
Red Hat Enterprise Linux 8

Configuring and managing Identity
Management

Logging in to IdM and managing services, users, hosts, groups, access control rules,
and certificates.

Last Updated: 2024-04-11

Red Hat Enterprise Linux 8 Configuring and managing Identity
Management

Logging in to IdM and managing services, users, hosts, groups, access control rules, and certificates.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The main feature of Red Hat Identity Management (IdM) is the management of users, groups,
hosts, access control rules, and certificates. However, before you can perform administration tasks
in IdM, you must log in to the service. You can use Kerberos and one time passwords as
authentication methods in IdM when you log in by using the command line or the IdM Web UI. You
can manage certificates in IdM by using the integrated or an external Certificate Authority (CA).
You can request, renew, and replace certificates using many tools, for example, Ansible Playbooks.
To replace the web server and LDAP server certificates of IdM servers, you must perform manual
actions.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. LOGGING IN TO IDENTITY MANAGEMENT FROM THE COMMAND LINE
1.1. USING KINIT TO LOG IN TO IDM MANUALLY
1.2. DESTROYING A USER’S ACTIVE KERBEROS TICKET
1.3. CONFIGURING AN EXTERNAL SYSTEM FOR KERBEROS AUTHENTICATION
1.4. ADDITIONAL RESOURCES

CHAPTER 2. VIEWING, STARTING AND STOPPING THE IDENTITY MANAGEMENT SERVICES
2.1. THE IDM SERVICES
2.2. VIEWING THE STATUS OF IDM SERVICES
2.3. STARTING AND STOPPING THE ENTIRE IDENTITY MANAGEMENT SERVER
2.4. STARTING AND STOPPING AN INDIVIDUAL IDENTITY MANAGEMENT SERVICE
2.5. METHODS FOR DISPLAYING IDM SOFTWARE VERSION

CHAPTER 3. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES
3.1. WHAT IS THE IPA COMMAND LINE INTERFACE
3.2. WHAT IS THE IPA HELP
3.3. USING IPA HELP TOPICS
3.4. USING IPA HELP COMMANDS
3.5. STRUCTURE OF IPA COMMANDS
3.6. USING AN IPA COMMAND TO ADD A USER ACCOUNT TO IDM
3.7. USING AN IPA COMMAND TO MODIFY A USER ACCOUNT IN IDM
3.8. HOW TO SUPPLY A LIST OF VALUES TO THE IDM UTILITIES
3.9. HOW TO USE SPECIAL CHARACTERS WITH THE IDM UTILITIES

CHAPTER 4. SEARCHING IDENTITY MANAGEMENT ENTRIES FROM THE COMMAND LINE
4.1. OVERVIEW OF LISTING IDM ENTRIES
4.2. SHOWING DETAILS FOR A PARTICULAR ENTRY
4.3. ADJUSTING THE SEARCH SIZE AND TIME LIMIT

4.3.1. Adjusting the search size and time limit in the command line
4.3.2. Adjusting the search size and time limit in the Web UI

CHAPTER 5. ACCESSING THE IDM WEB UI IN A WEB BROWSER
5.1. WHAT IS THE IDM WEB UI
5.2. WEB BROWSERS SUPPORTED FOR ACCESSING THE WEB UI
5.3. ACCESSING THE WEB UI

CHAPTER 6. LOGGING IN TO IDM IN THE WEB UI: USING A KERBEROS TICKET
6.1. KERBEROS AUTHENTICATION IN IDENTITY MANAGEMENT
6.2. USING KINIT TO LOG IN TO IDM MANUALLY
6.3. CONFIGURING THE BROWSER FOR KERBEROS AUTHENTICATION
6.4. LOGGING IN TO THE WEB UI USING A KERBEROS TICKET
6.5. CONFIGURING AN EXTERNAL SYSTEM FOR KERBEROS AUTHENTICATION
6.6. WEB UI LOGIN FOR ACTIVE DIRECTORY USERS

CHAPTER 7. LOGGING IN TO THE IDENTITY MANAGEMENT WEB UI USING ONE TIME PASSWORDS
7.1. PREREQUISITES
7.2. ONE TIME PASSWORD (OTP) AUTHENTICATION IN IDENTITY MANAGEMENT
7.3. ENABLING THE ONE-TIME PASSWORD IN THE WEB UI
7.4. CONFIGURING A RADIUS SERVER FOR OTP VALIDATION IN IDM

22

23

24
24
25
25
26

27
27
30
31
31

33

34
34
34
35
35
36
37
38
39
40

41
41
41

42
42
43

44
44
44
45

48
48
48
49
50
51
52

53
53
53
53
54

Table of Contents

1

. .

. .

. .

. .

. .

7.4.1. Changing the timeout value of a KDC when running a RADIUS server in a slow network
7.5. ADDING OTP TOKENS IN THE WEB UI
7.6. LOGGING INTO THE WEB UI WITH A ONE TIME PASSWORD
7.7. SYNCHRONIZING OTP TOKENS USING THE WEB UI
7.8. CHANGING EXPIRED PASSWORDS

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM
8.1. DATA FLOW WHEN RETRIEVING IDM USER INFORMATION WITH SSSD
8.2. DATA FLOW WHEN RETRIEVING AD USER INFORMATION WITH SSSD
8.3. DATA FLOW WHEN AUTHENTICATING AS A USER WITH SSSD IN IDM
8.4. NARROWING THE SCOPE OF AUTHENTICATION ISSUES
8.5. SSSD LOG FILES AND LOGGING LEVELS

8.5.1. SSSD log file purposes
8.5.2. SSSD logging levels

8.6. ENABLING DETAILED LOGGING FOR SSSD IN THE SSSD.CONF FILE
8.7. ENABLING DETAILED LOGGING FOR SSSD WITH THE SSSCTL COMMAND
8.8. GATHERING DEBUGGING LOGS FROM THE SSSD SERVICE TO TROUBLESHOOT AUTHENTICATION
ISSUES WITH AN IDM SERVER
8.9. GATHERING DEBUGGING LOGS FROM THE SSSD SERVICE TO TROUBLESHOOT AUTHENTICATION
ISSUES WITH AN IDM CLIENT
8.10. TRACKING CLIENT REQUESTS IN THE SSSD BACKEND
8.11. TRACKING CLIENT REQUESTS USING THE LOG ANALYZER TOOL

8.11.1. How the log analyzer tool works
8.11.2. Running the log analyzer tool

8.12. ADDITIONAL RESOURCES

CHAPTER 9. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS
9.1. PREPARING A CONTROL NODE AND MANAGED NODES FOR MANAGING IDM USING ANSIBLE
PLAYBOOKS
9.2. DIFFERENT METHODS TO PROVIDE THE CREDENTIALS REQUIRED FOR ANSIBLE-FREEIPA
PLAYBOOKS

CHAPTER 10. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS
10.1. RETRIEVING IDM CONFIGURATION USING AN ANSIBLE PLAYBOOK
10.2. CONFIGURING THE IDM CA RENEWAL SERVER USING AN ANSIBLE PLAYBOOK
10.3. CONFIGURING THE DEFAULT SHELL FOR IDM USERS USING AN ANSIBLE PLAYBOOK
10.4. CONFIGURING A NETBIOS NAME FOR AN IDM DOMAIN BY USING ANSIBLE
10.5. ENSURING THAT IDM USERS AND GROUPS HAVE SIDS BY USING ANSIBLE
10.6. ADDITIONAL RESOURCES

CHAPTER 11. MANAGING USER ACCOUNTS USING THE COMMAND LINE
11.1. USER LIFE CYCLE
11.2. ADDING USERS USING THE COMMAND LINE
11.3. ACTIVATING USERS USING THE COMMAND LINE
11.4. PRESERVING USERS USING THE COMMAND LINE
11.5. DELETING USERS USING THE COMMAND LINE
11.6. RESTORING USERS USING THE COMMAND LINE

CHAPTER 12. MANAGING USER ACCOUNTS USING THE IDM WEB UI
12.1. USER LIFE CYCLE
12.2. ADDING USERS IN THE WEB UI
12.3. ACTIVATING STAGE USERS IN THE IDM WEB UI
12.4. DISABLING USER ACCOUNTS IN THE WEB UI
12.5. ENABLING USER ACCOUNTS IN THE WEB UI
12.6. PRESERVING ACTIVE USERS IN THE IDM WEB UI

55
56
57
58
59

61
62
63
64
67
69
70
71
71
73

73

75
77
78
78
78
79

80

80

82

85
85
87
88
90
91

93

94
94
95
96
97
97
98

100
100
101

103
104
105
106

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

2

. .

. .

. .

. .

12.7. RESTORING USERS IN THE IDM WEB UI
12.8. DELETING USERS IN THE IDM WEB UI

CHAPTER 13. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS
13.1. USER LIFE CYCLE
13.2. ENSURING THE PRESENCE OF AN IDM USER USING AN ANSIBLE PLAYBOOK
13.3. ENSURING THE PRESENCE OF MULTIPLE IDM USERS USING ANSIBLE PLAYBOOKS
13.4. ENSURING THE PRESENCE OF MULTIPLE IDM USERS FROM A JSON FILE USING ANSIBLE
PLAYBOOKS
13.5. ENSURING THE ABSENCE OF USERS USING ANSIBLE PLAYBOOKS
13.6. ADDITIONAL RESOURCES

CHAPTER 14. MANAGING USER GROUPS IN IDM CLI
14.1. THE DIFFERENT GROUP TYPES IN IDM
14.2. DIRECT AND INDIRECT GROUP MEMBERS
14.3. ADDING A USER GROUP USING IDM CLI
14.4. SEARCHING FOR USER GROUPS USING IDM CLI
14.5. DELETING A USER GROUP USING IDM CLI
14.6. ADDING A MEMBER TO A USER GROUP USING IDM CLI
14.7. ADDING USERS WITHOUT A USER PRIVATE GROUP

14.7.1. Users without a user private group
14.7.2. Adding a user without a user private group when private groups are globally enabled
14.7.3. Disabling user private groups globally for all users
14.7.4. Adding a user when user private groups are globally disabled

14.8. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM USER GROUP USING THE IDM CLI

14.9. VIEWING GROUP MEMBERS USING IDM CLI
14.10. REMOVING A MEMBER FROM A USER GROUP USING IDM CLI
14.11. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM AN IDM USER GROUP USING THE IDM
CLI
14.12. ENABLING GROUP MERGING FOR LOCAL AND REMOTE GROUPS IN IDM

CHAPTER 15. MANAGING USER GROUPS IN IDM WEB UI
15.1. THE DIFFERENT GROUP TYPES IN IDM
15.2. DIRECT AND INDIRECT GROUP MEMBERS
15.3. ADDING A USER GROUP USING IDM WEB UI
15.4. DELETING A USER GROUP USING IDM WEB UI
15.5. ADDING A MEMBER TO A USER GROUP USING IDM WEB UI
15.6. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM USER GROUP USING THE WEB UI

15.7. VIEWING GROUP MEMBERS USING IDM WEB UI
15.8. REMOVING A MEMBER FROM A USER GROUP USING IDM WEB UI
15.9. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM AN IDM USER GROUP USING THE
WEB UI

CHAPTER 16. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS
16.1. THE DIFFERENT GROUP TYPES IN IDM
16.2. DIRECT AND INDIRECT GROUP MEMBERS
16.3. ENSURING THE PRESENCE OF IDM GROUPS AND GROUP MEMBERS USING ANSIBLE PLAYBOOKS

16.4. USING ANSIBLE TO ADD MULTIPLE IDM GROUPS IN A SINGLE TASK
16.5. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
16.6. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE
PLAYBOOKS
16.7. ENSURING THE ABSENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE

107
108

110
110
111

113

115
117
118

119
119

120
120
121
121
122
123
123
123
124
124

125
126
126

127
128

131
131
132
132
133
134

135
137
137

138

140
140
141

142
144
145

146

Table of Contents

3

. .

. .

. .

. .

. .

. .

PLAYBOOKS

CHAPTER 17. AUTOMATING GROUP MEMBERSHIP USING IDM CLI
17.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP
17.2. AUTOMEMBER RULES
17.3. ADDING AN AUTOMEMBER RULE USING IDM CLI
17.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM CLI
17.5. VIEWING EXISTING AUTOMEMBER RULES USING IDM CLI
17.6. DELETING AN AUTOMEMBER RULE USING IDM CLI
17.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING IDM CLI
17.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING IDM CLI
17.9. CONFIGURING A DEFAULT AUTOMEMBER GROUP USING IDM CLI

CHAPTER 18. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI
18.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP
18.2. AUTOMEMBER RULES
18.3. ADDING AN AUTOMEMBER RULE USING IDM WEB UI
18.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM WEB UI
18.5. VIEWING EXISTING AUTOMEMBER RULES AND CONDITIONS USING IDM WEB UI
18.6. DELETING AN AUTOMEMBER RULE USING IDM WEB UI
18.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING IDM WEB UI
18.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING IDM WEB UI

18.8.1. Rebuilding automatic membership for all users or hosts
18.8.2. Rebuilding automatic membership for a single user or host only

18.9. CONFIGURING A DEFAULT USER GROUP USING IDM WEB UI
18.10. CONFIGURING A DEFAULT HOST GROUP USING IDM WEB UI

CHAPTER 19. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM
19.1. PREPARING YOUR ANSIBLE CONTROL NODE FOR MANAGING IDM
19.2. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS PRESENT

19.3. USING ANSIBLE TO ENSURE THAT A SPECIFIED CONDITION IS PRESENT IN AN IDM USER GROUP
AUTOMEMBER RULE
19.4. USING ANSIBLE TO ENSURE THAT A CONDITION IS ABSENT FROM AN IDM USER GROUP
AUTOMEMBER RULE
19.5. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS ABSENT

19.6. USING ANSIBLE TO ENSURE THAT A CONDITION IS PRESENT IN AN IDM HOST GROUP AUTOMEMBER
RULE
19.7. ADDITIONAL RESOURCES

CHAPTER 20. ACCESS CONTROL IN IDM
20.1. ACCESS CONTROL INSTRUCTIONS IN IDM
20.2. ACCESS CONTROL METHODS IN IDM

CHAPTER 21. MANAGING SELF-SERVICE RULES IN IDM USING THE CLI
21.1. SELF-SERVICE ACCESS CONTROL IN IDM
21.2. CREATING SELF-SERVICE RULES USING THE CLI
21.3. EDITING SELF-SERVICE RULES USING THE CLI
21.4. DELETING SELF-SERVICE RULES USING THE CLI

CHAPTER 22. MANAGING SELF-SERVICE RULES USING THE IDM WEB UI
22.1. SELF-SERVICE ACCESS CONTROL IN IDM
22.2. CREATING SELF-SERVICE RULES USING THE IDM WEB UI
22.3. EDITING SELF-SERVICE RULES USING THE IDM WEB UI

148

150
150
150
151
152
153
154
154
155
156

158
158
158
159
160
161

162
163
164
164
165
166
166

168
168

170

172

174

176

178
179

180
180
180

182
182
182
183
183

185
185
185
187

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

4

. .

. .

. .

. .

. .

. .

22.4. DELETING SELF-SERVICE RULES USING THE IDM WEB UI

CHAPTER 23. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM
23.1. SELF-SERVICE ACCESS CONTROL IN IDM
23.2. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS PRESENT
23.3. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS ABSENT
23.4. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE HAS SPECIFIC ATTRIBUTES
23.5. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

CHAPTER 24. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM CLI
24.1. DELEGATION RULES
24.2. CREATING A DELEGATION RULE USING IDM CLI
24.3. VIEWING EXISTING DELEGATION RULES USING IDM CLI
24.4. MODIFYING A DELEGATION RULE USING IDM CLI
24.5. DELETING A DELEGATION RULE USING IDM CLI

CHAPTER 25. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI
25.1. DELEGATION RULES
25.2. CREATING A DELEGATION RULE USING IDM WEBUI
25.3. VIEWING EXISTING DELEGATION RULES USING IDM WEBUI
25.4. MODIFYING A DELEGATION RULE USING IDM WEBUI
25.5. DELETING A DELEGATION RULE USING IDM WEBUI

CHAPTER 26. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE
PLAYBOOKS

26.1. DELEGATION RULES
26.2. CREATING AN ANSIBLE INVENTORY FILE FOR IDM
26.3. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS PRESENT
26.4. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS ABSENT
26.5. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE HAS SPECIFIC ATTRIBUTES
26.6. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

CHAPTER 27. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI
27.1. ROLE-BASED ACCESS CONTROL IN IDM

27.1.1. Permissions in IdM
27.1.2. Default managed permissions
27.1.3. Privileges in IdM
27.1.4. Roles in IdM
27.1.5. Predefined roles in Identity Management

27.2. MANAGING IDM PERMISSIONS IN THE CLI
27.3. COMMAND OPTIONS FOR EXISTING PERMISSIONS
27.4. MANAGING IDM PRIVILEGES IN THE CLI
27.5. COMMAND OPTIONS FOR EXISTING PRIVILEGES
27.6. MANAGING IDM ROLES IN THE CLI
27.7. COMMAND OPTIONS FOR EXISTING ROLES

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI
28.1. ROLE-BASED ACCESS CONTROL IN IDM

28.1.1. Permissions in IdM
28.1.2. Default managed permissions
28.1.3. Privileges in IdM
28.1.4. Roles in IdM
28.1.5. Predefined roles in Identity Management

188

189
189
189
191

192

194

196
196
196
197
197
198

199
199
199
201

202
203

205
205
205
206
208
209

211

214
214
214
215
216
217
217
218

220
220
221
221
222

223
223
223
224
225
226
226

Table of Contents

5

. .

. .

. .

. .

. .

28.2. MANAGING PERMISSIONS IN THE IDM WEB UI
28.3. MANAGING PRIVILEGES IN THE IDM WEBUI
28.4. MANAGING ROLES IN THE IDM WEB UI

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM
29.1. PERMISSIONS IN IDM
29.2. DEFAULT MANAGED PERMISSIONS
29.3. PRIVILEGES IN IDM
29.4. ROLES IN IDM
29.5. PREDEFINED ROLES IN IDENTITY MANAGEMENT
29.6. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE WITH PRIVILEGES IS PRESENT
29.7. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE IS ABSENT
29.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS ASSIGNED TO AN IDM RBAC ROLE
29.9. USING ANSIBLE TO ENSURE THAT SPECIFIC USERS ARE NOT ASSIGNED TO AN IDM RBAC ROLE

29.10. USING ANSIBLE TO ENSURE A SERVICE IS A MEMBER OF AN IDM RBAC ROLE
29.11. USING ANSIBLE TO ENSURE A HOST IS A MEMBER OF AN IDM RBAC ROLE
29.12. USING ANSIBLE TO ENSURE A HOST GROUP IS A MEMBER OF AN IDM RBAC ROLE

CHAPTER 30. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES
30.1. USING ANSIBLE TO ENSURE A CUSTOM IDM RBAC PRIVILEGE IS PRESENT
30.2. USING ANSIBLE TO ENSURE MEMBER PERMISSIONS ARE PRESENT IN A CUSTOM IDM RBAC
PRIVILEGE
30.3. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE DOES NOT INCLUDE A PERMISSION
30.4. USING ANSIBLE TO RENAME A CUSTOM IDM RBAC PRIVILEGE
30.5. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE IS ABSENT
30.6. ADDITIONAL RESOURCES

CHAPTER 31. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM
31.1. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS PRESENT
31.2. USING ANSIBLE TO ENSURE AN RBAC PERMISSION WITH AN ATTRIBUTE IS PRESENT
31.3. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS ABSENT
31.4. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS A MEMBER OF AN IDM RBAC PERMISSION
31.5. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS NOT A MEMBER OF AN IDM RBAC PERMISSION
31.6. USING ANSIBLE TO RENAME AN IDM RBAC PERMISSION
31.7. ADDITIONAL RESOURCES

CHAPTER 32. MANAGING USER PASSWORDS IN IDM
32.1. WHO CAN CHANGE IDM USER PASSWORDS AND HOW
32.2. CHANGING YOUR USER PASSWORD IN THE IDM WEB UI
32.3. RESETTING ANOTHER USER’S PASSWORD IN THE IDM WEB UI
32.4. RESETTING THE DIRECTORY MANAGER USER PASSWORD
32.5. CHANGING YOUR USER PASSWORD OR RESETTING ANOTHER USER’S PASSWORD IN IDM CLI
32.6. ENABLING PASSWORD RESET IN IDM WITHOUT PROMPTING THE USER FOR A PASSWORD CHANGE
AT THE NEXT LOGIN
32.7. CHECKING IF AN IDM USER’S ACCOUNT IS LOCKED
32.8. UNLOCKING USER ACCOUNTS AFTER PASSWORD FAILURES IN IDM
32.9. ENABLING THE TRACKING OF LAST SUCCESSFUL KERBEROS AUTHENTICATION FOR USERS IN IDM

CHAPTER 33. DEFINING IDM PASSWORD POLICIES
33.1. WHAT IS A PASSWORD POLICY
33.2. PASSWORD POLICIES IN IDM
33.3. ENSURING THE PRESENCE OF A PASSWORD POLICY IN IDM USING AN ANSIBLE PLAYBOOK
33.4. ADDITIONAL PASSWORD POLICY OPTIONS IN IDM

227
231

234

239
239
240
242
242
242
243
245
246

248
250
251

253

255
255

256
258
260
262
263

264
264
266
268
269
271

272
274

275
275
275
276
276
277

278
279
280

281

282
282
282
284
285

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

6

. .

. .

. .

. .

. .

. .

33.5. APPLYING ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM GROUP
33.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM
GROUP

CHAPTER 34. MANAGING EXPIRING PASSWORD NOTIFICATIONS
34.1. WHAT IS THE EXPIRING PASSWORD NOTIFICATION TOOL
34.2. INSTALLING THE EXPIRING PASSWORD NOTIFICATION TOOL
34.3. RUNNING THE EPN TOOL TO SEND EMAILS TO USERS WHOSE PASSWORDS ARE EXPIRING
34.4. ENABLING THE IPA-EPN.TIMER TO SEND AN EMAIL TO ALL USERS WHOSE PASSWORDS ARE
EXPIRING
34.5. MODIFYING THE EXPIRING PASSWORD NOTIFICATION EMAIL TEMPLATE

CHAPTER 35. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT
35.1. ID VIEWS
35.2. POTENTIAL NEGATIVE IMPACT OF ID VIEWS ON SSSD PERFORMANCE
35.3. ATTRIBUTES AN ID VIEW CAN OVERRIDE
35.4. GETTING HELP FOR ID VIEW COMMANDS
35.5. USING AN ID VIEW TO OVERRIDE THE LOGIN NAME OF AN IDM USER ON A SPECIFIC HOST
35.6. MODIFYING AN IDM ID VIEW
35.7. ADDING AN ID VIEW TO OVERRIDE AN IDM USER HOME DIRECTORY ON AN IDM CLIENT
35.8. APPLYING AN ID VIEW TO AN IDM HOST GROUP
35.9. MIGRATING NIS DOMAINS TO IDENTITY MANAGEMENT

CHAPTER 36. USING ID VIEWS FOR ACTIVE DIRECTORY USERS
36.1. HOW THE DEFAULT TRUST VIEW WORKS
36.2. DEFINING GLOBAL ATTRIBUTES FOR AN AD USER BY MODIFYING THE DEFAULT TRUST VIEW
36.3. OVERRIDING DEFAULT TRUST VIEW ATTRIBUTES FOR AN AD USER ON AN IDM CLIENT WITH AN ID
VIEW
36.4. APPLYING AN ID VIEW TO AN IDM HOST GROUP

CHAPTER 37. ADJUSTING ID RANGES MANUALLY
37.1. ID RANGES
37.2. AUTOMATIC ID RANGES ASSIGNMENT
37.3. ASSIGNING THE IDM ID RANGE MANUALLY DURING SERVER INSTALLATION
37.4. ADDING A NEW IDM ID RANGE
37.5. THE ROLE OF SECURITY AND RELATIVE IDENTIFIERS IN IDM ID RANGES
37.6. USING ANSIBLE TO ADD A NEW LOCAL IDM ID RANGE
37.7. REMOVING AN ID RANGE AFTER REMOVING A TRUST TO AD
37.8. DISPLAYING CURRENTLY ASSIGNED DNA ID RANGES
37.9. MANUAL ID RANGE ASSIGNMENT
37.10. ASSIGNING DNA ID RANGES MANUALLY

CHAPTER 38. MANAGING SUBID RANGES MANUALLY
38.1. GENERATING SUBID RANGES USING IDM CLI
38.2. GENERATING SUBID RANGES USING IDM WEBUI INTERFACE
38.3. MANAGING EXISTING SUBID RANGES USING IDM CLI
38.4. LISTING SUBID RANGES USING THE GETSUBID COMMAND

CHAPTER 39. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM
39.1. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT EXISTS IN IDM
39.2. USING ANSIBLE TO ENSURE REPLICATION AGREEMENTS EXIST BETWEEN MULTIPLE IDM REPLICAS

39.3. USING ANSIBLE TO CHECK IF A REPLICATION AGREEMENT EXISTS BETWEEN TWO REPLICAS
39.4. USING ANSIBLE TO VERIFY THAT A TOPOLOGY SUFFIX EXISTS IN IDM
39.5. USING ANSIBLE TO REINITIALIZE AN IDM REPLICA

286

289

292
292
292
293

295
295

297
297
298
298
299
299
302
303
305
308

309
309
310

311
312

315
315
315
316
317
318

320
322
322
323
324

325
325
326
326
327

329
329

331
333
335
336

Table of Contents

7

. .

. .

. .

. .

. .

39.6. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT IS ABSENT IN IDM
39.7. ADDITIONAL RESOURCES

CHAPTER 40. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS
40.1. PREPARING IDM ACCOUNTS FOR AUTOMATIC ACTIVATION OF STAGE USER ACCOUNTS
40.2. CONFIGURING AUTOMATIC ACTIVATION OF IDM STAGE USER ACCOUNTS
40.3. ADDING AN IDM STAGE USER DEFINED IN AN LDIF FILE
40.4. ADDING AN IDM STAGE USER DIRECTLY FROM THE CLI USING LDAPMODIFY
40.5. ADDITIONAL RESOURCES

CHAPTER 41. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY
41.1. TEMPLATES FOR MANAGING IDM USER ACCOUNTS EXTERNALLY
41.2. TEMPLATES FOR MANAGING IDM GROUP ACCOUNTS EXTERNALLY
41.3. USING LDAPMODIFY COMMAND INTERACTIVELY
41.4. PRESERVING AN IDM USER WITH LDAPMODIFY

CHAPTER 42. MANAGING HOSTS IN IDM CLI
42.1. HOSTS IN IDM
42.2. HOST ENROLLMENT
42.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT
42.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND USERS: COMPARISON
42.5. HOST OPERATIONS
42.6. HOST ENTRY IN IDM LDAP
42.7. ADDING IDM HOST ENTRIES FROM IDM CLI
42.8. DELETING HOST ENTRIES FROM IDM CLI
42.9. RE-ENROLLING AN IDENTITY MANAGEMENT CLIENT

42.9.1. Client re-enrollment in IdM
42.9.2. Re-enrolling a client by using user credentials: Interactive re-enrollment
42.9.3. Re-enrolling a client by using the client keytab: Non-interactive re-enrollment
42.9.4. Testing an Identity Management client after installation

42.10. RENAMING IDENTITY MANAGEMENT CLIENT SYSTEMS
42.10.1. Preparing an IdM client for its renaming
42.10.2. Uninstalling an Identity Management client
42.10.3. Renaming the host system
42.10.4. Re-adding services, re-generating certificates, and re-adding host groups

42.11. DISABLING AND RE-ENABLING HOST ENTRIES
42.11.1. Disabling Hosts
42.11.2. Re-enabling Hosts

CHAPTER 43. ADDING HOST ENTRIES FROM IDM WEB UI
43.1. HOSTS IN IDM
43.2. HOST ENROLLMENT
43.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT
43.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND USERS: COMPARISON
43.5. HOST ENTRY IN IDM LDAP
43.6. ADDING HOST ENTRIES FROM THE WEB UI

CHAPTER 44. MANAGING HOSTS USING ANSIBLE PLAYBOOKS
44.1. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH FQDN USING ANSIBLE PLAYBOOKS
44.2. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH DNS INFORMATION USING ANSIBLE
PLAYBOOKS
44.3. ENSURING THE PRESENCE OF MULTIPLE IDM HOST ENTRIES WITH RANDOM PASSWORDS USING
ANSIBLE PLAYBOOKS
44.4. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH MULTIPLE IP ADDRESSES USING ANSIBLE
PLAYBOOKS

338
340

341
341

343
345
346
348

349
349
351
352
353

355
355
356
356
357
358
360
362
363
363
363
364
364
365
365
365
366
366
367
367
367
368

369
369
369
370
370
372
373

376
376

378

380

382

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

8

. .

. .

. .

. .

. .

. .

44.5. ENSURING THE ABSENCE OF AN IDM HOST ENTRY USING ANSIBLE PLAYBOOKS
44.6. ADDITIONAL RESOURCES

CHAPTER 45. MANAGING HOST GROUPS USING THE IDM CLI
45.1. HOST GROUPS IN IDM
45.2. VIEWING IDM HOST GROUPS USING THE CLI
45.3. CREATING IDM HOST GROUPS USING THE CLI
45.4. DELETING IDM HOST GROUPS USING THE CLI
45.5. ADDING IDM HOST GROUP MEMBERS USING THE CLI
45.6. REMOVING IDM HOST GROUP MEMBERS USING THE CLI
45.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE CLI
45.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE CLI

CHAPTER 46. MANAGING HOST GROUPS USING THE IDM WEB UI
46.1. HOST GROUPS IN IDM
46.2. VIEWING HOST GROUPS IN THE IDM WEB UI
46.3. CREATING HOST GROUPS IN THE IDM WEB UI
46.4. DELETING HOST GROUPS IN THE IDM WEB UI
46.5. ADDING HOST GROUP MEMBERS IN THE IDM WEB UI
46.6. REMOVING HOST GROUP MEMBERS IN THE IDM WEB UI
46.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE WEB UI
46.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE WEB UI

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS
47.1. HOST GROUPS IN IDM
47.2. ENSURING THE PRESENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
47.3. ENSURING THE PRESENCE OF HOSTS IN IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
47.4. NESTING IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
47.5. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM HOST GROUPS USING ANSIBLE
PLAYBOOKS
47.6. ENSURING THE ABSENCE OF HOSTS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
47.7. ENSURING THE ABSENCE OF NESTED HOST GROUPS FROM IDM HOST GROUPS USING ANSIBLE
PLAYBOOKS
47.8. ENSURING THE ABSENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
47.9. ENSURING THE ABSENCE OF MEMBER MANAGERS FROM IDM HOST GROUPS USING ANSIBLE
PLAYBOOKS

CHAPTER 48. MANAGING KERBEROS PRINCIPAL ALIASES FOR USERS, HOSTS, AND SERVICES
48.1. ADDING A KERBEROS PRINCIPAL ALIAS
48.2. REMOVING A KERBEROS PRINCIPAL ALIAS
48.3. ADDING A KERBEROS ENTERPRISE PRINCIPAL ALIAS
48.4. REMOVING A KERBEROS ENTERPRISE PRINCIPAL ALIAS

CHAPTER 49. STRENGTHENING KERBEROS SECURITY WITH PAC INFORMATION
49.1. PRIVILEGE ATTRIBUTE CERTIFICATE (PAC) USE IN IDM
49.2. ENABLING SECURITY IDENTIFIERS (SIDS) IN IDM

CHAPTER 50. MANAGING KERBEROS TICKET POLICIES
50.1. THE ROLE OF THE IDM KDC
50.2. IDM KERBEROS TICKET POLICY TYPES
50.3. KERBEROS AUTHENTICATION INDICATORS
50.4. ENFORCING AUTHENTICATION INDICATORS FOR AN IDM SERVICE

50.4.1. Creating an IdM service entry and its Kerberos keytab
50.4.2. Associating authentication indicators with an IdM service using IdM CLI
50.4.3. Associating authentication indicators with an IdM service using IdM Web UI

384
385

386
386
386
387
387
388
389
390
391

393
393
393
394
395
395
396
397
398

401
401
401

403
405

406
408

410
411

413

416
416
416
417
418

419
419
419

421
421
422
423
424
425
426
428

Table of Contents

9

. .

. .

. .

. .

. .

50.4.4. Retrieving a Kerberos service ticket for an IdM service
50.4.5. Additional resources

50.5. CONFIGURING THE GLOBAL TICKET LIFECYCLE POLICY
50.6. CONFIGURING GLOBAL TICKET POLICIES PER AUTHENTICATION INDICATOR
50.7. CONFIGURING THE DEFAULT TICKET POLICY FOR A USER
50.8. CONFIGURING INDIVIDUAL AUTHENTICATION INDICATOR TICKET POLICIES FOR A USER
50.9. AUTHENTICATION INDICATOR OPTIONS FOR THE KRBTPOLICY-MOD COMMAND

CHAPTER 51. KERBEROS PKINIT AUTHENTICATION IN IDM
51.1. DEFAULT PKINIT CONFIGURATION
51.2. DISPLAYING THE CURRENT PKINIT CONFIGURATION
51.3. CONFIGURING PKINIT IN IDM
51.4. ADDITIONAL RESOURCES

CHAPTER 52. MAINTAINING IDM KERBEROS KEYTAB FILES
52.1. HOW IDENTITY MANAGEMENT USES KERBEROS KEYTAB FILES
52.2. VERIFYING THAT KERBEROS KEYTAB FILES ARE IN SYNC WITH THE IDM DATABASE
52.3. LIST OF IDM KERBEROS KEYTAB FILES AND THEIR CONTENTS
52.4. VIEWING THE ENCRYPTION TYPE OF YOUR IDM MASTER KEY

CHAPTER 53. USING THE KDC PROXY IN IDM
53.1. CONFIGURING AN IDM CLIENT TO USE KKDCP
53.2. VERIFYING THAT KKDCP IS ENABLED ON AN IDM SERVER
53.3. DISABLING KKDCP ON AN IDM SERVER
53.4. RE-ENABLING KKDCP ON AN IDM SERVER
53.5. CONFIGURING THE KKDCP SERVER I
53.6. CONFIGURING THE KKDCP SERVER II

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
54.1. SUDO ACCESS ON AN IDM CLIENT
54.2. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE CLI
54.3. GRANTING SUDO ACCESS TO AN AD USER ON AN IDM CLIENT USING THE CLI
54.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE IDM WEB UI
54.5. CREATING A SUDO RULE ON THE CLI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN IDM
CLIENT
54.6. CREATING A SUDO RULE IN THE IDM WEBUI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON
AN IDM CLIENT
54.7. ENABLING GSSAPI AUTHENTICATION FOR SUDO ON AN IDM CLIENT
54.8. ENABLING GSSAPI AUTHENTICATION AND ENFORCING KERBEROS AUTHENTICATION INDICATORS
FOR SUDO ON AN IDM CLIENT
54.9. SSSD OPTIONS CONTROLLING GSSAPI AUTHENTICATION FOR PAM SERVICES
54.10. TROUBLESHOOTING GSSAPI AUTHENTICATION FOR SUDO
54.11. USING AN ANSIBLE PLAYBOOK TO ENSURE SUDO ACCESS FOR AN IDM USER ON AN IDM CLIENT

CHAPTER 55. CONFIGURING HOST-BASED ACCESS CONTROL RULES
55.1. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE WEBUI

55.1.1. Creating HBAC rules in the IdM WebUI
55.1.2. Testing HBAC rules in the IdM WebUI
55.1.3. Disabling HBAC rules in the IdM WebUI

55.2. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE CLI
55.2.1. Creating HBAC rules in the IdM CLI
55.2.2. Testing HBAC rules in the IdM CLI
55.2.3. Disabling HBAC rules in the IdM CLI

55.3. ADDING HBAC SERVICE ENTRIES FOR CUSTOM HBAC SERVICES

429
430
430
431
431

432
433

434
434
434
435
436

437
437
438
439
440

442
442
442
443
443
444
445

446
446
446
449
453

455

458
463

465
467
469

471

474
474
474
475
476
476
477
479
480
480

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

10

. .

. .

. .

. .

. .

. .

55.3.1. Adding HBAC service entries for custom HBAC services in the IdM WebUI
55.3.2. Adding HBAC service entries for custom HBAC services in the IdM CLI

55.4. ADDING HBAC SERVICE GROUPS
55.4.1. Adding HBAC service groups in the IdM WebUI
55.4.2. Adding HBAC service groups in the IdM CLI

CHAPTER 56. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING
ANSIBLE PLAYBOOKS

56.1. HOST-BASED ACCESS CONTROL RULES IN IDM
56.2. ENSURING THE PRESENCE OF AN HBAC RULE IN IDM USING AN ANSIBLE PLAYBOOK

CHAPTER 57. MANAGING REPLICATION TOPOLOGY
57.1. EXPLAINING REPLICATION AGREEMENTS, TOPOLOGY SUFFIXES AND TOPOLOGY SEGMENTS

57.1.1. Replication agreements between IdM replicas
57.1.2. Topology suffixes
57.1.3. Topology segments

57.2. USING THE TOPOLOGY GRAPH TO MANAGE REPLICATION TOPOLOGY
57.3. SETTING UP REPLICATION BETWEEN TWO SERVERS USING THE WEB UI
57.4. STOPPING REPLICATION BETWEEN TWO SERVERS USING THE WEB UI
57.5. SETTING UP REPLICATION BETWEEN TWO SERVERS USING THE CLI
57.6. STOPPING REPLICATION BETWEEN TWO SERVERS USING THE CLI
57.7. REMOVING SERVER FROM TOPOLOGY USING THE WEB UI
57.8. REMOVING SERVER FROM TOPOLOGY USING THE CLI
57.9. VIEWING SERVER ROLES ON AN IDM SERVER USING THE WEB UI
57.10. VIEWING SERVER ROLES ON AN IDM SERVER USING THE CLI
57.11. PROMOTING A REPLICA TO A CA RENEWAL SERVER AND CRL PUBLISHER SERVER
57.12. DEMOTING OR PROMOTING HIDDEN REPLICAS

CHAPTER 58. PUBLIC KEY CERTIFICATES IN IDENTITY MANAGEMENT
58.1. CERTIFICATE AUTHORITIES IN IDM
58.2. COMPARISON OF CERTIFICATES AND KERBEROS
58.3. THE PROS AND CONS OF USING CERTIFICATES TO AUTHENTICATE USERS IN IDM

CHAPTER 59. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM
59.1. CERTIFICATE FORMATS AND ENCODINGS IN IDM
59.2. CONVERTING AN EXTERNAL CERTIFICATE TO LOAD INTO AN IDM USER ACCOUNT

59.2.1. Prerequisites
59.2.2. Converting an external certificate in the IdM CLI and loading it into an IdM user account
59.2.3. Converting an external certificate in the IdM web UI for loading into an IdM user account

59.3. PREPARING TO LOAD A CERTIFICATE INTO THE BROWSER
59.3.1. Exporting a certificate and private key from an NSS database into a PKCS #12 file
59.3.2. Combining certificate and private key PEM files into a PKCS #12 file

59.4. CERTIFICATE-RELATED COMMANDS AND FORMATS IN IDM

CHAPTER 60. MANAGING CERTIFICATES FOR USERS, HOSTS, AND SERVICES USING THE INTEGRATED
IDM CA

60.1. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE USING IDM WEB UI
60.2. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE FROM IDM CA USING CERTUTIL

60.3. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE FROM IDM CA USING OPENSSL

60.4. ADDITIONAL RESOURCES

CHAPTER 61. MANAGING IDM CERTIFICATES USING ANSIBLE
61.1. USING ANSIBLE TO REQUEST SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS

480
481
481
481
481

483
483
483

486
486
486
487
488
489
491

493
494
495
496
497
498
498
499
499

501
501

502
502

504
504
506
506
506
507
508
508
508
509

511
511

512

514
515

516
516

Table of Contents

11

. .

. .

. .

. .

. .

61.2. USING ANSIBLE TO REVOKE SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
61.3. USING ANSIBLE TO RESTORE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES
61.4. USING ANSIBLE TO RETRIEVE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

CHAPTER 62. MANAGING EXTERNALLY SIGNED CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

62.1. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM USER, HOST, OR SERVICE BY USING
THE IDM CLI
62.2. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM USER, HOST, OR SERVICE BY USING
THE IDM WEB UI
62.3. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM AN IDM USER, HOST, OR SERVICE
ACCOUNT BY USING THE IDM CLI
62.4. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM AN IDM USER, HOST, OR SERVICE
ACCOUNT BY USING THE IDM WEB UI
62.5. ADDITIONAL RESOURCES

CHAPTER 63. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT
63.1. WHAT IS A CERTIFICATE PROFILE?
63.2. CREATING A CERTIFICATE PROFILE
63.3. WHAT IS A CA ACCESS CONTROL LIST?
63.4. DEFINING A CA ACL TO CONTROL ACCESS TO CERTIFICATE PROFILES
63.5. USING CERTIFICATE PROFILES AND CA ACLS TO ISSUE CERTIFICATES
63.6. MODIFYING A CERTIFICATE PROFILE
63.7. CERTIFICATE PROFILE CONFIGURATION PARAMETERS

CHAPTER 64. MANAGING THE VALIDITY OF CERTIFICATES IN IDM
64.1. MANAGING THE VALIDITY OF AN EXISTING CERTIFICATE THAT WAS ISSUED BY IDM CA
64.2. MANAGING THE VALIDITY OF FUTURE CERTIFICATES ISSUED BY IDM CA
64.3. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN IDM WEBUI
64.4. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN THE CLI
64.5. REVOKING CERTIFICATES WITH THE INTEGRATED IDM CAS

64.5.1. Certificate revocation reasons
64.5.2. Revoking certificates with the integrated IdM CAs using IdM WebUI
64.5.3. Revoking certificates with the integrated IdM CAs using IdM CLI

64.6. RESTORING CERTIFICATES WITH THE INTEGRATED IDM CAS
64.6.1. Restoring certificates with the integrated IdM CAs using IdM WebUI
64.6.2. Restoring certificates with the integrated IdM CAs using IdM CLI

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION
65.1. CONFIGURING THE IDM SERVER FOR SMART CARD AUTHENTICATION
65.2. USING ANSIBLE TO CONFIGURE THE IDM SERVER FOR SMART CARD AUTHENTICATION
65.3. CONFIGURING THE IDM CLIENT FOR SMART CARD AUTHENTICATION
65.4. USING ANSIBLE TO CONFIGURE IDM CLIENTS FOR SMART CARD AUTHENTICATION
65.5. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM WEB UI
65.6. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM CLI
65.7. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
65.8. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART
CARD
65.9. LOGGING IN TO IDM WITH SMART CARDS
65.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION ON AN IDM CLIENT
65.11. USING SMART CARD AUTHENTICATION WITH THE SU COMMAND

CHAPTER 66. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN
IDM

66.1. WINDOWS SERVER SETTINGS REQUIRED FOR TRUST CONFIGURATION AND CERTIFICATE USAGE

517
518
519

521

521

522

522

523
524

525
525
526
527
528
530
531
532

536
536
536
536
537
537
537
538
539
539
539
540

541
541

544
547
549
551

553
554

555
556
558
558

560

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

12

. .

. .

. .

66.2. COPYING CERTIFICATES FROM ACTIVE DIRECTORY USING SFTP
66.3. CONFIGURING THE IDM SERVER AND CLIENTS FOR SMART CARD AUTHENTICATION USING ADCS
CERTIFICATES
66.4. CONVERTING THE PFX FILE
66.5. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
66.6. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART
CARD
66.7. CONFIGURING TIMEOUTS IN SSSD.CONF
66.8. CREATING CERTIFICATE MAPPING RULES FOR SMART CARD AUTHENTICATION

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT
67.1. CERTIFICATE MAPPING RULES FOR CONFIGURING AUTHENTICATION
67.2. COMPONENTS OF AN IDENTITY MAPPING RULE IN IDM
67.3. OBTAINING DATA FROM A CERTIFICATE FOR USE IN A MATCHING RULE
67.4. CONFIGURING CERTIFICATE MAPPING FOR USERS STORED IN IDM

67.4.1. Adding a certificate mapping rule in the IdM web UI
67.4.2. Adding a certificate mapping rule in the IdM CLI
67.4.3. Adding certificate mapping data to a user entry in the IdM web UI
67.4.4. Adding certificate mapping data to a user entry in the IdM CLI

67.5. CERTIFICATE MAPPING RULES FOR TRUSTS WITH ACTIVE DIRECTORY DOMAINS
67.6. CONFIGURING CERTIFICATE MAPPING FOR USERS WHOSE AD USER ENTRY CONTAINS THE WHOLE
CERTIFICATE

67.6.1. Adding a certificate mapping rule in the IdM web UI
67.6.2. Adding a certificate mapping rule in the IdM CLI

67.7. CONFIGURING CERTIFICATE MAPPING IF AD IS CONFIGURED TO MAP USER CERTIFICATES TO USER
ACCOUNTS

67.7.1. Adding a certificate mapping rule in the IdM web UI
67.7.2. Adding a certificate mapping rule in the IdM CLI
67.7.3. Checking certificate mapping data on the AD side

67.8. CONFIGURING CERTIFICATE MAPPING IF AD USER ENTRY CONTAINS NO CERTIFICATE OR MAPPING
DATA

67.8.1. Adding a certificate mapping rule in the IdM web UI
67.8.2. Adding a certificate mapping rule in the IdM CLI
67.8.3. Adding a certificate to an AD user’s ID override in the IdM web UI
67.8.4. Adding a certificate to an AD user’s ID override in the IdM CLI

67.9. COMBINING SEVERAL IDENTITY MAPPING RULES INTO ONE
67.10. ADDITIONAL RESOURCES

CHAPTER 68. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN
IDM CLIENT

68.1. CONFIGURING THE IDENTITY MANAGEMENT SERVER FOR CERTIFICATE AUTHENTICATION IN THE
WEB UI
68.2. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO THE CLIENT
68.3. MAKING SURE THE CERTIFICATE AND USER ARE LINKED TOGETHER
68.4. CONFIGURING A BROWSER TO ENABLE CERTIFICATE AUTHENTICATION
68.5. AUTHENTICATING TO THE IDENTITY MANAGEMENT WEB UI WITH A CERTIFICATE AS AN IDENTITY
MANAGEMENT USER
68.6. CONFIGURING AN IDM CLIENT TO ENABLE AUTHENTICATING TO THE CLI USING A CERTIFICATE

CHAPTER 69. USING IDM CA RENEWAL SERVER
69.1. EXPLANATION OF IDM CA RENEWAL SERVER
69.2. CHANGING AND RESETTING IDM CA RENEWAL SERVER

560
561

561
563
563

564
566
567

568
568
569
570
570
571

572
573
575
576

577
577
579

579
579
581
581

582
582
583
584
586
586
588

589

589
590
592
592

595

596

597
597
598

Table of Contents

13

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 70. MANAGING EXTERNALLY-SIGNED CA CERTIFICATES
70.1. SWITCHING FROM AN EXTERNALLY-SIGNED TO A SELF-SIGNED CA IN IDM
70.2. SWITCHING FROM A SELF-SIGNED TO AN EXTERNALLY-SIGNED CA IN IDM
70.3. RENEWING THE IDM CA RENEWAL SERVER CERTIFICATE USING AN EXTERNAL CA

CHAPTER 71. RENEWING EXPIRED SYSTEM CERTIFICATES WHEN IDM IS OFFLINE
71.1. RENEWING EXPIRED SYSTEM CERTIFICATES ON A CA RENEWAL SERVER
71.2. VERIFYING OTHER IDM SERVERS IN THE IDM DOMAIN AFTER RENEWAL

CHAPTER 72. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE NOT YET
EXPIRED ON AN IDM REPLICA

CHAPTER 73. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE EXPIRED IN
THE WHOLE IDM DEPLOYMENT

CHAPTER 74. GENERATING CRL ON THE IDM CA SERVER
74.1. STOPPING CRL GENERATION ON AN IDM SERVER
74.2. STARTING CRL GENERATION ON AN IDM REPLICA SERVER

CHAPTER 75. DECOMMISSIONING A SERVER THAT PERFORMS THE CA RENEWAL SERVER AND CRL
PUBLISHER ROLES

CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
76.1. CERTMONGER OVERVIEW
76.2. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
76.3. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A SERVICE CERTIFICATE
76.4. VIEWING THE DETAILS OF A CERTIFICATE REQUEST TRACKED BY CERTMONGER
76.5. STARTING AND STOPPING CERTIFICATE TRACKING
76.6. RENEWING A CERTIFICATE MANUALLY
76.7. MAKING CERTMONGER RESUME TRACKING OF IDM CERTIFICATES ON A CA REPLICA
76.8. USING SCEP WITH CERTMONGER

76.8.1. SCEP overview
76.8.2. Requesting an IdM CA-signed certificate through SCEP
76.8.3. Automatically renewing AD SCEP certificates with certmonger

CHAPTER 77. REQUESTING CERTIFICATES BY USING RHEL SYSTEM ROLES
77.1. THE CERTIFICATE SYSTEM ROLE
77.2. REQUESTING A NEW SELF-SIGNED CERTIFICATE BY USING THE CERTIFICATE SYSTEM ROLE
77.3. REQUESTING A NEW CERTIFICATE FROM IDM CA BY USING THE CERTIFICATE SYSTEM ROLE
77.4. SPECIFYING COMMANDS TO RUN BEFORE OR AFTER CERTIFICATE ISSUANCE BY USING THE
CERTIFICATE SYSTEM ROLE

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES
78.1. MANAGING LIGHTWEIGHT SUB-CAS

78.1.1. Creating a sub-CA from the IdM WebUI
78.1.2. Deleting a sub-CA from the IdM WebUI
78.1.3. Creating a sub-CA from the IdM CLI
78.1.4. Disabling a sub-CA from the IdM CLI
78.1.5. Deleting a sub-CA from the IdM CLI

78.2. DOWNLOADING THE SUB-CA CERTIFICATE FROM IDM WEBUI
78.3. CREATING CA ACLS FOR WEB SERVER AND CLIENT AUTHENTICATION

78.3.1. Viewing CA ACLs in IdM CLI
78.3.2. Creating a CA ACL for web servers authenticating to web clients using certificates issued by webserver-
ca
78.3.3. Creating a CA ACL for user web browsers authenticating to web servers using certificates issued by
webclient-ca

600
600
601
601

604
604
605

607

609

613
613
613

615

619
619

620
621

624
625
626
627
628
628
629
632

633
633
633
634

635

637
637
638
639
640
641

642
644
644
644

645

647

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

14

. .

. .

. .

. .

. .

. .

. .

78.4. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
78.5. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A SERVICE CERTIFICATE
78.6. SETTING UP A SINGLE-INSTANCE APACHE HTTP SERVER
78.7. ADDING TLS ENCRYPTION TO AN APACHE HTTP SERVER
78.8. SETTING THE SUPPORTED TLS PROTOCOL VERSIONS ON AN APACHE HTTP SERVER
78.9. SETTING THE SUPPORTED CIPHERS ON AN APACHE HTTP SERVER
78.10. CONFIGURING TLS CLIENT CERTIFICATE AUTHENTICATION
78.11. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO THE CLIENT
78.12. CONFIGURING A BROWSER TO ENABLE CERTIFICATE AUTHENTICATION

CHAPTER 79. INVALIDATING A SPECIFIC GROUP OF RELATED CERTIFICATES QUICKLY
79.1. DISABLING CA ACLS IN IDM CLI
79.2. DISABLING AN IDM SUB-CA

CHAPTER 80. VAULTS IN IDM
80.1. VAULTS AND THEIR BENEFITS
80.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS
80.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS
80.4. USER, SERVICE, AND SHARED VAULTS
80.5. VAULT CONTAINERS
80.6. BASIC IDM VAULT COMMANDS
80.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

CHAPTER 81. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETS
81.1. STORING A SECRET IN A USER VAULT
81.2. RETRIEVING A SECRET FROM A USER VAULT
81.3. ADDITIONAL RESOURCES

CHAPTER 82. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS
82.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM USING ANSIBLE
82.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM USING ANSIBLE
82.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM USING ANSIBLE

CHAPTER 83. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS
83.1. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT
83.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE INSTANCE
83.3. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED
83.4. ADDITIONAL RESOURCES

CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

84.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT IN IDM USING ANSIBLE
84.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING ANSIBLE
84.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT USING ANSIBLE
84.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING ANSIBLE
84.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED USING ANSIBLE
84.6. ADDITIONAL RESOURCES

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE
85.1. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM USING AN ANSIBLE PLAYBOOK
85.2. ENSURING THE PRESENCE OF MULTIPLE SERVICES IN IDM ON AN IDM CLIENT USING A SINGLE
ANSIBLE TASK
85.3. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM ON A NON-IDM CLIENT USING AN ANSIBLE
PLAYBOOK
85.4. ENSURING THE PRESENCE OF AN HTTP SERVICE ON AN IDM CLIENT WITHOUT DNS USING AN

648
650
653
654
656
657
658
659
661

664
664
665

667
667
668
669
669
669
670
670

672
672
673
674

675
675
676
678

681
681

683
683
684

685
686
688
689
691

694
697

698
698

700

701

Table of Contents

15

. .

. .

. .

. .

. .

. .

ANSIBLE PLAYBOOK
85.5. ENSURING THE PRESENCE OF AN EXTERNALLY SIGNED CERTIFICATE IN AN IDM SERVICE ENTRY
USING AN ANSIBLE PLAYBOOK
85.6. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS, GROUPS, HOSTS, OR HOST GROUPS TO
CREATE A KEYTAB OF A SERVICE
85.7. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS, GROUPS, HOSTS, OR HOST GROUPS TO
RETRIEVE A KEYTAB OF A SERVICE
85.8. ENSURING THE PRESENCE OF A KERBEROS PRINCIPAL ALIAS OF A SERVICE USING AN ANSIBLE
PLAYBOOK
85.9. ENSURING THE ABSENCE OF AN HTTP SERVICE IN IDM USING AN ANSIBLE PLAYBOOK
85.10. ADDITIONAL RESOURCES

CHAPTER 86. ENABLING AD USERS TO ADMINISTER IDM
86.1. ID OVERRIDES FOR AD USERS
86.2. USING ID OVERRIDES TO ENABLE AD USERS TO ADMINISTER IDM
86.3. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
86.4. VERIFYING THAT AN AD USER CAN PERFORM CORRECT COMMANDS IN THE IDM CLI

CHAPTER 87. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES

87.1. HOW DOMAIN RESOLUTION ORDER WORKS
87.2. SETTING THE GLOBAL DOMAIN RESOLUTION ORDER ON AN IDM SERVER
87.3. SETTING THE DOMAIN RESOLUTION ORDER FOR AN ID VIEW ON AN IDM SERVER
87.4. SETTING THE DOMAIN RESOLUTION ORDER IN SSSD ON AN IDM CLIENT
87.5. ADDITIONAL RESOURCES

CHAPTER 88. ENABLING AUTHENTICATION USING AD USER PRINCIPAL NAMES IN IDM
88.1. USER PRINCIPAL NAMES IN AN AD FOREST TRUSTED BY IDM
88.2. ENSURING THAT AD UPNS ARE UP-TO-DATE IN IDM
88.3. GATHERING TROUBLESHOOTING DATA FOR AD UPN AUTHENTICATION ISSUES

CHAPTER 89. USING CANONICALIZED DNS HOST NAMES IN IDM
89.1. ADDING AN ALIAS TO A HOST PRINCIPAL
89.2. ENABLING CANONICALIZATION OF HOST NAMES IN SERVICE PRINCIPALS ON CLIENTS
89.3. OPTIONS FOR USING HOST NAMES WITH DNS HOST NAME CANONICALIZATION ENABLED

CHAPTER 90. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS
90.1. HOW IDM ENSURES THAT GLOBAL FORWARDERS FROM /ETC/RESOLV.CONF ARE NOT REMOVED
BY NETWORKMANAGER
90.2. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
90.3. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
90.4. THE ACTION: MEMBER OPTION IN IPADNSCONFIG ANSIBLE-FREEIPA MODULES
90.5. DNS FORWARD POLICIES IN IDM
90.6. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT THE FORWARD FIRST POLICY IS SET IN IDM DNS
GLOBAL CONFIGURATION
90.7. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT GLOBAL FORWARDERS ARE DISABLED IN IDM DNS

90.8. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT SYNCHRONIZATION OF FORWARD AND REVERSE
LOOKUP ZONES IS DISABLED IN IDM DNS

CHAPTER 91. MANAGING DNS ZONES IN IDM
91.1. SUPPORTED DNS ZONE TYPES
91.2. ADDING A PRIMARY DNS ZONE IN IDM WEB UI
91.3. ADDING A PRIMARY DNS ZONE IN IDM CLI
91.4. REMOVING A PRIMARY DNS ZONE IN IDM WEB UI
91.5. REMOVING A PRIMARY DNS ZONE IN IDM CLI

702

704

706

708

710
712
714

715
715
715
716
718

719
719

720
720
722
722

724
724
724
725

727
727
727
728

729

729
730
732
734
735

736

738

739

741
741
742
743
744
744

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

16

. .

. .

. .

. .

. .

91.6. DNS CONFIGURATION PRIORITIES
91.7. CONFIGURATION ATTRIBUTES OF PRIMARY IDM DNS ZONES
91.8. EDITING THE CONFIGURATION OF A PRIMARY DNS ZONE IN IDM WEB UI
91.9. EDITING THE CONFIGURATION OF A PRIMARY DNS ZONE IN IDM CLI
91.10. ZONE TRANSFERS IN IDM
91.11. ENABLING ZONE TRANSFERS IN IDM WEB UI
91.12. ENABLING ZONE TRANSFERS IN IDM CLI
91.13. ADDITIONAL RESOURCES

CHAPTER 92. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES
92.1. SUPPORTED DNS ZONE TYPES
92.2. CONFIGURATION ATTRIBUTES OF PRIMARY IDM DNS ZONES
92.3. USING ANSIBLE TO CREATE A PRIMARY ZONE IN IDM DNS
92.4. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF A PRIMARY DNS ZONE IN IDM WITH
MULTIPLE VARIABLES
92.5. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF A ZONE FOR REVERSE DNS LOOKUP
WHEN AN IP ADDRESS IS GIVEN

CHAPTER 93. MANAGING DNS LOCATIONS IN IDM
93.1. DNS-BASED SERVICE DISCOVERY
93.2. DEPLOYMENT CONSIDERATIONS FOR DNS LOCATIONS
93.3. DNS TIME TO LIVE (TTL)
93.4. CREATING DNS LOCATIONS USING THE IDM WEB UI
93.5. CREATING DNS LOCATIONS USING THE IDM CLI
93.6. ASSIGNING AN IDM SERVER TO A DNS LOCATION USING THE IDM WEB UI
93.7. ASSIGNING AN IDM SERVER TO A DNS LOCATION USING THE IDM CLI
93.8. CONFIGURING AN IDM CLIENT TO USE IDM SERVERS IN THE SAME LOCATION
93.9. ADDITIONAL RESOURCES

CHAPTER 94. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM
94.1. DNS-BASED SERVICE DISCOVERY
94.2. DEPLOYMENT CONSIDERATIONS FOR DNS LOCATIONS
94.3. DNS TIME TO LIVE (TTL)
94.4. USING ANSIBLE TO ENSURE AN IDM LOCATION IS PRESENT
94.5. USING ANSIBLE TO ENSURE AN IDM LOCATION IS ABSENT
94.6. ADDITIONAL RESOURCES

CHAPTER 95. MANAGING DNS FORWARDING IN IDM
95.1. THE TWO ROLES OF AN IDM DNS SERVER
95.2. DNS FORWARD POLICIES IN IDM
95.3. ADDING A GLOBAL FORWARDER IN THE IDM WEB UI
95.4. ADDING A GLOBAL FORWARDER IN THE CLI
95.5. ADDING A DNS FORWARD ZONE IN THE IDM WEB UI
95.6. ADDING A DNS FORWARD ZONE IN THE CLI
95.7. ESTABLISHING A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
95.8. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
95.9. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
95.10. ENSURING DNS GLOBAL FORWARDERS ARE DISABLED IN IDM USING ANSIBLE
95.11. ENSURING THE PRESENCE OF A DNS FORWARD ZONE IN IDM USING ANSIBLE
95.12. ENSURING A DNS FORWARD ZONE HAS MULTIPLE FORWARDERS IN IDM USING ANSIBLE
95.13. ENSURING A DNS FORWARD ZONE IS DISABLED IN IDM USING ANSIBLE
95.14. ENSURING THE ABSENCE OF A DNS FORWARD ZONE IN IDM USING ANSIBLE

CHAPTER 96. MANAGING DNS RECORDS IN IDM

744
745
747
748
749
749
750
751

752
752
753
755

757

759

762
762
763
763
763
764
765
766
767
768

769
769
770
770
770
772
773

774
774
775
775
778
779
782
783
785
786
788
789
791

793
795

797

Table of Contents

17

. .

. .

. .

. .

. .

. .

. .

96.1. DNS RECORDS IN IDM
96.2. ADDING DNS RESOURCE RECORDS IN THE IDM WEB UI
96.3. ADDING DNS RESOURCE RECORDS FROM THE IDM CLI
96.4. COMMON IPA DNSRECORD-* OPTIONS
96.5. DELETING DNS RECORDS IN THE IDM WEB UI
96.6. DELETING AN ENTIRE DNS RECORD IN THE IDM WEB UI
96.7. DELETING DNS RECORDS IN THE IDM CLI
96.8. ADDITIONAL RESOURCES

CHAPTER 97. UPDATING DNS RECORDS SYSTEMATICALLY WHEN USING EXTERNAL DNS
97.1. UPDATING EXTERNAL DNS RECORDS WITH GUI
97.2. UPDATING EXTERNAL DNS RECORDS USING NSUPDATE
97.3. SENDING AN NSUPDATE REQUEST SECURED USING TSIG
97.4. SENDING AN NSUPDATE REQUEST SECURED USING GSS-TSIG
97.5. ADDITIONAL RESOURCES

CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM
98.1. DNS RECORDS IN IDM
98.2. COMMON IPA DNSRECORD-* OPTIONS
98.3. ENSURING THE PRESENCE OF A AND AAAA DNS RECORDS IN IDM USING ANSIBLE
98.4. ENSURING THE PRESENCE OF A AND PTR DNS RECORDS IN IDM USING ANSIBLE
98.5. ENSURING THE PRESENCE OF MULTIPLE DNS RECORDS IN IDM USING ANSIBLE
98.6. ENSURING THE PRESENCE OF MULTIPLE CNAME RECORDS IN IDM USING ANSIBLE
98.7. ENSURING THE PRESENCE OF AN SRV RECORD IN IDM USING ANSIBLE

CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE
99.1. CHECKING THAT AN IDM SERVER IS PRESENT BY USING ANSIBLE
99.2. ENSURING THAT AN IDM SERVER IS ABSENT FROM AN IDM TOPOLOGY BY USING ANSIBLE
99.3. ENSURING THE ABSENCE OF AN IDM SERVER DESPITE HOSTING A LAST IDM SERVER ROLE
99.4. ENSURING THAT AN IDM SERVER IS ABSENT BUT NOT NECESSARILY DISCONNECTED FROM OTHER
IDM SERVERS
99.5. ENSURING THAT AN EXISTING IDM SERVER IS HIDDEN USING AN ANSIBLE PLAYBOOK
99.6. ENSURING THAT AN EXISTING IDM SERVER IS VISIBLE BY USING AN ANSIBLE PLAYBOOK
99.7. ENSURING THAT AN EXISTING IDM SERVER HAS AN IDM DNS LOCATION ASSIGNED
99.8. ENSURING THAT AN EXISTING IDM SERVER HAS NO IDM DNS LOCATION ASSIGNED

CHAPTER 100. COLLECTING IDM HEALTHCHECK INFORMATION
100.1. HEALTHCHECK IN IDM
100.2. LOG ROTATION
100.3. CONFIGURING LOG ROTATION USING THE IDM HEALTHCHECK
100.4. CHANGING IDM HEALTHCHECK CONFIGURATION
100.5. CONFIGURING HEALTHCHECK TO CHANGE THE OUTPUT LOGS FORMAT

CHAPTER 101. CHECKING SERVICES USING IDM HEALTHCHECK
101.1. SERVICES HEALTHCHECK TEST
101.2. SCREENING SERVICES USING HEALTHCHECK

CHAPTER 102. VERIFYING YOUR IDM AND AD TRUST CONFIGURATION USING IDM HEALTHCHECK
102.1. IDM AND AD TRUST HEALTHCHECK TESTS
102.2. SCREENING THE TRUST WITH THE HEALTHCHECK TOOL

CHAPTER 103. VERIFYING CERTIFICATES USING IDM HEALTHCHECK
103.1. IDM CERTIFICATES HEALTHCHECK TESTS
103.2. SCREENING CERTIFICATES USING THE HEALTHCHECK TOOL

797
798
799
800
803
804
805
805

806
806
806
807
807
808

809
809
810
812
814
816
818

820

822
822
823
825

827
829
830
831

833

836
836
837
837
838
838

840
840
840

842
842
843

844
844
845

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

18

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 104. VERIFYING SYSTEM CERTIFICATES USING IDM HEALTHCHECK
104.1. SYSTEM CERTIFICATES HEALTHCHECK TESTS
104.2. SCREENING SYSTEM CERTIFICATES USING HEALTHCHECK

CHAPTER 105. CHECKING DISK SPACE USING IDM HEALTHCHECK
105.1. DISK SPACE HEALTHCHECK TEST
105.2. SCREENING DISK SPACE USING THE HEALTHCHECK TOOL

CHAPTER 106. VERIFYING PERMISSIONS OF IDM CONFIGURATION FILES USING HEALTHCHECK
106.1. FILE PERMISSIONS HEALTHCHECK TESTS
106.2. SCREENING CONFIGURATION FILES USING HEALTHCHECK

CHAPTER 107. CHECKING IDM REPLICATION USING HEALTHCHECK
107.1. REPLICATION HEALTHCHECK TESTS
107.2. SCREENING REPLICATION USING HEALTHCHECK

CHAPTER 108. CHECKING DNS RECORDS USING IDM HEALTHCHECK
108.1. DNS RECORDS HEALTHCHECK TEST
108.2. SCREENING DNS RECORDS USING THE HEALTHCHECK TOOL

CHAPTER 109. DEMOTING OR PROMOTING HIDDEN REPLICAS

CHAPTER 110. IDENTITY MANAGEMENT SECURITY SETTINGS
110.1. HOW IDENTITY MANAGEMENT APPLIES DEFAULT SECURITY SETTINGS
110.2. ANONYMOUS LDAP BINDS IN IDENTITY MANAGEMENT
110.3. DISABLING ANONYMOUS BINDS

CHAPTER 111. SETTING UP SAMBA ON AN IDM DOMAIN MEMBER
111.1. PREPARING THE IDM DOMAIN FOR INSTALLING SAMBA ON DOMAIN MEMBERS
111.2. INSTALLING AND CONFIGURING A SAMBA SERVER ON AN IDM CLIENT
111.3. MANUALLY ADDING AN ID MAPPING CONFIGURATION IF IDM TRUSTS A NEW DOMAIN
111.4. ADDITIONAL RESOURCES

CHAPTER 112. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM
112.1. THE BENEFITS OF CONNECTING IDM TO AN EXTERNAL IDP

112.1.1. How IdM incorporates logins via external IdPs
112.2. CREATING A REFERENCE TO AN EXTERNAL IDENTITY PROVIDER
112.3. MANAGING REFERENCES TO EXTERNAL IDPS
112.4. ENABLING AN IDM USER TO AUTHENTICATE VIA AN EXTERNAL IDP
112.5. RETRIEVING AN IDM TICKET-GRANTING TICKET AS AN IDP USER
112.6. LOGGING IN TO AN IDM CLIENT VIA SSH AS AN IDP USER
112.7. LIST OF TEMPLATES FOR EXTERNAL IDENTITY PROVIDERS

CHAPTER 113. IDM INTEGRATION WITH OTHER RED HAT PRODUCTS

CHAPTER 114. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS
114.1. NIS AND ITS BENEFITS
114.2. NIS IN IDM
114.3. NIS NETGROUPS IN IDM
114.4. USING ANSIBLE TO ENSURE THAT A NETGROUP IS PRESENT
114.5. USING ANSIBLE TO ENSURE THAT MEMBERS ARE PRESENT IN A NETGROUP
114.6. USING ANSIBLE TO ENSURE THAT A MEMBER IS ABSENT FROM A NETGROUP
114.7. USING ANSIBLE TO ENSURE THAT A NETGROUP IS ABSENT

CHAPTER 115. MIGRATING FROM NIS TO IDENTITY MANAGEMENT
115.1. ENABLING NIS IN IDM

847
847
848

849
849
850

851
851
852

854
854
854

856
856
856

858

859
859
859
859

861
861

863
865
866

867
867
867
868
871
872
873
874
875

879

880
880
880
881
881

882
883
884

886
886

Table of Contents

19

. .

. .

. .

. .

. .

115.2. MIGRATING USER ENTRIES FROM NIS TO IDM
115.3. MIGRATING USER GROUP FROM NIS TO IDM
115.4. MIGRATING HOST ENTRIES FROM NIS TO IDM
115.5. MIGRATING NETGROUP ENTRIES FROM NIS TO IDM
115.6. MIGRATING AUTOMOUNT MAPS FROM NIS TO IDM

CHAPTER 116. USING AUTOMOUNT IN IDM
116.1. AUTOFS AND AUTOMOUNT IN IDM
116.2. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT IDENTITY MANAGEMENT DOMAIN
116.3. CONFIGURING AUTOMOUNT LOCATIONS AND MAPS IN IDM USING THE IDM CLI
116.4. CONFIGURING AUTOMOUNT ON AN IDM CLIENT
116.5. VERIFYING THAT AN IDM USER CAN ACCESS NFS SHARES ON AN IDM CLIENT

CHAPTER 117. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS
117.1. AUTOFS AND AUTOMOUNT IN IDM
117.2. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT IDENTITY MANAGEMENT DOMAIN
117.3. CONFIGURING AUTOMOUNT LOCATIONS, MAPS, AND KEYS IN IDM BY USING ANSIBLE
117.4. USING ANSIBLE TO ADD IDM USERS TO A GROUP THAT OWNS NFS SHARES
117.5. CONFIGURING AUTOMOUNT ON AN IDM CLIENT
117.6. VERIFYING THAT AN IDM USER CAN ACCESS NFS SHARES ON AN IDM CLIENT

CHAPTER 118. IDM LOG FILES AND DIRECTORIES
118.1. IDM SERVER AND CLIENT LOG FILES AND DIRECTORIES
118.2. DIRECTORY SERVER LOG FILES
118.3. ENABLING AUDIT LOGGING ON AN IDM SERVER
118.4. MODIFYING ERROR LOGGING ON AN IDM SERVER
118.5. THE IDM APACHE SERVER LOG FILES
118.6. CERTIFICATE SYSTEM LOG FILES IN IDM
118.7. KERBEROS LOG FILES IN IDM
118.8. DNS LOG FILES IN IDM
118.9. CUSTODIA LOG FILES IN IDM
118.10. ADDITIONAL RESOURCES

CHAPTER 119. CONFIGURING SINGLE SIGN-ON FOR THE RHEL 8 WEB CONSOLE IN THE IDM DOMAIN
119.1. JOINING A RHEL 8 SYSTEM TO AN IDM DOMAIN USING THE WEB CONSOLE
119.2. LOGGING IN TO THE WEB CONSOLE USING KERBEROS AUTHENTICATION
119.3. ENABLING ADMIN SUDO ACCESS TO DOMAIN ADMINISTRATORS ON THE IDM SERVER

CHAPTER 120. USING CONSTRAINED DELEGATION IN IDM
120.1. CONSTRAINED DELEGATION IN IDENTITY MANAGEMENT
120.2. CONFIGURING A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A SMART CARD TO SSH
TO A REMOTE HOST WITHOUT BEING ASKED TO AUTHENTICATE AGAIN
120.3. USING ANSIBLE TO CONFIGURE A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A
SMART CARD TO SSH TO A REMOTE HOST WITHOUT BEING ASKED TO AUTHENTICATE AGAIN
120.4. CONFIGURING A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A SMART CARD TO RUN
SUDO WITHOUT BEING ASKED TO AUTHENTICATE AGAIN
120.5. USING ANSIBLE TO CONFIGURE A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A
SMART CARD TO RUN SUDO WITHOUT BEING ASKED TO AUTHENTICATE AGAIN
120.6. ADDITIONAL RESOURCES

887
888
889
890
891

893
893
894
895
896
897

899
899
900
901

904
905
905

908
908
909
909

911
912
913
913
913
914
914

915
915
916
917

919
919

920

921

924

926
928

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

20

Table of Contents

21

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

In Identity Management, planned terminology replacements include:

block list replaces blacklist

allow list replaces whitelist

secondary replaces slave

The word master is being replaced with more precise language, depending on the context:

IdM server replaces IdM master

CA renewal server replaces CA renewal master

CRL publisher server replaces CRL master

multi-supplier replaces multi-master

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

22

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

23

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. LOGGING IN TO IDENTITY MANAGEMENT FROM
THE COMMAND LINE

Identity Management (IdM) uses the Kerberos protocol to support single sign-on. Single sign-on means
that the user enters the correct user name and password only once, and then accesses IdM services
without the system prompting for the credentials again.

IMPORTANT

In IdM, the System Security Services Daemon (SSSD) automatically obtains a ticket-
granting ticket (TGT) for a user after the user successfully logs in to the desktop
environment on an IdM client machine with the corresponding Kerberos principal name.
This means that after logging in, the user is not required to use the kinit utility to access
IdM resources.

If you have cleared your Kerberos credential cache or your Kerberos TGT has expired, you need to
request a Kerberos ticket manually to access IdM resources. The following sections present basic user
operations when using Kerberos in IdM.

1.1. USING KINIT TO LOG IN TO IDM MANUALLY

Follow this procedure to use the kinit utility to authenticate to an Identity Management (IdM)
environment manually. The kinit utility obtains and caches a Kerberos ticket-granting ticket (TGT) on
behalf of an IdM user.

NOTE

Only use this procedure if you have destroyed your initial Kerberos TGT or if it has
expired. As an IdM user, when logging onto your local machine you are also automatically
logging in to IdM. This means that after logging in, you are not required to use the kinit
utility to access IdM resources.

Procedure

1. To log in to IdM

Under the user name of the user who is currently logged in on the local system, use kinit
without specifying a user name. For example, if you are logged in as example_user on the
local system:

[example_user@server ~]$ kinit
Password for example_user@EXAMPLE.COM:
[example_user@server ~]$

If the user name of the local user does not match any user entry in IdM, the authentication
attempt fails:

[example_user@server ~]$ kinit
kinit: Client 'example_user@EXAMPLE.COM' not found in Kerberos database while
getting initial credentials

Using a Kerberos principal that does not correspond to your local user name, pass the
required user name to the kinit utility. For example, to log in as the admin user:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

24

[example_user@server ~]$ kinit admin
Password for admin@EXAMPLE.COM:
[example_user@server ~]$

2. Optionally, to verify that the login was successful, use the klist utility to display the cached TGT.
In the following example, the cache contains a ticket for the example_user principal, which
means that on this particular host, only example_user is currently allowed to access IdM
services:

$ klist
Ticket cache: KEYRING:persistent:0:0
Default principal: example_user@EXAMPLE.COM

Valid starting Expires Service principal
11/10/2019 08:35:45 11/10/2019 18:35:45 krbtgt/EXAMPLE.COM@EXAMPLE.COM

1.2. DESTROYING A USER’S ACTIVE KERBEROS TICKET

Follow this procedure to clear the credentials cache that contains the user’s active Kerberos ticket.

Procedure

1. To destroy your Kerberos ticket:

[example_user@server ~]$ kdestroy

2. Optionally, to check that the Kerberos ticket has been destroyed:

[example_user@server ~]$ klist
klist: Credentials cache keyring 'persistent:0:0' not found

1.3. CONFIGURING AN EXTERNAL SYSTEM FOR KERBEROS
AUTHENTICATION

Follow this procedure to configure an external system so that Identity Management (IdM) users can log
in to IdM from the external system using their Kerberos credentials.

Enabling Kerberos authentication on external systems is especially useful when your infrastructure
includes multiple realms or overlapping domains. It is also useful if the system has not been enrolled into
any IdM domain through ipa-client-install.

To enable Kerberos authentication to IdM from a system that is not a member of the IdM domain, define
an IdM-specific Kerberos configuration file on the external system.

Prerequisites

The krb5-workstation package is installed on the external system.
To find out whether the package is installed, use the following CLI command:

yum list installed krb5-workstation
Installed Packages
krb5-workstation.x86_64 1.16.1-19.el8 @BaseOS

CHAPTER 1. LOGGING IN TO IDENTITY MANAGEMENT FROM THE COMMAND LINE

25

Procedure

1. Copy the /etc/krb5.conf file from the IdM server to the external system. For example:

scp /etc/krb5.conf root@externalsystem.example.com:/etc/krb5_ipa.conf

WARNING

Do not overwrite the existing krb5.conf file on the external system.

2. On the external system, set the terminal session to use the copied IdM Kerberos configuration
file:

$ export KRB5_CONFIG=/etc/krb5_ipa.conf

The KRB5_CONFIG variable exists only temporarily until you log out. To prevent this loss,
export the variable with a different file name.

3. Copy the Kerberos configuration snippets from the /etc/krb5.conf.d/ directory to the external
system.

Users on the external system can now use the kinit utility to authenticate against the IdM server.

1.4. ADDITIONAL RESOURCES

The krb5.conf(5) man page.

The kinit(1) man page.

The klist(1) man page.

The kdestroy(1) man page.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

26

CHAPTER 2. VIEWING, STARTING AND STOPPING THE
IDENTITY MANAGEMENT SERVICES

Identity Management (IdM) servers are Red Hat Enterprise Linux systems that work as domain
controllers (DCs). A number of different services are running on IdM servers, most notably the
Directory Server, Certificate Authority (CA), DNS, and Kerberos.

2.1. THE IDM SERVICES

There are many different services that can be installed and run on the IdM servers and clients.

List of services hosted by IdM servers

Most of the following services are not strictly required to be installed on the IdM server. For example,
you can install services such as a certificate authority (CA) or DNS server on an external server outside
the IdM domain.

Kerberos

the krb5kdc and kadmin services

IdM uses the Kerberos protocol to support single sign-on. With Kerberos, users only need to present the
correct username and password once and can access IdM services without the system prompting for
credentials again.

Kerberos is divided into two parts:

The krb5kdc service is the Kerberos Authentication service and Key Distribution Center (KDC)
daemon.

The kadmin service is the Kerberos database administration program.

For information about how to authenticate using Kerberos in IdM, see Logging in to Identity
Management from the command line and Logging in to IdM in the Web UI: Using a Kerberos ticket .

LDAP directory server

the dirsrv service

The IdM LDAP directory server instance stores all IdM information, such as information related to
Kerberos, user accounts, host entries, services, policies, DNS, and others. The LDAP directory server
instance is based on the same technology as Red Hat Directory Server . However, it is tuned to IdM-
specific tasks.

Certificate Authority

the pki-tomcatd service

The integrated certificate authority (CA) is based on the same technology as Red Hat Certificate
System. pki is the command-line interface for accessing Certificate System services.

You can also install the server without the integrated CA if you create and provide all required
certificates independently.

For more information, see Planning your CA services .

Domain Name System (DNS)

the named service

CHAPTER 2. VIEWING, STARTING AND STOPPING THE IDENTITY MANAGEMENT SERVICES

27

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-in-the-web-ui-using-a-kerberos-ticket_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/Red_Hat_Directory_Server/11/
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-your-ca-services_planning-identity-management

IdM uses DNS for dynamic service discovery. The IdM client installation utility can use information from
DNS to automatically configure the client machine. After the client is enrolled in the IdM domain, it uses
DNS to locate IdM servers and services within the domain. The BIND (Berkeley Internet Name Domain)
implementation of the DNS (Domain Name System) protocols in Red Hat Enterprise Linux includes the
named DNS server. named-pkcs11 is a version of the BIND DNS server built with native support for the
PKCS#11 cryptographic standard.

For information, see Planning your DNS services and host names .

Apache HTTP Server

the httpd service

The Apache HTTP web server provides the IdM Web UI, and also manages communication between
the Certificate Authority and other IdM services.

Samba / Winbind

smb and winbind services

Samba implements the Server Message Block (SMB) protocol, also known as the Common Internet File
System (CIFS) protocol, in Red Hat Enterprise Linux. Via the smb service, the SMB protocol enables you
to access resources on a server, such as file shares and shared printers. If you have configured a Trust
with an Active Directory (AD) environment, the`Winbind` service manages communication between IdM
servers and AD servers.

One-time password (OTP) authentication

the ipa-otpd services

One-time passwords (OTP) are passwords that are generated by an authentication token for only one
session, as part of two-factor authentication. OTP authentication is implemented in Red Hat Enterprise
Linux via the ipa-otpd service.

For more information, see Logging in to the Identity Management Web UI using one time passwords .

OpenDNSSEC

the ipa-dnskeysyncd service

OpenDNSSEC is a DNS manager that automates the process of keeping track of DNS security
extensions (DNSSEC) keys and the signing of zones. The ipa-dnskeysyncd service manages
synchronization between the IdM Directory Server and OpenDNSSEC.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-your-dns-services-and-host-names-planning-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-the-ipa-web-ui-using-one-time-passwords_configuring-and-managing-idm

List of services hosted by IdM clients

System Security Services Daemon: the sssd service

The System Security Services Daemon (SSSD) is the client-side application that manages user
authentication and caching credentials. Caching enables the local system to continue normal
authentication operations if the IdM server becomes unavailable or if the client goes offline.

For more information, see Understanding SSSD and its benefits .

Certmonger: the certmonger service

The certmonger service monitors and renews the certificates on the client. It can request new
certificates for the services on the system.

For more information, see Obtaining an IdM certificate for a service using certmonger .

CHAPTER 2. VIEWING, STARTING AND STOPPING THE IDENTITY MANAGEMENT SERVICES

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_authentication_and_authorization_in_rhel/understanding-sssd-and-its-benefits_configuring-authentication-and-authorization-in-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-certmonger_configuring-and-managing-idm

2.2. VIEWING THE STATUS OF IDM SERVICES

To view the status of the IdM services that are configured on your IdM server, run the ipactl status
command:

[root@server ~]# ipactl status
Directory Service: RUNNING
krb5kdc Service: RUNNING
kadmin Service: RUNNING
named Service: RUNNING
httpd Service: RUNNING
pki-tomcatd Service: RUNNING
smb Service: RUNNING
winbind Service: RUNNING
ipa-otpd Service: RUNNING
ipa-dnskeysyncd Service: RUNNING
ipa: INFO: The ipactl command was successful

The output of the ipactl status command on your server depends on your IdM configuration. For
example, if an IdM deployment does not include a DNS server, the named service is not present in the
list.

NOTE

You cannot use the IdM web UI to view the status of all the IdM services running on a
particular IdM server. Kerberized services running on different servers can be viewed in
the Identity → Services tab of the IdM web UI.

You can start or stop the entire server, or an individual service only.

To start, stop, or restart the entire IdM server, see:

Starting and stopping the entire Identity Management server

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

30

To start, stop, or restart an individual IdM service, see:

Starting and stopping an individual Identity Management service

To display the version of IdM software, see:

Methods for displaying IdM software version

2.3. STARTING AND STOPPING THE ENTIRE IDENTITY MANAGEMENT
SERVER

Use the ipa systemd service to stop, start, or restart the entire IdM server along with all the installed
services. Using the systemctl utility to control the ipa systemd service ensures all services are stopped,
started, or restarted in the appropriate order. The ipa systemd service also upgrades the RHEL IdM
configuration before starting the IdM services, and it uses the proper SELinux contexts when
administrating with IdM services. You do not need to have a valid Kerberos ticket to run the systemctl
ipa commands.

ipa systemd service commands

To start the entire IdM server:

systemctl start ipa

To stop the entire IdM server:

systemctl stop ipa

To restart the entire IdM server:

systemctl restart ipa

To show the status of all the services that make up IdM, use the ipactl utility:

ipactl status

IMPORTANT

Do not directly use the ipactl utility to start, stop, or restart IdM services. Use the
systemctl ipa commands instead, which call the ipactl utility in a predictable
environment.

You cannot use the IdM web UI to perform the ipactl commands.

2.4. STARTING AND STOPPING AN INDIVIDUAL IDENTITY
MANAGEMENT SERVICE

Changing IdM configuration files manually is generally not recommended. However, certain situations
require that an administrator performs a manual configuration of specific services. In such situations, use
the systemctl utility to stop, start, or restart an individual IdM service.

For example, use systemctl after customizing the Directory Server behavior, without modifying the
other IdM services:

CHAPTER 2. VIEWING, STARTING AND STOPPING THE IDENTITY MANAGEMENT SERVICES

31

systemctl restart dirsrv@REALM-NAME.service

Also, when initially deploying an IdM trust with Active Directory, modify the /etc/sssd/sssd.conf file,
adding:

Specific parameters to tune the timeout configuration options in an environment where remote
servers have a high latency

Specific parameters to tune the Active Directory site affinity

Overrides for certain configuration options that are not provided by the global IdM settings

To apply the changes you have made in the /etc/sssd/sssd.conf file:

systemctl restart sssd.service

Running systemctl restart sssd.service is required because the System Security Services Daemon
(SSSD) does not automatically re-read or re-apply its configuration.

Note that for changes that affect IdM identity ranges, a complete server reboot is recommended.

IMPORTANT

To restart multiple IdM domain services, always use systemctl restart ipa. Because of
dependencies between the services installed with the IdM server, the order in which they
are started and stopped is critical. The ipa systemd service ensures that the services are
started and stopped in the appropriate order.

Useful systemctl commands

To start a particular IdM service:

systemctl start name.service

To stop a particular IdM service:

systemctl stop name.service

To restart a particular IdM service:

systemctl restart name.service

To view the status of a particular IdM service:

systemctl status name.service

IMPORTANT

You cannot use the IdM web UI to start or stop the individual services running on IdM
servers. You can only use the web UI to modify the settings of a Kerberized service by
navigating to Identity → Services and selecting the service.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

32

Additional resources

Starting and stopping the entire Identity Management server

2.5. METHODS FOR DISPLAYING IDM SOFTWARE VERSION

You can display the IdM version number with:

The IdM WebUI

ipa commands

rpm commands

Displaying version through the WebUI

In the IdM WebUI, the software version can be displayed by choosing About from the username
menu at the upper-right.

Displaying version with ipa commands

From the command line, use the ipa --version command.

[root@server ~]# ipa --version
VERSION: 4.8.0, API_VERSION: 2.233

Displaying version with rpm commands

If IdM services are not operating properly, you can use the rpm utility to determine the version
number of the ipa-server package that is currently installed.

[root@server ~]# rpm -q ipa-server
ipa-server-4.8.0-11.module+el8.1.0+4247+9f3fd721.x86_64

CHAPTER 2. VIEWING, STARTING AND STOPPING THE IDENTITY MANAGEMENT SERVICES

33

CHAPTER 3. INTRODUCTION TO THE IDM COMMAND-LINE
UTILITIES

Learn more about the basics of using the Identity Management (IdM) command-line utilities.

Prerequisites

Installed and accessible IdM server.
For details, see Installing Identity Management .

To use the IPA command-line interface, authenticate to IdM with a valid Kerberos ticket.
For details about obtaining a valid Kerberos ticket, see Logging in to Identity Management from
the command line.

3.1. WHAT IS THE IPA COMMAND LINE INTERFACE

The IPA command-line interface (CLI) is the basic command-line interface for Identity Management
(IdM) administration.

It supports a lot of subcommands for managing IdM, such as the ipa user-add command to add a new
user.

IPA CLI allows you to:

Add, manage, or remove users, groups, hosts and other objects in the network.

Manage certificates.

Search entries.

Display and list objects.

Set access rights.

Get help with the correct command syntax.

3.2. WHAT IS THE IPA HELP

The IPA help is a built-in documentation system for the IdM server.

The IPA command-line interface (CLI) generates available help topics from loaded IdM plugin modules.
To use the IPA help utility, you must:

Have an IdM server installed and running.

Be authenticated with a valid Kerberos ticket.

Entering the ipa help command without options displays information about basic help usage and the
most common command examples.

You can use the following options for different ipa help use cases:

$ ipa help [TOPIC | COMMAND | topics | commands]

[] — Brackets mean that all parameters are optional and you can write just ipa help and the

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

34

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm

[] — Brackets mean that all parameters are optional and you can write just ipa help and the
command will be executed.

| — The pipe character means or. Therefore, you can specify a TOPIC, a COMMAND, or topics,
or commands, with the basic ipa help command:

topics — You can run the command ipa help topics to display a list of topics that are
covered by the IPA help, such as user, cert, server and many others.

TOPIC — The TOPIC with capital letters is a variable. Therefore, you can specify a particular
topic, for example, ipa help user.

commands — You can enter the command ipa help commands to display a list of
commands which are covered by the IPA help, for example, user-add, ca-enable, server-
show and many others.

COMMAND — The COMMAND with capital letters is a variable. Therefore, you can specify a
particular command, for example, ipa help user-add.

3.3. USING IPA HELP TOPICS

The following procedure describes how to use the IPA help in the command-line interface.

Procedure

1. Open a terminal and connect to the IdM server.

2. Enter ipa help topics to display a list of topics covered by help.

$ ipa help topics

3. Select one of the topics and create a command according to the following pattern: ipa help
[topic_name]. Instead of the topic_name string, add one of the topics you listed in the previous
step.
In the example, we use the following topic: user

$ ipa help user

4. If the IPA help output is too long and you cannot see the whole text, use the following syntax:

$ ipa help user | less

You can then scroll down and read the whole help.

The IPA CLI displays a help page for the user topic. After reading the overview, you can see many
examples with patterns for working with topic commands.

3.4. USING IPA HELP COMMANDS

The following procedure describes how to create IPA help commands in the command-line interface.

Procedure

1. Open a terminal and connect to the IdM server.

CHAPTER 3. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES

35

2. Enter ipa help commands to display a list of commands covered by help.

$ ipa help commands

3. Select one of the commands and create a help command according to the following pattern: ipa
help <COMMAND>. Instead of the <COMMAND> string, add one of the commands you listed in
the previous step.

$ ipa help user-add

Additional resources

The ipa man page.

3.5. STRUCTURE OF IPA COMMANDS

The IPA CLI distinguishes the following types of commands:

Built-in commands — Built-in commands are all available in the IdM server.

Plug-in provided commands

The structure of IPA commands allows you to manage various types of objects. For example:

Users,

Hosts,

DNS records,

Certificates,

and many others.

For most of these objects, the IPA CLI includes commands to:

Add (add)

Modify (mod)

Delete (del)

Search (find)

Display (show)

Commands have the following structure:

ipa user-add, ipa user-mod, ipa user-del, ipa user-find, ipa user-show

ipa host-add, ipa host-mod, ipa host-del, ipa host-find, ipa host-show

ipa dnsrecord-add, ipa dnsrecord-mod, ipa dnsrecord-del, ipa dnsrecord-find, ipa dnrecord-show

You can create a user with the ipa user-add [options], where [options] are optional. If you use just the
ipa user-add command, the script asks you for details one by one.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

36

To change an existing object, you need to define the object, therefore the command also includes an
object: ipa user-mod USER_NAME [options].

3.6. USING AN IPA COMMAND TO ADD A USER ACCOUNT TO IDM

The following procedure describes how to add a new user to the Identity Management (IdM) database
using the command line.

Prerequisites

You need to have administrator privileges to add user accounts to the IdM server.

Procedure

1. Open a terminal and connect to the IdM server.

2. Enter the command for adding a new user:

$ ipa user-add

The command runs a script that prompts you to provide basic data necessary for creating a user
account.

3. In the First name: field, enter the first name of the new user and press the Enter key.

4. In the Last name: field, enter the last name of the new user and press the Enter key.

5. In the User login [suggested user name]: enter the user name, or just press the Enter key to
accept the suggested user name.
The user name must be unique for the whole IdM database. If an error occurs because that user
name already exists, repeat the process with the ipa user-add command and use a different,
unique user name.

After you add the user name, the user account is added to the IdM database and the IPA command line
interface (CLI) prints the following output:

Added user "euser"

User login: euser
First name: Example
Last name: User
Full name: Example User
Display name: Example User
Initials: EU
Home directory: /home/euser
GECOS: Example User
Login shell: /bin/sh
Principal name: euser@IDM.EXAMPLE.COM
Principal alias: euser@IDM.EXAMPLE.COM
Email address: euser@idm.example.com
UID: 427200006
GID: 427200006

CHAPTER 3. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES

37

Password: False
Member of groups: ipausers
Kerberos keys available: False

NOTE

By default, a user password is not set for the user account. To add a password while
creating a user account, use the ipa user-add command with the following syntax:

$ ipa user-add --first=Example --last=User --password

The IPA CLI then prompts you to add or confirm a user name and password.

If the user has been created already, you can add the password with the ipa user-mod
command.

Additional resources

Run the ipa help user-add command for more information about parameters.

3.7. USING AN IPA COMMAND TO MODIFY A USER ACCOUNT IN IDM

You can change many parameters for each user account. For example, you can add a new password to
the user.

Basic command syntax is different from the user-add syntax because you need to define the existing
user account for which you want to perform changes, for example, add a password.

Prerequisites

You need to have administrator privileges to modify user accounts.

Procedure

1. Open a terminal and connect to the IdM server.

2. Enter the ipa user-mod command, specify the user to modify, and any options, such as --
password for adding a password:

$ ipa user-mod euser --password

The command runs a script where you can add the new password.

3. Enter the new password and press the Enter key.

The IPA CLI prints the following output:

Modified user "euser"

User login: euser
First name: Example
Last name: User
Home directory: /home/euser

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

38

Principal name: euser@IDM.EXAMPLE.COM
Principal alias: euser@IDM.EXAMPLE.COM
Email address: euser@idm.example.com
UID: 427200006
GID: 427200006
Password: True
Member of groups: ipausers
Kerberos keys available: True

The user password is now set for the account and the user can log into IdM.

Additional resources

Run the ipa help user-mod command for more information about parameters.

3.8. HOW TO SUPPLY A LIST OF VALUES TO THE IDM UTILITIES

Identity Management (IdM) stores values for multi-valued attributes in lists.

IdM supports the following methods of supplying multi-valued lists:

Using the same command-line argument multiple times within the same command invocation:

$ ipa permission-add --right=read --permissions=write --permissions=delete ...

Alternatively, you can enclose the list in curly braces, in which case the shell performs the
expansion:

$ ipa permission-add --right={read,write,delete} ...

The examples above show a command permission-add which adds permissions to an object. The object
is not mentioned in the example. Instead of … you need to add the object for which you want to add
permissions.

When you update such multi-valued attributes from the command line, IdM completely overwrites the
previous list of values with a new list. Therefore, when updating a multi-valued attribute, you must
specify the whole new list, not just a single value you want to add.

For example, in the command above, the list of permissions includes reading, writing and deleting. When
you decide to update the list with the permission-mod command, you must add all values, otherwise
those not mentioned will be deleted.

Example 1: — The ipa permission-mod command updates all previously added permissions.

$ ipa permission-mod --right=read --right=write --right=delete ...

or

$ ipa permission-mod --right={read,write,delete} ...

Example 2 — The ipa permission-mod command deletes the --right=delete argument because it is not
included in the command:

$ ipa permission-mod --right=read --right=write ...

CHAPTER 3. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES

39

or

$ ipa permission-mod --right={read,write} ...

3.9. HOW TO USE SPECIAL CHARACTERS WITH THE IDM UTILITIES

When passing command-line arguments that include special characters to the ipa commands, escape
these characters with a backslash (\). For example, common special characters include angle brackets
(< and >), ampersand (&), asterisk (*), or vertical bar (|).

For example, to escape an asterisk (*):

$ ipa certprofile-show certificate_profile --out=exported*profile.cfg

Commands containing unescaped special characters do not work as expected because the shell cannot
properly parse such characters.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

40

CHAPTER 4. SEARCHING IDENTITY MANAGEMENT ENTRIES
FROM THE COMMAND LINE

The following sections describe how to use IPA commands, which helps you to find or show objects.

4.1. OVERVIEW OF LISTING IDM ENTRIES

You can use the ipa *-find commands to help you to search for particular types of IdM entries.

To list all the find commands, use the following ipa help command:

$ ipa help commands | grep find

You may need to check if a particular user is included in the IdM database. You can then list all users with
the following command:

$ ipa user-find

To list user groups whose specified attributes contain a keyword:

$ ipa group-find keyword

For example the ipa group-find admin command lists all groups whose names or descriptions include
string admin:

3 groups matched

 Group name: admins
 Description: Account administrators group
 GID: 427200002

 Group name: editors
 Description: Limited admins who can edit other users
 GID: 427200002

 Group name: trust admins
 Description: Trusts administrators group

When searching user groups, you can also limit the search results to groups that contain a particular
user:

$ ipa group-find --user=user_name

To search for groups that do not contain a particular user:

$ ipa group-find --no-user=user_name

4.2. SHOWING DETAILS FOR A PARTICULAR ENTRY

Use the ipa *-show command to display details about a particular IdM entry.

CHAPTER 4. SEARCHING IDENTITY MANAGEMENT ENTRIES FROM THE COMMAND LINE

41

Procedure

To display details about a host named server.example.com:

$ ipa host-show server.example.com

Host name: server.example.com
Principal name: host/server.example.com@EXAMPLE.COM
...

4.3. ADJUSTING THE SEARCH SIZE AND TIME LIMIT

Some queries, such as requesting a list of IdM users, can return a very large number of entries. By tuning
these search operations, you can improve the overall server performance when running the ipa *-find
commands, such as ipa user-find, and when displaying corresponding lists in the Web UI.

Search size limit

Defines the maximum number of entries returned for a request sent to the server from a client’s CLI
or from a browser accessing the IdM Web UI.
Default: 100 entries.

Search time limit

Defines the maximum time (in seconds) that the server waits for searches to run. Once the search
reaches this limit, the server stops the search and returns the entries discovered in that time.
Default: 2 seconds.

If you set the values to -1, IdM will not apply any limits when searching.

IMPORTANT

Setting search size or time limits too high can negatively affect server performance.

4.3.1. Adjusting the search size and time limit in the command line

The following procedure describes adjusting search size and time limits in the command line:

Globally

For a specific entry

Procedure

1. To display current search time and size limits in CLI, use the ipa config-show command:

$ ipa config-show

Search time limit: 2
Search size limit: 100

2. To adjust the limits globally for all queries, use the ipa config-mod command and add the --
searchrecordslimit and --searchtimelimit options. For example:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

42

$ ipa config-mod --searchrecordslimit=500 --searchtimelimit=5

3. To temporarily adjust the limits only for a specific query, add the --sizelimit or --timelimit
options to the command. For example:

$ ipa user-find --sizelimit=200 --timelimit=120

4.3.2. Adjusting the search size and time limit in the Web UI

The following procedure describes adjusting global search size and time limits in the IdM Web UI.

Procedure

1. Log in to the IdM Web UI.

2. Click IPA Server.

3. On the IPA Server tab, click Configuration.

4. Set the required values in the Search Options area.
Default values are:

Search size limit: 100 entries

Search time limit: 2 seconds

5. Click Save at the top of the page.

CHAPTER 4. SEARCHING IDENTITY MANAGEMENT ENTRIES FROM THE COMMAND LINE

43

CHAPTER 5. ACCESSING THE IDM WEB UI IN A WEB
BROWSER

The IdM (Identity Management) Web UI is a web application for IdM administration, a graphical
alternative to the IdM command line interface (CLI)

5.1. WHAT IS THE IDM WEB UI

The IdM (Identity Management) Web UI is a web application for IdM administration. You can access the
IdM Web UI as:

IdM users: A limited set of operations depending on permissions granted to the user in the IdM
server. Basically, active IdM users can log in to the IdM server and configure their own account.
They cannot change settings of other users or the IdM server settings.

Administrators: Full access rights to the IdM server.

Active Directory users: A set of operations depending on permissions granted to the user.
Active Directory users can now be administrators for Identity Management. For details, see
Enabling AD users to administer IdM .

5.2. WEB BROWSERS SUPPORTED FOR ACCESSING THE WEB UI

Identity Management (IdM) supports the following browsers for connecting to the Web UI:

Mozilla Firefox 38 and later

Google Chrome 46 and later

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

44

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/enabling-ad-users-to-administer-idm_configuring-and-managing-idm

NOTE

You might experience problems accessing the IdM Web UI with a smart card if your
browser attempts to use TLS v1.3:

[ssl:error] [pid 125757:tid 140436077168384] [client 999.999.999.999:99999] AH:
verify client post handshake
[ssl:error] [pid 125757:tid 140436077168384] [client 999.999.999.999:99999]
AH10158: cannot perform post-handshake authentication
[ssl:error] [pid 125757:tid 140436077168384] SSL Library Error: error:14268117:SSL
routines:SSL_verify_client_post_handshake:extension not received

This is because the most recent versions of browsers do not have TLS Post-Handshake
Authentication (PHA) enabled by default, or they do not support PHA. PHA is necessary
to require a TLS client certificate for only a part of a web site, such as when accessing the
IdM Web UI with smart card authentication.

To resolve this issue for Mozilla Firefox 68 and later, enable TLS PHA:

1. Enter about:config in the address bar to access the Mozilla Firefox preferences
menu.

2. Enter security.tls.enable_post_handshake_auth in the search bar.

3. Click the toggle button to set the parameter to true.

To resolve this issue for Chrome, which currently does not support PHA, disable TLS v1.3:

1. Open the /etc/httpd/conf.d/ssl.conf configuration file.

2. Add -TLSv1.3 to the SSLProtocol option:

SSLProtocol all -TLSv1 -TLSv1.1 -TLSv1.3

3. Restart the httpd service:

service httpd restart

Note that IdM manages the ssl.conf file and might overwrite its contents during package
updates. Verify custom settings after updating IdM packages.

5.3. ACCESSING THE WEB UI

The following procedure describes the first logging in to the IdM (Identity Management) Web UI with a
password.

After the first login you can configure your IdM server to authenticate with:

Kerberos ticket
For details, see Kerberos authentication in Identity Management .

Smart card
For details, see Configuring the IdM server for smart card authentication .

One time password (OTP) — this can be combined with password and Kerberos authentication.

CHAPTER 5. ACCESSING THE IDM WEB UI IN A WEB BROWSER

45

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth

For details, see One time password (OTP) authentication in Identity Management .

Procedure

1. Type an IdM server URL into the browser address bar. The name will look similarly to the
following example:

https://server.example.com

You just need to change server.example.com with a DNS name of your IdM server.

This opens the IdM Web UI login screen in your browser.

If the server does not respond or the login screen does not open, check the DNS settings on
the IdM server to which you are connecting.

If you use a self-signed certificate, the browser issues a warning. Check the certificate and
accept the security exception to proceed with the login.
To avoid security exceptions, install a certificate signed by a certificate authority.

2. On the Web UI login screen, enter the administrator account credentials you added during the
IdM server installation.
For details, see Installing an Identity Management server: With integrated DNS, with an
integrated CA.

You can enter your personal account credentials as well if they are already entered in the IdM
server.

3. Click Log in.

After the successful login, you can start configuring the IdM server.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

46

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-ipa-server-with-integrated-dns_installing-identity-management

CHAPTER 5. ACCESSING THE IDM WEB UI IN A WEB BROWSER

47

CHAPTER 6. LOGGING IN TO IDM IN THE WEB UI: USING A
KERBEROS TICKET

Learn more about how to configure your environment to enable Kerberos login to the IdM Web UI and
accessing IdM using Kerberos authentication.

Prerequisites

Installed IdM server in your network environment
For details, see Installing Identity Management in Red Hat Enterprise Linux 8

6.1. KERBEROS AUTHENTICATION IN IDENTITY MANAGEMENT

Identity Management (IdM) uses the Kerberos protocol to support single sign-on. Single sign-on
authentication allows you to provide the correct user name and password only once, and you can then
access Identity Management services without the system prompting for credentials again.

The IdM server provides Kerberos authentication immediately after the installation if the DNS and
certificate settings have been configured properly. For details, see Installing Identity Management .

To use Kerberos authentication on hosts, install:

The IdM client
For details, see Preparing the system for Identity Management client installation .

The krb5conf package

6.2. USING KINIT TO LOG IN TO IDM MANUALLY

Follow this procedure to use the kinit utility to authenticate to an Identity Management (IdM)
environment manually. The kinit utility obtains and caches a Kerberos ticket-granting ticket (TGT) on
behalf of an IdM user.

NOTE

Only use this procedure if you have destroyed your initial Kerberos TGT or if it has
expired. As an IdM user, when logging onto your local machine you are also automatically
logging in to IdM. This means that after logging in, you are not required to use the kinit
utility to access IdM resources.

Procedure

1. To log in to IdM

Under the user name of the user who is currently logged in on the local system, use kinit
without specifying a user name. For example, if you are logged in as example_user on the
local system:

[example_user@server ~]$ kinit
Password for example_user@EXAMPLE.COM:
[example_user@server ~]$

If the user name of the local user does not match any user entry in IdM, the authentication

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

48

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/preparing-the-system-for-ipa-client-installation_installing-identity-management

If the user name of the local user does not match any user entry in IdM, the authentication
attempt fails:

[example_user@server ~]$ kinit
kinit: Client 'example_user@EXAMPLE.COM' not found in Kerberos database while
getting initial credentials

Using a Kerberos principal that does not correspond to your local user name, pass the
required user name to the kinit utility. For example, to log in as the admin user:

[example_user@server ~]$ kinit admin
Password for admin@EXAMPLE.COM:
[example_user@server ~]$

2. Optionally, to verify that the login was successful, use the klist utility to display the cached TGT.
In the following example, the cache contains a ticket for the example_user principal, which
means that on this particular host, only example_user is currently allowed to access IdM
services:

$ klist
Ticket cache: KEYRING:persistent:0:0
Default principal: example_user@EXAMPLE.COM

Valid starting Expires Service principal
11/10/2019 08:35:45 11/10/2019 18:35:45 krbtgt/EXAMPLE.COM@EXAMPLE.COM

6.3. CONFIGURING THE BROWSER FOR KERBEROS
AUTHENTICATION

To enable authentication with a Kerberos ticket, you may need a browser configuration.

The following steps help you to support Kerberos negotiation for accessing the IdM domain.

Each browser supports Kerberos in a different way and needs different set up. The IdM Web UI includes
guidelines for the following browsers:

Firefox

Chrome

Procedure

1. Open the IdM Web UI login dialog in your web browser.

2. Click the link for browser configuration on the Web UI login screen.

CHAPTER 6. LOGGING IN TO IDM IN THE WEB UI: USING A KERBEROS TICKET

49

3. Follow the steps on the configuration page.

After the setup, turn back to the IdM Web UI and click Log in.

6.4. LOGGING IN TO THE WEB UI USING A KERBEROS TICKET

Follow this procedure to log in to the IdM Web UI using a Kerberos ticket-granting ticket (TGT).

The TGT expires at a predefined time. The default time interval is 24 hours and you can change it in the
IdM Web UI.

After the time interval expires, you need to renew the ticket:

Using the kinit command.

Using IdM login credentials in the Web UI login dialog.

Procedure

Open the IdM Web UI.
If Kerberos authentication works correctly and you have a valid ticket, you will be automatically
authenticated and the Web UI opens.

If the ticket is expired, it is necessary to authenticate yourself with credentials first. However,
next time the IdM Web UI will open automatically without opening the login dialog.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

50

If you see an error message Authentication with Kerberos failed, verify that your browser is
configured for Kerberos authentication. See Configuring the browser for Kerberos
authentication.

6.5. CONFIGURING AN EXTERNAL SYSTEM FOR KERBEROS
AUTHENTICATION

Follow this procedure to configure an external system so that Identity Management (IdM) users can log
in to IdM from the external system using their Kerberos credentials.

Enabling Kerberos authentication on external systems is especially useful when your infrastructure
includes multiple realms or overlapping domains. It is also useful if the system has not been enrolled into
any IdM domain through ipa-client-install.

To enable Kerberos authentication to IdM from a system that is not a member of the IdM domain, define
an IdM-specific Kerberos configuration file on the external system.

Prerequisites

The krb5-workstation package is installed on the external system.
To find out whether the package is installed, use the following CLI command:

yum list installed krb5-workstation
Installed Packages
krb5-workstation.x86_64 1.16.1-19.el8 @BaseOS

Procedure

1. Copy the /etc/krb5.conf file from the IdM server to the external system. For example:

scp /etc/krb5.conf root@externalsystem.example.com:/etc/krb5_ipa.conf

CHAPTER 6. LOGGING IN TO IDM IN THE WEB UI: USING A KERBEROS TICKET

51

WARNING

Do not overwrite the existing krb5.conf file on the external system.

2. On the external system, set the terminal session to use the copied IdM Kerberos configuration
file:

$ export KRB5_CONFIG=/etc/krb5_ipa.conf

The KRB5_CONFIG variable exists only temporarily until you log out. To prevent this loss,
export the variable with a different file name.

3. Copy the Kerberos configuration snippets from the /etc/krb5.conf.d/ directory to the external
system.

4. Configure the browser on the external system, as described in Configuring the browser for
Kerberos authentication.

Users on the external system can now use the kinit utility to authenticate against the IdM server.

6.6. WEB UI LOGIN FOR ACTIVE DIRECTORY USERS

To enable Web UI login for Active Directory users, define an ID override for each Active Directory user in
the Default Trust View. For example:

[admin@server ~]$ ipa idoverrideuser-add 'Default Trust View' ad_user@ad.example.com

Additional resources

Using ID views for Active Directory users

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

52

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-id-views-for-active-directory-users_configuring-and-managing-idm

CHAPTER 7. LOGGING IN TO THE IDENTITY MANAGEMENT
WEB UI USING ONE TIME PASSWORDS

Access to IdM Web UI can be secured using several methods. The basic one is password authentication.

To increase the security of password authentication, you can add a second step and require
automatically generated one-time passwords (OTPs). The most common usage is to combine password
connected with the user account and a time limited one time password generated by a hardware or
software token.

The following sections help you to:

Understand how the OTP authentication works in IdM.

Configure OTP authentication on the IdM server.

Configure a RADIUS server for OTP validation in IdM.

Create OTP tokens and synchronize them with the FreeOTP app in your phone.

Authenticate to the IdM Web UI with the combination of user password and one time password.

Re-synchronize tokens in the Web UI.

7.1. PREREQUISITES

Accessing the IdM Web UI in a web browser

7.2. ONE TIME PASSWORD (OTP) AUTHENTICATION IN IDENTITY
MANAGEMENT

One-time passwords bring an additional step to your authentication security. The authentication uses
your password + an automatically generated one time password.

To generate one time passwords, you can use a hardware or software token. IdM supports both software
and hardware tokens.

Identity Management supports the following two standard OTP mechanisms:

The HMAC-Based One-Time Password (HOTP) algorithm is based on a counter. HMAC stands
for Hashed Message Authentication Code.

The Time-Based One-Time Password (TOTP) algorithm is an extension of HOTP to support
time-based moving factor.

IMPORTANT

IdM does not support OTP logins for Active Directory trust users.

7.3. ENABLING THE ONE-TIME PASSWORD IN THE WEB UI

Identity Management (IdM) administrators can enable two-factor authentication (2FA) for IdM users
either globally or individually. The user enters the one-time password (OTP) after their regular password
on the command line or in the dedicated field in the Web UI login dialog, with no space between these

CHAPTER 7. LOGGING IN TO THE IDENTITY MANAGEMENT WEB UI USING ONE TIME PASSWORDS

53

passwords.

Enabling 2FA is not the same as enforcing it. If you use logins based on LDAP-binds, IdM users can still
authenticate by entering a password only. However, if you use krb5-based logins, the 2FA is enforced. In
a future release, Red Hat plans to provide a configuration option for administrators to select one of the
following:

Allow users to set their own tokens. In this case, LDAP-binds are still not going to enforce 2FA
though krb5-based logins are.

Not allow users to set their own tokens. In this case, 2FA is going to be enforced in both LDAP-
binds and krb5-based logins.

Complete this procedure to use the IdM Web UI to enable 2FA for the individual example.user IdM user.

Prerequisites

Administration privileges

Procedure

1. Log in to the IdM Web UI with IdM admin privileges.

2. Open the Identity → Users → Active users tab.

3. Select example.user to open the user settings.

4. In the User authentication types, select Two factor authentication (password + OTP).

5. Click Save.

At this point, the OTP authentication is enabled for the IdM user.

Now you or example.user must assign a new token ID to the example.user account.

7.4. CONFIGURING A RADIUS SERVER FOR OTP VALIDATION IN IDM

To enable the migration of a large deployment from a proprietary one-time password (OTP) solution to
the Identity Management (IdM)-native OTP solution, IdM offers a way to offload OTP validation to a
third-party RADIUS server for a subset of users. The administrator creates a set of RADIUS proxies
where each proxy can only reference a single RADIUS server. If more than one server needs to be
addressed, it is recommended to create a virtual IP solution that points to multiple RADIUS servers.

Such a solution must be built outside of RHEL IdM with the help of the keepalived daemon, for example.
The administrator then assigns one of these proxy sets to a user. As long as the user has a RADIUS proxy
set assigned, IdM bypasses all other authentication mechanisms.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

54

NOTE

IdM does not provide any token management or synchronization support for tokens in
the third-party system.

Complete the procedure to configure a RADIUS server for OTP validation and to add a user to the proxy
server:

Prerequisites

The radius user authentication method is enabled. See Enabling the one-time password in the
Web UI for details.

Procedure

1. Add a RADIUS proxy:

$ ipa radiusproxy-add proxy_name --secret secret

The command prompts you for inserting the required information.

The configuration of the RADIUS proxy requires the use of a common secret between the client
and the server to wrap credentials. Specify this secret in the --secret parameter.

2. Assign a user to the added proxy:

ipa user-mod radiususer --radius=proxy_name

3. If required, configure the user name to be sent to RADIUS:

ipa user-mod radiususer --radius-username=radius_user

As a result, the RADIUS proxy server starts to process the user OTP authentication.

When the user is ready to be migrated to the IdM native OTP system, you can simply remove the
RADIUS proxy assignment for the user.

7.4.1. Changing the timeout value of a KDC when running a RADIUS server in a slow
network

In certain situations, such as running a RADIUS proxy in a slow network, the Identity Management (IdM)
Kerberos Distribution Center (KDC) closes the connection before the RADIUS server responds because
the connection timed out while waiting for the user to enter the token.

To change the timeout settings of the KDC:

1. Change the value of the timeout parameter in the [otp] section in the
/var/kerberos/krb5kdc/kdc.conf file. For example, to set the timeout to 120 seconds:

[otp]
DEFAULT = {
 timeout = 120
 ...
}

CHAPTER 7. LOGGING IN TO THE IDENTITY MANAGEMENT WEB UI USING ONE TIME PASSWORDS

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/accessing_identity_management_services/index#enabling-the-one-time-password-in-the-web-ui_logging-in-to-ipa-in-the-web-ui-using-a-password

2. Restart the krb5kdc service:

systemctl restart krb5kdc

Additional resources

The How to configure FreeRADIUS authentication in FIPS mode Knowledgebase article

7.5. ADDING OTP TOKENS IN THE WEB UI

The following section helps you to add token to the IdM Web UI and to your software token generator.

Prerequisites

Active user account on the IdM server.

Administrator has enabled OTP for the particular user account in the IdM Web UI.

A software device generating OTP tokens, for example FreeOTP.

Procedure

1. Log in to the IdM Web UI with your user name and password.

2. To create the token in your mobile phone, open the Authentication → OTP Tokens tab.

3. Click Add.

4. In the Add OTP token dialog box, leave everything unfilled and click Add.
At this stage, the IdM server creates a token with default parameters at the server and opens a
page with a QR code.

5. Copy the QR code into your mobile phone.

6. Click OK to close the QR code.

Now you can generate one time passwords and log in with them to the IdM Web UI.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

56

https://access.redhat.com/solutions/4650511

7.6. LOGGING INTO THE WEB UI WITH A ONE TIME PASSWORD

Follow this procedure to login for the first time into the IdM Web UI using a one time password (OTP).

Prerequisites

OTP configuration enabled on the Identity Management server for the user account you are
using for the OTP authentication. Administrators as well as users themselves can enable OTP.
To enable the OTP configuration, see Enabling the one time password in the Web UI .

A hardware or software device generating OTP tokens configured.

Procedure

1. In the Identity Management login screen, enter your user name or a user name of the IdM server
administrator account.

2. Add the password for the user name entered above.

3. Generate a one time password on your device.

4. Enter the one time password right after the password (without space).

5. Click Log in.
If the authentication fails, synchronize OTP tokens.

If your CA uses a self-signed certificate, the browser issues a warning. Check the certificate and

CHAPTER 7. LOGGING IN TO THE IDENTITY MANAGEMENT WEB UI USING ONE TIME PASSWORDS

57

If your CA uses a self-signed certificate, the browser issues a warning. Check the certificate and
accept the security exception to proceed with the login.

If the IdM Web UI does not open, verify the DNS configuration of your Identity Management
server.

After successful login, the IdM Web UI appears.

7.7. SYNCHRONIZING OTP TOKENS USING THE WEB UI

If the login with OTP (One Time Password) fails, OTP tokens are not synchronized correctly.

The following text describes token re-synchronization.

Prerequisites

A login screen opened.

A device generating OTP tokens configured.

Procedure

1. On the IdM Web UI login screen, click Sync OTP Token.

2. In the login screen, enter your username and the Identity Management password.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

58

3. Generate one time password and enter it in the First OTP field.

4. Generate another one time password and enter it in the Second OTP field.

5. Optionally, enter the token ID.

6. Click Sync OTP Token.

After the successful synchronization, you can log in to the IdM server.

7.8. CHANGING EXPIRED PASSWORDS

Administrators of Identity Management can enforce you having to change your password at the next
login. It means that you cannot successfully log in to the IdM Web UI until you change the password.

Password expiration can happen during your first login to the Web UI.

If the expiration password dialog appears, follow the instructions in the procedure.

Prerequisites

A login screen opened.

Active account to the IdM server.

Procedure

1. In the password expiration login screen, enter the user name.

2. Add the password for the user name entered above.

3. In the OTP field, generate a one time password, if you use the one time password
authentication.
If you do not have enabled the OTP authentication, leave the field empty.

CHAPTER 7. LOGGING IN TO THE IDENTITY MANAGEMENT WEB UI USING ONE TIME PASSWORDS

59

4. Enter the new password twice for verification.

5. Click Reset Password.

After the successful password change, the usual login dialog displays. Log in with the new password.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

60

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH
SSSD IN IDM

Authentication in an Identity Management (IdM) environment involves many components:

On the IdM client:

The SSSD service.

The Name Services Switch (NSS).

Pluggable Authentication Modules (PAM).

On the IdM server:

The SSSD service.

The IdM Directory Server.

The IdM Kerberos Key Distribution Center (KDC).

If you are authenticating as an Active Directory (AD) user:

The Directory Server on an AD Domain Controller.

The Kerberos server on an AD Domain Controller.

To authenticate users, you must be able to perform the following functions with the SSSD service:

Retrieve user information from the authentication server.

Prompt the user for their credentials, pass those credentials to the authentication server, and
process the outcome.

To learn more about how information flows between the SSSD service and servers that store user
information, so you can troubleshoot failing authentication attempts in your environment, see the
following:

1. Data flow when retrieving IdM user information with SSSD

2. Data flow when retrieving AD user information with SSSD

3. Data flow when authenticating as a user with SSSD in IdM

4. Narrowing the scope of authentication issues

5. SSSD log files and logging levels

6. Enabling detailed logging for SSSD in the sssd.conf file

7. Enabling detailed logging for SSSD with the sssctl command

8. Gathering debugging logs from the SSSD service to troubleshoot authentication issues with an
IdM server

9. Gathering debugging logs from the SSSD service to troubleshoot authentication issues with an

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

61

9. Gathering debugging logs from the SSSD service to troubleshoot authentication issues with an
IdM client

10. Tracking client requests in the SSSD backend

11. Tracking client requests using the log analyzer tool

8.1. DATA FLOW WHEN RETRIEVING IDM USER INFORMATION WITH
SSSD

The following diagram is a simplification of the information flow between an IdM client and an IdM server
during a request for IdM user information with the command getent passwd <idm_user_name>.

1. The getent command triggers the getpwnam call from the libc library.

2. The libc library references the /etc/nsswitch.conf configuration file to check which service is
responsible for providing user information, and discovers the entry sss for the SSSD service.

3. The libc library opens the nss_sss module.

4. The nss_sss module checks the memory-mapped cache for the user information. If the data is
present in the cache, the nss_sss module returns it.

5. If the user information is not in the memory-mapped cache, the request is passed to the SSSD
sssd_nss responder process.

6. The SSSD service checks its cache. If the data is present in the cache and valid, the sssd_nss

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

62

6. The SSSD service checks its cache. If the data is present in the cache and valid, the sssd_nss
responder reads the data from the cache and returns it to the application.

7. If the data is not present in the cache or it is expired, the sssd_nss responder queries the
appropriate back-end process and waits for a reply. The SSSD service uses the IPA backend in
an IdM environment, enabled by the setting id_provider=ipa in the sssd.conf configuration file.

8. The sssd_be back-end process connects to the IdM server and requests the information from
the IdM LDAP Directory Server.

9. The SSSD back-end on the IdM server responds to the SSSD back-end process on the IdM
client.

10. The SSSD back-end on the client stores the resulting data in the SSSD cache and alerts the
responder process that the cache has been updated.

11. The sssd_nss front-end responder process retrieves the information from the SSSD cache.

12. The sssd_nss responder sends the user information to the nss_sss responder, completing the
request.

13. The libc library returns the user information to the application that requested it.

8.2. DATA FLOW WHEN RETRIEVING AD USER INFORMATION WITH
SSSD

If you have established a cross-forest trust between your IdM environment and an Active Directory (AD)
domain, the information flow when retrieving AD user information about an IdM client is very similar to
the information flow when retrieving IdM user information, with the additional step of contacting the AD
user database.

The following diagram is a simplification of the information flow when a user requests information about
an AD user with the command getent passwd <ad_user_name@ad.example.com>. This diagram does
not include the internal details discussed in the Data flow when retrieving IdM user information with
SSSD section. It focuses on the communication between the SSSD service on an IdM client, the SSSD
service on an IdM server, and the LDAP database on an AD Domain Controller.

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

63

1. The IdM client looks to its local SSSD cache for AD user information.

2. If the IdM client does not have the user information, or the information is stale, the SSSD service
on the client contacts the extdom_extop plugin on the IdM server to perform an LDAP
extended operation and requests the information.

3. The SSSD service on the IdM server looks for the AD user information in its local cache.

4. If the IdM server does not have the user information in its SSSD cache, or its information is stale,
it performs an LDAP search to request the user information from an AD Domain Controller.

5. The SSSD service on the IdM server receives the AD user information from the AD domain
controller and stores it in its cache.

6. The extdom_extop plugin receives the information from the SSSD service on the IdM server,
which completes the LDAP extended operation.

7. The SSSD service on the IdM client receives the AD user information from the LDAP extended
operation.

8. The IdM client stores the AD user information in its SSSD cache and returns the information to
the application that requested it.

8.3. DATA FLOW WHEN AUTHENTICATING AS A USER WITH SSSD IN
IDM

Authenticating as a user on an IdM server or client involves the following components:

The service that initiates the authentication request, such as the sshd service.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

64

The Pluggable Authentication Module (PAM) library and its modules.

The SSSD service, its responders, and back-ends.

A smart card reader, if smart card authentication is configured.

The authentication server:

IdM users are authenticated against an IdM Kerberos Key Distribution Center (KDC).

Active Directory (AD) users are authenticated against an AD Domain Controller (DC).

The following diagram is a simplification of the information flow when a user needs to authenticate
during an attempt to log in locally to a host via the SSH service on the command line.

1. The authentication attempt with the ssh command triggers the libpam library.

2. The libpam library references the PAM file in the /etc/pam.d/ directory that corresponds to the
service requesting the authentication attempt. In this example involving authenticating via the
SSH service on the local host, the libpam library checks the /etc/pam.d/system-auth
configuration file and discovers the pam_sss.so entry for the SSSD PAM:

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

65

auth sufficient pam_sss.so

3. To determine which authentication methods are available, the libpam library opens the
pam_sss module and sends an SSS_PAM_PREAUTH request to the sssd_pam PAM
responder of the SSSD service.

4. If smart card authentication is configured, the SSSD service spawns a temporary p11_child
process to check for a smart card and retrieve certificates from it.

5. If smart card authentication is configured for the user, the sssd_pam responder attempts to
match the certificate from the smart card with the user. The sssd_pam responder also
performs a search for the groups that the user belongs to, since group membership might
affect access control.

6. The sssd_pam responder sends an SSS_PAM_PREAUTH request to the sssd_be back-end
responder to see which authentication methods the server supports, such as passwords or 2-
factor authentication. In an IdM environment, where the SSSD service uses the IPA responder,
the default authentication method is Kerberos. For this example, the user authenticates with a
simple Kerberos password.

7. The sssd_be responder spawns a temporary krb5_child process.

8. The krb5_child process contacts the KDC on the IdM server and checks for available
authentication methods.

9. The KDC responds to the request:

a. The krb5_child process evaluates the reply and sends the results back to the sssd_be
backend process.

b. The sssd_be backend process receives the result.

c. The sssd_pam responder receives the result.

d. The pam_sss module receives the result.

10. If password authentication is configured for the user, the pam_sss module prompts the user
for their password. If smart card authentication is configured, the pam_sss module prompts the
user for their smart card PIN.

11. The module sends an SSS_PAM_AUTHENTICATE request with the user name and password,
which travels to:

a. The sssd_pam responder.

b. The sssd_be back-end process.

12. The sssd_be process spawns a temporary krb5_child process to contact the KDC.

13. The krb5_child process attempts to retrieve a Kerberos Ticket Granting Ticket (TGT) from the
KDC with the user name and password the user provided.

14. The krb5_child process receives the result of the authentication attempt.

15. The krb5_child process:

a. Stores the TGT in a credential cache.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

66

b. Returns the authentication result to the sssd_be back-end process.

16. The authentication result travels from the sssd_be process to:

a. The sssd_pam responder.

b. The pam_sss module.

17. The pam_sss module sets an environment variable with the location of the user’s TGT so other
applications can reference it.

8.4. NARROWING THE SCOPE OF AUTHENTICATION ISSUES

To successfully authenticate a user, you must be able to retrieve user information with the SSSD service
from the database that stores user information. The following procedure describes steps to test
different components of the authentication process so you can narrow the scope of authentication
issues when a user is unable to log in.

Procedure

1. Verify that the SSSD service and its processes are running.

[root@client ~]# pstree -a | grep sssd
 |-sssd -i --logger=files
 | |-sssd_be --domain implicit_files --uid 0 --gid 0 --logger=files
 | |-sssd_be --domain example.com --uid 0 --gid 0 --logger=files
 | |-sssd_ifp --uid 0 --gid 0 --logger=files
 | |-sssd_nss --uid 0 --gid 0 --logger=files
 | |-sssd_pac --uid 0 --gid 0 --logger=files
 | |-sssd_pam --uid 0 --gid 0 --logger=files
 | |-sssd_ssh --uid 0 --gid 0 --logger=files
 | `-sssd_sudo --uid 0 --gid 0 --logger=files
 |-sssd_kcm --uid 0 --gid 0 --logger=files

2. Verify that the client can contact the user database server via the IP address.

[user@client ~]$ ping <IP_address_of_the_database_server>

If this step fails, check that your network and firewall settings allow direct communication
between IdM clients and servers. See Using and configuring firewalld .

3. Verify that the client can discover and contact the IdM LDAP server (for IdM users) or AD
domain controller (for AD users) via the fully qualified host name.

[user@client ~]$ dig -t SRV _ldap._tcp.example.com @<name_server>
[user@client ~]$ ping <fully_qualified_host_name_of_the_server>

If this step fails, check your Dynamic Name Service (DNS) settings, including the
/etc/resolv.conf file. See Configuring the order of DNS servers .

NOTE

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

67

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/using-and-configuring-firewalld_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-the-order-of-dns-servers_configuring-and-managing-networking

NOTE

By default, the SSSD service attempts to automatically discover LDAP servers
and AD DCs through DNS service (SRV) records. Alternatively, you can restrict
the SSSD service to use specific servers by setting the following options in the
sssd.conf configuration file:

ipa_server = <fully_qualified_host_name_of_the_server>

ad_server = <fully_qualified_host_name_of_the_server>

ldap_uri = <fully_qualified_host_name_of_the_server>

If you use these options, verify you can contact the servers listed in them.

4. Verify that the client can authenticate to the LDAP server and retrieve user information with
ldapsearch commands.

a. If your LDAP server is an IdM server, like server.example.com, retrieve a Kerberos ticket for
the host and perform the database search authenticating with the host Kerberos principal:

[user@client ~]$ kinit -k 'host/client.example.com@EXAMPLE.COM'
[user@client ~]$ ldapsearch -LLL -Y GSSAPI -h server.example.com -b
“dc=example,dc=com” uid=<user_name>

b. If your LDAP server is an Active Directory (AD) Domain Controller (DC), like
server.ad.example.com, retrieve a Kerberos ticket for the host and perform the database
search authenticating with the host Kerberos principal:

[user@client ~]$ kinit -k 'CLIENT$@AD.EXAMPLE.COM'
[user@client ~]$ ldapsearch -LLL -Y GSSAPI -h server.ad.example.com -b
“dc=example,dc=com” sAMAccountname=<user_name>

c. If your LDAP server is a plain LDAP server, and you have set the ldap_default_bind_dn and
ldap_default_authtok options in the sssd.conf file, authenticate as the same
ldap_default_bind_dn account:

[user@client ~]$ ldapsearch -xLLL -D "cn=ldap_default_bind_dn_value" -W -h
ldapserver.example.com -b “dc=example,dc=com” uid=<user_name>

If this step fails, verify that your database settings allow your host to search the LDAP server.

5. Since the SSSD service uses Kerberos encryption, verify you can obtain a Kerberos ticket as the
user that is unable to log in.

a. If your LDAP server is an IdM server:

[user@client ~]$ kinit <user_name>

b. If LDAP server database is an AD server:

[user@client ~]$ kinit <user_name@AD.EXAMPLE.COM>

If this step fails, verify that your Kerberos server is operating properly, all servers have their

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

68

If this step fails, verify that your Kerberos server is operating properly, all servers have their
times synchronized, and that the user account is not locked.

6. Verify you can retrieve user information about the command line.

[user@client ~]$ getent passwd <user_name>
[user@client ~]$ id <user_name>

If this step fails, verify that the SSSD service on the client can receive information from the user
database:

a. Review errors in the /var/log/messages log file.

b. Enable detailed logging in the SSSD service, collect debugging logs, and review the logs for
indications to the source of the issue.

c. (Optional) Open a Red Hat Technical Support case and provide the troubleshooting
information you have gathered.

7. If you are allowed to run sudo on the host, use the sssctl utility to verify the user is allowed to
log in.

[user@client ~]$ sudo sssctl user-checks -a auth -s ssh <user_name>

If this step fails, verify your authorization settings, such as your PAM configuration, IdM HBAC
rules, and IdM RBAC rules:

a. Ensure that the user’s UID is equal to or higher than UID_MIN, which is defined in the
/etc/login.defs file.

b. Review authorization errors in the /var/log/secure and /var/log/messages log files.

c. Enable detailed logging in the SSSD service, collect debugging logs, and review the logs for
indications to the source of the issue.

d. (Optional) Open a Red Hat Technical Support case and provide the troubleshooting
information you have gathered.

Additional resources

Enabling detailed logging for SSSD in the sssd.conf file

Enabling detailed logging for SSSD with the sssctl command

Gathering debugging logs from the SSSD service to troubleshoot authentication issues with an
IdM server

Gathering debugging logs from the SSSD service to troubleshoot authentication issues with an
IdM client

8.5. SSSD LOG FILES AND LOGGING LEVELS

Each SSSD service logs into its own log file in the /var/log/sssd/ directory. For an IdM server in the
example.com IdM domain, its log files might look like this:

[root@server ~]# ls -l /var/log/sssd/

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

69

total 620
-rw-------. 1 root root 0 Mar 29 09:21 krb5_child.log
-rw-------. 1 root root 14324 Mar 29 09:50 ldap_child.log
-rw-------. 1 root root 212870 Mar 29 09:50 sssd_example.com.log
-rw-------. 1 root root 0 Mar 29 09:21 sssd_ifp.log
-rw-------. 1 root root 0 Mar 29 09:21 sssd_implicit_files.log
-rw-------. 1 root root 0 Mar 29 09:21 sssd.log
-rw-------. 1 root root 219873 Mar 29 10:03 sssd_nss.log
-rw-------. 1 root root 0 Mar 29 09:21 sssd_pac.log
-rw-------. 1 root root 13105 Mar 29 09:21 sssd_pam.log
-rw-------. 1 root root 9390 Mar 29 09:21 sssd_ssh.log
-rw-------. 1 root root 0 Mar 29 09:21 sssd_sudo.log

8.5.1. SSSD log file purposes

krb5_child.log

Log file for the short-lived helper process involved in Kerberos authentication.

ldap_child.log

Log file for the short-lived helper process involved in getting a Kerberos ticket for the
communication with the LDAP server.

sssd_<example.com>.log

For each domain section in the sssd.conf file, the SSSD service logs information about
communication with the LDAP server to a separate log file. For example, in an environment with an
IdM domain named example.com, the SSSD service logs its information in a file named
sssd_example.com.log. If a host is directly integrated with an AD domain named ad.example.com,
information is logged to a file named sssd_ad.example.com.log.

NOTE

If you have an IdM environment and a cross-forest trust with an AD domain,
information about the AD domain is still logged to the log file for the IdM domain.

Similarly, if a host is directly integrated to an AD domain, information about any child
domains is written in the log file for the primary domain.

selinux_child.log

Log file for the short-lived helper process that retrieves and sets SELinux information.

sssd.log

Log file for SSSD monitoring and communicating with its responder and backend processes.

sssd_ifp.log

Log file for the InfoPipe responder, which provides a public D-Bus interface accessible over the
system bus.

sssd_nss.log

Log file for the Name Services Switch (NSS) responder that retrieves user and group information.

sssd_pac.log

Log file for the Microsoft Privilege Attribute Certificate (PAC) responder, which collects the PAC
from AD Kerberos tickets and derives information about AD users from the PAC, which avoids
requesting it directly from AD.

sssd_pam.log

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

70

Log file for the Pluggable Authentication Module (PAM) responder.

sssd_ssh.log

Log file for the SSH responder process.

8.5.2. SSSD logging levels

Setting a debug level also enables all debug levels below it. For example, setting the debug level at 6
also enables debug levels 0 through 5.

Table 8.1. SSSD logging levels

Level Description

0 Fatal failures. Errors that prevent the SSSD service
from starting up or cause it to terminate. This is the
default debug log level for RHEL 8.3 and earlier.

1 Critical failures. Errors that do not terminate the
SSSD service, but at least one major feature is not
working properly.

2 Serious failures. Errors announcing that a particular
request or operation has failed. This is the default
debug log level for RHEL 8.4 and later.

3 Minor failures. Errors that cause the operation
failures captured at level 2.

4 Configuration settings.

5 Function data.

6 Trace messages for operation functions.

7 Trace messages for internal control functions.

8 Contents of function-internal variables.

9 Extremely low-level tracing information.

8.6. ENABLING DETAILED LOGGING FOR SSSD IN THE SSSD.CONF
FILE

By default, the SSSD service in RHEL 8.4 and later only logs serious failures (debug level 2), but it does
not log at the level of detail necessary to troubleshoot authentication issues.

To enable detailed logging persistently across SSSD service restarts, add the option
debug_level=<integer> in each section of the /etc/sssd/sssd.conf configuration file, where the
<integer> value is a number between 0 and 9. Debug levels up to 3 log larger failures, and levels 8 and

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

71

higher provide a large number of detailed log messages. Level 6 is a good starting point for debugging
authentication issues.

Prerequisites

You need the root password to edit the sssd.conf configuration file and restart the SSSD
service.

