
Red Hat Enterprise Linux for Real Time
8

Optimizing RHEL 8 for Real Time for low
latency operation

Optimizing the RHEL for Real Time kernel on Red Hat Enterprise Linux

Last Updated: 2024-04-26

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real
Time for low latency operation

Optimizing the RHEL for Real Time kernel on Red Hat Enterprise Linux

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Tune your workstations on the RHEL for Real Time kernel to achieve consistently low latency and a
predictable response time on latency-sensitive applications. Perform real-time kernel tuning by
managing system resources, measuring latency between events, and recording latency for analysis
on applications with strict determinism requirements.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. REAL-TIME KERNEL TUNING IN RHEL 8
1.1. TUNING GUIDELINES
1.2. BALANCING LOGGING PARAMETERS
1.3. IMPROVING PERFORMANCE BY AVOIDING RUNNING UNNECESSARY APPLICATIONS
1.4. NON-UNIFORM MEMORY ACCESS
1.5. ENSURING THAT DEBUGFS IS MOUNTED
1.6. INFINIBAND IN RHEL FOR REAL TIME
1.7. USING ROCEE AND HIGH-PERFORMANCE NETWORKING
1.8. TUNING CONTAINERS FOR RHEL FOR REAL-TIME

CHAPTER 2. SCHEDULING POLICIES FOR RHEL FOR REAL TIME
2.1. SCHEDULER POLICIES
2.2. PARAMETERS FOR SCHED_DEADLINE POLICY

CHAPTER 3. SETTING PERSISTENT KERNEL TUNING PARAMETERS
3.1. MAKING PERSISTENT KERNEL TUNING PARAMETER CHANGES

CHAPTER 4. APPLICATION TUNING AND DEPLOYMENT
4.1. SIGNAL PROCESSING IN REAL-TIME APPLICATIONS
4.2. SYNCHRONIZING THREADS
4.3. REAL-TIME SCHEDULER PRIORITIES
4.4. LOADING DYNAMIC LIBRARIES

CHAPTER 5. SETTING BIOS PARAMETERS FOR SYSTEM TUNING
5.1. DISABLING POWER MANAGEMENT TO IMPROVE RESPONSE TIMES
5.2. IMPROVING RESPONSE TIMES BY DISABLING ERROR DETECTION AND CORRECTION UNITS
5.3. IMPROVING RESPONSE TIME BY CONFIGURING SYSTEM MANAGEMENT INTERRUPTS

CHAPTER 6. RUNNING AND INTERPRETING HARDWARE AND FIRMWARE LATENCY TESTS
6.1. RUNNING HARDWARE AND FIRMWARE LATENCY TESTS
6.2. INTERPRETING HARDWARE AND FIRMWARE LATENCY TEST RESULTS

CHAPTER 7. RUNNING AND INTERPRETING SYSTEM LATENCY TESTS
7.1. RUNNING SYSTEM LATENCY TESTS

CHAPTER 8. SETTING CPU AFFINITY ON RHEL FOR REAL TIME
8.1. TUNING PROCESSOR AFFINITY USING THE TASKSET COMMAND
8.2. SETTING PROCESSOR AFFINITY USING THE SCHED_SETAFFINITY() SYSTEM CALL
8.3. ISOLATING A SINGLE CPU TO RUN HIGH UTILIZATION TASKS
8.4. REDUCING CPU PERFORMANCE SPIKES
8.5. LOWERING CPU USAGE BY DISABLING THE PC CARD DAEMON

CHAPTER 9. USING MLOCK() SYSTEM CALLS ON RHEL FOR REAL TIME
9.1. MLOCK() AND MUNLOCK() SYSTEM CALLS
9.2. USING MLOCK() SYSTEM CALLS TO LOCK PAGES
9.3. USING MLOCKALL() SYSTEM CALLS TO LOCK ALL MAPPED PAGES
9.4. USING MMAP() SYSTEM CALLS TO MAP FILES OR DEVICES INTO MEMORY
9.5. PARAMETERS FOR MLOCK() SYSTEM CALLS

CHAPTER 10. MINIMIZING OR AVOIDING SYSTEM SLOWDOWNS DUE TO JOURNALING

6

7

8
8
9

10
10
11
11
11

12

13
13
14

15
15

16
16
16
17
17

19
19
19
19

21
21
22

25
25

27
27
28
29
30
31

33
33
33
34
35
36

38

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

10.1. DISABLING ATIME
10.2. ADDITIONAL RESOURCES

CHAPTER 11. DISABLING GRAPHICS CONSOLE OUTPUT FOR LATENCY SENSITIVE WORKLOADS
11.1. DISABLING GRAPHICS CONSOLE LOGGING TO GRAPHICS ADAPTER
11.2. DISABLING MESSAGES FROM PRINTING ON GRAPHICS CONSOLE

CHAPTER 12. MANAGING SYSTEM CLOCKS TO SATISFY APPLICATION NEEDS
12.1. HARDWARE CLOCKS
12.2. VIEWING THE AVAILABLE CLOCK SOURCES IN YOUR SYSTEM
12.3. VIEWING THE CLOCK SOURCE CURRENTLY IN USE
12.4. TEMPORARILY CHANGING THE CLOCK SOURCE TO USE
12.5. COMPARING THE COST OF READING HARDWARE CLOCK SOURCES
12.6. SYNCHRONIZING THE TSC TIMER ON OPTERON CPUS
12.7. THE CLOCK_TIMING PROGRAM

CHAPTER 13. CONTROLLING POWER MANAGEMENT TRANSITIONS
13.1. POWER SAVING STATES
13.2. CONFIGURING POWER MANAGEMENT STATES

CHAPTER 14. MINIMIZING SYSTEM LATENCY BY ISOLATING INTERRUPTS AND USER PROCESSES
14.1. INTERRUPT AND PROCESS BINDING
14.2. DISABLING THE IRQBALANCE DAEMON
14.3. EXCLUDING CPUS FROM IRQ BALANCING
14.4. MANUALLY ASSIGNING CPU AFFINITY TO INDIVIDUAL IRQS
14.5. BINDING PROCESSES TO CPUS WITH THE TASKSET UTILITY

CHAPTER 15. MANAGING OUT OF MEMORY STATES
15.1. CHANGING THE OUT OF MEMORY VALUE
15.2. PRIORITIZING PROCESSES TO KILL WHEN IN AN OUT OF MEMORY STATE
15.3. DISABLING THE OUT OF MEMORY KILLER FOR A PROCESS

CHAPTER 16. IMPROVING LATENCY USING THE TUNA CLI
16.1. PREREQUISITES
16.2. THE TUNA CLI
16.3. ISOLATING CPUS USING THE TUNA CLI
16.4. MOVING INTERRUPTS TO SPECIFIED CPUS USING THE TUNA CLI
16.5. CHANGING PROCESS SCHEDULING POLICIES AND PRIORITIES USING THE TUNA CLI

CHAPTER 17. SETTING SCHEDULER PRIORITIES
17.1. VIEWING THREAD SCHEDULING PRIORITIES
17.2. CHANGING THE PRIORITY OF SERVICES DURING BOOTING
17.3. CONFIGURING THE CPU USAGE OF A SERVICE
17.4. PRIORITY MAP
17.5. ADDITIONAL RESOURCES

CHAPTER 18. NETWORK DETERMINISM TIPS
18.1. OPTIMIZING RHEL FOR LATENCY OR THROUGHPUT-SENSITIVE SERVICES
18.2. FLOW CONTROL FOR ETHERNET NETWORKS
18.3. ADDITIONAL RESOURCES

CHAPTER 19. TRACING LATENCIES WITH TRACE-CMD
19.1. INSTALLING TRACE-CMD
19.2. RUNNING TRACE-CMD
19.3. TRACE-CMD EXAMPLES
19.4. ADDITIONAL RESOURCES

38
38

39
39
39

41
41
41
41
41

43
44
44

46
46
46

48
48
48
49
50
51

53
53
53
54

56
56
56
56
57
57

60
60
60
62
62
63

64
64
67
68

69
69
69
69
70

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 20. ISOLATING CPUS USING TUNED-PROFILES-REAL-TIME
20.1. CHOOSING CPUS TO ISOLATE
20.2. ISOLATING CPUS USING TUNED’S ISOLATED_CORES OPTION
20.3. ISOLATING CPUS USING THE NOHZ AND NOHZ_FULL PARAMETERS

CHAPTER 21. LIMITING SCHED_OTHER TASK MIGRATION
21.1. TASK MIGRATION
21.2. LIMITING SCHED_OTHER TASK MIGRATION USING THE SCHED_NR_MIGRATE VARIABLE

CHAPTER 22. REDUCING TCP PERFORMANCE SPIKES
22.1. TURNING OFF TCP TIMESTAMPS
22.2. TURNING ON TCP TIMESTAMPS
22.3. DISPLAYING THE TCP TIMESTAMP STATUS

CHAPTER 23. IMPROVING CPU PERFORMANCE BY USING RCU CALLBACKS
23.1. OFFLOADING RCU CALLBACKS
23.2. MOVING RCU CALLBACKS
23.3. RELIEVING CPUS FROM AWAKENING RCU OFFLOAD THREADS
23.4. ADDITIONAL RESOURCES

CHAPTER 24. TRACING LATENCIES USING FTRACE
24.1. USING THE FTRACE UTILITY TO TRACE LATENCIES
24.2. FTRACE FILES
24.3. FTRACE TRACERS
24.4. FTRACE EXAMPLES

CHAPTER 25. APPLICATION TIMESTAMPING
25.1. POSIX CLOCKS
25.2. THE _COARSE CLOCK VARIANT IN CLOCK_GETTIME
25.3. ADDITIONAL RESOURCES

CHAPTER 26. IMPROVING NETWORK LATENCY USING TCP_NODELAY
26.1. THE EFFECTS OF USING TCP_NODELAY
26.2. ENABLING TCP_NODELAY
26.3. ENABLING TCP_CORK
26.4. ADDITIONAL RESOURCES

CHAPTER 27. PREVENTING RESOURCE OVERUSE BY USING MUTEX
27.1. MUTEX OPTIONS
27.2. CREATING A MUTEX ATTRIBUTE OBJECT
27.3. CREATING A MUTEX WITH STANDARD ATTRIBUTES
27.4. ADVANCED MUTEX ATTRIBUTES
27.5. CLEANING UP A MUTEX ATTRIBUTE OBJECT
27.6. ADDITIONAL RESOURCES

CHAPTER 28. ANALYZING APPLICATION PERFORMANCE
28.1. COLLECTING SYSTEM-WIDE STATISTICS
28.2. ARCHIVING PERFORMANCE ANALYSIS RESULTS
28.3. ANALYZING PERFORMANCE ANALYSIS RESULTS
28.4. LISTING PRE-DEFINED EVENTS
28.5. GETTING STATISTICS ABOUT SPECIFIED EVENTS
28.6. ADDITIONAL RESOURCES

CHAPTER 29. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG
29.1. TESTING CPU FLOATING POINT UNITS AND PROCESSOR DATA CACHE
29.2. TESTING CPU WITH MULTIPLE STRESS MECHANISMS

71
71
72
74

75
75
75

76
76
76
76

78
78
78
79
79

80
80
82
82
83

85
85
85
86

87
87
87
88
88

89
89
89
89
90
90
90

91
91
91

92
92
93
93

94
94
95

Table of Contents

3

. .

. .

. .

. .

. .

. .

29.3. MEASURING CPU HEAT GENERATION
29.4. MEASURING TEST OUTCOMES WITH BOGO OPERATIONS
29.5. GENERATING A VIRTUAL MEMORY PRESSURE
29.6. TESTING LARGE INTERRUPTS LOADS ON A DEVICE
29.7. GENERATING MAJOR PAGE FAULTS IN A PROGRAM
29.8. VIEWING CPU STRESS TEST MECHANISMS
29.9. USING THE VERIFY MODE

CHAPTER 30. CREATING AND RUNNING CONTAINERS
30.1. CREATING A CONTAINER
30.2. RUNNING A CONTAINER
30.3. ADDITIONAL RESOURCES

CHAPTER 31. DISPLAYING THE PRIORITY FOR A PROCESS
31.1. THE CHRT UTILITY
31.2. DISPLAYING THE PROCESS PRIORITY USING THE CHRT UTILITY
31.3. DISPLAYING THE PROCESS PRIORITY USING SCHED_GETSCHEDULER()
31.4. DISPLAYING THE VALID RANGE FOR A SCHEDULER POLICY
31.5. DISPLAYING THE TIMESLICE FOR A PROCESS
31.6. DISPLAYING THE SCHEDULING POLICY AND ASSOCIATED ATTRIBUTES FOR A PROCESS
31.7. THE SCHED_ATTR STRUCTURE

CHAPTER 32. VIEWING PREEMPTION STATES
32.1. PREEMPTION
32.2. CHECKING THE PREEMPTION STATE OF A PROCESS

CHAPTER 33. SETTING THE PRIORITY FOR A PROCESS WITH THE CHRT UTILITY
33.1. SETTING THE PROCESS PRIORITY USING THE CHRT UTILITY
33.2. THE CHRT UTILITY OPTIONS
33.3. ADDITIONAL RESOURCES

CHAPTER 34. SETTING THE PRIORITY FOR A PROCESS WITH LIBRARY CALLS
34.1. LIBRARY CALLS FOR SETTING PRIORITY
34.2. SETTING THE PROCESS PRIORITY USING A LIBRARY CALL
34.3. SETTING THE PROCESS PRIORITY PARAMETER USING A LIBRARY CALL
34.4. SETTING THE SCHEDULING POLICY AND ASSOCIATED ATTRIBUTES FOR A PROCESS
34.5. ADDITIONAL RESOURCES

CHAPTER 35. SCHEDULING PROBLEMS ON THE REAL-TIME KERNEL AND SOLUTIONS
35.1. SCHEDULING POLICIES FOR THE REAL-TIME KERNEL
35.2. SCHEDULER THROTTLING IN THE REAL-TIME KERNEL
35.3. THREAD STARVATION IN THE REAL-TIME KERNEL

95
96
97
97
97
98
98

100
100
101
101

102
102
102
102
103
104
105
107

109
109
109

110
110
110
111

112
112
112
113
113
114

115
115
115
116

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

4

Table of Contents

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

6

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. REAL-TIME KERNEL TUNING IN RHEL 8
Latency, or response time, refers to the time from an event and to the system response. It is generally
measured in microseconds (μs).

For most applications running under a Linux environment, basic performance tuning can improve latency
sufficiently. For those industries where latency must be low, accountable, and predictable, Red Hat has a
replacement kernel that can be set for latency to meet those requirements. RHEL for Real Time 8
provides seamless integration with RHEL 8 and offers clients the opportunity to measure, configure, and
record latency times within their organization.

Use the real-time kernel for well-tuned systems and for applications with extremely high determinism
requirements. With kernel system tuning, you can achieve good improvement in determinism. Before you
begin, perform general system tuning of the standard RHEL 8 system and then deploy the RHEL for
Real Time kernel.

WARNING

Failure to perform these tasks might prevent a consistent performance from a
RHEL for Real Time deployment.

1.1. TUNING GUIDELINES

Real-time tuning is an iterative process; you will almost never be able to tweak a few variables
and know that the change is the best that can be achieved. Be prepared to spend days or weeks
narrowing down the set of tuning configurations that work best for your system.
Additionally, always make long test runs. Changing some tuning parameters then doing a five
minute test run is not a good validation of a particular set of tuning changes. Make the length of
your test runs adjustable and run them for longer than a few minutes. You can narrow down to a
few different tuning configuration sets with test runs of a few hours, then run those sets for
many hours or days at a time to detect corner-cases of highest latency or resource exhaustion.

Build a measurement mechanism into your application, so that you can accurately gauge how a
particular set of tuning changes affect the application’s performance. Anecdotal evidence, for
example, "The mouse moves more smoothly" is usually wrong and can vary. Do hard
measurements and record them for later analysis.

It is very tempting to make multiple changes to tuning variables between test runs, but doing so
means that you do not have a way to narrow down which tuning parameter affected your test
results. Keep the tuning changes between test runs as small as you can.

It is also tempting to make large changes when tuning, but it is almost always better to make
incremental changes. You will find that working your way up from the lowest to highest priority
values will yield better results in the long run.

Use the available tools. The tuna tuning tool makes it easy to change processor affinities for
threads and interrupts, thread priorities and to isolate processors for application use. The
taskset and chrt command line utilities allow you to do most of what tuna does. If you run into
performance problems, the ftrace and perf utilities can help locate latency problems.

Rather than hard-coding values into your application, use external tools to change policy,

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

8

priority and affinity. Using external tools allows you to try many different combinations and
simplifies your logic. Once you have found some settings that give good results, you can either
add them to your application, or set up startup logic to implement the settings when the
application starts.

1.2. BALANCING LOGGING PARAMETERS

The syslog server forwards log messages from programs over a network. The less often this occurs, the
larger the pending transaction is likely to be. If the transaction is very large, it can cause an I/O spike. To
prevent this, keep the interval reasonably small.

The system logging daemon, syslogd, is used to collect messages from different programs. It also
collects information reported by the kernel from the kernel logging daemon, klogd. Typically, syslogd
logs to a local file, but it can also be configured to log over a network to a remote logging server.

Procedure

To enable remote logging:

1. Configure the machine to which the logs will be sent. For more information, see Remote
Syslogging with rsyslog on Red Hat Enterprise Linux.

2. Configure each system that will send logs to the remote log server, so that its syslog output is
written to the server, rather than to the local file system. To do so, edit the /etc/rsyslog.conf file
on each client system. For each of the logging rules defined in that file, replace the local log file
with the address of the remote logging server.

Log all kernel messages to remote logging host.
kern.* @my.remote.logging.server

The example above configures the client system to log all kernel messages to the remote
machine at @my.remote.logging.server.

Alternatively, you can configure syslogd to log all locally generated system messages, by
adding the following line to the /etc/rsyslog.conf file:

Log all messages to a remote logging server:
. @my.remote.logging.server

IMPORTANT

The syslogd daemon does not include built-in rate limiting on its generated network
traffic. Therefore, Red Hat recommends that when using RHEL for Real Time systems,
only log messages that are required to be remotely logged by your organization. For
example, kernel warnings, authentication requests, and the like. Other messages should
be logged locally.

Additional resources

syslog(3) man page

rsyslog.conf(5) man page

rsyslogd(8) man page

CHAPTER 1. REAL-TIME KERNEL TUNING IN RHEL 8

9

https://access.redhat.com/articles/3549872

1.3. IMPROVING PERFORMANCE BY AVOIDING RUNNING
UNNECESSARY APPLICATIONS

Every running application uses system resources. Ensuring that there are no unnecessary applications
running on your system can significantly improve performance.

Prerequisites

You have root permissions on the system.

Procedure

1. Do not run the graphical interface where it is not absolutely required, especially on servers.
Check if the system is configured to boot into the GUI by default:

systemctl get-default

2. If the output of the command is graphical.target, configure the system to boot to text mode:

systemctl set-default multi-user.target

3. Unless you are actively using a Mail Transfer Agent (MTA) on the system you are tuning,
disable it. If the MTA is required, ensure it is well-tuned or consider moving it to a dedicated
machine.
For more information, refer to the MTA’s documentation.

IMPORTANT

MTAs are used to send system-generated messages, which are executed by
programs such as cron. This includes reports generated by logging functions like
logwatch(). You will not be able to receive these messages if the MTAs on your
machine are disabled.

4. Peripheral devices, such as mice, keyboards, webcams send interrupts that may negatively
affect latency. If you are not using a graphical interface, remove all unused peripheral devices
and disable them.
For more information, refer to the devices' documentation.

5. Check for automated cron jobs that might impact performance.

crontab -l

Disable the crond service or any unneeded cron jobs.

6. Check your system for third-party applications and any components added by external
hardware vendors, and remove any that are unnecessary.

Additional resources

cron(8) man page

1.4. NON-UNIFORM MEMORY ACCESS

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

10

The taskset utility only works on CPU affinity and has no knowledge of other NUMA resources such as
memory nodes. If you want to perform process binding in conjunction with NUMA, use the numactl
command instead of taskset.

For more information about the NUMA API, see Andi Kleen’s whitepaper An NUMA API for Linux.

Additional resources

numactl(8) man page

1.5. ENSURING THAT DEBUGFS IS MOUNTED

The debugfs file system is specially designed for debugging and making information available to users.
It is mounted automatically in RHEL 8 in the /sys/kernel/debug/ directory.

NOTE

The debugfs file system is mounted using the ftrace and trace-cmd commands.

Procedure

To verify that debugfs is mounted:

Run the following command:

mount | grep ^debugfs
debugfs on /sys/kernel/debug type debugfs (rw,nosuid,nodev,noexec,relatime,seclabel)

If debugfs is mounted, the command displays the mount point and properties for debugfs.

If debugfs is not mounted, the command returns nothing.

1.6. INFINIBAND IN RHEL FOR REAL TIME

InfiniBand is a type of communications architecture often used to increase bandwidth, improve quality of
service (QOS), and provide for failover. It can also be used to improve latency by using the Remote
Direct Memory Access (RDMA) mechanism.

The support for InfiniBand on RHEL for Real Time is the same as the support available on Red Hat
Enterprise Linux 8. For more information, see Configuring InfiniBand and RDMA networks .

1.7. USING ROCEE AND HIGH-PERFORMANCE NETWORKING

RoCEE (RDMA over Converged Enhanced Ethernet) is a protocol that implements Remote Direct
Memory Access (RDMA) over Ethernet networks. It allows you to maintain a consistent, high-speed
environment in your data centers, while providing deterministic, low latency data transport for critical
transactions.

High Performance Networking (HPN) is a set of shared libraries that provides RoCEE interfaces into
the kernel. Instead of going through an independent network infrastructure, HPN places data directly
into remote system memory using standard Ethernet infrastructure, resulting in less CPU overhead and
reduced infrastructure costs.

Support for RoCEE and HPN under RHEL for Real Time does not differ from the support offered under

CHAPTER 1. REAL-TIME KERNEL TUNING IN RHEL 8

11

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_infiniband_and_rdma_networks/index

Support for RoCEE and HPN under RHEL for Real Time does not differ from the support offered under
RHEL 8.

Additional resources

Configuring RoCE.

1.8. TUNING CONTAINERS FOR RHEL FOR REAL-TIME

The main RHEL kernels enable the real time group scheduling feature, CONFIG_RT_GROUP_SCHED,
by default. However, for real-time kernels, this feature is disabled.

The CONFIG_RT_GROUP_SCHED feature was developed independently of the PREEMPT_RT
patchset used in the kernel-rt package and is intended to operate on real time processes on the main
RHEL kernel. The CONFIG_RT_GROUP_SCHED feature might cause latency spikes and is therefore
disabled on PREEMPT_RT enabled kernels. Therefore, when testing your workload in a container
running on the main RHEL kernel, some real-time bandwidth must be allocated to the container to be
able to run the SCHED_FIFO or SCHED_RR tasks inside it.

Procedure

1. Configure the following global setting before using podman’s --cpu-rt-runtime command line
option:
echo 950000 > /sys/fs/cgroup/cpu,cpuacct/machine.slice/cpu.rt_runtime_us

2. For CPU isolation, use the existing recommendations for setting aside a set of cores for the RT
workload.

3. Run podman run --cpuset-cpus with the list of isolated CPU cores to be used.

4. Specify the Non-Uniform Memory Access (NUMA) memory nodes to use.
*podman run --cpuset-mems=number-of-memory-nodes

This avoids cross-NUMA node memory access.

