metadata, which includes but is not limited to:

The operation that made the change

Source information such as the names of the database and table where the change was
made

Time stamp for when the change was made

Optional transaction information

Row data before the change

Row data after the change

For example, the structure of an UPDATE change event looks like this:

This complex format provides the most information about changes happening in the system. However,
other connectors or other parts of the Kafka ecosystem usually expect the data in a simple format like
this:

To provide the needed Kafka record format for consumers, configure the ExtractNewRecordState
SMT.

9.4.2. Behavior of Debezium ExtractNewRecordState transformation

The ExtractNewRecordState SMT extracts the after field from a Debezium change event in a Kafka
record. The SMT replaces the original change event with only its after field to create a simple Kafka
record.

{
 "op": "u",
 "source": {
 ...
 },
 "ts_ms" : "...",
 "before" : {
 "field1" : "oldvalue1",
 "field2" : "oldvalue2"
 },
 "after" : {
 "field1" : "newvalue1",
 "field2" : "newvalue2"
 }
}

{
 "field1" : "newvalue1",
 "field2" : "newvalue2"
}

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

277

You can configure the ExtractNewRecordState SMT for a Debezium connector or for a sink connector
that consumes messages emitted by a Debezium connector. The advantage of configuring
ExtractNewRecordState for a sink connector is that records stored in Apache Kafka contain whole
Debezium change events. The decision to apply the SMT to a source or sink connector depends on your
particular use case.

You can configure the transformation to do any of the following:

Add metadata from the change event to the simplified Kafka record. The default behavior is
that the SMT does not add metadata.

Keep Kafka records that contain change events for DELETE operations in the stream. The
default behavior is that the SMT drops Kafka records for DELETE operation change events
because most consumers cannot yet handle them.

A database DELETE operation causes Debezium to generate two Kafka records:

A record that contains "op": "d", the before row data, and some other fields.

A tombstone record that has the same key as the deleted row and a value of null. This record is
a marker for Apache Kafka. It indicates that log compaction can remove all records that have
this key.

Instead of dropping the record that contains the before row data, you can configure the
ExtractNewRecordState SMT to do one of the following:

Keep the record in the stream and edit it to have only the "value": "null" field.

Keep the record in the stream and edit it to have a value field that contains the key/value pairs
that were in the before field with an added "__deleted": "true" entry.

Similary, instead of dropping the tombstone record, you can configure the ExtractNewRecordState
SMT to keep the tombstone record in the stream.

9.4.3. Configuration of ExtractNewRecordState transformation

Configure the Debezium ExtractNewRecordState SMT in a Kafka Connect source or sink connector by
adding the SMT configuration details to your connector’s configuration. To obtain the default behavior,
in a .properties file, you would specify something like the following:

transforms=unwrap,...
transforms.unwrap.type=io.debezium.transforms.ExtractNewRecordState

As for any Kafka Connect connector configuration, you can set transforms= to multiple, comma-
separated, SMT aliases in the order in which you want Kafka Connect to apply the SMTs.

The following .properties example sets several ExtractNewRecordState options:

transforms=unwrap,...
transforms.unwrap.type=io.debezium.transforms.ExtractNewRecordState
transforms.unwrap.drop.tombstones=false
transforms.unwrap.delete.handling.mode=rewrite
transforms.unwrap.add.fields=table,lsn

drop.tombstones=false

Red Hat Integration 2020-Q3 Debezium User Guide

278

https://kafka.apache.org/documentation/#compaction

Keeps tombstone records for DELETE operations in the event stream.

delete.handling.mode=rewrite

For DELETE operations, edits the Kafka record by flattening the value field that was in the change
event. The value field directly contains the key/value pairs that were in the before field. The SMT
adds __deleted and sets it to true, for example:

add.fields=table,lsn

Adds change event metadata for the table and lsn fields to the simplified Kafka record.

9.4.4. Example of adding metadata to the Kafka record

The ExtractNewRecordState SMT can add original, change event metadata to the simplified Kafka
record. For example, you might want the simplified record’s header or value to contain any of the
following:

The type of operation that made the change

The name of the database or table that was changed

Connector-specific fields such as the Postgres LSN field

To add metadata to the simplified Kafka record’s header, specify the add.header option. To add
metadata to the simplified Kafka record’s value, specify the add.fields option. Each of these options
takes a comma separated list of change event field names. Do not specify spaces. When there are
duplicate field names, to add metadata for one of those fields, specify the struct as well as the field. For
example:

transforms=unwrap,...
transforms.unwrap.type=io.debezium.transforms.ExtractNewRecordState
transforms.unwrap.add.fields=op,table,lsn,source.ts_ms
transforms.unwrap.add.headers=db
transforms.unwrap.delete.handling.mode=rewrite

With that configuration, a simplified Kafka record would contain something like the following:

Also, simplified Kafka records would have a __db header.

In the simplified Kafka record, the SMT prefixes the metadata field names with a double underscore.

"value": {
 "pk": 2,
 "cola": null,
 "__deleted": "true"
}

{
 ...
 "__op" : "c",
 "__table": "MY_TABLE",
 "__lsn": "123456789",
 "__source_ts_ms" : "123456789",
 ...
}

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

279

In the simplified Kafka record, the SMT prefixes the metadata field names with a double underscore.
When you specify a struct, the SMT also inserts an underscore between the struct name and the field
name.

To add metadata to a simplified Kafka record that is for a DELETE operation, you must also configure
delete.handling.mode=rewrite.

9.4.5. Options for configuring ExtractNewRecordState transformation

The following table describes the options that you can specify for the ExtractNewRecordState SMT.

Option Default Description

drop.tombstones true Debezium generates a tombstone record for
each DELETE operation. The default behavior
is that ExtractNewRecordState removes
tombstone records from the stream. To keep
tombstone records in the stream, specify
drop.tombstones=false.

delete.handling ​.mode drop Debezium generates a change event record for
each DELETE operation. The default behavior
is that ExtractNewRecordState removes
these records from the stream. To keep Kafka
records for DELETE operations in the stream,
set delete.handling.mode to none or
rewrite.

Specify none to keep the change event record
in the stream. The record contains only
"value": "null".

Specify rewrite to keep the change event
record in the stream and edit the record to
have a value field that contains the key/value
pairs that were in the before field and also add
__deleted: true to the value. This is another
way to indicate that the record has been
deleted.

When you specify rewrite, the updated
simplified records for DELETE operations
might be all you need to track deleted records.
You can consider accepting the default
behavior of dropping the tombstone records
that the Debezium connector creates.

Red Hat Integration 2020-Q3 Debezium User Guide

280

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#extract-new-record-state-delete-handling-mode

route.by.field To use row data to determine the topic to route
the record to, set this option to an after field
attribute. The SMT routes the record to the
topic whose name matches the value of the
specified after field attribute. For a DELETE
operation, set this option to a before field
attribute.

