
Red Hat Integration 2020-Q2

Getting Started with Service Registry

Service Registry 1.0

Last Updated: 2020-11-23

Red Hat Integration 2020-Q2 Getting Started with Service Registry

Service Registry 1.0

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Service Registry, explains how to install with your chosen Service Registry
storage, and shows how to manage event schemas and API designs using the Service Registry web
console, REST API, or Maven plug-in. This guide explains how to to use Kafka client serializers and
deserializers in consumer and producer applications. It guide also describes Service Registry
content and rule types, and environment variables for OpenShift health checks.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
1.1. SERVICE REGISTRY OVERVIEW

Service Registry features
1.2. SERVICE REGISTRY ARTIFACTS
1.3. SERVICE REGISTRY WEB CONSOLE
1.4. REGISTRY REST API
1.5. STORAGE OPTIONS
1.6. KAFKA CLIENT SERIALIZERS/DESERIALIZERS
1.7. KAFKA CONNECT CONVERTERS
1.8. REGISTRY DEMONSTRATION EXAMPLES
1.9. AVAILABLE DISTRIBUTIONS

CHAPTER 2. INTRODUCTION TO SERVICE REGISTRY RULES
2.1. RULES FOR REGISTRY CONTENT
2.2. WHEN RULES ARE APPLIED
2.3. HOW RULES WORK

CHAPTER 3. INSTALLING SERVICE REGISTRY ON OPENSHIFT
3.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT OPERATORHUB
3.2. INSTALLING AMQ STREAMS FROM THE OPENSHIFT OPERATORHUB
3.3. CONFIGURING SERVICE REGISTRY WITH AMQ STREAMS STORAGE ON OPENSHIFT
3.4. CONFIGURING SERVICE REGISTRY WITH EMBEDDED INFINISPAN STORAGE ON OPENSHIFT
3.5. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT OPERATORHUB
3.6. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL DATABASE STORAGE ON OPENSHIFT

CHAPTER 4. CONFIGURING SERVICE REGISTRY ON OPENSHIFT
4.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON OPENSHIFT
4.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH CHECKS

Liveness environment variables
Readiness environment variables

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE
5.1. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
5.2. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
5.3. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY WEB CONSOLE

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING THE REST API
6.1. MANAGING ARTIFACTS USING REGISTRY REST API COMMANDS
6.2. MANAGING ARTIFACTS USING THE SERVICE REGISTRY MAVEN PLUG-IN
6.3. MANAGING ARTIFACTS USING A SERVICE REGISTRY CLIENT APPLICATION

CHAPTER 7. USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS
7.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY
7.2. PRODUCER SCHEMA CONFIGURATION
7.3. CONSUMER SCHEMA CONFIGURATION
7.4. STRATEGIES TO LOOKUP A SCHEMA

Strategies to return an artifact ID
Strategies to return a global ID

7.5. SERVICE REGISTRY CONSTANTS
Constants for serializer/deserializer (SerDe) services
Constants for lookup strategies
Constants for converters
Constants for Avro data providers

4
4
4
5
5
6
7
8
8

10
10

12
12
12
12

14
14
15
16
18
19

20

23
23
24
24
25

27
27
28
30

32
32
33
34

36
36
36
37
37
38
38
39
39
39
39
40

Table of Contents

1

. .

. .

7.6. REGISTERING A SCHEMA TO SERVICE REGISTRY
Service Registry web console
Curl example
Plugin example
Configuration through a (producer) client example

7.7. USING A SERVICE REGISTRY SCHEMA FROM A CONSUMER CLIENT
7.8. USING A SERVICE REGISTRY SCHEMA FROM A PRODUCER CLIENT

CHAPTER 8. SERVICE REGISTRY REFERENCE
8.1. SERVICE REGISTRY ARTIFACT TYPES
8.2. SERVICE REGISTRY CONTENT RULE TYPES

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading ZIP and TAR files
Registering your system for packages

40
40
41
41
41

42
43

44
44
44

46
46
46
46
46

Red Hat Integration 2020-Q2 Getting Started with Service Registry

2

Table of Contents

3

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
This chapter introduces Service Registry concepts and features and provides details on the supported
artifact types that are stored in the registry:

Section 1.1, “Service Registry overview”

Section 1.2, “Service Registry artifacts”

Section 1.3, “Service Registry web console”

Section 1.4, “Registry REST API”

Section 1.5, “Storage options”

Section 1.6, “Kafka client serializers/deserializers”

Section 1.7, “Kafka Connect converters”

Section 1.8, “Registry demonstration examples”

Section 1.9, “Available distributions”

1.1. SERVICE REGISTRY OVERVIEW

Service Registry is a datastore for sharing standard event schemas and API designs across API and
event-driven architectures. You can use Service Registry to decouple the structure of your data from
your client applications, and to share and manage your data types and API descriptions at runtime using
a REST interface.

For example, client applications can dynamically push or pull the latest schema updates to or from
Service Registry at runtime without needing to redeploy. Developer teams can query the registry for
existing schemas required for services already deployed in production, and can register new schemas
required for new services in development.

You can enable client applications to use schemas and API designs stored in Service Registry by
specifying the registry URL in your client application code. For example, the registry can store schemas
used to serialize and deserialize messages, which can then be referenced from your client applications to
ensure that the messages that they send and receive are compatible with those schemas.

Using Service Registry to decouple your data structure from your applications reduces costs by
decreasing overall message size, and creates efficiencies by increasing consistent reuse of schemas and
API designs across your organization. Service Registry provides a web console to make it easy for
developers and administrators to manage registry content.

In addition, you can configure optional rules to govern the evolution of your registry content. For
example, these include rules to ensure that uploaded content is syntactically and semantically valid, or is
backwards and forwards compatible with other versions. Any configured rules must pass before new
versions can be uploaded to the registry, which ensures that time is not wasted on invalid or
incompatible schemas or API designs.

Service Registry is based on the Apicurio Registry open source community project. For details, see
https://github.com/apicurio/apicurio-registry.

Service Registry features
Service Registry provides the following main features:

Red Hat Integration 2020-Q2 Getting Started with Service Registry

4

https://github.com/apicurio/apicurio-registry

Support for multiple payload formats for standard event schemas and API specifications

Pluggable storage options including AMQ Streams, embedded Infinispan, or PostgreSQL
database

Registry content management using a web console, REST API command, Maven plug-in, or
Java client

Rules for content validation and version compatibility to govern how registry content evolves
over time

Full Apache Kafka schema registry support, including integration with Kafka Connect for
external systems

Client serializers/deserializers (Serdes) to validate Kafka and other message types at runtime

Cloud-native Quarkus Java runtime for low memory footprint and fast deployment times

Compatibility with existing Confluent schema registry client applications

Operator-based installation of Service Registry on OpenShift

1.2. SERVICE REGISTRY ARTIFACTS

The items stored in Service Registry, such as event schemas and API specifications, are known as
registry artifacts. The following shows an example of an Apache Avro schema artifact in JSON format
for a simple share price application:

When a schema or API contract is added as an artifact in the registry, client applications can then use
that schema or API contract to validate that client messages conform to the correct data structure at
runtime.

Service Registry supports a wide range of message payload formats for standard event schemas and
API specifications. For example, supported formats include Apache Avro, Google protocol buffers,
GraphQL, AsyncAPI, OpenAPI, and others. For more details, see Section 8.1, “Service Registry artifact
types”.

1.3. SERVICE REGISTRY WEB CONSOLE

You can use the Service Registry web console to browse and search the artifacts stored in the registry,

{
 "type": "record",
 "name": "price",
 "namespace": "com.example",
 "fields": [
 {
 "name": "symbol",
 "type": "string"
 },
 {
 "name": "price",
 "type": "string"
 }
]
}

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

5

You can use the Service Registry web console to browse and search the artifacts stored in the registry,
and to upload new artifacts and artifact versions. You can search for artifacts by label, name, and
description. You can also view an artifact’s content, view all of its available versions, or download an
artifact file locally.

You can also use the Service Registry web console to configure optional rules for registry content, both
globally and for each artifact. These optional rules for content validation and compatibility are applied
when new artifacts or artifact versions are uploaded to the registry. For more details, see Section 2.1,
“Rules for registry content”.

Figure 1.1. Service Registry web console

The Service Registry web console is available from the main endpoint of your Service Registry
deployment, for example, on http://MY-REGISTRY-URL/ui. For more details, see Chapter 5, Managing
Service Registry content using the web console.

1.4. REGISTRY REST API

Using the Registry REST API, client applications can manage the artifacts in Service Registry. This API
provides create, read, update, and delete operations for:

Artifacts

Manage the schema and API design artifacts stored in the registry. This also includes browse or
search for artifacts, for example, by name, ID, description, or label. You can also manage the lifecycle
state of an artifact: enabled, disabled, or deprecated.

Artifact versions

Manage the versions that are created when artifact content is updated. This also includes browse or
search for versions, for example, by name, ID, description, or label. You can also manage the lifecycle
state of a version: enabled, disabled, or deprecated.