5. To verify that the minimal amount of memory required by the real-time workload running on the
container is available at container start time, use the *podman run --memory-
reservation=limit command.

Additional resources

podman-run(1) man page

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_infiniband_and_rdma_networks/index#configuring-roce_configuring-and-managing-networking

CHAPTER 2. SCHEDULING POLICIES FOR RHEL FOR REAL
TIME

In real-time, the scheduler is the kernel component that determines the runnable thread to run. Each
thread has an associated scheduling policy and a static scheduling priority, known as sched_priority.
The scheduling is preemptive and therefore the currently running thread stops when a thread with a
higher static priority gets ready to run. The running thread then returns to the waitlist for its static
priority.

All Linux threads have one of the following scheduling policies:

SCHED_OTHER or SCHED_NORMAL: is the default policy.

SCHED_BATCH: is similar to SCHED_OTHER, but with incremental orientation.

SCHED_IDLE: is the policy with lower priority than SCHED_OTHER.

SCHED_FIFO: is the first in and first out real-time policy.

SCHED_RR: is the round-robin real-time policy.

SCHED_DEADLINE: is a scheduler policy to prioritize tasks according to the job deadline. The
job with the earliest absolute deadline runs first.

2.1. SCHEDULER POLICIES

The real-time threads have higher priority than the standard threads. The policies have scheduling
priority values that range from the minimum value of 1 to the maximum value of 99.

The following policies are critical to real-time:

SCHED_OTHER or SCHED_NORMAL policy
This is the default scheduling policy for Linux threads. It has a dynamic priority that is changed
by the system based on the characteristics of the thread. SCHED_OTHER threads have nice
values between 20, which is the highest priority and 19, which is the lowest priority. The default
nice value for SCHED_OTHER threads is 0.

SCHED_FIFO policy
Threads with SCHED_FIFO run with higher priority over SCHED_OTHER tasks. Instead of
using nice values, SCHED_FIFO uses a fixed priority between 1, which is the lowest and 99,
which is the highest. A SCHED_FIFO thread with a priority of 1 always schedules first over a
SCHED_OTHER thread.

SCHED_RR policy
The SCHED_RR policy is similar to the SCHED_FIFO policy. The threads of equal priority are
scheduled in a round-robin fashion. SCHED_FIFO and SCHED_RR threads run until one of the
following events occurs:

The thread goes to sleep or waits for an event.

A higher-priority real-time thread gets ready to run.
Unless one of the above events occurs, the threads run indefinitely on the specified
processor, while the lower-priority threads remain in the queue waiting to run. This might
cause the system service threads to be resident and prevent being swapped out and fail the
filesystem data flushing.

CHAPTER 2. SCHEDULING POLICIES FOR RHEL FOR REAL TIME

13

SCHED_DEADLINE policy
The SCHED_DEADLINE policy specifies the timing requirements. It schedules each task
according to the task’s deadline. The task with the earliest deadline first (EDF) schedule runs
first.

The kernel requires runtime⇐deadline⇐period to be true. The relation between the required
options is runtime⇐deadline⇐period.

2.2. PARAMETERS FOR SCHED_DEADLINE POLICY

Each SCHED_DEADLINE task is characterized by period, runtime, and deadline parameters. The
values for these parameters are integers of nanoseconds.

Table 2.1. SCHED_DEADLINE parameters

Parameter Description

period period is the activation pattern of a real-time task.

For example, if a video processing task has 60
frames per second to process, a new frame is queued
for service every 16 milliseconds. Therefore, the
period is 16 milliseconds.

runtime runtime is the amount of CPU execution time
allotted to the task to produce an output. In real-
time, the maximum execution time, also known as
“Worst Case Execution Time” (WCET) is the
runtime.

For example, if a video processing tool can take, in
the worst case, five milliseconds to process an image,
the runtime is five milliseconds.

deadline deadline is the maximum time for the output to be
produced.

For example, if a task needs to deliver the processed
frame within ten milliseconds, the deadline is ten
milliseconds.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

14

CHAPTER 3. SETTING PERSISTENT KERNEL TUNING
PARAMETERS

When you have decided on a tuning configuration that works for your system, you can make the changes
persistent across reboots.

By default, edited kernel tuning parameters only remain in effect until the system reboots or the
parameters are explicitly changed. This is effective for establishing the initial tuning configuration. It also
provides a safety mechanism. If the edited parameters cause the machine to behave erratically,
rebooting the machine returns the parameters to the previous configuration.

3.1. MAKING PERSISTENT KERNEL TUNING PARAMETER CHANGES

You can make persistent changes to kernel tuning parameters by adding the parameter to the
/etc/sysctl.conf file.

NOTE

This procedure does not change any of the kernel tuning parameters in the current
session. The changes entered into /etc/sysctl.conf only affect future sessions.

Prerequisites

You have root permissions on the system.

Procedure

1. Open /etc/sysctl.conf in a text editor.

2. Insert the new entry into the file with the parameter’s value.
Modify the parameter name by removing the /proc/sys/ path, changing the remaining slash (/)
to a period (.), and including the parameter’s value.

For example, to make the command echo 0 > /proc/sys/kernel/hung_task_panic persistent,
enter the following into /etc/sysctl.conf:

Enable gettimeofday(2)
kernel.hung_task_panic = 0

3. Save and close the file.

4. Reboot the system for changes to take effect.

Verification

To verify the configuration:

cat /proc/sys/kernel/hung_task_panic
0

CHAPTER 3. SETTING PERSISTENT KERNEL TUNING PARAMETERS

15

CHAPTER 4. APPLICATION TUNING AND DEPLOYMENT
Tuning a real-time kernel with a combination of optimal configurations and settings can help in
enhancing and developing RHEL for Real Time applications.

NOTE

In general, try to use POSIX defined APIs (application programming interfaces). RHEL
for Real Time is compliant with POSIX standards. Latency reduction in RHEL for Real
Time kernel is also based on POSIX.

4.1. SIGNAL PROCESSING IN REAL-TIME APPLICATIONS

Traditional UNIX and POSIX signals have their uses, especially for error handling, but they are not
suitable as an event delivery mechanism in real-time applications. This is because the current Linux
kernel signal handling code is quite complex, mainly due to legacy behavior and the many APIs that need
to be supported. This complexity means that the code paths that are taken when delivering a signal are
not always optimal, and long latencies can be experienced by applications.

The original motivation behind UNIX signals was to multiplex one thread of control (the process)
between different "threads" of execution. Signals behave somewhat like operating system interrupts.
That is, when a signal is delivered to an application, the application’s context is saved and it starts
executing a previously registered signal handler. Once the signal handler completes, the application
returns to executing where it was when the signal was delivered. This can get complicated in practice.

Signals are too non-deterministic to trust in a real-time application. A better option is to use POSIX
Threads (pthreads) to distribute your workload and communicate between various components. You
can coordinate groups of threads using the pthreads mechanisms of mutexes, condition variables, and
barriers. The code paths through these relatively new constructs are much cleaner than the legacy
handling code for signals.

Additional resources

Requirements of the POSIX Signal Model

4.2. SYNCHRONIZING THREADS

The sched_yield command is a synchronization mechanism that can allow lower priority threads a
chance to run. This type of request is prone to failure when issued from within a poorly-written
application.

A higher priority thread can call sched_yield() to allow other threads a chance to run. The calling
process gets moved to the tail of the queue of processes running at that priority. When this occurs in a
situation where there are no other processes running at the same priority, the calling process continues
running. If the priority of that process is high, it can potentially create a busy loop, rendering the machine
unusable.

When a SCHED_DEADLINE task calls sched_yield(), it gives up the configured CPU, and the remaining
runtime is immediately throttled until the next period. The sched_yield() behavior allows the task to
wake up at the start of the next period.

The scheduler is better able to determine when, and if, there actually are other threads waiting to run.
Avoid using sched_yield() on any real-time task.

Procedure

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

16

https://akkadia.org/drepper/posix-signal-model.xml

Procedure

To call the sched_yield() function, run the following code:

for(;;) {
 do_the_computation();
 /*
 * Notify the scheduler the end of the computation
 * This syscall will block until the next replenishment
 */
 sched_yield();
 }

The SCHED_DEADLINE task gets throttled by the conflict-based search (CBS) algorithm until
the next period (start of next execution of the loop).

Additional resources

pthread.h(P) man page

sched_yield(2) man page

sched_yield(3p) man page

4.3. REAL-TIME SCHEDULER PRIORITIES

The systemd command can be used to set real-time priority for services launched during the boot
process. Some kernel threads can be given a very high priority. This allows the default priorities to
integrate well with the requirements of the Real Time Specification for Java (RTSJ). RTSJ requires a
range of priorities from 10 to 89.

For deployments where RTSJ is not in use, there is a wide range of scheduling priorities below 90 that
can be used by applications. Use extreme caution when scheduling any application thread above priority
49 because it can prevent essential system services from running, because it can prevent essential
system services from running. This can result in unpredictable behavior, including blocked network
traffic, blocked virtual memory paging, and data corruption due to blocked filesystem journaling.

If any application threads are scheduled above priority 89, ensure that the threads run only a very short
code path. Failure to do so would undermine the low latency capabilities of the RHEL for Real Time
kernel.

Setting real-time priority for users without mandatory privileges

By default, only users with root permissions on the application can change priority and scheduling
information. To provide root permissions, you can modify settings and the preferred method is to add a
user to the realtime group.

IMPORTANT

You can also change user privileges by editing the /etc/security/limits.conf file.
However, this can result in duplication and render the system unusable for regular users. If
you decide to edit this file, exercise caution and always create a copy before making
changes.

4.4. LOADING DYNAMIC LIBRARIES

CHAPTER 4. APPLICATION TUNING AND DEPLOYMENT

17

When developing real-time application, consider resolving symbols at startup to avoid non-deterministic
latencies during program execution. Resolving symbols at startup can slow down program initialization.
You can instruct Dynamic Libraries to load at application startup by setting the LD_BIND_NOW variable
with ld.so, the dynamic linker/loader.

For example, the following shell script exports the LD_BIND_NOW variable with a value of 1, then runs a
program with a scheduler policy of FIFO and a priority of 1.

#!/bin/sh

LD_BIND_NOW=1
export LD_BIND_NOW

chrt --fifo 1 _/opt/myapp/myapp-server &_

Additional resources

ld.so(8) man page

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

18

CHAPTER 5. SETTING BIOS PARAMETERS FOR SYSTEM
TUNING

The BIOS plays a key role in the functioning of the system. By configuring the BIOS parameters correctly
you can significantly improve the system performance.

NOTE

Every system and BIOS vendor uses different terms and navigation methods. For more
information about BIOS settings, see the BIOS documentation or contact the BIOS
vendor.

5.1. DISABLING POWER MANAGEMENT TO IMPROVE RESPONSE
TIMES

BIOS power management options help save power by changing the system clock frequency or by
putting the CPU into one of various sleep states. These actions are likely to affect how quickly the
system responds to external events.

To improve response times, disable all power management options in the BIOS.

5.2. IMPROVING RESPONSE TIMES BY DISABLING ERROR DETECTION
AND CORRECTION UNITS

Error Detection and Correction (EDAC) units are devices for detecting and correcting errors signaled
from Error Correcting Code (ECC) memory. Usually EDAC options range from no ECC checking to a
periodic scan of all memory nodes for errors. The higher the EDAC level, the more time the BIOS uses.
This may result in missing crucial event deadlines.

To improve response times, turn off EDAC. If this is not possible, configure EDAC to the lowest
functional level.

5.3. IMPROVING RESPONSE TIME BY CONFIGURING SYSTEM
MANAGEMENT INTERRUPTS

System Management Interrupts (SMIs) are a hardware vendors facility to ensure that the system is
operating correctly. The BIOS code usually services the SMI interrupt. SMIs are typically used for
thermal management, remote console management (IPMI), EDAC checks, and various other
housekeeping tasks.

If the BIOS contains SMI options, check with the vendor and any relevant documentation to determine
the extent to which it is safe to disable them.

CHAPTER 5. SETTING BIOS PARAMETERS FOR SYSTEM TUNING

19

WARNING

While it is possible to completely disable SMIs, Red Hat strongly recommends that
you do not do this. Removing the ability of your system to generate and service
SMIs can result in catastrophic hardware failure.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

20

CHAPTER 6. RUNNING AND INTERPRETING HARDWARE AND
FIRMWARE LATENCY TESTS

With the hwlatdetect program, you can test and verify if a potential hardware platform is suitable for
using real-time operations.

Prerequisites

Ensure that the RHEL-RT (RHEL for Real Time) and rt-tests packages are installed.

Check the vendor documentation for any tuning steps required for low latency operation.
The vendor documentation can provide instructions to reduce or remove any System
Management Interrupts (SMIs) that would transition the system into System Management
Mode (SMM). While a system is in SMM, it runs firmware and not operating system code. This
means that any timers that expire while in SMM wait until the system transitions back to normal
operation. This can cause unexplained latencies, because SMIs cannot be blocked by Linux, and
the only indication that we actually took an SMI can be found in vendor-specific performance
counter registers.

WARNING

Red Hat strongly recommends that you do not completely disable SMIs, as
it can result in catastrophic hardware failure.

6.1. RUNNING HARDWARE AND FIRMWARE LATENCY TESTS

It is not required to run any load on the system while running the hwlatdetect program, because the test
looks for latencies introduced by the hardware architecture or BIOS or EFI firmware. The default values
for hwlatdetect are to poll for 0.5 seconds each second, and report any gaps greater than 10
microseconds between consecutive calls to fetch the time. hwlatdetect returns the best maximum
latency possible on the system. Therefore, if you have an application that requires maximum latency
values of less than 10us and hwlatdetect reports one of the gaps as 20us, then the system can only
guarantee latency of 20us.

NOTE

If hwlatdetect shows that the system cannot meet the latency requirements of the
application, try changing the BIOS settings or working with the system vendor to get new
firmware that meets the latency requirements of the application.

Prerequisites

Ensure that the RHEL-RT and rt-tests packages are installed.

Procedure

Run hwlatdetect, specifying the test duration in seconds.
hwlatdetect looks for hardware and firmware-induced latencies by polling the clock-source and
looking for unexplained gaps.

CHAPTER 6. RUNNING AND INTERPRETING HARDWARE AND FIRMWARE LATENCY TESTS

21

hwlatdetect --duration=60s
hwlatdetect: test duration 60 seconds
 detector: tracer
 parameters:
 Latency threshold: 10us
 Sample window: 1000000us
 Sample width: 500000us
 Non-sampling period: 500000us
 Output File: None

Starting test
test finished
Max Latency: Below threshold
Samples recorded: 0
Samples exceeding threshold: 0

Additional resources

hwlatdetect man page.

Interpreting hardware and firmware latency tests

6.2. INTERPRETING HARDWARE AND FIRMWARE LATENCY TEST
RESULTS

The hardware latency detector (hwlatdetect) uses the tracer mechanism to detect latencies introduced
by the hardware architecture or BIOS/EFI firmware. By checking the latencies measured by hwlatdetect,
you can determine if a potential hardware is suitable to support the RHEL for Real Time kernel.

Examples

The example result represents a system tuned to minimize system interruptions from firmware.
In this situation, the output of hwlatdetect looks like this:

hwlatdetect --duration=60s
hwlatdetect: test duration 60 seconds
 detector: tracer
 parameters:
 Latency threshold: 10us
 Sample window: 1000000us
 Sample width: 500000us
 Non-sampling period: 500000us
 Output File: None

Starting test
test finished
Max Latency: Below threshold
Samples recorded: 0
Samples exceeding threshold: 0

The example result represents a system that could not be tuned to minimize system
interruptions from firmware. In this situation, the output of hwlatdetect looks like this:

hwlatdetect --duration=10s

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

22

hwlatdetect: test duration 10 seconds
 detector: tracer
 parameters:
 Latency threshold: 10us
 Sample window: 1000000us
 Sample width: 500000us
 Non-sampling period: 500000us
 Output File: None

Starting test
test finished
Max Latency: 18us
Samples recorded: 10
Samples exceeding threshold: 10
SMIs during run: 0
ts: 1519674281.220664736, inner:17, outer:15
ts: 1519674282.721666674, inner:18, outer:17
ts: 1519674283.722667966, inner:16, outer:17
ts: 1519674284.723669259, inner:17, outer:18
ts: 1519674285.724670551, inner:16, outer:17
ts: 1519674286.725671843, inner:17, outer:17
ts: 1519674287.726673136, inner:17, outer:16
ts: 1519674288.727674428, inner:16, outer:18
ts: 1519674289.728675721, inner:17, outer:17
ts: 1519674290.729677013, inner:18, outer:17----

The output shows that during the consecutive reads of the system clocksource, there were 10
delays that showed up in the 15-18 us range.

NOTE

Previous versions used a kernel module rather than the ftrace tracer.

Understanding the results

The information on testing method, parameters, and results helps you understand the latency
parameters and the latency values detected by the hwlatdetect utility.

The table for Testing method, parameters, and results, lists the parameters and the latency values
detected by the hwlatdetect utility.

Table 6.1. Testing method, parameters, and results

Parameter Value Description

test duration 10
seconds

The duration of the test in seconds

detector tracer The utility that runs the detector thread

parameters

Latency threshold 10us The maximum allowable latency

CHAPTER 6. RUNNING AND INTERPRETING HARDWARE AND FIRMWARE LATENCY TESTS

23

Sample window 1000000u
s

1 second

Sample width 500000us 0.05 seconds

Non-sampling period 500000us 0.05 seconds

Output File None The file to which the output is saved.

Results

Max Latency 18us The highest latency during the test that exceeded the
Latency threshold. If no sample exceeded the Latency
threshold, the report shows Below threshold.

Samples recorded 10 The number of samples recorded by the test.

Samples exceeding
threshold

10 The number of samples recorded by the test where the
latency exceeded the Latency threshold.

SMIs during run 0 The number of System Management Interrupts (SMIs) that
occurred during the test run.

Parameter Value Description

NOTE

The values printed by the hwlatdetect utility for inner and outer are the maximum latency
values. They are deltas between consecutive reads of the current system clocksource
(usually the TSC or TSC register, but potentially the HPET or ACPI power management
clock) and any delays between consecutive reads introduced by the hardware-firmware
combination.

After finding the suitable hardware-firmware combination, the next step is to test the real-time
performance of the system while under a load.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

24

CHAPTER 7. RUNNING AND INTERPRETING SYSTEM
LATENCY TESTS

RHEL for Real Time provides the rteval utility to test the system real-time performance under load.

7.1. RUNNING SYSTEM LATENCY TESTS

With the rteval utility, you can test a system’s real-time performance under load.

Prerequisites

The RHEL for Real Time package group is installed.

You have root permissions on the system.

Procedure

Run the rteval utility.

rteval

The rteval utility starts a heavy system load of SCHED_OTHER tasks. It then measures real-
time response on each online CPU. The loads are a parallel make of the Linux kernel tree in a
loop and the hackbench synthetic benchmark.

The goal is to bring the system into a state, where each core always has a job to schedule. The
jobs perform various tasks, such as memory allocation/free, disk I/O, computational tasks,
memory copies, and other.

Once the loads start, rteval starts the cyclictest measurement program. This program starts
the SCHED_FIFO real-time thread on each online core. It then measures the real-time
scheduling response time.

Each measurement thread takes a timestamp, sleeps for an interval, then takes another
timestamp after waking up. The latency measured is t1 - (t0 + i), which is the difference between
the actual wakeup time t1, and the theoretical wakeup time of the first timestamp t0 plus the
sleep interval i.

The details of the rteval run are written to an XML file along with the boot log for the system.
This report is displayed on the screen and saved to a compressed file.

The file name is in the form rteval-<date>-N-tar.bz2, where <date> is the date the report was
generated, N is a counter for the Nth run on <date>.

The following is an example of an rteval report:

System:
Statistics:
 Samples: 1440463955
 Mean: 4.40624790712us
 Median: 0.0us
 Mode: 4us
 Range: 54us
 Min: 2us

CHAPTER 7. RUNNING AND INTERPRETING SYSTEM LATENCY TESTS

25

 Max: 56us
 Mean Absolute Dev: 1.0776661507us
 Std.dev: 1.81821060672us

CPU core 0 Priority: 95
Statistics:
 Samples: 36011847
 Mean: 5.46434910711us
 Median: 4us
 Mode: 4us
 Range: 38us
 Min: 2us
 Max: 40us
 Mean Absolute Dev: 2.13785341159us
 Std.dev: 3.50155558554us

The report includes details about the system hardware, length of the run, options used, and the
timing results, both per-cpu and system-wide.

NOTE

To regenerate an rteval report from its generated file, run

rteval --summarize rteval-<date>-N.tar.bz2

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

26

CHAPTER 8. SETTING CPU AFFINITY ON RHEL FOR REAL
TIME

All threads and interrupt sources in the system has a processor affinity property. The operating system
scheduler uses this information to determine the threads and interrupts to run on a CPU. By setting
processor affinity, along with effective policy and priority settings, you can achieve maximum possible
performance. Applications always compete for resources, especially CPU time, with other processes.
Depending on the application, related threads are often run on the same core. Alternatively, one
application thread can be allocated to one core.

Systems that perform multitasking are naturally more prone to indeterminism. Even high priority
applications can be delayed from executing while a lower priority application is in a critical section of
code. After the low priority application exits the critical section, the kernel safely preempts the low
priority application and schedules the high priority application on the processor. Additionally, migrating
processes from one CPU to another can be costly due to cache invalidation. RHEL for Real Time
includes tools that address some of these issues and allows latency to be better controlled.

Affinity is represented as a bit mask, where each bit in the mask represents a CPU core. If the bit is set to
1, then the thread or interrupt runs on that core; if 0 then the thread or interrupt is excluded from
running on the core. The default value for an affinity bit mask is all ones, meaning the thread or interrupt
can run on any core in the system.

By default, processes can run on any CPU. However, by changing the affinity of the process, you can
define a process to run on a predetermined set of CPUs. Child processes inherit the CPU affinities of
their parents.

Setting the following typical affinity setups can achieve maximum possible performance:

Using a single CPU core for all system processes and setting the application to run on the
remainder of the cores.

Configuring a thread application and a specific kernel thread, such as network softirq or a driver
thread, on the same CPU.

Pairing the producer-consumer threads on each CPU. Producers and consumers are two classes
of threads, where producers insert data into the buffer and consumers remove it from the
buffer.

The usual good practice for tuning affinities on a real-time system is to determine the number of cores
required to run the application and then isolate those cores. You can achieve this with the Tuna tool or
with the shell scripts to modify the bit mask value, such as the taskset command. The taskset command
changes the affinity of a process and modifying the /proc/ file system entry changes the affinity of an
interrupt.

8.1. TUNING PROCESSOR AFFINITY USING THE TASKSET COMMAND

On real-time, the taskset command helps to set or retrieve the CPU affinity of a running process. The
taskset command takes -p and -c options. The -p or --pid option work an existing process and does not
start a new task. The -c or --cpu-list specify a numerical list of processors instead of a bitmask. The list
can contain more than one items, separated by comma, and a range of processors. For example, 0,5,7,9-
11.