For example, configuration of
route.by.field=destination routes records
to the topic whose name is the value of
after.destination. The default behavior is
that a Debezium connector sends each change
event record to a topic whose name is formed
from the name of the database and the name
of the table in which the change was made.

If you are configuring the
ExtractNewRecordState SMT on a sink
connector, setting this option might be useful
when the destination topic name dictates the
name of the database table that will be
updated with the simplified change event
record. If the topic name is not correct for your
use case, you can configure route.by.field to
re-route the event.

add.fields Set this option to a comma-separated list, with
no spaces, of metadata fields to add to the
simplified Kafka record’s value. When there are
duplicate field names, to add metadata for one
of those fields, specify the struct as well as the
field, for example source.ts_ms.

When the SMT adds metadata fields to the
simplified record’s value, it prefixes each
metadata field name with a double underscore.
For a struct specification, the SMT also inserts
an underscore between the struct name and
the field name.

If you specify a field that is not in the change
event record, the SMT still adds the field to the
record’s value.

Option Default Description

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

281

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#extract-new-record-state-route-by-field
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#extract-new-record-state-add-fields

add.headers Set this option to a comma-separated list, with
no spaces, of metadata fields to add to the
header of the simplified Kafka record. When
there are duplicate field names, to add
metadata for one of those fields, specify the
struct as well as the field, for example
source.ts_ms.

When the SMT adds metadata fields to the
simplified record’s header, it prefixes each
metadata field name with a double underscore.
For a struct specification, the SMT also inserts
an underscore between the struct name and
the field name.

If you specify a field that is not in the change
event record, the SMT does not add the field to
the header.

Option Default Description

9.5. CONFIGURING DEBEZIUM CONNECTORS TO USE AVRO
SERIALIZATION

IMPORTANT

Using Avro to serialize record keys and values is a Technology Preview feature.
Technology Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Technology Preview features in production environments.
This Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

A Debezium connector works in the Kafka Connect framework to capture each row-level change in a
database by generating a change event record. For each change event record, the Debezium connector
does the following:

1. Applies configured transformations

2. Serializes the record key and value into a binary form by using the configured Kafka Connect
converters

3. Writes the record to the correct Kafka topic

You can specify converters for each individual Debezium connector instance. Kafka Connect provides a
JSON converter that serializes the record keys and values into JSON documents. The default behavior
is that the JSON converter includes the record’s message schema, which makes each record very
verbose. The Getting Started with Debezium guide shows what the records look like when both payload
and schemas are included. If you want records to be serialized with JSON, consider setting the following
connector configuration properties to false:

Red Hat Integration 2020-Q3 Debezium User Guide

282

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#extract-new-record-state-add-headers
https://access.redhat.com/support/offerings/techpreview/
https://kafka.apache.org/documentation/#connect_running
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/getting_started_with_debezium/index

key.converter.schemas.enable

value.converter.schemas.enable

Setting these properties to false excludes the verbose schema information from each record.

Alternatively, you can serialize the record keys and values by using Apache Avro. The Avro binary format
is compact and efficient. Avro schemas make it possible to ensure that each record has the correct
structure. Avro’s schema evolution mechanism enables schemas to evolve. This is essential for Debezium
connectors, which dynamically generate each record’s schema to match the structure of the database
table that was changed. Over time, change event records written to the same Kafka topic might have
different versions of the same schema. Avro serialization makes it easier for change event record
consumers to adapt to a changing record schema.

To use Apache Avro serialization, you must deploy a schema registry that manages Avro message
schemas and their versions. For information about setting up this registry, see the documentation for
Red Hat Integration - Service Registry .

9.5.1. About the Service Registry

Red Hat Integration - Service Registry provides several components that work with Avro:

An Avro converter that you can specify in Debezium connector configurations. This converter
maps Kafka Connect schemas to Avro schemas. The converter then uses the Avro schemas to
serialize the record keys and values into Avro’s compact binary form.

An API and schema registry that tracks:

Avro schemas that are used in Kafka topics

Where the Avro converter sends the generated Avro schemas

Since the Avro schemas are stored in this registry, each record needs to contain only a tiny
schema identifier. This makes each record even smaller. For an I/O bound system like Kafka, this
means more total throughput for producers and consumers.

Avro Serdes (serializers and deserializers) for Kafka producers and consumers. Kafka consumer
applications that you write to consume change event records can use Avro Serdes to deserialize
the change event records.

To use the Service Registry with Debezium, add Service Registry converters and their dependencies to
the Kafka Connect container image that you are using for running a Debezium connector.

NOTE

The Service Registry project also provides a JSON converter. This converter combines
the advantage of less verbose messages with human-readable JSON. Messages do not
contain the schema information themselves, but only a schema ID.

9.5.2. Overview of deploying a Debezium connector that uses Avro serialization

To deploy a Debezium connector that uses Avro serialization, there are three main tasks:

1. Deploy a Red Hat Integration - Service Registry instance by following the instructions in
Getting Started with Service Registry.

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

283

https://avro.apache.org/
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/getting_started_with_service_registry/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/getting_started_with_service_registry/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/getting_started_with_service_registry/index

2. Install the Avro converter by downloading the Debezium Service Registry Kafka Connect zip file
and extracting it into the Debezium connector’s directory.

3. Configure a Debezium connector instance to use Avro serialization by setting configuration
properties as follows:

key.converter=io.apicurio.registry.utils.converter.AvroConverter
key.converter.apicurio.registry.url=http://apicurio:8080/api
key.converter.apicurio.registry.global-
id=io.apicurio.registry.utils.serde.strategy.GetOrCreateIdStrategy
value.converter=io.apicurio.registry.utils.converter.AvroConverter
value.converter.apicurio.registry.url=http://apicurio:8080/api
value.converter.apicurio.registry.global-
id=io.apicurio.registry.utils.serde.strategy.GetOrCreateIdStrategy

Internally, Kafka Connect always uses JSON key/value converters for storing configuration and offsets.

9.5.3. Deploying connectors that use Avro in Debezium containers

In your environment, you might want to use a provided Debezium container to deploy Debezium
connectors that use Avro serialization. Follow the procedure here to do that. In this procedure, you build
a custom Kafka Connect container image for Debezium, and you configure the Debezium connector to
use the Avro converter.

Prerequisites

You have Docker installed and sufficient rights to create and manage containers.

You downloaded the Debezium connector plug-in(s) that you want to deploy with Avro
serialization.

