
Red Hat Gluster Storage 3.3

Container-Native Storage for OpenShift
Container Platform

Deploying Container-Native Storage for OpenShift Container Platform 3.6

Edition 1

Last Updated: 2018-03-05

Red Hat Gluster Storage 3.3 Container-Native Storage for OpenShift

Container Platform

Deploying Container-Native Storage for OpenShift Container Platform 3.6
Edition 1

Bhavana Mohan
Customer Content Services Red Hat
bmohanra@redhat.com

Legal Notice

Copyright © 2017-2018 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes the prerequisites and provides step-by-step instructions to deploy
Container-Native Storage with OpenShift Platform.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO CONTAINERIZED RED HAT GLUSTER STORAGE

CHAPTER 2. CONTAINER-NATIVE STORAGE FOR OPENSHIFT CONTAINER PLATFORM

CHAPTER 3. CONTAINER-READY STORAGE FOR OPENSHIFT CONTAINER PLATFORM

CHAPTER 4. INSTALL AND UPGRADE WORKFLOW: WHAT TASKS DO I NEED TO COMPLETE?
4.1. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM AND CONTAINER-NATIVE
STORAGE ARE NOT INSTALLED
4.2. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM AND CONTAINER-READY
STORAGE ARE NOT INSTALLED
4.3. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM 3.6 IS INSTALLED AND
CONTAINER-NATIVE STORAGE 3.6 IS NOT INSTALLED
4.4. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM 3.6 IS INSTALLED AND
CONTAINER-READY STORAGE IS NOT INSTALLED
4.5. (UPGRADE) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM 3.6 IS INSTALLED AND
CONTAINER-NATIVE STORAGE IS INSTALLED
4.6. (UPGRADE) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM 3.6 IS INSTALLED AND
CONTAINER-READY STORAGE IS INSTALLED WITH ADVANCED INSTALLER AND REGISTRY

CHAPTER 5. SUPPORT REQUIREMENTS
5.1. SUPPORTED VERSIONS
5.2. ENVIRONMENT REQUIREMENTS

CHAPTER 6. SETTING UP CONTAINER-NATIVE STORAGE
6.1. CONFIGURING PORT ACCESS
6.2. ENABLING KERNEL MODULES
6.3. STARTING AND ENABLING SERVICES

CHAPTER 7. SETTING UP CONTAINER-READY STORAGE
7.1. INSTALLING RED HAT GLUSTER STORAGE SERVER ON RED HAT ENTERPRISE LINUX (LAYERED INSTALL)

7.2. CONFIGURING PORT ACCESS
7.3. ENABLING KERNEL MODULES
7.4. STARTING AND ENABLING SERVICES

CHAPTER 8. SETTING UP THE ENVIRONMENT
8.1. PREPARING THE RED HAT OPENSHIFT CONTAINER PLATFORM CLUSTER
8.2. DEPLOYING CONTAINERIZED RED HAT GLUSTER STORAGE SOLUTIONS

CHAPTER 9. CREATING PERSISTENT VOLUMES
9.1. FILE STORAGE
9.2. BLOCK STORAGE

CHAPTER 10. UPDATING THE REGISTRY WITH CONTAINER-NATIVE STORAGE AS THE STORAGE BACK-
END

10.1. VALIDATING THE OPENSHIFT CONTAINER PLATFORM REGISTRY DEPLOYMENT
10.2. CONVERTING THE OPENSHIFT CONTAINER PLATFORM REGISTRY WITH CONTAINER-NATIVE STORAGE

CHAPTER 11. OPERATIONS ON A RED HAT GLUSTER STORAGE POD IN AN OPENSHIFT ENVIRONMENT

CHAPTER 12. MANAGING CLUSTERS
12.1. INCREASING STORAGE CAPACITY
12.2. REDUCING STORAGE CAPACITY

4

5

7

8

8

8

9

10

11

11

13
13
13

18
18
18
19

20

20
21
22
23

24
24
26

48
48
64

72
72

74

79

85
85
96

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 13. UPGRADING YOUR CONTAINER-NATIVE STORAGE ENVIRONMENT
13.1. PREREQUISITES
13.2. UPGRADING CNS-DEPLOY AND HEKETI SERVER
13.3. UPGRADING THE RED HAT GLUSTER STORAGE PODS

CHAPTER 14. UPGRADING YOUR CONTAINER-READY STORAGE ENVIRONMENT
14.1. PREREQUISITES
14.2. UPGRADING CONTAINER-READY STORAGE

CHAPTER 15. TROUBLESHOOTING

CHAPTER 16. UNINSTALLING CONTAINERIZED RED HAT GLUSTER STORAGE

CHAPTER 17. ENABLING ENCRYPTION
17.1. PREREQUISITES
17.2. ENABLING ENCRYPTION FOR A NEW CONTAINER-NATIVE STORAGE SETUP
17.3. ENABLING ENCRYPTION FOR AN EXISTING CONTAINER-NATIVE STORAGE SETUP
17.4. DISABLING ENCRYPTION

CHAPTER 18. S3 COMPATIBLE OBJECT STORE IN A CONTAINER-NATIVE STORAGE ENVIRONMENT
18.1. PREREQUISITES
18.2. SETTING UP S3 COMPATIBLE OBJECT STORE FOR CONTAINER-NATIVE STORAGE
18.3. OBJECT OPERATIONS

APPENDIX A. MANUAL DEPLOYMENT
A.1. INSTALLING THE TEMPLATES
A.2. DEPLOYING THE CONTAINERS
A.3. SETTING UP THE HEKETI SERVER

APPENDIX B. CLUSTER ADMINISTRATOR SETUP

APPENDIX C. CLIENT CONFIGURATION USING PORT FORWARDING

APPENDIX D. HEKETI CLI COMMANDS

APPENDIX E. GLUSTER BLOCK STORAGE AS BACKEND FOR LOGGING AND METRICS
E.1. PREREQUISITES
E.2. ENABLING GLUSTER BLOCK STORAGE AS BACKEND FOR LOGGING
E.3. ENABLING GLUSTER BLOCK STORAGE AS BACKEND FOR METRICS
E.4. VERIFYING IF GLUSTER BLOCK IS SETUP AS BACKEND

APPENDIX F. KNOWN ISSUES

APPENDIX G. REVISION HISTORY

102
102
102
104

110
110
110

113

115

117
117
117

120
121

125
125
125
127

129
129
130
132

136

137

138

140
140
140
141
142

143

144

Container-Native Storage for OpenShift Container Platform

2

Table of Contents

3

CHAPTER 1. INTRODUCTION TO CONTAINERIZED RED HAT
GLUSTER STORAGE
This guide provides step-by-step instructions to deploy Containerized Red Hat Gluster Storage. The
deployment addresses the use-case where applications require both shared file storage and the
flexibility of a converged infrastructure with compute and storage instances being scheduled and run
from the same set of hardware.

Containerized Red Hat Gluster Storage Solutions

The following table lists the Containerized Red Hat Gluster Storage solutions, a brief description, and
the links to the documentation for more information about the solution.

Table 1.1. Containerized Red Hat Gluster Storage Solutions

Solution Description Documentation

Container-Native Storage (CNS) This solution addresses the use-
case where applications require
both shared file storage and the
flexibility of a converged
infrastructure with compute and
storage instances being
scheduled and run from the same
set of hardware.

For information on deploying
CNS, see Chapter 2, Container-
Native Storage for OpenShift
Container Platform in this guide.

Container Ready Storage (CRS)
with Heketi

This solution addresses the use-
case where a dedicated Gluster
cluster is available external to the
OpenShift Origin cluster, and you
provision storage from the
Gluster cluster. In this mode,
Heketi also runs outside the
cluster and and can be co-located
with a Red Hat Gluster Storage
node.

For information on configuring
CRS with Heketi, see Complete
Example of Dynamic Provisioning
Using Dedicated GlusterFS.

Container Ready Storage (CRS)
without Heketi

This solution uses your OpenShift
Container Platform cluster
(without Heketi) to provision Red
Hat Gluster Storage volumes
(from a dedicated Red Hat
Gluster Storage cluster) as
persistent storage for
containerized applications.

For information on creating
OpenShift Container Platform
cluster with persistent storage
using Red Hat Gluster Storage,
see Persistent Storage Using
GlusterFS .

Container-Native Storage for OpenShift Container Platform

4

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-storage-examples-dedicated-gluster-dynamic-example
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-persistent-storage-persistent-storage-glusterfs

CHAPTER 2. CONTAINER-NATIVE STORAGE FOR OPENSHIFT
CONTAINER PLATFORM
This deployment delivers a hyper-converged solution, where the storage containers that host Red Hat
Gluster Storage co-reside with the compute containers and serve out storage from the hosts that have
local or direct attached storage to the compute containers. This solution integrates Red Hat Gluster
Storage deployment and management with OpenShift services. As a result, persistent storage is
delivered within an OpenShift pod that provides both compute and file storage.

Container-Native Storage for OpenShift Container Platform is built around three key technologies:

OpenShift provides the platform as a service (PaaS) infrastructure based on Kubernetes
container management. Basic OpenShift architecture is built around multiple master systems
where each system contains a set of nodes.

Red Hat Gluster Storage provides the containerized distributed storage based on Red Hat
Gluster Storage 3.3 container. Each Red Hat Gluster Storage volume is composed of a
collection of bricks, where each brick is the combination of a node and an export directory.

Heketi provides the Red Hat Gluster Storage volume life cycle management. It creates the Red
Hat Gluster Storage volumes dynamically and supports multiple Red Hat Gluster Storage
clusters.

The following list provides the administrators a solution workflow. The administrators can:

Create multiple persistent volumes (PV) and register these volumes with OpenShift.

Developers then submit a persistent volume claim (PVC).

A PV is identified and selected from a pool of available PVs and bound to the PVC.

The OpenShift pod then uses the PV for persistent storage.

CHAPTER 2. CONTAINER-NATIVE STORAGE FOR OPENSHIFT CONTAINER PLATFORM

5

Figure 2.1. Architecture - Container-Native Storage for OpenShift Container Platform

Container-Native Storage for OpenShift Container Platform

6

CHAPTER 3. CONTAINER-READY STORAGE FOR OPENSHIFT
CONTAINER PLATFORM
Container-Ready Storage is deployed as a stand-alone Red Hat Gluster Storage cluster that provides
persistent storage to containers, unlike Container-Native Storage, which is deployed on top of an
OpenShift Cluster.

Container-Ready Storage provides the same storage functionality to OpenShift Container Platform as
Container-Native Storage. Container-Ready Storage provides dynamic provisioned storage, statically
provisioned storage, RWO support, and RWX support. Further, it provides full support for OpenShift
Container Platform infrastructure services like logging, metrics, and registry services. Being stand-
alone of OpenShift Container Platform, Container-Ready Storage does have an advantage regarding
providing additional Red Hat Gluster Storage data services functionality to what is supported by
OpenShift, such as, Snapshot, Geo Replication, and Nagios Monitoring.

For users of persistent storage, the deployment modes are completely transparent. Administrators will
see variation in how they set the system up, manage, and scale. In Container-Ready Storage, storage is
managed like Red Hat Gluster Storage.

Following are some of the key drivers of choosing Container-Ready Storage mode of deployment:

OpenShift Container Platform administrators might not want to manage storage. Container-
Ready Storage separates storage management from container management.

Leverage legacy storage (SAN, Arrays, Old filers): Customers often have storage arrays from
traditional storage vendors that have either limited or no support for OpenShift. Container-
Ready Storage mode allows users to leverage existing legacy storage for OpenShift
Containers.

Cost effective: In environments where costs related to new infrastructure is a challenge, they
can re-purpose their existing storage arrays to back OpenShift under Container-Ready
Storage. Container-Ready Storage is perfect for such situations where one can run Red Hat
Gluster Storage inside a VM and serve out LUNs or disks from these storage arrays to
OpenShift offering all of the features that the OpenShift storage subsystem has to offer
including dynamic provisioning. This is a very useful solution in those environments with
potential infrastructure additions.

Container-Ready Storage may have Heketi, and other provisioners (components of Container-Ready
Storage) deployed on top of OpenShift Cluster nodes. With Container-Native Storage 3.6, Red Hat
recommends Heketi be deployed on OpenShift Cluster. Heketi is a service endpoint for automated Red
Hat Gluster Storage volume provisioning, where requests for allocation of Red Hat Gluster Storage
volumes to back OpenShift PVs land from kubernetes. Heketi manages allocation and de-allocation of
Red Hat Gluster Storage volumes dynamically.

CHAPTER 3. CONTAINER-READY STORAGE FOR OPENSHIFT CONTAINER PLATFORM

7

CHAPTER 4. INSTALL AND UPGRADE WORKFLOW: WHAT
TASKS DO I NEED TO COMPLETE?
This chapter lists the workflow for different use cases for Installing or Upgrading a Container-Native
Storage or Container-Ready Storage environment.

4.1. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER
PLATFORM AND CONTAINER-NATIVE STORAGE ARE NOT INSTALLED

4.1.1. Customer Objective

Install OpenShift Container Platform 3.6 and Container-Native Storage 3.6.

4.1.2. Prerequisites

Install the registry with NFS backend when installing OpenShift Container Platform.

Do not install Logging and Metrics when installing OpenShift Container Platform.

Red Hat Gluster Storage Requirements

Planning Guidelines

4.1.3. Required Installation Tasks

1. OpenShift Container Platform 3.6 Quick Installation or OpenShift Container Platform 3.6
Advanced Installation

2. Container-Native Storage Environment Requirements on RHEL 7 or Container-Native Storage
Environment Requirements on RHEL Atomic Host

3. Container-Native Storage Requirements

4. Setting up Container-Native Storage

5. Deploying Container-Native Storage

6. Migrate registry back-end to Gluster: Migrating Registry

7. To use Block Storage: Block Storage

8. To set Gluster-block as backend for Logging and Metrics: Logging and Metrics

9. To use File Storage: File Storage

4.2. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER
PLATFORM AND CONTAINER-READY STORAGE ARE NOT INSTALLED

4.2.1. Customer Objective

Install OpenShift Container Platform 3.6 and Container- Ready Storage.

Container-Native Storage for OpenShift Container Platform

8

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#RHGS_Req
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Planning_Guidelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-install-quick-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Env_Req_RHEL7
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Env_Req_Atomic
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#OCP_Req_for_CNS
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Container_Native_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Setting_the_environment
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Updating_Registry
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Block_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Logging_Metrics
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#File_Storage

4.2.2. Prerequisites

Install the registry with NFS backend when installing OpenShift Container Platform.

Do not install Logging and Metrics when installing OpenShift Container Platform.

Planning Guidelines

4.2.3. Required Installation Tasks

1. OpenShift Container Platform 3.6 Quick Installation or OpenShift Container Platform 3.6
Advanced Installation

2. Container-Ready Storage Environment Requirements on RHEL 7 or Container-Ready Storage
Environment Requirements on RHEL Atomic Host

3. Container-Ready Storage Requirements

4. Setting up Container-Ready Storage

5. Deploying Container-Ready Storage

6. Migrate registry backend to Gluster: Migrating Registry

7. To use Block Storage: Block Storage

8. To set Gluster-block as backend for logging and metrics: Logging and Metrics

9. To use File Storage: File Storage

4.3. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER
PLATFORM 3.6 IS INSTALLED AND CONTAINER-NATIVE STORAGE 3.6
IS NOT INSTALLED

4.3.1. Customer Objective

Install Container-Native Storage 3.6.

4.3.2. Prerequisites

Red Hat Gluster Storage Requirements

Planning Guidelines

4.3.3. Required Installation Tasks

1. If the registry was not setup during OpenShift Container Platform 3.6 installation, make sure
to follow the advanced installation of OpenShift Container Platform 3.6 to setup registry with
NFS as the backend. The ansible variable to be set is
openshift_hosted_registry_storage_kind=nfs : Advanced Installation

Refer section 2.6.3.9: Configuring the OpenShift Container Registry.

CHAPTER 4. INSTALL AND UPGRADE WORKFLOW: WHAT TASKS DO I NEED TO COMPLETE?

9

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Planning_Guidelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-install-quick-install
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Env_Req_RHEL7
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Env_Req_Atomic
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#OCP_Req_for_CNS
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Container_Ready_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Setting_the_environment
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Updating_Registry
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Block_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Logging_Metrics
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#File_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#RHGS_Req
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Planning_Guidelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#configuring-ansible

2. Container-Native Storage Environment Requirements on RHEL 7 or Container-Native Storage
Environment Requirements on RHEL Atomic Host

3. Container-Native Storage Requirements

4. Setting up Container-Native Storage

5. Deploying Container-Nativer Storage

6. Migrate registry backend to Gluster: Migrating Registry

7. To use Block Storage: Block Storage

8. To set Gluster-block as backend for logging and metrics: Logging and Metrics

9. To use File Storage: File Storage

4.4. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER
PLATFORM 3.6 IS INSTALLED AND CONTAINER-READY STORAGE IS
NOT INSTALLED

4.4.1. Customer Objective

Install Container-Ready Storage.

4.4.2. Prerequisites

Planning Guidelines

4.4.3. Required Installation Tasks

1. If the registry was not set up during OpenShift Container Platform installation, make sure to
follow the advanced installation of OpenShift Container Platform to setup registry with NFS as
the backend. The ansible variable to be set is
openshift_hosted_registry_storage_kind=nfs : Advanced Installation

2. Container-Ready Storage Environment Requirements on RHEL 7 or Container-Ready Storage
Environment Requirements on RHEL Atomic Host

3. Container-Ready Storage Requirements

4. Setting up Container-Ready Storage

5. Deploying Container-Ready Storage

6. Migrating the registry backend to gluster: Migrating Registry

7. To use block storage: Block Storage

8. To set Gluster Block as back-end for Logging and Metrics: Logging and Metrics

9. To use File Storage: File Storage

Container-Native Storage for OpenShift Container Platform

10

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Env_Req_RHEL7
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Env_Req_Atomic
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#OCP_Req_for_CNS
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Container_Native_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Setting_the_environment
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Updating_Registry
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Block_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Logging_Metrics
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#File_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Planning_Guidelines
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#configuring-ansible
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Env_Req_RHEL7
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Env_Req_Atomic
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#OCP_Req_for_CNS
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Container_Ready_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Setting_the_environment
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Updating_Registry
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Block_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Logging_Metrics
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#File_Storage

4.5. (UPGRADE) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER
PLATFORM 3.6 IS INSTALLED AND CONTAINER-NATIVE STORAGE IS
INSTALLED

4.5.1. Customer Objective

These steps are applicable for 3 scenarios:

OpenShift Container Platform 3.6 is installed and Container-Native Storage 3.5 is installed
with Advanced Installer and Registry

OpenShift Container Platform 3.6 is installed and Container-Native Storage 3.6 is installed
with Advanced Installer and Registry

OpenShift Container Platform 3.6 is installed and Container-Native Storage 3.5 is installed
using cns-deploy tool.

4.5.2. Required Upgrade Tasks

1. If the registry was not set up during OpenShift Container Platform installation, make sure to
follow the advanced installation of OpenShift Container Platform to setup registry with NFS as
the backend. The ansible variable to be set is
openshift_hosted_registry_storage_kind=nfs : Advanced Installation

2. Upgrading Container-Native Storage.

3. Migrating the registry backend to gluster: Migrating Registry

4. To use block storage: Block Storage

5. To set Gluster Block as back-end for Logging and Metrics: Logging and Metrics

6. To use File Storage: File Storage

4.6. (UPGRADE) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER
PLATFORM 3.6 IS INSTALLED AND CONTAINER-READY STORAGE IS
INSTALLED WITH ADVANCED INSTALLER AND REGISTRY

4.6.1. Customer Objective

Upgrade Container-Ready Storage with all functions.

4.6.2. Required Upgrade Tasks

1. If the registry was not set up during OpenShift Container Platform installation, make sure to
follow the advanced installation of OpenShift Container Platform to setup registry with NFS as
the backend. The ansible variable to be set is
openshift_hosted_registry_storage_kind=nfs : Advanced Installation

2. Upgrading Container-Ready Storage.

CHAPTER 4. INSTALL AND UPGRADE WORKFLOW: WHAT TASKS DO I NEED TO COMPLETE?

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#configuring-ansible
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Upgrade
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Updating_Registry
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Block_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Logging_Metrics
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#File_Storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#configuring-ansible
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Upgrade_CRS

NOTE

Execute only the steps that are relevant to your environment.

3. Migrating the registry backend to gluster: Migrating Registry

4. To use block storage: Block Storage

5. To set Gluster Block as back-end for Logging and Metrics: Logging and Metrics

6. To use File Storage: File Storage

Container-Native Storage for OpenShift Container Platform

12

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Updating_Registry
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Block_Storage
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#Logging_Metrics
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html-single/container-native_storage_for_openshift_container_platform/#File_Storage

CHAPTER 5. SUPPORT REQUIREMENTS
This chapter describes and lists the various prerequisites to set up Red Hat Gluster Storage Container
Native with OpenShift Container Platform.

5.1. SUPPORTED VERSIONS

The following table lists the supported versions of OpenShift Container Platform with Red Hat Gluster
Storage Server and Container-Native Storage.

Table 5.1. Supported Versions

OpenShift Container Platform Red Hat Gluster Storage Container-Native Storage

3.6 3.3 3.6

3.5 3.2 3.5

5.2. ENVIRONMENT REQUIREMENTS

The requirements for Red Hat Enterprise Linux Atomic Host, Red Hat OpenShift Container Platform,
Red Hat Enterprise Linux, and Red Hat Gluster Storage are described in this section. A Red Hat Gluster
Storage Container Native with OpenShift Container Platform environment consists of Red Hat
OpenShift Container Platform installed on either Red Hat Enterprise Linux Atomic Host or Red Hat
Enterprise Linux.

5.2.1. Installing Red Hat Gluster Storage Container Native with OpenShift Container
Platform on Red Hat Enterprise Linux 7 based OpenShift Container Platform Cluster

This section describes the procedures to install Red Hat Gluster Storage Container Native with
OpenShift Container Platform on Red Hat Enterprise Linux 7 based OpenShift Container Platform 3.6.

5.2.1.1. Setting up the Openshift Master as the Client

You can use the OpenShift Master as a client to execute the oc commands across the cluster when
installing OpenShift. Generally, this is setup as a non-scheduled node in the cluster. This is the default
configuration when using the OpenShift installer. You can also choose to install their client on their
local machine to access the cluster remotely. For more information, see
https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/cli-
reference/#installing-the-cli.

Install heketi-client and cns-deploy packages

Execute the following commands to install heketi-client and the cns-deploy packages.

subscription-manager repos --enable=rh-gluster-3-for-rhel-7-server-rpms

yum install cns-deploy heketi-client

After installing the heketi-client and the cns-deploy packages, disable the gluster repo by executing
the following command:

CHAPTER 5. SUPPORT REQUIREMENTS

13

https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/cli-reference/#installing-the-cli

subscription-manager repos --disable=rh-gluster-3-for-rhel-7-server-rpms

5.2.1.2. Setting up the Red Hat Enterprise Linux 7 Client for Installing Red Hat Gluster
Storage Container Native with OpenShift Container Platform

To set up the Red Hat Enterprise Linux 7 client for installing Red Hat Gluster Storage Container Native
with OpenShift Container Platform, perform the following steps:

Install heketi-client and cns-deploy packages

Execute the following commands to install heketi-client and the cns-deploy packages.

subscription-manager repos --enable=rh-gluster-3-for-rhel-7-server-rpms

yum install cns-deploy heketi-client

subscription-manager repos --disable=rh-gluster-3-for-rhel-7-server-rpms

Subscribe to the OpenShift Container Platform 3.6 repository

If you are using OpenShift Container Platform 3.6, subscribe to 3.6 repository to enable you to install
the Openshift client packages

subscription-manager repos --enable=rhel-7-server-ose-3.6-rpms --
enable=rhel-7-server-rpms

yum install atomic-openshift-clients

yum install atomic-openshift

5.2.2. Installing Red Hat Gluster Storage Container Native with OpenShift Container
Platform on Red Hat Enterprise Linux Atomic Host OpenShift Container Platform
Cluster

Red Hat Enterprise Linux Atomic host does not support the installation of additional RPMs. Hence, an
external client is required on Red Hat Enterprise Linux to install the required packages. To set up the
client for Red Hat Enterprise Linux Atomic Host based installations, refer Section 5.2.1.2, “Setting up
the Red Hat Enterprise Linux 7 Client for Installing Red Hat Gluster Storage Container Native with
OpenShift Container Platform”

5.2.3. Red Hat OpenShift Container Platform Requirements

The following list provides the Red Hat OpenShift Container Platform requirements:

Configuring Multipathing on all Initiators

To ensure the iSCSI initiator can communicate with the iSCSI targets and achieve HA using
multipathing, execute the following steps on all the OpenShift nodes (iSCSI initiator) where the
client pods are hosted:

1. To install initiator related packages on all the nodes where initiator has to be configured,
execute the following command:

Container-Native Storage for OpenShift Container Platform

14

yum install iscsi-initiator-utils device-mapper-multipath

2. To enable multipath, execute the following command:

mpathconf --enable

3. Add the following content to the devices section in the /etc/multipath.conf file

device {
 vendor "LIO-ORG"
 user_friendly_names "yes" # names like mpatha
 path_grouping_policy "failover" # one path per
group
 path_selector "round-robin 0"
 failback immediate
 path_checker "tur"
 prio "const"
 no_path_retry 120
 rr_weight "uniform"
 }

4. Execute the following command to restart services:

systemctl restart multipathd

The OpenShift cluster must be up and running. For information on setting up OpenShift cluster,
see https://access.redhat.com/documentation/en/openshift-container-
platform/3.6/paged/installation-and-configuration.

A cluster-admin user must be created. For more information, see Appendix B, Cluster
Administrator Setup

All OpenShift nodes on Red Hat Enterprise Linux systems must have glusterfs-client RPMs
(glusterfs, glusterfs-client-xlators, glusterfs-libs, glusterfs-fuse) installed.

It is recommended to persist the logs for the Heketi container. For more information on
persisting logs, refer https://access.redhat.com/documentation/en/openshift-container-
platform/3.6/single/installation-and-configuration/#install-config-aggregate-logging.

5.2.4. Red Hat Gluster Storage Requirements

The following list provides the details regarding the Red Hat Gluster Storage requirements:

Installation of Heketi packages must have valid subscriptions to Red Hat Gluster Storage
Server repositories.

Red Hat Gluster Storage installations must adhere to the requirements outlined in the Red Hat
Gluster Storage Installation Guide.

The versions of Red Hat Enterprise OpenShift and Red Hat Gluster Storage integrated must be
compatible, according to the information in Section 5.1, “Supported Versions” section.

CHAPTER 5. SUPPORT REQUIREMENTS

15

https://access.redhat.com/documentation/en/openshift-container-platform/3.6/paged/installation-and-configuration
https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/installation-and-configuration/#install-config-aggregate-logging
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/installation_guide/chap-planning_red_hat_storage_installation

A fully-qualified domain name must be set for Red Hat Gluster Storage server node. Ensure
that the correct DNS records exist, and that the fully-qualified domain name is resolvable via
both forward and reverse DNS lookup.

IMPORTANT

Restrictions for using Snapshot

After a snapshot is created, it must be accessed though the user-serviceable
snapshots feature only. This can be used to copy the old versions of files into the
required location.

Reverting the volume to a snapshot state is not supported and should never be
done as it might damage the consistency of the data.

On a volume with snapshots, volume changing operations, such as volume
expansion, must not be performed.

5.2.5. Planning Guidelines

To prevent potential deployment or scaling issues, review the following guidelines before deploying
Red Hat Container-Native Storage or Container-Ready Storage with OpenShift Container Platform..

Ensure that the Trusted Storage Pool is appropriately sized and you have room for dynamic scaling on
demand. This action ensures that you do not scale beyond the following maximum limits:

Sizing guidelines on Container-Native Storage 3.6 or Container-Ready Storage 3.6 :

Persistent volumes backed by the file interface : For typical operations, size for 300-500
persistent volumes backed by files per three-node Container-Native Storage or Container-
Ready Storage cluster. The maximum limit of supported persistent volumes backed by the
file interface is 1000 persistent volumes per three-node cluster in a Container-Native
Storage or Container-Ready Storage deployment. Considering that micro-services can
dynamically scale as per demand, it is recommended that the initial sizing keep sufficient
headroom for the scaling. If additional scaling is needed, add a new three-node Container-
Native Storage or Container-Ready Storage cluster to support additional persistent
volumes

Creation of more than 1,000 persistent volumes per trusted storage pool is not supported
for file-based storage.

Persistent volumes backed by block-based storage : Size for a maximum of 300
persistent volumes per three-node Container-Native Storage or Container-Ready Storage
cluster. Be aware that Container-Native Storage 3.6 and Container-Ready Storage 3.6
supports only OpenShift Container Platform logging and metrics on block-backed
persistent volumes.

Persistent volumes backed by file and block : Size for 300-500 persistent volumes
(backed by files) and 100-200 persistent volumes (backed by block). Do not exceed these
maximum limits of file or block-backed persistent volumes or the combination of a
maximum 1000 persistent volumes per three-node Container-Native Storage or
Container-Ready Storage cluster.

3-way distributed-replicated volumes is the only supported volume type.

Container-Native Storage for OpenShift Container Platform

16

Each physical or virtual node that hosts a Red Hat Gluster Storage Container-Native
Storage or Container-Ready Storage peer requires the following:

a minimum of 8 GB RAM and 30 MB per persistent volume.

the same disk type.

the heketidb utilises 2 GB distributed replica volume.