Artifact metadata

Manage details about artifacts such as when an artifact was created or modified, its current state, and
so on. Users can edit some metadata, and some is read-only. For example, editable metadata
includes artifact name, description, or label, but when the artifact was created and modified are read-

Red Hat Integration 2020-Q2 Getting Started with Service Registry

6

only.

Global rules

Configure rules to govern the content evolution of all artifacts to prevent invalid or incompatible
content from being added to the registry. Global rules are applied only if an artifact does not have its
own specific artifact rules configured.

Artifact rules

Configure rules to govern the content evolution of a specific artifact to prevent invalid or
incompatible content from being added to the registry. Artifact rules override any global rules
configured.

Compatibility with other schema registries

The Registry REST API is compatible with the Confluent schema registry REST API, which includes
support for Apache Avro, Google Protocol buffers, and JSON Schema artifact types. Applications using
Confluent client libraries can use Service Registry as a drop-in replacement instead. For more details,
see Replacing Confluent Schema Registry with Red Hat Integration Service Registry .

Additional resources

For detailed information, see the Apicurio Registry REST API documentation .

The Registry REST API documentation is also available from the main endpoint of your Service
Registry deployment, for example, on http://MY-REGISTRY-URL/api.

1.5. STORAGE OPTIONS

Service Registry provides the following underlying storage implementations for registry artifacts:

Table 1.1. Service Registry storage options

Storage option Release

Kafka Streams-based storage in AMQ Streams 1.5 General Availability

Cache-based storage in embedded Infinispan 10 Technical Preview only

Java Persistence API-based storage in PostgreSQL
12 database

Technical Preview only

IMPORTANT

Service Registry storage in Infinispan or PostgreSQL is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

Additional resources

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

7

https://developers.redhat.com/blog/2019/12/17/replacing-confluent-schema-registry-with-red-hat-integration-service-registry/
files/registry-rest-api.htm
https://access.redhat.com/support/offerings/techpreview

For details on how to install into your preferred storage option, see Chapter 3, Installing Service
Registry on OpenShift.

1.6. KAFKA CLIENT SERIALIZERS/DESERIALIZERS

Kafka producer applications can use serializers to encode messages that conform to a specific event
schema. Kafka consumer applications can then use deserializers to validate that messages have been
serialized using the correct schema, based on a specific schema ID.

Figure 1.2. Service Registry and Kafka client serializer/deserializer architecture

Service Registry provides Kafka client serializers/deserializers (Serdes) to validate the following
message types at runtime:

Apache Avro

Google protocol buffers

JSON Schema

The Service Registry Maven repository and source code distributions include the Kafka
serializer/deserializer implementations for these message types, which Kafka client developers can use
to integrate with the registry. These implementations include custom io.apicurio.registry.utils.serde
Java classes for each supported message type, which client applications can use to pull schemas from
the registry at runtime for validation.

Additional resources

For instructions on how to use the Service Registry Kafka client serializer/deserializer for
Apache Avro in AMQ Streams producer and consumer applications, see Using AMQ Streams on
Openshift.

1.7. KAFKA CONNECT CONVERTERS

Red Hat Integration 2020-Q2 Getting Started with Service Registry

8

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/service-registry-str

You can use Service Registry with Apache Kafka Connect to stream data between Kafka and external
systems. Using Kafka Connect, you can define connectors for different systems to move large volumes
of data into and out of Kafka-based systems.

Figure 1.3. Service Registry and Kafka Connect architecture

Service Registry provides the following features for Kafka Connect:

Storage for Kafka Connect schemas

Kafka Connect converters for Apache Avro and JSON Schema

Registry REST API to manage schemas

You can use the Avro and JSON Schema converters to map Kafka Connect schemas into Avro or JSON
schemas. Those schemas can then serialize message keys and values into the compact Avro binary
format or human-readable JSON format. The converted JSON is also less verbose because the
messages do not contain the schema information, only the schema ID.

Service Registry can manage and track the Avro and JSON schemas used in the Kafka topics. Because
the schemas are stored in Service Registry and decoupled from the message content, each message
must only include a tiny schema identifier. For an I/O bound system like Kafka, this means more total
throughput for producers and consumers.

The Avro and JSON Schema serializers and deserializers (Serdes) provided by Service Registry are also
used by Kafka producers and consumers in this use case. Kafka consumer applications that you write to
consume change events can use the Avro or JSON Serdes to deserialize these change events. You can
install these Serdes into any Kafka-based system and use them along with Kafka Connect, or with Kafka
Connect-based systems such as Debezium and Camel Kafka Connector.

Additional resources

Apache Kafka Connect documentation

Debezium User Guide

Getting Started with Camel Kafka Connector

Demonstration of using Kakfa Connect with Debezium and Apicurio Registry

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

9

https://kafka.apache.org/documentation/#connect
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/debezium_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_integration/2020-Q2/html-single/getting_started_with_camel_kafka_connector/index
https://debezium.io/blog/2020/04/09/using-debezium-wit-apicurio-api-schema-registry/

1.8. REGISTRY DEMONSTRATION EXAMPLES

Service Registry provides an open source demonstration example of Apache Avro
serialization/deserialization with storage in Apache Kafka Streams. This example shows how the
serializer/deserializer obtains the Avro schema from the registry at runtime and uses it to serialize and
deserialize Kafka messages. For more details, see https://github.com/Apicurio/apicurio-registry-demo.

This demonstration also provides simple examples of both Avro and JSON Schema
serialization/deserialization with storage in Apache Kafka.

For another open source demonstration example with detailed instructions on Avro
serialization/deserialization with storage in Apache Kafka, see the Red Hat Developer article on Getting
Started with Red Hat Integration Service Registry.

1.9. AVAILABLE DISTRIBUTIONS

Service Registry includes the following distributions:

Table 1.2. Service Registry Operator and images

Distribution Location Release

Service Registry Operator OpenShift web console under
Operators → OperatorHub

General Availability

Container image for Service Registry
Operator

Red Hat Ecosystem Catalog General Availability

Container image for Kafka storage in
AMQ Streams

Red Hat Ecosystem Catalog General Availability

Container image for embedded
Infinispan storage

Red Hat Ecosystem Catalog Technical Preview only

Container image for JPA storage in
PostgreSQL

Red Hat Ecosystem Catalog Technical Preview only

IMPORTANT

Service Registry storage in Infinispan or PostgreSQL is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

Table 1.3. Service Registry zip downloads

Red Hat Integration 2020-Q2 Getting Started with Service Registry

10

https://github.com/Apicurio/apicurio-registry-demo
https://github.com/Apicurio/apicurio-registry-demo/tree/master/src/main/java/io/apicurio/registry/demo/simple
https://developers.redhat.com/blog/2019/12/16/getting-started-with-red-hat-integration-service-registry/
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://access.redhat.com/support/offerings/techpreview

Distribution Location Release

Example custom resource definitions
for installation

Software Downloads for Red Hat
Integration

General Availability and
Technical Preview

Kafka Connect converters Software Downloads for Red Hat
Integration

General Availability

Maven repository Software Downloads for Red Hat
Integration

General Availability

Source code Software Downloads for Red Hat
Integration

General Availability

NOTE

You must have a subscription for Red Hat Integration and be logged into the Red Hat
Customer Portal to access the available Service Registry distributions.

CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY

11

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration&version=2020-Q2
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration&version=2020-Q2
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration&version=2020-Q2
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=red.hat.integration&version=2020-Q2

CHAPTER 2. INTRODUCTION TO SERVICE REGISTRY RULES
This chapter introduces the optional rules used to govern registry content and provides details on the
available rule types:

Section 2.1, “Rules for registry content”

Section 2.2, “When rules are applied”

Section 2.3, “How rules work”

2.1. RULES FOR REGISTRY CONTENT

To govern the evolution of registry content, you can configure optional rules for artifact content added
to the registry. All configured global rules or artifact rules must pass before a new artifact version can be
uploaded to the registry. Configured artifact rules override any configured global rules.

The goal of these rules is to prevent invalid content from being added to the registry. For example,
content can be invalid for the following reasons:

Invalid syntax for a given artifact type (for example, AVRO or PROTOBUF)

Valid syntax, but semantics violate a specification

Incompatibility, when new content includes breaking changes relative to the current artifact
version

You can add these optional content rules using the Service Registry web console, REST API commands,
or a Java client application.

2.2. WHEN RULES ARE APPLIED

Rules are applied only when content is added to the registry. This includes the following REST
operations:

Adding an artifact

Updating an artifact

Adding an artifact version

If a rule is violated, Service Registry returns an HTTP error. The response body includes the violated rule
and a message showing what went wrong.

NOTE

If no rules are configured for an artifact, the set of currently configured global rules are
applied, if any.

2.3. HOW RULES WORK

Each rule has a name and optional configuration information. The registry storage maintains the list of
rules for each artifact and the list of global rules. Each rule in the list consists of a name and a set of
configuration properties, which are specific to the rule implementation.