Prerequisites

You have root permissions on the system.

CHAPTER 8. SETTING CPU AFFINITY ON RHEL FOR REAL TIME

27

Procedure

To verify the process affinity for a specific process:

taskset -p -c 1000
 pid 1000’s current affinity list: 0,1

The command prints the affinity of the process with PID 1000. The process is set up to use CPU
0 or CPU 1.

(Optional) To configure a specific CPU to bind a process:

taskset -p -c 1 1000
pid 1000’s current affinity list: 0,1
pid 1000’s new affinity list: 1

(Optional) To define more than one CPU affinity:

taskset -p -c 0,1 1000
pid 1000’s current affinity list: 1
pid 1000’s new affinity list: 0,1

(Optional) To configure a priority level and a policy on a specific CPU:

taskset -c 5 chrt -f 78 /bin/my-app

For further granularity, you can also specify the priority and policy. In the example, the
command runs the /bin/my-app application on CPU 5 with SCHED_FIFO policy and a
priority value of 78.

8.2. SETTING PROCESSOR AFFINITY USING THE
SCHED_SETAFFINITY() SYSTEM CALL

You can also set processor affinity using the real-time sched_setaffinity() system call.

Prerequisite

You have root permissions on the system.

Procedure

To set the processor affinity with sched_setaffinity():

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <sched.h>

int main(int argc, char **argv)
{
 int i, online=0;

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

28

 ulong ncores = sysconf(_SC_NPROCESSORS_CONF);
 cpu_set_t *setp = CPU_ALLOC(ncores);
 ulong setsz = CPU_ALLOC_SIZE(ncores);

 CPU_ZERO_S(setsz, setp);

 if (sched_getaffinity(0, setsz, setp) == -1) {
 perror("sched_getaffinity(2) failed");
 exit(errno);
 }

 for (i=0; i < CPU_COUNT_S(setsz, setp); i) {
 if (CPU_ISSET_S(i, setsz, setp))
 online;
 }

 printf("%d cores configured, %d cpus allowed in affinity mask\n", ncores, online);
 CPU_FREE(setp);
}

8.3. ISOLATING A SINGLE CPU TO RUN HIGH UTILIZATION TASKS

With the cpusets mechanism, you can assign a set of CPUs and memory nodes for SCHED_DEADLINE
tasks. In a task set that has high and low CPU utilizing tasks, isolating a CPU to run the high utilization
task and scheduling small utilization tasks on different sets of CPU, enables all tasks to meet the
assigned runtime.

Prerequisites

You have root permissions on the system.

Procedure

1. Create two directories named as cpuset:

cd /sys/fs/cgroup/cpuset/
mkdir cluster
mkdir partition

2. Disable the load balance of the root cpuset to create two new root domains in the cpuset
directory:

echo 0 > cpuset.sched_load_balance

3. In the cluster cpuset, schedule the low utilization tasks to run on CPU 1 to 7, verify memory size,
and name the CPU as exclusive:

cd cluster/
echo 1-7 > cpuset.cpus
echo 0 > cpuset.mems
echo 1 > cpuset.cpu_exclusive

4. Move all low utilization tasks to the cpuset directory:

CHAPTER 8. SETTING CPU AFFINITY ON RHEL FOR REAL TIME

29

ps -eLo lwp | while read thread; do echo $thread > tasks ; done

5. Create a partition named as cpuset and assign the high utilization task:

cd ../partition/
echo 1 > cpuset.cpu_exclusive
echo 0 > cpuset.mems
echo 0 > cpuset.cpus

6. Set the shell to the cpuset and start the deadline workload:

echo $$ > tasks
/root/d &

With this setup, the task isolated in the partitioned cpuset directory does not interfere with the
task in the cluster cpuset directory. This enables all real-time tasks to meet the scheduler
deadline.

8.4. REDUCING CPU PERFORMANCE SPIKES

A common source of latency spikes is when multiple CPUs contend on common locks in the kernel timer
tick handler. The usual lock responsible for the contention is xtime_lock, which is used by the
timekeeping system and the Read-Copy-Update (RCU) structure locks. By using skew_tick=1, you can
offset the timer tick per CPU to start at a different time and avoid potential lock conflicts.

The skew_tick kernel command line parameter might prevent latency fluctuations on moderate to large
systems with large core-counts and have latency-sensitive workloads.

Prerequisites

You have administrator permissions.

Procedure

1. Enable the skew_tick=1 parameter with grubby.

grubby --update-kernel=ALL --args="skew_tick=1"

2. Reboot for changes to take effect.

reboot

NOTE

Enabling skew_tick=1 causes a significant increase in power consumption and, therefore,
you must enable the skew boot parameter only if you are running latency sensitive real-
time workloads and consistent latency is an important consideration over power
consumption.

Verification

Display the /proc/cmdline file and ensure skew_tick=1 is specified. The /proc/cmdline file shows the
parameters passed to the kernel.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

30

Check the new settings in the /proc/cmdline file.

cat /proc/cmdline

8.5. LOWERING CPU USAGE BY DISABLING THE PC CARD DAEMON

The pcscd daemon manages connections to parallel communication (PC or PCMCIA) and smart card
(SC) readers. Although pcscd is usually a low priority task, it can often use more CPU than any other
daemon. Therefore, the additional background noise can lead to higher preemption costs to real-time
tasks and other undesirable impacts on determinism.

Prerequisites

You have root permissions on the system.

Procedure

1. Check the status of the pcscd daemon.

systemctl status pcscd
● pcscd.service - PC/SC Smart Card Daemon
 Loaded: loaded (/usr/lib/systemd/system/pcscd.service; indirect; vendor preset: disabled)
 Active: active (running) since Mon 2021-03-01 17:15:06 IST; 4s ago
TriggeredBy: ● pcscd.socket
 Docs: man:pcscd(8)
 Main PID: 2504609 (pcscd)
 Tasks: 3 (limit: 18732)
 Memory: 1.1M
 CPU: 24ms
 CGroup: /system.slice/pcscd.service
 └─2504609 /usr/sbin/pcscd --foreground --auto-exit

The Active parameter shows the status of the pcsd daemon.

2. If the pcsd daemon is running, stop it.

systemctl stop pcscd
Warning: Stopping pcscd.service, but it can still be activated by:
 pcscd.socket

3. Configure the system to ensure that the pcsd daemon does not restart when the system boots.

systemctl disable pcscd
Removed /etc/systemd/system/sockets.target.wants/pcscd.socket.

Verification steps

1. Check the status of the pcscd daemon.

systemctl status pcscd
● pcscd.service - PC/SC Smart Card Daemon
 Loaded: loaded (/usr/lib/systemd/system/pcscd.service; indirect; vendor preset: disabled)
 Active: inactive (dead) since Mon 2021-03-01 17:10:56 IST; 1min 22s ago

CHAPTER 8. SETTING CPU AFFINITY ON RHEL FOR REAL TIME

31

TriggeredBy: ● pcscd.socket
 Docs: man:pcscd(8)
 Main PID: 4494 (code=exited, status=0/SUCCESS)
 CPU: 37ms

2. Ensure that the value for the Active parameter is inactive (dead).

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

32

CHAPTER 9. USING MLOCK() SYSTEM CALLS ON RHEL FOR
REAL TIME

The RHEL for Real-Time memory lock (mlock()) function enables the real-time calling processes to lock
or unlock a specified range of the address space. This range prevents Linux from paging the locked
memory when swapping memory space. After you allocate the physical page to the page table entry,
references to that page become fast. The mlock() system calls include two functions: mlock() and
mlockall(). Similarly, munlock() system call includes the munlock() and munlockall() functions.

9.1. MLOCK() AND MUNLOCK() SYSTEM CALLS

The mlock() and mlockall() system calls lock a specified memory range and do not page this memory.
The following are the mlock() system call groups:

mlock() system calls: lock a specified range of address.

munlock() system calls: unlock a specified range of address.

The mlock() system calls, lock pages in the address range starting at addr and continuing for len bytes.
When the call returns successfully, all pages that contain a part of the specified address range stay in
the memory until unlocked later.

With mlockall() system calls, you can lock all mapped pages into the specified address range. Memory
locks do not stack. Any page locked by several calls will unlock the specified address range or the entire
region with a single munlock() system call. With munlockall() system calls, you can unlock the entire
program space.

The status of the pages contained in a specific range depends on the value in the flags argument. The
flags argument can be 0 or MLOCK_ONFAULT.

Memory locks are not inherited by a child process through fork and automatically removed when a
process terminates.

WARNING

Use mlock() system calls with caution. Excessive use can cause out-of-memory
(OOM) errors. When an application is large or if it has a large data domain, the
mlock() calls can cause thrashing when the system is not able to allocate memory
for other tasks.

When using mlockall() calls for real-time processes, ensure that you reserve
sufficient stack pages.

9.2. USING MLOCK() SYSTEM CALLS TO LOCK PAGES

The real-time mlock() system calls use the addr parameter to specify the start of an address range and
len to define the length of the address space in bytes. The alloc_workbuf() function dynamically
allocates a memory buffer and locks it. Memory allocation is done by the posix_memalig() function to
align the memory area to a page. The function free_workbuf() unlocks the memory area.

CHAPTER 9. USING MLOCK() SYSTEM CALLS ON RHEL FOR REAL TIME

33

Prerequisites:

You have root privileges or the CAP_IPC_LOCK capability to use mlockall() or mlock() on
large buffers

Procedure

To lock pages with mlock() system call, run the following command:

#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>

void *alloc_workbuf(size_t size)
{
 void ptr;
 int retval;

 // alloc memory aligned to a page, to prevent two mlock() in the same page.
 retval = posix_memalign(&ptr, (size_t) sysconf(_SC_PAGESIZE), size);

 // return NULL on failure
 if (retval)
 return NULL;

 // lock this buffer into RAM
 if (mlock(ptr, size)) {
 free(ptr);
 return NULL;
 }
 return ptr;
 }

void free_workbuf(void *ptr, size_t size) {
 // unlock the address range
 munlock(ptr, size);

 // free the memory
 free(ptr);
}

Verification

The real-time mlock() and munlock() calls return 0 when successful. In case of an error, they return -1
and set a errno to indicate the error.

9.3. USING MLOCKALL() SYSTEM CALLS TO LOCK ALL MAPPED
PAGES

To lock and unlock real-time memory with mlockall() and munlockall() system calls, set the flags
argument to 0 or one of the constants: MCL_CURRENT or MCL_FUTURE. With MCL_FUTURE, a
future system call, such as mmap2(), sbrk2(), or malloc3(), might fail, because it causes the number of
locked bytes to exceed the permitted maximum.

Prerequisites

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

34

You have root permissions on the system.

Procedure

To use mlockall() and munlockall() real-time system calls :

Lock all mapped pages by using mlockall() system call:

#include <sys/mman.h>
int mlockall (int flags)

Unlock all mapped pages by using munlockall() system call:

#include <sys/mman.h>
int munlockall (void)

Additional resources

capabilities(7) man page

mlock(2) man page

mlock(3) man page

move_pages(2) man page

posix_memalign(3) man page

posix_memalign(3p) man page

9.4. USING MMAP() SYSTEM CALLS TO MAP FILES OR DEVICES INTO
MEMORY

For large memory allocations on real-time systems, the memory allocation (malloc) method uses the
mmap() system call to find memory space. You can assign and lock memory areas by setting
MAP_LOCKED in the flags parameter. As mmap() assigns memory on a page basis, it avoids two locks
on the same page, which prevents the double-lock or single-unlock problems.

Prerequisites

You have root permissions on the system.

Procedure

To map a specific process-address space:

#include <sys/mman.h>
#include <stdlib.h>

void *alloc_workbuf(size_t size)
{
 void *ptr;

 ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,

CHAPTER 9. USING MLOCK() SYSTEM CALLS ON RHEL FOR REAL TIME

35

 MAP_PRIVATE | MAP_ANONYMOUS | MAP_LOCKED, -1, 0);

 if (ptr == MAP_FAILED)
 return NULL;

 return ptr;
}

void
free_workbuf(void *ptr, size_t size)
{
 munmap(ptr, size);
}

Verification

When the mmap() function completes successfully, it returns a pointer to the mapped area. On
error, it returns the MAP_FAILED value and sets a errno to indicate the error.

When the munmap() function completes successfully, it returns 0. On error, it returns -1 and
sets an errno to indicate the error.

Additional resources

mmap(2) man page

mlockall(2) man page

9.5. PARAMETERS FOR MLOCK() SYSTEM CALLS

The parameters for memory lock system call and the functions they perform are listed and described in
the mlock parameters table.

Table 9.1. mlock parameters

Parameter Description

addr Specifies the process address space to lock or
unlock. When NULL, the kernel chooses the page-
aligned arrangement of data in the memory. If addr
is not NULL, the kernel chooses a nearby page
boundary, which is always above or equal to the value
specified in /proc/sys/vm/mmap_min_addr file.

len Specifies the length of the mapping, which must be
greater than 0.

fd Specifies the file descriptor.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

36

prot mmap and munmap calls define the desired
memory protection with this parameter. prot takes
one or a combination of PROT_EXEC,
PROT_READ, PROT_WRITE or PROT_NONE
values.

flags Controls the mapping visibility to other processes
that map the same file. It takes one of the values:
MAP_ANONYMOUS, MAP_LOCKED,
MAP_PRIVATE or MAP_SHARED values.

MCL_CURRENT Locks all pages that are currently mapped into a
process.

MCL_FUTURE Sets the mode to lock subsequent memory
allocations. These could be new pages required by a
growing heap and stack, new memory-mapped files,
or shared memory regions.

Parameter Description

CHAPTER 9. USING MLOCK() SYSTEM CALLS ON RHEL FOR REAL TIME

37

CHAPTER 10. MINIMIZING OR AVOIDING SYSTEM
SLOWDOWNS DUE TO JOURNALING

The order in which journal changes are written to disk might differ from the order in which they arrive.
The kernel I/O system can reorder the journal changes to optimize the use of available storage space.
Journal activity can result in system latency by re-ordering journal changes and committing data and
metadata. As a result, journaling file systems can slow down the system.

XFS is the default file system used by RHEL 8. This is a journaling file system. An older file system called
ext2 does not use journaling. Unless your organization specifically requires journaling, consider the ext2
file system. In many of Red Hat’s best benchmark results, the ext2 filesystem is used. This is one of the
top initial tuning recommendations.

Journaling file systems like XFS, records the time a file was last accessed (the atime attribute). If you
need to use a journaling file system, consider disabling atime.

10.1. DISABLING ATIME

Disabling the atime attribute increases performance and decreases power usage by limiting the number
of writes to the file-system journal.

Procedure

1. Open the /etc/fstab file using your chosen text editor and locate the entry for the root mount
point.

/dev/mapper/rhel-root / xfs defaults…

2. Edit the options sections to include the terms noatime and nodiratime. The noatime option
prevents access timestamps being updated when a file is read, and the nodiratime option stops
directory inode access times being updated.

/dev/mapper/rhel-root / xfs noatime,nodiratime…

IMPORTANT

Some applications rely on atime being updated. Therefore, this option is reasonable only
on systems where such applications are not used.

Alternatively, you can use the relatime mount option, which ensures that the access time
is only updated if the previous access time is older than the current modify time.

10.2. ADDITIONAL RESOURCES

mkfs.ext2(8) man page

mkfs.xfs(8) man page

mount(8) man page

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

38

CHAPTER 11. DISABLING GRAPHICS CONSOLE OUTPUT FOR
LATENCY SENSITIVE WORKLOADS

The kernel starts passing messages to printk() as soon as it starts. The kernel sends messages to the log
file and also displays on the graphics console even in the absence of a monitor attached to a headless
server.

In some systems, the output sent to the graphics console might introduce stalls in the pipeline. This
might cause potential delay in task execution while waiting for data transfers. For example, outputs sent
to teletype0 (/dev/tty0), might cause potential stalls in some systems.

To prevent unexpected stalls, you can limit or disable the information that is sent to the graphic console
by:

Removing the tty0 definition.

Changing the order of console definitions.

Turning off most printk() functions and ensuring that you set the ignore_loglevel kernel
parameter to not configured.

By disabling the graphics console output from logging on and by controlling the messages that print on
the graphics console, you can improve latency on sensitive workloads.

11.1. DISABLING GRAPHICS CONSOLE LOGGING TO GRAPHICS
ADAPTER

The teletype (tty) default kernel console enables your interaction with the system by passing input data
to the system and displaying the output information about the graphics console.

Not configuring the graphics console, prevents it from logging on the graphics adapter. This makes tty0
unavailable to the system and helps disable printing messages on the graphics console.

NOTE

Disabling graphics console output does not delete information. The information prints in
the system log and you can access them using the journalctl or dmesg utilities.

Procedure

Remove the console=tty0 option from the kernel configuration:

grubby --update-kernel=ALL --remove-args="console=tty0"

11.2. DISABLING MESSAGES FROM PRINTING ON GRAPHICS
CONSOLE

You can control the amount of output messages that are sent to the graphics console by configuring the
required log levels in the /proc/sys/kernel/printk file.

Procedure

1. View the current console log level:

CHAPTER 11. DISABLING GRAPHICS CONSOLE OUTPUT FOR LATENCY SENSITIVE WORKLOADS

39

$ cat /proc/sys/kernel/printk
 7 4 1 7

The command prints the current settings for system log levels. The numbers correspond to
current, default, minimum, and boot-default values for the system logger.

2. Configure the desired log level in the /proc/sys/kernel/printk file.

$ echo “1” > /proc/sys/kernel/printk

The command changes the current console log level. For example, setting log level 1, will print
only alert messages and prevent display of other messages on the graphics console.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

40

CHAPTER 12. MANAGING SYSTEM CLOCKS TO SATISFY
APPLICATION NEEDS

Multiprocessor systems such as NUMA or SMP have multiple instances of hardware clocks. During boot
time the kernel discovers the available clock sources and selects one to use. To improve performance,
you can change the clock source used to meet the minimum requirements of a real-time system.

12.1. HARDWARE CLOCKS

Multiple instances of clock sources found in multiprocessor systems, such as non-uniform memory
access (NUMA) and Symmetric multiprocessing (SMP), interact among themselves and the way they
react to system events, such as CPU frequency scaling or entering energy economy modes, determine
whether they are suitable clock sources for the real-time kernel.

The preferred clock source is the Time Stamp Counter (TSC). If the TSC is not available, the High
Precision Event Timer (HPET) is the second best option. However, not all systems have HPET clocks,
and some HPET clocks can be unreliable.

In the absence of TSC and HPET, other options include the ACPI Power Management Timer
(ACPI_PM), the Programmable Interval Timer (PIT), and the Real Time Clock (RTC). The last two
options are either costly to read or have a low resolution (time granularity), therefore they are sub-
optimal for use with the real-time kernel.

12.2. VIEWING THE AVAILABLE CLOCK SOURCES IN YOUR SYSTEM

The list of available clock sources in your system is in the
/sys/devices/system/clocksource/clocksource0/available_clocksource file.

Procedure

Display the available_clocksource file.

cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm

In this example, the available clock sources in the system are TSC, HPET, and ACPI_PM.

12.3. VIEWING THE CLOCK SOURCE CURRENTLY IN USE

The currently used clock source in your system is stored in the
/sys/devices/system/clocksource/clocksource0/current_clocksource file.

Procedure

Display the current_clocksource file.

cat /sys/devices/system/clocksource/clocksource0/current_clocksource
tsc

In this example, the current clock source in the system is TSC.

12.4. TEMPORARILY CHANGING THE CLOCK SOURCE TO USE

CHAPTER 12. MANAGING SYSTEM CLOCKS TO SATISFY APPLICATION NEEDS

41

Sometimes the best-performing clock for a system’s main application is not used due to known
problems on the clock. After ruling out all problematic clocks, the system can be left with a hardware
clock that is unable to satisfy the minimum requirements of a real-time system.

Requirements for crucial applications vary on each system. Therefore, the best clock for each
application, and consequently each system, also varies. Some applications depend on clock resolution,
and a clock that delivers reliable nanoseconds readings can be more suitable. Applications that read the
clock too often can benefit from a clock with a smaller reading cost (the time between a read request
and the result).

In these cases it is possible to override the clock selected by the kernel, provided that you understand
the side effects of the override and can create an environment which will not trigger the known
shortcomings of the given hardware clock.

IMPORTANT

The kernel automatically selects the best available clock source. Overriding the selected
clock source is not recommended unless the implications are well understood.

Prerequisites

You have root permissions on the system.

Procedure

1. View the available clock sources.

cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm

As an example, consider the available clock sources in the system are TSC, HPET, and ACPI_PM.

2. Write the name of the clock source you want to use to the
/sys/devices/system/clocksource/clocksource0/current_clocksource file.

echo hpet > /sys/devices/system/clocksource/clocksource0/current_clocksource

NOTE

The changes apply to the clock source currently in use. When the system
reboots, the default clock is used. To make the change persistent, see Making
persistent kernel tuning parameter changes.

Verification steps

Display the current_clocksource file to ensure that the current clock source is the specified
clock source.

cat /sys/devices/system/clocksource/clocksource0/current_clocksource
hpet

The example uses HPET as the current clock source in the system.

12.5. COMPARING THE COST OF READING HARDWARE CLOCK

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

42

12.5. COMPARING THE COST OF READING HARDWARE CLOCK
SOURCES

You can compare the speed of the clocks in your system. Reading from the TSC involves reading a
register from the processor. Reading from the HPET clock involves reading a memory area. Reading
from the TSC is faster, which provides a significant performance advantage when timestamping
hundreds of thousands of messages per second.

Prerequisites

You have root permissions on the system.

The clock_timing program must be on the system. For more information, see the clock_timing
program.

Procedure

1. Change to the directory in which the clock_timing program is saved.

cd clock_test

2. View the available clock sources in your system.

cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm

In this example, the available clock sources in the system are TSC, HPET, and ACPI_PM.

3. View the currently used clock source.

cat /sys/devices/system/clocksource/clocksource0/current_clocksource
tsc

In this example, the current clock source in the system is TSC.

4. Run the time utility in conjunction with the ./ clock_timing program. The output displays the
duration required to read the clock source 10 million times.

time ./clock_timing

 real 0m0.601s
 user 0m0.592s
 sys 0m0.002s

The example shows the following parameters:

real - The total time spent beginning from program invocation until the process ends. real
includes user and kernel times, and will usually be larger than the sum of the latter two. If
this process is interrupted by an application with higher priority, or by a system event such
as a hardware interrupt (IRQ), this time spent waiting is also computed under real.

user - The time the process spent in user space performing tasks that did not require kernel
intervention.

sys - The time spent by the kernel while performing tasks required by the user process.

CHAPTER 12. MANAGING SYSTEM CLOCKS TO SATISFY APPLICATION NEEDS

43

sys - The time spent by the kernel while performing tasks required by the user process.
These tasks include opening files, reading and writing to files or I/O ports, memory
allocation, thread creation, and network related activities.

5. Write the name of the next clock source you want to test to the
/sys/devices/system/clocksource/clocksource0/current_clocksource file.

echo hpet > /sys/devices/system/clocksource/clocksource0/current_clocksource

In this example, the current clock source is changed to HPET.