Procedure

1. Deploy an instance of Service Registry. See Getting Started with Service Registry, Installing
Service Registry from the OpenShift OperatorHub, which provides instructions for:

Installing AMQ Streams

Setting up AMQ Streams storage

Installing Service Registry

2. Extract the Debezium connector archive(s) to create a directory structure for the connector
plug-in(s). If you downloaded and extracted the archive for each Debezium connector, the
structure looks like this:

tree ./my-plugins/
./my-plugins/
├── debezium-connector-mongodb
| ├── ...
├── debezium-connector-mysql
│ ├── ...
├── debezium-connector-postgres

Red Hat Integration 2020-Q3 Debezium User Guide

284

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/getting_started_with_service_registry/index#installing-registry-operatorhub

│ ├── ...
└── debezium-connector-sqlserver
 ├── ...

3. Add the Avro converter to the directory that contains the Debezium connector that you want to
configure to use Avro serialization:

a. Go to the Red Hat Integration download site and download the Service Registry Kafka
Connect zip file.

b. Extract the archive into the desired Debezium connector directory.

To configure more than one type of Debezium connector to use Avro serialization, extract the
archive into the directory for each relevant connector type. While this duplicates the files, it
removes the possibility of conflicting dependencies.

4. Create and publish a custom image for running Debezium connectors that are configured to use
the Avro converter:

a. Create a new Dockerfile by using registry.redhat.io/amq7/amq-streams-kafka-25-
rhel7:1.5.0 as the base image. In the following example, you would replace my-plugins with
the name of your plug-ins directory:

FROM registry.redhat.io/amq7/amq-streams-kafka-25-rhel7:1.5.0
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER 1001

Before Kafka Connect starts running the connector, Kafka Connect loads any third-party
plug-ins that are in the /opt/kafka/plugins directory.

b. Build the docker container image. For example, if you saved the docker file that you created
in the previous step as debezium-container-with-avro, then you would run the following
command:
docker build -t debezium-container-with-avro:latest

c. Push your custom image to your container registry, for example:
docker push debezium-container-with-avro:latest

d. Point to the new container image. Do one of the following:

Edit the KafkaConnect.spec.image property of the KafkaConnect custom resource. If
set, this property overrides the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE
variable in the Cluster Operator. For example:

In the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file,
edit the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable to point to the new
container image and reinstall the Cluster Operator. If you edit this file you will need to

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 image: debezium-container-with-avro

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

285

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

apply it to your OpenShift cluster.

5. Deploy each Debezium connector that is configured to use the Avro converter. For each
Debezium connector:

a. Create a Debezium connector instance. The following inventory-connector.yaml file
example creates a KafkaConnector custom resource that defines a MySQL connector
instance that is configured to use the Avro converter:

b. Apply the connector instance, for example:
oc apply -f inventory-connector.yaml

This registers inventory-connector and the connector starts to run against the inventory
database.

6. Verify that the connector was created and has started to track changes in the specified
database. You can verify the connector instance by watching the Kafka Connect log output as,
for example, inventory-connector starts.

a. Display the Kafka Connect log output:

b. Review the log output to verify that the initial snapshot has been executed. You should see
something like the following lines:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnector
metadata:
 name: inventory-connector
 labels:
 strimzi.io/cluster: my-connect-cluster
spec:
 class: io.debezium.connector.mysql.MySqlConnector
 tasksMax: 1
 config:
 database.hostname: mysql
 database.port: 3306
 database.user: debezium
 database.password: dbz
 database.server.id: 184054
 database.server.name: dbserver1
 database.whitelist: inventory
 database.history.kafka.bootstrap.servers: my-cluster-kafka-bootstrap:9092
 database.history.kafka.topic: schema-changes.inventory
 key.converter: io.apicurio.registry.utils.converter.AvroConverter
 key.converter.apicurio.registry.url: http://apicurio:8080/api
 key.converter.apicurio.registry.global-id:
io.apicurio.registry.utils.serde.strategy.GetOrCreateIdStrategy
 value.converter: io.apicurio.registry.utils.converter.AvroConverter
 value.converter.apicurio.registry.url: http://apicurio:8080/api
 value.converter.apicurio.registry.global-id:
io.apicurio.registry.utils.serde.strategy.GetOrCreateIdStrategy

oc logs $(oc get pods -o name -l strimzi.io/name=my-connect-cluster-connect)

...
2020-02-21 17:57:30,801 INFO Starting snapshot for jdbc:mysql://mysql:3306/?

Red Hat Integration 2020-Q3 Debezium User Guide

286

Taking the snapshot involves a number of steps:

After completing the snapshot, Debezium begins tracking changes in, for example, the
inventory database’s binlog for change events:

useInformationSchema=true&nullCatalogMeansCurrent=false&useSSL=false&useUnicode=
true&characterEncoding=UTF-8&characterSetResults=UTF-
8&zeroDateTimeBehavior=CONVERT_TO_NULL&connectTimeout=30000 with user
'debezium' with locking mode 'minimal' (io.debezium.connector.mysql.SnapshotReader)
[debezium-mysqlconnector-dbserver1-snapshot]
2020-02-21 17:57:30,805 INFO Snapshot is using user 'debezium' with these MySQL
grants: (io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-
dbserver1-snapshot]
...

...
2020-02-21 17:57:30,822 INFO Step 0: disabling autocommit, enabling repeatable read
transactions, and setting lock wait timeout to 10
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:30,836 INFO Step 1: flush and obtain global read lock to prevent
writes to database (io.debezium.connector.mysql.SnapshotReader) [debezium-
mysqlconnector-dbserver1-snapshot]
2020-02-21 17:57:30,839 INFO Step 2: start transaction with consistent snapshot
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:30,840 INFO Step 3: read binlog position of MySQL master
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:30,843 INFO using binlog 'mysql-bin.000003' at position '154' and gtid
'' (io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
...
2020-02-21 17:57:34,423 INFO Step 9: committing transaction
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
2020-02-21 17:57:34,424 INFO Completed snapshot in 00:00:03.632
(io.debezium.connector.mysql.SnapshotReader) [debezium-mysqlconnector-dbserver1-
snapshot]
...

...
2020-02-21 17:57:35,584 INFO Transitioning from the snapshot reader to the binlog
reader (io.debezium.connector.mysql.ChainedReader) [task-thread-inventory-connector-
0]
2020-02-21 17:57:35,613 INFO Creating thread debezium-mysqlconnector-dbserver1-
binlog-client (io.debezium.util.Threads) [task-thread-inventory-connector-0]
2020-02-21 17:57:35,630 INFO Creating thread debezium-mysqlconnector-dbserver1-
binlog-client (io.debezium.util.Threads) [blc-mysql:3306]
Feb 21, 2020 5:57:35 PM com.github.shyiko.mysql.binlog.BinaryLogClient connect
INFO: Connected to mysql:3306 at mysql-bin.000003/154 (sid:184054, cid:5)
2020-02-21 17:57:35,775 INFO Connected to MySQL binlog at mysql:3306, starting at
binlog file 'mysql-bin.000003', pos=154, skipping 0 events plus 0 rows
(io.debezium.connector.mysql.BinlogReader) [blc-mysql:3306]
...