Red Hat Integration 2020-Q2 Getting Started with Service Registry

12

A rule is provided with the content of the current version of the artifact (if one exists) and the new
version of the artifact being added. The rule implementation returns true or false depending on whether
the artifact passes the rule. If not, the registry reports the reason why in an HTTP error response. Some
rules might not use the previous version of the content. For example, compatibility rules use previous
versions, but syntax or semantic validity rules do not.

Additional resources

For more details, see Section 8.2, “Service Registry content rule types” .

CHAPTER 2. INTRODUCTION TO SERVICE REGISTRY RULES

13

CHAPTER 3. INSTALLING SERVICE REGISTRY ON OPENSHIFT
This chapter explains how to first install Service Registry and then how to set up your chosen registry
storage option: AMQ Streams, embedded Infinispan, or PostgreSQL database.

Prerequisites

Section 1.1, “Service Registry overview”

Service Registry installation

Section 3.1, “Installing Service Registry from the OpenShift OperatorHub”

AMQ Streams storage

Section 3.2, “Installing AMQ Streams from the OpenShift OperatorHub”

Section 3.3, “Configuring Service Registry with AMQ Streams storage on OpenShift”

Embedded Infinispan storage (Technology Preview)

Section 3.4, “Configuring Service Registry with embedded Infinispan storage on OpenShift”

PostgreSQL database storage (Technology Preview)

Section 3.5, “Installing a PostgreSQL database from the OpenShift OperatorHub”

Section 3.6, “Configuring Service Registry with PostgreSQL database storage on OpenShift”

IMPORTANT

Service Registry storage in Infinispan or PostgreSQL is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

NOTE

You can install more than one instance of Service Registry depending on your
environment. The number of instances depends on your storage option, for example, your
Kafka, Infinispan, or database cluster configuration, and on the number and type of
artifacts stored in Service Registry.

3.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT
OPERATORHUB

You can install the Service Registry Operator on your OpenShift cluster from the OperatorHub. The
OperatorHub is available from the OpenShift Container Platform web console and provides an interface

Red Hat Integration 2020-Q2 Getting Started with Service Registry

14

https://access.redhat.com/support/offerings/techpreview

for cluster administrators to discover and install Operators. For more details, see the OpenShift
documentation.

Prerequisites

You must have cluster administrator access to an OpenShift cluster.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Create a new OpenShift project:

a. In the left navigation menu, click Home > Project > Create Project.

b. Enter a project name, for example, my-project, and click Create.

3. In the left navigation menu, click Catalog > OperatorHub.

4. In the Filter by keyword text box, enter Registry to find the Red Hat Integration - Service
Registry Operator.

5. Read the information about the Operator, and click Install. This displays the Create Operator
Subscription page.

6. Select your subscription settings, for example:

Installation Mode > A specific namespace on the cluster > my-project

Update Channel > serviceregistry-1.0

Approval Strategy > Manual

7. Click Subscribe. This displays the Operators > Installed Operators page.

8. Wait a few moments until the Status for the Service Registry Operator displays Succeeded and
the subscription is Up to Date.

Additional resources

Adding Operators to an OpenShift cluster

Apicurio Registry Operator community in GitHub

3.2. INSTALLING AMQ STREAMS FROM THE OPENSHIFT
OPERATORHUB

If you do not already have AMQ Streams installed, you can install the AMQ Streams Operator on your
OpenShift cluster from the OperatorHub. The OperatorHub is available from the OpenShift Container
Platform web console and provides an interface for cluster administrators to discover and install
Operators. For more details, see the OpenShift documentation.

Prerequisites

You must have cluster administrator access to an OpenShift cluster

CHAPTER 3. INSTALLING SERVICE REGISTRY ON OPENSHIFT

15

https://docs.openshift.com/container-platform/4.3/operators/olm-understanding-operatorhub.html
https://docs.openshift.com/container-platform/4.3/operators/olm-adding-operators-to-cluster.html
https://github.com/Apicurio/apicurio-registry-operator
https://docs.openshift.com/container-platform/4.3/operators/olm-understanding-operatorhub.html

See Using AMQ Streams on OpenShift for detailed information on installing AMQ Streams. This
section shows a simple example of installing using the OpenShift OperatorHub.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which Service Registry is installed. For example, from the
Project drop-down, select my-project.

3. In the left navigation menu, click Catalog > OperatorHub.

4. In the Filter by keyword text box, enter AMQ to find the Red Hat Integration - AMQ Streams
Operator.

5. Read the information about the Operator, and click Install. This displays the Create Operator
Subscription page.

6. Select your subscription settings, for example:

Installation Mode > A specific namespace on the cluster > my-project

Update Channel > amq-streams-1.5.x

Approval Strategy > Manual

7. Click Subscribe. This displays the Operators > Installed Operators page.

8. Wait a few moments until the Status for the AMQ Streams Operator displays Succeeded and
the subscription is Up to Date.

Additional resources

Adding Operators to an OpenShift cluster

Using AMQ Streams on OpenShift

3.3. CONFIGURING SERVICE REGISTRY WITH AMQ STREAMS
STORAGE ON OPENSHIFT

This section explains how to configure Kafka-based storage for Service Registry using AMQ Streams on
OpenShift. This storage option is suitable for production environments when persistent storage is
configured for the Kafka cluster on OpenShift. You can install Service Registry in an existing Kafka
cluster or create a new Kafka cluster, depending on your environment.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Section 3.1, “Installing Service Registry
from the OpenShift OperatorHub”.

You must have already installed AMQ Streams. See Section 3.2, “Installing AMQ Streams from
the OpenShift OperatorHub”.

Red Hat Integration 2020-Q2 Getting Started with Service Registry

16

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/getting-started-str
https://docs.openshift.com/container-platform/4.3/operators/olm-adding-operators-to-cluster.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/index?

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. If you do not already have a Kafka cluster configured, create a new Kafka cluster using AMQ
Streams. For example, in the OpenShift OperatorHub:

a. Click Installed Operators > Red Hat Integration - AMQ Streams.

b. Under Provided APIs > Kafka, click Create Instance to create a new Kafka cluster.

c. Edit the custom resource definition as appropriate, and click Create.

WARNING

The default example creates a cluster with 3 Zookeeper nodes and 3
Kafka nodes with ephemeral storage. This temporary storage is
suitable for development and testing only, and not for production. For
more details, see Using AMQ Streams on OpenShift .

3. After the cluster is ready, click Provided APIs > Kafka > my-cluster > YAML.

4. In the status block, make a copy of the bootstrapServers value, which you will use later to
deploy Service Registry. For example:

5. Create a Kafka topic to store the Service Registry artifacts:

a. Under Provided APIs > Kafka Topic, click Create topic.

b. Change the default topic name from my-topic to the required storage-topic.

6. Create a Kafka topic to store the Service Registry global IDs:

a. Under Provided APIs > Kafka Topic, click Create topic.

b. Change the default topic name from my-topic to the required global-id-topic.

7. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

status:
 conditions:
 ...
 listeners:
 - addresses:
 - host: my-cluster-kafka-bootstrap.my-project.svc
 port: 9092
 bootstrapServers: 'my-cluster-kafka-bootstrap.my-project.svc:9092'
 type: plain
 ...

CHAPTER 3. INSTALLING SERVICE REGISTRY ON OPENSHIFT

17

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/index?

8. Paste in the following custom resource definition, but use your bootstrapServers value that
you copied earlier:

9. Click Create and wait for the Service Registry route to be created on OpenShift.

10. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry.my-project.my-domain-name.com/

Additional resources

For more details on creating Kafka clusters and topics using AMQ Streams, see Using AMQ
Streams on OpenShift.

3.4. CONFIGURING SERVICE REGISTRY WITH EMBEDDED INFINISPAN
STORAGE ON OPENSHIFT

This section explains how to configure Infinispan cache-based storage for Service Registry on
OpenShift. This storage option is based on Infinispan community Java libraries embedded in the
Quarkus-based Service Registry server. You do not need to install a separate Infinispan server using this
storage option. This option is suitable for development or demonstration only, and is not suitable for
production environments.

IMPORTANT

Service Registry storage in Infinispan is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Section 3.1, “Installing Service Registry
from the OpenShift OperatorHub”.

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
spec:
 configuration:
 persistence: "streams"
 streams:
 bootstrapServers: "my-cluster-kafka-bootstrap.my-project.svc:9092"

Red Hat Integration 2020-Q2 Getting Started with Service Registry

18

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/index?
https://access.redhat.com/support/offerings/techpreview

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

3. Paste in the following custom resource definition:

4. Click Create and wait for the Service Registry route to be created on OpenShift.

5. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry.my-project.my-domain-name.com/

Additional resources

For more details on configuring Infinispan clusters, see the example custom resources available
from the Apicurio Registry demonstration.

For more details on Infinispan, see https://infinispan.org/

3.5. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT
OPERATORHUB

If you do not already have a PostgreSQL database Operator installed, you can install a PostgreSQL
Operator on your OpenShift cluster from the OperatorHub. The OperatorHub is available from the
OpenShift Container Platform web console and provides an interface for cluster administrators to
discover and install Operators. For more details, see the OpenShift documentation.