6. Repeat steps 4 and 5 for all of the available clock sources.

7. Compare the results of step 4 for all of the available clock sources.

Additional resources

time(1) man page

12.6. SYNCHRONIZING THE TSC TIMER ON OPTERON CPUS

The current generation of AMD64 Opteron processors can be susceptible to a large gettimeofday skew.
This skew occurs when both cpufreq and the Time Stamp Counter (TSC) are in use. RHEL for Real
Time provides a method to prevent this skew by forcing all processors to simultaneously change to the
same frequency. As a result, the TSC on a single processor never increments at a different rate than the
TSC on another processor.

Prerequisites

You have root permissions on the system.

Procedure

1. Enable the clocksource=tsc and powernow-k8.tscsync=1 kernel options:

grubby --update-kernel=ALL --args="clocksource=tsc powernow-k8.tscsync=1"

This forces the use of TSC and enables simultaneous core processor frequency transitions.

2. Restart the machine.

Additional resources

gettimeofday(2) man page

12.7. THE CLOCK_TIMING PROGRAM

The clock_timing program reads the current clock source 10 million times. In conjunction with the time
utility it measures the amount of time needed to do this.

Procedure

To create the clock_timing program:

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

44

1. Create a directory for the program files.

$ mkdir clock_test

2. Change to the created directory.

$ cd clock_test

3. Create a source file and open it in a text editor.

$ {EDITOR} clock_timing.c

4. Enter the following into the file:

#include <time.h>
void main()
{
 int rc;
 long i;
 struct timespec ts;

 for(i=0; i<10000000; i++) {
 rc = clock_gettime(CLOCK_MONOTONIC, &ts);
 }
}

5. Save the file and exit the editor.

6. Compile the file.

$ gcc clock_timing.c -o clock_timing -lrt

The clock_timing program is ready and can be run from the directory in which it is saved.

CHAPTER 12. MANAGING SYSTEM CLOCKS TO SATISFY APPLICATION NEEDS

45

CHAPTER 13. CONTROLLING POWER MANAGEMENT
TRANSITIONS

You can control power management transitions to improve latency.

Prerequisites

You have root permissions on the system.

13.1. POWER SAVING STATES

Modern processors actively transition to higher power saving states (C-states) from lower states.
Unfortunately, transitioning from a high power saving state back to a running state can consume more
time than is optimal for a real-time application. To prevent these transitions, an application can use the
Power Management Quality of Service (PM QoS) interface.

With the PM QoS interface, the system can emulate the behavior of the idle=poll and
processor.max_cstate=1 parameters, but with a more fine-grained control of power saving states.
idle=poll prevents the processor from entering the idle state. processor.max_cstate=1 prevents the
processor from entering deeper C-states (energy-saving modes).

When an application holds the /dev/cpu_dma_latency file open, the PM QoS interface prevents the
processor from entering deep sleep states, which cause unexpected latencies when they are being
exited. When the file is closed, the system returns to a power-saving state.

13.2. CONFIGURING POWER MANAGEMENT STATES

You can control power management transitions by configuring power management states with one of
the following ways:

Write a value to the /dev/cpu_dma_latency file to change the maximum response time for
processes in microseconds and hold the file descriptor open until low latency is required.

Reference the /dev/cpu_dma_latency file in an application or a script.

Prerequisites

You have administrator privileges.

Procedure

Specify latency tolerance by writing a 32-bit number that represents a maximum response time
in microseconds in /dev/cpu_dma_latency and keep the file descriptor open through the low-
latency operation. A value of 0 disables C-state completely.
For example:

import os
import os.path
import signal
import sys
if not os.path.exists('/dev/cpu_dma_latency'):
 print("no PM QOS interface on this system!")
 sys.exit(1)

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

46

fd = os.open('/dev/cpu_dma_latency', os.O_WRONLY)
 os.write(fd, b'\0\0\0\0')
 print("Press ^C to close /dev/cpu_dma_latency and exit")
 signal.pause()
except KeyboardInterrupt:
 print("closing /dev/cpu_dma_latency")
 os.close(fd)
 sys.exit(0)

NOTE

The Power Management Quality of Service interface (pm_qos) interface is only
active while it has an open file descriptor. Therefore, any script or program you
use to access /dev/cpu_dma_latency must hold the file open until power-state
transitions are allowed.

CHAPTER 13. CONTROLLING POWER MANAGEMENT TRANSITIONS

47

CHAPTER 14. MINIMIZING SYSTEM LATENCY BY ISOLATING
INTERRUPTS AND USER PROCESSES

Real-time environments need to minimize or eliminate latency when responding to various events. To do
this, you can isolate interrupts (IRQs) from user processes from one another on different dedicated
CPUs.

14.1. INTERRUPT AND PROCESS BINDING

Isolating interrupts (IRQs) from user processes on different dedicated CPUs can minimize or eliminate
latency in real-time environments.

Interrupts are generally shared evenly between CPUs. This can delay interrupt processing when the CPU
has to write new data and instruction caches. These interrupt delays can cause conflicts with other
processing being performed on the same CPU.

It is possible to allocate time-critical interrupts and processes to a specific CPU (or a range of CPUs). In
this way, the code and data structures for processing this interrupt will most likely be in the processor
and instruction caches. As a result, the dedicated process can run as quickly as possible, while all other
non-time-critical processes run on the other CPUs. This can be particularly important where the speeds
involved are near or at the limits of memory and available peripheral bus bandwidth. Any wait for
memory to be fetched into processor caches will have a noticeable impact in overall processing time and
determinism.

In practice, optimal performance is entirely application-specific. For example, tuning applications with
similar functions for different companies, required completely different optimal performance tunings.

One firm saw optimal results when they isolated 2 out of 4 CPUs for operating system functions
and interrupt handling. The remaining 2 CPUs were dedicated purely for application handling.

Another firm found optimal determinism when they bound the network related application
processes onto a single CPU which was handling the network device driver interrupt.

IMPORTANT

To bind a process to a CPU, you usually need to know the CPU mask for a given CPU or
range of CPUs. The CPU mask is typically represented as a 32-bit bitmask, a decimal
number, or a hexadecimal number, depending on the command you are using.

Table 14.1. Example of the CPU Mask for given CPUs

CPUs Bitmask Deci
mal

Hexadecimal

0 00000000000000000000000000000001 1 0x00000001

0, 1 00000000000000000000000000000011 3 0x00000011

14.2. DISABLING THE IRQBALANCE DAEMON

The irqbalance daemon is enabled by default and periodically forces interrupts to be handled by CPUs

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

48

The irqbalance daemon is enabled by default and periodically forces interrupts to be handled by CPUs
in an even manner. However in real-time deployments, irqbalance is not needed, because applications
are typically bound to specific CPUs.

Procedure

1. Check the status of irqbalance.

systemctl status irqbalance
irqbalance.service - irqbalance daemon
 Loaded: loaded (/usr/lib/systemd/system/irqbalance.service; enabled)
 Active: active (running) …

2. If irqbalance is running, disable it, and stop it.

systemctl disable irqbalance
systemctl stop irqbalance

Verification

Check that the irqbalance status is inactive.

systemctl status irqbalance

14.3. EXCLUDING CPUS FROM IRQ BALANCING

You can use the IRQ balancing service to specify which CPUs you want to exclude from consideration
for interrupt (IRQ) balancing. The IRQBALANCE_BANNED_CPUS parameter in the
/etc/sysconfig/irqbalance configuration file controls these settings. The value of the parameter is a 64-
bit hexadecimal bit mask, where each bit of the mask represents a CPU core.

Procedure

1. Open /etc/sysconfig/irqbalance in your preferred text editor and find the section of the file
titled IRQBALANCE_BANNED_CPUS.

IRQBALANCE_BANNED_CPUS
64 bit bitmask which allows you to indicate which cpu's should
be skipped when reblancing irqs. Cpu numbers which have their
corresponding bits set to one in this mask will not have any
irq's assigned to them on rebalance
#
#IRQBALANCE_BANNED_CPUS=

2. Uncomment the IRQBALANCE_BANNED_CPUS variable.

3. Enter the appropriate bitmask to specify the CPUs to be ignored by the IRQ balance
mechanism.

4. Save and close the file.

5. Restart the irqbalance service for the changes to take effect:

CHAPTER 14. MINIMIZING SYSTEM LATENCY BY ISOLATING INTERRUPTS AND USER PROCESSES

49

systemctl restart irqbalance

NOTE

If you are running a system with up to 64 CPU cores, separate each group of eight
hexadecimal digits with a comma. For example:
IRQBALANCE_BANNED_CPUS=00000001,0000ff00

Table 14.2. Examples

CPUs Bitmask

0 00000001

8 - 15 0000ff00

8 - 15, 33 00000002,0000ff00

NOTE

In RHEL 7.2 and higher, the irqbalance utility automatically avoids IRQs on CPU cores
isolated via the isolcpus kernel parameter if IRQBALANCE_BANNED_CPUS is not set
in /etc/sysconfig/irqbalance.

14.4. MANUALLY ASSIGNING CPU AFFINITY TO INDIVIDUAL IRQS

Assigning CPU affinity enables binding and unbinding processes and threads to a specified CPU or
range of CPUs. This can reduce caching problems.

Procedure

1. Check the IRQs in use by each device by viewing the /proc/interrupts file.

cat /proc/interrupts

Each line shows the IRQ number, the number of interrupts that happened in each CPU, followed
by the IRQ type and a description.

 CPU0 CPU1
0: 26575949 11 IO-APIC-edge timer
1: 14 7 IO-APIC-edge i8042

2. Write the CPU mask to the smp_affinity entry of a specific IRQ. The CPU mask must be
expressed as a hexadecimal number.
For example, the following command instructs IRQ number 142 to run only on CPU 0.

echo 1 > /proc/irq/142/smp_affinity

The change only takes effect when an interrupt occurs.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

50

Verification steps

1. Perform an activity that will trigger the specified interrupt.

2. Check /proc/interrupts for changes.
The number of interrupts on the specified CPU for the configured IRQ increased, and the
number of interrupts for the configured IRQ on CPUs outside the specified affinity did not
increase.

14.5. BINDING PROCESSES TO CPUS WITH THE TASKSET UTILITY

The taskset utility uses the process ID (PID) of a task to view or set its CPU affinity. You can use the
utility to run a command with a chosen CPU affinity.

To set the affinity, you need to get the CPU mask to be as a decimal or hexadecimal number. The mask
argument is a bitmask that specifies which CPU cores are legal for the command or PID being modified.

IMPORTANT

The taskset utility works on a NUMA (Non-Uniform Memory Access) system, but it does
not allow the user to bind threads to CPUs and the closest NUMA memory node. On such
systems, taskset is not the preferred tool, and the numactl utility should be used instead
for its advanced capabilities.

For more information, see the numactl(8) man page.

Procedure

Run taskset with the necessary options and arguments.

You can specify a CPU list using the -c parameter instead of a CPU mask. In this example,
my_embedded_process is being instructed to run only on CPUs 0,4,7-11.

taskset -c 0,4,7-11 /usr/local/bin/my_embedded_process

This invocation is more convenient in most cases.

To set the affinity of a process that is not currently running, use taskset and specify the
CPU mask and the process.
In this example, my_embedded_process is being instructed to use only CPU 3 (using the
decimal version of the CPU mask).

taskset 8 /usr/local/bin/my_embedded_process

You can specify more than one CPU in the bitmask. In this example,
my_embedded_process is being instructed to execute on processors 4, 5, 6, and 7 (using
the hexadecimal version of the CPU mask).

taskset 0xF0 /usr/local/bin/my_embedded_process

You can set the CPU affinity for processes that are already running by using the -p (--pid)
option with the CPU mask and the PID of the process you want to change. In this example,
the process with a PID of 7013 is being instructed to run only on CPU 0.

CHAPTER 14. MINIMIZING SYSTEM LATENCY BY ISOLATING INTERRUPTS AND USER PROCESSES

51

taskset -p 1 7013

NOTE

You can combine the listed options.

Additional resources

taskset(1) man page

numactl(8) man page

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

52

CHAPTER 15. MANAGING OUT OF MEMORY STATES
Out-of-memory (OOM) is a computing state where all available memory, including swap space, has been
allocated. Normally this causes the system to panic and stop functioning as expected. The provided
instructions help in avoiding OOM states on your system.

Prerequisites

You have root permissions on the system.

15.1. CHANGING THE OUT OF MEMORY VALUE

The /proc/sys/vm/panic_on_oom file contains a value which is the switch that controls Out of Memory
(OOM) behavior. When the file contains 1, the kernel panics on OOM and stops functioning as
expected.

The default value is 0, which instructs the kernel to call the oom_killer() function when the system is in
an OOM state. Usually, oom_killer() terminates unnecessary processes, which allows the system to
survive.

You can change the value of /proc/sys/vm/panic_on_oom.

Procedure

1. Display the current value of /proc/sys/vm/panic_on_oom.

cat /proc/sys/vm/panic_on_oom
0

To change the value in /proc/sys/vm/panic_on_oom:

2. Echo the new value to /proc/sys/vm/panic_on_oom.

echo 1 > /proc/sys/vm/panic_on_oom

NOTE

It is recommended that you make the Real-Time kernel panic on OOM (1). Otherwise,
when the system encounters an OOM state, it is no longer deterministic.

Verification steps

1. Display the value of /proc/sys/vm/panic_on_oom.

cat /proc/sys/vm/panic_on_oom
1

2. Verify that the displayed value matches the value specified.

15.2. PRIORITIZING PROCESSES TO KILL WHEN IN AN OUT OF
MEMORY STATE

You can prioritize the processes that get terminated by the oom_killer() function. This can ensure that

CHAPTER 15. MANAGING OUT OF MEMORY STATES

53

You can prioritize the processes that get terminated by the oom_killer() function. This can ensure that
high-priority processes keep running during an OOM state. Each process has a directory, /proc/PID.
Each directory includes the following files:

oom_adj - Valid scores for oom_adj are in the range -16 to +15. This value is used to calculate
the performance footprint of the process, using an algorithm that also takes into account how
long the process has been running, among other factors.

oom_score - Contains the result of the algorithm calculated using the value in oom_adj.

In an Out of Memory state, the oom_killer() function terminates processes with the highest
oom_score.

You can prioritize the processes to terminate by editing the oom_adj file for the process.

Prerequisites

Know the process ID (PID) of the process you want to prioritize.

Procedure

1. Display the current oom_score for a process.

cat /proc/12465/oom_score
79872

2. Display the contents of oom_adj for the process.

cat /proc/12465/oom_adj
13

3. Edit the value in oom_adj.

echo -5 > /proc/12465/oom_adj

Verification steps

1. Display the current oom_score for the process.

cat /proc/12465/oom_score
78

2. Verify that the displayed value is lower than the previous value.

15.3. DISABLING THE OUT OF MEMORY KILLER FOR A PROCESS

You can disable the oom_killer() function for a process by setting oom_adj to the reserved value of -17.
This will keep the process alive, even in an OOM state.

Procedure

Set the value in oom_adj to -17.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

54

echo -17 > /proc/12465/oom_adj

Verification steps

1. Display the current oom_score for the process.

cat /proc/12465/oom_score
0

2. Verify that the displayed value is 0.

CHAPTER 15. MANAGING OUT OF MEMORY STATES

55

CHAPTER 16. IMPROVING LATENCY USING THE TUNA CLI
You can use the tuna CLI to improve latency on your system. The options used with the tuna command
determine the method invoked to improve latency. By using the tuna CLI, you perform the following
functions:

Modify the scheduler tunables

Tune a IRQ handlers and thread priorities

Isolate CPU cores and sockets

Reduce the complexity to tune tasks

16.1. PREREQUISITES

The tuna and the python-linux-procfs packages are installed.

You have root permissions on the system.

16.2. THE TUNA CLI

The tuna command-line interface (CLI) is a tool to help you make tuning changes to your system.

The tuna tool is designed to be used on a running system, and changes take place immediately. This
allows any application-specific measurement tools to see and analyze system performance immediately
after changes have been made.

The tuna CLI has both action options and modifier options. Modifier options must be specified on the
command-line before the actions they are intended to modify. All modifier options apply to the actions
that follow until the modifier options are overridden.

16.3. ISOLATING CPUS USING THE TUNA CLI

You can use the tuna CLI to isolate interrupts (IRQs) from user processes on different dedicated CPUs
to minimize latency in real-time environments. For more information about isolating CPUs, see Interrupt
and process binding.

Prerequisites

The tuna and the python-linux-procfs packages are installed.

You have root permissions on the system.

Procedure

Isolate one or more CPUs.

tuna --cpus=<cpu_list> --isolate

cpu_list is a comma-separated list or a range of CPUs to isolate.

For example:

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

56

tuna --cpus=0,1 --isolate

16.4. MOVING INTERRUPTS TO SPECIFIED CPUS USING THE TUNA CLI

You can use the tuna CLI to move interrupts (IRQs) to dedicated CPUs to minimize or eliminate latency
in real-time environments. For more information about moving IRQs, see Interrupt and process binding.

Prerequisites

The tuna and python-linux-procfs packages are installed.

You have root permissions on the system.

Procedure

1. List the CPUs to which a list of IRQs is attached.

tuna --irqs=<irq_list> --show_irqs

irq_list is a comma-separated list of the IRQs for which you want to list attached CPUs.

For example:

tuna --irqs=128 --show_irqs
 # users affinity
 128 iwlwifi 0,1,2,3

2. Attach a list of IRQs to a list of CPUs.

tuna --irqs=irq_list --cpus=<cpu_list> --move

irq_list is a comma-separated list of the IRQs you want to attach and cpu_list is a comma-
separated list of the CPUs to which they will be attached or a range of CPUs.

For example:

tuna --irqs=128 --cpus=3 --move

Verification

Compare the state of the selected IRQs before and after moving any IRQ to a specified CPU.

tuna --irqs=128 --show_irqs
 # users affinity
 128 iwlwifi 3

16.5. CHANGING PROCESS SCHEDULING POLICIES AND PRIORITIES
USING THE TUNA CLI

You can use the tuna CLI to change process scheduling policy and priority.

Prerequisites

CHAPTER 16. IMPROVING LATENCY USING THE TUNA CLI

57

Prerequisites

The tuna and python-linux-procfs packages are installed.

You have root permissions on the system.

NOTE

Assigning the OTHER and BATCH scheduling policies does not require root
permissions.

Procedure

1. View the information for a thread.

tuna --threads=<thread_list> --show_threads

thread_list is a comma-separated list of the processes you want to display.

For example:

tuna --threads=rngd --show_threads
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3571 OTHER 0 0,1,2,3 167697 134 rngd

2. Modify the process scheduling policy and the priority of the thread.

tuna --threads=<thread_list> --priority scheduling_policy:priority_number

thread_list is a comma-separated list of the processes whose scheduling policy and priority
you want to display.

scheduling_policy is one of the following:

OTHER

BATCH

FIFO - First In First Out

RR - Round Robin

priority_number is a priority number from 0 to 99, where 0 is no priority and 99 is the
highest priority.

NOTE

The OTHER and BATCH scheduling policies do not require specifying a
priority. In addition, the only valid priority (if specified) is 0. The FIFO and RR
scheduling policies require a priority of 1 or more.

For example:

tuna --threads=rngd --priority FIFO:1

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

58

Verification

View the information for the thread to ensure that the information changes.

tuna --threads=rngd --show_threads
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 3571 FIFO 1 0,1,2,3 167697 134 rngd

CHAPTER 16. IMPROVING LATENCY USING THE TUNA CLI

59

CHAPTER 17. SETTING SCHEDULER PRIORITIES
Red Hat Enterprise Linux for Real Time kernel allows fine-grained control of scheduler priorities. It also
allows application-level programs to be scheduled at a higher priority than kernel threads.

WARNING

Setting scheduler priorities can carry consequences and may cause the system to
become unresponsive or behave unpredictably if crucial kernel processes are
prevented from running as needed. Ultimately, the correct settings are workload-
dependent.

17.1. VIEWING THREAD SCHEDULING PRIORITIES

Thread priorities are set using a series of levels, ranging from 0 (lowest priority) to 99 (highest priority).
The systemd service manager can be used to change the default priorities of threads after the kernel
boots.

Procedure

To view scheduling priorities of running threads, use the tuna utility:

tuna --show_threads
 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
 2 OTHER 0 0xfff 451 3 kthreadd
 3 FIFO 1 0 46395 2 ksoftirqd/0
 5 OTHER 0 0 11 1 kworker/0:0H
 7 FIFO 99 0 9 1 posixcputmr/0
 ...[output truncated]...

17.2. CHANGING THE PRIORITY OF SERVICES DURING BOOTING

Using systemd, you can set up real-time priority for services launched during the boot process.

Unit configuration directives are used to change the priority of a service during boot process. The boot
process priority change is done by using the following directives in the service section of
/etc/systemd/system/service.service.d/priority.conf:

CPUSchedulingPolicy=

Sets the CPU scheduling policy for executed processes. Takes one of the scheduling classes available on
Linux:

other

batch

idle

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

60

fifo

rr

CPUSchedulingPriority=

Sets the CPU scheduling priority for an executed processes. The available priority range depends on the
selected CPU scheduling policy. For real-time scheduling policies, an integer between 1 (lowest priority)
and 99 (highest priority) can be used.

Prerequisites

You have administrator privileges.

A service that runs on boot.

Procedure

For an existing service:

1. Create a supplementary service configuration directory file for the service.

cat <<-EOF > /etc/systemd/system/mcelog.service.d/priority.conf

2. Add the scheduling policy and priority to the file in the [Service] section.
For example:

[Service]
CPUSchedulingPolicy=fifo
CPUSchedulingPriority=20
EOF

3. Reload the systemd scripts configuration.

systemctl daemon-reload

4. Restart the service.

systemctl restart mcelog

Verification

Display the service’s priority.

$ tuna -t mcelog -P

The output shows the configured priority of the service.

For example:

 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
826 FIFO 20 0,1,2,3 13 0 mcelog

CHAPTER 17. SETTING SCHEDULER PRIORITIES

61

Additional resources

Working with systemd unit files.

17.3. CONFIGURING THE CPU USAGE OF A SERVICE

Using systemd, you can specify the CPUs on which services can run.

Prerequisites

You have administrator privileges.

Procedure

1. Create a supplementary service configuration directory file for the service.

md sscd

2. Add the CPUs to use for the service to the file using the CPUAffinity attribute in the [Service]
section.
For example:

[Service]
CPUAffinity=0,1
EOF

3. Reload the systemd scripts configuration.

systemctl daemon-reload

4. Restart the service.

systemctl restart service

Verification

Display the CPUs to which the specified service is limited.

$ tuna -t mcelog -P

where service is the specified service.

The following output shows that the mcelog service is limited to CPUs 0 and 1.

 thread ctxt_switches
 pid SCHED_ rtpri affinity voluntary nonvoluntary cmd
12954 FIFO 20 0,1 2 1 mcelog

17.4. PRIORITY MAP

Scheduler priorities are defined in groups, with some groups dedicated to particular kernel functions.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

62

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#working-with-systemd-unit-files_configuring-basic-system-settings

Table 17.1. Thread priority table

Priority Threads Description

1 Low priority kernel threads This priority is usually reserved for the tasks that need to be
just above SCHED_OTHER.

2 - 49 Available for use The range used for typical application priorities.

50 Default hard-IRQ value This priority is the default value for hardware-based
interrupts.

51 - 98 High priority threads Use this range for threads that execute periodically and must
have quick response times. Do not use this range for CPU-
bound threads, because it will prevent responses to lower
level interrupts.