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

287

9.5.4. About Avro name requirements

As stated in the Avro documentation, names must adhere to the following rules:

Start with [A-Za-z_]

Subsequently contains only [A-Za-z0-9_] characters

Debezium uses the column’s name as the basis for the corresponding Avro field. This can lead to
problems during serialization if the column name does not also adhere to the Avro naming rules. Each
Debezium connector provides a configuration property, sanitize.field.names that you can set to true if
you have columns that do not adhere to Avro rules for names. Setting sanitize.field.names to true
allows serialization of non-conformant fields without having to actually modify your schema.

9.6. CONFIGURING DEBEZIUM CONNECTORS TO USE THE OUTBOX
PATTERN

The outbox pattern is a way to safely and reliably exchange data between multiple (micro) services. An
outbox pattern implementation avoids inconsistencies between a service’s internal state (as typically
persisted in its database) and state in events consumed by services that need the same data.

To implement the outbox pattern in a Debezium application, configure a Debezium connector to:

Capture changes in an outbox table

Apply the Debezium outbox event router single message transformation (SMT)

A Debezium connector that is configured to apply the outbox SMT should capture changes in only an
outbox table. A connector can capture changes in more than one outbox table only if each outbox table
has the same structure.

IMPORTANT

The Debezium outbox event router SMT is a Technology Preview feature. Technology
Preview features are not supported with Red Hat production service-level agreements
(SLAs) and might not be functionally complete; therefore, Red Hat does not recommend
implementing any Technology Preview features in production environments. This
Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

See Reliable Microservices Data Exchange With the Outbox Pattern to learn about why the outbox
pattern is useful and how it works.

NOTE

The outbox event router SMT does not support the MongoDB connector.

The following topics provide details:

Section 9.6.1, “Example of a Debezium outbox message”

Section 9.6.2, “Outbox table structure expected by Debezium outbox event router SMT”

Red Hat Integration 2020-Q3 Debezium User Guide

288

https://avro.apache.org/docs/current/spec.html#names
https://access.redhat.com/support/offerings/techpreview/
https://debezium.io/blog/2019/02/19/reliable-microservices-data-exchange-with-the-outbox-pattern/

Section 9.6.3, “Basic Debezium outbox event router SMT configuration”

Section 9.6.4, “Using Avro as the payload format in Debezium outbox messages”

Section 9.6.5, “Emitting additional fields in Debezium outbox messages”

Section 9.6.6, “Options for configuring outbox event router transformation”

9.6.1. Example of a Debezium outbox message

To learn about how to configure the Debezium outbox event router SMT, consider the following
example of a Debezium outbox message:

A Debezium connector that is configured to apply the outbox event router SMT generates the above
message by transforming a Debezium raw message like this:

Kafka Topic: outbox.event.order
Kafka Message key: "1"
Kafka Message Headers: "id=4d47e190-0402-4048-bc2c-89dd54343cdc"
Kafka Message Timestamp: 1556890294484
{
 "{\"id\": 1, \"lineItems\": [{\"id\": 1, \"item\": \"Debezium in Action\", \"status\": \"ENTERED\",
\"quantity\": 2, \"totalPrice\": 39.98}, {\"id\": 2, \"item\": \"Debezium for Dummies\", \"status\":
\"ENTERED\", \"quantity\": 1, \"totalPrice\": 29.99}], \"orderDate\": \"2019-01-31T12:13:01\",
\"customerId\": 123}"
}

Kafka Message key: "406c07f3-26f0-4eea-a50c-109940064b8f"
Kafka Message Headers: ""
Kafka Message Timestamp: 1556890294484
{
 "before": null,
 "after": {
 "id": "406c07f3-26f0-4eea-a50c-109940064b8f",
 "aggregateid": "1",
 "aggregatetype": "Order",
 "payload": "{\"id\": 1, \"lineItems\": [{\"id\": 1, \"item\": \"Debezium in Action\", \"status\":
\"ENTERED\", \"quantity\": 2, \"totalPrice\": 39.98}, {\"id\": 2, \"item\": \"Debezium for Dummies\",
\"status\": \"ENTERED\", \"quantity\": 1, \"totalPrice\": 29.99}], \"orderDate\": \"2019-01-31T12:13:01\",
\"customerId\": 123}",
 "timestamp": 1556890294344,
 "type": "OrderCreated"
 },
 "source": {
 "version": "1.2.4.Final",
 "connector": "postgresql",
 "name": "dbserver1-bare",
 "db": "orderdb",
 "ts_usec": 1556890294448870,
 "txId": 584,
 "lsn": 24064704,
 "schema": "inventory",
 "table": "outboxevent",
 "snapshot": false,
 "last_snapshot_record": null,

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

289

This example of a Debezium outbox message is based on the default outbox event router configuration ,
which assumes an outbox table structure and event routing based on aggregates. To customize
behavior, the outbox event router SMT provides numerous configuration options.

9.6.2. Outbox table structure expected by Debezium outbox event router SMT

To apply the default outbox event router SMT configuration, your outbox table is assumed to have the
following columns:

Column | Type | Modifiers
--------------+------------------------+-----------
id | uuid | not null
aggregatetype | character varying(255) | not null
aggregateid | character varying(255) | not null
type | character varying(255) | not null
payload | jsonb |

Table 9.4. Descriptions of expected outbox table columns

Column Effect

id Contains the unique ID of the event. In an outbox message, this value is a
header. You can use this ID, for example, to remove duplicate messages.

To obtain the unique ID of the event from a different outbox table column,
set the table.field.event.id SMT option in the connector configuration.

aggregatetype Contains a value that the SMT appends to the name of the topic to which
the connector emits an outbox message. The default behavior is that this
value replaces the default ${routedByValue} variable in the
route.topic.replacement SMT option.

For example, in a default configuration, the route.by.field SMT option is
set to aggregatetype and the route.topic.replacement SMT option is
set to outbox.event.${routedByValue}. Suppose that your application
adds two records to the outbox table. In the first record, the value in the
aggregatetype column is customers. In the second record, the value in
the aggregatetype column is orders. The connector emits the first record
to the outbox.event.customers topic. The connector emits the second
record to the outbox.event.orders topic.

To obtain this value from a different outbox table column, set the
route.by.field SMT option in the connector configuration.

 "xmin": null
 },
 "op": "c",
 "ts_ms": 1556890294484
}

Red Hat Integration 2020-Q3 Debezium User Guide

290

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#outbox-event-router-configuration-options
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#outbox-event-router-configuration-options
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#outbox-event-router-property-table-field-event-id
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#outbox-event-router-property-route-topic-replacement
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#outbox-event-router-property-route-by-field
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#outbox-event-router-property-route-by-field

aggregateid Contains the event key, which provides an ID for the payload. The SMT uses
this value as the key in the emitted outbox message. This is important for
maintaining correct order in Kafka partitions.