IMPORTANT

Service Registry storage in a PostgreSQL database is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
spec:
 configuration:
 persistence: "infinispan"
 infinispan: # Currently uses embedded version of Infinispan
 clusterName: "example-apicurioregistry"
 # ^ Optional

CHAPTER 3. INSTALLING SERVICE REGISTRY ON OPENSHIFT

19

https://github.com/Apicurio/apicurio-registry-demo/blob/master/kubernetes/resources-infinispan.yaml
https://infinispan.org/
https://docs.openshift.com/container-platform/4.3/operators/olm-understanding-operatorhub.html
https://access.redhat.com/support/offerings/techpreview

Prerequisites

You must have cluster administrator access to an OpenShift cluster.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which Service Registry is installed. For example, from the
Project drop-down, select my-project.

3. In the left navigation menu, click Catalog > OperatorHub.

4. In the Filter by keyword text box, enter PostgreSQL to find an Operator suitable for your
environment, for example, Crunchy PostgreSQL for OpenShift or PostgreSQL Operator by
Dev4Ddevs.com.

5. Read the information about the Operator, and click Install. This displays the Create Operator
Subscription page.

6. Select your subscription settings, for example:

Installation Mode > A specific namespace on the cluster > my-project

Update Channel > stable

Approval Strategy > Manual

7. Click Subscribe. This displays the Operators > Installed Operators page.

8. Wait a few moments until the Status for the PostgreSQL Operator displays Succeeded and the
subscription is Up to Date.

IMPORTANT

You must read the documentation from your chosen PostgreSQL Operator for
details on how to create and manage your database.

Additional resources

Adding Operators to an OpenShift cluster

Crunchy PostgreSQL Operator QuickStart

3.6. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL
DATABASE STORAGE ON OPENSHIFT

This section explains how to configure Java Persistence API-based storage for Service Registry on
OpenShift using a PostgreSQL database Operator. You can install Service Registry in an existing
database or create a new database, depending on your environment. This section shows a simple
example using the PostgreSQL Operator by Dev4Ddevs.com.

IMPORTANT

Red Hat Integration 2020-Q2 Getting Started with Service Registry

20

https://docs.openshift.com/container-platform/4.3/operators/olm-adding-operators-to-cluster.html
https://access.crunchydata.com/documentation/postgres-operator/4.3.2/quickstart/

IMPORTANT

Service Registry storage in a PostgreSQL database is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Section 3.1, “Installing Service Registry
from the OpenShift OperatorHub”.

You must have already installed a PostgreSQL Operator on OpenShift. For examaple, see
Section 3.5, “Installing a PostgreSQL database from the OpenShift OperatorHub” .

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Change to the OpenShift project in which Service Registry and your PostgreSQL Operator are
installed. For example, from the Project drop-down, select my-project.

3. Create a PostgreSQL database for your Service Registry storage. For example, click Installed
Operators > PostgreSQL Operator by Dev4Ddevs.com > Create database > YAML.

4. Edit the database settings as follows:

name: Change the value to registry

image: Change the value to centos/postgresql-10-centos7

5. Edit any other database settings as needed depending on your environment, for example:

apiVersion: postgresql.dev4devs.com/v1alpha1
kind: Database
metadata:
 name: registry
 namespace: my-project
spec:
 databaseCpu: 30m
 databaseCpuLimit: 60m
 databaseMemoryLimit: 512Mi
 databaseMemoryRequest: 128Mi
 databaseName: example
 databaseNameKeyEnvVar: POSTGRESQL_DATABASE
 databasePassword: postgres
 databasePasswordKeyEnvVar: POSTGRESQL_PASSWORD
 databaseStorageRequest: 1Gi

CHAPTER 3. INSTALLING SERVICE REGISTRY ON OPENSHIFT

21

https://access.redhat.com/support/offerings/techpreview

6. Click Create Database, and wait until the database is created.

7. Click Installed Operators > Red Hat Integration - Service Registry > ApicurioRegistry >
Create ApicurioRegistry.

8. Paste in the following custom resource definition, and edit the values for the database url and
credentials to match your environment:

9. Click Create and wait for the Service Registry route to be created on OpenShift.

10. Click Networking > Route to access the new route for the Service Registry web console. For
example:

http://example-apicurioregistry.my-project.my-domain-name.com/

Additional resources

Crunchy PostgreSQL Operator QuickStart

Apicurio Registry Operator QuickStart

 databaseUser: postgres
 databaseUserKeyEnvVar: POSTGRESQL_USER
 image: centos/postgresql-10-centos7
 size: 1

apiVersion: apicur.io/v1alpha1
kind: ApicurioRegistry
metadata:
 name: example-apicurioregistry
spec:
 configuration:
 persistence: "jpa"
 dataSource:
 url: "jdbc:postgresql://SERVICE_NAME.NAMESPACE.svc:5432/"
 # e.g. url: "jdbc:postgresql://acid-minimal-cluster.my-project.svc:5432/"
 userName: "postgres"
 password: "PASSWORD"
 # ^ Optional

Red Hat Integration 2020-Q2 Getting Started with Service Registry

22

https://access.crunchydata.com/documentation/postgres-operator/4.3.2/quickstart/
https://github.com/Apicurio/apicurio-registry-operator/blob/master/docs/minikube-quickstart.md

CHAPTER 4. CONFIGURING SERVICE REGISTRY ON
OPENSHIFT

This chapter explains how to configure optional settings for Service Registry health checks on
OpenShift:

Section 4.1, “Configuring Service Registry health checks on OpenShift”

Section 4.2, “Environment variables for Service Registry health checks”

4.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON
OPENSHIFT

You can configure optional environment variables for liveness and readiness probes to monitor the
health of the Service Registry server on OpenShift:

Liveness probes test if the application can make progress. If the application cannot make
progress, OpenShift automatically restarts the failing Pod.

Readiness probes test if the application is ready to process requests. If the application is not
ready, it can become overwhelmed by requests, and OpenShift stops sending requests for the
time that the probe fails. If other Pods are OK, they continue to receive requests.

IMPORTANT

The default values of the liveness and readiness environment variables are designed for
most cases and should only be changed if required by your environment. Any changes to
the defaults depend on your hardware, network, and amount of data stored. These values
should be kept as low as possible to avoid unnecessary overhead.

Prerequisites

You must have an OpenShift cluster with cluster administrator access.

You must have already installed Service Registry. See Section 3.1, “Installing Service Registry
from the OpenShift OperatorHub”.

You must have already installed and configured your chosen Service Registry storage in AMQ
Streams, embedded Infinispan, or PostgreSQL.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Click Installed Operators > Red Hat Integration - Service Registry.

3. On the ApicurioRegistry tab, click the Operator custom resource for your deployment, for
example, example-apicurioregistry.

4. In the main overview page, find the Deployment Name section and the corresponding
DeploymentConfig name for your Service Registry deployment, for example, example-
apicurioregistry.

5. In the left navigation menu, click Workloads > Deployment Configs, and select your

CHAPTER 4. CONFIGURING SERVICE REGISTRY ON OPENSHIFT

23

5. In the left navigation menu, click Workloads > Deployment Configs, and select your
DeploymentConfig name.

6. Click the Environment tab, and enter your environment variables in the Single values env
section, for example:

NAME: LIVENESS_STATUS_RESET

VALUE: 350

7. Click Save at the bottom.
Alternatively, you can perform these steps using the OpenShift oc command. For more details,
see the OpenShift CLI documentation.

Additional resources

Section 4.2, “Environment variables for Service Registry health checks”

OpenShift documentation on monitoring application health

4.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH
CHECKS

This section describes the available environment variables for Service Registry health checks on
OpenShift. These include liveness and readiness probes to monitor the health of the Service Registry
server on OpenShift. For an example procedure, see Section 4.1, “Configuring Service Registry health
checks on OpenShift”.

IMPORTANT

The following environment variables are provided for reference only. The default values
are designed for most cases and should only be changed if required by your environment.
Any changes to the defaults depend on your hardware, network, and amount of data
stored. These values should be kept as low as possible to avoid unnecessary overhead.

Liveness environment variables

Table 4.1. Environment variables for Service Registry liveness probes

Name Description Type Default

LIVENESS_ERROR_THR
ESHOLD

Number of liveness issues or
errors that can occur before
the liveness probe fails.

Integer 1

LIVENESS_COUNTER_R
ESET

Period in which the threshold
number of errors must occur.
For example, if this value is
60 and the threshold is 1, the
check fails after two errors
occur in 1 minute

Seconds 60

Red Hat Integration 2020-Q2 Getting Started with Service Registry

24

https://docs.openshift.com/container-platform/4.3/cli_reference/openshift_cli/getting-started-cli.html
https://docs.openshift.com/container-platform/4.3/applications/application-health.html

LIVENESS_STATUS_RES
ET

Number of seconds that
must elapse without any
more errors for the liveness
probe to reset to OK status.