Deployment guidelines on Container-Native Storage 3.6 or Container-Ready Storage 3.6 :

In Container-Native Storage mode, you can install the Container-Native Storage nodes,
Heketi, and all provisioner pods on OpenShift Container Platform Infrastructure nodes or
OpenShift Container Platform Application nodes.

In Container-Ready Storage mode, you can install Heketi and all provisioners pods on
OpenShift Container Platform Infrastructure nodes or on OpenShift Container Platform
Application nodes

Red Hat Gluster Storage Container Native with OpenShift Container Platform supports up to
14 snapshots per volume by default (snap-max-hard-limit =14 in Heketi Template).

CHAPTER 5. SUPPORT REQUIREMENTS

17

CHAPTER 6. SETTING UP CONTAINER-NATIVE STORAGE
The Container-Native Storage environment addresses the use-case where applications require both
shared storage and the flexibility of a converged infrastructure with compute and storage instances
being scheduled and run from the same set of hardware.

6.1. CONFIGURING PORT ACCESS

On each of the OpenShift nodes that will host the Red Hat Gluster Storage container, add the
following rules to /etc/sysconfig/iptables in order to open the required ports:

-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport
24007 -j ACCEPT
-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport
24008 -j ACCEPT
-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport 2222
-j ACCEPT
-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m multiport --
dports 49152:49664 -j ACCEPT
-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport
24010 -j ACCEPT
-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport 3260
-j ACCEPT
-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport 111
-j ACCEPT

NOTE

Port 24010 and 3260 are for gluster-blockd and iSCSI targets respectively.

The port range starting at 49664 defines the range of ports that can be
used by GlusterFS for communication to its volume bricks. In the above
example the total number of bricks allowed is 512. Configure the port range
based on the maximum number of bricks that could be hosted on each node.

For more information about Red Hat Gluster Storage Server ports, see
https://access.redhat.com/documentation/en-
us/red_hat_gluster_storage/3.3/html/administration_guide/chap-getting_started.

Execute the following command to reload the iptables:

systemctl reload iptables

Execute the following command on each node to verify if the iptables are updated:

iptables -L

6.2. ENABLING KERNEL MODULES

Before running the cns-deploy tool, you must ensure that the dm_thin_pool, dm_multipath, and
target_core_user modules are loaded in the OpenShift Container Platform node. Execute the
following command on all OpenShift Container Platform nodes to verify if the modules are loaded:

Container-Native Storage for OpenShift Container Platform

18

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/administration_guide/chap-getting_started

lsmod | grep dm_thin_pool

lsmod | grep dm_multipath

lsmod | grep target_core_user

If the modules are not loaded, then execute the following command to load the modules:

modprobe dm_thin_pool

modprobe dm_multipath

modprobe target_core_user

NOTE

To ensure these operations are persisted across reboots, create the following files and
update each with the content as mentioned:

cat /etc/modules-load.d/dm_thin_pool.conf
dm_thin_pool

cat /etc/modules-load.d/dm_multipath.conf
dm_multipath

cat /etc/modules-load.d/target_core_user.conf
target_core_user

6.3. STARTING AND ENABLING SERVICES

Execute the following commands to enable and run rpcbind on all the nodes hosting the gluster pod :

systemctl add-wants multi-user rpcbind.service
systemctl enable rpcbind.service
systemctl start rpcbind.service

Execute the following command to check the status of rpcbind

systemctl status rpcbind

rpcbind.service - RPC bind service
 Loaded: loaded (/usr/lib/systemd/system/rpcbind.service; enabled;
vendor preset: enabled)
 Active: active (running) since Wed 2017-08-30 21:24:21 IST; 1 day 13h
ago
 Main PID: 9945 (rpcbind)
 CGroup: /system.slice/rpcbind.service
 └─9945 /sbin/rpcbind -w

CHAPTER 6. SETTING UP CONTAINER-NATIVE STORAGE

19

CHAPTER 7. SETTING UP CONTAINER-READY STORAGE
In a Container-Ready Storage set-up a dedicated Red Hat Gluster Storage cluster is available external
to the OpenShift Container Platform. The storage is provisioned from the Red Hat Gluster Storage
cluster.

7.1. INSTALLING RED HAT GLUSTER STORAGE SERVER ON RED HAT
ENTERPRISE LINUX (LAYERED INSTALL)

Layered install involves installing Red Hat Gluster Storage over Red Hat Enterprise Linux.

IMPORTANT

It is recommended to create a separate /var partition that is large enough (50GB -
100GB) for log files, geo-replication related miscellaneous files, and other files.

1. Perform a base install of Red Hat Enterprise Linux 7 Server
Container-Ready Storage is supported only on Red Hat Enterprise Linux 7.

2. Register the System with Subscription Manager
Run the following command and enter your Red Hat Network user name and password to
register the system with the Red Hat Network:

subscription-manager register

3. Identify Available Entitlement Pools
Run the following commands to find entitlement pools containing the repositories required to
install Red Hat Gluster Storage:

subscription-manager list --available

4. Attach Entitlement Pools to the System
Use the pool identifiers located in the previous step to attach the Red Hat Enterprise
Linux Server and Red Hat Gluster Storage entitlements to the system. Run the
following command to attach the entitlements:

subscription-manager attach --pool=[POOLID]

For example:

subscription-manager attach --
pool=8a85f9814999f69101499c05aa706e47

5. Enable the Required Channels

For Red Hat Gluster Storage 3.3 on Red Hat Enterprise Linux 7.x

1. Run the following commands to enable the repositories required to install Red Hat Gluster
Storage

Container-Native Storage for OpenShift Container Platform

20

subscription-manager repos --enable=rhel-7-server-rpms
subscription-manager repos --enable=rh-gluster-3-for-rhel-7-
server-rpms

6. Verify if the Channels are Enabled
Run the following command to verify if the channels are enabled:

yum repolist

7. Update all packages
Ensure that all packages are up to date by running the following command.

yum update

IMPORTANT

If any kernel packages are updated, reboot the system with the following
command.

shutdown -r now

8. Kernel Version Requirement
Container-Ready Storage requires the kernel-3.10.0-690.el7 version or higher to be used on
the system. Verify the installed and running kernel versions by running the following
command:

rpm -q kernel
kernel-3.10.0-693.el7.x86_64

uname -r
3.10.0-693.el7.x86_64

9. Install Red Hat Gluster Storage
Run the following command to install Red Hat Gluster Storage:

yum install redhat-storage-server

1. To enable gluster-block execute the following command:

yum install gluster-block

10. Reboot
Reboot the system.

7.2. CONFIGURING PORT ACCESS

This section provides information about the ports that must be open for Container-Ready Storage .

Red Hat Gluster Storage Server uses the listed ports. You must ensure that the firewall settings do not
prevent access to these ports.

CHAPTER 7. SETTING UP CONTAINER-READY STORAGE

21

Execute the following commands to open the required ports for both runtime and permanent
configurations on all Red Hat Gluster Storage nodes:

firewall-cmd --zone=zone_name --add-port=24010/tcp --add-port=3260/tcp -
-add-port=111/tcp --add-port=22/tcp --add-port=24007/tcp --add-
port=24008/tcp --add-port=49152-49664/tcp
firewall-cmd --zone=zone_name --add-port=24010/tcp --add-port=3260/tcp -
-add-port=111/tcp --add-port=22/tcp --add-port=24007/tcp --add-
port=24008/tcp --add-port=49152-49664/tcp --permanent

NOTE

Port 24010 and 3260 are for gluster-blockd and iSCSI targets respectively.

The port range starting at 49664 defines the range of ports that can be used by
GlusterFS for communication to its volume bricks. In the above example the
total number of bricks allowed is 512. Configure the port range based on the
maximum number of bricks that could be hosted on each node.

7.3. ENABLING KERNEL MODULES

Execute the following commands to enable kernel modules:

1. You must ensure that the dm_thin_pool and target_core_user modules are loaded in the
Red Hat Gluster Storage nodes.

modprobe target_core_user

modprobe dm_thin_pool

Execute the following command to verify if the modules are loaded:

lsmod | grep dm_thin_pool

lsmod | grep target_core_user

NOTE

To ensure these operations are persisted across reboots, create the following
files and update each file with the content as mentioned:

cat /etc/modules-load.d/dm_thin_pool.conf
dm_thin_pool

cat /etc/modules-load.d/target_core_user.conf
target_core_user

2. You must ensure that the dm_multipath module is loaded on all OpenShift Container
Platform nodes.

Container-Native Storage for OpenShift Container Platform

22

modprobe dm_multipath

Execute the following command to verify if the modules are loaded:

lsmod | grep dm_multipath

NOTE

To ensure these operations are persisted across reboots, create the following
file and update it with the content as mentioned:

cat /etc/modules-load.d/dm_multipath.conf
dm_multipath

7.4. STARTING AND ENABLING SERVICES

Execute the following commands to start glusterd and gluster-blockd:

systemctl start sshd

systemctl enable sshd

systemctl start glusterd

systemctl enable glusterd

systemctl start gluster-blockd

systemctl enable gluster-blockd

CHAPTER 7. SETTING UP CONTAINER-READY STORAGE

23

CHAPTER 8. SETTING UP THE ENVIRONMENT
This chapter outlines the details for setting up the environment for Red Hat Gluster Storage Container
Converged in OpenShift.

8.1. PREPARING THE RED HAT OPENSHIFT CONTAINER PLATFORM
CLUSTER

Execute the following steps to prepare the Red Hat OpenShift Container Platform cluster:

1. On the master or client, execute the following command to login as the cluster admin user:

oc login

For example:

 oc login
Authentication required for https://dhcp46-
24.lab.eng.blr.redhat.com:8443 (openshift)
Username: test
Password:
Login successful.

You have access to the following projects and can switch between
them with 'oc project <project_name>':

 * default
 kube-system
 logging
 management-infra
 openshift
 openshift-infra

Using project "default".

2. On the master or client, execute the following command to create a project, which will contain
all the containerized Red Hat Gluster Storage services:

oc new-project <project_name>

For example:

oc new-project storage-project

Now using project "storage-project" on server
"https://master.example.com:8443"

3. After the project is created, execute the following command on the master node to enable the
deployment of the privileged containers as Red Hat Gluster Storage container can only run in
the privileged mode.

oadm policy add-scc-to-user privileged -z default

Container-Native Storage for OpenShift Container Platform

24

4. Execute the following steps on the master to set up the router:

NOTE

If a router already exists, proceed to Step 5. To verify if the router is already
deployed, execute the following command:

oc get dc --all-namespaces

1. Execute the following command to enable the deployment of the router:

oadm policy add-scc-to-user privileged -z router

2. Execute the following command to deploy the router:

oadm router storage-project-router --replicas=1

3. Edit the subdomain name in the config.yaml file located at
/etc/origin/master/master-config.yaml.

For example:

subdomain: "cloudapps.mystorage.com"

For more information, refer https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.6/html-
single/installation_and_configuration/#customizing-the-default-routing-subdomain.

4. Restart the master OpenShift services by executing the following command:

systemctl restart atomic-openshift-master

For OpenShift Container Platform 3.7 execute the following command to restart the
services :

systemctl restart atomic-openshift-master-api atomic-openshift-
master-controllers

NOTE

If the router setup fails, use the port forward method as described in
Appendix C, Client Configuration using Port Forwarding .

For more information regarding router setup, see
https://access.redhat.com/documentation/en/openshift-container-
platform/3.6/paged/installation-and-configuration/chapter-4-setting-up-a-router

5. Execute the following command to verify if the router is running:

oc get dc <router_name>

CHAPTER 8. SETTING UP THE ENVIRONMENT

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#customizing-the-default-routing-subdomain
https://access.redhat.com/documentation/en/openshift-container-platform/3.6/paged/installation-and-configuration/chapter-4-setting-up-a-router

For example:

oc get dc storage-project-router
NAME REVISION DESIRED CURRENT TRIGGERED BY
storage-project-router 1 1 1 config

NOTE

Ensure you do not edit the /etc/dnsmasq.conf file until the router has
started.

6. After the router is running, the client has to be setup to access the services in the OpenShift
cluster. Execute the following steps on the client to set up the DNS.

1. Execute the following command to find the IP address of the router:

oc get pods -o wide --all-namespaces | grep router
storage-project storage-project-router-1-cm874 1/1
Running 119d 10.70.43.132 dhcp43-
132.lab.eng.blr.redhat.com

2. Edit the /etc/dnsmasq.conf file and add the following line to the file:

address=/.cloudapps.mystorage.com/<Router_IP_Address>

where, Router_IP_Address is the IP address of the node where the router is running.

3. Restart the dnsmasq service by executing the following command:

systemctl restart dnsmasq

4. Edit /etc/resolv.conf and add the following line:

nameserver 127.0.0.1

For more information regarding setting up the DNS, see
https://access.redhat.com/documentation/en/openshift-container-
platform/3.6/single/installation-and-configuration/#envirornment-requirements.

8.2. DEPLOYING CONTAINERIZED RED HAT GLUSTER STORAGE
SOLUTIONS

The following section covers deployment of the Container-Native Storage pods and Container-Ready
Storage and using the cns-deploy tool.

Container-Native Storage for OpenShift Container Platform

26

https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/installation-and-configuration/#envirornment-requirements

NOTE

It is recommended that a separate cluster for OpenShift Container Platform
infrastructure workload (registry, logging and metrics) and application pod
storage. Hence, if you have more than 6 nodes ensure you create multiple
clusters with a minimum of 3 nodes each. The infrastructure cluster should
belong to the default project namespace.

If you want to enable encryption on the Container-Native Storage setup, refer
Chapter 17, Enabling Encryption before proceeding with the following steps.

1. You must first provide a topology file for heketi which describes the topology of the Red Hat
Gluster Storage nodes and their attached storage devices. A sample, formatted topology file
(topology-sample.json) is installed with the ‘heketi-client’ package in the /usr/share/heketi/
directory.

{
 "clusters": [
 {
 "nodes": [
 {
 "node": {
 "hostnames": {
 "manage": [
 "node1.example.com"
],
 "storage": [
 "192.168.68.3"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sdb",
 "/dev/sdc",
 "/dev/sdd",
 "/dev/sde",
 "/dev/sdf",
 "/dev/sdg",
 "/dev/sdh",
 "/dev/sdi"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "node2.example.com"
],
 "storage": [
 "192.168.68.2"
]
 },
 "zone": 2
 },

CHAPTER 8. SETTING UP THE ENVIRONMENT

27

 "devices": [
 "/dev/sdb",
 "/dev/sdc",
 "/dev/sdd",
 "/dev/sde",
 "/dev/sdf",
 "/dev/sdg",
 "/dev/sdh",
 "/dev/sdi"
]
 },

.......

.......

where,

clusters: Array of clusters.

Each element on the array is a map which describes the cluster as follows.

nodes: Array of OpenShift nodes that will host the Red Hat Gluster Storage container

Each element on the array is a map which describes the node as follows

node: It is a map of the following elements:

zone: The value represents the zone number that the node belongs to; the
zone number is used by heketi for choosing optimum position of bricks by
having replicas of bricks in different zones. Hence zone number is similar to a
failure domain.

hostnames: It is a map which lists the manage and storage addresses

manage: It is the hostname/IP Address that is used by Heketi to
communicate with the node

storage: It is the IP address that is used by other OpenShift nodes to
communicate with the node. Storage data traffic will use the interface
attached to this IP. This must be the IP address and not the hostname
because, in an OpenShift environment, Heketi considers this to be the
endpoint too.

devices: Name of each disk to be added

NOTE

Copy the topology file from the default location to your location and then edit it:

cp /usr/share/heketi/topology-sample.json
/<Path>/topology.json

Edit the topology file based on the Red Hat Gluster Storage pod hostname under the
node.hostnames.manage section and node.hostnames.storage section with the IP
address. For simplicity, the /usr/share/heketi/topology-sample.json file only sets up 4 nodes

Container-Native Storage for OpenShift Container Platform

28

with 8 drives each.

IMPORTANT

Heketi stores its database on a Red Hat Gluster Storage volume. In cases where
the volume is down, the Heketi service does not respond due to the
unavailability of the volume served by a disabled trusted storage pool. To
resolve this issue, restart the trusted storage pool which contains the Heketi
volume.

To deploy Container-Native Storage, refer Section 8.2.1, “Deploying Container-Native Storage”. To
deploy Container-Ready Storage refer Section 8.2.2, “Deploying Container-Ready Storage”.

8.2.1. Deploying Container-Native Storage

Execute the following commands to deploy container-native storage:

1. Execute the following command on the client to deploy the heketi and Red Hat Gluster Storage
pods:

cns-deploy -n <namespace> -g --admin-key <Key> topology.json

NOTE

From Container-Native Storage 3.6, support for S3 compatible Object Store
in Container-Native Storage is under technology preview. To deploy S3
compatible object store in Container-Native Storage see Step 1a below.

In the above command, the value for admin-key is the secret string for
heketi admin user. The heketi administrator will have access to all APIs and
commands. Default is to use no secret.

The BLOCK_HOST_SIZE parameter in cns-deploy controls the size (in GB)
of the automatically created Red Hat Gluster Storage volumes hosting the
gluster-block volumes (For more information, see Section 9.2, “Block
Storage”). This default configuration will dynamically create block-hosting
volumes of 500GB in size when more space is required. If you want to
change this value then use --block-host in cns-deploy. For example:

cns-deploy -n storage-project -g --admin-key secret
--block-host 1000 topology.json

For example:

cns-deploy -n storage-project -g --admin-key secret topology.json

Welcome to the deployment tool for GlusterFS on Kubernetes and
OpenShift.

Before getting started, this script has some requirements of the
execution
environment and of the container platform that you should verify.

CHAPTER 8. SETTING UP THE ENVIRONMENT

29

The client machine that will run this script must have:
 * Administrative access to an existing Kubernetes or OpenShift
cluster
 * Access to a python interpreter 'python'

Each of the nodes that will host GlusterFS must also have
appropriate firewall
rules for the required GlusterFS ports:
 * 111 - rpcbind (for glusterblock)
 * 2222 - sshd (if running GlusterFS in a pod)
 * 3260 - iSCSI targets (for glusterblock)
 * 24006 - glusterblockd
 * 24007 - GlusterFS Management
 * 24008 - GlusterFS RDMA
 * 49152 to 49251 - Each brick for every volume on the host requires
its own
 port. For every new brick, one new port will be used starting at
49152. We
 recommend a default range of 49152-49251 on each host, though you
can adjust
 this to fit your needs.

The following kernel modules must be loaded:
 * dm_snapshot
 * dm_mirror
 * dm_thin_pool
 * dm_multipath
 * target_core_user

For systems with SELinux, the following settings need to be
considered:
 * virt_sandbox_use_fusefs should be enabled on each node to allow
writing to
 remote GlusterFS volumes

In addition, for an OpenShift deployment you must:
 * Have 'cluster_admin' role on the administrative account doing the
deployment
 * Add the 'default' and 'router' Service Accounts to the
'privileged' SCC
 * Have a router deployed that is configured to allow apps to access
services
 running in the cluster

Do you wish to proceed with deployment?

[Y]es, [N]o? [Default: Y]: Y
Using OpenShift CLI.
Using namespace "storage-project".
Checking for pre-existing resources...
 GlusterFS pods ... not found.
 deploy-heketi pod ... not found.
 heketi pod ... not found.
 glusterblock-provisioner pod ... not found.
 gluster-s3 pod ... not found.

Container-Native Storage for OpenShift Container Platform

30

Creating initial resources ... template "deploy-heketi" created
serviceaccount "heketi-service-account" created
template "heketi" created
template "glusterfs" created
role "edit" added: "system:serviceaccount:storage-project:heketi-
service-account"
OK
node "ip-172-18-5-29.ec2.internal" labeled
node "ip-172-18-8-205.ec2.internal" labeled
node "ip-172-18-6-100.ec2.internal" labeled
daemonset "glusterfs" created
Waiting for GlusterFS pods to start ... OK
secret "heketi-config-secret" created
secret "heketi-config-secret" labeled
service "deploy-heketi" created
route "deploy-heketi" created
deploymentconfig "deploy-heketi" created
Waiting for deploy-heketi pod to start ... OK
Creating cluster ... ID: 30cd12e60f860fce21e7e7457d07db36
Allowing file volumes on cluster.
Allowing block volumes on cluster.
Creating node ip-172-18-5-29.ec2.internal ... ID:
4077242c76e5f477a27c5c47247cb348
Adding device /dev/xvdc ... OK
Creating node ip-172-18-8-205.ec2.internal ... ID:
dda0e7d568d7b2f76a7e7491cfc26dd3
Adding device /dev/xvdc ... OK
Creating node ip-172-18-6-100.ec2.internal ... ID:
30a1795ca515c85dca32b09be7a68733
Adding device /dev/xvdc ... OK
heketi topology loaded.
Saving /tmp/heketi-storage.json
secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created
service "heketi-storage-endpoints" labeled
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted
service "deploy-heketi" deleted
job "heketi-storage-copy-job" deleted
pod "deploy-heketi-1-frjpt" deleted
secret "heketi-storage-secret" deleted
template "deploy-heketi" deleted
service "heketi" created
route "heketi" created
deploymentconfig "heketi" created
Waiting for heketi pod to start ... OK

heketi is now running and accessible via http://heketi-storage-
project.cloudapps.mystorage.com . To run
administrative commands you can install 'heketi-cli' and use it as
follows:

 # heketi-cli -s http://heketi-storage-
project.cloudapps.mystorage.com --user admin --secret '<ADMIN_KEY>'

CHAPTER 8. SETTING UP THE ENVIRONMENT

31

cluster list

You can find it at https://github.com/heketi/heketi/releases .
Alternatively,
use it from within the heketi pod:

 # /bin/oc -n storage-project exec -it <HEKETI_POD> -- heketi-cli -
s http://localhost:8080 --user admin --secret '<ADMIN_KEY>' cluster
list

For dynamic provisioning, create a StorageClass similar to this:

apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: glusterfs-storage
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://heketi-storage-project.cloudapps.mystorage.com"

Ready to create and provide GlusterFS volumes.
clusterrole "glusterblock-provisioner-runner" created
serviceaccount "glusterblock-provisioner" created
clusterrolebinding "glusterblock-provisioner" created
deploymentconfig "glusterblock-provisioner-dc" created
Waiting for glusterblock-provisioner pod to start ... OK
Ready to create and provide Gluster block volumes.

Deployment complete!

NOTE

For more information on the cns-deploy commands, refer to the man page of
cns-deploy.

cns-deploy --help

1. To deploy S3 compatible object store along with Heketi and Red Hat Gluster Storage pods,
execute the following command:

cns-deploy /opt/topology.json --deploy-gluster --namespace
<namespace> --yes --admin-key <key> --log-file=<path/to/logfile>
--object-account <object account name> --object-user <object user
name> --object-password <object user password> --verbose

object-account, object-user, and object-password are required credentials for
deploying the gluster-s3 container. If any of these are missing, gluster-s3 container
deployment will be skipped.

object-sc and object-capacity are optional parameters. Where, object-sc is used
to specify a pre-existing StorageClass to use to create Red Hat Gluster Storage volumes to
back the object store and object-capacity is the total capacity of the Red Hat Gluster
Storage volume which will store the object data.

Container-Native Storage for OpenShift Container Platform

32

For example:

cns-deploy /opt/topology.json --deploy-gluster --namespace
storage-project --yes --admin-key secret --log-file=/var/log/cns-
deploy/444-cns-deploy.log --object-account testvolume --object-
user adminuser --object-password itsmine --verbose
Using OpenShift CLI.

Checking status of namespace matching 'storage-project':
storage-project Active 56m
Using namespace "storage-project".
Checking for pre-existing resources...
 GlusterFS pods ...
Checking status of pods matching '--selector=glusterfs=pod':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=pod'.
not found.
 deploy-heketi pod ...
Checking status of pods matching '--selector=deploy-heketi=pod':
No resources found.
Timed out waiting for pods matching '--selector=deploy-
heketi=pod'.
not found.
 heketi pod ...
Checking status of pods matching '--selector=heketi=pod':
No resources found.
Timed out waiting for pods matching '--selector=heketi=pod'.
not found.
 glusterblock-provisioner pod ...
Checking status of pods matching '--selector=glusterfs=block-
provisioner-pod':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=block-
provisioner-pod'.
not found.
 gluster-s3 pod ...
Checking status of pods matching '--selector=glusterfs=s3-pod':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=s3-
pod'.
not found.
Creating initial resources ... /usr/bin/oc -n storage-project
create -f /usr/share/heketi/templates/deploy-heketi-template.yaml
2>&1
template "deploy-heketi" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/heketi-service-account.yaml 2>&1
serviceaccount "heketi-service-account" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/heketi-template.yaml 2>&1
template "heketi" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/glusterfs-template.yaml 2>&1
template "glusterfs" created
/usr/bin/oc -n storage-project policy add-role-to-user edit
system:serviceaccount:storage-project:heketi-service-account 2>&1

CHAPTER 8. SETTING UP THE ENVIRONMENT

33

role "edit" added: "system:serviceaccount:storage-project:heketi-
service-account"
/usr/bin/oc -n storage-project adm policy add-scc-to-user
privileged -z heketi-service-account
OK
Marking 'dhcp46-122.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
122.lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-122.lab.eng.blr.redhat.com" labeled
Marking 'dhcp46-9.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
9.lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-9.lab.eng.blr.redhat.com" labeled
Marking 'dhcp46-134.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
134.lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-134.lab.eng.blr.redhat.com" labeled
Deploying GlusterFS pods.
/usr/bin/oc -n storage-project process -p NODE_LABEL=glusterfs
glusterfs | /usr/bin/oc -n storage-project create -f - 2>&1
daemonset "glusterfs" created
Waiting for GlusterFS pods to start ...
Checking status of pods matching '--selector=glusterfs=pod':
glusterfs-6fj2v 1/1 Running 0 52s
glusterfs-ck40f 1/1 Running 0 52s
glusterfs-kbtz4 1/1 Running 0 52s
OK
/usr/bin/oc -n storage-project create secret generic heketi-
config-secret --from-file=private_key=/dev/null --from-
file=./heketi.json --from-file=topology.json=/opt/topology.json
secret "heketi-config-secret" created
/usr/bin/oc -n storage-project label --overwrite secret heketi-
config-secret glusterfs=heketi-config-secret heketi=config-secret
secret "heketi-config-secret" labeled
/usr/bin/oc -n storage-project process -p
HEKETI_EXECUTOR=kubernetes -p HEKETI_FSTAB=/var/lib/heketi/fstab
-p HEKETI_ADMIN_KEY= -p HEKETI_USER_KEY= deploy-heketi |
/usr/bin/oc -n storage-project create -f - 2>&1
service "deploy-heketi" created
route "deploy-heketi" created
deploymentconfig "deploy-heketi" created
Waiting for deploy-heketi pod to start ...
Checking status of pods matching '--selector=deploy-heketi=pod':
deploy-heketi-1-hf9rn 1/1 Running 0 2m
OK
Determining heketi service URL ... OK
/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
heketi-cli -s http://localhost:8080 --user admin --secret ''
topology load --json=/etc/heketi/topology.json 2>&1
Creating cluster ... ID: 252509038eb8568162ec5920c12bc243
Allowing file volumes on cluster.
Allowing block volumes on cluster.
Creating node dhcp46-122.lab.eng.blr.redhat.com ... ID:
73ad287ae1ef231f8a0db46422367c9a
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK

Container-Native Storage for OpenShift Container Platform

34

Adding device /dev/sdf ... OK
Creating node dhcp46-9.lab.eng.blr.redhat.com ... ID:
0da1b20daaad2d5c57dbfc4f6ab78001
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK
Adding device /dev/sdf ... OK
Creating node dhcp46-134.lab.eng.blr.redhat.com ... ID:
4b3b62fc0efd298dedbcdacf0b498e65
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK
Adding device /dev/sdf ... OK
heketi topology loaded.
/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
heketi-cli -s http://localhost:8080 --user admin --secret ''
setup-openshift-heketi-storage --listfile=/tmp/heketi-
storage.json --image rhgs3/rhgs-volmanager-rhel7:3.3.0-17 2>&1
Saving /tmp/heketi-storage.json
/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
cat /tmp/heketi-storage.json | /usr/bin/oc -n storage-project
create -f - 2>&1
secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created

Checking status of pods matching '--selector=job-name=heketi-
storage-copy-job':
heketi-storage-copy-job-87v6n 0/1 Completed 0
7s
/usr/bin/oc -n storage-project label --overwrite svc heketi-
storage-endpoints glusterfs=heketi-storage-endpoints
heketi=storage-endpoints
service "heketi-storage-endpoints" labeled
/usr/bin/oc -n storage-project delete
all,service,jobs,deployment,secret --selector="deploy-heketi"
2>&1
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted
service "deploy-heketi" deleted
job "heketi-storage-copy-job" deleted
pod "deploy-heketi-1-hf9rn" deleted
secret "heketi-storage-secret" deleted
/usr/bin/oc -n storage-project delete dc,route,template --
selector="deploy-heketi" 2>&1
template "deploy-heketi" deleted
/usr/bin/oc -n storage-project process -p
HEKETI_EXECUTOR=kubernetes -p HEKETI_FSTAB=/var/lib/heketi/fstab
-p HEKETI_ADMIN_KEY= -p HEKETI_USER_KEY= heketi | /usr/bin/oc -n
storage-project create -f - 2>&1
service "heketi" created
route "heketi" created
deploymentconfig "heketi" created
Waiting for heketi pod to start ...
Checking status of pods matching '--selector=heketi=pod':
heketi-1-zzblp 1/1 Running 0 31s
OK

CHAPTER 8. SETTING UP THE ENVIRONMENT

35

Determining heketi service URL ... OK

heketi is now running and accessible via http://heketi-storage-
project.cloudapps.mystorage.com . To run
administrative commands you can install 'heketi-cli' and use it as
follows:

 # heketi-cli -s http://heketi-storage-
project.cloudapps.mystorage.com --user admin --secret
'<ADMIN_KEY>' cluster list

You can find it at https://github.com/heketi/heketi/releases .
Alternatively,
use it from within the heketi pod:

 # /usr/bin/oc -n storage-project exec -it <HEKETI_POD> --
heketi-cli -s http://localhost:8080 --user admin --secret
'<ADMIN_KEY>' cluster list

For dynamic provisioning, create a StorageClass similar to this:

apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: glusterfs-storage
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://heketi-storage-
project.cloudapps.mystorage.com"

Ready to create and provide GlusterFS volumes.
sed -e 's/\${NAMESPACE}/storage-project/'
/usr/share/heketi/templates/glusterblock-provisioner.yaml |
/usr/bin/oc -n storage-project create -f - 2>&1
clusterrole "glusterblock-provisioner-runner" created
serviceaccount "glusterblock-provisioner" created
clusterrolebinding "glusterblock-provisioner" created
deploymentconfig "glusterblock-provisioner-dc" created
Waiting for glusterblock-provisioner pod to start ...
Checking status of pods matching '--selector=glusterfs=block-
provisioner-pod':
glusterblock-provisioner-dc-1-xm6bv 1/1 Running 0
6s
OK
Ready to create and provide Gluster block volumes.
/usr/bin/oc -n storage-project create secret generic heketi-
storage-project-admin-secret --from-literal=key= --
type=kubernetes.io/glusterfs
secret "heketi-storage-project-admin-secret" created
/usr/bin/oc -n storage-project label --overwrite secret heketi-
storage-project-admin-secret glusterfs=s3-heketi-storage-project-
admin-secret gluster-s3=heketi-storage-project-admin-secret
secret "heketi-storage-project-admin-secret" labeled
sed -e 's/\${STORAGE_CLASS}/glusterfs-for-s3/' -e
's/\${HEKETI_URL}/heketi-storage-

Container-Native Storage for OpenShift Container Platform

36

project.cloudapps.mystorage.com/' -e 's/\${NAMESPACE}/storage-
project/' /usr/share/heketi/templates/gluster-s3-
storageclass.yaml | /usr/bin/oc -n storage-project create -f -
2>&1
storageclass "glusterfs-for-s3" created
sed -e 's/\${STORAGE_CLASS}/glusterfs-for-s3/' -e
's/\${VOLUME_CAPACITY}/2Gi/' /usr/share/heketi/templates/gluster-
s3-pvcs.yaml | /usr/bin/oc -n storage-project create -f - 2>&1
persistentvolumeclaim "gluster-s3-claim" created
persistentvolumeclaim "gluster-s3-meta-claim" created

Checking status of persistentvolumeclaims matching '--
selector=glusterfs in (s3-pvc, s3-meta-pvc)':
gluster-s3-claim Bound pvc-35b6c1f0-9c65-11e7-9c8c-
005056b3ded1 2Gi RWX glusterfs-for-s3 18s
gluster-s3-meta-claim Bound pvc-35b86e7a-9c65-11e7-9c8c-
005056b3ded1 1Gi RWX glusterfs-for-s3 18s
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/gluster-s3-template.yaml 2>&1
template "gluster-s3" created
/usr/bin/oc -n storage-project process -p S3_ACCOUNT=testvolume -
p S3_USER=adminuser -p S3_PASSWORD=itsmine gluster-s3 |
/usr/bin/oc -n storage-project create -f - 2>&1
service "gluster-s3-service" created
route "gluster-s3-route" created
deploymentconfig "gluster-s3-dc" created
Waiting for gluster-s3 pod to start ...
Checking status of pods matching '--selector=glusterfs=s3-pod':
gluster-s3-dc-1-x3x4q 1/1 Running 0 6s
OK
Ready to create and provide Gluster object volumes.