To obtain the event key from a different outbox table column, set the
table.field.event.key SMT option in the connector configuration.

type A user-defined value that helps categorize or organize events.

payload The representation of the event itself. The default structure is JSON. The
content in this field becomes one of these:

Part of the outbox message payload.

If other metadata, including eventType is delivered as headers,
the payload becomes the message itself without encapsulation in
an envelope.

To obtain the event payload from a different outbox table column, set the
table.field.event.payload SMT option in the connector configuration.

9.6.3. Basic Debezium outbox event router SMT configuration

To configure a Debezium connector to support the outbox pattern, configure the outbox.EventRouter
SMT. For example, the basic configuration in a .properties file looks like this:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter

9.6.4. Using Avro as the payload format in Debezium outbox messages

The outbox event router SMT supports arbitrary payload formats. The payload column value in an
outbox table is passed on transparently. An alternative to working with JSON is to use Avro. This can be
beneficial for message format governance and for ensuring that outbox event schemas evolve in a
backwards-compatible way.

How a source application produces Avro formatted content for outbox message payloads is out of the
scope of this documentation. One possibility is to leverage the KafkaAvroSerializer class to serialize
GenericRecord instances. To ensure that the Kafka message value is the exact Avro binary data, apply
the following configuration to the connector:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter
value.converter=io.debezium.converters.ByteBufferConverter

By default, the payload column value (the Avro data) is the only message value. Configuration of
ByteBufferConverter as the value converter propagates the payload column value as-is into the Kafka
message value.

9.6.5. Emitting additional fields in Debezium outbox messages

Your outbox table might contain columns whose values you want to add to the emitted outbox

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

291

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#outbox-event-router-property-table-field-event-key
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#outbox-event-router-property-table-field-event-payload

Your outbox table might contain columns whose values you want to add to the emitted outbox
messages. For example, consider an outbox table that has a value of purchase-order in the
aggregatetype column and another column, eventType, whose possible values are order-created and
order-shipped. To emit the eventType column value in the outbox message header, configure the SMT
like this:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter
transforms.outbox.table.fields.additional.placement=type:header:eventType

To emit the eventType column value in the outbox message envelope, configure the SMT like this:

transforms=outbox,...
transforms.outbox.type=io.debezium.transforms.outbox.EventRouter
transforms.outbox.table.fields.additional.placement=type:envelope:eventType

9.6.6. Options for configuring outbox event router transformation

The following table describes the options that you can specify for the outbox event router SMT. In the
table, the Group column indicates a configuration option classification for Kafka.

Table 9.5. Descriptions of outbox event router SMT configuration options

Option Default Group Description

table.field ​.event.id id Table Specifies the outbox table column
that contains the unique event ID.

table.field ​
.event.key

aggregateid Table Specifies the outbox table column
that contains the event key. When
this column contains a value, the
SMT uses that value as the key in
the emitted outbox message. This is
important for maintaining correct
order in Kafka partitions.

table.field ​.event ​
.timestamp

 Table By default, the timestamp in the
emitted outbox message is the
Debezium event timestamp. To use
a different timestamp in outbox
messages, set this option to an
outbox table column that contains
the timestamp that you want to be
in emitted outbox messages.

table.field ​.event ​
.payload

payload Table Specifies the outbox table column
that contains the event payload.

table.field ​.event ​
.payload.id

aggregateid Table Specifies the outbox table column
that contains the payload ID.

Red Hat Integration 2020-Q3 Debezium User Guide

292

table.fields ​
.additional ​
.placement

 Table, Envelope Specifies one or more outbox table
columns that you want to add to
outbox message headers or
envelopes. Specify a comma-
separated list of pairs. In each pair,
specify the name of a column and
whether you want the value to be in
the header or the envelope.
Separate the values in the pair with
a colon, for example:

id:header,my-field:envelope

To specify an alias for the column,
specify a trio with the alias as the
third value, for example:

id:header,my-
field:envelope:my-alias

The second value is the placement
and it must always be header or
envelope.

Configuration examples are in
emitting additional fields in
Debezium outbox messages.

table.field ​
.event.schema ​
.version

 Table, Schema When set, this value is used as the
schema version as described in the
Kafka Connect Schema Javadoc.

route.by ​.field aggregatetype Router Specifies the name of a column in
the outbox table. The default
behavior is that the value in this
column becomes a part of the
name of the topic to which the
connector emits the outbox
messages. An example is in the
description of the expected outbox
table.

Option Default Group Description

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

293

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#emitting-additional-fields-in-debezium-outbox-messages
https://kafka.apache.org/20/javadoc/org/apache/kafka/connect/data/ConnectSchema.html#version--
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#route-by-field-example

route.topic ​.regex (?
<routedByValue>.*)

Router Specifies a regular expression that
the outbox SMT applies in the
RegexRouter to outbox table
records. This regular expression is
part of the setting of the
route.topic.replacement SMT
option.

The default behavior is that the
SMT replaces the default
${routedByValue} variable in the
setting of the
route.topic.replacement SMT
option with the setting of the
route.by.field outbox SMT option.

route.topic ​
.replacement

outbox.event. ​
${routedByValue}

Router Specifies the name of the topic to
which the connector emits outbox
messages. The default topic name
is outbox.event. followed by the
aggregatetype column value in
the outbox table record. For
example, if the aggregatetype
value is customers, the topic
name is
outbox.event.customers.

To change the topic name, you can:

Set the route.by.field
option to a different
column.

Set the
route.topic.regex option
to a different regular
expression.

route ​
.tombstone.on ​
.empty ​.payload

false Router Indicates whether an empty or null
payload causes the connector to
emit a tombstone event.

Option Default Group Description

Red Hat Integration 2020-Q3 Debezium User Guide

294

debezium.op ​
.invalid ​.behavior

warn Debezium Determines the behavior of the
SMT when there is an UPDATE
operation on the outbox table.
Possible settings are:

warn - The SMT logs a
warning and continues to
the next outbox table
record.

error - The SMT logs an
error and continues to the
next outbox table record.

fatal - The SMT logs an
error and the connector
stops processing.

All changes in an outbox table are
expected to be INSERT
operations. That is, an outbox table
functions as a queue; updates to
records in an outbox table are not
allowed. The SMT automatically
filters out DELETE operations on
an outbox table.

Option Default Group Description

9.7. EMITTING CHANGE EVENT RECORDS IN CLOUDEVENTS FORMAT

CloudEvents is a specification for describing event data in a common way. Its aim is to provide
interoperability across services, platforms and systems. Debezium enables you to configure a MongoDB,
MySQL, PostgreSQL, or SQL Server connector to emit change event records that conform to the
CloudEvents specification.