Seconds 300

LIVENESS_ERRORS_IGN
ORED

Comma-separated list of
ignored liveness exceptions.

String io.grpc.StatusRuntimeEx
ception,org.apache.kafk
a.streams.errors.InvalidS
tateStoreException

Name Description Type Default

NOTE

Because OpenShift automatically restarts a Pod that fails a liveness check, the liveness
settings, unlike readiness settings, do not directly affect behavior of Service Registry on
OpenShift.

Readiness environment variables

Table 4.2. Environment variables for Service Registry readiness probes

Name Description Type Default

READINESS_ERROR_THR
ESHOLD

Number of readiness issues or errors
that can occur before the readiness
probe fails.

Integer 1

READINESS_COUNTER_R
ESET

Period in which the threshold number of
errors must occur. For example, if this
value is 60 and the threshold is 1, the
check fails after two errors occur in 1
minute.

Seconds 60

READINESS_STATUS_RES
ET

Number of seconds that must elapse
without any more errors for the liveness
probe to reset to OK status. In this case,
this means how long the Pod stays not
ready, until it returns to normal
operation.

Seconds 300

CHAPTER 4. CONFIGURING SERVICE REGISTRY ON OPENSHIFT

25

READINESS_TIMEOUT Readiness tracks the timeout of two
operations:

How long it takes for storage
requests to complete

How long it takes for HTTP
REST API requests to return a
response

If these operations take more time than
the configured timeout, this is counted
as a readiness issue or error. This value
controls the timeouts for both
operations.

Seconds 5

Name Description Type Default

Additional resources

Section 4.1, “Configuring Service Registry health checks on OpenShift”

OpenShift documentation on monitoring application health

Red Hat Integration 2020-Q2 Getting Started with Service Registry

26

https://docs.openshift.com/container-platform/4.3/applications/application-health.html

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT
USING THE WEB CONSOLE

This chapter explains how to manage artifacts stored in the registry using the Service Registry web
console. This includes uploading and browsing registry content, and configuring optional rules:

Section 5.1, “Adding artifacts using the Service Registry web console”

Section 5.2, “Viewing artifacts using the Service Registry web console”

Section 5.3, “Configuring content rules using the Service Registry web console”

5.1. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB
CONSOLE

You can use the Service Registry web console to upload event schema and API design artifacts to the
registry. For more details on the artifact types that you can upload, see Section 8.1, “Service Registry
artifact types”. This section shows simple examples of uploading Service Registry artifacts, applying
artifact rules, and adding new artifact versions.

Prerequisites

Service Registry must be installed and running in your environment. For details, see Chapter 3,
Installing Service Registry on OpenShift .

Procedure

1. Connect to the Service Registry web console on:
http://MY_REGISTRY_URL/ui

2. Click Upload Artifact, and specify the following:

ID: Use the default empty setting to automatically generate an ID, or enter a specific artifact
ID.

Type: Use the default Auto-Detect setting to automatically detect the artifact type, or
select the artifact type from the drop-down, for example, Avro Schema or OpenAPI.

NOTE

The Service Registry server cannot automatically detect the JSON Schema
artifact type. You must manually select this artifact type.

Artifact: Drag and drop or click Browse to upload a file, for example, my-schema.json or
my-openapi.json.

3. Click Upload and view the Artifact Details:

Figure 5.1. Artifact Details in Service Registry web console

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

27

Figure 5.1. Artifact Details in Service Registry web console

Info: Displays the artifact name, description, lifecycle status, when created, and last
modified. You can click the Edit Artifact Metadata pencil icon to edit the artifact name and
description or add labels, and click Download to download the artifact file locally. Also
displays artifact Content Rules that you can enable and configure.

Documentation (OpenAPI only): Displays automatically-generated REST API
documentation.

Content: Displays a read-only view of the full artifact content.

4. In Content Rules, click Enable to configure a Validity Rule or Compatibility Rule, and select
the appropriate rule configuration from the drop-down. For more details, see Section 8.2,
“Service Registry content rule types”.

5. Click Upload new version to add a new artifact version, and drag and drop or click Browse to
upload the file, for example, my-schema.json or my-openapi.json.

6. To delete an artifact, click the trash icon next to Upload new version.

WARNING

Deleting an artifact deletes the artifact and all of its versions, and cannot be
undone. Artifact versions are immutable and cannot be deleted individually.

Additional resources

Section 5.2, “Viewing artifacts using the Service Registry web console”

Section 5.3, “Configuring content rules using the Service Registry web console”

5.2. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB
CONSOLE

You can use the Service Registry web console to browse the event schema and API design artifacts
stored in the registry. This section shows simple examples of viewing Service Registry artifacts, versions,
and artifact rules. For more details on the artifact types stored in the registry, see Section 8.1, “Service
Registry artifact types”.

Red Hat Integration 2020-Q2 Getting Started with Service Registry

28

Prerequisites

Service Registry must be installed and running in your environment. For details, see Chapter 3,
Installing Service Registry on OpenShift .

Artifacts must have been added to the registry using the Service Registry web console, REST
API commands, Maven plug-in, or a Java client application.

Procedure

1. Connect to the Service Registry web console on:
http://MY_REGISTRY_URL/ui

2. Browse the list of artifacts stored in the registry, or enter a search string to find an artifact. You
can select to search by a specific Name, Description, Label, or Everything.

Figure 5.2. Browse artifacts in Service Registry web console

3. Click View artifact to view the Artifact Details:

Info: Displays the artifact name, description, lifecycle status, when created, and last
modified. You can click the Edit Artifact Metadata pencil icon to edit the artifact name and
description or add labels, and click Download to download the artifact file locally. Also
displays artifact Content Rules that you can enable and configure.

Documentation (OpenAPI only): Displays automatically-generated REST API
documentation.

Content: Displays a read-only view of the full artifact content.

4. Select to view a different artifact Version from the drop-down, if additional versions have been
added.

Additional resources

Section 5.1, “Adding artifacts using the Service Registry web console”

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

29

Section 5.3, “Configuring content rules using the Service Registry web console”

5.3. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY
WEB CONSOLE

You can use the Service Registry web console to configure optional rules to prevent invalid content
from being added to the registry. All configured artifact rules or global rules must pass before a new
artifact version can be uploaded to the registry. Configured artifact rules override any configured global
rules. For more details, see Section 2.1, “Rules for registry content” .

This section shows a simple example of configuring global and artifact rules. For details on the different
rule types and associated configuration settings that you can select, see Section 8.2, “Service Registry
content rule types”.

Prerequisites

Service Registry must be installed and running in your environment. For details, see Chapter 3,
Installing Service Registry on OpenShift .

For artifact rules, artifacts must have been added to the registry using the Service Registry web
console, REST API commands, Maven plug-in, or a Java client application.

Procedure

1. Connect to the Service Registry web console on:
http://MY_REGISTRY_URL/ui

2. For artifact rules, browse the list of artifacts stored in the registry, or enter a search string to find
an artifact. You can select to search by a specific artifact Name, Description, Label, or
Everything.

3. Click View artifact to view the Artifact Details.

4. In Content Rules, click Enable to configure an artifact Validity Rule or Compatibility Rule, and
select the appropriate rule configuration from the drop-down. For more details, see Section 8.2,
“Service Registry content rule types”.

Figure 5.3. Configure content rules in Service Registry web console

5. For global rules, click the Settings cog icon at the top right of the toolbar, and click Enable to
configure a global Validity Rule or Compatibility Rule, and select the appropriate rule
configuration from the drop-down. For more details, see Section 8.2, “Service Registry content
rule types”.

Red Hat Integration 2020-Q2 Getting Started with Service Registry

30

6. To disable an artifact rule or global rule, click the trash icon next to the rule.

Additional resources

Section 5.1, “Adding artifacts using the Service Registry web console”

CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE

31

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT
USING THE REST API

This chapter explains how to manage artifacts stored in the registry using the Registry REST API. This
includes using Registry REST API commands, a Maven plug-in, or a Java client application:

Section 6.1, “Managing artifacts using Registry REST API commands”

Section 6.2, “Managing artifacts using the Service Registry Maven plug-in”

Section 6.3, “Managing artifacts using a Service Registry client application”

6.1. MANAGING ARTIFACTS USING REGISTRY REST API COMMANDS

Client applications can use Registry REST API commands to manage artifacts in Service Registry, for
example, in a CI/CD pipeline deployed in production. The Registry REST API provides create, read,
update, and delete operations for artifacts, versions, metadata, and rules stored in the registry. For
detailed information, see the Apicurio Registry REST API documentation .

This section shows a simple curl-based example of using the Registry REST API to add and retrieve an
Apache Avro schema artifact in the registry.

NOTE

When adding artifacts in Service Registry using the REST API, if you do not specify a
unique artifact ID, Service Registry generates one automatically as a UUID.

Prerequisites

See Section 1.4, “Registry REST API” .