99 Watchdogs and migration System threads that must run at the highest priority.

17.5. ADDITIONAL RESOURCES

Working with systemd unit files

CHAPTER 17. SETTING SCHEDULER PRIORITIES

63

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#working-with-systemd-unit-files_configuring-basic-system-settings

CHAPTER 18. NETWORK DETERMINISM TIPS
TCP can have a large effect on latency. TCP adds latency in order to obtain efficiency, control
congestion, and to ensure reliable delivery. When tuning, consider the following points:

Do you need ordered delivery?

Do you need to guard against packet loss?
Transmitting packets more than once can cause delays.

Do you need to use TCP?
Consider disabling the Nagle buffering algorithm by using TCP_NODELAY on your socket. The
Nagle algorithm collects small outgoing packets to send all at once, and can have a detrimental
effect on latency.

18.1. OPTIMIZING RHEL FOR LATENCY OR THROUGHPUT-SENSITIVE
SERVICES

The goal of coalesce tuning is to minimize the number of interrupts required for a given workload. In
high-throughput situations, the goal is to have as few interrupts as possible while maintaining a high data
rate. In low-latency situations, more interrupts can be used to handle traffic quickly.

You can adjust the settings on your network card to increase or decrease the number of packets that
are combined into a single interrupt. As a result, you can achieve improved throughput or latency for
your traffic.

Procedure

1. Identify the network interface that is experiencing the bottleneck:

ethtool -S enp1s0
NIC statistics:
 rx_packets: 1234
 tx_packets: 5678
 rx_bytes: 12345678
 tx_bytes: 87654321
 rx_errors: 0
 tx_errors: 0
 rx_missed: 0
 tx_dropped: 0
 coalesced_pkts: 0
 coalesced_events: 0
 coalesced_aborts: 0

Identify the packet counters containing "drop", "discard", or "error" in their name. These
particular statistics measure the actual packet loss at the network interface card (NIC) packet
buffer, which can be caused by NIC coalescence.

2. Monitor values of packet counters you identified in the previous step.
Compare them to the expected values for your network to determine whether any particular
interface experiences a bottleneck. Some common signs of a network bottleneck include, but
are not limited to:

Many errors on a network interface

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

64

High packet loss

Heavy usage of the network interface

NOTE

Other important factors are for example CPU usage, memory usage, and disk
I/O when identifying a network bottleneck.

3. View the current coalescence settings:

ethtool enp1s0
Settings for enp1s0:
 Supported ports: [TP]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Supported pause frame use: No
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 1000baseT/Full
 Advertised pause frame use: No
 Advertised auto-negotiation: Yes
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 0
 Transceiver: internal
 Auto-negotiation: on
 MDI-X: Unknown
 Supports Wake-on: g
 Wake-on: g
 Current message level: 0x00000033 (51)
 drv probe link
 Link detected: yes

In this output, monitor the Speed and Duplex fields. These fields display information about the
network interface operation and whether it is running at its expected values.

4. Check the current interrupt coalescence settings:

ethtool -c enp1s0
Coalesce parameters for enp1s0:
 Adaptive RX: off
 Adaptive TX: off
 RX usecs: 100
 RX frames: 8
 RX usecs irq: 100
 RX frames irq: 8
 TX usecs: 100
 TX frames: 8
 TX usecs irq: 100
 TX frames irq: 8

CHAPTER 18. NETWORK DETERMINISM TIPS

65

The usecs values refer to the number of microseconds that the receiver or transmitter
waits before generating an interrupt.

The frames values refer to the number of frames that the receiver or transmitter waits
before generating an interrupt.

The irq values are used to configure the interrupt moderation when the network interface is
already handling an interrupt.

NOTE

Not all network interface cards support reporting and changing all values
from the example output.

The Adaptive RX/TX value represents the adaptive interrupt coalescence mechanism,
which adjusts the interrupt coalescence settings dynamically. Based on the packet
conditions, the NIC driver auto-calculates coalesce values when Adaptive RX/TX are
enabled (the algorithm differs for every NIC driver).

5. Modify the coalescence settings as needed. For example:

While ethtool.coalesce-adaptive-rx is disabled, configure ethtool.coalesce-rx-usecs to
set the delay before generating an interrupt to 100 microseconds for the RX packets:

nmcli connection modify enp1s0 ethtool.coalesce-rx-usecs 100

Enable ethtool.coalesce-adaptive-rx while ethtool.coalesce-rx-usecs is set to its default
value:

nmcli connection modify enp1s0 ethtool.coalesce-adaptive-rx on

Red Hat recommends that modifying the Adaptive-RX setting as follows:

Users concerned with low latency (sub-50us) should not enable Adaptive-RX.

Users concerned with throughput can probably enable Adaptive-RX with no harm. If
they do not want to use the adaptive interrupt coalescence mechanism, they can try
setting large values like 100us, or 250us to ethtool.coalesce-rx-usecs.

Users unsure about their needs should not modify this setting until an issue occurs.

6. Re-activate the connection:

nmcli connection up enp1s0

Verification steps

Monitor the network performance and check for dropped packets:

ethtool -S enp1s0
NIC statistics:
 rx_packets: 1234
 tx_packets: 5678
 rx_bytes: 12345678

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

66

 tx_bytes: 87654321
 rx_errors: 0
 tx_errors: 0
 rx_missed: 0
 tx_dropped: 0
 coalesced_pkts: 12
 coalesced_events: 34
 coalesced_aborts: 56
...

The value of the rx_errors, rx_dropped, tx_errors, and tx_dropped fields should be 0 or close
to it (up to few hundreds, depending on the network traffic and system resources). A high value
in these fields indicates a network problem. Your counters can have different names. Closely
monitor packet counters containing "drop", "discard", or "error" in their name.

The value of the rx_packets, tx_packets, rx_bytes, and tx_bytes should increase over time. If
the values do not increase, there might be a network problem. The packet counters can have
different names, depending on your NIC driver.

IMPORTANT

The ethtool command output can vary depending on the NIC and driver in use.

Users with focus on extremely low latency can use application-level metrics or the kernel packet
time-stamping API for their monitoring purposes.

Additional resources

Initial investigation for any performance issue

What are the kernel parameters available for network tuning?

How to make NIC ethtool settings persistent (apply automatically at boot)

Timestamping

18.2. FLOW CONTROL FOR ETHERNET NETWORKS

On an Ethernet link, continuous data transmission between a network interface and a switch port can
lead to full buffer capacity. Full buffer capacity results in network congestion. In this case, when the
sender transmits data at a higher rate than the processing capacity of the receiver, packet loss can
occur due to the lower data processing capacity of a network interface on the other end of the link
which is a switch port.

The flow control mechanism manages data transmission across the Ethernet link where each sender and
receiver has different sending and receiving capacities. To avoid packet loss, the Ethernet flow control
mechanism temporarily suspends the packet transmission to manage a higher transmission rate from a
switch port. Note that routers do not forward pause frames beyond a switch port.

When receive (RX) buffers become full, a receiver sends pause frames to the transmitter. The
transmitter then stops data transmission for a short sub-second time frame, while continuing to buffer
incoming data during this pause period. This duration provides enough time for the receiver to empty its
interface buffers and prevent buffer overflow.

NOTE

CHAPTER 18. NETWORK DETERMINISM TIPS

67

https://access.redhat.com/articles/1162133
https://access.redhat.com/solutions/108513
https://access.redhat.com/solutions/2127401
https://www.kernel.org/doc/html/latest/networking/timestamping.html

NOTE

Either end of the Ethernet link can send pause frames to another end. If the receive
buffers of a network interface are full, the network interface will send pause frames to the
switch port. Similarly, when the receive buffers of a switch port are full, the switch port
sends pause frames to the network interface.

By default, most of the network drivers in Red Hat Enterprise Linux have pause frame support enabled.
To display the current settings of a network interface, enter:

ethtool --show-pause enp1s0
Pause parameters for enp1s0:
...
RX: on
TX: on
...

Verify with your switch vendor to confirm if your switch supports pause frames.

Additional resources

ethtool(8) man page

What is network link flow control and how does it work in Red Hat Enterprise Linux?

18.3. ADDITIONAL RESOURCES

ethtool(8) man page

netstat(8) man page

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

68

https://access.redhat.com/solutions/68817

CHAPTER 19. TRACING LATENCIES WITH TRACE-CMD
The trace-cmd utility is a front end to the ftrace utility. By using trace-cmd, you can enable ftrace
actions, without the need to write to the /sys/kernel/debug/tracing/ directory. trace-cmd does not add
any overhead on its installation.

Prerequisites

You have administrator privileges.

19.1. INSTALLING TRACE-CMD

The trace-cmd utility provides a front-end to the ftrace utility.

Prerequisites

You have administrator privileges.

Procedure

Install the trace-cmd utility.

yum install trace-cmd

19.2. RUNNING TRACE-CMD

You can use the trace-cmd utility to access all ftrace functionalities.

Prerequisites

You have administrator privileges.

Procedure

Enter trace-cmd command
where command is an ftrace option.

NOTE

See the trace-cmd(1) man page for a complete list of commands and options.
Most of the individual commands also have their own man pages, trace-
cmd-command.

19.3. TRACE-CMD EXAMPLES

The command examples show how to trace kernel functions by using the trace-cmd utility.

Examples

Enable and start recording functions executing within the kernel while myapp runs.

trace-cmd record -p function myapp

CHAPTER 19. TRACING LATENCIES WITH TRACE-CMD

69

This records functions from all CPUs and all tasks, even those not related to myapp.

Display the result.

trace-cmd report

Record only functions that start with sched while myapp runs.

trace-cmd record -p function -l 'sched*' myapp

Enable all the IRQ events.

trace-cmd start -e irq

Start the wakeup_rt tracer.

trace-cmd start -p wakeup_rt

Start the preemptirqsoff tracer, while disabling function tracing.

trace-cmd start -p preemptirqsoff -d

NOTE

The version of trace-cmd in RHEL 8 turns off ftrace_enabled instead of using
the function-trace option. You can enable ftrace again with trace-cmd start -p
function.

Restore the state in which the system was before trace-cmd started modifying it.

trace-cmd start -p nop

This is important if you want to use the debugfs file system after using trace-cmd, whether or
not the system was restarted in the meantime.

Trace a single trace point.

trace-cmd record -e sched_wakeup ls /bin

Stop tracing.

trace-cmd record stop

19.4. ADDITIONAL RESOURCES

trace-cmd(1) man page

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

70

CHAPTER 20. ISOLATING CPUS USING TUNED-PROFILES-
REAL-TIME

To give application threads the most execution time possible, you can isolate CPUs. Therefore, remove
as many extraneous tasks from a CPU as possible. Isolating CPUs generally involves:

Removing all user-space threads.

Removing any unbound kernel threads. Kernel related bound threads are linked to a specific
CPU and cannot not be moved).

Removing interrupts by modifying the /proc/irq/N/smp_affinity property of each Interrupt
Request (IRQ) number N in the system.

By using the isolated_cores=cpulist configuration option of the tuned-profiles-realtime package, you
can automate operations to isolate a CPU.

Prerequisites

You have administrator privileges.

20.1. CHOOSING CPUS TO ISOLATE

Choosing the CPUs to isolate requires careful consideration of the CPU topology of the system.
Different use cases require different configuration:

If you have a multi-threaded application where threads need to communicate with one another
by sharing cache, they need to be kept on the same NUMA node or physical socket.

If you run multiple unrelated real-time applications, separating the CPUs by NUMA node or
socket can be suitable.

The hwloc package provides utilities that are useful for getting information about CPUs, including
lstopo-no-graphics and numactl.

Prerequisites

The hwloc package are installed.

Procedure

1. View the layout of available CPUs in physical packages:

lstopo-no-graphics --no-io --no-legend --of txt

Figure 20.1. Showing the layout of CPUs using lstopo-no-graphics

CHAPTER 20. ISOLATING CPUS USING TUNED-PROFILES-REAL-TIME

71

Figure 20.1. Showing the layout of CPUs using lstopo-no-graphics

This command is useful for multi-threaded applications, because it shows how many cores and
sockets are available and the logical distance of the NUMA nodes.

Additionally, the hwloc-gui package provides the lstopo utility, which produces graphical
output.

2. View more information about the CPUs, such as the distance between nodes:

numactl --hardware
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3
node 0 size: 16159 MB
node 0 free: 6323 MB
node 1 cpus: 4 5 6 7
node 1 size: 16384 MB
node 1 free: 10289 MB
node distances:
node 0 1
 0: 10 21
 1: 21 10

Additional resources

the hwloc(7) man page

20.2. ISOLATING CPUS USING TUNED’S ISOLATED_CORES OPTION

The initial mechanism for isolating CPUs is specifying the boot parameter isolcpus=cpulist on the
kernel boot command line. The recommended way to do this for RHEL for Real Time is to use the TuneD
daemon and its tuned-profiles-realtime package.

NOTE

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

72

NOTE

In tuned-profiles-realtime version 2.19 and later, the built-in function
calc_isolated_cores applies the initial CPU setup automatically. The
/etc/tuned/realtime-variables.conf configuration file includes the default variable
content as isolated_cores=${f:calc_isolated_cores:2}.

By default, calc_isolated_cores reserves one core per socket for housekeeping and
isolates the rest. If you must change the default configuration, comment out the
isolated_cores=${f:calc_isolated_cores:2} line in /etc/tuned/realtime-variables.conf
configuration file and follow the procedure steps for Isolating CPUs using TuneD’s
isolated_cores option.

Prerequisites

The TuneD and tuned-profiles-realtime packages are installed.

You have root permissions on the system.

Procedure

1. As a root user, open /etc/tuned/realtime-variables.conf in a text editor.

2. Set isolated_cores=cpulist to specify the CPUs that you want to isolate. You can use CPU
numbers and ranges.

Examples:

isolated_cores=0-3,5,7

This isolates cores 0, 1, 2, 3, 5, and 7.

In a two socket system with 8 cores, where NUMA node 0 has cores 0-3 and NUMA node 1 has
cores 4-8, to allocate two cores for a multi-threaded application, specify:

isolated_cores=4,5

This prevents any user-space threads from being assigned to CPUs 4 and 5.

To pick CPUs from different NUMA nodes for unrelated applications, specify:

isolated_cores=0,4

This prevents any user-space threads from being assigned to CPUs 0 and 4.

3. Activate the real-time TuneD profile using the tuned-adm utility.

tuned-adm profile realtime

4. Reboot the machine for changes to take effect.

Verification

Search for the isolcpus parameter in the kernel command line:

CHAPTER 20. ISOLATING CPUS USING TUNED-PROFILES-REAL-TIME

73

$ cat /proc/cmdline | grep isolcpus
BOOT_IMAGE=/vmlinuz-4.18.0-305.rt7.72.el8.x86_64 root=/dev/mapper/rhel_foo-root ro
crashkernel=auto rd.lvm.lv=rhel_foo/root rd.lvm.lv=rhel_foo/swap console=ttyS0,115200n81
isolcpus=0,4

20.3. ISOLATING CPUS USING THE NOHZ AND NOHZ_FULL
PARAMETERS

The nohz and nohz_full parameters modify activity on specified CPUs. To enable these kernel boot
parameters, you need to use one of the following TuneD profiles: realtime-virtual-host, realtime-
virtual-guest, or cpu-partitioning.

nohz=on

Reduces timer activity on a particular set of CPUs.
The nohz parameter is mainly used to reduce timer interrupts on idle CPUs. This helps battery life by
allowing idle CPUs to run in reduced power mode. While not being directly useful for real-time
response time, the nohz parameter does not directly impact real-time response time negatively. But
the nohz parameter is required to activate the nohz_full parameter that does have positive
implications for real-time performance.

nohz_full=cpulist

The nohz_full parameter treats the timer ticks of a list of specified CPUs differently. If a CPU is
specified as a nohz_full CPU and there is only one runnable task on the CPU, then the kernel stops
sending timer ticks to that CPU. As a result, more time may be spent running the application and less
time spent servicing interrupts and context switching.

Additional resources

Configuring Kernel Tick Time

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

74

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-cpu-configuration_suggestions#sect-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Configuration_suggestions-Configuring_kernel_tick_time

CHAPTER 21. LIMITING SCHED_OTHER TASK MIGRATION
You can limit the tasks that SCHED_OTHER migrates to other CPUs using the sched_nr_migrate
variable.

Prerequisites

You have administrator privileges.

21.1. TASK MIGRATION

If a SCHED_OTHER task spawns a large number of other tasks, they will all run on the same CPU. The
migration task or softirq will try to balance these tasks so they can run on idle CPUs.

The sched_nr_migrate option can be adjusted to specify the number of tasks that will move at a time.
Because real-time tasks have a different way to migrate, they are not directly affected by this. However,
when softirq moves the tasks, it locks the run queue spinlock, thus disabling interrupts.

If there are a large number of tasks that need to be moved, it occurs while interrupts are disabled, so no
timer events or wakeups will be allowed to happen simultaneously. This can cause severe latencies for
real-time tasks when sched_nr_migrate is set to a large value.

21.2. LIMITING SCHED_OTHER TASK MIGRATION USING THE
SCHED_NR_MIGRATE VARIABLE

Increasing the sched_nr_migrate variable provides high performance from SCHED_OTHER threads
that spawn many tasks at the expense of real-time latency.

For low real-time task latency at the expense of SCHED_OTHER task performance, the value must be
lowered. The default value is 8.

Procedure

To adjust the value of the sched_nr_migrate variable, echo the value directly to
/proc/sys/kernel/sched_nr_migrate:

echo 2 > /proc/sys/kernel/sched_nr_migrate

Verification

View the contents of /proc/sys/kernel/sched_nr_migrate:

cat > /proc/sys/kernel/sched_nr_migrate
2

CHAPTER 21. LIMITING SCHED_OTHER TASK MIGRATION

75

CHAPTER 22. REDUCING TCP PERFORMANCE SPIKES
Generating TCP timestamps can result in TCP performance spikes. The sysctl command controls the
values of TCP related entries, setting the timestamps kernel parameter found at
/proc/sys/net/ipv4/tcp_timestamps.

Prerequisites

You have administrator privileges.

22.1. TURNING OFF TCP TIMESTAMPS

Turning off TCP timestamps can reduce TCP performance spikes.

Procedure

Turn off TCP timestamps:

sysctl -w net.ipv4.tcp_timestamps=0
net.ipv4.tcp_timestamps = 0

The output shows that the value of net.ip4.tcp_timestamps options is 0. That is, TCP
timestamps are disabled.

22.2. TURNING ON TCP TIMESTAMPS

Generating timestamps can cause TCP performance spikes. You can reduce TCP performance spikes
by disabling TCP timestamps. If you find that generating TCP timestamps is not causing TCP
performance spikes, you can enable them.

Procedure

Enable TCP timestamps.

sysctl -w net.ipv4.tcp_timestamps=1
net.ipv4.tcp_timestamps = 1

The output shows that the value of net.ip4.tcp_timestamps is 1. That is, TCP timestamps are
enabled.

22.3. DISPLAYING THE TCP TIMESTAMP STATUS

You can view the status of TCP timestamp generation.

Procedure

Display the TCP timestamp generation status:

sysctl net.ipv4.tcp_timestamps
net.ipv4.tcp_timestamps = 0

The value 1 indicates that timestamps are being generated. The value 0 indicates timestamps

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

76

The value 1 indicates that timestamps are being generated. The value 0 indicates timestamps
are being not generated.

CHAPTER 22. REDUCING TCP PERFORMANCE SPIKES

77

CHAPTER 23. IMPROVING CPU PERFORMANCE BY USING
RCU CALLBACKS

The Read-Copy-Update (RCU) system is a lockless mechanism for mutual exclusion of threads inside
the kernel. As a consequence of performing RCU operations, call-backs are sometimes queued on CPUs
to be performed at a future moment when removing memory is safe.

To improve CPU performance using RCU callbacks:

You can remove CPUs from being candidates for running CPU callbacks.

You can assign a CPU to handle all RCU callbacks. This CPU is called the housekeeping CPU.

You can relieve CPUs from the responsibility of awakening RCU offload threads.

This combination reduces the interference on CPUs that are dedicated for the user’s workload.

Prerequisites

You have administrator privileges.

The tuna package is installed

23.1. OFFLOADING RCU CALLBACKS

You can offload RCU callbacks using the rcu_nocbs and rcu_nocb_poll kernel parameters.

Procedure

To remove one or more CPUs from the candidates for running RCU callbacks, specify the list of
CPUs in the rcu_nocbs kernel parameter, for example:

rcu_nocbs=1,4-6

or

rcu_nocbs=3

The second example instructs the kernel that CPU 3 is a no-callback CPU. This means that RCU
callbacks will not be done in the rcuc/$CPU thread pinned to CPU 3, but in the rcuo/$CPU
thread. You can move this trhead to a housekeeping CPU to relieve CPU 3 from being assigned
RCU callback jobs.

23.2. MOVING RCU CALLBACKS

You can assign a housekeeping CPU to handle all RCU callback threads. To do this, use the tuna
command and move all RCU callbacks to the housekeeping CPU.

Procedure

Move RCU callback threads to the housekeeping CPU:

tuna --threads=rcu --cpus=x --move

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

78

where x is the CPU number of the housekeeping CPU.

This action relieves all CPUs other than CPU X from handling RCU callback threads.

23.3. RELIEVING CPUS FROM AWAKENING RCU OFFLOAD THREADS

Although the RCU offload threads can perform the RCU callbacks on another CPU, each CPU is
responsible for awakening the corresponding RCU offload thread. You can relieve a CPU from this
responsibility,

Procedure

Set the rcu_nocb_poll kernel parameter.
This command causes a timer to periodically raise the RCU offload threads to check if there are
callbacks to run.

23.4. ADDITIONAL RESOURCES

Avoiding RCU Stalls in the real-time kernel

CHAPTER 23. IMPROVING CPU PERFORMANCE BY USING RCU CALLBACKS

79

https://access.redhat.com/solutions/2260151

CHAPTER 24. TRACING LATENCIES USING FTRACE
The ftrace utility is one of the diagnostic facilities provided with the RHEL for Real Time kernel. ftrace
can be used by developers to analyze and debug latency and performance issues that occur outside of
the user-space. The ftrace utility has a variety of options that allow you to use the utility in different
ways. It can be used to trace context switches, measure the time it takes for a high-priority task to wake
up, the length of time interrupts are disabled, or list all the kernel functions executed during a given
period.

Some of the ftrace tracers, such as the function tracer, can produce exceedingly large amounts of data,
which can turn trace log analysis into a time-consuming task. However, you can instruct the tracer to
begin and end only when the application reaches critical code paths.

Prerequisites

You have administrator privileges.

24.1. USING THE FTRACE UTILITY TO TRACE LATENCIES

You can trace latencies using the ftrace utility.

Procedure

1. View the available tracers on the system.

cat /sys/kernel/debug/tracing/available_tracers
function_graph wakeup_rt wakeup preemptirqsoff preemptoff irqsoff function nop

The user interface for ftrace is a series of files within debugfs.

The ftrace files are also located in the /sys/kernel/debug/tracing/ directory.

2. Move to the /sys/kernel/debug/tracing/ directory.

cd /sys/kernel/debug/tracing

The files in this directory can only be modified by the root user, because enabling tracing can
have an impact on the performance of the system.