IMPORTANT

Emitting change event records in CloudEvents format is a Technology Preview feature.
Technology Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Technology Preview features in production environments.
This Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

The CloudEvents specification defines:

A set of standardized event attributes

Rules for defining custom attributes

Encoding rules for mapping event formats to serialized representations such as JSON or Avro

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

295

https://cloudevents.io/
https://access.redhat.com/support/offerings/techpreview/

Protocol bindings for transport layers such as Apache Kafka, HTTP or AMQP

To configure a Debezium connector to emit change event records that conform to the CloudEvents
specification, Debezium provides the io.debezium.converters.CloudEventsConverter, which is a Kafka
Connect message converter.

Currently, only structured mapping mode is supported. The CloudEvents change event envelope can be
JSON or Avro and each envelope type supports JSON or Avro as the data format. It is expected that a
future Debezium release will support binary mapping mode. For information about using Avro, see:

Avro serialization

Apicurio Registry

9.7.1. Example change event records in CloudEvents format

The following example shows what a CloudEvents change event record emitted by a PostgreSQL
connector looks like. In this example, the PostgreSQL connector is configured to use JSON as the
CloudEvents format envelope and also as the data format.

Table 9.6. Descriptions of fields in CloudEvents event with JSON format envelope

{
 "id" : "name:test_server;lsn:29274832;txId:565", 1
 "source" : "/debezium/postgresql/test_server", 2
 "specversion" : "1.0", 3
 "type" : "io.debezium.postgresql.datachangeevent", 4
 "time" : "2020-01-13T13:55:39.738Z", 5
 "datacontenttype" : "application/json", 6
 "iodebeziumop" : "r", 7
 "iodebeziumversion" : "1.2.4.Final", 8
 "iodebeziumconnector" : "postgresql",
 "iodebeziumname" : "test_server",
 "iodebeziumtsms" : "1578923739738",
 "iodebeziumsnapshot" : "true",
 "iodebeziumdb" : "postgres",
 "iodebeziumschema" : "s1",
 "iodebeziumtable" : "a",
 "iodebeziumtxId" : "565",
 "iodebeziumlsn" : "29274832",
 "iodebeziumxmin" : null,
 "iodebeziumtxid": "565", 9
 "iodebeziumtxtotalorder": "1",
 "iodebeziumtxdatacollectionorder": "1",
 "data" : { 10
 "before" : null,
 "after" : {
 "pk" : 1,
 "name" : "Bob"
 }
 }
}

Red Hat Integration 2020-Q3 Debezium User Guide

296

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#avro-serialization
https://github.com/Apicurio/apicurio-registry

Item Description

1 Unique ID that the connector generates for the change event based on the change event’s
content.

2 The source of the event, which is the logical name of the database as specified by the
database.server.name property in the connector’s configuration.

3 The CloudEvents specification version.

4 Connector type that generated the change event. The format of this field is
io.debezium.CONNECTOR_TYPE.datachangeevent. The value of
CONNECTOR_TYPE is mongodb, mysql, postgresql, or sqlserver.

5 Time of the change in the source database.

6 Describes the content type of the data attribute, which is JSON in this example. The only
alternative is Avro.

7 An operation identifier. Possible values are r for read, c for create, u for update, or d for
delete.

8 All source attributes that are known from Debezium change events are mapped to
CloudEvents extension attributes by using the iodebezium prefix for the attribute name.

9 When enabled in the connector, each transaction attribute that is known from Debezium
change events is mapped to a CloudEvents extension attribute by using the
iodebeziumtx prefix for the attribute name.

10 The actual data change itself. Depending on the operation and the connector, the data
might contain before, after and/or patch fields.

The following example also shows what a CloudEvents change event record emitted by a PostgreSQL
connector looks like. In this example, the PostgreSQL connector is again configured to use JSON as the
CloudEvents format envelope, but this time the connector is configured to use Avro for the data
format.

{
 "id" : "name:test_server;lsn:33227720;txId:578",
 "source" : "/debezium/postgresql/test_server",
 "specversion" : "1.0",
 "type" : "io.debezium.postgresql.datachangeevent",
 "time" : "2020-01-13T14:04:18.597Z",
 "datacontenttype" : "application/avro" 1
 "dataschema" : "http://my-registry/schemas/ids/1", 2
 "iodebeziumop" : "r",
 "iodebeziumversion" : "1.2.4.Final",
 "iodebeziumconnector" : "postgresql",
 "iodebeziumname" : "test_server",

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

297

Table 9.7. Descriptions of fields in CloudEvents event with Avro data

Item Description

1 Indicates that the data attribute contains Avro binary data.

2 URI of the schema to which the Avro data adheres.

3 The data attribute contains base64-encoded Avro binary data.

It is also possible to use Avro for the envelope as well as the data attribute.

9.7.2. Example of configuring CloudEventsConverter

Configure io.debezium.converters.CloudEventsConverter in your Debezium connector configuration.
The following example shows how to configure CloudEventsConverter to emit change event records
that have the following characteristics:

Use JSON as the envelope.

Use the schema registry at http://my-registry/schemas/ids/1 to serialize the data attribute as
binary Avro data.

Specification of serializer.type is optional, because json is the default.

CloudEventsConverter converts Kafka record values. In the same connector configuration, you can
specify key.converter if you want to operate on record keys. For example, you might specify
StringConverter, LongConverter, JsonConverter, or AvroConverter.

9.7.3. CloudEventsConverter configuration properties

When you configure a Debezium connector to use the CloudEvent converter you can specify the

 "iodebeziumtsms" : "1578924258597",
 "iodebeziumsnapshot" : "true",
 "iodebeziumdb" : "postgres",
 "iodebeziumschema" : "s1",
 "iodebeziumtable" : "a",
 "iodebeziumtxId" : "578",
 "iodebeziumlsn" : "33227720",
 "iodebeziumxmin" : null,
 "iodebeziumtxid": "578",
 "iodebeziumtxtotalorder": "1",
 "iodebeziumtxdatacollectionorder": "1",
 "data" : "AAAAAAEAAgICAg==" 3
}

...
"value.converter": "io.debezium.converters.CloudEventsConverter",
"value.converter.serializer.type" : "json",
"value.converter.data.serializer.type" : "avro",
"value.converter.avro.schema.registry.url": "http://my-registry/schemas/ids/1"
...

Red Hat Integration 2020-Q3 Debezium User Guide

298

When you configure a Debezium connector to use the CloudEvent converter you can specify the
following properties.