Procedure

1. Open the /etc/sssd/sssd.conf file in a text editor.

2. Add the debug_level option to every section of the file, and set the debug level to the
verbosity of your choice.

[domain/example.com]
debug_level = 6
id_provider = ipa
...

[sssd]
debug_level = 6
services = nss, pam, ifp, ssh, sudo
domains = example.com

[nss]
debug_level = 6

[pam]
debug_level = 6

[sudo]
debug_level = 6

[ssh]
debug_level = 6

[pac]
debug_level = 6

[ifp]
debug_level = 6

3. Save and close the sssd.conf file.

4. Restart the SSSD service to load the new configuration settings.

[root@server ~]# systemctl restart sssd

Additional resources

SSSD log files and logging levels

8.7. ENABLING DETAILED LOGGING FOR SSSD WITH THE SSSCTL

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

72

8.7. ENABLING DETAILED LOGGING FOR SSSD WITH THE SSSCTL
COMMAND

By default, the SSSD service in RHEL 8.4 and later only logs serious failures (debug level 2), but it does
not log at the level of detail necessary to troubleshoot authentication issues.

You can change the debug level of the SSSD service on the command line with the sssctl debug-level
<integer> command, where the <integer> value is a number between 0 and 9. Debug levels up to 3 log
larger failures, and levels 8 and higher provide a large number of detailed log messages. Level 6 is a
good starting point for debugging authentication issues.

Prerequisites

You need the root password to run the sssctl command.

Procedure

Use the sssctl debug-level command to set the debug level of your choiceto your desired
verbosity.

[root@server ~]# sssctl debug-level 6

Additional resources

SSSD log files and logging levels

8.8. GATHERING DEBUGGING LOGS FROM THE SSSD SERVICE TO
TROUBLESHOOT AUTHENTICATION ISSUES WITH AN IDM SERVER

If you experience issues when attempting to authenticate as an IdM user to an IdM server, enable
detailed debug logging in the SSSD service on the server and gather logs of an attempt to retrieve
information about the user.

Prerequisites

You need the root password to run the sssctl command and restart the SSSD service.

Procedure

1. Enable detailed SSSD debug logging on the IdM server.

[root@server ~]# sssctl debug-level 6

2. Invalidate objects in the SSSD cache for the user that is experiencing authentication issues, so
you do not bypass the LDAP server and retrieve information SSSD has already cached.

[root@server ~]# sssctl cache-expire -u idmuser

3. Minimize the troubleshooting dataset by removing older SSSD logs.

[root@server ~]# sssctl logs-remove

4. Attempt to switch to the user experiencing authentication problems, while gathering

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

73

4. Attempt to switch to the user experiencing authentication problems, while gathering
timestamps before and after the attempt. These timestamps further narrow the scope of the
dataset.

[root@server sssd]# date; su idmuser; date
Mon Mar 29 15:33:48 EDT 2021
su: user idmuser does not exist
Mon Mar 29 15:33:49 EDT 2021

5. (Optional) Lower the debug level if you do not wish to continue gathering detailed SSSD logs.

[root@server ~]# sssctl debug-level 2

6. Review SSSD logs for information about the failed request. For example, reviewing the
/var/log/sssd/sssd_example.com.log file shows that the SSSD service did not find the user in
the cn=accounts,dc=example,dc=com LDAP subtree. This might indicate that the user does
not exist, or exists in another location.

(Mon Mar 29 15:33:48 2021) [sssd[be[example.com]]] [dp_get_account_info_send] (0x0200):
Got request for [0x1][BE_REQ_USER][name=idmuser@example.com]
...
(Mon Mar 29 15:33:48 2021) [sssd[be[example.com]]] [sdap_get_generic_ext_step] (0x0400):
calling ldap_search_ext with [(&(uid=idmuser)(objectclass=posixAccount)(uid=)(&
(uidNumber=)(!(uidNumber=0))))][cn=accounts,dc=example,dc=com].
(Mon Mar 29 15:33:48 2021) [sssd[be[example.com]]] [sdap_get_generic_op_finished]
(0x0400): Search result: Success(0), no errmsg set
(Mon Mar 29 15:33:48 2021) [sssd[be[example.com]]] [sdap_search_user_process] (0x0400):
Search for users, returned 0 results.
(Mon Mar 29 15:33:48 2021) [sssd[be[example.com]]] [sysdb_search_by_name] (0x0400):
No such entry
(Mon Mar 29 15:33:48 2021) [sssd[be[example.com]]] [sysdb_delete_user] (0x0400): Error: 2
(No such file or directory)
(Mon Mar 29 15:33:48 2021) [sssd[be[example.com]]] [sysdb_search_by_name] (0x0400):
No such entry
(Mon Mar 29 15:33:49 2021) [sssd[be[example.com]]]
[ipa_id_get_account_info_orig_done] (0x0080): Object not found, ending request

7. If you are unable to determine the cause of the authentication issue:

a. Collect the SSSD logs you recently generated.

[root@server ~]# sssctl logs-fetch sssd-logs-Mar29.tar

b. Open a Red Hat Technical Support case and provide:

i. The SSSD logs: sssd-logs-Mar29.tar

ii. The console output, including the time stamps and user name, of the request that
corresponds to the logs:

[root@server sssd]# date; id idmuser; date
Mon Mar 29 15:33:48 EDT 2021
id: ‘idmuser’: no such user
Mon Mar 29 15:33:49 EDT 2021

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

74

8.9. GATHERING DEBUGGING LOGS FROM THE SSSD SERVICE TO
TROUBLESHOOT AUTHENTICATION ISSUES WITH AN IDM CLIENT

If you experience issues when attempting to authenticate as an IdM user to an IdM client, verify that you
can retrieve user information about the IdM server. If you cannot retrieve the user information about an
IdM server, you will not be able to retrieve it on an IdM client (which retrieves information from the IdM
server).

After you have confirmed that authentication issues do not originate from the IdM server, gather SSSD
debugging logs from both the IdM server and IdM client.

Prerequisites

The user only has authentication issues on IdM clients, not IdM servers.

You need the root password to run the sssctl command and restart the SSSD service.

Procedure

1. On the client: Open the /etc/sssd/sssd.conf file in a text editor.

2. On the client: Add the ipa_server option to the [domain] section of the file and set it to an IdM
server. This avoids the IdM client autodiscovering other IdM servers, thus limiting this test to just
one client and one server.

[domain/example.com]
ipa_server = server.example.com
...

3. On the client: Save and close the sssd.conf file.

4. On the client: Restart the SSSD service to load the configuration changes.

[root@client ~]# systemctl restart sssd

5. On the server and client: Enable detailed SSSD debug logging.

[root@server ~]# sssctl debug-level 6

[root@client ~]# sssctl debug-level 6

6. On the server and client: Invalidate objects in the SSSD cache for the user experiencing
authentication issues, so you do not bypass the LDAP database and retrieve information SSSD
has already cached.

[root@server ~]# sssctl cache-expire -u idmuser

[root@client ~]# sssctl cache-expire -u idmuser

7. On the server and client: Minimize the troubleshooting dataset by removing older SSSD logs.

[root@server ~]# sssctl logs-remove

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

75

[root@server ~]# sssctl logs-remove

8. On the client: Attempt to switch to the user experiencing authentication problems while
gathering timestamps before and after the attempt. These timestamps further narrow the
scope of the dataset.

[root@client sssd]# date; su idmuser; date
Mon Mar 29 16:20:13 EDT 2021
su: user idmuser does not exist
Mon Mar 29 16:20:14 EDT 2021

9. (Optional) On the server and client: Lower the debug level if you do not wish to continue
gathering detailed SSSD logs.

[root@server ~]# sssctl debug-level 0

[root@client ~]# sssctl debug-level 0

10. On the server and client: Review SSSD logs for information about the failed request.

a. Review the request from the client in the client logs.

b. Review the request from the client in the server logs.

c. Review the result of the request in the server logs.

d. Review the outcome of the client receiving the results of the request from the server.

11. If you are unable to determine the cause of the authentication issue:

a. Collect the SSSD logs you recently generated on the IdM server and IdM client. Label them
according to their hostname or role.

[root@server ~]# sssctl logs-fetch sssd-logs-server-Mar29.tar

[root@client ~]# sssctl logs-fetch sssd-logs-client-Mar29.tar

b. Open a Red Hat Technical Support case and provide:

i. The SSSD debug logs:

A. sssd-logs-server-Mar29.tar from the server

B. sssd-logs-client-Mar29.tar from the client

ii. The console output, including the time stamps and user name, of the request that
corresponds to the logs:

[root@client sssd]# date; su idmuser; date
Mon Mar 29 16:20:13 EDT 2021
su: user idmuser does not exist
Mon Mar 29 16:20:14 EDT 2021

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

76

8.10. TRACKING CLIENT REQUESTS IN THE SSSD BACKEND

SSSD processes requests asynchronously and as messages from different requests are added to the
same log file, you can use the unique request identifier and client ID to track client requests in the back-
end logs. The unique request identifier is added to the debug logs in the form of RID#<integer> and the
client ID in the form [CID #<integer]. This allows you to isolate logs pertaining to an individual request,
and you can track requests from start to finish across log files from multiple SSSD components.

Prerequisites

You have enabled debug logging and a request has been submitted from an IdM client.

You must have root privileges to display the contents of the SSSD log files.

Procedure

1. To review your SSSD log file, open the log file using the less utility. For example, to view the
/var/log/sssd/sssd_example.com.log:

[root@server ~]# less /var/log/sssd/sssd_example.com.log

2. Review the SSSD logs for information about the client request.

(2021-07-26 18:26:37): [be[testidm.com]] [dp_req_destructor] (0x0400): [RID#3] Number of
active DP request: 0
(2021-07-26 18:26:37): [be[testidm.com]] [dp_req_reply_std] (0x1000): [RID#3] DP Request
AccountDomain #3: Returning [Internal Error]: 3,1432158301,GetAccountDomain() not
supported
(2021-07-26 18:26:37): [be[testidm.com]] [dp_attach_req] (0x0400): [RID#4] DP Request
Account #4: REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].
(2021-07-26 18:26:37): [be[testidm.com]] [dp_attach_req] (0x0400): [RID#4] Number of
active DP request: 1

This sample output from an SSSD log file shows the unique identifiers RID#3 and RID#4 for two
different requests.

However, a single client request to the SSSD client interface often triggers multiple requests in the
backend and as a result it is not a 1-to-1 correlation between client request and requests in the backend.
Though the multiple requests in the backend have different RID numbers, each initial backend request
includes the unique client ID so an administrator can track the multiple RID numbers to the single client
request.

The following example shows one client request [sssd.nss CID #1] and the multiple requests generated
in the backend, [RID#5] to [RID#13]:

(2021-10-29 13:24:16): [be[ad.vm]] [dp_attach_req] (0x0400): [RID#5] DP Request [Account #5]:
REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].
(2021-10-29 13:24:16): [be[ad.vm]] [dp_attach_req] (0x0400): [RID#6] DP Request [AccountDomain
#6]: REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].
(2021-10-29 13:24:16): [be[ad.vm]] [dp_attach_req] (0x0400): [RID#7] DP Request [Account #7]:
REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].
(2021-10-29 13:24:17): [be[ad.vm]] [dp_attach_req] (0x0400): [RID#8] DP Request [Initgroups #8]:
REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].
(2021-10-29 13:24:17): [be[ad.vm]] [dp_attach_req] (0x0400): [RID#9] DP Request [Account #9]:
REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

77

(2021-10-29 13:24:17): [be[ad.vm]] [dp_attach_req] (0x0400): [RID#10] DP Request [Account #10]:
REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].
(2021-10-29 13:24:17): [be[ad.vm]] [dp_attach_req] (0x0400): [RID#11] DP Request [Account #11]:
REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].
(2021-10-29 13:24:17): [be[ad.vm]] [dp_attach_req] (0x0400): [RID#12] DP Request [Account #12]:
REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].
(2021-10-29 13:24:17): [be[ad.vm]] [dp_attach_req] (0x0400): [RID#13] DP Request [Account #13]:
REQ_TRACE: New request. [sssd.nss CID #1] Flags [0x0001].

8.11. TRACKING CLIENT REQUESTS USING THE LOG ANALYZER TOOL

The System Security Services Daemon (SSSD) includes a log parsing tool that can be used to track
requests from start to finish across log files from multiple SSSD components.

8.11.1. How the log analyzer tool works

Using the log parsing tool, you can track SSSD requests from start to finish across log files from multiple
SSSD components. You run the analyzer tool using the sssctl analyze command.

The log analyzer tool helps you to troubleshoot NSS and PAM issues in SSSD and more easily review
SSSD debug logs. You can extract and print SSSD logs related only to certain client requests across
SSSD processes.

SSSD tracks user and group identity information (id, getent) separately from user authentication (su,
ssh) information. The client ID (CID) in the NSS responder is independent of the CID in the PAM
responder and you see overlapping numbers when analyzing NSS and PAM requests. Use the --pam
option with the sssctl analyze command to review PAM requests.

NOTE

Requests returned from the SSSD memory cache are not logged and cannot be tracked
by the log analyzer tool.

Additional resources

sudo sssctl analyze request --help

sudo sssctl analyze --help

sssd.conf man page

sssctl man page

8.11.2. Running the log analyzer tool

Follow this procedure to use the log analyzer tool to track client requests in SSSD.

Prerequisites

You must set debug_level to at least 7 in the [$responder] section, and [domain/$domain]
section of the /etc/sssd/sssd.conf file to enable log parsing functionality.

Logs to analyze must be from a compatible version of SSSD built with libtevent chain ID
support, that is SSSD in RHEL 8.5 and later.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

78

Procedure

1. Run the log analyzer tool in list mode to determine the client ID of the request you are tracking,
adding the -v option to display verbose output:

sssctl analyze request list -v

A verbose list of recent client requests made to SSSD is displayed.

NOTE

If analyzing PAM requests, run the sssctl analyze request list command with
the --pam option.

2. Run the log analyzer tool with the show [unique client ID] option to display logs pertaining to
the specified client ID number:

sssctl analyze request show 20

3. If required, you can run the log analyzer tool against log files, for example:

sssctl analyze request --logdir=/tmp/var/log/sssd

Additional resources

sssctl analyze request list --help

sssctl analyze request show --help

sssctl man page.

8.12. ADDITIONAL RESOURCES

General SSSD Debugging Procedures

CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM

79

https://access.redhat.com/solutions/217963

CHAPTER 9. PREPARING YOUR ENVIRONMENT FOR
MANAGING IDM USING ANSIBLE PLAYBOOKS

As a system administrator managing Identity Management (IdM), when working with Red Hat Ansible
Engine, it is good practice to do the following:

Keep a subdirectory dedicated to Ansible playbooks in your home directory, for example
~/MyPlaybooks.

Copy and adapt sample Ansible playbooks from the /usr/share/doc/ansible-freeipa/* and
/usr/share/doc/rhel-system-roles/* directories and subdirectories into your ~/MyPlaybooks
directory.

Include your inventory file in your ~/MyPlaybooks directory.

Using this practice, you can find all your playbooks in one place.

NOTE

You can run your ansible-freeipa playbooks without invoking root privileges on the
managed nodes. Exceptions include playbooks that use the ipaserver, ipareplica,
ipaclient, ipasmartcard_server, ipasmartcard_client and ipabackup ansible-freeipa
roles. These roles require privileged access to directories and the dnf software package
manager.

The playbooks in the Red Hat Enterprise Linux IdM documentation assume the following security
configuration:

The IdM admin is your remote Ansible user on the managed nodes.

You store the IdM admin password encrypted in an Ansible vault.

You have placed the password that protects the Ansible vault in a password file.

You block access to the vault password file to everyone except your local ansible user.

You regularly remove and re-create the vault password file.

Consider also alternative security configurations .

9.1. PREPARING A CONTROL NODE AND MANAGED NODES FOR
MANAGING IDM USING ANSIBLE PLAYBOOKS

Follow this procedure to create the ~/MyPlaybooks directory and configure it so that you can use it to
store and run Ansible playbooks.

Prerequisites

You have installed an IdM server on your managed nodes, server.idm.example.com and
replica.idm.example.com.

You have configured DNS and networking so you can log in to the managed nodes,
server.idm.example.com and replica.idm.example.com, directly from the control node.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

80

You know the IdM admin password.

Procedure

1. Change into the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks

2. Create the ~/MyPlaybooks/ansible.cfg file with the following content:

[defaults]
inventory = /home/your_username/MyPlaybooks/inventory
remote_user = admin

3. Create the ~/MyPlaybooks/inventory file with the following content:

[eu]
server.idm.example.com

[us]
replica.idm.example.com

[ipaserver:children]
eu
us

This configuration defines two host groups, eu and us, for hosts in these locations. Additionally,
this configuration defines the ipaserver host group, which contains all hosts from the eu and us
groups.

4. [Optional] Create an SSH public and private key. To simplify access in your test environment, do
not set a password on the private key:

$ ssh-keygen

5. Copy the SSH public key to the IdM admin account on each managed node:

$ ssh-copy-id admin@server.idm.example.com
$ ssh-copy-id admin@replica.idm.example.com

These commands require that you enter the IdM admin password.

6. Create a password_file file that contains the vault password:

redhat

7. Change the permissions to modify the file:

$ chmod 0600 password_file

8. Create a secret.yml Ansible vault to store the IdM admin password:

a. Configure password_file to store the vault password:

CHAPTER 9. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS

81

$ ansible-vault create --vault-password-file=password_file secret.yml

b. When prompted, enter the content of the secret.yml file:

ipaadmin_password: Secret123

NOTE

To use the encrypted ipaadmin_password in a playbook, you must use the vars_file
directive. For example, a simple playbook to delete an IdM user can look as follows:

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Delete user robot
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: robot
 state: absent

When executing a playbook, instruct Ansible use the vault password to decrypt
ipaadmin_password by adding the --vault-password-file=password_file option. For
example:

ansible-playbook -i inventory --vault-password-file=password_file del-user.yml

WARNING

For security reasons, remove the vault password file at the end of each session, and
repeat steps 7-9 at the start of each new session.

Additional resources

Different methods to provide the credentials required for ansible-freeipa playbooks

Installing an Identity Management server using an Ansible playbook

How to build your inventory

9.2. DIFFERENT METHODS TO PROVIDE THE CREDENTIALS
REQUIRED FOR ANSIBLE-FREEIPA PLAYBOOKS

There are advantages and disadvantages in the different methods for providing the credentials required

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

There are advantages and disadvantages in the different methods for providing the credentials required
for running playbooks that use ansible-freeipa roles and modules.

Storing passwords in plain text in a playbook

Benefits:

Not being prompted all the time you run the playbook.

Easy to implement.

Drawbacks:

Everyone with access to the file can read the password. Setting wrong permissions and sharing
the file, for example in an internal or external repository, can compromise security.

High maintenance work: if the password is changed, it needs to be changed in all playbooks.

Entering passwords interactively when you execute a playbook

Benefits:

No-one can steal the password as it is not stored anywhere.

You can update the password easily.

Easy to implement.

Drawbacks:

If you are using Ansible playbooks in scripts, the requirement to enter the password interactively
can be inconvenient.

Storing passwords in an Ansible vault and the vault password in a file:

Benefits:

The user password is stored encrypted.

You can update the user password easily, by creating a new Ansible vault.

You can update the password file that protects the ansible vault easily, by using the ansible-
vault rekey --new-vault-password-file=NEW_VAULT_PASSWORD_FILE
secret.yml command.

If you are using Ansible playbooks in scripts, it is convenient not to have to enter the password
protecting the Ansible vault interactively.

Drawbacks:

It is vital that the file that contains the sensitive plain text password be protected through file
permissions and other security measures.

Storing passwords in an Ansible vault and entering the vault password interactively

Benefits:

The user password is stored encrypted.

CHAPTER 9. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS

83

No-one can steal the vault password as it is not stored anywhere.

You can update the user password easily, by creating a new Ansible vault.

You can update the vault password easily too, by using the ansible-vault rekey file_name
command.

Drawbacks:

If you are using Ansible playbooks in scripts, the need to enter the vault password interactively
can be inconvenient.

Additional resources

Preparing a control node and managed nodes for managing IdM using Ansible playbooks

What is Zero trust?

Protecting sensitive data with Ansible vault

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

84

https://www.redhat.com/en/topics/security/what-is-zero-trust
https://docs.ansible.com/ansible/latest/vault_guide/index.html

CHAPTER 10. CONFIGURING GLOBAL IDM SETTINGS USING
ANSIBLE PLAYBOOKS

Using the Ansible config module, you can retrieve and set global configuration parameters for Identity
Management (IdM).

Retrieving IdM configuration using an Ansible playbook

Configuring the IdM CA renewal server using an Ansible playbook

Configuring the default shell for IdM users using an Ansible playbook

Configuring a NETBIOS name for an IdM domain by using Ansible

Ensuring that IdM users and groups have SIDs by using Ansible

10.1. RETRIEVING IDM CONFIGURATION USING AN ANSIBLE
PLAYBOOK

The following procedure describes how you can use an Ansible playbook to retrieve information about
the current global IdM configuration.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Open the /usr/share/doc/ansible-freeipa/playbooks/config/retrieve-config.yml Ansible
playbook file for editing:

- name: Playbook to handle global IdM configuration
 hosts: ipaserver
 become: no
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Query IPA global configuration

CHAPTER 10. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

85

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 register: serverconfig

 - debug:
 msg: "{{ serverconfig }}"

2. Adapt the file by changing the following:

The password of IdM administrator.

Other values, if necessary.

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/config/retrieve-config.yml
[...]
TASK [debug]
ok: [server.idm.example.com] => {
 "msg": {
 "ansible_facts": {
 "discovered_interpreter_
 },
 "changed": false,
 "config": {
 "ca_renewal_master_server": "server.idm.example.com",
 "configstring": [
 "AllowNThash",
 "KDC:Disable Last Success"
],
 "defaultgroup": "ipausers",
 "defaultshell": "/bin/bash",
 "emaildomain": "idm.example.com",
 "enable_migration": false,
 "groupsearch": [
 "cn",
 "description"
],
 "homedirectory": "/home",
 "maxhostname": "64",
 "maxusername": "64",
 "pac_type": [
 "MS-PAC",
 "nfs:NONE"
],
 "pwdexpnotify": "4",
 "searchrecordslimit": "100",
 "searchtimelimit": "2",
 "selinuxusermapdefault": "unconfined_u:s0-s0:c0.c1023",
 "selinuxusermaporder": [
 "guest_u:s0$xguest_u:s0$user_

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

86

],
 "usersearch": [
 "uid",
 "givenname",
 "sn",
 "telephonenumber",
 "ou",
 "title"
]
 },
 "failed": false
 }
}

10.2. CONFIGURING THE IDM CA RENEWAL SERVER USING AN
ANSIBLE PLAYBOOK

In an Identity Management (IdM) deployment that uses an embedded certificate authority (CA), the CA
renewal server maintains and renews IdM system certificates. It ensures robust IdM deployments.

For more details on the role of the IdM CA renewal server, see Using IdM CA renewal server .

The following procedure describes how you can use an Ansible playbook to configure the IdM CA
renewal server.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Optional: Identify the current IdM CA renewal server:

$ ipa config-show | grep 'CA renewal'
 IPA CA renewal master: server.idm.example.com

2. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

CHAPTER 10. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

87

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ipa-ca-renewal_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the /usr/share/doc/ansible-freeipa/playbooks/config/set-ca-renewal-master-
server.yml Ansible playbook file for editing:

- name: Playbook to handle global DNS configuration
 hosts: ipaserver
 become: no
 gather_facts: no
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: set ca_renewal_master_server
 ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ca_renewal_master_server: carenewal.idm.example.com

4. Adapt the file by changing:

The password of IdM administrator set by the ipaadmin_password variable.

The name of the CA renewal server set by the ca_renewal_master_server variable.

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/config/set-ca-renewal-master-server.yml

Verification steps

You can verify that the CA renewal server has been changed:

1. Log into ipaserver as IdM administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request the identity of the IdM CA renewal server:

$ ipa config-show | grep ‘CA renewal’
IPA CA renewal master: carenewal.idm.example.com

The output shows the carenewal.idm.example.com server is the new CA renewal server.

10.3. CONFIGURING THE DEFAULT SHELL FOR IDM USERS USING AN
ANSIBLE PLAYBOOK

The shell is a program that accepts and interprets commands. Several shells are available in Red Hat

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

88

The shell is a program that accepts and interprets commands. Several shells are available in Red Hat
Enterprise Linux (RHEL), such as bash, sh, ksh, zsh, fish, and others. Bash, or /bin/bash, is a popular
shell on most Linux systems, and it is normally the default shell for user accounts on RHEL.

The following procedure describes how you can use an Ansible playbook to configure sh, an alternative
shell, as the default shell for IdM users.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Optional: Use the retrieve-config.yml Ansible playbook to identify the current shell for IdM
users. See Retrieving IdM configuration using an Ansible playbook for details.

2. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

3. Open the /usr/share/doc/ansible-freeipa/playbooks/config/ensure-config-options-are-
set.yml Ansible playbook file for editing:

- name: Playbook to ensure some config options are set
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 # Set defaultlogin and maxusername
 - ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 defaultshell: /bin/bash
 maxusername: 64

4. Adapt the file by changing the following:

The password of IdM administrator set by the ipaadmin_password variable.

The default shell of the IdM users set by the defaultshell variable into /bin/sh.

CHAPTER 10. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

89

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/configuring-global-idm-settings-using-ansible-playbooks_using-ansible-to-install-and-manage-idm#retrieving-IdM-configuration-using-an-Ansible-playbook_configuring-global-idm-settings-using-ansible-playbooks

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/config/ensure-config-options-are-set.yml

Verification steps

You can verify that the default user shell has been changed by starting a new session in IdM:

1. Log into ipaserver as IdM administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display the current shell:

[admin@server /]$ echo "$SHELL"
/bin/sh

The logged-in user is using the sh shell.

10.4. CONFIGURING A NETBIOS NAME FOR AN IDM DOMAIN BY USING
ANSIBLE

The NetBIOS name is used for Microsoft Windows' (SMB) type of sharing and messaging. You can use
NetBIOS names to map a drive or connect to a printer.

Follow this procedure to use an Ansible playbook to configure a NetBIOS name for your
Identity Management (IdM) domain.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

The ansible-freeipa package is installed.

Assumptions

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password and
that you know the vault file password.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

90

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/MyPlaybooks/

2. Create a netbios-domain-name-present.yml Ansible playbook file.

3. Add the following content to the file:

- name: Playbook to change IdM domain netbios name
 hosts: ipaserver
 become: no
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Set IdM domain netbios name
 ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 netbios_name: IPADOM

4. Save the file.

5. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory netbios-
domain-name-present.yml

When prompted, provide the vault file password.

Additional resources

Guidelines for configuring NetBIOS names

10.5. ENSURING THAT IDM USERS AND GROUPS HAVE SIDS BY USING
ANSIBLE

The Identity Management (IdM) server can assign unique security identifiers (SIDs) to IdM users and
groups internally, based on the data from the ID ranges of the local domain. The SIDs are stored in the
user and group objects.

The goal of ensuring that IdM users and groups have SIDs is to allow the generation of the Privileged
Attribute Certificate (PAC), which is the first step towards IdM-IdM trusts. If IdM users and groups have
SIDs, IdM is able to issue Kerberos tickets with PAC data.

Follow this procedure to achieve the following goals:

Generate SIDs for already existing IdM users and user groups.

Enable the generation of SIDs for IdM new users and groups.

Prerequisites

CHAPTER 10. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

91

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/planning_identity_management/index#guidelines-for-configuring-netbios-names_planning-a-cross-forest-trust-between-idm-and-ad

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

The ansible-freeipa package is installed.

Assumptions

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password and
that you know the vault file password.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create a sids-for-users-and-groups-present.yml Ansible playbook file.

3. Add the following content to the file:

- name: Playbook to ensure SIDs are enabled and users and groups have SIDs
 hosts: ipaserver
 become: no
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Enable SID and generate users and groups SIDS
 ipaconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 enable_sid: true
 add_sids: true

The enable_sid variable enables SID generation for future IdM users and groups. The add_sids
variable generates SIDs for existing IdM users and groups.

NOTE

When using add_sids: true, you must also set the enable_sid variable to true.

4. Save the file.

5. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory sids-for-users-
and-groups-present.yml

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

92

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

When prompted, provide the vault file password.

Additional resources

The role of security and relative identifiers in IdM ID ranges .

10.6. ADDITIONAL RESOURCES

See README-config.md in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/config directory.

CHAPTER 10. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS

93

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#con_the-role-of-security-and-relative-identifiers-in-idm-id-ranges_adjusting-id-ranges-manually

CHAPTER 11. MANAGING USER ACCOUNTS USING THE
COMMAND LINE

There are several stages in the user life cycle in IdM (Identity Management), including the following:

Create user accounts

Activate stage user accounts

Preserve user accounts

Delete active, stage, or preserved user accounts

Restore preserved user accounts

11.1. USER LIFE CYCLE

Identity Management (IdM) supports three user account states:

Stage users are not allowed to authenticate. This is an initial state. Some of the user account
properties required for active users cannot be set, for example, group membership.

Active users are allowed to authenticate. All required user account properties must be set in this
state.

Preserved users are former active users that are considered inactive and cannot authenticate
to IdM. Preserved users retain most of the account properties they had as active users, but they
are not part of any user groups.

You can delete user entries permanently from the IdM database.

IMPORTANT

Deleted user accounts cannot be restored. When you delete a user account, all the
information associated with the account is permanently lost.

A new administrator can only be created by a user with administrator rights, such as the default admin

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

94

A new administrator can only be created by a user with administrator rights, such as the default admin
user. If you accidentally delete all administrator accounts, the Directory Manager must create a new
administrator manually in the Directory Server.

WARNING

Do not delete the admin user. As admin is a pre-defined user required by IdM, this
operation causes problems with certain commands. If you want to define and use an
alternative admin user, disable the pre-defined admin user with ipa user-disable
admin after you granted admin permissions to at least one different user.

WARNING

Do not add local users to IdM. The Name Service Switch (NSS) always resolves IdM
users and groups before resolving local users and groups. This means that, for
example, IdM group membership does not work for local users.

11.2. ADDING USERS USING THE COMMAND LINE

You can add user as:

Active — user accounts which can be actively used by their users.

Stage — users cannot use these accounts. Use it if you want to prepare new user accounts.
When users are ready to use their accounts, then you can activate them.

The following procedure describes adding active users to the IdM server with the ipa user-add
command.

Similarly, you can create stage user accounts with the ipa stageuser-add command.

NOTE

IdM automatically assigns a unique user ID (UID) to the new user accounts. You can also
do this manually, however, the server does not validate whether the UID number is unique.
Due to this, multiple user entries might have the same ID number assigned. Red Hat
recommends to prevent having multiple entries with the same UID.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

CHAPTER 11. MANAGING USER ACCOUNTS USING THE COMMAND LINE

95

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

1. Open terminal and connect to the IdM server.

2. Add user login, user’s first name, last name and optionally, you can also add their email address.

$ ipa user-add user_login --first=first_name --last=last_name --email=email_address

IdM supports user names that can be described by the following regular expression:

[a-zA-Z0-9_.][a-zA-Z0-9_.-]{0,252}[a-zA-Z0-9_.$-]?

NOTE

User names ending with the trailing dollar sign ($) are supported to enable
Samba 3.x machine support.

If you add a user name containing uppercase characters, IdM automatically converts the name
to lowercase when saving it. Therefore, IdM always requires to enter user names in lowercase
when logging in. Additionally, it is not possible to add user names which differ only in letter
casing, such as user and User.

The default maximum length for user names is 32 characters. To change it, use the ipa config-
mod --maxusername command. For example, to increase the maximum user name length to
64 characters:

$ ipa config-mod --maxusername=64
 Maximum username length: 64
 ...

The ipa user-add command includes a lot of parameters. To list them all, use the ipa help
command:

$ ipa help user-add

For details about ipa help command, see What is the IPA help.

You can verify if the new user account is successfully created by listing all IdM user accounts:

$ ipa user-find

This command lists all user accounts with details.

11.3. ACTIVATING USERS USING THE COMMAND LINE

To activate a user account by moving it from stage to active, use the ipa stageuser-activate command.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

96

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/introduction-to-the-ipa-command-line-utilities_configuring-and-managing-idm#what-is-the-ipa-help_introduction-to-the-ipa-command-line-utilities
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

1. Open terminal and connect to the IdM server.

2. Activate the user account with the following command:

$ ipa stageuser-activate user_login

Stage user user_login activated

...

You can verify if the new user account is successfully created by listing all IdM user accounts:

$ ipa user-find

This command lists all user accounts with details.

11.4. PRESERVING USERS USING THE COMMAND LINE

You can preserve a user account if you want to remove it, but keep the option to restore it later. To
preserve a user account, use the --preserve option with the ipa user-del or ipa stageuser-del
commands.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Open terminal and connect to the IdM server.

2. Preserve the user account with the following command:

$ ipa user-del --preserve user_login

Deleted user "user_login"

NOTE

Despite the output saying the user account was deleted, it has been preserved.

11.5. DELETING USERS USING THE COMMAND LINE

IdM (Identity Management) enables you to delete users permanently. You can delete:

Active users with the following command: ipa user-del

Stage users with the following command: ipa stageuser-del

Preserved users with the following command: ipa user-del

CHAPTER 11. MANAGING USER ACCOUNTS USING THE COMMAND LINE

97

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

When deleting multiple users, use the --continue option to force the command to continue regardless
of errors. A summary of the successful and failed operations is printed to the stdout standard output
stream when the command completes.

$ ipa user-del --continue user1 user2 user3

If you do not use --continue, the command proceeds with deleting users until it encounters an error,
after which it stops and exits.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Open terminal and connect to the IdM server.

2. Delete the user account with the following command:

$ ipa user-del user_login

Deleted user "user_login"

The user account has been permanently deleted from IdM.

11.6. RESTORING USERS USING THE COMMAND LINE

You can restore a preserved users to:

Active users: ipa user-undel

Stage users: ipa user-stage

Restoring a user account does not restore all of the account’s previous attributes. For example, the
user’s password is not restored and must be set again.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Obtained a Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Open terminal and connect to the IdM server.

2. Activate the user account with the following command:

$ ipa user-undel user_login

Undeleted user account "user_login"

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

98

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Alternatively, you can restore user accounts as staged:

$ ipa user-stage user_login

Staged user account "user_login"

Verification steps

You can verify if the new user account is successfully created by listing all IdM user accounts:

$ ipa user-find

This command lists all user accounts with details.

CHAPTER 11. MANAGING USER ACCOUNTS USING THE COMMAND LINE

99

CHAPTER 12. MANAGING USER ACCOUNTS USING THE IDM
WEB UI

Identity Management (IdM) provides several stages that can help you to manage various user life cycle
situations:

Creating a user account

Creating a stage user account before an employee starts their career in your company and be
prepared in advance for the day when the employee appears in the office and want to activate the
account.
You can omit this step and create the active user account directly. The procedure is similar to
creating a stage user account.

Activating a user account

Activating the account the first working day of the employee.

Disabling a user account

If the user go to a parental leave for couple of months, you will need to disable the account
temporarily.

Enabling a user account

When the user returns, you will need to re-enable the account .

Preserving a user account

If the user wants to leave the company, you will need to delete the account with a possibility to
restore it because people can return to the company after some time.

Restoring a user account

Two years later, the user is back and you need to restore the preserved account .

Deleting a user account

If the employee is dismissed, delete the account without a backup.

12.1. USER LIFE CYCLE

Identity Management (IdM) supports three user account states:

Stage users are not allowed to authenticate. This is an initial state. Some of the user account
properties required for active users cannot be set, for example, group membership.

Active users are allowed to authenticate. All required user account properties must be set in this
state.

Preserved users are former active users that are considered inactive and cannot authenticate
to IdM. Preserved users retain most of the account properties they had as active users, but they
are not part of any user groups.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

100

You can delete user entries permanently from the IdM database.

IMPORTANT

Deleted user accounts cannot be restored. When you delete a user account, all the
information associated with the account is permanently lost.

A new administrator can only be created by a user with administrator rights, such as the default admin
user. If you accidentally delete all administrator accounts, the Directory Manager must create a new
administrator manually in the Directory Server.

WARNING

Do not delete the admin user. As admin is a pre-defined user required by IdM, this
operation causes problems with certain commands. If you want to define and use an
alternative admin user, disable the pre-defined admin user with ipa user-disable
admin after you granted admin permissions to at least one different user.

WARNING

Do not add local users to IdM. The Name Service Switch (NSS) always resolves IdM
users and groups before resolving local users and groups. This means that, for
example, IdM group membership does not work for local users.

12.2. ADDING USERS IN THE WEB UI

Usually, you need to create a new user account before a new employee starts to work. Such a stage

CHAPTER 12. MANAGING USER ACCOUNTS USING THE IDM WEB UI

101

Usually, you need to create a new user account before a new employee starts to work. Such a stage
account is not accessible and you need to activate it later.

NOTE

Alternatively, you can create an active user account directly. For adding active user, follow
the procedure below and add the user account in the Active users tab.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Stage Users tab.
Alternatively, you can add the user account in the Users → Active users, however, you cannot
add user groups to the account.

3. Click the + Add icon.

4. In the Add stage user dialog box, enter First name and Last name of the new user.

5. [Optional] In the User login field, add a login name.
If you leave it empty, the IdM server creates the login name in the following pattern: The first
letter of the first name and the surname. The whole login name can have up to 32 characters.

6. [Optional] In the GID drop down menu, select groups in which the user should be included.

7. [Optional] In the Password and Verify password fields, enter your password and confirm it,
ensuring they both match.

8. Click on the Add button.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

102

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

At this point, you can see the user account in the Stage Users table.

NOTE

If you click on the user name, you can edit advanced settings, such as adding a phone
number, address, or occupation.

12.3. ACTIVATING STAGE USERS IN THE IDM WEB UI

You must follow this procedure to activate a stage user account, before the user can log in to IdM and
before the user can be added to an IdM group.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

At least one staged user account in IdM.

CHAPTER 12. MANAGING USER ACCOUNTS USING THE IDM WEB UI

103

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Stage users tab.

3. Click the check-box of the user account you want to activate.

4. Click on the Activate button.

5. On the Confirmation dialog box, click OK.

If the activation is successful, the IdM Web UI displays a green confirmation that the user has been
activated and the user account has been moved to Active users. The account is active and the user can
authenticate to the IdM domain and IdM Web UI. The user is prompted to change their password on the
first login.

NOTE

At this stage, you can add the active user account to user groups.

12.4. DISABLING USER ACCOUNTS IN THE WEB UI

You can disable active user accounts. Disabling a user account deactivates the account, therefore, user
accounts cannot be used to authenticate and using IdM services, such as Kerberos, or perform any tasks.

Disabled user accounts still exist within IdM and all of the associated information remains unchanged.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

104

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Disabled user accounts still exist within IdM and all of the associated information remains unchanged.
Unlike preserved user accounts, disabled user accounts remain in the active state and can be a member
of user groups.

NOTE

After disabling a user account, any existing connections remain valid until the user’s
Kerberos TGT and other tickets expire. After the ticket expires, the user will not be able to
renew it.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Active users tab.

3. Click the check-box of the user accounts you want to disable.

4. Click on the Disable button.

5. In the Confirmation dialog box, click on the OK button.

If the disabling procedure has been successful, you can verify in the Status column in the Active users
table.

12.5. ENABLING USER ACCOUNTS IN THE WEB UI

With IdM you can enable disabled active user accounts. Enabling a user account activates the disabled

CHAPTER 12. MANAGING USER ACCOUNTS USING THE IDM WEB UI

105

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

With IdM you can enable disabled active user accounts. Enabling a user account activates the disabled
account.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. Log in to the IdM Web UI.

2. Go to Users → Active users tab.

3. Click the check-box of the user accounts you want to enable.

4. Click on the Enable button.

5. In the Confirmation dialog box, click on the OK button.

If the change has been successful, you can verify in the Status column in the Active users table.

12.6. PRESERVING ACTIVE USERS IN THE IDM WEB UI

Preserving user accounts enables you to remove accounts from the Active users tab, yet keeping these
accounts in IdM.

Preserve the user account if the employee leaves the company. If you want to disable user accounts for
a couple of weeks or months (parental leave, for example), disable the account. For details, see
Disabling user accounts in the Web UI . The preserved accounts are not active and users cannot use
them to access your internal network, however, the account stays in the database with all the data.

You can move the restored accounts back to the active mode.

NOTE

The list of users in the preserved state can provide a history of past user accounts.

Prerequisites

Administrator privileges for managing the IdM (Identity Management) Web UI or User
Administrator role.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

106

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Active users tab.

3. Click the check-box of the user accounts you want to preserve.

4. Click on the Delete button.

5. In the Remove users dialog box, switch the Delete mode radio button to preserve.

6. Click on the Delete button.

As a result, the user account is moved to Preserved users.

If you need to restore preserved users, see the Restoring users in the IdM Web UI .

12.7. RESTORING USERS IN THE IDM WEB UI

IdM (Identity Management) enables you to restore preserved user accounts back to the active state.
You can restore a preserved user to an active user or a stage user.

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

CHAPTER 12. MANAGING USER ACCOUNTS USING THE IDM WEB UI

107

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

2. Go to Users → Preserved users tab.

3. Click the check-box at the user accounts you want to restore.

4. Click on the Restore button.

5. In the Confirmation dialog box, click on the OK button.

The IdM Web UI displays a green confirmation and moves the user accounts to the Active users tab.

12.8. DELETING USERS IN THE IDM WEB UI

Deleting users is an irreversible operation, causing the user accounts to be permanently deleted from
the IdM database, including group memberships and passwords. Any external configuration for the user,
such as the system account and home directory, is not deleted, but is no longer accessible through IdM.

You can delete:

Active users — the IdM Web UI offers you with the options:

Preserving users temporarily
For details, see the Preserving active users in the IdM Web UI .

Deleting them permanently

Stage users — you can just delete stage users permanently.

Preserved users — you can delete preserved users permanently.

The following procedure describes deleting active users. Similarly, you can delete user accounts on:

The Stage users tab

The Preserved users tab

Prerequisites

Administrator privileges for managing the IdM Web UI or User Administrator role.

Procedure

1. Log in to the IdM Web UI.
For details, see Accessing the IdM Web UI in a web browser .

2. Go to Users → Active users tab.
Alternatively, you can delete the user account in the Users → Stage users or Users →
Preserved users.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

108

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3. Click the Delete icon.

4. In the Remove users dialog box, switch the Delete mode radio button to delete.

5. Click on the Delete button.

The users accounts have been permanently deleted from IdM.

CHAPTER 12. MANAGING USER ACCOUNTS USING THE IDM WEB UI

109

CHAPTER 13. MANAGING USER ACCOUNTS USING ANSIBLE
PLAYBOOKS

You can manage users in IdM using Ansible playbooks. After presenting the user life cycle, this chapter
describes how to use Ansible playbooks for the following operations:

Ensuring the presence of a single user listed directly in the YML file.

Ensuring the presence of multiple users listed directly in the YML file.

Ensuring the presence of multiple users listed in a JSON file that is referenced from the YML
file.

Ensuring the absence of users listed directly in the YML file.

13.1. USER LIFE CYCLE

Identity Management (IdM) supports three user account states:

Stage users are not allowed to authenticate. This is an initial state. Some of the user account
properties required for active users cannot be set, for example, group membership.

Active users are allowed to authenticate. All required user account properties must be set in this
state.

Preserved users are former active users that are considered inactive and cannot authenticate
to IdM. Preserved users retain most of the account properties they had as active users, but they
are not part of any user groups.

You can delete user entries permanently from the IdM database.

IMPORTANT

Deleted user accounts cannot be restored. When you delete a user account, all the
information associated with the account is permanently lost.

A new administrator can only be created by a user with administrator rights, such as the default admin

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

110

A new administrator can only be created by a user with administrator rights, such as the default admin
user. If you accidentally delete all administrator accounts, the Directory Manager must create a new
administrator manually in the Directory Server.

WARNING

Do not delete the admin user. As admin is a pre-defined user required by IdM, this
operation causes problems with certain commands. If you want to define and use an
alternative admin user, disable the pre-defined admin user with ipa user-disable
admin after you granted admin permissions to at least one different user.

WARNING

Do not add local users to IdM. The Name Service Switch (NSS) always resolves IdM
users and groups before resolving local users and groups. This means that, for
example, IdM group membership does not work for local users.

13.2. ENSURING THE PRESENCE OF AN IDM USER USING AN ANSIBLE
PLAYBOOK

The following procedure describes ensuring the presence of a user in IdM using an Ansible playbook.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

CHAPTER 13. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

111

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Create an Ansible playbook file with the data of the user whose presence in IdM you want to
ensure. To simplify this step, you can copy and modify the example in the
/usr/share/doc/ansible-freeipa/playbooks/user/add-user.yml file. For example, to create user
named idm_user and add Password123 as the user password:

You must use the following options to add a user:

name: the login name

first: the first name string

last: the last name string

For the full list of available user options, see the /usr/share/doc/ansible-freeipa/README-
user.md Markdown file.

NOTE

If you use the update_password: on_create option, Ansible only creates the
user password when it creates the user. If the user is already created with a
password, Ansible does not generate a new password.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-IdM-
user.yml

Verification steps

You can verify if the new user account exists in IdM by using the ipa user-show command:

1. Log into ipaserver as admin:

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create user idm_user
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: idm_user
 first: Alice
 last: Acme
 uid: 1000111
 gid: 10011
 phone: "+555123457"
 email: idm_user@acme.com
 passwordexpiration: "2023-01-19 23:59:59"
 password: "Password123"
 update_password: on_create

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

112

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Request information about idm_user:

$ ipa user-show idm_user
 User login: idm_user
 First name: Alice
 Last name: Acme

The user named idm_user is present in IdM.

13.3. ENSURING THE PRESENCE OF MULTIPLE IDM USERS USING
ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of multiple users in IdM using an Ansible
playbook.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the data of the users whose presence you want to ensure in
IdM. To simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/user/ensure-users-present.yml file. For example, to create users

CHAPTER 13. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

113

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

idm_user_1, idm_user_2, and idm_user_3, and add Password123 as the password of idm_user_1:

NOTE

If you do not specify the update_password: on_create option, Ansible re-sets
the user password every time the playbook is run: if the user has changed the
password since the last time the playbook was run, Ansible re-sets password.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-
users.yml

Verification steps

You can verify if the user account exists in IdM by using the ipa user-show command:

1. Log into ipaserver as administrator:

$ ssh administrator@server.idm.example.com
Password:
[admin@server /]$

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create user idm_users
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 users:
 - name: idm_user_1
 first: Alice
 last: Acme
 uid: 10001
 gid: 10011
 phone: "+555123457"
 email: idm_user@acme.com
 passwordexpiration: "2023-01-19 23:59:59"
 password: "Password123"
 - name: idm_user_2
 first: Bob
 last: Acme
 uid: 100011
 gid: 10011
 - name: idm_user_3
 first: Eve
 last: Acme
 uid: 1000111
 gid: 10011

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

114

2. Display information about idm_user_1:

$ ipa user-show idm_user_1
 User login: idm_user_1
 First name: Alice
 Last name: Acme
 Password: True

The user named idm_user_1 is present in IdM.

13.4. ENSURING THE PRESENCE OF MULTIPLE IDM USERS FROM A
JSON FILE USING ANSIBLE PLAYBOOKS

The following procedure describes how you can ensure the presence of multiple users in IdM using an
Ansible playbook. The users are stored in a JSON file.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary tasks. Reference the JSON file with the data
of the users whose presence you want to ensure. To simplify this step, you can copy and modify
the example in the /usr/share/doc/ansible-freeipa/ensure-users-present-ymlfile.yml file:

- name: Ensure users' presence
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Include users.json

CHAPTER 13. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

115

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Create the users.json file, and add the IdM users into it. To simplify this step, you can copy and
modify the example in the /usr/share/doc/ansible-freeipa/playbooks/user/users.json file. For
example, to create users idm_user_1, idm_user_2, and idm_user_3, and add Password123 as the
password of idm_user_1:

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-users-
present-jsonfile.yml

Verification steps

You can verify if the user accounts are present in IdM using the ipa user-show command:

1. Log into ipaserver as administrator:

$ ssh administrator@server.idm.example.com
Password:
[admin@server /]$

2. Display information about idm_user_1:

$ ipa user-show idm_user_1

 include_vars:
 file: users.json

 - name: Users present
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 users: "{{ users }}"

{
 "users": [
 {
 "name": "idm_user_1",
 "first": "Alice",
 "last": "Acme",
 "password": "Password123"
 },
 {
 "name": "idm_user_2",
 "first": "Bob",
 "last": "Acme"
 },
 {
 "name": "idm_user_3",
 "first": "Eve",
 "last": "Acme"
 }
]
}

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

116

 User login: idm_user_1
 First name: Alice
 Last name: Acme
 Password: True

The user named idm_user_1 is present in IdM.

13.5. ENSURING THE ABSENCE OF USERS USING ANSIBLE
PLAYBOOKS

The following procedure describes how you can use an Ansible playbook to ensure that specific users are
absent from IdM.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the users whose absence from IdM you want to ensure. To
simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/user/ensure-users-present.yml file. For example, to delete users
idm_user_1, idm_user_2, and idm_user_3:

- name: Playbook to handle users
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Delete users idm_user_1, idm_user_2, idm_user_3
 ipauser:
 ipaadmin_password: "{{ ipaadmin_password }}"
 users:

CHAPTER 13. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS

117

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/delete-
users.yml

Verification steps

You can verify that the user accounts do not exist in IdM by using the ipa user-show command:

1. Log into ipaserver as administrator:

$ ssh administrator@server.idm.example.com
Password:
[admin@server /]$

2. Request information about idm_user_1:

$ ipa user-show idm_user_1
ipa: ERROR: idm_user_1: user not found

The user named idm_user_1 does not exist in IdM.

13.6. ADDITIONAL RESOURCES

See the README-user.md Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/user directory.

 - name: idm_user_1
 - name: idm_user_2
 - name: idm_user_3
 state: absent

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

118

CHAPTER 14. MANAGING USER GROUPS IN IDM CLI
This chapter introduces user groups management using the IdM CLI.

A user group is a set of users with common privileges, password policies, and other characteristics.

A user group in Identity Management (IdM) can include:

IdM users

other IdM user groups

external users, which are users that exist outside of IdM

14.1. THE DIFFERENT GROUP TYPES IN IDM

IdM supports the following types of groups:

POSIX groups (the default)

POSIX groups support Linux POSIX attributes for their members. Note that groups that interact with
Active Directory cannot use POSIX attributes.
POSIX attributes identify users as separate entities. Examples of POSIX attributes relevant to users
include uidNumber, a user number (UID), and gidNumber, a group number (GID).

Non-POSIX groups

Non-POSIX groups do not support POSIX attributes. For example, these groups do not have a GID
defined.
All members of this type of group must belong to the IdM domain.

External groups

Use external groups to add group members that exist in an identity store outside of the IdM domain,
such as:

A local system

An Active Directory domain

A directory service

External groups do not support POSIX attributes. For example, these groups do not have a GID
defined.

Table 14.1. User groups created by default

Group name Default group members

ipausers All IdM users

admins Users with administrative privileges, including the default admin user

editors This is a legacy group that no longer has any special privileges

CHAPTER 14. MANAGING USER GROUPS IN IDM CLI

119

trust admins Users with privileges to manage the Active Directory trusts

Group name Default group members

When you add a user to a user group, the user gains the privileges and policies associated with the
group. For example, to grant administrative privileges to a user, add the user to the admins group.

WARNING

Do not delete the admins group. As admins is a pre-defined group required by
IdM, this operation causes problems with certain commands.

In addition, IdM creates user private groups by default whenever a new user is created in IdM. For more
information about private groups, see Adding users without a private group .

14.2. DIRECT AND INDIRECT GROUP MEMBERS

User group attributes in IdM apply to both direct and indirect members: when group B is a member of
group A, all users in group B are considered indirect members of group A.

For example, in the following diagram:

User 1 and User 2 are direct members of group A.

User 3, User 4, and User 5 are indirect members of group A.

Figure 14.1. Direct and Indirect Group Membership

If you set a password policy for user group A, the policy also applies to all users in user group B.

14.3. ADDING A USER GROUP USING IDM CLI

Follow this procedure to add a user group using the IdM CLI.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

120

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#adding-users-without-a-user-private-group_managing-user-groups-in-idm-cli

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

Add a user group by using the ipa group-add group_name command. For example, to create
group_a:

$ ipa group-add group_a

Added group "group_a"

 Group name: group_a
 GID: 1133400009

By default, ipa group-add adds a POSIX user group. To specify a different group type, add
options to ipa group-add:

--nonposix to create a non-POSIX group

--external to create an external group
For details on group types, see The different group types in IdM .

You can specify a custom GID when adding a user group by using the --gid=custom_GID
option. If you do this, be careful to avoid ID conflicts. If you do not specify a custom GID, IdM
automatically assigns a GID from the available ID range.

14.4. SEARCHING FOR USER GROUPS USING IDM CLI

Follow this procedure to search for existing user groups using the IdM CLI.

Procedure

Display all user groups by using the ipa group-find command. To specify a group type, add
options to ipa group-find:

Display all POSIX groups using the ipa group-find --posix command.

Display all non-POSIX groups using the ipa group-find --nonposix command.

Display all external groups using the ipa group-find --external command.
For more information about different group types, see The different group types in IdM .

14.5. DELETING A USER GROUP USING IDM CLI

Follow this procedure to delete a user group using IdM CLI. Note that deleting a group does not delete
the group members from IdM.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

Delete a user group by using the ipa group-del group_name command. For example, to delete

CHAPTER 14. MANAGING USER GROUPS IN IDM CLI

121

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Delete a user group by using the ipa group-del group_name command. For example, to delete
group_a:

$ ipa group-del group_a

Deleted group "group_a"

14.6. ADDING A MEMBER TO A USER GROUP USING IDM CLI

You can add both users and user groups as members of a user group. For more information, see The
different group types in IdM and Direct and indirect group members . Follow this procedure to add a
member to a user group by using the IdM CLI.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

Add a member to a user group by using the ipa group-add-member command.
Specify the type of member using these options:

--users adds an IdM user

--external adds a user that exists outside the IdM domain, in the format of
DOMAIN\user_name or user_name@domain

--groups adds an IdM user group

For example, to add group_b as a member of group_a:

$ ipa group-add-member group_a --groups=group_b
Group name: group_a
GID: 1133400009
Member users: user_a
Member groups: group_b
Indirect Member users: user_b

Number of members added 1

Members of group_b are now indirect members of group_a.

IMPORTANT

When adding a group as a member of another group, do not create recursive groups. For
example, if Group A is a member of Group B, do not add Group B as a member of Group
A. Recursive groups can cause unpredictable behavior.

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

122

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

NOTE

After you add a member to a user group, the update may take some time to spread to all
clients in your Identity Management environment. This is because when any given host
resolves users, groups and netgroups, the System Security Services Daemon (SSSD)
first looks into its cache and performs server lookups only for missing or expired records.

14.7. ADDING USERS WITHOUT A USER PRIVATE GROUP

By default, IdM creates user private groups (UPGs) whenever a new user is created in IdM. UPGs are a
specific group type:

The UPG has the same name as the newly created user.

The user is the only member of the UPG. The UPG cannot contain any other members.

The GID of the private group matches the UID of the user.

However, it is possible to add users without creating a UPG.

14.7.1. Users without a user private group

If a NIS group or another system group already uses the GID that would be assigned to a user private
group, it is necessary to avoid creating a UPG.

You can do this in two ways:

Add a new user without a UPG, without disabling private groups globally. See Adding a user
without a user private group when private groups are globally enabled.

Disable UPGs globally for all users, then add a new user. See Disabling user private groups
globally for all users and Adding a user when user private groups are globally disabled .

In both cases, IdM will require specifying a GID when adding new users, otherwise the operation will fail.
This is because IdM requires a GID for the new user, but the default user group ipausers is a non-POSIX
group and therefore does not have an associated GID. The GID you specify does not have to correspond
to an already existing group.

NOTE

Specifying the GID does not create a new group. It only sets the GID attribute for the new
user, because the attribute is required by IdM.

14.7.2. Adding a user without a user private group when private groups are globally
enabled

You can add a user without creating a user private group (UPG) even when UPGs are enabled on the
system. This requires manually setting a GID for the new user. For details on why this is needed, see
Users without a user private group .

Procedure

To prevent IdM from creating a UPG, add the --noprivate option to the ipa user-add
command.

Note that for the command to succeed, you must specify a custom GID. For example, to add a

CHAPTER 14. MANAGING USER GROUPS IN IDM CLI

123

Note that for the command to succeed, you must specify a custom GID. For example, to add a
new user with GID 10000:

$ ipa user-add jsmith --first=John --last=Smith --noprivate --gid 10000

14.7.3. Disabling user private groups globally for all users

You can disable user private groups (UPGs) globally. This prevents the creation of UPGs for all new
users. Existing users are unaffected by this change.

Procedure

1. Obtain administrator privileges:

$ kinit admin

2. IdM uses the Directory Server Managed Entries Plug-in to manage UPGs. List the instances of
the plug-in:

$ ipa-managed-entries --list

3. To ensure IdM does not create UPGs, disable the plug-in instance responsible for managing
user private groups:

$ ipa-managed-entries -e "UPG Definition" disable
Disabling Plugin

NOTE

To re-enable the UPG Definition instance later, use the ipa-managed-entries -
e "UPG Definition" enable command.

4. Restart Directory Server to load the new configuration.

$ sudo systemctl restart dirsrv.target

To add a user after UPGs have been disabled, you need to specify a GID. For more information,
see Adding a user when user private groups are globally disabled

Verification steps

To check if UPGs are globally disabled, use the disable command again:

$ ipa-managed-entries -e "UPG Definition" disable
Plugin already disabled

14.7.4. Adding a user when user private groups are globally disabled

When user private groups (UPGs) are disabled globally, IdM does not assign a GID to a new user
automatically. To successfully add a user, you must assign a GID manually or by using an automember
rule. For details on why this is required, see Users without a user private group .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

124

Prerequisities

UPGs must be disabled globally for all users. For more information, see Disabling user private
groups globally for all users

Procedure

To make sure adding a new user succeeds when creating UPGs is disabled, choose one of the
following:

Specify a custom GID when adding a new user. The GID does not have to correspond to an
already existing user group.
For example, when adding a user from the command line, add the --gid option to the ipa
user-add command.

Use an automember rule to add the user to an existing group with a GID.

14.8. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM
USER GROUP USING THE IDM CLI

Follow this procedure to add users or groups as member managers to an IdM user group using the IdM
CLI. Member managers can add users or groups to IdM user groups but cannot change the attributes of
a group.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

You must have the name of the user or group you are adding as member managers and the
name of the group you want them to manage.

Procedure

Add a user as a member manager to an IdM user group by using the ipa group-add-member-
manager command.
For example, to add the user test as a member manager of group_a:

$ ipa group-add-member-manager group_a --users=test
Group name: group_a
GID: 1133400009
Membership managed by users: test

Number of members added 1

User test can now manage members of group_a.

Add a group as a member manager to an IdM user group by using the ipa group-add-member-
manager command.
For example, to add the group group_admins as a member manager of group_a:

$ ipa group-add-member-manager group_a --groups=group_admins
Group name: group_a
GID: 1133400009

CHAPTER 14. MANAGING USER GROUPS IN IDM CLI

125

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Membership managed by groups: group_admins
Membership managed by users: test

Number of members added 1

Group group_admins can now manage members of group_a.

NOTE

After you add a member manager to a user group, the update may take some time to
spread to all clients in your Identity Management environment.

Verification steps

Using the ipa group-show command to verify the user and group were added as member
managers.

$ ipa group-show group_a
Group name: group_a
GID: 1133400009
Membership managed by groups: group_admins
Membership managed by users: test

Additional resources

See ipa group-add-member-manager --help for more details.

14.9. VIEWING GROUP MEMBERS USING IDM CLI

Follow this procedure to view members of a group using IdM CLI. You can view both direct and indirect
group members. For more information, see Direct and indirect group members .

Procedure:

To list members of a group, use the ipa group-show group_name command. For example:

$ ipa group-show group_a
 ...
 Member users: user_a
 Member groups: group_b
 Indirect Member users: user_b

NOTE

The list of indirect members does not include external users from trusted Active
Directory domains. The Active Directory trust user objects are not visible in the
Identity Management interface because they do not exist as LDAP objects within
Identity Management.

14.10. REMOVING A MEMBER FROM A USER GROUP USING IDM CLI

Follow this procedure to remove a member from a user group using IdM CLI.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

126

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

1. Optional. Use the ipa group-show command to confirm that the group includes the member
you want to remove.

2. Remove a member from a user group by using the ipa group-remove-member command.
Specify members to remove using these options:

--users removes an IdM user

--external removes a user that exists outside the IdM domain, in the format of
DOMAIN\user_name or user_name@domain

--groups removes an IdM user group

For example, to remove user1, user2, and group1 from a group called group_name:

$ ipa group-remove-member group_name --users=user1 --users=user2 --groups=group1

14.11. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM
AN IDM USER GROUP USING THE IDM CLI

Follow this procedure to remove users or groups as member managers from an IdM user group using the
IdM CLI. Member managers can remove users or groups from IdM user groups but cannot change the
attributes of a group.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

You must have the name of the existing member manager user or group you are removing and
the name of the group they are managing.

Procedure

Remove a user as a member manager of an IdM user group by using the ipa group-remove-
member-manager command.
For example, to remove the user test as a member manager of group_a:

$ ipa group-remove-member-manager group_a --users=test
Group name: group_a
GID: 1133400009
Membership managed by groups: group_admins

Number of members removed 1

User test can no longer manage members of group_a.

Remove a group as a member manager of an IdM user group by using the ipa group-remove-

CHAPTER 14. MANAGING USER GROUPS IN IDM CLI

127

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Remove a group as a member manager of an IdM user group by using the ipa group-remove-
member-manager command.
For example, to remove the group group_admins as a member manager of group_a:

$ ipa group-remove-member-manager group_a --groups=group_admins
Group name: group_a
GID: 1133400009

Number of members removed 1

Group group_admins can no longer manage members of group_a.

NOTE

After you remove a member manager from a user group, the update may take some time
to spread to all clients in your Identity Management environment.

Verification steps

Using the ipa group-show command to verify the user and group were removed as member
managers.

$ ipa group-show group_a
Group name: group_a
GID: 1133400009

Additional resources

See ipa group-remove-member-manager --help for more details.

14.12. ENABLING GROUP MERGING FOR LOCAL AND REMOTE
GROUPS IN IDM

Groups are either centrally managed, provided by a domain such as Identity Management (IdM) or
Active Directory (AD), or they are managed on a local system in the etc/group file. In most cases, users
rely on a centrally managed store. However, in some cases software still relies on membership in known
groups for managing access control.

If you want to manage groups from a domain controller and from the local etc/group file, you can enable
group merging. You can configure your nsswitch.conf file to check both the local files and the remote
service. If a group appears in both, the list of member users is combined and returned in a single
response.

The steps below describe how to enable group merging for a user, idmuser.

Procedure

1. Add [SUCCESS=merge] to the /etc/nsswitch.conf file:

Allow initgroups to default to the setting for group.
initgroups: sss [SUCCESS=merge] files

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

128

2. Add the idmuser to IdM:

ipa user-add idmuser
First name: idm
Last name: user

Added user "idmuser"

User login: idmuser
First name: idm
Last name: user
Full name: idm user
Display name: idm user
Initials: tu
Home directory: /home/idmuser
GECOS: idm user
Login shell: /bin/sh
Principal name: idmuser@IPA.TEST
Principal alias: idmuser@IPA.TEST
Email address: idmuser@ipa.test
UID: 19000024
GID: 19000024
Password: False
Member of groups: ipausers
Kerberos keys available: False

3. Verify the GID of the local audio group.

$ getent group audio

audio:x:63

4. Add the group audio to IdM:

$ ipa group-add audio --gid 63

Added group "audio"

Group name: audio
GID: 63

NOTE

The GID you define when adding the audio group to IdM must be the same as
the GID of the local audio group.

5. Add idmuser user to the IdM audio group:

$ ipa group-add-member audio --users=idmuser
Group name: audio
GID: 63
Member users: idmuser

CHAPTER 14. MANAGING USER GROUPS IN IDM CLI

129

Number of members added 1

Verification

1. Log in as the idmuser.

2. Verify the idmuser has the local group in their session:

$ id idmuser
uid=1867800003(idmuser) gid=1867800003(idmuser)
groups=1867800003(idmuser),63(audio),10(wheel)

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

130

CHAPTER 15. MANAGING USER GROUPS IN IDM WEB UI
This chapter introduces user groups management using the IdM web UI.

A user group is a set of users with common privileges, password policies, and other characteristics.

A user group in Identity Management (IdM) can include:

IdM users

other IdM user groups

external users, which are users that exist outside of IdM

15.1. THE DIFFERENT GROUP TYPES IN IDM

IdM supports the following types of groups:

POSIX groups (the default)

POSIX groups support Linux POSIX attributes for their members. Note that groups that interact with
Active Directory cannot use POSIX attributes.
POSIX attributes identify users as separate entities. Examples of POSIX attributes relevant to users
include uidNumber, a user number (UID), and gidNumber, a group number (GID).

Non-POSIX groups

Non-POSIX groups do not support POSIX attributes. For example, these groups do not have a GID
defined.
All members of this type of group must belong to the IdM domain.

External groups

Use external groups to add group members that exist in an identity store outside of the IdM domain,
such as:

A local system

An Active Directory domain

A directory service

External groups do not support POSIX attributes. For example, these groups do not have a GID
defined.

Table 15.1. User groups created by default

Group name Default group members

ipausers All IdM users

admins Users with administrative privileges, including the default admin user

editors This is a legacy group that no longer has any special privileges

CHAPTER 15. MANAGING USER GROUPS IN IDM WEB UI

131

trust admins Users with privileges to manage the Active Directory trusts

Group name Default group members

When you add a user to a user group, the user gains the privileges and policies associated with the
group. For example, to grant administrative privileges to a user, add the user to the admins group.

WARNING

Do not delete the admins group. As admins is a pre-defined group required by
IdM, this operation causes problems with certain commands.

In addition, IdM creates user private groups by default whenever a new user is created in IdM. For more
information about private groups, see Adding users without a private group .

15.2. DIRECT AND INDIRECT GROUP MEMBERS

User group attributes in IdM apply to both direct and indirect members: when group B is a member of
group A, all users in group B are considered indirect members of group A.

For example, in the following diagram:

User 1 and User 2 are direct members of group A.

User 3, User 4, and User 5 are indirect members of group A.

Figure 15.1. Direct and Indirect Group Membership

If you set a password policy for user group A, the policy also applies to all users in user group B.

15.3. ADDING A USER GROUP USING IDM WEB UI

Follow this procedure to add a user group using the IdM Web UI.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

132

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#adding-users-without-a-user-private-group_managing-user-groups-in-idm-cli

You are logged in to the IdM Web UI.

Procedure

1. Click Identity → Groups, and select User Groups in the left sidebar.

2. Click Add to start adding the group.

3. Fill out the information about the group. For more information about user group types, see The
different group types in IdM.
You can specify a custom GID for the group. If you do this, be careful to avoid ID conflicts. If you
do not specify a custom GID, IdM automatically assigns a GID from the available ID range.

4. Click Add to confirm.

15.4. DELETING A USER GROUP USING IDM WEB UI

Follow this procedure to delete a user group using the IdM Web UI. Note that deleting a group does not
delete the group members from IdM.

Prerequisites

You are logged in to the IdM Web UI.

Procedure

1. Click Identity → Groups and select User Groups.

2. Select the group to delete.

CHAPTER 15. MANAGING USER GROUPS IN IDM WEB UI

133

3. Click Delete.

4. Click Delete to confirm.

15.5. ADDING A MEMBER TO A USER GROUP USING IDM WEB UI

You can add both users and user groups as members of a user group. For more information, see The
different group types in IdM and Direct and indirect group members .

Prerequisites

You are logged in to the IdM Web UI.

Procedure

1. Click Identity → Groups and select User Groups in the left sidebar.

2. Click the name of the group.

3. Select the type of group member you want to add: Users, User Groups, or External.

4. Click Add.

5. Select the check box next to one or more members you want to add.

6. Click the rightward arrow to move the selected members to the group.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

134

7. Click Add to confirm.

15.6. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM
USER GROUP USING THE WEB UI

Follow this procedure to add users or groups as member managers to an IdM user group using the Web
UI. Member managers can add users or groups to IdM user groups but cannot change the attributes of a
group.

Prerequisites

You are logged in to the IdM Web UI.

You must have the name of the user or group you are adding as member managers and the
name of the group you want them to manage.

Procedure

1. Click Identity → Groups and select User Groups in the left sidebar.

2. Click the name of the group.

3. Select the type of group member manager you want to add: Users or User Groups.

CHAPTER 15. MANAGING USER GROUPS IN IDM WEB UI

135

4. Click Add.

5. Select the check box next to one or more members you want to add.

6. Click the rightward arrow to move the selected members to the group.

7. Click Add to confirm.

NOTE

After you add a member manager to a user group, the update may take some time to
spread to all clients in your Identity Management environment.

Verification steps

Verify the newly added user or user group has been added to the member manager list of users
or user groups:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

136

Additional resources

See ipa group-add-member-manager --help for more information.

15.7. VIEWING GROUP MEMBERS USING IDM WEB UI

Follow this procedure to view members of a group using the IdM Web UI. You can view both direct and
indirect group members. For more information, see Direct and indirect group members .

Prerequisites

You are logged in to the IdM Web UI.

Procedure

1. Select Identity → Groups.

2. Select User Groups in the left sidebar.

3. Click the name of the group you want to view.

4. Switch between Direct Membership and Indirect Membership.

15.8. REMOVING A MEMBER FROM A USER GROUP USING IDM WEB UI

Follow this procedure to remove a member from a user group using the IdM Web UI.

Prerequisites

You are logged in to the IdM Web UI.

Procedure

CHAPTER 15. MANAGING USER GROUPS IN IDM WEB UI

137

1. Click Identity → Groups and select User Groups in the left sidebar.

2. Click the name of the group.

3. Select the type of group member you want to remove: Users, User Groups, or External.

4. Select the check box next to the member you want to remove.

5. Click Delete.

6. Click Delete to confirm.

15.9. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM
AN IDM USER GROUP USING THE WEB UI

Follow this procedure to remove users or groups as member managers from an IdM user group using the
Web UI. Member managers can remove users or groups from IdM user groups but cannot change the
attributes of a group.

Prerequisites

You are logged in to the IdM Web UI.

You must have the name of the existing member manager user or group you are removing and
the name of the group they are managing.

Procedure

1. Click Identity → Groups and select User Groups in the left sidebar.

2. Click the name of the group.

3. Select the type of member manager you want to remove: Users or User Groups.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

138

4. Select the check box next to the member manager you want to remove.

5. Click Delete.

6. Click Delete to confirm.

NOTE

After you remove a member manager from a user group, the update may take some time
to spread to all clients in your Identity Management environment.

Verification steps

Verify the user or user group has been removed from the member manager list of users or user
groups:

Additional resources

See ipa group-add-member-manager --help for more details.

CHAPTER 15. MANAGING USER GROUPS IN IDM WEB UI

139

CHAPTER 16. MANAGING USER GROUPS USING ANSIBLE
PLAYBOOKS

This section introduces user group management using Ansible playbooks.

A user group is a set of users with common privileges, password policies, and other characteristics.

A user group in Identity Management (IdM) can include:

IdM users

other IdM user groups

external users, which are users that exist outside of IdM

The section includes the following topics:

The different group types in IdM

Direct and indirect group members

Ensuring the presence of IdM groups and group members using Ansible playbooks

Using Ansible to enable AD users to administer IdM

Ensuring the presence of member managers in IDM user groups using Ansible playbooks

Ensuring the absence of member managers in IDM user groups using Ansible playbooks

16.1. THE DIFFERENT GROUP TYPES IN IDM

IdM supports the following types of groups:

POSIX groups (the default)

POSIX groups support Linux POSIX attributes for their members. Note that groups that interact with
Active Directory cannot use POSIX attributes.
POSIX attributes identify users as separate entities. Examples of POSIX attributes relevant to users
include uidNumber, a user number (UID), and gidNumber, a group number (GID).

Non-POSIX groups

Non-POSIX groups do not support POSIX attributes. For example, these groups do not have a GID
defined.
All members of this type of group must belong to the IdM domain.

External groups

Use external groups to add group members that exist in an identity store outside of the IdM domain,
such as:

A local system

An Active Directory domain

A directory service

External groups do not support POSIX attributes. For example, these groups do not have a GID

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

140

External groups do not support POSIX attributes. For example, these groups do not have a GID
defined.

Table 16.1. User groups created by default

Group name Default group members

ipausers All IdM users

admins Users with administrative privileges, including the default admin user

editors This is a legacy group that no longer has any special privileges

trust admins Users with privileges to manage the Active Directory trusts

When you add a user to a user group, the user gains the privileges and policies associated with the
group. For example, to grant administrative privileges to a user, add the user to the admins group.

WARNING

Do not delete the admins group. As admins is a pre-defined group required by
IdM, this operation causes problems with certain commands.

In addition, IdM creates user private groups by default whenever a new user is created in IdM. For more
information about private groups, see Adding users without a private group .

16.2. DIRECT AND INDIRECT GROUP MEMBERS

User group attributes in IdM apply to both direct and indirect members: when group B is a member of
group A, all users in group B are considered indirect members of group A.

For example, in the following diagram:

User 1 and User 2 are direct members of group A.

User 3, User 4, and User 5 are indirect members of group A.

Figure 16.1. Direct and Indirect Group Membership

CHAPTER 16. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

141

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#adding-users-without-a-user-private-group_managing-user-groups-in-idm-cli

Figure 16.1. Direct and Indirect Group Membership

If you set a password policy for user group A, the policy also applies to all users in user group B.

16.3. ENSURING THE PRESENCE OF IDM GROUPS AND GROUP
MEMBERS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of IdM groups and group members - both
users and user groups - using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The users you want to reference in your Ansible playbook exist in IdM. For details on ensuring
the presence of users using Ansible, see Managing user accounts using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary user and group information:

- name: Playbook to handle groups
 hosts: ipaserver

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

142

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-group-
members.yml

Verification steps

You can verify if the ops group contains sysops and appops as direct members and idm_user as an
indirect member by using the ipa group-show command:

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about ops:

ipaserver]$ ipa group-show ops
 Group name: ops
 GID: 1234
 Member groups: sysops, appops
 Indirect Member users: idm_user

The appops and sysops groups - the latter including the idm_user user - exist in IdM.

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create group ops with gid 1234
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: ops
 gidnumber: 1234

 - name: Create group sysops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: sysops
 user:
 - idm_user

 - name: Create group appops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: appops

 - name: Add group members sysops and appops to group ops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: ops
 group:
 - sysops
 - appops

CHAPTER 16. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

143

Additional resources

See the /usr/share/doc/ansible-freeipa/README-group.md Markdown file.

16.4. USING ANSIBLE TO ADD MULTIPLE IDM GROUPS IN A SINGLE
TASK

You can use the ansible-freeipa ipagroup module to add, modify, and delete multiple Identity
Management (IdM) user groups with a single Ansible task. For that, use the groups option of the
ipagroup module.

Using the groups option, you can also specify multiple group variables that only apply to a particular
group. Define this group by the name variable, which is the only mandatory variable for the groups
option.

Complete this procedure to ensure the presence of the sysops and the appops groups in IdM in a single
task. Define the sysops group as a nonposix group and the appops group as an external group.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You are using RHEL 8.9 and later.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Procedure

1. Create your Ansible playbook file add-nonposix-and-external-groups.yml with the following
content:

- name: Playbook to add nonposix and external groups
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Add nonposix group sysops and external group appops
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 groups:
 - name: sysops
 nonposix: true
 - name: appops
 external: true

2. Run the playbook:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

144

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/add-nonposix-
and-external-groups.yml

Additional resources

The group module in ansible-freeipa upstream docs

16.5. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM

Follow this procedure to use an Ansible playbook to ensure that a user ID override is present in an
Identity Management (IdM) group. The user ID override is the override of an Active Directory (AD) user
that you created in the Default Trust View after you established a trust with AD. As a result of running
the playbook, an AD user, for example an AD administrator, is able to fully administer IdM without having
two different accounts and passwords.

Prerequisites

You know the IdM admin password.

You have installed a trust with AD .

The user ID override of the AD user already exists in IdM. If it does not, create it with the ipa
idoverrideuser-add 'default trust view' ad_user@ad.example.com command.

The group to which you are adding the user ID override already exists in IdM .

You are using the 4.8.7 version of IdM or later. To view the version of IdM you have installed on
your server, enter ipa --version.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create an add-useridoverride-to-group.yml playbook with the following content:

- name: Playbook to ensure presence of users in a group
 hosts: ipaserver

CHAPTER 16. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

145

https://github.com/freeipa/ansible-freeipa/blob/master/README-group.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-groups-using-ansible-playbooks_configuring-and-managing-idm#ensuring-the-presence-of-IdM-groups-and-group-members-using-Ansible-playbooks_managing-user-groups-using-ansible-playbooks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - name: Ensure the ad_user@ad.example.com user ID override is a member of the admins
group:
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: admins
 idoverrideuser:
 - ad_user@ad.example.com

In the example:

Secret123 is the IdM admin password.

admins is the name of the IdM POSIX group to which you are adding the
ad_user@ad.example.com ID override. Members of this group have full administrator
privileges.

ad_user@ad.example.com is the user ID override of an AD administrator. The user is stored
in the AD domain with which a trust has been established.

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-
useridoverride-to-group.yml

Additional resources

ID overrides for AD users

/usr/share/doc/ansible-freeipa/README-group.md

/usr/share/doc/ansible-freeipa/playbooks/user

Using ID views in Active Directory environments

Enabling AD users to administer IdM

16.6. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM
USER GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of IdM member managers - both users and
user groups - using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

146

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/enabling-ad-users-to-administer-idm_configuring-and-managing-idm#id-overrides-for-ad-users_enabling-ad-users-to-administer-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-id-views-for-active-directory-users_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/enabling-ad-users-to-administer-idm_configuring-and-managing-idm

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the user or group you are adding as member managers and the
name of the group you want them to manage.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary user and group member management
information:

- name: Playbook to handle membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure user test is present for group_a
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_a
 membermanager_user: test

 - name: Ensure group_admins is present for group_a
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_a
 membermanager_group: group_admins

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-member-
managers-user-groups.yml

Verification steps

You can verify if the group_a group contains test as a member manager and group_admins is a
member manager of group_a by using the ipa group-show command:

1. Log into ipaserver as administrator:

CHAPTER 16. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

147

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about managergroup1:

ipaserver]$ ipa group-show group_a
 Group name: group_a
 GID: 1133400009
 Membership managed by groups: group_admins
 Membership managed by users: test

Additional resources

See ipa host-add-member-manager --help.

See the ipa man page.

16.7. ENSURING THE ABSENCE OF MEMBER MANAGERS IN IDM USER
GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the absence of IdM member managers - both users and
user groups - using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the existing member manager user or group you are removing and
the name of the group they are managing.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary user and group member management
information:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

148

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
member-managers-are-absent.yml

Verification steps

You can verify if the group_a group does not contain test as a member manager and group_admins as
a member manager of group_a by using the ipa group-show command:

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about group_a:

ipaserver]$ ipa group-show group_a
 Group name: group_a
 GID: 1133400009

Additional resources

See ipa host-remove-member-manager --help.

See the ipa man page.

- name: Playbook to handle membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure member manager user and group members are absent for group_a
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_a
 membermanager_user: test
 membermanager_group: group_admins
 action: member
 state: absent

CHAPTER 16. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS

149

CHAPTER 17. AUTOMATING GROUP MEMBERSHIP USING IDM
CLI

Using automatic group membership allows you to assign users and hosts to groups automatically based
on their attributes. For example, you can:

Divide employees' user entries into groups based on the employees' manager, location, or any
other attribute.

Divide hosts based on their class, location, or any other attribute.

Add all users or all hosts to a single global group.

This chapter covers the following topics:

Benefits of automatic group membership

Automember rules

Adding an automember rule using IdM CLI

Adding a condition to an automember rule using IdM CLI

Viewing existing automember rules using IdM CLI

Deleting an automember rule using IdM CLI

Removing a condition from an automember rule using IdM CLI

Applying automember rules to existing entries using IdM CLI

Configuring a default automember group using IdM CLI

17.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP

Using automatic membership for users allows you to:

Reduce the overhead of manually managing group memberships
You no longer have to assign every user and host to groups manually.

Improve consistency in user and host management
Users and hosts are assigned to groups based on strictly defined and automatically evaluated
criteria.

Simplify the management of group-based settings
Various settings are defined for groups and then applied to individual group members, for
example sudo rules, automount, or access control. Adding users and hosts to groups
automatically makes managing these settings easier.

17.2. AUTOMEMBER RULES

When configuring automatic group membership, the administrator defines automember rules. An
automember rule applies to a specific user or host target group. It cannot apply to more than one group
at a time.

After creating a rule, the administrator adds conditions to it. These specify which users or hosts get

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

150

After creating a rule, the administrator adds conditions to it. These specify which users or hosts get
included or excluded from the target group:

Inclusive conditions
When a user or host entry meets an inclusive condition, it will be included in the target group.

Exclusive conditions
When a user or host entry meets an exclusive condition, it will not be included in the target
group.

The conditions are specified as regular expressions in the Perl-compatible regular expressions (PCRE)
format. For more information about PCRE, see the pcresyntax(3) man page.

NOTE

IdM evaluates exclusive conditions before inclusive conditions. In case of a conflict,
exclusive conditions take precedence over inclusive conditions.

An automember rule applies to every entry created in the future. These entries will be automatically
added to the specified target group. If an entry meets the conditions specified in multiple automember
rules, it will be added to all the corresponding groups.

Existing entries are not affected by the new rule. If you want to change existing entries, see Applying
automember rules to existing entries using IdM CLI.

17.3. ADDING AN AUTOMEMBER RULE USING IDM CLI

Follow this procedure to add an automember rule using the IdM CLI. For information about automember
rules, see Automember rules.

After adding an automember rule, you can add conditions to it using the procedure described in Adding a
condition to an automember rule.

NOTE

Existing entries are not affected by the new rule. If you want to change existing entries,
see Applying automember rules to existing entries using IdM CLI .

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

The target group of the new rule must exist in IdM.

Procedure

1. Enter the ipa automember-add command to add an automember rule.

2. When prompted, specify:

Automember rule. This is the target group name.

Grouping Type. This specifies whether the rule targets a user group or a host group. To
target a user group, enter group. To target a host group, enter hostgroup.

CHAPTER 17. AUTOMATING GROUP MEMBERSHIP USING IDM CLI

151

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

For example, to add an automember rule for a user group named user_group:

$ ipa automember-add
Automember Rule: user_group
Grouping Type: group

Added automember rule "user_group"

 Automember Rule: user_group

Verification steps

You can display existing automember rules and conditions in IdM using Viewing existing
automember rules using IdM CLI.

17.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM
CLI

After configuring automember rules, you can then add a condition to that automember rule using the
IdM CLI. For information about automember rules, see Automember rules.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

The target rule must exist in IdM. For details, see Adding an automember rule using IdM CLI .

Procedure

1. Define one or more inclusive or exclusive conditions using the ipa automember-add-condition
command.

2. When prompted, specify:

Automember rule. This is the target rule name. See Automember rules for details.

Attribute Key. This specifies the entry attribute to which the filter will apply. For example,
uid for users.

Grouping Type. This specifies whether the rule targets a user group or a host group. To
target a user group, enter group. To target a host group, enter hostgroup.

Inclusive regex and Exclusive regex. These specify one or more conditions as regular
expressions. If you only want to specify one condition, press Enter when prompted for the
other.

For example, the following condition targets all users with any value (.*) in their user login
attribute (uid).

$ ipa automember-add-condition
Automember Rule: user_group
Attribute Key: uid
Grouping Type: group
[Inclusive Regex]: .*

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

152

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

[Exclusive Regex]:

Added condition(s) to "user_group"

 Automember Rule: user_group
 Inclusive Regex: uid=.*

Number of conditions added 1

As another example, you can use an automembership rule to target all Windows users
synchronized from Active Directory (AD). To achieve this, create a condition that that targets all
users with ntUser in their objectClass attribute, which is shared by all AD users:

$ ipa automember-add-condition
Automember Rule: ad_users
Attribute Key: objectclass
Grouping Type: group
[Inclusive Regex]: ntUser
[Exclusive Regex]:

Added condition(s) to "ad_users"

 Automember Rule: ad_users
 Inclusive Regex: objectclass=ntUser

Number of conditions added 1

Verification steps

You can display existing automember rules and conditions in IdM using Viewing existing
automember rules using IdM CLI.

17.5. VIEWING EXISTING AUTOMEMBER RULES USING IDM CLI

Follow this procedure to view existing automember rules using the IdM CLI.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

1. Enter the ipa automember-find command.

2. When prompted, specify the Grouping type:

To target a user group, enter group.

To target a host group, enter hostgroup.
For example:

$ ipa automember-find

CHAPTER 17. AUTOMATING GROUP MEMBERSHIP USING IDM CLI

153

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Grouping Type: group

1 rules matched

 Automember Rule: user_group
 Inclusive Regex: uid=.*

Number of entries returned 1

17.6. DELETING AN AUTOMEMBER RULE USING IDM CLI

Follow this procedure to delete an automember rule using the IdM CLI.

Deleting an automember rule also deletes all conditions associated with the rule. To remove only specific
conditions from a rule, see Removing a condition from an automember rule using IdM CLI .

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

1. Enter the ipa automember-del command.

2. When prompted, specify:

Automember rule. This is the rule you want to delete.

Grouping rule. This specifies whether the rule you want to delete is for a user group or a
host group. Enter group or hostgroup.

17.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING
IDM CLI

Follow this procedure to remove a specific condition from an automember rule.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

Procedure

1. Enter the ipa automember-remove-condition command.

2. When prompted, specify:

Automember rule. This is the name of the rule from which you want to remove a condition.

Attribute Key. This is the target entry attribute. For example, uid for users.

Grouping Type. This specifies whether the condition you want to delete is for a user group
or a host group. Enter group or hostgroup.

Inclusive regex and Exclusive regex. These specify the conditions you want to remove. If

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

154

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Inclusive regex and Exclusive regex. These specify the conditions you want to remove. If
you only want to specify one condition, press Enter when prompted for the other.
For example:

$ ipa automember-remove-condition
Automember Rule: user_group
Attribute Key: uid
Grouping Type: group
[Inclusive Regex]: .*
[Exclusive Regex]:

Removed condition(s) from "user_group"

 Automember Rule: user_group

Number of conditions removed 1

17.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING
IDM CLI

Automember rules apply automatically to user and host entries created after the rules were added. They
are not applied retroactively to entries that existed before the rules were added.

To apply automember rules to previously added entries, you have to manually rebuild automatic
membership. Rebuilding automatic membership re-evaluates all existing automember rules and applies
them either to all user or hosts entries, or to specific entries.

NOTE

Rebuilding automatic membership does not remove user or host entries from groups,
even if the entries no longer match the group’s inclusive conditions. To remove them
manually, see Removing a member from a user group using IdM CLI or Removing IdM
host group members using the CLI.

Prerequisites

You must be logged in as the administrator. For details, see link: Using kinit to log in to IdM
manually.

Procedure

To rebuild automatic membership, enter the ipa automember-rebuild command. Use the
following options to specify the entries to target:

To rebuild automatic membership for all users, use the --type=group option:

$ ipa automember-rebuild --type=group
--
Automember rebuild task finished. Processed (9) entries.
--

To rebuild automatic membership for all hosts, use the --type=hostgroup option.

To rebuild automatic membership for a specified user or users, use the --

CHAPTER 17. AUTOMATING GROUP MEMBERSHIP USING IDM CLI

155

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-groups-in-idm-cli_managing-users-groups-hosts#removing-a-member-from-a-user-group-using-idm-cli_managing-user-groups-in-idm-cli
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-host-groups-using-the-idm-cli_managing-users-groups-hosts#removing-idm-host-group-members-using-the-cli_managing-host-groups-using-the-idm-cli
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

To rebuild automatic membership for a specified user or users, use the --
users=target_user option:

$ ipa automember-rebuild --users=target_user1 --users=target_user2
--
Automember rebuild task finished. Processed (2) entries.
--

To rebuild automatic membership for a specified host or hosts, use the --
hosts=client.idm.example.com option.

17.9. CONFIGURING A DEFAULT AUTOMEMBER GROUP USING IDM
CLI

When you configure a default automember group, new user or host entries that do not match any
automember rule are automatically added to this default group.

Prerequisites

You must be logged in as the administrator. For details, see Using kinit to log in to IdM manually .

The target group you want to set as default exists in IdM.

Procedure

1. Enter the ipa automember-default-group-set command to configure a default automember
group.

2. When prompted, specify:

Default (fallback) Group, which specifies the target group name.

Grouping Type, which specifies whether the target is a user group or a host group. To
target a user group, enter group. To target a host group, enter hostgroup.
For example:

$ ipa automember-default-group-set
Default (fallback) Group: default_user_group
Grouping Type: group

Set default (fallback) group for automember "default_user_group"

 Default (fallback) Group:
cn=default_user_group,cn=groups,cn=accounts,dc=example,dc=com

NOTE

To remove the current default automember group, enter the ipa automember-
default-group-remove command.

Verification steps

To verify that the group is set correctly, enter the ipa automember-default-group-show
command. The command displays the current default automember group. For example:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

156

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

$ ipa automember-default-group-show
Grouping Type: group
 Default (fallback) Group:
cn=default_user_group,cn=groups,cn=accounts,dc=example,dc=com

CHAPTER 17. AUTOMATING GROUP MEMBERSHIP USING IDM CLI

157

CHAPTER 18. AUTOMATING GROUP MEMBERSHIP USING IDM
WEB UI

Using automatic group membership enables you to assign users and hosts to groups automatically
based on their attributes. For example, you can:

Divide employees' user entries into groups based on the employees' manager, location, or any
other attribute.

Divide hosts based on their class, location, or any other attribute.

Add all users or all hosts to a single global group.

This chapter covers the following topics:

Benefits of automatic group membership

Automember rules

Adding an automember rule using IdM Web UI

Adding a condition to an automember rule using IdM Web UI

Viewing existing automember rules and conditions using IdM Web UI

Deleting an automember rule using IdM Web UI

Removing a condition from an automember rule using IdM Web UI

Applying automember rules to existing entries using IdM Web UI

Configuring a default user group using IdM Web UI

Configuring a default host group using IdM Web UI

18.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP

Using automatic membership for users allows you to:

Reduce the overhead of manually managing group memberships
You no longer have to assign every user and host to groups manually.

Improve consistency in user and host management
Users and hosts are assigned to groups based on strictly defined and automatically evaluated
criteria.

Simplify the management of group-based settings
Various settings are defined for groups and then applied to individual group members, for
example sudo rules, automount, or access control. Adding users and hosts to groups
automatically makes managing these settings easier.

18.2. AUTOMEMBER RULES

When configuring automatic group membership, the administrator defines automember rules. An

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

158

When configuring automatic group membership, the administrator defines automember rules. An
automember rule applies to a specific user or host target group. It cannot apply to more than one group
at a time.

After creating a rule, the administrator adds conditions to it. These specify which users or hosts get
included or excluded from the target group:

Inclusive conditions
When a user or host entry meets an inclusive condition, it will be included in the target group.

Exclusive conditions
When a user or host entry meets an exclusive condition, it will not be included in the target
group.

The conditions are specified as regular expressions in the Perl-compatible regular expressions (PCRE)
format. For more information about PCRE, see the pcresyntax(3) man page.

NOTE

IdM evaluates exclusive conditions before inclusive conditions. In case of a conflict,
exclusive conditions take precedence over inclusive conditions.

An automember rule applies to every entry created in the future. These entries will be automatically
added to the specified target group. If an entry meets the conditions specified in multiple automember
rules, it will be added to all the corresponding groups.

Existing entries are not affected by the new rule. If you want to change existing entries, see Applying
automember rules to existing entries using IdM Web UI.

18.3. ADDING AN AUTOMEMBER RULE USING IDM WEB UI

Follow this procedure to add an automember rule using the IdM Web UI. For information about
automember rules, see Automember rules.

NOTE

Existing entries are not affected by the new rule. If you want to change existing entries,
see Applying automember rules to existing entries using IdM Web UI .

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

The target group of the new rule exists in IdM.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules.

2. Click Add.

3. In the Automember rule field, select the group to which the rule will apply. This is the target
group name.

CHAPTER 18. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

159

4. Click Add to confirm.

5. Optional: You can add conditions to the new rule using the procedure described in Adding a
condition to an automember rule using IdM Web UI.

18.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM
WEB UI

After configuring automember rules, you can then add a condition to that automember rule using the
IdM Web UI. For information about automember rules, see Automember rules.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

The target rule exists in IdM.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules.

2. Click on the rule to which you want to add a condition.

3. In the Inclusive or Exclusive sections, click Add.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

160

4. In the Attribute field, select the required attribute, for example uid.

5. In the Expression field, define a regular expression.

6. Click Add.
For example, the following condition targets all users with any value (.*) in their user ID (uid)
attribute.

18.5. VIEWING EXISTING AUTOMEMBER RULES AND CONDITIONS
USING IDM WEB UI

Follow this procedure to view existing automember rules and conditions using the IdM Web UI.

CHAPTER 18. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

161

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules to view
the respective automember rules.

2. Optional: Click on a rule to see the conditions for that rule in the Inclusive or Exclusive sections.

18.6. DELETING AN AUTOMEMBER RULE USING IDM WEB UI

Follow this procedure to delete an automember rule using the IdM Web UI.

Deleting an automember rule also deletes all conditions associated with the rule. To remove only specific
conditions from a rule, see Removing a condition from an automember rule using IdM Web UI .

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules to view

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

162

1. Click Identity → Automember, and select either User group rules or Host group rules to view
the respective automember rules.

2. Select the check box next to the rule you want to remove.

3. Click Delete.

4. Click Delete to confirm.

18.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING
IDM WEB UI

Follow this procedure to remove a specific condition from an automember rule using the IdM Web UI.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

Procedure

1. Click Identity → Automember, and select either User group rules or Host group rules to view
the respective automember rules.

2. Click on a rule to see the conditions for that rule in the Inclusive or Exclusive sections.

3. Select the check box next to the conditions you want to remove.

4. Click Delete.

CHAPTER 18. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

163

5. Click Delete to confirm.

18.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING
IDM WEB UI

Automember rules apply automatically to user and host entries created after the rules were added. They
are not applied retroactively to entries that existed before the rules were added.

To apply automember rules to previously added entries, you have to manually rebuild automatic
membership. Rebuilding automatic membership re-evaluates all existing automember rules and applies
them either to all user or hosts entries, or to specific entries.

NOTE

Rebuilding automatic membership does not remove user or host entries from groups,
even if the entries no longer match the group’s inclusive conditions. To remove them
manually, see Removing a member from a user group using IdM Web UI or Removing host
group members in the IdM Web UI.

18.8.1. Rebuilding automatic membership for all users or hosts

Follow this procedure to rebuild automatic membership for all user or host entries.

Prerequisites

You are logged in to the IdM Web UI.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

164

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-groups-in-idm-web-ui_configuring-and-managing-idm#removing-a-member-from-a-user-group-using-idm-web-ui_managing-user-groups-in-idm-web-ui
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-host-groups-using-the-idm-web-ui_configuring-and-managing-idm#removing-host-group-members-in-the-idm-web-ui_managing-host-groups-using-the-idm-web-ui

You must be a member of the admins group.

Procedure

1. Select Identity → Users or Hosts.

2. Click Actions → Rebuild auto membership.

18.8.2. Rebuilding automatic membership for a single user or host only

Follow this procedure to rebuild automatic membership for a specific user or host entry.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

Procedure

1. Select Identity → Users or Hosts.

2. Click on the required user or host name.

3. Click Actions → Rebuild auto membership.

CHAPTER 18. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

165

18.9. CONFIGURING A DEFAULT USER GROUP USING IDM WEB UI

When you configure a default user group, new user entries that do not match any automember rule are
automatically added to this default group.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

The target user group you want to set as default exists in IdM.

Procedure

1. Click Identity → Automember, and select User group rules.

2. In the Default user group field, select the group you want to set as the default user group.

18.10. CONFIGURING A DEFAULT HOST GROUP USING IDM WEB UI

When you configure a default host group, new host entries that do not match any automember rule are
automatically added to this default group.

Prerequisites

You are logged in to the IdM Web UI.

You must be a member of the admins group.

The target host group you want to set as default exists in IdM.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

166

Procedure

1. Click Identity → Automember, and select Host group rules.

2. In the Default host group field, select the group you want to set as the default host group.

CHAPTER 18. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI

167

CHAPTER 19. USING ANSIBLE TO AUTOMATE GROUP
MEMBERSHIP IN IDM

Using automatic group membership, you can assign users and hosts user groups and host groups
automatically, based on their attributes. For example, you can:

Divide employees' user entries into groups based on the employees' manager, location, position
or any other attribute. You can list all attributes by entering ipa user-add --help on the
command-line.

Divide hosts into groups based on their class, location, or any other attribute. You can list all
attributes by entering ipa host-add --help on the command-line.

Add all users or all hosts to a single global group.

You can use Red Hat Ansible Engine to automate the management of automatic group membership in
Identity Management (IdM).

This section covers the following topics:

Preparing your Ansible control node for managing IdM

Using Ansible to ensure that an automember rule for an IdM user group is present

Using Ansible to ensure that a condition is present in an IdM user group automember rule

Using Ansible to ensure that a condition is absent in an IdM user group automember rule

Using Ansible to ensure that an automember rule for an IdM group is absent

Using Ansible to ensure that a condition is present in an IdM host group automember rule

19.1. PREPARING YOUR ANSIBLE CONTROL NODE FOR MANAGING
IDM

As a system administrator managing Identity Management (IdM), when working with Red Hat Ansible
Engine, it is good practice to do the following:

Create a subdirectory dedicated to Ansible playbooks in your home directory, for example
~/MyPlaybooks.

Copy and adapt sample Ansible playbooks from the /usr/share/doc/ansible-freeipa/* and
/usr/share/doc/rhel-system-roles/* directories and subdirectories into your ~/MyPlaybooks
directory.

Include your inventory file in your ~/MyPlaybooks directory.

By following this practice, you can find all your playbooks in one place and you can run your playbooks
without invoking root privileges.

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

168

NOTE

You only need root privileges on the managed nodes to execute the ipaserver,
ipareplica, ipaclient, ipabackup, ipasmartcard_server and ipasmartcard_client
ansible-freeipa roles. These roles require privileged access to directories and the dnf
software package manager.

Follow this procedure to create the ~/MyPlaybooks directory and configure it so that you can use it to
store and run Ansible playbooks.

Prerequisites

You have installed an IdM server on your managed nodes, server.idm.example.com and
replica.idm.example.com.

You have configured DNS and networking so you can log in to the managed nodes,
server.idm.example.com and replica.idm.example.com, directly from the control node.

You know the IdM admin password.

Procedure

1. Create a directory for your Ansible configuration and playbooks in your home directory:

$ mkdir ~/MyPlaybooks/

2. Change into the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks

3. Create the ~/MyPlaybooks/ansible.cfg file with the following content:

[defaults]
inventory = /home/your_username/MyPlaybooks/inventory

[privilege_escalation]
become=True

4. Create the ~/MyPlaybooks/inventory file with the following content:

[ipaserver]
server.idm.example.com

[ipareplicas]
replica1.idm.example.com
replica2.idm.example.com

[ipacluster:children]
ipaserver
ipareplicas

[ipacluster:vars]
ipaadmin_password=SomeADMINpassword

CHAPTER 19. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

169

[ipaclients]
ipaclient1.example.com
ipaclient2.example.com

[ipaclients:vars]
ipaadmin_password=SomeADMINpassword

This configuration defines two host groups, eu and us, for hosts in these locations. Additionally,
this configuration defines the ipaserver host group, which contains all hosts from the eu and us
groups.

5. [Optional] Create an SSH public and private key. To simplify access in your test environment, do
not set a password on the private key:

$ ssh-keygen

6. Copy the SSH public key to the IdM admin account on each managed node:

$ ssh-copy-id admin@server.idm.example.com
$ ssh-copy-id admin@replica.idm.example.com

You must enter the IdM admin password when you enter these commands.

Additional resources

Installing an Identity Management server using an Ansible playbook .

How to build your inventory .

19.2. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR
AN IDM USER GROUP IS PRESENT

The following procedure describes how to use an Ansible playbook to ensure an automember rule for an
Identity Management (IdM) group exists. In the example, the presence of an automember rule is
ensured for the testing_group user group.

Prerequisites

You know the IdM admin password.

The testing_group user group exists in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

170

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-group-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-group-
present.yml automember-group-present-copy.yml

3. Open the automember-group-present-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to present.

This is the modified Ansible playbook file for the current example:

- name: Automember group present example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure group automember rule admins is present
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: present

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
group-present-copy.yml

Additional resources

See Benefits of automatic group membership and Automember rules.

See Using Ansible to ensure that a condition is present in an IdM user group automember rule .

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

CHAPTER 19. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

171

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

19.3. USING ANSIBLE TO ENSURE THAT A SPECIFIED CONDITION IS
PRESENT IN AN IDM USER GROUP AUTOMEMBER RULE

The following procedure describes how to use an Ansible playbook to ensure that a specified condition
exists in an automember rule for an Identity Management (IdM) group. In the example, the presence of
a UID-related condition in the automember rule is ensured for the testing_group group. By specifying
the .* condition, you ensure that all future IdM users automatically become members of the
testing_group.

Prerequisites

You know the IdM admin password.

The testing_group user group and automember user group rule exist in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-hostgroup-rule-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory and name it, for example,
automember-usergroup-rule-present.yml :

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-hostgroup-
rule-present.yml automember-usergroup-rule-present.yml

3. Open the automember-usergroup-rule-present.yml file for editing.

4. Adapt the file by modifying the following parameters:

Rename the playbook to correspond to your use case, for example: Automember user
group rule member present.

Rename the task to correspond to your use case, for example: Ensure an automember
condition for a user group is present.

Set the following variables in the ipaautomember task section:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

172

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to present.

Ensure that the action variable is set to member.

Set the inclusive key variable to UID.

Set the inclusive expression variable to .*

This is the modified Ansible playbook file for the current example:

- name: Automember user group rule member present
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure an automember condition for a user group is present
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: present
 action: member
 inclusive:
 - key: UID
 expression: .*

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
usergroup-rule-present.yml

Verification steps

1. Log in as an IdM administrator.

$ kinit admin

2. Add a user, for example:

$ ipa user-add user101 --first user --last 101

Added user "user101"

 User login: user101
 First name: user

CHAPTER 19. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

173

 Last name: 101
 ...
 Member of groups: ipausers, testing_group
 ...

Additional resources

See Applying automember rules to existing entries using the IdM CLI .

See Benefits of automatic group membership and Automember rules.

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

19.4. USING ANSIBLE TO ENSURE THAT A CONDITION IS ABSENT
FROM AN IDM USER GROUP AUTOMEMBER RULE

The following procedure describes how to use an Ansible playbook to ensure a condition is absent from
an automember rule for an Identity Management (IdM) group. In the example, the absence of a
condition in the automember rule is ensured that specifies that users whose initials are dp should be
included. The automember rule is applied to the testing_group group. By applying the condition, you
ensure that no future IdM user whose initials are dp becomes a member of the testing_group.

Prerequisites

You know the IdM admin password.

The testing_group user group and automember user group rule exist in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-hostgroup-rule-absent.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory and name it, for example,
automember-usergroup-rule-absent.yml:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

174

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-hostgroup-
rule-absent.yml automember-usergroup-rule-absent.yml

3. Open the automember-usergroup-rule-absent.yml file for editing.

4. Adapt the file by modifying the following parameters:

Rename the playbook to correspond to your use case, for example: Automember user
group rule member absent.

Rename the task to correspond to your use case, for example: Ensure an automember
condition for a user group is absent.

Set the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to absent.

Ensure that the action variable is set to member.

Set the inclusive key variable to initials.

Set the inclusive expression variable to dp.

This is the modified Ansible playbook file for the current example:

- name: Automember user group rule member absent
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure an automember condition for a user group is absent
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: absent
 action: member
 inclusive:
 - key: initials
 expression: dp

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
usergroup-rule-absent.yml

CHAPTER 19. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

175

Verification steps

1. Log in as an IdM administrator.

$ kinit admin

2. View the automember group:

$ ipa automember-show --type=group testing_group
 Automember Rule: testing_group

The absence of an Inclusive Regex: initials=dp entry in the output confirms that the testing_group
automember rule does not contain the condition specified.

Additional resources

See Applying automember rules to existing entries using the IdM CLI .

See Benefits of automatic group membership and Automember rules.

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

19.5. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR
AN IDM USER GROUP IS ABSENT

The following procedure describes how to use an Ansible playbook to ensure an automember rule is
absent for an Identity Management (IdM) group. In the example, the absence of an automember rule is
ensured for the testing_group group.

NOTE

Deleting an automember rule also deletes all conditions associated with the rule. To
remove only specific conditions from a rule, see Using Ansible to ensure that a condition is
absent in an IdM user group automember rule.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

176

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-group-absent.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-group-
absent.yml automember-group-absent-copy.yml

3. Open the automember-group-absent-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to testing_group.

Set the automember_type variable to group.

Ensure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Automember group absent example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure group automember rule admins is absent
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: testing_group
 automember_type: group
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
group-absent.yml

Additional resources

See Benefits of automatic group membership and Automember rules.

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

CHAPTER 19. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

177

19.6. USING ANSIBLE TO ENSURE THAT A CONDITION IS PRESENT IN
AN IDM HOST GROUP AUTOMEMBER RULE

Follow this procedure to use Ansible to ensure that a condition is present in an IdM host group
automember rule. The example describes how to ensure that hosts with the FQDN of
.*.idm.example.com are members of the primary_dns_domain_hosts host group and hosts whose
FQDN is .*.example.org are not members of the primary_dns_domain_hosts host group.

Prerequisites

You know the IdM admin password.

The primary_dns_domain_hosts host group and automember host group rule exist in IdM.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automember-hostgroup-rule-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automember/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automember/automember-hostgroup-
rule-present.yml automember-hostgroup-rule-present-copy.yml

3. Open the automember-hostgroup-rule-present-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomember task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to primary_dns_domain_hosts.

Set the automember_type variable to hostgroup.

Ensure that the state variable is set to present.

Ensure that the action variable is set to member.

Ensure that the inclusive key variable is set to fqdn.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

178

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the corresponding inclusive expression variable to .*.idm.example.com.

Set the exclusive key variable to fqdn.

Set the corresponding exclusive expression variable to .*.example.org.

This is the modified Ansible playbook file for the current example:

- name: Automember user group rule member present
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure an automember condition for a user group is present
 ipaautomember:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: primary_dns_domain_hosts
 automember_type: hostgroup
 state: present
 action: member
 inclusive:
 - key: fqdn
 expression: .*.idm.example.com
 exclusive:
 - key: fqdn
 expression: .*.example.org

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automember-
hostgroup-rule-present-copy.yml

Additional resources

See Applying automember rules to existing entries using the IdM CLI .

See Benefits of automatic group membership and Automember rules.

See the README-automember.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/automember directory.

19.7. ADDITIONAL RESOURCES

Managing user accounts using Ansible playbooks

Managing hosts using Ansible playbooks

Managing user groups using Ansible playbooks

Managing host groups using the IdM CLI

CHAPTER 19. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM

179

CHAPTER 20. ACCESS CONTROL IN IDM
Access control defines the rights or permissions users have been granted to perform operations on
other users or objects, such as hosts or services. Identity Management (IdM) provides several access
control areas to make it clear what kind of access is being granted and to whom it is granted. As part of
this, IdM draws a distinction between access control to resources within the domain and access control
to the IdM configuration itself.

This chapter outlines the different internal access control mechanisms that are available for IdM users
both to the resources within the domain and to the IdM configuration itself.

20.1. ACCESS CONTROL INSTRUCTIONS IN IDM

The Identity Management (IdM) access control structure is based on the 389 Directory Server access
control. By using access control instructions (ACIs), you can grant or deny specific IdM users access over
other entries. All entries, including IdM users, are stored in LDAP.

An ACI has three parts:

Actor

The entity that is being granted permission to do something. In LDAP access control models, you
can, for example, specify that the ACI rule is applied only when a user binds to the directory using
their distinguished name (DN). Such a specification is called the bind rule: it defines who the user is
and can optionally require other limits on the bind attempt, such as restricting attempts to a certain
time of day or a certain machine.

Target

The entry that the actor is allowed to perform operations on.

Operation type

Determines what kinds of actions the actor is allowed to perform. The most common operations are
add, delete, write, read, and search. In IdM, the read and search rights of a non-administrative user
are limited, and even more so in the IdM Web UI than the IdM CLI.

When an LDAP operation is attempted, the following occurs:

1. The IdM client sends user credentials to an IdM server as part of the bind operation.

2. The IdM server DS checks the user credentials.

3. The IdM server DS checks the user account to see if the user has a permission to perform the
requested operation.

20.2. ACCESS CONTROL METHODS IN IDM

Identity Management (IdM) divides access control methods into the following categories:

Self-service rules

Define what operations a user can perform on the user’s own personal entry. This access control
type only allows write permissions to specific attributes within the user entry. Users can update the
values of specific attributes but cannot add or delete the attributes as such.

Delegation rules

By using a delegation rule, you can allow a specific user group to perform write, that is edit,
operations on specific attributes of users in another user group. Similarly to self-service rules, this

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

180

form of access control rule is limited to editing the values of specific attributes. It does not grant the
ability to add or remove whole entries or control over unspecified attributes.

Role-based access control

Creates special access control groups that are then granted much broader authority over all types of
entities in the IdM domain. Roles can be granted edit, add, and delete rights, meaning they can be
granted complete control over entire entries, not just selected attributes.
Certain roles are already available in IdM by default, for example Enrollment Administrator, IT
Security Specialist, and IT Specialist. You can create additional roles to manage any types of
entries, such as hosts, automount configuration, netgroups, DNS settings, and IdM configuration.

Additional resources

Using Ansible playbooks to manage self-service rules in IdM

Delegating permissions to user groups to manage users using Ansible playbooks

Using Ansible playbooks to manage role-based access control in IdM

CHAPTER 20. ACCESS CONTROL IN IDM

181

CHAPTER 21. MANAGING SELF-SERVICE RULES IN IDM USING
THE CLI

Learn about self-service rules in Identity Management (IdM) and how to create and edit self-service
access rules in the command-line interface (CLI).

21.1. SELF-SERVICE ACCESS CONTROL IN IDM

Self-service access control rules define which operations an Identity Management (IdM) entity can
perform on its IdM Directory Server entry: for example, IdM users have the ability to update their own
passwords.

This method of control allows an authenticated IdM entity to edit specific attributes within its LDAP
entry, but does not allow add or delete operations on the entire entry.

WARNING

Be careful when working with self-service access control rules: configuring access
control rules improperly can inadvertently elevate an entity’s privileges.

21.2. CREATING SELF-SERVICE RULES USING THE CLI

Follow this procedure to create self-service access rules in IdM using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

To add a self-service rule, use the ipa selfservice-add command and specify the following two
options:

--permissions

sets the read and write permissions the Access Control Instruction (ACI) grants.

--attrs

sets the complete list of attributes to which this ACI grants permission.

For example, to create a self-service rule allowing users to modify their own name details:

$ ipa selfservice-add "Users can manage their own name details" --permissions=write --
attrs=givenname --attrs=displayname --attrs=title --attrs=initials

Added selfservice "Users can manage their own name details"

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

182

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

 Self-service name: Users can manage their own name details
 Permissions: write
 Attributes: givenname, displayname, title, initials

21.3. EDITING SELF-SERVICE RULES USING THE CLI

Follow this procedure to edit self-service access rules in IdM using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Optional: Display existing self-service rules with the ipa selfservice-find command.

2. Optional: Display details for the self-service rule you want to modify with the ipa selfservice-
show command.

3. Use the ipa selfservice-mod command to edit a self-service rule.

For example:

$ ipa selfservice-mod "Users can manage their own name details" --attrs=givenname --
attrs=displayname --attrs=title --attrs=initials --attrs=surname
--
Modified selfservice "Users can manage their own name details"
--
Self-service name: Users can manage their own name details
Permissions: write
Attributes: givenname, displayname, title, initials

IMPORTANT

Using the ipa selfservice-mod command overwrites the previously defined permissions
and attributes, so always include the complete list of existing permissions and attributes
along with any new ones you want to define.

Verification steps

Use the ipa selfservice-show command to display the self-service rule you edited.

$ ipa selfservice-show "Users can manage their own name details"
--
Self-service name: Users can manage their own name details
Permissions: write
Attributes: givenname, displayname, title, initials

21.4. DELETING SELF-SERVICE RULES USING THE CLI

Follow this procedure to delete self-service access rules in IdM using the command-line interface (CLI).

CHAPTER 21. MANAGING SELF-SERVICE RULES IN IDM USING THE CLI

183

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

Use the ipa selfservice-del command to delete a self-service rule.

For example:

$ ipa selfservice-del "Users can manage their own name details"

Deleted selfservice "Users can manage their own name details"

Verification steps

Use the ipa selfservice-find command to display all self-service rules. The rule you just deleted
should be missing.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

184

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

CHAPTER 22. MANAGING SELF-SERVICE RULES USING THE
IDM WEB UI

Learn about self-service rules in Identity Management (IdM) and how to create and edit self-service
access rules in the web interface (IdM Web UI).

22.1. SELF-SERVICE ACCESS CONTROL IN IDM

Self-service access control rules define which operations an Identity Management (IdM) entity can
perform on its IdM Directory Server entry: for example, IdM users have the ability to update their own
passwords.

This method of control allows an authenticated IdM entity to edit specific attributes within its LDAP
entry, but does not allow add or delete operations on the entire entry.

WARNING

Be careful when working with self-service access control rules: configuring access
control rules improperly can inadvertently elevate an entity’s privileges.

22.2. CREATING SELF-SERVICE RULES USING THE IDM WEB UI

Follow this procedure to create self-service access rules in IdM using the web interface (IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Open the Role-Based Access Control submenu in the IPA Server tab and select Self Service
Permissions.

2. Click Add at the upper-right of the list of the self-service access rules:

CHAPTER 22. MANAGING SELF-SERVICE RULES USING THE IDM WEB UI

185

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3. The Add Self Service Permission window opens. Enter the name of the new self-service rule in
the Self-service name field. Spaces are allowed:

4. Select the check boxes next to the attributes you want users to be able to edit.

5. Optional: If an attribute you want to provide access to is not listed, you can add a listing for it:

a. Click the Add button.

b. Enter the attribute name in the Attribute text field of the following Add Custom Attribute
window.

c. Click the OK button to add the attribute

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

186

d. Verify that the new attribute is selected

6. Click the Add button at the bottom of the form to save the new self-service rule.
Alternatively, you can save and continue editing the self-service rule by clicking the Add and
Edit button, or save and add further rules by clicking the Add and Add another button.

22.3. EDITING SELF-SERVICE RULES USING THE IDM WEB UI

Follow this procedure to edit self-service access rules in IdM using the web interface (IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Open the Role-Based Access Control submenu in the IPA Server tab and select Self Service
Permissions.

2. Click on the name of the self-service rule you want to modify.

3. The edit page only allows you to edit the list of attributes to you want to add or remove to the

CHAPTER 22. MANAGING SELF-SERVICE RULES USING THE IDM WEB UI

187

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3. The edit page only allows you to edit the list of attributes to you want to add or remove to the
self-service rule. Select or deselect the appropriate check boxes.

4. Click the Save button to save your changes to the self-service rule.

22.4. DELETING SELF-SERVICE RULES USING THE IDM WEB UI

Follow this procedure to delete self-service access rules in IdM using the web interface (IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Open the Role-Based Access Control submenu in the IPA Server tab and select Self Service
Permissions.

2. Select the check box next to the rule you want to delete, then click on the Delete button on the
right of the list.

3. A dialog opens, click on Delete to confirm.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

188

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

CHAPTER 23. USING ANSIBLE PLAYBOOKS TO MANAGE
SELF-SERVICE RULES IN IDM

This section introduces self-service rules in Identity Management (IdM) and describes how to create and
edit self-service access rules using Ansible playbooks. Self-service access control rules allow an IdM
entity to perform specified operations on its IdM Directory Server entry.

Self-service access control in IdM

Using Ansible to ensure that a self-service rule is present

Using Ansible to ensure that a self-service rule is absent

Using Ansible to ensure that a self-service rule has specific attributes

Using Ansible to ensure that a self-service rule does not have specific attributes

23.1. SELF-SERVICE ACCESS CONTROL IN IDM

Self-service access control rules define which operations an Identity Management (IdM) entity can
perform on its IdM Directory Server entry: for example, IdM users have the ability to update their own
passwords.

This method of control allows an authenticated IdM entity to edit specific attributes within its LDAP
entry, but does not allow add or delete operations on the entire entry.

WARNING

Be careful when working with self-service access control rules: configuring access
control rules improperly can inadvertently elevate an entity’s privileges.

23.2. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS
PRESENT

The following procedure describes how to use an Ansible playbook to define self-service rules and
ensure their presence on an Identity Management (IdM) server. In this example, the new Users can
manage their own name details rule grants users the ability to change their own givenname,
displayname, title and initials attributes. This allows them to, for example, change their display name or
initials if they want to.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible

CHAPTER 23. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

189

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/selfservice/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-present.yml
selfservice-present-copy.yml

3. Open the selfservice-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new self-service rule.

Set the permission variable to a comma-separated list of permissions to grant: read and
write.

Set the attribute variable to a list of attributes that users can manage themselves:
givenname, displayname, title, and initials.

This is the modified Ansible playbook file for the current example:

- name: Self-service present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure self-service rule "Users can manage their own name details" is present
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 permission: read, write
 attribute:
 - givenname
 - displayname
 - title
 - initials

5. Save the file.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

190

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
present-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the /usr/share/doc/ansible-freeipa/playbooks/selfservice directory.

23.3. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS
ABSENT

The following procedure describes how to use an Ansible playbook to ensure a specified self-service rule
is absent from your IdM configuration. The example below describes how to make sure the Users can
manage their own name details self-service rule does not exist in IdM. This will ensure that users
cannot, for example, change their own display name or initials.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/selfservice/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-absent.yml
selfservice-absent-copy.yml

3. Open the selfservice-absent-copy.yml Ansible playbook file for editing.

CHAPTER 23. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

191

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the self-service rule.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Self-service absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure self-service rule "Users can manage their own name details" is absent
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
absent-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/selfservice
directory.

23.4. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE HAS
SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that an already existing
self-service rule has specific settings. In the example, you ensure the Users can manage their own
name details self-service rule also has the surname member attribute.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

192

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The Users can manage their own name details self-service rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-member-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/selfservice/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-member-
present.yml selfservice-member-present-copy.yml

3. Open the selfservice-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the self-service rule to modify.

Set the attribute variable to surname.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Self-service member present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure selfservice "Users can manage their own name details" member attribute
surname is present
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 attribute:
 - surname
 action: member

5. Save the file.

CHAPTER 23. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

193

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
member-present-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file available in the /usr/share/doc/ansible-freeipa/
directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/selfservice
directory.

23.5. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE DOES
NOT HAVE SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that a self-service rule
does not have specific settings. You can use this playbook to make sure a self-service rule does not
grant undesired access. In the example, you ensure the Users can manage their own name details self-
service rule does not have the givenname and surname member attributes.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The Users can manage their own name details self-service rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the selfservice-member-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/selfservice/ directory:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

194

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/selfservice/selfservice-member-
absent.yml selfservice-member-absent-copy.yml

3. Open the selfservice-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaselfservice task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the self-service rule you want to modify.

Set the attribute variable to givenname and surname.

Set the action variable to member.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Self-service member absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure selfservice "Users can manage their own name details" member attributes
givenname and surname are absent
 ipaselfservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "Users can manage their own name details"
 attribute:
 - givenname
 - surname
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory selfservice-
member-absent-copy.yml

Additional resources

See Self-service access control in IdM .

See the README-selfservice.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/selfservice
directory.

CHAPTER 23. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM

195

CHAPTER 24. DELEGATING PERMISSIONS TO USER GROUPS
TO MANAGE USERS USING IDM CLI

Delegation is one of the access control methods in IdM, along with self-service rules and role-based
access control (RBAC). You can use delegation to assign permissions to one group of users to manage
entries for another group of users.

This section covers the following topics:

Delegation rules

Creating a delegation rule using IdM CLI

Viewing existing delegation rules using IdM CLI

Modifying a delegation rule using IdM CLI

Deleting a delegation rule using IdM CLI

24.1. DELEGATION RULES

You can delegate permissions to user groups to manage users by creating delegation rules.

Delegation rules allow a specific user group to perform write (edit) operations on specific attributes for
users in another user group. This form of access control rule is limited to editing the values of a subset of
attributes you specify in a delegation rule; it does not grant the ability to add or remove whole entries or
control over unspecified attributes.

Delegation rules grant permissions to existing user groups in IdM. You can use delegation to, for
example, allow the managers user group to manage selected attributes of users in the employees user
group.

24.2. CREATING A DELEGATION RULE USING IDM CLI

Follow this procedure to create a delegation rule using the IdM CLI.

Prerequisites

You are logged in as a member of the admins group.

Procedure

Enter the ipa delegation-add command. Specify the following options:

--group: the group who is being granted permissions to the entries of users in the user
group.

--membergroup: the group whose entries can be edited by members of the delegation
group.

--permissions: whether users will have the right to view the given attributes (read) and add
or change the given attributes (write). If you do not specify permissions, only the write
permission will be added.

--attrs: the attributes which users in the member group are allowed to view or edit.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

196

For example:

$ ipa delegation-add "basic manager attributes" --permissions=read --permissions=write --
attrs=businesscategory --attrs=departmentnumber --attrs=employeetype --
attrs=employeenumber --group=managers --membergroup=employees

Added delegation "basic manager attributes"

 Delegation name: basic manager attributes
 Permissions: read, write
 Attributes: businesscategory, departmentnumber, employeetype, employeenumber
 Member user group: employees
 User group: managers

24.3. VIEWING EXISTING DELEGATION RULES USING IDM CLI

Follow this procedure to view existing delegation rules using the IdM CLI.

Prerequisites

You are logged in as a member of the admins group.

Procedure

Enter the ipa delegation-find command:

$ ipa delegation-find

1 delegation matched

 Delegation name: basic manager attributes
 Permissions: read, write
 Attributes: businesscategory, departmentnumber, employeenumber, employeetype
 Member user group: employees
 User group: managers

Number of entries returned 1

24.4. MODIFYING A DELEGATION RULE USING IDM CLI

Follow this procedure to modify an existing delegation rule using the IdM CLI.

IMPORTANT

The --attrs option overwrites whatever the previous list of supported attributes was, so
always include the complete list of attributes along with any new attributes. This also
applies to the --permissions option.

Prerequisites

You are logged in as a member of the admins group.

CHAPTER 24. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM CLI

197

Procedure

Enter the ipa delegation-mod command with the desired changes. For example, to add the
displayname attribute to the basic manager attributes example rule:

$ ipa delegation-mod "basic manager attributes" --attrs=businesscategory --
attrs=departmentnumber --attrs=employeetype --attrs=employeenumber --
attrs=displayname
--
Modified delegation "basic manager attributes"
--
 Delegation name: basic manager attributes
 Permissions: read, write
 Attributes: businesscategory, departmentnumber, employeetype, employeenumber,
displayname
 Member user group: employees
 User group: managers

24.5. DELETING A DELEGATION RULE USING IDM CLI

Follow this procedure to delete an existing delegation rule using the IdM CLI.

Prerequisites

You are logged in as a member of the admins group.

Procedure

Enter the ipa delegation-del command.

When prompted, enter the name of the delegation rule you want to delete:

$ ipa delegation-del
Delegation name: basic manager attributes

Deleted delegation "basic manager attributes"

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

198

CHAPTER 25. DELEGATING PERMISSIONS TO USER GROUPS
TO MANAGE USERS USING IDM WEBUI

Delegation is one of the access control methods in IdM, along with self-service rules and role-based
access control (RBAC). You can use delegation to assign permissions to one group of users to manage
entries for another group of users.

This section covers the following topics:

Delegation rules

Creating a delegation rule using IdM WebUI

Viewing existing delegation rules using IdM WebUI

Modifying a delegation rule using IdM WebUI

Deleting a delegation rule using IdM WebUI

25.1. DELEGATION RULES

You can delegate permissions to user groups to manage users by creating delegation rules.

Delegation rules allow a specific user group to perform write (edit) operations on specific attributes for
users in another user group. This form of access control rule is limited to editing the values of a subset of
attributes you specify in a delegation rule; it does not grant the ability to add or remove whole entries or
control over unspecified attributes.

Delegation rules grant permissions to existing user groups in IdM. You can use delegation to, for
example, allow the managers user group to manage selected attributes of users in the employees user
group.

25.2. CREATING A DELEGATION RULE USING IDM WEBUI

Follow this procedure to create a delegation rule using the IdM WebUI.

Prerequisites

You are logged in to the IdM Web UI as a member of the admins group.

Procedure

1. From the IPA Server menu, click Role-Based Access Control → Delegations.

2. Click Add.

CHAPTER 25. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI

199

3. In the Add delegation window, do the following:

a. Name the new delegation rule.

b. Set the permissions by selecting the check boxes that indicate whether users will have the
right to view the given attributes (read) and add or change the given attributes (write).

c. In the User group drop-down menu, select the group who is being granted permissions to
view or edit the entries of users in the member group.

d. In the Member user group drop-down menu, select the group whose entries can be edited
by members of the delegation group.

e. In the attributes box, select the check boxes by the attributes to which you want to grant
permissions.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

200

f. Click the Add button to save the new delegation rule.

25.3. VIEWING EXISTING DELEGATION RULES USING IDM WEBUI

Follow this procedure to view existing delegation rules using the IdM WebUI.

Prerequisites

CHAPTER 25. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI

201

You are logged in to the IdM Web UI as a member of the admins group.

Procedure

From the IPA Server menu, click Role-Based Access Control → Delegations.

25.4. MODIFYING A DELEGATION RULE USING IDM WEBUI

Follow this procedure to modify an existing delegation rule using the IdM WebUI.

Prerequisites

You are logged in to the IdM Web UI as a member of the admins group.

Procedure

1. From the IPA Server menu, click Role-Based Access Control → Delegations.

2. Click on the rule you want to modify.

3. Make the desired changes:

Change the name of the rule.

Change granted permissions by selecting the check boxes that indicate whether users will
have the right to view the given attributes (read) and add or change the given attributes
(write).

In the User group drop-down menu, select the group who is being granted permissions to
view or edit the entries of users in the member group.

In the Member user group drop-down menu, select the group whose entries can be edited
by members of the delegation group.

In the attributes box, select the check boxes by the attributes to which you want to grant

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

202

In the attributes box, select the check boxes by the attributes to which you want to grant
permissions. To remove permissions to an attribute, uncheck the relevant check box.

Click the Save button to save the changes.

25.5. DELETING A DELEGATION RULE USING IDM WEBUI

Follow this procedure to delete an existing delegation rule using the IdM WebUI.

Prerequisites

You are logged in to the IdM Web UI as a member of the admins group.

Procedure

1. From the IPA Server menu, click Role-Based Access Control → Delegations.

2. Select the check box next to the rule you want to remove.

3. Click Delete.

CHAPTER 25. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI

203

4. Click Delete to confirm.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

204

CHAPTER 26. DELEGATING PERMISSIONS TO USER GROUPS
TO MANAGE USERS USING ANSIBLE PLAYBOOKS

Delegation is one of the access control methods in IdM, along with self-service rules and role-based
access control (RBAC). You can use delegation to assign permissions to one group of users to manage
entries for another group of users.

This section covers the following topics:

Delegation rules

Creating the Ansible inventory file for IdM

Using Ansible to ensure that a delegation rule is present

Using Ansible to ensure that a delegation rule is absent

Using Ansible to ensure that a delegation rule has specific attributes

Using Ansible to ensure that a delegation rule does not have specific attributes

26.1. DELEGATION RULES

You can delegate permissions to user groups to manage users by creating delegation rules.

Delegation rules allow a specific user group to perform write (edit) operations on specific attributes for
users in another user group. This form of access control rule is limited to editing the values of a subset of
attributes you specify in a delegation rule; it does not grant the ability to add or remove whole entries or
control over unspecified attributes.

Delegation rules grant permissions to existing user groups in IdM. You can use delegation to, for
example, allow the managers user group to manage selected attributes of users in the employees user
group.

26.2. CREATING AN ANSIBLE INVENTORY FILE FOR IDM

When working with Ansible, it is good practice to create, in your home directory, a subdirectory
dedicated to Ansible playbooks that you copy and adapt from the /usr/share/doc/ansible-freeipa/* and
/usr/share/doc/rhel-system-roles/* subdirectories. This practice has the following advantages:

You can find all your playbooks in one place.

You can run your playbooks without invoking root privileges.

Procedure

1. Create a directory for your Ansible configuration and playbooks in your home directory:

$ mkdir ~/MyPlaybooks/

2. Change into the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks

CHAPTER 26. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

205

3. Create the ~/MyPlaybooks/ansible.cfg file with the following content:

[defaults]
inventory = /home/<username>/MyPlaybooks/inventory

[privilege_escalation]
become=True

4. Create the ~/MyPlaybooks/inventory file with the following content:

[eu]
server.idm.example.com

[us]
replica.idm.example.com

[ipaserver:children]
eu
us

This configuration defines two host groups, eu and us, for hosts in these locations. Additionally,
this configuration defines the ipaserver host group, which contains all hosts from the eu and us
groups.

26.3. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS
PRESENT

The following procedure describes how to use an Ansible playbook to define privileges for a new IdM
delegation rule and ensure its presence. In the example, the new basic manager attributes delegation
rule grants the managers group the ability to read and write the following attributes for members of
the employees group:

businesscategory

departmentnumber

employeenumber

employeetype

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

206

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the delegation-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-present.yml
delegation-present-copy.yml

3. Open the delegation-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new delegation rule.

Set the permission variable to a comma-separated list of permissions to grant: read and
write.

Set the attribute variable to a list of attributes the delegated user group can manage:
businesscategory, departmentnumber, employeenumber, and employeetype.

Set the group variable to the name of the group that is being given access to view or
modify attributes.

Set the membergroup variable to the name of the group whose attributes can be viewed
or modified.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage a delegation rule
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" is present
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"
 permission: read, write
 attribute:
 - businesscategory
 - departmentnumber
 - employeenumber
 - employeetype
 group: managers
 membergroup: employees

CHAPTER 26. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

207

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-present-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

26.4. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS
ABSENT

The following procedure describes how to use an Ansible playbook to ensure a specified delegation rule
is absent from your IdM configuration. The example below describes how to make sure the custom basic
manager attributes delegation rule does not exist in IdM.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks>/

2. Make a copy of the delegation-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-present.yml
delegation-absent-copy.yml

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

208

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the delegation-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the delegation rule.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Delegation absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" is absent
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-absent-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

26.5. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE HAS
SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that a delegation rule has
specific settings. You can use this playbook to modify a delegation role you have previously created. In
the example, you ensure the basic manager attributes delegation rule only has the departmentnumber
member attribute.

Prerequisites

You know the IdM administrator password.

CHAPTER 26. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

209

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The basic manager attributes delegation rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the delegation-member-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-member-
present.yml delegation-member-present-copy.yml

3. Open the delegation-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the delegation rule to modify.

Set the attribute variable to departmentnumber.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Delegation member present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" member attribute departmentnumber
is present
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

210

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 attribute:
 - departmentnumber
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-member-present-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

26.6. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE DOES
NOT HAVE SPECIFIC ATTRIBUTES

The following procedure describes how to use an Ansible playbook to ensure that a delegation rule does
not have specific settings. You can use this playbook to make sure a delegation role does not grant
undesired access. In the example, you ensure the basic manager attributes delegation rule does not
have the employeenumber and employeetype member attributes.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The basic manager attributes delegation rule exists in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

CHAPTER 26. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

211

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Make a copy of the delegation-member-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/delegation/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/delegation/delegation-member-
absent.yml delegation-member-absent-copy.yml

3. Open the delegation-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipadelegation task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the delegation rule to modify.

Set the attribute variable to employeenumber and employeetype.

Set the action variable to member.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Delegation member absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure delegation "basic manager attributes" member attributes employeenumber
and employeetype are absent
 ipadelegation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: "basic manager attributes"
 attribute:
 - employeenumber
 - employeetype
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i ~/MyPlaybooks/inventory
delegation-member-absent-copy.yml

Additional resources

See Delegation rules.

See the README-delegation.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

212

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipadelegation
directory.

CHAPTER 26. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS

213

CHAPTER 27. MANAGING ROLE-BASED ACCESS CONTROLS
IN IDM USING THE CLI

Learn more about role-based access control in Identity Management (IdM) and the following operations
which are run in the command-line interface (CLI):

Managing permissions

Managing privileges

Managing roles

27.1. ROLE-BASED ACCESS CONTROL IN IDM

Role-based access control (RBAC) in IdM grants a very different kind of authority to users compared to
self-service and delegation access controls.

Role-based access control is composed of three parts:

Permissions grant the right to perform a specific task such as adding or deleting users,
modifying a group, and enabling read-access.

Privileges combine permissions, for example all the permissions needed to add a new user.

Roles grant a set of privileges to users, user groups, hosts or host groups.

27.1.1. Permissions in IdM

Permissions are the lowest level unit of role-based access control, they define operations together with
the LDAP entries to which those operations apply. Comparable to building blocks, permissions can be
assigned to as many privileges as needed.
One or more rights define what operations are allowed:

write

read

search

compare

add

delete

all

These operations apply to three basic targets:

subtree: a domain name (DN); the subtree under this DN

target filter: an LDAP filter

target: DN with possible wildcards to specify entries

Additionally, the following convenience options set the corresponding attribute(s):

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

214

type: a type of object (user, group, etc); sets subtree and target filter

memberof: members of a group; sets a target filter

targetgroup: grants access to modify a specific group (such as granting the rights to manage
group membership); sets a target

With IdM permissions, you can control which users have access to which objects and even which
attributes of these objects. IdM enables you to allow or block individual attributes or change the entire
visibility of a specific IdM function, such as users, groups, or sudo, to all anonymous users, all
authenticated users, or just a certain group of privileged users.
For example, the flexibility of this approach to permissions is useful for an administrator who wants to
limit access of users or groups only to the specific sections these users or groups need to access and to
make the other sections completely hidden to them.

NOTE

A permission cannot contain other permissions.

27.1.2. Default managed permissions

Managed permissions are permissions that come by default with IdM. They behave like other
permissions created by the user, with the following differences:

You cannot delete them or modify their name, location, and target attributes.

They have three sets of attributes:

Default attributes, the user cannot modify them, as they are managed by IdM

Included attributes, which are additional attributes added by the user

Excluded attributes, which are attributes removed by the user

A managed permission applies to all attributes that appear in the default and included attribute sets but
not in the excluded set.

NOTE

While you cannot delete a managed permission, setting its bind type to permission and
removing the managed permission from all privileges effectively disables it.

Names of all managed permissions start with System:, for example System: Add Sudo rule or System:
Modify Services. Earlier versions of IdM used a different scheme for default permissions. For example,
the user could not delete them and was only able to assign them to privileges. Most of these default
permissions have been turned into managed permissions, however, the following permissions still use
the previous scheme:

Add Automember Rebuild Membership Task

Add Configuration Sub-Entries

Add Replication Agreements

Certificate Remove Hold

CHAPTER 27. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI

215

Get Certificates status from the CA

Read DNA Range

Modify DNA Range

Read PassSync Managers Configuration

Modify PassSync Managers Configuration

Read Replication Agreements

Modify Replication Agreements

Remove Replication Agreements

Read LDBM Database Configuration

Request Certificate

Request Certificate ignoring CA ACLs

Request Certificates from a different host

Retrieve Certificates from the CA

Revoke Certificate

Write IPA Configuration

NOTE

If you attempt to modify a managed permission from the command line, the system does
not allow you to change the attributes that you cannot modify, the command fails. If you
attempt to modify a managed permission from the Web UI, the attributes that you
cannot modify are disabled.