3. To start a tracing session:

a. Select a tracer you want to use from the list of available tracers in
/sys/kernel/debug/tracing/available_tracers.

b. Insert the name of the selector into the /sys/kernel/debug/tracing/current_tracer.

echo preemptoff > /sys/kernel/debug/tracing/current_tracer

NOTE

If you use a single '>' with the echo command, it will override any existing
value in the file. If you wish to append the value to the file, use '>>' instead.

4. The function-trace option is useful because tracing latencies with wakeup_rt, preemptirqsoff,

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

80

4. The function-trace option is useful because tracing latencies with wakeup_rt, preemptirqsoff,
and so on automatically enables function tracing, which may exaggerate the overhead.
Check if function and function_graph tracing are enabled:

cat /sys/kernel/debug/tracing/options/function-trace
1

A value of 1 indicates that function and function_graph tracing are enabled.

A value of 0 indicates that function and function_graph tracing are disabled.

5. By default, function and function_graph tracing are enabled. To turn function and
function_graph tracing on or off, echo the appropriate value to the
/sys/kernel/debug/tracing/options/function-trace file.

echo 0 > /sys/kernel/debug/tracing/options/function-trace
echo 1 > /sys/kernel/debug/tracing/options/function-trace

IMPORTANT

When using the echo command, ensure you place a space character in between
the value and the > character. At the shell prompt, using 0>, 1>, and 2> (without a
space character) refers to standard input, standard output, and standard error.
Using them by mistake could result in an unexpected trace output.

6. Adjust the details and parameters of the tracers by changing the values for the various files in
the /debugfs/tracing/ directory.
For example:

The irqsoff, preemptoff, preempirqsoff, and wakeup tracers continuously monitor latencies.
When they record a latency greater than the one recorded in tracing_max_latency the trace of
that latency is recorded, and tracing_max_latency is updated to the new maximum time. In this
way, tracing_max_latency always shows the highest recorded latency since it was last reset.

To reset the maximum latency, echo 0 into the tracing_max_latency file:

echo 0 > /sys/kernel/debug/tracing/tracing_max_latency

To see only latencies greater than a set amount, echo the amount in microseconds:

echo 200 > /sys/kernel/debug/tracing/tracing_max_latency

When the tracing threshold is set, it overrides the maximum latency setting. When a latency
is recorded that is greater than the threshold, it will be recorded regardless of the maximum
latency. When reviewing the trace file, only the last recorded latency is shown.

To set the threshold, echo the number of microseconds above which latencies must be
recorded:

echo 200 > /sys/kernel/debug/tracing/tracing_thresh

7. View the trace logs:

CHAPTER 24. TRACING LATENCIES USING FTRACE

81

cat /sys/kernel/debug/tracing/trace

8. To store the trace logs, copy them to another file:

cat /sys/kernel/debug/tracing/trace > /tmp/lat_trace_log

9. View the functions being traced:

cat /sys/kernel/debug/tracing/set_ftrace_filter

10. Filter the functions being traced by editing the settings in
/sys/kernel/debug/tracing/set_ftrace_filter. If no filters are specified in the file, all functions are
traced.

11. To change filter settings, echo the name of the function to be traced. The filter allows the use
of a '*' wildcard at the beginning or end of a search term.
For examples, see ftrace examples.

24.2. FTRACE FILES

The following are the main files in the /sys/kernel/debug/tracing/ directory.

ftrace files

trace

The file that shows the output of an ftrace trace. This is really a snapshot of the trace in time,
because the trace stops when this file is read, and it does not consume the events read. That is, if the
user disabled tracing and reads this file, it will report the same thing every time it is read.

trace_pipe

The file that shows the output of an ftrace trace as it reads the trace live. It is a producer/consumer
trace. That is, each read will consume the event that is read. This can be used to read an active trace
without stopping the trace as it is read.

available_tracers

A list of ftrace tracers that have been compiled into the kernel.

current_tracer

Enables or disables an ftrace tracer.

events

A directory that contains events to trace and can be used to enable or disable events, as well as set
filters for the events.

tracing_on

Disable and enable recording to the ftrace buffer. Disabling tracing via the tracing_on file does not
disable the actual tracing that is happening inside the kernel. It only disables writing to the buffer.
The work to do the trace still happens, but the data does not go anywhere.

24.3. FTRACE TRACERS

Depending on how the kernel is configured, not all tracers may be available for a given kernel. For the
RHEL for Real Time kernels, the trace and debug kernels have different tracers than the production
kernel does. This is because some of the tracers have a noticeable overhead when the tracer is

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

82

configured into the kernel, but not active. Those tracers are only enabled for the trace and debug
kernels.

Tracers

function

One of the most widely applicable tracers. Traces the function calls within the kernel. This can cause
noticeable overhead depending on the number of functions traced. When not active, it creates little
overhead.

function_graph

The function_graph tracer is designed to present results in a more visually appealing format. This
tracer also traces the exit of the function, displaying a flow of function calls in the kernel.

NOTE

This tracer has more overhead than the function tracer when enabled, but the same
low overhead when disabled.

wakeup

A full CPU tracer that reports the activity happening across all CPUs. It records the time that it takes
to wake up the highest priority task in the system, whether that task is a real time task or not.
Recording the max time it takes to wake up a non-real time task hides the times it takes to wake up a
real time task.

wakeup_rt

A full CPU tracer that reports the activity happening across all CPUs. It records the time that it takes
from the current highest priority task to wake up to until the time it is scheduled. This tracer only
records the time for real time tasks.

preemptirqsoff

Traces the areas that disable preemption or interrupts, and records the maximum amount of time for
which preemption or interrupts were disabled.

preemptoff

Similar to the preemptirqsoff tracer, but traces only the maximum interval for which pre-emption was
disabled.

irqsoff

Similar to the preemptirqsoff tracer, but traces only the maximum interval for which interrupts were
disabled.

nop

The default tracer. It does not provide any tracing facility itself, but as events may interleave into any
tracer, the nop tracer is used for specific interest in tracing events.

24.4. FTRACE EXAMPLES

The following provides a number of examples for changing the filtering of functions being traced. You
can use the * wildcard at both the beginning and end of a word. For example: *irq* will select all
functions that contain irq in the name. The wildcard cannot, however, be used inside a word.

Encasing the search term and the wildcard character in double quotation marks ensures that the shell
will not attempt to expand the search to the present working directory.

Examples of filters

CHAPTER 24. TRACING LATENCIES USING FTRACE

83

Examples of filters

Trace only the schedule function:

echo schedule > /sys/kernel/debug/tracing/set_ftrace_filter

Trace all functions that end with lock:

echo "*lock" > /sys/kernel/debug/tracing/set_ftrace_filter

Trace all functions that start with spin_:

echo "spin_*" > /sys/kernel/debug/tracing/set_ftrace_filter

Trace all functions with cpu in the name:

echo "cpu" > /sys/kernel/debug/tracing/set_ftrace_filter

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

84

CHAPTER 25. APPLICATION TIMESTAMPING
Applications that perform frequent timestamps are affected by the CPU cost of reading the clock. The
high cost and amount of time used to read the clock can have a negative impact on an application’s
performance.

You can reduce the cost of reading the clock by selecting a hardware clock that has a reading
mechanism, faster than that of the default clock.

In RHEL for Real Time, a further performance gain can be acquired by using POSIX clocks with the
clock_gettime() function to produce clock readings with the lowest possible CPU cost.

These benefits are more evident on systems which use hardware clocks with high reading costs.

25.1. POSIX CLOCKS

POSIX is a standard for implementing and representing time sources. You can assign a POSIX clock to
an application without affecting other applications in the system. This is in contrast to hardware clocks
which are selected by the kernel and implemented across the system.

The function used to read a given POSIX clock is clock_gettime(), which is defined at <time.h>. The
kernel counterpart to clock_gettime() is a system call. When a user process calls clock_gettime():

1. The corresponding C library (glibc) calls the sys_clock_gettime() system call.

2. sys_clock_gettime() performs the requested operation.

3. sys_clock_gettime() returns the result to the user program.

However, the context switch from the user application to the kernel has a CPU cost. Even though this
cost is very low, if the operation is repeated thousands of times, the accumulated cost can have an
impact on the overall performance of the application. To avoid context switching to the kernel, thus
making it faster to read the clock, support for the CLOCK_MONOTONIC_COARSE and
CLOCK_REALTIME_COARSE POSIX clocks was added, in the form of a virtual dynamic shared object
(VDSO) library function.

Time readings performed by clock_gettime(), using one of the _COARSE clock variants, do not require
kernel intervention and are executed entirely in user space. This yields a significant performance gain.
Time readings for _COARSE clocks have a millisecond (ms) resolution, meaning that time intervals
smaller than 1 ms are not recorded. The _COARSE variants of the POSIX clocks are suitable for any
application that can accommodate millisecond clock resolution.

NOTE

To compare the cost and resolution of reading POSIX clocks with and without the
_COARSE prefix, see the RHEL for Real Time Reference guide .

25.2. THE _COARSE CLOCK VARIANT IN CLOCK_GETTIME

The example code output shows using the clock_gettime function with the
CLOCK_MONOTONIC_COARSE POSIX clock.

#include <time.h>

main()

CHAPTER 25. APPLICATION TIMESTAMPING

85

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html-single/reference_guide/index#sect-POSIX_clocks

{
 int rc;
 long i;
 struct timespec ts;

 for(i=0; i<10000000; i++) {
 rc = clock_gettime(CLOCK_MONOTONIC_COARSE, &ts);
 }
}

You can improve upon the example above by adding checks to verify the return code of
clock_gettime(), to verify the value of the rc variable, or to ensure the content of the ts structure is to
be trusted.

NOTE

The clock_gettime() man page provides more information about writing more reliable
applications.

IMPORTANT

Programs using the clock_gettime() function must be linked with the rt library by adding
-lrt to the gcc command line.

$ gcc clock_timing.c -o clock_timing -lrt

25.3. ADDITIONAL RESOURCES

clock_gettime() man page

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

86

CHAPTER 26. IMPROVING NETWORK LATENCY USING
TCP_NODELAY

By default, TCP uses Nagle’s algorithm to collect small outgoing packets to send all at once. This can
cause higher rates of latency.

Prerequisites

You have administrator privileges.

26.1. THE EFFECTS OF USING TCP_NODELAY

Applications that require low latency on every packet sent must be run on sockets with the
TCP_NODELAY option enabled. This sends buffer writes to the kernel as soon as an event occurs.

Note

For TCP_NODELAY to be effective, applications must avoid doing small, logically related buffer
writes. Otherwise, these small writes cause TCP to send these multiple buffers as individual packets,
resulting in poor overall performance.

If applications have several buffers that are logically related and must be sent as one packet, apply one
of the following workarounds to avoid poor performance:

Build a contiguous packet in memory and then send the logical packet to TCP on a socket
configured with TCP_NODELAY.

Create an I/O vector and pass it to the kernel using the writev command on a socket configured
with TCP_NODELAY.

Use the TCP_CORK option. TCP_CORK tells TCP to wait for the application to remove the
cork before sending any packets. This command causes the buffers it receives to be appended
to the existing buffers. This allows applications to build a packet in kernel space, which can be
required when using different libraries that provide abstractions for layers.

When a logical packet has been built in the kernel by the various components in the application, the
socket should be uncorked, allowing TCP to send the accumulated logical packet immediately.

26.2. ENABLING TCP_NODELAY

The TCP_NODELAY option sends buffer writes to the kernel when events occur, with no delays. Enable
TCP_NODELAY using the setsockopt() function.

Procedure

1. Add the following lines to the TCP application’s .c file.

int one = 1;
setsockopt(descriptor, SOL_TCP, TCP_NODELAY, &one, sizeof(one));

2. Save the file and exit the editor.

3. Apply one of the following workarounds to prevent poor performance.

Build a contiguous packet in memory and then send the logical packet to TCP on a socket

CHAPTER 26. IMPROVING NETWORK LATENCY USING TCP_NODELAY

87

Build a contiguous packet in memory and then send the logical packet to TCP on a socket
configured with TCP_NODELAY.

Create an I/O vector and pass it to the kernel using writev on a socket configured with
TCP_NODELAY.

26.3. ENABLING TCP_CORK

The TCP_CORK option prevents TCP from sending any packets until the socket is "uncorked".

Procedure

1. Add the following lines to the TCP application’s .c file.

int one = 1;
setsockopt(descriptor, SOL_TCP, TCP_CORK, &one, sizeof(one));

2. Save the file and exit the editor.

3. After the logical packet has been built in the kernel by the various components in the
application, disable TCP_CORK.

int zero = 0;
setsockopt(descriptor, SOL_TCP, TCP_CORK, &zero, sizeof(zero));

TCP sends the accumulated logical packet immediately, without waiting for any further packets
from the application.

26.4. ADDITIONAL RESOURCES

tcp(7) man page

setsockopt(3p) man page

setsockopt(2) man page

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

88

CHAPTER 27. PREVENTING RESOURCE OVERUSE BY USING
MUTEX

Mutual exclusion (mutex) algorithms are used to prevent overuse of common resources.

27.1. MUTEX OPTIONS

Mutual exclusion (mutex) algorithms are used to prevent processes simultaneously using a common
resource. A fast user-space mutex (futex) is a tool that allows a user-space thread to claim a mutex
without requiring a context switch to kernel space, provided the mutex is not already held by another
thread.

When you initialize a pthread_mutex_t object with the standard attributes, a private, non-recursive,
non-robust, and non-priority inheritance-capable mutex is created. This object does not provide any of
the benfits provided by the pthreads API and the RHEL for Real Time kernel.

To benefit from the pthreads API and the RHEL for Real Time kernel, create a pthread_mutexattr_t
object. This object stores the attributes defined for the futex.

NOTE

The terms futex and mutex are used to describe POSIX thread (pthread) mutex
constructs.

27.2. CREATING A MUTEX ATTRIBUTE OBJECT

To define any additional capabilities for the mutex, create a pthread_mutexattr_t object. This object
stores the defined attributes for the futex. This is a basic safety procedure that you must always
perform.

Procedure

Create the mutex attribute object using one of the following:

pthread_mutex_t(my_mutex);

pthread_mutexattr_t(&my_mutex_attr);

pthread_mutexattr_init(&my_mutex_attr);

For more information about advanced mutex attributes, see Advanced mutex attributes.

27.3. CREATING A MUTEX WITH STANDARD ATTRIBUTES

When you initialize a pthread_mutex_t object with the standard attributes, a private, non-recursive,
non-robust, and non-priority inheritance-capable mutex is created.

Procedure

Create a mutex object under pthreads using one of the following:

pthread_mutex_t(my_mutex);

pthread_mutex_init(&my_mutex, &my_mutex_attr);

CHAPTER 27. PREVENTING RESOURCE OVERUSE BY USING MUTEX

89

where &my_mutex_attr; is a mutex attribute object.

27.4. ADVANCED MUTEX ATTRIBUTES

The following advanced mutex attributes can be stored in a mutex attribute object:

Mutex attributes

Shared and private mutexes

Shared mutexes can be used between processes, however they can create a lot more overhead.
pthread_mutexattr_setpshared(&my_mutex_attr, PTHREAD_PROCESS_SHARED);

Real-time priority inheritance

You can avoid priority inversion problems by using priority inheritance.
pthread_mutexattr_setprotocol(&my_mutex_attr, PTHREAD_PRIO_INHERIT);

Robust mutexes

When a pthread dies, robust mutexes under the pthread are released. However, this comes with a
high overhead cost. _NP in this string indicates that this option is non-POSIX or not portable.
pthread_mutexattr_setrobust_np(&my_mutex_attr, PTHREAD_MUTEX_ROBUST_NP);

Mutex initialization

Shared mutexes can be used between processes, however, they can create a lot more overhead.
pthread_mutex_init(&my_mutex_attr, &my_mutex);

27.5. CLEANING UP A MUTEX ATTRIBUTE OBJECT

After the mutex has been created using the mutex attribute object, you can keep the attribute object to
initialize more mutexes of the same type, or you can clean it up. The mutex is not affected in either case.

Procedure

Clean up the attribute object using the _destroy command.
pthread_mutexattr_destroy(&my_mutex_attr);

The mutex now operates as a regular pthread_mutex, and can be locked, unlocked, and
destroyed as normal.

27.6. ADDITIONAL RESOURCES

futex(7) man page

pthread_mutex_destroy(P) man page

pthread_mutexattr_setprotocol(3p) man page

pthread_mutexattr_setprioceiling(3p) man page

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

90

CHAPTER 28. ANALYZING APPLICATION PERFORMANCE
Perf is a performance analysis tool. It provides a simple command line interface and abstracts the CPU
hardware difference in Linux performance measurements. Perf is based on the perf_events interface
exported by the kernel.

One advantage of perf is that it is both kernel and architecture neutral. The analysis data can be
reviewed without requiring a specific system configuration.

Prerequisites

The perf package must be installed on the system.

You have administrator privileges.

28.1. COLLECTING SYSTEM-WIDE STATISTICS

The perf record command is used for collecting system-wide statistics. It can be used in all processors.

Procedure

Collect system-wide performance statistics.

perf record -a
^C[perf record: Woken up 1 times to write data]
[perf record: Captured and wrote 0.725 MB perf.data (~31655 samples)]

In this example, all CPUs are denoted with the -a option, and the process was terminated after a
few seconds. The results show that it collected 0.725 MB of data and stored it to a newly-
created perf.data file.

Verification

Ensure that the results file was created.

ls
perf.data

28.2. ARCHIVING PERFORMANCE ANALYSIS RESULTS

You can analyze the results of the perf on other systems using the perf archive command. This may not
be necessary, if:

Dynamic Shared Objects (DSOs), such as binaries and libraries, are already present in the
analysis system, such as the ~/.debug/ cache.

Both systems have the same set of binaries.

Procedure

1. Create an archive of the results from the perf command.

perf archive

CHAPTER 28. ANALYZING APPLICATION PERFORMANCE

91

2. Create a tarball from the archive.

tar cvf perf.data.tar.bz2 -C ~/.debug

28.3. ANALYZING PERFORMANCE ANALYSIS RESULTS

The data from the perf record feature can now be investigated directly using the perf report command.

Procedure

Analyze the results directly from the perf.data file or from an archived tarball.

perf report

The output of the report is sorted according to the maximum CPU usage in percentage by the
application. It shows if the sample has occurred in the kernel or user space of the process.

The report shows information about the module from which the sample was taken:

A kernel sample that did not take place in a kernel module is marked with the notation
[kernel.kallsyms].

A kernel sample that took place in the kernel module is marked as [module], [ext4].

For a process in user space, the results might show the shared library linked with the
process.
The report denotes whether the process also occurs in kernel or user space.

The result [.] indicates user space.

The result [k] indicates kernel space.

Finer grained details are available for review, including data appropriate for experienced perf
developers.

28.4. LISTING PRE-DEFINED EVENTS

There are a range of available options to get the hardware tracepoint activity.

Procedure

List pre-defined hardware and software events:

perf list
List of pre-defined events (to be used in -e):
 cpu-cycles OR cycles [Hardware event]
 stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]
 stalled-cycles-backend OR idle-cycles-backend [Hardware event]
 instructions [Hardware event]
 cache-references [Hardware event]
 cache-misses [Hardware event]
 branch-instructions OR branches [Hardware event]
 branch-misses [Hardware event]
 bus-cycles [Hardware event]

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

92

 cpu-clock [Software event]
 task-clock [Software event]
 page-faults OR faults [Software event]
 minor-faults [Software event]
 major-faults [Software event]
 context-switches OR cs [Software event]
 cpu-migrations OR migrations [Software event]
 alignment-faults [Software event]
 emulation-faults [Software event]
 ...[output truncated]...

28.5. GETTING STATISTICS ABOUT SPECIFIED EVENTS

You can view specific events using the perf stat command.

Procedure

1. View the number of context switches with the perf stat feature:

perf stat -e context-switches -a sleep 5
^Performance counter stats for 'sleep 5':

 15,619 context-switches

 5.002060064 seconds time elapsed

The results show that in 5 seconds, 15619 context switches took place.

2. View file system activity by running a script. The following shows an example script:

for i in {1..100}; do touch /tmp/$i; sleep 1; done

3. In another terminal run the perf stat command:

perf stat -e ext4:ext4_request_inode -a sleep 5
 Performance counter stats for 'sleep 5':

 5 ext4:ext4_request_inode

 5.002253620 seconds time elapsed

The results show that in 5 seconds the script asked to create 5 files, indicating that there are 5
inode requests.

28.6. ADDITIONAL RESOURCES

perf help COMMAND

perf(1) man page

CHAPTER 28. ANALYZING APPLICATION PERFORMANCE

93

CHAPTER 29. STRESS TESTING REAL-TIME SYSTEMS WITH
STRESS-NG

The stress-ng tool measures the system’s capability to maintain a good level of efficiency under
unfavorable conditions. The stress-ng tool is a stress workload generator to load and stress all kernel
interfaces. It includes a wide range of stress mechanisms known as stressors. Stress testing makes a
machine work hard and trip hardware issues such as thermal overruns and operating system bugs that
occur when a system is being overworked.

There are over 270 different tests. These include CPU specific tests that exercise floating point, integer,
bit manipulation, control flow, and virtual memory tests.

NOTE

Use the stress-ng tool with caution as some of the tests can impact the system’s thermal
zone trip points on a poorly designed hardware. This can impact system performance and
cause excessive system thrashing which can be difficult to stop.

29.1. TESTING CPU FLOATING POINT UNITS AND PROCESSOR DATA
CACHE

A floating point unit is the functional part of the processor that performs floating point arithmetic
operations. Floating point units handle mathematical operations and make floating numbers or decimal
calculations simpler.

Using the --matrix-method option, you can stress test the CPU floating point operations and processor
data cache.

Prerequisites

You have root permissions on the systems

Procedure

To test the floating point on one CPU for 60 seconds, use the --matrix option:

stress-ng --matrix 1 -t 1m

To run multiple stressors on more than one CPUs for 60 seconds, use the --times or -t option:

stress-ng --matrix 0 -t 1m

stress-ng --matrix 0 -t 1m --times
stress-ng: info: [16783] dispatching hogs: 4 matrix
stress-ng: info: [16783] successful run completed in 60.00s (1 min, 0.00 secs)
stress-ng: info: [16783] for a 60.00s run time:
stress-ng: info: [16783] 240.00s available CPU time
stress-ng: info: [16783] 205.21s user time (85.50%)
stress-ng: info: [16783] 0.32s system time (0.13%)
stress-ng: info: [16783] 205.53s total time (85.64%)
stress-ng: info: [16783] load average: 3.20 1.25 1.40

The special mode with 0 stressors, query the available CPUs to run, removing the need to

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

94

The special mode with 0 stressors, query the available CPUs to run, removing the need to
specify the CPU number.

The total CPU time required is 4 x 60 seconds (240 seconds), of which 0.13% is in the kernel,
85.50% is in user time, and stress-ng runs 85.64% of all the CPUs.

To test message passing between processes using a POSIX message queue, use the -mq
option:

stress-ng --mq 0 -t 30s --times --perf

The mq option configures a specific number of processes to force context switches using the
POSIX message queue. This stress test aims for low data cache misses.