Deployment complete!

2. Execute the following command to let the client communicate with the container:

export HEKETI_CLI_SERVER=http://heketi-<project_name>.
<sub_domain_name>

For example:

export HEKETI_CLI_SERVER=http://heketi-storage-
project.cloudapps.mystorage.com

To verify if Heketi is loaded with the topology execute the following command:

heketi-cli topology info

NOTE

The cns-deploy tool does not support scaling up of the cluster. To manually scale-up the
cluster, refer Chapter 12, Managing Clusters

CHAPTER 8. SETTING UP THE ENVIRONMENT

37

8.2.2. Deploying Container-Ready Storage

Execute the following commands to deploy container-ready storage:

1. To set a passwordless SSH to all Red Hat Gluster Storage nodes, execute the following
command on the client for each of the Red Hat Gluster Storage node:

ssh-copy-id -i /root/.ssh/id_rsa root@<ip/hostname_rhgs node>

2. Execute the following command on the client to deploy heketi pod and to create a cluster of
Red Hat Gluster Storage nodes:

cns-deploy -n <namespace> --admin-key <Key> -s /root/.ssh/id_rsa
topology.json

NOTE

Support for S3 compatible Object Store is under technology preview. To
deploy S3 compatible object store see Step 2a below.

In the above command, the value for admin-key is the secret string for
heketi admin user. The heketi administrator will have access to all APIs and
commands. Default is to use no secret.

The BLOCK_HOST_SIZE parameter in cns-deploy controls the size (in GB)
of the automatically created Red Hat Gluster Storage volumes hosting the
gluster-block volumes (For more information, see Section 9.2, “Block
Storage”). This default configuration will dynamically create block-hosting
volumes of 500GB in size when more space is required. If you want to
change this value then use --block-host in cns-deploy. For example:

cns-deploy -n storage-project -g --admin-key secret
--block-host 1000 topology.json

For example:

cns-deploy -n storage-project --admin-key secret -s
/root/.ssh/id_rsa topology.json
Welcome to the deployment tool for GlusterFS on Kubernetes and
OpenShift.

Before getting started, this script has some requirements of the
execution
environment and of the container platform that you should verify.

The client machine that will run this script must have:
 * Administrative access to an existing Kubernetes or OpenShift
cluster
 * Access to a python interpreter 'python'

Each of the nodes that will host GlusterFS must also have
appropriate firewall
rules for the required GlusterFS ports:

Container-Native Storage for OpenShift Container Platform

38

 * 2222 - sshd (if running GlusterFS in a pod)
 * 24007 - GlusterFS Management
 * 24008 - GlusterFS RDMA
 * 49152 to 49251 - Each brick for every volume on the host requires
its own
 port. For every new brick, one new port will be used starting at
49152. We
 recommend a default range of 49152-49251 on each host, though you
can adjust
 this to fit your needs.

The following kernel modules must be loaded:
 * dm_snapshot
 * dm_mirror
 * dm_thin_pool

For systems with SELinux, the following settings need to be
considered:
 * virt_sandbox_use_fusefs should be enabled on each node to allow
writing to
 remote GlusterFS volumes

In addition, for an OpenShift deployment you must:
 * Have 'cluster_admin' role on the administrative account doing the
deployment
 * Add the 'default' and 'router' Service Accounts to the
'privileged' SCC
 * Have a router deployed that is configured to allow apps to access
services
 running in the cluster

Do you wish to proceed with deployment?

[Y]es, [N]o? [Default: Y]: y
Using OpenShift CLI.
Using namespace "storage-project".
Checking for pre-existing resources...
 GlusterFS pods ... not found.
 deploy-heketi pod ... not found.
 heketi pod ... not found.
Creating initial resources ... template "deploy-heketi" created
serviceaccount "heketi-service-account" created
template "heketi" created
role "edit" added: "system:serviceaccount:storage-project:heketi-
service-account"
OK
secret "heketi-config-secret" created
secret "heketi-config-secret" labeled
service "deploy-heketi" created
route "deploy-heketi" created
deploymentconfig "deploy-heketi" created
Waiting for deploy-heketi pod to start ... OK
Creating cluster ... ID: 60bf06636eb4eb81d4e9be4b04cfce92
Allowing file volumes on cluster.
Allowing block volumes on cluster.
Creating node dhcp47-104.lab.eng.blr.redhat.com ... ID:

CHAPTER 8. SETTING UP THE ENVIRONMENT

39

eadc66f9d03563bcfc3db3fe636c34be
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK
Adding device /dev/sdf ... OK
Creating node dhcp47-83.lab.eng.blr.redhat.com ... ID:
178684b0a0425f51b8f1a032982ffe4d
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK
Adding device /dev/sdf ... OK
Creating node dhcp46-152.lab.eng.blr.redhat.com ... ID:
08cd7034ef7ac66499dc040d93cf4a93
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK
Adding device /dev/sdf ... OK
heketi topology loaded.
Saving /tmp/heketi-storage.json
secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created
service "heketi-storage-endpoints" labeled
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted
service "deploy-heketi" deleted
job "heketi-storage-copy-job" deleted
pod "deploy-heketi-1-30c06" deleted
secret "heketi-storage-secret" deleted
template "deploy-heketi" deleted
service "heketi" created
route "heketi" created
deploymentconfig "heketi" created
Waiting for heketi pod to start ... OK

heketi is now running and accessible via http://heketi-storage-
project.cloudapps.mystorage.com . To run
administrative commands you can install 'heketi-cli' and use it as
follows:

 # heketi-cli -s http://heketi-storage-
project.cloudapps.mystorage.com --user admin --secret '<ADMIN_KEY>'
cluster list

You can find it at https://github.com/heketi/heketi/releases .
Alternatively,
use it from within the heketi pod:

 # /usr/bin/oc -n storage-project exec -it <HEKETI_POD> -- heketi-
cli -s http://localhost:8080 --user admin --secret '<ADMIN_KEY>'
cluster list

For dynamic provisioning, create a StorageClass similar to this:

apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:

Container-Native Storage for OpenShift Container Platform

40

 name: glusterfs-storage
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://heketi-storage-project.cloudapps.mystorage.com"

Deployment complete!

NOTE

For more information on the cns-deploy commands, refer to the man page of the
cns-deploy.

cns-deploy --help

1. To deploy S3 compatible object store along with Heketi and Red Hat Gluster Storage pods,
execute the following command:

cns-deploy /opt/topology.json --deploy-gluster --namespace
<namespace> --admin-key <Key> --yes --log-file=<path/to/logfile>
--object-account <object account name> --object-user <object user
name> --object-password <object user password> --verbose

object-account, object-user, and object-password are required credentials for
deploying the gluster-s3 container. If any of these are missing, gluster-s3 container
deployment will be skipped.

object-sc and object-capacity are optional parameters. Where, object-sc is used
to specify a pre-existing StorageClass to use to create Red Hat Gluster Storage volumes to
back the object store and object-capacity is the total capacity of the Red Hat Gluster
Storage volume which will store the object data.

For example:

cns-deploy /opt/topology.json --deploy-gluster --namespace
storage-project --admin-key secret --yes --log-file=/var/log/cns-
deploy/444-cns-deploy.log --object-account testvolume --object-
user adminuser --object-password itsmine --verbose
Using OpenShift CLI.

Checking status of namespace matching 'storage-project':
storage-project Active 56m
Using namespace "storage-project".
Checking for pre-existing resources...
 GlusterFS pods ...
Checking status of pods matching '--selector=glusterfs=pod':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=pod'.
not found.
 deploy-heketi pod ...
Checking status of pods matching '--selector=deploy-heketi=pod':
No resources found.
Timed out waiting for pods matching '--selector=deploy-
heketi=pod'.

CHAPTER 8. SETTING UP THE ENVIRONMENT

41

not found.
 heketi pod ...
Checking status of pods matching '--selector=heketi=pod':
No resources found.
Timed out waiting for pods matching '--selector=heketi=pod'.
not found.
 glusterblock-provisioner pod ...
Checking status of pods matching '--selector=glusterfs=block-
provisioner-pod':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=block-
provisioner-pod'.
not found.
 gluster-s3 pod ...
Checking status of pods matching '--selector=glusterfs=s3-pod':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=s3-
pod'.
not found.
Creating initial resources ... /usr/bin/oc -n storage-project
create -f /usr/share/heketi/templates/deploy-heketi-template.yaml
2>&1
template "deploy-heketi" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/heketi-service-account.yaml 2>&1
serviceaccount "heketi-service-account" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/heketi-template.yaml 2>&1
template "heketi" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/glusterfs-template.yaml 2>&1
template "glusterfs" created
/usr/bin/oc -n storage-project policy add-role-to-user edit
system:serviceaccount:storage-project:heketi-service-account 2>&1
role "edit" added: "system:serviceaccount:storage-project:heketi-
service-account"
/usr/bin/oc -n storage-project adm policy add-scc-to-user
privileged -z heketi-service-account
OK
Marking 'dhcp46-122.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
122.lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-122.lab.eng.blr.redhat.com" labeled
Marking 'dhcp46-9.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
9.lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-9.lab.eng.blr.redhat.com" labeled
Marking 'dhcp46-134.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
134.lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-134.lab.eng.blr.redhat.com" labeled
Deploying GlusterFS pods.
/usr/bin/oc -n storage-project process -p NODE_LABEL=glusterfs
glusterfs | /usr/bin/oc -n storage-project create -f - 2>&1
daemonset "glusterfs" created
Waiting for GlusterFS pods to start ...

Container-Native Storage for OpenShift Container Platform

42

Checking status of pods matching '--selector=glusterfs=pod':
glusterfs-6fj2v 1/1 Running 0 52s
glusterfs-ck40f 1/1 Running 0 52s
glusterfs-kbtz4 1/1 Running 0 52s
OK
/usr/bin/oc -n storage-project create secret generic heketi-
config-secret --from-file=private_key=/dev/null --from-
file=./heketi.json --from-file=topology.json=/opt/topology.json
secret "heketi-config-secret" created
/usr/bin/oc -n storage-project label --overwrite secret heketi-
config-secret glusterfs=heketi-config-secret heketi=config-secret
secret "heketi-config-secret" labeled
/usr/bin/oc -n storage-project process -p
HEKETI_EXECUTOR=kubernetes -p HEKETI_FSTAB=/var/lib/heketi/fstab
-p HEKETI_ADMIN_KEY= -p HEKETI_USER_KEY= deploy-heketi |
/usr/bin/oc -n storage-project create -f - 2>&1
service "deploy-heketi" created
route "deploy-heketi" created
deploymentconfig "deploy-heketi" created
Waiting for deploy-heketi pod to start ...
Checking status of pods matching '--selector=deploy-heketi=pod':
deploy-heketi-1-hf9rn 1/1 Running 0 2m
OK
Determining heketi service URL ... OK
/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
heketi-cli -s http://localhost:8080 --user admin --secret ''
topology load --json=/etc/heketi/topology.json 2>&1
Creating cluster ... ID: 252509038eb8568162ec5920c12bc243
Allowing file volumes on cluster.
Allowing block volumes on cluster.
Creating node dhcp46-122.lab.eng.blr.redhat.com ... ID:
73ad287ae1ef231f8a0db46422367c9a
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK
Adding device /dev/sdf ... OK
Creating node dhcp46-9.lab.eng.blr.redhat.com ... ID:
0da1b20daaad2d5c57dbfc4f6ab78001
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK
Adding device /dev/sdf ... OK
Creating node dhcp46-134.lab.eng.blr.redhat.com ... ID:
4b3b62fc0efd298dedbcdacf0b498e65
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK
Adding device /dev/sdf ... OK
heketi topology loaded.
/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
heketi-cli -s http://localhost:8080 --user admin --secret ''
setup-openshift-heketi-storage --listfile=/tmp/heketi-
storage.json --image rhgs3/rhgs-volmanager-rhel7:3.3.0-17 2>&1
Saving /tmp/heketi-storage.json
/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
cat /tmp/heketi-storage.json | /usr/bin/oc -n storage-project
create -f - 2>&1
secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created

CHAPTER 8. SETTING UP THE ENVIRONMENT

43

service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created

Checking status of pods matching '--selector=job-name=heketi-
storage-copy-job':
heketi-storage-copy-job-87v6n 0/1 Completed 0
7s
/usr/bin/oc -n storage-project label --overwrite svc heketi-
storage-endpoints glusterfs=heketi-storage-endpoints
heketi=storage-endpoints
service "heketi-storage-endpoints" labeled
/usr/bin/oc -n storage-project delete
all,service,jobs,deployment,secret --selector="deploy-heketi"
2>&1
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted
service "deploy-heketi" deleted
job "heketi-storage-copy-job" deleted
pod "deploy-heketi-1-hf9rn" deleted
secret "heketi-storage-secret" deleted
/usr/bin/oc -n storage-project delete dc,route,template --
selector="deploy-heketi" 2>&1
template "deploy-heketi" deleted
/usr/bin/oc -n storage-project process -p
HEKETI_EXECUTOR=kubernetes -p HEKETI_FSTAB=/var/lib/heketi/fstab
-p HEKETI_ADMIN_KEY= -p HEKETI_USER_KEY= heketi | /usr/bin/oc -n
storage-project create -f - 2>&1
service "heketi" created
route "heketi" created
deploymentconfig "heketi" created
Waiting for heketi pod to start ...
Checking status of pods matching '--selector=heketi=pod':
heketi-1-zzblp 1/1 Running 0 31s
OK
Determining heketi service URL ... OK

heketi is now running and accessible via http://heketi-storage-
project.cloudapps.mystorage.com . To run
administrative commands you can install 'heketi-cli' and use it as
follows:

 # heketi-cli -s http://heketi-storage-
project.cloudapps.mystorage.com --user admin --secret
'<ADMIN_KEY>' cluster list

You can find it at https://github.com/heketi/heketi/releases .
Alternatively,
use it from within the heketi pod:

 # /usr/bin/oc -n storage-project exec -it <HEKETI_POD> --
heketi-cli -s http://localhost:8080 --user admin --secret
'<ADMIN_KEY>' cluster list

For dynamic provisioning, create a StorageClass similar to this:

Container-Native Storage for OpenShift Container Platform

44

apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: glusterfs-storage
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://heketi-storage-
project.cloudapps.mystorage.com"

Ready to create and provide GlusterFS volumes.
sed -e 's/\${NAMESPACE}/storage-project/'
/usr/share/heketi/templates/glusterblock-provisioner.yaml |
/usr/bin/oc -n storage-project create -f - 2>&1
clusterrole "glusterblock-provisioner-runner" created
serviceaccount "glusterblock-provisioner" created
clusterrolebinding "glusterblock-provisioner" created
deploymentconfig "glusterblock-provisioner-dc" created
Waiting for glusterblock-provisioner pod to start ...
Checking status of pods matching '--selector=glusterfs=block-
provisioner-pod':
glusterblock-provisioner-dc-1-xm6bv 1/1 Running 0
6s
OK
Ready to create and provide Gluster block volumes.
/usr/bin/oc -n storage-project create secret generic heketi-
storage-project-admin-secret --from-literal=key= --
type=kubernetes.io/glusterfs
secret "heketi-storage-project-admin-secret" created
/usr/bin/oc -n storage-project label --overwrite secret heketi-
storage-project-admin-secret glusterfs=s3-heketi-storage-project-
admin-secret gluster-s3=heketi-storage-project-admin-secret
secret "heketi-storage-project-admin-secret" labeled
sed -e 's/\${STORAGE_CLASS}/glusterfs-for-s3/' -e
's/\${HEKETI_URL}/heketi-storage-
project.cloudapps.mystorage.com/' -e 's/\${NAMESPACE}/storage-
project/' /usr/share/heketi/templates/gluster-s3-
storageclass.yaml | /usr/bin/oc -n storage-project create -f -
2>&1
storageclass "glusterfs-for-s3" created
sed -e 's/\${STORAGE_CLASS}/glusterfs-for-s3/' -e
's/\${VOLUME_CAPACITY}/2Gi/' /usr/share/heketi/templates/gluster-
s3-pvcs.yaml | /usr/bin/oc -n storage-project create -f - 2>&1
persistentvolumeclaim "gluster-s3-claim" created
persistentvolumeclaim "gluster-s3-meta-claim" created

Checking status of persistentvolumeclaims matching '--
selector=glusterfs in (s3-pvc, s3-meta-pvc)':
gluster-s3-claim Bound pvc-35b6c1f0-9c65-11e7-9c8c-
005056b3ded1 2Gi RWX glusterfs-for-s3 18s
gluster-s3-meta-claim Bound pvc-35b86e7a-9c65-11e7-9c8c-
005056b3ded1 1Gi RWX glusterfs-for-s3 18s
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/gluster-s3-template.yaml 2>&1
template "gluster-s3" created
/usr/bin/oc -n storage-project process -p S3_ACCOUNT=testvolume -
p S3_USER=adminuser -p S3_PASSWORD=itsmine gluster-s3 |

CHAPTER 8. SETTING UP THE ENVIRONMENT

45

/usr/bin/oc -n storage-project create -f - 2>&1
service "gluster-s3-service" created
route "gluster-s3-route" created
deploymentconfig "gluster-s3-dc" created
Waiting for gluster-s3 pod to start ...
Checking status of pods matching '--selector=glusterfs=s3-pod':
gluster-s3-dc-1-x3x4q 1/1 Running 0 6s
OK
Ready to create and provide Gluster object volumes.

Deployment complete!

3. Brick multiplexing is a feature that allows adding multiple bricks into one process. This reduces
resource consumption, and allows us to run more bricks than before with the same memory
consumption. Execute the following commands on one of the Red Hat Gluster Storage nodes
on each cluster to enable brick-multiplexing:

1. Execute the following command to enable brick multiplexing:

gluster vol set all cluster.brick-multiplex on

For example:

gluster vol set all cluster.brick-multiplex on
Brick-multiplexing is supported only for container workloads
(CNS/CRS). Also it is advised to make sure that either all
volumes are in stopped state or no bricks are running before this
option is modified.Do you still want to continue? (y/n) y
volume set: success

2. Restart the heketidb volumes:

gluster vol stop heketidbstorage
Stopping volume will make its data inaccessible. Do you want to
continue? (y/n) y
volume stop: heketidbstorage: success

gluster vol start heketidbstorage
volume start: heketidbstorage: success

4. Execute the following command to let the client communicate with the container:

export HEKETI_CLI_SERVER=http://heketi-<project_name>.
<sub_domain_name>

For example:

export HEKETI_CLI_SERVER=http://heketi-storage-
project.cloudapps.mystorage.com

To verify if Heketi is loaded with the topology execute the following command:

heketi-cli topology info

Container-Native Storage for OpenShift Container Platform

46

NOTE

The cns-deploy tool does not support scaling up of the cluster. To manually scale-up the
cluster, refer Chapter 12, Managing Clusters

CHAPTER 8. SETTING UP THE ENVIRONMENT

47

CHAPTER 9. CREATING PERSISTENT VOLUMES
OpenShift Container Platform clusters can be provisioned with persistent storage using GlusterFS.

Persistent volumes (PVs) and persistent volume claims (PVCs) can share volumes across a single
project. While the GlusterFS-specific information contained in a PV definition could also be defined
directly in a pod definition, doing so does not create the volume as a distinct cluster resource, making
the volume more susceptible to conflicts.

Binding PVs by Labels and Selectors

Labels are an OpenShift Container Platform feature that support user-defined tags (key-value pairs)
as part of an object’s specification. Their primary purpose is to enable the arbitrary grouping of objects
by defining identical labels among them. These labels can then be targeted by selectors to match all
objects with specified label values. It is this functionality we will take advantage of to enable our PVC to
bind to our PV.

You can use labels to identify common attributes or characteristics shared among volumes. For
example, you can define the gluster volume to have a custom attribute (key) named storage-tier with a
value of gold assigned. A claim will be able to select a PV with storage-tier=gold to match this PV.

More details for provisioning volumes in file based storage is provided in Section 9.1, “File Storage”.
Similarly, further details for provisioning volumes in block based storage is provided in Section 9.2,
“Block Storage”.

9.1. FILE STORAGE

File storage, also called file-level or file-based storage, stores data in a hierarchical structure. The data
is saved in files and folders, and presented to both the system storing it and the system retrieving it in
the same format. You can provision volumes either statically or dynamically for file based storage.

9.1.1. Static Provisioning of Volumes

To enable persistent volume support in OpenShift and Kubernetes, few endpoints and a service
must be created:

The sample glusterfs endpoint file (sample-gluster-endpoints.yaml) and the sample glusterfs service
file (sample-gluster-service.yaml) are available at /usr/share/heketi/templates/ directory.

NOTE

Ensure to copy the sample glusterfs endpoint file / glusterfs service file to a location of
your choice and then edit the copied file. For example:

cp /usr/share/heketi/templates/sample-gluster-endpoints.yaml
/<path>/gluster-endpoints.yaml

1. To specify the endpoints you want to create, update the copied sample-gluster-
endpoints.yaml file with the endpoints to be created based on the environment. Each Red
Hat Gluster Storage trusted storage pool requires its own endpoint with the IP of the nodes in
the trusted storage pool.

cat sample-gluster-endpoints.yaml
apiVersion: v1

Container-Native Storage for OpenShift Container Platform

48

https://access.redhat.com/documentation/en/openshift-container-platform/3.5/single/architecture/#architecture-additional-concepts-storage

kind: Endpoints
metadata:
 name: glusterfs-cluster
subsets:
 - addresses:
 - ip: 192.168.10.100
 ports:
 - port: 1
 - addresses:
 - ip: 192.168.10.101
 ports:
 - port: 1
 - addresses:
 - ip: 192.168.10.102
 ports:
 - port: 1

name: is the name of the endpoint

ip: is the ip address of the Red Hat Gluster Storage nodes.

2. Execute the following command to create the endpoints:

oc create -f <name_of_endpoint_file>

For example:

oc create -f sample-gluster-endpoints.yaml
endpoints "glusterfs-cluster" created

3. To verify that the endpoints are created, execute the following command:

oc get endpoints

For example:

oc get endpoints
NAME ENDPOINTS
AGE
storage-project-router
192.168.121.233:80,192.168.121.233:443,192.168.121.233:1936 2d
glusterfs-cluster
192.168.121.168:1,192.168.121.172:1,192.168.121.233:1 3s
heketi 10.1.1.3:8080
2m
heketi-storage-endpoints
192.168.121.168:1,192.168.121.172:1,192.168.121.233:1 3m

4. Execute the following command to create a gluster service:

oc create -f <name_of_service_file>

For example:

CHAPTER 9. CREATING PERSISTENT VOLUMES

49

oc create -f sample-gluster-service.yaml
service "glusterfs-cluster" created

cat sample-gluster-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: glusterfs-cluster
spec:
 ports:
 - port: 1

5. To verify that the service is created, execute the following command:

oc get service

For example:

oc get service
NAME CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
storage-project-router 172.30.94.109 <none>
80/TCP,443/TCP,1936/TCP 2d
glusterfs-cluster 172.30.212.6 <none> 1/TCP
5s
heketi 172.30.175.7 <none> 8080/TCP
2m
heketi-storage-endpoints 172.30.18.24 <none> 1/TCP
3m

NOTE

The endpoints and the services must be created for each project that requires a
persistent storage.

6. Create a 100G persistent volume with Replica 3 from GlusterFS and output a persistent
volume specification describing this volume to the file pv001.json:

$ heketi-cli volume create --size=100 --persistent-volume-
file=pv001.json

cat pv001.json
{
 "kind": "PersistentVolume",
 "apiVersion": "v1",
 "metadata": {
 "name": "glusterfs-f8c612ee",
 "creationTimestamp": null
 },
 "spec": {
 "capacity": {
 "storage": "100Gi"
 },

Container-Native Storage for OpenShift Container Platform

50

 "glusterfs": {
 "endpoints": "TYPE ENDPOINT HERE",
 "path": "vol_f8c612eea57556197511f6b8c54b6070"
 },
 "accessModes": [
 "ReadWriteMany"
],
 "persistentVolumeReclaimPolicy": "Retain"
 },
 "status": {}

IMPORTANT

You must manually add the Labels information to the .json file.

Following is the example YAML file for reference:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: pv-storage-project-glusterfs1
 labels:
 storage-tier: gold
spec:
 capacity:
 storage: 12Gi
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain
 glusterfs:
 endpoints: TYPE END POINTS NAME HERE,
 path: vol_e6b77204ff54c779c042f570a71b1407

name: The name of the volume.

storage: The amount of storage allocated to this volume

glusterfs: The volume type being used, in this case the glusterfs plug-in

endpoints: The endpoints name that defines the trusted storage pool created

path: The Red Hat Gluster Storage volume that will be accessed from the Trusted Storage Pool.

accessModes: accessModes are used as labels to match a PV and a PVC. They currently do not
define any form of access control.

lables: Use labels to identify common attributes or characteristics shared among volumes. In
this case, we have defined the gluster volume to have a custom attribute (key) named storage-
tier with a value of gold assigned. A claim will be able to select a PV with storage-tier=gold to
match this PV.

CHAPTER 9. CREATING PERSISTENT VOLUMES

51

NOTE

heketi-cli also accepts the endpoint name on the command line (--
persistent-volume-endpoint=”TYPE ENDPOINT HERE”). This can then be
piped to oc create -f - to create the persistent volume immediately.