27.1.3. Privileges in IdM

A privilege is a group of permissions applicable to a role.
While a permission provides the rights to do a single operation, there are certain IdM tasks that require
multiple permissions to succeed. Therefore, a privilege combines the different permissions required to
perform a specific task.
For example, setting up an account for a new IdM user requires the following permissions:

Creating a new user entry

Resetting a user password

Adding the new user to the default IPA users group

Combining these three low-level tasks into a higher level task in the form of a custom privilege named,
for example, Add User makes it easier for a system administrator to manage roles. IdM already contains
several default privileges. Apart from users and user groups, privileges are also assigned to hosts and
host groups, as well as network services. This practice permits a fine-grained control of operations by a
set of users on a set of hosts using specific network services.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

216

NOTE

A privilege may not contain other privileges.

27.1.4. Roles in IdM

A role is a list of privileges that users specified for the role possess.
In effect, permissions grant the ability to perform given low-level tasks (such as creating a user entry
and adding an entry to a group), privileges combine one or more of these permissions needed for a
higher-level task (such as creating a new user in a given group). Roles gather privileges together as
needed: for example, a User Administrator role would be able to add, modify, and delete users.

IMPORTANT

Roles are used to classify permitted actions. They are not used as a tool to implement
privilege separation or to protect from privilege escalation.

NOTE

Roles can not contain other roles.

27.1.5. Predefined roles in Identity Management

Red Hat Identity Management provides the following range of pre-defined roles:

Table 27.1. Predefined Roles in Identity Management

Role Privilege Description

Enrollment Administrator Host Enrollment Responsible for client, or host,
enrollment

helpdesk Modify Users and Reset
passwords, Modify Group
membership

Responsible for performing simple
user administration tasks

IT Security Specialist Netgroups Administrators, HBAC
Administrator, Sudo Administrator

Responsible for managing security
policy such as host-based access
controls, sudo rules

IT Specialist Host Administrators, Host Group
Administrators, Service
Administrators, Automount
Administrators

Responsible for managing hosts

Security Architect Delegation Administrator,
Replication Administrators, Write
IPA Configuration, Password
Policy Administrator

Responsible for managing the
Identity Management
environment, creating trusts,
creating replication agreements

CHAPTER 27. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI

217

User Administrator User Administrators, Group
Administrators, Stage User
Administrators

Responsible for creating users
and groups

Role Privilege Description

27.2. MANAGING IDM PERMISSIONS IN THE CLI

Follow this procedure to manage Identity Management (IdM) permissions using the command-line
interface (CLI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Create new permission entries with the ipa permission-add command.
For example, to add a permission named dns admin:

$ ipa permission-add "dns admin"

2. Specify the properties of the permission with the following options:

--bindtype specifies the bind rule type. This option accepts the all, anonymous, and
permission arguments. The permission bindtype means that only the users who are
granted this permission via a role can exercise it.
For example:

$ ipa permission-add "dns admin" --bindtype=all

If you do not specify --bindtype, then permission is the default value.

NOTE

It is not possible to add permissions with a non-default bind rule type to
privileges. You also cannot set a permission that is already present in a
privilege to a non-default bind rule type.

--right lists the rights granted by the permission, it replaces the deprecated --permissions
option. The available values are add, delete, read, search, compare, write, all.
You can set multiple attributes by using multiple --right options or with a comma-separated
list inside curly braces. For example:

$ ipa permission-add "dns admin" --right=read --right=write

$ ipa permission-add "dns admin" --right={read,write}

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

218

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

NOTE

add and delete are entry-level operations (for example, deleting a user,
adding a group, and so on) while read, search, compare and write are more
attribute-level: you can write to userCertificate but not read userPassword.

--attrs gives the list of attributes over which the permission is granted.
You can set multiple attributes by using multiple --attrs options or by listing the options in a
comma-separated list inside curly braces. For example:

$ ipa permission-add "dns admin" --attrs=description --attrs=automountKey

$ ipa permission-add "dns admin" --attrs={description,automountKey}

The attributes provided with --attrs must exist and be allowed attributes for the given
object type, otherwise the command fails with schema syntax errors.

--type defines the entry object type to which the permission applies, such as user, host, or
service. Each type has its own set of allowed attributes.
For example:

$ ipa permission-add "manage service" --right=all --type=service --attrs=krbprincipalkey -
-attrs=krbprincipalname --attrs=managedby

--subtree gives a subtree entry; the filter then targets every entry beneath this subtree
entry. Provide an existing subtree entry; --subtree does not accept wildcards or non-
existent domain names (DNs). Include a DN within the directory.
Because IdM uses a simplified, flat directory tree structure, --subtree can be used to target
some types of entries, like automount locations, which are containers or parent entries for
other configuration. For example:

$ ipa permission-add "manage automount locations" --
subtree="ldap://ldap.example.com:389/cn=automount,dc=example,dc=com" --right=write
--attrs=automountmapname --attrs=automountkey --attrs=automountInformation

NOTE

The --type and --subtree options are mutually exclusive: you can see the
inclusion of filters for --type as a simplification of --subtree, intending to
make life easier for an admin.

--filter uses an LDAP filter to identify which entries the permission applies to.
IdM automatically checks the validity of the given filter. The filter can be any valid LDAP
filter, for example:

$ ipa permission-add "manage Windows groups" --filter="(!(objectclass=posixgroup))" --
right=write --attrs=description

--memberof sets the target filter to members of the given group after checking that the
group exists. For example, to let the users with this permission modify the login shell of
members of the engineers group:

CHAPTER 27. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI

219

$ ipa permission-add ManageShell --right="write" --type=user --attr=loginshell --
memberof=engineers

--targetgroup sets target to the specified user group after checking that the group exists.
For example, to let those with the permission write the member attribute in the engineers
group (so they can add or remove members):

$ ipa permission-add ManageMembers --right="write" --
subtree=cn=groups,cn=accounts,dc=example,dc=test --attr=member --
targetgroup=engineers

Optionally, you can specify a target domain name (DN):

--target specifies the DN to apply the permission to. Wildcards are accepted.

--targetto specifies the DN subtree where an entry can be moved to.

--targetfrom specifies the DN subtree from where an entry can be moved.

27.3. COMMAND OPTIONS FOR EXISTING PERMISSIONS

Use the following variants to modify existing permissions as needed:

To edit existing permissions, use the ipa permission-mod command. You can use the same
command options as for adding permissions.

To find existing permissions, use the ipa permission-find command. You can use the same
command options as for adding permissions.

To view a specific permission, use the ipa permission-show command.
The --raw argument shows the raw 389-ds ACI that is generated. For example:

 $ ipa permission-show <permission> --raw

The ipa permission-del command deletes a permission completely.

Additional resources

See the ipa man page.

See the ipa help command.

27.4. MANAGING IDM PRIVILEGES IN THE CLI

Follow this procedure to manage Identity Management (IdM) privileges using the command-line
interface (CLI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see link: Using kinit to log in to IdM manually .

Existing permissions. For details about permissions, see Managing IdM permissions in the CLI .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

220

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Procedure

1. Add privilege entries using the ipa privilege-add command
For example, to add a privilege named managing filesystems with a description:

$ ipa privilege-add "managing filesystems" --desc="for filesystems"

2. Assign the required permissions to the privilege group with the privilege-add-permission
command
For example, to add the permissions named managing automount and managing ftp services to
the managing filesystems privilege:

$ ipa privilege-add-permission "managing filesystems" --permissions="managing automount"
--permissions="managing ftp services"

27.5. COMMAND OPTIONS FOR EXISTING PRIVILEGES

Use the following variants to modify existing privileges as needed:

To modify existing privileges, use the ipa privilege-mod command.

To find existing privileges, use the ipa privilege-find command.

To view a specific privilege, use the ipa privilege-show command.

The ipa privilege-remove-permission command removes one or more permissions from a
privilege.

The ipa privilege-del command deletes a privilege completely.

Additional resources

See the ipa man page.

See the ipa help command.

27.6. MANAGING IDM ROLES IN THE CLI

Follow this procedure to manage Identity Management (IdM) roles using the command-line interface
(CLI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Existing privileges. For details about privileges, see Managing IdM privileges in the CLI .

Procedure

1. Add new role entries using the ipa role-add command:

$ ipa role-add --desc="User Administrator" useradmin

CHAPTER 27. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI

221

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Added role "useradmin"

Role name: useradmin
Description: User Administrator

2. Add the required privileges to the role using the ipa role-add-privilege command:

$ ipa role-add-privilege --privileges="user administrators" useradmin
Role name: useradmin
Description: User Administrator
Privileges: user administrators

Number of privileges added 1

3. Add the required members to the role using the ipa role-add-member command. Allowed
member types are: users, groups, hosts and hostgroups.
For example, to add the group named useradmins to the previously created useradmin role:

$ ipa role-add-member --groups=useradmins useradmin
Role name: useradmin
Description: User Administrator
Member groups: useradmins
Privileges: user administrators

Number of members added 1

27.7. COMMAND OPTIONS FOR EXISTING ROLES

Use the following variants to modify existing roles as needed:

To modify existing roles, use the ipa role-mod command.

To find existing roles, use the ipa role-find command.

To view a specific role, use the ipa role-show command.

To remove a member from the role, use the ipa role-remove-member command.

The ipa role-remove-privilege command removes one or more privileges from a role.

The ipa role-del command deletes a role completely.

Additional resources

See the ipa man page

See the ipa help command.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

222

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS
USING THE IDM WEB UI

Learn more about role-based access control in Identity Management (IdM) and the following operations
which are run in the web interface (Web UI):

Managing permissions

Managing privileges

Managing roles

28.1. ROLE-BASED ACCESS CONTROL IN IDM

Role-based access control (RBAC) in IdM grants a very different kind of authority to users compared to
self-service and delegation access controls.

Role-based access control is composed of three parts:

Permissions grant the right to perform a specific task such as adding or deleting users,
modifying a group, and enabling read-access.

Privileges combine permissions, for example all the permissions needed to add a new user.

Roles grant a set of privileges to users, user groups, hosts or host groups.

28.1.1. Permissions in IdM

Permissions are the lowest level unit of role-based access control, they define operations together with
the LDAP entries to which those operations apply. Comparable to building blocks, permissions can be
assigned to as many privileges as needed.
One or more rights define what operations are allowed:

write

read

search

compare

add

delete

all

These operations apply to three basic targets:

subtree: a domain name (DN); the subtree under this DN

target filter: an LDAP filter

target: DN with possible wildcards to specify entries

Additionally, the following convenience options set the corresponding attribute(s):

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

223

type: a type of object (user, group, etc); sets subtree and target filter

memberof: members of a group; sets a target filter

targetgroup: grants access to modify a specific group (such as granting the rights to manage
group membership); sets a target

With IdM permissions, you can control which users have access to which objects and even which
attributes of these objects. IdM enables you to allow or block individual attributes or change the entire
visibility of a specific IdM function, such as users, groups, or sudo, to all anonymous users, all
authenticated users, or just a certain group of privileged users.
For example, the flexibility of this approach to permissions is useful for an administrator who wants to
limit access of users or groups only to the specific sections these users or groups need to access and to
make the other sections completely hidden to them.

NOTE

A permission cannot contain other permissions.

28.1.2. Default managed permissions

Managed permissions are permissions that come by default with IdM. They behave like other
permissions created by the user, with the following differences:

You cannot delete them or modify their name, location, and target attributes.

They have three sets of attributes:

Default attributes, the user cannot modify them, as they are managed by IdM

Included attributes, which are additional attributes added by the user

Excluded attributes, which are attributes removed by the user

A managed permission applies to all attributes that appear in the default and included attribute sets but
not in the excluded set.

NOTE

While you cannot delete a managed permission, setting its bind type to permission and
removing the managed permission from all privileges effectively disables it.

Names of all managed permissions start with System:, for example System: Add Sudo rule or System:
Modify Services. Earlier versions of IdM used a different scheme for default permissions. For example,
the user could not delete them and was only able to assign them to privileges. Most of these default
permissions have been turned into managed permissions, however, the following permissions still use
the previous scheme:

Add Automember Rebuild Membership Task

Add Configuration Sub-Entries

Add Replication Agreements

Certificate Remove Hold

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

224

Get Certificates status from the CA

Read DNA Range

Modify DNA Range

Read PassSync Managers Configuration

Modify PassSync Managers Configuration

Read Replication Agreements

Modify Replication Agreements

Remove Replication Agreements

Read LDBM Database Configuration

Request Certificate

Request Certificate ignoring CA ACLs

Request Certificates from a different host

Retrieve Certificates from the CA

Revoke Certificate

Write IPA Configuration

NOTE

If you attempt to modify a managed permission from the command line, the system does
not allow you to change the attributes that you cannot modify, the command fails. If you
attempt to modify a managed permission from the Web UI, the attributes that you
cannot modify are disabled.

28.1.3. Privileges in IdM

A privilege is a group of permissions applicable to a role.
While a permission provides the rights to do a single operation, there are certain IdM tasks that require
multiple permissions to succeed. Therefore, a privilege combines the different permissions required to
perform a specific task.
For example, setting up an account for a new IdM user requires the following permissions:

Creating a new user entry

Resetting a user password

Adding the new user to the default IPA users group

Combining these three low-level tasks into a higher level task in the form of a custom privilege named,
for example, Add User makes it easier for a system administrator to manage roles. IdM already contains
several default privileges. Apart from users and user groups, privileges are also assigned to hosts and
host groups, as well as network services. This practice permits a fine-grained control of operations by a
set of users on a set of hosts using specific network services.

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

225

NOTE

A privilege may not contain other privileges.

28.1.4. Roles in IdM

A role is a list of privileges that users specified for the role possess.
In effect, permissions grant the ability to perform given low-level tasks (such as creating a user entry
and adding an entry to a group), privileges combine one or more of these permissions needed for a
higher-level task (such as creating a new user in a given group). Roles gather privileges together as
needed: for example, a User Administrator role would be able to add, modify, and delete users.

IMPORTANT

Roles are used to classify permitted actions. They are not used as a tool to implement
privilege separation or to protect from privilege escalation.

NOTE

Roles can not contain other roles.

28.1.5. Predefined roles in Identity Management

Red Hat Identity Management provides the following range of pre-defined roles:

Table 28.1. Predefined Roles in Identity Management

Role Privilege Description

Enrollment Administrator Host Enrollment Responsible for client, or host,
enrollment

helpdesk Modify Users and Reset
passwords, Modify Group
membership

Responsible for performing simple
user administration tasks

IT Security Specialist Netgroups Administrators, HBAC
Administrator, Sudo Administrator

Responsible for managing security
policy such as host-based access
controls, sudo rules

IT Specialist Host Administrators, Host Group
Administrators, Service
Administrators, Automount
Administrators

Responsible for managing hosts

Security Architect Delegation Administrator,
Replication Administrators, Write
IPA Configuration, Password
Policy Administrator

Responsible for managing the
Identity Management
environment, creating trusts,
creating replication agreements

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

226

User Administrator User Administrators, Group
Administrators, Stage User
Administrators

Responsible for creating users
and groups

Role Privilege Description

28.2. MANAGING PERMISSIONS IN THE IDM WEB UI

Follow this procedure to manage permissions in Identity Management (IdM) using the web interface
(IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. To add a new permission, open the Role-Based Access Control submenu in the IPA Server tab
and select Permissions:

2. The list of permissions opens: Click the Add button at the top of the list of the permissions:

3. The Add Permission form opens. Specify the name of the new permission and define its

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

227

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3. The Add Permission form opens. Specify the name of the new permission and define its
properties accordingly:

4. Select the appropriate Bind rule type:

permission is the default permission type, granting access through privileges and roles

all specifies that the permission applies to all authenticated users

anonymous specifies that the permission applies to all users, including unauthenticated
users

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

228

NOTE

It is not possible to add permissions with a non-default bind rule type to
privileges. You also cannot set a permission that is already present in a
privilege to a non-default bind rule type.

5. Choose the rights to grant with this permisthsion in Granted rights.

6. Define the method to identify the target entries for the permission:

Type specifies an entry type, such as user, host, or service. If you choose a value for the
Type setting, a list of all possible attributes which will be accessible through this ACI for that
entry type appears under Effective Attributes. Defining Type sets Subtree and Target
DN to one of the predefined values.

Subtree (required) specifies a subtree entry; every entry beneath this subtree entry is then
targeted. Provide an existing subtree entry, as Subtree does not accept wildcards or non-
existent domain names (DNs). For example: cn=automount,dc=example,dc=com

Extra target filter uses an LDAP filter to identify which entries the permission applies to.
The filter can be any valid LDAP filter, for example: (!(objectclass=posixgroup))
IdM automatically checks the validity of the given filter. If you enter an invalid filter, IdM
warns you about this when you attempt to save the permission.

Target DN specifies the domain name (DN) and accepts wildcards. For example:
uid=*,cn=users,cn=accounts,dc=com

Member of group sets the target filter to members of the given group. After you specify
the filter settings and click Add, IdM validates the filter. If all the permission settings are
correct, IdM will perform the search. If some of the permissions settings are incorrect, IdM
will display a message informing you about which setting is set incorrectly.

7. Add attributes to the permission:

If you set Type, choose the Effective attributes from the list of available ACI attributes.

If you did not use Type, add the attributes manually by writing them into the Effective
attributes field. Add a single attribute at a time; to add multiple attributes, click Add to add
another input field.

IMPORTANT

If you do not set any attributes for the permission, then the permissions
includes all attributes by default.

8. Finish adding the permissions with the Add buttons at the bottom of the form:

Click the Add button to save the permission and go back to the list of permissions.

Alternatively, you can save the permission and continue adding additional permissions in the
same form by clicking the Add and Add another button

The Add and Edit button enables you to save and continue editing the newly created
permission.

9. Optional. You can also edit the properties of an existing permission by clicking its name from the

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

229

9. Optional. You can also edit the properties of an existing permission by clicking its name from the
list of permissions to display the Permission settings page.

10. Optional. If you need to remove an existing permission, click the Delete button once you ticked
the check box next to its name in the list, to display The Remove permissions dialog.

NOTE

Operations on default managed permissions are restricted: the attributes you
cannot modify are disabled in the IdM Web UI and you cannot delete the
managed permissions completely.
However, you can effectively disable a managed permission that has a bind type
set to permission, by removing the managed permission from all privileges.

For example, to let those with the permission write the member attribute in the engineers group (so

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

230

For example, to let those with the permission write the member attribute in the engineers group (so
they can add or remove members):

28.3. MANAGING PRIVILEGES IN THE IDM WEBUI

Follow this procedure to manage privileges in IdM using the web interface (IdM Web UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

231

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Existing permissions. For details about permissions, see Managing permissions in the IdM Web
UI.

Procedure

1. To add a new privilege, open the Role-Based Access Control submenu in the IPA Server tab
and select Privileges:

2. The list of privileges opens. Click the Add button at the top of the list of privileges:

3. The Add Privilege form opens. Enter the name and a description of the privilege:

4. Click the Add and Edit button to save the new privilege and continue to the privilege
configuration page to add permissions.

5. Edit the properties of privileges by clicking on the privileges name in the privileges list. The
privileges configuration page opens.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

232

6. The Permissions tab displays a list of permissions included in the selected privilege. Click the
Add button at the top of the list to add permissions to the privilege:

7. Tick the check box next to the name of each permission to add, and use the > button to move
the permissions to the Prospective column:

8. Confirm by clicking the Add button.

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

233

9. Optional. If you need to remove permissions, click the Delete button after you ticked the check
box next to the relevant permission: the Remove privileges from permissions dialog opens.

10. Optional. If you need to delete an existing privilege, click the Delete button after you ticked the
check box next to its name in the list: the Remove privileges dialog opens.

28.4. MANAGING ROLES IN THE IDM WEB UI

Follow this procedure to manage roles in Identity Management (IdM) using the web interface (IdM Web
UI).

Prerequisites

Administrator privileges for managing IdM or the User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Existing privileges. For details about privileges, see Managing privileges in the IdM Web UI .

Procedure

1. To add a new role, open the Role-Based Access Control submenu in the IPA Server tab and
select Roles:

2. The list of roles opens. Click the Add button at the top of the list of the role-based access
control instructions.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

234

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

3. The Add Role form opens. Enter the role name and a description:

4. Click the Add and Edit button to save the new role and go to the role configuration page to add
privileges and users.

5. Edit the properties of roles by clicking on the roles name in the role list. The roles configuration
page opens.

6. Add members using the Users, Users Groups, Hosts, Host Groups or Services tabs, by clicking
the Add button on top of the relevant list(s).

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

235

7. In the window that opens, select the members on the left and use the > button to move them to
the Prospective column.

8. At the top of the Privileges tab, click Add.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

236

9. Select the privileges on the left and use the > button to move them to the Prospective column.

10. Click the Add button to save.

11. Optional. If you need to remove privileges or members from a role, click the Delete button after

CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI

237

11. Optional. If you need to remove privileges or members from a role, click the Delete button after
you ticked the check box next to the name of the entity you want to remove. A dialog opens.

12. Optional. If you need to remove an existing role, click the Delete button after you ticked the
check box next to its name in the list, to display the Remove roles dialog.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

238

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE
ROLE-BASED ACCESS CONTROL IN IDM

Role-based access control (RBAC) is a policy-neutral access-control mechanism defined around roles
and privileges. The components of RBAC in Identity Management (IdM) are roles, privileges and
permissions:

Permissions grant the right to perform a specific task such as adding or deleting users,
modifying a group, and enabling read-access.

Privileges combine permissions, for example all the permissions needed to add a new user.

Roles grant a set of privileges to users, user groups, hosts or host groups.

Especially in large companies, using RBAC can help create a hierarchical system of administrators with
their individual areas of responsibility.

This chapter describes the following operations performed when managing RBAC using Ansible
playbooks:

Permissions in IdM

Default managed permissions

Privileges in IdM

Roles in IdM

Predefined roles in IdM

Using Ansible to ensure an IdM RBAC role with privileges is present

Using Ansible to ensure an IdM RBAC role is absent

Using Ansible to ensure that a group of users is assigned to an IdM RBAC role

Using Ansible to ensure that specific users are not assigned to an IdM RBAC role

Using Ansible to ensure a service is a member of an IdM RBAC role

Using Ansible to ensure a host is a member of an IdM RBAC role

Using Ansible to ensure a host group is a member of an IdM RBAC role

29.1. PERMISSIONS IN IDM

Permissions are the lowest level unit of role-based access control, they define operations together with
the LDAP entries to which those operations apply. Comparable to building blocks, permissions can be
assigned to as many privileges as needed.
One or more rights define what operations are allowed:

write

read

search

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

239

compare

add

delete

all

These operations apply to three basic targets:

subtree: a domain name (DN); the subtree under this DN

target filter: an LDAP filter

target: DN with possible wildcards to specify entries

Additionally, the following convenience options set the corresponding attribute(s):

type: a type of object (user, group, etc); sets subtree and target filter

memberof: members of a group; sets a target filter

targetgroup: grants access to modify a specific group (such as granting the rights to manage
group membership); sets a target

With IdM permissions, you can control which users have access to which objects and even which
attributes of these objects. IdM enables you to allow or block individual attributes or change the entire
visibility of a specific IdM function, such as users, groups, or sudo, to all anonymous users, all
authenticated users, or just a certain group of privileged users.
For example, the flexibility of this approach to permissions is useful for an administrator who wants to
limit access of users or groups only to the specific sections these users or groups need to access and to
make the other sections completely hidden to them.

NOTE

A permission cannot contain other permissions.

29.2. DEFAULT MANAGED PERMISSIONS

Managed permissions are permissions that come by default with IdM. They behave like other
permissions created by the user, with the following differences:

You cannot delete them or modify their name, location, and target attributes.

They have three sets of attributes:

Default attributes, the user cannot modify them, as they are managed by IdM

Included attributes, which are additional attributes added by the user

Excluded attributes, which are attributes removed by the user

A managed permission applies to all attributes that appear in the default and included attribute sets but
not in the excluded set.

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

240

NOTE

While you cannot delete a managed permission, setting its bind type to permission and
removing the managed permission from all privileges effectively disables it.

Names of all managed permissions start with System:, for example System: Add Sudo rule or System:
Modify Services. Earlier versions of IdM used a different scheme for default permissions. For example,
the user could not delete them and was only able to assign them to privileges. Most of these default
permissions have been turned into managed permissions, however, the following permissions still use
the previous scheme:

Add Automember Rebuild Membership Task

Add Configuration Sub-Entries

Add Replication Agreements

Certificate Remove Hold

Get Certificates status from the CA

Read DNA Range

Modify DNA Range

Read PassSync Managers Configuration

Modify PassSync Managers Configuration

Read Replication Agreements

Modify Replication Agreements

Remove Replication Agreements

Read LDBM Database Configuration

Request Certificate

Request Certificate ignoring CA ACLs

Request Certificates from a different host

Retrieve Certificates from the CA

Revoke Certificate

Write IPA Configuration

NOTE

If you attempt to modify a managed permission from the command line, the system does
not allow you to change the attributes that you cannot modify, the command fails. If you
attempt to modify a managed permission from the Web UI, the attributes that you
cannot modify are disabled.

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

241

29.3. PRIVILEGES IN IDM

A privilege is a group of permissions applicable to a role.
While a permission provides the rights to do a single operation, there are certain IdM tasks that require
multiple permissions to succeed. Therefore, a privilege combines the different permissions required to
perform a specific task.
For example, setting up an account for a new IdM user requires the following permissions:

Creating a new user entry

Resetting a user password

Adding the new user to the default IPA users group

Combining these three low-level tasks into a higher level task in the form of a custom privilege named,
for example, Add User makes it easier for a system administrator to manage roles. IdM already contains
several default privileges. Apart from users and user groups, privileges are also assigned to hosts and
host groups, as well as network services. This practice permits a fine-grained control of operations by a
set of users on a set of hosts using specific network services.

NOTE

A privilege may not contain other privileges.

29.4. ROLES IN IDM

A role is a list of privileges that users specified for the role possess.
In effect, permissions grant the ability to perform given low-level tasks (such as creating a user entry
and adding an entry to a group), privileges combine one or more of these permissions needed for a
higher-level task (such as creating a new user in a given group). Roles gather privileges together as
needed: for example, a User Administrator role would be able to add, modify, and delete users.

IMPORTANT

Roles are used to classify permitted actions. They are not used as a tool to implement
privilege separation or to protect from privilege escalation.

NOTE

Roles can not contain other roles.

29.5. PREDEFINED ROLES IN IDENTITY MANAGEMENT

Red Hat Identity Management provides the following range of pre-defined roles:

Table 29.1. Predefined Roles in Identity Management

Role Privilege Description

Enrollment Administrator Host Enrollment Responsible for client, or host,
enrollment

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

242

helpdesk Modify Users and Reset
passwords, Modify Group
membership

Responsible for performing simple
user administration tasks

IT Security Specialist Netgroups Administrators, HBAC
Administrator, Sudo Administrator

Responsible for managing security
policy such as host-based access
controls, sudo rules

IT Specialist Host Administrators, Host Group
Administrators, Service
Administrators, Automount
Administrators

Responsible for managing hosts

Security Architect Delegation Administrator,
Replication Administrators, Write
IPA Configuration, Password
Policy Administrator

Responsible for managing the
Identity Management
environment, creating trusts,
creating replication agreements

User Administrator User Administrators, Group
Administrators, Stage User
Administrators

Responsible for creating users
and groups

Role Privilege Description

29.6. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE WITH
PRIVILEGES IS PRESENT

To exercise more granular control over role-based access (RBAC) to resources in Identity Management
(IdM) than the default roles provide, create a custom role.

The following procedure describes how to use an Ansible playbook to define privileges for a new IdM
custom role and ensure its presence. In the example, the new user_and_host_administrator role
contains a unique combination of the following privileges that are present in IdM by default:

Group Administrators

User Administrators

Stage User Administrators

Group Administrators

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

243

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-user-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-user-present.yml role-
member-user-present-copy.yml

3. Open the role-member-user-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new role.

Set the privilege list to the names of the IdM privileges that you want to include in the new
role.

Optionally, set the user variable to the name of the user to whom you want to grant the new
role.

Optionally, set the group variable to the name of the group to which you want to grant the
new role.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: user_and_host_administrator
 user: idm_user01
 group: idm_group01
 privilege:
 - Group Administrators

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

244

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - User Administrators
 - Stage User Administrators
 - Group Administrators

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-user-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

29.7. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE IS ABSENT

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to ensure the absence of an obsolete role so that no administrator assigns it to any user
accidentally.

The following procedure describes how to use an Ansible playbook to ensure a role is absent. The
example below describes how to make sure the custom user_and_host_administrator role does not
exist in IdM.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

245

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Make a copy of the role-is-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-is-absent.yml role-is-absent-
copy.yml

3. Open the role-is-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role.

Ensure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: user_and_host_administrator
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-is-absent-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

29.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS
ASSIGNED TO AN IDM RBAC ROLE

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

246

https://docs.ansible.com/ansible/latest/user_guide/vault.html

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to assign a role to a specific group of users, for example junior administrators.

The following example describes how to use an Ansible playbook to ensure the built-in IdM RBAC
helpdesk role is assigned to junior_sysadmins.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-group-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-group-present.yml
role-member-group-present-copy.yml

3. Open the role-member-group-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the group variable to the name of the group.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

247

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: helpdesk
 group: junior_sysadmins
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-group-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

29.9. USING ANSIBLE TO ENSURE THAT SPECIFIC USERS ARE NOT
ASSIGNED TO AN IDM RBAC ROLE

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to ensure that an RBAC role is not assigned to specific users after they have, for example,
moved to different positions within the company.

The following procedure describes how to use an Ansible playbook to ensure that the users named
user_01 and user_02 are not assigned to the helpdesk role.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

248

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-user-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-user-absent.yml role-
member-user-absent-copy.yml

3. Open the role-member-user-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the user list to the names of the users.

Set the action variable to member.

Set the state variable to absent.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: helpdesk
 user
 - user_01
 - user_02
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-user-absent-copy.yml

Additional resources

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

249

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

29.10. USING ANSIBLE TO ENSURE A SERVICE IS A MEMBER OF AN
IDM RBAC ROLE

As a system administrator managing role-based access control (RBAC) in Identity Management (IdM),
you may want to ensure that a specific service that is enrolled into IdM is a member of a particular role.
The following example describes how to ensure that the custom web_administrator role can manage
the HTTP service that is running on the client01.idm.example.com server.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The web_administrator role exists in IdM.

The HTTP/client01.idm.example.com@IDM.EXAMPLE.COM service exists in IdM.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-service-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-service-present-
absent.yml role-member-service-present-copy.yml

3. Open the role-member-service-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

250

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the name variable to the name of the role you want to assign.

Set the service list to the name of the service.

Set the action variable to member.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web_administrator
 service:
 - HTTP/client01.idm.example.com
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-service-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

29.11. USING ANSIBLE TO ENSURE A HOST IS A MEMBER OF AN IDM
RBAC ROLE

As a system administrator managing role-based access control in Identity Management (IdM), you may
want to ensure that a specific host or host group is associated with a specific role. The following
example describes how to ensure that the custom web_administrator role can manage the
client01.idm.example.com IdM host on which the HTTP service is running.

Prerequisites

You know the IdM administrator password.

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

251

https://docs.ansible.com/ansible/latest/user_guide/vault.html

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The web_administrator role exists in IdM.

The client01.idm.example.com host exists in IdM.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-host-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-host-present.yml role-
member-host-present-copy.yml

3. Open the role-member-host-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the host list to the name of the host.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web_administrator

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

252

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 host:
 - client01.idm.example.com
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-host-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

29.12. USING ANSIBLE TO ENSURE A HOST GROUP IS A MEMBER OF
AN IDM RBAC ROLE

As a system administrator managing role-based access control in Identity Management (IdM), you may
want to ensure that a specific host or host group is associated with a specific role. The following
example describes how to ensure that the custom web_administrator role can manage the
web_servers group of IdM hosts on which the HTTP service is running.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The web_administrator role exists in IdM.

The web_servers host group exists in IdM.

Procedure

1. Navigate to the ~/<MyPlaybooks>/ directory:

CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM

253

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/<MyPlaybooks>/

2. Make a copy of the role-member-hostgroup-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/role/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/role/role-member-hostgroup-
present.yml role-member-hostgroup-present-copy.yml

3. Open the role-member-hostgroup-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the iparole task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the role you want to assign.

Set the hostgroup list to the name of the hostgroup.

This is the modified Ansible playbook file for the current example:

- name: Playbook to manage IPA role with members.
 hosts: ipaserver
 become: true
 gather_facts: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - iparole:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web_administrator
 hostgroup:
 - web_servers
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
~/<MyPlaybooks>/inventory role-member-hostgroup-present-copy.yml

Additional resources

See Encrypting content with Ansible Vault .

See Roles in IdM .

See the README-role Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/iparole directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

254

https://docs.ansible.com/ansible/latest/user_guide/vault.html

CHAPTER 30. USING ANSIBLE PLAYBOOKS TO MANAGE
RBAC PRIVILEGES

Role-based access control (RBAC) is a policy-neutral access-control mechanism defined around roles,
privileges, and permissions. Especially in large companies, using RBAC can help create a hierarchical
system of administrators with their individual areas of responsibility.

This chapter describes the following operations for using Ansible playbooks to manage RBAC privileges
in Identity Management (IdM):

Using Ansible to ensure a custom RBAC privilege is present

Using Ansible to ensure member permissions are present in a custom IdM RBAC privilege

Using Ansible to ensure an IdM RBAC privilege does not include a permission

Using Ansible to rename a custom IdM RBAC privilege

Using Ansible to ensure an IdM RBAC privilege is absent

Prerequisites

You understand the concepts and principles of RBAC .

30.1. USING ANSIBLE TO ENSURE A CUSTOM IDM RBAC PRIVILEGE IS
PRESENT

To have a fully-functioning custom privilege in Identity Management (IdM) role-based access control
(RBAC), you need to proceed in stages:

1. Create a privilege with no permissions attached.

2. Add permissions of your choice to the privilege.

The following procedure describes how to create an empty privilege using an Ansible playbook so that
you can later add permissions to it. The example describes how to create a privilege named
full_host_administration that is meant to combine all IdM permissions related to host administration.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

CHAPTER 30. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

255

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-present.yml privilege-
present-copy.yml

3. Open the privilege-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the new privilege, full_host_administration.

Optionally, describe the privilege using the description variable.

This is the modified Ansible playbook file for the current example:

- name: Privilege present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure privilege full_host_administration is present
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: full_host_administration
 description: This privilege combines all IdM permissions related to host
administration

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
present-copy.yml

30.2. USING ANSIBLE TO ENSURE MEMBER PERMISSIONS ARE
PRESENT IN A CUSTOM IDM RBAC PRIVILEGE

To have a fully-functioning custom privilege in Identity Management (IdM) role-based access control
(RBAC), you need to proceed in stages:

1. Create a privilege with no permissions attached.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

256

2. Add permissions of your choice to the privilege.

The following procedure describes how to use an Ansible playbook to add permissions to a privilege
created in the previous step. The example describes how to add all IdM permissions related to host
administration to a privilege named full_host_administration. By default, the permissions are distributed
between the Host Enrollment, Host Administrators and Host Group Administrator privileges.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The full_host_administration privilege exists. For information about how to create a privilege
using Ansible, see Using Ansible to ensure a custom IdM RBAC privilege is present .

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-member-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-member-present.yml
privilege-member-present-copy.yml

3. Open the privilege-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the privilege.

Set the permission list to the names of the permissions that you want to include in the
privilege.

Make sure that the action variable is set to member.

This is the modified Ansible playbook file for the current example:

CHAPTER 30. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

257

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Privilege member present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that permissions are present for the "full_host_administration" privilege
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: full_host_administration
 permission:
 - "System: Add krbPrincipalName to a Host"
 - "System: Enroll a Host"
 - "System: Manage Host Certificates"
 - "System: Manage Host Enrollment Password"
 - "System: Manage Host Keytab"
 - "System: Manage Host Principals"
 - "Retrieve Certificates from the CA"
 - "Revoke Certificate"
 - "System: Add Hosts"
 - "System: Add krbPrincipalName to a Host"
 - "System: Enroll a Host"
 - "System: Manage Host Certificates"
 - "System: Manage Host Enrollment Password"
 - "System: Manage Host Keytab"
 - "System: Manage Host Keytab Permissions"
 - "System: Manage Host Principals"
 - "System: Manage Host SSH Public Keys"
 - "System: Manage Service Keytab"
 - "System: Manage Service Keytab Permissions"
 - "System: Modify Hosts"
 - "System: Remove Hosts"
 - "System: Add Hostgroups"
 - "System: Modify Hostgroup Membership"
 - "System: Modify Hostgroups"
 - "System: Remove Hostgroups"

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
member-present-copy.yml

30.3. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE DOES
NOT INCLUDE A PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control.

The following procedure describes how to use an Ansible playbook to remove a permission from a
privilege. The example describes how to remove the Request Certificates ignoring CA ACLs

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

258

permission from the default Certificate Administrators privilege because, for example, the
administrator considers it a security risk.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-member-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-member-absent.yml
privilege-member-absent-copy.yml

3. Open the privilege-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the privilege.

Set the permission list to the names of the permissions that you want to remove from the
privilege.

Make sure that the action variable is set to member.

Make sure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Privilege absent example
 hosts: ipaserver

CHAPTER 30. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

259

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "Request Certificate ignoring CA ACLs" permission is absent from
the "Certificate Administrators" privilege
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: Certificate Administrators
 permission:
 - "Request Certificate ignoring CA ACLs"
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
member-absent-copy.yml

30.4. USING ANSIBLE TO RENAME A CUSTOM IDM RBAC PRIVILEGE

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control.

The following procedure describes how to rename a privilege because, for example, you have removed a
few permissions from it. As a result, the name of the privilege is no longer accurate. In the example, the
administrator renames a full_host_administration privilege to limited_host_administration.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The full_host_administration privilege exists. For more information about how to add a
privilege, see Using Ansible to ensure a custom IdM RBAC privilege is present .

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

260

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-present.yml rename-
privilege.yml

3. Open the rename-privilege.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the current name of the privilege.

Add the rename variable and set it to the new name of the privilege.

Add the state variable and set it to renamed.

5. Rename the playbook itself, for example:

- name: Rename a privilege
 hosts: ipaserver

6. Rename the task in the playbook, for example:

[...]
tasks:
- name: Ensure the full_host_administration privilege is renamed to
limited_host_administration
 ipaprivilege:
 [...]

This is the modified Ansible playbook file for the current example:

- name: Rename a privilege
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the full_host_administration privilege is renamed to
limited_host_administration
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: full_host_administration
 rename: limited_host_administration
 state: renamed

7. Save the file.

8. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the

CHAPTER 30. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

261

8. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory rename-
privilege.yml

30.5. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE IS
ABSENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control. The following procedure describes how to use an Ansible playbook to ensure that an RBAC
privilege is absent. The example describes how to ensure that the CA administrator privilege is absent.
As a result of the procedure, the admin administrator becomes the only user capable of managing
certificate authorities in IdM.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the privilege-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/privilege/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/privilege/privilege-absent.yml privilege-
absent-copy.yml

3. Open the privilege-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipaprivilege task section:

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the privilege you want to remove.

Make sure that the state variable is set it to absent.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

262

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

5. Rename the task in the playbook, for example:

[...]
tasks:
- name: Ensure privilege "CA administrator" is absent
 ipaprivilege:
 [...]

This is the modified Ansible playbook file for the current example:

- name: Privilege absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure privilege "CA administrator" is absent
 ipaprivilege:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: CA administrator
 state: absent

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory privilege-
absent-copy.yml

30.6. ADDITIONAL RESOURCES

See Privileges in IdM .

See Permissions in IdM .

See the README-privilege file available in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipaprivilege
directory.

CHAPTER 30. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES

263

CHAPTER 31. USING ANSIBLE PLAYBOOKS TO MANAGE
RBAC PERMISSIONS IN IDM

Role-based access control (RBAC) is a policy-neutral access control mechanism defined around roles,
privileges, and permissions. Especially in large companies, using RBAC can help create a hierarchical
system of administrators with their individual areas of responsibility.

This chapter describes the following operations performed when managing RBAC permissions in
Identity Management (IdM) using Ansible playbooks:

Using Ansible to ensure an RBAC permission is present

Using Ansible to ensure an RBAC permission with an attribute is present

Using Ansible to ensure an RBAC permission is absent

Using Ansible to ensure an attribute is a member of an IdM RBAC permission

Using Ansible to ensure an attribute is not a member of an IdM RBAC permission

Using Ansible to rename an IdM RBAC permission

Prerequisites

You understand the concepts and principles of RBAC .

31.1. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS PRESENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure a permission is present in
IdM so that it can be added to a privilege. The example describes how to ensure the following target
state:

The MyPermission permission exists.

The MyPermission permission can only be applied to hosts.

A user granted a privilege that contains the permission can do all of the following possible
operations on an entry:

Write

Read

Search

Compare

Add

Delete

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

264

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-present.yml
permission-present-copy.yml

3. Open the permission-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the object_type variable to host.

Set the right variable to all.

This is the modified Ansible playbook file for the current example:

- name: Permission present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "MyPermission" permission is present
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"

CHAPTER 31. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

265

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 name: MyPermission
 object_type: host
 right: all

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
present-copy.yml

31.2. USING ANSIBLE TO ENSURE AN RBAC PERMISSION WITH AN
ATTRIBUTE IS PRESENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure a permission is present in
IdM so that it can be added to a privilege. The example describes how to ensure the following target
state:

The MyPermission permission exists.

The MyPermission permission can only be used to add hosts.

A user granted a privilege that contains the permission can do all of the following possible
operations on a host entry:

Write

Read

Search

Compare

Add

Delete

The host entries created by a user that is granted a privilege that contains the MyPermission
permission can have a description value.

NOTE

The type of attribute that you can specify when creating or modifying a permission is not
constrained by the IdM LDAP schema. However, specifying, for example, attrs:
car_licence if the object_type is host later results in the ipa: ERROR: attribute "car-
license" not allowed error message when you try to exercise the permission and add a
specific car licence value to a host.

Prerequisites

You know the IdM administrator password.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

266

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-present.yml
permission-present-with-attribute.yml

3. Open the permission-present-with-attribute.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the object_type variable to host.

Set the right variable to all.

Set the attrs variable to description.

This is the modified Ansible playbook file for the current example:

- name: Permission present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "MyPermission" permission is present with an attribute
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission

CHAPTER 31. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

267

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 object_type: host
 right: all
 attrs: description

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
present-with-attribute.yml

Additional resources

See User and group schema in Linux Domain Identity, Authentication and Policy Guide in RHEL
7.

31.3. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS ABSENT

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure a permission is absent in
IdM so that it cannot be added to a privilege.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-absent.yml
permission-absent-copy.yml

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

268

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/user-schema
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the permission-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

This is the modified Ansible playbook file for the current example:

- name: Permission absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "MyPermission" permission is absent
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
absent-copy.yml

31.4. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS A MEMBER OF AN
IDM RBAC PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure that an attribute is a
member of an RBAC permission in IdM. As a result, a user with the permission can create entries that
have the attribute.

The example describes how to ensure that the host entries created by a user with a privilege that
contains the MyPermission permission can have gecos and description values.

NOTE

The type of attribute that you can specify when creating or modifying a permission is not
constrained by the IdM LDAP schema. However, specifying, for example, attrs:
car_licence if the object_type is host later results in the ipa: ERROR: attribute "car-
license" not allowed error message when you try to exercise the permission and add a
specific car licence value to a host.

CHAPTER 31. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

269

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The MyPermission permission exists.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-member-present.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-member-
present.yml permission-member-present-copy.yml

3. Open the permission-member-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the attrs list to the description and gecos variables.

Make sure the action variable is set to member.

This is the modified Ansible playbook file for the current example:

- name: Permission member present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "gecos" and "description" attributes are present in

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

270

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

"MyPermission"
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 attrs:
 - description
 - gecos
 action: member

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
member-present-copy.yml

31.5. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS NOT A MEMBER
OF AN IDM RBAC PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control (RBAC).

The following procedure describes how to use an Ansible playbook to ensure that an attribute is not a
member of an RBAC permission in IdM. As a result, when a user with the permission creates an entry in
IdM LDAP, that entry cannot have a value associated with the attribute.

The example describes how to ensure the following target state:

The MyPermission permission exists.

The host entries created by a user with a privilege that contains the MyPermission permission
cannot have the description attribute.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The MyPermission permission exists.

Procedure

CHAPTER 31. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

271

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-member-absent.yml file located in the
/usr/share/doc/ansible-freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-member-
absent.yml permission-member-absent-copy.yml

3. Open the permission-member-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

Set the attrs variable to description.

Set the action variable to member.

Make sure the state variable is set to absent

This is the modified Ansible playbook file for the current example:

- name: Permission absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that an attribute is not a member of "MyPermission"
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 attrs: description
 action: member
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
member-absent-copy.yml

31.6. USING ANSIBLE TO RENAME AN IDM RBAC PERMISSION

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

272

As a system administrator of Identity Management (IdM), you can customize the IdM role-based access
control.

The following procedure describes how to use an Ansible playbook to rename a permission. The example
describes how to rename MyPermission to MyNewPermission.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The MyPermission exists in IdM.

The MyNewPermission does not exist in IdM.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the permission-renamed.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/permission/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/permission/permission-renamed.yml
permission-renamed-copy.yml

3. Open the permission-renamed-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipapermission task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the permission.

This is the modified Ansible playbook file for the current example:

- name: Permission present example
 hosts: ipaserver

CHAPTER 31. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM

273

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Rename the "MyPermission" permission
 ipapermission:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: MyPermission
 rename: MyNewPermission
 state: renamed

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory permission-
renamed-copy.yml

31.7. ADDITIONAL RESOURCES

See Permissions in IdM .

See Privileges in IdM .

See the README-permission file available in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/ipapermission
directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

274

CHAPTER 32. MANAGING USER PASSWORDS IN IDM

32.1. WHO CAN CHANGE IDM USER PASSWORDS AND HOW

Regular users without the permission to change other users' passwords can change only their own
personal password. The new password must meet the IdM password policies applicable to the groups of
which the user is a member. For details on configuring password policies, see Defining IdM password
policies.

Administrators and users with password change rights can set initial passwords for new users and reset
passwords for existing users. These passwords:

Do not have to meet the IdM password policies.

Expire after the first successful login. When this happens, IdM prompts the user to change the
expired password immediately. To disable this behavior, see Enabling password reset in IdM
without prompting the user for a password change at the next login.

NOTE

The LDAP Directory Manager (DM) user can change user passwords using LDAP tools.
The new password can override any IdM password policies. Passwords set by DM do not
expire after the first login.

32.2. CHANGING YOUR USER PASSWORD IN THE IDM WEB UI

As an Identity Management (IdM) user, you can change your user password in the IdM Web UI.

Prerequisites

You are logged in to the IdM Web UI.

Procedure

1. In the upper right corner, click User name → Change password.

Figure 32.1. Resetting Password

2. Enter the current and new passwords.

CHAPTER 32. MANAGING USER PASSWORDS IN IDM

275

32.3. RESETTING ANOTHER USER’S PASSWORD IN THE IDM WEB UI

As an administrative user of Identity Management (IdM), you can change passwords for other users in
the IdM Web UI.

Prerequisites

You are logged in to the IdM Web UI as an administrative user.

Procedure

1. Select Identity → Users.

2. Click the name of the user to edit.

3. Click Actions → Reset password.

Figure 32.2. Resetting Password

4. Enter the new password, and click Reset Password.

Figure 32.3. Confirming New Password

32.4. RESETTING THE DIRECTORY MANAGER USER PASSWORD

If you lose the Identity Management (IdM) Directory Manager password, you can reset it.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

276

Prerequisites

You have root access to an IdM server.

Procedure

1. Generate a new password hash by using the pwdhash command. For example:

pwdhash -D /etc/dirsrv/slapd-IDM-EXAMPLE-COM password
{PBKDF2_SHA256}AAAgABU0bKhyjY53NcxY33ueoPjOUWtl4iyYN5uW...

By specifying the path to the Directory Server configuration, you automatically use the
password storage scheme set in the nsslapd-rootpwstoragescheme attribute to encrypt the
new password.

2. On every IdM server in your topology, execute the following steps:

a. Stop all IdM services installed on the server:

ipactl stop

b. Edit the /etc/dirsrv/IDM-EXAMPLE-COM/dse.ldif file and set the nsslapd-rootpw
attribute to the value generated by the pwdhash command:

nsslapd-rootpw:
{PBKDF2_SHA256}AAAgABU0bKhyjY53NcxY33ueoPjOUWtl4iyYN5uW...

c. Start all IdM services installed on the server:

ipactl start

32.5. CHANGING YOUR USER PASSWORD OR RESETTING ANOTHER
USER’S PASSWORD IN IDM CLI

You can change your user password using the Identity Management (IdM) command-line interface
(CLI). If you are an administrative user, you can use the CLI to reset another user’s password.

Prerequisites

You have obtained a ticket-granting ticket (TGT) for an IdM user.

If you are resetting another user’s password, you must have obtained a TGT for an
administrative user in IdM.

Procedure

Enter the ipa user-mod command with the name of the user and the --password option. The
command will prompt you for the new password.

$ ipa user-mod idm_user --password
Password:
Enter Password again to verify:

CHAPTER 32. MANAGING USER PASSWORDS IN IDM

277

Modified user "idm_user"

...

NOTE

You can also use the ipa passwd idm_user command instead of ipa user-mod.

32.6. ENABLING PASSWORD RESET IN IDM WITHOUT PROMPTING
THE USER FOR A PASSWORD CHANGE AT THE NEXT LOGIN

By default, when an administrator resets another user’s password, the password expires after the first
successful login. As IdM Directory Manager, you can specify the following privileges for individual IdM
administrators:

They can perform password change operations without requiring users to change their
passwords subsequently on their first login.

They can bypass the password policy so that no strength or history enforcement is applied.

WARNING

Bypassing the password policy can be a security threat. Exercise caution when
selecting users to whom you grant these additional privileges.

Prerequisites

You know the Directory Manager password.

Procedure

1. On every Identity Management (IdM) server in the domain, make the following changes:

a. Enter the ldapmodify command to modify LDAP entries. Specify the name of the IdM
server and the 389 port and press Enter:

$ ldapmodify -x -D "cn=Directory Manager" -W -h server.idm.example.com -p 389
Enter LDAP Password:

b. Enter the Directory Manager password.

c. Enter the distinguished name for the ipa_pwd_extop password synchronization entry and
press Enter:

dn: cn=ipa_pwd_extop,cn=plugins,cn=config

d. Specify the modify type of change and press Enter:

changetype: modify

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

278

e. Specify what type of modification you want LDAP to execute and to which attribute. Press
Enter:

add: passSyncManagersDNs

f. Specify the administrative user accounts in the passSyncManagersDNs attribute. The
attribute is multi-valued. For example, to grant the admin user the password resetting
powers of Directory Manager:

passSyncManagersDNs: \
uid=admin,cn=users,cn=accounts,dc=example,dc=com

g. Press Enter twice to stop editing the entry.

The whole procedure looks as follows:

$ ldapmodify -x -D "cn=Directory Manager" -W -h server.idm.example.com -p 389
Enter LDAP Password:
dn: cn=ipa_pwd_extop,cn=plugins,cn=config
changetype: modify
add: passSyncManagersDNs
passSyncManagersDNs: uid=admin,cn=users,cn=accounts,dc=example,dc=com

The admin user, listed under passSyncManagerDNs, now has the additional privileges.

32.7. CHECKING IF AN IDM USER’S ACCOUNT IS LOCKED

As an Identity Management (IdM) administrator, you can check if an IdM user’s account is locked. For
that, you must compare a user’s maximum allowed number of failed login attempts with the number of
the user’s actual failed logins.

Prerequisites

You have obtained the ticket-granting ticket (TGT) of an administrative user in IdM.

Procedure

1. Display the status of the user account to see the number of failed logins:

$ ipa user-status example_user

Account disabled: False

 Server: idm.example.com
 Failed logins: 8
 Last successful authentication: N/A
 Last failed authentication: 20220229080317Z
 Time now: 2022-02-29T08:04:46Z

Number of entries returned 1

CHAPTER 32. MANAGING USER PASSWORDS IN IDM

279

2. Display the number of allowed login attempts for a particular user:

a. Log in to the IdM Web UI as IdM administrator.

b. Open the Identity → Users → Active users tab.

a. Click the user name to open the user settings.

b. In the Password policy section, locate the Max failures item.

3. Compare the number of failed logins as displayed in the output of the ipa user-status
command with the Max failures number displayed in the IdM Web UI. If the number of failed
logins equals that of maximum allowed login attempts, the user account is locked.

Additional resources

Unlocking user accounts after password failures in IdM

32.8. UNLOCKING USER ACCOUNTS AFTER PASSWORD FAILURES IN
IDM

If a user attempts to log in using an incorrect password a certain number of times, Identity Management
(IdM) locks the user account, which prevents the user from logging in. For security reasons, IdM does not
display any warning message that the user account has been locked. Instead, the CLI prompt might
continue asking the user for a password again and again.

IdM automatically unlocks the user account after a specified amount of time has passed. Alternatively,
you can unlock the user account manually with the following procedure.

Prerequisites

You have obtained the ticket-granting ticket of an IdM administrative user.

Procedure

To unlock a user account, use the ipa user-unlock command.

$ ipa user-unlock idm_user

Unlocked account "idm_user"

After this, the user can log in again.

Additional resources

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

280

Additional resources

Checking if an IdM user’s account is locked

32.9. ENABLING THE TRACKING OF LAST SUCCESSFUL KERBEROS
AUTHENTICATION FOR USERS IN IDM

For performance reasons, Identity Management (IdM) running in Red Hat Enterprise Linux 8 does not
store the time stamp of the last successful Kerberos authentication of a user. As a consequence, certain
commands, such as ipa user-status, do not display the time stamp.

Prerequisites

You have obtained the ticket-granting ticket (TGT) of an administrative user in IdM.

You have root access to the IdM server on which you are executing the procedure.

Procedure

1. Display the currently enabled password plug-in features:

ipa config-show | grep "Password plugin features"
 Password plugin features: AllowNThash, KDC:Disable Last Success

The output shows that the KDC:Disable Last Success plug-in is enabled. The plug-in hides
the last successful Kerberos authentication attempt from being visible in the ipa user-status
output.

2. Add the --ipaconfigstring=feature parameter for every feature to the ipa config-mod
command that is currently enabled, except for KDC:Disable Last Success:

ipa config-mod --ipaconfigstring='AllowNThash'

This command enables only the AllowNThash plug-in. To enable multiple features, specify the
--ipaconfigstring=feature parameter separately for each feature.

3. Restart IdM:

ipactl restart

CHAPTER 32. MANAGING USER PASSWORDS IN IDM

281

CHAPTER 33. DEFINING IDM PASSWORD POLICIES
This chapter describes Identity Management (IdM) password policies and how to add a new password
policy in IdM using an Ansible playbook.

33.1. WHAT IS A PASSWORD POLICY

A password policy is a set of rules that passwords must meet. For example, a password policy can define
the minimum password length and the maximum password lifetime. All users affected by this policy are
required to set a sufficiently long password and change it frequently enough to meet the specified
conditions. In this way, password policies help reduce the risk of someone discovering and misusing a
user’s password.

33.2. PASSWORD POLICIES IN IDM

Passwords are the most common way for Identity Management (IdM) users to authenticate to the IdM
Kerberos domain. Password policies define the requirements that these IdM user passwords must meet.

NOTE

The IdM password policy is set in the underlying LDAP directory, but the Kerberos Key
Distribution Center (KDC) enforces the password policy.

Password policy attributes lists the attributes you can use to define a password policy in IdM.

Table 33.1. Password Policy Attributes

Attribute Explanation Example

Max lifetime The maximum amount of time in days
that a password is valid before a user
must reset it. The default value is 90
days.

Note that if the attribute is set to 0, the
password never expires.

Max lifetime = 180

User passwords are valid only for 180
days. After that, IdM prompts users to
change them.

Min lifetime The minimum amount of time in hours
that must pass between two password
change operations.

Min lifetime = 1

After users change their passwords, they
must wait at least 1 hour before changing
them again.

History size The number of previous passwords that
are stored. A user cannot reuse a
password from their password history but
can reuse old passwords that are not
stored.

History size = 0

In this case, the password history is empty
and users can reuse any of their previous
passwords.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

282

Character classes The number of different character
classes the user must use in the
password. The character classes are:

* Uppercase characters

* Lowercase characters

* Digits

* Special characters, such as comma (,),
period (.), asterisk (*)

* Other UTF-8 characters

Using a character three or more times in
a row decreases the character class by
one. For example:

* Secret1 has 3 character classes:
uppercase, lowercase, digits

* Secret111 has 2 character classes:
uppercase, lowercase, digits, and a -1
penalty for using 1 repeatedly

Character classes = 0

The default number of classes required is
0. To configure the number, run the ipa
pwpolicy-mod command with the --
minclasses option.

See also the Important note below this
table.

Min length The minimum number of characters in a
password.

If any of the additional password policy
options are set, then the minimum length
of passwords is 6 characters.

Min length = 8

Users cannot use passwords shorter than
8 characters.

Max failures The maximum number of failed login
attempts before IdM locks the user
account.

Max failures = 6

IdM locks the user account when the user
enters a wrong password 7 times in a row.

Failure reset
interval

The amount of time in seconds after
which IdM resets the current number of
failed login attempts.

Failure reset interval = 60

If the user waits for more than 1 minute
after the number of failed login attempts
defined in Max failures, the user can
attempt to log in again without risking a
user account lock.

Lockout duration The amount of time in seconds that the
user account is locked after the number
of failed login attempts defined in Max
failures.

Lockout duration = 600

Users with locked accounts are unable to
log in for 10 minutes.

Attribute Explanation Example

IMPORTANT

CHAPTER 33. DEFINING IDM PASSWORD POLICIES

283

IMPORTANT

Use the English alphabet and common symbols for the character classes requirement if
you have a diverse set of hardware that may not have access to international characters
and symbols. For more information about character class policies in passwords, see What
characters are valid in a password? in Red Hat Knowledgebase.

33.3. ENSURING THE PRESENCE OF A PASSWORD POLICY IN IDM
USING AN ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of a password policy in Identity Management (IdM) using
an Ansible playbook.

In the default global_policy password policy in IdM, the number of different character classes in the
password is set to 0. The history size is also set to 0.

Complete this procedure to enforce a stronger password policy for an IdM group using an Ansible
playbook.

NOTE

You can only define a password policy for an IdM group. You cannot define a password
policy for an individual user.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The group for which you are ensuring the presence of a password policy exists in IdM.

Procedure

1. Create an inventory file, for example inventory.file, and define the FQDN of your IdM server in
the [ipaserver] section:

[ipaserver]
server.idm.example.com

2. Create your Ansible playbook file that defines the password policy whose presence you want to
ensure. To simplify this step, copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/pwpolicy/pwpolicy_present.yml file:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

284

https://access.redhat.com/solutions/3143431
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Tests
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure presence of pwpolicy for group ops
 ipapwpolicy:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: ops
 minlife: 7
 maxlife: 49
 history: 5
 priority: 1
 lockouttime: 300
 minlength: 8
 minclasses: 4
 maxfail: 3
 failinterval: 5

For details on what the individual variables mean, see Password policy attributes.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file
path_to_playbooks_directory_/new_pwpolicy_present.yml

You have successfully used an Ansible playbook to ensure that a password policy for the ops group is
present in IdM.

IMPORTANT

The priority of the ops password policy is set to 1, whereas the global_policy password
policy has no priority set. For this reason, the ops policy automatically supersedes
global_policy for the ops group and is enforced immediately.

global_policy serves as a fallback policy when no group policy is set for a user, and it can
never take precedence over a group policy.

Additional resources

See the README-pwpolicy.md file in the /usr/share/doc/ansible-freeipa/ directory.

See Password policy priorities.

33.4. ADDITIONAL PASSWORD POLICY OPTIONS IN IDM

As an Identity Management (IdM) administrator, you can strengthen the default password requirements
by enabling additional password policy options based on the libpwquality feature set. The additional
password policy options include the following:

--maxrepeat

CHAPTER 33. DEFINING IDM PASSWORD POLICIES

285

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/pwd-policies-how#pwd-policies-priority

Specifies the maximum acceptable number of same consecutive characters in the new password.

--maxsequence

Specifies the maximum length of monotonic character sequences in the new password. Examples of
such a sequence are 12345 or fedcb. Most such passwords will not pass the simplicity check.

--dictcheck

If nonzero, checks whether the password, with possible modifications, matches a word in a dictionary.
Currently libpwquality performs the dictionary check using the cracklib library.

--usercheck

If nonzero, checks whether the password, with possible modifications, contains the user name in
some form. It is not performed for user names shorter than 3 characters.

You cannot apply the additional password policy options to existing passwords. If you apply any of the
additional options, IdM automatically sets the --minlength option, the minimum number of characters in
a password, to 6 characters.

NOTE

In a mixed environment with RHEL 7 and RHEL 8 servers, you can enforce the additional
password policy settings only on servers running on RHEL 8.4 and later. If a user is logged
in to an IdM client and the IdM client is communicating with an IdM server running on
RHEL 8.3 or earlier, then the new password policy requirements set by the system
administrator will not be applied. To ensure consistent behavior, upgrade or update all
servers to RHEL 8.4 and later.

Additional resources:

Applying additional password policies to an IdM group

pwquality(3) man page

33.5. APPLYING ADDITIONAL PASSWORD POLICY OPTIONS TO AN
IDM GROUP

Follow this procedure to apply additional password policy options in Identity Management (IdM). The
example describes how to strengthen the password policy for the managers group by making sure that
the new passwords do not contain the users' respective user names and that the passwords contain no
more than two identical characters in succession.

Prerequisites

You are logged in as an IdM administrator.

The managers group exists in IdM.

The managers password policy exists in IdM.

Procedure

1. Apply the user name check to all new passwords suggested by the users in the managers group:

$ ipa pwpolicy-mod --usercheck=True managers

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

286

NOTE

If you do not specify the name of the password policy, the default global_policy
is modified.

2. Set the maximum number of identical consecutive characters to 2 in the managers password
policy:

$ ipa pwpolicy-mod --maxrepeat=2 managers

A password now will not be accepted if it contains more than 2 identical consecutive characters.
For example, the eR873mUi111YJQ combination is unacceptable because it contains three 1s in
succession.

Verification

1. Add a test user named test_user:

$ ipa user-add test_user
First name: test
Last name: user

Added user "test_user"

2. Add the test user to the managers group:

a. In the IdM Web UI, click Identity → Groups → User Groups.

b. Click managers.

c. Click Add.

d. In the Add users into user group 'managers' page, check test_user.

e. Click the > arrow to move the user to the Prospective column.

f. Click Add.

3. Reset the password for the test user:

a. Go to Identity → Users.

b. Click test_user.

c. In the Actions menu, click Reset Password.

d. Enter a temporary password for the user.

4. On the command line, try to obtain a Kerberos ticket-granting ticket (TGT) for the test_user:

$ kinit test_user

a. Enter the temporary password.

b. The system informs you that you must change your password. Enter a password that

CHAPTER 33. DEFINING IDM PASSWORD POLICIES

287

b. The system informs you that you must change your password. Enter a password that
contains the user name of test_user:

Password expired. You must change it now.
Enter new password:
Enter it again:
Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

NOTE

Kerberos does not have fine-grained error password policy reporting and, in
certain cases, does not provide a clear reason why a password was rejected.

c. The system informs you that the entered password was rejected. Enter a password that
contains three or more identical characters in succession:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

d. The system informs you that the entered password was rejected. Enter a password that
meets the criteria of the managers password policy:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

5. View the obtained TGT:

$ klist
Ticket cache: KCM:0:33945
Default principal: test_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/07/2021 12:44:44 07/08/2021 12:44:44
krbtgt@IDM.EXAMPLE.COM@IDM.EXAMPLE.COM

The managers password policy now works correctly for users in the managers group.

Additional resources

Additional password policies in IdM

33.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

288

33.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL
PASSWORD POLICY OPTIONS TO AN IDM GROUP

You can use an Ansible playbook to apply additional password policy options to strengthen the password
policy requirements for a specific IdM group. You can use the maxrepeat, maxsequence, dictcheck
and usercheck password policy options for this purpose. The example describes how to set the
following requirements for the managers group:

Users' new passwords do not contain the users' respective user names.

The passwords contain no more than two identical characters in succession.

Any monotonic character sequences in the passwords are not longer than 3 characters. This
means that the system does not accept a password with a sequence such as 1234 or abcd.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

The group for which you are ensuring the presence of a password policy exists in IdM.

Procedure

1. Create your Ansible playbook file manager_pwpolicy_present.yml that defines the password
policy whose presence you want to ensure. To simplify this step, copy and modify the following
example:

- name: Tests
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure presence of usercheck and maxrepeat pwpolicy for group managers
 ipapwpolicy:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: managers
 usercheck: True
 maxrepeat: 2
 maxsequence: 3

2. Run the playbook:

CHAPTER 33. DEFINING IDM PASSWORD POLICIES

289

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file
path_to_playbooks_directory_/manager_pwpolicy_present.yml

Verification

1. Add a test user named test_user:

$ ipa user-add test_user
First name: test
Last name: user

Added user "test_user"

2. Add the test user to the managers group:

a. In the IdM Web UI, click Identity → Groups → User Groups.

b. Click managers.

c. Click Add.

d. In the Add users into user group 'managers' page, check test_user.

e. Click the > arrow to move the user to the Prospective column.

f. Click Add.

3. Reset the password for the test user:

a. Go to Identity → Users.

b. Click test_user.

c. In the Actions menu, click Reset Password.

d. Enter a temporary password for the user.

4. On the command line, try to obtain a Kerberos ticket-granting ticket (TGT) for the test_user:

$ kinit test_user

a. Enter the temporary password.

b. The system informs you that you must change your password. Enter a password that
contains the user name of test_user:

Password expired. You must change it now.
Enter new password:
Enter it again:
Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

290

NOTE

Kerberos does not have fine-grained error password policy reporting and, in
certain cases, does not provide a clear reason why a password was rejected.

c. The system informs you that the entered password was rejected. Enter a password that
contains three or more identical characters in succession:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

d. The system informs you that the entered password was rejected. Enter a password that
contains a monotonic character sequence longer than 3 characters. Examples of such
sequences include 1234 and fedc:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

e. The system informs you that the entered password was rejected. Enter a password that
meets the criteria of the managers password policy:

Password change rejected: Password not changed.
Unspecified password quality failure while trying to change password.
Please try again.

Enter new password:
Enter it again:

5. Verify that you have obtained a TGT, which is only possible after having entered a valid
password:

$ klist
Ticket cache: KCM:0:33945
Default principal: test_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/07/2021 12:44:44 07/08/2021 12:44:44
krbtgt@IDM.EXAMPLE.COM@IDM.EXAMPLE.COM

Additional resources

Additional password policies in IdM

/usr/share/doc/ansible-freeipa/README-pwpolicy.md

/usr/share/doc/ansible-freeipa/playbooks/pwpolicy

CHAPTER 33. DEFINING IDM PASSWORD POLICIES

291

CHAPTER 34. MANAGING EXPIRING PASSWORD
NOTIFICATIONS

You can use the Expiring Password Notification (EPN) tool, provided by the ipa-client-epn package, to
build a list of Identity Management (IdM) users whose passwords are expiring in a configured amount of
time. To install, configure, and use the EPN tool, refer to the relevant sections.

What is the Expiring Password Notification tool

Installing the Expiring Password Notification tool

Running the EPN tool to send emails to users whose passwords are expiring

Enabling the ipa-epn.timer to send an email to all users whose passwords are expiring

Modifying the Expiring Password Notification email template

34.1. WHAT IS THE EXPIRING PASSWORD NOTIFICATION TOOL

The Expiring Password Notification (EPN) tool is a standalone tool you can use to build a list of Identity
Management (IdM) users whose passwords are expiring in a configured amount of time.

IdM administrators can use EPN to:

Display a list of affected users in JSON format, which is created when run in dry-run mode.

Calculate how many emails will be sent for a given day or date range.

Send password expiration email notifications to users.

Configure the ipa-epn.timer to run the EPN tool daily and send an email to users whose
passwords are expiring within the defined future date ranges.

Customize the email notification to send to users.

NOTE

If a user account is disabled, no email notifications are sent if the password is going to
expire.

34.2. INSTALLING THE EXPIRING PASSWORD NOTIFICATION TOOL

Follow this procedure to install the Expiring Password Notification (EPN) tool.

Prerequisites

Install the EPN tool on either an Identity Management (IdM) replica or an IdM client with a local
Postfix SMTP server configured as a smart host.

Procedure

Install the EPN tool:

yum install ipa-client-epn

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

292

34.3. RUNNING THE EPN TOOL TO SEND EMAILS TO USERS WHOSE
PASSWORDS ARE EXPIRING

Follow this procedure to run the Expiring Password Notification (EPN) tool to send emails to users
whose passwords are expiring.

NOTE

The EPN tool is stateless. If the EPN tool fails to email any of the users whose passwords
are expiring on a given day, the EPN tool does not save a list of those users.

Prerequisites

The ipa-client-epn package is installed. See Installing the Expiring Password Notification tool .

Customize the ipa-epn email template if required. See Modifying the Expiring Password
Notification email template.

Procedure

1. Update the epn.conf configuration file to set the options for the EPN tool to notify users of
upcoming password expiration.

vi /etc/ipa/epn.conf

2. Update the notify_ttls as required. The default is to notify users whose passwords are expiring
in 28, 14, 7, 3, and 1 day(s).

notify_ttls = 28, 14, 7, 3, 1

3. Configure your SMTP server and port:

smtp_server = localhost
smtp_port = 25

4. Specify the email address from which the email expiration notification is sent. Any
unsuccessfully delivered emails are returned to this address.

mail_from =admin-email@example.com

5. Save the /etc/ipa/epn.conf file.

6. Run the EPN tool in dry-run mode to generate a list of the users to whom the password
expiration email notification would be sent if you run the tool without the --dry-run option.

ipa-epn --dry-run
[
 {
 "uid": "user5",
 "cn": "user 5",
 "krbpasswordexpiration": "2020-04-17 15:51:53",
 "mail": "['user5@ipa.test']"
 }

CHAPTER 34. MANAGING EXPIRING PASSWORD NOTIFICATIONS

293

]
[
 {
 "uid": "user6",
 "cn": "user 6",
 "krbpasswordexpiration": "2020-12-17 15:51:53",
 "mail": "['user5@ipa.test']"
 }
]
The IPA-EPN command was successful

NOTE

If the list of users returned is very large and you run the tool without the --dry-
run option, this might cause an issue with your email server.

7. Run the EPN tool without the --dry-run option to send expiration emails to the list of all the
users returned when you ran the EPN tool in dry-run mode:

ipa-epn
[
 {
 "uid": "user5",
 "cn": "user 5",
 "krbpasswordexpiration": "2020-10-01 15:51:53",
 "mail": "['user5@ipa.test']"
 }
]
[
 {
 "uid": "user6",
 "cn": "user 6",
 "krbpasswordexpiration": "2020-12-17 15:51:53",
 "mail": "['user5@ipa.test']"
 }
]
The IPA-EPN command was successful

8. You can add EPN to any monitoring system and invoke it with the --from-nbdays and --to-
nbdays options to determine how many users passwords are going to expire within a specific
time frame:

ipa-epn --from-nbdays 8 --to-nbdays 12

NOTE

If you invoke the EPN tool with the --from-nbdays and --to-nbdays options, it is
automatically executed in dry-run mode.

Verification steps

Run the EPN tool and verify an email notification is sent.

Additional resources

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

294

Additional resources

See ipa-epn man page.

See epn.conf man page.

34.4. ENABLING THE IPA-EPN.TIMER TO SEND AN EMAIL TO ALL
USERS WHOSE PASSWORDS ARE EXPIRING

Follow this procedure to use ipa-epn.timer to run the Expiring Password Notification (EPN) tool to send
emails to users whose passwords are expiring. The ipa-epn.timer parses the epn.conf file and sends an
email to users whose passwords are expiring within the defined future date ranges configured in that
file.

Prerequisites

The ipa-client-epn package is installed. See Installing the Expiring Password Notification tool

Customize the ipa-epn email template if required. See Modifying the Expiring Password
Notification email template

Procedure

Start the ipa-epn.timer:

systemctl start ipa-epn.timer

Once you start the timer, by default, the EPN tool is run every day at 1 a.m.

Additional resources

See the ipa-epn man page.

34.5. MODIFYING THE EXPIRING PASSWORD NOTIFICATION EMAIL
TEMPLATE

Follow this procedure to customize the Expiring Password Notification (EPN) email message template.

Prerequisites

The ipa-client-epn package is installed.

Procedure

1. Open the EPN message template:

vi /etc/ipa/epn/expire_msg.template

2. Update the template text as required.

Hi {{ fullname }},

Your password will expire on {{ expiration }}.

CHAPTER 34. MANAGING EXPIRING PASSWORD NOTIFICATIONS

295

Please change it as soon as possible.

You can use the following variables in the template.

User ID: uid

Full name: fullname

First name: first

Last name: last

Password expiration date: expiration

3. Save the message template file.

Verification steps

Run the EPN tool and verify the email notification contains the updated text.

Additional resources

See the ipa-epn man page.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

296

CHAPTER 35. USING AN ID VIEW TO OVERRIDE A USER
ATTRIBUTE VALUE ON AN IDM CLIENT

If an Identity Management (IdM) user want to override some of their user or group attributes stored in
the IdM LDAP server, for example the login name, home directory, certificate used for authentication, or
SSH keys, you as IdM administrator can redefine these values for a specific IdM client, using IdM ID
views. For example, you can specify a different home directory for a user on the IdM client that the user
most commonly uses for logging in to IdM.

This chapter describes how to redefine a POSIX attribute value associated with an IdM user on a host
enrolled into IdM as a client. Specifically, the chapter describes how to redefine the user login name and
home directory.

This chapter includes the following sections:

ID views

Potential negative impact of ID views on SSSD performance

Attributes an ID view can override

Getting help for ID view commands

Using an ID view to override the login name of an IdM user on a specific host

Modifying an IdM ID view

Adding an ID view to override an IdM user home directory on an IdM client

Applying an ID view to an IdM host group

35.1. ID VIEWS

An ID view in Identity Management (IdM) is an IdM client-side view specifying the following information:

New values for centrally defined POSIX user or group attributes

The client host or hosts on which the new values apply.

An ID view contains one or more overrides. An override is a specific replacement of a centrally defined
POSIX attribute value.

You can only define an ID view for an IdM client centrally on IdM servers. You cannot configure client-
side overrides for an IdM client locally.

For example, you can use ID views to achieve the following goals:

Define different attribute values for different environments. For example, you can allow the IdM
administrator or another IdM user to have different home directories on different IdM clients:
you can configure /home/encrypted/username to be this user’s home directory on one IdM
client and /dropbox/username on another client. Using ID views in this situation is convenient as
alternatively, for example, changing fallback_homedir, override_homedir or other home
directory variables in the client’s /etc/sssd/sssd.conf file would affect all users. See Adding an
ID view to override an IdM user home directory on an IdM client for an example procedure.

Replace a previously generated attribute value with a different value, such as overriding a user’s

CHAPTER 35. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

297

UID. This ability can be useful when you want to achieve a system-wide change that would
otherwise be difficult to do on the LDAP side, for example make 1009 the UID of an IdM user.
IdM ID ranges, which are used to generate an IdM user UID, never start as low as 1000 or even
10000. If a reason exists for an IdM user to impersonate a local user with UID 1009 on all IdM
clients, you can use ID views to override the UID of this IdM user that was generated when the
user was created in IdM.

IMPORTANT

You can only apply ID views to IdM clients, not to IdM servers.

Additional resources

Using ID views for Active Directory users

SSSD Client-side Views

35.2. POTENTIAL NEGATIVE IMPACT OF ID VIEWS ON SSSD
PERFORMANCE

When you define an ID view, IdM places the desired override value in the IdM server’s System Security
Services Daemon (SSSD) cache. The SSSD running on an IdM client then retrieves the override value
from the server cache.

Applying an ID view can have a negative impact on System Security Services Daemon (SSSD)
performance, because certain optimizations and ID views cannot run at the same time. For example, ID
views prevent SSSD from optimizing the process of looking up groups on the server:

With ID views, SSSD must check every member on the returned list of group member names if
the group name is overridden.

Without ID views, SSSD can only collect the user names from the member attribute of the
group object.

This negative effect becomes most apparent when the SSSD cache is empty or after you clear the
cache, which makes all entries invalid.

35.3. ATTRIBUTES AN ID VIEW CAN OVERRIDE

ID views consist of user and group ID overrides. The overrides define the new POSIX attribute values.

User and group ID overrides can define new values for the following POSIX attributes:

User attributes

Login name (uid)

GECOS entry (gecos)

UID number (uidNumber)

GID number (gidNumber)

Login shell (loginShell)

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

298

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_authentication_and_authorization_in_rhel/assembly_sssd-client-side-view_configuring-authentication-and-authorization-in-rhel

Home directory (homeDirectory)

SSH public keys (ipaSshPubkey)

Certificate (userCertificate)

Group attributes

Group name (cn)

Group GID number (gidNumber)

35.4. GETTING HELP FOR ID VIEW COMMANDS

You can get help for commands involving Identity Management (IdM) ID views on the IdM command-
line interface (CLI).

Prerequisites

You have obtained a Kerberos ticket for an IdM user.

Procedure

To display all commands used to manage ID views and overrides:

$ ipa help idviews
ID Views

Manage ID Views

IPA allows to override certain properties of users and groups[...]
[...]
Topic commands:
 idoverridegroup-add Add a new Group ID override
 idoverridegroup-del Delete a Group ID override
[...]

To display detailed help for a particular command, add the --help option to the command:

$ ipa idview-add --help
Usage: ipa [global-options] idview-add NAME [options]

Add a new ID View.
Options:
 -h, --help show this help message and exit
 --desc=STR Description
[...]

35.5. USING AN ID VIEW TO OVERRIDE THE LOGIN NAME OF AN IDM
USER ON A SPECIFIC HOST

Follow this procedure to create an ID view for a specific IdM client that overrides a POSIX attribute value

CHAPTER 35. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

299

Follow this procedure to create an ID view for a specific IdM client that overrides a POSIX attribute value
associated with a specific IdM user. The procedure uses the example of an ID view that enables an IdM
user named idm_user to log in to an IdM client named host1 using the user_1234 login name.

Prerequisites

You are logged in as IdM administrator.

Procedure

1. Create a new ID view. For example, to create an ID view named example_for_host1:

$ ipa idview-add example_for_host1

Added ID View "example_for_host1"

 ID View Name: example_for_host1

2. Add a user override to the example_for_host1 ID view. To override the user login:

Enter the ipa idoverrideuser-add command

Add the name of the ID view

Add the user name, also called the anchor

Add the --login option:

$ ipa idoverrideuser-add example_for_host1 idm_user --login=user_1234

Added User ID override "idm_user"

 Anchor to override: idm_user
 User login: user_1234

For a list of the available options, run ipa idoverrideuser-add --help.

NOTE

The ipa idoverrideuser-add --certificate command replaces all existing
certificates for the account in the specified ID view. To append an additional
certificate, use the ipa idoverrideuser-add-cert command instead:

$ ipa idoverrideuser-add-cert example_for_host1 user --
certificate="MIIEATCC..."

3. Optional: Using the ipa idoverrideuser-mod command, you can specify new attribute values for
an existing user override.

4. Apply example_for_host1 to the host1.idm.example.com host:

$ ipa idview-apply example_for_host1 --hosts=host1.idm.example.com

Applied ID View "example_for_host1"

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

300

hosts: host1.idm.example.com

Number of hosts the ID View was applied to: 1

NOTE

The ipa idview-apply command also accepts the --hostgroups option. The
option applies the ID view to hosts that belong to the specified host group, but
does not associate the ID view with the host group itself. Instead, the --
hostgroups option expands the members of the specified host group and
applies the --hosts option individually to every one of them.

This means that if a host is added to the host group in the future, the ID view
does not apply to the new host.

5. To apply the new configuration to the host1.idm.example.com system immediately:

a. SSH to the system as root:

$ ssh root@host1
Password:

b. Clear the SSSD cache:

root@host1 ~]# sss_cache -E

c. Restart the SSSD daemon:

root@host1 ~]# systemctl restart sssd

Verification steps

If you have the credentials of user_1234, you can use them to log in to IdM on host1:

1. SSH to host1 using user_1234 as the login name:

[root@r8server ~]# ssh user_1234@host1.idm.example.com
Password:

Last login: Sun Jun 21 22:34:25 2020 from 192.168.122.229
[user_1234@host1 ~]$

2. Display the working directory:

[user_1234@host1 ~]$ pwd
/home/idm_user/

Alternatively, if you have root credentials on host1, you can use them to check the output of the
id command for idm_user and user_1234:

[root@host1 ~]# id idm_user

CHAPTER 35. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

301

uid=779800003(user_1234) gid=779800003(idm_user) groups=779800003(idm_user)
[root@host1 ~]# user_1234
uid=779800003(user_1234) gid=779800003(idm_user) groups=779800003(idm_user)

35.6. MODIFYING AN IDM ID VIEW

An ID view in Identity Management (IdM) overrides a POSIX attribute value associated with a specific
IdM user. Follow this procedure to modify an existing ID view. Specifically, it describes how to modify an
ID view to enable the user named idm_user to use the /home/user_1234/ directory as the user home
directory instead of /home/idm_user/ on the host1.idm.example.com IdM client.

Prerequisites

You have root access to host1.idm.example.com.

You are logged in as a user with the required privileges, for example admin.

You have an ID view configured for idm_user that applies to the host1 IdM client.

Procedure

1. As root, create the directory that you want idm_user to use on host1.idm.example.com as the
user home directory:

[root@host1 /]# mkdir /home/user_1234/

2. Change the ownership of the directory:

[root@host1 /]# chown idm_user:idm_user /home/user_1234/

3. Display the ID view, including the hosts to which the ID view is currently applied. To display the ID
view named example_for_host1:

$ ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
 User object override: idm_user
 Hosts the view applies to: host1.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that the ID view currently applies to host1.idm.example.com.

4. Modify the user override of the example_for_host1 ID view. To override the user home
directory:

Enter the ipa idoverrideuser-add command

Add the name of the ID view

Add the user name, also called the anchor

Add the --homedir option:

$ ipa idoverrideuser-mod example_for_host1 idm_user --

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

302

homedir=/home/user_1234

Modified a User ID override "idm_user"

 Anchor to override: idm_user
 User login: user_1234
 Home directory: /home/user_1234/

For a list of the available options, run ipa idoverrideuser-mod --help.

5. To apply the new configuration to the host1.idm.example.com system immediately:

a. SSH to the system as root:

$ ssh root@host1
Password:

b. Clear the SSSD cache:

root@host1 ~]# sss_cache -E

c. Restart the SSSD daemon:

root@host1 ~]# systemctl restart sssd

Verification steps

1. SSH to host1 as idm_user:

[root@r8server ~]# ssh idm_user@host1.idm.example.com
Password:

Last login: Sun Jun 21 22:34:25 2020 from 192.168.122.229
[user_1234@host1 ~]$

2. Print the working directory:

[user_1234@host1 ~]$ pwd
/home/user_1234/

Additional resources

Defining global attributes for an AD user by modifying the Default Trust View

35.7. ADDING AN ID VIEW TO OVERRIDE AN IDM USER HOME
DIRECTORY ON AN IDM CLIENT

An ID view in Identity Management (IdM) overrides a POSIX attribute value associated with a specific
IdM user. Follow this procedure to create an ID view that applies to idm_user on an IdM client named
host1 to enable the user to use the /home/user_1234/ directory as the user home directory instead of
/home/idm_user/.

Prerequisites

CHAPTER 35. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

303

Prerequisites

You have root access to host1.idm.example.com.

You are logged in as a user with the required privileges, for example admin.

Procedure

1. As root, create the directory that you want idm_user to use on host1.idm.example.com as the
user home directory:

[root@host1 /]# mkdir /home/user_1234/

2. Change the ownership of the directory:

[root@host1 /]# chown idm_user:idm_user /home/user_1234/

3. Create an ID view. For example, to create an ID view named example_for_host1:

$ ipa idview-add example_for_host1

Added ID View "example_for_host1"

 ID View Name: example_for_host1

4. Add a user override to the example_for_host1 ID view. To override the user home directory:

Enter the ipa idoverrideuser-add command

Add the name of the ID view

Add the user name, also called the anchor

Add the --homedir option:

$ ipa idoverrideuser-add example_for_host1 idm_user --homedir=/home/user_1234

Added User ID override "idm_user"

 Anchor to override: idm_user
 Home directory: /home/user_1234/

5. Apply example_for_host1 to the host1.idm.example.com host:

$ ipa idview-apply example_for_host1 --hosts=host1.idm.example.com

Applied ID View "example_for_host1"

hosts: host1.idm.example.com

Number of hosts the ID View was applied to: 1

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

304

NOTE

The ipa idview-apply command also accepts the --hostgroups option. The
option applies the ID view to hosts that belong to the specified host group, but
does not associate the ID view with the host group itself. Instead, the --
hostgroups option expands the members of the specified host group and
applies the --hosts option individually to every one of them.

This means that if a host is added to the host group in the future, the ID view
does not apply to the new host.

6. To apply the new configuration to the host1.idm.example.com system immediately:

a. SSH to the system as root:

$ ssh root@host1
Password:

b. Clear the SSSD cache:

root@host1 ~]# sss_cache -E

c. Restart the SSSD daemon:

root@host1 ~]# systemctl restart sssd

Verification steps

1. SSH to host1 as idm_user:

[root@r8server ~]# ssh idm_user@host1.idm.example.com
Password:
Activate the web console with: systemctl enable --now cockpit.socket

Last login: Sun Jun 21 22:34:25 2020 from 192.168.122.229
[idm_user@host1 /]$

2. Print the working directory:

[idm_user@host1 /]$ pwd
/home/user_1234/

Additional resources

Overriding Default Trust View attributes for an AD user on an IdM client with an ID view

35.8. APPLYING AN ID VIEW TO AN IDM HOST GROUP

The ipa idview-apply command accepts the --hostgroups option. However, the option acts as a one-
time operation that applies the ID view to hosts that currently belong to the specified host group, but
does not dynamically associate the ID view with the host group itself. The --hostgroups option expands
the members of the specified host group and applies the --hosts option individually to every one of
them.

CHAPTER 35. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

305

If you add a new host to the host group later, you must apply the ID view to the new host manually, using
the ipa idview-apply command with the --hosts option.

Similarly, if you remove a host from a host group, the ID view is still assigned to the host after the
removal. To unapply the ID view from the removed host, you must run the ipa idview-unapply
id_view_name --hosts=name_of_the_removed_host command.

Follow this procedure to achieve the following goals:

1. How to create a host group and add hosts to it.

2. How to apply an ID view to the host group.

3. How to add a new host to the host group and apply the ID view to the new host.

Prerequisites

Ensure that the ID view you want to apply to the host group exists in IdM. For example, to create
an ID view to override an IdM user login name on a specific IdM client, see Using an ID view to
override the login name of an IdM user on a specific host.

Procedure

1. Create a host group and add hosts to it:

a. Create a host group. For example, to create a host group named baltimore:

[root@server ~]# ipa hostgroup-add --desc="Baltimore hosts" baltimore

Added hostgroup "baltimore"

Host-group: baltimore
Description: Baltimore hosts

b. Add hosts to the host group. For example, to add the host102 and host103 to the
baltimore host group:

[root@server ~]# ipa hostgroup-add-member --hosts={host102,host103} baltimore
Host-group: baltimore
Description: Baltimore hosts
Member hosts: host102.idm.example.com, host103.idm.example.com

Number of members added 2

2. Apply an ID view to the hosts in the host group. For example, to apply the example_for_host1 ID
view to the baltimore host group:

[root@server ~]# ipa idview-apply --hostgroups=baltimore
ID View Name: example_for_host1

Applied ID View "example_for_host1"

 hosts: host102.idm.example.com, host103.idm.example.com

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

306

Number of hosts the ID View was applied to: 2

3. Add a new host to the host group and apply the ID view to the new host:

a. Add a new host to the host group. For example, to add the somehost.idm.example.com
host to the baltimore host group:

[root@server ~]# ipa hostgroup-add-member --hosts=somehost.idm.example.com
baltimore
 Host-group: baltimore
 Description: Baltimore hosts
 Member hosts: host102.idm.example.com,
host103.idm.example.com,somehost.idm.example.com

Number of members added 1

b. Optionally, display the ID view information. For example, to display the details about the
example_for_host1 ID view:

[root@server ~]# ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
[...]
 Hosts the view applies to: host102.idm.example.com, host103.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that the ID view is not applied to somehost.idm.example.com, the
newly-added host in the baltimore host group.

c. Apply the ID view to the new host. For example, to apply the example_for_host1 ID view to
somehost.idm.example.com:

[root@server ~]# ipa idview-apply --host=somehost.idm.example.com
ID View Name: example_for_host1

Applied ID View "example_for_host1"

 hosts: somehost.idm.example.com

Number of hosts the ID View was applied to: 1

Verification steps

Display the ID view information again:

[root@server ~]# ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
[...]

CHAPTER 35. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT

307

 Hosts the view applies to: host102.idm.example.com, host103.idm.example.com,
somehost.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that ID view is now applied to somehost.idm.example.com, the newly-added
host in the baltimore host group.

35.9. MIGRATING NIS DOMAINS TO IDENTITY MANAGEMENT

You can use ID views to set host specific UIDs and GIDs for existing hosts to prevent changing
permissions for files and directories when migrating NIS domains into IdM.

Prerequisites

You authenticated yourself as an admin using the kinit admin command.

Procedure

1. Add users and groups in the IdM domain.

a. Create users using the ipa user-add command. For more information see: Adding users to
IdM.

b. Create groups using the ipa group-add command. For more information see: Adding
groups to IdM.

2. Override IDs IdM generated during the user creation:

a. Create a new ID view using ipa idview-add command. For more information see: Getting
help for ID view commands.

b. Add ID overrides for the users and groups to the ID view using ipa idoverrideuser-add and
idoverridegroup-add respectively.

3. Assign the ID view to the specific hosts using ipa idview-apply command.

4. Decommission the NIS domains.

Verification

1. To check if all users and groups were added to the ID view correctly, use the ipa idview-show
command.

$ ipa idview-show example-view
 ID View Name: example-view
 User object overrides: example-user1
 Group object overrides: example-group

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

308

CHAPTER 36. USING ID VIEWS FOR ACTIVE DIRECTORY
USERS

You can use ID views to specify new values for the POSIX attributes of your Active Directory (AD) users
in an IdM-AD Trust environment.

By default, IdM applies the Default Trust View to all AD users. You can configure additional ID views on
individual IdM clients to further adjust which POSIX attributes specific users receive.

36.1. HOW THE DEFAULT TRUST VIEW WORKS

The Default Trust View is the default ID view that is always applied to AD users and groups in trust-
based setups. It is created automatically when you establish the trust using the ipa-adtrust-install
command and cannot be deleted.

NOTE

The Default Trust View only accepts overrides for AD users and groups, not for IdM users
and groups.

Using the Default Trust View, you can define custom POSIX attributes for AD users and groups, thus
overriding the values defined in AD.

Table 36.1. Applying the Default Trust View

 Values in AD Default Trust View Result

Login ad_user ad_user ad_user

UID 111 222 222

GID 111 (no value) 111

You can also configure additional ID Views to override the Default Trust View on IdM clients. IdM applies
the values from the host-specific ID view on top of the Default Trust View:

If an attribute is defined in the host-specific ID view, IdM applies the value from this ID view.

If an attribute is not defined in the host-specific ID view, IdM applies the value from the Default
Trust View.

Table 36.2. Applying a host-specific ID view on top of the Default Trust View

 Values in AD Default Trust
View

Host-specific ID
view

Result

Login ad_user ad_user (no value) ad_user

UID 111 222 333 333

CHAPTER 36. USING ID VIEWS FOR ACTIVE DIRECTORY USERS

309

GID 111 (no value) 333 333

 Values in AD Default Trust
View

Host-specific ID
view

Result

NOTE

You can only apply host-specific ID views to override the Default Trust View on IdM
clients. IdM servers and replicas always apply the values from the Default Trust View.

Additional resources

Using an ID view to override a user attribute value on an IdM client

36.2. DEFINING GLOBAL ATTRIBUTES FOR AN AD USER BY
MODIFYING THE DEFAULT TRUST VIEW

If you want to override a POSIX attribute for an Active Directory (AD) user throughout your entire IdM
deployment, modify the entry for that user in the Default Trust View. This procedure sets the GID for
the AD user ad_user@ad.example.com to 732000006.

Prerequisites

You have authenticated as an IdM administrator.

A group must exist with the GID or you must set the GID in an ID override for a group.

Procedure

1. As an IdM administrator, create an ID override for the AD user in the Default Trust View that
changes the GID number to 732000006:

ipa idoverrideuser-add 'Default Trust View' ad_user@ad.example.com --
gidnumber=732000006

2. Clear the entry for the ad_user@ad.example.com user from the SSSD cache on all IdM servers
and clients. This removes stale data and allows the new override value to apply.

sssctl cache-expire -u ad_user@ad.example.com

Verification

Retrieve information for the ad_user@ad.example.com user to verify the GID reflects the
updated value.

id ad_user@ad.example.com
uid=702801456(ad_user@ad.example.com) gid=732000006(ad_admins)
groups=732000006(ad_admins),702800513(domain users@ad.example.com)

36.3. OVERRIDING DEFAULT TRUST VIEW ATTRIBUTES FOR AN AD

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

310

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-an-id-view-to-override-a-user-attribute-value-on-an-idm-client_configuring-and-managing-idm

36.3. OVERRIDING DEFAULT TRUST VIEW ATTRIBUTES FOR AN AD
USER ON AN IDM CLIENT WITH AN ID VIEW

You might want to override some POSIX attributes from the Default Trust View for an Active Directory
(AD) user. For example, you might need to give an AD user a different GID on one particular IdM client.
You can use an ID view to override a value from the Default Trust View for an AD user and apply it to a
single host. This procedure explains how to set the GID for the ad_user@ad.example.com AD user on
the host1.idm.example.com IdM client to 732001337.

Prerequisites

You have root access to the host1.idm.example.com IdM client.

You are logged in as a user with the required privileges, for example the admin user.

Procedure

1. Create an ID view. For example, to create an ID view named example_for_host1:

$ ipa idview-add example_for_host1

Added ID View "example_for_host1"

 ID View Name: example_for_host1

2. Add a user override to the example_for_host1 ID view. To override the user’s GID:

Enter the ipa idoverrideuser-add command

Add the name of the ID view

Add the user name, also called the anchor

Add the --gidnumber= option:

$ ipa idoverrideuser-add example_for_host1 ad_user@ad.example.com --
gidnumber=732001337

Added User ID override "ad_user@ad.example.com"

 Anchor to override: ad_user@ad.example.com
 GID: 732001337

3. Apply example_for_host1 to the host1.idm.example.com IdM client:

$ ipa idview-apply example_for_host1 --hosts=host1.idm.example.com

Applied ID View "example_for_host1"

hosts: host1.idm.example.com

Number of hosts the ID View was applied to: 1

NOTE

CHAPTER 36. USING ID VIEWS FOR ACTIVE DIRECTORY USERS

311

NOTE

The ipa idview-apply command also accepts the --hostgroups option. The
option applies the ID view to hosts that belong to the specified host group, but
does not associate the ID view with the host group itself. Instead, the --
hostgroups option expands the members of the specified host group and
applies the --hosts option individually to every one of them.

This means that if a host is added to the host group in the future, the ID view
does not apply to the new host.

4. Clear the entry for the ad_user@ad.example.com user from the SSSD cache on the
host1.idm.example.com IdM client. This removes stale data and allows the new override value
to apply.

[root@host1 ~]# sssctl cache-expire -u ad_user@ad.example.com

Verification Steps

1. SSH to host1 as ad_user@ad.example.com:

[root@r8server ~]# ssh ad_user@ad.example.com@host1.idm.example.com

2. Retrieve information for the ad_user@ad.example.com user to verify the GID reflects the
updated value.

[ad_user@ad.example.com@host1 ~]$ id ad_user@ad.example.com
uid=702801456(ad_user@ad.example.com) gid=732001337(admins2)
groups=732001337(admins2),702800513(domain users@ad.example.com)

36.4. APPLYING AN ID VIEW TO AN IDM HOST GROUP

The ipa idview-apply command accepts the --hostgroups option. However, the option acts as a one-
time operation that applies the ID view to hosts that currently belong to the specified host group, but
does not dynamically associate the ID view with the host group itself. The --hostgroups option expands
the members of the specified host group and applies the --hosts option individually to every one of
them.

If you add a new host to the host group later, you must apply the ID view to the new host manually, using
the ipa idview-apply command with the --hosts option.

Similarly, if you remove a host from a host group, the ID view is still assigned to the host after the
removal. To unapply the ID view from the removed host, you must run the ipa idview-unapply
id_view_name --hosts=name_of_the_removed_host command.

Follow this procedure to achieve the following goals:

1. How to create a host group and add hosts to it.

2. How to apply an ID view to the host group.

3. How to add a new host to the host group and apply the ID view to the new host.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

312

Ensure that the ID view you want to apply to the host group exists in IdM. For example, to create
an ID view to override an IdM user login name on a specific IdM client, see Using an ID view to
override the login name of an IdM user on a specific host.

Procedure

1. Create a host group and add hosts to it:

a. Create a host group. For example, to create a host group named baltimore:

[root@server ~]# ipa hostgroup-add --desc="Baltimore hosts" baltimore

Added hostgroup "baltimore"

Host-group: baltimore
Description: Baltimore hosts

b. Add hosts to the host group. For example, to add the host102 and host103 to the
baltimore host group:

[root@server ~]# ipa hostgroup-add-member --hosts={host102,host103} baltimore
Host-group: baltimore
Description: Baltimore hosts
Member hosts: host102.idm.example.com, host103.idm.example.com

Number of members added 2

2. Apply an ID view to the hosts in the host group. For example, to apply the example_for_host1 ID
view to the baltimore host group:

[root@server ~]# ipa idview-apply --hostgroups=baltimore
ID View Name: example_for_host1

Applied ID View "example_for_host1"

 hosts: host102.idm.example.com, host103.idm.example.com

Number of hosts the ID View was applied to: 2

3. Add a new host to the host group and apply the ID view to the new host:

a. Add a new host to the host group. For example, to add the somehost.idm.example.com
host to the baltimore host group:

[root@server ~]# ipa hostgroup-add-member --hosts=somehost.idm.example.com
baltimore
 Host-group: baltimore
 Description: Baltimore hosts
 Member hosts: host102.idm.example.com,
host103.idm.example.com,somehost.idm.example.com

Number of members added 1

CHAPTER 36. USING ID VIEWS FOR ACTIVE DIRECTORY USERS

313

b. Optionally, display the ID view information. For example, to display the details about the
example_for_host1 ID view:

[root@server ~]# ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
[...]
 Hosts the view applies to: host102.idm.example.com, host103.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that the ID view is not applied to somehost.idm.example.com, the
newly-added host in the baltimore host group.

c. Apply the ID view to the new host. For example, to apply the example_for_host1 ID view to
somehost.idm.example.com:

[root@server ~]# ipa idview-apply --host=somehost.idm.example.com
ID View Name: example_for_host1

Applied ID View "example_for_host1"

 hosts: somehost.idm.example.com

Number of hosts the ID View was applied to: 1

Verification steps

Display the ID view information again:

[root@server ~]# ipa idview-show example_for_host1 --all
 dn: cn=example_for_host1,cn=views,cn=accounts,dc=idm,dc=example,dc=com
 ID View Name: example_for_host1
[...]
 Hosts the view applies to: host102.idm.example.com, host103.idm.example.com,
somehost.idm.example.com
 objectclass: ipaIDView, top, nsContainer

The output shows that ID view is now applied to somehost.idm.example.com, the newly-added
host in the baltimore host group.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

314

CHAPTER 37. ADJUSTING ID RANGES MANUALLY
An IdM server generates unique user ID (UID) and group ID (GID) numbers. By creating and assigning
different ID ranges to replicas, it also ensures that they never generate the same ID numbers. By default,
this process is automatic. However, you can manually adjust the IdM ID range during the IdM server
installation, or manually define a replica’s DNA ID range.

37.1. ID RANGES

ID numbers are divided into ID ranges. Keeping separate numeric ranges for individual servers and
replicas eliminates the chance that an ID number issued for an entry is already used by another entry on
another server or replica.

Note that there are two distinct types of ID ranges:

The IdM ID range, which is assigned during the installation of the first server. This range cannot
be modified after it is created. However, you can create a new IdM ID range in addition to the
original one. For more information, see Automatic ID ranges assignment and Adding a new IdM
ID range.

The Distributed Numeric Assignment (DNA) ID ranges, which can be modified by the user.
These have to fit within an existing IdM ID range. For more information, see Assigning DNA ID
ranges manually.
Replicas can also have a next DNA ID range assigned. A replica uses its next range when it runs
out of IDs in its current range. Next ranges are not assigned automatically when a replica is
deleted and you must assign them manually .

The ranges are updated and shared between the server and replicas by the DNA plug-in, as part of the
back end 389 Directory Server instance for the domain.

The DNA range definition is set by two attributes:

The server’s next available number: the low end of the DNA range

The range size: the number of ID’s in the DNA range

The initial bottom range is set during the plug-in instance configuration. After that, the plug-in updates
the bottom value. Breaking the available numbers into ranges allows the servers to continually assign
numbers without overlapping with each other.

37.2. AUTOMATIC ID RANGES ASSIGNMENT

IdM ID ranges

By default, an IdM ID range is automatically assigned during the IdM server installation. The ipa-server-
install command randomly selects and assigns a range of 200,000 IDs from a total of 10,000 possible
ranges. Selecting a random range in this way significantly reduces the probability of conflicting IDs in
case you decide to merge two separate IdM domains in the future.

NOTE

CHAPTER 37. ADJUSTING ID RANGES MANUALLY

315

NOTE

This IdM ID range cannot be modified after it is created. You can only manually adjust the
Distributed Numeric Assignment (DNA) ID ranges, using the commands described in
Assigning DNA ID ranges manually . A DNA range matching the IdM ID range is
automatically created during installation.

DNA ID ranges

If you have a single IdM server installed, it controls the whole DNA ID range. When you install a new
replica and the replica requests its own DNA ID range, the initial ID range for the server splits and is
distributed between the server and replica: the replica receives half of the remaining DNA ID range that
is available on the initial server. The server and replica then use their respective portions of the original
ID range for new user or group entries. Also, if the replica is close to depleting its allocated ID range and
fewer than 100 IDs remain, the replica contacts the other available servers to request a new DNA ID
range.

IMPORTANT

When you install a replica, it does not immediately receive an ID range. A replica receives
an ID range the first time the DNA plug-in is used, for example when you first add a user.

If the initial server stops functioning before the replica requests a DNA ID range from it, the replica is
unable to contact the server to request the ID range. Attempting to add a new user on the replica then
fails. In such situations, you can find out what ID range is assigned to the disabled server , and assign an
ID range to the replica manually.

37.3. ASSIGNING THE IDM ID RANGE MANUALLY DURING SERVER
INSTALLATION

You can override the default behavior and set an IdM ID range manually instead of having it assigned
randomly.

IMPORTANT

Do not set ID ranges that include UID values of 1000 and lower; these values are reserved
for system use. Also, do not set an ID range that would include the 0 value; the SSSD
service does not handle the 0 ID value.

Procedure

You can define the IdM ID range manually during server installation by using the following two
options with ipa-server-install:

--idstart gives the starting value for UID and GID numbers.

--idmax gives the maximum UID and GID number; by default, the value is the --idstart
starting value plus 199,999.

Verification steps

To check if the ID range was assigned correctly, you can display the assigned IdM ID range by
using the ipa idrange-find command:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

316

ipa idrange-find

1 range matched

 Range name: IDM.EXAMPLE.COM_id_range
 First Posix ID of the range: 882200000
 Number of IDs in the range: 200000
 Range type: local domain range

Number of entries returned 1

37.4. ADDING A NEW IDM ID RANGE

In some cases, you may want to create a new IdM ID range in addition to the original one; for example,
when a replica has run out of IDs and the original IdM ID range is depleted.

IMPORTANT

Adding a new IdM ID range does not create new DNA ID ranges automatically. You must
assign new DNA ID ranges to replicas manually as needed. For more information about
how to do this, see assigning DNA ID ranges manually .

Procedure

1. To create a new IdM ID range, use the ipa idrange-add command. You must specify the new
range name, the first ID number of the range and the range size:

ipa idrange-add IDM.EXAMPLE.COM_new_range --base-id=1000000 --range-
size=200000
--
Added ID range "IDM.EXAMPLE.COM_new_range"
--
 Range name: IDM.EXAMPLE.COM_new_range
 First Posix ID of the range: 1000000
 Number of IDs in the range: 200000
 Range type: local domain range

2. Restart the Directory Server:

systemctl restart dirsrv@IDM.EXAMPLE.COM.service

This ensures that when you create users with UIDs from the new range, they have security
identifiers (SIDs) assigned.

3. Optional: Update the ID range immediately:

a. Clear the System Security Services Daemon (SSSD) cache:

sss_cache -E

b. Restart the SSSD daemon:

CHAPTER 37. ADJUSTING ID RANGES MANUALLY

317

systemctl restart sssd

NOTE

If you do not clear the SSSD cache and restart the service, SSSD only detects the
new ID range when it updates the domain list and other configuration data stored
on the IdM server.

Verification steps

You can check if the new range is set correctly by using the ipa idrange-find command:

ipa idrange-find

2 ranges matched

 Range name: IDM.EXAMPLE.COM_id_range
 First Posix ID of the range: 882200000
 Number of IDs in the range: 200000
 Range type: local domain range

 Range name: IDM.EXAMPLE.COM_new_range
 First Posix ID of the range: 1000000
 Number of IDs in the range: 200000
 Range type: local domain range

Number of entries returned 2

37.5. THE ROLE OF SECURITY AND RELATIVE IDENTIFIERS IN IDM ID
RANGES

An Identity Management (IdM) ID range is defined by several parameters:

The range name

The first POSIX ID of the range

The range size: the number of IDs in the range

The first relative identifier (RID) of the corresponding RID range

The first RID of the secondary RID range

You can view these values by using the ipa idrange-show command:

$ ipa idrange-show IDM.EXAMPLE.COM_id_range
 Range name: IDM.EXAMPLE.COM_id_range
 First Posix ID of the range: 196600000
 Number of IDs in the range: 200000
 First RID of the corresponding RID range: 1000
 First RID of the secondary RID range: 1000000
 Range type: local domain range

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

318

Security identifiers

The data from the ID ranges of the local domain are used by the IdM server internally to assign unique
security identifiers (SIDs) to IdM users and groups. The SIDs are stored in the user and group objects.
A user’s SID consists of the following:

The domain SID

The user’s relative identifier (RID), which is a four-digit 32-bit value appended to the domain
SID

For example, if the domain SID is S-1-5-21-123-456-789 and the RID of a user from this domain is 1008,
then the user has the SID of S-1-5-21-123-456-789-1008.

Relative identifiers

The RID itself is computed in the following way:

Subtract the first POSIX ID of the range from the user’s POSIX UID, and add the first RID of the
corresponding RID range to the result. For example, if the UID of idmuser is 196600008, the first POSIX
ID is 196600000, and the first RID is 1000, then idmuser's RID is 1008.

NOTE

The algorithm computing the user’s RID checks if a given POSIX ID falls into the ID range
allocated before it computes a corresponding RID. For example, if the first ID is
196600000 and the range size is 200000, then the POSIX ID of 1600000 is outside of
the ID range and the algorithm does not compute a RID for it.

Secondary relative identifiers

In IdM, a POSIX UID can be identical to a POSIX GID. This means that if idmuser already exists with the
UID of 196600008, you can still create a new idmgroup group with the GID of 196600008.

However, a SID can define only one object, a user or a group. The SID of S-1-5-21-123-456-789-1008
that has already been created for idmuser cannot be shared with idmgroup. An alternative SID must be
generated for idmgroup.

IdM uses a secondary relative identifier, or secondary RID, to avoid conflicting SIDs. This secondary
RID consists of the following:

The secondary RID base

A range size; by default identical with the base range size

In the example above, the secondary RID base is set to 1000000. To compute the RID for the newly
created idmgroup: subtract the first POSIX ID of the range from the user’s POSIX UID, and add the first
RID of the secondary RID range to the result. idmgroup is therefore assigned the RID of 1000008.
Consequently, the SID of idmgroup is S-1-5-21-123-456-789-1000008.

IdM uses the secondary RID to compute a SID only if a user or a group object was previously created
with a manually set POSIX ID. Otherwise, automatic assignment prevents assigning the same ID twice.

Additional resources

Using Ansible to add a new local IdM ID range

CHAPTER 37. ADJUSTING ID RANGES MANUALLY

319

37.6. USING ANSIBLE TO ADD A NEW LOCAL IDM ID RANGE

In some cases, you may want to create a new Identity Management (IdM) ID range in addition to the
original one; for example, when a replica has run out of IDs and the original IdM ID range is depleted. The
following example describes how to create a new IdM ID range by using an Ansible playbook.

NOTE

Adding a new IdM ID range does not create new DNA ID ranges automatically. You need
to assign new DNA ID ranges manually as needed. For more information about how to do
this, see Assigning DNA ID ranges manually .

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create the idrange-present.yml playbook with the following content:

- name: Playbook to manage idrange
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure local idrange is present
 ipaidrange:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: new_id_range
 base_id: 12000000
 range_size: 200000
 rid_base: 1000000
 secondary_rid_base: 200000000

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

320

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory idrange-
present.yml

5. SSH to ipaserver and restart the Directory Server:

systemctl restart dirsrv@IDM.EXAMPLE.COM.service

This ensures that when you create users with UIDs from the new range, they have security
identifiers (SIDs) assigned.

6. Optional: Update the ID range immediately:

a. On ipaserver, clear the System Security Services Daemon (SSSD) cache:

sss_cache -E

b. On ipaserver, restart the SSSD daemon:

systemctl restart sssd

NOTE

If you do not clear the SSSD cache and restart the service, SSSD only detects the
new ID range when it updates the domain list and other configuration data stored
on the IdM server.

Verification steps

You can check if the new range is set correctly by using the ipa idrange-find command:

ipa idrange-find

2 ranges matched

 Range name: IDM.EXAMPLE.COM_id_range
 First Posix ID of the range: 882200000
 Number of IDs in the range: 200000
 Range type: local domain range

 Range name: IDM.EXAMPLE.COM_new_id_range
 First Posix ID of the range: 12000000
 Number of IDs in the range: 200000
 Range type: local domain range

Number of entries returned 2

Additional resources

CHAPTER 37. ADJUSTING ID RANGES MANUALLY

321

The role of security and relative identifiers in IdM ID ranges

37.7. REMOVING AN ID RANGE AFTER REMOVING A TRUST TO AD

If you have removed a trust between your IdM and Active Directory (AD) environments, you might want
to remove the ID range associated with it.

WARNING

IDs allocated to ID ranges associated with trusted domains might still be used for
ownership of files and directories on systems enrolled into IdM.

If you remove the ID range that corresponds to an AD trust that you have removed,
you will not be able to resolve the ownership of any files and directories owned by
AD users.

Prerequisites

You have removed a trust to an AD environment.

Procedure

1. Display all the ID ranges that are currently in use:

[root@server ~]# ipa idrange-find

2. Identify the name of the ID range associated with the trust you have removed. The first part of
the name of the ID range is the name of the trust, for example AD.EXAMPLE.COM_id_range.

3. Remove the range:

[root@server ~]# ipa idrange-del AD.EXAMPLE.COM_id_range

4. Restart the SSSD service to remove references to the ID range you have removed.

[root@server ~]# systemctl restart sssd

Additional resources

See Removing the trust using the command line .

See Removing the trust using the IdM Web UI .

37.8. DISPLAYING CURRENTLY ASSIGNED DNA ID RANGES

You can display both the currently active Distributed Numeric Assignment (DNA) ID range on a server,
as well as its next DNA range if it has one assigned.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

322

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management#proc_removing-the-trust-using-the-command-line_installing-trust-between-idm-and-ad
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management#removing-the-trust-using-the-idm-web-ui_installing-trust-between-idm-and-ad

Procedure

To display which DNA ID ranges are configured for the servers in the topology, use the following
commands:

ipa-replica-manage dnarange-show displays the current DNA ID range that is set on all
servers or, if you specify a server, only on the specified server, for example:

ipa-replica-manage dnarange-show
serverA.example.com: 1001-1500
serverB.example.com: 1501-2000
serverC.example.com: No range set

ipa-replica-manage dnarange-show serverA.example.com
serverA.example.com: 1001-1500

ipa-replica-manage dnanextrange-show displays the next DNA ID range currently set on
all servers or, if you specify a server, only on the specified server, for example:

ipa-replica-manage dnanextrange-show
serverA.example.com: 2001-2500
serverB.example.com: No on-deck range set
serverC.example.com: No on-deck range set

ipa-replica-manage dnanextrange-show serverA.example.com
serverA.example.com: 2001-2500

37.9. MANUAL ID RANGE ASSIGNMENT

In certain situations, it is necessary to manually assign a Distributed Numeric Assignment (DNA) ID
range, for example when:

A replica has run out of IDs and the IdM ID range is depleted
A replica has exhausted the DNA ID range that was assigned to it, and requesting additional IDs
failed because no more free IDs are available in the IdM range.

To solve this situation, extend the DNA ID range assigned to the replica. You can do this in two
ways:

Shorten the DNA ID range assigned to a different replica, then assign the newly available
values to the depleted replica.

Create a new IdM ID range, then set a new DNA ID range for the replica within this created
IdM range.
For information about how to create a new IdM ID range, see Adding a new IdM ID range .

A replica stopped functioning
A replica’s DNA ID range is not automatically retrieved when the replica stops functioning and
must be deleted, which means the DNA ID range previously assigned to the replica becomes
unavailable. You want to recover the DNA ID range and make it available for other replicas.

To do this, find out what the ID range values are , before manually assigning that range to a
different server. Also, to avoid duplicate UIDs or GIDs, make sure that no ID value from the
recovered range was previously assigned to a user or group; you can do this by examining the
UIDs and GIDs of existing users and groups.

CHAPTER 37. ADJUSTING ID RANGES MANUALLY

323

You can manually assign a DNA ID range to a replica using the commands in Assigning DNA ID ranges
manually.

NOTE

If you assign a new DNA ID range, the UIDs of the already existing entries on the server or
replica stay the same. This does not pose a problem because even if you change the
current DNA ID range, IdM keeps a record of what ranges were assigned in the past.

37.10. ASSIGNING DNA ID RANGES MANUALLY

In some cases, you may need to manually assign Distributed Numeric Assignment (DNA) ID ranges to
existing replicas, for example to reassign a DNA ID range assigned to a non-functioning replica. For
more information, see Manual ID range assignment .

When adjusting a DNA ID range manually, make sure that the newly adjusted range is included in the IdM
ID range; you can check this using the ipa idrange-find command. Otherwise, the command fails.

IMPORTANT

Be careful not to create overlapping ID ranges. If any of the ID ranges you assign to
servers or replicas overlap, it could result in two different servers assigning the same ID
value to different entries.

Prerequisites

Optional. If you are recovering a DNA ID range from a non-functioning replica, first find the ID
range using the commands described in Displaying currently assigned DNA ID ranges .

Procedure

To define the current DNA ID range for a specified server, use ipa-replica-manage dnarange-
set:

ipa-replica-manage dnarange-set serverA.example.com 1250-1499

To define the next DNA ID range for a specified server, use ipa-replica-manage
dnanextrange-set:

ipa-replica-manage dnanextrange-set serverB.example.com 1500-5000

Verification steps

You can check that the new DNA ranges are set correctly by using the commands described in
Displaying the currently assigned DNA ID ranges .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

324

CHAPTER 38. MANAGING SUBID RANGES MANUALLY
In a containerized environment, sometimes an IdM user needs to assign subID ranges manually. The
following instructions help you to manage the subID ranges.

38.1. GENERATING SUBID RANGES USING IDM CLI

As an Identity Management (IdM) administrator, you can generate a subID range and assign it to IdM
users.

Prerequisites

The IdM users exist.

You have obtained an IdM admin ticket-granting ticket (TGT). See Using kinit to log in to IdM
manually for more details.

You have root access to the IdM host where you are executing the procedure.

Procedure

1. Check for existing subID ranges:

ipa subid-find

2. In case a subID range does not exist, select one of the following options:

Generate and assign a subID range to an IdM user:

ipa subid-generate --owner=idmuser

Added subordinate id "359dfcef-6b76-4911-bd37-bb5b66b8c418"

 Unique ID: 359dfcef-6b76-4911-bd37-bb5b66b8c418
 Description: auto-assigned subid
 Owner: idmuser
 SubUID range start: 2147483648
 SubUID range size: 65536
 SubGID range start: 2147483648
 SubGID range size: 65536

Generate and assign subID ranges to all IdM users:

/usr/libexec/ipa/ipa-subids --all-users

Found 2 user(s) without subordinate ids
 Processing user 'user4' (1/2)
 Processing user 'user5' (2/2)
Updated 2 user(s)
The ipa-subids command was successful

3. [Optional] Assign subID ranges to new IdM users by default:

ipa config-mod --user-default-subid=True

CHAPTER 38. MANAGING SUBID RANGES MANUALLY

325

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Verification

1. Verify that the user has a subID range assigned:

ipa subid-find --owner=idmuser

1 subordinate id matched

 Unique ID: 359dfcef-6b76-4911-bd37-bb5b66b8c418
 Owner: idmuser
 SubUID range start: 2147483648
 SubUID range size: 65536
 SubGID range start: 2147483648
 SubGID range size: 65536

Number of entries returned 1

38.2. GENERATING SUBID RANGES USING IDM WEBUI INTERFACE

You can generate a subID range and assign it to a user in the IdM WebUI interface.

Prerequisites

An IdM user exists.

Valid Kerberos ticket is obtained. See Logging in to IdM in the Web UI: Using a Kerberos ticket
for more details.

root privileges.

Procedure

1. In the IdM WebUI interface expand the Subordinate IDs tab and choose Subordinate IDs
option.

2. When the Subordinate IDs interface appears, click the Add button in the upper-right corner of
the interface. The window “Add subid” appears.

3. In the window “Add subid” choose an owner, which is the user you want to assign a subID range.

4. Click the Add button.

Verification

1. Check the table under the Subordinate IDs tab. A new record should appear and the owner is
the user to which you assign the subID range.

38.3. MANAGING EXISTING SUBID RANGES USING IDM CLI

You can search for subID ranges and display information about particular one if needed. Assuming, the
username jsmith exists on an ipa server.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

326

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-in-the-web-ui-using-a-kerberos-ticket_configuring-and-managing-idm

Prerequisites

An IdM user exists.

Procedure

1. To display the details about subID range when you know a unique ID hash, enter the following
command:

ipa subid-show 359dfcef-6b76-4911-bd37-bb5b66b8c418

 Unique ID: 359dfcef-6b76-4911-bd37-bb5b66b8c418
 Owner: jsmith
 SubUID range start: 2147483648
 SubUID range size: 65536
 SubGID range start: 2147483648
 SubGID range size: 65536

2. To find the details for the subID range when you have a subID from that range, you can use the
following command:

ipa subid-match --subuid=2147483648

1 subordinate id matched

 Unique ID: 359dfcef-6b76-4911-bd37-bb5b66b8c418
 Owner: uid=jsmith
 SubUID range start: 2147483648
 SubUID range size: 65536
 SubGID range start: 2147483648
 SubGID range size: 65536

Number of entries returned 1

38.4. LISTING SUBID RANGES USING THE GETSUBID COMMAND

To list the subID ranges, for example, for the user1 in IdM environment, follow the instruction below.

Prerequisites

The user1 exists in IdM.

The shadow-utils-subid package is installed.

Procedure

1. Include subid: sss record into /etc/nsswitch.conf file.
Note that you can provide only one value for the subid field. Setting the subid field to the sss
value tells the utils to use the subID ranges from the IdM settings. The file value or no value sets
the utils to use the subID ranges from the /etc/subuid and /etc/subgid files.

2. List the subID range for a user:

CHAPTER 38. MANAGING SUBID RANGES MANUALLY

327

getsubids user1
0: user1 2147483648 65536

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

328

CHAPTER 39. USING ANSIBLE TO MANAGE THE
REPLICATION TOPOLOGY IN IDM

You can maintain multiple Identity Management (IdM) servers and let them replicate each other for
redundancy purposes to mitigate or prevent server loss. For example, if one server fails, the other
servers keep providing services to the domain. You can also recover the lost server by creating a new
replica based on one of the remaining servers.

Data stored on an IdM server is replicated based on replication agreements: when two servers have a
replication agreement configured, they share their data. The data that is replicated is stored in the
topology suffixes. When two replicas have a replication agreement between their suffixes, the suffixes
form a topology segment.

This chapter describes how to use Red Hat Ansible Engine to manage IdM replication agreements,
topology segments, and topology suffixes. The chapter contains the following sections:

Using Ansible to ensure a replication agreement exists in IdM

Using Ansible to ensure replication agreements exist between multiple IdM replicas

Using Ansible to check if a replication agreement exists between two replicas

Using Ansible to verify that a topology suffix exists in IdM

Using Ansible to re-initialize an IdM replica

Using Ansible to ensure a replication agreement is absent in IdM

39.1. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT
EXISTS IN IDM

Data stored on an Identity Management (IdM) server is replicated based on replication agreements:
when two servers have a replication agreement configured, they share their data. Replication
agreements are always bilateral: the data is replicated from the first replica to the other one as well as
from the other replica to the first one.

Follow this procedure to use an Ansible playbook to ensure that a replication agreement of the domain
type exists between server.idm.example.com and replica.idm.example.com.

Prerequisites

Ensure that you understand the recommendations for designing your IdM topology listed in
Guidelines for connecting IdM replicas in a topology .

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

CHAPTER 39. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

329

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#guidelines-for-connecting-idm-replicas-in-a-topology_planning-the-replica-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the add-topologysegment.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/add-topologysegment.yml
add-topologysegment-copy.yml

3. Open the add-topologysegment-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipatopologysegment task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the suffix variable to either domain or ca, depending on what type of segment you
want to add.

Set the left variable to the name of the IdM server that you want to be the left node of the
replication agreement.

Set the right variable to the name of the IdM server that you want to be the right node of
the replication agreement.

Ensure that the state variable is set to present.

This is the modified Ansible playbook file for the current example:

- name: Playbook to handle topologysegment
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
- name: Add topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: domain
 left: server.idm.example.com
 right: replica.idm.example.com
 state: present

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

330

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-
topologysegment-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

39.2. USING ANSIBLE TO ENSURE REPLICATION AGREEMENTS EXIST
BETWEEN MULTIPLE IDM REPLICAS

Data stored on an Identity Management (IdM) server is replicated based on replication agreements:
when two servers have a replication agreement configured, they share their data. Replication
agreements are always bilateral: the data is replicated from the first replica to the other one as well as
from the other replica to the first one.

Follow this procedure to ensure replication agreements exist between multiple pairs of replicas in IdM.

Prerequisites

Ensure that you understand the recommendations for designing your IdM topology listed in
Connecting the replicas in a topology .

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the add-topologysegments.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/add-topologysegments.yml
add-topologysegments-copy.yml

CHAPTER 39. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

331

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#guidelines-for-connecting-idm-replicas-in-a-topology_planning-the-replica-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Open the add-topologysegments-copy.yml file for editing.

4. Adapt the file by setting the following variables in the vars section:

Set the ipaadmin_password variable to the password of the IdM admin.

For every topology segment, add a line in the ipatopology_segments section and set the
following variables:

Set the suffix variable to either domain or ca, depending on what type of segment you
want to add.

Set the left variable to the name of the IdM server that you want to be the left node of
the replication agreement.

Set the right variable to the name of the IdM server that you want to be the right node
of the replication agreement.

5. In the tasks section of the add-topologysegments-copy.yml file, ensure that the state
variable is set to present.
This is the modified Ansible playbook file for the current example:

- name: Add topology segments
 hosts: ipaserver
 gather_facts: false

 vars:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ipatopology_segments:
 - {suffix: domain, left: replica1.idm.example.com , right: replica2.idm.example.com }
 - {suffix: domain, left: replica2.idm.example.com , right: replica3.idm.example.com }
 - {suffix: domain, left: replica3.idm.example.com , right: replica4.idm.example.com }
 - {suffix: domain+ca, left: replica4.idm.example.com , right: replica1.idm.example.com }

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Add topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: "{{ item.suffix }}"
 name: "{{ item.name | default(omit) }}"
 left: "{{ item.left }}"
 right: "{{ item.right }}"
 state: present
 #state: absent
 #state: checked
 #state: reinitialized
 loop: "{{ ipatopology_segments | default([]) }}"

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

332

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-
topologysegments-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

39.3. USING ANSIBLE TO CHECK IF A REPLICATION AGREEMENT
EXISTS BETWEEN TWO REPLICAS

Data stored on an Identity Management (IdM) server is replicated based on replication agreements:
when two servers have a replication agreement configured, they share their data. Replication
agreements are always bilateral: the data is replicated from the first replica to the other one as well as
from the other replica to the first one.

Follow this procedure to verify that replication agreements exist between multiple pairs of replicas in
IdM.

Prerequisites

Ensure that you understand the recommendations for designing your Identity Management
(IdM) topology listed in Connecting the replicas in a topology .

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the check-topologysegments.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

CHAPTER 39. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

333

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#guidelines-for-connecting-idm-replicas-in-a-topology_planning-the-replica-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/check-topologysegments.yml
check-topologysegments-copy.yml

3. Open the check-topologysegments-copy.yml file for editing.

4. Adapt the file by setting the following variables in the vars section:

Set the ipaadmin_password variable to the password of the IdM admin.

For every topology segment, add a line in the ipatopology_segments section and set the
following variables:

Set the suffix variable to either domain or ca, depending on the type of segment you
are adding.

Set the left variable to the name of the IdM server that you want to be the left node of
the replication agreement.

Set the right variable to the name of the IdM server that you want to be the right node
of the replication agreement.

5. In the tasks section of the check-topologysegments-copy.yml file, ensure that the state
variable is set to present.
This is the modified Ansible playbook file for the current example:

- name: Add topology segments
 hosts: ipaserver
 gather_facts: false

 vars:
 ipaadmin_password: "{{ ipaadmin_password }}"
 ipatopology_segments:
 - {suffix: domain, left: replica1.idm.example.com, right: replica2.idm.example.com }
 - {suffix: domain, left: replica2.idm.example.com , right: replica3.idm.example.com }
 - {suffix: domain, left: replica3.idm.example.com , right: replica4.idm.example.com }
 - {suffix: domain+ca, left: replica4.idm.example.com , right:
replica1.idm.example.com }

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Check topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: "{{ item.suffix }}"
 name: "{{ item.name | default(omit) }}"
 left: "{{ item.left }}"
 right: "{{ item.right }}"
 state: checked
 loop: "{{ ipatopology_segments | default([]) }}"

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

334

$ ansible-playbook --vault-password-file=password_file -v -i inventory check-
topologysegments-copy.yml

Additional resources

For more information about the concept of topology agreements, suffixes, and segments, see
Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

39.4. USING ANSIBLE TO VERIFY THAT A TOPOLOGY SUFFIX EXISTS
IN IDM

In the context of replication agreements in Identity Management (IdM), topology suffixes store the data
that is replicated. IdM supports two types of topology suffixes: domain and ca. Each suffix represents a
separate back end, a separate replication topology. When a replication agreement is configured, it joins
two topology suffixes of the same type on two different servers.

The domain suffix contains all domain-related data, such as users, groups, and policies. The ca suffix
contains data for the Certificate System component. It is only present on servers with a certificate
authority (CA) installed.

Follow this procedure to use an Ansible playbook to ensure that a topology suffix exists in IdM. The
example describes how to ensure that the domain suffix exists in IdM.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the verify-topologysuffix.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

CHAPTER 39. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

335

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/ verify-topologysuffix.yml
verify-topologysuffix-copy.yml

3. Open the verify-topologysuffix-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipatopologysuffix section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the suffix variable to domain. If you are verifying the presence of the ca suffix, set the
variable to ca.

Ensure that the state variable is set to verified. No other option is possible.

This is the modified Ansible playbook file for the current example:

- name: Playbook to handle topologysuffix
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Verify topology suffix
 ipatopologysuffix:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: domain
 state: verified

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory verify-
topologysuffix-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

39.5. USING ANSIBLE TO REINITIALIZE AN IDM REPLICA

If a replica has been offline for a long period of time or its database has been corrupted, you can
reinitialize it. reinitialization refreshes the replica with an updated set of data. reinitialization can, for
example, be used if an authoritative restore from backup is required.

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

336

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology

NOTE

In contrast to replication updates, during which replicas only send changed entries to
each other, reinitialization refreshes the whole database.

The local host on which you run the command is the reinitialized replica. To specify the replica from
which the data is obtained, use the direction option.

Follow this procedure to use an Ansible playbook to reinitialize the domain data on
replica.idm.example.com from server.idm.example.com.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the reinitialize-topologysegment.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/reinitialize-
topologysegment.yml reinitialize-topologysegment-copy.yml

3. Open the reinitialize-topologysegment-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipatopologysegment section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the suffix variable to domain. If you are reinitializing the ca data, set the variable to ca.

Set the left variable to the left node of the replication agreement.

Set the right variable to the right node of the replication agreement.

Set the direction variable to the direction of the reinitializing data. The left-to-right
direction means that data flows from the left node to the right node.

CHAPTER 39. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

337

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Ensure that the state variable is set to reinitialized.
This is the modified Ansible playbook file for the current example:

- name: Playbook to handle topologysegment
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Reinitialize topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: domain
 left: server.idm.example.com
 right: replica.idm.example.com
 direction: left-to-right
 state: reinitialized

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory reinitialize-
topologysegment-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

39.6. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT IS
ABSENT IN IDM

Data stored on an Identity Management (IdM) server is replicated based on replication agreements:
when two servers have a replication agreement configured, they share their data. Replication
agreements are always bilateral: the data is replicated from the first replica to the other one as well as
from the other replica to the first one.

Follow this procedure to ensure a replication agreement between two replicas does not exist in IdM. The
example describes how to ensure a replication agreement of the domain type does not exist between
the replica01.idm.example.com and replica02.idm.example.com IdM servers.

Prerequisites

Ensure that you understand the recommendations for designing your IdM topology listed in
Connecting the replicas in a topology

You know the IdM admin password.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

338

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#guidelines-for-connecting-idm-replicas-in-a-topology_planning-the-replica-topology

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the delete-topologysegment.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/topology/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/topology/delete-topologysegment.yml
delete-topologysegment-copy.yml

3. Open the delete-topologysegment-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipatopologysegment task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the suffix variable to domain. Alternatively, if you are ensuring that the ca data are not
replicated between the left and right nodes, set the variable to ca.

Set the left variable to the name of the IdM server that is the left node of the replication
agreement.

Set the right variable to the name of the IdM server that is the right node of the replication
agreement.

Ensure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: Playbook to handle topologysegment
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
- name: Delete topology segment
 ipatopologysegment:
 ipaadmin_password: "{{ ipaadmin_password }}"
 suffix: domain

CHAPTER 39. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM

339

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 left: replica01.idm.example.com
 right: replica02.idm.example.com:
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory delete-
topologysegment-copy.yml

Additional resources

See Explaining Replication Agreements, Topology Suffixes, and Topology Segments .

See the README-topology.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/topology
directory.

39.7. ADDITIONAL RESOURCES

See Planning the replica topology.

See Installing an IdM replica .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

340

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_managing-replication-topology_installing-identity-management#assembly_explaining-replication-agreements-topology-suffixes-and-topology-segments_assembly_managing-replication-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/planning_identity_management/index#planning-the-replica-topology_planning-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-replica_installing-identity-management

CHAPTER 40. CONFIGURING IDM FOR EXTERNAL
PROVISIONING OF USERS

As a system administrator, you can configure Identity Management (IdM) to support the provisioning of
users by an external solution for managing identities.

Rather than use the ipa utility, the administrator of the external provisioning system can access the IdM
LDAP using the ldapmodify utility. The administrator can add individual stage users from the CLI using
ldapmodify or using an LDIF file .

The assumption is that you, as an IdM administrator, fully trust your external provisioning system to only
add validated users. However, at the same time you do not want to assign the administrators of the
external provisioning system the IdM role of User Administrator to enable them to add new active
users directly.

You can configure a script to automatically move the staged users created by the external provisioning
system to active users automatically.

This chapter contains these sections:

1. Preparing Identity Management (IdM) to use an external provisioning system to add stage users
to IdM.

2. Creating a script to move the users added by the external provisioning system from stage to
active users.

3. Using an external provisioning system to add an IdM stage user. You can do that in two ways:

Add an IdM stage user using an LDIF file

Add an IdM stage user directly from the CLI using ldapmodify

40.1. PREPARING IDM ACCOUNTS FOR AUTOMATIC ACTIVATION OF
STAGE USER ACCOUNTS

This procedure shows how to configure two IdM user accounts to be used by an external provisioning
system. By adding the accounts to a group with an appropriate password policy, you enable the external
provisioning system to manage user provisioning in IdM. In the following, the user account to be used by
the external system to add stage users is named provisionator. The user account to be used to
automatically activate the stage users is named activator.

Prerequisites

The host on which you perform the procedure is enrolled into IdM.

Procedure

1. Log in as IdM administrator:

$ kinit admin

2. Create a user named provisionator with the privileges to add stage users.

a. Add the provisionator user account:

CHAPTER 40. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS

341

$ ipa user-add provisionator --first=provisioning --last=account --password

a. Grant the provisionator user the required privileges.

i. Create a custom role, System Provisioning, to manage adding stage users:

$ ipa role-add --desc "Responsible for provisioning stage users" "System
Provisioning"

ii. Add the Stage User Provisioning privilege to the role. This privilege provides the
ability to add stage users:

$ ipa role-add-privilege "System Provisioning" --privileges="Stage User Provisioning"

iii. Add the provisionator user to the role:

$ ipa role-add-member --users=provisionator "System Provisioning"

iv. Verify that the provisionator exists in IdM:

$ ipa user-find provisionator --all --raw

1 user matched

 dn: uid=provisionator,cn=users,cn=accounts,dc=idm,dc=example,dc=com
 uid: provisionator
 [...]

3. Create a user, activator, with the privileges to manage user accounts.

a. Add the activator user account:

$ ipa user-add activator --first=activation --last=account --password

b. Grant the activator user the required privileges by adding the user to the default User
Administrator role:

$ ipa role-add-member --users=activator "User Administrator"

4. Create a user group for application accounts:

$ ipa group-add application-accounts

5. Update the password policy for the group. The following policy prevents password expiration
and lockout for the account but compensates the potential risks by requiring complex
passwords:

$ ipa pwpolicy-add application-accounts --maxlife=10000 --minlife=0 --history=0 --
minclasses=4 --minlength=8 --priority=1 --maxfail=0 --failinterval=1 --lockouttime=0

6. (Optional) Verify that the password policy exists in IdM:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

342

$ ipa pwpolicy-show application-accounts
 Group: application-accounts
 Max lifetime (days): 10000
 Min lifetime (hours): 0
 History size: 0
[...]

7. Add the provisioning and activation accounts to the group for application accounts:

$ ipa group-add-member application-accounts --users={provisionator,activator}

8. Change the passwords for the user accounts:

$ kpasswd provisionator
$ kpasswd activator

Changing the passwords is necessary because new IdM users passwords expire immediately.

Additional resources:

See Managing user accounts using the command line .

See Delegating Permissions over Users .

See Defining IdM Password Policies .

40.2. CONFIGURING AUTOMATIC ACTIVATION OF IDM STAGE USER
ACCOUNTS

This procedure shows how to create a script for activating stage users. The system runs the script
automatically at specified time intervals. This ensures that new user accounts are automatically
activated and available for use shortly after they are created.

IMPORTANT

The procedure assumes that the owner of the external provisioning system has already
validated the users and that they do not require additional validation on the IdM side
before the script adds them to IdM.