Property Default Description

serializer.type json The encoding type to use for the CloudEvents
envelope structure. The value can be json or
avro.

data.serializer ​.type json The encoding type to use for the data
attribute. The value can be json or avro.

json. ... N/A Any configuration properties to be passed
through to the underlying converter when using
JSON. The json. prefix is removed.

avro. ... N/A Any configuration properties to be passed
through to the underlying converter when using
Avro. The avro. prefix is removed. For
example, for Avro data, you would specify the
avro.schema.registry.url property.

Revised on 2020-10-20 00:34:17 UTC

CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION

299

https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#cloud-events-converter-serializer-type
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#cloud-events-converter-data-serializer-type
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#cloud-events-converter-json
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q3/html-single/debezium_user_guide/index#cloud-events-converter-avro

	Table of Contents
	PREFACE
	CHAPTER 1. HIGH LEVEL OVERVIEW OF DEBEZIUM
	1.1. DEBEZIUM FEATURES
	1.2. DESCRIPTION OF DEBEZIUM ARCHITECTURE

	CHAPTER 2. DEBEZIUM CONNECTOR FOR MYSQL
	2.1. OVERVIEW OF HOW THE MYSQL CONNECTOR WORKS
	2.1.1. How the MySQL connector uses database schemas
	2.1.2. How the MySQL connector performs database snapshots
	2.1.2.1. What happens if the connector fails?
	2.1.2.2. What if Global Read Locks are not allowed?

	2.1.3. How the MySQL connector exposes schema changes
	2.1.3.1. Schema change topic structure
	2.1.3.2. Important tips about the schema change topic

	2.1.4. MySQL connector events
	2.1.4.1. Change event keys
	2.1.4.2. Change event values

	2.1.5. How the MySQL connector maps data types
	2.1.5.1. Temporal values
	2.1.5.2. Decimal values
	2.1.5.3. Boolean values
	2.1.5.4. Spatial data types

	2.1.6. The MySQL connector and Kafka topics
	2.1.7. MySQL supported topologies

	2.2. SETTING UP MYSQL SERVER
	2.2.1. Creating a MySQL user for Debezium
	2.2.2. Enabling the MySQL binlog for Debezium
	2.2.3. Enabling MySQL Global Transaction Identifiers for Debezium
	2.2.4. Setting up session timeouts for Debezium
	2.2.5. Enabling query log events for Debezium

	2.3. DEPLOYING THE MYSQL CONNECTOR
	2.3.1. Installing the MySQL connector
	2.3.2. Configuring the MySQL connector
	2.3.3. Adding MySQL connector configuration to Kafka Connect
	2.3.4. MySQL connector configuration properties
	2.3.4.1. Advanced MySQL connector properties
	2.3.4.2. Pass-through configuration properties
	2.3.4.3. Pass-through properties for database drivers

	2.3.5. MySQL connector monitoring metrics
	2.3.5.1. Snapshot metrics
	2.3.5.2. Binlog metrics
	2.3.5.3. Schema history metrics

	2.4. MYSQL CONNECTOR COMMON ISSUES
	2.4.1. Configuration and startup errors
	2.4.2. MySQL is unavailable
	2.4.2.1. Using GTIDs
	2.4.2.2. Not Using GTIDs

	2.4.3. Kafka Connect stops
	2.4.3.1. Kafka Connect stops gracefully
	2.4.3.2. Kafka Connect process crashes
	2.4.3.3. Kafka becomes unavailable

	2.4.4. MySQL purges binlog files

	CHAPTER 3. DEBEZIUM CONNECTOR FOR POSTGRESQL
	3.1. OVERVIEW OF DEBEZIUM POSTGRESQL CONNECTOR
	3.2. HOW DEBEZIUM POSTGRESQL CONNECTORS WORK
	3.2.1. How Debezium PostgreSQL connectors perform database snapshots
	3.2.2. How Debezium PostgreSQL connectors stream change event records
	3.2.3. Default names of Kafka topics that receive Debezium PostgreSQL change event records
	3.2.4. Metadata in Debezium PostgreSQL change event records
	3.2.5. Debezium PostgreSQL connector-generated events that represent transaction boundaries

	3.3. DESCRIPTIONS OF DEBEZIUM POSTGRESQL CONNECTOR DATA CHANGE EVENTS
	3.3.1. About keys in Debezium PostgreSQL change events
	3.3.2. About values in Debezium PostgreSQL change events

	3.4. HOW DEBEZIUM POSTGRESQL CONNECTORS MAP DATA TYPES
	3.5. SETTING UP POSTGRESQL TO RUN A DEBEZIUM CONNECTOR
	3.5.1. Configuring a replication slot for the Debezium pgoutput plug-in
	3.5.2. Setting up PostgreSQL permissions required by Debezium connectors
	3.5.3. Configuring PostgreSQL to manage Debezium WAL disk space consumption

	3.6. DEPLOYING AND MANAGING DEBEZIUM POSTGRESQL CONNECTORS
	3.6.1. Deploying Debezium PostgreSQL connectors
	3.6.2. Monitoring Debezium PostgreSQL connector performance
	3.6.2.1. Monitoring Debezium during snapshots of PostgreSQL databases
	3.6.2.2. Monitoring Debezium PostgreSQL connector record streaming

	3.6.3. Description of Debezium PostgreSQL connector configuration properties

	3.7. HOW DEBEZIUM POSTGRESQL CONNECTORS HANDLE FAULTS AND PROBLEMS

	CHAPTER 4. DEBEZIUM CONNECTOR FOR MONGODB
	4.1. OVERVIEW
	4.2. SETTING UP MONGODB
	4.3. SUPPORTED MONGODB TOPOLOGIES
	4.3.1. MongoDB replica set
	4.3.2. MongoDB sharded cluster
	4.3.3. MongoDB standalone server

	4.4. HOW THE MONGODB CONNECTOR WORKS
	4.4.1. Logical connector name
	4.4.2. Performing a snapshot
	4.4.3. Streaming changes
	4.4.4. Topics names
	4.4.5. Partitions
	4.4.6. Data change events
	4.4.6.1. Change event keys
	4.4.6.2. Change event values
	4.4.6.3. create events
	4.4.6.4. update events
	4.4.6.5. delete events

	4.4.7. Transaction Metadata
	4.4.7.1. Transaction boundaries
	4.4.7.2. Data events enrichment

	4.5. DEPLOYING THE MONGODB CONNECTOR
	4.5.1. Example configuration
	4.5.2. Adding connector configuration
	4.5.3. Monitoring
	4.5.3.1. Snapshot Metrics
	4.5.3.2. Streaming Metrics

	4.5.4. Connector properties

	4.6. MONGODB CONNECTOR COMMON ISSUES
	4.6.1. Configuration and startup errors
	4.6.2. MongoDB becomes unavailable
	4.6.3. Kafka Connect process stops gracefully
	4.6.4. Kafka Connect process crashes
	4.6.5. Kafka becomes unavailable
	4.6.6. Connector is stopped for a duration
	4.6.7. MongoDB loses writes