If there are multiple Red Hat Gluster Storage trusted storage pools in your
environment, you can check on which trusted storage pool the volume is
created using the heketi-cli volume list command. This command
lists the cluster name. You can then update the endpoint information in the
pv001.json file accordingly.

When creating a Heketi volume with only two nodes with the replica count
set to the default value of three (replica 3), an error "No space" is displayed
by Heketi as there is no space to create a replica set of three disks on three
different nodes.

If all the heketi-cli write operations (ex: volume create, cluster create..etc)
fails and the read operations (ex: topology info, volume info ..etc) are
successful, then the possibility is that the gluster volume is operating in
read-only mode.

7. Edit the pv001.json file and enter the name of the endpoint in the endpoint's section:

cat pv001.json
{
 "kind": "PersistentVolume",
 "apiVersion": "v1",
 "metadata": {
 "name": "glusterfs-f8c612ee",
 "creationTimestamp": null,
 "labels": {
 "storage-tier": "gold"
 }
 },
 "spec": {
 "capacity": {
 "storage": "12Gi"
 },
 "glusterfs": {
 "endpoints": "glusterfs-cluster",
 "path": "vol_f8c612eea57556197511f6b8c54b6070"
 },
 "accessModes": [
 "ReadWriteMany"
],
 "persistentVolumeReclaimPolicy": "Retain"
 },
 "status": {}
}

8. Create a persistent volume by executing the following command:

oc create -f pv001.json

Container-Native Storage for OpenShift Container Platform

52

For example:

oc create -f pv001.json
persistentvolume "glusterfs-4fc22ff9" created

9. To verify that the persistent volume is created, execute the following command:

oc get pv

For example:

oc get pv

NAME CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
glusterfs-4fc22ff9 100Gi RWX Available
4s

10. Create a persistent volume claim file. For example:

cat pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: glusterfs-claim
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Gi
 selector:
 matchLabels:
 storage-tier: gold

11. Bind the persistent volume to the persistent volume claim by executing the following
command:

oc create -f pvc.yaml

For example:

oc create -f pvc.yaml
persistentvolumeclaim"glusterfs-claim" created

12. To verify that the persistent volume and the persistent volume claim is bound, execute the
following commands:

oc get pv
oc get pvc

For example:

CHAPTER 9. CREATING PERSISTENT VOLUMES

53

oc get pv

NAME CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE
glusterfs-4fc22ff9 100Gi RWX Bound storage-
project/glusterfs-claim 1m

oc get pvc

NAME STATUS VOLUME CAPACITY
ACCESSMODES AGE
glusterfs-claim Bound glusterfs-4fc22ff9 100Gi RWX
11s

13. The claim can now be used in the application:

For example:

cat app.yaml

apiVersion: v1
kind: Pod
metadata:
 name: busybox
spec:
 containers:
 - image: busybox
 command:
 - sleep
 - "3600"
 name: busybox
 volumeMounts:
 - mountPath: /usr/share/busybox
 name: mypvc
 volumes:
 - name: mypvc
 persistentVolumeClaim:
 claimName: glusterfs-claim

oc create -f app.yaml
pod "busybox" created

For more information about using the glusterfs claim in the application see,
https://access.redhat.com/documentation/en/openshift-container-
platform/3.6/single/installation-and-configuration/#install-config-storage-examples-gluster-
example.

14. To verify that the pod is created, execute the following command:

oc get pods

15. To verify that the persistent volume is mounted inside the container, execute the following
command:

Container-Native Storage for OpenShift Container Platform

54

https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/installation-and-configuration/#install-config-storage-examples-gluster-example

oc rsh busybox

/ $ df -h
Filesystem Size Used Available Use% Mounted on
/dev/mapper/docker-253:0-1310998-
81732b5fd87c197f627a24bcd2777f12eec4ee937cc2660656908b2fa6359129
 100.0G 34.1M 99.9G 0% /
tmpfs 1.5G 0 1.5G 0% /dev
tmpfs 1.5G 0 1.5G 0%
/sys/fs/cgroup
192.168.121.168:vol_4fc22ff934e531dec3830cfbcad1eeae
 99.9G 66.1M 99.9G 0%
/usr/share/busybox
tmpfs 1.5G 0 1.5G 0%
/run/secrets
/dev/mapper/vg_vagrant-lv_root
 37.7G 3.8G 32.0G 11%
/dev/termination-log
tmpfs 1.5G 12.0K 1.5G 0%
/var/run/secretgit s/kubernetes.io/serviceaccount

NOTE

If you encounter a permission denied error on the mount point, then refer to section
Gluster Volume Security at: https://access.redhat.com/documentation/en/openshift-
container-platform/3.6/single/installation-and-configuration/#gluster-volume-
security.

9.1.2. Dynamic Provisioning of Volumes

Dynamic provisioning enables provisioning of Red Hat Gluster Storage volume to a running application
container without having to pre-create the volume. The volume will be created dynamically as the
claim request comes in, and a volume of exactly the same size will be provisioned to the application
containers.

NOTE

Dynamically provisioned Volumes are supported from Container-Native Storage 3.4. If
you have any statically provisioned volumes and require more information about
managing it, then refer Section 9.1.1, “Static Provisioning of Volumes”

9.1.2.1. Configuring Dynamic Provisioning of Volumes

To configure dynamic provisioning of volumes, the administrator must define StorageClass objects that
describe named "classes" of storage offered in a cluster. After creating a Storage Class, a secret for
heketi authentication must be created before proceeding with the creation of persistent volume claim.

9.1.2.1.1. Registering a Storage Class

When configuring a StorageClass object for persistent volume provisioning, the administrator must
describe the type of provisioner to use and the parameters that will be used by the provisioner when it
provisions a PersistentVolume belonging to the class.

CHAPTER 9. CREATING PERSISTENT VOLUMES

55

https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/installation-and-configuration/#gluster-volume-security

1. To create a storage class execute the following command:

cat glusterfs-storageclass.yaml

apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name: gluster-container
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
 restuser: "admin"
 volumetype: "replicate:3"
 clusterid:
"630372ccdc720a92c681fb928f27b53f,796e6db1981f369ea0340913eeea4c9a"
 secretNamespace: "default"
 secretName: "heketi-secret"

where,

resturl: Gluster REST service/Heketi service url which provision gluster volumes on demand.
The general format must be IPaddress:Port and this is a mandatory parameter for GlusterFS
dynamic provisioner. If Heketi service is exposed as a routable service in openshift/kubernetes
setup, this can have a format similar to http://heketi-storage-
project.cloudapps.mystorage.com where the fqdn is a resolvable heketi service url.

restuser : Gluster REST service/Heketi user who has access to create volumes in the trusted
storage pool

volumetype: It specifies the volume type that is being used.

NOTE

Distributed-Three-way replication is the only supported volume type.

clusterid: It is the ID of the cluster which will be used by Heketi when provisioning the volume.
It can also be a list of comma separated cluster IDs. This is an optional parameter.

NOTE

To get the cluster ID, execute the following command:

heketi-cli cluster list

secretNamespace + secretName : Identification of Secret instance that contains the user
password that is used when communicating with the Gluster REST service. These parameters
are optional. Empty password will be used when both secretNamespace and secretName are
omitted.

Container-Native Storage for OpenShift Container Platform

56

NOTE

When the persistent volumes are dynamically provisioned, the Gluster plugin
automatically creates an endpoint and a headless service in the name gluster-
dynamic-<claimname>. This dynamic endpoint and service will be deleted
automatically when the persistent volume claim is deleted.

2. To register the storage class to Openshift, execute the following command:

oc create -f glusterfs-storageclass.yaml
storageclass "gluster-container" created

3. To get the details of the storage class, execute the following command:

oc describe storageclass gluster-container

Name: gluster-container
IsDefaultClass: No
Annotations: <none>
Provisioner: kubernetes.io/glusterfs
Parameters: resturl=http://heketi-storage-
project.cloudapps.mystorage.com,restuser=admin,secretName=heketi-
secret,secretNamespace=default
No events.

9.1.2.1.2. Creating Secret for Heketi Authentication

To create a secret for Heketi authentication, execute the following commands:

NOTE

If the admin-key value (secret to access heketi to get the volume details) was not set
during the deployment of Container-Native Storage, then the following steps can be
omitted.

1. Create an encoded value for the password by executing the following command:

echo -n "<key>" | base64

where “key” is the value for "admin-key" that was created while deploying Container-Native
Storage

For example:

echo -n "mypassword" | base64
bXlwYXNzd29yZA==

2. Create a secret file. A sample secret file is provided below:

cat glusterfs-secret.yaml

apiVersion: v1

CHAPTER 9. CREATING PERSISTENT VOLUMES

57

kind: Secret
metadata:
 name: heketi-secret
 namespace: default
data:
 # base64 encoded password. E.g.: echo -n "mypassword" | base64
 key: bXlwYXNzd29yZA==
type: kubernetes.io/glusterfs

3. Register the secret on Openshift by executing the following command:

oc create -f glusterfs-secret.yaml
secret "heketi-secret" created

9.1.2.1.3. Creating a Persistent Volume Claim

To create a persistent volume claim execute the following commands:

1. Create a Persistent Volume Claim file. A sample persistent volume claim is provided below:

cat glusterfs-pvc-claim1.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: claim1
 annotations:
 volume.beta.kubernetes.io/storage-class: gluster-container
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 4Gi

2. Register the claim by executing the following command:

oc create -f glusterfs-pvc-claim1.yaml
persistentvolumeclaim "claim1" created

3. To get the details of the claim, execute the following command:

oc describe pvc <claim_name>

For example:

oc describe pvc claim1

Name: claim1
Namespace: default
StorageClass: gluster-container
Status: Bound
Volume: pvc-54b88668-9da6-11e6-965e-54ee7551fd0c
Labels: <none>

Container-Native Storage for OpenShift Container Platform

58

Capacity: 4Gi
Access Modes: RWO
No events.

9.1.2.1.4. Verifying Claim Creation

To verify if the claim is created, execute the following commands:

1. To get the details of the persistent volume claim and persistent volume, execute the following
command:

oc get pv,pvc

NAME CAPACITY
ACCESSMODES RECLAIMPOLICY STATUS CLAIM
REASON AGE
pv/pvc-962aa6d1-bddb-11e6-be23-5254009fc65b 4Gi RWO
Delete Bound storage-project/claim1 3m

NAME STATUS VOLUME
CAPACITY ACCESSMODES AGE
pvc/claim1 Bound pvc-962aa6d1-bddb-11e6-be23-5254009fc65b
4Gi RWO 4m

2. To validate if the endpoint and the services are created as part of claim creation, execute the
following command:

oc get endpoints,service

NAME ENDPOINTS
AGE
ep/storage-project-router
192.168.68.3:443,192.168.68.3:1936,192.168.68.3:80 28d
ep/gluster-dynamic-claim1
192.168.68.2:1,192.168.68.3:1,192.168.68.4:1 5m
ep/heketi 10.130.0.21:8080
21d
ep/heketi-storage-endpoints
192.168.68.2:1,192.168.68.3:1,192.168.68.4:1 25d

NAME CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
svc/storage-project-router 172.30.166.64 <none>
80/TCP,443/TCP,1936/TCP 28d
svc/gluster-dynamic-claim1 172.30.52.17 <none> 1/TCP
5m
svc/heketi 172.30.129.113 <none>
8080/TCP 21d
svc/heketi-storage-endpoints 172.30.133.212 <none> 1/TCP
25d

9.1.2.1.5. Using the Claim in a Pod

Execute the following steps to use the claim in a pod.

CHAPTER 9. CREATING PERSISTENT VOLUMES

59

1. To use the claim in the application, for example

cat app.yaml

apiVersion: v1
kind: Pod
metadata:
 name: busybox
spec:
 containers:
 - image: busybox
 command:
 - sleep
 - "3600"
 name: busybox
 volumeMounts:
 - mountPath: /usr/share/busybox
 name: mypvc
 volumes:
 - name: mypvc
 persistentVolumeClaim:
 claimName: claim1

oc create -f app.yaml
pod "busybox" created

For more information about using the glusterfs claim in the application see,
https://access.redhat.com/documentation/en/openshift-container-
platform/3.6/single/installation-and-configuration/#install-config-storage-examples-gluster-
example.

2. To verify that the pod is created, execute the following command:

oc get pods

NAME READY STATUS
RESTARTS AGE
storage-project-router-1-at7tf 1/1 Running 0
13d
busybox 1/1 Running 0
8s
glusterfs-dc-192.168.68.2-1-hu28h 1/1 Running 0
7d
glusterfs-dc-192.168.68.3-1-ytnlg 1/1 Running 0
7d
glusterfs-dc-192.168.68.4-1-juqcq 1/1 Running 0
13d
heketi-1-9r47c 1/1 Running 0
13d

3. To verify that the persistent volume is mounted inside the container, execute the following
command:

oc rsh busybox

Container-Native Storage for OpenShift Container Platform

60

https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/installation-and-configuration/#install-config-storage-examples-gluster-example

/ $ df -h
Filesystem Size Used Available Use% Mounted on
/dev/mapper/docker-253:0-666733-
38050a1d2cdb41dc00d60f25a7a295f6e89d4c529302fb2b93d8faa5a3205fb9
 10.0G 33.8M 9.9G 0% /
tmpfs 23.5G 0 23.5G 0% /dev
tmpfs 23.5G 0 23.5G 0%
/sys/fs/cgroup
/dev/mapper/rhgs-root
 17.5G 3.6G 13.8G 21%
/run/secrets
/dev/mapper/rhgs-root
 17.5G 3.6G 13.8G 21%
/dev/termination-log
/dev/mapper/rhgs-root
 17.5G 3.6G 13.8G 21%
/etc/resolv.conf
/dev/mapper/rhgs-root
 17.5G 3.6G 13.8G 21%
/etc/hostname
/dev/mapper/rhgs-root
 17.5G 3.6G 13.8G 21% /etc/hosts
shm 64.0M 0 64.0M 0% /dev/shm
192.168.68.2:vol_5b05cf2e5404afe614f8afa698792bae
 4.0G 32.6M 4.0G 1%
/usr/share/busybox
tmpfs 23.5G 16.0K 23.5G 0%
/var/run/secrets/kubernetes.io/serviceaccount
tmpfs 23.5G 0 23.5G 0%
/proc/kcore
tmpfs 23.5G 0 23.5G 0%
/proc/timer_stats

9.1.2.1.6. Deleting a Persistent Volume Claim

1. To delete a claim, execute the following command:

oc delete pvc <claim-name>

For example:

oc delete pvc claim1
persistentvolumeclaim "claim1" deleted

2. To verify if the claim is deleted, execute the following command:

oc get pvc <claim-name>

For example:

oc get pvc claim1
No resources found.

CHAPTER 9. CREATING PERSISTENT VOLUMES

61

When the user deletes a persistent volume claim that is bound to a persistent volume created
by dynamic provisioning, apart from deleting the persistent volume claim, Kubernetes will also
delete the persistent volume, endpoints, service, and the actual volume. Execute the following
commands if this has to be verified:

To verify if the persistent volume is deleted, execute the following command:

oc get pv <pv-name>

For example:

oc get pv pvc-962aa6d1-bddb-11e6-be23-5254009fc65b
No resources found.

To verify if the endpoints are deleted, execute the following command:

oc get endpoints <endpointname>

For example:

oc get endpoints gluster-dynamic-claim1
No resources found.

To verify if the service is deleted, execute the following command:

oc get service <servicename>

For example:

oc get service gluster-dynamic-claim1
No resources found.

9.1.3. Volume Security

Volumes come with a UID/GID of 0 (root). For an application pod to write to the volume, it should also
have a UID/GID of 0 (root). With the volume security feature the administrator can now create a
volume with a unique GID and the application pod can write to the volume using this unique GID

Volume security for statically provisioned volumes

To create a statically provisioned volume with a GID, execute the following command:

$ heketi-cli volume create --size=100 --persistent-volume-file=pv001.json
--gid=590

In the above command, a 100G persistent volume with a GID of 590 is created and the output of the
persistent volume specification describing this volume is added to the pv001.json file.

For more information about accessing the volume using this GID, refer
https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/installation-
and-configuration/#install-config-storage-examples-gluster-example.

Volume security for dynamically provisioned volumes

Container-Native Storage for OpenShift Container Platform

62

https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/installation-and-configuration/#install-config-storage-examples-gluster-example

Two new parameters, gidMin and gidMax, are introduced with dynamic provisioner. These values allows
the administrator to configure the GID range for the volume in the storage class. To set up the GID
values and provide volume security for dynamically provisioned volumes, execute the following
commands:

1. Create a storage class file with the GID values. For example:

cat glusterfs-storageclass.yaml

apiVersion: storage.k8s.io/v1beta1
kind: StorageClass
metadata:
 name:gluster-container
provisioner: kubernetes.io/glusterfs
parameters:
 resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
 restuser: "admin"
 secretNamespace: "default"
 secretName: "heketi-secret"
 gidMin: "2000"
 gidMax: "4000"

NOTE

If the gidMin and gidMax value are not provided, then the dynamic provisioned
volumes will have the GID between 2000 and 2147483647.

2. Create a persistent volume claim. For more information see, Section 9.1.2.1.3, “Creating a
Persistent Volume Claim”

3. Use the claim in the pod. Ensure that this pod is non-privileged. For more information see,
Section 9.1.2.1.5, “Using the Claim in a Pod”

4. To verify if the GID is within the range specified, execute the following command:

oc rsh busybox

$ id

For example:

$ id
uid=1000060000 gid=0(root) groups=0(root),2001

where, 2001 in the above output is the allocated GID for the persistent volume, which is within
the range specified in the storage class. You can write to this volume with the allocated GID.

NOTE

When the persistent volume claim is deleted, the GID of the persistent volume is
released from the pool.

CHAPTER 9. CREATING PERSISTENT VOLUMES

63

9.2. BLOCK STORAGE

Block storage allows the creation of high performance individual storage units. Unlike the traditional
file storage capability that glusterfs supports, each storage volume/block device can be treated as an
independent disk drive, so that each storage volume/block device can support an individual file
system.

gluster-block is a distributed management framework for block devices. It aims to make Gluster-
backed block storage creation and maintenance as simple as possible. gluster-block can provision
block devices and export them as iSCSI LUN's across multiple nodes, and uses iSCSI protocol for data
transfer as SCSI block/commands.

NOTE

Static provisioning of volumes is not supported for Block storage. Dynamic provisioning
of volumes is the only method supported.

Block volume expansion is not supported in Container-Native Storage 3.6.

9.2.1. Dynamic Provisioning of Volumes for Block Storage

Dynamic provisioning enables provisioning of Red Hat Gluster Storage volume to a running application
container without having to pre-create the volume. The volume will be created dynamically as the
claim request comes in, and a volume of exactly the same size will be provisioned to the application
containers.

NOTE

If you are upgrading from Container-Native Storage 3.5 to Container-Native Storage
3.6, then ensure you refer Chapter 13, Upgrading your Container-Native Storage
Environment before proceeding with the following steps.

9.2.1.1. Configuring Dynamic Provisioning of Volumes

To configure dynamic provisioning of volumes, the administrator must define StorageClass objects that
describe named "classes" of storage offered in a cluster. After creating a Storage Class, a secret for
heketi authentication must be created before proceeding with the creation of persistent volume claim.

9.2.1.1.1. Configuring Multipathing on all Initiators

To ensure the iSCSI initiator can communicate with the iSCSI targets and achieve HA using
multipathing, execute the following steps on all the OpenShift nodes (iSCSI initiator) where the app
pods are hosted:

1. To install initiator related packages on all the nodes where initiator has to be configured,
execute the following command:

yum install iscsi-initiator-utils device-mapper-multipath

2. To enable multipath, execute the following command:

mpathconf --enable

Container-Native Storage for OpenShift Container Platform

64

3. Create and add the following content to the multipath.conf file:

cat > /etc/multipath.conf <<EOF
LIO iSCSI
devices {
 device {
 vendor "LIO-ORG"
 user_friendly_names "yes" # names like mpatha
 path_grouping_policy "failover" # one path per
group
 path_selector "round-robin 0"
 failback immediate
 path_checker "tur"
 prio "const"
 no_path_retry 120
 rr_weight "uniform"
 }
}
EOF

4. Execute the following command to restart the multipath service:

systemctl restart multipathd

9.2.1.1.2. Creating Secret for Heketi Authentication

To create a secret for Heketi authentication, execute the following commands:

NOTE

If the admin-key value (secret to access heketi to get the volume details) was not set
during the deployment of Container-Native Storage, then the following steps can be
omitted.

1. Create an encoded value for the password by executing the following command:

echo -n "<key>" | base64

where “key” is the value for admin-key that was created while deploying CNS

For example:

echo -n "mypassword" | base64
bXlwYXNzd29yZA==

2. Create a secret file. A sample secret file is provided below:

cat glusterfs-secret.yaml

apiVersion: v1
kind: Secret
metadata:
 name: heketi-secret

CHAPTER 9. CREATING PERSISTENT VOLUMES

65

 namespace: default
data:
 # base64 encoded password. E.g.: echo -n "mypassword" | base64
 key: bXlwYXNzd29yZA==
type: gluster.org/glusterblock

3. Register the secret on Openshift by executing the following command:

oc create -f glusterfs-secret.yaml
secret "heketi-secret" created

9.2.1.1.3. Registering a Storage Class

When configuring a StorageClass object for persistent volume provisioning, the administrator must
describe the type of provisioner to use and the parameters that will be used by the provisioner when it
provisions a PersistentVolume belonging to the class.

1. Create a storage class. A sample storage class file is presented below:

cat glusterfs-block-storageclass.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: gluster-block
provisioner: gluster.org/glusterblock
parameters:
 resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
 restuser: "admin"
 restsecretnamespace: "default"
 restsecretname: "heketi-secret"
 hacount: "3"
 clusterids:
"630372ccdc720a92c681fb928f27b53f,796e6db1981f369ea0340913eeea4c9a"
 chapauthenabled: "true"

where,

resturl: Gluster REST service/Heketi service url which provision gluster volumes on demand.
The general format must be IPaddress:Port and this is a mandatory parameter for GlusterFS
dynamic provisioner. If Heketi service is exposed as a routable service in openshift/kubernetes
setup, this can have a format similar to http://heketi-storage-
project.cloudapps.mystorage.com where the fqdn is a resolvable heketi service url.

restuser : Gluster REST service/Heketi user who has access to create volumes in the trusted
storage pool

restsecretnamespace + restsecretname : Identification of Secret instance that contains user
password to use when talking to Gluster REST service. These parameters are optional. Empty
password will be used when both restsecretnamespace and restsecretname are omitted.

hacount: It is the count of the number of paths to the block target server. hacount provides
high availability via multipathing capability of iSCSI. If there is a path failure, the I/Os will not be
interrupted and will be served via another available paths.

Container-Native Storage for OpenShift Container Platform

66

clusterids: It is the ID of the cluster which will be used by Heketi when provisioning the volume.
It can also be a list of comma separated cluster IDs. This is an optional parameter.

NOTE

To get the cluster ID, execute the following command:

heketi-cli cluster list

chapauthenabled: If you want to provision block volume with CHAP authentication enabled,
this value has to be set to true. This is an optional parameter.

2. To register the storage class to Openshift, execute the following command:

oc create -f glusterfs-block-storageclass.yaml
storageclass "gluster-block" created

3. To get the details of the storage class, execute the following command:

oc describe storageclass gluster-block
Name: gluster-block
IsDefaultClass: No
Annotations: <none>
Provisioner: gluster.org/glusterblock
Parameters:
chapauthenabled=true,hacount=3,opmode=heketi,restsecretname=heketi-
secret,restsecretnamespace=default,resturl=http://heketi-storage-
project.cloudapps.mystorage.com,restuser=admin
Events: <none>

9.2.1.1.4. Creating a Persistent Volume Claim

To create a persistent volume claim execute the following commands:

1. Create a Persistent Volume Claim file. A sample persistent volume claim is provided below:

cat glusterfs-block-pvc-claim.yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: claim1
 annotations:
 volume.beta.kubernetes.io/storage-class: gluster-block
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi

2. Register the claim by executing the following command:

oc create -f glusterfs-block-pvc-claim.yaml

CHAPTER 9. CREATING PERSISTENT VOLUMES

67

persistentvolumeclaim "claim1" created

3. To get the details of the claim, execute the following command:

oc describe pvc <claim_name>

For example:

oc describe pvc claim1

Name: claim1
Namespace: block-test
StorageClass: gluster-block
Status: Bound
Volume: pvc-ee30ff43-7ddc-11e7-89da-5254002ec671
Labels: <none>
Annotations: control-plane.alpha.kubernetes.io/leader=
{"holderIdentity":"8d7fecb4-7dba-11e7-a347-
0a580a830002","leaseDurationSeconds":15,"acquireTime":"2017-08-
10T15:02:30Z","renewTime":"2017-08-10T15:02:58Z","lea...
 pv.kubernetes.io/bind-completed=yes
 pv.kubernetes.io/bound-by-controller=yes
 volume.beta.kubernetes.io/storage-class=gluster-block
 volume.beta.kubernetes.io/storage-
provisioner=gluster.org/glusterblock
Capacity: 5Gi
Access Modes: RWO
Events:
 FirstSeen LastSeen Count From
SubObjectPath Type Reason Message
 --------- -------- ----- ----
------------- -------- ------ -------
 1m 1m 1 gluster.org/glusterblock 8d7fecb4-7dba-
11e7-a347-0a580a830002 Normal Provisioning
External provisioner is provisioning volume for claim "block-
test/claim1"
 1m 1m 18 persistentvolume-controller
Normal ExternalProvisioning cannot find provisioner
"gluster.org/glusterblock", expecting that a volume for the claim is
provisioned either manually or via external software
 1m 1m 1 gluster.org/glusterblock 8d7fecb4-7dba-
11e7-a347-0a580a830002 Normal
ProvisioningSucceeded Successfully provisioned volume pvc-
ee30ff43-7ddc-11e7-89da-5254002ec671

9.2.1.1.5. Verifying Claim Creation

To verify if the claim is created, execute the following commands:

1. To get the details of the persistent volume claim and persistent volume, execute the following
command:

oc get pv,pvc

Container-Native Storage for OpenShift Container Platform

68

NAME CAPACITY
ACCESSMODES RECLAIMPOLICY STATUS CLAIM
STORAGECLASS REASON AGE
pv/pvc-ee30ff43-7ddc-11e7-89da-5254002ec671 5Gi RWO
Delete Bound block-test/claim1 gluster-block
3m

NAME STATUS VOLUME
CAPACITY ACCESSMODES STORAGECLASS AGE
pvc/claim1 Bound pvc-ee30ff43-7ddc-11e7-89da-5254002ec671
5Gi RWO gluster-block 4m

9.2.1.1.6. Using the Claim in a Pod

Execute the following steps to use the claim in a pod.

1. To use the claim in the application, for example

cat app.yaml

apiVersion: v1
kind: Pod
metadata:
 name: busybox
spec:
 containers:
 - image: busybox
 command:
 - sleep
 - "3600"
 name: busybox
 volumeMounts:
 - mountPath: /usr/share/busybox
 name: mypvc
 volumes:
 - name: mypvc
 persistentVolumeClaim:
 claimName: claim1

oc create -f app.yaml
pod "busybox" created

For more information about using the glusterfs claim in the application see,
https://access.redhat.com/documentation/en/openshift-container-
platform/3.6/single/installation-and-configuration/#install-config-storage-examples-gluster-
example.

2. To verify that the pod is created, execute the following command:

oc get pods

NAME READY STATUS RESTARTS
AGE
block-test-router-1-deploy 0/1 Running 0
4h

CHAPTER 9. CREATING PERSISTENT VOLUMES

69

https://access.redhat.com/documentation/en/openshift-container-platform/3.6/single/installation-and-configuration/#install-config-storage-examples-gluster-example

busybox 1/1 Running 0
43s
glusterblock-provisioner-1-bjpz4 1/1 Running 0
4h
glusterfs-7l5xf 1/1 Running 0
4h
glusterfs-hhxtk 1/1 Running 3
4h
glusterfs-m4rbc 1/1 Running 0
4h
heketi-1-3h9nb 1/1 Running 0
4h

3. To verify that the persistent volume is mounted inside the container, execute the following
command:

oc rsh busybox

/ # df -h
Filesystem Size Used Available Use% Mounted on
/dev/mapper/docker-253:1-11438-
39febd9d64f3a3594fc11da83d6cbaf5caf32e758eb9e2d7bdd798752130de7e
 10.0G 33.9M 9.9G 0% /
tmpfs 3.8G 0 3.8G 0% /dev
tmpfs 3.8G 0 3.8G 0%
/sys/fs/cgroup
/dev/mapper/VolGroup00-LogVol00
 7.7G 2.8G 4.5G 39%
/dev/termination-log
/dev/mapper/VolGroup00-LogVol00
 7.7G 2.8G 4.5G 39%
/run/secrets
/dev/mapper/VolGroup00-LogVol00
 7.7G 2.8G 4.5G 39%
/etc/resolv.conf
/dev/mapper/VolGroup00-LogVol00
 7.7G 2.8G 4.5G 39%
/etc/hostname
/dev/mapper/VolGroup00-LogVol00
 7.7G 2.8G 4.5G 39% /etc/hosts
shm 64.0M 0 64.0M 0% /dev/shm
/dev/mpatha 5.0G 32.2M 5.0G 1%
/usr/share/busybox
tmpfs 3.8G 16.0K 3.8G 0%
/var/run/secrets/kubernetes.io/serviceaccount
tmpfs 3.8G 0 3.8G 0%
/proc/kcore
tmpfs 3.8G 0 3.8G 0%
/proc/timer_list
tmpfs 3.8G 0 3.8G 0%
/proc/timer_stats
tmpfs 3.8G 0 3.8G 0%
/proc/sched_debug

Container-Native Storage for OpenShift Container Platform

70

9.2.1.1.7. Deleting a Persistent Volume Claim

1. To delete a claim, execute the following command:

oc delete pvc <claim-name>

For example:

oc delete pvc claim1
persistentvolumeclaim "claim1" deleted

2. To verify if the claim is deleted, execute the following command:

oc get pvc <claim-name>

For example:

oc get pvc claim1
No resources found.