It is sufficient to enable the activation process on only one of your IdM servers.

Prerequisites

The provisionator and activator accounts exist in IdM. For details, see Preparing IdM accounts
for automatic activation of stage user accounts.

You have root privileges on the IdM server on which you are running the procedure.

You are logged in as IdM administrator.

You trust your external provisioning system.

Procedure

CHAPTER 40. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS

343

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-accounts-using-the-command-line_managing-users-groups-hosts
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/delegating-users
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/defining-idm-password-policies_configuring-and-managing-idm

1. Generate a keytab file for the activation account:

ipa-getkeytab -s server.idm.example.com -p "activator" -k /etc/krb5.ipa-activation.keytab

If you want to enable the activation process on more than one IdM server, generate the keytab
file on one server only. Then copy the keytab file to the other servers.

2. Create a script, /usr/local/sbin/ipa-activate-all, with the following contents to activate all users:

#!/bin/bash

kinit -k -i activator

ipa stageuser-find --all --raw | grep " uid:" | cut -d ":" -f 2 | while read uid; do ipa stageuser-
activate ${uid}; done

3. Edit the permissions and ownership of the ipa-activate-all script to make it executable:

chmod 755 /usr/local/sbin/ipa-activate-all
chown root:root /usr/local/sbin/ipa-activate-all

4. Create a systemd unit file, /etc/systemd/system/ipa-activate-all.service, with the following
contents:

[Unit]
Description=Scan IdM every minute for any stage users that must be activated

[Service]
Environment=KRB5_CLIENT_KTNAME=/etc/krb5.ipa-activation.keytab
Environment=KRB5CCNAME=FILE:/tmp/krb5cc_ipa-activate-all
ExecStart=/usr/local/sbin/ipa-activate-all

5. Create a systemd timer, /etc/systemd/system/ipa-activate-all.timer, with the following
contents:

[Unit]
Description=Scan IdM every minute for any stage users that must be activated

[Timer]
OnBootSec=15min
OnUnitActiveSec=1min

[Install]
WantedBy=multi-user.target

6. Reload the new configuration:

systemctl daemon-reload

7. Enable ipa-activate-all.timer:

systemctl enable ipa-activate-all.timer

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

344

8. Start ipa-activate-all.timer:

systemctl start ipa-activate-all.timer

9. (Optional) Verify that the ipa-activate-all.timer daemon is running:

systemctl status ipa-activate-all.timer
● ipa-activate-all.timer - Scan IdM every minute for any stage users that must be activated
 Loaded: loaded (/etc/systemd/system/ipa-activate-all.timer; enabled; vendor preset:
disabled)
 Active: active (waiting) since Wed 2020-06-10 16:34:55 CEST; 15s ago
 Trigger: Wed 2020-06-10 16:35:55 CEST; 44s left

Jun 10 16:34:55 server.idm.example.com systemd[1]: Started Scan IdM every minute for any
stage users that must be activated.

40.3. ADDING AN IDM STAGE USER DEFINED IN AN LDIF FILE

Follow this procedure to access IdM LDAP and use an LDIF file to add stage users. While the example
below shows adding one single user, multiple users can be added in one file in bulk mode.

Prerequisites

IdM administrator has created the provisionator account and a password for it. For details, see
Preparing IdM accounts for automatic activation of stage user accounts .

You as the external administrator know the password of the provisionator account.

You can SSH to the IdM server from your LDAP server.

You are able to supply the minimal set of attributes that an IdM stage user must have to allow
the correct processing of the user life cycle, namely:

The distinguished name (dn)

The common name (cn)

The last name (sn)

The uid

Procedure

1. On the external server, create an LDIF file that contains information about the new user:

dn: uid=stageidmuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com
changetype: add
objectClass: top
objectClass: inetorgperson
uid: stageidmuser
sn: surname
givenName: first_name
cn: full_name

CHAPTER 40. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS

345

2. Transfer the LDIF file from the external server to the IdM server:

$ scp add-stageidmuser.ldif provisionator@server.idm.example.com:/provisionator/
Password:
add-stageidmuser.ldif 100% 364
217.6KB/s 00:00

3. Use the SSH protocol to connect to the IdM server as provisionator:

$ ssh provisionator@server.idm.example.com
Password:
[provisionator@server ~]$

4. On the IdM server, obtain the Kerberos ticket-granting ticket (TGT) for the provisionator
account:

[provisionator@server ~]$ kinit provisionator

5. Enter the ldapadd command with the -f option and the name of the LDIF file. Specify the name
of the IdM server and the port number:

~]$ ldapadd -h server.idm.example.com -p 389 -f add-stageidmuser.ldif
SASL/GSSAPI authentication started
SASL username: provisionator@IDM.EXAMPLE.COM
SASL SSF: 256
SASL data security layer installed.
adding the entry "uid=stageidmuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com"

40.4. ADDING AN IDM STAGE USER DIRECTLY FROM THE CLI USING
LDAPMODIFY

Follow this procedure to access access Identity Management (IdM) LDAP and use the ldapmodify
utility to add a stage user.

Prerequisites

The IdM administrator has created the provisionator account and a password for it. For details,
see Preparing IdM accounts for automatic activation of stage user accounts .

You as the external administrator know the password of the provisionator account.

You can SSH to the IdM server from your LDAP server.

You are able to supply the minimal set of attributes that an IdM stage user must have to allow
the correct processing of the user life cycle, namely:

The distinguished name (dn)

The common name (cn)

The last name (sn)

The uid

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

346

Procedure

1. Use the SSH protocol to connect to the IdM server using your IdM identity and credentials:

$ ssh provisionator@server.idm.example.com
Password:
[provisionator@server ~]$

2. Obtain the TGT of the provisionator account, an IdM user with a role to add new stage users:

$ kinit provisionator

3. Enter the ldapmodify command and specify Generic Security Services API (GSSAPI) as the
Simple Authentication and Security Layer (SASL) mechanism to use for authentication. Specify
the name of the IdM server and the port:

ldapmodify -h server.idm.example.com -p 389 -Y GSSAPI
SASL/GSSAPI authentication started
SASL username: provisionator@IDM.EXAMPLE.COM
SASL SSF: 56
SASL data security layer installed.

4. Enter the dn of the user you are adding:

dn: uid=stageuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com

5. Enter add as the type of change you are performing:

changetype: add

6. Specify the LDAP object class categories required to allow the correct processing of the user
life cycle:

objectClass: top
objectClass: inetorgperson

You can specify additional object classes.

7. Enter the uid of the user:

uid: stageuser

8. Enter the cn of the user:

cn: Babs Jensen

9. Enter the last name of the user:

sn: Jensen

10. Press Enter again to confirm that this is the end of the entry:

CHAPTER 40. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS

347

[Enter]

adding new entry "uid=stageuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com"

11. Exit the connection using Ctrl + C.

Verification steps

Verify the contents of the stage entry to make sure your provisioning system added all required POSIX
attributes and the stage entry is ready to be activated.

To display the new stage user’s LDAP attributes, enter the ipa stageuser-show --all --raw
command:

$ ipa stageuser-show stageuser --all --raw
 dn: uid=stageuser,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com
 uid: stageuser
 sn: Jensen
 cn: Babs Jensen
 has_password: FALSE
 has_keytab: FALSE
 nsaccountlock: TRUE
 objectClass: top
 objectClass: inetorgperson
 objectClass: organizationalPerson
 objectClass: person

1. Note that the user is explicitly disabled by the nsaccountlock attribute.

40.5. ADDITIONAL RESOURCES

See Using ldapmodify to manage IdM users externally .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

348

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-ldapmodify-to-manage-idm-users-externally_configuring-and-managing-idm

CHAPTER 41. USING LDAPMODIFY TO MANAGE IDM USERS
EXTERNALLY

As an IdM administrators you can use the ipa commands to manage your directory content.
Alternatively, you can use the ldapmodify command to achieve similar goals. You can use this command
interactively and provide all the data directly in the command line. You also can provide data in the file in
the LDAP Data Interchange Format (LDIF) to ldapmodify command.

41.1. TEMPLATES FOR MANAGING IDM USER ACCOUNTS
EXTERNALLY

The following templates can be used for various user management operations in IdM. The templates
show which attributes you must modify using ldapmodify to achieve the following goals:

Adding a new stage user

Modifying a user’s attribute

Enabling a user

Disabling a user

Preserving a user

The templates are formatted in the LDAP Data Interchange Format (LDIF). LDIF is a standard plain text
data interchange format for representing LDAP directory content and update requests.

Using the templates, you can configure the LDAP provider of your provisioning system to manage IdM
user accounts.

For detailed example procedures, see the following sections:

Adding an IdM stage user defined in an LDIF file

Adding an IdM stage user directly from the CLI using ldapmodify

Preserving an IdM user with ldapmodify

Templates for adding a new stage user

A template for adding a user with UID and GID assigned automatically. The distinguished name
(DN) of the created entry must start with uid=user_login:

dn: uid=user_login,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com
changetype: add
objectClass: top
objectClass: inetorgperson
uid: user_login
sn: surname
givenName: first_name
cn: full_name

A template for adding a user with UID and GID assigned statically:

CHAPTER 41. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY

349

dn: uid=user_login,cn=staged
users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com
changetype: add
objectClass: top
objectClass: person
objectClass: inetorgperson
objectClass: organizationalperson
objectClass: posixaccount
uid: user_login
uidNumber: UID_number
gidNumber: GID_number
sn: surname
givenName: first_name
cn: full_name
homeDirectory: /home/user_login

You are not required to specify any IdM object classes when adding stage users. IdM adds these
classes automatically after the users are activated.

Templates for modifying existing users

Modifying a user’s attribute:

dn: distinguished_name
changetype: modify
replace: attribute_to_modify
attribute_to_modify: new_value

Disabling a user:

dn: distinguished_name
changetype: modify
replace: nsAccountLock
nsAccountLock: TRUE

Enabling a user:

dn: distinguished_name
changetype: modify
replace: nsAccountLock
nsAccountLock: FALSE

Updating the nssAccountLock attribute has no effect on stage and preserved users. Even
though the update operation completes successfully, the attribute value remains
nssAccountLock: TRUE.

Preserving a user:

dn: distinguished_name
changetype: modrdn
newrdn: uid=user_login
deleteoldrdn: 0
newsuperior: cn=deleted users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

350

NOTE

Before modifying a user, obtain the user’s distinguished name (DN) by searching using
the user’s login. In the following example, the user_allowed_to_modify_user_entries user is
a user allowed to modify user and group information, for example activator or IdM
administrator. The password in the example is this user’s password:

[...]
ldapsearch -LLL -x -D
"uid=user_allowed_to_modify_user_entries,cn=users,cn=accounts,dc=idm,dc=e
xample,dc=com" -w "Secret123" -H ldap://r8server.idm.example.com -b
"cn=users,cn=accounts,dc=idm,dc=example,dc=com" uid=test_user
dn: uid=test_user,cn=users,cn=accounts,dc=idm,dc=example,dc=com
memberOf: cn=ipausers,cn=groups,cn=accounts,dc=idm,dc=example,dc=com

41.2. TEMPLATES FOR MANAGING IDM GROUP ACCOUNTS
EXTERNALLY

The following templates can be used for various user group management operations in IdM. The
templates show which attributes you must modify using ldapmodify to achieve the following aims:

Creating a new group

Deleting an existing group

Adding a member to a group

Removing a member from a group

The templates are formatted in the LDAP Data Interchange Format (LDIF). LDIF is a standard plain text
data interchange format for representing LDAP directory content and update requests.

Using the templates, you can configure the LDAP provider of your provisioning system to manage IdM
group accounts.

Creating a new group

dn: cn=group_name,cn=groups,cn=accounts,dc=idm,dc=example,dc=com
changetype: add
objectClass: top
objectClass: ipaobject
objectClass: ipausergroup
objectClass: groupofnames
objectClass: nestedgroup
objectClass: posixgroup
uid: group_name
cn: group_name
gidNumber: GID_number

Modifying groups

Deleting an existing group:

CHAPTER 41. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY

351

dn: group_distinguished_name
changetype: delete

Adding a member to a group:

dn: group_distinguished_name
changetype: modify
add: member
member: uid=user_login,cn=users,cn=accounts,dc=idm,dc=example,dc=com

Do not add stage or preserved users to groups. Even though the update operation completes
successfully, the users will not be updated as members of the group. Only active users can
belong to groups.

Removing a member from a group:

dn: distinguished_name
changetype: modify
delete: member
member: uid=user_login,cn=users,cn=accounts,dc=idm,dc=example,dc=com

NOTE

Before modifying a group, obtain the group’s distinguished name (DN) by searching using
the group’s name.

ldapsearch -YGSSAPI -H ldap://server.idm.example.com -b
"cn=groups,cn=accounts,dc=idm,dc=example,dc=com" "cn=group_name"
dn: cn=group_name,cn=groups,cn=accounts,dc=idm,dc=example,dc=com
ipaNTSecurityIdentifier: S-1-5-21-1650388524-2605035987-2578146103-11017
cn: testgroup
objectClass: top
objectClass: groupofnames
objectClass: nestedgroup
objectClass: ipausergroup
objectClass: ipaobject
objectClass: posixgroup
objectClass: ipantgroupattrs
ipaUniqueID: 569bf864-9d45-11ea-bea3-525400f6f085
gidNumber: 1997010017

41.3. USING LDAPMODIFY COMMAND INTERACTIVELY

You can modify Lightweight Directory Access Protocol (LDAP) entries in the interactive mode.

Procedure

1. In a command line, enter the LDAP Data Interchange Format (LDIF) statement after the
ldapmodify command.

Example 41.1. Changing the telephone number for a testuser

ldapmodify -Y GSSAPI -H ldap://server.example.com

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

352

dn: uid=testuser,cn=users,cn=accounts,dc=example,dc=com
changetype: modify
replace: telephoneNumber
telephonenumber: 88888888

Note that you need to obtain a Kerberos ticket for using -Y option.

2. Press Ctlr+D to exit the interactive mode.

3. Alternatively, provide an LDIF file after ldapmodify command:

Example 41.2. The ldapmodify command reads modification data from an LDIF file

ldapmodify -Y GSSAPI -H ldap://server.example.com -f ~/example.ldif

Additional resources

For more information about how to use the ldapmodify command see ldapmodify(1) man
page.

For more information about the LDIF structure, see ldif(5) man page.

41.4. PRESERVING AN IDM USER WITH LDAPMODIFY

Follow this procedure to use ldapmodify to preserve an IdM user; that is, how to deactivate a user
account after the employee has left the company.

Prerequisites

You can authenticate as an IdM user with a role to preserve users.

Procedure

1. Log in as an IdM user with a role to preserve users:

$ kinit admin

2. Enter the ldapmodify command and specify the Generic Security Services API (GSSAPI) as the
Simple Authentication and Security Layer (SASL) mechanism to be used for authentication:

ldapmodify -Y GSSAPI
SASL/GSSAPI authentication started
SASL username: admin@IDM.EXAMPLE.COM
SASL SSF: 256
SASL data security layer installed.

3. Enter the dn of the user you want to preserve:

dn: uid=user1,cn=users,cn=accounts,dc=idm,dc=example,dc=com

4. Enter modrdn as the type of change you want to perform:

CHAPTER 41. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY

353

changetype: modrdn

5. Specify the newrdn for the user:

newrdn: uid=user1

6. Indicate that you want to preserve the user:

deleteoldrdn: 0

7. Specify the new superior DN:

newsuperior: cn=deleted users,cn=accounts,cn=provisioning,dc=idm,dc=example,dc=com

Preserving a user moves the entry to a new location in the directory information tree (DIT). For
this reason, you must specify the DN of the new parent entry as the new superior DN.

8. Press Enter again to confirm that this is the end of the entry:

[Enter]

modifying rdn of entry "uid=user1,cn=users,cn=accounts,dc=idm,dc=example,dc=com"

9. Exit the connection using Ctrl + C.

Verification steps

Verify that the user has been preserved by listing all preserved users:

$ ipa user-find --preserved=true

1 user matched

 User login: user1
 First name: First 1
 Last name: Last 1
 Home directory: /home/user1
 Login shell: /bin/sh
 Principal name: user1@IDM.EXAMPLE.COM
 Principal alias: user1@IDM.EXAMPLE.COM
 Email address: user1@idm.example.com
 UID: 1997010003
 GID: 1997010003
 Account disabled: True
 Preserved user: True

Number of entries returned 1

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

354

CHAPTER 42. MANAGING HOSTS IN IDM CLI
This chapter introduces hosts and host entries in Identity Management (IdM), and the following
operations performed when managing hosts and host entries in IdM CLI:

Host Enrollment

Adding IdM host entries

Deleting IdM host entries

Re-enrolling hosts

Renaming hosts

Disabling hosts

Re-enabling hosts

The chapter also contains an overview table of the prerequisites, the context, and the consequences of
these operations.

42.1. HOSTS IN IDM

Identity Management (IdM) manages these identities:

Users

Services

Hosts

A host represents a machine. As an IdM identity, a host has an entry in the IdM LDAP, that is the 389
Directory Server instance of the IdM server.

The host entry in IdM LDAP is used to establish relationships between other hosts and even services
within the domain. These relationships are part of delegating authorization and control to hosts within
the domain. Any host can be used in host-based access control (HBAC) rules.

IdM domain establishes a commonality between machines, with common identity information, common
policies, and shared services. Any machine that belongs to a domain functions as a client of the domain,
which means it uses the services that the domain provides. IdM domain provides three main services
specifically for machines:

DNS

Kerberos

Certificate management

Hosts in IdM are closely connected with the services running on them:

Service entries are associated with a host.

A host stores both the host and the service Kerberos principals.

CHAPTER 42. MANAGING HOSTS IN IDM CLI

355

42.2. HOST ENROLLMENT

This section describes enrolling hosts as IdM clients and what happens during and after the enrollment.
The section compares the enrollment of IdM hosts and IdM users. The section also outlines alternative
types of authentication available to hosts.

Enrolling a host consists of:

Creating a host entry in IdM LDAP: possibly using the ipa host-add command in IdM CLI, or the
equivalent IdM Web UI operation .

Configuring IdM services on the host, for example the System Security Services Daemon
(SSSD), Kerberos, and certmonger, and joining the host to the IdM domain.

The two actions can be performed separately or together.

If performed separately, they allow for dividing the two tasks between two users with different levels of
privilege. This is useful for bulk deployments.

The ipa-client-install command can perform the two actions together. The command creates a host
entry in IdM LDAP if that entry does not exist yet, and configures both the Kerberos and SSSD services
for the host. The command brings the host within the IdM domain and allows it to identify the IdM server
it will connect to. If the host belongs to a DNS zone managed by IdM, ipa-client-install adds DNS
records for the host too. The command must be run on the client.

42.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT

The host enrollment operation requires authentication to prevent an unprivileged user from adding
unwanted machines to the IdM domain. The privileges required depend on several factors, for example:

If a host entry is created separately from running ipa-client-install

If a one-time password (OTP) is used for enrollment

User privileges for optionally manually creating a host entry in IdM LDAP

The user privilege required for creating a host entry in IdM LDAP using the ipa host-add CLI command
or the IdM Web UI is Host Administrators. The Host Administrators privilege can be obtained through
the IT Specialist role.

User privileges for joining the client to the IdM domain

Hosts are configured as IdM clients during the execution of the ipa-client-install command. The level of
credentials required for executing the ipa-client-install command depends on which of the following
enrolling scenarios you find yourself in:

The host entry in IdM LDAP does not exist. For this scenario, you need a full administrator’s
credentials or the Host Administrators role. A full administrator is a member of the admins
group. The Host Administrators role provides privileges to add hosts and enroll hosts. For
details about this scenario, see Installing a client using user credentials: interactive installation .

The host entry in IdM LDAP exists. For this scenario, you need a limited administrator’s
credentials to execute ipa-client-install successfully. The limited administrator in this case has
the Enrollment Administrator role, which provides the Host Enrollment privilege. For details,
Installing a client using user credentials: interactive installation .

The host entry in IdM LDAP exists, and an OTP has been generated for the host by a full or

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

356

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-hosts-cli_configuring-and-managing-idm#adding-host-entry-cmd_managing-hosts-cli
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/adding-hosts-ui_configuring-and-managing-idm#adding-host-entry-ui_managing-hosts-ui
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client

limited administrator. For this scenario, you can install an IdM client as an ordinary user if you run
the ipa-client-install command with the --password option, supplying the correct OTP. For
details, see Installing a client by using a one-time password: Interactive installation .

After enrollment, IdM hosts authenticate every new session to be able to access IdM resources. Machine
authentication is required for the IdM server to trust the machine and to accept IdM connections from
the client software installed on that machine. After authenticating the client, the IdM server can respond
to its requests.

42.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND
USERS: COMPARISON

There are many similarities between users and hosts in IdM, some of which can be observed during the
enrollment stage as well as those that concern authentication during the deployment stage.

The enrollment stage (User and host enrollment):

An administrator can create an LDAP entry for both a user and a host before the user or
host actually join IdM: for the stage user, the command is ipa stageuser-add; for the host,
the command is ipa host-add.

A file containing a key table or, abbreviated, keytab, a symmetric key resembling to some
extent a user password, is created during the execution of the ipa-client-install command
on the host, resulting in the host joining the IdM realm. Analogically, a user is asked to create
a password when they activate their account, therefore joining the IdM realm.

While the user password is the default authentication method for a user, the keytab is the
default authentication method for a host. The keytab is stored in a file on the host.

Table 42.1. User and host enrollment

Action User Host

Pre-enrollment $ ipa stageuser-add user_name [-
-password]

$ ipa host-add host_name [--
random]

Activating the
account

$ ipa stageuser-activate
user_name

$ ipa-client install [--password]
(must be run on the host itself)

The deployment stage (User and host session authentication):

When a user starts a new session, the user authenticates using a password; similarly, every
time it is switched on, the host authenticates by presenting its keytab file. The System
Security Services Daemon (SSSD) manages this process in the background.

If the authentication is successful, the user or host obtains a Kerberos ticket granting ticket
(TGT).

The TGT is then used to obtain specific tickets for specific services.

Table 42.2. User and host session authentication

CHAPTER 42. MANAGING HOSTS IN IDM CLI

357

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-a-one-time-password-interactive-installation_assembly_installing-an-idm-client

 User Host

Default means of
authentication

Password Keytabs

Starting a session
(ordinary user)

$ kinit user_name [switch on the host]

The result of
successful
authentication

TGT to be used to obtain access to
specific services

TGT to be used to obtain access to
specific services

TGTs and other Kerberos tickets are generated as part of the Kerberos services and policies defined by
the server. The initial granting of a Kerberos ticket, the renewing of the Kerberos credentials, and even
the destroying of the Kerberos session are all handled automatically by the IdM services.

Alternative authentication options for IdM hosts

Apart from keytabs, IdM supports two other types of machine authentication:

SSH keys. The SSH public key for the host is created and uploaded to the host entry. From
there, the System Security Services Daemon (SSSD) uses IdM as an identity provider and can
work in conjunction with OpenSSH and other services to reference the public keys located
centrally in IdM.

Machine certificates. In this case, the machine uses an SSL certificate that is issued by the IdM
server’s certificate authority and then stored in IdM’s Directory Server. The certificate is then
sent to the machine to present when it authenticates to the server. On the client, certificates are
managed by a service called certmonger.

42.5. HOST OPERATIONS

The most common operations related to host enrollment and enablement, and the prerequisites, the
context, and the consequences of performing those operations are outlined in the following sections.

Table 42.3. Host operations part 1

Action What are the
prerequisites
of the action?

When does it
make sense to
run the
command?

How is the action performed by a system
administrator? What command(s) does he run?

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

358

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_certificates_in_idm/using-certmonger_working-with-idm-certificates#certmonger_certmonger-for-issuing-renewing-service-certs

Enrolling a
client

see Preparing
the system for
Identity
Management
client
installation in
Installing
Identity Manage
ment

When you
want the host
to join the IdM
realm.

Enrolling machines as clients in the IdM domain is a
two-part process. A host entry is created for the
client (and stored in the 389 Directory Server
instance) when the ipa host-add command is run,
and then a keytab is created to provision the client.
Both parts are performed automatically by the ipa-
client-install command. It is also possible to
perform those steps separately; this allows for
administrators to prepare machines and IdM in
advance of actually configuring the clients. This
allows more flexible setup scenarios, including bulk
deployments.

Disabling a
client

The host must
have an entry
in IdM. The
host needs to
have an active
keytab.

When you
want to
remove the
host from the
IdM realm
temporarily,
perhaps for
maintenance
purposes.

ipa host-disable host_name

Enabling a
client

The host must
have an entry
in IdM.

When you
want the
temporarily
disabled host
to become
active again.

ipa-getkeytab

Re-enrolling
a client

The host must
have en entry
in IdM.

When the
original host
has been lost
but you have
installed a host
with the same
host name.

ipa-client-install --keytab or ipa-client-install
--force-join

Un-enrolling
a client

The host must
have an entry
in IdM.

When you
want to
remove the
host from the
IdM realm
permanently.

ipa-client-install --uninstall

Action What are the
prerequisites
of the action?

When does it
make sense to
run the
command?

How is the action performed by a system
administrator? What command(s) does he run?

Table 42.4. Host operations part 2

CHAPTER 42. MANAGING HOSTS IN IDM CLI

359

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/preparing-the-system-for-ipa-client-installation_installing-identity-management

Action On which machine
can the
administrator run
the command(s)?

What happens when the action is performed? What are the
consequences for the host’s functioning in IdM? What
limitations are introduced/removed?

Enrolling a
client

In the case of a
two-step
enrollment: ipa
host-add can be
run on any IdM
client; the second
step of ipa-
client-install
must be run on the
client itself

By default this configures SSSD to connect to an IdM server for
authentication and authorization. Optionally one can instead
configure the Pluggable Authentication Module (PAM) and the
Name Switching Service (NSS) to work with an IdM server over
Kerberos and LDAP.

Disabling a
client

Any machine in
IdM, even the host
itself

The host’s Kerberos key and SSL certificate are invalidated, and
all services running on the host are disabled.

Enabling a
client

Any machine in
IdM. If run on the
disabled host,
LDAP credentials
need to be
supplied.

The host’s Kerberos key and the SSL certificate are made valid
again, and all IdM services running on the host are re-enabled.

Re-enrolling a
client

The host to be re-
enrolled. LDAP
credentials need
to be supplied.

A new Kerberos key is generated for the host, replacing the
previous one.

Un-enrolling a
client

The host to be un-
enrolled.

The command unconfigures IdM and attempts to return the
machine to its previous state. Part of this process is to unenroll
the host from the IdM server. Unenrollment consists of disabling
the principal key on the IdM server. The machine principal in
/etc/krb5.keytab (host/<fqdn>@REALM) is used to
authenticate to the IdM server to unenroll itself. If this principal
does not exist then unenrollment will fail and an administrator
will need to disable the host principal (ipa host-disable
<fqdn>).

42.6. HOST ENTRY IN IDM LDAP

An Identity Management (IdM) host entry contains information about the host and what attributes it can
contain.

An LDAP host entry contains all relevant information about the client within IdM:

Service entries associated with the host

The host and service principal

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

360

Access control rules

Machine information, such as its physical location and operating system

NOTE

Note that the IdM Web UI Identity → Hosts tab does not show all the information about a
particular host stored in the IdM LDAP.

Host entry configuration properties

A host entry can contain information about the host that is outside its system configuration, such as its
physical location, MAC address, keys, and certificates.

This information can be set when the host entry is created if it is created manually. Alternatively, most of
this information can be added to the host entry after the host is enrolled in the domain.

Table 42.5. Host Configuration Properties

UI Field Command-Line Option Description

Description --desc=description A description of the host.

Locality --locality=locality The geographic location of the
host.

Location --location=location The physical location of the host,
such as its data center rack.

Platform --platform=string The host hardware or
architecture.

Operating system --os=string The operating system and version
for the host.

MAC address --macaddress=address The MAC address for the host.
This is a multi-valued attribute.
The MAC address is used by the
NIS plug-in to create a NIS
ethers map for the host.

SSH public keys --sshpubkey=string The full SSH public key for the
host. This is a multi-valued
attribute, so multiple keys can be
set.

CHAPTER 42. MANAGING HOSTS IN IDM CLI

361

Principal name (not editable) --principalname=principal The Kerberos principal name for
the host. This defaults to the host
name during the client
installation, unless a different
principal is explicitly set in the -p.
This can be changed using the
command-line tools, but cannot
be changed in the UI.

Set One-Time Password --password=string This option sets a password for
the host which can be used in bulk
enrollment.

- --random This option generates a random
password to be used in bulk
enrollment.

- --certificate=string A certificate blob for the host.

- --updatedns This sets whether the host can
dynamically update its DNS
entries if its IP address changes.

UI Field Command-Line Option Description

42.7. ADDING IDM HOST ENTRIES FROM IDM CLI

Follow this procedure to add host entries in Identity Management (IdM) using the command-line
interface (CLI).

Host entries are created using the host-add command. This commands adds the host entry to the IdM
Directory Server. Consult the ipa host manpage by typing ipa help host in your CLI to get the full list of
options available with host-add.

There are a few different scenarios when adding a host to IdM:

At its most basic, specify only the client host name to add the client to the Kerberos realm and
to create an entry in the IdM LDAP server:

$ ipa host-add client1.example.com

If the IdM server is configured to manage DNS, add the host to the DNS resource records using
the --ip-address option.

Example 42.1. Creating Host Entries with Static IP Addresses

$ ipa host-add --ip-address=192.168.166.31 client1.example.com

If the host to be added does not have a static IP address or if the IP address is not known at the

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

362

If the host to be added does not have a static IP address or if the IP address is not known at the
time the client is configured, use the --force option with the ipa host-add command.

Example 42.2. Creating Host Entries with DHCP

$ ipa host-add --force client1.example.com

For example, laptops may be preconfigured as IdM clients, but they do not have IP addresses at
the time they are configured. Using --force essentially creates a placeholder entry in the IdM
DNS service. When the DNS service dynamically updates its records, the host’s current IP
address is detected and its DNS record is updated.

42.8. DELETING HOST ENTRIES FROM IDM CLI

Use the host-del command to delete host records. If your IdM domain has integrated DNS, use
the --updatedns option to remove the associated records of any kind for the host from the
DNS:

$ ipa host-del --updatedns client1.example.com

42.9. RE-ENROLLING AN IDENTITY MANAGEMENT CLIENT

This section describes the different way you can re-enroll an Identity Management client.

42.9.1. Client re-enrollment in IdM

During the re-enrollment, the client generates a new Kerberos key and SSH keys, but the identity of the
client in the LDAP database remains unchanged. After the re-enrollment, the host has its keys and other
information in the same LDAP object with the same FQDN as previously, before the machine’s loss of
connection with the IdM servers.

IMPORTANT

You can only re-enroll clients whose domain entry is still active. If you uninstalled a client
(using ipa-client-install --uninstall) or disabled its host entry (using ipa host-disable),
you cannot re-enroll it.

You cannot re-enroll a client after you have renamed it. This is because in Identity Management, the key
attribute of the client’s entry in LDAP is the client’s hostname, its FQDN. As opposed to re-enrolling a
client, during which the client’s LDAP object remains unchanged, the outcome of renaming a client is
that the client has its keys and other information in a different LDAP object with a new FQDN. Therefore,
the only way to rename a client is to uninstall the host from IdM, change the host’s hostname, and install
it as an IdM client with a new name. For details on how to rename a client, see Renaming Identity
Management client systems.

What happens during client re-enrollment

During re-enrollment, Identity Management:

Revokes the original host certificate

Creates new SSH keys

CHAPTER 42. MANAGING HOSTS IN IDM CLI

363

Generates a new keytab

42.9.2. Re-enrolling a client by using user credentials: Interactive re-enrollment

Follow this procedure to re-enroll an Identity Management client interactively by using the credentials of
an authorized user.

1. Re-create the client machine with the same host name.

2. Run the ipa-client-install --force-join command on the client machine:

ipa-client-install --force-join

3. The script prompts for a user whose identity will be used to re-enroll the client. This could be,
for example, a hostadmin user with the Enrollment Administrator role:

User authorized to enroll computers: hostadmin
Password for hostadmin@EXAMPLE.COM:

Additional resources

See Installing a client by using user credentials: Interactive installation in Installing
Identity Management.

42.9.3. Re-enrolling a client by using the client keytab: Non-interactive re-
enrollment

Prerequisites

Back up the original client keytab file, for example in the /tmp or /root directory.

Procedure

Follow this procedure to re-enroll an Identity Management (IdM) client non-interactively by using the
keytab of the client system. For example, re-enrollment using the client keytab is appropriate for an
automated installation.

1. Re-create the client machine with the same host name.

2. Copy the keytab file from the backup location to the /etc/ directory on the re-created client
machine.

3. Use the ipa-client-install utility to re-enroll the client, and specify the keytab location with the -
-keytab option:

ipa-client-install --keytab /etc/krb5.keytab

NOTE

The keytab specified in the --keytab option is only used when authenticating to
initiate the enrollment. During the re-enrollment, IdM generates a new keytab for
the client.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

364

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client

42.9.4. Testing an Identity Management client after installation

The command-line interface informs you that the ipa-client-install was successful, but you can also do
your own test.

To test that the Identity Management client can obtain information about users defined on the server,
check that you are able to resolve a user defined on the server. For example, to check the default admin
user:

[user@client1 ~]$ id admin
uid=1254400000(admin) gid=1254400000(admins) groups=1254400000(admins)

To test that authentication works correctly, su - as another IdM user:

[user@client1 ~]$ su - idm_user
Last login: Thu Oct 18 18:39:11 CEST 2018 from 192.168.122.1 on pts/0
[idm_user@client1 ~]$

42.10. RENAMING IDENTITY MANAGEMENT CLIENT SYSTEMS

The following sections describe how to change the host name of an Identity Management client system.

WARNING

Renaming a client is a manual procedure. Do not perform it unless changing the host
name is absolutely required.

Renaming an Identity Management client involves:

1. Preparing the host. For details, see Preparing an IdM client for its renaming .

2. Uninstalling the IdM client from the host. For details, see Uninstalling an Identity Management
client.

3. Renaming the host. For details, see Renaming the host system.

4. Installing the IdM client on the host with the new name. For details, see Installing an Identity
Management client in Installing Identity Management..

5. Configuring the host after the IdM client installation. For details, see Re-adding services, re-
generating certificates, and re-adding host groups.

42.10.1. Preparing an IdM client for its renaming

Before uninstalling the current client, make note of certain settings for the client. You will apply this
configuration after re-enrolling the machine with a new host name.

Identify which services are running on the machine:

Use the ipa service-find command, and identify services with certificates in the output:

CHAPTER 42. MANAGING HOSTS IN IDM CLI

365

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management

$ ipa service-find old-client-name.example.com

In addition, each host has a default host service which does not appear in the ipa service-
find output. The service principal for the host service, also called a host principal, is
host/old-client-name.example.com.

For all service principals displayed by ipa service-find old-client-name.example.com,
determine the location of the corresponding keytabs on the old-client-name.example.com
system:

find / -name "*.keytab"

Each service on the client system has a Kerberos principal in the form
service_name/host_name@REALM, such as ldap/old-client-
name.example.com@EXAMPLE.COM.

Identify all host groups to which the machine belongs.

ipa hostgroup-find old-client-name.example.com

42.10.2. Uninstalling an Identity Management client

Uninstalling a client removes the client from the Identity Management domain, along with all of the
specific Identity Management configuration of system services, such as System Security Services
Daemon (SSSD). This restores the previous configuration of the client system.

Procedure

1. Run the ipa-client-install --uninstall command:

[root@client]# ipa-client-install --uninstall

2. Remove the DNS entries for the client host manually from the server:

[root@server]# ipa dnsrecord-del
Record name: old-client-client
Zone name: idm.example.com
No option to delete specific record provided.
Delete all? Yes/No (default No): yes

Deleted record "old-client-name"

3. For each identified keytab other than /etc/krb5.keytab, remove the old principals:

[root@client ~]# ipa-rmkeytab -k /path/to/keytab -r EXAMPLE.COM

4. On an IdM server, remove the host entry. This removes all services and revokes all certificates
issued for that host:

[root@server ~]# ipa host-del client.example.com

42.10.3. Renaming the host system

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

366

Rename the machine as required. For example:

[root@client]# hostnamectl set-hostname new-client-name.example.com

You can now re-install the Identity Management client to the Identity Management domain with the new
host name.

42.10.4. Re-adding services, re-generating certificates, and re-adding host groups

Procedure

1. On the Identity Management (IdM) server, add a new keytab for every service identified in the
Preparing an IdM client for its renaming .

[root@server ~]# ipa service-add service_name/new-client-name

2. Generate certificates for services that had a certificate assigned in the Preparing an IdM client
for its renaming. You can do this:

Using the IdM administration tools

Using the certmonger utility

3. Re-add the client to the host groups identified in the Preparing an IdM client for its renaming .

42.11. DISABLING AND RE-ENABLING HOST ENTRIES

This section describes how to disable and re-enable hosts in Identity Management (IdM).

42.11.1. Disabling Hosts

Complete this procedure to disable a host entry in IdM.

Domain services, hosts, and users can access an active host. There can be situations when it is
necessary to remove an active host temporarily, for maintenance reasons, for example. Deleting the host
in such situations is not desired as it removes the host entry and all the associated configuration
permanently. Instead, choose the option of disabling the host.

Disabling a host prevents domain users from accessing it without permanently removing it from the
domain.

Procedure

Disable a host using the host-disable command. Disabling a host kills the host’s current, active
keytabs. For example:

$ kinit admin
$ ipa host-disable client.example.com

As a result of disabling a host, the host becomes unavailable to all IdM users, hosts and services.

IMPORTANT

CHAPTER 42. MANAGING HOSTS IN IDM CLI

367

IMPORTANT

Disabling a host entry not only disables that host. It disables every configured service on
that host as well.

42.11.2. Re-enabling Hosts

Follow this procedure to re-enable a disabled IdM host.

Disabling a host killed its active keytabs, which removed the host from the IdM domain without otherwise
touching its configuration entry.

Procedure

To re-enable a host, use the ipa-getkeytab command, adding:

the -s option to specify which IdM server to request the keytab from

the -p option to specify the principal name

the -k option to specify the file to which to save the keytab.

For example, to request a new host keytab from server.example.com for client.example.com, and
store the keytab in the /etc/krb5.keytab file:

$ ipa-getkeytab -s server.example.com -p host/client.example.com -k /etc/krb5.keytab -D
"cn=directory manager" -w password

NOTE

You can also use the administrator’s credentials, specifying -D
"uid=admin,cn=users,cn=accounts,dc=example,dc=com". It is important that the
credentials correspond to a user allowed to create the keytab for the host.

If the ipa-getkeytab command is run on an active IdM client or server, then it can be run without any
LDAP credentials (-D and -w) if the user has a TGT obtained using, for example, kinit admin. To run the
command directly on the disabled host, supply LDAP credentials to authenticate to the IdM server.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

368

CHAPTER 43. ADDING HOST ENTRIES FROM IDM WEB UI
This chapter introduces hosts in Identity Management (IdM) and the operation of adding a host entry in
the IdM Web UI.

43.1. HOSTS IN IDM

Identity Management (IdM) manages these identities:

Users

Services

Hosts

A host represents a machine. As an IdM identity, a host has an entry in the IdM LDAP, that is the 389
Directory Server instance of the IdM server.

The host entry in IdM LDAP is used to establish relationships between other hosts and even services
within the domain. These relationships are part of delegating authorization and control to hosts within
the domain. Any host can be used in host-based access control (HBAC) rules.

IdM domain establishes a commonality between machines, with common identity information, common
policies, and shared services. Any machine that belongs to a domain functions as a client of the domain,
which means it uses the services that the domain provides. IdM domain provides three main services
specifically for machines:

DNS

Kerberos

Certificate management

Hosts in IdM are closely connected with the services running on them:

Service entries are associated with a host.

A host stores both the host and the service Kerberos principals.

43.2. HOST ENROLLMENT

This section describes enrolling hosts as IdM clients and what happens during and after the enrollment.
The section compares the enrollment of IdM hosts and IdM users. The section also outlines alternative
types of authentication available to hosts.

Enrolling a host consists of:

Creating a host entry in IdM LDAP: possibly using the ipa host-add command in IdM CLI, or the
equivalent IdM Web UI operation .

Configuring IdM services on the host, for example the System Security Services Daemon
(SSSD), Kerberos, and certmonger, and joining the host to the IdM domain.

The two actions can be performed separately or together.

If performed separately, they allow for dividing the two tasks between two users with different levels of

CHAPTER 43. ADDING HOST ENTRIES FROM IDM WEB UI

369

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-hosts-cli_configuring-and-managing-idm#adding-host-entry-cmd_managing-hosts-cli
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/adding-hosts-ui_configuring-and-managing-idm#adding-host-entry-ui_managing-hosts-ui

If performed separately, they allow for dividing the two tasks between two users with different levels of
privilege. This is useful for bulk deployments.

The ipa-client-install command can perform the two actions together. The command creates a host
entry in IdM LDAP if that entry does not exist yet, and configures both the Kerberos and SSSD services
for the host. The command brings the host within the IdM domain and allows it to identify the IdM server
it will connect to. If the host belongs to a DNS zone managed by IdM, ipa-client-install adds DNS
records for the host too. The command must be run on the client.

43.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT

The host enrollment operation requires authentication to prevent an unprivileged user from adding
unwanted machines to the IdM domain. The privileges required depend on several factors, for example:

If a host entry is created separately from running ipa-client-install

If a one-time password (OTP) is used for enrollment

User privileges for optionally manually creating a host entry in IdM LDAP

The user privilege required for creating a host entry in IdM LDAP using the ipa host-add CLI command
or the IdM Web UI is Host Administrators. The Host Administrators privilege can be obtained through
the IT Specialist role.

User privileges for joining the client to the IdM domain

Hosts are configured as IdM clients during the execution of the ipa-client-install command. The level of
credentials required for executing the ipa-client-install command depends on which of the following
enrolling scenarios you find yourself in:

The host entry in IdM LDAP does not exist. For this scenario, you need a full administrator’s
credentials or the Host Administrators role. A full administrator is a member of the admins
group. The Host Administrators role provides privileges to add hosts and enroll hosts. For
details about this scenario, see Installing a client using user credentials: interactive installation .

The host entry in IdM LDAP exists. For this scenario, you need a limited administrator’s
credentials to execute ipa-client-install successfully. The limited administrator in this case has
the Enrollment Administrator role, which provides the Host Enrollment privilege. For details,
Installing a client using user credentials: interactive installation .

The host entry in IdM LDAP exists, and an OTP has been generated for the host by a full or
limited administrator. For this scenario, you can install an IdM client as an ordinary user if you run
the ipa-client-install command with the --password option, supplying the correct OTP. For
details, see Installing a client by using a one-time password: Interactive installation .

After enrollment, IdM hosts authenticate every new session to be able to access IdM resources. Machine
authentication is required for the IdM server to trust the machine and to accept IdM connections from
the client software installed on that machine. After authenticating the client, the IdM server can respond
to its requests.

43.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND
USERS: COMPARISON

There are many similarities between users and hosts in IdM, some of which can be observed during the
enrollment stage as well as those that concern authentication during the deployment stage.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

370

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-user-credentials-interactive-installation_assembly_installing-an-idm-client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-a-one-time-password-interactive-installation_assembly_installing-an-idm-client

The enrollment stage (User and host enrollment):

An administrator can create an LDAP entry for both a user and a host before the user or
host actually join IdM: for the stage user, the command is ipa stageuser-add; for the host,
the command is ipa host-add.

A file containing a key table or, abbreviated, keytab, a symmetric key resembling to some
extent a user password, is created during the execution of the ipa-client-install command
on the host, resulting in the host joining the IdM realm. Analogically, a user is asked to create
a password when they activate their account, therefore joining the IdM realm.

While the user password is the default authentication method for a user, the keytab is the
default authentication method for a host. The keytab is stored in a file on the host.

Table 43.1. User and host enrollment

Action User Host

Pre-enrollment $ ipa stageuser-add user_name [-
-password]

$ ipa host-add host_name [--
random]

Activating the
account

$ ipa stageuser-activate
user_name

$ ipa-client install [--password]
(must be run on the host itself)

The deployment stage (User and host session authentication):

When a user starts a new session, the user authenticates using a password; similarly, every
time it is switched on, the host authenticates by presenting its keytab file. The System
Security Services Daemon (SSSD) manages this process in the background.

If the authentication is successful, the user or host obtains a Kerberos ticket granting ticket
(TGT).

The TGT is then used to obtain specific tickets for specific services.

Table 43.2. User and host session authentication

 User Host

Default means of
authentication

Password Keytabs

Starting a session
(ordinary user)

$ kinit user_name [switch on the host]

The result of
successful
authentication

TGT to be used to obtain access to
specific services

TGT to be used to obtain access to
specific services

TGTs and other Kerberos tickets are generated as part of the Kerberos services and policies defined by
the server. The initial granting of a Kerberos ticket, the renewing of the Kerberos credentials, and even
the destroying of the Kerberos session are all handled automatically by the IdM services.

CHAPTER 43. ADDING HOST ENTRIES FROM IDM WEB UI

371

Alternative authentication options for IdM hosts

Apart from keytabs, IdM supports two other types of machine authentication:

SSH keys. The SSH public key for the host is created and uploaded to the host entry. From
there, the System Security Services Daemon (SSSD) uses IdM as an identity provider and can
work in conjunction with OpenSSH and other services to reference the public keys located
centrally in IdM.

Machine certificates. In this case, the machine uses an SSL certificate that is issued by the IdM
server’s certificate authority and then stored in IdM’s Directory Server. The certificate is then
sent to the machine to present when it authenticates to the server. On the client, certificates are
managed by a service called certmonger.

43.5. HOST ENTRY IN IDM LDAP

An Identity Management (IdM) host entry contains information about the host and what attributes it can
contain.

An LDAP host entry contains all relevant information about the client within IdM:

Service entries associated with the host

The host and service principal

Access control rules

Machine information, such as its physical location and operating system

NOTE

Note that the IdM Web UI Identity → Hosts tab does not show all the information about a
particular host stored in the IdM LDAP.

Host entry configuration properties

A host entry can contain information about the host that is outside its system configuration, such as its
physical location, MAC address, keys, and certificates.

This information can be set when the host entry is created if it is created manually. Alternatively, most of
this information can be added to the host entry after the host is enrolled in the domain.

Table 43.3. Host Configuration Properties

UI Field Command-Line Option Description

Description --desc=description A description of the host.

Locality --locality=locality The geographic location of the
host.

Location --location=location The physical location of the host,
such as its data center rack.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

372

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_certificates_in_idm/using-certmonger_working-with-idm-certificates#certmonger_certmonger-for-issuing-renewing-service-certs

Platform --platform=string The host hardware or
architecture.

Operating system --os=string The operating system and version
for the host.

MAC address --macaddress=address The MAC address for the host.
This is a multi-valued attribute.
The MAC address is used by the
NIS plug-in to create a NIS
ethers map for the host.

SSH public keys --sshpubkey=string The full SSH public key for the
host. This is a multi-valued
attribute, so multiple keys can be
set.

Principal name (not editable) --principalname=principal The Kerberos principal name for
the host. This defaults to the host
name during the client
installation, unless a different
principal is explicitly set in the -p.
This can be changed using the
command-line tools, but cannot
be changed in the UI.

Set One-Time Password --password=string This option sets a password for
the host which can be used in bulk
enrollment.

- --random This option generates a random
password to be used in bulk
enrollment.

- --certificate=string A certificate blob for the host.

- --updatedns This sets whether the host can
dynamically update its DNS
entries if its IP address changes.

UI Field Command-Line Option Description

43.6. ADDING HOST ENTRIES FROM THE WEB UI

1. Open the Identity tab, and select the Hosts subtab.

2. Click Add at the top of the hosts list.

Figure 43.1. Adding Host Entries

CHAPTER 43. ADDING HOST ENTRIES FROM IDM WEB UI

373

Figure 43.1. Adding Host Entries

3. Enter the machine name and select the domain from the configured zones in the drop-down
list. If the host has already been assigned a static IP address, then include that with the host
entry so that the DNS entry is fully created.
The Class field has no specific purpose at the moment.

Figure 43.2. Add Host Wizard

DNS zones can be created in IdM. If the IdM server does not manage the DNS server, the zone
can be entered manually in the menu area, like a regular text field.

NOTE

Select the Force check box if you want to skip checking whether the host is
resolvable via DNS.

4. Click the Add and Edit button to go directly to the expanded entry page and enter more
attribute information. Information about the host hardware and physical location can be
included with the host entry.

Figure 43.3. Expanded Entry Page

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

374

Figure 43.3. Expanded Entry Page

CHAPTER 43. ADDING HOST ENTRIES FROM IDM WEB UI

375

CHAPTER 44. MANAGING HOSTS USING ANSIBLE
PLAYBOOKS

Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.
Ansible includes support for Identity Management (IdM), and you can use Ansible modules to automate
host management.

The following concepts and operations are performed when managing hosts and host entries using
Ansible playbooks:

Ensuring the presence of IdM host entries that are only defined by their FQDNs

Ensuring the presence of IdM host entries with IP addresses

Ensuring the presence of multiple IdM host entries with random passwords

Ensuring the presence of an IdM host entry with multiple IP addresses

Ensuring the absence of IdM host entries

44.1. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH FQDN
USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of host entries in Identity Management (IdM) using Ansible
playbooks. The host entries are only defined by their fully-qualified domain names (FQDNs).

Specifying the FQDN name of the host is enough if at least one of the following conditions applies:

The IdM server is not configured to manage DNS.

The host does not have a static IP address or the IP address is not known at the time the host is
configured. Adding a host defined only by an FQDN essentially creates a placeholder entry in the
IdM DNS service. For example, laptops may be preconfigured as IdM clients, but they do not
have IP addresses at the time they are configured. When the DNS service dynamically updates
its records, the host’s current IP address is detected and its DNS record is updated.

NOTE

Without Ansible, host entries are created in IdM using the ipa host-add command. The
result of adding a host to IdM is the state of the host being present in IdM. Because of
the Ansible reliance on idempotence, to add a host to IdM using Ansible, you must create
a playbook in which you define the state of the host as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

376

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the FQDN of the host whose presence in IdM you want to
ensure. To simplify this step, you can copy and modify the example in the
/usr/share/doc/ansible-freeipa/playbooks/host/add-host.yml file:

- name: Host present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Host host01.idm.example.com present
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 state: present
 force: yes

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
is-present.yml

NOTE

The procedure results in a host entry in the IdM LDAP server being created but not in
enrolling the host into the IdM Kerberos realm. For that, you must deploy the host as an
IdM client. For details, see Installing an Identity Management client using an Ansible
playbook.

Verification steps

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of the host:

$ ipa host-show host01.idm.example.com

CHAPTER 44. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

377

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management

 Host name: host01.idm.example.com
 Principal name: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Principal alias: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Password: False
 Keytab: False
 Managed by: host01.idm.example.com

The output confirms that host01.idm.example.com exists in IdM.

44.2. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH DNS
INFORMATION USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of host entries in Identity Management (IdM) using Ansible
playbooks. The host entries are defined by their fully-qualified domain names (FQDNs) and their IP
addresses.

NOTE

Without Ansible, host entries are created in IdM using the ipa host-add command. The
result of adding a host to IdM is the state of the host being present in IdM. Because of
the Ansible reliance on idempotence, to add a host to IdM using Ansible, you must create
a playbook in which you define the state of the host as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the fully-qualified domain name (FQDN) of the host
whose presence in IdM you want to ensure. In addition, if the IdM server is configured to manage
DNS and you know the IP address of the host, specify a value for the ip_address parameter.
The IP address is necessary for the host to exist in the DNS resource records. To simplify this

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

378

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/host/host-present.yml file. You can also include other, additional
information:

- name: Host present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure host01.idm.example.com is present
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 description: Example host
 ip_address: 192.168.0.123
 locality: Lab
 ns_host_location: Lab
 ns_os_version: CentOS 7
 ns_hardware_platform: Lenovo T61
 mac_address:
 - "08:00:27:E3:B1:2D"
 - "52:54:00:BD:97:1E"
 state: present

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
is-present.yml

NOTE

The procedure results in a host entry in the IdM LDAP server being created but not in
enrolling the host into the IdM Kerberos realm. For that, you must deploy the host as an
IdM client. For details, see Installing an Identity Management client using an Ansible
playbook.

Verification steps

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of the host:

$ ipa host-show host01.idm.example.com
 Host name: host01.idm.example.com
 Description: Example host
 Locality: Lab
 Location: Lab
 Platform: Lenovo T61

CHAPTER 44. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

379

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management

 Operating system: CentOS 7
 Principal name: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Principal alias: host/host01.idm.example.com@IDM.EXAMPLE.COM
 MAC address: 08:00:27:E3:B1:2D, 52:54:00:BD:97:1E
 Password: False
 Keytab: False
 Managed by: host01.idm.example.com

The output confirms host01.idm.example.com exists in IdM.

44.3. ENSURING THE PRESENCE OF MULTIPLE IDM HOST ENTRIES
WITH RANDOM PASSWORDS USING ANSIBLE PLAYBOOKS

The ipahost module allows the system administrator to ensure the presence or absence of multiple host
entries in IdM using just one Ansible task. Follow this procedure to ensure the presence of multiple host
entries that are only defined by their fully-qualified domain names (FQDNs). Running the Ansible
playbook generates random passwords for the hosts.

NOTE

Without Ansible, host entries are created in IdM using the ipa host-add command. The
result of adding a host to IdM is the state of the host being present in IdM. Because of
the Ansible reliance on idempotence, to add a host to IdM using Ansible, you must create
a playbook in which you define the state of the host as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the fully-qualified domain name (FQDN) of the hosts
whose presence in IdM you want to ensure. To make the Ansible playbook generate a random
password for each host even when the host already exists in IdM and update_password is

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

380

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

limited to on_create, add the random: yes and force: yes options. To simplify this step, you
can copy and modify the example from the /usr/share/doc/ansible-freeipa/README-host.md
Markdown file:

- name: Ensure hosts with random password
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Hosts host01.idm.example.com and host02.idm.example.com present with random
passwords
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 hosts:
 - name: host01.idm.example.com
 random: yes
 force: yes
 - name: host02.idm.example.com
 random: yes
 force: yes
 register: ipahost

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
are-present.yml
[...]
TASK [Hosts host01.idm.example.com and host02.idm.example.com present with random
passwords]
changed: [r8server.idm.example.com] => {"changed": true, "host":
{"host01.idm.example.com": {"randompassword": "0HoIRvjUdH0Ycbf6uYdWTxH"},
"host02.idm.example.com": {"randompassword": "5VdLgrf3wvojmACdHC3uA3s"}}}

NOTE

To deploy the hosts as IdM clients using random, one-time passwords (OTPs), see
Authorization options for IdM client enrollment using an Ansible playbook or Installing a
client by using a one-time password: Interactive installation.

Verification steps

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of one of the hosts:

$ ipa host-show host01.idm.example.com
 Host name: host01.idm.example.com
 Password: True

CHAPTER 44. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

381

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management#authorization-options-for-idm-client-enrollment-using-an-ansible-playbook_client-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management#proc_installing-a-client-by-using-a-one-time-password-interactive-installation_assembly_installing-an-idm-client

 Keytab: False
 Managed by: host01.idm.example.com

The output confirms host01.idm.example.com exists in IdM with a random password.

44.4. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH
MULTIPLE IP ADDRESSES USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of a host entry in Identity Management (IdM) using Ansible
playbooks. The host entry is defined by its fully-qualified domain name (FQDN) and its multiple IP
addresses.

NOTE

In contrast to the ipa host utility, the Ansible ipahost module can ensure the presence or
absence of several IPv4 and IPv6 addresses for a host. The ipa host-mod command
cannot handle IP addresses.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file. Specify, as the name of the ipahost variable, the fully-qualified
domain name (FQDN) of the host whose presence in IdM you want to ensure. Specify each of
the multiple IPv4 and IPv6 ip_address values on a separate line by using the ip_address syntax.
To simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/host/host-member-ipaddresses-present.yml file. You can also include
additional information:

- name: Host member IP addresses present
 hosts: ipaserver

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

382

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure host101.example.com IP addresses present
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 ip_address:
 - 192.168.0.123
 - fe80::20c:29ff:fe02:a1b3
 - 192.168.0.124
 - fe80::20c:29ff:fe02:a1b4
 force: yes

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
with-multiple-IP-addreses-is-present.yml

NOTE

The procedure creates a host entry in the IdM LDAP server but does not enroll the host
into the IdM Kerberos realm. For that, you must deploy the host as an IdM client. For
details, see Installing an Identity Management client using an Ansible playbook .

Verification steps

1. Log in to your IdM server as admin:

$ ssh admin@server.idm.example.com
Password:

2. Enter the ipa host-show command and specify the name of the host:

$ ipa host-show host01.idm.example.com
 Principal name: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Principal alias: host/host01.idm.example.com@IDM.EXAMPLE.COM
 Password: False
 Keytab: False
 Managed by: host01.idm.example.com

The output confirms that host01.idm.example.com exists in IdM.

3. To verify that the multiple IP addresses of the host exist in the IdM DNS records, enter the ipa
dnsrecord-show command and specify the following information:

The name of the IdM domain

The name of the host

$ ipa dnsrecord-show idm.example.com host01
[...]
 Record name: host01

CHAPTER 44. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

383

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/installing-an-identity-management-client-using-an-ansible-playbook_installing-identity-management

 A record: 192.168.0.123, 192.168.0.124
 AAAA record: fe80::20c:29ff:fe02:a1b3, fe80::20c:29ff:fe02:a1b4

The output confirms that all the IPv4 and IPv6 addresses specified in the playbook are correctly
associated with the host01.idm.example.com host entry.

44.5. ENSURING THE ABSENCE OF AN IDM HOST ENTRY USING
ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of host entries in Identity Management (IdM) using Ansible
playbooks.

Prerequisites

IdM administrator credentials

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the fully-qualified domain name (FQDN) of the host
whose absence from IdM you want to ensure. If your IdM domain has integrated DNS, use the
updatedns: yes option to remove the associated records of any kind for the host from the
DNS.
To simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/host/delete-host.yml file:

- name: Host absent
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Host host01.idm.example.com absent
 ipahost:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host01.idm.example.com
 updatedns: yes
 state: absent

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-host-
absent.yml

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

384

NOTE

The procedure results in:

The host not being present in the IdM Kerberos realm.

The host entry not being present in the IdM LDAP server.

To remove the specific IdM configuration of system services, such as System Security
Services Daemon (SSSD), from the client host itself, you must run the ipa-client-install --
uninstall command on the client. For details, see Uninstalling an IdM client .

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about host01.idm.example.com:

$ ipa host-show host01.idm.example.com
ipa: ERROR: host01.idm.example.com: host not found

The output confirms that the host does not exist in IdM.

44.6. ADDITIONAL RESOURCES

See the /usr/share/doc/ansible-freeipa/README-host.md Markdown file.

See the additional playbooks in the /usr/share/doc/ansible-freeipa/playbooks/host directory.

CHAPTER 44. MANAGING HOSTS USING ANSIBLE PLAYBOOKS

385

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-client_installing-identity-management

CHAPTER 45. MANAGING HOST GROUPS USING THE IDM CLI
Learn more about how to manage host groups and their members in the command-line interface (CLI)
by using the following operations:

Viewing host groups and their members

Creating host groups

Deleting host groups

Adding host group members

Removing host group members

Adding host group member managers

Removing host group member managers

45.1. HOST GROUPS IN IDM

IdM host groups can be used to centralize control over important management tasks, particularly access
control.

Definition of host groups

A host group is an entity that contains a set of IdM hosts with common access control rules and other
characteristics. For example, you can define host groups based on company departments, physical
locations, or access control requirements.

A host group in IdM can include:

IdM servers and clients

Other IdM host groups

Host groups created by default

By default, the IdM server creates the host group ipaservers for all IdM server hosts.

Direct and indirect group members

Group attributes in IdM apply to both direct and indirect members: when host group B is a member of
host group A, all members of host group B are considered indirect members of host group A.

45.2. VIEWING IDM HOST GROUPS USING THE CLI

Follow this procedure to view IdM host groups using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

386

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

1. Find all host groups using the ipa hostgroup-find command.

$ ipa hostgroup-find

1 hostgroup matched

 Host-group: ipaservers
 Description: IPA server hosts

Number of entries returned 1

To display all attributes of a host group, add the --all option. For example:

$ ipa hostgroup-find --all

1 hostgroup matched

 dn: cn=ipaservers,cn=hostgroups,cn=accounts,dc=idm,dc=local
 Host-group: ipaservers
 Description: IPA server hosts
 Member hosts: xxx.xxx.xxx.xxx
 ipauniqueid: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
 objectclass: top, groupOfNames, nestedGroup, ipaobject, ipahostgroup

Number of entries returned 1

45.3. CREATING IDM HOST GROUPS USING THE CLI

Follow this procedure to create IdM host groups using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Add a host group using the ipa hostgroup-add command.
For example, to create an IdM host group named group_name and give it a description:

$ ipa hostgroup-add --desc 'My new host group' group_name

Added hostgroup "group_name"

 Host-group: group_name
 Description: My new host group

45.4. DELETING IDM HOST GROUPS USING THE CLI

CHAPTER 45. MANAGING HOST GROUPS USING THE IDM CLI

387

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Follow this procedure to delete IdM host groups using the command-line interface (CLI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Procedure

1. Delete a host group using the ipa hostgroup-del command.
For example, to delete the IdM host group named group_name:

$ ipa hostgroup-del group_name

Deleted hostgroup "group_name"

NOTE

Removing a group does not delete the group members from IdM.

45.5. ADDING IDM HOST GROUP MEMBERS USING THE CLI

You can add hosts as well as host groups as members to an IdM host group using a single command.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Optional. Use the ipa hostgroup-find command to find hosts and host groups.

Procedure

1. To add a member to a host group, use the ipa hostgroup-add-member and provide the
relevant information. You can specify the type of member to add using these options:

Use the --hosts option to add one or more hosts to an IdM host group.
For example, to add the host named example_member to the group named group_name:

$ ipa hostgroup-add-member group_name --hosts example_member
Host-group: group_name
Description: My host group
Member hosts: example_member

Number of members added 1

Use the --hostgroups option to add one or more host groups to an IdM host group.
For example, to add the host group named nested_group to the group named group_name:

$ ipa hostgroup-add-member group_name --hostgroups nested_group

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

388

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Host-group: group_name
Description: My host group
Member host-groups: nested_group

Number of members added 1

You can add multiple hosts and multiple host groups to an IdM host group in one single
command using the following syntax:

$ ipa hostgroup-add-member group_name --hosts={host1,host2} --hostgroups=
{group1,group2}

IMPORTANT

When adding a host group as a member of another host group, do not create recursive
groups. For example, if Group A is a member of Group B, do not add Group B as a
member of Group A. Recursive groups can cause unpredictable behavior.

45.6. REMOVING IDM HOST GROUP MEMBERS USING THE CLI

You can remove hosts as well as host groups from an IdM host group using a single command.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

Optional. Use the ipa hostgroup-find command to confirm that the group includes the member
you want to remove.

Procedure

1. To remove a host group member, use the ipa hostgroup-remove-member command and
provide the relevant information. You can specify the type of member to remove using these
options:

Use the --hosts option to remove one or more hosts from an IdM host group.
For example, to remove the host named example_member from the group named
group_name:

$ ipa hostgroup-remove-member group_name --hosts example_member
Host-group: group_name
Description: My host group

Number of members removed 1

Use the --hostgroups option to remove one or more host groups from an IdM host group.
For example, to remove the host group named nested_group from the group named
group_name:

$ ipa hostgroup-remove-member group_name --hostgroups example_member

CHAPTER 45. MANAGING HOST GROUPS USING THE IDM CLI

389

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

Host-group: group_name
Description: My host group

Number of members removed 1

NOTE

Removing a group does not delete the group members from IdM.

You can remove multiple hosts and multiple host groups from an IdM host group in one single
command using the following syntax:

$ ipa hostgroup-remove-member group_name --hosts={host1,host2} --hostgroups=
{group1,group2}

45.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE CLI

You can add hosts as well as host groups as member managers to an IdM host group using a single
command. Member managers can add hosts or host groups to IdM host groups but cannot change the
attributes of a host group.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

You must have the name of the host or host group you are adding as member managers and the
name of the host group you want them to manage.

Procedure

1. Optional. Use the ipa hostgroup-find command to find hosts and host groups.

2. To add a member manager to a host group, use the ipa hostgroup-add-member-manager.
For example, to add the user named example_member as a member manager to the group
named group_name:

$ ipa hostgroup-add-member-manager group_name --user example_member
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Member of netgroups: group_name
Membership managed by users: example_member

Number of members added 1

3. Use the --groups option to add one or more host groups as a member manager to an IdM host
group.
For example, to add the host group named admin_group as a member manager to the group
named group_name:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

390

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

$ ipa hostgroup-add-member-manager group_name --groups admin_group
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Member of netgroups: group_name
Membership managed by groups: admin_group
Membership managed by users: example_member

Number of members added 1

NOTE

After you add a member manager to a host group, the update may take some time to
spread to all clients in your Identity Management environment.

Verification steps

Using the ipa group-show command to verify the host user and host group were added as
member managers.

$ ipa hostgroup-show group_name
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Membership managed by groups: admin_group
Membership managed by users: example_member

Additional resources

See ipa hostgroup-add-member-manager --help for more details.

See ipa hostgroup-show --help for more details.

45.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE
CLI

You can remove hosts as well as host groups as member managers from an IdM host group using a single
command. Member managers can remove hosts group member managers from IdM host groups but
cannot change the attributes of a host group.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

An active Kerberos ticket. For details, see Using kinit to log in to IdM manually .

You must have the name of the existing member manager host group you are removing and the
name of the host group they are managing.

Procedure

1. Optional. Use the ipa hostgroup-find command to find hosts and host groups.

CHAPTER 45. MANAGING HOST GROUPS USING THE IDM CLI

391

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-from-the-command-line_configuring-and-managing-idm#using-kinit-to-log-in-to-ipa_logging-in-to-ipa-from-the-command-line

2. To remove a member manager from a host group, use the ipa hostgroup-remove-member-
manager command.
For example, to remove the user named example_member as a member manager from the
group named group_name:

$ ipa hostgroup-remove-member-manager group_name --user example_member
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Member of netgroups: group_name
Membership managed by groups: nested_group

Number of members removed 1

3. Use the --groups option to remove one or more host groups as a member manager from an IdM
host group.
For example, to remove the host group named nested_group as a member manager from the
group named group_name:

$ ipa hostgroup-remove-member-manager group_name --groups nested_group
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins
Member of netgroups: group_name

Number of members removed 1

NOTE

After you remove a member manager from a host group, the update may take some time
to spread to all clients in your Identity Management environment.

Verification steps

Use the ipa group-show command to verify that the host user and host group were removed as
member managers.

$ ipa hostgroup-show group_name
Host-group: group_name
Member hosts: server.idm.example.com
Member host-groups: project_admins

Additional resources

See ipa hostgroup-remove-member-manager --help for more details.

See ipa hostgroup-show --help for more details.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

392

CHAPTER 46. MANAGING HOST GROUPS USING THE IDM
WEB UI

Learn more about how to manage host groups and their members in the Web interface (Web UI) by
using the following operations:

Viewing host groups and their members

Creating host groups

Deleting host groups

Adding host group members

Removing host group members

Adding host group member managers

Removing host group member managers

46.1. HOST GROUPS IN IDM

IdM host groups can be used to centralize control over important management tasks, particularly access
control.

Definition of host groups

A host group is an entity that contains a set of IdM hosts with common access control rules and other
characteristics. For example, you can define host groups based on company departments, physical
locations, or access control requirements.

A host group in IdM can include:

IdM servers and clients

Other IdM host groups

Host groups created by default

By default, the IdM server creates the host group ipaservers for all IdM server hosts.

Direct and indirect group members

Group attributes in IdM apply to both direct and indirect members: when host group B is a member of
host group A, all members of host group B are considered indirect members of host group A.

46.2. VIEWING HOST GROUPS IN THE IDM WEB UI

Follow this procedure to view IdM host groups using the Web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

CHAPTER 46. MANAGING HOST GROUPS USING THE IDM WEB UI

393

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Procedure

1. Click Identity → Groups, and select the Host Groups tab.

The page lists the existing host groups and their descriptions.

You can search for a specific host group.

2. Click on a group in the list to display the hosts that belong to this group. You can limit results to
direct or indirect members.

3. Select the Host Groups tab to display the host groups that belong to this group (nested host
groups). You can limit results to direct or indirect members.

46.3. CREATING HOST GROUPS IN THE IDM WEB UI

Follow this procedure to create IdM host groups using the Web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

394

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Click Identity → Groups, and select the Host Groups tab.

2. Click Add. The Add host group dialog appears.

3. Provide the information about the group: name (required) and description (optional).

4. Click Add to confirm.

46.4. DELETING HOST GROUPS IN THE IDM WEB UI

Follow this procedure to delete IdM host groups using the Web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Select the IdM host group to remove, and click Delete. A confirmation dialog appears.

3. Click Delete to confirm

NOTE

Removing a host group does not delete the group members from IdM.

46.5. ADDING HOST GROUP MEMBERS IN THE IDM WEB UI

CHAPTER 46. MANAGING HOST GROUPS USING THE IDM WEB UI

395

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Follow this procedure to add host group members in IdM using the web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Click the name of the group to which you want to add members.

3. Click the tab Hosts or Host groups depending on the type of members you want to add. The
corresponding dialog appears.

4. Select the hosts or host groups to add, and click the > arrow button to move them to the
Prospective column.

5. Click Add to confirm.

46.6. REMOVING HOST GROUP MEMBERS IN THE IDM WEB UI

Follow this procedure to remove host group members in IdM using the web interface (Web UI).

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Click the name of the group from which you want to remove members.

3. Click the tab Hosts or Host groups depending on the type of members you want to remove.

4. Select the check box next to the member you want to remove.

5. Click Delete. A confirmation dialog appears.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

396

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

6. Click Delete to confirm. The selected members are deleted.

46.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE
WEB UI

Follow this procedure to add users or user groups as host group member managers in IdM using the web
interface (Web UI). Member managers can add hosts group member managers to IdM host groups but
cannot change the attributes of a host group.

Prerequisites

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

You must have the name of the host group you are adding as member managers and the name
of the host group you want them to manage.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Click the name of the group to which you want to add member managers.

3. Click the member managers tab User Groups or Users depending on the type of member
managers you want to add. The corresponding dialog appears.

4. Click Add.

CHAPTER 46. MANAGING HOST GROUPS USING THE IDM WEB UI

397

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

5. Select the users or user groups to add, and click the > arrow button to move them to the
Prospective column.

6. Click Add to confirm.

NOTE

After you add a member manager to a host group, the update may take some time to
spread to all clients in your Identity Management environment.

Verification steps

On the Host Group dialog, verify the user group or user has been added to the member
managers list of groups or users.

46.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE
WEB UI

Follow this procedure to remove users or user groups as host group member managers in IdM using the
web interface (Web UI). Member managers can remove hosts group member managers from IdM host
groups but cannot change the attributes of a host group.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

398

Administrator privileges for managing IdM or User Administrator role.

You are logged-in to the IdM Web UI. For details, see Accessing the IdM Web UI in a web
browser.

You must have the name of the existing member manager host group you are removing and the
name of the host group they are managing.

Procedure

1. Click Identity → Groups and select the Host Groups tab.

2. Click the name of the group from which you want to remove member managers.

3. Click the member managers tab User Groups or Users depending on the type of member
managers you want to remove. The corresponding dialog appears.

4. Select the user or user groups to remove and click Delete.

5. Click Delete to confirm.

NOTE

After you remove a member manager from a host group, the update may take
some time to spread to all clients in your Identity Management environment.

Verification steps

On the Host Group dialog, verify the user group or user has been removed from the member
managers list of groups or users.

CHAPTER 46. MANAGING HOST GROUPS USING THE IDM WEB UI

399

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/accessing-the-ipa-web-ui-in-a-web-browser_configuring-and-managing-idm

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

400

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE
PLAYBOOKS

To learn more about host groups in Identity Management (IdM) and using Ansible to perform operations
involving host groups in Identity Management (IdM), see the following:

Host groups in IdM

Ensuring the presence of IdM host groups

Ensuring the presence of hosts in IdM host groups

Nesting IdM host groups

Ensuring the presence of member managers in IdM host groups

Ensuring the absence of hosts from IdM host groups

Ensuring the absence of nested host groups from IdM host groups

Ensuring the absence of member managers from IdM host groups

47.1. HOST GROUPS IN IDM

IdM host groups can be used to centralize control over important management tasks, particularly access
control.

Definition of host groups

A host group is an entity that contains a set of IdM hosts with common access control rules and other
characteristics. For example, you can define host groups based on company departments, physical
locations, or access control requirements.

A host group in IdM can include:

IdM servers and clients

Other IdM host groups

Host groups created by default

By default, the IdM server creates the host group ipaservers for all IdM server hosts.

Direct and indirect group members

Group attributes in IdM apply to both direct and indirect members: when host group B is a member of
host group A, all members of host group B are considered indirect members of host group A.

47.2. ENSURING THE PRESENCE OF IDM HOST GROUPS USING
ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of host groups in Identity Management (IdM) using
Ansible playbooks.

NOTE

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

401

NOTE

Without Ansible, host group entries are created in IdM using the ipa hostgroup-add
command. The result of adding a host group to IdM is the state of the host group being
present in IdM. Because of the Ansible reliance on idempotence, to add a host group to
IdM using Ansible, you must create a playbook in which you define the state of the host
group as present: state: present.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. For example, to
ensure the presence of a host group named databases, specify name: databases in the -
ipahostgroup task. To simplify this step, you can copy and modify the example in the
/usr/share/doc/ansible-freeipa/playbooks/user/ensure-hostgroup-is-present.yml file.

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure host-group databases is present
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 state: present

In the playbook, state: present signifies a request to add the host group to IdM unless it already
exists there.

3. Run the playbook:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

402

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
hostgroup-is-present.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group whose presence in IdM you wanted to ensure:

$ ipa hostgroup-show databases
 Host-group: databases

The databases host group exists in IdM.

47.3. ENSURING THE PRESENCE OF HOSTS IN IDM HOST GROUPS
USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of hosts in host groups in Identity Management (IdM)
using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The hosts you want to reference in your Ansible playbook exist in IdM. For details, see Ensuring
the presence of an IdM host entry using Ansible playbooks.

The host groups you reference from the Ansible playbook file have been added to IdM. For
details, see Ensuring the presence of IdM host groups using Ansible playbooks .

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

403

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host information. Specify the name of the
host group using the name parameter of the ipahostgroup variable. Specify the name of the
host with the host parameter of the ipahostgroup variable. To simplify this step, you can copy
and modify the examples in the /usr/share/doc/ansible-
freeipa/playbooks/hostgroup/ensure-hosts-and-hostgroups-are-present-in-hostgroup.yml
file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure host-group databases is present
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 host:
 - db.idm.example.com
 action: member

This playbook adds the db.idm.example.com host to the databases host group. The action:
member line indicates that when the playbook is run, no attempt is made to add the databases
group itself. Instead, only an attempt is made to add db.idm.example.com to databases.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-present-in-hostgroup.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about a host group to see which hosts are present in it:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

404

$ ipa hostgroup-show databases
 Host-group: databases
 Member hosts: db.idm.example.com

The db.idm.example.com host is present as a member of the databases host group.

47.4. NESTING IDM HOST GROUPS USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the presence of nested host groups in Identity Management (IdM) host
groups using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The host groups you reference from the Ansible playbook file exist in IdM. For details, see
Ensuring the presence of IdM host groups using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. To ensure that a
nested host group A exists in a host group B: in the Ansible playbook, specify, among the -
ipahostgroup variables, the name of the host group B using the name variable. Specify the
name of the nested hostgroup A with the hostgroup variable. To simplify this step, you can copy
and modify the examples in the /usr/share/doc/ansible-
freeipa/playbooks/hostgroup/ensure-hosts-and-hostgroups-are-present-in-hostgroup.yml
file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

405

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 # Ensure hosts and hostgroups are present in existing databases hostgroup
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 hostgroup:
 - mysql-server
 - oracle-server
 action: member

This Ansible playbook ensures the presence of the myqsl-server and oracle-server host groups
in the databases host group. The action: member line indicates that when the playbook is run,
no attempt is made to add the databases group itself to IdM.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-present-in-hostgroup.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group in which nested host groups are present:

$ ipa hostgroup-show databases
 Host-group: databases
 Member hosts: db.idm.example.com
 Member host-groups: mysql-server, oracle-server

The mysql-server and oracle-server host groups exist in the databases host group.

47.5. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM
HOST GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the presence of member managers in IdM hosts and host
groups using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

406

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the host or host group you are adding as member managers and the
name of the host group you want them to manage.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host and host group member management
information:

- name: Playbook to handle host group membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure member manager user example_member is present for group_name
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_name
 membermanager_user: example_member

 - name: Ensure member manager group project_admins is present for group_name
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_name
 membermanager_group: project_admins

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/add-member-
managers-host-groups.yml

Verification steps

You can verify if the group_name group contains example_member and project_admins as member
managers by using the ipa group-show command:

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

407

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about testhostgroup:

ipaserver]$ ipa hostgroup-show group_name
 Host-group: group_name
 Member hosts: server.idm.example.com
 Member host-groups: testhostgroup2
 Membership managed by groups: project_admins
 Membership managed by users: example_member

Additional resources

See ipa hostgroup-add-member-manager --help.

See the ipa man page.

47.6. ENSURING THE ABSENCE OF HOSTS FROM IDM HOST GROUPS
USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of hosts from host groups in Identity Management (IdM)
using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The hosts you want to reference in your Ansible playbook exist in IdM. For details, see Ensuring
the presence of an IdM host entry using Ansible playbooks.

The host groups you reference from the Ansible playbook file exist in IdM. For details, see
Ensuring the presence of IdM host groups using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

408

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host and host group information. Specify the
name of the host group using the name parameter of the ipahostgroup variable. Specify the
name of the host whose absence from the host group you want to ensure using the host
parameter of the ipahostgroup variable. To simplify this step, you can copy and modify the
examples in the /usr/share/doc/ansible-freeipa/playbooks/hostgroup/ensure-hosts-and-
hostgroups-are-absent-in-hostgroup.yml file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure host-group databases is absent
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 host:
 - db.idm.example.com
 action: member
 state: absent

This playbook ensures the absence of the db.idm.example.com host from the databases host
group. The action: member line indicates that when the playbook is run, no attempt is made to
remove the databases group itself.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-absent-in-hostgroup.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group and the hosts it contains:

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

409

$ ipa hostgroup-show databases
 Host-group: databases
 Member host-groups: mysql-server, oracle-server

The db.idm.example.com host does not exist in the databases host group.

47.7. ENSURING THE ABSENCE OF NESTED HOST GROUPS FROM IDM
HOST GROUPS USING ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of nested host groups from outer host groups in
Identity Management (IdM) using Ansible playbooks.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The host groups you reference from the Ansible playbook file exist in IdM. For details, see
Ensuring the presence of IdM host groups using Ansible playbooks .

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. Specify, among the -
ipahostgroup variables, the name of the outer host group using the name variable. Specify the
name of the nested hostgroup with the hostgroup variable. To simplify this step, you can copy
and modify the examples in the /usr/share/doc/ansible-
freeipa/playbooks/hostgroup/ensure-hosts-and-hostgroups-are-absent-in-hostgroup.yml
file:

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

410

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 tasks:
 # Ensure hosts and hostgroups are absent in existing databases hostgroup
 - ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 hostgroup:
 - mysql-server
 - oracle-server
 action: member
 state: absent

This playbook makes sure that the mysql-server and oracle-server host groups are absent
from the databases host group. The action: member line indicates that when the playbook is
run, no attempt is made to ensure the databases group itself is deleted from IdM.

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-hosts-
or-hostgroups-are-absent-in-hostgroup.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group from which nested host groups should be absent:

$ ipa hostgroup-show databases
 Host-group: databases

The output confirms that the mysql-server and oracle-server nested host groups are absent from the
outer databases host group.

47.8. ENSURING THE ABSENCE OF IDM HOST GROUPS USING
ANSIBLE PLAYBOOKS

Follow this procedure to ensure the absence of host groups in Identity Management (IdM) using Ansible
playbooks.

NOTE

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

411

NOTE

Without Ansible, host group entries are removed from IdM using the ipa hostgroup-del
command. The result of removing a host group from IdM is the state of the host group
being absent from IdM. Because of the Ansible reliance on idempotence, to remove a
host group from IdM using Ansible, you must create a playbook in which you define the
state of the host group as absent: state: absent.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it with the list of
IdM servers to target:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host group information. To simplify this step,
you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/user/ensure-hostgroup-is-absent.yml file.

- name: Playbook to handle hostgroups
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - Ensure host-group databases is absent
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: databases
 state: absent

This playbook ensures the absence of the databases host group from IdM. The state: absent
means a request to delete the host group from IdM unless it is already deleted.

3. Run the playbook:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

412

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
hostgroup-is-absent.yml

Verification steps

1. Log into ipaserver as admin:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Request a Kerberos ticket for admin:

$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

3. Display information about the host group whose absence you ensured:

$ ipa hostgroup-show databases
ipa: ERROR: databases: host group not found

The databases host group does not exist in IdM.

47.9. ENSURING THE ABSENCE OF MEMBER MANAGERS FROM IDM
HOST GROUPS USING ANSIBLE PLAYBOOKS

The following procedure describes ensuring the absence of member managers in IdM hosts and host
groups using an Ansible playbook.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You must have the name of the user or user group you are removing as member managers and
the name of the host group they are managing.

Procedure

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

413

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create an Ansible playbook file with the necessary host and host group member management
information:

- name: Playbook to handle host group membership management
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure member manager host and host group members are absent for
group_name
 ipahostgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: group_name
 membermanager_user: example_member
 membermanager_group: project_admins
 action: member
 state: absent

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
member-managers-host-groups-are-absent.yml

Verification steps

You can verify if the group_name group does not contain example_member or project_admins as
member managers by using the ipa group-show command:

1. Log into ipaserver as administrator:

$ ssh admin@server.idm.example.com
Password:
[admin@server /]$

2. Display information about testhostgroup:

ipaserver]$ ipa hostgroup-show group_name
 Host-group: group_name
 Member hosts: server.idm.example.com
 Member host-groups: testhostgroup2

Additional resources

See ipa hostgroup-add-member-manager --help.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

414

See the ipa man page.

CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS

415

CHAPTER 48. MANAGING KERBEROS PRINCIPAL ALIASES
FOR USERS, HOSTS, AND SERVICES

When you create a new user, host, or service, a Kerberos principal in the following format is automatically
added:

user_name@REALM

host/host_name@REALM

service_name/host_name@REALM

Administrators can enable users, hosts, or services to authenticate against Kerberos applications using
an alias. This is beneficial in the following scenarios:

The user name changed and the user wants to log in using both the previous and new user
name.

The user needs to log in using the email address even if the IdM Kerberos realm differs from the
email domain.

Note that if you rename a user, the object keeps the aliases and the previous canonical principal name.

48.1. ADDING A KERBEROS PRINCIPAL ALIAS

You can associate alias names with existing Kerberos principals in an Identity Management (IdM)
environment. This enhances security and simplifies authentication processes within the IdM domain.

Procedure

To add the alias name useralias to the account user, enter:

ipa user-add-principal <user> <useralias>

Added new aliases to user "user"

 User login: user
 Principal alias: user@IDM.EXAMPLE.COM, useralias@IDM.EXAMPLE.COM

To add an alias to a host or service, use the ipa host-add-principal or ipa service-add-
principal command respectively instead.

If you use an alias name to authenticate, use the -C option with the kinit command:

kinit -C <useralias>
Password for <user>@IDM.EXAMPLE.COM:

48.2. REMOVING A KERBEROS PRINCIPAL ALIAS

You can remove alias names associated with Kerberos principals in their Identity Management (IdM)
environment.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

416

To remove the alias useralias from the account user, enter:

ipa user-remove-principal <user> <useralias>

Removed aliases from user "user"

 User login: user
 Principal alias: user@IDM.EXAMPLE.COM

To remove an alias from a host or service, use the ipa host-remove-principal or ipa service-
remove-principal command respectively instead.

Note that you cannot remove the canonical principal name:

ipa user-show <user>
 User login: user
 ...
 Principal name: user@IDM.EXAMPLE.COM
 ...

ipa user-remove-principal user user
ipa: ERROR: invalid 'krbprincipalname': at least one value equal to the canonical principal
name must be present

48.3. ADDING A KERBEROS ENTERPRISE PRINCIPAL ALIAS

You can associate enterprise principal alias names with existing Kerberos enterprise principals in an
Identity Management (IdM) environment. Enterprise principal aliases can use any domain suffix except
for user principal name (UPN) suffixes, NetBIOS names, or domain names of trusted Active Directory
forest domains.

NOTE

When adding or removing enterprise principal aliases, escape the @ symbol using two
backslashes (\\). Otherwise, the shell interprets the @ symbol as part of the Kerberos
realm name and leads to the following error:

ipa: ERROR: The realm for the principal does not match the realm for this IPA server

Procedure

To add the enterprise principal alias user@example.com to the user account:

ipa user-add-principal <user> <user\\@example.com>

Added new aliases to user "user"

 User login: user
 Principal alias: user@IDM.EXAMPLE.COM, user\@example.com@IDM.EXAMPLE.COM

To add an enterprise alias to a host or service, use the ipa host-add-principal or ipa service-
add-principal command respectively instead.

If you use an enterprise principal name to authenticate, use the -E option with the kinit

CHAPTER 48. MANAGING KERBEROS PRINCIPAL ALIASES FOR USERS, HOSTS, AND SERVICES

417

If you use an enterprise principal name to authenticate, use the -E option with the kinit
command:

kinit -E <user@example.com>
Password for user\@example.com@IDM.EXAMPLE.COM:

48.4. REMOVING A KERBEROS ENTERPRISE PRINCIPAL ALIAS

You can remove enterprise principal alias names associated with Kerberos enterprise principals in their
Identity Management (IdM) environment.

NOTE

When adding or removing enterprise principal aliases, escape the @ symbol using two
backslashes (\\). Otherwise, the shell interprets the @ symbol as part of the Kerberos
realm name and leads to the following error:

ipa: ERROR: The realm for the principal does not match the realm for this IPA server

Procedure

To remove the enterprise principal alias user@example.com from the account user, enter:

ipa user-remove-principal <user> <user\\@example.com>

Removed aliases from user "user"

 User login: user
 Principal alias: user@IDM.EXAMPLE.COM

To remove an alias from a host or service, use the ipa host-remove-principal or ipa service-
remove-principal command respectively instead.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

418

CHAPTER 49. STRENGTHENING KERBEROS SECURITY WITH
PAC INFORMATION

You can use Identity Management (IdM) with Privilege Attribute Certificate (PAC) information by
default since RHEL 8.5. Also, you can enable Security Identifiers (SIDs) in IdM deployments that were
installed before RHEL 8.5.

49.1. PRIVILEGE ATTRIBUTE CERTIFICATE (PAC) USE IN IDM

To increase security, RHEL Identity Management (IdM) now issues Kerberos tickets with Privilege
Attribute Certificate (PAC) information by default in new deployments. A PAC has rich information
about a Kerberos principal, including its Security Identifier (SID), group memberships, and home
directory information.

SIDs, which Microsoft Active Directory (AD) uses by default, are globally unique identifiers that are
never reused. SIDs express multiple namespaces: each domain has a SID, which is a prefix in the SID of
each object.

Starting from RHEL 8.5, when you install an IdM server or replica, the installation script generates SIDs
for users and groups by default. This allows IdM to work with PAC data. If you installed IdM before RHEL
8.5, and you have not configured a trust with an AD domain, you may not have generated SIDs for your
IdM objects. For more information about generating SIDs for your IdM objects, see Enabling Security
Identifiers (SIDs) in IdM.

By evaluating PAC information in Kerberos tickets, you can control resource access with much greater
detail. For example, the Administrator account in one domain has a uniquely different SID than the
Administrator account in any other domain. In an IdM environment with a trust to an AD domain, you can
set access controls based on globally unique SIDs rather than simple user names or UIDs that might
repeat in different locations, such as every Linux root account having a UID of 0.

49.2. ENABLING SECURITY IDENTIFIERS (SIDS) IN IDM

If you installed IdM before RHEL 8.5, and you have not configured a trust with an AD domain, you might
not have generated Security Identifiers (SIDs) for your IdM objects. This is because, before, the only way
to generate SIDs was to run the ipa-adtrust-install command to add the Trust Controller role to an
IdM server.

As of RHEL 8.6, Kerberos in IdM requires that your IdM objects have SIDs, which are necessary for
security based on Privilege Access Certificate (PAC) information.

Prerequisites

You installed IdM before RHEL 8.5.

You have not run the ipa-sidgen task, which is part of configuring a trust with an Active
Directory domain.

You can authenticate as the IdM admin account.

Procedure

Enable SID usage and trigger the SIDgen task to generate SIDs for existing users and groups.
This task might be resource-intensive:

CHAPTER 49. STRENGTHENING KERBEROS SECURITY WITH PAC INFORMATION

419

[root@server ~]# ipa config-mod --enable-sid --add-sids

Verification

Verify that the IdM admin user account entry has an ipantsecurityidentifier attribute with a SID
that ends with -500, the SID reserved for the domain administrator:

[root@server ~]# ipa user-show admin --all | grep ipantsecurityidentifier
 ipantsecurityidentifier: S-1-5-21-2633809701-976279387-419745629-500

Additional resources

Privilege Attribute Certificate (PAC) use in IdM

How to solve users unable to authenticate to IPA/IDM with PAC issues -
S4U2PROXY_EVIDENCE_TKT_WITHOUT_PAC error KCS solution

Trust Controllers and Trust Agents

Integrate SID configuration into base IPA installers

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

420

https://access.redhat.com/solutions/7052703
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-a-cross-forest-trust-between-idm-and-ad_planning-identity-management#trust-controllers-and-trust-agents_planning-a-cross-forest-trust-between-idm-and-ad
https://freeipa.readthedocs.io/en/latest/designs/adtrust/sidconfig.html

CHAPTER 50. MANAGING KERBEROS TICKET POLICIES
Kerberos ticket policies in Identity Management (IdM) set restrictions on Kerberos ticket access,
duration, and renewal. You can configure Kerberos ticket policies for the Key Distribution Center (KDC)
running on your IdM server.

The following concepts and operations are performed when managing Kerberos ticket policies:

The role of the IdM KDC

IdM Kerberos ticket policy types

Kerberos authentication indicators

Enforcing authentication indicators for an IdM service

Configuring the global ticket lifecycle policy

Configuring global ticket policies per authentication indicator

Configuring the default ticket policy for a user

Configuring individual authentication indicator ticket policies for a user

Authentication indicator options for the krbtpolicy-mod command

50.1. THE ROLE OF THE IDM KDC

Identity Management’s authentication mechanisms use the Kerberos infrastructure established by the
Key Distribution Center (KDC). The KDC is the trusted authority that stores credential information and
ensures the authenticity of data originating from entities within the IdM network.

Each IdM user, service, and host acts as a Kerberos client and is identified by a unique Kerberos principal:

For users: identifier@REALM, such as admin@EXAMPLE.COM

For services: service/fully-qualified-hostname@REALM, such as
http/server.example.com@EXAMPLE.COM

For hosts: host/fully-qualified-hostname@REALM, such as
host/client.example.com@EXAMPLE.COM

The following image is a simplification of the communication between a Kerberos client, the KDC, and a
Kerberized application that the client wants to communicate with.

CHAPTER 50. MANAGING KERBEROS TICKET POLICIES

421

1. A Kerberos client identifies itself to the KDC by authenticating as a Kerberos principal. For
example, an IdM user performs kinit username and provides their password.

2. The KDC checks for the principal in its database, authenticates the client, and evaluates
Kerberos ticket policies to determine whether to grant the request.

3. The KDC issues the client a ticket-granting ticket (TGT) with a lifecycle and authentication
indicators according to the appropriate ticket policy.

4. With the TGT, the client requests a service ticket from the KDC to communicate with a
Kerberized service on a target host.

5. The KDC checks if the client’s TGT is still valid, and evaluates the service ticket request against
ticket policies.

6. The KDC issues the client a service ticket.

7. With the service ticket, the client can initiate encrypted communication with the service on the
target host.

50.2. IDM KERBEROS TICKET POLICY TYPES

IdM Kerberos ticket policies implement the following ticket policy types:

Connection policy

To protect Kerberized services with different levels of security, you can define connection policies to
enforce rules based on which pre-authentication mechanism a client used to retrieve a ticket-
granting ticket (TGT).
For example, you can require smart card authentication to connect to client1.example.com, and
require two-factor authentication to access the testservice application on client2.example.com.

To enforce connection policies, associate authentication indicators with services. Only clients that

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

422

To enforce connection policies, associate authentication indicators with services. Only clients that
have the required authentication indicators in their service ticket requests are able to access those
services. For more information, see Kerberos authentication indicators.

Ticket lifecycle policy

Each Kerberos ticket has a lifetime and a potential renewal age: you can renew a ticket before it
reaches its maximum lifetime, but not after it exceeds its maximum renewal age.
The default global ticket lifetime is one day (86400 seconds) and the default global maximum
renewal age is one week (604800 seconds). To adjust these global values, see Configuring the
global ticket lifecycle policy.

You can also define your own ticket lifecycle policies:

To configure different global ticket lifecycle values for each authentication indicator, see
Configuring global ticket policies per authentication indicator .

To define ticket lifecycle values for a single user that apply regardless of the authentication
method used, see Configuring the default ticket policy for a user .

To define individual ticket lifecycle values for each authentication indicator that only apply to
a single user, see Configuring individual authentication indicator ticket policies for a user .

50.3. KERBEROS AUTHENTICATION INDICATORS

The Kerberos Key Distribution Center (KDC) attaches authentication indicators to a ticket-granting
ticket (TGT) based on which pre-authentication mechanism the client used to prove its identity:

otp

two-factor authentication (password + One-Time Password)

radius

RADIUS authentication (commonly for 802.1x authentication)

pkinit

PKINIT, smart card, or certificate authentication

hardened

hardened passwords (SPAKE or FAST)[1]

The KDC then attaches the authentication indicators from the TGT to any service ticket requests that
stem from it. The KDC enforces policies such as service access control, maximum ticket lifetime, and
maximum renewable age based on the authentication indicators.

Authentication indicators and IdM services

If you associate a service or a host with an authentication indicator, only clients that used the
corresponding authentication mechanism to obtain a TGT will be able to access it. The KDC, not the
application or service, checks for authentication indicators in service ticket requests, and grants or
denies requests based on Kerberos connection policies.

For example, to require two-factor authentication to connect to a Virtual Private Network (VPN),
associate the otp authentication indicator with that service. Only users who used a One-Time password
to obtain their initial TGT from the KDC will be able to log in to the VPN:

Figure 50.1. Example of a VPN service requiring the otp authentication indicator

CHAPTER 50. MANAGING KERBEROS TICKET POLICIES

423

Figure 50.1. Example of a VPN service requiring the otp authentication indicator

If a service or a host has no authentication indicators assigned to it, it will accept tickets authenticated
by any mechanism.

Additional resources

Enforcing authentication indicators for an IdM service

Enabling GSSAPI authentication and enforcing Kerberos authentication indicators for sudo on
an IdM client

50.4. ENFORCING AUTHENTICATION INDICATORS FOR AN IDM
SERVICE

The authentication mechanisms supported by Identity Management (IdM) vary in their authentication
strength. For example, obtaining the initial Kerberos ticket-granting ticket (TGT) using a one-time
password (OTP) in combination with a standard password is considered more secure than
authentication using only a standard password.

By associating authentication indicators with a particular IdM service, you can, as an IdM administrator,
configure the service so that only users who used those specific pre-authentication mechanisms to
obtain their initial ticket-granting ticket (TGT) will be able to access the service.

In this way, you can configure different IdM services so that:

Only users who used a stronger authentication method to obtain their initial TGT, such as a one-
time password (OTP), can access services critical to security, such as a VPN.

Users who used simpler authentication methods to obtain their initial TGT, such as a password,
can only access non-critical services, such as local logins.

Figure 50.2. Example of authenticating using different technologies

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

424

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/granting-sudo-access-to-an-idm-user-on-an-idm-client_configuring-and-managing-idm#proc_enabling-gssapi-authentication-and-enforcing-kerberos-authentication-indicators-for-sudo-on-an-idm-client_granting-sudo-access-to-an-IdM-user-on-an-IdM-client

Figure 50.2. Example of authenticating using different technologies

This procedure describes creating an IdM service and configuring it to require particular Kerberos
authentication indicators from incoming service ticket requests.

50.4.1. Creating an IdM service entry and its Kerberos keytab

Adding an IdM service entry to IdM for a service running on an IdM host creates a corresponding
Kerberos principal, and allows the service to request an SSL certificate, a Kerberos keytab, or both.

The following procedure describes creating an IdM service entry and generating an associated Kerberos
keytab for encrypting communication with that service.

Prerequisites

Your service can store a Kerberos principal, an SSL certificate, or both.

Procedure

1. Add an IdM service with the ipa service-add command to create a Kerberos principal
associated with it. For example, to create the IdM service entry for the testservice application
that runs on host client.example.com:

[root@client ~]# ipa service-add testservice/client.example.com

Modified service "testservice/client.example.com@EXAMPLE.COM"

 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Managed by: client.example.com

2. Generate and store a Kerberos keytab for the service on the client.

[root@client ~]# ipa-getkeytab -k /etc/testservice.keytab -p
testservice/client.example.com
Keytab successfully retrieved and stored in: /etc/testservice.keytab

CHAPTER 50. MANAGING KERBEROS TICKET POLICIES

425

Verification steps

1. Display information about an IdM service with the ipa service-show command.

[root@server ~]# ipa service-show testservice/client.example.com
 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Keytab: True
 Managed by: client.example.com

2. Display the contents of the service’s Kerberos keytab with the klist command.

[root@server etc]# klist -ekt /etc/testservice.keytab
Keytab name: FILE:/etc/testservice.keytab
KVNO Timestamp Principal
---- ------------------- --
 2 04/01/2020 17:52:55 testservice/client.example.com@EXAMPLE.COM (aes256-cts-
hmac-sha1-96)
 2 04/01/2020 17:52:55 testservice/client.example.com@EXAMPLE.COM (aes128-cts-
hmac-sha1-96)
 2 04/01/2020 17:52:55 testservice/client.example.com@EXAMPLE.COM (camellia128-cts-
cmac)
 2 04/01/2020 17:52:55 testservice/client.example.com@EXAMPLE.COM (camellia256-cts-
cmac)

50.4.2. Associating authentication indicators with an IdM service using IdM CLI

As an Identity Management (IdM) administrator, you can configure a host or a service to require that a
service ticket presented by the client application contains a specific authentication indicator. For
example, you can ensure that only users who used a valid IdM two-factor authentication token with their
password when obtaining a Kerberos ticket-granting ticket (TGT) will be able to access that host or
service.

Follow this procedure to configure a service to require particular Kerberos authentication indicators
from incoming service ticket requests.

Prerequisites

You have created an IdM service entry for a service that runs on an IdM host. See Creating an
IdM service entry and its Kerberos keytab.

You have obtained the ticket-granting ticket of an administrative user in IdM.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

426

WARNING

Do not assign authentication indicators to internal IdM services. The following IdM
services cannot perform the interactive authentication steps required by PKINIT
and multi-factor authentication methods:

host/server.example.com@EXAMPLE.COM
HTTP/server.example.com@EXAMPLE.COM
ldap/server.example.com@EXAMPLE.COM
DNS/server.example.com@EXAMPLE.COM
cifs/server.example.com@EXAMPLE.COM

Procedure

Use the ipa service-mod command to specify one or more required authentication indicators
for a service, identified with the --auth-ind argument.

Authentication method --auth-ind value

Two-factor authentication otp

RADIUS authentication radius

PKINIT, smart card, or certificate authentication pkinit

Hardened passwords (SPAKE or FAST) hardened

For example, to require that a user was authenticated with smart card or OTP authentication to
retrieve a service ticket for the testservice principal on host client.example.com:

[root@server ~]# ipa service-mod testservice/client.example.com@EXAMPLE.COM --
auth-ind otp --auth-ind pkinit

Modified service "testservice/client.example.com@EXAMPLE.COM"

 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Authentication Indicators: otp, pkinit
 Managed by: client.example.com

NOTE

CHAPTER 50. MANAGING KERBEROS TICKET POLICIES

427

NOTE

To remove all authentication indicators from a service, provide an empty list of indicators:

[root@server ~]# ipa service-mod
testservice/client.example.com@EXAMPLE.COM --auth-ind ''
--
Modified service "testservice/client.example.com@EXAMPLE.COM"
--
 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Managed by: client.example.com

Verification steps

Display information about an IdM service, including the authentication indicators it requires, with
the ipa service-show command.

[root@server ~]# ipa service-show testservice/client.example.com
 Principal name: testservice/client.example.com@EXAMPLE.COM
 Principal alias: testservice/client.example.com@EXAMPLE.COM
 Authentication Indicators: otp, pkinit
 Keytab: True
 Managed by: client.example.com

Additional resources

Retrieving a Kerberos service ticket for an IdM service

Enabling GSSAPI authentication and enforcing Kerberos authentication indicators for sudo on
an IdM client

50.4.3. Associating authentication indicators with an IdM service using IdM Web UI

As an Identity Management (IdM) administrator, you can configure a host or a service to require a
service ticket presented by the client application to contain a specific authentication indicator. For
example, you can ensure that only users who used a valid IdM two-factor authentication token with their
password when obtaining a Kerberos ticket-granting ticket (TGT) will be able to access that host or
service.

Follow this procedure to use the IdM Web UI to configure a host or service to require particular Kerberos
authentication indicators from incoming ticket requests.

Prerequisites

You have logged in to the IdM Web UI as an administrative user.

Procedure

1. Select Identity → Hosts or Identity → Services.

2. Click the name of the required host or service.

3. Under Authentication indicators, select the required authentication method.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

428

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/granting-sudo-access-to-an-idm-user-on-an-idm-client_configuring-and-managing-idm#proc_enabling-gssapi-authentication-and-enforcing-kerberos-authentication-indicators-for-sudo-on-an-idm-client_granting-sudo-access-to-an-IdM-user-on-an-IdM-client

For example, selecting OTP ensures that only users who used a valid IdM two-factor
authentication token with their password when obtaining a Kerberos TGT will be able to
access the host or service.

If you select both OTP and RADIUS, then both users that used a valid IdM two-factor
authentication token with their password when obtaining a Kerberos TGT and users that
used the RADIUS server for obtaining their Kerberos TGT will be allowed access.

4. Click Save at the top of the page.

Additional resources

Retrieving a Kerberos service ticket for an IdM service

Enabling GSSAPI authentication and enforcing Kerberos authentication indicators for sudo on
an IdM client

50.4.4. Retrieving a Kerberos service ticket for an IdM service

The following procedure describes retrieving a Kerberos service ticket for an IdM service. You can use
this procedure to test Kerberos ticket policies, such as enforcing that certain Kerberos authentication
indicators are present in a ticket-granting ticket (TGT).

Prerequisites

If the service you are working with is not an internal IdM service, you have created a
corresponding IdM service entry for it. See Creating an IdM service entry and its Kerberos
keytab.

You have a Kerberos ticket-granting ticket (TGT).

Procedure

Use the kvno command with the -S option to retrieve a service ticket, and specify the name of
the IdM service and the fully-qualified domain name of the host that manages it.

[root@server ~]# kvno -S testservice client.example.com
testservice/client.example.com@EXAMPLE.COM: kvno = 1

NOTE

If you need to access an IdM service and your current ticket-granting ticket (TGT) does
not possess the required Kerberos authentication indicators associated with it, clear your
current Kerberos credentials cache with the kdestroy command and retrieve a new TGT:

[root@server ~]# kdestroy

For example, if you initially retrieved a TGT by authenticating with a password, and you
need to access an IdM service that has the pkinit authentication indicator associated with
it, destroy your current credentials cache and re-authenticate with a smart card. See
Kerberos authentication indicators.

Verification steps

CHAPTER 50. MANAGING KERBEROS TICKET POLICIES

429

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/granting-sudo-access-to-an-idm-user-on-an-idm-client_configuring-and-managing-idm#proc_enabling-gssapi-authentication-and-enforcing-kerberos-authentication-indicators-for-sudo-on-an-idm-client_granting-sudo-access-to-an-IdM-user-on-an-IdM-client

Use the klist command to verify that the service ticket is in the default Kerberos credentials
cache.

[root@server etc]# klist_
Ticket cache: KCM:1000
Default principal: admin@EXAMPLE.COM

Valid starting Expires Service principal
04/01/2020 12:52:42 04/02/2020 12:52:39 krbtgt/EXAMPLE.COM@EXAMPLE.COM
04/01/2020 12:54:07 04/02/2020 12:52:39
testservice/client.example.com@EXAMPLE.COM

50.4.5. Additional resources

See Kerberos authentication indicators.

50.5. CONFIGURING THE GLOBAL TICKET LIFECYCLE POLICY

The global ticket policy applies to all service tickets and to users that do not have any per-user ticket
policies defined.

The following procedure describes adjusting the maximum ticket lifetime and maximum ticket renewal
age for the global Kerberos ticket policy using the ipa krbtpolicy-mod command.

While using the ipa krbtpolicy-mod command, specify at least one of the following arguments:

--maxlife for the maximum ticket lifetime in seconds

--maxrenew for the maximum renewable age in seconds

Procedure

1. To modify the global ticket policy:

[root@server ~]# ipa krbtpolicy-mod --maxlife=$((8*60*60)) --maxrenew=$((24*60*60))
 Max life: 28800
 Max renew: 86400

In this example, the maximum lifetime is set to eight hours (8 * 60 minutes * 60 seconds) and
the maximum renewal age is set to one day (24 * 60 minutes * 60 seconds).

2. Optional: To reset the global Kerberos ticket policy to the default installation values:

[root@server ~]# ipa krbtpolicy-reset
 Max life: 86400
 Max renew: 604800

Verification steps

Display the global ticket policy:

[root@server ~]# ipa krbtpolicy-show
 Max life: 28800
 Max renew: 86640

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

430

Additional resources

See Configuring the default ticket policy for a user .

See Configuring individual authentication indicator ticket policies for a user .

50.6. CONFIGURING GLOBAL TICKET POLICIES PER
AUTHENTICATION INDICATOR

Follow this procedure to adjust the global maximum ticket lifetime and maximum renewable age for each
authentication indicator. These settings apply to users that do not have per-user ticket policies defined.

Use the ipa krbtpolicy-mod command to specify the global maximum lifetime or maximum renewable
age for Kerberos tickets depending on the authentication indicators attached to them.

Procedure

For example, to set the global two-factor ticket lifetime and renewal age values to one week,
and the global smart card ticket lifetime and renewal age values to two weeks:

[root@server ~]# ipa krbtpolicy-mod --otp-maxlife=604800 --otp-maxrenew=604800 --
pkinit-maxlife=172800 --pkinit-maxrenew=172800

Verification steps

Display the global ticket policy:

[root@server ~]# ipa krbtpolicy-show
 Max life: 86400
 OTP max life: 604800
 PKINIT max life: 172800
 Max renew: 604800
 OTP max renew: 604800
 PKINIT max renew: 172800

Notice that the OTP and PKINIT values are different from the global default Max life and Max
renew values.

Additional resources

See Authentication indicator options for the krbtpolicy-mod command.

See Configuring the default ticket policy for a user .

See Configuring individual authentication indicator ticket policies for a user .

50.7. CONFIGURING THE DEFAULT TICKET POLICY FOR A USER

You can define a unique Kerberos ticket policy that only applies to a single user. These per-user settings
override the global ticket policy, for all authentication indicators.

Use the ipa krbtpolicy-mod username command, and specify at least one of the following arguments:

CHAPTER 50. MANAGING KERBEROS TICKET POLICIES

431

--maxlife for the maximum ticket lifetime in seconds

--maxrenew for the maximum renewable age in seconds

Procedure

1. For example, to set the IdM admin user’s maximum ticket lifetime to two days and maximum
renewal age to two weeks:

[root@server ~]# ipa krbtpolicy-mod admin --maxlife=172800 --maxrenew=1209600
 Max life: 172800
 Max renew: 1209600

2. Optional: To reset the ticket policy for a user:

[root@server ~]# ipa krbtpolicy-reset admin

Verification steps

Display the effective Kerberos ticket policy that applies to a user:

[root@server ~]# ipa krbtpolicy-show admin
 Max life: 172800
 Max renew: 1209600

Additional resources

See Configuring the global ticket lifecycle policy .

See Configuring global ticket policies per authentication indicator .

50.8. CONFIGURING INDIVIDUAL AUTHENTICATION INDICATOR
TICKET POLICIES FOR A USER

As an administrator, you can define Kerberos ticket policies for a user that differ per authentication
indicator. For example, you can configure a policy to allow the IdM admin user to renew a ticket for two
days if it was obtained with OTP authentication, and a week if it was obtained with smart card
authentication.

These per-authentication indicator settings will override the user’s default ticket policy, the global
default ticket policy, and any global authentication indicator ticket policy.

Use the ipa krbtpolicy-mod username command to set custom maximum lifetime and maximum
renewable age values for a user’s Kerberos tickets depending on the authentication indicators attached
to them.

Procedure

1. For example, to allow the IdM admin user to renew a Kerberos ticket for two days if it was
obtained with One-Time Password authentication, set the --otp-maxrenew option:

[root@server ~]# ipa krbtpolicy-mod admin --otp-maxrenew=$((2*24*60*60))
 OTP max renew: 172800

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

432

2. Optional: To reset the ticket policy for a user:

[root@server ~]# ipa krbtpolicy-reset username

Verification steps

Display the effective Kerberos ticket policy that applies to a user:

[root@server ~]# ipa krbtpolicy-show admin
 Max life: 28800
 Max renew: 86640

Additional resources

See Authentication indicator options for the krbtpolicy-mod command.

See Configuring the default ticket policy for a user .

See Configuring the global ticket lifecycle policy .

See Configuring global ticket policies per authentication indicator .

50.9. AUTHENTICATION INDICATOR OPTIONS FOR THE KRBTPOLICY-MOD

COMMAND

Specify values for authentication indicators with the following arguments.

Table 50.1. Authentication indicator options for the krbtpolicy-mod command

Authentication indicator Argument for maximum lifetime Argument for maximum renewal
age

otp --otp-maxlife --otp-maxrenew

radius --radius-maxlife --radius-maxrenew

pkinit --pkinit-maxlife --pkinit-maxrenew

hardened --hardened-maxlife --hardened-maxrenew

[1] A hardened password is protected against brute-force password dictionary attacks by using Single-Party
Public-Key Authenticated Key Exchange (SPAKE) pre-authentication and/or Flexible Authentication via Secure
Tunneling (FAST) armoring.

CHAPTER 50. MANAGING KERBEROS TICKET POLICIES

433

CHAPTER 51. KERBEROS PKINIT AUTHENTICATION IN IDM
Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) is a preauthentication
mechanism for Kerberos. The Identity Management (IdM) server includes a mechanism for Kerberos
PKINIT authentication.

51.1. DEFAULT PKINIT CONFIGURATION

The default PKINIT configuration on your IdM servers depends on the certificate authority (CA)
configuration.

Table 51.1. Default PKINIT configuration in IdM

CA configuration PKINIT configuration

Without a CA, no external PKINIT certificate
provided

Local PKINIT: IdM only uses PKINIT for internal
purposes on servers.

Without a CA, external PKINIT certificate provided to
IdM

IdM configures PKINIT by using the external
Kerberos key distribution center (KDC) certificate
and CA certificate.

With an Integrated CA IdM configures PKINIT by using the certificate signed
by the IdM CA.

51.2. DISPLAYING THE CURRENT PKINIT CONFIGURATION

IdM provides multiple commands you can use to query the PKINIT configuration in your domain.

Procedure

To determine the PKINIT status in your domain, use the ipa pkinit-status command:

$ ipa pkinit-status
 Server name: server1.example.com
 PKINIT status: enabled
 [...output truncated...]
 Server name: server2.example.com
 PKINIT status: disabled
 [...output truncated...]

The command displays the PKINIT configuration status as enabled or disabled:

enabled: PKINIT is configured using a certificate signed by the integrated IdM CA or an
external PKINIT certificate.

disabled: IdM only uses PKINIT for internal purposes on IdM servers.

To list the IdM servers with active Kerberos key distribution centers (KDCs) that support PKINIT
for IdM clients, use the ipa config-show command on any server:

$ ipa config-show

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

434

 Maximum username length: 32
 Home directory base: /home
 Default shell: /bin/sh
 Default users group: ipausers
 [...output truncated...]
 IPA masters capable of PKINIT: server1.example.com
 [...output truncated...]

51.3. CONFIGURING PKINIT IN IDM

If your IdM servers are running with PKINIT disabled, use these steps to enable it. For example, a server
is running with PKINIT disabled if you passed the --no-pkinit option with the ipa-server-install or ipa-
replica-install utilities.

Prerequisites

Ensure that all IdM servers with a certificate authority (CA) installed are running on the same
domain level.

Procedure

1. Check if PKINIT is enabled on the server:

kinit admin

Password for admin@IDM.EXAMPLE.COM:
ipa pkinit-status --server=server.idm.example.com
1 server matched

Server name: server.idm.example.com
PKINIT status:enabled

Number of entries returned 1

If PKINIT is disabled, you will see the following output:

ipa pkinit-status --server server.idm.example.com

0 servers matched

Number of entries returned 0

You can also use the command to find all the servers where PKINIT is enabled if you omit the --
server <server_fqdn> parameter.

2. If you are using IdM without CA:

a. On the IdM server, install the CA certificate that signed the Kerberos key distribution center
(KDC) certificate:

ipa-cacert-manage install -t CT,C,C ca.pem

CHAPTER 51. KERBEROS PKINIT AUTHENTICATION IN IDM

435

b. To update all IPA hosts, repeat the ipa-certupdate command on all replicas and clients:

ipa-certupdate

c. Check if the CA certificate has already been added using the ipa-cacert-manage list
command. For example:

ipa-cacert-manage list
CN=CA,O=Example Organization
The ipa-cacert-manage command was successful

d. Use the ipa-server-certinstall utility to install an external KDC certificate. The KDC
certificate must meet the following conditions:

It is issued with the common name
CN=fully_qualified_domain_name,certificate_subject_base.

It includes the Kerberos principal krbtgt/REALM_NAME@REALM_NAME.

It contains the Object Identifier (OID) for KDC authentication: 1.3.6.1.5.2.3.5.

ipa-server-certinstall --kdc kdc.pem kdc.key

systemctl restart krb5kdc.service

e. See your PKINIT status:

ipa pkinit-status
 Server name: server1.example.com
 PKINIT status: enabled
 [...output truncated...]
 Server name: server2.example.com
 PKINIT status: disabled
 [...output truncated...]

3. If you are using IdM with a CA certificate, enable PKINIT as follows:

ipa-pkinit-manage enable
 Configuring Kerberos KDC (krb5kdc)
 [1/1]: installing X509 Certificate for PKINIT
 Done configuring Kerberos KDC (krb5kdc).
 The ipa-pkinit-manage command was successful

If you are using an IdM CA, the command requests a PKINIT KDC certificate from the CA.

Additional resources

ipa-server-certinstall(1) man page

51.4. ADDITIONAL RESOURCES

For details on Kerberos PKINIT, PKINIT configuration in the MIT Kerberos Documentation.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

436

https://web.mit.edu/kerberos/krb5-1.13/doc/admin/pkinit.html

CHAPTER 52. MAINTAINING IDM KERBEROS KEYTAB FILES
Learn more about what Kerberos keytab files are and how Identity Management (IdM) uses them to
allow services to authenticate securely with Kerberos.

You can use this information to understand why you should protect these sensitive files, and to
troubleshoot communication issues between IdM services.

For more information, see the following topics:

How Identity Management uses Kerberos keytab files

Verifying that Kerberos keytab files are in sync with the IdM database

List of IdM Kerberos keytab files and their contents

Viewing the encryption type of your IdM master key .

52.1. HOW IDENTITY MANAGEMENT USES KERBEROS KEYTAB FILES

A Kerberos keytab is a file containing Kerberos principals and their corresponding encryption keys.
Hosts, services, users, and scripts can use keytabs to authenticate to the Kerberos Key Distribution
Center (KDC) securely, without requiring human interaction.

Every IdM service on an IdM server has a unique Kerberos principal stored in the Kerberos database. For
example, if IdM servers east.idm.example.com and west.idm.example.com provide DNS services, IdM
creates 2 unique DNS Kerberos principals to identify these services, which follow the naming convention
<service>/host.domain.com@REALM.COM:

DNS/east.idm.example.com@IDM.EXAMPLE.COM

DNS/west.idm.example.com@IDM.EXAMPLE.COM

IdM creates a keytab on the server for each of these services to store a local copy of the Kerberos keys,
along with their Key Version Numbers (KVNO). For example, the default keytab file /etc/krb5.keytab
stores the host principal, which represents that machine in the Kerberos realm and is used for login
authentication. The KDC generates encryption keys for the different encryption algorithms it supports,
such as aes256-cts-hmac-sha1-96 and aes128-cts-hmac-sha1-96.

You can display the contents of a keytab file with the klist command:

[root@idmserver ~]# klist -ekt /etc/krb5.keytab
Keytab name: FILE:/etc/krb5.keytab
KVNO Timestamp Principal
---- ------------------- --
 2 02/24/2022 20:28:09 host/idmserver.idm.example.com@IDM.EXAMPLE.COM (aes256-cts-hmac-
sha1-96)
 2 02/24/2022 20:28:09 host/idmserver.idm.example.com@IDM.EXAMPLE.COM (aes128-cts-hmac-
sha1-96)
 2 02/24/2022 20:28:09 host/idmserver.idm.example.com@IDM.EXAMPLE.COM (camellia128-cts-
cmac)
 2 02/24/2022 20:28:09 host/idmserver.idm.example.com@IDM.EXAMPLE.COM (camellia256-cts-
cmac)

Additional resources

CHAPTER 52. MAINTAINING IDM KERBEROS KEYTAB FILES

437

Verifying that Kerberos keytab files are in sync with the IdM database

List of IdM Kerberos keytab files and their contents

52.2. VERIFYING THAT KERBEROS KEYTAB FILES ARE IN SYNC WITH
THE IDM DATABASE

When you change a Kerberos password, IdM automatically generates a new corresponding Kerberos key
and increments its Key Version Number (KVNO). If a Kerberos keytab is not updated with the new key
and KVNO, any services that depend on that keytab to retrieve a valid key might not be able to
authenticate to the Kerberos Key Distribution Center (KDC).

If one of your IdM services cannot communicate with another service, use the following procedure to
verify that your Kerberos keytab files are in sync with the keys stored in the IdM database. If they are out
of sync, retrieve a Kerberos keytab with an updated key and KVNO. This example compares and
retrieves an updated DNS principal for an IdM server.

Prerequisites

You must authenticate as the IdM admin account to retrieve keytab files

You must authenticate as the root account to modify keytab files owned by other users

Procedure

1. Display the KVNO of the principals in the keytab you are verifying. In the following example, the
/etc/named.keytab file has the key for the DNS/server1.idm.example.com@EXAMPLE.COM
principal with a KVNO of 2.

[root@server1 ~]# klist -ekt /etc/named.keytab
Keytab name: FILE:/etc/named.keytab
KVNO Timestamp Principal
---- ------------------- --
 2 11/26/2021 13:51:11 DNS/server1.idm.example.com@EXAMPLE.COM (aes256-cts-
hmac-sha1-96)
 2 11/26/2021 13:51:11 DNS/server1.idm.example.com@EXAMPLE.COM (aes128-cts-
hmac-sha1-96)
 2 11/26/2021 13:51:11 DNS/server1.idm.example.com@EXAMPLE.COM (camellia128-cts-
cmac)
 2 11/26/2021 13:51:11 DNS/server1.idm.example.com@EXAMPLE.COM (camellia256-cts-
cmac)

2. Display the KVNO of the principal stored in the IdM database. In this example, the KVNO of the
key in the IdM database does not match the KVNO in the keytab.

[root@server1 ~]# kvno DNS/server1.idm.example.com@EXAMPLE.COM
DNS/server1.idm.example.com@EXAMPLE.COM: kvno = 3

3. Authenticate as the IdM admin account.

[root@server1 ~]# kinit admin
Password for admin@IDM.EXAMPLE.COM:

4. Retrieve an updated Kerberos key for the principal and store it in its keytab. Perform this step as

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

438

4. Retrieve an updated Kerberos key for the principal and store it in its keytab. Perform this step as
the root user so you can modify the /etc/named.keytab file, which is owned by the named user.

[root@server1 ~]# ipa-getkeytab -s server1.idm.example.com -p
DNS/server1.idm.example.com -k /etc/named.keytab

Verification

1. Display the updated KVNO of the principal in the keytab.

[root@server1 ~]# klist -ekt /etc/named.keytab
Keytab name: FILE:/etc/named.keytab
KVNO Timestamp Principal
---- ------------------- --
 4 08/17/2022 14:42:11 DNS/server1.idm.example.com@EXAMPLE.COM (aes256-cts-
hmac-sha1-96)
 4 08/17/2022 14:42:11 DNS/server1.idm.example.com@EXAMPLE.COM (aes128-cts-
hmac-sha1-96)
 4 08/17/2022 14:42:11 DNS/server1.idm.example.com@EXAMPLE.COM (camellia128-cts-
cmac)
 4 08/17/2022 14:42:11 DNS/server1.idm.example.com@EXAMPLE.COM (camellia256-cts-
cmac)

2. Display the KVNO of the principal stored in the IdM database and ensure it matches the KVNO
from the keytab.

[root@server1 ~]# kvno DNS/server1.idm.example.com@EXAMPLE.COM
DNS/server1.idm.example.com@EXAMPLE.COM: kvno = 4

Additional resources

How Identity Management uses Kerberos keytab files

List of IdM Kerberos keytab files and their contents

52.3. LIST OF IDM KERBEROS KEYTAB FILES AND THEIR CONTENTS

The following table displays the location, contents, and purpose of the IdM Kerberos keytab files.

Table 52.1. Table

Keytab location Contents Purpose

/etc/krb5.keytab host principal Verifying user credentials when
logging in, used by NFS if there is
no nfs principal

/etc/dirsrv/ds.keytab ldap principal Authenticating users to the IdM
database, securely replicating
database contents between IdM
replicas

CHAPTER 52. MAINTAINING IDM KERBEROS KEYTAB FILES

439

/var/lib/ipa/gssproxy/http.key
tab

HTTP principal Authenticating to the Apache
server

/etc/named.keytab DNS principal Securely updating DNS records

/etc/ipa/dnssec/ipa-
dnskeysyncd.keytab

ipa-dnskeysyncd principal Keeping OpenDNSSEC
synchronized with LDAP

/etc/pki/pki-
tomcat/dogtag.keytab

dogtag principal Communicating with the
Certificate Authority (CA)

/etc/samba/samba.keytab cifs and host principals Communicating with the Samba
service

/var/lib/sss/keytabs/ad-
domain.com.keytab

Active Directory (AD) domain
controller (DCs) principals in the
form HOSTNAME$@AD-
DOMAIN.COM

Communicating with AD DCs
through an IdM-AD Trust

Keytab location Contents Purpose

Additional resources

How Identity Management uses Kerberos keytab files

Verifying that Kerberos keytab files are in sync with the IdM database

52.4. VIEWING THE ENCRYPTION TYPE OF YOUR IDM MASTER KEY

As an Identity Management (IdM) administrator, you can view the encryption type of your IdM master
key, which is the key that the IdM Kerberos Distribution Center (KDC) uses to encrypt all other principals
when storing them at rest. Knowing the encryption type helps you determine your deployment’s
compatibility with FIPS standards.

As of RHEL 8.7, the encryption type is aes256-cts-hmac-sha384-192. This encryption type is
compatible with the default RHEL 9 FIPS cryptographic policy aiming to comply with FIPS 140-3.

The encryption types used on previous RHEL versions are not compatible with RHEL 9 systems that
adhere to FIPS 140-3 standards. To make RHEL 9 systems in FIPS mode compatible with a RHEL 8 FIPS
140-2 deployment, enable the FIPS:AD-SUPPORT cryptographic policy on the RHEL 9 systems.

NOTE

Microsoft’s Active Directory implementation does not yet support any of the RFC8009
Kerberos encryption types that use SHA-2 HMAC. If you have an IdM-AD trust
configured, FIPS:AD-SUPPORT crypto subpolicy use is therefore required even if the
encryption type of your IdM master key is aes256-cts-hmac-sha384-192.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

440

You have root access to any of the RHEL 8 replicas in the IdM deployment.

Procedure

On the replica, view the encryption type on the command-line interface:

kadmin.local getprinc K/M | grep -E '^Key:'
Key: vno 1, aes256-cts-hmac-sha1-96

The aes256-cts-hmac-sha1-96 key in the output indicates that the IdM deployment was
installed on a server that was running RHEL 8.6 or earlier. The presence of a aes256-cts-hmac-
sha384-192 key in the output would indicate that the IdM deployment was installed on a server
that was running RHEL 8.7 or later.

CHAPTER 52. MAINTAINING IDM KERBEROS KEYTAB FILES

441

CHAPTER 53. USING THE KDC PROXY IN IDM
Some administrators might choose to make the default Kerberos ports inaccessible in their deployment.
To allow users, hosts, and services to obtain Kerberos credentials, you can use the HTTPS service as a
proxy that communicates with Kerberos via the HTTPS port 443.

In Identity Management (IdM), the Kerberos Key Distribution Center Proxy (KKDCP) provides this
functionality.

On an IdM server, KKDCP is enabled by default and available at
https://server.idm.example.com/KdcProxy. On an IdM client, you must change its Kerberos
configuration to access the KKDCP.

53.1. CONFIGURING AN IDM CLIENT TO USE KKDCP

As an Identity Management (IdM) system administrator, you can configure an IdM client to use the
Kerberos Key Distribution Center Proxy (KKDCP) on an IdM server. This is useful if the default Kerberos
ports are not accessible on the IdM server and the HTTPS port 443 is the only way of accessing the
Kerberos service.

Prerequisites

You have root access to the IdM client.

Procedure

1. Open the /etc/krb5.conf file for editing.

2. In the [realms] section, enter the URL of the KKDCP for the kdc, admin_server, and
kpasswd_server options:

[realms]
EXAMPLE.COM = {
 kdc = https://kdc.example.com/KdcProxy
 admin_server = https://kdc.example.com/KdcProxy
 kpasswd_server = https://kdc.example.com/KdcProxy
 default_domain = example.com
}

For redundancy, you can add the parameters kdc, admin_server, and kpasswd_server
multiple times to indicate different KKDCP servers.

3. Restart the sssd service to make the changes take effect:

~]# systemctl restart sssd

53.2. VERIFYING THAT KKDCP IS ENABLED ON AN IDM SERVER

On an Identity Management (IdM) server, the Kerberos Key Distribution Center Proxy (KKDCP) is
automatically enabled each time the Apache web server starts if the attribute and value pair
ipaConfigString=kdcProxyEnabled exists in the directory. In this situation, the symbolic link
/etc/httpd/conf.d/ipa-kdc-proxy.conf is created.

You can verify if the KKDCP is enabled on the IdM server, even as an unprivileged user.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

442

Procedure

Check that the symbolic link exists:

$ ls -l /etc/httpd/conf.d/ipa-kdc-proxy.conf
lrwxrwxrwx. 1 root root 36 Jun 21 2020 /etc/httpd/conf.d/ipa-kdc-proxy.conf -> /etc/ipa/kdcproxy/ipa-
kdc-proxy.conf

The output confirms that KKDCP is enabled.

53.3. DISABLING KKDCP ON AN IDM SERVER

As an Identity Management (IdM) system administrator, you can disable the Kerberos Key Distribution
Center Proxy (KKDCP) on an IdM server.

Prerequisites

You have root access to the IdM server.

Procedure

1. Remove the ipaConfigString=kdcProxyEnabled attribute and value pair from the directory:

ipa-ldap-updater /usr/share/ipa/kdcproxy-disable.uldif
Update complete
The ipa-ldap-updater command was successful

2. Restart the httpd service:

systemctl restart httpd.service

KKDCP is now disabled on the current IdM server.

Verification steps

Verify that the symbolic link does not exist:

$ ls -l /etc/httpd/conf.d/ipa-kdc-proxy.conf
ls: cannot access '/etc/httpd/conf.d/ipa-kdc-proxy.conf': No such file or directory

53.4. RE-ENABLING KKDCP ON AN IDM SERVER

On an IdM server, the Kerberos Key Distribution Center Proxy (KKDCP) is enabled by default and
available at https://server.idm.example.com/KdcProxy.

If KKDCP has been disabled on a server, you can re-enable it.

Prerequisites

You have root access to the IdM server.

Procedure

CHAPTER 53. USING THE KDC PROXY IN IDM

443

1. Add the ipaConfigString=kdcProxyEnabled attribute and value pair to the directory:

ipa-ldap-updater /usr/share/ipa/kdcproxy-enable.uldif
Update complete
The ipa-ldap-updater command was successful

2. Restart the httpd service:

systemctl restart httpd.service

KKDCP is now enabled on the current IdM server.

Verification steps

Verify that the symbolic link exists:

$ ls -l /etc/httpd/conf.d/ipa-kdc-proxy.conf
lrwxrwxrwx. 1 root root 36 Jun 21 2020 /etc/httpd/conf.d/ipa-kdc-proxy.conf ->
/etc/ipa/kdcproxy/ipa-kdc-proxy.conf

53.5. CONFIGURING THE KKDCP SERVER I

With the following configuration, you can enable TCP to be used as the transport protocol between the
IdM KKDCP and the Active Directory (AD) realm, where multiple Kerberos servers are used.

Prerequisites

You have root access.

Procedure

1. Set the use_dns parameter in the [global] section of the /etc/ipa/kdcproxy/kdcproxy.conf
file to false.

[global]
use_dns = false

2. Put the proxied realm information into the /etc/ipa/kdcproxy/kdcproxy.conf file. For example,
for the [AD.EXAMPLE.COM] realm with proxy list the realm configuration parameters as follows:

[AD.EXAMPLE.COM]
kerberos = kerberos+tcp://1.2.3.4:88 kerberos+tcp://5.6.7.8:88
kpasswd = kpasswd+tcp://1.2.3.4:464 kpasswd+tcp://5.6.7.8:464

IMPORTANT

The realm configuration parameters must list multiple servers separated by a
space, as opposed to /etc/krb5.conf and kdc.conf, in which certain options may
be specified multiple times.

3. Restart Identity Management (IdM) services:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

444

ipactl restart

Additional resources

See Configure IPA server as a KDC Proxy for AD Kerberos communication in Red Hat
Knowledgebase.

53.6. CONFIGURING THE KKDCP SERVER II

The following server configuration relies on the DNS service records to find Active Directory (AD)
servers to communicate with.

Prerequisites

You have root access.

Procedure

1. In the /etc/ipa/kdcproxy/kdcproxy.conf file, the [global] section, set the use_dns parameter
to true.

[global]
configs = mit
use_dns = true

The configs parameter allows you to load other configuration modules. In this case, the
configuration is read from the MIT libkrb5 library.

2. Optional: In case you do not want to use DNS service records, add explicit AD servers to the
[realms] section of the /etc/krb5.conf file. If the realm with proxy is, for example,
AD.EXAMPLE.COM, you add:

[realms]
AD.EXAMPLE.COM = {
 kdc = ad-server.ad.example.com
 kpasswd_server = ad-server.ad.example.com
}

3. Restart Identity Management (IdM) services:

ipactl restart

Additional resources

See Configure IPA server as a KDC Proxy for AD Kerberos communication in Red Hat
Knowledgebase.

CHAPTER 53. USING THE KDC PROXY IN IDM

445

https://access.redhat.com/solutions/3347361
https://access.redhat.com/solutions/3347361

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON
AN IDM CLIENT

Learn more about granting sudo access to users in Identity Management.

54.1. SUDO ACCESS ON AN IDM CLIENT

System administrators can grant sudo access to allow non-root users to execute administrative
commands that are normally reserved for the root user. Consequently, when users need to perform an
administrative command normally reserved for the root user, they precede that command with sudo.
After entering their password, the command is executed as if they were the root user. To execute a sudo
command as another user or group, such as a database service account, you can configure a RunAs alias
for a sudo rule.

If a Red Hat Enterprise Linux (RHEL) 8 host is enrolled as an Identity Management (IdM) client, you can
specify sudo rules defining which IdM users can perform which commands on the host in the following
ways:

Locally in the /etc/sudoers file

Centrally in IdM

You can create a central sudo rule for an IdM client using the command line interface (CLI) and the IdM
Web UI.

In RHEL 8.4 and later, you can also configure password-less authentication for sudo using the Generic
Security Service Application Programming Interface (GSSAPI), the native way for UNIX-based
operating systems to access and authenticate Kerberos services. You can use the pam_sss_gss.so
Pluggable Authentication Module (PAM) to invoke GSSAPI authentication via the SSSD service, allowing
users to authenticate to the sudo command with a valid Kerberos ticket.

Additional resources

See Managing sudo access.

54.2. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
USING THE CLI

In Identity Management (IdM), you can grant sudo access for a specific command to an IdM user
account on a specific IdM host. First, add a sudo command and then create a sudo rule for one or more
commands.

For example, complete this procedure to create the idm_user_reboot sudo rule to grant the idm_user
account the permission to run the /usr/sbin/reboot command on the idmclient machine.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the CLI, see Adding users
using the command line.

No local idm_user account is present on the idmclient host. The idm_user user is not listed in

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

446

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/managing-sudo-access_configuring-basic-system-settings
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-accounts-using-the-command-line_managing-users-groups-hosts#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

Procedure

1. Retrieve a Kerberos ticket as the IdM admin.

[root@idmclient ~]# kinit admin

2. Add the /usr/sbin/reboot command to the IdM database of sudo commands:

[root@idmclient ~]# ipa sudocmd-add /usr/sbin/reboot

Added Sudo Command "/usr/sbin/reboot"

 Sudo Command: /usr/sbin/reboot

3. Create a sudo rule named idm_user_reboot:

[root@idmclient ~]# ipa sudorule-add idm_user_reboot

Added Sudo Rule "idm_user_reboot"

 Rule name: idm_user_reboot
 Enabled: TRUE

4. Add the /usr/sbin/reboot command to the idm_user_reboot rule:

[root@idmclient ~]# ipa sudorule-add-allow-command idm_user_reboot --sudocmds
'/usr/sbin/reboot'
 Rule name: idm_user_reboot
 Enabled: TRUE
 Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

5. Apply the idm_user_reboot rule to the IdM idmclient host:

[root@idmclient ~]# ipa sudorule-add-host idm_user_reboot --hosts
idmclient.idm.example.com
Rule name: idm_user_reboot
Enabled: TRUE
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

6. Add the idm_user account to the idm_user_reboot rule:

[root@idmclient ~]# ipa sudorule-add-user idm_user_reboot --users idm_user
Rule name: idm_user_reboot
Enabled: TRUE

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

447

Users: idm_user
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

7. Optionally, define the validity of the idm_user_reboot rule:

a. To define the time at which a sudo rule starts to be valid, use the ipa sudorule-mod
sudo_rule_name command with the --setattr sudonotbefore=DATE option. The DATE
value must follow the yyyymmddHHMMSSZ format, with seconds specified explicitly. For
example, to set the start of the validity of the idm_user_reboot rule to 31 December 2025
12:34:00, enter:

[root@idmclient ~]# ipa sudorule-mod idm_user_reboot --setattr
sudonotbefore=20251231123400Z

b. To define the time at which a sudo rule stops being valid, use the --setattr
sudonotafter=DATE option. For example, to set the end of the idm_user_reboot rule
validity to 31 December 2026 12:34:00, enter:

[root@idmclient ~]# ipa sudorule-mod idm_user_reboot --setattr
sudonotafter=20261231123400Z

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to the idmclient host as the idm_user account.

2. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idm_user on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY
KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user may run the following commands on idmclient:
 (root) /usr/sbin/reboot

3. Reboot the machine using sudo. Enter the password for idm_user when prompted:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

448

[idm_user@idmclient ~]$ sudo /usr/sbin/reboot
[sudo] password for idm_user:

54.3. GRANTING SUDO ACCESS TO AN AD USER ON AN IDM CLIENT
USING THE CLI

Identity Management (IdM) system administrators can use IdM user groups to set access permissions,
host-based access control, sudo rules, and other controls on IdM users. IdM user groups grant and
restrict access to IdM domain resources.

You can add both Active Directory (AD) users and AD groups to IdM user groups. To do that:

1. Add the AD users or groups to a non-POSIX external IdM group.

2. Add the non-POSIX external IdM group to an IdM POSIX group.

You can then manage the privileges of the AD users by managing the privileges of the POSIX group. For
example, you can grant sudo access for a specific command to an IdM POSIX user group on a specific
IdM host.

NOTE

It is also possible to add AD user groups as members to IdM external groups. This might
make it easier to define policies for Windows users, by keeping the user and group
management within the single AD realm.

IMPORTANT

Do not use ID overrides of AD users for SUDO rules in IdM. ID overrides of AD users
represent only POSIX attributes of AD users, not AD users themselves.

You can add ID overrides as group members. However, you can only use this functionality
to manage IdM resources in the IdM API. The possibility to add ID overrides as group
members is not extended to POSIX environments and you therefore cannot use it for
membership in sudo or host-based access control (HBAC) rules.

Follow this procedure to create the ad_users_reboot sudo rule to grant the administrator@ad-
domain.com AD user the permission to run the /usr/sbin/reboot command on the idmclient IdM host,
which is normally reserved for the root user. administrator@ad-domain.com is a member of the
ad_users_external non-POSIX group, which is, in turn, a member of the ad_users POSIX group.

Prerequisites

You have obtained the IdM admin Kerberos ticket-granting ticket (TGT).

A cross-forest trust exists between the IdM domain and the ad-domain.com AD domain.

No local administrator account is present on the idmclient host: the administrator user is not
listed in the local /etc/passwd file.

Procedure

1. Create the ad_users group that contains the ad_users_external group with the

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

449

1. Create the ad_users group that contains the ad_users_external group with the
administrator@ad-domain member:

a. Optional: Create or select a corresponding group in the AD domain to use to manage AD
users in the IdM realm. You can use multiple AD groups and add them to different groups on
the IdM side.

b. Create the ad_users_external group and indicate that it contains members from outside
the IdM domain by adding the --external option:

[root@ipaserver ~]# ipa group-add --desc='AD users external map'
ad_users_external --external

Added group "ad_users_external"

 Group name: ad_users_external
 Description: AD users external map

NOTE

Ensure that the external group that you specify here is an AD security group
with a global or universal group scope as defined in the Active Directory
security groups document. For example, the Domain users or Domain
admins AD security groups cannot be used because their group scope is
domain local.

c. Create the ad_users group:

[root@ipaserver ~]# ipa group-add --desc='AD users' ad_users

Added group "ad_users"

 Group name: ad_users
 Description: AD users
 GID: 129600004

d. Add the administrator@ad-domain.com AD user to ad_users_external as an external
member:

[root@ipaserver ~]# ipa group-add-member ad_users_external --external
"administrator@ad-domain.com"
 [member user]:
 [member group]:
 Group name: ad_users_external
 Description: AD users external map
 External member: S-1-5-21-3655990580-1375374850-1633065477-513

Number of members added 1

The AD user must be identified by a fully-qualified name, such as DOMAIN\user_name or
user_name@DOMAIN. The AD identity is then mapped to the AD SID for the user. The
same applies to adding AD groups.

e. Add ad_users_external to ad_users as a member:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

450

https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-groups

[root@ipaserver ~]# ipa group-add-member ad_users --groups ad_users_external
 Group name: ad_users
 Description: AD users
 GID: 129600004
 Member groups: ad_users_external

Number of members added 1

2. Grant the members of ad_users the permission to run /usr/sbin/reboot on the idmclient host:

a. Add the /usr/sbin/reboot command to the IdM database of sudo commands:

[root@idmclient ~]# ipa sudocmd-add /usr/sbin/reboot

Added Sudo Command "/usr/sbin/reboot"

 Sudo Command: /usr/sbin/reboot

b. Create a sudo rule named ad_users_reboot:

[root@idmclient ~]# ipa sudorule-add ad_users_reboot

Added Sudo Rule "ad_users_reboot"

 Rule name: ad_users_reboot
 Enabled: True

c. Add the /usr/sbin/reboot command to the ad_users_reboot rule:

[root@idmclient ~]# ipa sudorule-add-allow-command ad_users_reboot --sudocmds
'/usr/sbin/reboot'
 Rule name: ad_users_reboot
 Enabled: True
 Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

d. Apply the ad_users_reboot rule to the IdM idmclient host:

[root@idmclient ~]# ipa sudorule-add-host ad_users_reboot --hosts
idmclient.idm.example.com
Rule name: ad_users_reboot
Enabled: True
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

e. Add the ad_users group to the ad_users_reboot rule:

[root@idmclient ~]# ipa sudorule-add-user ad_users_reboot --groups ad_users

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

451

Rule name: ad_users_reboot
Enabled: TRUE
User Groups: ad_users
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /usr/sbin/reboot

Number of members added 1

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to the idmclient host as administrator@ad-domain.com, an indirect member of the
ad_users group:

$ ssh administrator@ad-domain.com@ipaclient
Password:

2. Optionally, display the sudo commands that administrator@ad-domain.com is allowed to
execute:

[administrator@ad-domain.com@idmclient ~]$ sudo -l
Matching Defaults entries for administrator@ad-domain.com on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY
KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User administrator@ad-domain.com may run the following commands on idmclient:
 (root) /usr/sbin/reboot

3. Reboot the machine using sudo. Enter the password for administrator@ad-domain.com when
prompted:

[administrator@ad-domain.com@idmclient ~]$ sudo /usr/sbin/reboot
[sudo] password for administrator@ad-domain.com:

Additional resources

Active Directory users and Identity Management groups

Include users and groups from a trusted Active Directory domain into SUDO rules

54.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

452

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/windows_integration_guide/index#trust-win-groups
https://freeipa.readthedocs.io/en/latest/designs/adtrust/sudorules-with-ad-objects.html

54.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
USING THE IDM WEB UI

In Identity Management (IdM), you can grant sudo access for a specific command to an IdM user
account on a specific IdM host. First, add a sudo command and then create a sudo rule for one or more
commands.

Complete this procedure to create the idm_user_reboot sudo rule to grant the idm_user account the
permission to run the /usr/sbin/reboot command on the idmclient machine.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the command-line interface,
see Adding users using the command line .

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

Procedure

1. Add the /usr/sbin/reboot command to the IdM database of sudo commands:

a. Navigate to Policy → Sudo → Sudo Commands.

b. Click Add in the upper right corner to open the Add sudo command dialog box.

c. Enter the command you want the user to be able to perform using sudo: /usr/sbin/reboot.

Figure 54.1. Adding IdM sudo command

d. Click Add.

2. Use the new sudo command entry to create a sudo rule to allow idm_user to reboot the

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

453

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_idm_users_groups_hosts_and_access_control_rules/managing-user-accounts-using-the-command-line_managing-users-groups-hosts#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

2. Use the new sudo command entry to create a sudo rule to allow idm_user to reboot the
idmclient machine:

a. Navigate to Policy → Sudo → Sudo rules.

b. Click Add in the upper right corner to open the Add sudo rule dialog box.

c. Enter the name of the sudo rule: idm_user_reboot.

d. Click Add and Edit.

e. Specify the user:

i. In the Who section, check the Specified Users and Groups radio button.

ii. In the User category the rule applies to subsection, click Add to open the Add users
into sudo rule "idm_user_reboot" dialog box.

iii. In the Add users into sudo rule "idm_user_reboot" dialog box in the Available column,
check the idm_user checkbox, and move it to the Prospective column.

iv. Click Add.

f. Specify the host:

i. In the Access this host section, check the Specified Hosts and Groups radio button.

ii. In the Host category this rule applies to subsection, click Add to open the Add hosts
into sudo rule "idm_user_reboot" dialog box.

iii. In the Add hosts into sudo rule "idm_user_reboot" dialog box in the Available column,
check the idmclient.idm.example.com checkbox, and move it to the Prospective
column.

iv. Click Add.

g. Specify the commands:

i. In the Command category the rule applies to subsection of the Run Commands
section, check the Specified Commands and Groups radio button.

ii. In the Sudo Allow Commands subsection, click Add to open the Add allow sudo
commands into sudo rule "idm_user_reboot" dialog box.

iii. In the Add allow sudo commands into sudo rule "idm_user_reboot" dialog box in the
Available column, check the /usr/sbin/reboot checkbox, and move it to the
Prospective column.

iv. Click Add to return to the idm_sudo_reboot page.

Figure 54.2. Adding IdM sudo rule

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

454

Figure 54.2. Adding IdM sudo rule

h. Click Save in the top left corner.

The new rule is enabled by default.

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to idmclient as idm_user.

2. Reboot the machine using sudo. Enter the password for idm_user when prompted:

$ sudo /usr/sbin/reboot
[sudo] password for idm_user:

If the sudo rule is configured correctly, the machine reboots.

54.5. CREATING A SUDO RULE ON THE CLI THAT RUNS A COMMAND
AS A SERVICE ACCOUNT ON AN IDM CLIENT

In IdM, you can configure a sudo rule with a RunAs alias to run a sudo command as another user or
group. For example, you might have an IdM client that hosts a database application, and you need to run
commands as the local service account that corresponds to that application.

Use this example to create a sudo rule on the command line called run_third-party-app_report to allow
the idm_user account to run the /opt/third-party-app/bin/report command as the thirdpartyapp
service account on the idmclient host.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the CLI, see Adding users
using the command line.

No local idm_user account is present on the idmclient host. The idm_user user is not listed in

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

455

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-accounts-using-the-command-line_configuring-and-managing-idm#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

You have a custom application named third-party-app installed on the idmclient host.

The report command for the third-party-app application is installed in the /opt/third-party-
app/bin/report directory.

You have created a local service account named thirdpartyapp to execute commands for the
third-party-app application.

Procedure

1. Retrieve a Kerberos ticket as the IdM admin.

[root@idmclient ~]# kinit admin

2. Add the /opt/third-party-app/bin/report command to the IdM database of sudo commands:

[root@idmclient ~]# ipa sudocmd-add /opt/third-party-app/bin/report
--
Added Sudo Command "/opt/third-party-app/bin/report"
--
 Sudo Command: /opt/third-party-app/bin/report

3. Create a sudo rule named run_third-party-app_report:

[root@idmclient ~]# ipa sudorule-add run_third-party-app_report
--
Added Sudo Rule "run_third-party-app_report"
--
 Rule name: run_third-party-app_report
 Enabled: TRUE

4. Use the --users=<user> option to specify the RunAs user for the sudorule-add-runasuser
command:

[root@idmclient ~]# ipa sudorule-add-runasuser run_third-party-app_report --
users=thirdpartyapp
 Rule name: run_third-party-app_report
 Enabled: TRUE
 RunAs External User: thirdpartyapp

Number of members added 1

The user (or group specified with the --groups=* option) can be external to IdM, such as a local
service account or an Active Directory user. Do not add a % prefix for group names.

5. Add the /opt/third-party-app/bin/report command to the run_third-party-app_report rule:

[root@idmclient ~]# ipa sudorule-add-allow-command run_third-party-app_report --
sudocmds '/opt/third-party-app/bin/report'
Rule name: run_third-party-app_report
Enabled: TRUE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

456

Sudo Allow Commands: /opt/third-party-app/bin/report
RunAs External User: thirdpartyapp

Number of members added 1

6. Apply the run_third-party-app_report rule to the IdM idmclient host:

[root@idmclient ~]# ipa sudorule-add-host run_third-party-app_report --hosts
idmclient.idm.example.com
Rule name: run_third-party-app_report
Enabled: TRUE
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /opt/third-party-app/bin/report
RunAs External User: thirdpartyapp

Number of members added 1

7. Add the idm_user account to the run_third-party-app_report rule:

[root@idmclient ~]# ipa sudorule-add-user run_third-party-app_report --users idm_user
Rule name: run_third-party-app_report
Enabled: TRUE
Users: idm_user
Hosts: idmclient.idm.example.com
Sudo Allow Commands: /opt/third-party-app/bin/report
RunAs External User: thirdpartyapp

Number of members added 1

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to the idmclient host as the idm_user account.

2. Test the new sudo rule:

a. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idm_user@idm.example.com on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER
LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET
XAUTHORITY KRB5CCNAME",

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

457

 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user@idm.example.com may run the following commands on idmclient:
 (thirdpartyapp) /opt/third-party-app/bin/report

b. Run the report command as the thirdpartyapp service account.

[idm_user@idmclient ~]$ sudo -u thirdpartyapp /opt/third-party-app/bin/report
[sudo] password for idm_user@idm.example.com:
Executing report...
Report successful.

54.6. CREATING A SUDO RULE IN THE IDM WEBUI THAT RUNS A
COMMAND AS A SERVICE ACCOUNT ON AN IDM CLIENT

In IdM, you can configure a sudo rule with a RunAs alias to run a sudo command as another user or
group. For example, you might have an IdM client that hosts a database application, and you need to run
commands as the local service account that corresponds to that application.

Use this example to create a sudo rule in the IdM WebUI called run_third-party-app_report to allow the
idm_user account to run the /opt/third-party-app/bin/report command as the thirdpartyapp service
account on the idmclient host.

Prerequisites

You are logged in as IdM administrator.

You have created a user account for idm_user in IdM and unlocked the account by creating a
password for the user. For details on adding a new IdM user using the CLI, see Adding users
using the command line.

No local idm_user account is present on the idmclient host. The idm_user user is not listed in
the local /etc/passwd file.

You have a custom application named third-party-app installed on the idmclient host.

The report command for the third-party-app application is installed in the /opt/third-party-
app/bin/report directory.

You have created a local service account named thirdpartyapp to execute commands for the
third-party-app application.

Procedure

1. Add the /opt/third-party-app/bin/report command to the IdM database of sudo commands:

a. Navigate to Policy → Sudo → Sudo Commands.

b. Click Add in the upper right corner to open the Add sudo command dialog box.

c. Enter the command: /opt/third-party-app/bin/report.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

458

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-accounts-using-the-command-line_configuring-and-managing-idm#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

d. Click Add.

2. Use the new sudo command entry to create the new sudo rule:

a. Navigate to Policy → Sudo → Sudo rules.

b. Click Add in the upper right corner to open the Add sudo rule dialog box.

c. Enter the name of the sudo rule: run_third-party-app_report.

d. Click Add and Edit.

e. Specify the user:

i. In the Who section, check the Specified Users and Groups radio button.

ii. In the User category the rule applies to subsection, click Add to open the Add users
into sudo rule "run_third-party-app_report" dialog box.

iii. In the Add users into sudo rule "run_third-party-app_report" dialog box in the
Available column, check the idm_user checkbox, and move it to the Prospective
column.

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

459

iv. Click Add.

f. Specify the host:

i. In the Access this host section, check the Specified Hosts and Groups radio button.

ii. In the Host category this rule applies to subsection, click Add to open the Add hosts
into sudo rule "run_third-party-app_report" dialog box.

iii. In the Add hosts into sudo rule "run_third-party-app_report" dialog box in the
Available column, check the idmclient.idm.example.com checkbox, and move it to the
Prospective column.

iv. Click Add.

g. Specify the commands:

i. In the Command category the rule applies to subsection of the Run Commands
section, check the Specified Commands and Groups radio button.

ii. In the Sudo Allow Commands subsection, click Add to open the Add allow sudo

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

460

ii. In the Sudo Allow Commands subsection, click Add to open the Add allow sudo
commands into sudo rule "run_third-party-app_report" dialog box.

iii. In the Add allow sudo commands into sudo rule "run_third-party-app_report" dialog
box in the Available column, check the /opt/third-party-app/bin/report checkbox, and
move it to the Prospective column.

iv. Click Add to return to the run_third-party-app_report page.

h. Specify the RunAs user:

i. In the As Whom section, check the Specified Users and Groups radio button.

ii. In the RunAs Users subsection, click Add to open the Add RunAs users into sudo rule
"run_third-party-app_report" dialog box.

iii. In the Add RunAs users into sudo rule "run_third-party-app_report" dialog box, enter
the thirdpartyapp service account in the External box and move it to the Prospective
column.

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

461

iv. Click Add to return to the run_third-party-app_report page.

i. Click Save in the top left corner.

The new rule is enabled by default.

Figure 54.3. Details of the sudo rule

NOTE

Propagating the changes from the server to the client can take a few minutes.

Verification steps

1. Log in to the idmclient host as the idm_user account.

2. Test the new sudo rule:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

462

a. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idm_user@idm.example.com on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER
LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET
XAUTHORITY KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user@idm.example.com may run the following commands on idmclient:
 (thirdpartyapp) /opt/third-party-app/bin/report

b. Run the report command as the thirdpartyapp service account.

[idm_user@idmclient ~]$ sudo -u thirdpartyapp /opt/third-party-app/bin/report
[sudo] password for idm_user@idm.example.com:
Executing report...
Report successful.

54.7. ENABLING GSSAPI AUTHENTICATION FOR SUDO ON AN IDM
CLIENT

The following procedure describes enabling Generic Security Service Application Program Interface
(GSSAPI) authentication on an IdM client for the sudo and sudo -i commands via the pam_sss_gss.so
PAM module. With this configuration, IdM users can authenticate to the sudo command with their
Kerberos ticket.

Prerequisites

You have created a sudo rule for an IdM user that applies to an IdM host. For this example, you
have created the idm_user_reboot sudo rule to grant the idm_user account the permission to
run the /usr/sbin/reboot command on the idmclient host.

The idmclient host is running RHEL 8.4 or later.

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the
/etc/pam.d/ directory.

Procedure

1. Open the /etc/sssd/sssd.conf configuration file.

2. Add the following entry to the [domain/<domain_name>] section.

[domain/<domain_name>]
pam_gssapi_services = sudo, sudo-i

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

463

3. Save and close the /etc/sssd/sssd.conf file.

4. Restart the SSSD service to load the configuration changes.

[root@idmclient ~]# systemctl restart sssd

5. If you are running RHEL 8.8 or later:

a. [Optional] Determine if you have selected the sssd authselect profile:

authselect current
Profile ID: sssd

The output says that the sssd authselect profile is selected.

b. If the sssd authselect profile is selected, enable GSSAPI authentication:

authselect enable-feature with-gssapi

c. If the sssd authselect profile is not selected, select it and enable GSSAPI authentication:

authselect select sssd with-gssapi

6. If you are running RHEL 8.7 or earlier:

a. Open the /etc/pam.d/sudo PAM configuration file.

b. Add the following entry as the first line of the auth section in the /etc/pam.d/sudo file.

#%PAM-1.0
auth sufficient pam_sss_gss.so
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

c. Save and close the /etc/pam.d/sudo file.

Verification steps

1. Log into the host as the idm_user account.

[root@idm-client ~]# ssh -l idm_user@idm.example.com localhost
idm_user@idm.example.com's password:

2. Verify that you have a ticket-granting ticket as the idm_user account.

[idmuser@idmclient ~]$ klist
Ticket cache: KCM:1366201107
Default principal: idm_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

464

01/08/2021 09:11:48 01/08/2021 19:11:48
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 renew until 01/15/2021 09:11:44

3. (Optional) If you do not have Kerberos credentials for the idm_user account, delete your
current Kerberos credentials and request the correct ones.

[idm_user@idmclient ~]$ kdestroy -A

[idm_user@idmclient ~]$ kinit idm_user@IDM.EXAMPLE.COM
Password for idm_user@idm.example.com:

4. Reboot the machine using sudo, without specifying a password.

[idm_user@idmclient ~]$ sudo /usr/sbin/reboot

Additional resources

The GSSAPI entry in the IdM terminology listing

Granting sudo access to an IdM user on an IdM client using IdM Web UI

Granting sudo access to an IdM user on an IdM client using the CLI

pam_sss_gss (8) man page

sssd.conf (5) man page

54.8. ENABLING GSSAPI AUTHENTICATION AND ENFORCING
KERBEROS AUTHENTICATION INDICATORS FOR SUDO ON AN IDM
CLIENT

The following procedure describes enabling Generic Security Service Application Program Interface
(GSSAPI) authentication on an IdM client for the sudo and sudo -i commands via the pam_sss_gss.so
PAM module. Additionally, only users who have logged in with a smart card will authenticate to those
commands with their Kerberos ticket.

NOTE

You can use this procedure as a template to configure GSSAPI authentication with SSSD
for other PAM-aware services, and further restrict access to only those users that have a
specific authentication indicator attached to their Kerberos ticket.

Prerequisites

You have created a sudo rule for an IdM user that applies to an IdM host. For this example, you
have created the idm_user_reboot sudo rule to grant the idm_user account the permission to
run the /usr/sbin/reboot command on the idmclient host.

You have configured smart card authentication for the idmclient host.

The idmclient host is running RHEL 8.4 or later.

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

465

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/overview-of-planning-for-identity-management-and-access-control-planning-identity-management#IdM_terminology_overview-of-planning-idm-and-access-control

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the
/etc/pam.d/ directory.

Procedure

1. Open the /etc/sssd/sssd.conf configuration file.

2. Add the following entries to the [domain/<domain_name>] section.

[domain/<domain_name>]
pam_gssapi_services = sudo, sudo-i
pam_gssapi_indicators_map = sudo:pkinit, sudo-i:pkinit

3. Save and close the /etc/sssd/sssd.conf file.

4. Restart the SSSD service to load the configuration changes.

[root@idmclient ~]# systemctl restart sssd

5. Open the /etc/pam.d/sudo PAM configuration file.

6. Add the following entry as the first line of the auth section in the /etc/pam.d/sudo file.

#%PAM-1.0
auth sufficient pam_sss_gss.so
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

7. Save and close the /etc/pam.d/sudo file.

8. Open the /etc/pam.d/sudo-i PAM configuration file.

9. Add the following entry as the first line of the auth section in the /etc/pam.d/sudo-i file.

#%PAM-1.0
auth sufficient pam_sss_gss.so
auth include sudo
account include sudo
password include sudo
session optional pam_keyinit.so force revoke
session include sudo

10. Save and close the /etc/pam.d/sudo-i file.

Verification steps

1. Log into the host as the idm_user account and authenticate with a smart card.

[root@idmclient ~]# ssh -l idm_user@idm.example.com localhost
PIN for smart_card

2. Verify that you have a ticket-granting ticket as the smart card user.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

466

[idm_user@idmclient ~]$ klist
Ticket cache: KEYRING:persistent:1358900015:krb_cache_TObtNMd
Default principal: idm_user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
02/15/2021 16:29:48 02/16/2021 02:29:48
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 renew until 02/22/2021 16:29:44

3. Display which sudo rules the idm_user account is allowed to perform.

[idm_user@idmclient ~]$ sudo -l
Matching Defaults entries for idmuser on idmclient:
 !visiblepw, always_set_home, match_group_by_gid, always_query_group_plugin,
 env_reset, env_keep="COLORS DISPLAY HOSTNAME HISTSIZE KDEDIR
LS_COLORS",
 env_keep+="MAIL PS1 PS2 QTDIR USERNAME LANG LC_ADDRESS LC_CTYPE",
 env_keep+="LC_COLLATE LC_IDENTIFICATION LC_MEASUREMENT
LC_MESSAGES",
 env_keep+="LC_MONETARY LC_NAME LC_NUMERIC LC_PAPER LC_TELEPHONE",
 env_keep+="LC_TIME LC_ALL LANGUAGE LINGUAS _XKB_CHARSET XAUTHORITY
KRB5CCNAME",
 secure_path=/sbin\:/bin\:/usr/sbin\:/usr/bin

User idm_user may run the following commands on idmclient:
 (root) /usr/sbin/reboot

4. Reboot the machine using sudo, without specifying a password.

[idm_user@idmclient ~]$ sudo /usr/sbin/reboot

Additional resources

SSSD options controlling GSSAPI authentication for PAM services

The GSSAPI entry in the IdM terminology listing

Configuring Identity Management for smart card authentication

Kerberos authentication indicators

Granting sudo access to an IdM user on an IdM client using IdM Web UI

Granting sudo access to an IdM user on an IdM client using the CLI .

pam_sss_gss (8) man page

sssd.conf (5) man page

54.9. SSSD OPTIONS CONTROLLING GSSAPI AUTHENTICATION FOR
PAM SERVICES

You can use the following options for the /etc/sssd/sssd.conf configuration file to adjust the GSSAPI
configuration within the SSSD service.

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

467

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/granting-sudo-access-to-an-idm-user-on-an-idm-client_configuring-and-managing-idm#ref_sssd-options-controlling-gssapi-authentication-for-pam-services_granting-sudo-access-to-an-IdM-user-on-an-IdM-client
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/overview-of-planning-for-identity-management-and-access-control-planning-identity-management#IdM_terminology_overview-of-planning-idm-and-access-control
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-kerberos-ticket-policies_configuring-and-managing-idm#kerberos-authentication-indicators_managing-kerberos-ticket-policies

pam_gssapi_services

GSSAPI authentication with SSSD is disabled by default. You can use this option to specify a
comma-separated list of PAM services that are allowed to try GSSAPI authentication using the
pam_sss_gss.so PAM module. To explicitly disable GSSAPI authentication, set this option to -.

pam_gssapi_indicators_map

This option only applies to Identity Management (IdM) domains. Use this option to list Kerberos
authentication indicators that are required to grant PAM access to a service. Pairs must be in the
format <PAM_service>:_<required_authentication_indicator>_.
Valid authentication indicators are:

otp for two-factor authentication

radius for RADIUS authentication

pkinit for PKINIT, smart card, or certificate authentication

hardened for hardened passwords

pam_gssapi_check_upn

This option is enabled and set to true by default. If this option is enabled, the SSSD service requires
that the user name matches the Kerberos credentials. If false, the pam_sss_gss.so PAM module
authenticates every user that is able to obtain the required service ticket.

Examples

The following options enable Kerberos authentication for the sudo and sudo-i services, requires that
sudo users authenticated with a one-time password, and user names must match the Kerberos principal.
Because these settings are in the [pam] section, they apply to all domains:

[pam]
pam_gssapi_services = sudo, sudo-i
pam_gssapi_indicators_map = sudo:otp
pam_gssapi_check_upn = true

You can also set these options in individual [domain] sections to overwrite any global values in the
[pam] section. The following options apply different GSSAPI settings to each domain:

For the idm.example.com domain

Enable GSSAPI authentication for the sudo and sudo -i services.

Require certificate or smart card authentication authenticators for the sudo command.

Require one-time password authentication authenticators for the sudo -i command.

Enforce matching user names and Kerberos principals.

For the ad.example.com domain

Enable GSSAPI authentication only for the sudo service.

Do not enforce matching user names and principals.

[domain/idm.example.com]

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

468

pam_gssapi_services = sudo, sudo-i
pam_gssapi_indicators_map = sudo:pkinit, sudo-i:otp
pam_gssapi_check_upn = true
...

[domain/ad.example.com]
pam_gssapi_services = sudo
pam_gssapi_check_upn = false
...

Additional resources

Kerberos authentication indicators

54.10. TROUBLESHOOTING GSSAPI AUTHENTICATION FOR SUDO

If you are unable to authenticate to the sudo service with a Kerberos ticket from IdM, use the following
scenarios to troubleshoot your configuration.

Prerequisites

You have enabled GSSAPI authentication for the sudo service. See Enabling GSSAPI
authentication for sudo on an IdM client.

You need root privileges to modify the /etc/sssd/sssd.conf file and PAM files in the
/etc/pam.d/ directory.

Procedure

If you see the following error, the Kerberos service might not able to resolve the correct realm
for the service ticket based on the host name:

Server not found in Kerberos database

In this situation, add the hostname directly to [domain_realm] section in the /etc/krb5.conf
Kerberos configuration file:

[idm-user@idm-client ~]$ cat /etc/krb5.conf
...

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 server.example.com = EXAMPLE.COM

If you see the following error, you do not have any Kerberos credentials:

No Kerberos credentials available

In this situation, retrieve Kerberos credentials with the kinit utility or authenticate with SSSD:

[idm-user@idm-client ~]$ kinit idm-user@IDM.EXAMPLE.COM
Password for idm-user@idm.example.com:

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

469

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-kerberos-ticket-policies_configuring-and-managing-idm#kerberos-authentication-indicators_managing-kerberos-ticket-policies

If you see either of the following errors in the /var/log/sssd/sssd_pam.log log file, the Kerberos
credentials do not match the username of the user currently logged in:

User with UPN [<UPN>] was not found.

UPN [<UPN>] does not match target user [<username>].

In this situation, verify that you authenticated with SSSD, or consider disabling the
pam_gssapi_check_upn option in the /etc/sssd/sssd.conf file:

[idm-user@idm-client ~]$ cat /etc/sssd/sssd.conf
...

pam_gssapi_check_upn = false

For additional troubleshooting, you can enable debugging output for the pam_sss_gss.so
PAM module.

Add the debug option at the end of all pam_sss_gss.so entries in PAM files, such as
/etc/pam.d/sudo and /etc/pam.d/sudo-i:

[root@idm-client ~]# cat /etc/pam.d/sudo
#%PAM-1.0
auth sufficient pam_sss_gss.so debug
auth include system-auth
account include system-auth
password include system-auth
session include system-auth

[root@idm-client ~]# cat /etc/pam.d/sudo-i
#%PAM-1.0
auth sufficient pam_sss_gss.so debug
auth include sudo
account include sudo
password include sudo
session optional pam_keyinit.so force revoke
session include sudo

Try to authenticate with the pam_sss_gss.so module and review the console output. In
this example, the user did not have any Kerberos credentials.

[idm-user@idm-client ~]$ sudo ls -l /etc/sssd/sssd.conf
pam_sss_gss: Initializing GSSAPI authentication with SSSD
pam_sss_gss: Switching euid from 0 to 1366201107
pam_sss_gss: Trying to establish security context
pam_sss_gss: SSSD User name: idm-user@idm.example.com
pam_sss_gss: User domain: idm.example.com
pam_sss_gss: User principal:
pam_sss_gss: Target name: host@idm.example.com
pam_sss_gss: Using ccache: KCM:
pam_sss_gss: Acquiring credentials, principal name will be derived
pam_sss_gss: Unable to read credentials from [KCM:] [maj:0xd0000, min:0x96c73ac3]
pam_sss_gss: GSSAPI: Unspecified GSS failure. Minor code may provide more
information

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

470

pam_sss_gss: GSSAPI: No credentials cache found
pam_sss_gss: Switching euid from 1366200907 to 0
pam_sss_gss: System error [5]: Input/output error

54.11. USING AN ANSIBLE PLAYBOOK TO ENSURE SUDO ACCESS FOR
AN IDM USER ON AN IDM CLIENT

In Identity Management (IdM), you can ensure sudo access to a specific command is granted to an IdM
user account on a specific IdM host.

Complete this procedure to ensure a sudo rule named idm_user_reboot exists. The rule grants
idm_user the permission to run the /usr/sbin/reboot command on the idmclient machine.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You have ensured the presence of a user account for idm_user in IdM and unlocked the
account by creating a password for the user. For details on adding a new IdM user using the
command-line interface, see link: Adding users using the command line .

No local idm_user account exists on idmclient. The idm_user user is not listed in the
/etc/passwd file on idmclient.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaservers in it:

[ipaservers]
server.idm.example.com

2. Add one or more sudo commands:

a. Create an ensure-reboot-sudocmd-is-present.yml Ansible playbook that ensures the
presence of the /usr/sbin/reboot command in the IdM database of sudo commands. To
simplify this step, you can copy and modify the example in the /usr/share/doc/ansible-
freeipa/playbooks/sudocmd/ensure-sudocmd-is-present.yml file:

- name: Playbook to manage sudo command
 hosts: ipaserver

 vars_files:

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

471

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-accounts-using-the-command-line_configuring-and-managing-idm#adding-users-using-the-command-line_managing-idm-users-using-the-command-line

 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure sudo command is present
 - ipasudocmd:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: /usr/sbin/reboot
 state: present

b. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-
reboot-sudocmd-is-present.yml

3. Create a sudo rule that references the commands:

a. Create an ensure-sudorule-for-idmuser-on-idmclient-is-present.yml Ansible playbook
that uses the sudo command entry to ensure the presence of a sudo rule. The sudo rule
allows idm_user to reboot the idmclient machine. To simplify this step, you can copy and
modify the example in the /usr/share/doc/ansible-freeipa/playbooks/sudorule/ensure-
sudorule-is-present.yml file:

- name: Tests
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure a sudorule is present granting idm_user the permission to run /usr/sbin/reboot
on idmclient
 - ipasudorule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: idm_user_reboot
 description: A test sudo rule.
 allow_sudocmd: /usr/sbin/reboot
 host: idmclient.idm.example.com
 user: idm_user
 state: present

b. Run the playbook:

$ ansible-playbook -v -i path_to_inventory_directory/inventory.file
path_to_playbooks_directory/ensure-sudorule-for-idmuser-on-idmclient-is-
present.yml

Verification steps

Test that the sudo rule whose presence you have ensured on the IdM server works on idmclient by
verifying that idm_user can reboot idmclient using sudo. Note that it can take a few minutes for the
changes made on the server to take effect on the client.

1. Log in to idmclient as idm_user.

2. Reboot the machine using sudo. Enter the password for idm_user when prompted:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

472

$ sudo /usr/sbin/reboot
[sudo] password for idm_user:

If sudo is configured correctly, the machine reboots.

Additional resources

See the README-sudocmd.md, README-sudocmdgroup.md, and README-sudorule.md
files in the /usr/share/doc/ansible-freeipa/ directory.

CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT

473

CHAPTER 55. CONFIGURING HOST-BASED ACCESS
CONTROL RULES

You can use host-based access control (HBAC) rules to manage access control in your Identity
Management (IdM) domain. HBAC rules define which users or user groups can access specified hosts or
host groups by using which services or services in a service group. For example, you can use HBAC rules
to achieve the following goals:

Limit access to a specified system in your domain to members of a specific user group.

Allow only a specific service to be used to access the systems in your domain.

By default, IdM is configured with a default HBAC rule named allow_all, which allows universal access to
every host for every user via every relevant service in the entire IdM domain.

You can fine-tune access to different hosts by replacing the default allow_all rule with your own set of
HBAC rules. For centralized and simplified access control management, you can apply HBAC rules to
user groups, host groups, or service groups instead of individual users, hosts, or services.

55.1. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE
WEBUI

To configure your domain for host-based access control, complete the following steps:

1. Create HBAC rules in the IdM WebUI .

2. Test the new HBAC rules .

3. Disable the default allow_all HBAC rule.

NOTE

Do not disable the allow_all rule before creating your custom HBAC rules as if you do so,
no users will be able to access any hosts.

55.1.1. Creating HBAC rules in the IdM WebUI

To configure your domain for host-based access control using the IdM WebUI, follow the steps below.
For the purposes of this example, the procedure shows you how to grant a single user, sysadmin access
to all systems in the domain using any service.

NOTE

IdM stores the primary group of a user as a numerical value of the gidNumber attribute
instead of a link to an IdM group object. For this reason, an HBAC rule can only reference
a user’s supplementary groups and not its primary group.

Prerequisites

User sysadmin exists in IdM.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

474

1. Select Policy>Host-Based Access Control>HBAC Rules.

2. Click Add to start adding a new rule.

3. Enter a name for the rule, and click Add and Edit to open the HBAC rule configuration page.

4. In the Who area, select Specified Users and Groups. Then click Add to add the users or
groups.

5. Select the sysadmin user from the list of the Available users and click > to move to the list of
Prospective users and click Add.

6. In the Accessing area, select Any Host to apply the HBAC rule to all hosts.

7. In the Via Service area, select Any Service to apply the HBAC rule to all services.

NOTE

Only the most common services and service groups are configured for HBAC
rules by default.

To display the list of services that are currently available, select Policy>Host-
Based Access Control>HBAC Services.

To display the list of service groups that are currently available, select
Policy>Host-Based Access Control>HBAC Service Groups.

To add more services and service groups, see Adding HBAC Service Entries for
Custom HBAC Services and Adding HBAC Service Groups.

8. To save any changes you make on the HBAC rule configuration page, click Save at the top of
the page.

55.1.2. Testing HBAC rules in the IdM WebUI

IdM allows you to test your HBAC configuration in various situations using simulated scenarios.
Performing these simulated tests, you can discover misconfiguration problems or security risks before
deploying HBAC rules in production.

IMPORTANT

Always test custom HBAC rules before you start using them in production.

Note that IdM does not test the effect of HBAC rules on trusted Active Directory (AD) users. Because
the IdM LDAP directory does not store the AD data, IdM cannot resolve group membership of AD users
when simulating HBAC scenarios.

Procedure

1. Select Policy>Host-Based Access Control>HBAC Test.

2. On the Who window, specify the user under whose identity you want to perform the test, and
click Next.

3. On the Accessing window, specify the host that the user will attempt to access, and click Next.

CHAPTER 55. CONFIGURING HOST-BASED ACCESS CONTROL RULES

475

4. On the Via Service window, specify the service that the user will attempt to use, and click Next.

5. On the Rules window, select the HBAC rules you want to test, and click Next. If you do not select
any rule, all rules are tested.
Select Include Enabled to run the test on all rules whose status is Enabled. Select Include
Disabled to run the test on all rules whose status is Disabled. To view and change the status of
HBAC rules, select Policy>Host-Based Access Control>HBAC Rules.

IMPORTANT

If the test runs on multiple rules, it passes successfully if at least one of the
selected rules allows access.

6. On the Run Test window, click Run Test.

7. Review the test results:

If you see ACCESS DENIED, the user is not granted access in the test.

If you see ACCESS GRANTED, the user is able to access the host successfully.

By default, IdM lists all the tested HBAC rules when displaying the test results.

Select Matched to display the rules that allowed successful access.

Select Unmatched to display the rules that prevented access.

55.1.3. Disabling HBAC rules in the IdM WebUI

You can disable an HBAC rule but it only deactivates the rule and does not delete it. If you disable an
HBAC rule, you can re-enable it later.

NOTE

Disabling HBAC rules is useful when you are configuring custom HBAC rules for the first
time. To ensure that your new configuration is not overridden by the default allow_all
HBAC rule, you must disable allow_all.

Procedure

1. Select Policy>Host-Based Access Control>HBAC Rules.

2. Select the HBAC rule you want to disable.

3. Click Disable.

4. Click OK to confirm you want to disable the selected HBAC rule.

55.2. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE CLI

To configure your domain for host-based access control, complete the following steps:

1. Create HBAC rules in the IdM CLI .

2. Test the new HBAC rules .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

476

3. Disable the default allow_all HBAC rule.

NOTE

Do not disable the allow_all rule before creating your custom HBAC rules. If you disable it
before creating your custom rules, access to all hosts for all users will be denied.

55.2.1. Creating HBAC rules in the IdM CLI

To configure your domain for host-based access control using the IdM CLI, follow the steps below. For
the purposes of this example, the procedure shows you how to grant a single user, sysadmin, access to all
systems in the domain using any service.

NOTE

IdM stores the primary group of a user as a numerical value of the gidNumber attribute
instead of a link to an IdM group object. For this reason, an HBAC rule can only reference
a user’s supplementary groups and not its primary group.

Prerequisites

User sysadmin exists in IdM.

Procedure

1. Use the ipa hbacrule-add command to add the rule.

$ ipa hbacrule-add
Rule name: rule_name

Added HBAC rule "rule_name"

 Rule name: rule_name
 Enabled: TRUE

2. To apply the HBAC rule to the sysadmin user only, use the ipa hbacrule-add-user command.

$ ipa hbacrule-add-user --users=sysadmin
Rule name: rule_name
 Rule name: rule_name
 Enabled: True
 Users: sysadmin

Number of members added 1

NOTE

To apply a HBAC rule to all users, use the ipa hbacrule-mod command and
specify the all user category --usercat=all. Note that if the HBAC rule is
associated with individual users or groups, ipa hbacrule-mod --usercat=all fails.
In this situation, remove the users and groups using the ipa hbacrule-remove-
user command.

CHAPTER 55. CONFIGURING HOST-BASED ACCESS CONTROL RULES

477

3. Specify the target hosts. To apply the HBAC rule to all hosts, use the ipa hbacrule-mod
command and specify the all host category:

$ ipa hbacrule-mod rule_name --hostcat=all

Modified HBAC rule "rule_name"

 Rule name: rule_name
 Host category: all
 Enabled: TRUE
 Users: sysadmin

NOTE

If the HBAC rule is associated with individual hosts or groups, ipa hbacrule-mod
--hostcat=all fails. In this situation, remove the hosts and groups using the ipa
hbacrule-remove-host command.

4. Specify the target HBAC services. To apply the HBAC rule to all services, use the ipa hbacrule-
mod command and specify the all service category:

$ ipa hbacrule-mod rule_name --servicecat=all

Modified HBAC rule "rule_name"

 Rule name: rule_name
 Host category: all
 Service category: all
 Enabled: True
 Users: sysadmin

NOTE

If the HBAC rule is associated with individual services or groups, ipa hbacrule-mod --
servicecat=all fails. In this situation, remove the services and groups using the ipa
hbacrule-remove-service command.

Verification

Verify that the HBAC rule has been added correctly.

a. Use the ipa hbacrule-find command to verify that the HBAC rule exists in IdM.

b. Use the ipa hbacrule-show command to verify the properties of the HBAC rule.

Additional resources

See ipa hbacrule-add --help for more details.

See Adding HBAC service entries for custom HBAC services .

See Adding HBAC service groups .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

478

55.2.2. Testing HBAC rules in the IdM CLI

IdM allows you to test your HBAC configuration in various situations using simulated scenarios.
Performing these simulated tests, you can discover misconfiguration problems or security risks before
deploying HBAC rules in production.

Always test custom HBAC rules before you start using them in production.

Note that IdM does not test the effect of HBAC rules on trusted Active Directory (AD) users. Because
the IdM LDAP directory does not store the AD data, IdM cannot resolve group membership of AD users
when simulating HBAC scenarios.

Procedure

1. Use the ipa hbactest command to test your HBAC rule. You have the option to test a single
HBAC rule or multiple HBAC rules.

To test a single HBAC rule:

$ ipa hbactest --user=sysadmin --host=server.idm.example.com --service=sudo --
rules=rule_name

Access granted: True

 Matched rules: rule_name

To test multiple HBAC rules:

a. Add a second rule only allowing the sysadmin to use ssh on all hosts:

$ ipa hbacrule-add --hostcat=all rule2_name
$ ipa hbacrule-add-user --users sysadmin rule2_name
$ ipa hbacrule-add-service --hbacsvcs=sshd rule2_name
 Rule name: rule2_name
 Host category: all
 Enabled: True
 Users: admin
 HBAC Services: sshd

Number of members added 1

b. Test multiple HBAC rules by running the following command:

$ ipa hbactest --user=sysadmin --host=server.idm.example.com --service=sudo --
rules=rule_name --rules=rule2_name

Access granted: True

 Matched rules: rule_name
 Not matched rules: rule2_name

In the output, Matched rules list the rules that allowed successful access while Not matched rules list
the rules that prevented access. Note that if you do not specify the --rules option, all rules are applied.
Using --rules is useful to independently test each rule.

CHAPTER 55. CONFIGURING HOST-BASED ACCESS CONTROL RULES

479

Additional resources

See ipa hbactest --help for more information.

55.2.3. Disabling HBAC rules in the IdM CLI

You can disable an HBAC rule but it only deactivates the rule and does not delete it. If you disable an
HBAC rule, you can re-enable it later.

NOTE

Disabling HBAC rules is useful when you are configuring custom HBAC rules for the first
time. To ensure that your new configuration is not overridden by the default allow_all
HBAC rule, you must disable allow_all.

Procedure

Use the ipa hbacrule-disable command. For example, to disable the allow_all rule:

$ ipa hbacrule-disable allow_all

Disabled HBAC rule "allow_all"

Additional resources

See ipa hbacrule-disable --help for more details.

55.3. ADDING HBAC SERVICE ENTRIES FOR CUSTOM HBAC SERVICES

The most common services and service groups are configured for HBAC rules by default, but you can
also configure any other pluggable authentication module (PAM) service as an HBAC service. This
allows you to define custom PAM services in an HBAC rule. These PAM services files are in the
etc/pam.d directory on RHEL systems.

NOTE

Adding a service as an HBAC service is not the same as adding a service to the domain.
Adding a service to the domain makes it available to other resources in the domain, but it
does not allow you to use the service in HBAC rules.

55.3.1. Adding HBAC service entries for custom HBAC services in the IdM WebUI

To add a custom HBAC service entry, follow the steps described below.

Procedure

1. Select Policy>Host-Based Access Control>HBAC Services.

2. Click Add to add an HBAC service entry.

3. Enter a name for the service, and click Add.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

480

55.3.2. Adding HBAC service entries for custom HBAC services in the IdM CLI

To add a custom HBAC service entry, follow the steps described below.

Procedure

Use the ipa hbacsvc-add command. For example, to add an entry for the tftp service:

$ ipa hbacsvc-add tftp

Added HBAC service "tftp"

 Service name: tftp

Additional resources

See ipa hbacsvc-add --help for more details.

55.4. ADDING HBAC SERVICE GROUPS

HBAC service groups can simplify HBAC rules management. For example, instead of adding individual
services to an HBAC rule, you can add a whole service group.

55.4.1. Adding HBAC service groups in the IdM WebUI

To add an HBAC service group in the IdM WebUI, follow the steps outlined below.

Procedure

1. Select Policy>Host-Based Access Control>HBAC Service Groups.

2. Click Add to add an HBAC service group.

3. Enter a name for the service group, and click Edit.

4. On the service group configuration page, click Add to add an HBAC service as a member of the
group.

55.4.2. Adding HBAC service groups in the IdM CLI

To add an HBAC service group in the IdM CLI, follow the steps outlined below.

Procedure

1. Use the ipa hbacsvcgroup-add command in your terminal to add an HBAC service group. For
example, to add a group named login:

$ ipa hbacsvcgroup-add
Service group name: login

Added HBAC service group "login"

 Service group name: login

2. Use the ipa hbacsvcgroup-add-member command to add an HBAC service as a member of

CHAPTER 55. CONFIGURING HOST-BASED ACCESS CONTROL RULES

481

2. Use the ipa hbacsvcgroup-add-member command to add an HBAC service as a member of
the group. For example, to add the sshd service to the login group:

$ ipa hbacsvcgroup-add-member
Service group name: login
[member HBAC service]: sshd
 Service group name: login
 Member HBAC service: sshd

Number of members added 1

Additional resources

See ipa hbacsvcgroup-add --help for more details.

See ipa hbacsvcgroup-add-member --help for more details.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

482

CHAPTER 56. ENSURING THE PRESENCE OF HOST-BASED
ACCESS CONTROL RULES IN IDM USING ANSIBLE

PLAYBOOKS
Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.
It includes support for Identity Management (IdM).

Learn more about Identity Management (IdM) host-based access policies and how to define them using
Ansible.

56.1. HOST-BASED ACCESS CONTROL RULES IN IDM

Host-based access control (HBAC) rules define which users or user groups can access which hosts or
host groups by using which services or services in a service group. As a system administrator, you can
use HBAC rules to achieve the following goals:

Limit access to a specified system in your domain to members of a specific user group.

Allow only a specific service to be used to access systems in your domain.

By default, IdM is configured with a default HBAC rule named allow_all, which means universal access to
every host for every user via every relevant service in the entire IdM domain.

You can fine-tune access to different hosts by replacing the default allow_all rule with your own set of
HBAC rules. For centralized and simplified access control management, you can apply HBAC rules to
user groups, host groups, or service groups instead of individual users, hosts, or services.

56.2. ENSURING THE PRESENCE OF AN HBAC RULE IN IDM USING AN
ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of a host-based access control (HBAC) rule in
Identity Management (IdM) using an Ansible playbook.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The users and user groups you want to use for your HBAC rule exist in IdM. See Managing user
accounts using Ansible playbooks and Ensuring the presence of IdM groups and group
members using Ansible playbooks for details.

The hosts and host groups to which you want to apply your HBAC rule exist in IdM. See

CHAPTER 56. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING ANSIBLE PLAYBOOKS

483

https://docs.ansible.com
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The hosts and host groups to which you want to apply your HBAC rule exist in IdM. See
Managing hosts using Ansible playbooks and Managing host groups using Ansible playbooks for
details.

Procedure

1. Create an inventory file, for example inventory.file, and define ipaserver in it:

[ipaserver]
server.idm.example.com

2. Create your Ansible playbook file that defines the HBAC policy whose presence you want to
ensure. To simplify this step, you can copy and modify the example in
the /usr/share/doc/ansible-freeipa/playbooks/hbacrule/ensure-hbacrule-allhosts-
present.yml file:

- name: Playbook to handle hbacrules
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure idm_user can access client.idm.example.com via the sshd service
 - ipahbacrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: login
 user: idm_user
 host: client.idm.example.com
 hbacsvc:
 - sshd
 state: present

3. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory/ensure-new-
hbacrule-present.yml

Verification steps

1. Log in to the IdM Web UI as administrator.

2. Navigate to Policy → Host-Based-Access-Control → HBAC Test.

3. In the Who tab, select idm_user.

4. In the Accessing tab, select client.idm.example.com.

5. In the Via service tab, select sshd.

6. In the Rules tab, select login.

7. In the Run test tab, click the Run test button. If you see ACCESS GRANTED, the HBAC rule is
implemented successfully.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

484

Additional resources

See the README-hbacsvc.md, README-hbacsvcgroup.md, and README-hbacrule.md
files in the /usr/share/doc/ansible-freeipa directory.

See the playbooks in the subdirectories of the /usr/share/doc/ansible-freeipa/playbooks
directory.

CHAPTER 56. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING ANSIBLE PLAYBOOKS

485

CHAPTER 57. MANAGING REPLICATION TOPOLOGY
This chapter describes how to manage replication between servers in an Identity Management (IdM)
domain.

Additional resources

Planning the replica topology

57.1. EXPLAINING REPLICATION AGREEMENTS, TOPOLOGY
SUFFIXES AND TOPOLOGY SEGMENTS

When you create a replica, Identity Management (IdM) creates a replication agreement between the
initial server and the replica. The data that is replicated is then stored in topology suffixes and when two
replicas have a replication agreement between their suffixes, the suffixes form a topology segment.
These concepts are explained in more detail in the following sections:

Replication agreements

Topology suffixes

Topology segments

57.1.1. Replication agreements between IdM replicas

When an administrator creates a replica based on an existing server, Identity Management (IdM) creates
a replication agreement between the initial server and the replica. The replication agreement ensures
that the data and configuration is continuously replicated between the two servers.

IdM uses multiple read/write replica replication . In this configuration, all replicas joined in a replication
agreement receive and provide updates, and are therefore considered suppliers and consumers.
Replication agreements are always bilateral.

Figure 57.1. Server and replica agreements

IdM uses two types of replication agreements:

Domain replication agreements

These agreements replicate the identity information.

Certificate replication agreements

These agreements replicate the certificate information.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

486

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management

Both replication channels are independent. Two servers can have one or both types of replication
agreements configured between them. For example, when server A and server B have only domain
replication agreement configured, only identity information is replicated between them, not the
certificate information.

57.1.2. Topology suffixes

Topology suffixes store the data that is replicated. IdM supports two types of topology suffixes: domain
and ca. Each suffix represents a separate server, a separate replication topology.

When a replication agreement is configured, it joins two topology suffixes of the same type on two
different servers.

The domain suffix: dc=example,dc=com

The domain suffix contains all domain-related data.
When two replicas have a replication agreement between their domain suffixes, they share directory
data, such as users, groups, and policies.

The ca suffix: o=ipaca

The ca suffix contains data for the Certificate System component. It is only present on servers with a
certificate authority (CA) installed.
When two replicas have a replication agreement between their ca suffixes, they share certificate
data.

Figure 57.2. Topology suffixes

An initial topology replication agreement is set up between two servers by the ipa-replica-install script
when installing a new replica.

Example 57.1. Viewing topology suffixes

The ipa topologysuffix-find command displays a list of topology suffixes:

$ ipa topologysuffix-find

2 topology suffixes matched

 Suffix name: ca
 Managed LDAP suffix DN: o=ipaca

 Suffix name: domain

CHAPTER 57. MANAGING REPLICATION TOPOLOGY

487

 Managed LDAP suffix DN: dc=example,dc=com

Number of entries returned 2

57.1.3. Topology segments

When two replicas have a replication agreement between their suffixes, the suffixes form a topology
segment. Each topology segment consists of a left node and a right node. The nodes represent the
servers joined in the replication agreement.

Topology segments in IdM are always bidirectional. Each segment represents two replication
agreements: from server A to server B, and from server B to server A. The data is therefore replicated in
both directions.

Figure 57.3. Topology segments

Example 57.2. Viewing topology segments

The ipa topologysegment-find command shows the current topology segments configured for the
domain or CA suffixes. For example, for the domain suffix:

$ ipa topologysegment-find
Suffix name: domain

1 segment matched

 Segment name: server1.example.com-to-server2.example.com
 Left node: server1.example.com
 Right node: server2.example.com
 Connectivity: both

Number of entries returned 1

In this example, domain-related data is only replicated between two servers: server1.example.com
and server2.example.com.

To display details for a particular segment only, use the ipa topologysegment-show command:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

488

$ ipa topologysegment-show
Suffix name: domain
Segment name: server1.example.com-to-server2.example.com
 Segment name: server1.example.com-to-server2.example.com
 Left node: server1.example.com
 Right node: server2.example.com
 Connectivity: both

57.2. USING THE TOPOLOGY GRAPH TO MANAGE REPLICATION
TOPOLOGY

The topology graph in the web UI shows the relationships between the servers in the domain. Using the
Web UI, you can manipulate and transform the representation of the topology.

Accessing the topology graph

To access the topology graph:

1. Select IPA Server → Topology → Topology Graph.

2. If you make any changes to the topology that are not immediately reflected in the graph, click
Refresh.

Interpreting the topology graph

Servers joined in a domain replication agreement are connected by an orange arrow. Servers joined in a
CA replication agreement are connected by a blue arrow.

Topology graph example: recommended topology

The recommended topology example below shows one of the possible recommended topologies for
four servers: each server is connected to at least two other servers, and more than one server is a CA
server.

Figure 57.4. Recommended topology example

Topology graph example: discouraged topology

CHAPTER 57. MANAGING REPLICATION TOPOLOGY

489

In the discouraged topology example below, server1 is a single point of failure. All the other servers
have replication agreements with this server, but not with any of the other servers. Therefore, if
server1 fails, all the other servers will become isolated.
Avoid creating topologies like this.

Figure 57.5. Discouraged topology example: Single Point of Failure

Customizing the topology view

You can move individual topology nodes by dragging the mouse:

Figure 57.6. Moving topology graph nodes

You can zoom in and zoom out the topology graph using the mouse wheel:

Figure 57.7. Zooming the topology graph

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

490

Figure 57.7. Zooming the topology graph

You can move the canvas of the topology graph by holding the left mouse button:

Figure 57.8. Moving the topology graph canvas

57.3. SETTING UP REPLICATION BETWEEN TWO SERVERS USING THE
WEB UI

Using the Web interface of Identity Management (IdM) you can choose two servers and create new
replication agreement between them.

Prerequisites

You have the IdM administrator credentials.

Procedure

1. In the topology graph, hover your mouse over one of the server nodes.

Figure 57.9. Domain or CA options

CHAPTER 57. MANAGING REPLICATION TOPOLOGY

491

Figure 57.9. Domain or CA options

2. Click on the domain or the ca part of the circle depending on what type of topology segment
you want to create.

3. A new arrow representing the new replication agreement appears under your mouse pointer.
Move your mouse to the other server node, and click on it.

Figure 57.10. Creating a new segment

4. In the Add topology segment window, click Add to confirm the properties of the new segment.

The new topology segment between the two servers joins them in a replication agreement. The
topology graph now shows the updated replication topology:

Figure 57.11. New segment created

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

492

Figure 57.11. New segment created

57.4. STOPPING REPLICATION BETWEEN TWO SERVERS USING THE
WEB UI

Using the web interface of Identity Management (IdM) you can remove a replication agreement from
servers.

Prerequisites

You have the IdM administrator credentials.

Procedure

1. Click on an arrow representing the replication agreement you want to remove. This highlights
the arrow.

Figure 57.12. Topology segment highlighted

2. Click Delete.

3. In the Confirmation window, click OK.

IdM removes the topology segment between the two servers, which deletes their replication agreement.

CHAPTER 57. MANAGING REPLICATION TOPOLOGY

493

IdM removes the topology segment between the two servers, which deletes their replication agreement.
The topology graph now shows the updated replication topology:

Figure 57.13. Topology segment deleted

57.5. SETTING UP REPLICATION BETWEEN TWO SERVERS USING THE
CLI

You can configure replication agreements between two servers using the ipa topologysegment-add
command.

Prerequisites

You have the IdM administrator credentials.

Procedure

1. Use the ipa topologysegment-add command to create a topology segment for the two
servers. When prompted, provide:

the required topology suffix: domain or ca

the left node and the right node, representing the two servers

optionally, a custom name for the segment
For example:

$ ipa topologysegment-add
Suffix name: domain
Left node: server1.example.com
Right node: server2.example.com
Segment name [server1.example.com-to-server2.example.com]: new_segment

Added segment "new_segment"

 Segment name: new_segment
 Left node: server1.example.com
 Right node: server2.example.com
 Connectivity: both

Adding the new segment joins the servers in a replication agreement.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

494

2. Optional. Use the ipa topologysegment-show command to verify that the new segment is
configured.

$ ipa topologysegment-show
Suffix name: domain
Segment name: new_segment
 Segment name: new_segment
 Left node: server1.example.com
 Right node: server2.example.com
 Connectivity: both

57.6. STOPPING REPLICATION BETWEEN TWO SERVERS USING THE
CLI

You can terminate replication agreements from command line using the ipa topology segment-del
command.

Prerequisites

You have the IdM administrator credentials.

Procedure

1. To stop replication, you must delete the corresponding replication segment between the
servers. To do that, you need to know the segment name.
If you do not know the name, use the ipa topologysegment-find command to display all
segments, and locate the required segment in the output. When prompted, provide the required
topology suffix: domain or ca. For example:

$ ipa topologysegment-find
Suffix name: domain

8 segments matched

 Segment name: new_segment
 Left node: server1.example.com
 Right node: server2.example.com
 Connectivity: both

...

Number of entries returned 8

2. Use the ipa topologysegment-del command to remove the topology segment joining the two
servers.

$ ipa topologysegment-del
Suffix name: domain
Segment name: new_segment

CHAPTER 57. MANAGING REPLICATION TOPOLOGY

495

Deleted segment "new_segment"

Deleting the segment removes the replication agreement.

3. Optional. Use the ipa topologysegment-find command to verify that the segment is no longer
listed.

$ ipa topologysegment-find
Suffix name: domain

7 segments matched

 Segment name: server2.example.com-to-server3.example.com
 Left node: server2.example.com
 Right node: server3.example.com
 Connectivity: both

...

Number of entries returned 7

57.7. REMOVING SERVER FROM TOPOLOGY USING THE WEB UI

You can use Identity Management (IdM) web interface to remove a server from the topology.

Prerequisites

You have the IdM administrator credentials.

The server you want to remove is not the only server connecting other servers with the rest of
the topology; this would cause the other servers to become isolated, which is not allowed.

The server you want to remove is not your last CA or DNS server.

WARNING

Removing a server is an irreversible action. If you remove a server, the only way to
introduce it back into the topology is to install a new replica on the machine.

Procedure

To remove a server from the topology without uninstalling the server components from the machine:

1. Select IPA Server → Topology → IPA Servers.

2. Click on the name of the server you want to delete.

Figure 57.14. Selecting a server

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

496

Figure 57.14. Selecting a server

3. Click Delete Server.

57.8. REMOVING SERVER FROM TOPOLOGY USING THE CLI

You can use the command line interface to remove a server from the topology.

Prerequisites

You have the IdM administrator credentials.

The server you want to remove is not the only server connecting other servers with the rest of
the topology; this would cause the other servers to become isolated, which is not allowed

The server you want to remove is not your last CA or DNS server.

IMPORTANT

Removing a server is an irreversible action. If you remove a server, the only way to
introduce it back into the topology is to install a new replica on the machine.

Procedure

To remove server1.example.com:

1. On another server, run the ipa server-del command to remove server1.example.com. The
command removes all topology segments pointing to the server:

[user@server2 ~]$ ipa server-del
Server name: server1.example.com
Removing server1.example.com from replication topology, please wait...
--
Deleted IPA server "server1.example.com"
--

2. Optional: on server1.example.com, run the ipa server-install --uninstall command to uninstall
the server components from the machine.

[root@server1 ~]# ipa server-install --uninstall

CHAPTER 57. MANAGING REPLICATION TOPOLOGY

497

57.9. VIEWING SERVER ROLES ON AN IDM SERVER USING THE WEB UI

Based on the services installed on an IdM server, it can perform various server roles. For example:

CA server

DNS server

Key recovery authority (KRA) server.

For a complete list of the supported server roles, see IPA Server → Topology → Server Roles.

NOTE

Role status absent means that no server in the topology is performing the role.

Role status enabled means that one or more servers in the topology are
performing the role.

Figure 57.15. Server roles in the web UI

57.10. VIEWING SERVER ROLES ON AN IDM SERVER USING THE CLI

Based on the services installed on an IdM server, it can perform various server roles. For example:

CA server

DNS server

Key recovery authority (KRA) server.

You can view which servers perform which roles in the topology using the following commands.

The ipa config-show command displays all CA servers and the current CA renewal server:

$ ipa config-show
 ...
 IPA masters: server1.example.com, server2.example.com, server3.example.com
 IPA CA servers: server1.example.com, server2.example.com
 IPA CA renewal master: server1.example.com

The ipa server-show command displays a list of roles enabled on a particular server. For
example, for a list of roles enabled on server.example.com:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

498

$ ipa server-show
Server name: server.example.com
 ...
 Enabled server roles: CA server, DNS server, KRA server

The ipa server-find --servrole searches for all servers with a particular server role enabled. For
example, to search for all CA servers:

$ ipa server-find --servrole "CA server"

2 IPA servers matched

 Server name: server1.example.com
 ...

 Server name: server2.example.com
 ...

Number of entries returned 2

57.11. PROMOTING A REPLICA TO A CA RENEWAL SERVER AND CRL
PUBLISHER SERVER

If your IdM deployment uses an embedded certificate authority (CA), one of the IdM CA servers acts as
the CA renewal server, a server that manages the renewal of CA subsystem certificates. One of the IdM
CA servers also acts as the IdM CRL publisher server, a server that generates certificate revocation lists.
By default, the CA renewal server and CRL publisher server roles are installed on the first server on
which the system administrator installed the CA role using the ipa-server-install or ipa-ca-install
command.

Prerequisites

You have the IdM administrator credentials.

Procedure

Change the current CA renewal server.

Configure replica to generate CRLs.

57.12. DEMOTING OR PROMOTING HIDDEN REPLICAS

After a replica has been installed, you can configure whether the replica is hidden or visible.

For details about hidden replicas, see The hidden replica mode.

If the replica is a CA renewal server, move the service to another replica before making this replica
hidden.

For details, see Changing and resetting IdM CA renewal server .

Procedure

CHAPTER 57. MANAGING REPLICATION TOPOLOGY

499

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#the-hidden-replica-mode_planning-the-replica-topology

To hide the replica, enter:

ipa server-state replica.idm.example.com --state=hidden

Alternatively, you can make the replica visible with the following command:

ipa server-state replica.idm.example.com --state=enabled

To view a list of all the hidden replicas in your topology, enter:

ipa config-show

If all of your replicas are enabled, the command output does not mention hidden replicas

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

500

CHAPTER 58. PUBLIC KEY CERTIFICATES IN IDENTITY
MANAGEMENT

X.509 public key certificates are used to authenticate users, hosts and services in Identity Management
(IdM). In addition to authentication, X.509 certificates also enable digital signing and encryption to
provide privacy, integrity and non-repudiation.

A certificate contains the following information:

The subject that the certificate authenticates.

The issuer, that is the CA that has signed the certificate.

The start and end date of the validity of the certificate.

The valid uses of the certificate.

The public key of the subject.

A message encrypted by the public key can only be decrypted by a corresponding private key. While a
certificate and the public key it includes can be made publicly available, the user, host or service must
keep their private key secret.

58.1. CERTIFICATE AUTHORITIES IN IDM

Certificate authorities operate in a hierarchy of trust. In an IdM environment with an internal Certificate
Authority (CA), all the IdM hosts, users and services trust certificates that have been signed by the CA.
Apart from this root CA, IdM supports sub-CAs to which the root CA has granted the ability to sign
certificates in their turn. Frequently, the certificates that such sub-CAs are able to sign are certificates of
a specific kind, for example VPN certificates. Finally, IdM supports using external CAs. The table below
presents the specifics of using the individual types of CA in IdM.

Table 58.1. Comparison of using integrated and external CAs in IdM

Name of
CA

Description Use Useful links

The ipa
CA

An integrated CA
based on the Dogtag
upstream project

Integrated CAs can create,
revoke, and issue certificates for
users, hosts, and services.

Using the ipa CA to request a new
user certificate and exporting it to
the client

IdM sub-
CAs

An integrated CA
that is subordinate to
the ipa CA

IdM sub-CAs are CAs to which
the ipa CA has granted the ability
to sign certificates. Frequently,
these certificates are of a specific
kind, for example VPN
certificates.

Restricting an application to trust
only a subset of certificates

External
CAs

An external CA is a
CA other than the
integrated IdM CA or
its sub-CAs.

Using IdM tools, you add
certificates issued by these CAs
to users, services, or hosts as well
as remove them.

Managing externally signed
certificates for IdM users, hosts,
and services

From the certificate point of view, there is no difference between being signed by a self-signed IdM CA

CHAPTER 58. PUBLIC KEY CERTIFICATES IN IDENTITY MANAGEMENT

501

From the certificate point of view, there is no difference between being signed by a self-signed IdM CA
and being signed externally.

The role of the CA includes the following purposes:

It issues digital certificates.

By signing a certificate, it certifies that the subject named in the certificate owns a public key.
The subject can be a user, host or service.

It can revoke certificates, and provides revocation status via Certificate Revocation Lists
(CRLs) and Online Certificate Status Protocol (OCSP).

Additional resources

See Planning your CA services .

58.2. COMPARISON OF CERTIFICATES AND KERBEROS

Certificates perform a similar function to that performed by Kerberos tickets. Kerberos is a computer
network authentication protocol that works on the basis of tickets to allow nodes communicating over a
non-secure network to prove their identity to one another in a secure manner. The following table shows
a comparison of Kerberos and X.509 certificates:

Table 58.2. Comparison of certificates and Kerberos

Characteristic Kerberos X.509

Authentication Yes Yes

Privacy Optional Yes

Integrity Optional Yes

Type of cryptography
involved

Symmetrical Asymmetrical

Default validity Short (1 day) Long(2 years)

By default, Kerberos in Identity Management only ensures the identity of the communicating parties.

58.3. THE PROS AND CONS OF USING CERTIFICATES TO
AUTHENTICATE USERS IN IDM

The advantages of using certificates to authenticate users in IdM include the following points:

A PIN that protects the private key on a smart card is typically less complex and easier to
remember than a regular password.

Depending on the device, a private key stored on a smart card cannot be exported. This
provides additional security.

Smart cards can make logout automatic: IdM can be configured to log out users when they

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

502

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-your-ca-services_planning-identity-management

Smart cards can make logout automatic: IdM can be configured to log out users when they
remove the smart card from the reader.

Stealing the private key requires actual physical access to a smart card, making smart cards
secure against hacking attacks.

Smart card authentication is an example of two-factor authentication: it requires both
something you have (the card) and something you know (the PIN).

Smart cards are more flexible than passwords because they provide the keys that can be used
for other purposes, such as encrypting email.

Using smart cards use on shared machines that are IdM clients does not typically pose additional
configuration problems for system administrators. In fact, smart card authentication is an ideal
choice for shared machines.

The disadvantages of using certificates to authenticate users in IdM include the following points:

Users might lose or forget to bring their smart card or certificate and be effectively locked out.

Mistyping a PIN multiple times might result in a card becoming locked.

There is generally an intermediate step between request and authorization by some sort of
security officer or approver. In IdM, the security officer or administrator must run the ipa cert-
request command.

Smart cards and readers tend to be vendor and driver specific: although a lot of readers can be
used for different cards, a smart card of a specific vendor might not work in the reader of
another vendor or in the type of a reader for which it was not designed.

Certificates and smart cards have a steep learning curve for administrators.

CHAPTER 58. PUBLIC KEY CERTIFICATES IN IDENTITY MANAGEMENT

503

CHAPTER 59. CONVERTING CERTIFICATE FORMATS TO
WORK WITH IDM

This user story describes how to make sure that you as an IdM system administrator are using the correct
format of a certificate with specific IdM commands. This is useful, for example, in the following
situations:

You are loading an external certificate into a user profile. For details, see Converting an external
certificate to load into an IdM user account.

You are using an external CA certificate when configuring the IdM server for smart card
authentication or configuring the IdM client for smart card authentication so that users can
authenticate to IdM using smart cards with certificates on them that have been issued by the
external certificate authority.

You are exporting a certificate from an NSS database into a pkcs #12 format that includes both
the certificate and the private key. For details, see Exporting a certificate and private key from
an NSS database into a PKCS #12 file.

59.1. CERTIFICATE FORMATS AND ENCODINGS IN IDM

Certificate authentication including smart card authentication in IdM proceeds by comparing the
certificate that the user presents with the certificate, or certificate data, that are stored in the user’s IdM
profile.

System configuration

What is stored in the IdM profile is only the certificate, not the corresponding private key. During
authentication, the user must also show that he is in possession of the corresponding private key. The
user does that by either presenting a PKCS #12 file that contains both the certificate and the private key
or by presenting two files: one that contains the certificate and the other containing the private key.

Therefore, processes such as loading a certificate into a user profile only accept certificate files that do
not contain the private key.

Similarly, when a system administrator provides you with an external CA certificate, he will provide only
the public data: the certificate without the private key. The ipa-advise utility for configuring the IdM
server or the IdM client for smart card authentication expects the input file to contain the certificate of
the external CA but not the private key.

Certificate encodings

There are two common certificate encodings: Privacy-enhanced Electronic Mail (PEM) and
Distinguished Encoding Rules (DER). The base64 format is almost identical to the PEM format but it
does not contain the -----BEGIN CERTIFICATE-----/-----END CERTIFICATE----- header and footer.

A certificate that has been encoded using DER is a binary X509 digital certificate file. As a binary file,
the certificate is not human-readable. DER files sometimes use the .der filename extension, but files
with the .crt and .cer filename extensions also sometimes contain DER certificates. DER files containing
keys can be named .key.

A certificate that has been encoded using PEM Base64 is a human-readable file. The file contains ASCII
(Base64) armored data prefixed with a “-----BEGIN …” line. PEM files sometimes use the .pem
filename extension, but files with the .crt and .cer filename extensions also sometimes contain PEM
certificates. PEM files containing keys can be named .key.

Different ipa commands have different limitations regarding the types of certificates that they accept.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

504

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth

Different ipa commands have different limitations regarding the types of certificates that they accept.
For example, the ipa user-add-cert command only accepts certificates encoded in the base64 format
but ipa-server-certinstall accepts PEM, DER, PKCS #7, PKCS #8 and PKCS #12 certificates.

Table 59.1. Certificate encodings

Encoding format Human-readable Common filename
extensions

Sample IdM commands
accepting the encoding
format

PEM/base64 Yes .pem, .crt, .cer ipa user-add-cert, ipa-
server-certinstall, …

DER No .der, .crt, .cer ipa-server-certinstall, …

Certificate-related commands and formats in IdM lists further ipa commands with the certificate
formats that the commands accept.

User authentication

When using the web UI to access IdM, the user proves that he is in possession of the private key
corresponding to the certificate by having both stored in the browser’s database.

When using the CLI to access IdM, the user proves that he is in possession of the private key
corresponding to the certificate by one of the following methods:

The user adds, as the value of the X509_user_identity parameter of the kinit -X command, the
path to the smart card module that is connected to the smart card that contains both the
certificate and the key:

$ kinit -X X509_user_identity='PKCS11:opensc-pkcs11.so' idm_user

The user adds two files as the values of the X509_user_identity parameter of the kinit -X
command, one containing the certificate and the other the private key:

$ kinit -X X509_user_identity='FILE:`/path/to/cert.pem,/path/to/cert.key`' idm_user

Useful certificate commands

To view the certificate data, such as the subject and the issuer:

$ openssl x509 -noout -text -in ca.pem

To compare in which lines two certificates differ:

$ diff cert1.crt cert2.crt

To compare in which lines two certificates differ with the output displayed in two columns:

$ diff cert1.crt cert2.crt -y

59.2. CONVERTING AN EXTERNAL CERTIFICATE TO LOAD INTO AN

CHAPTER 59. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM

505

59.2. CONVERTING AN EXTERNAL CERTIFICATE TO LOAD INTO AN
IDM USER ACCOUNT

This section describes how to make sure that an external certificate is correctly encoded and formatted
before adding it to a user entry.

59.2.1. Prerequisites

If your certificate was issued by an Active Directory certificate authority and uses the PEM
encoding, make sure that the PEM file has been converted into the UNIX format. To convert a
file, use the dos2unix utility provided by the eponymous package.

59.2.2. Converting an external certificate in the IdM CLI and loading it into an IdM
user account

The IdM CLI only accepts a PEM certificate from which the first and last lines (-----BEGIN
CERTIFICATE----- and -----END CERTIFICATE-----) have been removed.

Follow this procedure to convert an external certificate to PEM format and add it to an IdM user account
using the IdM CLI.

Procedure

1. Convert the certificate to the PEM format:

If your certificate is in the DER format:

$ openssl x509 -in cert.crt -inform der -outform pem -out cert.pem

If your file is in the PKCS #12 format, whose common filename extensions are .pfx and
.p12, and contains a certificate, a private key, and possibly other data, extract the certificate
using the openssl pkcs12 utility. When prompted, enter the password protecting the
private key stored in the file:

$ openssl pkcs12 -in cert_and_key.p12 -clcerts -nokeys -out cert.pem
Enter Import Password:

2. Obtain the administrator’s credentials:

$ kinit admin

3. Add the certificate to the user account using the IdM CLI following one of the following
methods:

Remove the first and last lines (-----BEGIN CERTIFICATE----- and -----END
CERTIFICATE-----) of the PEM file using the sed utility before adding the string to the ipa
user-add-cert command:

$ ipa user-add-cert some_user --certificate="$(sed -e '/BEGIN
CERTIFICATE/d;/END CERTIFICATE/d' cert.pem)"

Copy and paste the contents of the certificate file without the first and last lines (-----

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

506

Copy and paste the contents of the certificate file without the first and last lines (-----
BEGIN CERTIFICATE----- and -----END CERTIFICATE-----) into the ipa user-add-cert
command:

$ ipa user-add-cert some_user --
certificate=MIIDlzCCAn+gAwIBAgIBATANBgkqhki...

NOTE

You cannot pass a PEM file containing the certificate as input to the ipa
user-add-cert command directly, without first removing the first and last
lines (-----BEGIN CERTIFICATE----- and -----END CERTIFICATE-----):

$ ipa user-add-cert some_user --cert=some_user_cert.pem

This command results in the "ipa: ERROR: Base64 decoding failed: Incorrect
padding" error message.

4. Optionally, to check if the certificate was accepted by the system:

[idm_user@r8server]$ ipa user-show some_user

59.2.3. Converting an external certificate in the IdM web UI for loading into an IdM
user account

Follow this procedure to convert an external certificate to PEM format and add it to an IdM user account
in the IdM web UI.

Procedure

1. Using the CLI, convert the certificate to the PEM format:

If your certificate is in the DER format:

$ openssl x509 -in cert.crt -inform der -outform pem -out cert.pem

If your file is in the PKCS #12 format, whose common filename extensions are .pfx and
.p12, and contains a certificate, a private key, and possibly other data, extract the certificate
using the openssl pkcs12 utility. When prompted, enter the password protecting the
private key stored in the file:

$ openssl pkcs12 -in cert_and_key.p12 -clcerts -nokeys -out cert.pem
Enter Import Password:

2. Open the certificate in an editor and copy the contents. You can include the "-----BEGIN
CERTIFICATE-----" and "-----END CERTIFICATE-----" header and footer lines but you do not
have to, as both the PEM and base64 formats are accepted by the IdM web UI.

3. In the IdM web UI, log in as security officer.

4. Go to Identity → Users → some_user.

5. Click Add next to Certificates.

CHAPTER 59. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM

507

6. Paste the PEM-formatted contents of the certificate into the window that opens.

7. Click Add.

If the certificate was accepted by the system, you can see it listed among the Certificates in the user
profile.

59.3. PREPARING TO LOAD A CERTIFICATE INTO THE BROWSER

Before importing a user certificate into the browser, make sure that the certificate and the
corresponding private key are in a PKCS #12 format. There are two common situations requiring extra
preparatory work:

The certificate is located in an NSS database. For details how to proceed in this situation, see
Exporting a certificate and private key from an NSS database into a PKCS #12 file .

The certificate and the private key are in two separate PEM files. For details how to proceed in
this situation, see Combining certificate and private key PEM files into a PKCS #12 file .

Afterwards, to import both the CA certificate in the PEM format and the user certificate in the PKCS
#12 format into the browser, follow the procedures in Configuring a browser to enable certificate
authentication and Authenticating to the Identity Management Web UI with a Certificate as an Identity
Management User.

59.3.1. Exporting a certificate and private key from an NSS database into a PKCS
#12 file

Procedure

1. Use the pk12util command to export the certificate from the NSS database to the PKCS12
format. For example, to export the certificate with the some_user nickname from the NSS
database stored in the ~/certdb directory into the ~/some_user.p12 file:

$ pk12util -d ~/certdb -o ~/some_user.p12 -n some_user
Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
Re-enter password:
pk12util: PKCS12 EXPORT SUCCESSFUL

2. Set appropriate permissions for the .p12 file:

chmod 600 ~/some_user.p12

Because the PKCS #12 file also contains the private key, it must be protected to prevent other
users from using the file. Otherwise, they would be able to impersonate the user.

59.3.2. Combining certificate and private key PEM files into a PKCS #12 file

Follow this procedure to combine a certificate and the corresponding key stored in separate PEM files
into a PKCS #12 file.

Procedure

To combine a certificate stored in certfile.cer and a key stored in certfile.key into a certfile.p12

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

508

To combine a certificate stored in certfile.cer and a key stored in certfile.key into a certfile.p12
file that contains both the certificate and the key:

$ openssl pkcs12 -export -in certfile.cer -inkey certfile.key -out certfile.p12

59.4. CERTIFICATE-RELATED COMMANDS AND FORMATS IN IDM

The following table displays certificate-related commands in IdM with acceptable formats.

Table 59.2. IdM certificate commands and formats

Command Acceptable formats Notes

ipa user-add-cert some_user
--certificate

base64 PEM certificate

ipa-server-certinstall PEM and DER certificate;
PKCS#7 certificate chain;
PKCS#8 and raw private key;
PKCS#12 certificate and private
key

ipa-cacert-manage install DER; PEM; PKCS#7

ipa-cacert-manage renew --
external-cert-file

PEM and DER certificate;
PKCS#7 certificate chain

ipa-ca-install --external-cert-
file

PEM and DER certificate;
PKCS#7 certificate chain

ipa cert-show <cert serial> --
certificate-out
/path/to/file.pem

N/A Creates the PEM-encoded
file.pem file with the certificate
having the <cert_serial> serial
number.

ipa cert-show <cert serial> --
certificate-out
/path/to/file.pem

N/A Creates the PEM-encoded
file.pem file with the certificate
having the <cert_serial> serial
number. If the --chain option is
used, the PEM file contains the
certificate including the
certificate chain.

ipa cert-request --certificate-
out=FILE /path/to/req.csr

N/A Creates the req.csr file in the
PEM format with the new
certificate.

CHAPTER 59. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM

509

ipa cert-request --certificate-
out=FILE /path/to/req.csr

N/A Creates the req.csr file in the
PEM format with the new
certificate. If the --chain option
is used, the PEM file contains the
certificate including the
certificate chain.

Command Acceptable formats Notes

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

510

CHAPTER 60. MANAGING CERTIFICATES FOR USERS, HOSTS,
AND SERVICES USING THE INTEGRATED IDM CA

To learn more about how to manage certificates in Identity Management (IdM) using the integrated CA,
the ipa CA, and its sub-CAs, see the following sections:

Requesting new certificates for a user, host, or service using the IdM Web UI .

Requesting new certificates for a user, host, or service from the IdM CA using the IdM CLI:

Requesting new certificates for a user, host, or service from IdM CA using certutil

For a specific example of requesting a new user certificate from the IdM CA using the
certutil utility and exporting it to an IdM client, see Requesting a new user certificate
and exporting it to the client.

Requesting new certificates for a user, host, or service from IdM CA using openssl

You can also request new certificates for a service from the IdM CA using the certmonger utility. For
more information, see Requesting new certificates for a service from IdM CA using certmonger .

Prerequisites

Your IdM deployment contains an integrated CA:

For information about how to plan your CA services in IdM, see Planning your CA services .

For information about how to install an IdM server with integrated DNS and integrated CA
as the root CA, see Installing an IdM server: With integrated DNS, with an integrated CA as
the root CA

For information about how to install an IdM server with integrated DNS and an external CA
as the root CA, see Installing an IdM server: With integrated DNS, with an external CA as the
root CA

For information about how to install an IdM server without integrated DNS and with an
integrated CA as the root CA, see Installing an IdM server: Without integrated DNS, with an
integrated CA as the root CA.

[Optional] Your IdM deployment supports users authenticating with a certificate:

For information about how to configure your IdM deployment to support user
authentication with a certificate stored in the IdM client filesystem, see Configuring
authentication with a certificate stored on the desktop of an IdM client.

For information about how to configure your IdM deployment to support user
authentication with a certificate stored on a smart card inserted into an IdM client, see
Configuring Identity Management for smart card authentication .

For information about how to configure your IdM deployment to support user
authentication with smart cards issued by an Active Directory certificate system, see
Configuring certificates issued by ADCS for smart card authentication in IdM .

60.1. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR
SERVICE USING IDM WEB UI

CHAPTER 60. MANAGING CERTIFICATES FOR USERS, HOSTS, AND SERVICES USING THE INTEGRATED IDM CA

511

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#using-certmonger_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-your-ca-services_planning-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-integrated-dns_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-external-ca_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-without-integrated-dns_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication

Follow this procedure to use the Identity Management (IdM) Web UI to request a new certificate for any
IdM entity from the integrated IdM certificate authorities (CAs): the ipa CA or any of its sub-CAs.

IdM entities include:

Users

Hosts

Services

IMPORTANT

Services typically run on dedicated service nodes on which the private keys are stored.
Copying a service’s private key to the IdM server is considered insecure. Therefore, when
requesting a certificate for a service, create the certificate signing request (CSR) on the
service node.

Prerequisites

Your IdM deployment contains an integrated CA.

You are logged into the IdM Web UI as the IdM administrator.

Procedure

1. Under the Identity tab, select the Users, Hosts, or Services subtab.

2. Click the name of the user, host, or service to open its configuration page.

Figure 60.1. List of Hosts

3. Click Actions → New Certificate.

4. Optional: Select the issuing CA and profile ID.

5. Follow the instructions for using the certutil command-line (CLI) utility on the screen.

6. Click Issue.

60.2. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR
SERVICE FROM IDM CA USING CERTUTIL

You can use the certutil utility to request a certificate for an Identity Management (IdM) user, host or

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

512

You can use the certutil utility to request a certificate for an Identity Management (IdM) user, host or
service in standard IdM situations. To ensure that a host or service Kerberos alias can use a certificate,
use the openssl utility to request a certificate instead.

Follow this procedure to request a certificate for an IdM user, host, or service from ipa, the IdM
certificate authority (CA), using certutil.

IMPORTANT

Services typically run on dedicated service nodes on which the private keys are stored.
Copying a service’s private key to the IdM server is considered insecure. Therefore, when
requesting a certificate for a service, create the certificate signing request (CSR) on the
service node.

Prerequisites

Your IdM deployment contains an integrated CA.

You are logged into the IdM command-line interface (CLI) as the IdM administrator.

Procedure

1. Create a temporary directory for the certificate database:

mkdir ~/certdb/

2. Create a new temporary certificate database, for example:

certutil -N -d ~/certdb/

3. Create the CSR and redirect the output to a file. For example, to create a CSR for a 4096 bit
certificate and to set the subject to CN=server.example.com,O=EXAMPLE.COM:

certutil -R -d ~/certdb/ -a -g 4096 -s "CN=server.example.com,O=EXAMPLE.COM" -8
server.example.com > certificate_request.csr

4. Submit the certificate request file to the CA running on the IdM server. Specify the Kerberos
principal to associate with the newly-issued certificate:

ipa cert-request certificate_request.csr --principal=host/server.example.com

The ipa cert-request command in IdM uses the following defaults:

The caIPAserviceCert certificate profile
To select a custom profile, use the --profile-id option.

The integrated IdM root CA, ipa
To select a sub-CA, use the --ca option.

Additional resources

See the output of the ipa cert-request --help command.

See Creating and managing certificate profiles in Identity Management .

CHAPTER 60. MANAGING CERTIFICATES FOR USERS, HOSTS, AND SERVICES USING THE INTEGRATED IDM CA

513

60.3. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR
SERVICE FROM IDM CA USING OPENSSL

You can use the openssl utility to request a certificate for an Identity Management (IdM) host or
service if you want to ensure that the Kerberos alias of the host or service can use the certificate. In
standard situations, consider requesting a new certificate using the certutil utility instead.

Follow this procedure to request a certificate for an IdM host, or service from ipa, the IdM certificate
authority, using openssl.

IMPORTANT

Services typically run on dedicated service nodes on which the private keys are stored.
Copying a service’s private key to the IdM server is considered insecure. Therefore, when
requesting a certificate for a service, create the certificate signing request (CSR) on the
service node.

Prerequisites

Your IdM deployment contains an integrated CA.

You are logged into the IdM command-line interface (CLI) as the IdM administrator.

Procedure

1. Create one or more aliases for your Kerberos principal test/server.example.com. For example,
test1/server.example.com and test2/server.example.com.

2. In the CSR, add a subjectAltName for dnsName (server.example.com) and otherName
(test2/server.example.com). To do this, configure the openssl.conf file to include the following
line specifying the UPN otherName and subjectAltName:

otherName=1.3.6.1.4.1.311.20.2.3;UTF8:test2/server.example.com@EXAMPLE.COM
DNS.1 = server.example.com

3. Create a certificate request using openssl:

openssl req -new -newkey rsa:2048 -keyout test2service.key -sha256 -nodes -out
certificate_request.csr -config openssl.conf

4. Submit the certificate request file to the CA running on the IdM server. Specify the Kerberos
principal to associate with the newly-issued certificate:

ipa cert-request certificate_request.csr --principal=host/server.example.com

The ipa cert-request command in IdM uses the following defaults:

The caIPAserviceCert certificate profile
To select a custom profile, use the --profile-id option.

The integrated IdM root CA, ipa
To select a sub-CA, use the --ca option.

Additional resources

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

514

Additional resources
See the output of the ipa cert-request --help command.

See Creating and managing certificate profiles in Identity Management .

60.4. ADDITIONAL RESOURCES

See Revoking certificates with the integrated IdM CAs.

See Restoring certificates with the integrated IdM CAs .

See Restricting an application to trust only a subset of certificates .

CHAPTER 60. MANAGING CERTIFICATES FOR USERS, HOSTS, AND SERVICES USING THE INTEGRATED IDM CA

515

CHAPTER 61. MANAGING IDM CERTIFICATES USING ANSIBLE
You can use the ansible-freeipa ipacert module to request, revoke, and retrieve SSL certificates for
Identity Management (IdM) users, hosts and services. You can also restore a certificate that has been
put on hold.

61.1. USING ANSIBLE TO REQUEST SSL CERTIFICATES FOR IDM
HOSTS, SERVICES AND USERS

You can use the ansible-freeipa ipacert module to request SSL certificates for Identity Management
(IdM) users, hosts and services. They can then use these certificates to authenticate to IdM.

Complete this procedure to request a certificate for an HTTP server from an IdM certificate authority
(CA) using an Ansible playbook.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Your IdM deployment has an integrated CA.

Procedure

1. Generate a certificate-signing request (CSR) for your user, host or service. For example, to use
the openssl utility to generate a CSR for the HTTP service running on client.idm.example.com,
enter:

openssl req -new -newkey rsa:2048 -days 365 -nodes -keyout new.key -out new.csr -
subj '/CN=client.idm.example.com,O=IDM.EXAMPLE.COM'

As a result, the CSR is stored in new.csr.

2. Create your Ansible playbook file request-certificate.yml with the following content:

- name: Playbook to request a certificate
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Request a certificate for a web server
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 state: requested

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

516

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 csr: |
 -----BEGIN CERTIFICATE REQUEST-----

MIGYMEwCAQAwGTEXMBUGA1UEAwwOZnJlZWlwYSBydWxlcyEwKjAFBgMrZXADIQBs
 HlqIr4b/XNK+K8QLJKIzfvuNK0buBhLz3LAzY7QDEqAAMAUGAytlcANBAF4oSCbA
 5aIPukCidnZJdr491G4LBE+URecYXsPknwYb+V+ONnf5ycZHyaFv+jkUBFGFeDgU
 SYaXm/gF8cDYjQI=
 -----END CERTIFICATE REQUEST-----
 principal: HTTP/client.idm.example.com
 register: cert

Replace the certificate request with the CSR from new.csr.

3. Request the certificate:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/request-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

61.2. USING ANSIBLE TO REVOKE SSL CERTIFICATES FOR IDM HOSTS,
SERVICES AND USERS

You can use the ansible-freeipa ipacert module to revoke SSL certificates used by
Identity Management (IdM) users, hosts and services to authenticate to IdM.

Complete this procedure to revoke a certificate for an HTTP server using an Ansible playbook. The
reason for revoking the certificate is “keyCompromise”.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

You have obtained the serial number of the certificate, for example by entering the openssl
x509 -noout -text -in <path_to_certificate> command. In this example, the serial number
of the certificate is 123456789.

Your IdM deployment has an integrated CA.

Procedure

1. Create your Ansible playbook file revoke-certificate.yml with the following content:

CHAPTER 61. MANAGING IDM CERTIFICATES USING ANSIBLE

517

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Playbook to revoke a certificate
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Revoke a certificate for a web server
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 serial_number: 123456789
 revocation_reason: "keyCompromise"
 state: revoked

2. Revoke the certificate:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/revoke-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

Reason Code in RFC 5280

61.3. USING ANSIBLE TO RESTORE SSL CERTIFICATES FOR IDM
USERS, HOSTS, AND SERVICES

You can use the ansible-freeipa ipacert module to restore a revoked SSL certificate previously used by
an Identity Management (IdM) user, host or a service to authenticate to IdM.

NOTE

You can only restore a certificate that was put on hold. You may have put it on hold
because, for example, you were not sure if the private key had been lost. However, now
you have recovered the key and as you are certain that no-one has accessed it in the
meantime, you want to reinstate the certificate.

Complete this procedure to use an Ansible playbook to release a certificate for a service enrolled into
IdM from hold. This example describes how to release a certificate for an HTTP service from hold.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

518

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md
https://datatracker.ietf.org/doc/html/rfc5280#section-5.3.1
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Your IdM deployment has an integrated CA.

You have obtained the serial number of the certificate, for example by entering the openssl
x509 -noout -text -in path/to/certificate command. In this example, the certificate serial
number is 123456789.

Procedure

1. Create your Ansible playbook file restore-certificate.yml with the following content:

- name: Playbook to restore a certificate
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Restore a certificate for a web service
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 serial_number: 123456789
 state: released

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/restore-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

61.4. USING ANSIBLE TO RETRIEVE SSL CERTIFICATES FOR IDM
USERS, HOSTS, AND SERVICES

You can use the ansible-freeipa ipacert module to retrieve an SSL certificate issued for an
Identity Management (IdM) user, host or a service, and store it in a file on the managed node.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

You have obtained the serial number of the certificate, for example by entering the openssl

CHAPTER 61. MANAGING IDM CERTIFICATES USING ANSIBLE

519

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You have obtained the serial number of the certificate, for example by entering the openssl
x509 -noout -text -in <path_to_certificate> command. In this example, the serial number of
the certificate is 123456789, and the file in which you store the retrieved certificate is cert.pem.

Procedure

1. Create your Ansible playbook file retrieve-certificate.yml with the following content:

- name: Playbook to retrieve a certificate and store it locally on the managed node
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Retrieve a certificate and save it to file 'cert.pem'
 ipacert:
 ipaadmin_password: "{{ ipaadmin_password }}"
 serial_number: 123456789
 certificate_out: cert.pem
 state: retrieved

2. Retrieve the certificate:

$ ansible-playbook --vault-password-file=password_file -v -i
<path_to_inventory_directory>/hosts <path_to_playbooks_directory>/retrieve-
certificate.yml

Additional resources

The cert module in ansible-freeipa upstream docs

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

520

https://github.com/freeipa/ansible-freeipa/blob/master/README-cert.md

CHAPTER 62. MANAGING EXTERNALLY SIGNED
CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

This chapter describes how to use the Identity Management (IdM) command-line interface (CLI) and
the IdM Web UI to add or remove user, host, or service certificates that were issued by an external
certificate authority (CA).

62.1. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM
USER, HOST, OR SERVICE BY USING THE IDM CLI

As an Identity Management (IdM) administrator, you can add an externally signed certificate to the
account of an IdM user, host, or service by using the Identity Management (IdM) CLI.

Prerequisites

You have obtained the ticket-granting ticket of an administrative user.

Procedure

To add a certificate to an IdM user, enter:

$ ipa user-add-cert user --certificate=MIQTPrajQAwg...

The command requires you to specify the following information:

The name of the user

The Base64-encoded DER certificate

NOTE

Instead of copying and pasting the certificate contents into the command line, you can
convert the certificate to the DER format and then re-encode it to Base64. For example,
to add the user_cert.pem certificate to user, enter:

$ ipa user-add-cert user --certificate="$(openssl x509 -outform der -in
user_cert.pem | base64 -w 0)"

You can run the ipa user-add-cert command interactively by executing it without adding any options.

To add a certificate to an IdM host, enter:

ipa host-add-cert

To add a certificate to an IdM service, enter:

ipa service-add-cert

Additional resources

Managing certificates for users, hosts, and services using the integrated IdM CA

CHAPTER 62. MANAGING EXTERNALLY SIGNED CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

521

62.2. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN
IDM USER, HOST, OR SERVICE BY USING THE IDM WEB UI

As an Identity Management (IdM) administrator, you can add an externally signed certificate to the
account of an IdM user, host, or service by using the Identity Management (IdM) Web UI.

Prerequisites

You are logged in to the Identity Management (IdM) Web UI as an administrative user.

Procedure

1. Open the Identity tab, and select the Users, Hosts, or Services subtab.

2. Click the name of the user, host, or service to open its configuration page.

3. Click Add next to the Certificates entry.

Figure 62.1. Adding a certificate to a user account

4. Paste the certificate in Base64 or PEM encoded format into the text field, and click Add.

5. Click Save to store the changes.

62.3. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM
AN IDM USER, HOST, OR SERVICE ACCOUNT BY USING THE IDM CLI

As an Identity Management (IdM) administrator, you can remove an externally signed certificate from
the account of an IdM user, host, or service by using the Identity Management (IdM) CLI .

Prerequisites

You have obtained the ticket-granting ticket of an administrative user.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

522

Procedure

To remove a certificate from an IdM user, enter:

$ ipa user-remove-cert user --certificate=MIQTPrajQAwg...

The command requires you to specify the following information:

The name of the user

The Base64-encoded DER certificate

NOTE

Instead of copying and pasting the certificate contents into the command line, you can
convert the certificate to the DER format and then re-encode it to Base64. For example,
to remove the user_cert.pem certificate from user, enter:

$ ipa user-remove-cert user --certificate="$(openssl x509 -outform der -in
user_cert.pem | base64 -w 0)"

You can run the ipa user-remove-cert command interactively by executing it without adding any
options.

To remove a certificate from an IdM host, enter:

ipa host-remove-cert

To remove a certificate from an IdM service, enter:

ipa service-remove-cert

Additional resources

Managing certificates for users, hosts, and services using the integrated IdM CA

62.4. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM
AN IDM USER, HOST, OR SERVICE ACCOUNT BY USING THE IDM WEB
UI

As an Identity Management (IdM) administrator, you can remove an externally signed certificate from
the account of an IdM user, host, or service by using the Identity Management (IdM) Web UI.

Prerequisites

You are logged in to the Identity Management (IdM) Web UI as an administrative user.

Procedure

1. Open the Identity tab, and select the Users, Hosts, or Services subtab.

2. Click the name of the user, host, or service to open its configuration page.

CHAPTER 62. MANAGING EXTERNALLY SIGNED CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

523

3. Click the Actions next to the certificate to delete, and select Delete.

4. Click Save to store the changes.

62.5. ADDITIONAL RESOURCES

Ensuring the presence of an externally signed certificate in an IdM service entry using an Ansible
playbook

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

524

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/using_ansible_to_install_and_manage_identity_management/index#ensuring-the-presence-of-an-externally-signed-certificate-in-an-idm-service-entry-using-an-ansible-playbook_ensuring-the-presence-and-absence-of-services-in-idm-using-ansible

CHAPTER 63. CREATING AND MANAGING CERTIFICATE
PROFILES IN IDENTITY MANAGEMENT

Certificate profiles are used by the Certificate Authority (CA) when signing certificates to determine if a
certificate signing request (CSR) is acceptable, and if so what features and extensions are present on
the certificate. A certificate profile is associated with issuing a particular type of certificate. By
combining certificate profiles and CA access control lists (ACLs), you can define and control access to
custom certificate profiles.

In describing how to create certificate profiles, the procedures use S/MIME certificates as an example.
Some email programs support digitally signed and encrypted email using the Secure Multipurpose
Internet Mail Extension (S/MIME) protocol. Using S/MIME to sign or encrypt email messages requires
the sender of the message to have an S/MIME certificate.

What is a certificate profile

Creating a certificate profile

What is a CA access control list

Defining a CA ACL to control access to certificate profiles

Using certificate profiles and CA ACLs to issue certificates

Modifying a certificate profile

Certificate profile configuration parameters

63.1. WHAT IS A CERTIFICATE PROFILE?

You can use certificate profiles to determine the content of certificates, as well as constraints for issuing
the certificates, such as the following:

The signing algorithm to use to encipher the certificate signing request.

The default validity of the certificate.

The revocation reasons that can be used to revoke a certificate.

If the common name of the principal is copied to the subject alternative name field.

The features and extensions that should be present on the certificate.

A single certificate profile is associated with issuing a particular type of certificate. You can define
different certificate profiles for users, services, and hosts in IdM. IdM includes the following certificate
profiles by default:

caIPAserviceCert

IECUserRoles

KDCs_PKINIT_Certs (used internally)

In addition, you can create and import custom profiles, which allow you to issue certificates for specific
purposes. For example, you can restrict the use of a particular profile to only one user or one group,
preventing other users and groups from using that profile to issue a certificate for authentication. To

CHAPTER 63. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

525

create custom certificate profiles, use the ipa certprofile command.

Additional resources

See the ipa help certprofile command.

63.2. CREATING A CERTIFICATE PROFILE

Follow this procedure to create a certificate profile through the command line by creating a profile
configuration file for requesting S/MIME certificates.

Procedure

1. Create a custom profile by copying an existing default profile:

$ ipa certprofile-show --out smime.cfg caIPAserviceCert
--
Profile configuration stored in file 'smime.cfg'
--
 Profile ID: caIPAserviceCert
 Profile description: Standard profile for network services
 Store issued certificates: TRUE

2. Open the newly created profile configuration file in a text editor.

$ vi smime.cfg

3. Change the Profile ID to a name that reflects the usage of the profile, for example smime.

NOTE

When you are importing a newly created profile, the profileId field, if present,
must match the ID specified on the command line.

4. Update the Extended Key Usage configuration. The default Extended Key Usage extension
configuration is for TLS server and client authentication. For example for S/MIME, the
Extended Key Usage must be configured for email protection:

policyset.serverCertSet.7.default.params.exKeyUsageOIDs=1.3.6.1.5.5.7.3.4

5. Import the new profile:

$ ipa certprofile-import smime --file smime.cfg \
 --desc "S/MIME certificates" --store TRUE

Imported profile "smime"

 Profile ID: smime
 Profile description: S/MIME certificates
 Store issued certificates: TRUE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

526

Verification steps

Verify the new certificate profile has been imported:

$ ipa certprofile-find

4 profiles matched

 Profile ID: caIPAserviceCert
 Profile description: Standard profile for network services
 Store issued certificates: TRUE

 Profile ID: IECUserRoles
 Profile description: User profile that includes IECUserRoles extension from request
 Store issued certificates: TRUE

 Profile ID: KDCs_PKINIT_Certs
 Profile description: Profile for PKINIT support by KDCs
 Store issued certificates: TRUE

 Profile ID: smime
 Profile description: S/MIME certificates
 Store issued certificates: TRUE

Number of entries returned 4

Additional resources

See ipa help certprofile.

See RFC 5280, section 4.2.1.12 .

63.3. WHAT IS A CA ACCESS CONTROL LIST?

Certificate Authority access control list (CA ACL) rules define which profiles can be used to issue
certificates to which principals. You can use CA ACLs to do this, for example:

Determine which user, host, or service can be issued a certificate with a particular profile

Determine which IdM certificate authority or sub-CA is permitted to issue the certificate

For example, using CA ACLs, you can restrict use of a profile intended for employees working from an
office located in London only to users that are members of the London office-related IdM user group.

The ipa caacl utility for management of CA ACL rules allows privileged users to add, display, modify, or
delete a specified CA ACL.

Additional resources

See ipa help caacl.

63.4. DEFINING A CA ACL TO CONTROL ACCESS TO CERTIFICATE

CHAPTER 63. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

527

https://tools.ietf.org/html/rfc5280#section-4.2.1.12

63.4. DEFINING A CA ACL TO CONTROL ACCESS TO CERTIFICATE
PROFILES

Follow this procedure to use the caacl utility to define a CA Access Control List (ACL) rule to allow
users in a group access to a custom certificate profile. In this case, the procedure describes how to
create an S/MIME user’s group and a CA ACL to allow users in that group access to the smime
certificate profile.

Prerequisites

Make sure that you have obtained IdM administrator’s credentials.

Procedure

1. Create a new group for the users of the certificate profile:

$ ipa group-add smime_users_group

Added group "smime users group"

 Group name: smime_users_group
 GID: 75400001

2. Create a new user to add to the smime_user_group group:

$ ipa user-add smime_user
First name: smime
Last name: user

Added user "smime_user"

 User login: smime_user
 First name: smime
 Last name: user
 Full name: smime user
 Display name: smime user
 Initials: TU
 Home directory: /home/smime_user
 GECOS: smime user
 Login shell: /bin/sh
 Principal name: smime_user@IDM.EXAMPLE.COM
 Principal alias: smime_user@IDM.EXAMPLE.COM
 Email address: smime_user@idm.example.com
 UID: 1505000004
 GID: 1505000004
 Password: False
 Member of groups: ipausers
 Kerberos keys available: False

3. Add the smime_user to the smime_users_group group:

$ ipa group-add-member smime_users_group --users=smime_user
 Group name: smime_users_group
 GID: 1505000003

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

528

 Member users: smime_user

Number of members added 1

4. Create the CA ACL to allow users in the group to access the certificate profile:

$ ipa caacl-add smime_acl

Added CA ACL "smime_acl"

 ACL name: smime_acl
 Enabled: TRUE

5. Add the user group to the CA ACL:

$ ipa caacl-add-user smime_acl --group smime_users_group
 ACL name: smime_acl
 Enabled: TRUE
 User Groups: smime_users_group

Number of members added 1

6. Add the certificate profile to the CA ACL:

$ ipa caacl-add-profile smime_acl --certprofile smime
 ACL name: smime_acl
 Enabled: TRUE
 Profiles: smime
 User Groups: smime_users_group

Number of members added 1

Verification steps

View the details of the CA ACL you created:

$ ipa caacl-show smime_acl
 ACL name: smime_acl
 Enabled: TRUE
 Profiles: smime
 User Groups: smime_users_group
...

Additional resources

See ipa man page.

See ipa help caacl.

63.5. USING CERTIFICATE PROFILES AND CA ACLS TO ISSUE

CHAPTER 63. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

529

63.5. USING CERTIFICATE PROFILES AND CA ACLS TO ISSUE
CERTIFICATES

You can request certificates using a certificate profile when permitted by the Certificate Authority
access control lists (CA ACLs). Follow this procedure to request an S/MIME certificate for a user using a
custom certificate profile which has been granted access through a CA ACL.

Prerequisites

Your certificate profile has been created.

An CA ACL has been created which permits the user to use the required certificate profile to
request a certificate.

NOTE

You can bypass the CA ACL check if the user performing the cert-request command:

Is the admin user.

Has the Request Certificate ignoring CA ACLs permission.

Procedure

1. Generate a certificate request for the user. For example, using OpenSSL:

$ openssl req -new -newkey rsa:2048 -days 365 -nodes -keyout private.key -out cert.csr -
subj '/CN=smime_user'

2. Request a new certificate for the user from the IdM CA:

$ ipa cert-request cert.csr --principal=smime_user --profile-id=smime

Optionally pass the --ca sub-CA_name option to the command to request the certificate from a
sub-CA instead of the root CA.

Verification steps

Verify the newly-issued certificate is assigned to the user:

$ ipa user-show user
 User login: user
 ...
 Certificate: MIICfzCCAWcCAQA...
 ...

Additional resources

See ipa(a) man page.

See the ipa help user-show command.

See the ipa help cert-request command.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

530

See openssl(lssl) man page.

63.6. MODIFYING A CERTIFICATE PROFILE

Follow this procedure to modify certificate profiles directly through the command line using the ipa
certprofile-mod command.

Procedure

1. Determine the certificate profile ID for the certificate profile you are modifying. To display all
certificate profiles currently stored in IdM:

ipa certprofile-find

4 profiles matched

 Profile ID: caIPAserviceCert
 Profile description: Standard profile for network services
 Store issued certificates: TRUE

 Profile ID: IECUserRoles
 ...

 Profile ID: smime
 Profile description: S/MIME certificates
 Store issued certificates: TRUE

Number of entries returned

2. Modify the certificate profile description. For example, if you created a custom certificate
profile for S/MIME certificates using an existing profile, change the description in line with the
new usage:

ipa certprofile-mod smime --desc "New certificate profile description"

Modified Certificate Profile "smime"

 Profile ID: smime
 Profile description: New certificate profile description
 Store issued certificates: TRUE

3. Open your customer certificate profile file in a text editor and modify to suit your requirements:

vi smime.cfg

For details on the options which can be configured in the certificate profile configuration file,
see Certificate profile configuration parameters .

4. Update the existing certificate profile configuration file:

ipa certprofile-mod _profile_ID_ --file=smime.cfg

CHAPTER 63. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

531

Verification steps

Verify the certificate profile has been updated:

$ ipa certprofile-show smime
 Profile ID: smime
 Profile description: New certificate profile description
 Store issued certificates: TRUE

Additional resources

See ipa(a) man page.

See ipa help certprofile-mod.

63.7. CERTIFICATE PROFILE CONFIGURATION PARAMETERS

Certificate profile configuration parameters are stored in a profile_name.cfg file in the CA profile
directory, /var/lib/pki/pki-tomcat/ca/profiles/ca. All of the parameters for a profile - defaults, inputs,
outputs, and constraints - are configured within a single policy set. A policy set for a certificate profile
has the name policyset.policyName.policyNumber. For example, for policy set serverCertSet:

policyset.list=serverCertSet
policyset.serverCertSet.list=1,2,3,4,5,6,7,8
policyset.serverCertSet.1.constraint.class_id=subjectNameConstraintImpl
policyset.serverCertSet.1.constraint.name=Subject Name Constraint
policyset.serverCertSet.1.constraint.params.pattern=CN=[^,]+,.+
policyset.serverCertSet.1.constraint.params.accept=true
policyset.serverCertSet.1.default.class_id=subjectNameDefaultImpl
policyset.serverCertSet.1.default.name=Subject Name Default
policyset.serverCertSet.1.default.params.name=CN=$request.req_subject_name.cn$, OU=pki-ipa,
O=IPA
policyset.serverCertSet.2.constraint.class_id=validityConstraintImpl
policyset.serverCertSet.2.constraint.name=Validity Constraint
policyset.serverCertSet.2.constraint.params.range=740
policyset.serverCertSet.2.constraint.params.notBeforeCheck=false
policyset.serverCertSet.2.constraint.params.notAfterCheck=false
policyset.serverCertSet.2.default.class_id=validityDefaultImpl
policyset.serverCertSet.2.default.name=Validity Default
policyset.serverCertSet.2.default.params.range=731
policyset.serverCertSet.2.default.params.startTime=0

Each policy set contains a list of policies configured for the certificate profile by policy ID number in the
order in which they should be evaluated. The server evaluates each policy set for each request it
receives. When a single certificate request is received, one set is evaluated, and any other sets in the
profile are ignored. When dual key pairs are issued, the first policy set is evaluated for the first certificate
request, and the second set is evaluated for the second certificate request. You do not need more than
one policy set when issuing single certificates or more than two sets when issuing dual key pairs.

Table 63.1. Certificate profile configuration file parameters

Parameter Description

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

532

desc A free text description of the certificate profile,
which is shown on the end-entities page. For
example, desc=This certificate profile is for
enrolling server certificates with agent
authentication.

enable Enables the profile so it is accessible through the
end-entities page. For example, enable=true.

auth.instance_id Sets the authentication manager plug-in to use to
authenticate the certificate request. For automatic
enrollment, the CA issues a certificate immediately if
the authentication is successful. If authentication
fails or there is no authentication plug-in specified,
the request is queued to be manually approved by an
agent. For example,
auth.instance_id=AgentCertAuth.

authz.acl Specifies the authorization constraint. This is
predominantly used to set the group evaluation
Access Control List (ACL). For example, the
caCMCUserCert parameter requires that the
signer of the CMC request belongs to the Certificate
Manager Agents group:

authz.acl=group="Certificate Manager
Agents

In directory-based user certificate renewal, this
option is used to ensure that the original requester
and the currently-authenticated user are the same.
An entity must authenticate (bind or, essentially, log
into the system) before authorization can be
evaluated.

name The name of the certificate profile. For example,
name=Agent-Authenticated Server Certificate
Enrollment. This name is displayed on the end users
enrollment or renewal page.

input.list Lists the allowed inputs for the certificate profile by
name. For example, input.list=i1,i2.

input.input_id.class_id Indicates the java class name for the input by input ID
(the name of the input listed in input.list). For
example, input.i1.class_id=certReqInputImpl.

Parameter Description

CHAPTER 63. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

533

output.list Lists the possible output formats for the certificate
profile by name. For example, output.list=o1.

output.output_id.class_id Specifies the java class name for the output format
named in output.list. For example,
output.o1.class_id=certOutputImpl.

policyset.list Lists the configured certificate profile rules. For dual
certificates, one set of rules applies to the signing
key and the other to the encryption key. Single
certificates use only one set of certificate profile
rules. For example, policyset.list=serverCertSet.

policyset.policyset_id.list Lists the policies within the policy set configured for
the certificate profile by policy ID number in the
order in which they should be evaluated. For
example,
policyset.serverCertSet.list=1,2,3,4,5,6,7,8.

policyset.policyset_id.policy_number.constraint.class_
id

Indicates the java class name of the constraint plug-
in set for the default configured in the profile rule.
For example,
policyset.serverCertSet.1.constraint.class_id=subject
NameConstraintImpl.

policyset.policyset_id.policy_number.constraint.name Gives the user-defined name of the constraint. For
example,
policyset.serverCertSet.1.constraint.name=Subject
Name Constraint.

policyset.policyset_id.policy_number.constraint.para
ms.attribute

Specifies a value for an allowed attribute for the
constraint. The possible attributes vary depending on
the type of constraint. For example,
policyset.serverCertSet.1.constraint.params.pattern=
CN=.*.

policyset.policyset_id.policy_number.default.class_id Gives the java class name for the default set in the
profile rule. For example,
policyset.serverCertSet.1.default.class_id=userSubjec
tNameDefaultImpl

policyset.policyset_id.policy_number.default.name Gives the user-defined name of the default. For
example,
policyset.serverCertSet.1.default.name=Subject
Name Default

Parameter Description

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

534

policyset.policyset_id.policy_number.default.params.
attribute

Specifies a value for an allowed attribute for the
default. The possible attributes vary depending on
the type of default. For example,
policyset.serverCertSet.1.default.params.name=CN=
(Name)$request.requestor_name$.

Parameter Description

CHAPTER 63. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT

535

CHAPTER 64. MANAGING THE VALIDITY OF CERTIFICATES IN
IDM

In Identity Management (IdM), you can manage the validity of both already existing certificates and
certificates you want to issue in the future, but the methods are different.

64.1. MANAGING THE VALIDITY OF AN EXISTING CERTIFICATE THAT
WAS ISSUED BY IDM CA

In IdM, the following methods of viewing the expiry date of a certificate are available:

Viewing the expiry date in IdM WebUI .

Viewing the expiry date in the CLI .

You can manage the validity of an already existing certificate that was issued by IdM CA in the following
ways:

Renew a certificate by requesting a new certificate using either the original certificate signing
request (CSR) or a new CSR generated from the private key. You can request a new certificate
using the following utilities:

certmonger

You can use certmonger to request a service certificate. Before the certificate is due to
expire, certmonger will automatically renew the certificate, thereby ensuring a continuing
validity of the service certificate. For details, see Obtaining an IdM certificate for a service
using certmonger;

certutil

You can use certutil to renew user, host, and service certificates. For details on requesting a
user certificate, see Requesting a new user certificate and exporting it to the client ;

openssl

You can use openssl to renew user, host, and service certificates.

Revoke a certificate. For details, see:

Revoking certificates with the integrated IdM CAs using IdM WebUI ;

Revoking certificates with the integrated IdM CAs using IdM CLI ;

Restore a certificate if it has been temporarily revoked. For details, see:

Restoring certificates with the integrated IdM CAs using IdM WebUI ;

Restoring certificates with the integrated IdM CAs using IdM CLI .

64.2. MANAGING THE VALIDITY OF FUTURE CERTIFICATES ISSUED
BY IDM CA

To manage the validity of future certificates issued by IdM CA, modify, import, or create a certificate
profile. For details, see Creating and managing certificate profiles in Identity Management .

64.3. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN IDM WEBUI

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

536

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-certmonger_configuring-and-managing-idm#obtain-service-cert-with-certmonger_certmonger-for-issuing-renewing-service-certs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/dc-web-ui-auth_configuring-and-managing-idm#requesting-and-exporting-a-user-certificate_dc-web-ui-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/creating-and-managing-certificate-profiles-in-identity-management_configuring-and-managing-idm

You can use IdM WebUI to view the expiry date of all the certificates that have been issued by IdM CA.

Prerequisites

Ensure that you have obtained the administrator’s credentials.

Procedure

1. In the Authentication menu, click Certificates > Certificates.

2. Click the serial number of the certificate to open the certificate information page.

Figure 64.1. List of Certificates

3. In the certificate information page, locate the Expires On information.

64.4. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN THE CLI

You can use the command-line interface (CLI) to view the expiry date of a certificate.

Procedure

Use the openssl utility to open the file in a human-readable format:

$ openssl x509 -noout -text -in ca.pem
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 1 (0x1)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O = IDM.EXAMPLE.COM, CN = Certificate Authority
 Validity
 Not Before: Oct 30 19:39:14 2017 GMT
 Not After : Oct 30 19:39:14 2037 GMT

64.5. REVOKING CERTIFICATES WITH THE INTEGRATED IDM CAS

64.5.1. Certificate revocation reasons

A revoked certificate is invalid and cannot be used for authentication. All revocations are permanent,
except for reason 6: Certificate Hold.

CHAPTER 64. MANAGING THE VALIDITY OF CERTIFICATES IN IDM

537

The default revocation reason is 0: unspecified.

Table 64.1. Revocation Reasons

ID Reason Explanation

0 Unspecified

1 Key Compromised The key that issued the certificate is no longer trusted.

Possible causes: lost token, improperly accessed file.

2 CA Compromised The CA that issued the certificate is no longer trusted.

3 Affiliation Changed Possible causes:

* A person has left the company or moved to another
department.

* A host or service is being retired.

4 Superseded A newer certificate has replaced the current certificate.

5 Cessation of Operation The host or service is being decommissioned.

6 Certificate Hold The certificate is temporarily revoked. You can restore the
certificate later.

8 Remove from CRL The certificate is not included in the certificate revocation list
(CRL).

9 Privilege Withdrawn The user, host, or service is no longer permitted to use the
certificate.

10 Attribute Authority (AA)
Compromise

The AA certificate is no longer trusted.

64.5.2. Revoking certificates with the integrated IdM CAs using IdM WebUI

If you know you have lost the private key for your certificate, you must revoke the certificate to prevent
its abuse. Complete this procedure to use the IdM WebUI to revoke a certificate issued by the IdM CA.

Procedure

1. Click Authentication > Certificates > Certificates.

2. Click the serial number of the certificate to open the certificate information page.

Figure 64.2. List of Certificates

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

538

Figure 64.2. List of Certificates

3. In the certificate information page, click Actions → Revoke Certificate.

4. Select the reason for revoking and click Revoke. See Certificate revocation reasons for details.

64.5.3. Revoking certificates with the integrated IdM CAs using IdM CLI

If you know you have lost the private key for your certificate, you must revoke the certificate to prevent
its abuse. Complete this procedure to use the IdM CLI to revoke a certificate issued by the IdM CA.

Procedure

Use the ipa cert-revoke command, and specify:

the certificate serial number

the ID number for the revocation reason; see Certificate revocation reasons for details

For example, to revoke the certificate with serial number 1032 because of reason 1: Key Compromised,
enter:

$ ipa cert-revoke 1032 --revocation-reason=1

For details on requesting a new certificate, see the following documentation:

Requesting a new user certificate and exporting it to the client

Obtaining an IdM certificate for a service using certmonger .

64.6. RESTORING CERTIFICATES WITH THE INTEGRATED IDM CAS

If you have revoked a certificate because of reason 6: Certificate Hold, you can restore it again if the
private key for the certificate has not been compromised. To restore a certificate, use one of the
following procedures:

Restore certificates with the integrated IdM CAs using IdM WebUI ;

Restore certificates with the integrated IdM CAs using IdM CLI .

64.6.1. Restoring certificates with the integrated IdM CAs using IdM WebUI

Complete this procedure to use the IdM WebUI to restore an IdM certificate that has been revoked

CHAPTER 64. MANAGING THE VALIDITY OF CERTIFICATES IN IDM

539

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/dc-web-ui-auth_configuring-and-managing-idm#requesting-and-exporting-a-user-certificate_dc-web-ui-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-certmonger_configuring-and-managing-idm

Complete this procedure to use the IdM WebUI to restore an IdM certificate that has been revoked
because of Reason 6: Certificate Hold.

Procedure

1. In the Authentication menu, click Certificates > Certificates.

2. Click the serial number of the certificate to open the certificate information page.

Figure 64.3. List of Certificates

3. In the certificate information page, click Actions → Restore Certificate.

64.6.2. Restoring certificates with the integrated IdM CAs using IdM CLI

Complete this procedure to use the IdM CLI to restore an IdM certificate that has been revoked because
of Reason 6: Certificate Hold.

Procedure

Use the ipa cert-remove-hold command and specify the certificate serial number. For example:

$ ipa cert-remove-hold 1032

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

540

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR
SMART CARD AUTHENTICATION

Identity Management (IdM) supports smart card authentication with:

User certificates issued by the IdM certificate authority

User certificates issued by an external certificate authority

You can configure smart card authentication in IdM for both types of certificates. In this scenario, the
rootca.pem CA certificate is the file containing the certificate of a trusted external certificate authority.

For information about smart card authentication in IdM, see Understanding smart card authentication .

For more details on configuring smart card authentication:

Configuring the IdM server for smart card authentication

Configuring the IdM client for smart card authentication

Adding a certificate to a user entry in the IdM Web UI

Adding a certificate to a user entry in the IdM CLI

Installing tools for managing and using smart cards

Storing a certificate on a smart card

Logging in to IdM with smart cards

Configuring GDM access using smart card authentication

Configuring su access using smart card authentication

65.1. CONFIGURING THE IDM SERVER FOR SMART CARD
AUTHENTICATION

If you want to enable smart card authentication for users whose certificates have been issued by the
certificate authority (CA) of the <EXAMPLE.ORG> domain that your Identity Management (IdM) CA
trusts, you must obtain the following certificates so that you can add them when running the ipa-advise
script that configures the IdM server:

The certificate of the root CA that has either issued the certificate for the <EXAMPLE.ORG> CA
directly, or through one or more of its sub-CAs. You can download the certificate chain from a
web page whose certificate has been issued by the authority. For details, see Steps 1 - 4a in
Configuring a browser to enable certificate authentication .

The IdM CA certificate. You can obtain the CA certificate from the /etc/ipa/ca.crt file on the
IdM server on which an IdM CA instance is running.

The certificates of all of the intermediate CAs; that is, intermediate between the
<EXAMPLE.ORG> CA and the IdM CA.

To configure an IdM server for smart card authentication:

1. Obtain files with the CA certificates in the PEM format.

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

541

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-webui_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-cli_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#storing-a-certificate-on-the-smart-card_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#logging-in-to-idm-with-smart-cards_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#configuring-gdm-access-using-smart-card-authentication_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#configuring-su-access-using-smart-card-authentication_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/dc-web-ui-auth_configuring-and-managing-idm#configuring-browser-for-cert-auth_dc-web-ui-auth

2. Run the built-in ipa-advise script.

3. Reload the system configuration.

Prerequisites

You have root access to the IdM server.

You have the root CA certificate and all the intermediate CA certificates.

Procedure

1. Create a directory in which you will do the configuration:

[root@server]# mkdir ~/SmartCard/

2. Navigate to the directory:

[root@server]# cd ~/SmartCard/

3. Obtain the relevant CA certificates stored in files in PEM format. If your CA certificate is stored
in a file of a different format, such as DER, convert it to PEM format. The IdM Certificate
Authority certificate is in PEM format and is located in the /etc/ipa/ca.crt file.
Convert a DER file to a PEM file:

openssl x509 -in <filename>.der -inform DER -out <filename>.pem -outform PEM

4. For convenience, copy the certificates to the directory in which you want to do the
configuration:

[root@server SmartCard]# cp /tmp/rootca.pem ~/SmartCard/
[root@server SmartCard]# cp /tmp/subca.pem ~/SmartCard/
[root@server SmartCard]# cp /tmp/issuingca.pem ~/SmartCard/

5. Optionally, if you use certificates of external certificate authorities, use the openssl x509 utility
to view the contents of the files in the PEM format to check that the Issuer and Subject values
are correct:

[root@server SmartCard]# openssl x509 -noout -text -in rootca.pem | more

6. Generate a configuration script with the in-built ipa-advise utility, using the administrator’s
privileges:

[root@server SmartCard]# kinit admin
[root@server SmartCard]# ipa-advise config-server-for-smart-card-auth > config-server-
for-smart-card-auth.sh

The config-server-for-smart-card-auth.sh script performs the following actions:

It configures the IdM Apache HTTP Server.

It enables Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) on the
Key Distribution Center (KDC).

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

542

It configures the IdM Web UI to accept smart card authorization requests.

7. Execute the script, adding the PEM files containing the root CA and sub CA certificates as
arguments:

[root@server SmartCard]# chmod +x config-server-for-smart-card-auth.sh
[root@server SmartCard]# ./config-server-for-smart-card-auth.sh rootca.pem subca.pem
issuingca.pem
Ticket cache:KEYRING:persistent:0:0
Default principal: admin@IDM.EXAMPLE.COM
[...]
Systemwide CA database updated.
The ipa-certupdate command was successful

NOTE

Ensure that you add the root CA’s certificate as an argument before any sub CA
certificates and that the CA or sub CA certificates have not expired.

8. Optionally, if the certificate authority that issued the user certificate does not provide any
Online Certificate Status Protocol (OCSP) responder, you may need to disable OCSP check for
authentication to the IdM Web UI:

a. Set the SSLOCSPEnable parameter to off in the /etc/httpd/conf.d/ssl.conf file:

SSLOCSPEnable off

b. Restart the Apache daemon (httpd) for the changes to take effect immediately:

[root@server SmartCard]# systemctl restart httpd

WARNING

Do not disable the OCSP check if you only use user certificates issued by
the IdM CA. OCSP responders are part of IdM.

For instructions on how to keep the OCSP check enabled, and yet prevent a user certificate
from being rejected by the IdM server if it does not contain the information about the location at
which the CA that issued the user certificate listens for OCSP service requests, see the
SSLOCSPDefaultResponder directive in Apache mod_ssl configuration options .

The server is now configured for smart card authentication.

NOTE

To enable smart card authentication in the whole topology, run the procedure on each
IdM server.

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

543

http://httpd.apache.org/docs/trunk/en/mod/mod_ssl.html

65.2. USING ANSIBLE TO CONFIGURE THE IDM SERVER FOR SMART
CARD AUTHENTICATION

You can use Ansible to enable smart card authentication for users whose certificates have been issued
by the certificate authority (CA) of the <EXAMPLE.ORG> domain that your Identity Management (IdM)
CA trusts. To do that, you must obtain the following certificates so that you can use them when running
an Ansible playbook with the ipasmartcard_server ansible-freeipa role script:

The certificate of the root CA that has either issued the certificate for the <EXAMPLE.ORG> CA
directly, or through one or more of its sub-CAs. You can download the certificate chain from a
web page whose certificate has been issued by the authority. For details, see Step 4 in
Configuring a browser to enable certificate authentication .

The IdM CA certificate. You can obtain the CA certificate from the /etc/ipa/ca.crt file on any
IdM CA server.

The certificates of all of the CAs that are intermediate between the <EXAMPLE.ORG> CA and
the IdM CA.

Prerequisites

You have root access to the IdM server.

You know the IdM admin password.

You have the root CA certificate, the IdM CA certificate, and all the intermediate CA
certificates.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. If your CA certificates are stored in files of a different format, such as DER, convert them to
PEM format:

openssl x509 -in <filename>.der -inform DER -out <filename>.pem -outform PEM

The IdM Certificate Authority certificate is in PEM format and is located in the /etc/ipa/ca.crt
file.

2. Optionally, use the openssl x509 utility to view the contents of the files in the PEM format to
check that the Issuer and Subject values are correct:

openssl x509 -noout -text -in root-ca.pem | more

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

544

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/dc-web-ui-auth_configuring-and-managing-idm#configuring-browser-for-cert-auth_dc-web-ui-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

4. Create a subdirectory dedicated to the CA certificates:

$ mkdir SmartCard/

5. For convenience, copy all the required certificates to the ~/MyPlaybooks/SmartCard/
directory:

cp /tmp/root-ca.pem ~/MyPlaybooks/SmartCard/
cp /tmp/intermediate-ca.pem ~/MyPlaybooks/SmartCard/
cp /etc/ipa/ca.crt ~/MyPlaybooks/SmartCard/ipa-ca.crt

6. In your Ansible inventory file, specify the following:

The IdM servers that you want to configure for smart card authentication.

The IdM administrator password.

The paths to the certificates of the CAs in the following order:

The root CA certificate file

The intermediate CA certificates files

The IdM CA certificate file

The file can look as follows:

[ipaserver]
ipaserver.idm.example.com

[ipareplicas]
ipareplica1.idm.example.com
ipareplica2.idm.example.com

[ipacluster:children]
ipaserver
ipareplicas

[ipacluster:vars]
ipaadmin_password= "{{ ipaadmin_password }}"
ipasmartcard_server_ca_certs=/home/<user_name>/MyPlaybooks/SmartCard/root-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/intermediate-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/ipa-ca.crt

7. Create an install-smartcard-server.yml playbook with the following content:

- name: Playbook to set up smart card authentication for an IdM server
 hosts: ipaserver
 become: true

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

545

 roles:
 - role: ipasmartcard_server
 state: present

8. Save the file.

9. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory install-
smartcard-server.yml

The ipasmartcard_server Ansible role performs the following actions:

It configures the IdM Apache HTTP Server.

It enables Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) on the
Key Distribution Center (KDC).

It configures the IdM Web UI to accept smart card authorization requests.

10. Optionally, if the certificate authority that issued the user certificate does not provide any
Online Certificate Status Protocol (OCSP) responder, you may need to disable OCSP check for
authentication to the IdM Web UI:

a. Connect to the IdM server as root:

ssh root@ipaserver.idm.example.com

b. Set the SSLOCSPEnable parameter to off in the /etc/httpd/conf.d/ssl.conf file:

SSLOCSPEnable off

c. Restart the Apache daemon (httpd) for the changes to take effect immediately:

systemctl restart httpd

WARNING

Do not disable the OCSP check if you only use user certificates issued by
the IdM CA. OCSP responders are part of IdM.

For instructions on how to keep the OCSP check enabled, and yet prevent a user certificate
from being rejected by the IdM server if it does not contain the information about the location at
which the CA that issued the user certificate listens for OCSP service requests, see the
SSLOCSPDefaultResponder directive in Apache mod_ssl configuration options .

The server listed in the inventory file is now configured for smart card authentication.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

546

http://httpd.apache.org/docs/trunk/en/mod/mod_ssl.html

NOTE

To enable smart card authentication in the whole topology, set the hosts variable in the
Ansible playbook to ipacluster:

- name: Playbook to setup smartcard for IPA server and replicas
 hosts: ipacluster
[...]

Additional resources

Sample playbooks using the ipasmartcard_server role in the /usr/share/doc/ansible-
freeipa/playbooks/ directory

65.3. CONFIGURING THE IDM CLIENT FOR SMART CARD
AUTHENTICATION

Follow this procedure to configure IdM clients for smart card authentication. The procedure needs to be
run on each IdM system, a client or a server, to which you want to connect while using a smart card for
authentication. For example, to enable an ssh connection from host A to host B, the script needs to be
run on host B.

As an administrator, run this procedure to enable smart card authentication using

The ssh protocol
For details see Configuring SSH access using smart card authentication .

The console login

The GNOME Display Manager (GDM)

The su command

This procedure is not required for authenticating to the IdM Web UI. Authenticating to the IdM Web UI
involves two hosts, neither of which needs to be an IdM client:

The machine on which the browser is running. The machine can be outside of the IdM domain.

The IdM server on which httpd is running.

The following procedure assumes that you are configuring smart card authentication on an IdM client,
not an IdM server. For this reason you need two computers: an IdM server to generate the configuration
script, and the IdM client on which to run the script.

Prerequisites

Your IdM server has been configured for smart card authentication, as described in Configuring
the IdM server for smart card authentication.

You have root access to the IdM server and the IdM client.

You have the root CA certificate and all the intermediate CA certificates.

You installed the IdM client with the --mkhomedir option to ensure remote users can log in

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

547

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication#configuring-ssh-access-using-smart-card-authentication_configuring-and-importing-local-certificates-to-a-smart-card
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth

You installed the IdM client with the --mkhomedir option to ensure remote users can log in
successfully. If you do not create a home directory, the default login location is the root of the
directory structure, /.

Procedure

1. On an IdM server, generate a configuration script with ipa-advise using the administrator’s
privileges:

[root@server SmartCard]# kinit admin
[root@server SmartCard]# ipa-advise config-client-for-smart-card-auth > config-client-
for-smart-card-auth.sh

The config-client-for-smart-card-auth.sh script performs the following actions:

It configures the smart card daemon.

It sets the system-wide truststore.

It configures the System Security Services Daemon (SSSD) to allow users to authenticate
with either their user name and password or with their smart card. For more details on SSSD
profile options for smart card authentication, see Smart card authentication options in
RHEL.

2. From the IdM server, copy the script to a directory of your choice on the IdM client machine:

[root@server SmartCard]# scp config-client-for-smart-card-auth.sh
root@client.idm.example.com:/root/SmartCard/
Password:
config-client-for-smart-card-auth.sh 100% 2419 3.5MB/s 00:00

3. From the IdM server, copy the CA certificate files in PEM format for convenience to the same
directory on the IdM client machine as used in the previous step:

[root@server SmartCard]# scp {rootca.pem,subca.pem,issuingca.pem}
root@client.idm.example.com:/root/SmartCard/
Password:
rootca.pem 100% 1237 9.6KB/s 00:00
subca.pem 100% 2514 19.6KB/s 00:00
issuingca.pem 100% 2514 19.6KB/s 00:00

4. On the client machine, execute the script, adding the PEM files containing the CA certificates as
arguments:

[root@client SmartCard]# kinit admin
[root@client SmartCard]# chmod +x config-client-for-smart-card-auth.sh
[root@client SmartCard]# ./config-client-for-smart-card-auth.sh rootca.pem subca.pem
issuingca.pem
Ticket cache:KEYRING:persistent:0:0
Default principal: admin@IDM.EXAMPLE.COM
[...]
Systemwide CA database updated.
The ipa-certupdate command was successful

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

548

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication#con_smart-card-authentication-options-in-rhel_assembly_understanding-smart-card-authentication

NOTE

Ensure that you add the root CA’s certificate as an argument before any sub CA
certificates and that the CA or sub CA certificates have not expired.

The client is now configured for smart card authentication.

65.4. USING ANSIBLE TO CONFIGURE IDM CLIENTS FOR SMART
CARD AUTHENTICATION

Follow this procedure to use the ansible-freeipa ipasmartcard_client module to configure specific
Identity Management (IdM) clients to permit IdM users to authenticate with a smart card. Run this
procedure to enable smart card authentication for IdM users that use any of the following to access
IdM:

The ssh protocol
For details see Configuring SSH access using smart card authentication .

The console login

The GNOME Display Manager (GDM)

The su command

NOTE

This procedure is not required for authenticating to the IdM Web UI. Authenticating to
the IdM Web UI involves two hosts, neither of which needs to be an IdM client:

The machine on which the browser is running. The machine can be outside of the
IdM domain.

The IdM server on which httpd is running.

Prerequisites

Your IdM server has been configured for smart card authentication, as described in Using
Ansible to configure the IdM server for smart card authentication.

You have root access to the IdM server and the IdM client.

You have the root CA certificate, the IdM CA certificate, and all the intermediate CA
certificates.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

549

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-and-importing-local-certificates-to-a-smart-card_managing-smart-card-authentication#configuring-ssh-access-using-smart-card-authentication_configuring-and-importing-local-certificates-to-a-smart-card
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. If your CA certificates are stored in files of a different format, such as DER, convert them to
PEM format:

openssl x509 -in <filename>.der -inform DER -out <filename>.pem -outform PEM

The IdM CA certificate is in PEM format and is located in the /etc/ipa/ca.crt file.

2. Optionally, use the openssl x509 utility to view the contents of the files in the PEM format to
check that the Issuer and Subject values are correct:

openssl x509 -noout -text -in root-ca.pem | more

3. On your Ansible control node, navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

4. Create a subdirectory dedicated to the CA certificates:

$ mkdir SmartCard/

5. For convenience, copy all the required certificates to the ~/MyPlaybooks/SmartCard/
directory, for example:

cp /tmp/root-ca.pem ~/MyPlaybooks/SmartCard/
cp /tmp/intermediate-ca.pem ~/MyPlaybooks/SmartCard/
cp /etc/ipa/ca.crt ~/MyPlaybooks/SmartCard/ipa-ca.crt

6. In your Ansible inventory file, specify the following:

The IdM clients that you want to configure for smart card authentication.

The IdM administrator password.