29.2. TESTING CPU WITH MULTIPLE STRESS MECHANISMS

The stress-ng tool runs multiple stress tests. In the default mode, it runs the specified stressor
mechanisms in parallel.

Prerequisites

You have root privileges on the systems

Procedure

Run multiple instances of CPU stressors as follows:

stress-ng --cpu 2 --matrix 1 --mq 3 -t 5m

In the example, stress-ng runs two instances of the CPU stressors, one instance of the matrix
stressor and three instances of the message queue stressor to test for five minutes.

To run all stress tests in parallel, use the –all option:

stress-ng --all 2

In this example, stress-ng runs two instances of all stress tests in parallel.

To run each different stressor in a specific sequence, use the --seq option.

stress-ng --seq 4 -t 20

In this example, stress-ng runs all the stressors one by one for 20 minutes, with the number of
instances of each stressor matching the number of online CPUs.

To exclude specific stressors from a test run, use the -x option:

stress-ng --seq 1 -x numa,matrix,hdd

In this example, stress-ng runs all stressors, one instance of each, excluding numa, hdd and key
stressors mechanisms.

29.3. MEASURING CPU HEAT GENERATION

CHAPTER 29. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG

95

To measure the CPU heat generation, the specified stressors generate high temperatures for a short
time duration to test the system’s cooling reliability and stability under maximum heat generation. Using
the --matrix-size option, you can measure CPU temperatures in degrees Celsius over a short time
duration.

Prerequisites

You have root privileges on the system.

Procedure

1. To test the CPU behavior at high temperatures for a specified time duration, run the following
command:

stress-ng --matrix 0 --matrix-size 64 --tz -t 60

 stress-ng: info: [18351] dispatching hogs: 4 matrix
 stress-ng: info: [18351] successful run completed in 60.00s (1 min, 0.00 secs)
 stress-ng: info: [18351] matrix:
 stress-ng: info: [18351] x86_pkg_temp 88.00 °C
 stress-ng: info: [18351] acpitz 87.00 °C

In this example, the stress-ng configures the processor package thermal zone to reach 88
degrees Celsius over the duration of 60 seconds.

2. (Optional) To print a report at the end of a run, use the --tz option:

stress-ng --cpu 0 --tz -t 60

 stress-ng: info: [18065] dispatching hogs: 4 cpu
 stress-ng: info: [18065] successful run completed in 60.07s (1 min, 0.07 secs)
 stress-ng: info: [18065] cpu:
 stress-ng: info: [18065] x86_pkg_temp 88.75 °C
 stress-ng: info: [18065] acpitz 88.38 °C

29.4. MEASURING TEST OUTCOMES WITH BOGO OPERATIONS

The stress-ng tool can measure a stress test throughput by measuring the bogo operations per second.
The size of a bogo operation depends on the stressor being run. The test outcomes are not precise, but
they provide a rough estimate of the performance.

You must not use this measurement as an accurate benchmark metric. These estimates help to
understand the system performance changes on different kernel versions or different compiler versions
used to build stress-ng. Use the --metrics-brief option to display the total available bogo operations
and the matrix stressor performance on your machine.

Prerequisites

You have root privileges on the system.

Procedure

To measure test outcomes with bogo operations, use with the --metrics-brief option:

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

96

stress-ng --matrix 0 -t 60s --metrics-brief

stress-ng: info: [17579] dispatching hogs: 4 matrix
stress-ng: info: [17579] successful run completed in 60.01s (1 min, 0.01 secs)
stress-ng: info: [17579] stressor bogo ops real time usr time sys time bogo ops/s bogo ops/s
stress-ng: info: [17579] (secs) (secs) (secs) (real time) (usr+sys time)
stress-ng: info: [17579] matrix 349322 60.00 203.23 0.19 5822.03 1717.25

The --metrics-brief option displays the test outcomes and the total real-time bogo operations
run by the matrix stressor for 60 seconds.

29.5. GENERATING A VIRTUAL MEMORY PRESSURE

When under memory pressure, the kernel starts writing pages out to swap. You can stress the virtual
memory by using the --page-in option to force non-resident pages to swap back into the virtual
memory. This causes the virtual machine to be heavily exercised. Using the --page-in option, you can
enable this mode for the bigheap, mmap and virtual machine (vm) stressors. The --page-in option,
touch allocated pages that are not in core, forcing them to page in.

Prerequisites

You have root privileges on the system.

Procedure

To stress test a virtual memory, use the --page-in option:

stress-ng --vm 2 --vm-bytes 2G --mmap 2 --mmap-bytes 2G --page-in

In this example, stress-ng tests memory pressure on a system with 4GB of memory, which is
less than the allocated buffer sizes, 2 x 2GB of vm stressor and 2 x 2GB of mmap stressor with
--page-in enabled.

29.6. TESTING LARGE INTERRUPTS LOADS ON A DEVICE

Running timers at high frequency can generate a large interrupt load. The –timer stressor with an
appropriately selected timer frequency can force many interrupts per second.

Prerequisites

You have root permissions on the system.

Procedure

To generate an interrupt load, use the --timer option:

stress-ng --timer 32 --timer-freq 1000000

In this example, stress-ng tests 32 instances at 1MHz.

29.7. GENERATING MAJOR PAGE FAULTS IN A PROGRAM

With stress-ng, you can test and analyze the page fault rate by generating major page faults in a page

CHAPTER 29. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG

97

With stress-ng, you can test and analyze the page fault rate by generating major page faults in a page
that are not loaded in the memory. On new kernel versions, the userfaultfd mechanism notifies the fault
finding threads about the page faults in the virtual memory layout of a process.

Prerequisites

You have root permissions on the system.

Procedure

To generate major page faults on early kernel versions, use:

stress-ng --fault 0 --perf -t 1m

To generate major page faults on new kernel versions, use:

stress-ng --userfaultfd 0 --perf -t 1m

29.8. VIEWING CPU STRESS TEST MECHANISMS

The CPU stress test contains methods to exercise a CPU. You can print an output to view all methods
using the which option.

If you do not specify the test method, by default, the stressor checks all the stressors in a round-robin
fashion to test the CPU with each stressor.

Prerequisites

You have root permissions on the system.

Procedure

1. Print all available stressor mechanisms, use the which option:

stress-ng --cpu-method which

cpu-method must be one of: all ackermann bitops callfunc cdouble cfloat clongdouble
correlate crc16 decimal32 decimal64 decimal128 dither djb2a double euler explog fft
fibonacci float fnv1a gamma gcd gray hamming hanoi hyperbolic idct int128 int64 int32

2. Specify a specific CPU stress method using the --cpu-method option:

stress-ng --cpu 1 --cpu-method fft -t 1m

29.9. USING THE VERIFY MODE

The verify mode validates the results when a test is active. It sanity checks the memory contents from a
test run and reports any unexpected failures.

All stressors do not have the verify mode and enabling one will reduce the bogo operation statistics
because of the extra verification step being run in this mode.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

98

Prerequisites

You have root permissions on the system.

Procedure

To validate a stress test results, use the --verify option:

stress-ng --vm 1 --vm-bytes 2G --verify -v

In this example, stress-ng prints the output for an exhaustive memory check on a virtually
mapped memory using the vm stressor configured with --verify mode. It sanity checks the read
and write results on the memory.

CHAPTER 29. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG

99

CHAPTER 30. CREATING AND RUNNING CONTAINERS
This section provides information about creating and running containers with the real-time kernel.

Prerequisites

Install podman and other container related utilities.

Get familiar with administration and management of Linux containers on RHEL.

Install the kernel-rt package and other real-time related packages.

30.1. CREATING A CONTAINER

You can use all the following options with both the real time kernel and the main RHEL kernel. The
kernel-rt package brings potential determinism improvements and allows the usual troubleshooting.

Prerequisites

You have administrator privileges.

Procedure

The following procedure describes how to configure the Linux containers in relation with the real time
kernel.

1. Create the directory you want to use for the container. For example:

mkdir cyclictest

2. Change into that directory:

cd cyclictest

3. Log into a host that provides a container registry service:

podman login registry.redhat.io
Username: my_customer_portal_login
Password: ***
Login Succeeded!

4. Create the following Dockerfile:

vim Dockerfile
FROM rhel8
RUN subscription-manager repos --enable=rhel-8-for-x86_64-rt-rpm
RUN dnf -y install rt-tests
ENTRYPOINT cyclictest --smp -p95

5. Build the container image from the directory containing the Dockerfile:

podman build -t cyclictest .

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

100

30.2. RUNNING A CONTAINER

You can run a container built with a Dockerfile.

Procedure

1. Run a container using the podman run command:

podman run --device=/dev/cpu_dma_latency --cap-add ipc_lock --cap-add sys_nice -
-cap-add sys_rawio --rm -ti cyclictest

/dev/cpu_dma_latency set to 0us
policy: fifo: loadavg: 0.08 0.10 0.09 2/947 15

T: 0 (8) P:95 I:1000 C: 3209 Min: 1 Act: 1 Avg: 1 Max: 14

T: 1 (9) P:95 I:1500 C: 2137 Min: 1 Act: 2 Avg: 1 Max: 23

T: 2 (10) P:95 I:2000 C: 1601 Min: 1 Act: 2 Avg: 2 Max: 7

T: 3 (11) P:95 I:2500 C: 1280 Min: 1 Act: 2 Avg: 2 Max: 72

T: 4 (12) P:95 I:3000 C: 1066 Min: 1 Act: 1 Avg: 1 Max: 7

T: 5 (13) P:95 I:3500 C: 913 Min: 1 Act: 2 Avg: 2 Max: 87

T: 6 (14) P:95 I:4000 C: 798 Min: 1 Act: 1 Avg: 2 Max: 7

T: 7 (15) P:95 I:4500 C: 709 Min: 1 Act: 2 Avg: 2 Max: 29

This example shows the podman run command with the required, real time-specific options. For
example:

The first in first out (FIFO) scheduler policy is made available for workloads running inside the
container through the --cap-add=sys_nice option. This option also allows setting the CPU
affinity of threads, another important configuration dimension when tuning a real time workload.

The --device=/dev/cpu_dma_latency option makes the host device available inside the
container (subsequently used by the cyclictest workload to configure the CPU idle time
management). If the specified device is not made available, an error similar to the message
below appears:
WARN: stat /dev/cpu_dma_latency failed: No such file or directory

When confronted with error messages like these, refer to the podman-run(1) manual page. To
get a specific workload running inside a container, other podman-run options may be helpful.

In some cases, you also need to add the --device=/dev/cpu option to add that directory
hierarchy, mapping per-CPU device files such as /dev/cpu/*/msr.

30.3. ADDITIONAL RESOURCES

Building, running, and managing Linux containers on RHEL 9

Installing RHEL 9 for Real Time

CHAPTER 30. CREATING AND RUNNING CONTAINERS

101

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/building_running_and_managing_containers/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/9/html-single/installing_rhel_9_for_real_time/index

CHAPTER 31. DISPLAYING THE PRIORITY FOR A PROCESS
You can display information about the priority of a process and information about the scheduling policy
for a process using the sched_getattr attribute.

Prerequisites

You have administrator privileges.

31.1. THE CHRT UTILITY

The chrt utility checks and adjusts scheduler policies and priorities. It can start new processes with the
desired properties or change the properties of a running process.

Additional resources

chrt(1) man page

31.2. DISPLAYING THE PROCESS PRIORITY USING THE CHRT UTILITY

You can display the current scheduling policy and scheduling priority for a specified process.

Procedure

Run the chrt utility with the -p option, specifying a running process.

chrt -p 468
pid 468's current scheduling policy: SCHED_FIFO
pid 468's current scheduling priority: 85

chrt -p 476
pid 476's current scheduling policy: SCHED_OTHER
pid 476's current scheduling priority: 0

31.3. DISPLAYING THE PROCESS PRIORITY USING
SCHED_GETSCHEDULER()

Real-time processes use a set of functions to control policy and priority. You can use the
sched_getscheduler() function to display the scheduler policy for a specified process.

Procedure

1. Create the get_sched.c source file and open it in a text editor.

$ {EDITOR} get_sched.c

2. Add the following lines into the file.

#include <sched.h>
#include <unistd.h>
#include <stdio.h>

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

102

int main()
{
 int policy;
 pid_t pid = getpid();

 policy = sched_getscheduler(pid);
 printf("Policy for pid %ld is %i.\n", (long) pid, policy);
 return 0;
}

The policy variable holds the scheduler policy for the specified process.

3. Compile the program.

$ gcc get_sched.c -o get_sched

4. Run the program with varying policies.

$ chrt -o 0 ./get_sched
Policy for pid 27240 is 0.
$ chrt -r 10 ./get_sched
Policy for pid 27243 is 2.
$ chrt -f 10 ./get_sched
Policy for pid 27245 is 1.

Additional resources

sched_getscheduler(2) man page

31.4. DISPLAYING THE VALID RANGE FOR A SCHEDULER POLICY

You can use the sched_get_priority_min() and sched_get_priority_max() functions to check the valid
priority range for a given scheduler policy.

Procedure

1. Create the sched_get.c source file and open it in a text editor.

$ {EDITOR} sched_get.c

2. Enter the following into the file:

#include <stdio.h>
#include <unistd.h>
#include <sched.h>

int main()
{

 printf("Valid priority range for SCHED_OTHER: %d - %d\n",
 sched_get_priority_min(SCHED_OTHER),
 sched_get_priority_max(SCHED_OTHER));

 printf("Valid priority range for SCHED_FIFO: %d - %d\n",

CHAPTER 31. DISPLAYING THE PRIORITY FOR A PROCESS

103

 sched_get_priority_min(SCHED_FIFO),
 sched_get_priority_max(SCHED_FIFO));

 printf("Valid priority range for SCHED_RR: %d - %d\n",
 sched_get_priority_min(SCHED_RR),
 sched_get_priority_max(SCHED_RR));
 return 0;
}

NOTE

If the specified scheduler policy is not known by the system, the function returns -
1 and errno is set to EINVAL.

NOTE

Both SCHED_FIFO and SCHED_RR can be any number within the range of 1 to
99. POSIX is not guaranteed to honor this range, however, and portable programs
should use these functions.

3. Save the file and exit the editor.

4. Compile the program.

$ gcc sched_get.c -o msched_get

The sched_get program is now ready and can be run from the directory in which it is saved.

Additional resources

sched_get_priority_min(2) man page

sched_get_priority_max(2) man page

31.5. DISPLAYING THE TIMESLICE FOR A PROCESS

The SCHED_RR (round-robin) policy differs slightly from the SCHED_FIFO (first-in, first-out) policy.
SCHED_RR allocates concurrent processes that have the same priority in a round-robin rotation. In this
way, each process is assigned a timeslice. The sched_rr_get_interval() function reports the timeslice
allocated to each process.

NOTE

Though POSIX requires that this function must work only with processes that are
configured to run with the SCHED_RR scheduler policy, the sched_rr_get_interval()
function can retrieve the timeslice length of any process on Linux.

Timeslice information is returned as a timespec. This is the number of seconds and nanoseconds since
the base time of 00:00:00 GMT, 1 January 1970:

struct timespec {
 time_t tv_sec; /* seconds / long tv_nsec; / nanoseconds */
};

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

104

Procedure

1. Create the sched_timeslice.c source file and open it in a text editor.

$ {EDITOR} sched_timeslice.c

2. Add the following lines to the sched_timeslice.c file.

#include <stdio.h>
#include <sched.h>

int main()
{
 struct timespec ts;
 int ret;

 /* real apps must check return values */
 ret = sched_rr_get_interval(0, &ts);

 printf("Timeslice: %lu.%lu\n", ts.tv_sec, ts.tv_nsec);

 return 0;
}

3. Save the file and exit the editor.

4. Compile the program.

$ gcc sched_timeslice.c -o sched_timeslice

5. Run the program with varying policies and priorities.

$ chrt -o 0 ./sched_timeslice
Timeslice: 0.38994072
$ chrt -r 10 ./sched_timeslice
Timeslice: 0.99984800
$ chrt -f 10 ./sched_timeslice
Timeslice: 0.0

Additional resources

nice(2) man page

getpriority(2) man page

setpriority(2) man page

31.6. DISPLAYING THE SCHEDULING POLICY AND ASSOCIATED
ATTRIBUTES FOR A PROCESS

The sched_getattr() function queries the scheduling policy currently applied to the specified process,
identified by PID. If PID equals to zero, the policy of the calling process is retrieved.

CHAPTER 31. DISPLAYING THE PRIORITY FOR A PROCESS

105

The size argument should reflect the size of the sched_attr structure as known to userspace. The
kernel fills out sched_attr::size to the size of its sched_attr structure.

If the input structure is smaller, the kernel returns values outside the provided space. As a result, the
system call fails with an E2BIG error. The other sched_attr fields are filled out as described in The
sched_attr structure.

Procedure

1. Create the sched_timeslice.c source file and open it in a text editor.

$ {EDITOR} sched_timeslice.c

2. Add the following lines to the sched_timeslice.c file.

#define _GNU_SOURCE
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <linux/unistd.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <sys/syscall.h>
#include <pthread.h>

#define gettid() syscall(__NR_gettid)

#define SCHED_DEADLINE 6

/* XXX use the proper syscall numbers */
#ifdef __x86_64__
#define __NR_sched_setattr 314
#define __NR_sched_getattr 315
#endif

struct sched_attr {
 __u32 size;
 __u32 sched_policy;
 __u64 sched_flags;

 /* SCHED_NORMAL, SCHED_BATCH */
 __s32 sched_nice;

 /* SCHED_FIFO, SCHED_RR */
 __u32 sched_priority;

 /* SCHED_DEADLINE (nsec) */
 __u64 sched_runtime;
 __u64 sched_deadline;
 __u64 sched_period;
};

int sched_getattr(pid_t pid,

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

106

 struct sched_attr *attr,
 unsigned int size,
 unsigned int flags)
{
 return syscall(__NR_sched_getattr, pid, attr, size, flags);
}

int main (int argc, char **argv)
{
 struct sched_attr attr;
 unsigned int flags = 0;
 int ret;

 ret = sched_getattr(0, &attr, sizeof(attr), flags);
 if (ret < 0) {
 perror("sched_getattr");
 exit(-1);
 }

 printf("main thread pid=%ld\n", gettid());
 printf("main thread policy=%ld\n", attr.sched_policy);
 printf("main thread nice=%ld\n", attr.sched_nice);
 printf("main thread priority=%ld\n", attr.sched_priority);
 printf("main thread runtime=%ld\n", attr.sched_runtime);
 printf("main thread deadline=%ld\n", attr.sched_deadline);
 printf("main thread period=%ld\n", attr.sched_period);

 return 0;
}

3. Compile the sched_timeslice.c file.

$ gcc sched_timeslice.c -o sched_timeslice

4. Check the output of the sched_timeslice program.

$./sched_timeslice
main thread pid=321716
main thread policy=6
main thread nice=0
main thread priority=0
main thread runtime=1000000
main thread deadline=9000000
main thread period=10000000

31.7. THE SCHED_ATTR STRUCTURE

The sched_attr structure contains or defines a scheduling policy and its associated attributes for a
specified thread. The sched_attr structure has the following form:

 struct sched_attr {
 u32 size;
 u32 sched_policy
 u64 sched_flags

CHAPTER 31. DISPLAYING THE PRIORITY FOR A PROCESS

107

 s32 sched_nice
 u32 sched_priority

 /* SCHED_DEADLINE fields */
 u64 sched_runtime
 u64 sched_deadline
 u64 sched_period
 };

sched_attr data structure

size

The thread size in bytes. If the size of the structure is smaller than the kernel structure, additional
fields are then assumed to be 0. If the size is larger than the kernel structure, the kernel verifies all
additional fields as 0.

NOTE

The sched_setattr() function fails with E2BIG error when sched_attr structure is
larger than the kernel structure and updates size to contain the size of the kernel
structure.

sched_policy

The scheduling policy

sched_flags

Helps control scheduling behavior when a process forks using the fork() function. The calling process
is referred to as the parent process, and the new process is referred to as the child process. Valid
values:

0: The child process inherits the scheduling policy from the parent process.

SCHED_FLAG_RESET_ON_FORK: fork(): The child process does not inherit the
scheduling policy from the parent process. Instead, it is set to the default scheduling policy
(struct sched_attr){ .sched_policy = SCHED_OTHER, }.

sched_nice

Specifies the nice value to be set when using SCHED_OTHER or SCHED_BATCH scheduling
policies. The nice value is a number in a range from -20 (high priority) to +19 (low priority).

sched_priority

Specifies the static priority to be set when scheduling SCHED_FIFO or SCHED_RR. For other
policies, specify priority as 0.

SCHED_DEADLINE fields must be specified only for deadline scheduling:

sched_runtime: Specifies the runtime parameter for deadline scheduling. The value is
expressed in nanoseconds.

sched_deadline: Specifies the deadline parameter for deadline scheduling. The value is
expressed in nanoseconds.

sched_period: Specifies the period parameter for deadline scheduling. The value is expressed
in nanoseconds.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

108

CHAPTER 32. VIEWING PREEMPTION STATES
Processes using a CPU can give up the CPU they are using, either voluntarily or involuntarily.

32.1. PREEMPTION

A process can voluntarily yield the CPU either because it has completed, or because it is waiting for an
event, such as data from a disk, a key press, or for a network packet.

A process can also involuntarily yield the CPU. This is called preemption and occurs when a higher
priority process wants to use the CPU.

Preemption can have a particularly negative impact on system performance, and constant preemption
can lead to a state known as thrashing. This problem occurs when processes are constantly preempted,
and no process ever runs to completion.

Changing the priority of a task can help reduce involuntary preemption.

32.2. CHECKING THE PREEMPTION STATE OF A PROCESS

You can check the voluntary and involuntary preemption status for a specified process. The statuses are
stored in /proc/PID/status.

Prerequisites

You have administrator privileges.

Procedure

Display the contents of /proc/PID/status, where PID is the ID of the process. The following
displays the preemption statuses for the process with PID 1000.

grep voluntary /proc/1000/status
voluntary_ctxt_switches: 194529
nonvoluntary_ctxt_switches: 195338

CHAPTER 32. VIEWING PREEMPTION STATES

109

CHAPTER 33. SETTING THE PRIORITY FOR A PROCESS WITH
THE CHRT UTILITY

You can set the priority for a process using the chrt utility.

Prerequisites

You have administrator privileges.

33.1. SETTING THE PROCESS PRIORITY USING THE CHRT UTILITY

The chrt utility checks and adjusts scheduler policies and priorities. It can start new processes with the
desired properties, or change the properties of a running process.

Procedure

To set the scheduling policy of a process, run the chrt command with the appropriate command
options and parameters. In the following example, the process ID affected by the command is
1000, and the priority (-p) is 50.

chrt -f -p 50 1000

To start an application with a specified scheduling policy and priority, add the name of the
application, and the path to it, if necessary, along with the attributes.

chrt -r -p 50 /bin/my-app

For more information about the chrt utility options, see The chrt utility options .

33.2. THE CHRT UTILITY OPTIONS

The chrt utility options include command options and parameters specifying the process and priority for
the command.

Policy options

-f

Sets the scheduler policy to SCHED_FIFO.

-o

Sets the scheduler policy to SCHED_OTHER.

-r

Sets the scheduler policy to SCHED_RR (round robin).

-d

Sets the scheduler policy to SCHED_DEADLINE.