When the user deletes a persistent volume claim that is bound to a persistent volume created
by dynamic provisioning, apart from deleting the persistent volume claim, Kubernetes will also
delete the persistent volume, endpoints, service, and the actual volume. Execute the following
commands if this has to be verified:

To verify if the persistent volume is deleted, execute the following command:

oc get pv <pv-name>

For example:

oc get pv pvc-962aa6d1-bddb-11e6-be23-5254009fc65b
No resources found.

CHAPTER 9. CREATING PERSISTENT VOLUMES

71

CHAPTER 10. UPDATING THE REGISTRY WITH CONTAINER-
NATIVE STORAGE AS THE STORAGE BACK-END
OpenShift Container Platform provides an integrated registry with storage using an NFS-backed
persistent volume that is automatically setup. Container-Native Storage allows you to replace this with
a Gluster persistent volume for registry storage. This provides increased reliability, scalability and
failover. For additional information about OpenShift Container Platform and the docker-registry, refer
to https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-
single/installation_and_configuration/#setting-up-the-registry .

To include Container-Native Storage volume as a back-end when installing Openshift Container
Platform, refer https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.6/html-single/installation_and_configuration/#advanced-install-
containerized-glusterfs-backed-registry.

10.1. VALIDATING THE OPENSHIFT CONTAINER PLATFORM REGISTRY
DEPLOYMENT

To verify that the registry is properly deployed, execute the following commands:

1. On the master or client, execute the following command to login as the cluster admin user:

oc login

For example:

oc login

Authentication required for https://master.example.com:8443
(openshift)
Username: <cluster-admin-user>
Password: <password>
Login successful.

You have access to the following projects and can switch between
them with 'oc project <projectname>':

 * default
 management-infra
 openshift
 openshift-infra

Using project "default".

If you are not automatically logged into project default, then switch to it by executing the
following command:

oc project default

2. To verify that the pod is created, execute the following command:

oc get pods

Container-Native Storage for OpenShift Container Platform

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#setting-up-the-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#advanced-install-containerized-glusterfs-backed-registry

For example:

oc get pods
NAME READY STATUS RESTARTS AGE
docker-registry-2-mbu0u 1/1 Running 4 6d
docker-registry-2-spw0o 1/1 Running 3 6d
registry-console-1-rblwo 1/1 Running 3 6d

3. To verify that the endpoints are created, execute the following command:

oc get endpoints

For example:

oc get endpoints
NAME ENDPOINTS
AGE
docker-registry 10.128.0.15:5000,10.129.0.9:5000
7d
kubernetes
192.168.234.143:8443,192.168.234.143:8053,192.168.234.143:8053
7d
registry-console 10.128.0.17:9090
7d
router
192.168.234.144:443,192.168.234.145:443,192.168.234.144:1936 + 3
more... 7d

4. To verify that the persistent volume is created, execute the following command:

oc get pv
NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM
REASON AGE
registry-volume 5Gi RWX Retain
Bound default/registry-claim 7d

5. To obtain the details of the persistent volume that was created for the NFS registry, execute
the following command:

oc describe pv registry-volume
Name: registry-volume
Labels: <none>
StorageClass:
Status: Bound
Claim: default/registry-claim
Reclaim Policy: Retain
Access Modes: RWX
Capacity: 5Gi
Message:
Source:
 Type: NFS (an NFS mount that lasts the lifetime of a pod)
 Server: cns30.rh73

CHAPTER 10. UPDATING THE REGISTRY WITH CONTAINER-NATIVE STORAGE AS THE STORAGE BACK-END

73

 Path: /exports/registry
 ReadOnly: false
No events.

10.2. CONVERTING THE OPENSHIFT CONTAINER PLATFORM
REGISTRY WITH CONTAINER-NATIVE STORAGE

This section provides the steps to create a Red Hat Gluster Storage volume and use it to provide
storage for the integrated registry.

Setting up a Red Hat Gluster Storage Persistent Volume

Execute the following commands to create a Red Hat Gluster Storage volume to store the registry
data and create a persistent volume.

NOTE

The commands must be executed in the default project.

1. Login to the default project:

oc project default

For example:

oc project default
Now using project "default" on server "https://cns30.rh73:8443"

2. Execute the following command to create the gluster-registry-endpoints.yaml file:

oc get endpoints heketi-storage-endpoints -o yaml --
namespace=storage-project > gluster-registry-endpoints.yaml

NOTE

You must create an endpoint for each project from which you want to utilize the
Red Hat Gluster Storage registry. Hence, you will have a service and an endpoint
in both the default project and the new project (storage-project) created
in earlier steps.

3. Edit the gluster-registry-endpoints.yaml file. Remove all the metadata except for
name, leaving everything else the same.

cat gluster-registry-endpoints.yaml
apiVersion: v1
kind: Endpoints
metadata:
 name: gluster-registry-endpoints
subsets:
 - addresses:
 - ip: 192.168.124.114

Container-Native Storage for OpenShift Container Platform

74

 - ip: 192.168.124.52
 - ip: 192.168.124.83
 ports:
 - port: 1
 protocol: TCP

4. Execute the following command to create the endpoint:

oc create -f gluster-registry-endpoints.yaml
endpoints "gluster-registry-endpoints" created

5. To verify the creation of the endpoint, execute the following command:

oc get endpoints
NAME ENDPOINTS
AGE
docker-registry 10.129.0.8:5000,10.130.0.5:5000
28d
gluster-registry-endpoints
192.168.124.114:1,192.168.124.52:1,192.168.124.83:1
10s
kubernetes
192.168.124.250:8443,192.168.124.250:8053,192.168.124.250:8053
28d
registry-console 10.131.0.6:9090
28d
router
192.168.124.114:443,192.168.124.83:443,192.168.124.114:1936 + 3
more... 28d

6. Execute the following command to create the gluster-registry-service.yaml file:

oc get services heketi-storage-endpoints -o yaml --
namespace=storage-project > gluster-registry-service.yaml

7. Edit the gluster-registry-service.yaml file. Remove all the metadata except for name.
Also, remove the specific cluster IP addresses:

cat gluster-registry-service.yaml
apiVersion: v1
kind: Service
metadata:
 name: gluster-registry-service
spec:
 ports:
 - port: 1
 protocol: TCP
 targetPort: 1
 sessionAffinity: None
 type: ClusterIP
status:
 loadBalancer: {}

8. Execute the following command to create the service:

CHAPTER 10. UPDATING THE REGISTRY WITH CONTAINER-NATIVE STORAGE AS THE STORAGE BACK-END

75

oc create -f gluster-registry-service.yaml
services "gluster-registry-service" created

9. Execute the following command to verify if the service are running:

oc get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
docker-registry 172.30.197.118 <none> 5000/TCP
28d
gluster-registry-service 172.30.0.183 <none> 1/TCP
6s
kubernetes 172.30.0.1 <none>
443/TCP,53/UDP,53/TCP 29d
registry-console 172.30.146.178 <none> 9000/TCP
28d
router 172.30.232.238 <none>
80/TCP,443/TCP,1936/TCP 28d

10. Execute the following command to obtain the fsGroup GID of the existing docker-registry
pods:

export GID=$(oc get po --selector="docker-registry=default" -o go-
template --template='{{printf "%.0f" ((index .items
0).spec.securityContext.fsGroup)}}')

11. Execute the following command to create a volume

heketi-cli volume create --size=5 --name=gluster-registry-volume -
-gid=${GID}

12. Create the persistent volume file for the Red Hat Gluster Storage volume:

cat gluster-registry-volume.yaml
kind: PersistentVolume
apiVersion: v1
metadata:
 name: gluster-registry-volume
 labels:
 glusterfs: registry-volume
spec:
 capacity:
 storage: 5Gi
 glusterfs:
 endpoints: gluster-registry-endpoints
 path: gluster-registry-volume
 accessModes:
 - ReadWriteMany
 persistentVolumeReclaimPolicy: Retain

13. Execute the following command to create the persistent volume:

oc create -f gluster-registry-volume.yaml

Container-Native Storage for OpenShift Container Platform

76

14. Execute the following command to verify and get the details of the created persistent volume:

oc get pv/gluster-registry-volume
NAME CAPACITY ACCESSMODES RECLAIMPOLICY
STATUS CLAIM REASON AGE
gluster-registry-volume 5Gi RWX Retain
Available 21m

15. Create a new persistent volume claim. Following is a sample Persistent Volume Claim that will
be used to replace the existing registry-storage volume claim.

cat gluster-registry-claim.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: gluster-registry-claim
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 5Gi
 selector:
 matchLabels:
 glusterfs: registry-volume

16. Create the persistent volume claim by executing the following command:

oc create -f gluster-registry-claim.yaml

For example:

oc create -f gluster-registry-claim.yaml
persistentvolumeclaim "gluster-registry-claim" created

17. Execute the following command to verify if the claim is bound:

oc get pvc/gluster-registry-claim

For example:

oc get pvc/gluster-registry-claim
NAME STATUS VOLUME
CAPACITY ACCESSMODES AGE
gluster-registry-claim Bound gluster-registry-volume 5Gi
RWX 22s

18. If you want to migrate the data from the old registry to the Red Hat Gluster Storage registry,
then execute the following commands:

NOTE

These steps are optional.

CHAPTER 10. UPDATING THE REGISTRY WITH CONTAINER-NATIVE STORAGE AS THE STORAGE BACK-END

77

1. Make the old registry readonly by executing the following command:

oc set env dc/docker-registry
REGISTRY_STORAGE_MAINTENANCE_READONLY_ENABLED=true

2. Add the Red Hat Gluster Storage registry to the old registry deployment configuration (dc)
by executing the following command:

oc volume dc/docker-registry --add --name=gluster-registry-
storage -m /gluster-registry -t pvc --claim-name=gluster-
registry-claim

3. Save the Registry pod name by executing the following command:

export REGISTRY_POD=$(oc get po --selector="docker-
registry=default" -o go-template --template='{{printf "%s"
((index .items 0).metadata.name)}}')

4. Run rsync of data from old registry to the Red Hat Gluster Storage registry by executing
the following command:

oc rsync $REGISTRY_POD:/registry/ $REGISTRY_POD:/gluster-
registry/

5. Remove the Red Hat Gluster Storage registry form the old dc registry by executing the
following command:

oc volume dc/docker-registry --remove --name=gluster-registry-
storage

6. Swap the existing registry storage volume for the new Red Hat Gluster Storage volume by
executing the following command:

oc volume dc/docker-registry --add --name=registry-storage -t
pvc --claim-name=gluster-registry-claim --overwrite

7. Make the registry read write by executing the following command:

oc set env dc/docker-registry
REGISTRY_STORAGE_MAINTENANCE_READONLY_ENABLED-

For more information about accessing the registry, see https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-
registry-accessing.

Container-Native Storage for OpenShift Container Platform

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-registry-accessing

CHAPTER 11. OPERATIONS ON A RED HAT GLUSTER
STORAGE POD IN AN OPENSHIFT ENVIRONMENT
This chapter lists out the various operations that can be performed on a Red Hat Gluster Storage pod
(gluster pod):

1. To list the pods, execute the following command :

oc get pods

For example:

oc get pods
NAME READY
STATUS RESTARTS AGE
storage-project-router-1-v89qc 1/1
Running 0 1d
glusterfs-dc-node1.example.com 1/1
Running 0 1d
glusterfs-dc-node2.example.com 1/1
Running 1 1d
glusterfs-dc-node3.example.com 1/1
Running 0 1d
heketi-1-k1u14 1/1
Running 0 23m
rhel1 1/1
Running 0 26s

Following are the gluster pods from the above example:

glusterfs-dc-node1.example.com
glusterfs-dc-node2.example.com
glusterfs-dc-node3.example.com

NOTE

The topology.json file will provide the details of the nodes in a given Trusted
Storage Pool (TSP) . In the above example all the 3 Red Hat Gluster Storage
nodes are from the same TSP.

2. To enter the gluster pod shell, execute the following command:

oc rsh <gluster_pod_name>

For example:

oc rsh glusterfs-dc-node1.example.com

sh-4.2#

3. To get the peer status, execute the following command:

CHAPTER 11. OPERATIONS ON A RED HAT GLUSTER STORAGE POD IN AN OPENSHIFT ENVIRONMENT

79

gluster peer status

For example:

gluster peer status

Number of Peers: 2

Hostname: node2.example.com
Uuid: 9f3f84d2-ef8e-4d6e-aa2c-5e0370a99620
State: Peer in Cluster (Connected)
Other names:
node1.example.com

Hostname: node3.example.com
Uuid: 38621acd-eb76-4bd8-8162-9c2374affbbd
State: Peer in Cluster (Connected)

4. To list the gluster volumes on the Trusted Storage Pool, execute the following command:

gluster volume info

For example:

Volume Name: heketidbstorage
Type: Distributed-Replicate
Volume ID: 2fa53b28-121d-4842-9d2f-dce1b0458fda
Status: Started
Number of Bricks: 2 x 3 = 6
Transport-type: tcp
Bricks:
Brick1:
192.168.121.172:/var/lib/heketi/mounts/vg_1be433737b71419dc9b395e221
255fb3/brick_c67fb97f74649d990c5743090e0c9176/brick
Brick2:
192.168.121.233:/var/lib/heketi/mounts/vg_0013ee200cdefaeb6dfedd28e5
0fd261/brick_6ebf1ee62a8e9e7a0f88e4551d4b2386/brick
Brick3:
192.168.121.168:/var/lib/heketi/mounts/vg_e4b32535c55c88f9190da7b7ef
d1fcab/brick_df5db97aa002d572a0fec6bcf2101aad/brick
Brick4:
192.168.121.233:/var/lib/heketi/mounts/vg_0013ee200cdefaeb6dfedd28e5
0fd261/brick_acc82e56236df912e9a1948f594415a7/brick
Brick5:
192.168.121.168:/var/lib/heketi/mounts/vg_e4b32535c55c88f9190da7b7ef
d1fcab/brick_65dceb1f749ec417533ddeae9535e8be/brick
Brick6:
192.168.121.172:/var/lib/heketi/mounts/vg_7ad961dbd24e16d62cabe10fd8
bf8909/brick_f258450fc6f025f99952a6edea203859/brick
Options Reconfigured:
performance.readdir-ahead: on

Volume Name: vol_9e86c0493f6b1be648c9deee1dc226a6
Type: Distributed-Replicate
Volume ID: 940177c3-d866-4e5e-9aa0-fc9be94fc0f4

Container-Native Storage for OpenShift Container Platform

80

Status: Started
Number of Bricks: 2 x 3 = 6
Transport-type: tcp
Bricks:
Brick1:
192.168.121.168:/var/lib/heketi/mounts/vg_3fa141bf2d09d30b899f2f260c
494376/brick_9fb4a5206bdd8ac70170d00f304f99a5/brick
Brick2:
192.168.121.172:/var/lib/heketi/mounts/vg_7ad961dbd24e16d62cabe10fd8
bf8909/brick_dae2422d518915241f74fd90b426a379/brick
Brick3:
192.168.121.233:/var/lib/heketi/mounts/vg_5c6428c439eb6686c5e4cee565
32bacf/brick_b3768ba8e80863724c9ec42446ea4812/brick
Brick4:
192.168.121.172:/var/lib/heketi/mounts/vg_7ad961dbd24e16d62cabe10fd8
bf8909/brick_0a13958525c6343c4a7951acec199da0/brick
Brick5:
192.168.121.168:/var/lib/heketi/mounts/vg_17fbc98d84df86756e7826326f
b33aa4/brick_af42af87ad87ab4f01e8ca153abbbee9/brick
Brick6:
192.168.121.233:/var/lib/heketi/mounts/vg_5c6428c439eb6686c5e4cee565
32bacf/brick_ef41e04ca648efaf04178e64d25dbdcb/brick
Options Reconfigured:
performance.readdir-ahead: on

5. To get the volume status, execute the following command:

gluster volume status <volname>

For example:

gluster volume status vol_9e86c0493f6b1be648c9deee1dc226a6

Status of volume: vol_9e86c0493f6b1be648c9deee1dc226a6
Gluster process TCP Port RDMA Port
Online Pid
--

Brick 192.168.121.168:/var/lib/heketi/mounts/v
g_3fa141bf2d09d30b899f2f260c494376/brick_9f
b4a5206bdd8ac70170d00f304f99a5/brick 49154 0 Y
3462
Brick 192.168.121.172:/var/lib/heketi/mounts/v
g_7ad961dbd24e16d62cabe10fd8bf8909/brick_da
e2422d518915241f74fd90b426a379/brick 49154 0 Y
115939
Brick 192.168.121.233:/var/lib/heketi/mounts/v
g_5c6428c439eb6686c5e4cee56532bacf/brick_b3
768ba8e80863724c9ec42446ea4812/brick 49154 0 Y
116134
Brick 192.168.121.172:/var/lib/heketi/mounts/v
g_7ad961dbd24e16d62cabe10fd8bf8909/brick_0a
13958525c6343c4a7951acec199da0/brick 49155 0 Y
115958
Brick 192.168.121.168:/var/lib/heketi/mounts/v

CHAPTER 11. OPERATIONS ON A RED HAT GLUSTER STORAGE POD IN AN OPENSHIFT ENVIRONMENT

81

g_17fbc98d84df86756e7826326fb33aa4/brick_af
42af87ad87ab4f01e8ca153abbbee9/brick 49155 0 Y
3481
Brick 192.168.121.233:/var/lib/heketi/mounts/v
g_5c6428c439eb6686c5e4cee56532bacf/brick_ef
41e04ca648efaf04178e64d25dbdcb/brick 49155 0 Y
116153
NFS Server on localhost 2049 0 Y
116173
Self-heal Daemon on localhost N/A N/A Y
116181
NFS Server on node1.example.com
2049 0 Y 3501
Self-heal Daemon on node1.example.com
N/A N/A Y 3509
NFS Server on 192.168.121.172 2049 0
Y 115978
Self-heal Daemon on 192.168.121.172 N/A N/A
Y 115986

Task Status of Volume vol_9e86c0493f6b1be648c9deee1dc226a6
--

There are no active volume tasks

6. To use the snapshot feature, load the snapshot module using the following command:

- modprobe dm_snapshot

IMPORTANT

Restrictions for using Snapshot

After a snapshot is created, it must be accessed though the user-
serviceable snapshots feature only. This can be used to copy the old
versions of files into the required location.

Reverting the volume to a snapshot state is not supported and should never
be done as it might damage the consistency of the data.

On a volume with snapshots, volume changing operations, such as volume
expansion, must not be performed.

7. To take the snapshot of the gluster volume, execute the following command:

gluster snapshot create <snapname> <volname>

For example:

gluster snapshot create snap1 vol_9e86c0493f6b1be648c9deee1dc226a6

snapshot create: success: Snap snap1_GMT-2016.07.29-13.05.46 created
successfully

Container-Native Storage for OpenShift Container Platform

82

8. To list the snapshots, execute the following command:

gluster snapshot list

For example:

gluster snapshot list

snap1_GMT-2016.07.29-13.05.46
snap2_GMT-2016.07.29-13.06.13
snap3_GMT-2016.07.29-13.06.18
snap4_GMT-2016.07.29-13.06.22
snap5_GMT-2016.07.29-13.06.26

9. To delete a snapshot, execute the following command:

gluster snap delete <snapname>

For example:

gluster snap delete snap1_GMT-2016.07.29-13.05.46

Deleting snap will erase all the information about the snap. Do you
still want to continue? (y/n) y
snapshot delete: snap1_GMT-2016.07.29-13.05.46: snap removed
successfully

For more information about managing snapshots, refer
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html-
single/administration_guide/#chap-Managing_Snapshots.

10. You can set up Container-Native Storage volumes for geo-replication to a non-Container-
Native Storage remote site. Geo-replication uses a master–slave model. Here, the Container-
Native Storage volume acts as the master volume. To set up geo-replication, you must run the
geo-replication commands on gluster pods. To enter the gluster pod shell, execute the
following command:

 # oc rsh <gluster_pod_name>

For more information about setting up geo-replication, refer
https://access.redhat.com/documentation/en-
us/red_hat_gluster_storage/3.2/html/administration_guide/chap-managing_geo-replication.

11. Brick multiplexing is a feature that allows including multiple bricks into one process. This
reduces resource consumption, allowing you to run more bricks than earlier with the same
memory consumption.

Brick multiplexing is enabled by default from Container-Native Storage 3.6. If you want to turn
it off, execute the following command:

gluster volume set all cluster.brick-multiplex off

12. The auto_unmount option in glusterfs libfuse, when enabled, ensures that the file system is
unmounted at FUSE server termination by running a separate monitor process that performs

CHAPTER 11. OPERATIONS ON A RED HAT GLUSTER STORAGE POD IN AN OPENSHIFT ENVIRONMENT

83

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html-single/administration_guide/#chap-Managing_Snapshots
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html/administration_guide/chap-managing_geo-replication

the unmount.

The GlusterFS plugin in Openshift enables the auto_unmount option for gluster mounts.

Container-Native Storage for OpenShift Container Platform

84

CHAPTER 12. MANAGING CLUSTERS
Heketi allows administrators to add and remove storage capacity by managing either a single or
multiple Red Hat Gluster Storage clusters.

12.1. INCREASING STORAGE CAPACITY

You can increase the storage capacity using any of the following ways:

Adding devices

Increasing cluster size

Adding an entirely new cluster.

12.1.1. Adding New Devices

You can add more devices to existing nodes to increase storage capacity. When adding more devices,
you must ensure to add devices as a set. For example, when expanding a distributed replicated volume
with a replica count of replica 2, then one device should be added to at least two nodes. If using replica
3, then at least one device should be added to at least three nodes.

You can add a device either using CLI, or the API, or by updating the topology JSON file. The sections
ahead describe using heketi CLI and updating topology JSON file. For information on adding new
devices using API, see Heketi API https://github.com/heketi/heketi/wiki/API#device_add

12.1.1.1. Using Heketi CLI

Register the specified device. The following example command shows how to add a device /dev/sde
to node d6f2c22f2757bf67b1486d868dcb7794:

heketi-cli device add --name=/dev/sde --
node=d6f2c22f2757bf67b1486d868dcb7794
OUTPUT:
Device added successfully

12.1.1.2. Updating Topology File

You can add the new device to the node description in your topology JSON used to setup the cluster.
Then rerun the command to load the topology.

Following is an example where a new /dev/sde drive added to the node:

In the file:

 {
 "node": {
 "hostnames": {
 "manage": [
 "node4.example.com"
],
 "storage": [
 "192.168.10.100"
]

CHAPTER 12. MANAGING CLUSTERS

85

https://github.com/heketi/heketi/wiki/API#device_add

 },
 "zone": 1
 },
 "devices": [
 "/dev/sdb",
 "/dev/sdc",
 "/dev/sdd",
 "/dev/sde"
]
 }

Load the topology file:

heketi-cli topology load --json=topology-sample.json
 Found node 192.168.10.100 on cluster d6f2c22f2757bf67b1486d868dcb7794
 Found device /dev/sdb
 Found device /dev/sdc
 Found device /dev/sdd
 Adding device /dev/sde ... OK
 Found node 192.168.10.101 on cluster d6f2c22f2757bf67b1486d868dcb7794
 Found device /dev/sdb
 Found device /dev/sdc
 Found device /dev/sdd
 Found node 192.168.10.102 on cluster d6f2c22f2757bf67b1486d868dcb7794
 Found device /dev/sdb
 Found device /dev/sdc
 Found device /dev/sdd
 Found node 192.168.10.103 on cluster d6f2c22f2757bf67b1486d868dcb7794
 Found device /dev/sdb
 Found device /dev/sdc
 Found device /dev/sdd

12.1.2. Increasing Cluster Size

Another way to add storage to Heketi, is to add new nodes to the cluster. Like adding devices, you can
add a new node to an existing cluster by either using CLI or the API or by updating the topology JSON
file. When you add a new node to the cluster, then you must register new devices to that node.

The sections ahead describe using heketi CLI and updating topology JSON file. For information on
adding new devices using API, see Heketi API: https://github.com/heketi/heketi/wiki/API#node_add

NOTE

Red Hat Gluster Storage pods have to be configured before proceeding with the
following steps. To manually deploy the Red Hat Gluster Storage pods, refer Section A.2,
“Deploying the Containers”

12.1.2.1. Using Heketi CLI

Following shows an example of how to add new node in zone 1 to
597fceb5d6c876b899e48f599b988f54 cluster using the CLI:

heketi-cli node add --zone=1 --cluster=597fceb5d6c876b899e48f599b988f54
--management-host-name=node4.example.com --storage-host-

Container-Native Storage for OpenShift Container Platform

86

https://github.com/heketi/heketi/wiki/API#node_add

name=192.168.10.104

OUTPUT:
Node information:
Id: 095d5f26b56dc6c64564a9bc17338cbf
State: online
Cluster Id: 597fceb5d6c876b899e48f599b988f54
Zone: 1
Management Hostname node4.example.com
Storage Hostname 192.168.10.104

The following example command shows how to register /dev/sdb and /dev/sdc devices for
095d5f26b56dc6c64564a9bc17338cbf node:

heketi-cli device add --name=/dev/sdb --
node=095d5f26b56dc6c64564a9bc17338cbf
OUTPUT:
Device added successfully

heketi-cli device add --name=/dev/sdc --
node=095d5f26b56dc6c64564a9bc17338cbf
OUTPUT:
Device added successfully

12.1.2.2. Updating Topology File

You can expand a cluster by adding a new node to your topology JSON file. When adding the new node
you must add this node information after the existing ones so that the Heketi CLI identifies on which
cluster this new node should be part of.

Following shows an example of how to add a new node and devices:

 {
 "node": {
 "hostnames": {
 "manage": [
 "node4.example.com"
],
 "storage": [
 "192.168.10.104"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sdb",
 "/dev/sdc"
]
 }

Load the topology file:

heketi-cli topology load --json=topology-sample.json
 Found node 192.168.10.100 on cluster d6f2c22f2757bf67b1486d868dcb7794

CHAPTER 12. MANAGING CLUSTERS

87

 Found device /dev/sdb
 Found device /dev/sdc
 Found device /dev/sdd
 Found device /dev/sde
 Found node 192.168.10.101 on cluster d6f2c22f2757bf67b1486d868dcb7794
 Found device /dev/sdb
 Found device /dev/sdc
 Found device /dev/sdd
 Found node 192.168.10.102 on cluster d6f2c22f2757bf67b1486d868dcb7794
 Found device /dev/sdb
 Found device /dev/sdc
 Found device /dev/sdd
 Found node 192.168.10.103 on cluster d6f2c22f2757bf67b1486d868dcb7794
 Found device /dev/sdb
 Found device /dev/sdc
 Found device /dev/sdd
 Creating node node4.example.com ... ID:
ff3375aca6d98ed8a004787ab823e293
 Adding device /dev/sdb ... OK
 Adding device /dev/sdc ... OK

12.1.3. Adding a New Cluster

Storage capacity can also be increased by adding new clusters of Red Hat Gluster Storage. New
clusters can be added in the following two ways based on the requirement:

Adding a new cluster to the existing Container-Native Storage

Adding another Container-Native Storage cluster in a new project

12.1.3.1. Adding a New Cluster to the Existing Container-Native Storage

To add a new cluster to the existing Container-Native Storage, execute the following commands:

1. Verify that Container-Native Storage is deployed and working as expected in the existing
project by executing the following command:

oc get ds

For example:

oc get ds
NAME DESIRED CURRENT READY NODE-SELECTOR
AGE
glusterfs 3 3 3 storagenode=glusterfs
8m

2. Add the label for each node, where the Red Hat Gluster Storage pods are to be added for the
new cluster to start by executing the following command:

oc label node <NODE_NAME> storagenode=<node_label>

where,

Container-Native Storage for OpenShift Container Platform

88

NODE_NAME: is the name of the newly created node

node_label: The name that is used in the existing deamonSet.

For example:

oc label node 192.168.90.3 storagenode=glusterfs
node "192.168.90.3" labeled

3. Verify if the Red Hat Gluster Storage pods are running by executing the folowing command:

oc get ds

For example:

oc get ds
NAME DESIRED CURRENT READY NODE-SELECTOR
AGE
glusterfs 6 6 6 storagenode=glusterfs
8m

4. Create a new topology file for the new cluster. You must provide a topology file for the new
cluster which describes the topology of the Red Hat Gluster Storage nodes and their attached
storage devices. A sample, formatted topology file (topology-sample.json) is installed with the
‘heketi-client’ package in the /usr/share/heketi/ directory.