The paths to the certificates of the CAs in the following order:

The root CA certificate file

The intermediate CA certificates files

The IdM CA certificate file

The file can look as follows:

[ipaclients]
ipaclient1.example.com
ipaclient2.example.com

[ipaclients:vars]
ipaadmin_password=SomeADMINpassword

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

550

ipasmartcard_client_ca_certs=/home/<user_name>/MyPlaybooks/SmartCard/root-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/intermediate-
ca.pem,/home/<user_name>/MyPlaybooks/SmartCard/ipa-ca.crt

7. Create an install-smartcard-clients.yml playbook with the following content:

- name: Playbook to set up smart card authentication for an IdM client
 hosts: ipaclients
 become: true

 roles:
 - role: ipasmartcard_client
 state: present

8. Save the file.

9. Run the Ansible playbook. Specify the playbook and inventory files:

$ ansible-playbook --vault-password-file=password_file -v -i inventory install-
smartcard-clients.yml

The ipasmartcard_client Ansible role performs the following actions:

It configures the smart card daemon.

It sets the system-wide truststore.

It configures the System Security Services Daemon (SSSD) to allow users to authenticate
with either their user name and password or their smart card. For more details on SSSD
profile options for smart card authentication, see Smart card authentication options in
RHEL.

The clients listed in the ipaclients section of the inventory file are now configured for smart card
authentication.

NOTE

If you have installed the IdM clients with the --mkhomedir option, remote users will be
able to log in to their home directories. Otherwise, the default login location is the root of
the directory structure, /.

Additional resources

Sample playbooks using the ipasmartcard_server role in the /usr/share/doc/ansible-
freeipa/playbooks/ directory

65.5. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM WEB UI

Follow this procedure to add an external certificate to a user entry in IdM Web UI.

NOTE

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

551

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication#con_smart-card-authentication-options-in-rhel_assembly_understanding-smart-card-authentication

NOTE

Instead of uploading the whole certificate, it is also possible to upload certificate mapping
data to a user entry in IdM. User entries containing either full certificates or certificate
mapping data can be used in conjunction with corresponding certificate mapping rules to
facilitate the configuration of smart card authentication for system administrators. For
details, see

Certificate mapping rules for configuring authentication .

NOTE

If the user’s certificate has been issued by the IdM Certificate Authority, the certificate is
already stored in the user entry, and you do not need to follow this procedure.

Prerequisites

You have the certificate that you want to add to the user entry at your disposal.

Procedure

1. Log into the IdM Web UI as an administrator if you want to add a certificate to another user. For
adding a certificate to your own profile, you do not need the administrator’s credentials.

2. Navigate to Users → Active users → sc_user.

3. Find the Certificate option and click Add.

4. In the command-line interface, display the certificate in the PEM format using the cat utility or a
text editor:

[user@client SmartCard]$ cat testuser.crt

5. Copy and paste the certificate from the CLI into the window that has opened in the Web UI.

6. Click Add.

Figure 65.1. Adding a new certificate in the IdM Web UI

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

552

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#con-idm-certmapdata_conf-certmap-idm

Figure 65.1. Adding a new certificate in the IdM Web UI

The sc_user entry now contains an external certificate.

65.6. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM CLI

Follow this procedure to add an external certificate to a user entry in IdM CLI.

NOTE

Instead of uploading the whole certificate, it is also possible to upload certificate mapping
data to a user entry in IdM. User entries containing either full certificates or certificate
mapping data can be used in conjunction with corresponding certificate mapping rules to
facilitate the configuration of smart card authentication for system administrators. For
details, see Certificate mapping rules for configuring authentication .

NOTE

If the user’s certificate has been issued by the IdM Certificate Authority, the certificate is
already stored in the user entry, and you do not need to follow this procedure.

Prerequisites

You have the certificate that you want to add to the user entry at your disposal.

Procedure

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

553

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#con-idm-certmapdata_conf-certmap-idm

1. Log into the IdM CLI as an administrator if you want to add a certificate to another user:

[user@client SmartCard]$ kinit admin

For adding a certificate to your own profile, you do not need the administrator’s credentials:

[user@client SmartCard]$ kinit sc_user

2. Create an environment variable containing the certificate with the header and footer removed
and concatenated into a single line, which is the format expected by the ipa user-add-cert
command:

[user@client SmartCard]$ export CERT=`openssl x509 -outform der -in testuser.crt |
base64 -w0 -`

Note that certificate in the testuser.crt file must be in the PEM format.

3. Add the certificate to the profile of sc_user using the ipa user-add-cert command:

[user@client SmartCard]$ ipa user-add-cert sc_user --certificate=$CERT

The sc_user entry now contains an external certificate.

65.7. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

Prerequisites

The gnutls-utils package is installed.

The opensc package is installed.

The pcscd service is running.

Before you can configure your smart card, you must install the corresponding tools, which can generate
certificates and start the pscd service.

Procedure

1. Install the opensc and gnutls-utils packages:

{PackageManagerCommand} -y install opensc gnutls-utils

2. Start the pcscd service.

systemctl start pcscd

Verification steps

Verify that the pcscd service is up and running

systemctl status pcscd

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

554

65.8. PREPARING YOUR SMART CARD AND UPLOADING YOUR
CERTIFICATES AND KEYS TO YOUR SMART CARD

Follow this procedure to configure your smart card with the pkcs15-init tool, which helps you to
configure:

Erasing your smart card

Setting new PINs and optional PIN Unblocking Keys (PUKs)

Creating a new slot on the smart card

Storing the certificate, private key, and public key in the slot

If required, locking the smart card settings as certain smart cards require this type of finalization

NOTE

The pkcs15-init tool may not work with all smart cards. You must use the tools that work
with the smart card you are using.

Prerequisites

The opensc package, which includes the pkcs15-init tool, is installed.
For more details, see Installing tools for managing and using smart cards .

The card is inserted in the reader and connected to the computer.

You have a private key, a public key, and a certificate to store on the smart card. In this
procedure, testuser.key, testuserpublic.key, and testuser.crt are the names used for the
private key, public key, and the certificate.

You have your current smart card user PIN and Security Officer PIN (SO-PIN).

Procedure

1. Erase your smart card and authenticate yourself with your PIN:

$ pkcs15-init --erase-card --use-default-transport-keys
Using reader with a card: Reader name
PIN [Security Officer PIN] required.
Please enter PIN [Security Officer PIN]:

The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

$ pkcs15-init --create-pkcs15 --use-default-transport-keys \ --pin 963214 --puk 321478 --so-
pin 65498714 --so-puk 784123
Using reader with a card: Reader name

The pcks15-init tool creates a new slot on the smart card.

3. Set a label and the authentication ID for the slot:

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

555

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth

$ pkcs15-init --store-pin --label testuser \ --auth-id 01 --so-pin 65498714 --pin 963214 --puk
321478
Using reader with a card: Reader name

The label is set to a human-readable value, in this case, testuser. The auth-id must be two
hexadecimal values, in this case it is set to 01.

4. Store and label the private key in the new slot on the smart card:

$ pkcs15-init --store-private-key testuser.key --label testuser_key \ --auth-id 01 --id 01 --pin
963214
Using reader with a card: Reader name

NOTE

The value you specify for --id must be the same when storing your private key
and storing your certificate in the next step. Specifying your own value for --id is
recommended as otherwise a more complicated value is calculated by the tool.

5. Store and label the certificate in the new slot on the smart card:

$ pkcs15-init --store-certificate testuser.crt --label testuser_crt \ --auth-id 01 --id 01 --format
pem --pin 963214
Using reader with a card: Reader name

6. Optional: Store and label the public key in the new slot on the smart card:

$ pkcs15-init --store-public-key testuserpublic.key --label testuserpublic_key --auth-id 01 --id
01 --pin 963214
Using reader with a card: Reader name

NOTE

If the public key corresponds to a private key or certificate, specify the same ID
as the ID of the private key or certificate.

7. Optional: Certain smart cards require you to finalize the card by locking the settings:

$ pkcs15-init -F

At this stage, your smart card includes the certificate, private key, and public key in the newly
created slot. You have also created your user PIN and PUK and the Security Officer PIN and
PUK.

65.9. LOGGING IN TO IDM WITH SMART CARDS

Follow this procedure to use smart cards for logging in to the IdM Web UI.

Prerequisites

The web browser is configured for using smart card authentication.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

556

The IdM server is configured for smart card authentication.

The certificate installed on your smart card is either issued by the IdM server or has been added
to the user entry in IdM.

You know the PIN required to unlock the smart card.

The smart card has been inserted into the reader.

Procedure

1. Open the IdM Web UI in the browser.

2. Click Log In Using Certificate.

3. If the Password Required dialog box opens, add the PIN to unlock the smart card and click the
OK button.
The User Identification Request dialog box opens.

If the smart card contains more than one certificate, select the certificate you want to use for
authentication in the drop down list below Choose a certificate to present as identification.

4. Click the OK button.

Now you are successfully logged in to the IdM Web UI.

65.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

557

65.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION
ON AN IDM CLIENT

The GNOME Desktop Manager (GDM) requires authentication. You can use your password; however,
you can also use a smart card for authentication.

Follow this procedure to use smart card authentication to access GDM.

Prerequisites

The system has been configured for smart card authentication. For details, see Configuring the
IdM client for smart card authentication.

The smart card contains your certificate and private key.

The user account is a member of the IdM domain.

The certificate on the smart card maps to the user entry through:

Assigning the certificate to a particular user entry. For details, see, Adding a certificate to a
user entry in the IdM Web UI or Adding a certificate to a user entry in the IdM CLI .

The certificate mapping data being applied to the account. For details, see Certificate
mapping rules for configuring authentication on smart cards.

Procedure

1. Insert the smart card in the reader.

2. Enter the smart card PIN.

3. Click Sign In.

You are successfully logged in to the RHEL system and you have a TGT provided by the IdM server.

Verification steps

In the Terminal window, enter klist and check the result:

$ klist
Ticket cache: KEYRING:persistent:1358900015:krb_cache_TObtNMd
Default principal: example.user@REDHAT.COM

Valid starting Expires Service principal
04/20/2020 13:58:24 04/20/2020 23:58:24 krbtgt/EXAMPLE.COM@EXAMPLE.COM
 renew until 04/27/2020 08:58:15

65.11. USING SMART CARD AUTHENTICATION WITH THE SU
COMMAND

Changing to a different user requires authentication. You can use a password or a certificate. Follow this
procedure to use your smart card with the su command. It means that after entering the su command,
you are prompted for the smart card PIN.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

558

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-webui_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#proc-add-cert-idm-user-cli_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

Prerequisites

Your IdM server and client have been configured for smart card authentication.

See Configuring the IdM server for smart card authentication

See Configuring the IdM client for smart card authentication

The smart card contains your certificate and private key. See Storing a certificate on a smart
card

The card is inserted in the reader and connected to the computer.

Procedure

In a terminal window, change to a different user with the su command:

$ su - example.user
PIN for smart_card

If the configuration is correct, you are prompted to enter the smart card PIN.

CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION

559

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-server-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#conf-idm-client-for-smart-card-auth_configuring-idm-for-smart-card-auth
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#storing-a-certificate-on-the-smart-card_configuring-idm-for-smart-card-auth

CHAPTER 66. CONFIGURING CERTIFICATES ISSUED BY ADCS
FOR SMART CARD AUTHENTICATION IN IDM

To configure smart card authentication in IdM for users whose certificates are issued by Active
Directory (AD) certificate services:

Your deployment is based on cross-forest trust between Identity Management (IdM) and Active
Directory (AD).

You want to allow smart card authentication for users whose accounts are stored in AD.

Certificates are created and stored in Active Directory Certificate Services (ADCS).

For an overview of smart card authentication, see Understanding smart card authentication .

Configuration will be accomplished in the following steps:

Copying CA and user certificates from Active Directory to the IdM server and client

Configuring the IdM server and clients for smart card authentication using ADCS certificates

Converting a PFX (PKCS#12) file to be able to store the certificate and private key into the
smart card

Configuring timeouts in the sssd.conf file

Creating certificate mapping rules for smart card authentication

Prerequisites

Identity Management (IdM) and Active Directory (AD) trust is installed
For details, see Installing trust between IdM and AD .

Active Directory Certificate Services (ADCS) is installed and certificates for users are generated

66.1. WINDOWS SERVER SETTINGS REQUIRED FOR TRUST
CONFIGURATION AND CERTIFICATE USAGE

You must configure the following on the Windows Server:

Active Directory Certificate Services (ADCS) is installed

Certificate Authority is created

[Optional] If you are using Certificate Authority Web Enrollment, the Internet Information
Services (IIS) must be configured

Export the certificate:

Key must have 2048 bits or more

Include a private key

You will need a certificate in the following format: Personal Information Exchange — PKCS
#12(.PFX)

Enable certificate privacy

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

560

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/assembly_understanding-smart-card-authentication_managing-smart-card-authentication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#copying-certificates-from-active-directory-using-sftp_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#configuring-the-idm-server-and-clients-for-smart-card-authentication-using-adcs-certificates_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#converting-the-pfx-file_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#configuring-timeouts-in-sssd-conf_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm_managing-smart-card-authentication#certificate-mapping-rules-for-smart-card-authentication_configuring-certificates-issued-by-adcs-for-smart-card-authentication-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management

Enable certificate privacy

66.2. COPYING CERTIFICATES FROM ACTIVE DIRECTORY USING
SFTP

To be able to use smart card authetication, you need to copy the following certificate files:

A root CA certificate in the CER format: adcs-winserver-ca.cer on your IdM server.

A user certificate with a private key in the PFX format: aduser1.pfx on an IdM client.

NOTE

This procedure expects SSH access is allowed. If SSH is unavailable the user must copy
the file from the AD Server to the IdM server and client.

Procedure

1. Connect from the IdM server and copy the adcs-winserver-ca.cer root certificate to the IdM
server:

root@idmserver ~]# sftp Administrator@winserver.ad.example.com
Administrator@winserver.ad.example.com's password:
Connected to Administrator@winserver.ad.example.com.
sftp> cd <Path to certificates>
sftp> ls
adcs-winserver-ca.cer aduser1.pfx
sftp>
sftp> get adcs-winserver-ca.cer
Fetching <Path to certificates>/adcs-winserver-ca.cer to adcs-winserver-ca.cer
<Path to certificates>/adcs-winserver-ca.cer 100% 1254 15KB/s 00:00
sftp quit

2. Connect from the IdM client and copy the aduser1.pfx user certificate to the client:

[root@client1 ~]# sftp Administrator@winserver.ad.example.com
Administrator@winserver.ad.example.com's password:
Connected to Administrator@winserver.ad.example.com.
sftp> cd /<Path to certificates>
sftp> get aduser1.pfx
Fetching <Path to certificates>/aduser1.pfx to aduser1.pfx
<Path to certificates>/aduser1.pfx 100% 1254 15KB/s 00:00
sftp quit

Now the CA certificate is stored in the IdM server and the user certificates is stored on the client
machine.

66.3. CONFIGURING THE IDM SERVER AND CLIENTS FOR SMART
CARD AUTHENTICATION USING ADCS CERTIFICATES

You must configure the IdM (Identity Management) server and clients to be able to use smart card
authentication in the IdM environment. IdM includes the ipa-advise scripts which makes all necessary
changes:

CHAPTER 66. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

561

Install necessary packages

Configure IdM server and clients

Copy the CA certificates into the expected locations

You can run ipa-advise on your IdM server.

Follow this procedure to configure your server and clients for smart card authentication:

On an IdM server: Preparing the ipa-advise script to configure your IdM server for smart card
authentication.

On an IdM server: Preparing the ipa-advise script to configure your IdM client for smart card
authentication.

On an IdM server: Applying the the ipa-advise server script on the IdM server using the AD
certificate.

Moving the client script to the IdM client machine.

On an IdM client: Applying the the ipa-advise client script on the IdM client using the AD
certificate.

Prerequisites

The certificate has been copied to the IdM server.

Obtain the Kerberos ticket.

Log in as a user with administration rights.

Procedure

1. On the IdM server, use the ipa-advise script for configuring a client:

[root@idmserver ~]# ipa-advise config-client-for-smart-card-auth > sc_client.sh

2. On the IdM server, use the ipa-advise script for configuring a server:

[root@idmserver ~]# ipa-advise config-server-for-smart-card-auth > sc_server.sh

3. On the IdM server, execute the script:

[root@idmserver ~]# sh -x sc_server.sh adcs-winserver-ca.cer

It configures the IdM Apache HTTP Server.

It enables Public Key Cryptography for Initial Authentication in Kerberos (PKINIT) on the
Key Distribution Center (KDC).

It configures the IdM Web UI to accept smart card authorization requests.

4. Copy the sc_client.sh script to the client system:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

562

[root@idmserver ~]# scp sc_client.sh root@client1.idm.example.com:/root
Password:
sc_client.sh 100% 2857 1.6MB/s 00:00

5. Copy the Windows certificate to the client system:

[root@idmserver ~]# scp adcs-winserver-ca.cer root@client1.idm.example.com:/root
Password:
adcs-winserver-ca.cer 100% 1254 952.0KB/s 00:00

6. On the client system, run the client script:

[root@idmclient1 ~]# sh -x sc_client.sh adcs-winserver-ca.cer

The CA certificate is installed in the correct format on the IdM server and client systems and next step is
to copy the user certificates onto the smart card itself.

66.4. CONVERTING THE PFX FILE

Before you store the PFX (PKCS#12) file into the smart card, you must:

Convert the file to the PEM format

Extract the private key and the certificate to two different files

Prerequisites

The PFX file is copied into the IdM client machine.

Procedure

1. On the IdM client, into the PEM format:

[root@idmclient1 ~]# openssl pkcs12 -in aduser1.pfx -out aduser1_cert_only.pem -clcerts -
nodes
Enter Import Password:

2. Extract the key into the separate file:

[root@idmclient1 ~]# openssl pkcs12 -in adduser1.pfx -nocerts -out adduser1.pem >
aduser1.key

3. Extract the public certificate into the separate file:

[root@idmclient1 ~]# openssl pkcs12 -in adduser1.pfx -clcerts -nokeys -out
aduser1_cert_only.pem > aduser1.crt

At this point, you can store the aduser1.key and aduser1.crt into the smart card.

66.5. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS

CHAPTER 66. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

563

Prerequisites

The gnutls-utils package is installed.

The opensc package is installed.

The pcscd service is running.

Before you can configure your smart card, you must install the corresponding tools, which can generate
certificates and start the pscd service.

Procedure

1. Install the opensc and gnutls-utils packages:

{PackageManagerCommand} -y install opensc gnutls-utils

2. Start the pcscd service.

systemctl start pcscd

Verification steps

Verify that the pcscd service is up and running

systemctl status pcscd

66.6. PREPARING YOUR SMART CARD AND UPLOADING YOUR
CERTIFICATES AND KEYS TO YOUR SMART CARD

Follow this procedure to configure your smart card with the pkcs15-init tool, which helps you to
configure:

Erasing your smart card

Setting new PINs and optional PIN Unblocking Keys (PUKs)

Creating a new slot on the smart card

Storing the certificate, private key, and public key in the slot

If required, locking the smart card settings as certain smart cards require this type of finalization

NOTE

The pkcs15-init tool may not work with all smart cards. You must use the tools that work
with the smart card you are using.

Prerequisites

The opensc package, which includes the pkcs15-init tool, is installed.
For more details, see Installing tools for managing and using smart cards .

The card is inserted in the reader and connected to the computer.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

564

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#installing-tools-for-managing-and-using-smart-cards_configuring-idm-for-smart-card-auth

You have a private key, a public key, and a certificate to store on the smart card. In this
procedure, testuser.key, testuserpublic.key, and testuser.crt are the names used for the
private key, public key, and the certificate.

You have your current smart card user PIN and Security Officer PIN (SO-PIN).

Procedure

1. Erase your smart card and authenticate yourself with your PIN:

$ pkcs15-init --erase-card --use-default-transport-keys
Using reader with a card: Reader name
PIN [Security Officer PIN] required.
Please enter PIN [Security Officer PIN]:

The card has been erased.

2. Initialize your smart card, set your user PIN and PUK, and your Security Officer PIN and PUK:

$ pkcs15-init --create-pkcs15 --use-default-transport-keys \ --pin 963214 --puk 321478 --so-
pin 65498714 --so-puk 784123
Using reader with a card: Reader name

The pcks15-init tool creates a new slot on the smart card.

3. Set a label and the authentication ID for the slot:

$ pkcs15-init --store-pin --label testuser \ --auth-id 01 --so-pin 65498714 --pin 963214 --puk
321478
Using reader with a card: Reader name

The label is set to a human-readable value, in this case, testuser. The auth-id must be two
hexadecimal values, in this case it is set to 01.

4. Store and label the private key in the new slot on the smart card:

$ pkcs15-init --store-private-key testuser.key --label testuser_key \ --auth-id 01 --id 01 --pin
963214
Using reader with a card: Reader name

NOTE

The value you specify for --id must be the same when storing your private key
and storing your certificate in the next step. Specifying your own value for --id is
recommended as otherwise a more complicated value is calculated by the tool.

5. Store and label the certificate in the new slot on the smart card:

$ pkcs15-init --store-certificate testuser.crt --label testuser_crt \ --auth-id 01 --id 01 --format
pem --pin 963214
Using reader with a card: Reader name

6. Optional: Store and label the public key in the new slot on the smart card:

CHAPTER 66. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

565

$ pkcs15-init --store-public-key testuserpublic.key --label testuserpublic_key --auth-id 01 --id
01 --pin 963214
Using reader with a card: Reader name

NOTE

If the public key corresponds to a private key or certificate, specify the same ID
as the ID of the private key or certificate.

7. Optional: Certain smart cards require you to finalize the card by locking the settings:

$ pkcs15-init -F

At this stage, your smart card includes the certificate, private key, and public key in the newly
created slot. You have also created your user PIN and PUK and the Security Officer PIN and
PUK.

66.7. CONFIGURING TIMEOUTS IN SSSD.CONF

Authentication with a smart card certificate might take longer than the default timeouts used by SSSD.
Time out expiration can be caused by:

Slow reader

A forwarding form a physical device into a virtual environment

Too many certificates stored on the smart card

Slow response from the OCSP (Online Certificate Status Protocol) responder if OCSP is used
to verify the certificates

In this case you can prolong the following timeouts in the sssd.conf file, for example, to 60 seconds:

p11_child_timeout

krb5_auth_timeout

Prerequisites

You must be logged in as root.

Procedure

1. Open the sssd.conf file:

[root@idmclient1 ~]# vim /etc/sssd/sssd.conf

2. Change the value of p11_child_timeout:

[pam]
p11_child_timeout = 60

3. Change the value of krb5_auth_timeout:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

566

[domain/IDM.EXAMPLE.COM]
krb5_auth_timeout = 60

4. Save the settings.

Now, the interaction with the smart card is allowed to run for 1 minute (60 seconds) before
authentication will fail with a timeout.

66.8. CREATING CERTIFICATE MAPPING RULES FOR SMART CARD
AUTHENTICATION

If you want to use one certificate for a user who has accounts in AD (Active Directory) and in IdM
(Identity Management), you can create a certificate mapping rule on the IdM server.

After creating such a rule, the user is able to authenticate with their smart card in both domains.

For details about certificate mapping rules, see Certificate mapping rules for configuring authentication .

CHAPTER 66. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM

567

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/con-idm-certmapdata_managing-smart-card-authentication

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES
IN IDENTITY MANAGEMENT

Certificate mapping rules are a convenient way of allowing users to authenticate using certificates in
scenarios when the Identity Management (IdM) administrator does not have access to certain users'
certificates. This is typically because the certificates have been issued by an external certificate
authority.

67.1. CERTIFICATE MAPPING RULES FOR CONFIGURING
AUTHENTICATION

You might need to configure certificate mapping rules in the following scenarios:

Certificates have been issued by the Certificate System of the Active Directory (AD) with which
the IdM domain is in a trust relationship.

Certificates have been issued by an external certificate authority.

The IdM environment is large with many users using smart cards. In this case, adding full
certificates can be complicated. The subject and issuer are predictable in most scenarios and
therefore easier to add ahead of time than the full certificate.

As a system administrator, you can create a certificate mapping rule and add certificate mapping data to
a user entry even before a certificate is issued to a particular user. Once the certificate is issued, the
user can log in using the certificate even though the full certificate has not yet been uploaded to the
user entry.

In addition, as certificates are renewed at regular intervals, certificate mapping rules reduce
administrative overhead. When a user’s certificate is renewed, the administrator does not have to update
the user entry. For example, if the mapping is based on the Subject and Issuer values, and if the new
certificate has the same subject and issuer as the old one, the mapping still applies. If, in contrast, the
full certificate was used, then the administrator would have to upload the new certificate to the user
entry to replace the old one.

To set up certificate mapping:

1. An administrator has to load the certificate mapping data or the full certificate into a user
account.

2. An administrator has to create a certificate mapping rule to allow successful logging into IdM for
a user whose account contains a certificate mapping data entry that matches the information
on the certificate.

Once the certificate mapping rules have been created, when the end-user presents the certificate,
stored either on a filesystem or a smart card, authentication is successful.

NOTE

The Key Distribution Center (KDC) has a cache for certificate mapping rules. The cache is
populated on the first certauth request and it has a hard-coded timeout of 300 seconds.
KDC will not see any changes to certificate mapping rules unless it is restarted or the
cache expires.

For details on the individual components that make up a mapping rule and how to obtain and use them,

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

568

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/dc-web-ui-auth_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication#logging-in-to-idm-with-smart-cards_configuring-idm-for-smart-card-auth

For details on the individual components that make up a mapping rule and how to obtain and use them,
see Components of an identity mapping rule in IdM and Obtaining the issuer from a certificate for use in
a matching rule.

NOTE

Your certificate mapping rules can depend on the use case for which you are using the
certificate. For example, if you are using SSH with certificates, you must have the full
certificate to extract the public key from the certificate.

67.2. COMPONENTS OF AN IDENTITY MAPPING RULE IN IDM

You configure different components when creating an identity mapping rule in IdM. Each component
has a default value that you can override. You can define the components in either the web UI or the
CLI. In the CLI, the identity mapping rule is created using the ipa certmaprule-add command.

Mapping rule

The mapping rule component associates (or maps) a certificate with one or more user accounts. The
rule defines an LDAP search filter that associates a certificate with the intended user account.
Certificates issued by different certificate authorities (CAs) might have different properties and
might be used in different domains. Therefore, IdM does not apply mapping rules unconditionally, but
only to the appropriate certificates. The appropriate certificates are defined using matching rules.

Note that if you leave the mapping rule option empty, the certificates are searched in the
userCertificate attribute as a DER encoded binary file.

Define the mapping rule in the CLI using the --maprule option.

Matching rule

The matching rule component selects a certificate to which you want to apply the mapping rule. The
default matching rule matches certificates with the digitalSignature key usage and clientAuth
extended key usage.
Define the matching rule in the CLI using the --matchrule option.

Domain list

The domain list specifies the identity domains in which you want IdM to search the users when
processing identity mapping rules. If you leave the option unspecified, IdM searches the users only in
the local domain to which the IdM client belongs.
Define the domain in the CLI using the --domain option.

Priority

When multiple rules are applicable to a certificate, the rule with the highest priority takes precedence.
All other rules are ignored.

The lower the numerical value, the higher the priority of the identity mapping rule. For
example, a rule with a priority 1 has higher priority than a rule with a priority 2.

If a rule has no priority value defined, it has the lowest priority.

Define the mapping rule priority in the CLI using the --priority option.

Certificate mapping rule example

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

569

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#sc-id-mapping_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#sc-id-issuer-obtain-example_conf-certmap-idm

To define, using the CLI, a certificate mapping rule called simple_rule that allows authentication for a
certificate issued by the Smart Card CA of the EXAMPLE.ORG organization if the Subject on that
certificate matches a certmapdata entry in a user account in IdM:

ipa certmaprule-add simple_rule --matchrule '<ISSUER>CN=Smart Card
CA,O=EXAMPLE.ORG' --maprule '(ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>
{subject_dn!nss_x500})'

67.3. OBTAINING DATA FROM A CERTIFICATE FOR USE IN A
MATCHING RULE

This procedure describes how to obtain data from a certificate so that you can copy and paste it into the
matching rule of a certificate mapping rule. To get data required by a matching rule, use the sssctl cert-
show or sssctl cert-eval-rule commands.

Prerequisites

You have the user certificate in PEM format.

Procedure

1. Create a variable pointing to your certificate that also ensures it is correctly encoded so you can
retrieve the required data.

CERT=$(openssl x509 -in /path/to/certificate -outform der|base64 -w0)

2. Use the sssctl cert-eval-rule to determine the matching data. In the following example the
certificate serial number is used.

sssctl cert-eval-rule $CERT --match='<ISSUER>CN=adcs19-WIN1-
CA,DC=AD,DC=EXAMPLE,DC=COM' --map='LDAPU1:(altSecurityIdentities=X509:<I>
{issuer_dn!ad_x500}<SR>{serial_number!hex_ur})'
Certificate matches rule.
Mapping filter:

 (altSecurityIdentities=X509:<I>DC=com,DC=example,DC=ad,CN=adcs19-WIN1-
CA<SR>0F0000000000DB8852DD7B246C9C0F0000003B)

In this case, add everything after altSecurityIdentities= to the altSecurityIdentities attribute in
AD for the user. If using SKI mapping, use --map='LDAPU1:(altSecurityIdentities=X509:<SKI>
{subject_key_id!hex_u})'.

3. Optionally, to create a new mapping rule in the CLI based on a matching rule which specifies that
the certificate issuer must match adcs19-WIN1-CA of the ad.example.com domain and the
serial number of the certificate must match the altSecurityIdentities entry in a user account:

ipa certmaprule-add simple_rule --matchrule '<ISSUER>CN=adcs19-WIN1-
CA,DC=AD,DC=EXAMPLE,DC=COM' --maprule 'LDAPU1:(altSecurityIdentities=X509:<I>
{issuer_dn!ad_x500}<SR>{serial_number!hex_ur})'

67.4. CONFIGURING CERTIFICATE MAPPING FOR USERS STORED IN
IDM

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

570

To enable certificate mapping in IdM if the user for whom certificate authentication is being configured
is stored in IdM, a system administrator must complete the following tasks:

Set up a certificate mapping rule so that IdM users with certificates that match the conditions
specified in the mapping rule and in their certificate mapping data entries can authenticate to
IdM.

Enter certificate mapping data to an IdM user entry so that the user can authenticate using
multiple certificates provided that they all contain the values specified in the certificate mapping
data entry.

Prerequisites

The user has an account in IdM.

The administrator has either the whole certificate or the certificate mapping data to add to the
user entry.

67.4.1. Adding a certificate mapping rule in the IdM web UI

1. Log in to the IdM web UI as an administrator.

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity
Mapping Rules.

3. Click Add.

Figure 67.1. Adding a new certificate mapping rule in the IdM web UI

4. Enter the rule name.

5. Enter the mapping rule. For example, to make IdM search for the Issuer and Subject entries in
any certificate presented to them, and base its decision to authenticate or not on the
information found in these two entries of the presented certificate:

(ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})

6. Enter the matching rule. For example, to only allow certificates issued by the Smart Card CA of
the EXAMPLE.ORG organization to authenticate users to IdM:

<ISSUER>CN=Smart Card CA,O=EXAMPLE.ORG

Figure 67.2. Entering the details for a certificate mapping rule in the IdM web UI

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

571

Figure 67.2. Entering the details for a certificate mapping rule in the IdM web UI

7. Click Add at the bottom of the dialog box to add the rule and close the box.

8. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

systemctl restart sssd

Now you have a certificate mapping rule set up that compares the type of data specified in the mapping
rule that it finds on a smart card certificate with the certificate mapping data in your IdM user entries.
Once it finds a match, it authenticates the matching user.

67.4.2. Adding a certificate mapping rule in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Enter the mapping rule and the matching rule the mapping rule is based on. For example, to
make IdM search for the Issuer and Subject entries in any certificate presented, and base its
decision to authenticate or not on the information found in these two entries of the presented
certificate, recognizing only certificates issued by the Smart Card CA of the EXAMPLE.ORG
organization:

ipa certmaprule-add rule_name --matchrule '<ISSUER>CN=Smart Card
CA,O=EXAMPLE.ORG' --maprule '(ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>
{subject_dn!nss_x500})'

Added Certificate Identity Mapping Rule "rule_name"

 Rule name: rule_name
 Mapping rule: (ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})
 Matching rule: <ISSUER>CN=Smart Card CA,O=EXAMPLE.ORG
 Enabled: TRUE

3. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

572

systemctl restart sssd

Now you have a certificate mapping rule set up that compares the type of data specified in the mapping
rule that it finds on a smart card certificate with the certificate mapping data in your IdM user entries.
Once it finds a match, it authenticates the matching user.

67.4.3. Adding certificate mapping data to a user entry in the IdM web UI

1. Log into the IdM web UI as an administrator.

2. Navigate to Users → Active users → idm_user.

3. Find the Certificate mapping data option and click Add.

4. Choose one of the following options:

If you have the certificate of idm_user:

a. In the command-line interface, display the certificate using the cat utility or a text
editor:

[root@server ~]# cat idm_user_certificate.pem
-----BEGIN CERTIFICATE-----
MIIFFTCCA/2gAwIBAgIBEjANBgkqhkiG9w0BAQsFADA6MRgwFgYDVQQKDA9JRE0
u
RVhBTVBMRS5DT00xHjAcBgNVBAMMFUNlcnRpZmljYXRlIEF1dGhvcml0eTAeFw0x

ODA5MDIxODE1MzlaFw0yMDA5MDIxODE1MzlaMCwxGDAWBgNVBAoMD0lETS5F
WEFN
[...output truncated...]

b. Copy the certificate.

c. In the IdM web UI, click Add next to Certificate and paste the certificate into the
window that opens up.

Figure 67.3. Adding a user’s certificate mapping data: certificate

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

573

Figure 67.3. Adding a user’s certificate mapping data: certificate

If you do not have the certificate of idm_user at your disposal but know the Issuer
and the Subject of the certificate, check the radio button of Issuer and subject
and enter the values in the two respective boxes.

Figure 67.4. Adding a user’s certificate mapping data: issuer and subject

5. Click Add.

Verification steps

If you have access to the whole certificate in the .pem format, verify that the user and certificate are
linked:

1. Use the sss_cache utility to invalidate the record of idm_user in the SSSD cache and force a
reload of the idm_user information:

sss_cache -u idm_user

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

574

2. Run the ipa certmap-match command with the name of the file containing the certificate of the
IdM user:

ipa certmap-match idm_user_cert.pem

1 user matched

 Domain: IDM.EXAMPLE.COM
 User logins: idm_user

Number of entries returned 1

The output confirms that now you have certificate mapping data added to idm_user and that a
corresponding mapping rule exists. This means that you can use any certificate that matches
the defined certificate mapping data to authenticate as idm_user.

67.4.4. Adding certificate mapping data to a user entry in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Choose one of the following options:

If you have the certificate of idm_user, add the certificate to the user account using the ipa
user-add-cert command:

CERT=$(openssl x509 -in idm_user_cert.pem -outform der|base64 -w0)
ipa user-add-certmapdata idm_user --certificate $CERT

If you do not have the certificate of idm_user but know the Issuer and the Subject of the
user’s certificate:

ipa user-add-certmapdata idm_user --subject "O=EXAMPLE.ORG,CN=test" --
issuer "CN=Smart Card CA,O=EXAMPLE.ORG"
--
Added certificate mappings to user "idm_user"
--
 User login: idm_user
 Certificate mapping data: X509:<I>O=EXAMPLE.ORG,CN=Smart Card
CA<S>CN=test,O=EXAMPLE.ORG

Verification steps

If you have access to the whole certificate in the .pem format, verify that the user and certificate are
linked:

1. Use the sss_cache utility to invalidate the record of idm_user in the SSSD cache and force a
reload of the idm_user information:

sss_cache -u idm_user

2. Run the ipa certmap-match command with the name of the file containing the certificate of the

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

575

2. Run the ipa certmap-match command with the name of the file containing the certificate of the
IdM user:

ipa certmap-match idm_user_cert.pem

1 user matched

 Domain: IDM.EXAMPLE.COM
 User logins: idm_user

Number of entries returned 1

The output confirms that now you have certificate mapping data added to idm_user and that a
corresponding mapping rule exists. This means that you can use any certificate that matches
the defined certificate mapping data to authenticate as idm_user.

67.5. CERTIFICATE MAPPING RULES FOR TRUSTS WITH ACTIVE
DIRECTORY DOMAINS

Different certificate mapping use cases are possible if an IdM deployment is in a trust relationship with
an Active Directory (AD) domain.

Depending on the AD configuration, the following scenarios are possible:

If the certificate is issued by AD Certificate System but the user and the certificate are stored in
IdM, the mapping and the whole processing of the authentication request takes place on the
IdM side. For details of configuring this scenario, see Configuring certificate mapping for users
stored in IdM

If the user is stored in AD, the processing of the authentication request takes place in AD. There
are three different subcases:

The AD user entry contains the whole certificate. For details how to configure IdM in this
scenario, see Configuring certificate mapping for users whose AD user entry contains the
whole certificate.

AD is configured to map user certificates to user accounts. In this case, the AD user entry
does not contain the whole certificate but instead contains an attribute called
altSecurityIdentities. For details how to configure IdM in this scenario, see Configuring
certificate mapping if AD is configured to map user certificates to user accounts.

The AD user entry contains neither the whole certificate nor the mapping data. In this case,
there are two options:

If the user certificate is issued by AD Certificate System, the certificate either contains
the user principal name as the Subject Alternative Name (SAN) or, if the latest updates
are applied to AD, the SID of the user in the SID extension of the certificate. Both of
these can be used to map the certificate to the user.

If the user certificate is on a smart card, to enable SSH with smart cards, SSSD must
derive the public SSH key from the certificate and therefore the full certificate is
required. The only solution is to use the ipa idoverrideuser-add command to add the
whole certificate to the AD user’s ID override in IdM. For details, see Configuring
certificate mapping if AD user entry contains no certificate or mapping data.

AD domain administrators can manually map certificates to a user in AD using the altSecurityIdentities

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

576

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#conf-certmap-for-users-in-idm_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#conf-certmap-for-ad-certs_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#conf-certmap-for-ad-map_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#conf-certmap-ad-no-cert-no-map_conf-certmap-for-ad-map

AD domain administrators can manually map certificates to a user in AD using the altSecurityIdentities
attribute. There are six supported values for this attribute, though three mappings are considered
insecure. As part of May 10,2022 security update , once it is installed, all devices are in compatibility
mode and if a certificate is weakly mapped to a user, authentication occurs as expected. However,
warning messages are logged identifying any certificates that are not compatible with full enforcement
mode. As of November 14, 2023 or later, all devices will be updated to full enforcement mode and if a
certificate fails the strong mapping criteria, authentication will be denied.

For example, when an AD user requests an IdM Kerberos ticket with a certificate (PKINIT), AD needs to
map the certificate to a user internally and uses the new mapping rules for this. However in IdM, the
previous rules continue to work if IdM is used to map a certificate to a user on an IdM client, .

IdM supports the new mapping templates, making it easier for an AD administrator to use the new rules
and not maintain both. IdM now supports the new mapping templates added to Active Directory to
include:

Serial Number: LDAPU1:(altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<SR>
{serial_number!hex_ur})

Subject Key Id: LDAPU1:(altSecurityIdentities=X509:<SKI>{subject_key_id!hex_u})

User SID: LDAPU1:(objectsid={sid})

If you do not want to reissue certificates with the new SID extension, you can create a manual mapping
by adding the appropriate mapping string to a user’s altSecurityIdentities attribute in AD.

67.6. CONFIGURING CERTIFICATE MAPPING FOR USERS WHOSE AD
USER ENTRY CONTAINS THE WHOLE CERTIFICATE

This user story describes the steps necessary for enabling certificate mapping in IdM if the IdM
deployment is in trust with Active Directory (AD), the user is stored in AD and the user entry in AD
contains the whole certificate.

Prerequisites

The user does not have an account in IdM.

The user has an account in AD which contains a certificate.

The IdM administrator has access to data on which the IdM certificate mapping rule can be
based.

NOTE

To ensure PKINIT works for a user, one of the following conditions must apply:

The certificate in the user entry includes the user principal name or the SID
extension for the user.

The user entry in AD has a suitable entry in the altSecurityIdentities attribute.

67.6.1. Adding a certificate mapping rule in the IdM web UI

1. Log into the IdM web UI as an administrator.

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

577

https://support.microsoft.com/en-us/topic/kb5014754-certificate-based-authentication-changes-on-windows-domain-controllers-ad2c23b0-15d8-4340-a468-4d4f3b188f16

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity
Mapping Rules.

3. Click Add.

Figure 67.5. Adding a new certificate mapping rule in the IdM web UI

4. Enter the rule name.

5. Enter the mapping rule. To have the whole certificate that is presented to IdM for
authentication compared to what is available in AD:

(userCertificate;binary={cert!bin})

NOTE

If mapping using the full certificate, if you renew the certificate, you must ensure
that you add the new certificate to the AD user object.

6. Enter the matching rule. For example, to only allow certificates issued by the AD-ROOT-CA of
the AD.EXAMPLE.COM domain to authenticate:

<ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com

Figure 67.6. Certificate mapping rule for a user with a certificate stored in AD

7. Click Add.

8. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD in the CLI::

systemctl restart sssd

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

578

67.6.2. Adding a certificate mapping rule in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Enter the mapping rule and the matching rule the mapping rule is based on. To have the whole
certificate that is presented for authentication compared to what is available in AD, only allowing
certificates issued by the AD-ROOT-CA of the AD.EXAMPLE.COM domain to authenticate:

ipa certmaprule-add simpleADrule --matchrule '<ISSUER>CN=AD-ROOT-
CA,DC=ad,DC=example,DC=com' --maprule '(userCertificate;binary={cert!bin})' --
domain ad.example.com

Added Certificate Identity Mapping Rule "simpleADrule"

 Rule name: simpleADrule
 Mapping rule: (userCertificate;binary={cert!bin})
 Matching rule: <ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com
 Domain name: ad.example.com
 Enabled: TRUE

NOTE

If mapping using the full certificate, if you renew the certificate, you must ensure
that you add the new certificate to the AD user object.

3. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

systemctl restart sssd

67.7. CONFIGURING CERTIFICATE MAPPING IF AD IS CONFIGURED
TO MAP USER CERTIFICATES TO USER ACCOUNTS

This user story describes the steps necessary for enabling certificate mapping in IdM if the IdM
deployment is in trust with Active Directory (AD), the user is stored in AD, and the user entry in AD
contains certificate mapping data.

Prerequisites

The user does not have an account in IdM.

The user has an account in AD which contains the altSecurityIdentities attribute, the AD
equivalent of the IdM certmapdata attribute.

The IdM administrator has access to data on which the IdM certificate mapping rule can be
based.

67.7.1. Adding a certificate mapping rule in the IdM web UI

1. Log into the IdM web UI as an administrator.

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

579

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity
Mapping Rules.

3. Click Add.

Figure 67.7. Adding a new certificate mapping rule in the IdM web UI

4. Enter the rule name.

5. Enter the mapping rule. For example, to make AD DC search for the Issuer and Subject entries
in any certificate presented, and base its decision to authenticate or not on the information
found in these two entries of the presented certificate:

(altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>{subject_dn!ad_x500})

6. Enter the matching rule. For example, to only allow certificates issued by the AD-ROOT-CA of
the AD.EXAMPLE.COM domain to authenticate users to IdM:

<ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com

7. Enter the domain:

ad.example.com

Figure 67.8. Certificate mapping rule if AD is configured for mapping

8. Click Add.

9. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD in the CLI::

systemctl restart sssd

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

580

67.7.2. Adding a certificate mapping rule in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Enter the mapping rule and the matching rule the mapping rule is based on. For example, to
make AD search for the Issuer and Subject entries in any certificate presented, and only allow
certificates issued by the AD-ROOT-CA of the AD.EXAMPLE.COM domain:

ipa certmaprule-add ad_configured_for_mapping_rule --matchrule
'<ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com' --maprule
'(altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>{subject_dn!ad_x500})' --
domain=ad.example.com

Added Certificate Identity Mapping Rule "ad_configured_for_mapping_rule"

 Rule name: ad_configured_for_mapping_rule
 Mapping rule: (altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>
{subject_dn!ad_x500})
 Matching rule: <ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com
 Domain name: ad.example.com
 Enabled: TRUE

3. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

systemctl restart sssd

67.7.3. Checking certificate mapping data on the AD side

The altSecurityIdentities attribute is the Active Directory (AD) equivalent of certmapdata user
attribute in IdM. When configuring certificate mapping in IdM in the scenario when a trusted AD domain
is configured to map user certificates to user accounts, the IdM system administrator needs to check
that the altSecurityIdentities attribute is set correctly in the user entries in AD.

Prerequisites

The user account must have user administration access.

Procedure

To check that AD contains the right information for the user stored in AD, use the ldapsearch
command. For example, enter the command below to check with the
adserver.ad.example.com server that the following conditions apply:

The altSecurityIdentities attribute is set in the user entry of ad_user.

The matchrule stipulates that the following conditions apply:

The certificate that ad_user uses to authenticate to AD was issued by AD-ROOT-CA
of the ad.example.com domain.

The subject is <S>DC=com,DC=example,DC=ad,CN=Users,CN=ad_user:

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

581

$ ldapsearch -o ldif-wrap=no -LLL -h adserver.ad.example.com \
-p 389 -D cn=Administrator,cn=users,dc=ad,dc=example,dc=com \
-W -b cn=users,dc=ad,dc=example,dc=com "(cn=ad_user)" \
altSecurityIdentities
Enter LDAP Password:
dn: CN=ad_user,CN=Users,DC=ad,DC=example,DC=com
altSecurityIdentities: X509:<I>DC=com,DC=example,DC=ad,CN=AD-ROOT-
CA<S>DC=com,DC=example,DC=ad,CN=Users,CN=ad_user

67.8. CONFIGURING CERTIFICATE MAPPING IF AD USER ENTRY
CONTAINS NO CERTIFICATE OR MAPPING DATA

This user story describes the steps necessary for enabling certificate mapping in IdM if the IdM
deployment is in trust with Active Directory (AD), the user is stored in AD and the user entry in AD
contains neither the whole certificate nor certificate mapping data.

Prerequisites

The user does not have an account in IdM.

The user has an account in AD which contains neither the whole certificate nor the
altSecurityIdentities attribute, the AD equivalent of the IdM certmapdata attribute.

The IdM administrator has done one of the following:

Added the whole AD user certificate to the AD user’s user ID override in IdM.

Created a certificate mapping rule that maps to an alternative field in the certificate, such as
Subject Alternative Name or the SID of the user.

67.8.1. Adding a certificate mapping rule in the IdM web UI

1. Log into the IdM web UI as an administrator.

2. Navigate to Authentication → Certificate Identity Mapping Rules → Certificate Identity
Mapping Rules.

3. Click Add.

Figure 67.9. Adding a new certificate mapping rule in the IdM web UI

4. Enter the rule name.

5. Enter the mapping rule. To have the whole certificate that is presented to IdM for
authentication compared to the certificate stored in the user ID override entry of the AD user
entry in IdM:

(userCertificate;binary={cert!bin})

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

582

NOTE

As the certificate also contains the user principal name as the SAN, or with the
latest updates, the SID of the user in the SID extension of the certificate, you can
also use these fields to map the certificate to the user. For example, if using the
SID of the user, replace this mapping rule with LDAPU1:(objectsid={sid}). For
more information on certificate mapping, see the sss-certmap man page.

6. Enter the matching rule. For example, to only allow certificates issued by the AD-ROOT-CA of
the AD.EXAMPLE.COM domain to authenticate:

<ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com

7. Enter the domain name. For example, to search for users in the ad.example.com domain:

Figure 67.10. Certificate mapping rule for a user with no certificate or mapping data stored
in AD

8. Click Add.

9. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD in the CLI:

systemctl restart sssd

67.8.2. Adding a certificate mapping rule in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Enter the mapping rule and the matching rule the mapping rule is based on. To have the whole
certificate that is presented for authentication compared to the certificate stored in the user ID
override entry of the AD user entry in IdM, only allowing certificates issued by the AD-ROOT-
CA of the AD.EXAMPLE.COM domain to authenticate:

ipa certmaprule-add simpleADrule --matchrule '<ISSUER>CN=AD-ROOT-
CA,DC=ad,DC=example,DC=com' --maprule '(userCertificate;binary={cert!bin})' --

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

583

domain ad.example.com

Added Certificate Identity Mapping Rule "simpleADrule"

 Rule name: simpleADrule
 Mapping rule: (userCertificate;binary={cert!bin})
 Matching rule: <ISSUER>CN=AD-ROOT-CA,DC=ad,DC=example,DC=com
 Domain name: ad.example.com
 Enabled: TRUE

NOTE

As the certificate also contains the user principal name as the SAN, or with the
latest updates, the SID of the user in the SID extension of the certificate, you can
also use these fields to map the certificate to the user. For example, if using the
SID of the user, replace this mapping rule with LDAPU1:(objectsid={sid}). For
more information on certificate mapping, see the sss-certmap man page.

3. The System Security Services Daemon (SSSD) periodically re-reads the certificate mapping
rules. To force the newly-created rule to be loaded immediately, restart SSSD:

systemctl restart sssd

67.8.3. Adding a certificate to an AD user’s ID override in the IdM web UI

1. Navigate to Identity → ID Views → Default Trust View.

2. Click Add.

Figure 67.11. Adding a new user ID override in the IdM web UI

3. In the User to override field, enter ad_user@ad.example.com.

4. Copy and paste the certificate of ad_user into the Certificate field.

Figure 67.12. Configuring the User ID override for an AD user

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

584

Figure 67.12. Configuring the User ID override for an AD user

5. Click Add.

Verification steps

Verify that the user and certificate are linked:

1. Use the sss_cache utility to invalidate the record of ad_user@ad.example.com in the SSSD
cache and force a reload of the ad_user@ad.example.com information:

sss_cache -u ad_user@ad.example.com

2. Run the ipa certmap-match command with the name of the file containing the certificate of the
AD user:

ipa certmap-match ad_user_cert.pem

1 user matched

 Domain: AD.EXAMPLE.COM
 User logins: ad_user@ad.example.com

Number of entries returned 1

The output confirms that you have certificate mapping data added to ad_user@ad.example.com and
that a corresponding mapping rule defined in Adding a certificate mapping rule if the AD user entry
contains no certificate or mapping data exists. This means that you can use any certificate that matches
the defined certificate mapping data to authenticate as ad_user@ad.example.com.

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

585

Additional resources

Using ID views for Active Directory users

67.8.4. Adding a certificate to an AD user’s ID override in the IdM CLI

1. Obtain the administrator’s credentials:

kinit admin

2. Store the certificate blob in a new variable called CERT:

CERT=$(openssl x509 -in /path/to/certificate -outform der|base64 -w0)

3. Add the certificate of ad_user@ad.example.com to the user account using the ipa
idoverrideuser-add-cert command:

ipa idoverrideuser-add-cert ad_user@ad.example.com --certificate $CERT

Verification steps

Verify that the user and certificate are linked:

1. Use the sss_cache utility to invalidate the record of ad_user@ad.example.com in the SSSD
cache and force a reload of the ad_user@ad.example.com information:

sss_cache -u ad_user@ad.example.com

2. Run the ipa certmap-match command with the name of the file containing the certificate of the
AD user:

ipa certmap-match ad_user_cert.pem

1 user matched

 Domain: AD.EXAMPLE.COM
 User logins: ad_user@ad.example.com

Number of entries returned 1

The output confirms that you have certificate mapping data added to ad_user@ad.example.com and
that a corresponding mapping rule defined in Adding a certificate mapping rule if the AD user entry
contains no certificate or mapping data exists. This means that you can use any certificate that matches
the defined certificate mapping data to authenticate as ad_user@ad.example.com.

Additional resources

Using ID views for Active Directory users

67.9. COMBINING SEVERAL IDENTITY MAPPING RULES INTO ONE

To combine several identity mapping rules into one combined rule, use the | (or) character to precede

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

586

To combine several identity mapping rules into one combined rule, use the | (or) character to precede
the individual mapping rules, and separate them using () brackets, for example:

Certificate mapping filter example 1

$ ipa certmaprule-add ad_cert_for_ipa_and_ad_users \ --maprule='(|(ipacertmapdata=X509:<I>
{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})(altSecurityIdentities=X509:<I>
{issuer_dn!ad_x500}<S>{subject_dn!ad_x500}))' \ --matchrule='<ISSUER>CN=AD-ROOT-
CA,DC=ad,DC=example,DC=com' \ --domain=ad.example.com

In the above example, the filter definition in the --maprule option includes these criteria:

ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500} is a filter that
links the subject and issuer from a smart card certificate to the value of the ipacertmapdata
attribute in an IdM user account, as described in Adding a certificate mapping rule in IdM

altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>{subject_dn!ad_x500} is a filter that
links the subject and issuer from a smart card certificate to the value of the
altSecurityIdentities attribute in an AD user account, as described in Adding a certificate
mapping rule if the trusted AD domain is configured to map user certificates

The addition of the --domain=ad.example.com option means that users mapped to a given
certificate are not only searched in the local idm.example.com domain but also in the
ad.example.com domain

The filter definition in the --maprule option accepts the logical operator | (or), so that you can specify
multiple criteria. In this case, the rule maps all user accounts that meet at least one of the criteria.

Certificate mapping filter example 2

$ ipa certmaprule-add ipa_cert_for_ad_users \
 --maprule='(|(userCertificate;binary={cert!bin})(ipacertmapdata=X509:<I>
{issuer_dn!nss_x500}<S>{subject_dn!nss_x500})(altSecurityIdentities=X509:<I>
{issuer_dn!ad_x500}<S>{subject_dn!ad_x500}))' \
 --matchrule='<ISSUER>CN=Certificate Authority,O=REALM.EXAMPLE.COM' \
 --domain=idm.example.com --domain=ad.example.com

In the above example, the filter definition in the --maprule option includes these criteria:

userCertificate;binary={cert!bin} is a filter that returns user entries that include the whole
certificate. For AD users, creating this type of filter is described in detail in Adding a certificate
mapping rule if the AD user entry contains no certificate or mapping data.

ipacertmapdata=X509:<I>{issuer_dn!nss_x500}<S>{subject_dn!nss_x500} is a filter that
links the subject and issuer from a smart card certificate to the value of the ipacertmapdata
attribute in an IdM user account, as described in Adding a certificate mapping rule in IdM .

altSecurityIdentities=X509:<I>{issuer_dn!ad_x500}<S>{subject_dn!ad_x500} is a filter that
links the subject and issuer from a smart card certificate to the value of the
altSecurityIdentities attribute in an AD user account, as described in Adding a certificate
mapping rule if the trusted AD domain is configured to map user certificates.

The filter definition in the --maprule option accepts the logical operator | (or), so that you can specify
multiple criteria. In this case, the rule maps all user accounts that meet at least one of the criteria.

CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT

587

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#proc-add-maprule-cli_conf-certmap-for-users-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#conf-certmap-for-ad-map_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#conf-certmap-ad-no-cert-no-map_conf-certmap-for-ad-map
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#conf-certmap-for-users-in-idm_conf-certmap-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/conf-certmap-idm_configuring-and-managing-idm#conf-certmap-for-ad-map_conf-certmap-idm

67.10. ADDITIONAL RESOURCES

See the sss-certmap(5) man page.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

588

CHAPTER 68. CONFIGURING AUTHENTICATION WITH A
CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

By configuring Identity Management (IdM), IdM system administrators can enable users to authenticate
to the IdM web UI and command-line interface (CLI) using a certificate that a Certificate Authority (CA)
has issued to the users. The certificate is stored on the desktop of an IdM client.

The web browser can run on a system that is not part of the IdM domain.

Note the following while configuring authentication with a certificate:

you can skip Requesting a new user certificate and exporting it to the client if the user you want
to authenticate using a certificate already has a certificate;

you can skip Making sure the certificate and user are linked together if the user’s certificate has
been issued by the IdM CA.

NOTE

Only Identity Management users can log into the web UI using a certificate. Active
Directory users can log in with their user name and password.

68.1. CONFIGURING THE IDENTITY MANAGEMENT SERVER FOR
CERTIFICATE AUTHENTICATION IN THE WEB UI

As an Identity Management (IdM) administrator, you can allow users to use certificates to authenticate
to your IdM environment.

Procedure

As the Identity Management administrator:

1. On an Identity Management server, obtain administrator privileges and create a shell script to
configure the server.

a. Run the ipa-advise config-server-for-smart-card-auth command, and save its output to a
file, for example server_certificate_script.sh:

kinit admin
ipa-advise config-server-for-smart-card-auth > server_certificate_script.sh

b. Add execute permissions to the file using the chmod utility:

chmod +x server_certificate_script.sh

2. On all the servers in the Identity Management domain, run the server_certificate_script.sh
script

a. with the path of the IdM Certificate Authority certificate, /etc/ipa/ca.crt, as input if the IdM
CA is the only certificate authority that has issued the certificates of the users you want to
enable certificate authentication for:

./server_certificate_script.sh /etc/ipa/ca.crt

b. with the paths leading to the relevant CA certificates as input if different external CAs

CHAPTER 68. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

589

b. with the paths leading to the relevant CA certificates as input if different external CAs
signed the certificates of the users who you want to enable certificate authentication for:

./server_certificate_script.sh /tmp/ca1.pem /tmp/ca2.pem

NOTE

Do not forget to run the script on each new replica that you add to the system in the
future if you want to have certificate authentication for users enabled in the whole
topology.

68.2. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO
THE CLIENT

As an Identity Management (IdM) administrator, you can create certificates for users in your IdM
environment and export them to the IdM clients on which you want to enable certificate authentication
for users.

NOTE

You do not need to follow this procedure if the user you want to authenticate using a
certificate already has a certificate.

Procedure

1. Optionally, create a new directory, for example ~/certdb/, and make it a temporary certificate
database. When asked, create an NSS Certificate DB password to encrypt the keys to the
certificate to be generated in a subsequent step:

mkdir ~/certdb/
certutil -N -d ~/certdb/
Enter a password which will be used to encrypt your keys.
The password should be at least 8 characters long,
and should contain at least one non-alphabetic character.

Enter new password:
Re-enter password:

2. Create the certificate signing request (CSR) and redirect the output to a file. For example, to
create a CSR with the name certificate_request.csr for a 4096 bit certificate for the idm_user
user in the IDM.EXAMPLE.COM realm, setting the nickname of the certificate private keys to
idm_user for easy findability, and setting the subject to
CN=idm_user,O=IDM.EXAMPLE.COM:

certutil -R -d ~/certdb/ -a -g 4096 -n idm_user -s "CN=idm_user,O=IDM.EXAMPLE.COM"
> certificate_request.csr

3. When prompted, enter the same password that you entered when using certutil to create the
temporary database. Then continue typing randlomly until told to stop:

Enter Password or Pin for "NSS Certificate DB":

A random seed must be generated that will be used in the

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

590

creation of your key. One of the easiest ways to create a
random seed is to use the timing of keystrokes on a keyboard.

To begin, type keys on the keyboard until this progress meter
is full. DO NOT USE THE AUTOREPEAT FUNCTION ON YOUR KEYBOARD!

Continue typing until the progress meter is full:

4. Submit the certificate request file to the server. Specify the Kerberos principal to associate with
the newly-issued certificate, the output file to store the certificate, and optionally the certificate
profile. For example, to obtain a certificate of the IECUserRoles profile, a profile with added
user roles extension, for the idm_user@IDM.EXAMPLE.COM principal, and save it in the
~/idm_user.pem file:

ipa cert-request certificate_request.csr --principal=idm_user@IDM.EXAMPLE.COM --
profile-id=IECUserRoles --certificate-out=~/idm_user.pem

5. Add the certificate to the NSS database. Use the -n option to set the same nickname that you
used when creating the CSR previously so that the certificate matches the private key in the
NSS database. The -t option sets the trust level. For details, see the certutil(1) man page. The -i
option specifies the input certificate file. For example, to add to the NSS database a certificate
with the idm_user nickname that is stored in the ~/idm_user.pem file in the ~/certdb/
database:

certutil -A -d ~/certdb/ -n idm_user -t "P,," -i ~/idm_user.pem

6. Verify that the key in the NSS database does not show (orphan) as its nickname. For example,
to verify that the certificate stored in the ~/certdb/ database is not orphaned:

certutil -K -d ~/certdb/
< 0> rsa 5ad14d41463b87a095b1896cf0068ccc467df395 NSS Certificate
DB:idm_user

7. Use the pk12util command to export the certificate from the NSS database to the PKCS12
format. For example, to export the certificate with the idm_user nickname from the
/root/certdb NSS database into the ~/idm_user.p12 file:

pk12util -d ~/certdb -o ~/idm_user.p12 -n idm_user
Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
Re-enter password:
pk12util: PKCS12 EXPORT SUCCESSFUL

8. Transfer the certificate to the host on which you want the certificate authentication for
idm_user to be enabled:

scp ~/idm_user.p12 idm_user@client.idm.example.com:/home/idm_user/

9. On the host to which the certificate has been transferred, make the directory in which the
.pkcs12 file is stored inaccessible to the 'other' group for security reasons:

chmod o-rwx /home/idm_user/

CHAPTER 68. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

591

10. For security reasons, remove the temporary NSS database and the .pkcs12 file from the server:

rm ~/certdb/
rm ~/idm_user.p12

68.3. MAKING SURE THE CERTIFICATE AND USER ARE LINKED
TOGETHER

NOTE

You do not need to follow this procedure if the user’s certificate has been issued by the
IdM CA.

For certificate authentication to work, you need to make sure that the certificate is linked to the user
that will use it to authenticate to Identity Management (IdM).

If the certificate is provided by a Certificate Authority that is not part of your
Identity Management environment, link the user and the certificate following the procedure
described in Linking User Accounts to Certificates .

If the certificate is provided by Identity Management CA, the certificate is already automatically
added in the user entry and you do not have to link the certificate to the user account. For
details on creating a new certificate in IdM, see Requesting a new user certificate and exporting
it to the client.

68.4. CONFIGURING A BROWSER TO ENABLE CERTIFICATE
AUTHENTICATION

To be able to authenticate with a certificate when using the WebUI to log into Identity Management
(IdM), you need to import the user and the relevant certificate authority (CA) certificates into the
Mozilla Firefox or Google Chrome browser. The host itself on which the browser is running does not have
to be part of the IdM domain.

IdM supports the following browsers for connecting to the WebUI:

Mozilla Firefox 38 and later

Google Chrome 46 and later

The following procedure shows how to configure the Mozilla Firefox 57.0.1 browser.

Prerequisites

You have the user certificate that you want to import to the browser at your disposal in the
PKCS#12 format.

Procedure

1. Open Firefox, then navigate to Preferences → Privacy & Security.

Figure 68.1. Privacy and Security section in Preferences

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

592

Figure 68.1. Privacy and Security section in Preferences

2. Click View Certificates.

Figure 68.2. View Certificates in Privacy and Security

3. In the Your Certificates tab, click Import. Locate and open the certificate of the user in the
PKCS12 format, then click OK and OK.

4. Make sure that the Identity Management Certificate Authority is recognized by Firefox as a
trusted authority:

a. Save the IdM CA certificate locally:

Navigate to the IdM web UI by writing the name of your IdM server in the Firefox
address bar. Click Advanced on the Insecure Connection warning page.

Figure 68.3. Insecure Connection

Add Exception. Click View.

Figure 68.4. View the Details of a Certificate

CHAPTER 68. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

593

Figure 68.4. View the Details of a Certificate

In the Details tab, highlight the Certificate Authority fields.

Figure 68.5. Exporting the CA Certificate

Click Export. Save the CA certificate, for example as the CertificateAuthority.crt file,
then click Close, and Cancel.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

594

b. Import the IdM CA certificate to Firefox as a trusted certificate authority certificate:

Open Firefox, navigate to Preferences and click Privacy & Security.

Figure 68.6. Privacy and Security section in Preferences

Click View Certificates.

Figure 68.7. View Certificates in Privacy and Security

In the Authorities tab, click Import. Locate and open the CA certificate that you saved
in the previous step in the CertificateAuthority.crt file. Trust the certificate to identify
websites, then click OK and OK.

5. Continue to Authenticating to the Identity Management Web UI with a Certificate as an Identity
Management User.

68.5. AUTHENTICATING TO THE IDENTITY MANAGEMENT WEB UI
WITH A CERTIFICATE AS AN IDENTITY MANAGEMENT USER

Follow this procedure to authenticate as a user to the Identity Management (IdM) web UI using a
certificate stored on the desktop of an Identity Management client.

Procedure

1. In the browser, navigate to the Identity Management web UI at, for example,
https://server.idm.example.com/ipa/ui.

2. Click Login Using Certificate.

Figure 68.8. Login Using Certificate in the Identity Management web UI

CHAPTER 68. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT

595

Figure 68.8. Login Using Certificate in the Identity Management web UI

3. The user’s certificate should already be selected. Uncheck Remember this decision, then click
OK.

You are now authenticated as the user who corresponds to the certificate.

Additional resources

See Configuring Identity Management for smart card authentication .

68.6. CONFIGURING AN IDM CLIENT TO ENABLE AUTHENTICATING
TO THE CLI USING A CERTIFICATE

To make certificate authentication work for an IdM user in the Command Line Interface (CLI) of your
IdM client, import the IdM user’s certificate and the private key to the IdM client. For details on creating
and transferring the user certificate, see Requesting a new user certificate and exporting it to the client .

Procedure

Log into the IdM client and have the .p12 file containing the user’s certificate and the private key
ready. To obtain and cache the Kerberos ticket granting ticket (TGT), run the kinit command
with the user’s principal, using the -X option with the X509_username:/path/to/file.p12
attribute to specify where to find the user’s X509 identity information. For example, to obtain
the TGT for idm_user using the user’s identity information stored in the ~/idm_user.p12 file:

$ kinit -X X509_idm_user='PKCS12:~/idm_user.p12' idm_user

NOTE

The command also supports the .pem file format: kinit -X
X509_username='FILE:/path/to/cert.pem,/path/to/key' user_principal

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

596

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_smart_card_authentication/configuring-idm-for-smart-card-auth_managing-smart-card-authentication

CHAPTER 69. USING IDM CA RENEWAL SERVER

69.1. EXPLANATION OF IDM CA RENEWAL SERVER

In an Identity Management (IdM) deployment that uses an embedded certificate authority (CA), the CA
renewal server maintains and renews IdM system certificates. It ensures robust IdM deployments.

IdM system certificates include:

IdM CA certificate

OCSP signing certificate

IdM CA subsystem certificates

IdM CA audit signing certificate

IdM renewal agent (RA) certificate

KRA transport and storage certificates

What characterizes system certificates is that their keys are shared by all CA replicas. In contrast, the
IdM service certificates (for example, LDAP, HTTP and PKINIT certificates), have different keypairs and
subject names on different IdM CA servers.

In IdM topology, by default, the first IdM CA server is the CA renewal server.

NOTE

In upstream documentation, the IdM CA is called Dogtag.

The role of the CA renewal server

The IdM CA, IdM CA subsystem, and IdM RA certificates are crucial for IdM deployment. Each
certificate is stored in an NSS database in the /etc/pki/pki-tomcat/ directory and also as an LDAP
database entry. The certificate stored in LDAP must match the certificate stored in the NSS database. If
they do not match, authentication failures occur between the IdM framework and IdM CA, and between
IdM CA and LDAP.

All IdM CA replicas have tracking requests for every system certificate. If an IdM deployment with
integrated CA does not contain a CA renewal server, each IdM CA server requests the renewal of system
certificates independently. This results in different CA replicas having various system certificates and
authentication failures occurring.

Appointing one CA replica as the renewal server allows the system certificates to be renewed exactly
once, when required, and thus prevents authentication failures.

The role of the certmonger service on CA replicas

The certmonger service running on all IdM CA replicas uses the dogtag-ipa-ca-renew-agent renewal
helper to keep track of IdM system certificates. The renewal helper program reads the CA renewal
server configuration. On each CA replica that is not the CA renewal server, the renewal helper retrieves
the latest system certificates from the ca_renewal LDAP entries. Due to non-determinism in when
exactly certmonger renewal attempts occur, the dogtag-ipa-ca-renew-agent helper sometimes
attempts to update a system certificate before the CA renewal server has actually renewed the
certificate. If this happens, the old, soon-to-expire certificate is returned to the certmonger service on

CHAPTER 69. USING IDM CA RENEWAL SERVER

597

the CA replica. The certmonger service, realizing it is the same certificate that is already stored in its
database, keeps attempting to renew the certificate with some delay between individual attempts until
it can retrieve the updated certificate from the CA renewal server.

The correct functioning of IdM CA renewal server

An IdM deployment with an embedded CA is an IdM deployment that was installed with an IdM CA - or
whose IdM CA server was installed later. An IdM deployment with an embedded CA must at all times
have exactly one CA replica configured as the renewal server. The renewal server must be online and
fully functional, and must replicate properly with the other servers.

If the current CA renewal server is being deleted using the ipa server-del, ipa-replica-manage del, ipa-
csreplica-manage del or ipa-server-install --uninstall commands, another CA replica is automatically
assigned as the CA renewal server. This policy ensures that the renewal server configuration remains
valid.

This policy does not cover the following situations:

Offline renewal server
If the renewal server is offline for an extended duration, it may miss a renewal window. In this
situation, all nonrenewal CA servers keep reinstalling the current system certificates until the
certificates expire. When this occurs, the IdM deployment is disrupted because even one expired
certificate can cause renewal failures for other certificates.

To prevent this situation: if your current renewal server is offline and unavailable for an extended
period of time, consider assigning a new CA renewal server manually .

Replication problems
If replication problems exist between the renewal server and other CA replicas, renewal might
succeed, but the other CA replicas might not be able to retrieve the updated certificates before
they expire.

To prevent this situation, make sure that your replication agreements are working correctly. For
details, see general or specific replication troubleshooting guidelines in the RHEL 7 Linux
Domain Identity, Authentication, and Policy Guide.

69.2. CHANGING AND RESETTING IDM CA RENEWAL SERVER

When a certificate authority (CA) renewal server is being decommissioned, Identity Management (IdM)
automatically selects a new CA renewal server from the list of IdM CA servers. The system administrator
cannot influence the selection.

To be able to select the new IdM CA renewal server, the system administrator must perform the
replacement manually. Choose the new CA renewal server before starting the process of
decommissioning the current renewal server.

If the current CA renewal server configuration is invalid, reset the IdM CA renewal server.

Complete this procedure to change or reset the CA renewal server.

Prerequisites

You have the IdM administrator credentials.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

598

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/trouble-gen-replication
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/trouble-replica

1. Obtain the IdM administrator credentials:

~]$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

2. Optionally, to find out which IdM servers in the deployment have the CA role necessary to be
eligible to become the new CA renewal server:

~]$ ipa server-role-find --role 'CA server'

2 server roles matched

 Server name: server.idm.example.com
 Role name: CA server
 Role status: enabled

 Server name: replica.idm.example.com
 Role name: CA server
 Role status: enabled

Number of entries returned 2

There are two CA servers in the deployment.

3. Optionally, to find out which CA server is the current CA renewal server, enter:

~]$ ipa config-show | grep 'CA renewal'
 IPA CA renewal master: server.idm.example.com

The current renewal server is server.idm.example.com.

4. To change the renewal server configuration, use the ipa config-mod utility with the --ca-
renewal-master-server option:

~]$ ipa config-mod --ca-renewal-master-server replica.idm.example.com | grep 'CA
renewal'
 IPA CA renewal master: replica.idm.example.com

IMPORTANT

You can also switch to a new CA renewal server using:

The ipa-cacert-manage --renew command. This command both renews the
CA certificate and makes the CA server on which you execute the command
the new CA renewal server.

The ipa-cert-fix command. This command recovers the deployment when
expired certificates are causing failures. It also makes the CA server on which
you execute the command the new CA renewal server.
For details, see Renewing expired system certificates when IdM is offline .

CHAPTER 69. USING IDM CA RENEWAL SERVER

599

CHAPTER 70. MANAGING EXTERNALLY-SIGNED CA
CERTIFICATES

Identity Management (IdM) provides different types of certificate authority (CA) configurations. You
can chose to install IdM with an integrated CA or with an external CA. You must specify the type of CA
you are using during the installation. However, once installed you can move from an externally-signed CA
to a self-signed CA and vice versa. Additionally, while a self-signed CA is automatically renewed, you
must ensure that you renew your externally-signed CA certificate. Refer to the relevant sections as
required to manage your externally-signed CA certificates.

Installing IdM with an externally-signed CA:

Installing an IdM server with integrated DNS and with an external CA as the root CA.

Installing an IdM server without integrated DNS and with an external CA as the root CA.

Switching from an externally-signed CA to a self-signed CA.

Switching from a self-signed CA to an externally-signed CA.

Renewing the externally-signed CA certificate.

70.1. SWITCHING FROM AN EXTERNALLY-SIGNED TO A SELF-SIGNED
CA IN IDM

Complete this procedure to switch from an externally-signed to a self-signed certificate of the Identity
Management (IdM) certificate authority (CA). With a self-signed CA, the renewal of the CA certificate is
managed automatically: a system administrator does not need to submit a certificate signing request
(CSR) to an external authority.

Switching from an externally-signed to a self-signed CA replaces only the CA certificate. The
certificates signed by the previous CA are still valid and still in use. For example, the certificate chain for
the LDAP certificate remains unchanged even after you have moved to a self-signed CA:

external_CA certificate > IdM CA certificate > LDAP certificate

Prerequisites

You have root access to the IdM CA renewal server and all IdM clients and servers.

Procedure

1. On the IdM CA renewal server, renew the CA certificate as self-signed:

ipa-cacert-manage renew --self-signed
Renewing CA certificate, please wait
CA certificate successfully renewed
The ipa-cacert-manage command was successful

2. SSH to all the remaining IdM servers and clients as root. For example:

ssh root@idmclient01.idm.example.com

3. On the IdM client, update the local IdM certificate databases with the certificates from the

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

600

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-ipa-server-with-external-ca_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-ipa-server-without-dns-with-external-ca_installing-identity-management

3. On the IdM client, update the local IdM certificate databases with the certificates from the
server:

[idmclient01 ~]# ipa-certupdate
Systemwide CA database updated.
Systemwide CA database updated.
The ipa-certupdate command was successful

4. Optionally, to check if your update has been successful and the new CA certificate has been
added to the /etc/ipa/ca.crt file:

[idmclient01 ~]$ openssl crl2pkcs7 -nocrl -certfile /etc/ipa/ca.crt | openssl pkcs7 -
print_certs -text -noout
[...]
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 39 (0x27)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O=IDM.EXAMPLE.COM, CN=Certificate Authority
 Validity
 Not Before: Jul 1 16:32:45 2019 GMT
 Not After : Jul 1 16:32:45 2039 GMT
 Subject: O=IDM.EXAMPLE.COM, CN=Certificate Authority
[...]

The output shows that the update has been successful as the new CA certificate is listed with
the older CA certificates.

70.2. SWITCHING FROM A SELF-SIGNED TO AN EXTERNALLY-
SIGNED CA IN IDM

You can switch from a self-signed CA to an externally-signed CA in IdM. Once you switch to an
externally-signed CA in IdM, your IdM CA server becomes a subCA of the external CA. Also, the renewal
of the CA certificate is not managed automatically and a system administrator must submit a certificate
signing request (CSR) to the external authority.

To switch to an externally-signed CA, a CSR must be signed by the external CA. Follow the steps in
Renewing the IdM CA renewal server certificate using an external CA to switch to a self-signed CA in
IdM.

70.3. RENEWING THE IDM CA RENEWAL SERVER CERTIFICATE USING
AN EXTERNAL CA

Follow this procedure to renew the Identity Management (IdM) certificate authority (CA) certificate
using an external CA to sign the certificate signing request (CSR). In this configuration, your IdM CA
server is a subCA of the external CA. The external CA can, but does not have to, be an Active Directory
Certificate Server (AD CS).

If the external certificate authority is AD CS, you can specify the template you want for the IdM CA
certificate in the CSR. A certificate template defines the policies and rules that a CA uses when a
certificate request is received. Certificate templates in AD correspond to certificate profiles in IdM.

You can define a specific AD CS template by its Object Identifier (OID). OIDs are unique numeric values

CHAPTER 70. MANAGING EXTERNALLY-SIGNED CA CERTIFICATES

601

You can define a specific AD CS template by its Object Identifier (OID). OIDs are unique numeric values
issued by various issuing authorities to uniquely identify data elements, syntaxes, and other parts of
distributed applications.

Alternatively, you can define a specific AD CS template by its name. For example, the name of the
default profile used in a CSR submitted by an IdM CA to an AD CS is subCA.

To define a profile by specifying its OID or name in the CSR, use the external-ca-profile option. For
details, see the ipa-cacert-manage man page.

Apart from using a ready-made certificate template, you can also create a custom certificate template in
the AD CS, and use it in the CSR.

Prerequisites

You have root access to the IdM CA renewal server.

Procedure

Complete this procedure to renew the certificate of the IdM CA with external signing, regardless of
whether current CA certificate is self-signed or externally-signed.

1. Create a CSR to be submitted to the external CA:

If the external CA is an AD CS, use the --external-ca-type=ms-cs option. If you want a
different template than the default subCA template, specify it using the --external-ca-
profile option:

~]# ipa-cacert-manage renew --external-ca --external-ca-type=ms-cs [--external-ca-
profile=PROFILE]
Exporting CA certificate signing request, please wait
The next step is to get /var/lib/ipa/ca.csr signed by your CA and re-run ipa-cacert-manage
as:
ipa-cacert-manage renew --external-cert-file=/path/to/signed_certificate --external-cert-
file=/path/to/external_ca_certificate
The ipa-cacert-manage command was successful

If the external CA is not an AD CS:

~]# ipa-cacert-manage renew --external-ca
Exporting CA certificate signing request, please wait
The next step is to get /var/lib/ipa/ca.csr signed by your CA and re-run ipa-cacert-manage
as:
ipa-cacert-manage renew --external-cert-file=/path/to/signed_certificate --external-cert-
file=/path/to/external_ca_certificate
The ipa-cacert-manage command was successful

The output shows that a CSR has been created and is stored in the /var/lib/ipa/ca.csr file.

2. Submit the CSR located in /var/lib/ipa/ca.csr to the external CA. The process differs depending
on the service to be used as the external CA.

3. Retrieve the issued certificate and the CA certificate chain for the issuing CA in a base 64-
encoded blob, which is:

A PEM file if the external CA is not an AD CS.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

602

A Base_64 certificate if the external CA is an AD CS.
The process differs for every certificate service. Usually, a download link on a web page or in
the notification email allows the administrator to download all the required certificates.

If the external CA is an AD CS and you have submitted the CSR with a known template
through the Microsoft Windows Certification Authority management window, the AD CS
issues the certificate immediately and the Save Certificate dialog appears in the AD CS web
interface, asking where to save the issued certificate.

4. Run the ipa-cacert-manage renew command again, adding all the CA certificate files required
to supply a full certificate chain. Specify as many files as you need, using the --external-cert-file
option multiple times:

~]# ipa-cacert-manage renew --external-cert-file=/path/to/signed_certificate --external-
cert-file=/path/to/external_ca_certificate_1 --external-cert-
file=/path/to/external_ca_certificate_2

5. On all the IdM servers and clients, update the local IdM certificate databases with the
certificates from the server:

[client ~]$ ipa-certupdate
Systemwide CA database updated.
Systemwide CA database updated.
The ipa-certupdate command was successful

6. Optionally, to check if your update has been successful and the new CA certificate has been
added to the /etc/ipa/ca.crt file:

[client ~]$ openssl crl2pkcs7 -nocrl -certfile /etc/ipa/ca.crt | openssl pkcs7 -print_certs -
text -noout
[...]
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 39 (0x27)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O=IDM.EXAMPLE.COM, CN=Certificate Authority
 Validity
 Not Before: Jul 1 16:32:45 2019 GMT
 Not After : Jul 1 16:32:45 2039 GMT
 Subject: O=IDM.EXAMPLE.COM, CN=Certificate Authority
[...]

The output shows that the update has been successful as the new CA certificate is listed with
the older CA certificates.

CHAPTER 70. MANAGING EXTERNALLY-SIGNED CA CERTIFICATES

603

CHAPTER 71. RENEWING EXPIRED SYSTEM CERTIFICATES
WHEN IDM IS OFFLINE

If a system certificate has expired, Identity Management (IdM) fails to start. IdM supports renewing
system certificates even in this situation by using the ipa-cert-fix tool.

Prerequisites

IdM is installed only on Red Hat Enterprise Linux 8.1 or later.

Ensure that the LDAP service is running by entering the ipactl start --ignore-service-failures
command on the host.

71.1. RENEWING EXPIRED SYSTEM CERTIFICATES ON A CA RENEWAL
SERVER

Follow this procedure to apply the ipa-cert-fix tool on expired IdM certificates.

IMPORTANT

If you run the ipa-cert-fix tool on a CA (Certificate Authority) host that is not the CA
renewal server, and the utility renews shared certificates, that host automatically
becomes the new CA renewal server in the domain. There must always be only one CA
renewal server in the domain to avoid inconsistencies.

Prerequisites

Log in to the server with administration rights

Procedure

1. (Optional) Backup the system. This is heavily recommended, as ipa-cert-fix makes irreversible
changes to nssdbs. Because ipa-cert-fix also makes changes to the LDAP, it is recommended
to backup the entire cluster as well.

2. Start the ipa-cert-fix tool to analyze the system and list expired certificates that require
renewal:

ipa-cert-fix
...
The following certificates will be renewed:

Dogtag sslserver certificate:
 Subject: CN=ca1.example.com,O=EXAMPLE.COM 201905222205
 Serial: 13
 Expires: 2019-05-12 05:55:47
...
Enter "yes" to proceed:

3. Enter yes to start the renewal process:

Enter "yes" to proceed: yes
Proceeding.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

604

Renewed Dogtag sslserver certificate:
 Subject: CN=ca1.example.com,O=EXAMPLE.COM 201905222205
 Serial: 268369925
 Expires: 2021-08-14 02:19:33
...

Becoming renewal master.
The ipa-cert-fix command was successful

It can take up to one minute before ipa-cert-fix renews all expired certificates.

4. Optionally, verify that all services are now running:

ipactl status
Directory Service: RUNNING
krb5kdc Service: RUNNING
kadmin Service: RUNNING
httpd Service: RUNNING
ipa-custodia Service: RUNNING
pki-tomcatd Service: RUNNING
ipa-otpd Service: RUNNING
ipa: INFO: The ipactl command was successful

At this point, certificates have been renewed and services are running. The next step is to check other
servers in the IdM domain.

NOTE

If you need to repair certificates across multiple CA servers:

1. After ensuring that LDAP replication is working across the topology, first run ipa-
cert-fix on one CA server, according to the above procedure.

2. Before you run ipa-cert-fix on another CA server, trigger Certmonger renewals
for shared certificates via getcert-resubmit (on the other CA server), to avoid
unnecessary renewal of shared certificates.

71.2. VERIFYING OTHER IDM SERVERS IN THE IDM DOMAIN AFTER
RENEWAL

After the renewing the CA renewal server’s certificates with the ipa-cert-fix tool, you must:

Restart all other Identity Management (IdM) servers in the domain.

Check if certmonger renewed certificates.

If there are other Certificate Authority (CA) replicas with expired system certificates, renew
those certificates with the ipa-cert-fix tool as well.

Prerequisites

Log in to the server with administration rights.

Procedure

CHAPTER 71. RENEWING EXPIRED SYSTEM CERTIFICATES WHEN IDM IS OFFLINE

605

1. Restart IdM with the --force parameter:

ipactl restart --force

With the --force parameter, the ipactl utility ignores individual service startup failures. For
example, if the server is also a CA with expired certificates, the pki-tomcat service fails to start.
This is expected and ignored because of using the --force parameter.

2. After the restart, verify that the certmonger service renewed the certificates (certificate status
says MONITORING):

getcert list | egrep '^Request|status:|subject:'
Request ID '20190522120745':
 status: MONITORING
 subject: CN=IPA RA,O=EXAMPLE.COM 201905222205
Request ID '20190522120834':
 status: MONITORING
 subject: CN=Certificate Authority,O=EXAMPLE.COM 201905222205
...

It can take some time before certmonger renews the shared certificates on the replica.

3. If the server is also a CA, the previous command reports CA_UNREACHABLE for the
certificate the pki-tomcat service uses:

Request ID '20190522120835':
 status: CA_UNREACHABLE
 subject: CN=ca2.example.com,O=EXAMPLE.COM 201905222205
...

4. To renew this certificate, use the ipa-cert-fix utility:

ipa-cert-fix
Dogtag sslserver certificate:
 Subject: CN=ca2.example.com,O=EXAMPLE.COM
 Serial: 3
 Expires: 2019-05-11 12:07:11

Enter "yes" to proceed: yes
Proceeding.
Renewed Dogtag sslserver certificate:
 Subject: CN=ca2.example.com,O=EXAMPLE.COM 201905222205
 Serial: 15
 Expires: 2019-08-14 04:25:05

The ipa-cert-fix command was successful

Now, all IdM certificates have been renewed and work correctly.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

606

CHAPTER 72. REPLACING THE WEB SERVER AND LDAP
SERVER CERTIFICATES IF THEY HAVE NOT YET EXPIRED ON

AN IDM REPLICA
As an Identity Management (IdM) system administrator, you can manually replace the certificates for
the web (or httpd) and LDAP (or Directory) services running on an IdM server. For example, this might
be necessary if the certificates are nearing expiration and if the certmonger utility is either not
configured to renew the certificates automatically or if the certificates are signed by an external
certificate authority (CA).

The example installs the certificates for the services running on the server.idm.example.com IdM
server. You obtain the certificates from an external CA.

NOTE

The HTTP and LDAP service certificates have different keypairs and subject names on
different IdM servers and so you must renew the certificates on each IdM server
individually.

Prerequisites

On at least one other IdM replica in the topology with which the IdM server has a replication
agreement, the web and LDAP certificates are still valid. This is a prerequisite for the ipa-
server-certinstall command. The command requires a TLS connection to communicate with
other IdM replicas. However, with invalid certificates, such a connection could not be
established, and the ipa-server-certinstall command would fail. In that case, see Replacing the
web server and LDAP server certificates if they have expired in the whole IdM deployment.

You have root access to the IdM server.

You know the Directory Manager password.

You have access to a file storing the CA certificate chain of the external CA,
ca_certificate_chain_file.crt.

Procedure

1. Install the certificates contained in ca_certificate_chain_file.crt as additional CA certificates to
IdM:

ipa-cacert-manage install

2. Update the local IdM certificate databases with certificates from ca_certicate_chain_file.crt:

ipa-certupdate

3. Generate a private key and a certificate signing request (CSR) using the OpenSSL utility:

$ openssl req -new -newkey rsa:4096 -days 365 -nodes -keyout new.key -out new.csr -
addext "subjectAltName = DNS:server.idm.example.com" -subj
'/CN=server.idm.example.com,O=IDM.EXAMPLE.COM'

Submit the CSR to the external CA. The process differs depending on the service to be used as

CHAPTER 72. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE NOT YET EXPIRED ON AN IDM REPLICA

607

Submit the CSR to the external CA. The process differs depending on the service to be used as
the external CA. After the CA signs the certificate, import the certificate to the IdM server.

4. On the IdM server, replace the Apache web server’s old private key and certificate with the new
key and the newly-signed certificate:

ipa-server-certinstall -w --pin=password new.key new.crt

In the command above:

The -w option specifies that you are installing a certificate into the web server.

The --pin option specifies the password protecting the private key.

5. When prompted, enter the Directory Manager password.

6. Replace the LDAP server’s old private key and certificate with the new key and the newly-
signed certificate:

ipa-server-certinstall -d --pin=password new.key new.cert

In the command above:

The -d option specifies that you are installing a certificate into the LDAP server.

The --pin option specifies the password protecting the private key.

7. When prompted, enter the Directory Manager password.

8. Restart the httpd service:

systemctl restart httpd.service

9. Restart the Directory service:

systemctl restart dirsrv@IDM.EXAMPLE.COM.service

10. If a subCA has been removed or replaced on the servers, update the clients:

ipa-certupdate

Additional resources

Converting certificate formats to work with IdM

The ipa-server-certinstall(1) man page

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

608

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/convert-cert-formats-idm_configuring-and-managing-idm

CHAPTER 73. REPLACING THE WEB SERVER AND LDAP
SERVER CERTIFICATES IF THEY HAVE EXPIRED IN THE

WHOLE IDM DEPLOYMENT
Identity Management (IdM) uses the following service certificates:

The LDAP (or Directory) server certificate

The web (or httpd) server certificate

The PKINIT certificate

In an IdM deployment without a CA, certmonger does not by default track IdM service certificates or
notify of their expiration. If the IdM system administrator does not manually set up notifications for
these certificates, or configure certmonger to track them, the certificates will expire without notice.

Follow this procedure to manually replace expired certificates for the httpd and LDAP services running
on the server.idm.example.com IdM server.

NOTE

The HTTP and LDAP service certificates have different keypairs and subject names on
different IdM servers. Therefore, you must renew the certificates on each IdM server
individually.

Prerequisites

The HTTP and LDAP certificates have expired on all IdM replicas in the topology. If not, see
Replacing the web server and LDAP server certificates if they have not yet expired on an IdM
replica.

You have root access to the IdM server and replicas.

You know the Directory Manager password.

You have created backups of the following directories and files:

/etc/dirsrv/slapd-IDM-EXAMPLE-COM/

/etc/httpd/alias

/var/lib/certmonger

/var/lib/ipa/certs/

Procedure

1. If you are not using the same CA to sign the new certificates or if the already
installed CA certificate is no longer valid, update the information about the external CA in your
local database with a file that contains a valid CA certificate chain of the external CA. The file is
accepted in PEM and DER certificate, PKCS#7 certificate chain, PKCS#8 and raw private key
and PKCS#12 formats.

a. Install the certificates available in ca_certificate_chain_file.crt as additional CA certificates
into IdM:

CHAPTER 73. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE EXPIRED IN THE WHOLE IDM DEPLOYMENT

609

ipa-cacert-manage install ca_certificate_chain_file.crt

b. Update the local IdM certificate databases with certificates from ca_certicate_chain_file.crt:

ipa-certupdate

2. Request the certificates for httpd and LDAP:

a. Create a certificate signing request (CSR) for the Apache web server running on your IdM
instances to your third party CA using the OpenSSL utility:

$ openssl req -new -newkey rsa:2048 -nodes -keyout /var/lib/ipa/private/httpd.key -
out /tmp/http.csr -addext 'subjectAltName = DNS:server.idm.example.com,
otherName:1.3.6.1.4.1.311.20.2.3;UTF8:HTTP/server.idm.example.com@IDM.EXAM
PLE.COM' -subj '/O=IDM.EXAMPLE.COM/CN=server.idm.example.com'

The creation of a new private key is optional. If you still have the original private key, you can
use the -in option with the openssl req command to specify the input file name to read the
request from.

b. Create a certificate signing request (CSR) for the LDAP server running on your IdM
instances to your third party CA using the OpenSSL utility:

$ openssl req -new -newkey rsa:2048 -nodes -keyout ~/ldap.key -out /tmp/ldap.csr -
addext 'subjectAltName = DNS:server.idm.example.com,
otherName:1.3.6.1.4.1.311.20.2.3;UTF8:ldap/server.idm.example.com@IDM.EXAMP
LE.COM' -subj '/O=IDM.EXAMPLE.COM/CN=server.idm.example.com'

The creation of a new private key is optional. If you still have the original private key, you can
use the -in option with the openssl req command to specify the input file name to read the
request from.

c. Submit the CSRs, /tmp/http.csr and tmp/ldap.csr, to the external CA, and obtain a
certificate for httpd and a certificate for LDAP. The process differs depending on the
service to be used as the external CA.

3. Install the certificate for httpd :

cp /path/to/httpd.crt /var/lib/ipa/certs/

4. Install the LDAP certificate into an NSS database:

a. [Optional] List the available certificates:

certutil -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM/ -L
Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

Server-Cert u,u,u

The default certificate nickname is Server-Cert, but it is possible that a different name was
applied.

b. Remove the old invalid certificate from the NSS database (NSSDB) by using the certificate
nickname from the previous step:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

610

certutil -D -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM/ -n 'Server-Cert' -f
/etc/dirsrv/slapd-IDM-EXAMPLE-COM/pwdfile.txt

c. Create a PKCS12 file to ease the import process into NSSDB:

openssl pkcs12 -export -in ldap.crt -inkey ldap.key -out ldap.p12 -name Server-
Cert

d. Install the created PKCS#12 file into the NSSDB:

pk12util -i ldap.p12 -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM/ -k
/etc/dirsrv/slapd-IDM-EXAMPLE-COM/pwdfile.txt

e. Check that the new certificate has been successfully imported:

certutil -L -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM/

5. Restart the httpd service:

systemctl restart httpd.service

6. Restart the Directory service:

systemctl restart dirsrv@IDM-EXAMPLE-COM.service

7. Perform all the previous steps on all your IdM replicas. This is a prerequisite for establishing TLS
connections between the replicas.

8. Enroll the new certificates to LDAP storage:

a. Replace the Apache web server’s old private key and certificate with the new key and the
newly-signed certificate:

ipa-server-certinstall -w --pin=password /var/lib/ipa/private/httpd.key
/var/lib/ipa/certs/httpd.crt

In the command above:

The -w option specifies that you are installing a certificate into the web server.

The --pin option specifies the password protecting the private key.

b. When prompted, enter the Directory Manager password.

c. Replace the LDAP server’s old private key and certificate with the new key and the newly-
signed certificate:

ipa-server-certinstall -d --pin=password /etc/dirsrv/slapd-IDM-EXAMPLE-
COM/ldap.key /path/to/ldap.crt

In the command above:

The -d option specifies that you are installing a certificate into the LDAP server.

CHAPTER 73. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE EXPIRED IN THE WHOLE IDM DEPLOYMENT

611

The --pin option specifies the password protecting the private key.

d. When prompted, enter the Directory Manager password.

e. Restart the httpd service:

systemctl restart httpd.service

f. Restart the Directory service:

systemctl restart dirsrv@IDM-EXAMPLE-COM.service

9. Execute the commands from the previous step on all the other affected replicas.

Additional resources

Converting certificate formats to work with IdM * man ipa-server-certinstall(1) * How do I manually
renew Identity Management (IPA) certificates on RHEL 8 after they have expired? (CA-less IPA)

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

612

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/convert-cert-formats-idm_configuring-and-managing-idm
https://access.redhat.com/solutions/6765131

CHAPTER 74. GENERATING CRL ON THE IDM CA SERVER
If your IdM deployment uses an embedded certificate authority (CA), you may need to move generating
the Certificate Revocation List (CRL) from one Identity Management (IdM) server to another. It can be
necessary, for example, when you want to migrate the server to another system.

Only configure one server to generate the CRL. The IdM server that performs the CRL publisher role is
usually the same server that performs the CA renewal server role, but this is not mandatory. Before you
decommission the CRL publisher server, select and configure another server to perform the CRL
publisher server role.

74.1. STOPPING CRL GENERATION ON AN IDM SERVER

To stop generating the Certificate Revocation List (CRL) on the IdM CRL publisher server, use the ipa-
crlgen-manage command. Before you disable the generation, verify that the server really generates
CRL. You can then disable it.

Prerequisites

Identity Management (IdM) server is installed on the RHEL 8.1 system or newer.

You must be logged in as root.

Procedure

1. Check if your server is generating the CRL:

[root@server ~]# ipa-crlgen-manage status
CRL generation: enabled
Last CRL update: 2019-10-31 12:00:00
Last CRL Number: 6
The ipa-crlgen-manage command was successful

2. Stop generating the CRL on the server:

[root@server ~]# ipa-crlgen-manage disable
Stopping pki-tomcatd
Editing /var/lib/pki/pki-tomcat/conf/ca/CS.cfg
Starting pki-tomcatd
Editing /etc/httpd/conf.d/ipa-pki-proxy.conf
Restarting httpd
CRL generation disabled on the local host. Please make sure to configure CRL generation on
another master with ipa-crlgen-manage enable.
The ipa-crlgen-manage command was successful

3. Check if the server stopped generating CRL:

[root@server ~]# ipa-crlgen-manage status

The server stopped generating the CRL. The next step is to enable CRL generation on the IdM replica.

74.2. STARTING CRL GENERATION ON AN IDM REPLICA SERVER

You can start generating the Certificate Revocation List (CRL) on an IdM CA server with the ipa-

CHAPTER 74. GENERATING CRL ON THE IDM CA SERVER

613

You can start generating the Certificate Revocation List (CRL) on an IdM CA server with the ipa-
crlgen-manage command.

Prerequisites

Identity Management (IdM) server is installed on the RHEL 8.1 system or newer.

The RHEL system must be an IdM Certificate Authority server.

You must be logged in as root.

Procedure

1. Start generating the CRL:

[root@replica1 ~]# ipa-crlgen-manage enable
Stopping pki-tomcatd
Editing /var/lib/pki/pki-tomcat/conf/ca/CS.cfg
Starting pki-tomcatd
Editing /etc/httpd/conf.d/ipa-pki-proxy.conf
Restarting httpd
Forcing CRL update
CRL generation enabled on the local host. Please make sure to have only a single CRL
generation master.
The ipa-crlgen-manage command was successful

2. Check if the CRL is generated:

[root@replica1 ~]# ipa-crlgen-manage status
CRL generation: enabled
Last CRL update: 2019-10-31 12:10:00
Last CRL Number: 7
The ipa-crlgen-manage command was successful

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

614

CHAPTER 75. DECOMMISSIONING A SERVER THAT
PERFORMS THE CA RENEWAL SERVER AND CRL PUBLISHER

ROLES
You might have one server performing both the Certificate Authority (CA) renewal server role and the
Certificate Revocation List (CRL) publisher role. If you need to take this server offline or decommission
it, select and configure another CA server to perform these roles.

In this example, the host server.idm.example.com, which fulfills the CA renewal server and CRL
publisher roles, must be decommissioned. This procedure transfers the CA renewal server and CRL
publisher roles to the host replica.idm.example.com and removes server.idm.example.com from the
IdM environment.

NOTE

You do not need to configure the same server to perform both CA renewal server and
CRL publisher roles.

Prerequisites

You have the IdM administrator credentials.

You have the root password for the server you are decommissioning.

You have at least two CA replicas in your IdM environment.

Procedure

1. Obtain the IdM administrator credentials:

[user@server ~]$ kinit admin
Password for admin@IDM.EXAMPLE.COM:

2. (Optional) If you are not sure which servers perform the CA renewal server and CRL publisher
roles:

a. Display the current CA renewal server. You can run the following command from any IdM
server:

[user@server ~]$ ipa config-show | grep 'CA renewal'
 IPA CA renewal master: server.idm.example.com

b. Test if a host is the current CRL publisher.

[user@server ~]$ ipa-crlgen-manage status
CRL generation: enabled
Last CRL update: 2019-10-31 12:00:00
Last CRL Number: 6
The ipa-crlgen-manage command was successful

A CA server that does not generate the CRL displays CRL generation: disabled.

CHAPTER 75. DECOMMISSIONING A SERVER THAT PERFORMS THE CA RENEWAL SERVER AND CRL PUBLISHER ROLES

615

[user@replica ~]$ ipa-crlgen-manage status
CRL generation: disabled
The ipa-crlgen-manage command was successful

Continue entering this command on CA servers until you find the CRL publisher server.

c. Display all other CA servers you can promote to fulfill these roles. This environment has two
CA servers.

[user@server ~]$ ipa server-role-find --role 'CA server'

2 server roles matched

 Server name: server.idm.example.com
 Role name: CA server
 Role status: enabled
 Server name: replica.idm.example.com
 Role name: CA server
 Role status: enabled

Number of entries returned 2

3. Set replica.idm.example.com as the CA renewal server.

[user@server ~]$ ipa config-mod --ca-renewal-master-server replica.idm.example.com

4. On server.idm.example.com:

a. Disable the certificate updater task:

[root@server ~]# pki-server ca-config-set ca.certStatusUpdateInterval 0

b. Restart IdM services:

[user@server ~]$ ipactl restart

5. On replica.idm.example.com:

a. Enable the certificate updater task:

[root@server ~]# pki-server ca-config-unset ca.certStatusUpdateInterval

b. Restart IdM services:

[user@replica ~]$ ipactl restart

6. On server.idm.example.com, stop generating the CRL.

[user@server ~]$ ipa-crlgen-manage disable
Stopping pki-tomcatd
Editing /var/lib/pki/pki-tomcat/conf/ca/CS.cfg
Starting pki-tomcatd

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

616

Editing /etc/httpd/conf.d/ipa-pki-proxy.conf
Restarting httpd
CRL generation disabled on the local host. Please make sure to configure CRL generation on
another master with ipa-crlgen-manage enable.
The ipa-crlgen-manage command was successful

7. On replica.idm.example.com, start generating the CRL.

[user@replica ~]$ ipa-crlgen-manage enable
Stopping pki-tomcatd
Editing /var/lib/pki/pki-tomcat/conf/ca/CS.cfg
Starting pki-tomcatd
Editing /etc/httpd/conf.d/ipa-pki-proxy.conf
Restarting httpd
Forcing CRL update
CRL generation enabled on the local host. Please make sure to have only a single CRL
generation master.
The ipa-crlgen-manage command was successful

8. Stop IdM services on server.idm.example.com:

[user@server ~]$ ipactl stop

9. On replica.idm.example.com, delete server.idm.example.com from the IdM environment.

[user@replica ~]$ ipa server-del server.idm.example.com

10. On server.idm.example.com, use the ipa-server-install --uninstall command as the root
account:

[root@server ~]# ipa-server-install --uninstall
...
Are you sure you want to continue with the uninstall procedure? [no]: yes

Verification steps

Display the current CA renewal server.

[user@replica ~]$ ipa config-show | grep 'CA renewal'
 IPA CA renewal master: replica.idm.example.com

Confirm that the replica.idm.example.com host is generating the CRL.

[user@replica ~]$ ipa-crlgen-manage status
CRL generation: enabled
Last CRL update: 2019-10-31 12:10:00
Last CRL Number: 7
The ipa-crlgen-manage command was successful

Additional resources

Changing and resetting IdM CA renewal server

CHAPTER 75. DECOMMISSIONING A SERVER THAT PERFORMS THE CA RENEWAL SERVER AND CRL PUBLISHER ROLES

617

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/ipa-ca-renewal_configuring-and-managing-idm#changing-ca-renewal_ipa-ca-renewal

Generating CRL on the IdM CA server

Uninstalling an IdM replica

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

618

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/generating-crl-on-the-idm-ca-server_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-idm-replica_installing-identity-management

CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A
SERVICE USING CERTMONGER

76.1. CERTMONGER OVERVIEW

When Identity Management (IdM) is installed with an integrated IdM Certificate Authority (CA), it uses
the certmonger service to track and renew system and service certificates. When the certificate is
reaching its expiration date, certmonger manages the renewal process by:

Regenerating a certificate-signing request (CSR) using the options provided in the original
request.

Submitting the CSR to the IdM CA using the IdM API cert-request command.

Receiving the certificate from the IdM CA.

Executing a pre-save command if specified by the original request.

Installing the new certificate in the location specified in the renewal request: either in an NSS
database or in a file.

Executing a post-save command if specified by the original request. For example, the post-save
command can instruct certmonger to restart a relevant service, so that the service picks up the
new certificate.

Types of certificates certmonger tracks

Certificates can be divided into system and service certificates.

Unlike service certificates (for example, for HTTP, LDAP and PKINIT), which have different keypairs and
subject names on different servers, IdM system certificates and their keys are shared by all CA replicas.
The IdM system certificates include:

IdM CA certificate

OCSP signing certificate

IdM CA subsystem certificates

IdM CA audit signing certificate

IdM renewal agent (RA) certificate

KRA transport and storage certificates

The certmonger service tracks the IdM system and service certificates that were requested during the
installation of IdM environment with an integrated CA. Certmonger also tracks certificates that have
been requested manually by the system administrator for other services running on the IdM host.
Certmonger does not track external CA certificates or user certificates.

Certmonger components

The certmonger service consists of two main components:

The certmonger daemon, which is the engine tracking the list of certificates and launching
renewal commands

CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

619

The getcert utility for the command-line interface (CLI), which allows the system
administrator to actively send commands to the certmonger daemon.

More specifically, the system administrator can use the getcert utility to:

Request a new certificate

View the list of certificates that certmonger tracks

Start or stop tracking a certificate

Renew a certificate

76.2. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING
CERTMONGER

To ensure that communication between browsers and the web service running on your Identity
Management (IdM) client is secure and encrypted, use a TLS certificate. Obtain the TLS certificate for
your web service from the IdM Certificate Authority (CA).

Follow this procedure to use certmonger to obtain an IdM certificate for a service
(HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM) running on an IdM client.

Using certmonger to request the certificate automatically means that certmonger manages and
renews the certificate when it is due for a renewal.

For a visual representation of what happens when certmonger requests a service certificate, see
Communication flow for certmonger requesting a service certificate .

Prerequisites

The web server is enrolled as an IdM client.

You have root access to the IdM client on which you are running the procedure.

The service for which you are requesting a certificate does not have to pre-exist in IdM.

Procedure

1. On the my_company.idm.example.com IdM client on which the HTTP service is running,
request a certificate for the service corresponding to the
HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM principal, and specify that

The certificate is to be stored in the local /etc/pki/tls/certs/httpd.pem file

The private key is to be stored in the local /etc/pki/tls/private/httpd.key file

That an extensionRequest for a SubjectAltName be added to the signing request with the
DNS name of my_company.idm.example.com:

ipa-getcert request -K HTTP/my_company.idm.example.com -k
/etc/pki/tls/private/httpd.key -f /etc/pki/tls/certs/httpd.pem -g 2048 -D
my_company.idm.example.com -C "systemctl restart httpd"
New signing request "20190604065735" added.

In the command above:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

620

The ipa-getcert request command specifies that the certificate is to be obtained from
the IdM CA. The ipa-getcert request command is a shortcut for getcert request -c
IPA.

The -g option specifies the size of key to be generated if one is not already in place.

The -D option specifies the SubjectAltName DNS value to be added to the request.

The -C option instructs certmonger to restart the httpd service after obtaining the
certificate.

To specify that the certificate be issued with a particular profile, use the -T option.

To request a certificate using the named issuer from the specified CA, use the -X
ISSUER option.

NOTE

RHEL 8 uses a different SSL module in Apache than the one used in RHEL 7.
The SSL module relies on OpenSSL rather than NSS. For this reason, in
RHEL 8 you cannot use an NSS database to store the HTTPS certificate and
the private key.

2. Optionally, to check the status of your request:

ipa-getcert list -f /etc/pki/tls/certs/httpd.pem
Number of certificates and requests being tracked: 3.
Request ID '20190604065735':
 status: MONITORING
 stuck: no
 key pair storage: type=FILE,location='/etc/pki/tls/private/httpd.key'
 certificate: type=FILE,location='/etc/pki/tls/certs/httpd.crt'
 CA: IPA
[...]

The output shows that the request is in the MONITORING status, which means that a certificate
has been obtained. The locations of the key pair and the certificate are those requested.

76.3. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A
SERVICE CERTIFICATE

These diagrams show the stages of what happens when certmonger requests a service certificate from
Identity Management (IdM) certificate authority (CA) server. The sequence consists of these diagrams:

Unencrypted communication

Certmonger requesting a service certificate

IdM CA issuing the service certificate

Certmonger applying the service certificate

Certmonger requesting a new certificate when the old one is nearing expiration

Unencrypted communication shows the initial situation: without an HTTPS certificate, the

CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

621

Unencrypted communication shows the initial situation: without an HTTPS certificate, the
communication between the web server and the browser is unencrypted.

Figure 76.1. Unencrypted communication

Certmonger requesting a service certificate shows the system administrator using certmonger to
manually request an HTTPS certificate for the Apache web server. Note that when requesting a web
server certificate, certmonger does not communicate directly with the CA. It proxies through IdM.

Figure 76.2. Certmonger requesting a service certificate

IdM CA issuing the service certificate shows an IdM CA issuing an HTTPS certificate for the web server.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

622

Figure 76.3. IdM CA issuing the service certificate

Certmonger applying the service certificate shows certmonger placing the HTTPS certificate in
appropriate locations on the IdM client and, if instructed to do so, restarting the httpd service. The
Apache server subsequently uses the HTTPS certificate to encrypt the traffic between itself and the
browser.

Figure 76.4. Certmonger applying the service certificate

Certmonger requesting a new certificate when the old one is nearing expiration shows certmonger

CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

623

Certmonger requesting a new certificate when the old one is nearing expiration shows certmonger
automatically requesting a renewal of the service certificate from the IdM CA before the expiration of
the certificate. The IdM CA issues a new certificate.

Figure 76.5. Certmonger requesting a new certificate when the old one is nearing expiration

76.4. VIEWING THE DETAILS OF A CERTIFICATE REQUEST TRACKED
BY CERTMONGER

The certmonger service monitors certificate requests. When a request for a certificate is successfully
signed, it results in a certificate. Certmonger manages certificate requests including the resulting
certificates. Follow this procedure to view the details of a particular certificate request managed by
certmonger.

Procedure

If you know how to specify the certificate request, list the details of only that particular
certificate request. You can, for example, specify:

The request ID

The location of the certificate

The certificate nickname
For example, to view the details of the certificate whose request ID is 20190408143846,
using the -v option to view all the details of errors in case your request for a certificate was
unsuccessful:

getcert list -i 20190408143846 -v
Number of certificates and requests being tracked: 16.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

624

Request ID '20190408143846':
 status: MONITORING
 stuck: no
 key pair storage: type=NSSDB,location='/etc/dirsrv/slapd-IDM-EXAMPLE-
COM',nickname='Server-Cert',token='NSS Certificate DB',pinfile='/etc/dirsrv/slapd-IDM-
EXAMPLE-COM/pwdfile.txt'
 certificate: type=NSSDB,location='/etc/dirsrv/slapd-IDM-EXAMPLE-
COM',nickname='Server-Cert',token='NSS Certificate DB'
 CA: IPA
 issuer: CN=Certificate Authority,O=IDM.EXAMPLE.COM
 subject: CN=r8server.idm.example.com,O=IDM.EXAMPLE.COM
 expires: 2021-04-08 16:38:47 CEST
 dns: r8server.idm.example.com
 principal name: ldap/server.idm.example.com@IDM.EXAMPLE.COM
 key usage: digitalSignature,nonRepudiation,keyEncipherment,dataEncipherment
 eku: id-kp-serverAuth,id-kp-clientAuth
 pre-save command:
 post-save command: /usr/libexec/ipa/certmonger/restart_dirsrv IDM-EXAMPLE-COM
 track: yes
 auto-renew: yes

The output displays several pieces of information about the certificate, for example:

the certificate location; in the example above, it is the NSS database in the
/etc/dirsrv/slapd-IDM-EXAMPLE-COM directory

the certificate nickname; in the example above, it is Server-Cert

the file storing the pin; in the example above, it is /etc/dirsrv/slapd-IDM-EXAMPLE-
COM/pwdfile.txt

the Certificate Authority (CA) that will be used to renew the certificate; in the example
above, it is the IPA CA

the expiration date; in the example above, it is 2021-04-08 16:38:47 CEST

the status of the certificate; in the example above, the MONITORING status means that the
certificate is valid and it is being tracked

the post-save command; in the example above, it is the restart of the LDAP service

If you do not know how to specify the certificate request, list the details of all the certificates
that certmonger is monitoring or attempting to obtain:

getcert list

Additional resources

See the getcert list man page.

76.5. STARTING AND STOPPING CERTIFICATE TRACKING

Follow this procedure to use the getcert stop-tracking and getcert start-tracking commands to
monitor certificates. The two commands are provided by the certmonger service. Enabling certificate
tracking is especially useful if you have imported a certificate issued by the Identity Management (IdM)

CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

625

certificate authority (CA) onto the machine from a different IdM client. Enabling certificate tracking can
also be the final step of the following provisioning scenario:

1. On the IdM server, you create a certificate for a system that does not exist yet.

2. You create the new system.

3. You enroll the new system as an IdM client.

4. You import the certificate and the key from the IdM server on to the IdM client.

5. You start tracking the certificate using certmonger to ensure that it gets renewed when it is due
to expire.

Procedure

To disable the monitoring of a certificate with the Request ID of 20190408143846:

getcert stop-tracking -i 20190408143846

For more options, see the getcert stop-tracking man page.

To enable the monitoring of a certificate stored in the /tmp/some_cert.crt file, whose private
key is stored in the /tmp/some_key.key file:

getcert start-tracking -c IPA -f /tmp/some_cert.crt -k /tmp/some_key.key

Certmonger cannot automatically identify the CA type that issued the certificate. For this
reason, add the -c option with the IPA value to the getcert start-tracking command if the
certificate was issued by the IdM CA. Omitting to add the -c option results in certmonger
entering the NEED_CA state.

For more options, see the getcert start-tracking man page.

NOTE

The two commands do not manipulate the certificate. For example, getcert stop-
tracking does not delete the certificate or remove it from the NSS database or from the
filesystem but simply removes the certificate from the list of monitored certificates.
Similarly, getcert start-tracking only adds a certificate to the list of monitored
certificates.

76.6. RENEWING A CERTIFICATE MANUALLY

When a certificate is near its expiration date, the certmonger daemon automatically issues a renewal
command using the certificate authority (CA) helper, obtains a renewed certificate and replaces the
previous certificate with the new one.

You can also manually renew a certificate in advance by using the getcert resubmit command. This way,
you can update the information the certificate contains, for example, by adding a Subject Alternative
Name (SAN).

Follow this procedure to renew a certificate manually.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

626

To renew a certificate with the Request ID of 20190408143846:

getcert resubmit -i 20190408143846

To obtain the Request ID for a specific certificate, use the getcert list command. For details,
see the getcert list man page.

76.7. MAKING CERTMONGER RESUME TRACKING OF IDM
CERTIFICATES ON A CA REPLICA

This procedure shows how to make certmonger resume the tracking of Identity Management (IdM)
system certificates that are crucial for an IdM deployment with an integrated certificate authority after
the tracking of certificates was interrupted. The interruption may have been caused by the IdM host
being unenrolled from IdM during the renewal of the system certificates or by replication topology not
working properly. The procedure also shows how to make certmonger resume the tracking of the IdM
service certificates, namely the HTTP, LDAP and PKINIT certificates.

Prerequisites

The host on which you want to resume tracking system certificates is an IdM server that is also
an IdM certificate authority (CA) but not the IdM CA renewal server.

Procedure

1. Get the PIN for the subsystem CA certificates:

grep 'internal=' /var/lib/pki/pki-tomcat/conf/password.conf

2. Add tracking to the subsystem CA certificates, replacing [internal PIN] in the commands below
with the PIN obtained in the previous step:

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "caSigningCert cert-pki-ca" -c
'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"caSigningCert cert-pki-ca"' -T caCACert

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "auditSigningCert cert-pki-ca" -c
'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"auditSigningCert cert-pki-ca"' -T caSignedLogCert

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "ocspSigningCert cert-pki-ca" -c
'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"ocspSigningCert cert-pki-ca"' -T caOCSPCert

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "subsystemCert cert-pki-ca" -c
'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"subsystemCert cert-pki-ca"' -T caSubsystemCert

getcert start-tracking -d /etc/pki/pki-tomcat/alias -n "Server-Cert cert-pki-ca" -c

CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

627

'dogtag-ipa-ca-renew-agent' -P [internal PIN] -B
/usr/libexec/ipa/certmonger/stop_pkicad -C '/usr/libexec/ipa/certmonger/renew_ca_cert
"Server-Cert cert-pki-ca"' -T caServerCert

3. Add tracking for the remaining IdM certificates, the HTTP, LDAP, IPA renewal agent and
PKINIT certificates:

getcert start-tracking -f /var/lib/ipa/certs/httpd.crt -k /var/lib/ipa/private/httpd.key -p
/var/lib/ipa/passwds/idm.example.com-443-RSA -c IPA -C
/usr/libexec/ipa/certmonger/restart_httpd -T caIPAserviceCert

getcert start-tracking -d /etc/dirsrv/slapd-IDM-EXAMPLE-COM -n "Server-Cert" -c IPA
-p /etc/dirsrv/slapd-IDM-EXAMPLE-COM/pwdfile.txt -C
'/usr/libexec/ipa/certmonger/restart_dirsrv "IDM-EXAMPLE-COM"' -T caIPAserviceCert

getcert start-tracking -f /var/lib/ipa/ra-agent.pem -k /var/lib/ipa/ra-agent.key -c
dogtag-ipa-ca-renew-agent -B /usr/libexec/ipa/certmonger/renew_ra_cert_pre -C
/usr/libexec/ipa/certmonger/renew_ra_cert -T caSubsystemCert

getcert start-tracking -f /var/kerberos/krb5kdc/kdc.crt -k
/var/kerberos/krb5kdc/kdc.key -c dogtag-ipa-ca-renew-agent -B
/usr/libexec/ipa/certmonger/renew_ra_cert_pre -C
/usr/libexec/ipa/certmonger/renew_kdc_cert -T KDCs_PKINIT_Certs

4. Restart certmonger:

systemctl restart certmonger

5. Wait for one minute after certmonger has started and then check the statuses of the new
certificates:

getcert list

Additional resources

If your IdM system certificates have all expired, see this Knowledge Centered Support (KCS)
solution to manually renew IdM system certificates on the IdM CA server that is also the CA
renewal server and the CRL publisher server. Then follow the procedure described in this KCS
solution to manually renew IdM system certificates on all the other CA servers in the topology.

76.8. USING SCEP WITH CERTMONGER

The Simple Certificate Enrollment Protocol (SCEP) is a certificate management protocol that you can
use across different devices and operating systems. If you are using a SCEP server as an external
certificate authority (CA) in your environment, you can use certmonger to obtain a certificate for an
Identity Management (IdM) client.

76.8.1. SCEP overview

The Simple Certificate Enrollment Protocol (SCEP) is a certificate management protocol that you can
use across different devices and operating systems. You can use a SCEP server as an external certificate
authority (CA).

You can configure an Identity Management (IdM) client to request and retrieve a certificate over HTTP

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

628

https://access.redhat.com/solutions/3357261
https://access.redhat.com/solutions/3357331

You can configure an Identity Management (IdM) client to request and retrieve a certificate over HTTP
directly from the CA SCEP service. This process is secured by a shared secret that is usually valid only
for a limited time.

On the client side, SCEP requires you to provide the following components:

SCEP URL: the URL of the CA SCEP interface.

SCEP shared secret: a challengePassword PIN shared between the CA and the SCEP client,
used to obtain the certificate.

The client then retrieves the CA certificate chain over SCEP and sends a certificate signing request to
the CA.

When configuring SCEP with certmonger, you create a new CA configuration profile that specifies the
issued certificate parameters.

76.8.2. Requesting an IdM CA-signed certificate through SCEP

The following example adds a SCEP_example SCEP CA configuration to certmonger and requests a
new certificate on the client.idm.example.com IdM client. certmonger supports both the NSS
certificate database format and file-based (PEM) formats, such as OpenSSL.

Prerequisites

You know the SCEP URL.

You have the challengePassword PIN shared secret.

Procedure

1. Add the CA configuration to certmonger:

[root@client.idm.example.com ~]# getcert add-scep-ca -c SCEP_example -u SCEP_URL

-c: Mandatory nickname for the CA configuration. The same value can later be used with
other getcert commands.

-u: URL of the server’s SCEP interface.

IMPORTANT

When using an HTTPS URL, you must also specify the location of the PEM-
formatted copy of the SCEP server CA certificate using the -R option.

2. Verify that the CA configuration has been successfully added:

[root@client.idm.example.com ~]# getcert list-cas -c SCEP_example
CA 'SCEP_example':
 is-default: no
 ca-type: EXTERNAL
 helper-location: /usr/libexec/certmonger/scep-submit -u
http://SCEP_server_enrollment_interface_URL

CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

629

 SCEP CA certificate thumbprint (MD5): A67C2D4B 771AC186 FCCA654A 5E55AAF7
 SCEP CA certificate thumbprint (SHA1): FBFF096C 6455E8E9 BD55F4A5 5787C43F
1F512279

If the configuration was successfully added, certmonger retrieves the CA chain from the remote
CA. The CA chain then appears as thumbprints in the command output. When accessing the
server over unencrypted HTTP, manually compare the thumbprints with the ones displayed at
the SCEP server to prevent a man-in-the-middle attack.

3. Request a certificate from the CA:

If you are using NSS:

[root@client.idm.example.com ~]# getcert request -I Example_Task -c SCEP_example -
d /etc/pki/nssdb -n ExampleCert -N cn="client.idm.example.com" -L one-time_PIN -D
client.idm.example.com

You can use the options to specify the following parameters of the certificate request:

-I: (Optional) Name of the task: the tracking ID for the request. The same value can later
be used with the getcert list command.

-c: CA configuration to submit the request to.

-d: Directory with the NSS database to store the certificate and key.

-n: Nickname of the certificate, used in the NSS database.

-N: Subject name in the CSR.

-L: Time-limited one-time challengePassword PIN issued by the CA.

-D: Subject Alternative Name for the certificate, usually the same as the host name.

If you are using OpenSSL:

[root@client.idm.example.com ~]# getcert request -I Example_Task -c SCEP_example -f
/etc/pki/tls/certs/server.crt -k /etc/pki/tls/private/private.key -N
cn="client.idm.example.com" -L one-time_PIN -D client.idm.example.com

You can use the options to specify the following parameters of the certificate request:

-I: (Optional) Name of the task: the tracking ID for the request. The same value can later
be used with the getcert list command.

-c: CA configuration to submit the request to.

-f: Storage path to the certificate.

-k: Storage path to the key.

-N: Subject name in the CSR.

-L: Time-limited one-time challengePassword PIN issued by the CA.

-D: Subject Alternative Name for the certificate, usually the same as the host name.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

630

Verification

1. Verify that a certificate was issued and correctly stored in the local database:

If you used NSS, enter:

[root@client.idm.example.com ~]# getcert list -I Example_Task
 Request ID 'Example_Task':
 status: MONITORING
 stuck: no
 key pair storage:
type=NSSDB,location='/etc/pki/nssdb',nickname='ExampleCert',token='NSS Certificate
DB'
 certificate:
type=NSSDB,location='/etc/pki/nssdb',nickname='ExampleCert',token='NSS Certificate
DB'
 signing request thumbprint (MD5): 503A8EDD DE2BE17E 5BAA3A57 D68C9C1B
 signing request thumbprint (SHA1): B411ECE4 D45B883A 75A6F14D 7E3037F1
D53625F4
 CA: IPA
 issuer: CN=Certificate Authority,O=EXAMPLE.COM
 subject: CN=client.idm.example.com,O=EXAMPLE.COM
 expires: 2018-05-06 10:28:06 UTC
 key usage: digitalSignature,keyEncipherment
 eku: iso.org.dod.internet.security.mechanisms.8.2.2
 certificate template/profile: IPSECIntermediateOffline
 pre-save command:
 post-save command:
 track: yes
 auto-renew: yes

If you used OpenSSL, enter:

[root@client.idm.example.com ~]# getcert list -I Example_Task
Request ID 'Example_Task':
 status: MONITORING
 stuck: no
 key pair storage: type=FILE,location='/etc/pki/tls/private/private.key'
 certificate: type=FILE,location='/etc/pki/tls/certs/server.crt'
 CA: IPA
 issuer: CN=Certificate Authority,O=EXAMPLE.COM
 subject: CN=client.idm.example.com,O=EXAMPLE.COM
 expires: 2018-05-06 10:28:06 UTC
 eku: id-kp-serverAuth,id-kp-clientAuth
 pre-save command:
 post-save command:
 track: yes
 auto-renew: yes

The status MONITORING signifies a successful retrieval of the issued certificate. The
getcert-list(1) man page lists other possible states and their meanings.

Additional resources

For more options when requesting a certificate, see the getcert-request(1) man page.

CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER

631

76.8.3. Automatically renewing AD SCEP certificates with certmonger

When certmonger sends a SCEP certificate renewal request, this request is signed using the existing
certificate private key. However, renewal requests sent by certmonger by default also include the
challengePassword PIN that was used to originally obtain the certificates.

An Active Directory (AD) Network Device Enrollment Service (NDES) server that works as the SCEP
server automatically rejects any requests for renewal that contain the original challengePassword PIN.
Consequently, the renewal fails.

For renewal with AD to work, you need to configure certmonger to send the signed renewal requests
without the challengePassword PIN. You also need to configure the AD server so that it does not
compare the subject name at renewal.

NOTE

There may be SCEP servers other than AD that also refuse requests containing the
challengePassword. In those cases, you may also need to change the certmonger
configuration in this way.

Prerequisites

The RHEL server has to be running RHEL 8.6 or newer.

Procedure

1. Open regedit on the AD server.

2. In the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\MSCEP subkey, add
a new 32-bit REG_DWORD entry DisableRenewalSubjectNameMatch and set its value to 1.

3. On the server where certmonger is running, open the /etc/certmonger/certmonger.conf file
and add the following section:

[scep]
challenge_password_otp = yes

4. Restart certmonger:

systemctl restart certmonger

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

632

CHAPTER 77. REQUESTING CERTIFICATES BY USING
RHEL SYSTEM ROLES

You can use the certificate system role to issue and manage certificates.

77.1. THE CERTIFICATE SYSTEM ROLE

Using the certificate system role, you can manage issuing and renewing TLS and SSL certificates using
Ansible Core.

The role uses certmonger as the certificate provider, and currently supports issuing and renewing self-
signed certificates and using the IdM integrated certificate authority (CA).

You can use the following variables in your Ansible playbook with the certificate system role:

certificate_wait

to specify if the task should wait for the certificate to be issued.

certificate_requests

to represent each certificate to be issued and its parameters.

Additional resources

/usr/share/ansible/roles/rhel-system-roles.certificate/README.md file

/usr/share/doc/rhel-system-roles/certificate/ directory

77.2. REQUESTING A NEW SELF-SIGNED CERTIFICATE BY USING THE
CERTIFICATE SYSTEM ROLE

With the certificate system role, you can use Ansible Core to issue self-signed certificates.

This process uses the certmonger provider and requests the certificate through the getcert command.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

- hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.certificate
 vars:
 certificate_requests:

CHAPTER 77. REQUESTING CERTIFICATES BY USING RHEL SYSTEM ROLES

633

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Set the name parameter to the desired name of the certificate, such as mycert.

Set the dns parameter to the domain to be included in the certificate, such as
*.example.com.

Set the ca parameter to self-sign.

By default, certmonger automatically tries to renew the certificate before it expires. You can
disable this by setting the auto_renew parameter in the Ansible playbook to no.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.certificate/README.md file

/usr/share/doc/rhel-system-roles/certificate/ directory

77.3. REQUESTING A NEW CERTIFICATE FROM IDM CA BY USING THE
CERTIFICATE SYSTEM ROLE

With the certificate system role, you can use anible-core to issue certificates while using an IdM server
with an integrated certificate authority (CA). Therefore, you can efficiently and consistently manage the
certificate trust chain for multiple systems when using IdM as the CA.

This process uses the certmonger provider and requests the certificate through the getcert command.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

 - name: mycert
 dns: "*.example.com"
 ca: self-sign

- hosts: managed-node-01.example.com

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

634

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

Set the name parameter to the desired name of the certificate, such as mycert.

Set the dns parameter to the domain to be included in the certificate, such as
www.example.com.

Set the principal parameter to specify the Kerberos principal, such as
HTTP/www.example.com@EXAMPLE.COM.

Set the ca parameter to ipa.

By default, certmonger automatically tries to renew the certificate before it expires. You can
disable this by setting the auto_renew parameter in the Ansible playbook to no.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.certificate/README.md file

/usr/share/doc/rhel-system-roles/certificate/ directory

77.4. SPECIFYING COMMANDS TO RUN BEFORE OR AFTER
CERTIFICATE ISSUANCE BY USING THE CERTIFICATE SYSTEM ROLE

With the certificate Role, you can use Ansible Core to execute a command before and after a certificate
is issued or renewed.

In the following example, the administrator ensures stopping the httpd service before a self-signed
certificate for www.example.com is issued or renewed, and restarting it afterwards.

Prerequisites

You have prepared the control node and the managed nodes

You are logged in to the control node as a user who can run playbooks on the managed nodes.

 roles:
 - rhel-system-roles.certificate
 vars:
 certificate_requests:
 - name: mycert
 dns: www.example.com
 principal: HTTP/www.example.com@EXAMPLE.COM
 ca: ipa

CHAPTER 77. REQUESTING CERTIFICATES BY USING RHEL SYSTEM ROLES

635

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/automating_system_administration_by_using_rhel_system_roles/assembly_preparing-a-control-node-and-managed-nodes-to-use-rhel-system-roles_automating-system-administration-by-using-rhel-system-roles

The account you use to connect to the managed nodes has sudo permissions on them.

Procedure

1. Create a playbook file, for example ~/playbook.yml, with the following content:

Set the name parameter to the desired name of the certificate, such as mycert.

Set the dns parameter to the domain to be included in the certificate, such as
www.example.com.

Set the ca parameter to the CA you want to use to issue the certificate, such as self-sign.

Set the run_before parameter to the command you want to execute before this certificate
is issued or renewed, such as systemctl stop httpd.service.

Set the run_after parameter to the command you want to execute after this certificate is
issued or renewed, such as systemctl start httpd.service.

By default, certmonger automatically tries to renew the certificate before it expires. You can
disable this by setting the auto_renew parameter in the Ansible playbook to no.

2. Validate the playbook syntax:

$ ansible-playbook --syntax-check ~/playbook.yml

Note that this command only validates the syntax and does not protect against a wrong but valid
configuration.

3. Run the playbook:

$ ansible-playbook ~/playbook.yml

Additional resources

/usr/share/ansible/roles/rhel-system-roles.certificate/README.md file

/usr/share/doc/rhel-system-roles/certificate/ directory

- hosts: managed-node-01.example.com
 roles:
 - rhel-system-roles.certificate
 vars:
 certificate_requests:
 - name: mycert
 dns: www.example.com
 ca: self-sign
 run_before: systemctl stop httpd.service
 run_after: systemctl start httpd.service

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

636

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST
ONLY A SUBSET OF CERTIFICATES

If your Identity Management (IdM) installation is configured with the integrated Certificate System (CS)
certificate authority (CA), you are able to create lightweight sub-CAs. All sub-CAs you create are
subordinated to the primary CA of the certificate system, the ipa CA.

A lightweight sub-CA in this context means a sub-CA issuing certificates for a specific purpose . For
example, a lightweight sub-CA enables you to configure a service, such as a virtual private network
(VPN) gateway and a web browser, to accept only certificates issued by sub-CA A. By configuring other
services to accept certificates only issued by sub-CA B, you prevent them from accepting certificates
issued by sub-CA A, the primary CA, that is the ipa CA, and any intermediate sub-CA between the two.

If you revoke the intermediate certificate of a sub-CA, all certificates issued by this sub-CA are
automatically considered invalid by correctly configured clients. All the other certificates issued directly
by the root CA, ipa, or another sub-CA, remain valid.

This section uses the example of the Apache web server to illustrate how to restrict an application to
trust only a subset of certificates. Complete this section to restrict the web server running on your IdM
client to use a certificate issued by the webserver-ca IdM sub-CA, and to require the users to
authenticate to the web server using user certificates issued by the webclient-ca IdM sub-CA.

The steps you need to take are:

1. Create an IdM sub-CA

2. Download the sub-CA certificate from IdM WebUI

3. Create a CA ACL specifying the correct combination of users, services and CAs, and the
certificate profile used

4. Request a certificate for the web service running on an IdM client from the IdM sub-CA

5. Set up a single-instance Apache HTTP Server

6. Add TLS encryption to the Apache HTTP Server

7. Set the supported TLS protocol versions on an Apache HTTP Server

8. Set the supported ciphers on the Apache HTTP Server

9. Configure TLS client certificate authentication on the web server

10. Request a certificate for the user from the IdM sub-CA and export it to the client

11. Import the user certificate into the browser and configure the browser to trust the sub-CA
certificate

78.1. MANAGING LIGHTWEIGHT SUB-CAS

This section describes how to manage lightweight subordinate certificate authorities (sub-CAs). All sub-
CAs you create are subordinated to the primary CA of the certificate system, the ipa CA. You can also
disable and delete sub-CAs.

NOTE

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

637

NOTE

If you delete a sub-CA, revocation checking for that sub-CA will no longer work.
Only delete a sub-CA when there are no more certificates that were issued by
that sub-CA whose notAfter expiration time is in the future.

You should only disable sub-CAs while there are still non-expired certificates that
were issued by that sub-CA. If all certificates that were issued by a sub-CA have
expired, you can delete that sub-CA.

You cannot disable or delete the IdM CA.

For details on managing sub-CAs, see:

Creating a sub-CA from the IdM WebUI

Deleting a sub-CA from the IdM WebUI

Creating a sub-CA from the IdM CLI

Disabling a sub-CA from the IdM CLI

Deleting a sub-CA from the IdM CLI

78.1.1. Creating a sub-CA from the IdM WebUI

Follow this procedure to use the IdM WebUI to create new sub-CAs named webserver-ca and
webclient-ca.

Prerequisites

Make sure you have obtained the administrator’s credentials.

Procedure

1. In the Authentication menu, click Certificates.

2. Select Certificate Authorities and click Add.

3. Enter the name of the webserver-ca sub-CA. Enter the Subject DN, for example
CN=WEBSERVER,O=IDM.EXAMPLE.COM, in the Subject DN field. Note that the Subject DN
must be unique in the IdM CA infrastructure.

4. Enter the name of the webclient-ca sub-CA. Enter the Subject DN
CN=WEBCLIENT,O=IDM.EXAMPLE.COM in the Subject DN field.

5. In the command-line interface, run the ipa-certupdate command to create a certmonger
tracking request for the webserver-ca and webclient-ca sub-CA certificates:

[root@ipaserver ~]# ipa-certupdate

IMPORTANT

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

638

IMPORTANT

Forgetting to run the ipa-certupdate command after creating a sub-CA means
that if the sub-CA certificate expires, end-entity certificates issued by the sub-
CA are considered invalid even if the end-entity certificate has not expired.

Verification

Verify that the signing certificate of the new sub-CA has been added to the IdM database:

[root@ipaserver ~]# certutil -d /etc/pki/pki-tomcat/alias/ -L

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

caSigningCert cert-pki-ca CTu,Cu,Cu
Server-Cert cert-pki-ca u,u,u
auditSigningCert cert-pki-ca u,u,Pu
caSigningCert cert-pki-ca ba83f324-5e50-4114-b109-acca05d6f1dc u,u,u
ocspSigningCert cert-pki-ca u,u,u
subsystemCert cert-pki-ca u,u,u

NOTE

The new sub-CA certificate is automatically transferred to all the replicas that
have a certificate system instance installed.

78.1.2. Deleting a sub-CA from the IdM WebUI

Follow this procedure to delete lightweight sub-CAs in the IdM WebUI.

NOTE

If you delete a sub-CA, revocation checking for that sub-CA will no longer work.
Only delete a sub-CA when there are no more certificates that were issued by
that sub-CA whose notAfter expiration time is in the future.

You should only disable sub-CAs while there are still non-expired certificates that
were issued by that sub-CA. If all certificates that were issued by a sub-CA have
expired, you can delete that sub-CA.

You cannot disable or delete the IdM CA.

Prerequisites

Make sure you have obtained the administrator’s credentials.

You have disabled the sub-CA in the IdM CLI. See Disabling a sub-CA from the IdM CLI

Procedure

1. In the IdM WebUI, open the Authentication tab, and select the Certificates subtab.

2. Select Certificate Authorities.

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

639

3. Select the sub-CA to remove and click Delete.

Figure 78.1. Deleting a sub-CA in the IdM Web UI

4. Click Delete to confirm.

The sub-CA is removed from the list of Certificate Authorities.

78.1.3. Creating a sub-CA from the IdM CLI

Follow this procedure to use the IdM CLI to create new sub-CAs named webserver-ca and webclient-
ca.

Prerequisites

Make sure that you have obtained the administrator’s credentials.

Make sure you are logged in to an IdM server that is a CA server.

Procedure

1. Enter the ipa ca-add command, and specify the name of the webserver-ca sub-CA and its
Subject Distinguished Name (DN):

[root@ipaserver ~]# ipa ca-add webserver-ca --
subject="CN=WEBSERVER,O=IDM.EXAMPLE.COM"

Created CA "webserver-ca"

 Name: webserver-ca
 Authority ID: ba83f324-5e50-4114-b109-acca05d6f1dc
 Subject DN: CN=WEBSERVER,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IDM.EXAMPLE.COM

Name

Name of the CA.