Service Registry must be installed and running in your environment. For details, see Chapter 3,
Installing Service Registry on OpenShift .

Procedure

1. Add an artifact in the registry using the /artifacts operation. The following example curl
command adds a simple artifact for a share price application:

This example shows adding an Avro schema artifact with an artifact ID of share-price.

MY-REGISTRY-HOST is the host name on which Service Registry is deployed. For example:
my-cluster-service-registry-myproject.example.com.

2. Verify that the response includes the expected JSON body to confirm that the artifact was
added. For example:

$ curl -X POST -H "Content-type: application/json; artifactType=AVRO" -H "X-Registry-
ArtifactId: share-price" --data
'{"type":"record","name":"price","namespace":"com.example","fields":
[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}' http://MY-REGISTRY-
HOST/api/artifacts

Red Hat Integration 2020-Q2 Getting Started with Service Registry

32

files/registry-rest-api.htm

3. Retrieve the artifact from the registry using its artifact ID. For example, in this case the specified
ID is share-price:

Additional resources

For more REST API sample requests, see the Registry REST API documentation .

6.2. MANAGING ARTIFACTS USING THE SERVICE REGISTRY MAVEN
PLUG-IN

Service Registry provides a Maven plug-in to enable you to upload or download registry artifacts as part
of your development build. For example, this plug-in is useful for testing and validating that your schema
updates are compatible with client applications.

Prerequisites

Service Registry must be installed and running in your environment

Maven must be installed and configured in your environment

Procedure

1. Update your Maven pom.xml file to use the apicurio-registry-maven-plugin to upload an
artifact to Service Registry. The following example shows registering an Apache Avro schema
artifact:

{"createdOn":1578310374517,"modifiedOn":1578310374517,"id":"share-
price","version":1,"type":"AVRO","globalId":8}

$ curl http://MY-REGISTRY-URL/api/artifacts/share-price
'{"type":"record","name":"price","namespace":"com.example","fields":
[{"name":"symbol","type":"string"},{"name":"price","type":"string"}]}

<plugin>
<groupId>io.apicurio</groupId>
<artifactId>apicurio-registry-maven-plugin</artifactId>
<version>${registry.version}</version>
<executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>register</goal> 1
 </goals>
 <configuration>
 <registryUrl>http://my-cluster-service-registry-myproject.example.com/api</registryUrl>
2

 <artifactType>AVRO</artifactType>
 <artifacts>
 <schema1>${project.basedir}/schemas/schema1.avsc</schema1> 3
 </artifacts>
 </configuration>

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

33

files/registry-rest-api.htm

1

2

3

1

2

3

Specify register as the execution goal to upload an artifact to the registry.

You must specify the Service Registry URL with the /api endpoint.

You can upload multiple artifacts using the artifact ID and location.

2. You can also update your Maven pom.xml file to download a previously registered artifact from
Service Registry:

Specify download as the execution goal.

You must specify the Service Registry URL with the /api endpoint.

You can download multiple artifacts to a specified directory using the artifact ID.

Additional resources

For more details on the Maven plug-in, see https://github.com/Apicurio/apicurio-registry-
demo.

6.3. MANAGING ARTIFACTS USING A SERVICE REGISTRY CLIENT
APPLICATION

You can also manage artifacts stored in Service Registry using a Java client application. You create,
read, update, or delete artifacts stored in the registry using the Service Registry Java client classes.

 </execution>
</executions>
</plugin>

<plugin>
<groupId>io.apicurio</groupId>
<artifactId>apicurio-registry-maven-plugin</artifactId>
<version>${registry.version}</version>
<executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>download</goal> 1
 </goals>
 <configuration>
 <registryUrl>http://my-cluster-service-registry-myproject.example.com/api</registryUrl>
2

 <ids>
 <param1>schema1</param1> 3
 </ids>
 <outputDirectory>${project.build.directory}</outputDirectory>
 </configuration>
 </execution>
</executions>
</plugin>

Red Hat Integration 2020-Q2 Getting Started with Service Registry

34

https://github.com/Apicurio/apicurio-registry-demo

1

2

3

Prerequisites

See Section 1.6, “Kafka client serializers/deserializers”

You must have implemented a client application in Java that imports the Service Registry client
classes: io.apicurio.registry.client.RegistryClient

Service Registry must be installed and running in your environment

Procedure

Update your client application to add a new artifact in the registry. The following example shows
adding an Apache Avro schema artifact from a Kafka producer client application:

Configure the client application with the Service Registry URL in the client properties. You
must specify the Service Registry URL with the /api endpoint. You can create properties
for more than one registry node.

Check to see if the schema artifact already exists in the registry based on the artifact ID.

Add the new schema artifact in the registry.

Additional resources

For an example Java client application, see https://github.com/Apicurio/apicurio-registry-
demo.

For details on how to use the Service Registry Kafka client serializer/deserializer for Apache
Avro in AMQ Streams producer and consumer applications, see Using AMQ Streams on
Openshift.

String registryUrl_node1 = PropertiesUtil.property(clientProperties, "registry.url.node1",
 "http://my-cluster-service-registry-myproject.example.com/api"); 1
 try (RegistryService service = RegistryClient.create(registryUrl_node1))
 {
 String artifactId = ApplicationImpl.INPUT_TOPIC + "-value";
 try {
 service.getArtifactMetaData(artifactId); 2
 }
 catch (WebApplicationException e) {
 CompletionStage < ArtifactMetaData > csa = service.createArtifact(3
 ArtifactType.AVRO,
 artifactId,
 new ByteArrayInputStream(LogInput.SCHEMA$.toString().getBytes())
);
 csa.toCompletableFuture().get();
 }
 }

CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING THE REST API

35

https://github.com/Apicurio/apicurio-registry-demo
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift/service-registry-str

CHAPTER 7. USING KAFKA CLIENT
SERIALIZERS/DESERIALIZERS

Service Registry provides Kafka client serializers/deserializers for Kafka producer and consumer
applications. Kafka producer applications use serializers to encode messages that conform to a specific
event schema. Kafka consumer applications then use deserializers to validate that the messages have
been serialized using the correct schema, based on a specific schema ID. This ensures consistent schema
use and helps to prevent data errors at runtime.

This chapter provides instructions on how to use the Kafka client serializer and deserializer for Apache
Avro in your AMQ Streams producer and consumer client applications:

Section 7.1, “Kafka client applications and Service Registry”

Section 7.4, “Strategies to lookup a schema”

Section 7.5, “Service Registry constants”

Section 7.6, “Registering a schema to Service Registry”

Section 7.7, “Using a Service Registry schema from a consumer client”

Section 7.8, “Using a Service Registry schema from a producer client”

Prerequisites

You must read Section 1.6, “Kafka client serializers/deserializers”

You must have installed Service Registry. See Chapter 3, Installing Service Registry on
OpenShift.

You must have created AMQ Streams producer and consumer client applications. See Using
AMQ Streams on Openshift.

7.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY

Using Service Registry decouples the process of managing schemas from the configuration of client
applications. You enable an application to use a schema from the registry by specifying its URL in the
client code.

For example, the schemas to serialize and deserialize messages can be stored in the registry, which are
then referenced from the applications that use them to ensure that the messages that they send and
receive are compatible with those schemas.

Kafka client applications can push or pull their schemas from Service Registry at runtime.

Schemas can evolve, so you can define rules in Service Registry, for example, to ensure that changes to
a schema are valid and do not break previous versions used by applications. Service Registry checks for
compatibility by comparing a modified schema with previous versions of schemas.

Service Registry provides full schema registry support for Avro schemas, which are used by client
applications through Kafka client serializer/deserializer (SerDe) services provided by Service Registry.

7.2. PRODUCER SCHEMA CONFIGURATION

Red Hat Integration 2020-Q2 Getting Started with Service Registry

36

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html/using_amq_streams_on_openshift

A producer client application uses a serializer to put the messages it sends to a specific broker topic into
the correct data format.

To enable a producer to use Service Registry for serialization, you:

Define and register your schema with Service Registry

Configure the producer client code with the:

URL of Service Registry

Service Registry serializer services to use with the messages

Strategy to look up the schema used for serialization in Service Registry

After registering your schema, when you start Kafka and Service Registry, you can access the schema to
format messages sent to the Kafka broker topic by the producer.

If a schema already exists, you can create a new version through the REST API based on compatibility
rules defined in Service Registry. Versions are used for compatibility checking as a schema evolves. An
artifact ID and schema version represents a unique tuple that identifies a schema.

7.3. CONSUMER SCHEMA CONFIGURATION

A consumer client application uses a deserializer to get the messages it consumes from a specific broker
topic into the correct data format.

To enable a consumer to use Service Registry for deserialization, you:

Define and register your schema with Service Registry

Configure the consumer client code with the:

URL of Service Registry

Service Registry deserializer service to use with the messages

Input data stream for deserialization

The schema is then retrieved by the deserializer using a global ID written into the message being
consumed. The message received must, therefore, include a global ID as well as the message data.