For example:

{
 "clusters": [
 {
 "nodes": [
 {
 "node": {
 "hostnames": {
 "manage": [
 "node1.example.com"
],
 "storage": [
 "192.168.68.3"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sdb",
 "/dev/sdc",
 "/dev/sdd",
 "/dev/sde",
 "/dev/sdf",
 "/dev/sdg",
 "/dev/sdh",
 "/dev/sdi"
]
 },

CHAPTER 12. MANAGING CLUSTERS

89

 {
 "node": {
 "hostnames": {
 "manage": [
 "node2.example.com"
],
 "storage": [
 "192.168.68.2"
]
 },
 "zone": 2
 },
 "devices": [
 "/dev/sdb",
 "/dev/sdc",
 "/dev/sdd",
 "/dev/sde",
 "/dev/sdf",
 "/dev/sdg",
 "/dev/sdh",
 "/dev/sdi"
]
 },

.......

.......

where,

clusters: Array of clusters.

Each element on the array is a map which describes the cluster as follows.

nodes: Array of OpenShift nodes that will host the Red Hat Gluster Storage container

Each element on the array is a map which describes the node as follows

node: It is a map of the following elements:

zone: The value represents the zone number that the node belongs to; the
zone number is used by heketi for choosing optimum position of bricks by
having replicas of bricks in different zones. Hence zone number is similar to a
failure domain.

hostnames: It is a map which lists the manage and storage addresses

manage: It is the hostname/IP Address that is used by Heketi to
communicate with the node

storage: It is the IP address that is used by other OpenShift nodes to
communicate with the node. Storage data traffic will use the interface
attached to this IP. This must be the IP address and not the hostname
because, in an OpenShift environment, Heketi considers this to be the
endpoint too.

devices: Name of each disk to be added

Container-Native Storage for OpenShift Container Platform

90

Edit the topology file based on the Red Hat Gluster Storage pod hostname under the
node.hostnames.manage section and node.hostnames.storage section with the IP
address. For simplicity, the /usr/share/heketi/topology-sample.json file only sets up 4 nodes
with 8 drives each.

5. For the existing cluster, heketi-cli will be available to load the new topology. Run the command
to add the new topology to heketi:

heketi-cli topology load --json=<topology file path>

For example:

heketi-cli topology load --json=topology.json
Creating cluster ... ID: 94877b3f72b79273e87c1e94201ecd58
 Creating node node4.example.com ... ID:
95cefa174c7210bd53072073c9c041a3
 Adding device /dev/sdb ... OK
 Adding device /dev/sdc ... OK
 Adding device /dev/sdd ... OK
 Adding device /dev/sde ... OK
 Creating node node5.example.com ... ID:
f9920995e580f0fe56fa269d3f3f8428
 Adding device /dev/sdb ... OK
 Adding device /dev/sdc ... OK
 Adding device /dev/sdd ... OK
 Adding device /dev/sde ... OK
 Creating node node6.example.com ... ID:
73fe4aa89ba35c51de4a51ecbf52544d
 Adding device /dev/sdb ... OK
 Adding device /dev/sdc ... OK
 Adding device /dev/sdd ... OK
 Adding device /dev/sde ... OK

12.1.3.2. Adding Another Container-Native Storage Cluster in a New Project

To add another Container-Native Storage in a new project to, execute the following commands:

NOTE

As Node label is global, there can be conflicts to start Red Hat Gluster Storage
DaemonSets with same label in two different projects. Node label is an argument to cns-
deploy, thereby enabling deploying multiple trusted storage pool by using a different
label in different project.

1. Create a new project by executing the following command:

oc new-project <new_project_name>

For example:

oc new-project storage-project-2

Now using project "storage-project-2" on server

CHAPTER 12. MANAGING CLUSTERS

91

"https://master.example.com:8443"

2. After the project is created, execute the following command on the master node to enable the
deployment of the privileged containers as Red Hat Gluster Storage container can only run in
the privileged mode.

oadm policy add-scc-to-user privileged -z storage-project-2
oadm policy add-scc-to-user privileged -z default

3. Create a new topology file for the new cluster. You must provide a topology file for the new
cluster which describes the topology of the Red Hat Gluster Storage nodes and their attached
storage devices. A sample, formatted topology file (topology-sample.json) is installed with the
‘heketi-client’ package in the /usr/share/heketi/ directory.

For example:

{
 "clusters": [
 {
 "nodes": [
 {
 "node": {
 "hostnames": {
 "manage": [
 "node1.example.com"
],
 "storage": [
 "192.168.68.3"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sdb",
 "/dev/sdc",
 "/dev/sdd",
 "/dev/sde",
 "/dev/sdf",
 "/dev/sdg",
 "/dev/sdh",
 "/dev/sdi"
]
 },
 {
 "node": {
 "hostnames": {
 "manage": [
 "node2.example.com"
],
 "storage": [
 "192.168.68.2"
]
 },
 "zone": 2
 },

Container-Native Storage for OpenShift Container Platform

92

 "devices": [
 "/dev/sdb",
 "/dev/sdc",
 "/dev/sdd",
 "/dev/sde",
 "/dev/sdf",
 "/dev/sdg",
 "/dev/sdh",
 "/dev/sdi"
]
 },

.......

.......

where,

clusters: Array of clusters.

Each element on the array is a map which describes the cluster as follows.

nodes: Array of OpenShift nodes that will host the Red Hat Gluster Storage container

Each element on the array is a map which describes the node as follows

node: It is a map of the following elements:

zone: The value represents the zone number that the node belongs to; the
zone number is used by heketi for choosing optimum position of bricks by
having replicas of bricks in different zones. Hence zone number is similar to a
failure domain.

hostnames: It is a map which lists the manage and storage addresses

manage: It is the hostname/IP Address that is used by Heketi to
communicate with the node

storage: It is the IP address that is used by other OpenShift nodes to
communicate with the node. Storage data traffic will use the interface
attached to this IP. This must be the IP address and not the hostname
because, in an OpenShift environment, Heketi considers this to be the
endpoint too.

devices: Name of each disk to be added

Edit the topology file based on the Red Hat Gluster Storage pod hostname under the
node.hostnames.manage section and node.hostnames.storage section with the IP
address. For simplicity, the /usr/share/heketi/topology-sample.json file only sets up 4 nodes
with 8 drives each.

4. Execute the following command on the client to deploy the heketi and Red Hat Gluster Storage
pods:

cns-deploy -n <namespace> --daemonset-label <NODE_LABEL> -g
topology.json

CHAPTER 12. MANAGING CLUSTERS

93

For example:

cns-deploy -n storage-project-2 --daemonset-label glusterfs2 -g
topology.json
Welcome to the deployment tool for GlusterFS on Kubernetes and
OpenShift.

Before getting started, this script has some requirements of the
execution
environment and of the container platform that you should verify.

The client machine that will run this script must have:
 * Administrative access to an existing Kubernetes or OpenShift
cluster
 * Access to a python interpreter 'python'
 * Access to the heketi client 'heketi-cli'

Each of the nodes that will host GlusterFS must also have
appropriate firewall
rules for the required GlusterFS ports:
 * 2222 - sshd (if running GlusterFS in a pod)
 * 24007 - GlusterFS Daemon
 * 24008 - GlusterFS Management
 * 49152 to 49251 - Each brick for every volume on the host requires
its own
 port. For every new brick, one new port will be used starting at
49152. We
 recommend a default range of 49152-49251 on each host, though you
can adjust
 this to fit your needs.

In addition, for an OpenShift deployment you must:
 * Have 'cluster_admin' role on the administrative account doing the
deployment
 * Add the 'default' and 'router' Service Accounts to the
'privileged' SCC
 * Have a router deployed that is configured to allow apps to access
services
 running in the cluster

Do you wish to proceed with deployment?

[Y]es, [N]o? [Default: Y]: Y
Using OpenShift CLI.
NAME STATUS AGE
storage-project-2 Active 2m
Using namespace "storage-project-2".
Checking that heketi pod is not running ... OK
template "deploy-heketi" created
serviceaccount "heketi-service-account" created
template "heketi" created
template "glusterfs" created
role "edit" added: "system:serviceaccount:storage-project-2:heketi-
service-account"
node "192.168.35.5" labeled
node "192.168.35.6" labeled

Container-Native Storage for OpenShift Container Platform

94

node "192.168.35.7" labeled
daemonset "glusterfs" created
Waiting for GlusterFS pods to start ... OK
service "deploy-heketi" created
route "deploy-heketi" created
deploymentconfig "deploy-heketi" created
Waiting for deploy-heketi pod to start ... OK
Creating cluster ... ID: fde139c21b0afcb6206bf272e0df1590
Creating node 192.168.35.5 ... ID: 0768a1ee35dce4cf707c7a1e9caa3d2a
Adding device /dev/vdc ... OK
Adding device /dev/vdd ... OK
Adding device /dev/vde ... OK
Adding device /dev/vdf ... OK
Creating node 192.168.35.6 ... ID: 63966f6ffd48c1980c4a2d03abeedd04
Adding device /dev/vdc ... OK
Adding device /dev/vdd ... OK
Adding device /dev/vde ... OK
Adding device /dev/vdf ... OK
Creating node 192.168.35.7 ... ID: de129c099193aaff2c64dca825f33558
Adding device /dev/vdc ... OK
Adding device /dev/vdd ... OK
Adding device /dev/vde ... OK
Adding device /dev/vdf ... OK
heketi topology loaded.
Saving heketi-storage.json
secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted
service "deploy-heketi" deleted
job "heketi-storage-copy-job" deleted
pod "deploy-heketi-1-d0qrs" deleted
secret "heketi-storage-secret" deleted
service "heketi" created
route "heketi" created
deploymentconfig "heketi" created
Waiting for heketi pod to start ... OK
heketi is now running.
Ready to create and provide GlusterFS volumes.

NOTE

For more information on the cns-deploy commands, refer to the man page of the
cns-deploy.

cns-deploy --help

5. Verify that Container-Native Storage is deployed and working as expected in the new project
with the new daemonSet label by executing the following command:

oc get ds

CHAPTER 12. MANAGING CLUSTERS

95

For example:

oc get ds
NAME DESIRED CURRENT READY NODE-SELECTOR
AGE
glusterfs 3 3 3 storagenode=glusterfs2
8m

12.2. REDUCING STORAGE CAPACITY

Heketi also supports the reduction of storage capacity. You can reduce storage by deleting devices,
nodes, and clusters. These requests can only be performed by using the Heketi CLI or the API. For
information on using command line API, see Heketi API https://github.com/heketi/heketi/wiki/API.

NOTE

The IDs can be retrieved by executing the heketi-cli topology info command.

heketi-cli topology info

The heketidbstorage volume cannot be deleted as it contains the heketi
database.

12.2.1. Deleting Volumes

You can delete the volume using the following Heketi CLI command:

heketi-cli volume delete <volume_id>

For example:

heketi-cli volume delete 12b2590191f571be9e896c7a483953c3
Volume 12b2590191f571be9e896c7a483953c3 deleted

12.2.2. Deleting Device

Deleting the device deletes devices from heketi's topology. Devices that have bricks cannot be deleted.
You must ensure they are free of bricks by disabling and removing devices.

12.2.2.1. Disabling and Enabling a Device

Disabling devices stops further allocation of bricks onto the device. You can disable devices using the
following Heketi CLI command:

heketi-cli device disable <device_id>

For example:

heketi-cli device disable f53b13b9de1b5125691ee77db8bb47f4
Device f53b13b9de1b5125691ee77db8bb47f4 is now offline

Container-Native Storage for OpenShift Container Platform

96

https://github.com/heketi/heketi/wiki/API

If you want to re-enable the device, execute the following command. Enabling the device allows
allocation of bricks onto the device.

heketi-cli device enable <device_id>

For example:

heketi-cli device enable f53b13b9de1b5125691ee77db8bb47f4
Device f53b13b9de1b5125691ee77db8bb47f4 is now online

12.2.2.2. Removing and Deleting the Device

Removing devices moves existing bricks from the device to other devices. This helps in ensuring the
device is free of bricks. A device can be removed only after disabling it.

1. Remove device using the following command:

 # heketi-cli device remove <device_id>

For example:

heketi-cli device remove e9ef1d9043ed3898227143add599e1f9
Device e9ef1d9043ed3898227143add599e1f9 is now removed

2. Delete the device using the following command:

heketi-cli device delete <device_id>

For example:

heketi-cli device delete 56912a57287d07fad0651ba0003cf9aa
Device 56912a57287d07fad0651ba0003cf9aa deleted

The only way to reuse a deleted device is by adding the device to heketi's topology again.

12.2.2.3. Replacing a Device

Heketi does not allow one-to-one replacement of a device with another. However, in case of a failed
device, follow the example below for the sequence of operations that are required to replace a failed
device.

1. Locate the device that has failed using the following command:

heketi-cli topology info

…
…
...
 Nodes:
Node Id: 8faade64a9c8669de204b66bc083b10d
...
...

CHAPTER 12. MANAGING CLUSTERS

97

…
 Id:a811261864ee190941b17c72809a5001 Name:/dev/vdc
State:online Size (GiB):499 Used (GiB):281 Free (GiB):218
 Bricks:

Id:34c14120bef5621f287951bcdfa774fc Size (GiB):280 Path:
/var/lib/heketi/mounts/vg_a811261864ee190941b17c72809a5001/brick_34c
14120bef5621f287951bcdfa774fc/brick
…
…
...

The example below illustrates the sequence of operations that are required to replace a failed
device. The example uses device ID a811261864ee190941b17c72809a5001 which belongs
to node with id 8faade64a9c8669de204b66bc083b10das.

2. Add a new device preferably to the same node as the device being replaced.

heketi-cli device add --name /dev/vdd --node
8faade64a9c8669de204b66bc083b10d
Device added successfully

3. Disable the failed device.

heketi-cli device disable a811261864ee190941b17c72809a5001
Device a811261864ee190941b17c72809a5001 is now offline

4. Remove the failed device.

heketi-cli device remove a811261864ee190941b17c72809a5001
 Device a811261864ee190941b17c72809a5001 is now removed

At this stage, the bricks are migrated from the failed device. Heketi chooses a suitable device
based on the brick allocation algorithm. As a result, there is a possibility that all the bricks
might not be migrated to the new added device.

5. Delete the failed device.

heketi-cli device delete a811261864ee190941b17c72809a5001
Device a811261864ee190941b17c72809a5001 deleted

6. Before repeating the above sequence of steps on another device, you must wait for the self-
heal operation to complete. You can verify that the self-heal operation completed when the
Number of entries value returns a 0 value.

oc rsh <any_gluster_pod_name>
for each in $(gluster volume list) ; do gluster vol heal $each info
| grep "Number of entries:" ; done
Number of entries: 0
Number of entries: 0
Number of entries: 0

12.2.3. Deleting Node

Container-Native Storage for OpenShift Container Platform

98

Nodes that have devices added to it cannot be deleted. To delete the node, the devices that are
associated with the node have to be deleted. Disabling and removing the node ensures all the
underlying devices are removed too. Once the node is removed, all the devices in it can be deleted and
finally the node can be deleted.

12.2.3.1. Disabling and Enabling a Node

Disabling node stops further allocation of bricks onto all the devices associated to the node. You can
disable nodes using the following Heketi CLI command:

heketi-cli node disable <node_id>

For example:

heketi-cli node disable 5f0af88b968ed1f01bf959fe4fe804dc
Node 5f0af88b968ed1f01bf959fe4fe804dc is now offline

If you want to re-enable the node, execute the following command.

heketi-cli node enable <node_id>

For example:

heketi-cli node enable 5f0af88b968ed1f01bf959fe4fe804dc
Node 5f0af88b968ed1f01bf959fe4fe804dc is now online

12.2.3.2. Removing and Deleting the Node

Removing nodes moves existing bricks from all the devices in the node to other devices in the cluster.
This helps in ensuring all the device in the node is free of bricks. A device can be removed only after
disabling it.

1. To remove the node execute the following command:

heketi-cli node remove <node_id>

For example:

heketi-cli node remove 5f0af88b968ed1f01bf959fe4fe804dc
Node 5f0af88b968ed1f01bf959fe4fe804dc is now removed

2. Delete the devices associated with the node by executing the following command as the nodes
that have devices associated with it cannot be deleted:

heketi-cli device delete <device_id>

For example:

heketi-cli device delete 56912a57287d07fad0651ba0003cf9aa
Device 56912a57287d07fad0651ba0003cf9aa deleted

Execute the command for every device on the node.

CHAPTER 12. MANAGING CLUSTERS

99

3. Delete the node using the following command:

heketi-cli node delete <node_id>

For example:

heketi-cli node delete 5f0af88b968ed1f01bf959fe4fe804dc
Node 5f0af88b968ed1f01bf959fe4fe804dc deleted

Deleting the node deletes the node from the heketi topology. The only way to reuse a deleted
node is by adding the node to heketi's topology again

12.2.3.3. Replacing a Node

Heketi does not allow one-to-one replacement of a node with another. However, in case of a failed
node, follow the example below for the sequence of operations that are required to replace a failed
node and its respective devices.

1. Locate the node that has failed using the following command:

heketi-cli topology info

…
…
...
 Nodes:
Node Id: 8faade64a9c8669de204b66bc083b10d
...
...
…
 Id:a811261864ee190941b17c72809a5001 Name:/dev/vdc
State:online Size (GiB):499 Used (GiB):281 Free (GiB):218
 Bricks:

Id:34c14120bef5621f287951bcdfa774fc Size (GiB):280 Path:
/var/lib/heketi/mounts/vg_a811261864ee190941b17c72809a5001/brick_34c
14120bef5621f287951bcdfa774fc/brick
…
…
...

The example below illustrates the sequence of operations that are required to replace a failed
node. The example uses node ID 8faade64a9c8669de204b66bc083b10d.

2. Add a new node, preferably that has the same devices as the node being replaced.

heketi-cli node add --zone=1 --
cluster=597fceb5d6c876b899e48f599b988f54 --management-host-
name=node4.example.com --storage-host-name=192.168.10.104

heketi-cli device add --name /dev/vdd --node
8faade64a9c8669de204b66bc083b10d

Node and device added successfully

Container-Native Storage for OpenShift Container Platform

100

3. Disable the failed node.

heketi-cli node disable 8faade64a9c8669de204b66bc083b10d
Node 8faade64a9c8669de204b66bc083b10d is now offline

4. Remove the failed node.

heketi-cli node remove 8faade64a9c8669de204b66bc083b10d
 Node 8faade64a9c8669de204b66bc083b10d is now removed

At this stage, the bricks are migrated from the failed node. Heketi chooses a suitable device
based on the brick allocation algorithm.

5. Delete the devices associated with the node by executing the following command as the nodes
that have devices associated with it cannot be deleted:

heketi-cli device delete <device_id>

For example:

heketi-cli device delete 56912a57287d07fad0651ba0003cf9aa
Device 56912a57287d07fad0651ba0003cf9aa deleted

Execute the command for every device on the node.

6. Delete the failed node.

heketi-cli node delete 8faade64a9c8669de204b66bc083b10d
Node 8faade64a9c8669de204b66bc083b10d deleted

12.2.4. Deleting Clusters

You can delete the cluster using the following Heketi CLI command:

heketi-cli cluster delete <cluster_id>

For example:

heketi-cli cluster delete 0e949d91c608d13fd3fc4e96f798a5b1
Cluster 0e949d91c608d13fd3fc4e96f798a5b1 deleted

CHAPTER 12. MANAGING CLUSTERS

101

CHAPTER 13. UPGRADING YOUR CONTAINER-NATIVE
STORAGE ENVIRONMENT
This chapter describes the procedure to upgrade your environment from Container-Native Storage 3.5
to Container-Native Storage 3.6.

13.1. PREREQUISITES

Ensure the following prerequisites are met:

Section 5.2.3, “Red Hat OpenShift Container Platform Requirements”

Chapter 6, Setting up Container-Native Storage

13.2. UPGRADING CNS-DEPLOY AND HEKETI SERVER

The following commands must be executed on the client machine. If you want to set up a client
machine, refer Section 5.2.1, “Installing Red Hat Gluster Storage Container Native with OpenShift
Container Platform on Red Hat Enterprise Linux 7 based OpenShift Container Platform Cluster ” or
Section 5.2.2, “Installing Red Hat Gluster Storage Container Native with OpenShift Container Platform
on Red Hat Enterprise Linux Atomic Host OpenShift Container Platform Cluster”.

1. Execute the following command to update the heketi client and cns-deploy packages:

yum update cns-deploy -y
yum update heketi-client -y

2. Backup the Heketi database file

oc rsh <heketi_pod_name>
cp -a /var/lib/heketi/heketi.db /var/lib/heketi/heketi.db.`date
+%s`.`heketi --version | awk '{print $2}'`
exit

3. Execute the following command to delete the heketi template

oc delete templates heketi

4. Execute the following command to install the heketi template:

oc create -f /usr/share/heketi/templates/heketi-template.yaml
template "heketi" created

5. Execute the following command to grant the heketi Service Account the neccessary privileges:

oc policy add-role-to-user edit system:serviceaccount:
<project_name>:heketi-service-account
oc adm policy add-scc-to-user privileged -z heketi-service-account

For example,

Container-Native Storage for OpenShift Container Platform

102

oc policy add-role-to-user edit system:serviceaccount:storage-
project:heketi-service-account
oc adm policy add-scc-to-user privileged -z heketi-service-account

6. Execute the following command to generate a new heketi configuration file:

sed -e "s/\${HEKETI_EXECUTOR}/kubernetes/" -e
"s#\${HEKETI_FSTAB}#/var/lib/heketi/fstab#" -e "s/\${SSH_PORT}/22/"
-e "s/\${SSH_USER}/root/" -e "s/\${SSH_SUDO}/false/" -e
"s/\${BLOCK_HOST_CREATE}/true/" -e "s/\${BLOCK_HOST_SIZE}/500/"
"/usr/share/heketi/templates/heketi.json.template" > heketi.json

The BLOCK_HOST_SIZE parameter controls the size (in GB) of the automatically created
Red Hat Gluster Storage volumes hosting the gluster-block volumes (For more
information, see Section 9.2, “Block Storage”). This default configuration will dynamically
create block-hosting volumes of 500GB in size as more space is required.

Alternatively, copy the file
/usr/share/heketi/templates/heketi.json.template to heketi.json in the
current directory and edit the new file directly, replacing each "${VARIABLE}" string with
the required parameter.

NOTE

JSON formatting is strictly required (e.g. no trailing spaces, booleans in all
lowercase).

7. Execute the following command to create a secret to hold the configuration file:

oc create secret generic heketi-config-secret --from-
file=heketi.json

8. Execute the following command to delete the deployment configuration, service, and route for
heketi:

oc delete deploymentconfig,service,route heketi

9. Execute the following command to deploy the Heketi service which will be used to create
persistent volumes for OpenShift:

oc process heketi | oc create -f -

For example:

oc process heketi | oc create -f -

service "heketi" created
route "heketi" created
deploymentconfig "heketi" created

10. Execute the following command to verify that the containers are running:

CHAPTER 13. UPGRADING YOUR CONTAINER-NATIVE STORAGE ENVIRONMENT

103

oc get pods

For example:

oc get pods
NAME READY STATUS RESTARTS
AGE
glusterfs-0h68l 1/1 Running 0 3d
glusterfs-0vcf3 1/1 Running 0 3d
glusterfs-gr9gh 1/1 Running 0 3d
heketi-1-zpw4d 1/1 Running 0 3h
storage-project-router-2-db2wl 1/1 Running 0 4d

13.3. UPGRADING THE RED HAT GLUSTER STORAGE PODS

The following commands must be executed on the client machine. If you want to set up a client
machine, refer Section 5.2.1, “Installing Red Hat Gluster Storage Container Native with OpenShift
Container Platform on Red Hat Enterprise Linux 7 based OpenShift Container Platform Cluster ” or
Section 5.2.2, “Installing Red Hat Gluster Storage Container Native with OpenShift Container Platform
on Red Hat Enterprise Linux Atomic Host OpenShift Container Platform Cluster”.

Following are the steps for updating a DaemonSet for glusterfs:

1. Execute the following command to find the DaemonSet name for gluster

oc get ds

2. Execute the following command to delete the DeamonSet:

oc delete ds <ds-name> --cascade=false

Using --cascade=false option while deleting the old DaemonSet does not delete the gluster
pods but deletes only the DaemonSet. After deleting the old DaemonSet, you must load the
new one. When you manually delete the old pods, the new pods which are created will have the
configurations of the new DaemonSet.

For example,

oc delete ds glusterfs --cascade=false
daemonset "glusterfs" deleted

3. Execute the following commands to verify all the old pods are up:

oc get pods

For example,

oc get pods
NAME READY STATUS RESTARTS
AGE
glusterfs-0h68l 1/1 Running 0 3d
glusterfs-0vcf3 1/1 Running 0 3d

Container-Native Storage for OpenShift Container Platform

104

glusterfs-gr9gh 1/1 Running 0 3d
heketi-1-zpw4d 1/1 Running 0 3h
storage-project-router-2-db2wl 1/1 Running 0 4d

4. Execute the following command to delete the old glusterfs template:

oc delete templates glusterfs

For example,

oc delete templates glusterfs
template “glusterfs” deleted

5. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage pods:

1. Check if the nodes are labelled using the following command:

oc get nodes --show-labels

If the Red Hat Gluster Storage nodes do not have the storagenode=glusterfs label,
then proceed with the next step.

2. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage
pods:

oc label nodes <node name> storagenode=glusterfs

6. Execute the following command to register new gluster template:

oc create -f /usr/share/heketi/templates/glusterfs-template.yaml

For example,

oc create -f /usr/share/heketi/templates/glusterfs-template.yaml
template “glusterfs” created

7. Execute the following commands to start the gluster DeamonSet:

oc process glusterfs | oc create -f -

For example,

oc process glusterfs | oc create -f -
Deamonset “glusterfs” created

8. Execute the following command to identify the old gluster pods that needs to be deleted:

oc get pods

For example,

CHAPTER 13. UPGRADING YOUR CONTAINER-NATIVE STORAGE ENVIRONMENT

105

oc get pods
NAME READY STATUS RESTARTS
AGE
glusterfs-0h68l 1/1 Running 0 3d
glusterfs-0vcf3 1/1 Running 0 3d
glusterfs-gr9gh 1/1 Running 0 3d
heketi-1-zpw4d 1/1 Running 0 3h
storage-project-router-2-db2wl 1/1 Running 0 4d

9. Execute the following command to delete the old gluster pods. Gluster pods should
follow rolling upgrade. Hence, you must ensure that the new pod is
running before deleting the next old gluster pod. We support OnDelete
Strategy DaemonSet update strategy . With OnDelete Strategy update strategy,
after you update a DaemonSet template, new DaemonSet pods will only be created when you
manually delete old DaemonSet pods.

1. To delete the old gluster pods, execute the following command:

oc delete pod <gluster_pod>

For example,

oc delete pod glusterfs-0vcf3
pod “glusterfs-0vcf3” deleted

NOTE

Before deleting the next pod, self heal check has to be made:

1. Run the following command to access shell on gluster pod:

oc rsh <gluster_pod_name>

2. Run the following command to obtain the volume names:

gluster volume list

3. Run the following command on each volume to check the self-heal
status:

gluster volume heal <volname> info

2. The delete pod command will terminate the old pod and create a new pod. Run # oc get
pods -w and check the Age of the pod and READY status should be 1/1. The following is
the example output showing the status progression from termination to creation of the
pod.

oc get pods -w
NAME READY STATUS
RESTARTS AGE
glusterfs-0vcf3 1/1 Terminating 0

Container-Native Storage for OpenShift Container Platform

106

3d
…

oc get pods -w
NAME READY STATUS
RESTARTS AGE
glusterfs-pqfs6 0/1 ContainerCreating 0
1s
…

oc get pods -w
NAME READY STATUS
RESTARTS AGE
glusterfs-pqfs6 1/1 Running 0
2m

10. Execute the following command to verify that the pods are running:

oc get pods

For example,

oc get pods
NAME READY STATUS RESTARTS
AGE
glusterfs-j241c 1/1 Running 0 4m
glusterfs-pqfs6 1/1 Running 0 7m
glusterfs-wrn6n 1/1 Running 0
12m
heketi-1-zpw4d 1/1 Running 0 4h
storage-project-router-2-db2wl 1/1 Running 0 4d

11. Execute the following command to verify if you have upgraded the pod to the latest version:

oc rsh <gluster_pod_name> glusterd --version

For example:

 # oc rsh glusterfs-47qfc glusterd --version
glusterfs 3.8.4 built on Sep 6 2017 06:59:40
Repository revision: git://git.gluster.com/glusterfs.git
Copyright (c) 2006-2013 Red Hat, Inc. <http://www.redhat.com>
GlusterFS comes with ABSOLUTELY NO WARRANTY.
It is licensed to you under your choice of the GNU Lesser
General Public License, version 3 or any later version (LGPLv3
or later), or the GNU General Public License, version 2 (GPLv2),
in all cases as published by the Free Software Foundation.