Authority ID

Automatically created, individual ID for the CA.

Subject DN

Subject Distinguished Name (DN). The Subject DN must be unique in the IdM CA
infrastructure.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

640

Issuer DN

Parent CA that issued the sub-CA certificate. All sub-CAs are created as a child of the IdM
root CA.

2. Create the webclient-ca sub-CA for issuing certificates to web clients:

[root@ipaserver ~]# ipa ca-add webclient-ca --
subject="CN=WEBCLIENT,O=IDM.EXAMPLE.COM"

Created CA "webclient-ca"

 Name: webclient-ca
 Authority ID: 8a479f3a-0454-4a4d-8ade-fd3b5a54ab2e
 Subject DN: CN=WEBCLIENT,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IDM.EXAMPLE.COM

3. Run the ipa-certupdate command to create a certmonger tracking request for the
webserver-ca and webclient-ca sub-CAs certificates:

[root@ipaserver ~]# ipa-certupdate

IMPORTANT

If you forget to run the ipa-certupdate command after creating a sub-CA and
the sub-CA certificate expires, end-entity certificates issued by that sub-CA are
considered invalid even though the end-entity certificate has not expired.

Verification steps

Verify that the signing certificate of the new sub-CA has been added to the IdM database:

[root@ipaserver ~]# certutil -d /etc/pki/pki-tomcat/alias/ -L

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

caSigningCert cert-pki-ca CTu,Cu,Cu
Server-Cert cert-pki-ca u,u,u
auditSigningCert cert-pki-ca u,u,Pu
caSigningCert cert-pki-ca ba83f324-5e50-4114-b109-acca05d6f1dc u,u,u
ocspSigningCert cert-pki-ca u,u,u
subsystemCert cert-pki-ca u,u,u

NOTE

The new sub-CA certificate is automatically transferred to all the replicas that
have a certificate system instance installed.

78.1.4. Disabling a sub-CA from the IdM CLI

Follow this procedure to disable a sub-CA from the IdM CLI. If there are still non-expired certificates
that were issued by a sub-CA, you should not delete it but you can disable it. If you delete the sub-CA,
revocation checking for that sub-CA will no longer work.

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

641

Prerequisites

Make sure you have obtained the administrator’s credentials.

Procedure

1. Run the ipa ca-find command to determine the name of the sub-CA you are deleting:

[root@ipaserver ~]# ipa ca-find

3 CAs matched

 Name: ipa
 Description: IPA CA
 Authority ID: 5195deaf-3b61-4aab-b608-317aff38497c
 Subject DN: CN=Certificate Authority,O=IPA.TEST
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webclient-ca
 Authority ID: 605a472c-9c6e-425e-b959-f1955209b092
 Subject DN: CN=WEBCLIENT,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webserver-ca
 Authority ID: 02d537f9-c178-4433-98ea-53aa92126fc3
 Subject DN: CN=WEBSERVER,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

Number of entries returned 3

2. Run the ipa ca-disable command to disable your sub-CA, in this example, the webserver-ca:

ipa ca-disable webserver-ca

Disabled CA "webserver-ca"

78.1.5. Deleting a sub-CA from the IdM CLI

Follow this procedure to delete lightweight sub-CAs from the IdM CLI.

NOTE

If you delete a sub-CA, revocation checking for that sub-CA will no longer work.
Only delete a sub-CA when there are no more certificates that were issued by
that sub-CA whose notAfter expiration time is in the future.

You should only disable sub-CAs while there are still non-expired certificates that
were issued by that sub-CA. If all certificates that were issued by a sub-CA have
expired, you can delete that sub-CA.

You cannot disable or delete the IdM CA.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

642

Prerequisites

Make sure you have obtained the administrator’s credentials.

Procedure

1. To display a list of sub-CAs and CAs, run the ipa ca-find command:

ipa ca-find

3 CAs matched

 Name: ipa
 Description: IPA CA
 Authority ID: 5195deaf-3b61-4aab-b608-317aff38497c
 Subject DN: CN=Certificate Authority,O=IPA.TEST
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webclient-ca
 Authority ID: 605a472c-9c6e-425e-b959-f1955209b092
 Subject DN: CN=WEBCLIENT,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webserver-ca
 Authority ID: 02d537f9-c178-4433-98ea-53aa92126fc3
 Subject DN: CN=WEBSERVER,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

Number of entries returned 3

2. Run the ipa ca-disable command to disable your sub-CA, in this example, the webserver-ca:

ipa ca-disable webserver-ca

Disabled CA "webserver-ca"

3. Delete the sub-CA, in this example, the webserver-ca:

ipa ca-del webserver-ca

Deleted CA "webserver-ca"

Verification

Run ipa ca-find to display the list of CAs and sub-CAs. The webserver-ca is no longer on the
list.

ipa ca-find

2 CAs matched

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

643

 Name: ipa
 Description: IPA CA
 Authority ID: 5195deaf-3b61-4aab-b608-317aff38497c
 Subject DN: CN=Certificate Authority,O=IPA.TEST
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

 Name: webclient-ca
 Authority ID: 605a472c-9c6e-425e-b959-f1955209b092
 Subject DN: CN=WEBCLIENT,O=IDM.EXAMPLE.COM
 Issuer DN: CN=Certificate Authority,O=IPA.TEST

Number of entries returned 2

78.2. DOWNLOADING THE SUB-CA CERTIFICATE FROM IDM WEBUI

Prerequisites

Make sure that you have obtained the IdM administrator’s credentials.

Procedure

1. In the Authentication menu, click Certificates > Certificates.

Figure 78.2. sub-CA certificate in the list of certificates

2. Click the serial number of the sub-CA certificate to open the certificate information page.

3. In the certificate information page, click Actions > Download.

4. In the CLI, move the sub-CA certificate to the /etc/pki/tls/private/ directory:

mv path/to/the/downloaded/certificate /etc/pki/tls/private/sub-ca.crt

78.3. CREATING CA ACLS FOR WEB SERVER AND CLIENT
AUTHENTICATION

Certificate authority access control list (CA ACL) rules define which profiles can be used to issue
certificates to which users, services, or hosts. By associating profiles, principals, and groups, CA ACLs
permit principals or groups to request certificates using particular profiles.

For example, using CA ACLs, the administrator can restrict the use of a profile intended for employees
working from an office located in London only to users that are members of the London office-related
group.

78.3.1. Viewing CA ACLs in IdM CLI

Follow this procedure to view the list of certificate authority access control lists (CA ACLs) available in
your IdM deployment and the details of a specific CA ACL.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

644

Procedure

1. To view all the CA ACLs in your IdM environment, enter the ipa caacl-find command:

$ ipa caacl-find

1 CA ACL matched

 ACL name: hosts_services_caIPAserviceCert
 Enabled: TRUE

2. To view the details of a CA ACL, enter the ipa caacl-show command, and specify the CA ACL
name. For example, to view the details of the hosts_services_caIPAserviceCert CA ACL, enter:

$ ipa caacl-show hosts_services_caIPAserviceCert
 ACL name: hosts_services_caIPAserviceCert
 Enabled: TRUE
 Host category: all
 Service category: all
 CAs: ipa
 Profiles: caIPAserviceCert
 Users: admin

78.3.2. Creating a CA ACL for web servers authenticating to web clients using
certificates issued by webserver-ca

Follow this procedure to create a CA ACL that requires the system administrator to use the webserver-
ca sub-CA and the caIPAserviceCert profile when requesting a certificate for the
HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM service. If the user requests a certificate
from a different sub-CA or of a different profile, the request fails. The only exception is when there is
another matching CA ACL that is enabled. To view the available CA ACLs, see Viewing CA ACLs in IdM
CLI.

Prerequisites

Make sure that the HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM service is
part of IdM.

Make sure you have obtained IdM administrator’s credentials.

Procedure

1. Create a CA ACL using the ipa caacl command, and specify its name:

$ ipa caacl-add TLS_web_server_authentication
--
Added CA ACL "TLS_web_server_authentication"
--
 ACL name: TLS_web_server_authentication
 Enabled: TRUE

2. Modify the CA ACL using the ipa caacl-mod command to specify the description of the CA
ACL:

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

645

$ ipa caacl-mod TLS_web_server_authentication --desc="CAACL for web servers
authenticating to web clients using certificates issued by webserver-ca"

Modified CA ACL "TLS_web_server_authentication"

 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE

3. Add the webserver-ca sub-CA to the CA ACL:

$ ipa caacl-add-ca TLS_web_server_authentication --ca=webserver-ca
 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE
 CAs: webserver-ca

Number of members added 1

4. Use the ipa caacl-add-service to specify the service whose principal will be able to request a
certificate:

$ ipa caacl-add-service TLS_web_server_authentication --
service=HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM
 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE
 CAs: webserver-ca
 Services: HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM

Number of members added 1

5. Use the ipa caacl-add-profile command to specify the certificate profile for the requested
certificate:

$ ipa caacl-add-profile TLS_web_server_authentication --
certprofiles=caIPAserviceCert
 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE
 CAs: webserver-ca
 Profiles: caIPAserviceCert
 Services: HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM

Number of members added 1

You can use the newly-created CA ACL straight away. It is enabled after its creation by default.

NOTE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

646

NOTE

The point of CA ACLs is to specify which CA and profile combinations are allowed for
requests coming from particular principals or groups. CA ACLs do not affect certificate
validation or trust. They do not affect how the issued certificates will be used.

78.3.3. Creating a CA ACL for user web browsers authenticating to web servers
using certificates issued by webclient-ca

Follow this procedure to create a CA ACL that requires the system administrator to use the webclient-
ca sub-CA and the IECUserRoles profile when requesting a certificate. If the user requests a certificate
from a different sub-CA or of a different profile, the request fails. The only exception is when there is
another matching CA ACL that is enabled. To view the available CA ACLs, see Viewing CA ACLs in IdM
CLI.

Prerequisites

Make sure that you have obtained IdM administrator’s credentials.

Procedure

1. Create a CA ACL using the ipa caacl command and specify its name:

$ ipa caacl-add TLS_web_client_authentication
--
Added CA ACL "TLS_web_client_authentication"
--
 ACL name: TLS_web_client_authentication
 Enabled: TRUE

2. Modify the CA ACL using the ipa caacl-mod command to specify the description of the CA
ACL:

$ ipa caacl-mod TLS_web_client_authentication --desc="CAACL for user web
browsers authenticating to web servers using certificates issued by webclient-ca"

Modified CA ACL "TLS_web_client_authentication"

 ACL name: TLS_web_client_authentication
 Description: CAACL for user web browsers authenticating to web servers using certificates
issued by webclient-ca
 Enabled: TRUE

3. Add the webclient-ca sub-CA to the CA ACL:

$ ipa caacl-add-ca TLS_web_client_authentication --ca=webclient-ca
 ACL name: TLS_web_client_authentication
 Description: CAACL for user web browsers authenticating to web servers using certificates
issued by webclient-ca
 Enabled: TRUE
 CAs: webclient-ca

Number of members added 1

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

647

4. Use the ipa caacl-add-profile command to specify the certificate profile for the requested
certificate:

$ ipa caacl-add-profile TLS_web_client_authentication --certprofiles=IECUserRoles
 ACL name: TLS_web_client_authentication
 Description: CAACL for user web browsers authenticating to web servers using certificates
issued by webclient-ca
 Enabled: TRUE
 CAs: webclient-ca
 Profiles: IECUserRoles

Number of members added 1

5. Modify the CA ACL using the ipa caacl-mod command to specify that the CA ACL applies to all
IdM users:

$ ipa caacl-mod TLS_web_client_authentication --usercat=all

Modified CA ACL "TLS_web_client_authentication"

 ACL name: TLS_web_client_authentication
 Description: CAACL for user web browsers authenticating to web servers using certificates
issued by webclient-ca
 Enabled: TRUE
 User category: all
 CAs: webclient-ca
 Profiles: IECUserRoles

You can use the newly-created CA ACL straight away. It is enabled after its creation by default.

NOTE

The point of CA ACLs is to specify which CA and profile combinations are allowed for
requests coming from particular principals or groups. CA ACLs do not affect certificate
validation or trust. They do not affect how the issued certificates will be used.

78.4. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING
CERTMONGER

To ensure that communication between browsers and the web service running on your IdM client is
secure and encrypted, use a TLS certificate. If you want to restrict web browsers to trust certificates
issued by the webserver-ca sub-CA but no other IdM sub-CA, obtain the TLS certificate for your web
service from the webserver-ca sub-CA.

Follow this procedure to use certmonger to obtain an IdM certificate for a service
(HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM) running on an IdM client.

Using certmonger to request the certificate automatically means that certmonger manages and
renews the certificate when it is due for a renewal.

For a visual representation of what happens when certmonger requests a service certificate, see
Communication flow for certmonger requesting a service certificate .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

648

Prerequisites

The web server is enrolled as an IdM client.

You have root access to the IdM client on which you are running the procedure.

The service for which you are requesting a certificate does not have to pre-exist in IdM.

Procedure

1. On the my_company.idm.example.com IdM client on which the HTTP service is running,
request a certificate for the service corresponding to the
HTTP/my_company.idm.example.com@IDM.EXAMPLE.COM principal, and specify that

The certificate is to be stored in the local /etc/pki/tls/certs/httpd.pem file

The private key is to be stored in the local /etc/pki/tls/private/httpd.key file

The webserver-ca sub-CA is to be the issuing certificate authority

That an extensionRequest for a SubjectAltName be added to the signing request with the
DNS name of my_company.idm.example.com:

ipa-getcert request -K HTTP/my_company.idm.example.com -k
/etc/pki/tls/private/httpd.key -f /etc/pki/tls/certs/httpd.pem -g 2048 -D
my_company.idm.example.com -X webserver-ca -C "systemctl restart httpd"
New signing request "20190604065735" added.

In the command above:

The ipa-getcert request command specifies that the certificate is to be obtained from
the IdM CA. The ipa-getcert request command is a shortcut for getcert request -c
IPA.

The -g option specifies the size of key to be generated if one is not already in place.

The -D option specifies the SubjectAltName DNS value to be added to the request.

The -X option specifies that the issuer of the certificate must be webserver-ca, not ipa.

The -C option instructs certmonger to restart the httpd service after obtaining the
certificate.

To specify that the certificate be issued with a particular profile, use the -T option.

NOTE

RHEL 8 uses a different SSL module in Apache than the one used in RHEL 7.
The SSL module relies on OpenSSL rather than NSS. For this reason, in
RHEL 8 you cannot use an NSS database to store the HTTPS certificate and
the private key.

2. Optionally, to check the status of your request:

ipa-getcert list -f /etc/pki/tls/certs/httpd.pem
Number of certificates and requests being tracked: 3.

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

649

Request ID '20190604065735':
 status: MONITORING
 stuck: no
 key pair storage: type=FILE,location='/etc/pki/tls/private/httpd.key'
 certificate: type=FILE,location='/etc/pki/tls/certs/httpd.crt'
 CA: IPA
 issuer: CN=WEBSERVER,O=IDM.EXAMPLE.COM

[...]

The output shows that the request is in the MONITORING status, which means that a certificate
has been obtained. The locations of the key pair and the certificate are those requested.

78.5. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A
SERVICE CERTIFICATE

These diagrams show the stages of what happens when certmonger requests a service certificate from
Identity Management (IdM) certificate authority (CA) server. The sequence consists of these diagrams:

Unencrypted communication

Certmonger requesting a service certificate

IdM CA issuing the service certificate

Certmonger applying the service certificate

Certmonger requesting a new certificate when the old one is nearing expiration

In the diagrams, the webserver-ca sub-CA is represented by the generic IdM CA server.

Unencrypted communication shows the initial situation: without an HTTPS certificate, the
communication between the web server and the browser is unencrypted.

Figure 78.3. Unencrypted communication

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

650

Certmonger requesting a service certificate shows the system administrator using certmonger to
manually request an HTTPS certificate for the Apache web server. Note that when requesting a web
server certificate, certmonger does not communicate directly with the CA. It proxies through IdM.

Figure 78.4. Certmonger requesting a service certificate

IdM CA issuing the service certificate shows an IdM CA issuing an HTTPS certificate for the web server.

Figure 78.5. IdM CA issuing the service certificate

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

651

Certmonger applying the service certificate shows certmonger placing the HTTPS certificate in
appropriate locations on the IdM client and, if instructed to do so, restarting the httpd service. The
Apache server subsequently uses the HTTPS certificate to encrypt the traffic between itself and the
browser.

Figure 78.6. Certmonger applying the service certificate

Certmonger requesting a new certificate when the old one is nearing expiration shows certmonger
automatically requesting a renewal of the service certificate from the IdM CA before the expiration of
the certificate. The IdM CA issues a new certificate.

Figure 78.7. Certmonger requesting a new certificate when the old one is nearing expiration

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

652

Figure 78.7. Certmonger requesting a new certificate when the old one is nearing expiration

78.6. SETTING UP A SINGLE-INSTANCE APACHE HTTP SERVER

You can set up a single-instance Apache HTTP Server to serve static HTML content.

Follow the procedure if the web server should provide the same content for all domains associated with
the server. If you want to provide different content for different domains, set up name-based virtual
hosts. For details, see Configuring Apache name-based virtual hosts .

Procedure

1. Install the httpd package:

yum install httpd

2. If you use firewalld, open the TCP port 80 in the local firewall:

firewall-cmd --permanent --add-port=80/tcp
firewall-cmd --reload

3. Enable and start the httpd service:

systemctl enable --now httpd

4. Optional: Add HTML files to the /var/www/html/ directory.

NOTE

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

653

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#configuring-apache-name-based-virtual-hosts_setting-apache-http-server

NOTE

When adding content to /var/www/html/, files and directories must be readable
by the user under which httpd runs by default. The content owner can be the
either the root user and root user group, or another user or group of the
administrator’s choice. If the content owner is the root user and root user group,
the files must be readable by other users. The SELinux context for all the files
and directories must be httpd_sys_content_t, which is applied by default to all
content within the /var/www directory.

Verification steps

Connect with a web browser to http://my_company.idm.example.com/ or http://server_IP/.
If the /var/www/html/ directory is empty or does not contain an index.html or index.htm file,
Apache displays the Red Hat Enterprise Linux Test Page. If /var/www/html/ contains HTML
files with a different name, you can load them by entering the URL to that file, such as
http://server_IP/example.html or http://my_company.idm.example.com/example.html.

Additional resources

Apache manual: Installing the Apache HTTP Server manual .

See the httpd.service(8) man page.

78.7. ADDING TLS ENCRYPTION TO AN APACHE HTTP SERVER

You can enable TLS encryption on the my_company.idm.example.com Apache HTTP Server for the
idm.example.com domain.

Prerequisites

The my_company.idm.example.com Apache HTTP Server is installed and running.

You have obtained the TLS certificate from the webserver-ca sub-CA, and stored it in the
/etc/pki/tls/certs/httpd.pem file as described in Obtaining an IdM certificate for a service using
certmonger. If you use a different path, adapt the corresponding steps of the procedure.

The corresponding private key is stored in the /etc/pki/tls/private/httpd.key file. If you use a
different path, adapt the corresponding steps of the procedure.

The webserver-ca CA certificate is stored in the /etc/pki/tls/private/sub-ca.crt file. If you use a
different path, adapt the corresponding steps of the procedure.

Clients and the my_company.idm.example.com web server resolve the host name of the server
to the IP address of the web server.

Procedure

1. Install the mod_ssl package:

yum install mod_ssl

2. Edit the /etc/httpd/conf.d/ssl.conf file and add the following settings to the <VirtualHost
default:443> directive:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

654

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#installing-the-apache-http-server-manual_setting-apache-http-server

a. Set the server name:

ServerName my_company.idm.example.com

IMPORTANT

The server name must match the entry set in the Common Name field of the
certificate.

a. Optional: If the certificate contains additional host names in the Subject Alt Names (SAN)
field, you can configure mod_ssl to provide TLS encryption also for these host names. To
configure this, add the ServerAliases parameter with corresponding names:

ServerAlias www.my_company.idm.example.com
server.my_company.idm.example.com

b. Set the paths to the private key, the server certificate, and the CA certificate:

SSLCertificateKeyFile "/etc/pki/tls/private/httpd.key"
SSLCertificateFile "/etc/pki/tls/certs/httpd.pem"
SSLCACertificateFile "/etc/pki/tls/certs/ca.crt"

3. For security reasons, configure that only the root user can access the private key file:

chown root:root /etc/pki/tls/private/httpd.key
chmod 600 //etc/pki/tls/private/httpd.key

WARNING

If the private key was accessed by unauthorized users, revoke the
certificate, create a new private key, and request a new certificate.
Otherwise, the TLS connection is no longer secure.

4. If you use firewalld, open port 443 in the local firewall:

firewall-cmd --permanent --add-port=443/tcp
firewall-cmd --reload

5. Restart the httpd service:

systemctl restart httpd

NOTE

If you protected the private key file with a password, you must enter this
password each time when the httpd service starts.

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

655

Use a browser and connect to https://my_company.idm.example.com.

Additional resources

SSL/TLS Encryption.

Security considerations for TLS in RHEL 8

78.8. SETTING THE SUPPORTED TLS PROTOCOL VERSIONS ON AN
APACHE HTTP SERVER

By default, the Apache HTTP Server on RHEL uses the system-wide crypto policy that defines safe
default values, which are also compatible with recent browsers. For example, the DEFAULT policy
defines that only the TLSv1.2 and TLSv1.3 protocol versions are enabled in apache.

You can manually configure which TLS protocol versions your my_company.idm.example.com Apache
HTTP Server supports. Follow the procedure if your environment requires to enable only specific TLS
protocol versions, for example:

If your environment requires that clients can also use the weak TLS1 (TLSv1.0) or TLS1.1
protocol.

If you want to configure that Apache only supports the TLSv1.2 or TLSv1.3 protocol.

Prerequisites

TLS encryption is enabled on the my_company.idm.example.com server as described in
Adding TLS encryption to an Apache HTTP server .

Procedure

1. Edit the /etc/httpd/conf/httpd.conf file, and add the following setting to the <VirtualHost>
directive for which you want to set the TLS protocol version. For example, to enable only the
TLSv1.3 protocol:

SSLProtocol -All TLSv1.3

2. Restart the httpd service:

systemctl restart httpd

Verification steps

1. Use the following command to verify that the server supports TLSv1.3:

openssl s_client -connect example.com:443 -tls1_3

2. Use the following command to verify that the server does not support TLSv1.2:

openssl s_client -connect example.com:443 -tls1_2

If the server does not support the protocol, the command returns an error:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

656

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/setting-apache-http-server_deploying-different-types-of-servers#installing-the-apache-http-server-manual_setting-apache-http-server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/planning-and-implementing-tls_securing-networks#security-considerations-for-tls-in-rhel_planning-and-implementing-tls

140111600609088:error:1409442E:SSL routines:ssl3_read_bytes:tlsv1 alert protocol
version:ssl/record/rec_layer_s3.c:1543:SSL alert number 70

3. Optional: Repeat the command for other TLS protocol versions.

Additional resources

update-crypto-policies(8) man page

Using system-wide cryptographic policies .

For further details about the SSLProtocol parameter, refer to the mod_ssl documentation in
the Apache manual: Installing the Apache HTTP Server manual .

78.9. SETTING THE SUPPORTED CIPHERS ON AN APACHE HTTP
SERVER

By default, the Apache HTTP Server uses the system-wide crypto policy that defines safe default
values, which are also compatible with recent browsers. For the list of ciphers the system-wide crypto
allows, see the /etc/crypto-policies/back-ends/openssl.config file.

You can manually configure which ciphers the my_company.idm.example.com Apache HTTP server
supports. Follow the procedure if your environment requires specific ciphers.

Prerequisites

TLS encryption is enabled on the my_company.idm.example.com server as described in
Adding TLS encryption to an Apache HTTP server .

Procedure

1. Edit the /etc/httpd/conf/httpd.conf file, and add the SSLCipherSuite parameter to the
<VirtualHost> directive for which you want to set the TLS ciphers:

SSLCipherSuite
"EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH:!SHA1:!SHA256"

This example enables only the EECDH+AESGCM, EDH+AESGCM, AES256+EECDH, and
AES256+EDH ciphers and disables all ciphers which use the SHA1 and SHA256 message
authentication code (MAC).

2. Restart the httpd service:

systemctl restart httpd

Verification steps

1. To display the list of ciphers the Apache HTTP Server supports:

a. Install the nmap package:

yum install nmap

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

657

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#installing-the-apache-http-server-manual_setting-apache-http-server

b. Use the nmap utility to display the supported ciphers:

nmap --script ssl-enum-ciphers -p 443 example.com
...
PORT STATE SERVICE
443/tcp open https
| ssl-enum-ciphers:
| TLSv1.2:
| ciphers:
| TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (ecdh_x25519) - A
| TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 (dh 2048) - A
| TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 (ecdh_x25519) - A
...

Additional resources

update-crypto-policies(8) man page

Using system-wide cryptographic policies .

Installing the Apache HTTP Server manual - SSLCipherSuite

78.10. CONFIGURING TLS CLIENT CERTIFICATE AUTHENTICATION

Client certificate authentication enables administrators to allow only users who authenticate using a
certificate to access resources on the my_company.idm.example.com web server. You can configure
client certificate authentication for the /var/www/html/Example/ directory.

IMPORTANT

If the my_company.idm.example.com Apache server uses the TLS 1.3 protocol, certain
clients require additional configuration. For example, in Firefox, set the
security.tls.enable_post_handshake_auth parameter in the about:config menu to
true. For further details, see Transport Layer Security version 1.3 in Red Hat Enterprise
Linux 8.

Prerequisites

TLS encryption is enabled on the my_company.idm.example.com server as described in
Adding TLS encryption to an Apache HTTP server .

Procedure

1. Edit the /etc/httpd/conf/httpd.conf file and add the following settings to the <VirtualHost>
directive for which you want to configure client authentication:

<Directory "/var/www/html/Example/">
 SSLVerifyClient require
</Directory>

The SSLVerifyClient require setting defines that the server must successfully validate the
client certificate before the client can access the content in the /var/www/html/Example/
directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

658

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#installing-the-apache-http-server-manual_setting-apache-http-server
https://www.redhat.com/en/blog/transport-layer-security-version-13-red-hat-enterprise-linux-8

2. Restart the httpd service:

systemctl restart httpd

Verification steps

1. Use the curl utility to access the https://my_company.idm.example.com/Example/ URL
without client authentication:

$ curl https://my_company.idm.example.com/Example/
curl: (56) OpenSSL SSL_read: error:1409445C:SSL routines:ssl3_read_bytes:tlsv13 alert
certificate required, errno 0

The error indicates that the my_company.idm.example.com web server requires a client
certificate authentication.

2. Pass the client private key and certificate, as well as the CA certificate to curl to access the
same URL with client authentication:

$ curl --cacert ca.crt --key client.key --cert client.crt
https://my_company.idm.example.com/Example/

If the request succeeds, curl displays the index.html file stored in the /var/www/html/Example/
directory.

Additional resources

Installing the Apache HTTP Server manual - mod_ssl configuration

78.11. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO
THE CLIENT

As an Identity Management (IdM) administrator, you can configure a web server running on an IdM client
to request users that use web browsers to access the server to authenticate with certificates issued by a
specific IdM sub-CA. Follow this procedure to request a user certificate from a specific IdM sub-CA and
to export the certificate and the corresponding private key on to the host from which the user wants to
access the web server using a web browser. Afterwards, import the certificate and the private key into
the browser.

Procedure

1. Optionally, create a new directory, for example ~/certdb/, and make it a temporary certificate
database. When asked, create an NSS Certificate DB password to encrypt the keys to the
certificate to be generated in a subsequent step:

mkdir ~/certdb/
certutil -N -d ~/certdb/
Enter a password which will be used to encrypt your keys.
The password should be at least 8 characters long,
and should contain at least one non-alphabetic character.

Enter new password:
Re-enter password:

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

659

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/deploying_different_types_of_servers/index#installing-the-apache-http-server-manual_setting-apache-http-server

2. Create the certificate signing request (CSR) and redirect the output to a file. For example, to
create a CSR with the name certificate_request.csr for a 4096 bit certificate for the idm_user
user in the IDM.EXAMPLE.COM realm, setting the nickname of the certificate private keys to
idm_user for easy findability, and setting the subject to
CN=idm_user,O=IDM.EXAMPLE.COM:

certutil -R -d ~/certdb/ -a -g 4096 -n idm_user -s "CN=idm_user,O=IDM.EXAMPLE.COM"
> certificate_request.csr

3. When prompted, enter the same password that you entered when using certutil to create the
temporary database. Then continue typing randlomly until told to stop:

Enter Password or Pin for "NSS Certificate DB":

A random seed must be generated that will be used in the
creation of your key. One of the easiest ways to create a
random seed is to use the timing of keystrokes on a keyboard.

To begin, type keys on the keyboard until this progress meter
is full. DO NOT USE THE AUTOREPEAT FUNCTION ON YOUR KEYBOARD!

Continue typing until the progress meter is full:

4. Submit the certificate request file to the server. Specify the Kerberos principal to associate with
the newly-issued certificate, the output file to store the certificate, and optionally the certificate
profile. Specify the IdM sub-CA that you want to issue the certificate. For example, to obtain a
certificate of the IECUserRoles profile, a profile with added user roles extension, for the
idm_user@IDM.EXAMPLE.COM principal from webclient-ca, and save the certificate in the
~/idm_user.pem file:

ipa cert-request certificate_request.csr --principal=idm_user@IDM.EXAMPLE.COM --
profile-id=IECUserRoles --ca=webclient-ca --certificate-out=~/idm_user.pem

5. Add the certificate to the NSS database. Use the -n option to set the same nickname that you
used when creating the CSR previously so that the certificate matches the private key in the
NSS database. The -t option sets the trust level. For details, see the certutil(1) man page. The -i
option specifies the input certificate file. For example, to add to the NSS database a certificate
with the idm_user nickname that is stored in the ~/idm_user.pem file in the ~/certdb/
database:

certutil -A -d ~/certdb/ -n idm_user -t "P,," -i ~/idm_user.pem

6. Verify that the key in the NSS database does not show (orphan) as its nickname. For example,
to verify that the certificate stored in the ~/certdb/ database is not orphaned:

certutil -K -d ~/certdb/
< 0> rsa 5ad14d41463b87a095b1896cf0068ccc467df395 NSS Certificate
DB:idm_user

7. Use the pk12util command to export the certificate from the NSS database to the PKCS12
format. For example, to export the certificate with the idm_user nickname from the
/root/certdb NSS database into the ~/idm_user.p12 file:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

660

pk12util -d ~/certdb -o ~/idm_user.p12 -n idm_user
Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
Re-enter password:
pk12util: PKCS12 EXPORT SUCCESSFUL

8. Transfer the certificate to the host on which you want the certificate authentication for
idm_user to be enabled:

scp ~/idm_user.p12 idm_user@client.idm.example.com:/home/idm_user/

9. On the host to which the certificate has been transferred, make the directory in which the
.pkcs12 file is stored inaccessible to the 'other' group for security reasons:

chmod o-rwx /home/idm_user/

10. For security reasons, remove the temporary NSS database and the .pkcs12 file from the server:

rm ~/certdb/
rm ~/idm_user.p12

78.12. CONFIGURING A BROWSER TO ENABLE CERTIFICATE
AUTHENTICATION

To be able to authenticate with a certificate when using the WebUI to log into Identity Management
(IdM), you need to import the user and the relevant certificate authority (CA) certificates into the
Mozilla Firefox or Google Chrome browser. The host itself on which the browser is running does not have
to be part of the IdM domain.

IdM supports the following browsers for connecting to the WebUI:

Mozilla Firefox 38 and later

Google Chrome 46 and later

The following procedure shows how to configure the Mozilla Firefox 57.0.1 browser.

Prerequisites

You have the user certificate that you want to import to the browser at your disposal in the
PKCS#12 format.

You have downloaded the sub-CA certificate and have it at your disposal in the PEM format.

Procedure

1. Open Firefox, then navigate to Preferences → Privacy & Security.

Figure 78.8. Privacy and Security section in Preferences

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

661

Figure 78.8. Privacy and Security section in Preferences

2. Click View Certificates.

Figure 78.9. View Certificates in Privacy and Security

3. In the Your Certificates tab, click Import. Locate and open the certificate of the user in the
PKCS12 format, then click OK and OK.

4. To make sure that your IdM sub-CA is recognized by Firefox as a trusted authority, import the
IdM sub-CA certificate that you saved in Downloading the sub-CA certificate from IdM WebUI
as a trusted certificate authority certificate:

a. Open Firefox, navigate to Preferences and click Privacy & Security.

Figure 78.10. Privacy and Security section in Preferences

b. Click View Certificates.

Figure 78.11. View Certificates in Privacy and Security

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

662

Figure 78.11. View Certificates in Privacy and Security

c. In the Authorities tab, click Import. Locate and open the sub-CA certificate. Trust the
certificate to identify websites, then click OK and OK.

CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES

663

CHAPTER 79. INVALIDATING A SPECIFIC GROUP OF
RELATED CERTIFICATES QUICKLY

As a system administrator, if you want to be able to invalidate a specific group of related certificates
quickly:

Design your applications so that they only trust certificates that were issued by a specific
lightweight Identity Management (IdM) sub-CA. Afterwards, you will be able to invalidate all
these certificates by only revoking the certificate of the Identity Management (IdM) sub-CA
that issued these certificates. For details on how to create and use a lightweight sub-CA in IdM,
see Invalidating a specific group of related certificates quickly .

To ensure that all the certificates that have been issued by the to-be-revoked IdM sub-CA are
immediately invalid, configure applications that rely on such certificates to use the IdM OCSP
responders. For example, to configure the Firefox browser to use OCSP responders, make sure
that the Query OCSP responder servers to confirm the current validity of certificates
checkbox is checked in Firefox Preferences.
In IdM, the certificate revocation list (CRL) is updated every four hours. d To invalidate all the
certificates issued by an IdM sub-CA, revoke the IdM sub-CA certificate. In addition, disable the
relevant CA ACLs, and consider disabling the IdM sub-CA. Disabling the sub-CA prevents the
sub-CA from issuing new certificates, but allows Online Certificate Status Protocol (OCSP)
responses to be produced for previously issued certificates because the sub-CA’s signing keys
are retained.

IMPORTANT

Do not delete the sub-CA if you use OCSP in your environment. Deleting the sub-CA
deletes the signing keys of the sub-CA, preventing production of OCSP responses for
certificates issued by that sub-CA.

The only scenario when deleting a sub-CA is preferable to disabling it is when you want to
create a new sub-CA with the same Subject distinguished name (DN) but a new signing
key.

79.1. DISABLING CA ACLS IN IDM CLI

When you want to retire an IdM service or a group of IdM services, consider disabling any existing
corresponding CA ACLs.

Follow this procedure to disable the TLS_web_server_authentication CA ACL that restricts the web
server running on your IdM client to request a certificate to be issued by the webserver-ca IdM sub-CA,
and to disable the TLS_web_client_authentication CA ACL that restricts IdM users to request a user
certificate to be issued by the webclient-ca IdM sub-CA.

Procedure

1. Optionally, to view all the CA ACLs in your IdM environment, enter the ipa caacl-find command:

$ ipa caacl-find

3 CA ACLs matched

 ACL name: hosts_services_caIPAserviceCert
 Enabled: TRUE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

664

 ACL name: TLS_web_server_authentication
 Enabled: TRUE

 ACL name: TLS_web_client_authentication
 Enabled: TRUE

2. Optionally, to view the details of a CA ACL, enter the ipa caacl-show command, and specify
the CA ACL name:

$ ipa caacl-show TLS_web_server_authentication
 ACL name: TLS_web_server_authentication
 Description: CAACL for web servers authenticating to web clients using certificates issued
by webserver-ca
 Enabled: TRUE
 CAs: webserver-ca
 Profiles: caIPAserviceCert
 Services: HTTP/rhel8server.idm.example.com@IDM.EXAMPLE.COM

3. To disable a CA ACL, enter the ipa caacl-disable command, and specify the CA ACL name.

To disable the TLS_web_server_authentication CA ACL, enter:

$ ipa caacl-disable TLS_web_server_authentication

Disabled CA ACL "TLS_web_server_authentication"

To disable the TLS_web_client_authentication CA ACL, enter:

$ ipa caacl-disable TLS_web_client_authentication

Disabled CA ACL "TLS_web_client_authentication"

The only enabled CA ACL now is the hosts_services_caIPAserviceCert CA ACL.

IMPORTANT

Be extremely careful about disabling the hosts_services_caIPAserviceCert CA
ACL. Disabling hosts_services_caIPAserviceCert, without another CA ACL
granting IdM servers use of the ipa CA with the caIPAserviceCert profile means
that certificate renewal of the IdM HTTP and LDAP certificates will fail. The
expired IdM HTTP and LDAP certificates will eventually cause IdM system
failure.

79.2. DISABLING AN IDM SUB-CA

After revoking the CA certificate of an IdM sub-CA to invalidate all the certificates issued by that sub-
CA, consider disabling the IdM sub-CA if you no longer need it. You can re-enable the sub-CA at a later
time.

Disabling the sub-CA prevents the sub-CA from issuing new certificates, but allows Online Certificate

CHAPTER 79. INVALIDATING A SPECIFIC GROUP OF RELATED CERTIFICATES QUICKLY

665

Disabling the sub-CA prevents the sub-CA from issuing new certificates, but allows Online Certificate
Status Protocol (OCSP) responses to be produced for previously issued certificates because the sub-
CA’s signing keys are retained.

Prerequisites

You are logged in as IdM administrator.

Procedure

Enter the ipa ca-disable command and specify the name of the sub-CA:

$ ipa ca-disable webserver-CA

Disabled CA "webserver-CA"

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

666

CHAPTER 80. VAULTS IN IDM
This chapter describes vaults in Identity Management (IdM). It introduces the following topics:

The concept of the vault.

The different roles associated with a vault .

The different types of vaults available in IdM based on the level of security and access control .

The different types of vaults available in IdM based on ownership .

The concept of vault containers.

The basic commands for managing vaults in IdM .

Installing the key recovery authority (KRA), which is a prerequisite for using vaults in IdM .

80.1. VAULTS AND THEIR BENEFITS

A vault is a useful feature for those Identity Management (IdM) users who want to keep all their sensitive
data stored securely but conveniently in one place. There are various types of vaults and you should
choose which vault to use based on your requirements.

A vault is a secure location in (IdM) for storing, retrieving, sharing, and recovering a secret. A secret is
security-sensitive data, usually authentication credentials, that only a limited group of people or entities
can access. For example, secrets include:

Passwords

PINs

Private SSH keys

A vault is comparable to a password manager. Just like a password manager, a vault typically requires a
user to generate and remember one primary password to unlock and access any information stored in
the vault. However, a user can also decide to have a standard vault. A standard vault does not require
the user to enter any password to access the secrets stored in the vault.

NOTE

The purpose of vaults in IdM is to store authentication credentials that allow you to
authenticate to external, non-IdM-related services.

Other important characteristics of the IdM vaults are:

Vaults are only accessible to the vault owner and those IdM users that the vault owner selects
to be the vault members. In addition, the IdM administrator has access to the vault.

If a user does not have sufficient privileges to create a vault, an IdM administrator can create the
vault and set the user as its owner.

Users and services can access the secrets stored in a vault from any machine enrolled in the IdM
domain.

One vault can only contain one secret, for example, one file. However, the file itself can contain

CHAPTER 80. VAULTS IN IDM

667

One vault can only contain one secret, for example, one file. However, the file itself can contain
multiple secrets such as passwords, keytabs or certificates.

NOTE

Vault is only available from the IdM command line (CLI), not from the IdM Web UI.

80.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS

Identity Management (IdM) distinguishes the following vault user types:

Vault owner

A vault owner is a user or service with basic management privileges on the vault. For example, a vault
owner can modify the properties of the vault or add new vault members.
Each vault must have at least one owner. A vault can also have multiple owners.

Vault member

A vault member is a user or service that can access a vault created by another user or service.

Vault administrator

Vault administrators have unrestricted access to all vaults and are allowed to perform all vault
operations.

NOTE

Symmetric and asymmetric vaults are protected with a password or key and apply
special access control rules (see Vault types). The administrator must meet these
rules to:

Access secrets in symmetric and asymmetric vaults.

Change or reset the vault password or key.

A vault administrator is any user with the Vault Administrators privilege. In the context of the role-
based access control (RBAC) in IdM, a privilege is a group of permissions that you can apply to a role.

Vault User

The vault user represents the user in whose container the vault is located. The Vault user
information is displayed in the output of specific commands, such as ipa vault-show:

$ ipa vault-show my_vault
 Vault name: my_vault
 Type: standard
 Owner users: user
 Vault user: user

For details on vault containers and user vaults, see Vault containers.

Additional resources

See Standard, symmetric and asymmetric vaults for details on vault types.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

668

80.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS

Based on the level of security and access control, IdM classifies vaults into the following types:

Standard vaults

Vault owners and vault members can archive and retrieve the secrets without having to use a
password or key.

Symmetric vaults

Secrets in the vault are protected with a symmetric key. Vault owners and members can archive and
retrieve the secrets, but they must provide the vault password.

Asymmetric vaults

Secrets in the vault are protected with an asymmetric key. Users archive the secret using a public key
and retrieve it using a private key. Vault members can only archive secrets, while vault owners can do
both, archive and retrieve secrets.

80.4. USER, SERVICE, AND SHARED VAULTS

Based on ownership, IdM classifies vaults into several types. The table below contains information about
each type, its owner and use.

Table 80.1. IdM vaults based on ownership

Type Description Owner Note

User vault A private vault for a user A single user Any user can own one or more user
vaults if allowed by IdM administrator

Service
vault

A private vault for a
service

A single service Any service can own one or more user
vaults if allowed by IdM administrator

Shared
vault

A vault shared by
multiple users and
services

The vault administrator
who created the vault

Users and services can own one or
more user vaults if allowed by IdM
administrator. The vault administrators
other than the one that created the
vault also have full access to the vault.

80.5. VAULT CONTAINERS

A vault container is a collection of vaults. The table below lists the default vault containers that
Identity Management (IdM) provides.

Table 80.2. Default vault containers in IdM

Type Description Purpose

User container A private container for a
user

Stores user vaults for a particular user

Service container A private container for a
service

Stores service vaults for a particular service

CHAPTER 80. VAULTS IN IDM

669

Shared container A container for multiple
users and services

Stores vaults that can be shared by multiple users or
services

Type Description Purpose

IdM creates user and service containers for each user or service automatically when the first private
vault for the user or service is created. After the user or service is deleted, IdM removes the container
and its contents.

80.6. BASIC IDM VAULT COMMANDS

You can use the basic commands outlined below to manage Identity Management (IdM) vaults. The
table below contains a list of ipa vault-* commands with the explanation of their purpose.

NOTE

Before running any ipa vault-* command, install the Key Recovery Authority (KRA)
certificate system component on one or more of the servers in your IdM domain. For
details, see Installing the Key Recovery Authority in IdM .

Table 80.3. Basic IdM vault commands with explanations

Command Purpose

ipa help vault Displays conceptual information about IdM vaults and sample vault commands.

ipa vault-add --help,
ipa vault-find --help

Adding the --help option to a specific ipa vault-* command displays the options
and detailed help available for that command.

ipa vault-show
user_vault --user
idm_user

When accessing a vault as a vault member, you must specify the vault owner. If
you do not specify the vault owner, IdM informs you that it did not find the vault:

[admin@server ~]$ ipa vault-show user_vault
ipa: ERROR: user_vault: vault not found

ipa vault-show
shared_vault --
shared

When accessing a shared vault, you must specify that the vault you want to
access is a shared vault. Otherwise, IdM informs you it did not find the vault:

[admin@server ~]$ ipa vault-show shared_vault
ipa: ERROR: shared_vault: vault not found

80.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

Follow this procedure to enable vaults in Identity Management (IdM) by installing the Key Recovery
Authority (KRA) Certificate System (CS) component on a specific IdM server.

Prerequisites

You are logged in as root on the IdM server.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

670

An IdM certificate authority is installed on the IdM server.

You have the Directory Manager credentials.

Procedure

Install the KRA:

ipa-kra-install

IMPORTANT

You can install the first KRA of an IdM cluster on a hidden replica. However, installing
additional KRAs requires temporarily activating the hidden replica before you install the
KRA clone on a non-hidden replica. Then you can hide the originally hidden replica again.

NOTE

To make the vault service highly available and resilient, install the KRA on two IdM servers
or more. Maintaining multiple KRA servers prevents data loss.

Additional resources

See Demoting or promoting hidden replicas .

See The hidden replica mode.

CHAPTER 80. VAULTS IN IDM

671

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/demoting-or-promoting-hidden-replicas_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#the-hidden-replica-mode_planning-the-replica-topology

CHAPTER 81. USING IDM USER VAULTS: STORING AND
RETRIEVING SECRETS

This chapter describes how to use user vaults in Identity Management. Specifically, it describes how a
user can store a secret in an IdM vault, and how the user can retrieve it. The user can do the storing and
the retrieving from two different IdM clients.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

81.1. STORING A SECRET IN A USER VAULT

Follow this procedure to create a vault container with one or more private vaults to securely store files
with sensitive information. In the example used in the procedure below, the idm_user user creates a
vault of the standard type. The standard vault type ensures that idm_user will not be required to
authenticate when accessing the file. idm_user will be able to retrieve the file from any IdM client to
which the user is logged in.

In the procedure:

idm_user is the user who wants to create the vault.

my_vault is the vault used to store the user’s certificate.

The vault type is standard, so that accessing the archived certificate does not require the user
to provide a vault password.

secret.txt is the file containing the certificate that the user wants to store in the vault.

Prerequisites

You know the password of idm_user.

You are logged in to a host that is an IdM client.

Procedure

1. Obtain the Kerberos ticket granting ticket (TGT) for idm_user:

$ kinit idm_user

2. Use the ipa vault-add command with the --type standard option to create a standard vault:

$ ipa vault-add my_vault --type standard

Added vault "my_vault"

 Vault name: my_vault
 Type: standard
 Owner users: idm_user
 Vault user: idm_user

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

672

IMPORTANT

Make sure the first user vault for a user is created by the same user. Creating the
first vault for a user also creates the user’s vault container. The agent of the
creation becomes the owner of the vault container.

For example, if another user, such as admin, creates the first user vault for user1,
the owner of the user’s vault container will also be admin, and user1 will be
unable to access the user vault or create new user vaults.

3. Use the ipa vault-archive command with the --in option to archive the secret.txt file into the
vault:

$ ipa vault-archive my_vault --in secret.txt

Archived data into vault "my_vault"

81.2. RETRIEVING A SECRET FROM A USER VAULT

As an Identity Management (IdM), you can retrieve a secret from your user private vault onto any IdM
client to which you are logged in.

Follow this procedure to retrieve, as an IdM user named idm_user, a secret from the user private vault
named my_vault onto idm_client.idm.example.com.

Prerequisites

idm_user is the owner of my_vault.

idm_user has archived a secret in the vault .

my_vault is a standard vault, which means that idm_user does not have to enter any password
to access the contents of the vault.

Procedure

1. SSH to idm_client as idm_user:

$ ssh idm_user@idm_client.idm.example.com

2. Log in as idm_user:

$ kinit user

3. Use the ipa vault-retrieve --out command with the --out option to retrieve the contents of the
vault and save them into the secret_exported.txt file.

$ ipa vault-retrieve my_vault --out secret_exported.txt

Retrieved data from vault "my_vault"

CHAPTER 81. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETS

673

81.3. ADDITIONAL RESOURCES

See Using Ansible to manage IdM user vaults: storing and retrieving secrets .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

674

CHAPTER 82. USING ANSIBLE TO MANAGE IDM USER
VAULTS: STORING AND RETRIEVING SECRETS

This chapter describes how to manage user vaults in Identity Management using the Ansible vault
module. Specifically, it describes how a user can use Ansible playbooks to perform the following three
consecutive actions:

Create a user vault in IdM .

Store a secret in the vault .

Retrieve a secret from the vault .

The user can do the storing and the retrieving from two different IdM clients.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

82.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to create a vault container with one or more private
vaults to securely store sensitive information. In the example used in the procedure below, the idm_user
user creates a vault of the standard type named my_vault. The standard vault type ensures that
idm_user will not be required to authenticate when accessing the file. idm_user will be able to retrieve
the file from any IdM client to which the user is logged in.

Prerequisites

You have installed the ansible-freeipa package on the Ansible controller, that is the host on
which you execute the steps in the procedure.

You know the password of idm_user.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Create an inventory file, for example inventory.file:

$ touch inventory.file

3. Open inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

CHAPTER 82. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

675

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

4. Make a copy of the ensure-standard-vault-is-present.yml Ansible playbook file. For example:

$ cp ensure-standard-vault-is-present.yml ensure-standard-vault-is-present-copy.yml

5. Open the ensure-standard-vault-is-present-copy.yml file for editing.

6. Adapt the file by setting the following variables in the ipavault task section:

Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the vault_type variable to standard.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_principal: idm_user
 ipaadmin_password: idm_user_password
 user: idm_user
 name: my_vault
 vault_type: standard

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
standard-vault-is-present-copy.yml

82.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to store sensitive information in a personal vault. In the
example used, the idm_user user archives a file with sensitive information named password.txt in a
vault named my_vault.

Prerequisites

You have installed the ansible-freeipa package on the Ansible controller, that is the host on
which you execute the steps in the procedure.

You know the password of idm_user.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

676

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

idm_user is the owner, or at least a member user of my_vault.

You have access to password.txt, the secret that you want to archive in my_vault.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the data-archive-in-symmetric-vault.yml Ansible playbook file but replace
"symmetric" by "standard". For example:

$ cp data-archive-in-symmetric-vault.yml data-archive-in-standard-vault-copy.yml

4. Open the data-archive-in-standard-vault-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipavault task section:

Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the in variable to the full path to the file with sensitive information.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_principal: idm_user
 ipaadmin_password: idm_user_password
 user: idm_user
 name: my_vault
 in: /usr/share/doc/ansible-freeipa/playbooks/vault/password.txt
 action: member

CHAPTER 82. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

677

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file data-
archive-in-standard-vault-copy.yml

82.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to retrieve a secret from the user personal vault. In the
example used in the procedure below, the idm_user user retrieves a file with sensitive data from a vault
of the standard type named my_vault onto an IdM client named host01. idm_user does not have to
authenticate when accessing the file. idm_user can use Ansible to retrieve the file from any IdM client on
which Ansible is installed.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the password of idm_user.

idm_user is the owner of my_vault.

idm_user has stored a secret in my_vault.

Ansible can write into the directory on the IdM host into which you want to retrieve the secret.

idm_user can read from the directory on the IdM host into which you want to retrieve the secret.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and mention, in a clearly defined section, the IdM client onto which you
want to retrieve the secret. For example, to instruct Ansible to retrieve the secret onto
host01.idm.example.com, enter:

[ipahost]
host01.idm.example.com

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

678

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Make a copy of the retrive-data-symmetric-vault.yml Ansible playbook file. Replace
"symmetric" with "standard". For example:

$ cp retrive-data-symmetric-vault.yml retrieve-data-standard-vault.yml-copy.yml

4. Open the retrieve-data-standard-vault.yml-copy.yml file for editing.

5. Adapt the file by setting the hosts variable to ipahost.

6. Adapt the file by setting the following variables in the ipavault task section:

Set the ipaadmin_principal variable to idm_user.

Set the ipaadmin_password variable to the password of idm_user.

Set the user variable to idm_user.

Set the name variable to my_vault.

Set the out variable to the full path of the file into which you want to export the secret.

Set the state variable to retrieved.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipahost
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_principal: idm_user
 ipaadmin_password: idm_user_password
 user: idm_user
 name: my_vault
 out: /tmp/password_exported.txt
 state: retrieved

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file retrieve-
data-standard-vault.yml-copy.yml

Verification steps

1. SSH to host01 as user01:

$ ssh user01@host01.idm.example.com

2. View the file specified by the out variable in the Ansible playbook file:

CHAPTER 82. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS

679

$ vim /tmp/password_exported.txt

You can now see the exported secret.

For more information about using Ansible to manage IdM vaults and user secrets and about
playbook variables, see the README-vault.md Markdown file available in the
/usr/share/doc/ansible-freeipa/ directory and the sample playbooks available in the
/usr/share/doc/ansible-freeipa/playbooks/vault/ directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

680

CHAPTER 83. MANAGING IDM SERVICE SECRETS: STORING
AND RETRIEVING SECRETS

This section shows how an administrator can use the ansible-freeipa vault module to securely store a
service secret in a centralized location. The vault used in the example is asymmetric, which means that
to use it, the administrator needs to perform the following steps:

1. Generate a private key using, for example, the openssl utility.

2. Generate a public key based on the private key.

The service secret is encrypted with the public key when an administrator archives it into the vault.
Afterwards, a service instance hosted on a specific machine in the domain retrieves the secret using the
private key. Only the service and the administrator are allowed to access the secret.

If the secret is compromised, the administrator can replace it in the service vault and then redistribute it
to those individual service instances that have not been compromised.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

This section includes these procedure

1. Storing an IdM service secret in an asymmetric vault

2. Retrieving a service secret for an IdM service instance

3. Changing an IdM service vault secret when compromised

Terminology used

In the procedures:

admin is the administrator who manages the service password.

private-key-to-an-externally-signed-certificate.pem is the file containing the service secret,
in this case a private key to an externally signed certificate. Do not confuse this private key with
the private key used to retrieve the secret from the vault.

secret_vault is the vault created for the service.

HTTP/webserver.idm.example.com is the service whose secret is being archived.

service-public.pem is the service public key used to encrypt the password stored in
password_vault.

service-private.pem is the service private key used to decrypt the password stored in
secret_vault.

83.1. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT

Follow this procedure to create an asymmetric vault and use it to archive a service secret.

CHAPTER 83. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS

681

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/vaults-in-idm_configuring-and-managing-idm

Prerequisites

You know the IdM administrator password.

Procedure

1. Log in as the administrator:

$ kinit admin

2. Obtain the public key of the service instance. For example, using the openssl utility:

a. Generate the service-private.pem private key.

$ openssl genrsa -out service-private.pem 2048
Generating RSA private key, 2048 bit long modulus
.+++
...+++
e is 65537 (0x10001)

b. Generate the service-public.pem public key based on the private key.

$ openssl rsa -in service-private.pem -out service-public.pem -pubout
writing RSA key

3. Create an asymmetric vault as the service instance vault, and provide the public key:

$ ipa vault-add secret_vault --service HTTP/webserver.idm.example.com --type
asymmetric --public-key-file service-public.pem

Added vault "secret_vault"

Vault name: secret_vault
Type: asymmetric
Public key: LS0tLS1C...S0tLS0tCg==
Owner users: admin
Vault service: HTTP/webserver.idm.example.com@IDM.EXAMPLE.COM

The password archived into the vault will be protected with the key.

4. Archive the service secret into the service vault:

$ ipa vault-archive secret_vault --service HTTP/webserver.idm.example.com --in
private-key-to-an-externally-signed-certificate.pem

Archived data into vault "secret_vault"

This encrypts the secret with the service instance public key.

Repeat these steps for every service instance that requires the secret. Create a new asymmetric vault
for each service instance.

83.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

682

83.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE
INSTANCE

Follow this procedure to use a service instance to retrieve the service vault secret using a locally-stored
service private key.

Prerequisites

You have access to the keytab of the service principal owning the service vault, for example
HTTP/webserver.idm.example.com.

You have created an asymmetric vault and archived a secret in the vault .

You have access to the private key used to retrieve the service vault secret.

Procedure

1. Log in as the administrator:

$ kinit admin

2. Obtain a Kerberos ticket for the service:

kinit HTTP/webserver.idm.example.com -k -t /etc/httpd/conf/ipa.keytab

3. Retrieve the service vault password:

$ ipa vault-retrieve secret_vault --service HTTP/webserver.idm.example.com --private-
key-file service-private.pem --out secret.txt

Retrieved data from vault "secret_vault"

83.3. CHANGING AN IDM SERVICE VAULT SECRET WHEN
COMPROMISED

Follow this procedure to isolate a compromised service instance by changing the service vault secret.

Prerequisites

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

You have generated the new secret and have access to it, for example in the new-private-key-
to-an-externally-signed-certificate.pem file.

Procedure

1. Archive the new secret into the service instance vault:

$ ipa vault-archive secret_vault --service HTTP/webserver.idm.example.com --in new-
private-key-to-an-externally-signed-certificate.pem

CHAPTER 83. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS

683

Archived data into vault "secret_vault"

This overwrites the current secret stored in the vault.

2. Retrieve the new secret on non-compromised service instances only. For details, see Retrieving
a service secret for an IdM service instance.

83.4. ADDITIONAL RESOURCES

See Using Ansible to manage IdM service vaults: storing and retrieving secrets .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

684

CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE
VAULTS: STORING AND RETRIEVING SECRETS

This section shows how an administrator can use the ansible-freeipa vault module to securely store a
service secret in a centralized location. The vault used in the example is asymmetric, which means that
to use it, the administrator needs to perform the following steps:

1. Generate a private key using, for example, the openssl utility.

2. Generate a public key based on the private key.

The service secret is encrypted with the public key when an administrator archives it into the vault.
Afterwards, a service instance hosted on a specific machine in the domain retrieves the secret using the
private key. Only the service and the administrator are allowed to access the secret.

If the secret is compromised, the administrator can replace it in the service vault and then redistribute it
to those individual service instances that have not been compromised.

Prerequisites

The Key Recovery Authority (KRA) Certificate System component has been installed on one or
more of the servers in your IdM domain. For details, see Installing the Key Recovery Authority in
IdM.

This section includes these procedures:

Ensuring the presence of an asymmetric service vault in IdM using Ansible

Storing an IdM service secret in an asymmetric vault using Ansible

Retrieving a service secret for an IdM service using Ansible

Changing an IdM service vault secret when compromised using Ansible

In the procedures:

admin is the administrator who manages the service password.

private-key-to-an-externally-signed-certificate.pem is the file containing the service secret,
in this case a private key to an externally signed certificate. Do not confuse this private key with
the private key used to retrieve the secret from the vault.

secret_vault is the vault created to store the service secret.

HTTP/webserver1.idm.example.com is the service that is the owner of the vault.

HTTP/webserver2.idm.example.com and HTTP/webserver3.idm.example.com are the vault
member services.

service-public.pem is the service public key used to encrypt the password stored in
password_vault.

service-private.pem is the service private key used to decrypt the password stored in
secret_vault.

84.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT

CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

685

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#vaults-in-idm_configuring-and-managing-idm

84.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT
IN IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to create a service vault container with one or more
private vaults to securely store sensitive information. In the example used in the procedure below, the
administrator creates an asymmetric vault named secret_vault. This ensures that the vault members
have to authenticate using a private key to retrieve the secret in the vault. The vault members will be
able to retrieve the file from any IdM client.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Obtain the public key of the service instance. For example, using the openssl utility:

a. Generate the service-private.pem private key.

$ openssl genrsa -out service-private.pem 2048
Generating RSA private key, 2048 bit long modulus
.+++
...+++
e is 65537 (0x10001)

b. Generate the service-public.pem public key based on the private key.

$ openssl rsa -in service-private.pem -out service-public.pem -pubout
writing RSA key

3. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

4. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

686

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[ipaserver]
server.idm.example.com

5. Make a copy of the ensure-asymmetric-vault-is-present.yml Ansible playbook file. For
example:

$ cp ensure-asymmetric-vault-is-present.yml ensure-asymmetric-service-vault-is-
present-copy.yml

6. Open the ensure-asymmetric-vault-is-present-copy.yml file for editing.

7. Add a task that copies the service-public.pem public key from the Ansible controller to the
server.idm.example.com server.

8. Modify the rest of the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Define the name of the vault using the name variable, for example secret_vault.

Set the vault_type variable to asymmetric.

Set the service variable to the principal of the service that owns the vault, for example
HTTP/webserver1.idm.example.com.

Set the public_key_file to the location of your public key.
This is the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Copy public key to ipaserver.
 copy:
 src: /path/to/service-public.pem
 dest: /usr/share/doc/ansible-freeipa/playbooks/vault/service-public.pem
 mode: 0600
 - name: Add data to vault, from a LOCAL file.
 ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 vault_type: asymmetric
 service: HTTP/webserver1.idm.example.com
 public_key_file: /usr/share/doc/ansible-freeipa/playbooks/vault/service-public.pem

9. Save the file.

10. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
asymmetric-service-vault-is-present-copy.yml

CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

687

84.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING
ANSIBLE

Follow this procedure to use an Ansible playbook to add member services to a service vault so that they
can all retrieve the secret stored in the vault. In the example used in the procedure below, the IdM
administrator adds the HTTP/webserver2.idm.example.com and
HTTP/webserver3.idm.example.com service principals to the secret_vault vault that is owned by
HTTP/webserver1.idm.example.com.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

3. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

4. Make a copy of the data-archive-in-asymmetric-vault.yml Ansible playbook file. For example:

$ cp data-archive-in-asymmetric-vault.yml add-services-to-an-asymmetric-vault.yml

5. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

688

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Define the services that you want to have access to the vault secret using the services
variable.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 services:
 - HTTP/webserver2.idm.example.com
 - HTTP/webserver3.idm.example.com
 action: member

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file add-
services-to-an-asymmetric-vault.yml

84.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT
USING ANSIBLE

Follow this procedure to use an Ansible playbook to store a secret in a service vault so that it can be later
retrieved by the service. In the example used in the procedure below, the administrator stores a PEM file
with the secret in an asymmetric vault named secret_vault. This ensures that the service will have to
authenticate using a private key to retrieve the secret from the vault. The vault members will be able to
retrieve the file from any IdM client.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

689

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

The secret is stored locally on the Ansible controller, for example in the
/usr/share/doc/ansible-freeipa/playbooks/vault/private-key-to-an-externally-signed-
certificate.pem file.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

3. Open your inventory file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

4. Make a copy of the data-archive-in-asymmetric-vault.yml Ansible playbook file. For example:

$ cp data-archive-in-asymmetric-vault.yml data-archive-in-asymmetric-vault-copy.yml

5. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Set the in variable to "{{ lookup('file', 'private-key-to-an-externally-signed-
certificate.pem') | b64encode }}". This ensures that Ansible retrieves the file with the
private key from the working directory on the Ansible controller rather than from the IdM
server.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

690

 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 in: "{{ lookup('file', 'private-key-to-an-externally-signed-certificate.pem') | b64encode }}"
 action: member

7. Save the file.

8. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file data-
archive-in-asymmetric-vault-copy.yml

84.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING
ANSIBLE

Follow this procedure to use an Ansible playbook to retrieve a secret from a service vault on behalf of
the service. In the example used in the procedure below, running the playbook retrieves a PEM file with
the secret from an asymmetric vault named secret_vault, and stores it in the specified location on all the
hosts listed in the Ansible inventory file as ipaservers.

The services authenticate to IdM using keytabs, and they authenticate to the vault using a private key.
You can retrieve the file on behalf of the service from any IdM client on which ansible-freeipa is
installed.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

You have archived the secret in the vault .

You have stored the private key used to retrieve the service vault secret in the location
specified by the private_key_file variable on the Ansible controller.

CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

691

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Optional: Create an inventory file if it does not exist, for example inventory.file:

$ touch inventory.file

3. Open your inventory file and define the following hosts:

Define your IdM server in the [ipaserver] section.

Define the hosts onto which you want to retrieve the secret in the [webservers] section.
For example, to instruct Ansible to retrieve the secret to webserver1.idm.example.com,
webserver2.idm.example.com, and webserver3.idm.example.com, enter:

[ipaserver]
server.idm.example.com

[webservers]
webserver1.idm.example.com
webserver2.idm.example.com
webserver3.idm.example.com

4. Make a copy of the retrieve-data-asymmetric-vault.yml Ansible playbook file. For example:

$ cp retrieve-data-asymmetric-vault.yml retrieve-data-asymmetric-vault-copy.yml

5. Open the retrieve-data-asymmetric-vault-copy.yml file for editing.

6. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Set the private_key_file variable to the location of the private key used to retrieve the
service vault secret.

Set the out variable to the location on the IdM server where you want to retrieve the
private-key-to-an-externally-signed-certificate.pem secret, for example the current
working directory.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Retrieve data from vault
 hosts: ipaserver
 become: no

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

692

 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Retrieve data from the service vault
 ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 vault_type: asymmetric
 private_key: "{{ lookup('file', 'service-private.pem') | b64encode }}"
 out: private-key-to-an-externally-signed-certificate.pem
 state: retrieved

7. Add a section to the playbook that retrieves the data file from the IdM server to the Ansible
controller:

- name: Retrieve data from vault
 hosts: ipaserver
 become: no
 gather_facts: false
 tasks:
[...]
 - name: Retrieve data file
 fetch:
 src: private-key-to-an-externally-signed-certificate.pem
 dest: ./
 flat: yes
 mode: 0600

8. Add a section to the playbook that transfers the retrieved private-key-to-an-externally-
signed-certificate.pem file from the Ansible controller on to the webservers listed in the
webservers section of the inventory file:

- name: Send data file to webservers
 become: no
 gather_facts: no
 hosts: webservers
 tasks:
 - name: Send data to webservers
 copy:
 src: private-key-to-an-externally-signed-certificate.pem
 dest: /etc/pki/tls/private/httpd.key
 mode: 0444

9. Save the file.

10. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file retrieve-
data-asymmetric-vault-copy.yml

CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

693

84.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN
COMPROMISED USING ANSIBLE

Follow this procedure to reuse an Ansible playbook to change the secret stored in a service vault when a
service instance has been compromised. The scenario in the following example assumes that on
webserver3.idm.example.com, the retrieved secret has been compromised, but not the key to the
asymmetric vault storing the secret. In the example, the administrator reuses the Ansible playbooks used
when storing a secret in an asymmetric vault and retrieving a secret from the asymmetric vault onto IdM
hosts. At the start of the procedure, the IdM administrator stores a new PEM file with a new secret in the
asymmetric vault, adapts the inventory file so as not to retrieve the new secret on to the compromised
web server, webserver3.idm.example.com, and then re-runs the two procedures.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

You have created an asymmetric vault to store the service secret.

You have generated a new httpd key for the web services running on IdM hosts to replace the
compromised old key.

The new httpd key is stored locally on the Ansible controller, for example in the
/usr/share/doc/ansible-freeipa/playbooks/vault/private-key-to-an-externally-signed-
certificate.pem file.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/vault directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/vault

2. Open your inventory file and make sure that the following hosts are defined correctly:

The IdM server in the [ipaserver] section.

The hosts onto which you want to retrieve the secret in the [webservers] section. For
example, to instruct Ansible to retrieve the secret to webserver1.idm.example.com and
webserver2.idm.example.com, enter:

[ipaserver]
server.idm.example.com

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

694

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[webservers]
webserver1.idm.example.com
webserver2.idm.example.com

IMPORTANT

Make sure that the list does not contain the compromised webserver, in the
current example webserver3.idm.example.com.

3. Open the data-archive-in-asymmetric-vault-copy.yml file for editing.

4. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to the IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver.idm.example.com.

Set the in variable to "{{ lookup('file', 'new-private-key-to-an-externally-signed-
certificate.pem') | b64encode }}". This ensures that Ansible retrieves the file with the
private key from the working directory on the Ansible controller rather than from the IdM
server.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Tests
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver.idm.example.com
 in: "{{ lookup('file', 'new-private-key-to-an-externally-signed-certificate.pem') | b64encode
}}"
 action: member

5. Save the file.

6. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file data-
archive-in-asymmetric-vault-copy.yml

7. Open the retrieve-data-asymmetric-vault-copy.yml file for editing.

8. Modify the file by setting the following variables in the ipavault task section:

Set the ipaadmin_password variable to your IdM administrator password.

CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

695

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the vault, for example secret_vault.

Set the service variable to the service owner of the vault, for example
HTTP/webserver1.idm.example.com.

Set the private_key_file variable to the location of the private key used to retrieve the
service vault secret.

Set the out variable to the location on the IdM server where you want to retrieve the new-
private-key-to-an-externally-signed-certificate.pem secret, for example the current
working directory.

Set the action variable to member.
This the modified Ansible playbook file for the current example:

- name: Retrieve data from vault
 hosts: ipaserver
 become: no
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Retrieve data from the service vault
 ipavault:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: secret_vault
 service: HTTP/webserver1.idm.example.com
 vault_type: asymmetric
 private_key: "{{ lookup('file', 'service-private.pem') | b64encode }}"
 out: new-private-key-to-an-externally-signed-certificate.pem
 state: retrieved

9. Add a section to the playbook that retrieves the data file from the IdM server to the Ansible
controller:

- name: Retrieve data from vault
 hosts: ipaserver
 become: true
 gather_facts: false
 tasks:
[...]
 - name: Retrieve data file
 fetch:
 src: new-private-key-to-an-externally-signed-certificate.pem
 dest: ./
 flat: yes
 mode: 0600

10. Add a section to the playbook that transfers the retrieved new-private-key-to-an-externally-
signed-certificate.pem file from the Ansible controller on to the webservers listed in the
webservers section of the inventory file:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

696

- name: Send data file to webservers
 become: true
 gather_facts: no
 hosts: webservers
 tasks:
 - name: Send data to webservers
 copy:
 src: new-private-key-to-an-externally-signed-certificate.pem
 dest: /etc/pki/tls/private/httpd.key
 mode: 0444

11. Save the file.

12. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file retrieve-
data-asymmetric-vault-copy.yml

84.6. ADDITIONAL RESOURCES

See the README-vault.md Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/vault/ directory.

CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS

697

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF
SERVICES IN IDM USING ANSIBLE

With the Ansible service module, Identity Management (IdM) administrator can ensure that specific
services that are not native to IdM are present or absent in IdM. For example, you can use the service
module to:

Check that a manually installed service is present on an IdM client and automatically install that
service if it is absent. For details, see:

Ensuring the presence of an HTTP service in IdM on an IdM client.

Ensuring the presence of multiple services in IdM on an IdM client using a single Ansible task.

Ensuring the presence of an HTTP service in IdM on a non-IdM client.

Ensuring the presence of an HTTP service on an IdM client without DNS.

Check that a service enrolled in IdM has a certificate attached and automatically install that
certificate if it is absent. For details, see:

Ensuring the presence of an externally-signed certificate in an IdM service entry.

Allow IdM users and hosts to retrieve and create the service keytab. For details, see:

Allowing IdM users, groups, hosts, or host groups to create a keytab of a service.

Allowing IdM users, groups, hosts, or host groups to retrieve a keytab of a service.

Allow IdM users and hosts to add a Kerberos alias to a service. For details, see:

Ensuring the presence of a Kerberos principal alias for a service.

Check that a service is not present on an IdM client and automatically remove that service if it is
present. For details, see:

Ensuring the absence of an HTTP service in IdM on an IdM client.

85.1. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM USING
AN ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of an HTTP server in IdM using an Ansible playbook.

Prerequisites

The system to host the HTTP service is an IdM client.

You have the IdM administrator password.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

698

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-
present.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present.yml
/usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-copy.yml

4. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-copy.yml
Ansible playbook file for editing:

- name: Playbook to manage IPA service.
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service is present
 - ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com

5. Adapt the file:

Change the IdM administrator password defined by the ipaadmin_password variable.

Change the name of your IdM client on which the HTTP service is running, as defined by the
name variable of the ipaservice task.

6. Save and exit the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-is-present-copy.yml

Verification steps

1. Log into the IdM Web UI as IdM administrator.

2. Navigate to Identity → Services.

If HTTP/client.idm.example.com@IDM.EXAMPLE.COM is listed in the Services list, the Ansible
playbook has been successfully added to IdM.

Additional resources

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

699

To secure the communication between the HTTP server and browser clients, see adding TLS
encryption to an Apache HTTP Server.

To request a certificate for the HTTP service, see the procedure described in Obtaining an IdM
certificate for a service using certmonger.

85.2. ENSURING THE PRESENCE OF MULTIPLE SERVICES IN IDM ON
AN IDM CLIENT USING A SINGLE ANSIBLE TASK

You can use the ansible-freeipa ipaservice module to add, modify, and delete multiple Identity
Management (IdM) services with a single Ansible task. For that, use the services option of the
ipaservice module.

Using the services option, you can also specify multiple service variables that only apply to a particular
service. Define this service by the name variable, which is the only mandatory variable for the services
option.

Complete this procedure to ensure the presence of the
HTTP/client01.idm.example.com@IDM.EXAMPLE.COM and the
ftp/client02.idm.example.com@IDM.EXAMPLE.COM services in IdM with a single task.

Prerequisites

On the control node:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You are using RHEL 8.9 and later.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Procedure

1. Create your Ansible playbook file add-http-and-ftp-services.yml with the following content:

- name: Playbook to add multiple services in a single task
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

 tasks:
 - name: Add HTTP and ftp services
 ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 services:
 - name: HTTP/client01.idm.example.com@IDM.EXAMPLE.COM
 - name: ftp/client02.idm.example.com@IDM.EXAMPLE.COM

2. Run the playbook:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

700

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-http-and-
ftp-services.yml

Additional resources

The service module in ansible-freeipa upstream docs

85.3. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM ON A
NON-IDM CLIENT USING AN ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of an HTTP server in IdM on a host that is not an IdM client
using an Ansible playbook. By adding the HTTP server to IdM you are also adding the host to IdM.

Prerequisites

You have installed an HTTP service on your host.

The host on which you have set up HTTP is not an IdM client. Otherwise, follow the steps in
Ensuring the presence of an HTTP service in IdM using an Ansible playbook.

You have the IdM administrator password.

The DNS A record - or the AAAA record if IPv6 is used - for the host is available.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
without-host-check.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-without-host-
check.yml /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
without-host-check-copy.yml

4. Open the copied file, /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
without-host-check-copy.yml, for editing. Locate the ipaadmin_password and name
variables in the ipaservice task:

- name: Playbook to manage IPA service.
 hosts: ipaserver
 gather_facts: false

 vars_files:

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

701

https://github.com/freeipa/ansible-freeipa/blob/master/README-service.md

 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service is present
 - ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/www2.example.com
 skip_host_check: yes

5. Adapt the file:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the host on which the HTTP service is running.

6. Save and exit the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-is-present-without-host-check-copy.yml

Verification steps

1. Log into the IdM Web UI as IdM administrator.

2. Navigate to Identity → Services.

You can now see HTTP/client.idm.example.com@IDM.EXAMPLE.COM listed in the Services list.

Additional resources

To secure the communication, see adding TLS encryption to an Apache HTTP Server .

85.4. ENSURING THE PRESENCE OF AN HTTP SERVICE ON AN IDM
CLIENT WITHOUT DNS USING AN ANSIBLE PLAYBOOK

Follow this procedure to ensure the presence of an HTTP server running on an IdM client that has no
DNS entry using an Ansible playbook. The scenario implied is that the IdM host has no DNS A entry
available - or no DNS AAAA entry if IPv6 is used instead of IPv4.

Prerequisites

The system to host the HTTP service is enrolled in IdM.

The DNS A or DNS AAAA record for the host may not exist. Otherwise, if the DNS record for
the host does exist, follow the procedure in Ensuring the presence of an HTTP service in IdM
using an Ansible playbook.

You have the IdM administrator password.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

702

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
with-host-force.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-with-host-
force.yml /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-with-
host-force-copy.yml

4. Open the copied file, /usr/share/doc/ansible-freeipa/playbooks/service/service-is-present-
with-host-force-copy.yml, for editing. Locate the ipaadmin_password and name variables in
the ipaservice task:

- name: Playbook to manage IPA service.
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service is present
 - ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/ihavenodns.info
 force: yes

5. Adapt the file:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to the name of the host on which the HTTP service is running.

6. Save and exit the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-is-present-with-host-force-copy.yml

Verification steps

1. Log into the IdM Web UI as IdM administrator.

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

703

2. Navigate to Identity → Services.

You can now see HTTP/client.idm.example.com@IDM.EXAMPLE.COM listed in the Services list.

Additional resources

To secure the communication, see adding TLS encryption to the Apache HTTP Server .

85.5. ENSURING THE PRESENCE OF AN EXTERNALLY SIGNED
CERTIFICATE IN AN IDM SERVICE ENTRY USING AN ANSIBLE
PLAYBOOK

Follow this procedure to use the ansible-freeipa service module to ensure that a certificate issued by
an external certificate authority (CA) is attached to the IdM entry of the HTTP service. Having the
certificate of an HTTP service signed by an external CA rather than the IdM CA is particularly useful if
your IdM CA uses a self-signed certificate.

Prerequisites

You have installed an HTTP service on your host.

You have enrolled the HTTP service to IdM.

You have the IdM administrator password.

You have an externally signed certificate whose Subject corresponds to the principal of the
HTTP service.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
certificate-present.yml file, for example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-member-certificate-
present.yml /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
certificate-present-copy.yml

4. Optional: If the certificate is in the Privacy Enhanced Mail (PEM) format, convert the certificate
to the Distinguished Encoding Rules (DER) format for easier handling through the command-
line interface (CLI):

$ openssl x509 -outform der -in cert1.pem -out cert1.der

5. Decode the DER file to standard output using the base64 command. Use the -w0 option to

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

704

5. Decode the DER file to standard output using the base64 command. Use the -w0 option to
disable wrapping:

$ base64 cert1.der -w0
MIIC/zCCAeegAwIBAgIUV74O+4kXeg21o4vxfRRtyJm...

6. Copy the certificate from the standard output to the clipboard.

7. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-certificate-
present-copy.yml file for editing and view its contents:

- name: Service certificate present.
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service certificate is present
 - ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 certificate: |
 - MIICBjCCAW8CFHnm32VcXaUDGfEGdDL/...
 [...]
 action: member
 state: present

8. Adapt the file:

Replace the certificate, defined using the certificate variable, with the certificate you
copied from the CLI. Note that if you use the certificate: variable with the "|" pipe character
as indicated, you can enter the certificate THIS WAY rather than having it to enter it in a
single line. This makes reading the certificate easier.

Change the IdM administrator password, defined by the ipaadmin_password variable.

Change the name of your IdM client on which the HTTP service is running, defined by the
name variable.

Change any other relevant variables.

9. Save and exit the file.

10. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-certificate-present-copy.yml

Verification steps

1. Log into the IdM Web UI as IdM administrator.

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

705

2. Navigate to Identity → Services.

3. Click the name of the service with the newly added certificate, for example
HTTP/client.idm.example.com.

In the Service Certificate section on the right, you can now see the newly added certificate.

85.6. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS,
GROUPS, HOSTS, OR HOST GROUPS TO CREATE A KEYTAB OF A
SERVICE

A keytab is a file containing pairs of Kerberos principals and encrypted keys. Keytab files are commonly
used to allow scripts to automatically authenticate using Kerberos, without requiring human interaction
or access to password stored in a plain-text file. The script is then able to use the acquired credentials to
access files stored on a remote system.

As an Identity Management (IdM) administrator, you can allow other users to retrieve or even create a
keytab for a service running in IdM. By allowing specific users and user groups to create keytabs, you can
delegate the administration of the service to them without sharing the IdM administrator password. This
delegation provides a more fine-grained system administration.

Follow this procedure to allow specific IdM users, user groups, hosts, and host groups to create a keytab
for the HTTP service running on an IdM client. Specifically, it describes how you can allow the user01 IdM
user to create a keytab for the HTTP service running on an IdM client named client.idm.example.com.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You have enrolled the HTTP service to IdM.

The system to host the HTTP service is an IdM client.

The IdM users and user groups that you want to allow to create the keytab exist in IdM.

The IdM hosts and host groups that you want to allow to create the keytab exist in IdM.

Procedure

1. Create an inventory file, for example inventory.file:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

706

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_create_keytab-present.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_create_keytab-present.yml /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-allow_create_keytab-present-copy.yml

4. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_create_keytab-present-copy.yml Ansible playbook file for editing.

5. Adapt the file by changing the following:

The IdM administrator password specified by the ipaadmin_password variable.

The name of your IdM client on which the HTTP service is running. In the current example, it
is HTTP/client.idm.example.com

The names of IdM users that are listed in the allow_create_keytab_user: section. In the
current example, it is user01.

The names of IdM user groups that are listed in the allow_create_keytab_group: section.

The names of IdM hosts that are listed in the allow_create_keytab_host: section.

The names of IdM host groups that are listed in the allow_create_keytab_hostgroup:
section.

The name of the task specified by the name variable in the tasks section.
After being adapted for the current example, the copied file looks like this:

- name: Service member allow_create_keytab present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Service HTTP/client.idm.example.com members allow_create_keytab present for
user01
 ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 allow_create_keytab_user:
 - user01
 action: member

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

707

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-allow_create_keytab-present-copy.yml

Verification steps

1. SSH to an IdM server as an IdM user that has the privilege to create a keytab for the particular
HTTP service:

$ ssh user01@server.idm.example.com
Password:

2. Use the ipa-getkeytab command to generate the new keytab for the HTTP service:

$ ipa-getkeytab -s server.idm.example.com -p HTTP/client.idm.example.com -k
/etc/httpd/conf/krb5.keytab

The -s option specifies a Key Distribution Center (KDC) server to generate the keytab.

The -p option specifies the principal whose keytab you want to create.

The -k option specifies the keytab file to append the new key to. The file will be created if it
does not exist.

If the command does not result in an error, you have successfully created a keytab of
HTTP/client.idm.example.com as user01.

85.7. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS,
GROUPS, HOSTS, OR HOST GROUPS TO RETRIEVE A KEYTAB OF A
SERVICE

A keytab is a file containing pairs of Kerberos principals and encrypted keys. Keytab files are commonly
used to allow scripts to automatically authenticate using Kerberos, without requiring human interaction
or access to a password stored in a plain-text file. The script is then able to use the acquired credentials
to access files stored on a remote system.

As IdM administrator, you can allow other users to retrieve or even create a keytab for a service running
in IdM.

Follow this procedure to allow specific IdM users, user groups, hosts, and host groups to retrieve a
keytab for the HTTP service running on an IdM client. Specifically, it describes how to allow the user01
IdM user to retrieve the keytab of the HTTP service running on client.idm.example.com.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

708

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You have enrolled the HTTP service to IdM.

The IdM users and user groups that you want to allow to retrieve the keytab exist in IdM.

The IdM hosts and host groups that you want to allow to retrieve the keytab exist in IdM.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_retrieve_keytab-present.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_retrieve_keytab-present.yml /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-allow_retrieve_keytab-present-copy.yml

4. Open the copied file, /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
allow_retrieve_keytab-present-copy.yml, for editing:

5. Adapt the file:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable of the ipaservice task to the principal of the HTTP service. In the
current example, it is HTTP/client.idm.example.com

Specify the names of IdM users in the allow_retrieve_keytab_group: section. In the
current example, it is user01.

Specify the names of IdM user groups in the allow_retrieve_keytab_group: section.

Specify the names of IdM hosts in the allow_retrieve_keytab_group: section.

Specify the names of IdM host groups in the allow_retrieve_keytab_group: section.

Specify the name of the task using the name variable in the tasks section.
After being adapted for the current example, the copied file looks like this:

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

709

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Service member allow_retrieve_keytab present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Service HTTP/client.idm.example.com members allow_retrieve_keytab present for
user01
 ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 allow_retrieve_keytab_user:
 - user01
 action: member

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-allow_retrieve_keytab-present-copy.yml

Verification steps

1. SSH to an IdM server as an IdM user with the privilege to retrieve a keytab for the HTTP service:

$ ssh user01@server.idm.example.com
Password:

2. Use the ipa-getkeytab command with the -r option to retrieve the keytab:

$ ipa-getkeytab -r -s server.idm.example.com -p HTTP/client.idm.example.com -k
/etc/httpd/conf/krb5.keytab

The -s option specifies a Key Distribution Center (KDC) server from which you want to retrieve
the keytab.

The -p option specifies the principal whose keytab you want to retrieve.

The -k option specifies the keytab file to which you want to append the retrieved key. The file
will be created if it does not exist.

If the command does not result in an error, you have successfully retrieved a keytab of
HTTP/client.idm.example.com as user01.

85.8. ENSURING THE PRESENCE OF A KERBEROS PRINCIPAL ALIAS
OF A SERVICE USING AN ANSIBLE PLAYBOOK

In some scenarios, it is beneficial for IdM administrator to enable IdM users, hosts, or services to
authenticate against Kerberos applications using a Kerberos principal alias. These scenarios include:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

710

The user name changed, but the user should be able to log into the system using both the
previous and new user names.

The user needs to log in using the email address even if the IdM Kerberos realm differs from the
email domain.

Follow this procedure to create the principal alias of HTTP/mycompany.idm.example.com for the
HTTP service running on client.idm.example.com.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You have set up an HTTP service

You have enrolled the HTTP service to IdM.

The host on which you have set up HTTP is an IdM client.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
principal-present.yml Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-member-principal-
present.yml /usr/share/doc/ansible-freeipa/playbooks/service/service-member-
principal-present-copy.yml

4. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-member-principal-
present-copy.yml Ansible playbook file for editing.

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

711

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

5. Adapt the file by changing the following:

The IdM administrator password specified by the ipaadmin_password variable.

The name of the service specified by the name variable. This is the canonical principal name
of the service. In the current example, it is HTTP/client.idm.example.com.

The Kerberos principal alias specified by the principal variable. This is the alias you want to
add to the service defined by the name variable. In the current example, it is
host/mycompany.idm.example.com.

The name of the task specified by the name variable in the tasks section.
After being adapted for the current example, the copied file looks like this:

- name: Service member principal present
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Service HTTP/client.idm.example.com member principals
host/mycompany.idm.exmaple.com present
 ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 principal:
 - host/mycompany.idm.example.com
 action: member

6. Save the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-member-principal-present-copy.yml

If running the playbook results in 0 unreachable and 0 failed tasks, you have successfully created the
host/mycompany.idm.example.com Kerberos principal for the HTTP/client.idm.example.com service.

Additional resources

See Managing Kerberos principal aliases for users, hosts, and services .

85.9. ENSURING THE ABSENCE OF AN HTTP SERVICE IN IDM USING
AN ANSIBLE PLAYBOOK

Follow this procedure to unenroll a service from IdM. More specifically, it describes how to use an Ansible
playbook to ensure the absence of an HTTP server named HTTP/client.idm.example.com in IdM.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

712

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/linux_domain_identity_authentication_and_policy_guide/managing-kerberos-aliases

You have the IdM administrator password.

Procedure

1. Create an inventory file, for example inventory.file:

$ touch inventory.file

2. Open the inventory.file and define the IdM server that you want to configure in the [ipaserver]
section. For example, to instruct Ansible to configure server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-absent.yml
Ansible playbook file. For example:

$ cp /usr/share/doc/ansible-freeipa/playbooks/service/service-is-absent.yml
/usr/share/doc/ansible-freeipa/playbooks/service/service-is-absent-copy.yml

4. Open the /usr/share/doc/ansible-freeipa/playbooks/service/service-is-absent-copy.yml
Ansible playbook file for editing.

5. Adapt the file by changing the following:

The IdM administrator password defined by the ipaadmin_password variable.

The Kerberos principal of the HTTP service, as defined by the name variable of the
ipaservice task.
After being adapted for the current example, the copied file looks like this:

- name: Playbook to manage IPA service.
 hosts: ipaserver
 gather_facts: false

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 # Ensure service is absent
 - ipaservice:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: HTTP/client.idm.example.com
 state: absent

6. Save and exit the file.

7. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file /usr/share/doc/ansible-
freeipa/playbooks/service/service-is-absent-copy.yml

CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE

713

Verification steps

1. Log into the IdM Web UI as IdM administrator.

2. Navigate to Identity → Services.

If you cannot see the HTTP/client.idm.example.com@IDM.EXAMPLE.COM service in the Services
list, you have successfully ensured its absence in IdM.

85.10. ADDITIONAL RESOURCES

See the README-service.md Markdown file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/config directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

714

CHAPTER 86. ENABLING AD USERS TO ADMINISTER IDM

86.1. ID OVERRIDES FOR AD USERS

In Red Hat Enterprise Linux (RHEL) 7, external group membership allows Active Directory (AD) users
and groups to access Identity Management (IdM) resources in a POSIX environment with the help of
the System Security Services Daemon (SSSD).

The IdM LDAP server has its own mechanisms to grant access control. RHEL 8 introduces an update
that allows adding an ID user override for an AD user as a member of an IdM group. An ID override is a
record describing what a specific Active Directory user or group properties should look like within a
specific ID view, in this case the Default Trust View. As a consequence of the update, the IdM LDAP
server is able to apply access control rules for the IdM group to the AD user.

AD users are now able to use the self service features of IdM UI, for example to upload their SSH keys,
or change their personal data. An AD administrator is able to fully administer IdM without having two
different accounts and passwords.

NOTE

Currently, selected features in IdM may still be unavailable to AD users. For example,
setting passwords for IdM users as an AD user from the IdM admins group might fail.

IMPORTANT

Do not use ID overrides of AD users for sudo rules in IdM. ID overrides of AD users
represent only POSIX attributes of AD users, not AD users themselves.

Additional resources

Using ID views for Active Directory users

86.2. USING ID OVERRIDES TO ENABLE AD USERS TO ADMINISTER
IDM

Follow this procedure to create and use an ID override for an AD user to give that user rights identical to
those of an IdM user. During this procedure, work on an IdM server that is configured as a trust controller
or a trust agent.

Prerequisites

The idm:DL1 stream is enabled on your Identity Management (IdM) server and you have
switched to the RPMs delivered through this stream:

yum module enable idm:DL1
yum distro-sync

The idm:DL1/adtrust profile is installed on your IdM server.

yum module install idm:DL1/adtrust

The profile contains all the packages necessary for installing an IdM server that will have a trust

CHAPTER 86. ENABLING AD USERS TO ADMINISTER IDM

715

The profile contains all the packages necessary for installing an IdM server that will have a trust
agreement with Active Directory (AD).

A working IdM environment is set up. For details, see Installing Identity Management .

A working trust between your IdM environment and AD is set up.

Procedure

1. As an IdM administrator, create an ID override for an AD user in the Default Trust View. For
example, to create an ID override for the user ad_user@ad.example.com:

kinit admin
ipa idoverrideuser-add 'default trust view' ad_user@ad.example.com

2. Add the ID override from the Default Trust View as a member of an IdM group. This must be a
non-POSIX group, as it interacts with Active Directory.
If the group in question is a member of an IdM role, the AD user represented by the ID override
gains all permissions granted by the role when using the IdM API, including both the command
line interface and the IdM web UI.

For example, to add the ID override for the ad_user@ad.example.com user to the IdM admins
group:

ipa group-add-member admins --idoverrideusers=ad_user@ad.example.com

3. Alternatively, you can add the ID override to a role, such as the User Administrator role:

ipa role-add-member 'User Administrator' --
idoverrideusers=ad_user@ad.example.com

Additional resources

Using ID views for Active Directory users

86.3. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM

Follow this procedure to use an Ansible playbook to ensure that a user ID override is present in an
Identity Management (IdM) group. The user ID override is the override of an Active Directory (AD) user
that you created in the Default Trust View after you established a trust with AD. As a result of running
the playbook, an AD user, for example an AD administrator, is able to fully administer IdM without having
two different accounts and passwords.

Prerequisites

You know the IdM admin password.

You have installed a trust with AD .

The user ID override of the AD user already exists in IdM. If it does not, create it with the ipa
idoverrideuser-add 'default trust view' ad_user@ad.example.com command.

The group to which you are adding the user ID override already exists in IdM .

You are using the 4.8.7 version of IdM or later. To view the version of IdM you have installed on

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

716

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-id-views-for-active-directory-users_configuring-and-managing-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-user-groups-using-ansible-playbooks_configuring-and-managing-idm#ensuring-the-presence-of-IdM-groups-and-group-members-using-Ansible-playbooks_managing-user-groups-using-ansible-playbooks

You are using the 4.8.7 version of IdM or later. To view the version of IdM you have installed on
your server, enter ipa --version.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create an add-useridoverride-to-group.yml playbook with the following content:

- name: Playbook to ensure presence of users in a group
 hosts: ipaserver

 - name: Ensure the ad_user@ad.example.com user ID override is a member of the admins
group:
 ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: admins
 idoverrideuser:
 - ad_user@ad.example.com

In the example:

Secret123 is the IdM admin password.

admins is the name of the IdM POSIX group to which you are adding the
ad_user@ad.example.com ID override. Members of this group have full administrator
privileges.

ad_user@ad.example.com is the user ID override of an AD administrator. The user is stored
in the AD domain with which a trust has been established.

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory add-
useridoverride-to-group.yml

CHAPTER 86. ENABLING AD USERS TO ADMINISTER IDM

717

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Additional resources

ID overrides for AD users

/usr/share/doc/ansible-freeipa/README-group.md

/usr/share/doc/ansible-freeipa/playbooks/user

Using ID views in Active Directory environments

86.4. VERIFYING THAT AN AD USER CAN PERFORM CORRECT
COMMANDS IN THE IDM CLI

This procedure checks that an Active Directory (AD) user can log into Identity Management (IdM)
command-line interface (CLI) and run commands appropriate for his role.

1. Destroy the current Kerberos ticket of the IdM administrator:

kdestroy -A

NOTE

The destruction of the Kerberos ticket is required because the GSSAPI
implementation in MIT Kerberos chooses credentials from the realm of the target
service by preference, which in this case is the IdM realm. This means that if a
credentials cache collection, namely the KCM:, KEYRING:, or DIR: type of
credentials cache is in use, a previously obtained admin or any other IdM
principal’s credentials will be used to access the IdM API instead of the AD user’s
credentials.

2. Obtain the Kerberos credentials of the AD user for whom an ID override has been created:

kinit ad_user@AD.EXAMPLE.COM
Password for ad_user@AD.EXAMPLE.COM:

3. Test that the ID override of the AD user enjoys the same privileges stemming from membership
in the IdM group as any IdM user in that group. If the ID override of the AD user has been added
to the admins group, the AD user can, for example, create groups in IdM:

ipa group-add some-new-group

Added group "some-new-group"

 Group name: some-new-group
 GID: 1997000011

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

718

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/enabling-ad-users-to-administer-idm_configuring-and-managing-idm#id-overrides-for-ad-users_enabling-ad-users-to-administer-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-id-views-for-active-directory-users_configuring-and-managing-idm

CHAPTER 87. CONFIGURING THE DOMAIN RESOLUTION
ORDER TO RESOLVE SHORT AD USER NAMES

By default, you must specify fully qualified names in the format user_name@domain.com or
domain.com\user_name to resolve and authenticate users and groups from an Active Directory (AD)
environment. The following sections describe how to configure IdM servers and clients to resolve short
AD usernames and group names.

How domain resolution order works

Setting the global domain resolution order on an IdM server

Setting the domain resolution order for an ID view on an IdM server

Setting the domain resolution order in SSSD on an IdM client

87.1. HOW DOMAIN RESOLUTION ORDER WORKS

In Identity Management (IdM) environments with an Active Directory (AD) trust, Red Hat recommends
that you resolve and authenticate users and groups by specifying their fully qualified names. For
example:

<idm_username>@idm.example.com for IdM users from the idm.example.com domain

<ad_username>@ad.example.com for AD users from the ad.example.com domain

By default, if you perform user or group lookups using the short name format, such as ad_username,
IdM only searches the IdM domain and fails to find the AD users or groups. To resolve AD users or
groups using short names, change the order in which IdM searches multiple domains by setting the
domain resolution order option.

You can set the domain resolution order centrally in the IdM database or in the SSSD configuration of
individual clients. IdM evaluates domain resolution order in the following order of priority:

The local /etc/sssd/sssd.conf configuration.

The ID view configuration.

The global IdM configuration.

Notes

You must use fully qualified usernames if the SSSD configuration on the host includes the
default_domain_suffix option and you want to make a request to a domain not specified with
this option.

If you use the domain resolution order option and query the compat tree, you might receive
multiple user IDs (UIDs). If this might affect you, see Pagure bug report Inconsistent compat
user objects for AD users when domain resolution order is set.

IMPORTANT

Do not use the full_name_format SSSD option on IdM clients or IdM servers. Using a
non-default value for this option changes how usernames are displayed and might disrupt
lookups in an IdM environment.

CHAPTER 87. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES

719

https://pagure.io/freeipa/issue/7748

Additional resources

Active Directory Trust for Legacy Linux Clients .

87.2. SETTING THE GLOBAL DOMAIN RESOLUTION ORDER ON AN
IDM SERVER

This procedure sets the domain resolution order for all the clients in the IdM domain. This example sets
the domain resolution order to search for users and groups in the following order:

1. Active Directory (AD) root domain ad.example.com

2. AD child domain subdomain1.ad.example.com

3. IdM domain idm.example.com

Prerequisites

You have configured a trust with an AD environment.

Procedure

Use the ipa config-mod --domain-resolution-order command to list the domains to be
searched in your preferred order. Separate the domains with a colon (:).

[user@server ~]$ ipa config-mod --domain-resolution-
order='ad.example.com:subdomain1.ad.example.com:idm.example.com'
Maximum username length: 32
Home directory base: /home
...
 Domain Resolution Order:
ad.example.com:subdomain1.ad.example.com:idm.example.com
...

Verification steps

Verify you can retrieve user information for a user from the ad.example.com domain using only
a short name.

[root@client ~]# id <ad_username>
uid=1916901102(ad_username) gid=1916900513(domain users)
groups=1916900513(domain users)

87.3. SETTING THE DOMAIN RESOLUTION ORDER FOR AN ID VIEW
ON AN IDM SERVER

This procedure sets the domain resolution order for an ID view that you can apply to a specific set of IdM
servers and clients. This example creates an ID view named ADsubdomain1_first for IdM host
client1.idm.example.com, and sets the domain resolution order to search for users and groups in the
following order:

1. Active Directory (AD) child domain subdomain1.ad.example.com

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

720

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/windows_integration_guide/trust-legacy

2. AD root domain ad.example.com

3. IdM domain idm.example.com

NOTE

The domain resolution order set in an ID view overrides the global domain resolution
order, but it does not override any domain resolution order set locally in the SSSD
configuration.

Prerequisites

You have configured a trust with an AD environment.

Procedure

1. Create an ID view with the --domain-resolution-order option set.

[user@server ~]$ ipa idview-add ADsubdomain1_first --desc "ID view for resolving AD
subdomain1 first on client1.idm.example.com" --domain-resolution-order
subdomain1.ad.example.com:ad.example.com:idm.example.com

Added ID View "ADsubdomain1_first"

ID View Name: ADsubdomain1_first
Description: ID view for resolving AD subdomain1 first on client1.idm.example.com
Domain Resolution Order:
subdomain1.ad.example.com:ad.example.com:idm.example.com

2. Apply the ID view to IdM hosts.

[user@server ~]$ ipa idview-apply ADsubdomain1_first --hosts
client1.idm.example.com

Applied ID View "ADsubdomain1_first"

 hosts: client1.idm.example.com

Number of hosts the ID View was applied to: 1

Verification steps

Display the details of the ID view.

[user@server ~]$ ipa idview-show ADsubdomain1_first --show-hosts
 ID View Name: ADsubdomain1_first
 Description: ID view for resolving AD subdomain1 first on client1.idm.example.com
 Hosts the view applies to: client1.idm.example.com
 Domain resolution order:
subdomain1.ad.example.com:ad.example.com:idm.example.com

Verify you can retrieve user information for a user from the subdomain1.ad.example.com
domain using only a short name.

CHAPTER 87. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES

721

[root@client1 ~]# id <user_from_subdomain1>
uid=1916901106(user_from_subdomain1) gid=1916900513(domain users)
groups=1916900513(domain users)

87.4. SETTING THE DOMAIN RESOLUTION ORDER IN SSSD ON AN IDM
CLIENT

This procedure sets the domain resolution order in the SSSD configuration on an IdM client. This
example configures IdM host client2.idm.example.com to search for users and groups in the following
order:

1. Active Directory (AD) child domain subdomain1.ad.example.com

2. AD root domain ad.example.com

3. IdM domain idm.example.com

NOTE

The domain resolution order in the local SSSD configuration overrides any global and ID
view domain resolution order.

Prerequisites

You have configured a trust with an AD environment.

Procedure

1. Open the /etc/sssd/sssd.conf file in a text editor.

2. Set the domain_resolution_order option in the [sssd] section of the file.

domain_resolution_order = subdomain1.ad.example.com, ad.example.com,
idm.example.com

3. Save and close the file.

4. Restart the SSSD service to load the new configuration settings.

[root@client2 ~]# systemctl restart sssd

Verification Steps

Verify you can retrieve user information for a user from the subdomain1.ad.example.com
domain using only a short name.

[root@client2 ~]# id <user_from_subdomain1>
uid=1916901106(user_from_subdomain1) gid=1916900513(domain users)
groups=1916900513(domain users)

87.5. ADDITIONAL RESOURCES

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

722

Using an ID view to override a user attribute value on an IdM client

CHAPTER 87. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES

723

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-an-id-view-to-override-a-user-attribute-value-on-an-idm-client_configuring-and-managing-idm

CHAPTER 88. ENABLING AUTHENTICATION USING AD USER
PRINCIPAL NAMES IN IDM

88.1. USER PRINCIPAL NAMES IN AN AD FOREST TRUSTED BY IDM

As an Identity Management (IdM) administrator, you can allow AD users to use alternative User
Principal Names (UPNs) to access resources in the IdM domain. A UPN is an alternative user login that
AD users authenticate with in the format of user_name@KERBEROS-REALM. As an AD administrator,
you can set alternative values for both user_name and KERBEROS-REALM, since you can configure
both additional Kerberos aliases and UPN suffixes in an AD forest.

For example, if a company uses the Kerberos realm AD.EXAMPLE.COM, the default UPN for a user
is user@ad.example.com. To allow your users to log in using their email addresses, for
example user@example.com, you can configure EXAMPLE.COM as an alternative UPN in AD.
Alternative UPNs (also known as enterprise UPNs) are especially convenient if your company has
recently experienced a merge and you want to provide your users with a unified logon namespace.

UPN suffixes are only visible for IdM when defined in the AD forest root. As an AD administrator, you can
define UPNs with the Active Directory Domain and Trust utility or the PowerShell command line tool.

NOTE

To configure UPN suffixes for users, Red Hat recommends to use tools that perform
error validation, such as the Active Directory Domain and Trust utility.

Red Hat recommends against configuring UPNs through low-level modifications, such as
using ldapmodify commands to set the userPrincipalName attribute for users, because
Active Directory does not validate those operations.

After you define a new UPN on the AD side, run the ipa trust-fetch-domains command on an IdM server
to retrieve the updated UPNs. See Ensuring that AD UPNs are up-to-date in IdM .

IdM stores the UPN suffixes for a domain in the multi-value attribute ipaNTAdditionalSuffixes of the
subtree cn=trusted_domain_name,cn=ad,cn=trusts,dc=idm,dc=example,dc=com.

Additional resources

How to script UPN suffix setup in AD forest root

How to manually modify AD user entries and bypass any UPN suffix validation

Trust controllers and trust agents

88.2. ENSURING THAT AD UPNS ARE UP-TO-DATE IN IDM

After you add or remove a User Principal Name (UPN) suffix in a trusted Active Directory (AD) forest,
refresh the information for the trusted forest on an IdM server.

Prerequisites

IdM administrator credentials.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

724

https://docs.microsoft.com/en-us/powershell/module/activedirectory/set-adforest
https://docs.microsoft.com/en-us/microsoft-365/enterprise/prepare-a-non-routable-domain-for-directory-synchronization
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-a-cross-forest-trust-between-idm-and-ad_planning-identity-management#trust-controllers-and-trust-agents_planning-a-cross-forest-trust-between-idm-and-ad

Enter the ipa trust-fetch-domains command. Note that a seemingly empty output is expected:

[root@ipaserver ~]# ipa trust-fetch-domains
Realm-Name: ad.example.com

No new trust domains were found

Number of entries returned 0

Verification steps

Enter the ipa trust-show command to verify that the server has fetched the new UPN. Specify
the name of the AD realm when prompted:

[root@ipaserver ~]# ipa trust-show
Realm-Name: ad.example.com
 Realm-Name: ad.example.com
 Domain NetBIOS name: AD
 Domain Security Identifier: S-1-5-21-796215754-1239681026-23416912
 Trust direction: One-way trust
 Trust type: Active Directory domain
 UPN suffixes: example.com

The output shows that the example.com UPN suffix is now part of the ad.example.com realm entry.

88.3. GATHERING TROUBLESHOOTING DATA FOR AD UPN
AUTHENTICATION ISSUES

Follow this procedure to gather troubleshooting data about the User Principal Name (UPN)
configuration from your Active Directory (AD) environment and your IdM environment. If your AD users
are unable to log in using alternate UPNs, you can use this information to narrow your troubleshooting
efforts.

Prerequisites

You must be logged in to an IdM Trust Controller or Trust Agent to retrieve information from an
AD domain controller.

You need root permissions to modify the following configuration files, and to restart IdM
services.

Procedure

1. Open the /usr/share/ipa/smb.conf.empty configuration file in a text editor.

2. Add the following contents to the file.

[global]
log level = 10

3. Save and close the /usr/share/ipa/smb.conf.empty file.

CHAPTER 88. ENABLING AUTHENTICATION USING AD USER PRINCIPAL NAMES IN IDM

725

4. Open the /etc/ipa/server.conf configuration file in a text editor. If you do not have that file,
create one.

5. Add the following contents to the file.

[global]
debug = True

6. Save and close the /etc/ipa/server.conf file.

7. Restart the Apache webserver service to apply the configuration changes:

[root@server ~]# systemctl restart httpd

8. Retrieve trust information from your AD domain:

[root@server ~]# ipa trust-fetch-domains <ad.example.com>

9. Review the debugging output and troubleshooting information in the following log files:

/var/log/httpd/error_log

/var/log/samba/log.*

Additional resources

See Using rpcclient to gather troubleshooting data for AD UPN authentication issues .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

726

https://access.redhat.com/solutions/5825651

CHAPTER 89. USING CANONICALIZED DNS HOST NAMES IN
IDM

DNS canonicalization is disabled by default on Identity Management (IdM) clients to avoid potential
security risks. For example, if an attacker controls the DNS server and a host in the domain, the attacker
can cause the short host name, such as demo, to resolve to a compromised host, such as
malicious.example.com. In this case, the user connects to a different server than expected.

This procedure describes how to use canonicalized host names on IdM clients.

89.1. ADDING AN ALIAS TO A HOST PRINCIPAL

By default, Identity Management (IdM) clients enrolled by using the ipa-client-install command do not
allow to use short host names in service principals. For example, users can use only
host/demo.example.com@EXAMPLE.COM instead of host/demo@EXAMPLE.COM when accessing a
service.

Follow this procedure to add an alias to a Kerberos principal. Note that you can alternatively enable
canonicalization of host names in the /etc/krb5.conf file. For details, see Enabling canonicalization of
host names in service principals on clients.

Prerequisites

The IdM client is installed.

The host name is unique in the network.

Procedure

1. Authenticate to IdM as the admin user:

$ kinit admin

2. Add the alias to the host principal. For example, to add the demo alias to the
demo.examle.com host principal:

$ ipa host-add-principal demo.example.com --principal=demo

89.2. ENABLING CANONICALIZATION OF HOST NAMES IN SERVICE
PRINCIPALS ON CLIENTS

Follow this procedure to enable canonicalization of host names in services principals on clients.

Note that if you use host principal aliases, as described in Adding an alias to a host principal , you do not
need to enable canonicalization.

Prerequisites

The Identity Management (IdM) client is installed.

You are logged in to the IdM client as the root user.

The host name is unique in the network.

CHAPTER 89. USING CANONICALIZED DNS HOST NAMES IN IDM

727

Procedure

1. Set the dns_canonicalize_hostname parameter in the [libdefaults] section in the
/etc/krb5.conf file to false:

[libdefaults]
...
dns_canonicalize_hostname = true

89.3. OPTIONS FOR USING HOST NAMES WITH DNS HOST NAME
CANONICALIZATION ENABLED

If you set dns_canonicalize_hostname = true in the /etc/krb5.conf file as explained in Enabling
canonicalization of host names in service principals on clients, you have the following options when you
use a host name in a service principal:

In Identity Management (IdM) environments, you can use the full host name in a service
principal, such as host/demo.example.com@EXAMPLE.COM.

In environments without IdM, but if the RHEL host as a member of an Active Directory (AD)
domain, no further considerations are required, because AD domain controllers (DC)
automatically create service principals for NetBIOS names of the machines enrolled into AD.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

728

CHAPTER 90. MANAGING GLOBAL DNS CONFIGURATION IN
IDM USING ANSIBLE PLAYBOOKS

Using the Red Hat Ansible Engine dnsconfig module, you can configure global configuration for
Identity Management (IdM) DNS. Settings defined in global DNS configuration are applied to all IdM
DNS servers. However, the global configuration has lower priority than the configuration for a specific
IdM DNS zone.

The dnsconfig module supports the following variables:

The global forwarders, specifically their IP addresses and the port used for communication.

The global forwarding policy: only, first, or none. For more details on these types of DNS
forward policies, see DNS forward policies in IdM .

The synchronization of forward lookup and reverse lookup zones.

Prerequisites

DNS service is installed on the IdM server. For more information about how to install an IdM
server with integrated DNS, see one of the following links:

Installing an IdM server: With integrated DNS, with an integrated CA as the root CA

Installing an IdM server: With integrated DNS, with an external CA as the root CA

Installing an IdM server: With integrated DNS, without a CA

This chapter includes the following sections:

How IdM ensures that global forwarders from /etc/resolv.conf are not removed by
NetworkManager

Ensuring the presence of a DNS global forwarder in IdM using Ansible

Ensuring the absence of a DNS global forwarder in IdM using Ansible

The action: member option in ipadnsconfig ansible-freeipa modules

An introduction to DNS forward policies in IdM

Using an Ansible playbook to ensure that the forward first policy is set in IdM DNS global
configuration

Using an Ansible playbook to ensure that global forwarders are disabled in IdM DNS

Using an Ansible playbook to ensure that synchronization of forward and reverse lookup zones is
disabled in IdM DNS

90.1. HOW IDM ENSURES THAT GLOBAL FORWARDERS FROM
/ETC/RESOLV.CONF ARE NOT REMOVED BY NETWORKMANAGER

Installing Identity Management (IdM) with integrated DNS configures the /etc/resolv.conf file to point

CHAPTER 90. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

729

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-integrated-dns_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-external-ca_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-without-a-ca_installing-identity-management

Installing Identity Management (IdM) with integrated DNS configures the /etc/resolv.conf file to point
to the 127.0.0.1 localhost address:

Generated by NetworkManager
search idm.example.com
nameserver 127.0.0.1

In certain environments, such as networks that use Dynamic Host Configuration Protocol (DHCP), the
NetworkManager service may revert changes to the /etc/resolv.conf file. To make the DNS
configuration persistent, the IdM DNS installation process also configures the NetworkManager service
in the following way:

1. The DNS installation script creates an /etc/NetworkManager/conf.d/zzz-ipa.conf
NetworkManager configuration file to control the search order and DNS server list:

auto-generated by IPA installer
[main]
dns=default

[global-dns]
searches=$DOMAIN

[global-dns-domain-*]
servers=127.0.0.1

2. The NetworkManager service is reloaded, which always creates the /etc/resolv.conf file with
the settings from the last file in the /etc/NetworkManager/conf.d/ directory. This is in this case
the zzz-ipa.conf file.

IMPORTANT

Do not modify the /etc/resolv.conf file manually.

90.2. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the presence of a DNS global forwarder in
IdM. In the example procedure below, the IdM administrator ensures the presence of a DNS global
forwarder to a DNS server with an Internet Protocol (IP) v4 address of 7.7.9.9 and IP v6 address of
2001:db8::1:0 on port 53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

730

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-presence-of-a-global-forwarder.yml

4. Open the ensure-presence-of-a-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the presence of a
global forwarder in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the presence of a DNS
global forwarder to 7.7.9.9 and 2001:db8::1:0 on port 53.

c. In the forwarders section of the ipadnsconfig portion:

i. Change the first ip_address value to the IPv4 address of the global forwarder: 7.7.9.9.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:db8::1:0.

iii. Verify the port value is set to 53.

d. Change the state to present.
This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the presence of a global forwarder in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the presence of a DNS global forwarder to 7.7.9.9 and 2001:db8::1:0 on port
53
 ipadnsconfig:
 forwarders:

CHAPTER 90. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

731

 - ip_address: 7.7.9.9
 - ip_address: 2001:db8::1:0
 port: 53
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-presence-
of-a-global-forwarder.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

90.3. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the absence of a DNS global forwarder in
IdM. In the example procedure below, the IdM administrator ensures the absence of a DNS global
forwarder with an Internet Protocol (IP) v4 address of 8.8.6.6 and IP v6 address of
2001:4860:4860::8800 on port 53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

732

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-absence-of-a-global-forwarder.yml

4. Open the ensure-absence-of-a-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the absence of a
global forwarder in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the absence of a DNS global
forwarder to 8.8.6.6 and 2001:4860:4860::8800 on port 53.

c. In the forwarders section of the ipadnsconfig portion:

i. Change the first ip_address value to the IPv4 address of the global forwarder: 8.8.6.6.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:4860:4860::8800.

iii. Verify the port value is set to 53.

d. Set the action variable to member.

e. Verify the state is set to absent.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the absence of a global forwarder in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the absence of a DNS global forwarder to 8.8.6.6 and
2001:4860:4860::8800 on port 53
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.6
 - ip_address: 2001:4860:4860::8800
 port: 53
 action: member
 state: absent

IMPORTANT

If you only use the state: absent option in your playbook without also using
action: member, the playbook fails.

6. Save the file.

7. Run the playbook:

CHAPTER 90. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

733

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-absence-of-
a-global-forwarder.yml

Additional resources

The README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory

The action: member option in ipadnsconfig ansible-freeipa modules

90.4. THE ACTION: MEMBER OPTION IN IPADNSCONFIG ANSIBLE-
FREEIPA MODULES

Excluding global forwarders in Identity Management (IdM) by using the ansible-freeipa ipadnsconfig
module requires using the action: member option in addition to the state: absent option. If you only
use state: absent in your playbook without also using action: member, the playbook fails.
Consequently, to remove all global forwarders, you must specify all of them individually in the playbook.
In contrast, the state: present option does not require action: member.

The following table provides configuration examples for both adding and removing DNS global
forwarders that demonstrate the correct use of the action: member option. The table shows, in each
line:

The global forwarders configured before executing a playbook

An excerpt from the playbook

The global forwarders configured after executing the playbook

Table 90.1. ipadnsconfig management of global forwarders

Forwarders
before

Playbook excerpt Forwarders
after

8.8.6.6

[...]
tasks:
- name: Ensure the presence of DNS global forwarder 8.8.6.7
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.7
 state: present

8.8.6.7

8.8.6.6

[...]
tasks:
- name: Ensure the presence of DNS global forwarder 8.8.6.7
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.7
 action: member
 state: present

8.8.6.6,
8.8.6.7

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

734

8.8.6.6,
8.8.6.7 [...]

tasks:
- name: Ensure the absence of DNS global forwarder 8.8.6.7
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.7
 state: absent

Trying to
execute the
playbook
results in an
error. The
original
configuratio
n - 8.8.6.6,
8.8.6.7 - is
left
unchanged.

8.8.6.6,
8.8.6.7 [...]

tasks:
- name: Ensure the absence of DNS global forwarder 8.8.6.7
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.7
 action: member
 state: absent

8.8.6.6

Forwarders
before

Playbook excerpt Forwarders
after

90.5. DNS FORWARD POLICIES IN IDM

IdM supports the first and only standard BIND forward policies, as well as the none IdM-specific
forward policy.

Forward first (default)

The IdM BIND service forwards DNS queries to the configured forwarder. If a query fails because of a
server error or timeout, BIND falls back to the recursive resolution using servers on the Internet. The
forward first policy is the default policy, and it is suitable for optimizing DNS traffic.

Forward only

The IdM BIND service forwards DNS queries to the configured forwarder. If a query fails because of a
server error or timeout, BIND returns an error to the client. The forward only policy is recommended
for environments with split DNS configuration.

None (forwarding disabled)

DNS queries are not forwarded with the none forwarding policy. Disabling forwarding is only useful as
a zone-specific override for global forwarding configuration. This option is the IdM equivalent of
specifying an empty list of forwarders in BIND configuration.

NOTE

CHAPTER 90. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

735

NOTE

You cannot use forwarding to combine data in IdM with data from other DNS servers.
You can only forward queries for specific subzones of the primary zone in IdM DNS.

By default, the BIND service does not forward queries to another server if the queried
DNS name belongs to a zone for which the IdM server is authoritative. In such a situation,
if the queried DNS name cannot be found in the IdM database, the NXDOMAIN answer is
returned. Forwarding is not used.

Example 90.1. Example Scenario

The IdM server is authoritative for the test.example. DNS zone. BIND is configured to forward
queries to the DNS server with the 192.0.2.254 IP address.

When a client sends a query for the nonexistent.test.example. DNS name, BIND detects that the
IdM server is authoritative for the test.example. zone and does not forward the query to the
192.0.2.254. server. As a result, the DNS client receives the NXDomain error message, informing the
user that the queried domain does not exist.

90.6. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT THE
FORWARD FIRST POLICY IS SET IN IDM DNS GLOBAL
CONFIGURATION

Follow this procedure to use an Ansible playbook to ensure that global forwarding policy in IdM DNS is
set to forward first.

If you use the forward first DNS forwarding policy, DNS queries are forwarded to the configured
forwarder. If a query fails because of a server error or timeout, BIND falls back to the recursive resolution
using servers on the Internet. The forward first policy is the default policy. It is suitable for traffic
optimization.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Your IdM environment contains an integrated DNS server.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

736

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the set-configuration.yml Ansible playbook file. For example:

$ cp set-configuration.yml set-forward-policy-to-first.yml

4. Open the set-forward-policy-to-first.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsconfig task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the forward_policy variable to first.
Delete all the other lines of the original playbook that are irrelevant. This is the modified
Ansible playbook file for the current example:

- name: Playbook to set global forwarding policy to first
 hosts: ipaserver
 become: true

 tasks:
 - name: Set global forwarding policy to first.
 ipadnsconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 forward_policy: first

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file set-forward-
policy-to-first.yml

Additional resources

See DNS forward policies in IdM .

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

For more sample playbooks, see the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig
directory.

90.7. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT GLOBAL

CHAPTER 90. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

737

90.7. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT GLOBAL
FORWARDERS ARE DISABLED IN IDM DNS

Follow this procedure to use an Ansible playbook to ensure that global forwarders are disabled in IdM
DNS. The disabling is done by setting the forward_policy variable to none.

Disabling global forwarders causes DNS queries not to be forwarded. Disabling forwarding is only useful
as a zone-specific override for global forwarding configuration. This option is the IdM equivalent of
specifying an empty list of forwarders in BIND configuration.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Your IdM environment contains an integrated DNS server.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the disable-global-forwarders.yml Ansible playbook file. For example:

$ cp disable-global-forwarders.yml disable-global-forwarders-copy.yml

4. Open the disable-global-forwarders-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsconfig task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the forward_policy variable to none.
This is the modified Ansible playbook file for the current example:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

738

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Playbook to disable global DNS forwarders
 hosts: ipaserver
 become: true

 tasks:
 - name: Disable global forwarders.
 ipadnsconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 forward_policy: none

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file disable-
global-forwarders-copy.yml

Additional resources

See DNS forward policies in IdM .

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

See more sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig
directory.

90.8. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT
SYNCHRONIZATION OF FORWARD AND REVERSE LOOKUP ZONES IS
DISABLED IN IDM DNS

Follow this procedure to use an Ansible playbook to ensure that forward and reverse lookup zones are
not synchronized in IdM DNS.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Your IdM environment contains an integrated DNS server.

Procedure

CHAPTER 90. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS

739

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the disallow-reverse-sync.yml Ansible playbook file. For example:

$ cp disallow-reverse-sync.yml disallow-reverse-sync-copy.yml

4. Open the disallow-reverse-sync-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsconfig task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the allow_sync_ptr variable to no.
This is the modified Ansible playbook file for the current example:

- name: Playbook to disallow reverse record synchronization
 hosts: ipaserver
 become: true

 tasks:
 - name: Disallow reverse record synchronization.
 ipadnsconfig:
 ipaadmin_password: "{{ ipaadmin_password }}"
 allow_sync_ptr: no

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file disallow-
reverse-sync-copy.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

For more sample playbooks, see the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig
directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

740

CHAPTER 91. MANAGING DNS ZONES IN IDM
As Identity Management (IdM) administrator, you can manage how IdM DNS zones work. The chapter
describes the following topics and procedures:

What DNS zone types are supported in IdM

How to add primary IdM DNS zones using the IdM Web UI

How to add primary IdM DNS zones using the IdM CLI

How to remove primary IdM DNS zones using the IdM Web UI

How to remove primary IdM DNS zones using the IdM CLI

What DNS attributes you can configure in IdM

How you can configure these attributes in the IdM Web UI

How you can configure these attributes in the IdM CLI

How zone transfers work in IdM

How you can allow zone transfers in the IdM Web UI

How you can allow zone transfers in the IdM CLI

Prerequisites

DNS service is installed on the IdM server. For more information about how to install an IdM
server with integrated DNS, see one of the following links:

Installing an IdM server: With integrated DNS, with an integrated CA as the root CA

Installing an IdM server: With integrated DNS, with an external CA as the root CA

Installing an IdM server: With integrated DNS, without a CA

91.1. SUPPORTED DNS ZONE TYPES

Identity Management (IdM) supports two types of DNS zones: primary and forward zones. These two
types of zones are described here, including an example scenario for DNS forwarding.

NOTE

This guide uses the BIND terminology for zone types which is different from the
terminology used for Microsoft Windows DNS. Primary zones in BIND serve the same
purpose as forward lookup zones and reverse lookup zones in Microsoft Windows DNS.
Forward zones in BIND serve the same purpose as conditional forwarders in
Microsoft Windows DNS.

Primary DNS zones

Primary DNS zones contain authoritative DNS data and can accept dynamic DNS updates. This
behavior is equivalent to the type master setting in standard BIND configuration. You can manage
primary zones using the ipa dnszone-* commands.

In compliance with standard DNS rules, every primary zone must contain start of authority (SOA)

CHAPTER 91. MANAGING DNS ZONES IN IDM

741

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-integrated-dns_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-external-ca_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-without-a-ca_installing-identity-management

In compliance with standard DNS rules, every primary zone must contain start of authority (SOA)
and nameserver (NS) records. IdM generates these records automatically when the DNS zone is
created, but you must copy the NS records manually to the parent zone to create proper delegation.

In accordance with standard BIND behavior, queries for names for which the server is not
authoritative are forwarded to other DNS servers. These DNS servers, so called forwarders, may or
may not be authoritative for the query.

Example 91.1. Example scenario for DNS forwarding

The IdM server contains the test.example. primary zone. This zone contains an NS delegation
record for the sub.test.example. name. In addition, the test.example. zone is configured with the
192.0.2.254 forwarder IP address for the sub.text.example subzone.

A client querying the name nonexistent.test.example. receives the NXDomain answer, and no
forwarding occurs because the IdM server is authoritative for this name.

On the other hand, querying for the host1.sub.test.example. name is forwarded to the
configured forwarder 192.0.2.254 because the IdM server is not authoritative for this name.

Forward DNS zones

From the perspective of IdM, forward DNS zones do not contain any authoritative data. In fact, a
forward "zone" usually only contains two pieces of information:

A domain name

The IP address of a DNS server associated with the domain

All queries for names belonging to the domain defined are forwarded to the specified IP address. This
behavior is equivalent to the type forward setting in standard BIND configuration. You can manage
forward zones using the ipa dnsforwardzone-* commands.

Forward DNS zones are especially useful in the context of IdM-Active Directory (AD) trusts. If the IdM
DNS server is authoritative for the idm.example.com zone and the AD DNS server is authoritative for
the ad.example.com zone, then ad.example.com is a DNS forward zone for the idm.example.com
primary zone. That means that when a query comes from an IdM client for the IP address of
somehost.ad.example.com, the query is forwarded to an AD domain controller specified in the
ad.example.com IdM DNS forward zone.

91.2. ADDING A PRIMARY DNS ZONE IN IDM WEB UI

Follow this procedure to add a primary DNS zone using the Identity Management (IdM) Web UI.

Prerequisites

You are logged in as IdM administrator.

Procedure

1. In the IdM Web UI, click Network Services → DNS → DNS Zones.

Figure 91.1. Managing IdM DNS primary zones

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

742

Figure 91.1. Managing IdM DNS primary zones

2. Click Add at the top of the list of all zones.

3. Provide the zone name.

Figure 91.2. Entering an new IdM primary zone

4. Click Add.

91.3. ADDING A PRIMARY DNS ZONE IN IDM CLI

Follow this procedure to add a primary DNS zone using the Identity Management (IdM) command-line
interface (CLI).

Prerequisites

You are logged in as IdM administrator.

Procedure

The ipa dnszone-add command adds a new zone to the DNS domain. Adding a new zone
requires you to specify the name of the new subdomain. You can pass the subdomain name
directly with the command:

$ ipa dnszone-add newzone.idm.example.com

If you do not pass the name to ipa dnszone-add, the script prompts for it automatically.

CHAPTER 91. MANAGING DNS ZONES IN IDM

743

Additional resources

See ipa dnszone-add --help.

91.4. REMOVING A PRIMARY DNS ZONE IN IDM WEB UI

Follow this procedure to remove a primary DNS zone from Identity Management (IdM) using the IdM
Web UI.

Prerequisites

You are logged in as IdM administrator.

Procedure

1. In the IdM Web UI, click Network Services → DNS → DNS Zones.

2. Select the check box by the zone name and click Delete.

Figure 91.3. Removing a primary DNS Zone

3. In the Remove DNS zones dialog window, confirm that you want to delete the selected zone.

91.5. REMOVING A PRIMARY DNS ZONE IN IDM CLI

Follow this procedure to remove a primary DNS zone from Identity Management (IdM) using the IdM
command-line interface (CLI).

Prerequisites

You are logged in as IdM administrator.

Procedure

To remove a primary DNS zone, enter the ipa dnszone-del command, followed by the name of
the zone you want to remove. For example:

$ ipa dnszone-del idm.example.com

91.6. DNS CONFIGURATION PRIORITIES

You can configure many DNS configuration options on the following levels. Each level has a different
priority.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

744

Zone-specific configuration

The level of configuration specific for a particular zone defined in IdM has the highest priority. You
can manage zone-specific configuration by using the ipa dnszone-* and ipa dnsforwardzone-*
commands.

Per-server configuration

You are asked to define per-server forwarders during the installation of an IdM server. You can
manage per-server forwarders by using the ipa dnsserver-* commands. If you do not want to set a
per-server forwarder when installing a replica, you can use the --no-forwarder option.

Global DNS configuration

If no zone-specific configuration is defined, IdM uses global DNS configuration stored in LDAP. You
can manage global DNS configuration using the ipa dnsconfig-* commands. Settings defined in
global DNS configuration are applied to all IdM DNS servers.

Configuration in /etc/named.conf

Configuration defined in the /etc/named.conf file on each IdM DNS server has the lowest priority. It
is specific for each server and must be edited manually.
The /etc/named.conf file is usually only used to specify DNS forwarding to a local DNS cache. Other
options are managed using the commands for zone-specific and global DNS configuration
mentioned above.

You can configure DNS options on multiple levels at the same time. In such cases, configuration with the
highest priority takes precedence over configuration defined at lower levels.

Additional resources

The Priority order of configuration section in Per Server Config in LDAP

91.7. CONFIGURATION ATTRIBUTES OF PRIMARY IDM DNS ZONES

Identity Management (IdM) creates a new zone with certain default configuration, such as the refresh
periods, transfer settings, or cache settings. In IdM DNS zone attributes , you can find the attributes of
the default zone configuration that you can modify using one of the following options:

The dnszone-mod command in the command-line interface (CLI). For more information, see
Editing the configuration of a primary DNS zone in IdM CLI .

The IdM Web UI. For more information, see Editing the configuration of a primary DNS zone in
IdM Web UI.

An Ansible playbook that uses the ipadnszone module. For more information, see Managing
DNS zones in IdM.

Along with setting the actual information for the zone, the settings define how the DNS server handles
the start of authority (SOA) record entries and how it updates its records from the DNS name server.

Table 91.1. IdM DNS zone attributes

Attribute Command-Line
Option

Description

CHAPTER 91. MANAGING DNS ZONES IN IDM

745

https://docs.pagure.org/bind-dyndb-ldap/Design/PerServerConfigInLDAP.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#editing-the-configuration-of-a-primary-dns-zone-in-idm-cli_managing-dns-zones-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#editing-the-configuration-of-a-primary-dns-zone-in-idm-web-ui_managing-dns-zones-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management

Authoritative name
server

--name-server Sets the domain name of the primary DNS name server, also
known as SOA MNAME.

By default, each IdM server advertises itself in the SOA MNAME
field. Consequently, the value stored in LDAP using --name-
server is ignored.

Administrator e-
mail address

--admin-email Sets the email address to use for the zone administrator. This
defaults to the root account on the host.

SOA serial --serial Sets a serial number in the SOA record. Note that IdM sets the
version number automatically and users are not expected to
modify it.

SOA refresh --refresh Sets the interval, in seconds, for a secondary DNS server to wait
before requesting updates from the primary DNS server.

SOA retry --retry Sets the time, in seconds, to wait before retrying a failed refresh
operation.

SOA expire --expire Sets the time, in seconds, that a secondary DNS server will try to
perform a refresh update before ending the operation attempt.

SOA minimum --minimum Sets the time to live (TTL) value in seconds for negative caching
according to RFC 2308.

SOA time to live --ttl Sets TTL in seconds for records at zone apex. In zone
example.com, for example, all records (A, NS, or SOA) under
name example.com are configured, but no other domain
names, like test.example.com, are affected.

Default time to live --default-ttl Sets the default time to live (TTL) value in seconds for negative
caching for all values in a zone that never had an individual TTL
value set before. Requires a restart of the named-pkcs11
service on all IdM DNS servers after changes to take effect.

BIND update
policy

--update-policy Sets the permissions allowed to clients in the DNS zone.

Dynamic update --dynamic-
update=TRUE|FA
LSE

Enables dynamic updates to DNS records for clients.

Note that if this is set to false, IdM client machines will not be
able to add or update their IP address.

Attribute Command-Line
Option

Description

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

746

http://tools.ietf.org/html/rfc2308

Allow transfer --allow-
transfer=string

Gives a list of IP addresses or network names which are allowed
to transfer the given zone, separated by semicolons (;).

Zone transfers are disabled by default. The default --allow-
transfer value is none.

Allow query --allow-query Gives a list of IP addresses or network names which are allowed
to issue DNS queries, separated by semicolons (;).

Allow PTR sync --allow-sync-
ptr=1|0

Sets whether A or AAAA records (forward records) for the zone
will be automatically synchronized with the PTR (reverse)
records.

Zone forwarders --
forwarder=IP_add
ress

Specifies a forwarder specifically configured for the DNS zone.
This is separate from any global forwarders used in the IdM
domain.

To specify multiple forwarders, use the option multiple times.

Forward policy --forward-
policy=none|only|
first

Specifies the forward policy. For information about the
supported policies, see DNS forward policies in IdM.

Attribute Command-Line
Option

Description

91.8. EDITING THE CONFIGURATION OF A PRIMARY DNS ZONE IN IDM
WEB UI

Follow this procedure to edit the configuration attributes of a primary Identity Management (IdM) DNS
using the IdM Web UI.

Prerequisites

You are logged in as IdM administrator.

Procedure

1. In the IdM Web UI, click Network Services → DNS → DNS Zones.

Figure 91.4. DNS primary zones management

CHAPTER 91. MANAGING DNS ZONES IN IDM

747

2. In the DNS Zones section, click on the zone name in the list of all zones to open the DNS zone
page.

Figure 91.5. Editing a primary zone

3. Click Settings.

Figure 91.6. The Settings tab in the primary zone edit page

4. Change the zone configuration as required.
For information about the available settings, see IdM DNS zone attributes .

5. Click Save to confirm the new configuration.

NOTE

If you are changing the default time to live (TTL) of a zone, restart the named-
pkcs11 service on all IdM DNS servers to make the changes take effect. All other
settings are automatically activated immediately.

91.9. EDITING THE CONFIGURATION OF A PRIMARY DNS ZONE IN IDM
CLI

Follow this procedure to edit the configuration of a primary DNS zone using the Identity Management
(IdM) command-line interface (CLI).

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

748

Prerequisites

You are logged in as IdM administrator.

Procedure

To modify an existing primary DNS zone, use the ipa dnszone-mod command. For example, to
set the time to wait before retrying a failed refresh operation to 1800 seconds:

$ ipa dnszone-mod --retry 1800

For more information about the available settings and their corresponding CLI options, see IdM
DNS zone attributes.

If a specific setting does not have a value in the DNS zone entry you are modifying, the ipa
dnszone-mod command adds the value. If the setting does not have a value, the command
overwrites the current value with the specified value.

NOTE

If you are changing the default time to live (TTL) of a zone, restart the named-
pkcs11 service on all IdM DNS servers to make the changes take effect. All other
settings are automatically activated immediately.

Additional resources

See ipa dnszone-mod --help.

91.10. ZONE TRANSFERS IN IDM

In an Identity Management (IdM) deployment that has integrated DNS, you can use zone transfers to
copy all resource records from one name server to another. Name servers maintain authoritative data
for their zones. If you make changes to the zone on a DNS server that is authoritative for zone A DNS
zone, you must distribute the changes among the other name servers in the IdM DNS domain that are
outside zone A.

IMPORTANT

The IdM-integrated DNS can be written to by different servers simultaneously. The Start
of Authority (SOA) serial numbers in IdM zones are not synchronized among the individual
IdM DNS servers. For this reason, configure your DNS servers outside the to-be-
transferred zone to only use one specific DNS server inside the to-be-transferred zone.
This prevents zone transfer failures caused by non-synchronized SOA serial numbers.

IdM supports zone transfers according to the RFC 5936 (AXFR) and RFC 1995 (IXFR) standards.

Additional resources

See Enabling zone transfers in IdM Web UI .

See Enabling zone transfers in IdM CLI .

91.11. ENABLING ZONE TRANSFERS IN IDM WEB UI

CHAPTER 91. MANAGING DNS ZONES IN IDM

749

https://tools.ietf.org/html/rfc5936
https://tools.ietf.org/html/rfc1995

Follow this procedure to enable zone transfers in Identity Management (IdM) using the IdM Web UI.

Prerequisites

You are logged in as IdM administrator.

Procedure

1. In the IdM Web UI, click Network Services → DNS → DNS Zones.

2. Click Settings.

3. Under Allow transfer, specify the name servers to which you want to transfer the zone records.

Figure 91.7. Enabling zone transfers

4. Click Save at the top of the DNS zone page to confirm the new configuration.

91.12. ENABLING ZONE TRANSFERS IN IDM CLI

Follow this procedure to enable zone transfers in Identity Management (IdM) using the IdM command-
line interface (CLI).

Prerequisites

You are logged in as IdM administrator.

You have root access to the secondary DNS servers.

Procedure

To enable zone transfers in the BIND service, enter the ipa dnszone-mod command, and
specify the list of name servers that are outside the to-be-transferred zone to which the zone
records will be transferred using the --allow-transfer option. For example:

$ ipa dnszone-mod --allow-transfer=192.0.2.1;198.51.100.1;203.0.113.1
idm.example.com

Verification steps

1. SSH to one of the DNS servers to which zone transfer has been enabled:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

750

$ ssh 192.0.2.1

2. Transfer the IdM DNS zone using a tool such as the dig utility:

dig @ipa-server zone_name AXFR

If the command returns no error, you have successfully enabled zone transfer for zone_name.

91.13. ADDITIONAL RESOURCES

See Using Ansible playbooks to manage IdM DNS zones .

CHAPTER 91. MANAGING DNS ZONES IN IDM

751

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#using-ansible-playbooks-to-manage-idm-dns-zones_configuring-and-managing-idm

CHAPTER 92. USING ANSIBLE PLAYBOOKS TO MANAGE IDM
DNS ZONES

As Identity Management (IdM) administrator, you can manage how IdM DNS zones work using the
dnszone module available in the ansible-freeipa package.