	CHAPTER 5. DEBEZIUM CONNECTOR FOR SQL SERVER
	5.1. OVERVIEW
	5.2. SETTING UP SQL SERVER
	5.2.1. SQL Server on Azure

	5.3. HOW THE SQL SERVER CONNECTOR WORKS
	5.3.1. Snapshots
	5.3.2. Reading the change data tables
	5.3.3. Topic names
	5.3.4. Schema change topic
	5.3.5. Change data events
	5.3.5.1. Change Event Keys
	5.3.5.2. Change event values

	5.3.6. Transaction Metadata
	5.3.6.1. Transaction boundaries
	5.3.6.2. Data events enrichment

	5.3.7. Database schema evolution
	5.3.7.1. Cold schema update
	5.3.7.2. Hot schema update
	5.3.7.3. Example

	5.3.8. Data types
	5.3.8.1. Temporal values
	5.3.8.2. Decimal values

	5.4. DEPLOYMENT
	5.4.1. Example configuration
	5.4.2. Adding connector configuration
	5.4.3. Monitoring
	5.4.3.1. Snapshot Metrics
	5.4.3.2. Streaming Metrics
	5.4.3.3. Schema History Metrics

	5.4.4. Connector properties

	CHAPTER 6. DEBEZIUM CONNECTOR FOR DB2
	6.1. OVERVIEW OF DEBEZIUM DB2 CONNECTOR
	6.2. HOW DEBEZIUM DB2 CONNECTORS WORK
	6.2.1. How Debezium Db2 connectors perform database snapshots
	6.2.2. How Debezium Db2 connectors read change-data tables
	6.2.3. Default names of Kafka topics that receive Debezium Db2 change event records
	6.2.4. About the Debezium Db2 connector schema change topic
	6.2.5. Debezium Db2 connector-generated events that represent transaction boundaries

	6.3. DESCRIPTIONS OF DEBEZIUM DB2 CONNECTOR DATA CHANGE EVENTS
	6.3.1. About keys in Debezium db2 change events
	6.3.2. About values in Debezium Db2 change events

	6.4. HOW DEBEZIUM DB2 CONNECTORS MAP DATA TYPES
	6.5. SETTING UP DB2 TO RUN A DEBEZIUM CONNECTOR
	6.6. DEPLOYING DEBEZIUM DB2 CONNECTORS
	6.6.1. Steps for installing Debezium Db2 connectors
	6.6.2. Debezium db2 connector configuration example
	6.6.3. Adding Debezium Db2 connector configuration to Kafka Connect
	6.6.4. Description of Debezium Db2 connector configuration properties

	6.7. MONITORING DEBEZIUM DB2 CONNECTOR PERFORMANCE
	6.8. MANAGING DEBEZIUM DB2 CONNECTORS
	6.9. UPDATING SCHEMAS FOR DB2 TABLES IN CAPTURE MODE FOR DEBEZIUM CONNECTORS
	6.9.1. Performing offline schema updates for Debezium Db2 connectors
	6.9.2. Performing online schema updates for Debezium Db2 connectors

	CHAPTER 7. MONITORING DEBEZIUM
	7.1. MONITORING DEBEZIUM ON RHEL
	7.1.1. Zookeeper JMX environment variables
	7.1.2. Kafka JMX environment variables
	7.1.3. Kafka Connect JMX environment variables

	7.2. MONITORING DEBEZIUM ON OPENSHIFT

	CHAPTER 8. DEBEZIUM LOGGING
	8.1. LOGGING CONCEPTS
	Loggers
	Log levels
	Appenders

	8.2. UNDERSTANDING THE DEFAULT LOGGING CONFIGURATION
	8.3. CONFIGURING LOGGING
	8.3.1. Changing the logging level
	8.3.2. Adding mapped diagnostic contexts

	8.4. DEBEZIUM LOGGING ON OPENSHIFT

	CHAPTER 9. CONFIGURING DEBEZIUM CONNECTORS FOR YOUR APPLICATION
	9.1. ROUTING CHANGE EVENT RECORDS TO TOPICS THAT YOU SPECIFY
	9.1.1. Use case for routing records to topics that you specify
	9.1.2. Example of routing records for multiple tables to one topic
	9.1.3. Ensuring unique keys across records routed to the same topic
	9.1.4. Options for configuring topic routing transformation

	9.2. ROUTING CHANGE EVENT RECORDS TO TOPICS ACCORDING TO EVENT CONTENT
	9.2.1. Setting up the Debezium content-based-routing SMT
	9.2.2. Example: Debezium basic content-based routing configuration
	9.2.3. Variables for use in Debezium content-based routing expressions
	9.2.4. Configuration of content-based routing conditions for other scripting languages
	9.2.5. Options for configuring the content-based routing transformation

	9.3. FILTERING DEBEZIUM CHANGE EVENT RECORDS
	9.3.1. Setting up the Debezium filter SMT
	9.3.2. Example: Debezium basic filter SMT configuration
	9.3.3. Variables for use in filter expressions
	9.3.4. Filter condition configuration for other scripting languages
	9.3.5. Options for configuring filter transformation

	9.4. EXTRACTING SOURCE RECORD AFTER STATE FROM DEBEZIUM CHANGE EVENTS
	9.4.1. Description of Debezium change event structure
	9.4.2. Behavior of Debezium ExtractNewRecordState transformation
	9.4.3. Configuration of ExtractNewRecordState transformation
	9.4.4. Example of adding metadata to the Kafka record
	9.4.5. Options for configuring ExtractNewRecordState transformation

	9.5. CONFIGURING DEBEZIUM CONNECTORS TO USE AVRO SERIALIZATION
	9.5.1. About the Service Registry
	9.5.2. Overview of deploying a Debezium connector that uses Avro serialization
	9.5.3. Deploying connectors that use Avro in Debezium containers
	9.5.4. About Avro name requirements

	9.6. CONFIGURING DEBEZIUM CONNECTORS TO USE THE OUTBOX PATTERN
	9.6.1. Example of a Debezium outbox message
	9.6.2. Outbox table structure expected by Debezium outbox event router SMT
	9.6.3. Basic Debezium outbox event router SMT configuration
	9.6.4. Using Avro as the payload format in Debezium outbox messages
	9.6.5. Emitting additional fields in Debezium outbox messages
	9.6.6. Options for configuring outbox event router transformation

	9.7. EMITTING CHANGE EVENT RECORDS IN CLOUDEVENTS FORMAT
	9.7.1. Example change event records in CloudEvents format
	9.7.2. Example of configuring CloudEventsConverter
	9.7.3. CloudEventsConverter configuration properties