12. Check the Red Hat Gluster Storage op-version by executing the following command:

gluster vol get all cluster.op-version

Set the cluster.op-version to 31101 on any one of the pods:

CHAPTER 13. UPGRADING YOUR CONTAINER-NATIVE STORAGE ENVIRONMENT

107

NOTE

Ensure all the gluster pods are updated before changing the cluster.op-
version.

gluster volume set all cluster.op-version 31101

13. From Container-Native Storage 3.6, dynamically provisioning volumes for block storage is
supported. Execute the following commands to deploy the gluster-block provisioner:

sed -e 's/\\\${NAMESPACE}/<NAMESPACE>/'
/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc
create -f -

oadm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:<NAMESPACE>:glusterblock-provisioner

For example:

sed -e 's/\\\${NAMESPACE}/storage-project/'
/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc
create -f -

oadm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:storage-project:glusterblock-
provisioner

14. Brick multiplexing is a feature that allows adding multiple bricks into one process. This reduces
resource consumption, and allows us to run more bricks than before with the same memory
consumption. It is enabled by default from Container-Native Storage 3.6. During an upgrade
from Container-Native Storage 3.5 to Container-Native Storage 3.6, to turn brick multiplexing
on, execute the following commands:

1. To exec into the Gluster pod, execute the following command and rsh into any of the
gluster pods:

oc rsh <gluster_pod_name>

2. Execute the following command to enable brick multiplexing:

gluster volume set all cluster.brick-multiplex on

For example:

oc rsh glusterfs-770ql

sh-4.2# gluster volume set all cluster.brick-multiplex on
Brick-multiplexing is supported only for container workloads
(CNS/CRS). Also it is advised to make sure that either all
volumes are in stopped state or no bricks are running before this
option is modified.Do you still want to continue? (y/n) y
volume set: success

Container-Native Storage for OpenShift Container Platform

108

3. List all the volumes in the trusted storage pool:

For example:

gluster volume list

heketidbstorage
vol_194049d2565d2a4ad78ef0483e04711e
...
...

Restart all the volumes:

gluster vol stop <VOLNAME>
gluster vol start <VOLNAME>

15. From Container-Native Storage 3.6, support for S3 compatible Object Store in Container-
Native Storage is under technology preview. To enable S3 compatible object store, refer
Chapter 18, S3 Compatible Object Store in a Container-Native Storage Environment.

CHAPTER 13. UPGRADING YOUR CONTAINER-NATIVE STORAGE ENVIRONMENT

109

CHAPTER 14. UPGRADING YOUR CONTAINER-READY
STORAGE ENVIRONMENT
This chapter describes the procedures to follow to upgrade your Container-Ready Storage
environment.

14.1. PREREQUISITES

Ensure the following prerequisites are met:

Section 5.2.3, “Red Hat OpenShift Container Platform Requirements”

Section 7.2, “Configuring Port Access”

Section 7.3, “Enabling Kernel Modules”

Section 7.4, “Starting and Enabling Services”

If Heketi is running as a standalone service in one of the Red Hat Gluster Storage nodes, then
ensure to open the port for Heketi. By default the port number for Heketi is 8080. To open this
port execute the following command on the node where Heketi is running:

firewall-cmd --zone=zone_name --add-port=8080/tcp
firewall-cmd --zone=zone_name --add-port=8080/tcp --permanent

If Heketi is configured to listen on a different port, then change the port number in the
command accordingly.

14.2. UPGRADING CONTAINER-READY STORAGE

1. Upgrade the Red Hat Gluster Storage cluster. Refer In-Service Software Upgrade.

2. Upgrade Heketi by executing the following commands on the Red Hat Gluster Storage node
where Heketi is running::

1. Backup the Heketi database file

cp -a /var/lib/heketi/heketi.db /var/lib/heketi/heketi.db.`date
+%s`.`heketi --version | awk '{print $2}'`

2. Update Heketi by executing the following command in one of the Red Hat Gluster Storage
nodes where Heketi is running:

yum update heketi

3. To use gluster block, add the following two parameters to the glusterfs section in the
heketi configuration file at /etc/heketi/heketi.JSON:

auto_create_block_hosting_volume
block_hosting_volume_size

Where:

Container-Native Storage for OpenShift Container Platform

110

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/installation_guide/sect-in-service_software_upgrade_from_red_hat_storage_3.2_to_red_hat_storage_3.3

auto_create_block_hosting_volume: Creates Block Hosting volumes automatically if
not found or if the existing volume is exhausted. To enable this, set the value to true.

block_hosting_volume_size: New block hosting volume will be created in the size
mentioned. This is considered only if auto_create_block_hosting_volume is set to true.
Recommended size is 500G.

For example:

.....

.....
"glusterfs" : {

 "executor" : "ssh",

 "db" : "/var/lib/heketi/heketi.db",

 "sshexec" : {
 "rebalance_on_expansion": true,
 "keyfile" : "/etc/heketi/private_key"
 },

 "auto_create_block_hosting_volume": true,

 "block_hosting_volume_size": 500G
 },
.....
.....

4. Restart the Heketi service:

systemctl restart heketi

3. Execute the following command to install gluster block:

yum install gluster-block

4. Enable and start the gluster block service:

systemctl enable gluster-blockd
systemctl start gluster-blockd

5. Execute the following command to update the heketi client and cns-deploy packages

yum install cns-deploy -y
yum update cns-deploy -y
yum update heketi-client -y

6. Execute the following commands to deploy the gluster-block provisioner:

CHAPTER 14. UPGRADING YOUR CONTAINER-READY STORAGE ENVIRONMENT

111

sed -e 's/\\\${NAMESPACE}/<NAMESPACE>/'
/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc
create -f -

oadm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:<NAMESPACE>:glusterblock-provisioner

For example:

sed -e 's/\\\${NAMESPACE}/storage-project/'
/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc
create -f -

oadm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:storage-project:glusterblock-
provisioner

7. Support for S3 compatible Object Store is under technology preview. To enable S3 compatible
object store, refer Chapter 18, S3 Compatible Object Store in a Container-Native Storage
Environment.

Container-Native Storage for OpenShift Container Platform

112

CHAPTER 15. TROUBLESHOOTING
This chapter describes the most common troubleshooting scenarios related to Container-Native
Storage.

What to do if a Container-Native Storage node Fails

If a Container-Native Storage node fails, and you want to delete it, then, disable the node
before deleting it. For more information see, Section 12.2.3, “Deleting Node”.

If a Container-Native Storage node fails and you want to replace it, refer Section 12.2.3.3,
“Replacing a Node”.

What to do if a Container-Native Storage device fails

If a Container-Native Storage device fails, and you want to delete it, then, disable the device
before deleting it. For more information see, Section 12.2.2, “Deleting Device ” .

If a Container-Native Storage device fails, and you want to replace it, refer Section 12.2.2.3,
“Replacing a Device”.

What to do if Container-Native Storage volumes require more capacity:

You can increase the storage capacity by either adding devices, increasing the cluster size, or
adding an entirely new cluster. For more information see Section 12.1, “Increasing Storage
Capacity”.

How to upgrade Openshift when Container-Native Storage is installed

To upgrade Openshift Container Platform refer,
https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.6/html/installation_and_configuration/upgrading-a-
cluster.

Viewing Log Files

Viewing Red Hat Gluster Storage Container Logs

Debugging information related to Red Hat Gluster Storage containers is stored on the host
where the containers are started. Specifically, the logs and configuration files can be found
at the following locations on the openshift nodes where the Red Hat Gluster Storage server
containers run:

/etc/glusterfs

/var/lib/glusterd

/var/log/glusterfs

Viewing Heketi Logs

Debugging information related to Heketi is stored locally in the container or in the
persisted volume that is provided to Heketi container.

You can obtain logs for Heketi by running the docker logs container-id command
on the openshift node where the container is being run.

CHAPTER 15. TROUBLESHOOTING

113

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html/installation_and_configuration/upgrading-a-cluster

Heketi command returns with no error or empty error like Error

Sometimes, running heketi-cli command returns with no error or empty error like Error. It is
mostly due to heketi server not properly configured. You must first ping to validate that the
Heketi server is available and later verify with a curl command and /hello endpoint.

Heketi reports an error while loading the topology file

Running heketi-cli reports : Error "Unable to open topology file" error while loading the
topology file. This could be due to the use of old syntax of single hyphen (-) as prefix for json
option. You must use the new syntax of double hyphens and reload the topology file.

cURL command to heketi server fails or does not respond

If the router or heketi is not configured properly, error messages from the heketi may not be
clear. To troubleshoot, ping the heketi service using the endpoint and also using the IP address.
If ping by the IP address succeeds and ping by the endpoint fails, it indicates a router
configuration error.

After the router is setup properly, run a simple curl command like the following:

curl http://deploy-heketi-storage-
project.cloudapps.mystorage.com/hello

If heketi is configured correctly, a welcome message from heketi is displayed. If not, check the
heketi configuration.

Heketi fails to start when Red Hat Gluster Storage volume is used to store heketi.db file

Sometimes Heketi fails to start when Red Hat Gluster Storage volume is used to store
heketi.db and reports the following error:

[heketi] INFO 2016/06/23 08:33:47 Loaded kubernetes executor
[heketi] ERROR 2016/06/23 08:33:47
/src/github.com/heketi/heketi/apps/glusterfs/app.go:149: write
/var/lib/heketi/heketi.db: read-only file system
ERROR: Unable to start application

The read-only file system error as shown above could be seen while using a Red Hat Gluster
Storage volume as backend. This could be when the quorum is lost for the Red Hat Gluster
Storage volume. In a replica-3 volume, this would be seen if 2 of the 3 bricks are down. You
must ensure the quorum is met for heketi gluster volume and it is able to write to heketi.db file
again.

Even if you see a different error, it is a recommended practice to check if the Red Hat Gluster
Storage volume serving heketi.db file is available or not. Access deny to heketi.db file is the
most common reason for it to not start.

Container-Native Storage for OpenShift Container Platform

114

CHAPTER 16. UNINSTALLING CONTAINERIZED RED HAT
GLUSTER STORAGE
This chapter outlines the details for uninstalling containerized Red Hat Gluster Storage.

Perform the following steps for uninstalling:

1. Cleanup Red Hat Gluster Storage using Heketi

1. Remove any containers using the persistent volume claim from Red Hat Gluster Storage.

2. Remove the appropriate persistent volume claim and persistent volume:

oc delete pvc <pvc_name>
oc delete pv <pv_name>

2. Remove all OpenShift objects

1. Delete all project specific pods, services, routes, and deployment configurations:

oc delete daemonset/glusterfs

oc delete deploymentconfig heketi

oc delete service heketi heketi-storage-endpoints

oc delete route heketi

oc delete endpoints heketi-storage-endpoints

Wait until all the pods have been terminated.

2. Check and delete the gluster service and endpoints from the projects that required a
persistent storage:

oc get endpoints,service

oc delete endpoints <glusterfs-endpoint-name>

oc delete service <glusterfs-service-name>

3. Cleanup the persistent directories

1. To cleanup the persistent directories execute the following command on each node as a
root user:

rm -rf /var/lib/heketi \
 /etc/glusterfs \
 /var/lib/glusterd \
 /var/log/glusterfs

4. Force cleanup the disks

1. Execute the following command to cleanup the disks:

CHAPTER 16. UNINSTALLING CONTAINERIZED RED HAT GLUSTER STORAGE

115

wipefs -a -f /dev/<disk-id>

Container-Native Storage for OpenShift Container Platform

116

CHAPTER 17. ENABLING ENCRYPTION
Red Hat Gluster Storage supports network encryption using TLS/SSL. Red Hat Gluster Storage uses
TLS/SSL for authentication and authorization, in place of the home grown authentication framework
used for normal connections. Red Hat Gluster Storage supports the following encryption types:

I/O encryption - encryption of the I/O connections between the Red Hat Gluster Storage
clients and servers.

Management encryption - encryption of the management (glusterd) connections within a
trusted storage pool.

17.1. PREREQUISITES

To enable encryption it is necessary to have 3 certificates per node (glusterfs.key, gluserfs.pem and
glusterfs.ca). For more information about the steps to be performed as prerequisites, refer
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html-
single/administration_guide/#chap-Network_Encryption-Prereqs.

NOTE

Ensure to perform the steps on all the OpenShift nodes except master.

All the Red Hat Gluster Storage volumes are mounted on the OpenShift nodes
and then bind mounted to the application pods. Hence, it is not required to
perform any encryption related operations specifically on the application pods.

17.2. ENABLING ENCRYPTION FOR A NEW CONTAINER-NATIVE
STORAGE SETUP

You can configure network encryption for a new Container-Native Storage setup for both I/O
encryption and management encryption.

17.2.1. Enabling Management Encryption

Though Red Hat Gluster Storage can be configured only for I/O encryption without using management
encryption, it is recommended to have management encryption. If you want to enable SSL only on the
I/O path, skip this section and proceed with Section 17.2.2, “Enabling I/O encryption for a Volume” .

On the server

Perform the following on all the server, ie, the OpenShift nodes on which Red Hat Gluster Storage pods
are running.

1. Create the /var/lib/glusterd/secure-access file.

touch /var/lib/glusterd/secure-access

On the clients

Perform the following on the clients, ie. on all the remaining OpenShift nodes on which Red Hat Gluster
Storage is not running.

1. Create the /var/lib/glusterd/secure-access file.

CHAPTER 17. ENABLING ENCRYPTION

117

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.2/html-single/administration_guide/#chap-Network_Encryption-Prereqs

touch /var/lib/glusterd/secure-access

NOTE

All the Red Hat Gluster Storage volumes are mounted on the OpenShift nodes and then
bind mounted to the application pods. Hence, it is not required to perform any
encryption related operations specifically on the application pods.

After running the commands on the server and clients, deploy Container-Native Storage. For more
information, see Section 8.2, “ Deploying Containerized Red Hat Gluster Storage Solutions”

17.2.2. Enabling I/O encryption for a Volume

Enable the I/O encryption between the servers and clients:

NOTE

The servers are the OpenShift nodes on which Red Hat Gluster Storage pods are
running.

The clients are the remaining OpenShift nodes on which Red Hat Gluster Storage is not
running.

1. Ensure Container-Native Storage is deployed before proceeding with further steps. For more
information see, Section 8.2, “ Deploying Containerized Red Hat Gluster Storage Solutions”

2. You can either create a statically provisioned volume or a dynamically provisioned volume. For
more information about static provisioning of volumes, see Section 9.1.1, “Static Provisioning of
Volumes” . For more information about dynamic provisioning of volumes, see Section 9.1.2,
“Dynamic Provisioning of Volumes”

NOTE

To enable encryption during the creation of statically provisioned volume,
execute the following command:

 # heketi-cli volume create --size=100 --gluster-volume-
options="client.ssl on","server.ssl on"

3. Stop the volume by executing the following command:

oc rsh <gluster_pod_name> gluster volume stop VOLNAME

The gluster pod name is the name of one of the Red Hat Gluster Storage pods of the trusted
storage pool to which the volume belongs.

Container-Native Storage for OpenShift Container Platform

118

NOTE

To get the VOLNAME, execute the following command:

oc describe pv <pv_name>

For example:

oc describe pv pvc-01569c5c-1ec9-11e7-a794-
005056b38171
Name: pvc-01569c5c-1ec9-11e7-a794-005056b38171
Labels: <none>
StorageClass: fast
Status: Bound
Claim: storage-project/storage-claim68
Reclaim Policy: Delete
Access Modes: RWO
Capacity: 1Gi
Message:
Source:
 Type: Glusterfs (a Glusterfs mount on
the host that shares a pod's lifetime)
 EndpointsName: glusterfs-dynamic-storage-claim68
 Path:
vol_0e81e5d6e46dcbf02c11ffd9721fca28
 ReadOnly: false
No events.

The VOLNAME is the value of "path" in the above output.

4. Set the list of common names of all the servers to access the volume. Ensure to include the
common names of clients which will be allowed to access the volume.

oc rsh <gluster_pod_name> gluster volume set VOLNAME auth.ssl-
allow 'server1,server2,server3,client1,client2,client3'

NOTE

If you set auth.ssl-allow option with * as value, any TLS authenticated clients
can mount and access the volume from the application side. Hence, you set the
option's value to * or provide common names of clients as well as the nodes in
the trusted storage pool.

5. Enable the client.ssl and server.ssl options on the volume using the heketi-cli.

oc rsh <gluster_pod_name> gluster volume set VOLNAME client.ssl on
oc rsh <gluster_pod_name> gluster volume set VOLNAME server.ssl on

6. Start the volume.

oc rsh <gluster_pod_name> gluster volume start VOLNAME

CHAPTER 17. ENABLING ENCRYPTION

119

17.3. ENABLING ENCRYPTION FOR AN EXISTING CONTAINER-NATIVE
STORAGE SETUP

You can configure network encryption for an existing Container-Native Storage setup for both I/O
encryption and management encryption.

17.3.1. Enabling I/O encryption for a Volume

Enable the I/O encryption between the servers and clients for a volume:

NOTE

The servers are the OpenShift nodes on which Red Hat Gluster Storage pods are
running.

The clients are the remaining OpenShift nodes on which Red Hat Gluster Storage is not
running.

1. Stop all the application pods that have the Red Hat Gluster Storage volumes.

2. Stop the volume.

oc rsh <gluster_pod_name> gluster volume stop VOLNAME

The gluster pod name is the name of one of the Red Hat Gluster Storage pods of the trusted
storage pool to which the volume belongs.

3. Set the list of common names for clients allowed to access the volume. Be sure to include the
common names of all the servers.

oc rsh <gluster_pod_name> gluster volume set VOLNAME auth.ssl-
allow 'server1,server2,server3,client1,client2,client3'

NOTE

If you set auth.ssl-allow option with * as value, any TLS authenticated clients
can mount and access the volume from the application side. Hence, you set the
option's value to * or provide common names of clients as well as the nodes in
the trusted storage pool.

4. Enable client.ssl and server.ssl on the volume using the heketi-cli.

heketi-cli volume create --size=100 --gluster-volume-
options="client.ssl on","server.ssl on"

5. Start the volume.

oc rsh <gluster_pod_name> gluster volume start VOLNAME

6. Start the application pods to use the I/O encrypted Red Hat Gluster Storage volumes.

Container-Native Storage for OpenShift Container Platform

120

17.3.2. Enabling Management Encryption

Management encryption is recommended, even though, Red Hat Gluster Storage can be configured
only for I/O encryption without using management encryption. On an existing installation, with running
servers and clients, schedule a downtime of volumes, applications, clients, and other end-users to
enable management encryption.

You cannot currently change between unencrypted and encrypted connections dynamically. Bricks
and other local services on the servers and clients do not receive notifications from glusterd if they
are running when the switch to management encryption is made.

1. Stop all the application pods that have the Red Hat Gluster Storage volumes.

2. Stop all the volumes.

oc rsh <gluster_pod_name> gluster volume stop VOLNAME

3. Stop the Red Hat Gluster Storage pods.

oc delete daemonset glusterfs

4. On deletion of daemon set the pods go down. To verify if the pods are down, execute the
following command:

oc get pods

5. Create the /var/lib/glusterd/secure-access file on all OpenShift nodes.

touch /var/lib/glusterd/secure-access

6. Create the Red Hat Gluster Storage deamonset by executing the following command:

oc process glusterfs | oc create -f -

7. On creation of daemon set the pods are started. To verify if the pods are started, execute the
following command:

oc get pods

8. Start all the volumes.

oc rsh <gluster_pod_name> gluster volume start VOLNAME

9. Start the application pods to use the management encrypted Red Hat Gluster Storage.

17.4. DISABLING ENCRYPTION

You can disable encryption for on Container-Native Storage setup in the following two scenarios:

Disabling I/O Encryption for a Volume

Disabling Management Encryption

CHAPTER 17. ENABLING ENCRYPTION

121

17.4.1. Disabling I/O Encryption for all the Volumes

Execute the following commands to disable the I/O encryption between the servers and clients for a
volume:

NOTE

The servers are the OpenShift nodes on which Red Hat Gluster Storage pods are
running.

The clients are the remaining OpenShift nodes on which Red Hat Gluster Storage is not
running.

1. Stop all the application pods that have the Red Hat Gluster Storage volumes.

2. Stop all the volumes.

oc rsh <gluster_pod_name> gluster volume stop VOLNAME

3. Reset all the encryption options for a volume:

oc rsh <gluster_pod_name> gluster volume reset VOLNAME auth.ssl-
allow
oc rsh <gluster_pod_name> gluster volume reset VOLNAME client.ssl
oc rsh <gluster_pod_name> gluster volume reset VOLNAME server.ssl

4. Delete the files that were used for network encryption using the following command on all the
OpenShift nodes:

rm /etc/ssl/glusterfs.pem /etc/ssl/glusterfs.key
/etc/ssl/glusterfs.ca

5. Stop the Red Hat Gluster Storage pods.

oc delete daemonset glusterfs

6. On deletion of daemon set the pods go down. To verify if the pods are down, execute the
following command:

oc get pods

7. Create the Red Hat Gluster Storage deamonset by executing the following command:

oc process glusterfs | oc create -f -

8. On creation of daemon set the pods are started. To verify if the pods are started, execute the
following command:

oc get pods

9. Start the volume.

Container-Native Storage for OpenShift Container Platform

122

oc rsh <gluster_pod_name> gluster volume start VOLNAME

10. Start the application pods to use the I/O encrypted Red Hat Gluster Storage volumes.

17.4.2. Disabling Management Encryption

You cannot currently change between unencrypted and encrypted connections dynamically. Bricks
and other local services on the servers and clients do not receive notifications from glusterd if they
are running when the switch to management encryption is made.

Execute the following commands to disable the management encryption

1. Stop all the application pods that have the Red Hat Gluster Storage volumes.

2. Stop all the volumes.

oc rsh <gluster_pod_name> gluster volume stop VOLNAME

3. Stop the Red Hat Gluster Storage pods.

oc delete daemonset glusterfs

4. On deletion of daemon set the pods go down. To verify if the pods are down, execute the
following command:

oc get pods

5. Delete the /var/lib/glusterd/secure-access file on all OpenShift nodes to disable management
encryption.

rm /var/lib/glusterd/secure-access

6. Delete the files that were used for network encryption using the following command on all the
OpenShift nodes:

rm /etc/ssl/glusterfs.pem /etc/ssl/glusterfs.key
/etc/ssl/glusterfs.ca

7. Create the Red Hat Gluster Storage deamonset by executing the following command:

oc process glusterfs | oc create -f -

8. On creation of daemon set the pods are started. To verify if the pods are started, execute the
following command:

oc get pods

9. Start all the volumes.

oc rsh <gluster_pod_name> gluster volume start VOLNAME

CHAPTER 17. ENABLING ENCRYPTION

123

10. Start the application pods to use the management encrypted Red Hat Gluster Storage.

Container-Native Storage for OpenShift Container Platform

124

CHAPTER 18. S3 COMPATIBLE OBJECT STORE IN A
CONTAINER-NATIVE STORAGE ENVIRONMENT

IMPORTANT

Support for S3 compatible Object Store in Container-Native Storage is under
technology preview. Technology Preview features are not fully supported under Red Hat
service-level agreements (SLAs), may not be functionally complete, and are not
intended for production use.

Tech Preview features provide early access to upcoming product innovations, enabling
customers to test functionality and provide feedback during the development process.

As Red Hat considers making future iterations of Technology Preview features generally
available, we will provide commercially reasonable efforts to resolve any reported issues
that customers experience when using these features.

Object Store provides a system for data storage that enables users to access the same data, both as an
object and as a file, thus simplifying management and controlling storage costs. The S3 API is the de
facto standard for HTTP based access to object storage services.

18.1. PREREQUISITES

Before setting up S3 compatible object store for Container-Native Storage, ensure the following
prerequisites are met:

OpenShift setup must be up with master and nodes ready. For more information see
Section 8.1, “Preparing the Red Hat OpenShift Container Platform Cluster”

The cns-deploy tool is run and Heketi service is ready. For more information see, Section 8.2, “
Deploying Containerized Red Hat Gluster Storage Solutions”

18.2. SETTING UP S3 COMPATIBLE OBJECT STORE FOR CONTAINER-
NATIVE STORAGE

Execute the following steps from the /usr/share/heketi/templates/ directory to set up S3 compatible
object store for Container-Native Storage:

1. (Optional): If you want to create a secret for heketi, then execute the following command:

oc create secret generic heketi-${NAMESPACE}-admin-secret
--from-literal=key=${ADMIN_KEY} --type=kubernetes.io/glusterfs

For example:

oc create secret generic heketi-storage-project-admin-secret
--from-literal=key= --type=kubernetes.io/glusterfs

1. Execute the following command to label the secret:

CHAPTER 18. S3 COMPATIBLE OBJECT STORE IN A CONTAINER-NATIVE STORAGE ENVIRONMENT

125

oc label --overwrite secret heketi-${NAMESPACE}-admin-secret
glusterfs=s3-heketi-${NAMESPACE}-admin-secret
gluster-s3=heketi-${NAMESPACE}-admin-secret

For example:

oc label --overwrite secret heketi-storage-project-admin-secret
glusterfs=s3-heketi-storage-project-admin-secret
gluster-s3=heketi-storage-project-admin-secret

2. Create a GlusterFS StorageClass file. Use the HEKETI_URL and NAMESPACE from the current
setup and set a STORAGE_CLASS name.

sed -e 's/${HEKETI_URL}/heketi-storage-
project.cloudapps.mystorage.com/g' -e 's/${STORAGE_CLASS}/gluster-
s3-store/g' -e 's/${NAMESPACE}/storage-project/g'
/usr/share/heketi/templates/gluster-s3-storageclass.yaml | oc create
-f -
storageclass "gluster-s3-store" created

3. Create the Persistent Volume Claims using the storage class.

sed -e 's/${VOLUME_CAPACITY}/2Gi/g' -e
's/${STORAGE_CLASS}/gluster-s3-store/g'
/usr/share/heketi/templates/gluster-s3-pvcs.yaml | oc create -f -
persistentvolumeclaim "gluster-s3-claim" created
persistentvolumeclaim "gluster-s3-meta-claim" created

Use the STORAGE_CLASS created from the previous step. Modify the VOLUME_CAPACITY as
per the environment requirements. Wait till the PVC is bound. Verify the same using the
following command:

oc get pvc
NAME STATUS VOLUME
CAPACITY ACCESSMODES AGE
gluster-s3-claim Bound pvc-0b7f75ef-9920-11e7-9309-
00151e000016 2Gi RWX 2m
gluster-s3-meta-claim Bound pvc-0b87a698-9920-11e7-9309-
00151e000016 1Gi RWX 2m

4. Start the glusters3 object storage service using the template:

NOTE

Set the S3_ACCOUNT name, S3_USER name, and S3_PASSWORD. PVC and
META_PVC are obtained from the previous step.

oc new-app /usr/share/heketi/templates/gluster-s3-template.yaml \
--param=S3_ACCOUNT=testvolume --param=S3_USER=adminuser \
--param=S3_PASSWORD=itsmine --param=PVC=gluster-s3-claim \
--param=META_PVC=gluster-s3-meta-claim
--> Deploying template "storage-project/gluster-s3" for

Container-Native Storage for OpenShift Container Platform

126

"/usr/share/heketi/templates/gluster-s3-template.yaml" to project
storage-project

 gluster-s3

 Gluster s3 service template

 * With parameters:
 * S3 Account Name=testvolume
 * S3 User=adminuser
 * S3 User Password=itsmine
 * Primary GlusterFS-backed PVC=gluster-s3-claim
 * Metadata GlusterFS-backed PVC=gluster-s3-meta-claim

--> Creating resources ...
 service "gluster-s3-service" created
 route "gluster-s3-route" created
 deploymentconfig "gluster-s3-dc" created
--> Success
 Run 'oc status' to view your app.

5. Execute the following command to verify if the S3 pod is up:

oc get route
NAME HOST/PORT
PATH SERVICES PORT TERMINATION WILDCARD
gluster-S3-route gluster-s3-route-storage-
project.cloudapps.mystorage.com ... 1 more gluster-s3-
service <all> None
heketi heketi-storage-project.cloudapps.mystorage.com ...
1 more heketi <all>

18.3. OBJECT OPERATIONS

This section lists some of the object operation that can be performed:

Get the URL of the route which provides S3 OS

s3_storage_url=$(oc get routes | grep "gluster.*s3" | awk
'{print $2}')

CHAPTER 18. S3 COMPATIBLE OBJECT STORE IN A CONTAINER-NATIVE STORAGE ENVIRONMENT

127

NOTE

Ensure to download the s3curl tool from https://aws.amazon.com/code/128.
This tool will be used for verifying the object operations.

s3curl.pl requires Digest::HMAC_SHA1 and Digest::MD5. Install the perl-
Digest-HMAC package to get this.

Update the s3curl.pl perl script with glusters3object url which was
retreived:

For example:

my @endpoints = ('glusters3object-storage-
project.cloudapps.mystorage.com');

To perform PUT operation of the bucket:

s3curl.pl --debug --id "testvolume:adminuser" --key "itsmine" --put
/dev/null -- -k -v http://$s3_storage_url/bucket1

To perform PUT operation of the object inside the bucket:

s3curl.pl --debug --id "testvolume:adminuser" --key "itsmine" --put
my_object.jpg -- -k -v -s
http://$s3_storage_url/bucket1/my_object.jpg

To verify listing of objects in the bucket:

s3curl.pl --debug --id "testvolume:adminuser" --key "itsmine" -- -k
-v -s http://$s3_storage_url/bucket1/

Container-Native Storage for OpenShift Container Platform

128

https://aws.amazon.com/code/128

APPENDIX A. MANUAL DEPLOYMENT
The following section covers the steps required to manually deploy Container-Native Storage.

A.1. INSTALLING THE TEMPLATES

Execute the following steps to register the Red Hat Gluster Storage and Heketi templates with
OpenShift:

1. Use the newly created containerized Red Hat Gluster Storage project:

oc project project_name

For example,

oc project storage-project
Using project "storage-project" on server
"https://master.example.com:8443".