-p n

Sets the priority of the process to n.
When setting a process to SCHED_DEADLINE, you must specify the runtime, deadline, and period
parameters.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

110

For example:

chrt -d --sched-runtime 5000000 --sched-deadline 10000000 --sched-period 16666666 0
video_processing_tool

where

--sched-runtime 5000000 is the run time in nanoseconds.

--sched-deadline 10000000 is the relative deadline in nanoseconds.

--sched-period 16666666 is the period in nanoseconds.

0 is a placeholder for unused priority required by the chrt command.

33.3. ADDITIONAL RESOURCES

chrt(1) man page

CHAPTER 33. SETTING THE PRIORITY FOR A PROCESS WITH THE CHRT UTILITY

111

CHAPTER 34. SETTING THE PRIORITY FOR A PROCESS WITH
LIBRARY CALLS

You can set the priority for a process using the chrt utility.

Prerequisites

You have administrator privileges.

34.1. LIBRARY CALLS FOR SETTING PRIORITY

Real-time processes use a different set of library calls to control policy and priority. The following library
calls are used to set the priority of non-real-time processes.

nice

setpriority

These functions adjust the nice value of a non-real-time process. The nice value serves as a suggestion
to the scheduler on how to order the list of ready-to-run, non-real-time processes to be run on a
processor. The processes at the head of the list run before the ones further down the list.

IMPORTANT

The functions require the inclusion of the sched.h header file. Ensure you always check
the return codes from functions.

34.2. SETTING THE PROCESS PRIORITY USING A LIBRARY CALL

The scheduler policy and other parameters can be set using the sched_setscheduler() function.
Currently, real-time policies have one parameter, sched_priority. This parameter is used to adjust the
priority of the process.

The sched_setscheduler() function requires three parameters, in the form: sched_setscheduler(pid_t
pid, int policy, const struct sched_param *sp);.

NOTE

The sched_setscheduler(2) man page lists all possible return values of
sched_setscheduler(), including the error codes.

If the process ID is zero, the sched_setscheduler() function acts on the calling process.

The following code excerpt sets the scheduler policy of the current process to the SCHED_FIFO
scheduler policy and the priority to 50:

struct sched_param sp = { .sched_priority = 50 };
int ret;

ret = sched_setscheduler(0, SCHED_FIFO, &sp);
if (ret == -1) {

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

112

 perror("sched_setscheduler");
 return 1;
}

34.3. SETTING THE PROCESS PRIORITY PARAMETER USING A
LIBRARY CALL

The sched_setparam() function is used to set the scheduling parameters of a particular process. This
can then be verified using the sched_getparam() function.

Unlike the sched_getscheduler() function, which only returns the scheduling policy, the
sched_getparam() function returns all scheduling parameters for the given process.

Procedure

Use the following code excerpt that reads the priority of a given real-time process and increments it by
two:

struct sched_param sp;
int ret;

ret = sched_getparam(0, &sp);
sp.sched_priority += 2;
ret = sched_setparam(0, &sp);

If this code were used in a real application, it would need to check the return values from the function
and handle any errors appropriately.

IMPORTANT

Be careful with incrementing priorities. Continually adding two to the scheduler priority, as
in this example, might eventually lead to an invalid priority.

34.4. SETTING THE SCHEDULING POLICY AND ASSOCIATED
ATTRIBUTES FOR A PROCESS

The sched_setattr() function sets the scheduling policy and its associated attributes for an instance ID
specified in PID. When pid=0, sched_setattr() acts on the process and attributes of the calling thread.

Procedure

Call sched_setattr() specifying the process ID on which the call acts and one of the following
real-time scheduling policies:

Real-time scheduling policies

SCHED_FIFO

Schedules a first-in and first-out policy.

SCHED_RR

Schedules a round-robin policy.

SCHED_DEADLINE

CHAPTER 34. SETTING THE PRIORITY FOR A PROCESS WITH LIBRARY CALLS

113

Schedules a deadline scheduling policy.

Linux also supports the following non-real-time scheduling policies:

Non-real-time scheduling policies

SCHED_OTHER

Schedules the standard round-robin time-sharing policy.

SCHED_BATCH

Schedules a “batch" style execution of processes.

SCHED_IDLE

Schedules very low priority background jobs. SCHED_IDLE can be used only at static priority 0, and
the nice value has no influence for this policy.
This policy is intended for running jobs at extremely low priority (lower than a +19 nice value using
SCHED_OTHER or SCHED_BATCH policies).

34.5. ADDITIONAL RESOURCES

The sched_attr-structure

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

114

CHAPTER 35. SCHEDULING PROBLEMS ON THE REAL-TIME
KERNEL AND SOLUTIONS

Scheduling in the real-time kernel might have consequences sometimes. By using the information
provided, you can understand the problems on scheduling policies, scheduler throttling, and thread
starvation states on the real-time kernel, as well as potential solutions.

35.1. SCHEDULING POLICIES FOR THE REAL-TIME KERNEL

The real-time scheduling policies share one main characteristic: they run until a higher priority thread
interrupts the thread or the threads wait, either by sleeping or performing I/O.

In the case of SCHED_RR, the operating system interrupts a running thread so that another thread of
equal SCHED_RR priority can run. In either of these cases, no provision is made by the POSIX
specifications that define the policies for allowing lower priority threads to get any CPU time. This
characteristic of real-time threads means that it is easy to write an application, which monopolizes 100%
of a given CPU. However, this causes problems for the operating system. For example, the operating
system is responsible for managing both system-wide and per-CPU resources and must periodically
examine data structures describing these resources and perform housekeeping activities with them. But
if a core is monopolized by a SCHED_FIFO thread, it cannot perform its housekeeping tasks. Eventually
the entire system becomes unstable and can potentially crash.

On the RHEL for Real Time kernel, interrupt handlers run as threads with a SCHED_FIFO priority. The
default priority is 50. A cpu-hog thread with a SCHED_FIFO or SCHED_RR policy higher than the
interrupt handler threads can prevent interrupt handlers from running. This causes the programs waiting
for data signaled by those interrupts to starve and fail.

35.2. SCHEDULER THROTTLING IN THE REAL-TIME KERNEL

The real-time kernel includes a safeguard mechanism to enable allocating bandwidth for use by the
real-time tasks. The safeguard mechanism is known as real-time scheduler throttling.

The default values for the real-time throttling mechanism define that the real-time tasks can use 95%
of the CPU time. The remaining 5% will be devoted to non real-time tasks, such as tasks running under
SCHED_OTHER and similar scheduling policies. It is important to note that if a single real-time task
occupies the 95% CPU time slot, the remaining real-time tasks on that CPU will not run. Only the non
real-time tasks use the remaining 5% of CPU time. The default values can have the following
performance impacts:

The real-time tasks have at most 95% of CPU time available for them, which can affect their
performance.

The real-time tasks do not lock up the system by not allowing non real-time tasks to run.

The real-time scheduler throttling is controlled by the following parameters in the /proc file system:

The /proc/sys/kernel/sched_rt_period_us parameter

Defines the period in µs (microseconds), which is 100% of the CPU bandwidth. The default value is
1,000,000 μs, which is 1 second. Changes to the period’s value must be carefully considered because
a period value that is either very high or low can cause problems.

The /proc/sys/kernel/sched_rt_runtime_us parameter

Defines the total bandwidth available for all real-time tasks. The default value is 950,000 μs (0.95 s),
which is 95% of the CPU bandwidth. Setting the value to -1 configures the real-time tasks to use up

CHAPTER 35. SCHEDULING PROBLEMS ON THE REAL-TIME KERNEL AND SOLUTIONS

115

to 100% of CPU time. This is only adequate when the real-time tasks are well engineered and have no
obvious caveats, such as unbounded polling loops.

35.3. THREAD STARVATION IN THE REAL-TIME KERNEL

Thread starvation occurs when a thread is on a CPU run queue for longer than the starvation threshold
and does not make progress. A common cause of thread starvation is to run a fixed-priority polling
application, such as SCHED_FIFO or SCHED_RR bound to a CPU. Since the polling application does
not block for I/O, this can prevent other threads, such as kworkers, from running on that CPU.

An early attempt to reduce thread starvation is called as real-time throttling. In real-time throttling, each
CPU has a portion of the execution time dedicated to non real-time tasks. The default setting for
throttling is on with 95% of the CPU for real-time tasks and 5% reserved for non real-time tasks. This
works if you have a single real-time task causing starvation but does not work if there are multiple real-
time tasks assigned to a CPU. You can work around the problem by using:

The stalld mechanism

The stalld mechanism is an alternative for real-time throttling and avoids some of the throttling
drawbacks. stalld is a daemon to periodically monitor the state of each thread in the system and
looks for threads that are on the run queue for a specified length of time without being run. stalld
temporarily changes that thread to use the SCHED_DEADLINE policy and allocates the thread a
small slice of time on the specified CPU. The thread then runs, and when the time slice is used, the
thread returns to its original scheduling policy and stalld continues to monitor thread states.
Housekeeping CPUs are CPUs that run all daemons, shell processes, kernel threads, interrupt
handlers, and all work that can be dispatched from an isolated CPU. For housekeeping CPUs with
real-time throttling disabled, stalld monitors the CPU that runs the main workload and assigns the
CPU with the SCHED_FIFO busy loop, which helps to detect stalled threads and improve the thread
priority as required with a previously defined acceptable added noise. stalld can be a preference if
the real-time throttling mechanism causes an unreasonable noise in the main workload.

With stalld, you can more precisely control the noise introduced by boosting starved threads. The
shell script /usr/bin/throttlectl automatically disables real-time throttling when stalld is run. You can
list the current throttling values by using the /usr/bin/throttlectl show script.

Disabling real-time throttling

The following parameters in the /proc filesystem control real-time throttling:

The /proc/sys/kernel/sched_rt_period_us parameter specifies the number of
microseconds in a period and defaults to 1 million, which is 1 second.

The /proc/sys/kernel/sched_rt_runtime_us parameter specifies the number of
microseconds that can be used by a real-time task before throttling occurs and it defaults to
950,000 or 95% of the available CPU cycles. You can disable throttling by passing a value of
-1 into the sched_rt_runtime_us file by using the echo -1 >
/proc/sys/kernel/sched_rt_runtime_us command.

Red Hat Enterprise Linux for Real Time 8 Optimizing RHEL 8 for Real Time for low latency operation

116

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. REAL-TIME KERNEL TUNING IN RHEL 8
	1.1. TUNING GUIDELINES
	1.2. BALANCING LOGGING PARAMETERS
	1.3. IMPROVING PERFORMANCE BY AVOIDING RUNNING UNNECESSARY APPLICATIONS
	1.4. NON-UNIFORM MEMORY ACCESS
	1.5. ENSURING THAT DEBUGFS IS MOUNTED
	1.6. INFINIBAND IN RHEL FOR REAL TIME
	1.7. USING ROCEE AND HIGH-PERFORMANCE NETWORKING
	1.8. TUNING CONTAINERS FOR RHEL FOR REAL-TIME

	CHAPTER 2. SCHEDULING POLICIES FOR RHEL FOR REAL TIME
	2.1. SCHEDULER POLICIES
	2.2. PARAMETERS FOR SCHED_DEADLINE POLICY

	CHAPTER 3. SETTING PERSISTENT KERNEL TUNING PARAMETERS
	3.1. MAKING PERSISTENT KERNEL TUNING PARAMETER CHANGES

	CHAPTER 4. APPLICATION TUNING AND DEPLOYMENT
	4.1. SIGNAL PROCESSING IN REAL-TIME APPLICATIONS
	4.2. SYNCHRONIZING THREADS
	4.3. REAL-TIME SCHEDULER PRIORITIES
	4.4. LOADING DYNAMIC LIBRARIES

	CHAPTER 5. SETTING BIOS PARAMETERS FOR SYSTEM TUNING
	5.1. DISABLING POWER MANAGEMENT TO IMPROVE RESPONSE TIMES
	5.2. IMPROVING RESPONSE TIMES BY DISABLING ERROR DETECTION AND CORRECTION UNITS
	5.3. IMPROVING RESPONSE TIME BY CONFIGURING SYSTEM MANAGEMENT INTERRUPTS

	CHAPTER 6. RUNNING AND INTERPRETING HARDWARE AND FIRMWARE LATENCY TESTS
	6.1. RUNNING HARDWARE AND FIRMWARE LATENCY TESTS
	6.2. INTERPRETING HARDWARE AND FIRMWARE LATENCY TEST RESULTS

	CHAPTER 7. RUNNING AND INTERPRETING SYSTEM LATENCY TESTS
	7.1. RUNNING SYSTEM LATENCY TESTS

	CHAPTER 8. SETTING CPU AFFINITY ON RHEL FOR REAL TIME
	8.1. TUNING PROCESSOR AFFINITY USING THE TASKSET COMMAND
	8.2. SETTING PROCESSOR AFFINITY USING THE SCHED_SETAFFINITY() SYSTEM CALL
	8.3. ISOLATING A SINGLE CPU TO RUN HIGH UTILIZATION TASKS
	8.4. REDUCING CPU PERFORMANCE SPIKES
	8.5. LOWERING CPU USAGE BY DISABLING THE PC CARD DAEMON

	CHAPTER 9. USING MLOCK() SYSTEM CALLS ON RHEL FOR REAL TIME
	9.1. MLOCK() AND MUNLOCK() SYSTEM CALLS
	9.2. USING MLOCK() SYSTEM CALLS TO LOCK PAGES
	9.3. USING MLOCKALL() SYSTEM CALLS TO LOCK ALL MAPPED PAGES
	9.4. USING MMAP() SYSTEM CALLS TO MAP FILES OR DEVICES INTO MEMORY
	9.5. PARAMETERS FOR MLOCK() SYSTEM CALLS

	CHAPTER 10. MINIMIZING OR AVOIDING SYSTEM SLOWDOWNS DUE TO JOURNALING
	10.1. DISABLING ATIME
	10.2. ADDITIONAL RESOURCES

	CHAPTER 11. DISABLING GRAPHICS CONSOLE OUTPUT FOR LATENCY SENSITIVE WORKLOADS
	11.1. DISABLING GRAPHICS CONSOLE LOGGING TO GRAPHICS ADAPTER
	11.2. DISABLING MESSAGES FROM PRINTING ON GRAPHICS CONSOLE

	CHAPTER 12. MANAGING SYSTEM CLOCKS TO SATISFY APPLICATION NEEDS
	12.1. HARDWARE CLOCKS
	12.2. VIEWING THE AVAILABLE CLOCK SOURCES IN YOUR SYSTEM
	12.3. VIEWING THE CLOCK SOURCE CURRENTLY IN USE
	12.4. TEMPORARILY CHANGING THE CLOCK SOURCE TO USE
	12.5. COMPARING THE COST OF READING HARDWARE CLOCK SOURCES
	12.6. SYNCHRONIZING THE TSC TIMER ON OPTERON CPUS
	12.7. THE CLOCK_TIMING PROGRAM

	CHAPTER 13. CONTROLLING POWER MANAGEMENT TRANSITIONS
	13.1. POWER SAVING STATES
	13.2. CONFIGURING POWER MANAGEMENT STATES

	CHAPTER 14. MINIMIZING SYSTEM LATENCY BY ISOLATING INTERRUPTS AND USER PROCESSES
	14.1. INTERRUPT AND PROCESS BINDING
	14.2. DISABLING THE IRQBALANCE DAEMON
	14.3. EXCLUDING CPUS FROM IRQ BALANCING
	14.4. MANUALLY ASSIGNING CPU AFFINITY TO INDIVIDUAL IRQS
	14.5. BINDING PROCESSES TO CPUS WITH THE TASKSET UTILITY

	CHAPTER 15. MANAGING OUT OF MEMORY STATES
	15.1. CHANGING THE OUT OF MEMORY VALUE
	15.2. PRIORITIZING PROCESSES TO KILL WHEN IN AN OUT OF MEMORY STATE
	15.3. DISABLING THE OUT OF MEMORY KILLER FOR A PROCESS

	CHAPTER 16. IMPROVING LATENCY USING THE TUNA CLI
	16.1. PREREQUISITES
	16.2. THE TUNA CLI
	16.3. ISOLATING CPUS USING THE TUNA CLI
	16.4. MOVING INTERRUPTS TO SPECIFIED CPUS USING THE TUNA CLI
	16.5. CHANGING PROCESS SCHEDULING POLICIES AND PRIORITIES USING THE TUNA CLI

	CHAPTER 17. SETTING SCHEDULER PRIORITIES
	17.1. VIEWING THREAD SCHEDULING PRIORITIES
	17.2. CHANGING THE PRIORITY OF SERVICES DURING BOOTING
	17.3. CONFIGURING THE CPU USAGE OF A SERVICE
	17.4. PRIORITY MAP
	17.5. ADDITIONAL RESOURCES

	CHAPTER 18. NETWORK DETERMINISM TIPS
	18.1. OPTIMIZING RHEL FOR LATENCY OR THROUGHPUT-SENSITIVE SERVICES
	18.2. FLOW CONTROL FOR ETHERNET NETWORKS
	18.3. ADDITIONAL RESOURCES

	CHAPTER 19. TRACING LATENCIES WITH TRACE-CMD
	19.1. INSTALLING TRACE-CMD
	19.2. RUNNING TRACE-CMD
	19.3. TRACE-CMD EXAMPLES
	19.4. ADDITIONAL RESOURCES

	CHAPTER 20. ISOLATING CPUS USING TUNED-PROFILES-REAL-TIME
	20.1. CHOOSING CPUS TO ISOLATE
	20.2. ISOLATING CPUS USING TUNED’S ISOLATED_CORES OPTION
	20.3. ISOLATING CPUS USING THE NOHZ AND NOHZ_FULL PARAMETERS

	CHAPTER 21. LIMITING SCHED_OTHER TASK MIGRATION
	21.1. TASK MIGRATION
	21.2. LIMITING SCHED_OTHER TASK MIGRATION USING THE SCHED_NR_MIGRATE VARIABLE

	CHAPTER 22. REDUCING TCP PERFORMANCE SPIKES
	22.1. TURNING OFF TCP TIMESTAMPS
	22.2. TURNING ON TCP TIMESTAMPS
	22.3. DISPLAYING THE TCP TIMESTAMP STATUS

	CHAPTER 23. IMPROVING CPU PERFORMANCE BY USING RCU CALLBACKS
	23.1. OFFLOADING RCU CALLBACKS
	23.2. MOVING RCU CALLBACKS
	23.3. RELIEVING CPUS FROM AWAKENING RCU OFFLOAD THREADS
	23.4. ADDITIONAL RESOURCES

	CHAPTER 24. TRACING LATENCIES USING FTRACE
	24.1. USING THE FTRACE UTILITY TO TRACE LATENCIES
	24.2. FTRACE FILES
	24.3. FTRACE TRACERS
	24.4. FTRACE EXAMPLES

	CHAPTER 25. APPLICATION TIMESTAMPING
	25.1. POSIX CLOCKS
	25.2. THE _COARSE CLOCK VARIANT IN CLOCK_GETTIME
	25.3. ADDITIONAL RESOURCES

	CHAPTER 26. IMPROVING NETWORK LATENCY USING TCP_NODELAY
	26.1. THE EFFECTS OF USING TCP_NODELAY
	26.2. ENABLING TCP_NODELAY
	26.3. ENABLING TCP_CORK
	26.4. ADDITIONAL RESOURCES

	CHAPTER 27. PREVENTING RESOURCE OVERUSE BY USING MUTEX
	27.1. MUTEX OPTIONS
	27.2. CREATING A MUTEX ATTRIBUTE OBJECT
	27.3. CREATING A MUTEX WITH STANDARD ATTRIBUTES
	27.4. ADVANCED MUTEX ATTRIBUTES
	27.5. CLEANING UP A MUTEX ATTRIBUTE OBJECT
	27.6. ADDITIONAL RESOURCES

	CHAPTER 28. ANALYZING APPLICATION PERFORMANCE
	28.1. COLLECTING SYSTEM-WIDE STATISTICS
	28.2. ARCHIVING PERFORMANCE ANALYSIS RESULTS
	28.3. ANALYZING PERFORMANCE ANALYSIS RESULTS
	28.4. LISTING PRE-DEFINED EVENTS
	28.5. GETTING STATISTICS ABOUT SPECIFIED EVENTS
	28.6. ADDITIONAL RESOURCES

	CHAPTER 29. STRESS TESTING REAL-TIME SYSTEMS WITH STRESS-NG
	29.1. TESTING CPU FLOATING POINT UNITS AND PROCESSOR DATA CACHE
	29.2. TESTING CPU WITH MULTIPLE STRESS MECHANISMS
	29.3. MEASURING CPU HEAT GENERATION
	29.4. MEASURING TEST OUTCOMES WITH BOGO OPERATIONS
	29.5. GENERATING A VIRTUAL MEMORY PRESSURE
	29.6. TESTING LARGE INTERRUPTS LOADS ON A DEVICE
	29.7. GENERATING MAJOR PAGE FAULTS IN A PROGRAM
	29.8. VIEWING CPU STRESS TEST MECHANISMS
	29.9. USING THE VERIFY MODE

	CHAPTER 30. CREATING AND RUNNING CONTAINERS
	30.1. CREATING A CONTAINER
	30.2. RUNNING A CONTAINER
	30.3. ADDITIONAL RESOURCES

	CHAPTER 31. DISPLAYING THE PRIORITY FOR A PROCESS
	31.1. THE CHRT UTILITY
	31.2. DISPLAYING THE PROCESS PRIORITY USING THE CHRT UTILITY
	31.3. DISPLAYING THE PROCESS PRIORITY USING SCHED_GETSCHEDULER()
	31.4. DISPLAYING THE VALID RANGE FOR A SCHEDULER POLICY
	31.5. DISPLAYING THE TIMESLICE FOR A PROCESS
	31.6. DISPLAYING THE SCHEDULING POLICY AND ASSOCIATED ATTRIBUTES FOR A PROCESS
	31.7. THE SCHED_ATTR STRUCTURE

	CHAPTER 32. VIEWING PREEMPTION STATES
	32.1. PREEMPTION
	32.2. CHECKING THE PREEMPTION STATE OF A PROCESS

	CHAPTER 33. SETTING THE PRIORITY FOR A PROCESS WITH THE CHRT UTILITY
	33.1. SETTING THE PROCESS PRIORITY USING THE CHRT UTILITY
	33.2. THE CHRT UTILITY OPTIONS
	33.3. ADDITIONAL RESOURCES

	CHAPTER 34. SETTING THE PRIORITY FOR A PROCESS WITH LIBRARY CALLS
	34.1. LIBRARY CALLS FOR SETTING PRIORITY
	34.2. SETTING THE PROCESS PRIORITY USING A LIBRARY CALL
	34.3. SETTING THE PROCESS PRIORITY PARAMETER USING A LIBRARY CALL
	34.4. SETTING THE SCHEDULING POLICY AND ASSOCIATED ATTRIBUTES FOR A PROCESS
	34.5. ADDITIONAL RESOURCES

	CHAPTER 35. SCHEDULING PROBLEMS ON THE REAL-TIME KERNEL AND SOLUTIONS
	35.1. SCHEDULING POLICIES FOR THE REAL-TIME KERNEL
	35.2. SCHEDULER THROTTLING IN THE REAL-TIME KERNEL
	35.3. THREAD STARVATION IN THE REAL-TIME KERNEL