For example:

Now, when you start Kafka and Service Registry, you can access the schema in order to format messages
received from the Kafka broker topic.

7.4. STRATEGIES TO LOOKUP A SCHEMA

A Service Registry strategy is used by the Kafka client serializer/deserializer to determine the artifact ID
or global ID under which the message schema is registered in Service Registry.

...
[MAGIC_BYTE]
[GLOBAL_ID]
[MESSAGE DATA]

CHAPTER 7. USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

37

For a given topic and message, you can use implementations of the following Java classes:

ArtifactIdStrategy to return an artifact ID

GlobalIdStrategy to return a global ID

The artifact ID returned depends on whether the key or value in the message is being serialized.

The classes for each strategy are organized in the io.apicurio.registry.utils.serde.strategy package.

The default strategy is TopicIdStrategy, which looks for Service Registry artifacts with the same name
as the Kafka topic receiving messages.

For example:

The topic parameter is the name of the Kafka topic receiving the message.

The isKey parameter is true when the message key is being serialized, and false when the
message value is being serialized.

The schema parameter is the schema of the message being serialized/deserialized.

The artifactID returned is the ID under which the schema is registered in Service Registry.

What lookup strategy you use depends on how and where you store your schema. For example, you
might use a strategy that uses a record ID if you have different Kafka topics with the same Avro
message type.

Strategies to return an artifact ID
Strategies to return an artifact ID based on an implementation of ArtifactIdStrategy.

RecordIdStrategy

Avro-specific strategy that uses the full name of the schema.

TopicRecordIdStrategy

Avro-specific strategy that uses the topic name and the full name of the schema.

TopicIdStrategy

(Default) strategy that uses the topic name and key or value suffix.

SimpleTopicIdStrategy

Simple strategy that only uses the topic name.

Strategies to return a global ID
Strategies to return a global ID based on an implementation of GlobalIdStrategy.

FindLatestIdStrategy

Strategy that returns the global ID of the latest schema version, based on an artifact ID.

FindBySchemaIdStrategy

Strategy that matches schema content, based on an artifact ID, to return a global ID.

GetOrCreateIdStrategy

public String artifactId(String topic, boolean isKey, T schema) {
 return String.format("%s-%s", topic, isKey ? "key" : "value");
}

Red Hat Integration 2020-Q2 Getting Started with Service Registry

38

1

2

3

4

1

2

Strategy that tries to get the latest schema, based on an artifact ID, and if it does not exist, it creates
a new schema.

AutoRegisterIdStrategy

Strategy that updates the schema, and uses the global ID of the updated schema.

7.5. SERVICE REGISTRY CONSTANTS

You can configure specific client SerDe services and schema lookup strategies directly into a client
using the constants outlined here.

Alternatively, you can use specify the constants in a properties file, or a properties instance.

Constants for serializer/deserializer (SerDe) services

(Required) The URL of Service Registry.

Allows the client to make the request and look up the information from a cache of previous results,
to improve processing time. If the cache is empty, the lookup is performed from Service Registry.

Extends ID handling to support other ID formats and make them compatible with Service Registry
SerDe services. For example, changing the ID format from Long to Integer supports the Confluent
ID format.

A flag to simplify the handling of Confluent IDs. If set to true, an Integer is used for the global ID
lookup.

Constants for lookup strategies

ArtifactId strategy.

Global ID strategy.

Constants for converters

public abstract class AbstractKafkaSerDe<T extends AbstractKafkaSerDe<T>> implements
AutoCloseable {
 protected final Logger log = LoggerFactory.getLogger(getClass());

 public static final String REGISTRY_URL_CONFIG_PARAM = "apicurio.registry.url"; 1
 public static final String REGISTRY_CACHED_CONFIG_PARAM = "apicurio.registry.cached";
2

 public static final String REGISTRY_ID_HANDLER_CONFIG_PARAM = "apicurio.registry.id-
handler"; 3
 public static final String REGISTRY_CONFLUENT_ID_HANDLER_CONFIG_PARAM =
"apicurio.registry.as-confluent"; 4

public abstract class AbstractKafkaStrategyAwareSerDe<T, S extends
AbstractKafkaStrategyAwareSerDe<T, S>> extends AbstractKafkaSerDe<S> {
 public static final String REGISTRY_ARTIFACT_ID_STRATEGY_CONFIG_PARAM =
"apicurio.registry.artifact-id"; 1
 public static final String REGISTRY_GLOBAL_ID_STRATEGY_CONFIG_PARAM =
"apicurio.registry.global-id"; 2

CHAPTER 7. USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

39

1

2

1

2

1

2

(Required) Serializer to use with the converter.

(Required) Deserializer to use with the converter.

Constants for Avro data providers

Avro Datum provider to write data to a schema, with or without reflection.

Flag to set to use an Avro-specific datum reader.

Default datum reader.

Datum reader using reflection.

7.6. REGISTERING A SCHEMA TO SERVICE REGISTRY

After you have defined a schema in the appropriate format, such as Apache Avro, you can add the
schema to Service Registry.

You can add the schema through:

The Service Registry web console

A curl command using the Service Registry API

A Maven plugin supplied with Service Registry

Schema configuration added to your client code

Client applications cannot use Service Registry until you have registered your schemas.

Service Registry web console
Having installed Service Registry, you connect to the web console from the ui endpoint:

http://MY-REGISTRY-URL/ui

From the console, you can add, view and configure schemas. You can also create the rules that prevent

public class SchemalessConverter<T> extends AbstractKafkaSerDe<SchemalessConverter<T>>
implements Converter {
 public static final String REGISTRY_CONVERTER_SERIALIZER_PARAM =
"apicurio.registry.converter.serializer"; 1
 public static final String REGISTRY_CONVERTER_DESERIALIZER_PARAM =
"apicurio.registry.converter.deserializer"; 2

public interface AvroDatumProvider<T> {
 String REGISTRY_AVRO_DATUM_PROVIDER_CONFIG_PARAM = "apicurio.registry.avro-
datum-provider"; 1
 String REGISTRY_USE_SPECIFIC_AVRO_READER_CONFIG_PARAM = "apicurio.registry.use-
specific-avro-reader"; 2

DefaultAvroDatumProvider (io.apicurio.registry.utils.serde.avro) 1
ReflectAvroDatumProvider (io.apicurio.registry.utils.serde.avro) 2

Red Hat Integration 2020-Q2 Getting Started with Service Registry

40

1

2

From the console, you can add, view and configure schemas. You can also create the rules that prevent
invalid content being added to the registry.

For more information on using the Service Registry web console, see the Chapter 3, Installing Service
Registry on OpenShift.

Curl example

Avro schema

OpenShift route name that exposes Service Registry

Plugin example

Configuration through a (producer) client example

curl -X POST -H "Content-type: application/json; artifactType=AVRO" \
 -H "X-Registry-ArtifactId: prices-value" \
 --data '{ 1
 "type":"record",
 "name":"price",
 "namespace":"com.redhat",
 "fields":[{"name":"symbol","type":"string"},
 {"name":"price","type":"string"}]
 }'
 https://my-cluster-service-registry-myproject.example.com/api/artifacts -s 2

<plugin>
<groupId>io.apicurio</groupId>
<artifactId>apicurio-registry-maven-plugin</artifactId>
<version>${registry.version}</version>
<executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>register</goal>
 </goals>
 <configuration>
 <registryUrl>https://my-cluster-service-registry-myproject.example.com/api</registryUrl>
 <artifactType>AVRO</artifactType>
 <artifacts>
 <schema1>${project.basedir}/schemas/schema1.avsc</schema1>
 </artifacts>
 </configuration>
 </execution>
</executions>
</plugin>

String registryUrl_node1 = PropertiesUtil.property(clientProperties, "registry.url.node1", 1
 "https://my-cluster-service-registry-myproject.example.com/api");
try (RegistryService service = RegistryClient.create(registryUrl_node1)) {
 String artifactId = ApplicationImpl.INPUT_TOPIC + "-value";
 try {
 service.getArtifactMetaData(artifactId); 2

CHAPTER 7. USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

41

1

2

1

The properties are registered. You can register properties against more than one node.

Check to see if the schema already exists based on the artifact ID.

7.7. USING A SERVICE REGISTRY SCHEMA FROM A CONSUMER
CLIENT

This procedure describes how to configure a Java consumer client to use a schema from Service
Registry.

Prerequisites

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Configure the client with the URL of Service Registry.
For example:

2. Configure the client with the Service Registry deserializer service.
For example:

The deserializer service provided by Service Registry.