2. Execute the following commands to install the templates:

oc create -f /usr/share/heketi/templates/deploy-heketi-
template.yaml
template "deploy-heketi" created

oc create -f /usr/share/heketi/templates/glusterfs-template.yaml
template "glusterfs" created

oc create -f /usr/share/heketi/templates/heketi-service-
account.yaml
serviceaccount "heketi-service-account" created

oc create -f /usr/share/heketi/templates/heketi-template.yaml
template "heketi" created

3. Execute the following command to verify that the templates are installed:

oc get templates

For example:

oc get templates

NAME DESCRIPTION PARAMETERS
OBJECTS
deploy-heketi Bootstrap Heketi installation 2 (2 blank) 3
glusterfs GlusterFS DaemonSet template 0 (all set)
1
heketi Heketi service deployment template 2 (2 blank)
3

APPENDIX A. MANUAL DEPLOYMENT

129

4. Execute the following command to verify that the serviceaccount is created:

oc get serviceaccount heketi-service-account

For example:

oc get serviceaccount heketi-service-account
NAME SECRETS AGE
heketi-service-account 2 7d

A.2. DEPLOYING THE CONTAINERS

Execute the following commands to deploy the Red Hat Gluster Storage container on the nodes:

1. List out the hostnames of the nodes on which the Red Hat Gluster Storage container has to be
deployed:

oc get nodes

For example:

oc get nodes

NAME STATUS AGE
node1.example.com Ready 12d
node2.example.com Ready 12d
node3.example.com Ready 12d
master.example.com Ready,SchedulingDisabled 12d

2. Execute the following command to label all nodes that will run Red Hat Gluster Storage pods:

oc label node <NODENAME> storagenode=glusterfs

For example:

oc label nodes 192.168.90.3 storagenode=glusterfs
node "192.168.90.3" labeled

Repeat this command for every node that will be in the GlusterFS cluster.

Verify the label has set properly by running the following command:

oc get nodes --show-labels
192.168.90.2 Ready 12d
beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes
.io/hostname=192.168.90.2,storagenode=glusterfs
192.168.90.3 Ready 12d
beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes
.io/hostname=192.168.90.3,storagenode=glusterfs
192.168.90.4 Ready 12d
beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes
.io/hostname=192.168.90.4,storagenode=glusterfs

Container-Native Storage for OpenShift Container Platform

130

192.168.90.5 Ready,SchedulingDisabled 12d
beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes
.io/hostname=192.168.90.5

3. Execute the following command to deploy the Red Hat Gluster Storage pods:

oc process glusterfs | oc create -f -
daemonset "glusterfs" created

NOTE

This does not initialize the hardware or create trusted storage pools. That
aspect will be taken care by heketi which is explained in the further steps.

4. Execute the following command to grant the heketi Service Account the neccessary privileges:

oc policy add-role-to-user edit system:serviceaccount:
<project_name>:heketi-service-account
oc adm policy add-scc-to-user privileged -z heketi-service-account

For example:

oc policy add-role-to-user edit system:serviceaccount:storage-
project:heketi-service-account
oc adm policy add-scc-to-user privileged -z heketi-service-account

5. Execute the following command to deploy deploy-heketi:

oc process deploy-heketi | oc create -f -

For example:

oc process deploy-heketi | oc create -f -

service "deploy-heketi" created
route "deploy-heketi" created
deploymentconfig "deploy-heketi" created

6. Execute the following command to verify that the containers are running:

oc get pods

For example:

oc get pods
NAME READY STATUS RESTARTS AGE
storage-project-router-1-pj9ea 1/1 Running 0
1d
deploy-heketi-1-m7x8g 1/1 Running 0 1m
glusterfs-41lfl 1/1 Running 0 1m
glusterfs-dtyr4 1/1 Running 0 1m
glusterfs-ral2d 1/1 Running 0 1m

APPENDIX A. MANUAL DEPLOYMENT

131

A.3. SETTING UP THE HEKETI SERVER

After deploying the containers and installing the templates, the system is now ready to load the Heketi
topology file. Heketi provides a RESTful management interface which can be used to manage the
lifecycle of Red Hat Gluster Storage volumes.

A sample, formatted topology file (topology-sample.json) is installed with the ‘heketi-templates’
package in the /usr/share/heketi/ directory.

{
 "clusters": [
 {
 "nodes": [
 {
 "node": {
 "hostnames": {
 "manage": [
 "node1.example.com"
],
 "storage": [
 "192.168.121.168"
]
 },
 "zone": 1
 },
 "devices": [
 "/dev/sdb",
 "/dev/sdc",
 "/dev/sdd",
 "/dev/sde"
]
 },...

Edit the topology file based on the Red Hat Gluster Storage pod hostname under the
node.hostnames.manage section and node.hostnames.storage section with the IP address. For
simplicity, the /usr/share/heketi/topology-sample.json file only sets up 4 nodes with 8
drives each.

IMPORTANT

Heketi stores its database on a Red Hat Gluster Storage volume. Heketi service does not
respond if the volume is down.

To resolve this issue, restart the gluster pods hosting the Heketi volume.

Execute the following steps to set up the Heketi server:

1. Execute the following command to check if the bootstrap container is running:

curl http://deploy-heketi-<project_name>.<sub-domain_name>/hello

For example:

Container-Native Storage for OpenShift Container Platform

132

curl http://deploy-heketi-storage-
project.cloudapps.mystorage.com/hello
Hello from Heketi

2. Execute the following command to load the topology file:

export HEKETI_CLI_SERVER=http://deploy-heketi-<project_name>.
<sub_domain_name>

For example:

export HEKETI_CLI_SERVER=http://deploy-heketi-storage-
project.cloudapps.mystorage.com

heketi-cli topology load --json=topology.json

For example:

heketi-cli topology load --json=topology.json
Creating cluster ... ID: 94877b3f72b79273e87c1e94201ecd58
 Creating node node1.example.com ... ID:
95cefa174c7210bd53072073c9c041a3
 Adding device /dev/sdb ... OK
 Adding device /dev/sdc ... OK
 Adding device /dev/sdd ... OK
 Adding device /dev/sde ... OK
 Creating node node2.example.com ... ID:
f9920995e580f0fe56fa269d3f3f8428
 Adding device /dev/sdb ... OK
 Adding device /dev/sdc ... OK
 Adding device /dev/sdd ... OK
 Adding device /dev/sde ... OK
 Creating node node3.example.com ... ID:
73fe4aa89ba35c51de4a51ecbf52544d
 Adding device /dev/sdb ... OK
 Adding device /dev/sdc ... OK
 Adding device /dev/sdd ... OK
 Adding device /dev/sde ... OK

3. Execute the following command to verify that the topology is loaded:

heketi-cli topology info

4. Execute the following command to create the Heketi storage volume which will store the
database on a reliable Red Hat Gluster Storage volume:

heketi-cli setup-openshift-heketi-storage

For example:

heketi-cli setup-openshift-heketi-storage
Saving heketi-storage.json

APPENDIX A. MANUAL DEPLOYMENT

133

5. Execute the following command to create a job which will copy the database from deploy-
heketi bootstrap container to the volume.

oc create -f heketi-storage.json

For example:

oc create -f heketi-storage.json
secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created

6. Execute the following command to verify that the job has finished successfully:

oc get jobs

For example:

oc get jobs
NAME DESIRED SUCCESSFUL AGE
heketi-storage-copy-job 1 1 2m

7. Execute the following command to remove all resources used to bootstrap heketi:

oc delete all,job,template,secret --selector="deploy-heketi"

For example:

oc delete all,job,template,secret --selector="deploy-heketi"
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted
service "deploy-heketi" deleted
pod "deploy-heketi-1-4k1fh" deleted
job "heketi-storage-copy-job" deleted
template "deploy-heketi" deleted

8. Execute the following command to deploy the Heketi service which will be used to create
persistent volumes for OpenShift:

oc process heketi | oc create -f -

For example:

oc process heketi | oc create -f -
service "heketi" created
route "heketi" created
deploymentconfig "heketi" created

9. Execute the following command to let the client communicate with the container:

Container-Native Storage for OpenShift Container Platform

134

export HEKETI_CLI_SERVER=http://heketi-<project_name>.
<sub_domain_name>

For example:

export HEKETI_CLI_SERVER=http://heketi-storage-
project.cloudapps.mystorage.com

heketi-cli topology info

APPENDIX A. MANUAL DEPLOYMENT

135

APPENDIX B. CLUSTER ADMINISTRATOR SETUP

Authentication

Set up the authentication using AllowAll Authentication method.

AllowAll Authentication

Set up an authentication model which allows all passwords. Edit /etc/origin/master/master-
config.yaml on the OpenShift master and change the value of
DenyAllPasswordIdentityProvider to AllowAllPasswordIdentityProvider. Then restart
the OpenShift master.

1. Now that the authentication model has been setup, login as a user, for example admin/admin:

oc login openshift master e.g. https://1.1.1.1:8443 --
username=admin --password=admin

2. Grant the admin user account the cluster-admin role.

 # oadm policy add-cluster-role-to-user cluster-admin admin

For more information on authentication methods, see https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.5/html-single/installation_and_configuration/#identity-providers.

Container-Native Storage for OpenShift Container Platform

136

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#identity-providers

APPENDIX C. CLIENT CONFIGURATION USING PORT
FORWARDING
If a router is not available, you may be able to set up port forwarding so that heketi-cli can
communicate with the Heketi service. Execute the following commands for port forwarding:

1. Obtain the Heketi service pod name by running the following command:

oc get pods

2. To forward the port on your local system to the pod, execute the following command on
another terminal of your local system:

oc port-forward <heketi pod name> 8080:8080

3. On the original terminal execute the following command to test the communication with the
server:

curl http://localhost:8080/hello

This will forward the local port 8080 to the pod port 8080.

4. Setup the Heketi server environment variable by running the following command:

export HEKETI_CLI_SERVER=http://localhost:8080

5. Get information from Heketi by running the following command:

heketi-cli topology info

APPENDIX C. CLIENT CONFIGURATION USING PORT FORWARDING

137

APPENDIX D. HEKETI CLI COMMANDS
This section provides a list of some of the useful heketi-cli commands:

heketi-cli topology info

This command retreives information about the current Topology.

heketi-cli cluster list

Lists the clusters managed by Heketi

For example:

heketi-cli cluster list
Clusters:
9460bbea6f6b1e4d833ae803816122c6

heketi-cli cluster info <cluster_id>

Retrieves the information about the cluster.

For example:

heketi-cli cluster info 9460bbea6f6b1e4d833ae803816122c6
Cluster id: 9460bbea6f6b1e4d833ae803816122c6
Nodes:
1030f9361cff8c6bfde7b9b079327c78
30f2ab4d971da572b03cfe33a1ba525f
f648e1ddc0b95f3069bd2e14c7e34475
Volumes:
142e0ec4a4c1d1cc082071329a0911c6
638d0dc6b1c85f5eaf13bd5c7ed2ee2a

heketi-cli node info <node_id>

Retrieves the information about the node.

For example:

heketi-cli node info 1030f9361cff8c6bfde7b9b079327c78
Node Id: 1030f9361cff8c6bfde7b9b079327c78
State: online
Cluster Id: 9460bbea6f6b1e4d833ae803816122c6
Zone: 1
Management Hostname: node1.example.com
Storage Hostname: 10.70.41.202
Devices:
Id:69214867a4d32251aaf1dcd77cb7f359 Name:/dev/vdg
State:online Size (GiB):4999 Used (GiB):253 Free
(GiB):4746
Id:6cd437c304979ea004abc2c4da8bdaf4 Name:/dev/vde
State:online Size (GiB):4999 Used (GiB):354 Free
(GiB):4645
Id:d2e9fcd9da04999ddab11cab651e18d2 Name:/dev/vdf
State:online Size (GiB):4999 Used (GiB):831 Free
(GiB):4168

Container-Native Storage for OpenShift Container Platform

138

heketi-cli volume list

Lists the volumes managed by Heketi

For example:

heketi-cli volume list
Id:142e0ec4a4c1d1cc082071329a0911c6
Cluster:9460bbea6f6b1e4d833ae803816122c6 Name:heketidbstorage
Id:638d0dc6b1c85f5eaf13bd5c7ed2ee2a
Cluster:9460bbea6f6b1e4d833ae803816122c6 Name:scalevol-1

For more information, refer to the man page of the heketi-cli.

heketi-cli --help

The command line program for Heketi.

Usage

heketi-cli [flags]

heketi-cli [command]

For example:

export HEKETI_CLI_SERVER=http://localhost:8080

heketi-cli volume list

The available commands are listed below:

cluster

Heketi cluster management

device

Heketi device management

setup-openshift-heketi-storage

Setup OpenShift/Kubernetes persistent storage for Heketi

node

Heketi Node Management

topology

Heketi Topology Management

volume

Heketi Volume Management

APPENDIX D. HEKETI CLI COMMANDS

139

APPENDIX E. GLUSTER BLOCK STORAGE AS BACKEND FOR
LOGGING AND METRICS
Following section guides to configure Gluster Block Storage as the backend storage for logging and
metrics

NOTE

Block volume expansion is not supported in CNS 3.6. Administrators are required to do
proper capacity planning while using Gluster Block as backend storage when using
dynamic provisioning.

E.1. PREREQUISITES

Before setting gluster block storage as the backend for logging or metrics, check if the following
prerequisites are met:

In the storageclass file, check if the default storage class is set to the storage class of gluster
block. For example:

oc get storageclass
NAME TYPE
gluster-block gluster.org/glusterblock

If the default is not set to gluster-block (or any other name that you have provided) then
execute the following command. For example:

oc patch storageclass gluster-block -p '{"metadata":
{"annotations":{"storageclass.kubernetes.io/is-default-
class":"true"}}}'

Execute the following command to verify:

oc get storageclass
NAME TYPE
gluster-block (default) gluster.org/glusterblock

E.2. ENABLING GLUSTER BLOCK STORAGE AS BACKEND FOR
LOGGING

Follow the tasks mentioned below to enable Gluster Block Storage as backend for logging:

1. To enable logging in Openshift Container platform, see
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-
single/installation_and_configuration/#install-config-aggregate-logging

2. The openshift_logging_es_pvc_dynamic ansible variable has to be set to true.

[OSEv3:vars] openshift_logging_es_pvc_dynamic=true

For example, a sample set of variables for openshift_logging_ are listed below.

Container-Native Storage for OpenShift Container Platform

140

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-aggregate-logging

openshift_logging_es_pvc_dynamic=true
openshift_logging_es_pvc_size=5G
openshift_logging_es_cluster_size=3
openshift_logging_es_memory_limit=4G
openshift_logging_es_number_of_replicas=2
openshift_logging_es_nodeselector={'region' : 'infra'}
openshift_logging_curator_nodeselector={'region' : 'infra'}
openshift_logging_kibana_nodeselector={'region' : 'infra'}

3. Run the Ansible playbook. For more information, see
.https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-
single/installation_and_configuration/#install-config-aggregate-logging

4. To verify, execute the following command:

oc get pods -n openshift-logging

NOTE

For more information regarding logging storage considerations, see
https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.6/html-
single/installation_and_configuration/#install-config-aggregate-logging-sizing-
guidelines-storage.

E.3. ENABLING GLUSTER BLOCK STORAGE AS BACKEND FOR
METRICS

Follow the tasks mentioned below to enable Gluster Block Storage as backend for metrics

NOTE

By default, since Container Native Storage performs three-way replication, data will be
available to the restarted node from anywhere in the cluster. As a result, it is
recommended that Cassandra-level replication is turned off to avoid capacity overhead

1. To enable metrics in Openshift Container platform, see
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-
single/installation_and_configuration/#install-config-cluster-metrics

2. The openshift_metrics_cassandra_storage_type ansible variable should be set to
dynamic:

[OSEv3:vars]openshift_metrics_cassandra_storage_type=dynamic

For example, a sample set of variables for openshift_metrics_ are listed below.

openshift_metrics_cassandra_storage_type=dynamic
openshift_metrics_cassandra_pvc_size=5G
openshift_metrics_cassandra_replicas=3
openshift_metrics_cassandra_limits_memory=2G

APPENDIX E. GLUSTER BLOCK STORAGE AS BACKEND FOR LOGGING AND METRICS

141

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-aggregate-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-aggregate-logging-sizing-guidelines-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-cluster-metrics

openshift_metrics_cassandra_nodeselector={'region':'infra'}
openshift_metrics_hawkular_nodeselector={'region':'infra'}
openshift_metrics_heapster_nodeselector={'region':'infra'}

3. Run the Ansible playbook. For more information, see
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-
single/installation_and_configuration/#install-config-cluster-metrics.

4. To verify, execute the following command:

oc get pods --n openshift-infra

It should list the following pods running:

heapster-cassandra
heapster-metrics
hawkular-&*9

NOTE

For more information regarding metrics storage considerations, see
https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.6/html-
single/installation_and_configuration/#metrics-data-storage.

E.4. VERIFYING IF GLUSTER BLOCK IS SETUP AS BACKEND

Execute the following commands to verify if gluster block is setup as the backend for loging and
metrics:

1. To get an overiew of the infrastructure, execute the following command:

oc get pods -n logging -o jsonpath='{range
.items[*].status.containerStatuses[*]}{"Name: "}{.name}{"\n "}
{"Image: "}{.image}{"\n"}{" State: "}{.state}{"\n"}{end}'

2. To get the details of all the persistent volume claims, execute the following command:

oc get pvc

3. To get the details of the pvc, execute the following command:

oc describe pvc <claim_name>

Verify the volume is mountable and that permissions allow read/write. Also, PVC claim name
should match the dynamically provisioned gluster block storage class.

For more information refer, https://access.redhat.com/documentation/en-
us/openshift_container_platform/3.6/html/installation_and_configuration/install-config-
aggregate-logging-sizing.

Container-Native Storage for OpenShift Container Platform

142

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#install-config-cluster-metrics
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/installation_and_configuration/#metrics-data-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html/installation_and_configuration/install-config-aggregate-logging-sizing

APPENDIX F. KNOWN ISSUES
This chapter outlines the known issues at the time of release.

BZ#1461131

Volumes that were created using Container-Native Storage 3.5 or previous do not have the GID
stored in heketi database. Hence, when a volume expansion is performed, new bricks do not
get the group ID set on them which might lead to I/O errors.

BZ#1409848

The following two lines might be repeatedly logged in the rhgs-server-docker
container/gluster container logs.

[MSGID: 106006] [glusterd-svc-
mgmt.c:323:glusterd_svc_common_rpc_notify] 0-management: nfs has
disconnected from glusterd.
[socket.c:701:__socket_rwv] 0-nfs: readv on
/var/run/gluster/1ab7d02f7e575c09b793c68ec2a478a5.socket failed
(Invalid argument)

These logs are added as glusterd is unable to start the NFS service. There is no functional
impact as NFS export is not supported in Containerized Red Hat Gluster Storage.

APPENDIX F. KNOWN ISSUES

143

https://bugzilla.redhat.com/show_bug.cgi?id=1461131
https://bugzilla.redhat.com/show_bug.cgi?id=1409848

APPENDIX G. REVISION HISTORY

Revision 1.0-17 Thu Mar 01 2018 Bhavana Mohan
Publishing the guide for the CNS 3.6 Documentation Async release.

Revision 1.0-16 Fri Feb 16 2018 Bhavana Mohan
1495328: Fixed the comments shared by the UAT team post the CNS 3.6 release.
1512050: Fixed the comments shared by the Wolfpack team post the CNS 3.6 release.

Revision 1.0-15 Wed Jan 31 2018 Bhavana Mohan
Fixed documentation bugs:
1507182, 1507184, 1507186, 1507647, 1517769

Revision 1.0-14 Fri Jan 05 2018 Bhavana Mohan
Updated the Planning Guidelines section with detailed limit details specific to File, Block, CNS, and CRS.

Revision 1.0-13 Tue Oct 10 2017 Bhavana Mohan
Documented how to dynamically provision storage for block-based storage.
Documented support for brick multiplexing across distributed three-way replicated volumes.
Documented instructions regarding how to upgrade CNS.
Documented operational/troubleshooting information.
Documented support for s3 compatible object store.
Documented instructions regarding how to install CNS 3.6 on a OpenShift Container Platform 3.6.
Documented steps for CRS upgrade.
Created a workflow for different Install and Upgrade scenarios.

Revision 1.0-12 Tue Oct 10 2017 Bhavana Mohan
Updated the compatibility matrix for CNS, OCO, and RHGS.
Updated the steps/format for the topology file.
Additional steps are added to create custom gluster-endpoints.yaml.
YAML formatting issue is corrected throughout the doc.
Additional steps are added to provide cluster-role-binding permission that are required for gluster-block.
Detailed introduction is provided for CRS.

Revision 1.0-4 Mon Apr 03 2017 Bhavana Mohan
Modified the oc delete command for bug 1419812

Container-Native Storage for OpenShift Container Platform

144

	Table of Contents
	CHAPTER 1. INTRODUCTION TO CONTAINERIZED RED HAT GLUSTER STORAGE
	CHAPTER 2. CONTAINER-NATIVE STORAGE FOR OPENSHIFT CONTAINER PLATFORM
	CHAPTER 3. CONTAINER-READY STORAGE FOR OPENSHIFT CONTAINER PLATFORM
	CHAPTER 4. INSTALL AND UPGRADE WORKFLOW: WHAT TASKS DO I NEED TO COMPLETE?
	4.1. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM AND CONTAINER-NATIVE STORAGE ARE NOT INSTALLED
	4.1.1. Customer Objective
	4.1.2. Prerequisites
	4.1.3. Required Installation Tasks

	4.2. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM AND CONTAINER-READY STORAGE ARE NOT INSTALLED
	4.2.1. Customer Objective
	4.2.2. Prerequisites
	4.2.3. Required Installation Tasks

	4.3. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM 3.6 IS INSTALLED AND CONTAINER-NATIVE STORAGE 3.6 IS NOT INSTALLED
	4.3.1. Customer Objective
	4.3.2. Prerequisites
	4.3.3. Required Installation Tasks

	4.4. (INSTALL) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM 3.6 IS INSTALLED AND CONTAINER-READY STORAGE IS NOT INSTALLED
	4.4.1. Customer Objective
	4.4.2. Prerequisites
	4.4.3. Required Installation Tasks

	4.5. (UPGRADE) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM 3.6 IS INSTALLED AND CONTAINER-NATIVE STORAGE IS INSTALLED
	4.5.1. Customer Objective
	4.5.2. Required Upgrade Tasks

	4.6. (UPGRADE) EXISTING ENVIRONMENT: OPENSHIFT CONTAINER PLATFORM 3.6 IS INSTALLED AND CONTAINER-READY STORAGE IS INSTALLED WITH ADVANCED INSTALLER AND REGISTRY
	4.6.1. Customer Objective
	4.6.2. Required Upgrade Tasks

	CHAPTER 5. SUPPORT REQUIREMENTS
	5.1. SUPPORTED VERSIONS
	5.2. ENVIRONMENT REQUIREMENTS
	5.2.1. Installing Red Hat Gluster Storage Container Native with OpenShift Container Platform on Red Hat Enterprise Linux 7 based OpenShift Container Platform Cluster
	5.2.1.1. Setting up the Openshift Master as the Client
	5.2.1.2. Setting up the Red Hat Enterprise Linux 7 Client for Installing Red Hat Gluster Storage Container Native with OpenShift Container Platform

	5.2.2. Installing Red Hat Gluster Storage Container Native with OpenShift Container Platform on Red Hat Enterprise Linux Atomic Host OpenShift Container Platform Cluster
	5.2.3. Red Hat OpenShift Container Platform Requirements
	5.2.4. Red Hat Gluster Storage Requirements
	5.2.5. Planning Guidelines

	CHAPTER 6. SETTING UP CONTAINER-NATIVE STORAGE
	6.1. CONFIGURING PORT ACCESS
	6.2. ENABLING KERNEL MODULES
	6.3. STARTING AND ENABLING SERVICES

	CHAPTER 7. SETTING UP CONTAINER-READY STORAGE
	7.1. INSTALLING RED HAT GLUSTER STORAGE SERVER ON RED HAT ENTERPRISE LINUX (LAYERED INSTALL)
	7.2. CONFIGURING PORT ACCESS
	7.3. ENABLING KERNEL MODULES
	7.4. STARTING AND ENABLING SERVICES

	CHAPTER 8. SETTING UP THE ENVIRONMENT
	8.1. PREPARING THE RED HAT OPENSHIFT CONTAINER PLATFORM CLUSTER
	8.2. DEPLOYING CONTAINERIZED RED HAT GLUSTER STORAGE SOLUTIONS
	8.2.1. Deploying Container-Native Storage
	8.2.2. Deploying Container-Ready Storage

	CHAPTER 9. CREATING PERSISTENT VOLUMES
	9.1. FILE STORAGE
	9.1.1. Static Provisioning of Volumes
	9.1.2. Dynamic Provisioning of Volumes
	9.1.2.1. Configuring Dynamic Provisioning of Volumes

	9.1.3. Volume Security

	9.2. BLOCK STORAGE
	9.2.1. Dynamic Provisioning of Volumes for Block Storage
	9.2.1.1. Configuring Dynamic Provisioning of Volumes

	CHAPTER 10. UPDATING THE REGISTRY WITH CONTAINER-NATIVE STORAGE AS THE STORAGE BACK-END
	10.1. VALIDATING THE OPENSHIFT CONTAINER PLATFORM REGISTRY DEPLOYMENT
	10.2. CONVERTING THE OPENSHIFT CONTAINER PLATFORM REGISTRY WITH CONTAINER-NATIVE STORAGE

	CHAPTER 11. OPERATIONS ON A RED HAT GLUSTER STORAGE POD IN AN OPENSHIFT ENVIRONMENT
	CHAPTER 12. MANAGING CLUSTERS
	12.1. INCREASING STORAGE CAPACITY
	12.1.1. Adding New Devices
	12.1.1.1. Using Heketi CLI
	12.1.1.2. Updating Topology File

	12.1.2. Increasing Cluster Size
	12.1.2.1. Using Heketi CLI
	12.1.2.2. Updating Topology File

	12.1.3. Adding a New Cluster
	12.1.3.1. Adding a New Cluster to the Existing Container-Native Storage
	12.1.3.2. Adding Another Container-Native Storage Cluster in a New Project

	12.2. REDUCING STORAGE CAPACITY
	12.2.1. Deleting Volumes
	12.2.2. Deleting Device
	12.2.2.1. Disabling and Enabling a Device
	12.2.2.2. Removing and Deleting the Device
	12.2.2.3. Replacing a Device

	12.2.3. Deleting Node
	12.2.3.1. Disabling and Enabling a Node
	12.2.3.2. Removing and Deleting the Node
	12.2.3.3. Replacing a Node

	12.2.4. Deleting Clusters

	CHAPTER 13. UPGRADING YOUR CONTAINER-NATIVE STORAGE ENVIRONMENT
	13.1. PREREQUISITES
	13.2. UPGRADING CNS-DEPLOY AND HEKETI SERVER
	13.3. UPGRADING THE RED HAT GLUSTER STORAGE PODS

	CHAPTER 14. UPGRADING YOUR CONTAINER-READY STORAGE ENVIRONMENT
	14.1. PREREQUISITES
	14.2. UPGRADING CONTAINER-READY STORAGE

	CHAPTER 15. TROUBLESHOOTING
	CHAPTER 16. UNINSTALLING CONTAINERIZED RED HAT GLUSTER STORAGE
	CHAPTER 17. ENABLING ENCRYPTION
	17.1. PREREQUISITES
	17.2. ENABLING ENCRYPTION FOR A NEW CONTAINER-NATIVE STORAGE SETUP
	17.2.1. Enabling Management Encryption
	17.2.2. Enabling I/O encryption for a Volume

	17.3. ENABLING ENCRYPTION FOR AN EXISTING CONTAINER-NATIVE STORAGE SETUP
	17.3.1. Enabling I/O encryption for a Volume
	17.3.2. Enabling Management Encryption

	17.4. DISABLING ENCRYPTION
	17.4.1. Disabling I/O Encryption for all the Volumes
	17.4.2. Disabling Management Encryption

	CHAPTER 18. S3 COMPATIBLE OBJECT STORE IN A CONTAINER-NATIVE STORAGE ENVIRONMENT
	18.1. PREREQUISITES
	18.2. SETTING UP S3 COMPATIBLE OBJECT STORE FOR CONTAINER-NATIVE STORAGE
	18.3. OBJECT OPERATIONS

	APPENDIX A. MANUAL DEPLOYMENT
	A.1. INSTALLING THE TEMPLATES
	A.2. DEPLOYING THE CONTAINERS
	A.3. SETTING UP THE HEKETI SERVER

	APPENDIX B. CLUSTER ADMINISTRATOR SETUP
	APPENDIX C. CLIENT CONFIGURATION USING PORT FORWARDING
	APPENDIX D. HEKETI CLI COMMANDS
	APPENDIX E. GLUSTER BLOCK STORAGE AS BACKEND FOR LOGGING AND METRICS
	E.1. PREREQUISITES
	E.2. ENABLING GLUSTER BLOCK STORAGE AS BACKEND FOR LOGGING
	E.3. ENABLING GLUSTER BLOCK STORAGE AS BACKEND FOR METRICS
	E.4. VERIFYING IF GLUSTER BLOCK IS SETUP AS BACKEND

	APPENDIX F. KNOWN ISSUES
	APPENDIX G. REVISION HISTORY