 } catch (WebApplicationException e) {
 CompletionStage <ArtifactMetaData> csa = service.createArtifact(
 ArtifactType.AVRO,
 artifactId,
 new ByteArrayInputStream(LogInput.SCHEMA$.toString().getBytes())
);
 csa.toCompletableFuture().get();
 }
}

String registryUrl_node1 = PropertiesUtil.property(clientProperties, "registry.url.node1",
 "https://my-cluster-service-registry-myproject.example.com/api");
RegistryService service = RegistryClient.cached(registryUrl);

Deserializer<LogInput> deserializer = new AvroKafkaDeserializer <> (1
 service,
 new DefaultAvroDatumProvider<LogInput>().setUseSpecificAvroReader(true)
);
Serde<LogInput> logSerde = Serdes.serdeFrom(2
 new AvroKafkaSerializer<>(service),
 deserializer
);
KStream<String, LogInput> input = builder.stream(3
 INPUT_TOPIC,
 Consumed.with(Serdes.String(), logSerde)
);

Red Hat Integration 2020-Q2 Getting Started with Service Registry

42

2

3

1

2

3

4

The deserialization is in Apache Avro JSON format.

The input data for deserialization derived from the topic values consumed by the client.

7.8. USING A SERVICE REGISTRY SCHEMA FROM A PRODUCER
CLIENT

This procedure describes how to configure a Java producer client to use a schema from Service Registry.

Prerequisites

Service Registry is installed

The schema is registered with Service Registry

Procedure

1. Configure the client with the URL of Service Registry.
For example:

2. Configure the client with the serializer services, and the strategy to look up the schema in
Service Registry.
For example:

The Service Registry URL.

The serializer service for the message key provided by Service Registry.

The serializer service for the message value provided by Service Registry.

Lookup strategy to find the global ID for the schema. Matches the schema of the message
against its global ID (artifact ID and schema version) in Service Registry.

String registryUrl_node1 = PropertiesUtil.property(clientProperties, "registry.url.node1",
 "https://my-cluster-service-registry-myproject.example.com/api");
RegistryService service = RegistryClient.cached(registryUrl);

String registryUrl_node1 = PropertiesUtil.property(clientProperties, "registry.url.node1",
 "https://my-cluster-service-registry-myproject.example.com/api");

 clientProperties.put(CommonClientConfigs.BOOTSTRAP_SERVERS_CONFIG,
property(clientProperties, CommonClientConfigs.BOOTSTRAP_SERVERS_CONFIG, "my-
cluster-kafka-bootstrap:9092"));
 clientProperties.put(AbstractKafkaSerDe.REGISTRY_URL_CONFIG_PARAM,
registryUrl_node1); 1
 clientProperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
StringSerializer.class.getName()); 2
 clientProperties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
AvroKafkaSerializer.class.getName()); 3

clientProperties.put(AbstractKafkaSerializer.REGISTRY_GLOBAL_ID_STRATEGY_CONFIG_
PARAM, FindLatestIdStrategy.class.getName()); 4

CHAPTER 7. USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS

43

CHAPTER 8. SERVICE REGISTRY REFERENCE
This chapter lists the supported artifact types and content rule types that are stored in Service Registry.

Section 8.1, “Service Registry artifact types”

Section 8.2, “Service Registry content rule types”

Additional resources

For more detailed information on artifact and rule types, see the Apicurio Registry REST API
documentation

8.1. SERVICE REGISTRY ARTIFACT TYPES

You can store and manage the following artifact types in Service Registry:

Table 8.1. Service Registry artifact types

Type Description

ASYNCAPI AsyncAPI specification

AVRO Apache Avro schema

GRAPHQL GraphQL schema

JSON JSON Schema

KCONNECT Apache Kafka Connect schema

OPENAPI OpenAPI specification

PROTOBUF Google protocol buffers schema

PROTOBUF_FD Google protocol buffers file descriptor

WSDL Web Services Definition Language

XSD XML Schema Definition

8.2. SERVICE REGISTRY CONTENT RULE TYPES

You can specify the following rule types to govern content evolution in Service Registry:

Table 8.2. Service Registry content rule types

Red Hat Integration 2020-Q2 Getting Started with Service Registry

44

files/registry-rest-api.htm

Type Description

VALIDITY Validate data before adding it to the registry. The
possible configuration values for this rule are:

FULL: The validation is both syntax and
semantic.

SYNTAX_ONLY: The validation is syntax
only.

COMPATIBILITY Ensure that newly added artifacts are compatible
with previously added versions. The possible
configuration values for this rule are:

FULL: The new artifact is forward and
backward compatible with the most recently
added artifact.

FULL_TRANSITIVE: The new artifact is
forward and backward compatible with all
previously added artifacts.

BACKWARD: Clients using the new
artifact can read data written using the most
recently added artifact.

BACKWARD_TRANSITIVE: Clients
using the new artifact can read data written
using all previously added artifacts.

FORWARD: Clients using the most
recently added artifact can read data
written using the new artifact.

FORWARD_TRANSITIVE: Clients using
all previously added artifacts can read data
written using the new artifact.

NONE: All backward and forward
compatibility checks are disabled.

CHAPTER 8. SERVICE REGISTRY REFERENCE

45

APPENDIX A. USING YOUR SUBSCRIPTION
Service Registry is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat Integration entries in the Integration and Automation category.

3. Select the desired Service Registry product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
ZIP or TAR files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

Red Hat Integration 2020-Q2 Getting Started with Service Registry

46

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. INTRODUCTION TO SERVICE REGISTRY
	1.1. SERVICE REGISTRY OVERVIEW
	Service Registry features

	1.2. SERVICE REGISTRY ARTIFACTS
	1.3. SERVICE REGISTRY WEB CONSOLE
	1.4. REGISTRY REST API
	1.5. STORAGE OPTIONS
	1.6. KAFKA CLIENT SERIALIZERS/DESERIALIZERS
	1.7. KAFKA CONNECT CONVERTERS
	1.8. REGISTRY DEMONSTRATION EXAMPLES
	1.9. AVAILABLE DISTRIBUTIONS

	CHAPTER 2. INTRODUCTION TO SERVICE REGISTRY RULES
	2.1. RULES FOR REGISTRY CONTENT
	2.2. WHEN RULES ARE APPLIED
	2.3. HOW RULES WORK

	CHAPTER 3. INSTALLING SERVICE REGISTRY ON OPENSHIFT
	3.1. INSTALLING SERVICE REGISTRY FROM THE OPENSHIFT OPERATORHUB
	3.2. INSTALLING AMQ STREAMS FROM THE OPENSHIFT OPERATORHUB
	3.3. CONFIGURING SERVICE REGISTRY WITH AMQ STREAMS STORAGE ON OPENSHIFT
	3.4. CONFIGURING SERVICE REGISTRY WITH EMBEDDED INFINISPAN STORAGE ON OPENSHIFT
	3.5. INSTALLING A POSTGRESQL DATABASE FROM THE OPENSHIFT OPERATORHUB
	3.6. CONFIGURING SERVICE REGISTRY WITH POSTGRESQL DATABASE STORAGE ON OPENSHIFT

	CHAPTER 4. CONFIGURING SERVICE REGISTRY ON OPENSHIFT
	4.1. CONFIGURING SERVICE REGISTRY HEALTH CHECKS ON OPENSHIFT
	4.2. ENVIRONMENT VARIABLES FOR SERVICE REGISTRY HEALTH CHECKS
	Liveness environment variables
	Readiness environment variables

	CHAPTER 5. MANAGING SERVICE REGISTRY CONTENT USING THE WEB CONSOLE
	5.1. ADDING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
	5.2. VIEWING ARTIFACTS USING THE SERVICE REGISTRY WEB CONSOLE
	5.3. CONFIGURING CONTENT RULES USING THE SERVICE REGISTRY WEB CONSOLE

	CHAPTER 6. MANAGING SERVICE REGISTRY CONTENT USING THE REST API
	6.1. MANAGING ARTIFACTS USING REGISTRY REST API COMMANDS
	6.2. MANAGING ARTIFACTS USING THE SERVICE REGISTRY MAVEN PLUG-IN
	6.3. MANAGING ARTIFACTS USING A SERVICE REGISTRY CLIENT APPLICATION

	CHAPTER 7. USING KAFKA CLIENT SERIALIZERS/DESERIALIZERS
	7.1. KAFKA CLIENT APPLICATIONS AND SERVICE REGISTRY
	7.2. PRODUCER SCHEMA CONFIGURATION
	7.3. CONSUMER SCHEMA CONFIGURATION
	7.4. STRATEGIES TO LOOKUP A SCHEMA
	Strategies to return an artifact ID
	Strategies to return a global ID

	7.5. SERVICE REGISTRY CONSTANTS
	Constants for serializer/deserializer (SerDe) services
	Constants for lookup strategies
	Constants for converters
	Constants for Avro data providers

	7.6. REGISTERING A SCHEMA TO SERVICE REGISTRY
	Service Registry web console
	Curl example
	Plugin example
	Configuration through a (producer) client example

	7.7. USING A SERVICE REGISTRY SCHEMA FROM A CONSUMER CLIENT
	7.8. USING A SERVICE REGISTRY SCHEMA FROM A PRODUCER CLIENT

	CHAPTER 8. SERVICE REGISTRY REFERENCE
	8.1. SERVICE REGISTRY ARTIFACT TYPES
	8.2. SERVICE REGISTRY CONTENT RULE TYPES

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files
	Registering your system for packages