What DNS zone types are supported in IdM

What DNS attributes you can configure in IdM

How to use an Ansible playbook to create a primary zone in IdM DNS

How to use an Ansible playbook to ensure the presence of a primary IdM DNS zone with multiple
variables

How to use an Ansible playbook to ensure the presence of a zone for reverse DNS lookup when
an IP address is given

Prerequisites

DNS service is installed on the IdM server. For more information about how to use Red Hat
Ansible Engine to install an IdM server with integrated DNS, see Installing an Identity
Management server using an Ansible playbook.

92.1. SUPPORTED DNS ZONE TYPES

Identity Management (IdM) supports two types of DNS zones: primary and forward zones. These two
types of zones are described here, including an example scenario for DNS forwarding.

NOTE

This guide uses the BIND terminology for zone types which is different from the
terminology used for Microsoft Windows DNS. Primary zones in BIND serve the same
purpose as forward lookup zones and reverse lookup zones in Microsoft Windows DNS.
Forward zones in BIND serve the same purpose as conditional forwarders in
Microsoft Windows DNS.

Primary DNS zones

Primary DNS zones contain authoritative DNS data and can accept dynamic DNS updates. This
behavior is equivalent to the type master setting in standard BIND configuration. You can manage
primary zones using the ipa dnszone-* commands.
In compliance with standard DNS rules, every primary zone must contain start of authority (SOA)
and nameserver (NS) records. IdM generates these records automatically when the DNS zone is
created, but you must copy the NS records manually to the parent zone to create proper delegation.

In accordance with standard BIND behavior, queries for names for which the server is not
authoritative are forwarded to other DNS servers. These DNS servers, so called forwarders, may or
may not be authoritative for the query.

Example 92.1. Example scenario for DNS forwarding

The IdM server contains the test.example. primary zone. This zone contains an NS delegation
record for the sub.test.example. name. In addition, the test.example. zone is configured with the
192.0.2.254 forwarder IP address for the sub.text.example subzone.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

752

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-Identity-Management-server-using-an-Ansible-playbook_installing-identity-management

A client querying the name nonexistent.test.example. receives the NXDomain answer, and no
forwarding occurs because the IdM server is authoritative for this name.

On the other hand, querying for the host1.sub.test.example. name is forwarded to the
configured forwarder 192.0.2.254 because the IdM server is not authoritative for this name.

Forward DNS zones

From the perspective of IdM, forward DNS zones do not contain any authoritative data. In fact, a
forward "zone" usually only contains two pieces of information:

A domain name

The IP address of a DNS server associated with the domain

All queries for names belonging to the domain defined are forwarded to the specified IP address. This
behavior is equivalent to the type forward setting in standard BIND configuration. You can manage
forward zones using the ipa dnsforwardzone-* commands.

Forward DNS zones are especially useful in the context of IdM-Active Directory (AD) trusts. If the IdM
DNS server is authoritative for the idm.example.com zone and the AD DNS server is authoritative for
the ad.example.com zone, then ad.example.com is a DNS forward zone for the idm.example.com
primary zone. That means that when a query comes from an IdM client for the IP address of
somehost.ad.example.com, the query is forwarded to an AD domain controller specified in the
ad.example.com IdM DNS forward zone.

92.2. CONFIGURATION ATTRIBUTES OF PRIMARY IDM DNS ZONES

Identity Management (IdM) creates a new zone with certain default configuration, such as the refresh
periods, transfer settings, or cache settings. In IdM DNS zone attributes , you can find the attributes of
the default zone configuration that you can modify using one of the following options:

The dnszone-mod command in the command-line interface (CLI). For more information, see
Editing the configuration of a primary DNS zone in IdM CLI .

The IdM Web UI. For more information, see Editing the configuration of a primary DNS zone in
IdM Web UI.

An Ansible playbook that uses the ipadnszone module. For more information, see Managing
DNS zones in IdM.

Along with setting the actual information for the zone, the settings define how the DNS server handles
the start of authority (SOA) record entries and how it updates its records from the DNS name server.

Table 92.1. IdM DNS zone attributes

Attribute ansible-freeipa
variable

Description

CHAPTER 92. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

753

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#editing-the-configuration-of-a-primary-dns-zone-in-idm-cli_managing-dns-zones-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#editing-the-configuration-of-a-primary-dns-zone-in-idm-web-ui_managing-dns-zones-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management

Authoritative name
server

name_server Sets the domain name of the primary DNS name server, also
known as SOA MNAME.

By default, each IdM server advertises itself in the SOA MNAME
field. Consequently, the value stored in LDAP using --name-
server is ignored.

Administrator e-
mail address

admin_email Sets the email address to use for the zone administrator. This
defaults to the root account on the host.

SOA serial serial Sets a serial number in the SOA record. Note that IdM sets the
version number automatically and users are not expected to
modify it.

SOA refresh refresh Sets the interval, in seconds, for a secondary DNS server to wait
before requesting updates from the primary DNS server.

SOA retry retry Sets the time, in seconds, to wait before retrying a failed refresh
operation.

SOA expire expire Sets the time, in seconds, that a secondary DNS server will try to
perform a refresh update before ending the operation attempt.

SOA minimum minimum Sets the time to live (TTL) value in seconds for negative caching
according to RFC 2308.

SOA time to live ttl Sets TTL in seconds for records at zone apex. In zone
example.com, for example, all records (A, NS, or SOA) under
name example.com are configured, but no other domain
names, like test.example.com, are affected.

Default time to live default_ttl Sets the default time to live (TTL) value in seconds for negative
caching for all values in a zone that never had an individual TTL
value set before. Requires a restart of the named-pkcs11
service on all IdM DNS servers after changes to take effect.

BIND update
policy

update_policy Sets the permissions allowed to clients in the DNS zone.

Dynamic update dynamic_updat
e=TRUE|FALSE

Enables dynamic updates to DNS records for clients.

Note that if this is set to false, IdM client machines will not be
able to add or update their IP address.

Attribute ansible-freeipa
variable

Description

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

754

http://tools.ietf.org/html/rfc2308

Allow transfer allow_transfer=s
tring

Gives a list of IP addresses or network names which are allowed
to transfer the given zone, separated by semicolons (;).

Zone transfers are disabled by default. The default
allow_transfer value is none.

Allow query allow_query Gives a list of IP addresses or network names which are allowed
to issue DNS queries, separated by semicolons (;).

Allow PTR sync allow_sync_ptr=
1|0

Sets whether A or AAAA records (forward records) for the zone
will be automatically synchronized with the PTR (reverse)
records.

Zone forwarders forwarder=IP_add
ress

Specifies a forwarder specifically configured for the DNS zone.
This is separate from any global forwarders used in the IdM
domain.

To specify multiple forwarders, use the option multiple times.

Forward policy forward_policy=
none|only|first

Specifies the forward policy. For information about the
supported policies, see DNS forward policies in IdM.

Attribute ansible-freeipa
variable

Description

Additional resources

See the README-dnszone.md file in the /usr/share/doc/ansible-freeipa/ directory.

92.3. USING ANSIBLE TO CREATE A PRIMARY ZONE IN IDM DNS

Follow this procedure to use an Ansible playbook to ensure that a primary DNS zone exists. In the
example used in the procedure below, you ensure the presence of the zone.idm.example.com DNS
zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

CHAPTER 92. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

755

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnszone directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnszone

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the dnszone-present.yml Ansible playbook file. For example:

$ cp dnszone-present.yml dnszone-present-copy.yml

4. Open the dnszone-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnszone task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the zone_name variable to zone.idm.example.com.
This is the modified Ansible playbook file for the current example:

- name: Ensure dnszone present
 hosts: ipaserver
 become: true

 tasks:
 - name: Ensure zone is present.
 ipadnszone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 zone_name: zone.idm.example.com
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file dnszone-
present-copy.yml

Additional resources

See Supported DNS zone types .

See the README-dnszone.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnszone
directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

756

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#supported-dns-zone-types_managing-dns-zones-in-idm

92.4. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF
A PRIMARY DNS ZONE IN IDM WITH MULTIPLE VARIABLES

Follow this procedure to use an Ansible playbook to ensure that a primary DNS zone exists. In the
example used in the procedure below, an IdM administrator ensures the presence of the
zone.idm.example.com DNS zone. The Ansible playbook configures multiple parameters of the zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnszone directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnszone

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the dnszone-all-params.yml Ansible playbook file. For example:

$ cp dnszone-all-params.yml dnszone-all-params-copy.yml

4. Open the dnszone-all-params-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnszone task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the zone_name variable to zone.idm.example.com.

Set the allow_sync_ptr variable to true if you want to allow the synchronization of forward
and reverse records, that is the synchronization of A and AAAA records with PTR records.

Set the dynamic_update variable to true to enable IdM client machines to add or update
their IP addresses.

CHAPTER 92. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

757

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Set the dnssec variable to true to allow inline DNSSEC signing of records in the zone.

Set the allow_transfer variable to the IP addresses of secondary name servers in the zone.

Set the allow_query variable to the IP addresses or networks that are allowed to issue
queries.

Set the forwarders variable to the IP addresses of global forwarders.

Set the serial variable to the SOA record serial number.

Define the refresh, retry, expire, minimum, ttl, and default_ttl values for DNS records in
the zone.

Define the NSEC3PARAM record for the zone using the nsec3param_rec variable.

Set the skip_overlap_check variable to true to force DNS creation even if it overlaps with
an existing zone.

Set the skip_nameserver_check to true to force DNS zone creation even if the
nameserver is not resolvable.
This is the modified Ansible playbook file for the current example:

- name: Ensure dnszone present
 hosts: ipaserver
 become: true

 tasks:
 - name: Ensure zone is present.
 ipadnszone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 zone_name: zone.idm.example.com
 allow_sync_ptr: true
 dynamic_update: true
 dnssec: true
 allow_transfer:
 - 1.1.1.1
 - 2.2.2.2
 allow_query:
 - 1.1.1.1
 - 2.2.2.2
 forwarders:
 - ip_address: 8.8.8.8
 - ip_address: 8.8.4.4
 port: 52
 serial: 1234
 refresh: 3600
 retry: 900
 expire: 1209600
 minimum: 3600
 ttl: 60
 default_ttl: 90
 name_server: server.idm.example.com.
 admin_email: admin.admin@idm.example.com
 nsec3param_rec: "1 7 100 0123456789abcdef"

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

758

 skip_overlap_check: true
 skip_nameserver_check: true
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file dnszone-all-
params-copy.yml

Additional resources

See Supported DNS zone types .

See Configuration attributes of primary IdM DNS zones .

See the README-dnszone.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnszone
directory.

92.5. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF
A ZONE FOR REVERSE DNS LOOKUP WHEN AN IP ADDRESS IS GIVEN

Follow this procedure to use an Ansible playbook to ensure that a reverse DNS zone exists. In the
example used in the procedure below, an IdM administrator ensures the presence of a reverse DNS
lookup zone using the IP address and prefix length of an IdM host.

Providing the prefix length of the IP address of your DNS server using the name_from_ip variable
allows you to control the zone name. If you do not state the prefix length, the system queries DNS
servers for zones and, based on the name_from_ip value of 192.168.1.2, the query can return any of the
following DNS zones:

1.168.192.in-addr.arpa.

168.192.in-addr.arpa.

192.in-addr.arpa.

Because the zone returned by the query might not be what you expect, name_from_ip can only be used
with the state option set to present to prevent accidental removals of zones.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

CHAPTER 92. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

759

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/managing-dns-zones-in-idm_configuring-and-managing-idm#supported-dns-zone-types_managing-dns-zones-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnszone directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnszone

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the dnszone-reverse-from-ip.yml Ansible playbook file. For example:

$ cp dnszone-reverse-from-ip.yml dnszone-reverse-from-ip-copy.yml

4. Open the dnszone-reverse-from-ip-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnszone task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name_from_ip variable to the IP of your IdM nameserver, and provide its prefix
length.
This is the modified Ansible playbook file for the current example:

- name: Ensure dnszone present
 hosts: ipaserver
 become: true

 tasks:
 - name: Ensure zone for reverse DNS lookup is present.
 ipadnszone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name_from_ip: 192.168.1.2/24
 state: present
 register: result
 - name: Display inferred zone name.
 debug:
 msg: "Zone name: {{ result.dnszone.name }}"

The playbook creates a zone for reverse DNS lookup from the 192.168.1.2 IP address and its
prefix length of 24. Next, the playbook displays the resulting zone name.

6. Save the file.

7. Run the playbook:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

760

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file dnszone-
reverse-from-ip-copy.yml

Additional resources

See Supported DNS zone types .

See the README-dnszone.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnszone
directory.

CHAPTER 92. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES

761

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-zones-in-idm_working-with-dns-in-identity-management#supported-dns-zone-types_managing-dns-zones-in-idm

CHAPTER 93. MANAGING DNS LOCATIONS IN IDM
To learn more about managing Identity Management (IdM) DNS locations by using the IdM Web UI and
IdM command-line interface (CLI), see the following topics and procedures:

DNS-based service discovery

Deployment considerations for DNS locations

DNS time to live (TTL)

Creating DNS locations using the IdM Web UI

Creating DNS locations using the IdM CLI

Assigning an IdM server to a DNS location using the IdM Web UI

Assigning an IdM server to a DNS location using the IdM Web UI

Configuring an IdM client to use IdM servers in the same location

93.1. DNS-BASED SERVICE DISCOVERY

DNS-based service discovery is a process in which a client uses the DNS protocol to locate servers in a
network that offer a specific service, such as LDAP or Kerberos. One typical type of operation is to
allow clients to locate authentication servers within the closest network infrastructure, because they
provide a higher throughput and lower network latency, lowering overall costs.

The major advantages of service discovery are:

No need for clients to be explicitly configured with names of nearby servers.

DNS servers are used as central providers of policy. Clients using the same DNS server have
access to the same policy about service providers and their preferred order.

In an Identity Management (IdM) domain, DNS service records (SRV records) exist for LDAP, Kerberos,
and other services. For example, the following command queries the DNS server for hosts providing a
TCP-based Kerberos service in an IdM DNS domain:

Example 93.1. DNS location independent results

$ dig -t SRV +short _kerberos._tcp.idm.example.com
0 100 88 idmserver-01.idm.example.com.
0 100 88 idmserver-02.idm.example.com.

The output contains the following information:

0 (priority): Priority of the target host. A lower value is preferred.

100 (weight). Specifies a relative weight for entries with the same priority. For further
information, see RFC 2782, section 3.

88 (port number): Port number of the service.

Canonical name of the host providing the service.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

762

https://tools.ietf.org/html/rfc2782#page-3

In the example, the two host names returned have the same priority and weight. In this case, the client
uses a random entry from the result list.

When the client is, instead, configured to query a DNS server that is configured in a DNS location, the
output differs. For IdM servers that are assigned to a location, tailored values are returned. In the
example below, the client is configured to query a DNS server in the location germany:

Example 93.2. DNS location-based results

$ dig -t SRV +short _kerberos._tcp.idm.example.com
_kerberos._tcp.germany._locations.idm.example.com.
0 100 88 idmserver-01.idm.example.com.
50 100 88 idmserver-02.idm.example.com.

The IdM DNS server automatically returns a DNS alias (CNAME) pointing to a DNS location specific
SRV record which prefers local servers. This CNAME record is shown in the first line of the output. In the
example, the host idmserver-01.idm.example.com has the lowest priority value and is therefore
preferred. The idmserver-02.idm.example.com has a higher priority and thus is used only as backup for
cases when the preferred host is unavailable.

93.2. DEPLOYMENT CONSIDERATIONS FOR DNS LOCATIONS

Identity Management (IdM) can generate location-specific service (SRV) records when using the
integrated DNS. Because each IdM DNS server generates location-specific SRV records, you have to
install at least one IdM DNS server in each DNS location.

The client’s affinity to a DNS location is only defined by the DNS records received by the client. For this
reason, you can combine IdM DNS servers with non-IdM DNS consumer servers and recursors if the
clients doing DNS service discovery resolve location-specific records from IdM DNS servers.

In the majority of deployments with mixed IdM and non-IdM DNS services, DNS recursors select the
closest IdM DNS server automatically by using round-trip time metrics. Typically, this ensures that
clients using non-IdM DNS servers are getting records for the nearest DNS location and thus use the
optimal set of IdM servers.

93.3. DNS TIME TO LIVE (TTL)

Clients can cache DNS resource records for an amount of time that is set in the zone’s configuration.
Because of this caching, a client might not be able to receive the changes until the time to live (TTL)
value expires. The default TTL value in Identity Management (IdM) is 1 day.

If your client computers roam between sites, you should adapt the TTL value for your IdM DNS zone. Set
the value to a lower value than the time clients need to roam between sites. This ensures that cached
DNS entries on the client expire before they reconnect to another site and thus query the DNS server to
refresh location-specific SRV records.

Additional resources

See Configuration attributes of primary IdM DNS zones .

93.4. CREATING DNS LOCATIONS USING THE IDM WEB UI

You can use DNS locations to increase the speed of communication between Identity Management

CHAPTER 93. MANAGING DNS LOCATIONS IN IDM

763

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-playbooks-to-manage-idm-dns-zones_working-with-dns-in-identity-management#configuration-attributes-of-primary-idm-dns-zones_using-ansible-playbooks-to-manage-idm-dns-zones

You can use DNS locations to increase the speed of communication between Identity Management
(IdM) clients and servers. Follow this procedure to create a DNS location using the IdM Web UI.

Prerequisites

Your IdM deployment has integrated DNS.

You have a permission to create DNS locations in IdM. For example, you are logged in as IdM
admin.

Procedure

1. Open the IPA Server tab.

2. Select Topology subtab.

3. Click IPA Locations in the navigation bar.

4. Click Add at the top of the locations list.

5. Fill in the location name.

6. Click the Add button to save the location.

7. Optional: Repeat the steps to add further locations.

Additional resources

See Assigning an IdM server to a DNS location using the IdM Web UI .

See Using Ansible to ensure an IdM location is present .

93.5. CREATING DNS LOCATIONS USING THE IDM CLI

You can use DNS locations to increase the speed of communication between Identity Management
(IdM) clients and servers. Follow this procedure to create DNS locations using the ipa location-add
command in the IdM command-line interface (CLI).

Prerequisites

Your IdM deployment has integrated DNS.

You have a permission to create DNS locations in IdM. For example, you are logged in as IdM
admin.

Procedure

1. For example, to create a new location germany, enter:

$ ipa location-add germany

Added IPA location "germany"

 Location name: germany

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

764

2. Optional: Repeat the step to add further locations.

Additional resources

See Assigning an IdM Server to a DNS Location using the IdM CLI .

See Using Ansible to ensure an IdM location is present .

93.6. ASSIGNING AN IDM SERVER TO A DNS LOCATION USING THE
IDM WEB UI

You can use Identity Management (IdM) DNS locations to increase the speed of communication
between IdM clients and servers. Follow this procedure to assign IdM servers to DNS locations using the
IdM Web UI.

Prerequisites

Your IdM deployment has integrated DNS.

You are logged in as a user with a permission to assign a server to a DNS location, for example
the IdM admin user.

You have root access to the host that you want to assign a DNS location to.

You have created the IdM DNS locations to which you want to assign servers.

Procedure

1. Open the IPA Server tab.

2. Select the Topology subtab.

3. Click IPA Servers in the navigation.

4. Click on the IdM server name.

5. Select a DNS location, and optionally set a service weight:

Figure 93.1. Assigning a server to a DNS location

CHAPTER 93. MANAGING DNS LOCATIONS IN IDM

765

Figure 93.1. Assigning a server to a DNS location

6. Click Save.

7. In the command-line interface (CLI) of the host you assigned in the previous steps the DNS
location to, restart the named-pkcs11 service:

[root@idmserver-01 ~]# systemctl restart named-pkcs11

8. Optional: Repeat the steps to assign DNS locations to further IdM servers.

Additional resources

See Configuring an IdM client to use IdM servers in the same location .

93.7. ASSIGNING AN IDM SERVER TO A DNS LOCATION USING THE
IDM CLI

You can use Identity Management (IdM) DNS locations to increase the speed of communication
between IdM clients and servers. Follow this procedure to assign IdM servers to DNS locations using the
IdM command-line interface (CLI).

Prerequisites

Your IdM deployment has integrated DNS.

You are logged in as a user with a permission to assign a server to a DNS location, for example
the IdM admin user.

You have root access to the host that you want to assign a DNS location to.

You have created the IdM DNS locations to which you want to assign servers.

Procedure

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

766

1. Optional: List all configured DNS locations:

[root@server ~]# ipa location-find

2 IPA locations matched

Location name: australia
Location name: germany

Number of entries returned: 2

2. Assign the server to the DNS location. For example, to assign the location germany to the
server idmserver-01.idm.example.com, run:

ipa server-mod idmserver-01.idm.example.com --location=germany
ipa: WARNING: Service named-pkcs11.service requires restart on IPA server
idmserver-01.idm.example.com to apply configuration changes.
--
Modified IPA server "idmserver-01.idm.example.com"
--
Servername: idmserver-01.idm.example.com
Min domain level: 0
Max domain level: 1
Location: germany
Enabled server roles: DNS server, NTP server

3. Restart the named-pkcs11 service on the host you assigned in the previous steps the DNS
location to:

systemctl restart named-pkcs11

4. Optional: Repeat the steps to assign DNS locations to further IdM servers.

Additional resources

See Configuring an IdM client to use IdM servers in the same location .

93.8. CONFIGURING AN IDM CLIENT TO USE IDM SERVERS IN THE
SAME LOCATION

Identity Management (IdM) servers are assigned to DNS locations as described in Assigning an IdM
server to a DNS location using the IdM Web UI. Now you can configure the clients to use a DNS server
that is in the same location as the IdM servers:

If a DHCP server assigns the DNS server IP addresses to the clients, configure the DHCP
service. For further details about assigning a DNS server in your DHCP service, see the DHCP
service documentation.

If your clients do not receive the DNS server IP addresses from a DHCP server, manually set the
IPs in the client’s network configuration. For further details about configuring the network on
Red Hat Enterprise Linux, see the Configuring Network Connection Settings section in the
Red Hat Enterprise Linux Networking Guide.

NOTE

CHAPTER 93. MANAGING DNS LOCATIONS IN IDM

767

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/ch-configuring_network_connection_settings

NOTE

If you configure the client to use a DNS server that is assigned to a different location, the
client contacts IdM servers in both locations.

Example 93.3. Different name server entries depending on the location of the client

The following example shows different name server entries in the /etc/resolv.conf file for clients in
different locations:

Clients in Prague:

nameserver 10.10.0.1
nameserver 10.10.0.2

Clients in Paris:

nameserver 10.50.0.1
nameserver 10.50.0.3

Clients in Oslo:

nameserver 10.30.0.1

Clients in Berlin:

nameserver 10.30.0.1

If each of the DNS servers is assigned to a location in IdM, the clients use the IdM servers in their
location.

93.9. ADDITIONAL RESOURCES

See Using Ansible to manage DNS locations in IdM .

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

768

CHAPTER 94. USING ANSIBLE TO MANAGE DNS LOCATIONS
IN IDM

As Identity Management (IdM) administrator, you can manage IdM DNS locations using the location
module available in the ansible-freeipa package.

DNS-based service discovery

Deployment considerations for DNS locations

DNS time to live (TTL)

Using Ansible to ensure an IdM location is present

Using Ansible to ensure an IdM location is absent

94.1. DNS-BASED SERVICE DISCOVERY

DNS-based service discovery is a process in which a client uses the DNS protocol to locate servers in a
network that offer a specific service, such as LDAP or Kerberos. One typical type of operation is to
allow clients to locate authentication servers within the closest network infrastructure, because they
provide a higher throughput and lower network latency, lowering overall costs.

The major advantages of service discovery are:

No need for clients to be explicitly configured with names of nearby servers.

DNS servers are used as central providers of policy. Clients using the same DNS server have
access to the same policy about service providers and their preferred order.

In an Identity Management (IdM) domain, DNS service records (SRV records) exist for LDAP, Kerberos,
and other services. For example, the following command queries the DNS server for hosts providing a
TCP-based Kerberos service in an IdM DNS domain:

Example 94.1. DNS location independent results

$ dig -t SRV +short _kerberos._tcp.idm.example.com
0 100 88 idmserver-01.idm.example.com.
0 100 88 idmserver-02.idm.example.com.

The output contains the following information:

0 (priority): Priority of the target host. A lower value is preferred.

100 (weight). Specifies a relative weight for entries with the same priority. For further
information, see RFC 2782, section 3.

88 (port number): Port number of the service.

Canonical name of the host providing the service.

In the example, the two host names returned have the same priority and weight. In this case, the client
uses a random entry from the result list.

CHAPTER 94. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM

769

https://tools.ietf.org/html/rfc2782#page-3

When the client is, instead, configured to query a DNS server that is configured in a DNS location, the
output differs. For IdM servers that are assigned to a location, tailored values are returned. In the
example below, the client is configured to query a DNS server in the location germany:

Example 94.2. DNS location-based results

$ dig -t SRV +short _kerberos._tcp.idm.example.com
_kerberos._tcp.germany._locations.idm.example.com.
0 100 88 idmserver-01.idm.example.com.
50 100 88 idmserver-02.idm.example.com.

The IdM DNS server automatically returns a DNS alias (CNAME) pointing to a DNS location specific
SRV record which prefers local servers. This CNAME record is shown in the first line of the output. In the
example, the host idmserver-01.idm.example.com has the lowest priority value and is therefore
preferred. The idmserver-02.idm.example.com has a higher priority and thus is used only as backup for
cases when the preferred host is unavailable.

94.2. DEPLOYMENT CONSIDERATIONS FOR DNS LOCATIONS

Identity Management (IdM) can generate location-specific service (SRV) records when using the
integrated DNS. Because each IdM DNS server generates location-specific SRV records, you have to
install at least one IdM DNS server in each DNS location.

The client’s affinity to a DNS location is only defined by the DNS records received by the client. For this
reason, you can combine IdM DNS servers with non-IdM DNS consumer servers and recursors if the
clients doing DNS service discovery resolve location-specific records from IdM DNS servers.

In the majority of deployments with mixed IdM and non-IdM DNS services, DNS recursors select the
closest IdM DNS server automatically by using round-trip time metrics. Typically, this ensures that
clients using non-IdM DNS servers are getting records for the nearest DNS location and thus use the
optimal set of IdM servers.

94.3. DNS TIME TO LIVE (TTL)

Clients can cache DNS resource records for an amount of time that is set in the zone’s configuration.
Because of this caching, a client might not be able to receive the changes until the time to live (TTL)
value expires. The default TTL value in Identity Management (IdM) is 1 day.

If your client computers roam between sites, you should adapt the TTL value for your IdM DNS zone. Set
the value to a lower value than the time clients need to roam between sites. This ensures that cached
DNS entries on the client expire before they reconnect to another site and thus query the DNS server to
refresh location-specific SRV records.

Additional resources

See Configuration attributes of primary IdM DNS zones .

94.4. USING ANSIBLE TO ENSURE AN IDM LOCATION IS PRESENT

As a system administrator of Identity Management (IdM), you can configure IdM DNS locations to allow
clients to locate authentication servers within the closest network infrastructure.

The following procedure describes how to use an Ansible playbook to ensure a DNS location is present in

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

770

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-playbooks-to-manage-idm-dns-zones_working-with-dns-in-identity-management#configuration-attributes-of-primary-idm-dns-zones_using-ansible-playbooks-to-manage-idm-dns-zones

The following procedure describes how to use an Ansible playbook to ensure a DNS location is present in
IdM. The example describes how to ensure that the germany DNS location is present in IdM. As a result,
you can assign particular IdM servers to this location so that local IdM clients can use them to reduce
server response time.

Prerequisites

You know the IdM administrator password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You understand the deployment considerations for DNS locations .

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Make a copy of the location-present.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/location/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/location/location-present.yml location-
present-copy.yml

3. Open the location-present-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipalocation task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the location.

This is the modified Ansible playbook file for the current example:

- name: location present example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:

CHAPTER 94. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM

771

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - name: Ensure that the "germany" location is present
 ipalocation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: germany

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory location-
present-copy.yml

Additional resources

See Assigning an IdM server to a DNS location using the IdM Web UI or Assigning an IdM server
to a DNS location using the IdM CLI.

94.5. USING ANSIBLE TO ENSURE AN IDM LOCATION IS ABSENT

As a system administrator of Identity Management (IdM), you can configure IdM DNS locations to allow
clients to locate authentication servers within the closest network infrastructure.

The following procedure describes how to use an Ansible playbook to ensure that a DNS location is
absent in IdM. The example describes how to ensure that the germany DNS location is absent in IdM.
As a result, you cannot assign particular IdM servers to this location and local IdM clients cannot use
them.

Prerequisites

You know the IdM administrator password.

No IdM server is assigned to the germany DNS location.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The example assumes that you have created and configured the ~/MyPlaybooks/ directory as
a central location to store copies of sample playbooks.

Procedure

1. Navigate to the ~/MyPlaybooks/ directory:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

772

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-locations-in-idm_working-with-dns-in-identity-management#assigning-an-idm-server-to-a-dns-location-using-the-idm-web-ui_managing-dns-locations-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-locations-in-idm_working-with-dns-in-identity-management#assigning-an-idm-server-to-a-dns-location-using-the-idm-cli_managing-dns-locations-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/MyPlaybooks/

2. Make a copy of the location-absent.yml file located in the /usr/share/doc/ansible-
freeipa/playbooks/location/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/location/location-absent.yml location-
absent-copy.yml

3. Open the location-absent-copy.yml Ansible playbook file for editing.

4. Adapt the file by setting the following variables in the ipalocation task section:

Adapt the name of the task to correspond to your use case.

Set the ipaadmin_password variable to the password of the IdM administrator.

Set the name variable to the name of the DNS location.

Make sure that the state variable is set to absent.

This is the modified Ansible playbook file for the current example:

- name: location absent example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure that the "germany" location is absent
 ipalocation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: germany
 state: absent

5. Save the file.

6. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory location-
absent-copy.yml

94.6. ADDITIONAL RESOURCES

See the README-location.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/location
directory.

CHAPTER 94. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM

773

CHAPTER 95. MANAGING DNS FORWARDING IN IDM
Follow these procedures to configure DNS global forwarders and DNS forward zones in the Identity
Management (IdM) Web UI, the IdM CLI, and using Ansible:

The two roles of an IdM DNS server

DNS forward policies in IdM

Adding a global forwarder in the IdM Web UI

Adding a global forwarder in the CLI

Adding a DNS Forward Zone in the IdM Web UI

Adding a DNS Forward Zone in the CLI

Establishing a DNS Global Forwarder in IdM using Ansible

Ensuring the presence of a DNS global forwarder in IdM using Ansible

Ensuring the absence of a DNS global forwarder in IdM using Ansible

Ensuring DNS Global Forwarders are disabled in IdM using Ansible

Ensuring the presence of a DNS Forward Zone in IdM using Ansible

Ensuring a DNS Forward Zone has multiple forwarders in IdM using Ansible

Ensuring a DNS Forward Zone is disabled in IdM using Ansible

Ensuring the absence of a DNS Forward Zone in IdM using Ansible

95.1. THE TWO ROLES OF AN IDM DNS SERVER

DNS forwarding affects how a DNS service answers DNS queries. By default, the Berkeley Internet
Name Domain (BIND) service integrated with IdM acts as both an authoritative and a recursive DNS
server:

Authoritative DNS server

When a DNS client queries a name belonging to a DNS zone for which the IdM server is authoritative,
BIND replies with data contained in the configured zone. Authoritative data always takes precedence
over any other data.

Recursive DNS server

When a DNS client queries a name for which the IdM server is not authoritative, BIND attempts to
resolve the query using other DNS servers. If forwarders are not defined, BIND asks the root servers
on the Internet and uses a recursive resolution algorithm to answer the DNS query.

In some cases, it is not desirable to let BIND contact other DNS servers directly and perform the
recursion based on data available on the Internet. You can configure BIND to use another DNS server, a
forwarder, to resolve the query.

When you configure BIND to use a forwarder, queries and answers are forwarded back and forth
between the IdM server and the forwarder, and the IdM server acts as the DNS cache for non-
authoritative data.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

774

95.2. DNS FORWARD POLICIES IN IDM

IdM supports the first and only standard BIND forward policies, as well as the none IdM-specific
forward policy.

Forward first (default)

The IdM BIND service forwards DNS queries to the configured forwarder. If a query fails because of a
server error or timeout, BIND falls back to the recursive resolution using servers on the Internet. The
forward first policy is the default policy, and it is suitable for optimizing DNS traffic.

Forward only

The IdM BIND service forwards DNS queries to the configured forwarder. If a query fails because of a
server error or timeout, BIND returns an error to the client. The forward only policy is recommended
for environments with split DNS configuration.

None (forwarding disabled)

DNS queries are not forwarded with the none forwarding policy. Disabling forwarding is only useful as
a zone-specific override for global forwarding configuration. This option is the IdM equivalent of
specifying an empty list of forwarders in BIND configuration.

NOTE

You cannot use forwarding to combine data in IdM with data from other DNS servers.
You can only forward queries for specific subzones of the primary zone in IdM DNS.

By default, the BIND service does not forward queries to another server if the queried
DNS name belongs to a zone for which the IdM server is authoritative. In such a situation,
if the queried DNS name cannot be found in the IdM database, the NXDOMAIN answer is
returned. Forwarding is not used.

Example 95.1. Example Scenario

The IdM server is authoritative for the test.example. DNS zone. BIND is configured to forward
queries to the DNS server with the 192.0.2.254 IP address.

When a client sends a query for the nonexistent.test.example. DNS name, BIND detects that the
IdM server is authoritative for the test.example. zone and does not forward the query to the
192.0.2.254. server. As a result, the DNS client receives the NXDomain error message, informing the
user that the queried domain does not exist.

95.3. ADDING A GLOBAL FORWARDER IN THE IDM WEB UI

Follow this procedure to add a global DNS forwarder in the Identity Management (IdM) Web UI.

Prerequisites

You are logged in to the IdM WebUI as IdM administrator.

You know the Internet Protocol (IP) address of the DNS server to forward queries to.

Procedure

1. In the IdM Web UI, select Network Services → DNS Global Configuration → DNS.

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

775

2. In the DNS Global Configuration section, click Add.

3. Specify the IP address of the DNS server that will receive forwarded DNS queries.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

776

4. Select the Forward policy.

5. Click Save at the top of the window.

Verification steps

1. Select Network Services → DNS Global Configuration → DNS.

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

777

2. Verify that the global forwarder, with the forward policy you specified, is present and enabled in
the IdM Web UI.

95.4. ADDING A GLOBAL FORWARDER IN THE CLI

Follow this procedure to add a global DNS forwarder by using the command line interface (CLI).

Prerequisites

You are logged in as IdM administrator.

You know the Internet Protocol (IP) address of the DNS server to forward queries to.

Procedure

Use the ipa dnsconfig-mod command to add a new global forwarder. Specify the IP address of
the DNS forwarder with the --forwarder option.

[user@server ~]$ ipa dnsconfig-mod --forwarder=10.10.0.1
Server will check DNS forwarder(s).

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

778

This may take some time, please wait ...
 Global forwarders: 10.10.0.1
 IPA DNS servers: server.example.com

Verification steps

Use the dnsconfig-show command to display global forwarders.

[user@server ~]$ ipa dnsconfig-show
 Global forwarders: 10.10.0.1
 IPA DNS servers: server.example.com

95.5. ADDING A DNS FORWARD ZONE IN THE IDM WEB UI

Follow this procedure to add a DNS forward zone in the Identity Management (IdM) Web UI.

IMPORTANT

Do not use forward zones unless absolutely required. Forward zones are not a standard
solution, and using them can lead to unexpected and problematic behavior. If you must
use forward zones, limit their use to overriding a global forwarding configuration.

When creating a new DNS zone, Red Hat recommends to always use standard DNS
delegation using nameserver (NS) records and to avoid forward zones. In most cases,
using a global forwarder is sufficient, and forward zones are not necessary.

Prerequisites

You are logged in to the IdM WebUI as IdM administrator.

You know the Internet Protocol (IP) address of the DNS server to forward queries to.

Procedure

1. In the IdM Web UI, select Network Services → DNS Forward Zones → DNS.

2. In the DNS Forward Zones section, click Add.

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

779

3. In the Add DNS forward zone window, specify the forward zone name.

4. Click the Add button and specify the IP address of a DNS server to receive the forwarding
request. You can specify multiple forwarders per forward zone.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

780

5. Select the Forward policy.

6. Click Add at the bottom of the window to add the new forward zone.

Verification steps

1. In the IdM Web UI, select Network Services → DNS Forward Zones → DNS.

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

781

2. Verify that the forward zone you created, with the forwarders and forward policy you specified,
is present and enabled in the IdM Web UI.

95.6. ADDING A DNS FORWARD ZONE IN THE CLI

Follow this procedure to add a DNS forward zone by using the command line interface (CLI).

IMPORTANT

Do not use forward zones unless absolutely required. Forward zones are not a standard
solution, and using them can lead to unexpected and problematic behavior. If you must
use forward zones, limit their use to overriding a global forwarding configuration.

When creating a new DNS zone, Red Hat recommends to always use standard DNS
delegation using nameserver (NS) records and to avoid forward zones. In most cases,
using a global forwarder is sufficient, and forward zones are not necessary.

Prerequisites

You are logged in as IdM administrator.

You know the Internet Protocol (IP) address of the DNS server to forward queries to.

Procedure

Use the dnsforwardzone-add command to add a new forward zone. Specify at least one
forwarder with the --forwarder option if the forward policy is not none, and specify the forward
policy with the --forward-policy option.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

782

[user@server ~]$ ipa dnsforwardzone-add forward.example.com. --
forwarder=10.10.0.14 --forwarder=10.10.1.15 --forward-policy=first

Zone name: forward.example.com.
Zone forwarders: 10.10.0.14, 10.10.1.15
Forward policy: first

Verification steps

Use the dnsforwardzone-show command to display the DNS forward zone you just created.

[user@server ~]$ ipa dnsforwardzone-show forward.example.com.

Zone name: forward.example.com.
Zone forwarders: 10.10.0.14, 10.10.1.15
Forward policy: first

95.7. ESTABLISHING A DNS GLOBAL FORWARDER IN IDM USING
ANSIBLE

Follow this procedure to use an Ansible playbook to establish a DNS Global Forwarder in IdM.

In the example procedure below, the IdM administrator creates a DNS global forwarder to a DNS server
with an Internet Protocol (IP) v4 address of 8.8.6.6 and IPv6 address of 2001:4860:4860::8800 on port
53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

783

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[ipaserver]
server.idm.example.com

3. Make a copy of the set-configuration.yml Ansible playbook file. For example:

$ cp set-configuration.yml establish-global-forwarder.yml

4. Open the establish-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to establish a global forwarder
in IdM DNS.

b. In the tasks section, change the name of the task to Create a DNS global forwarder to
8.8.6.6 and 2001:4860:4860::8800.

c. In the forwarders section of the ipadnsconfig portion:

i. Change the first ip_address value to the IPv4 address of the global forwarder: 8.8.6.6.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:4860:4860::8800.

iii. Verify the port value is set to 53.

d. Change the forward_policy to first.
This the modified Ansible playbook file for the current example:

- name: Playbook to establish a global forwarder in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Create a DNS global forwarder to 8.8.6.6 and 2001:4860:4860::8800
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.6
 - ip_address: 2001:4860:4860::8800
 port: 53
 forward_policy: first
 allow_sync_ptr: yes

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file establish-global-
forwarder.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

784

95.8. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the presence of a DNS global forwarder in
IdM. In the example procedure below, the IdM administrator ensures the presence of a DNS global
forwarder to a DNS server with an Internet Protocol (IP) v4 address of 7.7.9.9 and IP v6 address of
2001:db8::1:0 on port 53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-presence-of-a-global-forwarder.yml

4. Open the ensure-presence-of-a-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the presence of a
global forwarder in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the presence of a DNS
global forwarder to 7.7.9.9 and 2001:db8::1:0 on port 53.

c. In the forwarders section of the ipadnsconfig portion:

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

785

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

i. Change the first ip_address value to the IPv4 address of the global forwarder: 7.7.9.9.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:db8::1:0.

iii. Verify the port value is set to 53.

d. Change the state to present.
This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the presence of a global forwarder in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the presence of a DNS global forwarder to 7.7.9.9 and 2001:db8::1:0 on port
53
 ipadnsconfig:
 forwarders:
 - ip_address: 7.7.9.9
 - ip_address: 2001:db8::1:0
 port: 53
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-presence-
of-a-global-forwarder.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

95.9. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the absence of a DNS global forwarder in
IdM. In the example procedure below, the IdM administrator ensures the absence of a DNS global
forwarder with an Internet Protocol (IP) v4 address of 8.8.6.6 and IP v6 address of
2001:4860:4860::8800 on port 53.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

786

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-absence-of-a-global-forwarder.yml

4. Open the ensure-absence-of-a-global-forwarder.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the absence of a
global forwarder in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the absence of a DNS global
forwarder to 8.8.6.6 and 2001:4860:4860::8800 on port 53.

c. In the forwarders section of the ipadnsconfig portion:

i. Change the first ip_address value to the IPv4 address of the global forwarder: 8.8.6.6.

ii. Change the second ip_address value to the IPv6 address of the global forwarder:
2001:4860:4860::8800.

iii. Verify the port value is set to 53.

d. Set the action variable to member.

e. Verify the state is set to absent.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the absence of a global forwarder in IdM DNS
 hosts: ipaserver

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

787

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the absence of a DNS global forwarder to 8.8.6.6 and
2001:4860:4860::8800 on port 53
 ipadnsconfig:
 forwarders:
 - ip_address: 8.8.6.6
 - ip_address: 2001:4860:4860::8800
 port: 53
 action: member
 state: absent

IMPORTANT

If you only use the state: absent option in your playbook without also using
action: member, the playbook fails.

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-absence-of-
a-global-forwarder.yml

Additional resources

The README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory

The action: member option in ipadnsconfig ansible-freeipa modules

95.10. ENSURING DNS GLOBAL FORWARDERS ARE DISABLED IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure DNS Global Forwarders are disabled in IdM.
In the example procedure below, the IdM administrator ensures that the forwarding policy for the global
forwarder is set to none, which effectively disables the global forwarder.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

788

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Verify the contents of the disable-global-forwarders.yml Ansible playbook file which is already
configured to disable all DNS global forwarders. For example:

$ cat disable-global-forwarders.yml

- name: Playbook to disable global DNS forwarders
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Disable global forwarders.
 ipadnsconfig:
 forward_policy: none

4. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file disable-global-
forwarders.yml

Additional resources

See the README-dnsconfig.md file in the /usr/share/doc/ansible-freeipa/ directory.

95.11. ENSURING THE PRESENCE OF A DNS FORWARD ZONE IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the presence of a DNS Forward Zone in IdM.
In the example procedure below, the IdM administrator ensures the presence of a DNS forward zone for
example.com to a DNS server with an Internet Protocol (IP) address of 8.8.8.8.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

789

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-presence-forwardzone.yml

4. Open the ensure-presence-forwardzone.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the presence of a
dnsforwardzone in IdM DNS.

b. In the tasks section, change the name of the task to Ensure presence of a
dnsforwardzone for example.com to 8.8.8.8.

c. In the tasks section, change the ipadnsconfig heading to ipadnsforwardzone.

d. In the ipadnsforwardzone section:

i. Add the ipaadmin_password variable and set it to your IdM administrator password.

ii. Add the name variable and set it to example.com.

iii. In the forwarders section:

A. Remove the ip_address and port lines.

B. Add the IP address of the DNS server to receive forwarded requests by specifying it
after a dash:

- 8.8.8.8

iv. Add the forwardpolicy variable and set it to first.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

790

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

v. Add the skip_overlap_check variable and set it to true.

vi. Change the state variable to present.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the presence of a dnsforwardzone in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the presence of a dnsforwardzone for example.com to 8.8.8.8
 ipadnsforwardzone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: example.com
 forwarders:
 - 8.8.8.8
 forwardpolicy: first
 skip_overlap_check: true
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-presence-
forwardzone.yml

Additional resources

See the README-dnsforwardzone.md file in the /usr/share/doc/ansible-freeipa/ directory.

95.12. ENSURING A DNS FORWARD ZONE HAS MULTIPLE
FORWARDERS IN IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure a DNS Forward Zone in IdM has multiple
forwarders. In the example procedure below, the IdM administrator ensures the DNS forward zone for
example.com is forwarding to 8.8.8.8 and 4.4.4.4.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

791

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-presence-multiple-forwarders.yml

4. Open the ensure-presence-multiple-forwarders.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the presence of
multiple forwarders in a dnsforwardzone in IdM DNS.

b. In the tasks section, change the name of the task to Ensure presence of 8.8.8.8 and
4.4.4.4 forwarders in dnsforwardzone for example.com.

c. In the tasks section, change the ipadnsconfig heading to ipadnsforwardzone.

d. In the ipadnsforwardzone section:

i. Add the ipaadmin_password variable and set it to your IdM administrator password.

ii. Add the name variable and set it to example.com.

iii. In the forwarders section:

A. Remove the ip_address and port lines.

B. Add the IP address of the DNS servers you want to ensure are present, preceded by
a dash:

- 8.8.8.8
- 4.4.4.4

iv. Change the state variable to present.

This the modified Ansible playbook file for the current example:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

792

- name: name: Playbook to ensure the presence of multiple forwarders in a dnsforwardzone
in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure presence of 8.8.8.8 and 4.4.4.4 forwarders in dnsforwardzone for
example.com
 ipadnsforwardzone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: example.com
 forwarders:
 - 8.8.8.8
 - 4.4.4.4
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-presence-
multiple-forwarders.yml

Additional resources

See the README-dnsforwardzone.md file in the /usr/share/doc/ansible-freeipa/ directory.

95.13. ENSURING A DNS FORWARD ZONE IS DISABLED IN IDM USING
ANSIBLE

Follow this procedure to use an Ansible playbook to ensure a DNS Forward Zone is disabled in IdM. In
the example procedure below, the IdM administrator ensures the DNS forward zone for example.com is
disabled.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

793

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-disabled-forwardzone.yml

4. Open the ensure-disabled-forwardzone.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure a dnsforwardzone is
disabled in IdM DNS.

b. In the tasks section, change the name of the task to Ensure a dnsforwardzone for
example.com is disabled.

c. In the tasks section, change the ipadnsconfig heading to ipadnsforwardzone.

d. In the ipadnsforwardzone section:

i. Add the ipaadmin_password variable and set it to your IdM administrator password.

ii. Add the name variable and set it to example.com.

iii. Remove the entire forwarders section.

iv. Change the state variable to disabled.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure a dnsforwardzone is disabled in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure a dnsforwardzone for example.com is disabled
 ipadnsforwardzone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: example.com
 state: disabled

6. Save the file.

7. Run the playbook:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

794

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-disabled-
forwardzone.yml

Additional resources

See the README-dnsforwardzone.md file in the /usr/share/doc/ansible-freeipa/ directory.

95.14. ENSURING THE ABSENCE OF A DNS FORWARD ZONE IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure the absence of a DNS Forward Zone in IdM.
In the example procedure below, the IdM administrator ensures the absence of a DNS forward zone for
example.com.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsconfig directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsconfig

2. Open your inventory file and make sure that the IdM server that you want to configure is listed
in the [ipaserver] section. For example, to instruct Ansible to configure
server.idm.example.com, enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the forwarders-absent.yml Ansible playbook file. For example:

$ cp forwarders-absent.yml ensure-absence-forwardzone.yml

4. Open the ensure-absence-forwardzone.yml file for editing.

5. Adapt the file by setting the following variables:

a. Change the name variable for the playbook to Playbook to ensure the absence of a

CHAPTER 95. MANAGING DNS FORWARDING IN IDM

795

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

a. Change the name variable for the playbook to Playbook to ensure the absence of a
dnsforwardzone in IdM DNS.

b. In the tasks section, change the name of the task to Ensure the absence of a
dnsforwardzone for example.com.

c. In the tasks section, change the ipadnsconfig heading to ipadnsforwardzone.

d. In the ipadnsforwardzone section:

i. Add the ipaadmin_password variable and set it to your IdM administrator password.

ii. Add the name variable and set it to example.com.

iii. Remove the entire forwarders section.

iv. Leave the state variable as absent.

This the modified Ansible playbook file for the current example:

- name: Playbook to ensure the absence of a dnsforwardzone in IdM DNS
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure the absence of a dnsforwardzone for example.com
 ipadnsforwardzone:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: example.com
 state: absent

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-absence-
forwardzone.yml

Additional resources

See the README-dnsforwardzone.md file in the /usr/share/doc/ansible-freeipa/ directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

796

CHAPTER 96. MANAGING DNS RECORDS IN IDM
This chapter describes how to manage DNS records in Identity Management (IdM). As an IdM
administrator, you can add, modify and delete DNS records in IdM. The chapter contains the following
sections:

DNS records in IdM

Adding DNS resource records from the IdM Web UI

Adding DNS resource records from the IdM CLI

Common ipa dnsrecord-add options

Deleting DNS records in the IdM Web UI

Deleting an entire DNS record in the IdM Web UI

Deleting DNS records in the IdM CLI

Prerequisites

Your IdM deployment contains an integrated DNS server. For information how to install IdM with
integrated DNS, see one of the following links:

Installing an IdM server: With integrated DNS, with an integrated CA as the root CA .

Installing an IdM server: With integrated DNS, with an external CA as the root CA .

96.1. DNS RECORDS IN IDM

Identity Management (IdM) supports many different DNS record types. The following four are used
most frequently:

A

This is a basic map for a host name and an IPv4 address. The record name of an A record is a host
name, such as www. The IP Address value of an A record is an IPv4 address, such as 192.0.2.1.
For more information about A records, see RFC 1035.

AAAA

This is a basic map for a host name and an IPv6 address. The record name of an AAAA record is a
host name, such as www. The IP Address value is an IPv6 address, such as 2001:DB8::1111.
For more information about AAAA records, see RFC 3596.

SRV

Service (SRV) resource records map service names to the DNS name of the server that is providing
that particular service. For example, this record type can map a service like an LDAP directory to the
server which manages it.
The record name of an SRV record has the format _service._protocol, such as _ldap._tcp. The
configuration options for SRV records include priority, weight, port number, and host name for the
target service.

For more information about SRV records, see RFC 2782.

CHAPTER 96. MANAGING DNS RECORDS IN IDM

797

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-integrated-dns_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-an-ipa-server-with-external-ca_installing-identity-management
http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc3596
http://tools.ietf.org/html/rfc2782

PTR

A pointer record (PTR) adds a reverse DNS record, which maps an IP address to a domain name.

NOTE

All reverse DNS lookups for IPv4 addresses use reverse entries that are defined in the
in-addr.arpa. domain. The reverse address, in human-readable form, is the exact
reverse of the regular IP address, with the in-addr.arpa. domain appended to it. For
example, for the network address 192.0.2.0/24, the reverse zone is 2.0.192.in-
addr.arpa.

The record name of a PTR must be in the standard format specified in RFC 1035, extended in RFC
2317, and RFC 3596. The host name value must be a canonical host name of the host for which you
want to create the record.

NOTE

Reverse zones can also be configured for IPv6 addresses, with zones in the .ip6.arpa.
domain. For more information about IPv6 reverse zones, see RFC 3596.

When adding DNS resource records, note that many of the records require different data. For example,
a CNAME record requires a host name, while an A record requires an IP address. In the IdM Web UI, the
fields in the form for adding a new record are updated automatically to reflect what data is required for
the currently selected type of record.

96.2. ADDING DNS RESOURCE RECORDS IN THE IDM WEB UI

Follow this procedure to add DNS resource records in the Identity Management (IdM) Web UI.

Prerequisites

The DNS zone to which you want to add a DNS record exists and is managed by IdM. For more
information about creating a DNS zone in IdM DNS, see Managing DNS zones in IdM .

You are logged in as IdM administrator.

Procedure

1. In the IdM Web UI, click Network Services → DNS → DNS Zones.

2. Click the DNS zone to which you want to add a DNS record.

3. In the DNS Resource Records section, click Add to add a new record.

Figure 96.1. Adding a New DNS Resource Record

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

798

http://tools.ietf.org/html/rfc1035#section-3.5
http://tools.ietf.org/html/rfc2317
https://tools.ietf.org/html/rfc3596#section-2.5
http://www.ietf.org/rfc/rfc3596.txt

Figure 96.1. Adding a New DNS Resource Record

4. Select the type of record to create and fill out the other fields as required.

Figure 96.2. Defining a New DNS Resource Record

5. Click Add to confirm the new record.

96.3. ADDING DNS RESOURCE RECORDS FROM THE IDM CLI

Follow this procedure to add a DNS resource record of any type from the command line interface (CLI).

Prerequisites

The DNS zone to which you want to add a DNS records exists. For more information about
creating a DNS zone in IdM DNS, see Managing DNS zones in IdM .

You are logged in as IdM administrator.

CHAPTER 96. MANAGING DNS RECORDS IN IDM

799

Procedure

1. To add a DNS resource record, use the ipa dnsrecord-add command. The command follows
this syntax:

$ ipa dnsrecord-add zone_name record_name --record_type_option=data

In the command above:

The zone_name is the name of the DNS zone to which the record is being added.

The record_name is an identifier for the new DNS resource record.

For example, to add an A type DNS record of host1 to the idm.example.com zone, enter:

$ ipa dnsrecord-add idm.example.com host1 --a-rec=192.168.122.123

96.4. COMMON IPA DNSRECORD-* OPTIONS

You can use the following options when adding, modifying and deleting the most common DNS
resource record types in Identity Management (IdM):

A (IPv4)

AAAA (IPv6)

SRV

PTR

In Bash, you can define multiple entries by listing the values in a comma-separated list inside curly
braces, such as -- option={val1,val2,val3}.

Table 96.1. General Record Options

Option Description

--ttl=number Sets the time to live for the record.

--structured Parses the raw DNS records and returns them in a
structured format.

Table 96.2. "A" record options

Option Description Examples

--a-
rec=ARECORD

Passes a single A record or a list of A records. ipa dnsrecord-add
idm.example.com host1 --a-
rec=192.168.122.123

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

800

Can create a wildcard A record with a given IP
address.

ipa dnsrecord-add
idm.example.com "*" --a-
rec=192.168.122.123 [a]

--a-ip-
address=strin
g

Gives the IP address for the record. When creating a
record, the option to specify the A record value is --
a-rec. However, when modifying an A record, the --
a-rec option is used to specify the current value for
the A record. The new value is set with the --a-ip-
address option.

ipa dnsrecord-mod
idm.example.com --a-rec
192.168.122.123 --a-ip-
address 192.168.122.124

[a] The example creates a wildcard A record with the IP address of 192.0.2.123.

Option Description Examples

Table 96.3. "AAAA" record options

Option Description Example

--aaaa-
rec=AAAAREC
ORD

Passes a single AAAA (IPv6) record or a list of AAAA
records.

ipa dnsrecord-add
idm.example.com www --
aaaa-rec
2001:db8::1231:5675

--aaaa-ip-
address=strin
g

Gives the IPv6 address for the record. When creating
a record, the option to specify the A record value is --
aaaa-rec. However, when modifying an A record, the
--aaaa-rec option is used to specify the current
value for the A record. The new value is set with the -
-a-ip-address option.

ipa dnsrecord-mod
idm.example.com --aaaa-rec
2001:db8::1231:5675 --aaaa-
ip-address
2001:db8::1231:5676

Table 96.4. "PTR" record options

Option Description Example

--ptr-
rec=PTRRECO
RD

Passes a single PTR record or a list of PTR records.
When adding the reverse DNS record, the zone name
used with the ipa dnsrecord-add command is
reversed, compared to the usage for adding other
DNS records. Typically, the host IP address is the last
octet of the IP address in a given network. The first
example on the right adds a PTR record for
server4.idm.example.com with IPv4 address
192.168.122.4. The second example adds a reverse
DNS entry to the
0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa. IPv6
reverse zone for the host server2.example.com with
the IP address 2001:DB8::1111.

ipa dnsrecord-add
122.168.192.in-addr.arpa 4 --
ptr-rec
server4.idm.example.com.

$ ipa dnsrecord-add
0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.i
p6.arpa.
1.1.1.0.0.0.0.0.0.0.0.0.0.0.0 --
ptr-rec
server2.idm.example.com.

CHAPTER 96. MANAGING DNS RECORDS IN IDM

801

--ptr-
hostname=stri
ng

Gives the host name for the record.

Option Description Example

Table 96.5. "SRV" Record Options

Option Description Example

--srv-
rec=SRVRECORD

Passes a single SRV record or a list of
SRV records. In the examples on the right,
_ldap._tcp defines the service type and
the connection protocol for the SRV
record. The --srv-rec option defines the
priority, weight, port, and target values.
The weight values of 51 and 49 in the
examples add up to 100 and represent
the probability, in percentages, that a
particular record is used.

ipa dnsrecord-add
idm.example.com _ldap._tcp --srv-
rec="0 51 389
server1.idm.example.com."

ipa dnsrecord-add
server.idm.example.com _ldap._tcp
--srv-rec="1 49 389
server2.idm.example.com."

--srv-
priority=number

Sets the priority of the record. There can
be multiple SRV records for a service
type. The priority (0 - 65535) sets the
rank of the record; the lower the number,
the higher the priority. A service has to
use the record with the highest priority
first.

ipa dnsrecord-mod
server.idm.example.com _ldap._tcp
--srv-rec="1 49 389
server2.idm.example.com." --srv-
priority=0

--srv-
weight=number

Sets the weight of the record. This helps
determine the order of SRV records with
the same priority. The set weights should
add up to 100, representing the
probability (in percentages) that a
particular record is used.

ipa dnsrecord-mod
server.idm.example.com _ldap._tcp
--srv-rec="0 49 389
server2.idm.example.com." --srv-
weight=60

--srv-
port=number

Gives the port for the service on the
target host.

ipa dnsrecord-mod
server.idm.example.com _ldap._tcp
--srv-rec="0 60 389
server2.idm.example.com." --srv-
port=636

--srv-
target=string

Gives the domain name of the target
host. This can be a single period (.) if the
service is not available in the domain.

Additional resources

Run ipa dnsrecord-add --help.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

802

96.5. DELETING DNS RECORDS IN THE IDM WEB UI

Follow this procedure to delete DNS records in Identity Management (IdM) using the IdM Web UI.

Prerequisites

You are logged in as IdM administrator.

Procedure

1. In the IdM Web UI, click Network Services → DNS → DNS Zones.

2. Click the zone from which you want to delete a DNS record, for example example.com..

3. In the DNS Resource Records section, click the name of the resource record.

Figure 96.3. Selecting a DNS Resource Record

4. Select the check box by the name of the record type to delete.

5. Click Delete.

Figure 96.4. Deleting a DNS Resource Record

CHAPTER 96. MANAGING DNS RECORDS IN IDM

803

Figure 96.4. Deleting a DNS Resource Record

The selected record type is now deleted. The other configuration of the resource record is left intact.

Additional resources

See Deleting an entire DNS record in the IdM Web UI .

96.6. DELETING AN ENTIRE DNS RECORD IN THE IDM WEB UI

Follow this procedure to delete all the records for a particular resource in a zone using the
Identity Management (IdM) Web UI.

Prerequisites

You are logged in as IdM administrator.

Procedure

1. In the IdM Web UI, click Network Services → DNS → DNS Zones.

2. Click the zone from which you want to delete a DNS record, for example zone.example.com..

3. In the DNS Resource Records section, select the check box of the resource record to delete.

4. Click Delete.

Figure 96.5. Deleting an Entire Resource Record

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

804

Figure 96.5. Deleting an Entire Resource Record

The entire resource record is now deleted.

96.7. DELETING DNS RECORDS IN THE IDM CLI

Follow this procedure to remove DNS records from a zone managed by the Identity Management (IdM)
DNS.

Prerequisites

You are logged in as IdM administrator.

Procedure

To remove records from a zone, use the ipa dnsrecord-del command and add the -
-recordType-rec option together with the record value. For example, to remove an A type
record:

$ ipa dnsrecord-del example.com www --a-rec 192.0.2.1

If you run ipa dnsrecord-del without any options, the command prompts for information about
the record to delete. Note that passing the --del-all option with the command removes all
associated records for the zone.

Additional resources

Run the ipa dnsrecord-del --help command.

96.8. ADDITIONAL RESOURCES

See Using Ansible to manage DNS records in IdM .

CHAPTER 96. MANAGING DNS RECORDS IN IDM

805

CHAPTER 97. UPDATING DNS RECORDS SYSTEMATICALLY
WHEN USING EXTERNAL DNS

When using external DNS, Identity Management (IdM) does not update the DNS records automatically
after a change in the topology. You can update the DNS records managed by an external DNS service
systematically, which reduces the need for manual DNS updates.

Updating DNS records removes old or invalid DNS records and adds new records. You must update
DNS records after a change in your topology, for example:

After installing or uninstalling a replica

After installing a CA, DNS, KRA, or Active Directory trust on an IdM server

97.1. UPDATING EXTERNAL DNS RECORDS WITH GUI

If you have made any changes to your topology, you must update the external DNS records by using the
external DNS GUI.

Procedure

1. Display the records that you must update:

$ ipa dns-update-system-records --dry-run
 IPA DNS records:
 _kerberos-master._tcp.example.com. 86400 IN SRV 0 100 88 ipa.example.com.
 _kerberos-master._udp.example.com. 86400 IN SRV 0 100 88 ipa.example.com.
[... output truncated ...]

2. Use the external DNS GUI to update the records.

97.2. UPDATING EXTERNAL DNS RECORDS USING NSUPDATE

You can update external DNS records using the nsupdate utility. You can also add the command to a
script to automate the process. To update with the nsupdate utility, you need to generate a file with the
DNS records, and then proceed with either sending an nsupdate request secured using TSIG, or sending
an nsupdate request secured using the GSS-TSIG.

Procedure

To generate a file with the DNS records for nsupdate, use the `ipa dns-update-system-
records --dry-run command with the --out option. The --out option specifies the path of the
file to generate:

$ ipa dns-update-system-records --dry-run --out dns_records_file.nsupdate
 IPA DNS records:
 _kerberos-master._tcp.example.com. 86400 IN SRV 0 100 88 ipa.example.com.
 _kerberos-master._udp.example.com. 86400 IN SRV 0 100 88 ipa.example.com.
[... output truncated ...]

The generated file contains the required DNS records in the format accepted by the nsupdate
utility.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

806

The generated records rely on:

Automatic detection of the zone in which the records are to be updated.

Automatic detection of the zone’s authoritative server.
If you are using an atypical DNS setup or if zone delegations are missing, nsupdate might
not be able to find the right zone and server. In this case, add the following options to the
beginning of the generated file:

server: specify the server name or port of the authoritative DNS server to which nsupdate
sends the records.

zone: specify the name of the zone where nsupdate places the records.

Example 97.1. Generated record

$ cat dns_records_file.nsupdate
zone example.com.
server 192.0.2.1
; IPA DNS records
update delete _kerberos-master._tcp.example.com. SRV
update add _kerberos-master._tcp.example.com. 86400 IN SRV 0 100 88
ipa.example.com.
[... output truncated ...]

97.3. SENDING AN NSUPDATE REQUEST SECURED USING TSIG

When sending a request using nsupdate, make sure you properly secure it. Transaction signature (TSIG)
enables you to use nsupdate with a shared key.

Prerequisites

Your DNS server must be configured for TSIG.

Both the DNS server and its client must have the shared key.

Procedure

Run the nsupdate command and provide the shared secret using one of these options:

-k to provide the TSIG authentication key:

$ nsupdate -k tsig_key.file dns_records_file.nsupdate

-y to generate a signature from the name of the key and from the Base64-encoded shared
secret:

$ nsupdate -y algorithm:keyname:secret dns_records_file.nsupdate

97.4. SENDING AN NSUPDATE REQUEST SECURED USING GSS-TSIG

When sending a request using nsupdate, make sure you properly secure it. GSS-TSIG uses the GSS-API
interface to obtain the secret TSIG key. GSS-TSIG is an extension to the TSIG protocol.

CHAPTER 97. UPDATING DNS RECORDS SYSTEMATICALLY WHEN USING EXTERNAL DNS

807

Prerequisites

Your DNS server must be configured for GSS-TSIG.

NOTE

This procedure assumes that Kerberos V5 protocol is used as the technology for GSS-
API.

Procedure

1. Authenticate with a principal allowed to update the records:

$ kinit principal_allowed_to_update_records@REALM

2. Run nsupdate with the -g option to enable the GSS-TSIG mode:

$ nsupdate -g dns_records_file.nsupdate

97.5. ADDITIONAL RESOURCES

nsupdate(8) man page

RFC 2845 describes the TSIG protocol

RFC 3645 describes the GSS-TSIG algorithm

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

808

https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc3645

CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN
IDM

This chapter describes how to manage DNS records in Identity Management (IdM) using an Ansible
playbook. As an IdM administrator, you can add, modify, and delete DNS records in IdM. The chapter
contains the following sections:

Ensuring the presence of A and AAAA DNS records in IdM using Ansible

Ensuring the presence of A and PTR DNS records in IdM using Ansible

Ensuring the presence of multiple DNS records in IdM using Ansible

Ensuring the presence of multiple CNAME records in IdM using Ansible

Ensuring the presence of an SRV record in IdM using Ansible

98.1. DNS RECORDS IN IDM

Identity Management (IdM) supports many different DNS record types. The following four are used
most frequently:

A

This is a basic map for a host name and an IPv4 address. The record name of an A record is a host
name, such as www. The IP Address value of an A record is an IPv4 address, such as 192.0.2.1.
For more information about A records, see RFC 1035.

AAAA

This is a basic map for a host name and an IPv6 address. The record name of an AAAA record is a
host name, such as www. The IP Address value is an IPv6 address, such as 2001:DB8::1111.
For more information about AAAA records, see RFC 3596.

SRV

Service (SRV) resource records map service names to the DNS name of the server that is providing
that particular service. For example, this record type can map a service like an LDAP directory to the
server which manages it.
The record name of an SRV record has the format _service._protocol, such as _ldap._tcp. The
configuration options for SRV records include priority, weight, port number, and host name for the
target service.

For more information about SRV records, see RFC 2782.

PTR

A pointer record (PTR) adds a reverse DNS record, which maps an IP address to a domain name.

NOTE

All reverse DNS lookups for IPv4 addresses use reverse entries that are defined in the
in-addr.arpa. domain. The reverse address, in human-readable form, is the exact
reverse of the regular IP address, with the in-addr.arpa. domain appended to it. For
example, for the network address 192.0.2.0/24, the reverse zone is 2.0.192.in-
addr.arpa.

CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

809

http://tools.ietf.org/html/rfc1035
http://tools.ietf.org/html/rfc3596
http://tools.ietf.org/html/rfc2782

The record name of a PTR must be in the standard format specified in RFC 1035, extended in RFC
2317, and RFC 3596. The host name value must be a canonical host name of the host for which you
want to create the record.

NOTE

Reverse zones can also be configured for IPv6 addresses, with zones in the .ip6.arpa.
domain. For more information about IPv6 reverse zones, see RFC 3596.

When adding DNS resource records, note that many of the records require different data. For example,
a CNAME record requires a host name, while an A record requires an IP address. In the IdM Web UI, the
fields in the form for adding a new record are updated automatically to reflect what data is required for
the currently selected type of record.

98.2. COMMON IPA DNSRECORD-* OPTIONS

You can use the following options when adding, modifying and deleting the most common DNS
resource record types in Identity Management (IdM):

A (IPv4)

AAAA (IPv6)

SRV

PTR

In Bash, you can define multiple entries by listing the values in a comma-separated list inside curly
braces, such as -- option={val1,val2,val3}.

Table 98.1. General Record Options

Option Description

--ttl=number Sets the time to live for the record.

--structured Parses the raw DNS records and returns them in a
structured format.

Table 98.2. "A" record options

Option Description Examples

--a-
rec=ARECORD

Passes a single A record or a list of A records. ipa dnsrecord-add
idm.example.com host1 --a-
rec=192.168.122.123

Can create a wildcard A record with a given IP
address.

ipa dnsrecord-add
idm.example.com "*" --a-
rec=192.168.122.123 [a]

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

810

http://tools.ietf.org/html/rfc1035#section-3.5
http://tools.ietf.org/html/rfc2317
https://tools.ietf.org/html/rfc3596#section-2.5
http://www.ietf.org/rfc/rfc3596.txt

--a-ip-
address=strin
g

Gives the IP address for the record. When creating a
record, the option to specify the A record value is --
a-rec. However, when modifying an A record, the --
a-rec option is used to specify the current value for
the A record. The new value is set with the --a-ip-
address option.

ipa dnsrecord-mod
idm.example.com --a-rec
192.168.122.123 --a-ip-
address 192.168.122.124

[a] The example creates a wildcard A record with the IP address of 192.0.2.123.

Option Description Examples

Table 98.3. "AAAA" record options

Option Description Example

--aaaa-
rec=AAAAREC
ORD

Passes a single AAAA (IPv6) record or a list of AAAA
records.

ipa dnsrecord-add
idm.example.com www --
aaaa-rec
2001:db8::1231:5675

--aaaa-ip-
address=strin
g

Gives the IPv6 address for the record. When creating
a record, the option to specify the A record value is --
aaaa-rec. However, when modifying an A record, the
--aaaa-rec option is used to specify the current
value for the A record. The new value is set with the -
-a-ip-address option.

ipa dnsrecord-mod
idm.example.com --aaaa-rec
2001:db8::1231:5675 --aaaa-
ip-address
2001:db8::1231:5676

Table 98.4. "PTR" record options

Option Description Example

--ptr-
rec=PTRRECO
RD

Passes a single PTR record or a list of PTR records.
When adding the reverse DNS record, the zone name
used with the ipa dnsrecord-add command is
reversed, compared to the usage for adding other
DNS records. Typically, the host IP address is the last
octet of the IP address in a given network. The first
example on the right adds a PTR record for
server4.idm.example.com with IPv4 address
192.168.122.4. The second example adds a reverse
DNS entry to the
0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa. IPv6
reverse zone for the host server2.example.com with
the IP address 2001:DB8::1111.

ipa dnsrecord-add
122.168.192.in-addr.arpa 4 --
ptr-rec
server4.idm.example.com.

$ ipa dnsrecord-add
0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.i
p6.arpa.
1.1.1.0.0.0.0.0.0.0.0.0.0.0.0 --
ptr-rec
server2.idm.example.com.

--ptr-
hostname=stri
ng

Gives the host name for the record.

CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

811

Table 98.5. "SRV" Record Options

Option Description Example

--srv-
rec=SRVRECORD

Passes a single SRV record or a list of
SRV records. In the examples on the right,
_ldap._tcp defines the service type and
the connection protocol for the SRV
record. The --srv-rec option defines the
priority, weight, port, and target values.
The weight values of 51 and 49 in the
examples add up to 100 and represent
the probability, in percentages, that a
particular record is used.

ipa dnsrecord-add
idm.example.com _ldap._tcp --srv-
rec="0 51 389
server1.idm.example.com."

ipa dnsrecord-add
server.idm.example.com _ldap._tcp
--srv-rec="1 49 389
server2.idm.example.com."

--srv-
priority=number

Sets the priority of the record. There can
be multiple SRV records for a service
type. The priority (0 - 65535) sets the
rank of the record; the lower the number,
the higher the priority. A service has to
use the record with the highest priority
first.

ipa dnsrecord-mod
server.idm.example.com _ldap._tcp
--srv-rec="1 49 389
server2.idm.example.com." --srv-
priority=0

--srv-
weight=number

Sets the weight of the record. This helps
determine the order of SRV records with
the same priority. The set weights should
add up to 100, representing the
probability (in percentages) that a
particular record is used.

ipa dnsrecord-mod
server.idm.example.com _ldap._tcp
--srv-rec="0 49 389
server2.idm.example.com." --srv-
weight=60

--srv-
port=number

Gives the port for the service on the
target host.

ipa dnsrecord-mod
server.idm.example.com _ldap._tcp
--srv-rec="0 60 389
server2.idm.example.com." --srv-
port=636

--srv-
target=string

Gives the domain name of the target
host. This can be a single period (.) if the
service is not available in the domain.

Additional resources

Run ipa dnsrecord-add --help.

98.3. ENSURING THE PRESENCE OF A AND AAAA DNS RECORDS IN
IDM USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure that A and AAAA records for a particular IdM
host are present. In the example used in the procedure below, an IdM administrator ensures the
presence of A and AAAA records for host1 in the idm.example.com DNS zone.

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

812

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The idm.example.com zone exists and is managed by IdM DNS. For more information about
adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS zones .

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-A-and-AAAA-records-are-present.yml Ansible playbook file. For
example:

$ cp ensure-A-and-AAAA-records-are-present.yml ensure-A-and-AAAA-records-are-
present-copy.yml

4. Open the ensure-A-and-AAAA-records-are-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the zone_name variable to idm.example.com.

In the records variable, set the name variable to host1, and the a_ip_address variable to
192.168.122.123.

In the records variable, set the name variable to host1, and the aaaa_ip_address variable
to ::1.
This is the modified Ansible playbook file for the current example:

- name: Ensure A and AAAA records are present

CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

813

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-playbooks-to-manage-idm-dns-zones_working-with-dns-in-identity-management

 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 # Ensure A and AAAA records are present
 - name: Ensure that 'host1' has A and AAAA records.
 ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 zone_name: idm.example.com
 records:
 - name: host1
 a_ip_address: 192.168.122.123
 - name: host1
 aaaa_ip_address: ::1

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-A-
and-AAAA-records-are-present-copy.yml

Additional resources

See DNS records in IdM .

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

98.4. ENSURING THE PRESENCE OF A AND PTR DNS RECORDS IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure that an A record for a particular IdM host is
present, with a corresponding PTR record. In the example used in the procedure below, an IdM
administrator ensures the presence of A and PTR records for host1 with an IP address of 192.168.122.45
in the idm.example.com zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

814

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-to-manage-dns-records-in-idm_working-with-dns-in-identity-management#dns-records-in-idm_using-ansible-to-manage-dns-records-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You know the IdM administrator password.

The idm.example.com DNS zone exists and is managed by IdM DNS. For more information
about adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS
zones.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-dnsrecord-with-reverse-is-present.yml Ansible playbook file. For
example:

$ cp ensure-dnsrecord-with-reverse-is-present.yml ensure-dnsrecord-with-reverse-is-
present-copy.yml

4. Open the ensure-dnsrecord-with-reverse-is-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to host1.

Set the zone_name variable to idm.example.com.

Set the ip_address variable to 192.168.122.45.

Set the create_reverse variable to yes.
This is the modified Ansible playbook file for the current example:

- name: Ensure DNS Record is present.
 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 # Ensure that dns record is present
 - ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: host1
 zone_name: idm.example.com
 ip_address: 192.168.122.45
 create_reverse: yes
 state: present

CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

815

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-playbooks-to-manage-idm-dns-zones_working-with-dns-in-identity-management

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
dnsrecord-with-reverse-is-present-copy.yml

Additional resources

See DNS records in IdM .

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

98.5. ENSURING THE PRESENCE OF MULTIPLE DNS RECORDS IN IDM
USING ANSIBLE

Follow this procedure to use an Ansible playbook to ensure that multiple values are associated with a
particular IdM DNS record. In the example used in the procedure below, an IdM administrator ensures
the presence of multiple A records for host1 in the idm.example.com DNS zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The idm.example.com zone exists and is managed by IdM DNS. For more information about
adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS zones .

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

816

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-records-in-idm_working-with-dns-in-identity-management#dns-records-in-idm_managing-dns-records-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-presence-multiple-records.yml Ansible playbook file. For example:

$ cp ensure-presence-multiple-records.yml ensure-presence-multiple-records-
copy.yml

4. Open the ensure-presence-multiple-records-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

Set the ipaadmin_password variable to your IdM administrator password.

In the records section, set the name variable to host1.

In the records section, set the zone_name variable to idm.example.com.

In the records section, set the a_rec variable to 192.168.122.112 and to 192.168.122.122.

Define a second record in the records section:

Set the name variable to host1.

Set the zone_name variable to idm.example.com.

Set the aaaa_rec variable to ::1.

This is the modified Ansible playbook file for the current example:

- name: Test multiple DNS Records are present.
 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 # Ensure that multiple dns records are present
 - ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 records:
 - name: host1
 zone_name: idm.example.com
 a_rec: 192.168.122.112
 a_rec: 192.168.122.122
 - name: host1
 zone_name: idm.example.com
 aaaa_rec: ::1

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
presence-multiple-records-copy.yml

CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

817

Additional resources

See DNS records in IdM .

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

98.6. ENSURING THE PRESENCE OF MULTIPLE CNAME RECORDS IN
IDM USING ANSIBLE

A Canonical Name record (CNAME record) is a type of resource record in the Domain Name System
(DNS) that maps one domain name, an alias, to another name, the canonical name.

You may find CNAME records useful when running multiple services from a single IP address: for
example, an FTP service and a web service, each running on a different port.

Follow this procedure to use an Ansible playbook to ensure that multiple CNAME records are present in
IdM DNS. In the example used in the procedure below, host03 is both an HTTP server and an FTP
server. The IdM administrator ensures the presence of the www and ftp CNAME records for the host03
A record in the idm.example.com zone.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The idm.example.com zone exists and is managed by IdM DNS. For more information about
adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS zones .

The host03 A record exists in the idm.example.com zone.

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

818

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-records-in-idm_working-with-dns-in-identity-management#dns-records-in-idm_managing-dns-records-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-CNAME-record-is-present.yml Ansible playbook file. For example:

$ cp ensure-CNAME-record-is-present.yml ensure-CNAME-record-is-present-copy.yml

4. Open the ensure-CNAME-record-is-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

(Optional) Adapt the description provided by the name of the play.

Set the ipaadmin_password variable to your IdM administrator password.

Set the zone_name variable to idm.example.com.

In the records variable section, set the following variables and values:

Set the name variable to www.

Set the cname_hostname variable to host03.

Set the name variable to ftp.

Set the cname_hostname variable to host03.

This is the modified Ansible playbook file for the current example:

- name: Ensure that 'www.idm.example.com' and 'ftp.idm.example.com' CNAME records
point to 'host03.idm.example.com'.
 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 - ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 zone_name: idm.example.com
 records:
 - name: www
 cname_hostname: host03
 - name: ftp
 cname_hostname: host03

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-
CNAME-record-is-present.yml

Additional resources

CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

819

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

98.7. ENSURING THE PRESENCE OF AN SRV RECORD IN IDM USING
ANSIBLE

A DNS service (SRV) record defines the hostname, port number, transport protocol, priority and weight
of a service available in a domain. In Identity Management (IdM), you can use SRV records to locate IdM
servers and replicas.

Follow this procedure to use an Ansible playbook to ensure that an SRV record is present in IdM DNS. In
the example used in the procedure below, an IdM administrator ensures the presence of the
_kerberos._udp.idm.example.com SRV record with the value of 10 50 88 idm.example.com. This sets
the following values:

It sets the priority of the service to 10.

It sets the weight of the service to 50.

It sets the port to be used by the service to 88.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

You know the IdM administrator password.

The idm.example.com zone exists and is managed by IdM DNS. For more information about
adding a primary DNS zone in IdM DNS, see Using Ansible playbooks to manage IdM DNS zones .

Procedure

1. Navigate to the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord directory:

$ cd /usr/share/doc/ansible-freeipa/playbooks/dnsrecord

2. Open your inventory file and ensure that the IdM server that you want to configure is listed in
the [ipaserver] section. For example, to instruct Ansible to configure server.idm.example.com,
enter:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

820

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/using-ansible-playbooks-to-manage-idm-dns-zones_working-with-dns-in-identity-management

[ipaserver]
server.idm.example.com

3. Make a copy of the ensure-SRV-record-is-present.yml Ansible playbook file. For example:

$ cp ensure-SRV-record-is-present.yml ensure-SRV-record-is-present-copy.yml

4. Open the ensure-SRV-record-is-present-copy.yml file for editing.

5. Adapt the file by setting the following variables in the ipadnsrecord task section:

Set the ipaadmin_password variable to your IdM administrator password.

Set the name variable to _kerberos._udp.idm.example.com.

Set the srv_rec variable to '10 50 88 idm.example.com'.

Set the zone_name variable to idm.example.com.
This the modified Ansible playbook file for the current example:

- name: Test multiple DNS Records are present.
 hosts: ipaserver
 become: true
 gather_facts: false

 tasks:
 # Ensure a SRV record is present
 - ipadnsrecord:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: _kerberos._udp.idm.example.com
 srv_rec: ’10 50 88 idm.example.com’
 zone_name: idm.example.com
 state: present

6. Save the file.

7. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i inventory.file ensure-SRV-
record-is-present.yml

Additional resources

See DNS records in IdM .

See the README-dnsrecord.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample Ansible playbooks in the /usr/share/doc/ansible-freeipa/playbooks/dnsrecord
directory.

CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM

821

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/working_with_dns_in_identity_management/managing-dns-records-in-idm_working-with-dns-in-identity-management#dns-records-in-idm_managing-dns-records-in-idm

CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE
You can use Red Hat Ansible Engine to manage the servers in your Identity Management (IdM)
topology. You can use the server module in the ansible-freeipa package to check the presence or
absence of a server in the IdM topology. You can also hide any replica or make a replica visible.

The section contains the following topics:

Checking that an IdM server is present by using Ansible

Ensuring that an IdM server is absent from an IdM topology by using Ansible

Ensuring the absence of an IdM server despite hosting a last IdM server role

Ensuring that an IdM server is absent but not necessarily disconnected from other IdM servers

Ensuring that an existing IdM server is hidden using an Ansible playbook

Ensuring that an existing IdM server is visible using an Ansible playbook

Ensuring that an existing IdM server has an IdM DNS location assigned

Ensuring that an existing IdM server has no IdM DNS location assigned

99.1. CHECKING THAT AN IDM SERVER IS PRESENT BY USING
ANSIBLE

You can use the ipaserver ansible-freeipa module in an Ansible playbook to verify that an
Identity Management (IdM) server exists.

NOTE

The ipaserver Ansible module does not install the IdM server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

822

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-present.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-present.yml server-
present-copy.yml

3. Open the server-present-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

- name: Server present example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com is present
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-present-
copy.yml

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

99.2. ENSURING THAT AN IDM SERVER IS ABSENT FROM AN IDM
TOPOLOGY BY USING ANSIBLE

Use an Ansible playbook to ensure an Identity Management (IdM) server does not exist in an IdM
topology, even as a host.

In contrast to the ansible-freeipa ipaserver role, the ipaserver module used in this playbook does not
uninstall IdM services from the server.

CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE

823

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-absent.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-absent.yml server-absent-
copy.yml

3. Open the server-absent-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the state variable is set to absent.

- name: Server absent example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com is absent
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 state: absent

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

824

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-absent-
copy.yml

6. Make sure all name server (NS) DNS records pointing to server123.idm.example.com are
deleted from your DNS zones. This applies regardless of whether you use integrated DNS
managed by IdM or external DNS.

Additional resources

See Uninstalling an IdM server .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

99.3. ENSURING THE ABSENCE OF AN IDM SERVER DESPITE
HOSTING A LAST IDM SERVER ROLE

You can use Ansible to ensure that an Identity Management (IdM) server is absent even if the last IdM
service instance is running on the server. A certificate authority (CA), key recovery authority (KRA), or
DNS server are all examples of IdM services.

WARNING

If you remove the last server that serves as a CA, KRA, or DNS server, you disrupt
IdM functionality seriously. You can manually check which services are running on
which IdM servers with the ipa service-find command. The principal name of a CA
server is dogtag/server_name/REALM_NAME.

In contrast to the ansible-freeipa ipaserver role, the ipaserver module used in this playbook does not
uninstall IdM services from the server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of

CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE

825

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-server_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-absent-ignore-last-of-role.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-absent-ignore-last-of-
role.yml server-absent-ignore-last-of-role-copy.yml

3. Open the server-absent-ignore-last-of-role-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the ignore_last_of_role variable is set to yes.

Set the state variable to absent.

- name: Server absent with last of role skip example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server “server123.idm.example.com” is absent with last of role skip
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 ignore_last_of_role: yes
 state: absent

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-absent-
ignore-last-of-role-copy.yml

6. Make sure all name server (NS) DNS records that point to server123.idm.example.com are
deleted from your DNS zones. This applies regardless of whether you use integrated DNS
managed by IdM or external DNS.

Additional resources

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

826

See Uninstalling an IdM server .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

99.4. ENSURING THAT AN IDM SERVER IS ABSENT BUT NOT
NECESSARILY DISCONNECTED FROM OTHER IDM SERVERS

If you are removing an Identity Management (IdM) server from the topology, you can keep its replication
agreements intact with an Ansible playbook. The playbook also ensures that the IdM server does not
exist in IdM, even as a host.

IMPORTANT

Ignoring a server’s replication agreements when removing it is only recommended when
the other servers are dysfunctional servers that you are planning to remove anyway.
Removing a server that serves as a central point in the topology can split your topology
into two disconnected clusters.

You can remove a dysfunctional server from the topology with the ipa server-del
command.

NOTE

If you remove the last server that serves as a certificate authority (CA), key recovery
authority (KRA), or DNS server, you seriously disrupt the Identity Management (IdM)
functionality. To prevent this problem, the playbook makes sure these services are
running on another server in the domain before it uninstalls a server that serves as a CA,
KRA, or DNS server.

In contrast to the ansible-freeipa ipaserver role, the ipaserver module used in this playbook does not
uninstall IdM services from the server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE

827

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-server_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-absent-ignore_topology_disconnect.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-absent-
ignore_topology_disconnect.yml server-absent-ignore_topology_disconnect-copy.yml

3. Open the server-absent-ignore_topology_disconnect-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the ignore_topology_disconnect variable is set to yes.

Ensure that the state variable is set to absent.

- name: Server absent with ignoring topology disconnects example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server “server123.idm.example.com” with ignoring topology disconnects
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 ignore_topology_disconnect: yes
 state: absent

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-absent-
ignore_topology_disconnect-copy.yml

6. [Optional] Make sure all name server (NS) DNS records pointing to
server123.idm.example.com are deleted from your DNS zones. This applies regardless of
whether you use integrated DNS managed by IdM or external DNS.

Additional resources

See Uninstalling an IdM server .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

828

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/uninstalling-an-ipa-server_installing-identity-management

99.5. ENSURING THAT AN EXISTING IDM SERVER IS HIDDEN USING
AN ANSIBLE PLAYBOOK

Use the ipaserver ansible-freeipa module in an Ansible playbook to ensure that an existing
Identity Management (IdM) server is hidden. Note that this playbook does not install the IdM server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-hidden.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-hidden.yml server-hidden-
copy.yml

3. Open the server-hidden-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the hidden variable is set to True.

- name: Server hidden example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml

CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE

829

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 tasks:
 - name: Ensure server server123.idm.example.com is hidden
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 hidden: True

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-hidden-
copy.yml

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See The hidden replica mode.

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

99.6. ENSURING THAT AN EXISTING IDM SERVER IS VISIBLE BY USING
AN ANSIBLE PLAYBOOK

Use the ipaserver ansible-freeipa module in an Ansible playbook to ensure that an existing
Identity Management (IdM) server is visible. Note that this playbook does not install the IdM server.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

830

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#the-hidden-replica-mode_planning-the-replica-topology
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

2. Copy the server-not-hidden.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-not-hidden.yml server-
not-hidden-copy.yml

3. Open the server-not-hidden-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to the FQDN of the server. The FQDN of the example server is
server123.idm.example.com.

Ensure that the hidden variable is set to no.

- name: Server not hidden example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com is not hidden
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 hidden: no

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-not-
hidden-copy.yml

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See The hidden replica mode.

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See the sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

99.7. ENSURING THAT AN EXISTING IDM SERVER HAS AN IDM DNS
LOCATION ASSIGNED

Use the ipaserver ansible-freeipa module in an Ansible playbook to ensure that an existing
Identity Management (IdM) server is assigned a specific IdM DNS location.

Note that the ipaserver Ansible module does not install the IdM server.

Prerequisites

CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE

831

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#the-hidden-replica-mode_planning-the-replica-topology

You know the IdM admin password.

The IdM DNS location exists. The example location is germany.

You have root access to the server. The example server is server123.idm.example.com.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-location.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-location.yml server-
location-copy.yml

3. Open the server-location-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to server123.idm.example.com.

Set the location variable to germany.

This is the modified Ansible playbook file for the current example:

- name: Server enabled example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com with location “germany” is present
 ipaserver:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

832

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 location: germany

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-location-
copy.yml

6. Connect to server123.idm.example.com as root using SSH:

ssh root@server123.idm.example.com

7. Restart the named-pkcs11 service on the server for the updates to take effect immediately:

[root@server123.idm.example.com ~]# systemctl restart named-pkcs11

Additional resources

See Installing an Identity Management server using an Ansible playbook .

See Using Ansible to ensure an IdM location is present .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

99.8. ENSURING THAT AN EXISTING IDM SERVER HAS NO IDM DNS
LOCATION ASSIGNED

Use the ipaserver ansible-freeipa module in an Ansible playbook to ensure that an existing
Identity Management (IdM) server has no IdM DNS location assigned to it. Do not assign a DNS location
to servers that change geographical location frequently. Note that the playbook does not install the IdM
server.

Prerequisites

You know the IdM admin password.

You have root access to the server. The example server is server123.idm.example.com.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE

833

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The SSH connection from the control node to the IdM server defined in the inventory file is
working correctly.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the server-no-location.yml Ansible playbook file located in the /usr/share/doc/ansible-
freeipa/playbooks/server/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/server/server-no-location.yml server-no-
location-copy.yml

3. Open the server-no-location-copy.yml file for editing.

4. Adapt the file by setting the following variables in the ipaserver task section and save the file:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to server123.idm.example.com.

Ensure that the location variable is set to ””.

- name: Server no location example
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure server server123.idm.example.com is present with no location
 ipaserver:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: server123.idm.example.com
 location: “”

5. Run the Ansible playbook and specify the playbook file and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory server-no-
location-copy.yml

6. Connect to server123.idm.example.com as root using SSH:

ssh root@server123.idm.example.com

7. Restart the named-pkcs11 service on the server for the updates to take effect immediately:

[root@server123.idm.example.com ~]# systemctl restart named-pkcs11

Additional resources

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

834

See Installing an Identity Management server using an Ansible playbook .

See Using Ansible to manage DNS locations in IdM .

See the README-server.md file in the /usr/share/doc/ansible-freeipa/ directory.

See sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/server directory.

CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE

835

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management

CHAPTER 100. COLLECTING IDM HEALTHCHECK
INFORMATION

Healthcheck has been designed as a manual command line tool which should help you to identify
possible problems in Identity Management (IdM).

You can create a collection of logs based on the Healthcheck output with 30-day rotation.

Prerequisites

The Healthcheck tool is only available on RHEL 8.1 or newer

100.1. HEALTHCHECK IN IDM

The Healthcheck tool in Identity Management (IdM) helps find issues that may impact the health of your
IdM environment.

NOTE

The Healthcheck tool is a command line tool that can be used without Kerberos
authentication.

Modules are Independent

Healthcheck consists of independent modules which test for:

Replication issues

Certificate validity

Certificate Authority infrastructure issues

IdM and Active Directory trust issues

Correct file permissions and ownership settings

Two output formats

Healthcheck generates the following outputs, which you can set using the output-type option:

json: Machine-readable output in JSON format (default)

human: Human-readable output

You can specify a different file destination with the --output-file option.

Results

Each Healthcheck module returns one of the following results:

SUCCESS

configured as expected

WARNING

not an error, but worth keeping an eye on or evaluating

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

836

ERROR

not configured as expected

CRITICAL

not configured as expected, with a high possibility for impact

100.2. LOG ROTATION

Log rotation creates a new log file every day, and the files are organized by date. Since log files are
saved in the same directory, you can select a particular log file according to the date.

Rotation means that there is configured a number for max number of log files and if the number is
exceeded, the newest file rewrites and renames the oldest one. For example, if the rotation number is
30, the thirty-first log file replaces the first (oldest) one.

Log rotation reduces voluminous log files and organizes them, which can help with analysis of the logs.

100.3. CONFIGURING LOG ROTATION USING THE IDM HEALTHCHECK

Follow this procedure to configure a log rotation with:

The systemd timer

The crond service

The systemd timer runs the Healthcheck tool periodically and generates the logs. The default value is
set to 4 a.m. every day.

The crond service is used for log rotation.

The default log name is healthcheck.log and the rotated logs use the healthcheck.log-YYYYMMDD
format.

Prerequisites

You must execute commands as root.

Procedure

1. Enable a systemd timer:

systemctl enable ipa-healthcheck.timer
Created symlink /etc/systemd/system/multi-user.target.wants/ipa-healthcheck.timer ->
/usr/lib/systemd/system/ipa-healthcheck.timer.

2. Start the systemd timer:

systemctl start ipa-healthcheck.timer

3. Open the /etc/logrotate.d/ipahealthcheck file to configure the number of logs which should be
saved.
By default, log rotation is set up for 30 days.

4. In the /etc/logrotate.d/ipahealthcheck file, configure the path to the logs.

CHAPTER 100. COLLECTING IDM HEALTHCHECK INFORMATION

837

By default, logs are saved in the /var/log/ipa/healthcheck/ directory.

5. In the /etc/logrotate.d/ipahealthcheck file, configure the time for log generation.
By default, a log is created daily at 4 a.m.

6. To use log rotation, ensure that the crond service is enabled and running:

systemctl enable crond
systemctl start crond

To start with generating logs, start the IPA healthcheck service:

systemctl start ipa-healthcheck

To verify the result, go to /var/log/ipa/healthcheck/ and check if logs are created correctly.

100.4. CHANGING IDM HEALTHCHECK CONFIGURATION

You can change Healthcheck settings by adding the desired command line options to the
/etc/ipahealthcheck/ipahealthcheck.conf file. This can be useful when, for example, you configured a
log rotation and want to ensure the logs are in a format suitable for automatic analysis, but do not want
to set up a new timer.

NOTE

This Healthcheck feature is only available on RHEL 8.7 and newer.

After the modification, all logs that Healthcheck creates follow the new settings. These settings also
apply to any manual execution of Healthcheck.

NOTE

When running Healthcheck manually, settings in the configuration file take precedence
over options specified in the command line. For example, if output_type is set to human
in the configuration file, specifying json on the command line has no effect. Any
command line options you use that are not specified in the configuration file are applied
normally.

Additional resources

Configuring log rotation using the IdM Healthcheck

100.5. CONFIGURING HEALTHCHECK TO CHANGE THE OUTPUT
LOGS FORMAT

Follow this procedure to configure Healthcheck with a timer already set up. In this example, you
configure Healthcheck to produce logs in a human-readable format and to also include successful
results instead of only errors.

Prerequisites

Your system is running RHEL 8.7 or later.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

838

You have root privileges.

You have previously configured log rotation on a timer.

Procedure

1. Open the /etc/ipahealthcheck/ipahealthcheck.conf file in a text editor.

2. Add options output_type=human and all=True to the [default] section.

3. Save and close the file.

Verification

1. Run Healthcheck manually:

ipa-healthcheck

2. Go to /var/log/ipa/healthcheck/ and check that the logs are in the correct format.

Additional resources

Configuring log rotation using the IdM Healthcheck

CHAPTER 100. COLLECTING IDM HEALTHCHECK INFORMATION

839

CHAPTER 101. CHECKING SERVICES USING IDM
HEALTHCHECK

You can monitor services used by the Identity Management (IdM) server using the Healthcheck tool.

For details, see Healthcheck in IdM .

Prerequisites

The Healthcheck tool is only available on RHEL 8.1 and newer

101.1. SERVICES HEALTHCHECK TEST

The Healthcheck tool includes a test to check if any IdM services is not running. This test is important
because services which are not running can cause failures in other tests. Therefore, check that all
services are running first. You can then check all other test results.

To see all services tests, run ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

You can find all services tested with Healthcheck under the ipahealthcheck.meta.services source:

certmonger

dirsrv

gssproxy

httpd

ipa_custodia

ipa_dnskeysyncd

ipa_otpd

kadmin

krb5kdc

named

pki_tomcatd

sssd

NOTE

Run these tests on all IdM servers when trying to discover issues.

101.2. SCREENING SERVICES USING HEALTHCHECK

Follow this procedure to run a standalone manual test of services running on the Identity Management

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

840

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management#healthcheck-in-idm_collecting-idm-healthcheck-information

Follow this procedure to run a standalone manual test of services running on the Identity Management
(IdM) server using the Healthcheck tool.

The Healthcheck tool includes many tests, whose results can be shortened with:

Excluding all successful test: --failures-only

Including only services tests: --source=ipahealthcheck.meta.services

Procedure

To run Healthcheck with warnings, errors and critical issues regarding services, enter:

ipa-healthcheck --source=ipahealthcheck.meta.services --failures-only

A successful test displays empty brackets:

[]

If one of the services fails, the result can looks similarly to this example:

{
 "source": "ipahealthcheck.meta.services",
 "check": "httpd",
 "result": "ERROR",
 "kw": {
 "status": false,
 "msg": "httpd: not running"
 }
}

Additional resources

See man ipa-healthcheck.

CHAPTER 101. CHECKING SERVICES USING IDM HEALTHCHECK

841

CHAPTER 102. VERIFYING YOUR IDM AND AD TRUST
CONFIGURATION USING IDM HEALTHCHECK

Learn more about identifying issues with IdM and an Active Directory trust in Identity Management
(IdM) by using the Healthcheck tool.

Prerequisites

The Healthcheck tool is only available on RHEL 8.1 or newer

102.1. IDM AND AD TRUST HEALTHCHECK TESTS

The Healthcheck tool includes several tests for testing the status of your Identity Management (IdM)
and Active Directory (AD) trust.

To see all trust tests, run ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

You can find all tests under the ipahealthcheck.ipa.trust source:

IPATrustAgentCheck

This test checks the SSSD configuration when the machine is configured as a trust agent. For each
domain in /etc/sssd/sssd.conf where id_provider=ipa ensure that ipa_server_mode is True.

IPATrustDomainsCheck

This test checks if the trust domains match SSSD domains by comparing the list of domains in sssctl
domain-list with the list of domains from ipa trust-find excluding the IPA domain.

IPATrustCatalogCheck

This test resolves resolves an AD user, Administrator@REALM. This populates the AD Global
catalog and AD Domain Controller values in sssctl domain-status output.
For each trust domain look up the user with the id of the SID + 500 (the administrator) and then
check the output of sssctl domain-status <domain> --active-server to ensure that the domain is
active.

IPAsidgenpluginCheck

This test verifies that the sidgen plugin is enabled in the IPA 389-ds instance. The test also verifies
that the IPA SIDGEN and ipa-sidgen-task plugins in cn=plugins,cn=config include the nsslapd-
pluginEnabled option.

IPATrustAgentMemberCheck

This test verifies that the current host is a member of cn=adtrust
agents,cn=sysaccounts,cn=etc,SUFFIX.

IPATrustControllerPrincipalCheck

This test verifies that the current host is a member of cn=adtrust
agents,cn=sysaccounts,cn=etc,SUFFIX.

IPATrustControllerServiceCheck

This test verifies that the current host starts the ADTRUST service in ipactl.

IPATrustControllerConfCheck

This test verifies that ldapi is enabled for the passdb backend in the output of net conf list.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

842

IPATrustControllerGroupSIDCheck

This test verifies that the admins group’s SID ends with 512 (Domain Admins RID).

IPATrustPackageCheck

This test verifies that the trust-ad package is installed if the trust controller and AD trust are not
enabled.

NOTE

Run these tests on all IdM servers when trying to find an issue.

102.2. SCREENING THE TRUST WITH THE HEALTHCHECK TOOL

Follow this procedure to run a standalone manual test of an Identity Management (IdM) and Active
Directory (AD) trust health check using the Healthcheck tool.

The Healthcheck tool includes many tests, therefore, you can shorten the results by:

Excluding all successful test: --failures-only

Including only trust tests: --source=ipahealthcheck.ipa.trust

Procedure

To run Healthcheck with warnings, errors and critical issues in the trust, enter:

ipa-healthcheck --source=ipahealthcheck.ipa.trust --failures-only

Successful test displays empty brackets:

ipa-healthcheck --source=ipahealthcheck.ipa.trust --failures-only
[]

Additional resources

See man ipa-healthcheck.

CHAPTER 102. VERIFYING YOUR IDM AND AD TRUST CONFIGURATION USING IDM HEALTHCHECK

843

CHAPTER 103. VERIFYING CERTIFICATES USING IDM
HEALTHCHECK

Learn more about understanding and using the Healthcheck tool in Identity management (IdM) to
identify issues with IPA certificates maintained by certmonger.

For details, see Healthcheck in IdM .

Prerequisites

The Healthcheck tool is only available in RHEL 8.1 and newer.

103.1. IDM CERTIFICATES HEALTHCHECK TESTS

The Healthcheck tool includes several tests for verifying the status of certificates maintained by
certmonger in Identity Management (IdM). For details about certmonger, see Obtaining an IdM
certificate for a service using certmonger.

This suite of tests checks expiration, validation, trust and other issues. Multiple errors may be thrown for
the same underlying issue.

To see all certificate tests, run the ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

You can find all tests under the ipahealthcheck.ipa.certs source:

IPACertmongerExpirationCheck

This test checks expirations in certmonger.
If an error is reported, the certificate has expired.

If a warning appears, the certificate will expire soon. By default, this test applies within 28 days or
fewer days before certificate expiration.

You can configure the number of days in the /etc/ipahealthcheck/ipahealthcheck.conf file. After
opening the file, change the cert_expiration_days option located in the default section.

NOTE

Certmonger loads and maintains its own view of the certificate expiration. This check
does not validate the on-disk certificate.

IPACertfileExpirationCheck

This test checks if the certificate file or NSS database cannot be opened. This test also checks
expiration. Therefore, carefully read the msg attribute in the error or warning output. The message
specifies the problem.

NOTE

This test checks the on-disk certificate. If a certificate is missing, unreadable, etc a
separate error can also be raised.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

844

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#healthcheck-in-idm_collecting-idm-healthcheck-information
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/using-certmonger_configuring-and-managing-idm

IPACertNSSTrust

This test compares the trust for certificates stored in NSS databases. For the expected tracked
certificates in NSS databases the trust is compared to an expected value and an error raised on a
non-match.

IPANSSChainValidation

This test validates the certificate chain of the NSS certificates. The test executes: certutil -V -u V -e
-d [dbdir] -n [nickname]

IPAOpenSSLChainValidation

This test validates the certificate chain of the OpenSSL certificates. To be comparable to the
NSSChain validation here is the OpenSSL command we execute:

openssl verify -verbose -show_chain -CAfile /etc/ipa/ca.crt [cert file]

IPARAAgent

This test compares the certificate on disk with the equivalent record in LDAP in
uid=ipara,ou=People,o=ipaca.

IPACertRevocation

This test uses certmonger to verify that certificates have not been revoked. Therefore, the test can
find issues connected with certificates maintained by certmonger only.

IPACertmongerCA

This test verifies the certmonger Certificate Authority (CA) configuration. IdM cannot issue
certificates without CA.
Certmonger maintains a set of CA helpers. In IdM, there is a CA named IPA which issues certificates
through IdM, authenticating as a host or user principal, for host or service certs.

There are also dogtag-ipa-ca-renew-agent and dogtag-ipa-ca-renew-agent-reuse which renew the
CA subsystem certificates.

NOTE

Run these tests on all IdM servers when trying to check for issues.

103.2. SCREENING CERTIFICATES USING THE HEALTHCHECK TOOL

Follow this procedure to run a standalone manual test of an Identity Management (IdM) certificate
health check using the Healthcheck tool.

The Healthcheck tool includes many tests, therefore, you can shorten the results with:

Excluding all successful test: --failures-only

Including only certificate tests: --source=ipahealthcheck.ipa.certs

Prerequisites

You must perform Healthcheck tests as the root user.

Procedure

To run Healthcheck with warnings, errors and critical issues regarding certificates, enter:

CHAPTER 103. VERIFYING CERTIFICATES USING IDM HEALTHCHECK

845

ipa-healthcheck --source=ipahealthcheck.ipa.certs --failures-only

Successful test displays empty brackets:

[]

Failed test shows you the following output:

{
 "source": "ipahealthcheck.ipa.certs",
 "check": "IPACertfileExpirationCheck",
 "result": "ERROR",
 "kw": {
 "key": 1234,
 "dbdir": "/path/to/nssdb",
 "error": [error],
 "msg": "Unable to open NSS database '/path/to/nssdb': [error]"
 }
}

This IPACertfileExpirationCheck test failed on opening the NSS database.

Additional resources

See man ipa-healthcheck.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

846

CHAPTER 104. VERIFYING SYSTEM CERTIFICATES USING IDM
HEALTHCHECK

Learn more about identifying issues with system certificates in Identity Management (IdM) by using the
Healthcheck tool.

For details, see Healthcheck in IdM .

Prerequisites

The Healthcheck tool is only available on RHEL 8.1 or newer.

104.1. SYSTEM CERTIFICATES HEALTHCHECK TESTS

The Healthcheck tool includes several tests for verifying system (DogTag) certificates.

To see all tests, run the ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

You can find all tests under the ipahealthcheck.dogtag.ca source:

DogtagCertsConfigCheck

This test compares the CA (Certificate Authority) certificates in its NSS database to the same values
stored in CS.cfg. If they do not match, the CA fails to start.
Specifically, it checks:

auditSigningCert cert-pki-ca against ca.audit_signing.cert

ocspSigningCert cert-pki-ca against ca.ocsp_signing.cert

caSigningCert cert-pki-ca against ca.signing.cert

subsystemCert cert-pki-ca against ca.subsystem.cert

Server-Cert cert-pki-ca against ca.sslserver.cert

If Key Recovery Authority (KRA) is installed:

transportCert cert-pki-kra against ca.connector.KRA.transportCert

DogtagCertsConnectivityCheck

This test verifies connectivity. This test is equivalent to the ipa cert-show 1 command which checks:

The PKI proxy configuration in Apache

IdM being able to find a CA

The RA agent client certificate

Correctness of CA replies to requests

Note that the test checks a certificate with serial #1 because you want to verify that a cert-show can
be executed and get back an expected result from CA (either the certificate or a not found).

CHAPTER 104. VERIFYING SYSTEM CERTIFICATES USING IDM HEALTHCHECK

847

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#healthcheck-in-idm_collecting-idm-healthcheck-information

NOTE

Run these tests on all IdM servers when trying to find an issue.

104.2. SCREENING SYSTEM CERTIFICATES USING HEALTHCHECK

Follow this procedure to run a standalone manual test of Identity Management (IdM) certificates using
the Healthcheck tool.

Since, the Healthcheck tool includes many tests, you can narrow the results by including only DogTag
tests: --source=ipahealthcheck.dogtag.ca

Procedure

To run Healthcheck restricted to DogTag certificates, enter:

ipa-healthcheck --source=ipahealthcheck.dogtag.ca

An example of a successful test:

{
 "source: ipahealthcheck.dogtag.ca",
 "check: DogtagCertsConfigCheck",
 "result: SUCCESS",
 "uuid: 9b366200-9ec8-4bd9-bb5e-9a280c803a9c",
 "when: 20191008135826Z",
 "duration: 0.252280",
 "kw:" {
 "key": "Server-Cert cert-pki-ca",
 "configfile": "/var/lib/pki/pki-tomcat/conf/ca/CS.cfg"
 }
}

An example of a failed test:

{
 "source: ipahealthcheck.dogtag.ca",
 "check: DogtagCertsConfigCheck",
 "result: CRITICAL",
 "uuid: 59d66200-1447-4b3b-be01-89810c803a98",
 "when: 20191008135912Z",
 "duration: 0.002022",
 "kw:" {
 "exception": "NSDB /etc/pki/pki-tomcat/alias not initialized",
 }
}

Additional resources

See man ipa-healthcheck.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

848

CHAPTER 105. CHECKING DISK SPACE USING IDM
HEALTHCHECK

You can monitor the Identity Management server’s free disk space using the Healthcheck tool.

For details, see Healthcheck in IdM .

Prerequisites

The Healthcheck tool is only available on RHEL 8.1 and newer.

105.1. DISK SPACE HEALTHCHECK TEST

The Healthcheck tool includes a test for checking available disk space. Insufficient free disk space can
cause issues with:

Logging

Execution

Backups

The test checks the following paths:

Table 105.1. Tested paths

Paths checked by the test Minimal disk space in MB

/var/lib/dirsrv/ 1024

/var/lib/ipa/backup/ 512

/var/log/ 1024

var/log/audit/ 512

/var/tmp/ 512

/tmp/ 512

To list all tests, run the ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

You can find the file system space check test under the ipahealthcheck.system.filesystemspace
source:

FileSystemSpaceCheck

This test checks available disk space in the following ways:

The minimum raw free bytes needed.

CHAPTER 105. CHECKING DISK SPACE USING IDM HEALTHCHECK

849

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management#healthcheck-in-idm_collecting-idm-healthcheck-information

The percentage — the minimum free disk space is hardcoded to 20%.

105.2. SCREENING DISK SPACE USING THE HEALTHCHECK TOOL

Follow this procedure to run a standalone manual test of available disk space on an Identity
Management (IdM) server using the Healthcheck tool.

Since Healthcheck includes many tests, you can narrow the results by:

Excluding all successful test: --failures-only

Including only space check tests: --source=ipahealthcheck.system.filesystemspace

Procedure

To run Healthcheck with warnings, errors and critical issues regarding available disk space, enter:

ipa-healthcheck --source=ipahealthcheck.system.filesystemspace --failures-only

A successful test displays empty brackets:

[]

As an example, a failed test can display:

{
 "source": "ipahealthcheck.system.filesystemspace",
 "check": "FileSystemSpaceCheck",
 "result": "ERROR",
 "kw": {
 "msg": "/var/lib/dirsrv: free space under threshold: 0 MiB < 1024 MiB",
 "store": "/var/lib/dirsrv",
 "free_space": 0,
 "threshold": 1024
 }
}

The failed test informs you that the /var/lib/dirsrv directory has run out of space.

Additional resources

See man ipa-healthcheck.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

850

CHAPTER 106. VERIFYING PERMISSIONS OF IDM
CONFIGURATION FILES USING HEALTHCHECK

Learn more about how to test Identity Management (IdM) configuration files using the Healthcheck
tool.

For details, see Healthcheck in IdM .

Prerequisites

The Healthcheck tool is only available on RHEL 8.1 or newer systems.

106.1. FILE PERMISSIONS HEALTHCHECK TESTS

The Healthcheck tool tests ownership and permissions of some important files installed or configured by
Identity Management (IdM).

If you change the ownership or permissions of any tested file, the test returns a warning in the result
section. While it does not necessarily mean that the configuration will not work, it means that the file
differs from the default configuration.

To see all tests, run the ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

You can find the file permissions test under the ipahealthcheck.ipa.files source:

IPAFileNSSDBCheck

This test checks the 389-ds NSS database and the Certificate Authority (CA) database. The 389-ds
database is located in /etc/dirsrv/slapd-<dashed-REALM> and the CA database is located in
/etc/pki/pki-tomcat/alias/.

IPAFileCheck

This test checks the following files:

/var/lib/ipa/ra-agent.{key|pem}

/var/lib/ipa/certs/httpd.pem

/var/lib/ipa/private/httpd.key

/etc/httpd/alias/ipasession.key

/etc/dirsrv/ds.keytab

/etc/ipa/ca.crt

/etc/ipa/custodia/server.keys
If PKINIT is enabled:

/var/lib/ipa/certs/kdc.pem

/var/lib/ipa/private/kdc.key
If DNS is configured:

CHAPTER 106. VERIFYING PERMISSIONS OF IDM CONFIGURATION FILES USING HEALTHCHECK

851

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#healthcheck-in-idm_collecting-idm-healthcheck-information

/etc/named.keytab

/etc/ipa/dnssec/ipa-dnskeysyncd.keytab

TomcatFileCheck

This test checks some tomcat-specific files if a CA is configured:

/etc/pki/pki-tomcat/password.conf

/var/lib/pki/pki-tomcat/conf/ca/CS.cfg

/etc/pki/pki-tomcat/server.xml

NOTE

Run these tests on all IdM servers when trying to find issues.

106.2. SCREENING CONFIGURATION FILES USING HEALTHCHECK

Follow this procedure to run a standalone manual test of an Identity Management (IdM) server’s
configuration files using the Healthcheck tool.

The Healthcheck tool includes many tests. Results can be narrowed down by:

Excluding all successful test: --failures-only

Including only ownership and permissions tests: --source=ipahealthcheck.ipa.files

Procedure

1. To run Healthcheck tests on IdM configuration file ownership and permissions, while displaying
only warnings, errors and critical issues, enter:

ipa-healthcheck --source=ipahealthcheck.ipa.files --failures-only

A successful test displays empty brackets:

ipa-healthcheck --source=ipahealthcheck.ipa.files --failures-only
[]

Failed tests display results similar to the following WARNING:

{
 "source": "ipahealthcheck.ipa.files",
 "check": "IPAFileNSSDBCheck",
 "result": "WARNING",
 "kw": {
 "key": "_etc_dirsrv_slapd-EXAMPLE-TEST_pkcs11.txt_mode",
 "path": "/etc/dirsrv/slapd-EXAMPLE-TEST/pkcs11.txt",
 "type": "mode",
 "expected": "0640",
 "got": "0666",

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

852

 "msg": "Permissions of /etc/dirsrv/slapd-EXAMPLE-TEST/pkcs11.txt are 0666 and should be 0640"
 }
}

Additional resources

See man ipa-healthcheck.

CHAPTER 106. VERIFYING PERMISSIONS OF IDM CONFIGURATION FILES USING HEALTHCHECK

853

CHAPTER 107. CHECKING IDM REPLICATION USING
HEALTHCHECK

You can test Identity Management (IdM) replication using the Healthcheck tool.

For details, see Healthcheck in IdM .

Prerequisites

The Healthcheck tool is only available on RHEL 8.1 or newer.

107.1. REPLICATION HEALTHCHECK TESTS

The Healthcheck tool tests the Identity Management (IdM) topology configuration and searches for
replication conflict issues.

To list all tests, run the ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

The topology tests are placed under the ipahealthcheck.ipa.topology and
ipahealthcheck.ds.replication sources:

IPATopologyDomainCheck

This test verifies:

Whether topology is not disconnected and there are replication paths between all servers.

If servers do not have more than the recommended number of replication agreements.
If the test fails, the test returns errors, such as connection errors or too many replication
agreements.

If the test succeeds, the test returns the configured domains.

NOTE

The test runs the ipa topologysuffix-verify command for both the domain
and ca suffixes (assuming the Certificate Authority is configured on this
server).

ReplicationConflictCheck

The test searches for entries in LDAP matching (&(!(objectclass=nstombstone))
(nsds5ReplConflict=*)).

NOTE

Run these tests on all IdM servers when trying to check for issues.

For more information on resolving LDAP replication conflicts, see Solving common replication problems .

107.2. SCREENING REPLICATION USING HEALTHCHECK

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

854

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_identity_management/index#healthcheck-in-idm_collecting-idm-healthcheck-information
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/managing_replication-solving_common_replication_conflicts

Follow this procedure to run a standalone manual test of an Identity Management (IdM) replication
topology and configuration using the Healthcheck tool.

The Healthcheck tool includes many tests, therefore, you can shorten the results with:

Replication conflict test: --source=ipahealthcheck.ds.replication

Correct topology test: --source=ipahealthcheck.ipa.topology

Prerequisites

You must perform Healthcheck tests as the root user.

Procedure

To run Healthcheck replication conflict and topology checks, enter:

ipa-healthcheck --source=ipahealthcheck.ds.replication --
source=ipahealthcheck.ipa.topology

Four different results are possible:

SUCCESS — the test passed successfully.

{
 "source": "ipahealthcheck.ipa.topology",
 "check": "IPATopologyDomainCheck",
 "result": "SUCCESS",
 "kw": {
 "suffix": "domain"
 }
}

WARNING — the test passed but there might be a problem.

ERROR — the test failed.

{
 "source": "ipahealthcheck.ipa.topology",
 "check": "IPATopologyDomainCheck",
 "result": "ERROR",
 "uuid": d6ce3332-92da-423d-9818-e79f49ed321f
 "when": 20191007115449Z
 "duration": 0.005943
 "kw": {
 "msg": "topologysuffix-verify domain failed, server2 is not connected
(server2_139664377356472 in MainThread)"
 }
}

CRITICAL — the test failed and it affects the IdM server functionality.

Additional resources

See man ipa-healthcheck.

CHAPTER 107. CHECKING IDM REPLICATION USING HEALTHCHECK

855

CHAPTER 108. CHECKING DNS RECORDS USING IDM
HEALTHCHECK

You can identify issues with DNS records in Identity Management (IdM) using the Healthcheck tool.

Prerequisites

The DNS records Healthcheck tool is only available on RHEL 8.2 or newer.

108.1. DNS RECORDS HEALTHCHECK TEST

The Healthcheck tool includes a test for checking that the expected DNS records required for
autodiscovery are resolvable.

To list all tests, run the ipa-healthcheck with the --list-sources option:

ipa-healthcheck --list-sources

You can find the DNS records check test under the ipahealthcheck.ipa.idns source.

IPADNSSystemRecordsCheck

This test checks the DNS records from the ipa dns-update-system-records --dry-run command
using the first resolver specified in the /etc/resolv.conf file. The records are tested on the IPA server.

108.2. SCREENING DNS RECORDS USING THE HEALTHCHECK TOOL

Follow this procedure to run a standalone manual test of DNS records on an Identity Management (IdM)
server using the Healthcheck tool.

The Healthcheck tool includes many tests. Results can be narrowed down by including only the DNS
records tests by adding the --source ipahealthcheck.ipa.idns option.

Prerequisites

You must perform Healthcheck tests as the root user.

Procedure

To run the DNS records check, enter:

ipa-healthcheck --source ipahealthcheck.ipa.idns

If the record is resolvable, the test returns SUCCESS as a result:

{
 "source": "ipahealthcheck.ipa.idns",
 "check": "IPADNSSystemRecordsCheck",
 "result": "SUCCESS",
 "uuid": "eb7a3b68-f6b2-4631-af01-798cac0eb018",
 "when": "20200415143339Z",
 "duration": "0.210471",
 "kw": {

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

856

 "key": "_ldap._tcp.idm.example.com.:server1.idm.example.com."
 }
}

The test returns a WARNING when, for example, the number of records does not match the
expected number:

{
 "source": "ipahealthcheck.ipa.idns",
 "check": "IPADNSSystemRecordsCheck",
 "result": "WARNING",
 "uuid": "972b7782-1616-48e0-bd5c-49a80c257895",
 "when": "20200409100614Z",
 "duration": "0.203049",
 "kw": {
 "msg": "Got {count} ipa-ca A records, expected {expected}",
 "count": 2,
 "expected": 1
 }
}

Additional resources

See man ipa-healthcheck.

CHAPTER 108. CHECKING DNS RECORDS USING IDM HEALTHCHECK

857

CHAPTER 109. DEMOTING OR PROMOTING HIDDEN
REPLICAS

After a replica has been installed, you can configure whether the replica is hidden or visible.

For details about hidden replicas, see The hidden replica mode.

If the replica is a CA renewal server, move the service to another replica before making this replica
hidden.

For details, see Changing and resetting IdM CA renewal server .

Procedure

To hide the replica, enter:

ipa server-state replica.idm.example.com --state=hidden

Alternatively, you can make the replica visible with the following command:

ipa server-state replica.idm.example.com --state=enabled

To view a list of all the hidden replicas in your topology, enter:

ipa config-show

If all of your replicas are enabled, the command output does not mention hidden replicas

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

858

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/planning-the-replica-topology_planning-identity-management#the-hidden-replica-mode_planning-the-replica-topology

CHAPTER 110. IDENTITY MANAGEMENT SECURITY SETTINGS
Learn more about security-related features of Identity Management.

110.1. HOW IDENTITY MANAGEMENT APPLIES DEFAULT SECURITY
SETTINGS

By default, Identity Management (IdM) on RHEL 8 uses the system-wide crypto policy. The benefit of
this policy is that you do not need to harden individual IdM components manually.

IMPORTANT

Red Hat recommends that you use the system-wide crypto policy. Changing individual
security settings can break components of IdM. For example, Java in RHEL 8 does not
fully support the TLS 1.3 protocol. Therefore, using this protocol can cause failures in IdM.

Additional resources

See the crypto-policies(7) man page.

110.2. ANONYMOUS LDAP BINDS IN IDENTITY MANAGEMENT

By default, anonymous binds to the Identity Management (IdM) LDAP server are enabled. Anonymous
binds can expose certain configuration settings or directory values. However, some utilities, such as
realmd, or older RHEL clients require anonymous binds enabled to discover domain settings when
enrolling a client.

Additional resources

Disabling anonymous binds

110.3. DISABLING ANONYMOUS BINDS

You can disable anonymous binds on the Identity Management (IdM) 389 Directory Server instance by
using LDAP tools to reset the nsslapd-allow-anonymous-access attribute.

These are the valid values for the nsslapd-allow-anonymous-access attribute:

on: allows all anonymous binds (default)

rootdse: allows anonymous binds only for root DSE information

off: disallows any anonymous binds

Red Hat does not recommend completely disallowing anonymous binds by setting the attribute to off,
because this also blocks external clients from checking the server configuration. LDAP and web clients
are not necessarily domain clients, so they connect anonymously to read the root DSE file to get
connection information.

By changing the value of the nsslapd-allow-anonymous-access attribute to rootdse, you allow access
to the root DSE and server configuration without any access to the directory data.

CHAPTER 110. IDENTITY MANAGEMENT SECURITY SETTINGS

859

WARNING

Certain clients rely on anonymous binds to discover IdM settings. Additionally, the
compat tree can break for legacy clients that are not using authentication. Perform
this procedure only if your clients do not require anonymous binds.

Prerequisites

You can authenticate as the Directory Manager to write to the LDAP server.

You can authenticate as the root user to restart IdM services.

Procedure

1. Change the nsslapd-allow-anonymous-access attribute to rootdse.

$ ldapmodify -x -D "cn=Directory Manager" -W -h server.example.com -p 389
Enter LDAP Password:
dn: cn=config
changetype: modify
replace: nsslapd-allow-anonymous-access
nsslapd-allow-anonymous-access: rootdse

modifying entry "cn=config"

2. Restart the 389 Directory Server instance to load the new setting.

systemctl restart dirsrv.target

Verification

Display the value of the nsslapd-allow-anonymous-access attribute.

$ ldapsearch -x -D "cn=Directory Manager" -b cn=config -W -h server.example.com -p 389
nsslapd-allow-anonymous-access | grep nsslapd-allow-anonymous-access
Enter LDAP Password:
requesting: nsslapd-allow-anonymous-access
nsslapd-allow-anonymous-access: rootdse

Additional resources

nsslapd-allow-anonymous-access in Directory Server 11 documentation

Anonymous LDAP binds in Identity Management

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

860

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#nsslapd-allow-anonymous-access

CHAPTER 111. SETTING UP SAMBA ON AN IDM DOMAIN
MEMBER

You can set up Samba on a host that is joined to a Red Hat Identity Management (IdM) domain. Users
from IdM and also, if available, from trusted Active Directory (AD) domains, can access shares and
printer services provided by Samba.

IMPORTANT

Using Samba on an IdM domain member is an unsupported Technology Preview feature
and contains certain limitations. For example, IdM trust controllers do not support the
Active Directory Global Catalog service, and they do not support resolving IdM groups
using the Distributed Computing Environment / Remote Procedure Calls (DCE/RPC)
protocols. As a consequence, AD users can only access Samba shares and printers hosted
on IdM clients when logged in to other IdM clients; AD users logged into a Windows
machine can not access Samba shares hosted on an IdM domain member.

Customers deploying Samba on IdM domain members are encouraged to provide
feedback to Red Hat.

If users from AD domains need to access shares and printer services provided by Samba, ensure the AES
encryption type is enabled is AD. For more information, see Enabling the AES encryption type in Active
Directory using a GPO.

Prerequisites

The host is joined as a client to the IdM domain.

Both the IdM servers and the client must run on RHEL 8.1 or later.

111.1. PREPARING THE IDM DOMAIN FOR INSTALLING SAMBA ON
DOMAIN MEMBERS

Before you can set up Samba on an IdM client, you must prepare the IdM domain using the ipa-adtrust-
install utility on an IdM server.

NOTE

Any system where you run the ipa-adtrust-install command automatically becomes an
AD trust controller. However, you must run ipa-adtrust-install only once on an IdM
server.

Prerequisites

IdM server is installed.

You need root privileges to install packages and restart IdM services.

Procedure

1. Install the required packages:

[root@ipaserver ~]# yum install ipa-server-trust-ad samba-client

CHAPTER 111. SETTING UP SAMBA ON AN IDM DOMAIN MEMBER

861

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/integrating_rhel_systems_directly_with_windows_active_directory/connecting-rhel-systems-directly-to-ad-using-sssd_integrating-rhel-systems-directly-with-active-directory#enabling-the-aes-encryption-type-in-active-directory-using-a-gpo_ensuring-support-for-common-encryption-types-in-ad-and-rhel

2. Authenticate as the IdM administrative user:

[root@ipaserver ~]# kinit admin

3. Run the ipa-adtrust-install utility:

[root@ipaserver ~]# ipa-adtrust-install

The DNS service records are created automatically if IdM was installed with an integrated DNS
server.

If you installed IdM without an integrated DNS server, ipa-adtrust-install prints a list of service
records that you must manually add to DNS before you can continue.

4. The script prompts you that the /etc/samba/smb.conf already exists and will be rewritten:

WARNING: The smb.conf already exists. Running ipa-adtrust-install will break your existing
Samba configuration.

Do you wish to continue? [no]: yes

5. The script prompts you to configure the slapi-nis plug-in, a compatibility plug-in that allows
older Linux clients to work with trusted users:

Do you want to enable support for trusted domains in Schema Compatibility plugin?
This will allow clients older than SSSD 1.9 and non-Linux clients to work with trusted users.

Enable trusted domains support in slapi-nis? [no]: yes

6. When prompted, enter the NetBIOS name for the IdM domain or press Enter to accept the
name suggested:

Trust is configured but no NetBIOS domain name found, setting it now.
Enter the NetBIOS name for the IPA domain.
Only up to 15 uppercase ASCII letters, digits and dashes are allowed.
Example: EXAMPLE.

NetBIOS domain name [IDM]:

7. You are prompted to run the SID generation task to create a SID for any existing users:

Do you want to run the ipa-sidgen task? [no]: yes

This is a resource-intensive task, so if you have a high number of users, you can run this at
another time.

8. (Optional) By default, the Dynamic RPC port range is defined as 49152-65535 for Windows
Server 2008 and later. If you need to define a different Dynamic RPC port range for your
environment, configure Samba to use different ports and open those ports in your firewall
settings. The following example sets the port range to 55000-65000.

[root@ipaserver ~]# net conf setparm global 'rpc server dynamic port range' 55000-
65000

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

862

[root@ipaserver ~]# firewall-cmd --add-port=55000-65000/tcp
[root@ipaserver ~]# firewall-cmd --runtime-to-permanent

9. Restart the ipa service:

[root@ipaserver ~]# ipactl restart

10. Use the smbclient utility to verify that Samba responds to Kerberos authentication from the
IdM side:

[root@ipaserver ~]# smbclient -L server.idm.example.com -U user_name --use-
kerberos=required
lp_load_ex: changing to config backend registry
 Sharename Type Comment
 --------- ---- -------
 IPC$ IPC IPC Service (Samba 4.15.2)
...

111.2. INSTALLING AND CONFIGURING A SAMBA SERVER ON AN IDM
CLIENT

You can install and configure Samba on a client enrolled in an IdM domain.

Prerequisites

Both the IdM servers and the client must run on RHEL 8.1 or later.

The IdM domain is prepared as described in Preparing the IdM domain for installing Samba on
domain members.

If IdM has a trust configured with AD, enable the AES encryption type for Kerberos. For
example, use a group policy object (GPO) to enable the AES encryption type. For details, see
Enabling AES encryption in Active Directory using a GPO .

Procedure

1. Install the ipa-client-samba package:

[root@idm_client]# yum install ipa-client-samba

2. Use the ipa-client-samba utility to prepare the client and create an initial Samba configuration:

[root@idm_client]# ipa-client-samba
Searching for IPA server...
IPA server: DNS discovery
Chosen IPA master: idm_server.idm.example.com
SMB principal to be created: cifs/idm_client.idm.example.com@IDM.EXAMPLE.COM
NetBIOS name to be used: IDM_CLIENT
Discovered domains to use:

 Domain name: idm.example.com
NetBIOS name: IDM
 SID: S-1-5-21-525930803-952335037-206501584

CHAPTER 111. SETTING UP SAMBA ON AN IDM DOMAIN MEMBER

863

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/setting-up-samba-on-an-idm-domain-member_configuring-and-managing-idm#preparing-the-idm-domain-for-installing-samba-on-domain-members_setting-up-samba-on-an-idm-domain-member
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-trust-between-idm-and-ad_installing-identity-management#enabling-the-aes-encryption-type-in-active-directory-using-a-gpo_ensuring-support-for-common-encryption-types-in-ad-and-rhel

 ID range: 212000000 - 212199999

 Domain name: ad.example.com
NetBIOS name: AD
 SID: None
 ID range: 1918400000 - 1918599999

Continue to configure the system with these values? [no]: yes
Samba domain member is configured. Please check configuration at /etc/samba/smb.conf
and start smb and winbind services

3. By default, ipa-client-samba automatically adds the [homes] section to the
/etc/samba/smb.conf file that dynamically shares a user’s home directory when the user
connects. If users do not have home directories on this server, or if you do not want to share
them, remove the following lines from /etc/samba/smb.conf:

[homes]
 read only = no

4. Share directories and printers. For details, see the following sections:

Setting up a Samba file share that uses POSIX ACLs

Setting up a share that uses Windows ACLs

Setting up Samba as a print server

5. Open the ports required for a Samba client in the local firewall:

[root@idm_client]# firewall-cmd --permanent --add-service=samba-client
[root@idm_client]# firewall-cmd --reload

6. Enable and start the smb and winbind services:

[root@idm_client]# systemctl enable --now smb winbind

Verification steps

Run the following verification step on a different IdM domain member that has the samba-client
package installed:

List the shares on the Samba server using Kerberos authentication:

$ smbclient -L idm_client.idm.example.com -U user_name --use-kerberos=required
lp_load_ex: changing to config backend registry

 Sharename Type Comment
 --------- ---- -------
 example Disk
 IPC$ IPC IPC Service (Samba 4.15.2)
...

Additional resources

ipa-client-samba(1) man page

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

864

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/assembly_using-samba-as-a-server_deploying-different-types-of-servers#assembly_setting-up-a-samba-file-share-that-uses-posix-acls_assembly_using-samba-as-a-server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/assembly_using-samba-as-a-server_deploying-different-types-of-servers#assembly_setting-up-a-share-that-uses-windows-acls_assembly_using-samba-as-a-server
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/assembly_using-samba-as-a-server_deploying-different-types-of-servers#assembly_setting-up-samba-as-a-print-server_assembly_using-samba-as-a-server

111.3. MANUALLY ADDING AN ID MAPPING CONFIGURATION IF IDM
TRUSTS A NEW DOMAIN

Samba requires an ID mapping configuration for each domain from which users access resources. On an
existing Samba server running on an IdM client, you must manually add an ID mapping configuration
after the administrator added a new trust to an Active Directory (AD) domain.

Prerequisites

You configured Samba on an IdM client. Afterward, a new trust was added to IdM.

The DES and RC4 encryption types for Kerberos must be disabled in the trusted AD domain.
For security reasons, RHEL 8 does not support these weak encryption types.

Procedure

1. Authenticate using the host’s keytab:

[root@idm_client]# kinit -k

2. Use the ipa idrange-find command to display both the base ID and the ID range size of the new
domain. For example, the following command displays the values for the ad.example.com
domain:

[root@idm_client]# ipa idrange-find --name="AD.EXAMPLE.COM_id_range" --raw

1 range matched

 cn: AD.EXAMPLE.COM_id_range
 ipabaseid: 1918400000
 ipaidrangesize: 200000
 ipabaserid: 0
 ipanttrusteddomainsid: S-1-5-21-968346183-862388825-1738313271
 iparangetype: ipa-ad-trust

Number of entries returned 1

You need the values from the ipabaseid and ipaidrangesize attributes in the next steps.

3. To calculate the highest usable ID, use the following formula:

maximum_range = ipabaseid + ipaidrangesize - 1

With the values from the previous step, the highest usable ID for the ad.example.com domain is
1918599999 (1918400000 + 200000 - 1).

4. Edit the /etc/samba/smb.conf file, and add the ID mapping configuration for the domain to the
[global] section:

idmap config AD : range = 1918400000 - 1918599999
idmap config AD : backend = sss

Specify the value from ipabaseid attribute as the lowest and the computed value from the

CHAPTER 111. SETTING UP SAMBA ON AN IDM DOMAIN MEMBER

865

Specify the value from ipabaseid attribute as the lowest and the computed value from the
previous step as the highest value of the range.

5. Restart the smb and winbind services:

[root@idm_client]# systemctl restart smb winbind

Verification steps

List the shares on the Samba server using Kerberos authentication:

$ smbclient -L idm_client.idm.example.com -U user_name --use-kerberos=required
lp_load_ex: changing to config backend registry

 Sharename Type Comment
 --------- ---- -------
 example Disk
 IPC$ IPC IPC Service (Samba 4.15.2)
...

111.4. ADDITIONAL RESOURCES

Installing an Identity Management client

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

866

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management

CHAPTER 112. USING EXTERNAL IDENTITY PROVIDERS TO
AUTHENTICATE TO IDM

WARNING

Delegating user authentication to external identity providers is currently a
Technology Preview, not a fully supported feature.

You can associate users with external identity providers (IdP) that support the OAuth 2 device
authorization flow. When these users authenticate with the SSSD version available in RHEL 8.7 or later,
they receive RHEL Identity Management (IdM) single sign-on capabilities with Kerberos tickets after
performing authentication and authorization at the external IdP.

Notable features include:

Adding, modifying, and deleting references to external IdPs with ipa idp-* commands.

Enabling IdP authentication for users with the ipa user-mod --user-auth-type=idp command.

This section discusses the following topics:

The benefits of connecting IdM to an external IdP

Creating a reference to an external identity provider

Managing references to external IdPs

Enabling an IdM user to authenticate via an external IdP

Retrieving an IdM ticket-granting ticket as an IdP user

Logging in to an IdM client via SSH as an IdP user

List of templates for external identity providers

112.1. THE BENEFITS OF CONNECTING IDM TO AN EXTERNAL IDP

As an administrator, you might want to allow users stored in an external identity source, such as a cloud
services provider, to access RHEL systems joined to your Identity Management (IdM) environment. To
achieve this, you can delegate the authentication and authorization process of issuing Kerberos tickets
for these users to that external entity.

You can use this feature to expand IdM’s capabilities and allow users stored in external identity
providers (IdPs) to access Linux systems managed by IdM.

112.1.1. How IdM incorporates logins via external IdPs

SSSD 2.7.0 contains the sssd-idp package, which implements the idp Kerberos pre-authentication
method. This authentication method follows the OAuth 2.0 Device Authorization Grant flow to delegate
authorization decisions to external IdPs:

CHAPTER 112. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

867

1. An IdM client user initiates OAuth 2.0 Device Authorization Grant flow, for example, by
attempting to retrieve a Kerberos TGT with the kinit utility at the command line.

2. A special code and website link are sent from the Authorization Server to the IdM KDC backend.

3. The IdM client displays the link and the code to the user. In this example, the IdM client outputs
the link and code on the command line.

4. The user opens the website link in a browser, which can be on another host, a mobile phone, and
so on:

a. The user enters the special code.

b. If necessary, the user logs in to the OAuth 2.0-based IdP.

c. The user is prompted to authorize the client to access information.

5. The user confirms access at the original device prompt. In this example, the user hits the Enter
key at the command line.

6. The IdM KDC backend polls the OAuth 2.0 Authorization Server for access to user information.

What is supported:

Logging in remotely via SSH with the keyboard-interactive authentication method enabled,
which allows calling Pluggable Authentication Module (PAM) libraries.

Logging in locally with the console via the logind service.

Retrieving a Kerberos ticket-granting ticket (TGT) with the kinit utility.

What is currently not supported:

Logging in to the IdM WebUI directly. To log in to the IdM WebUI, you must first acquire a
Kerberos ticket.

Logging in to Cockpit WebUI directly. To log in to the Cockpit WebUI, you must first acquire a
Kerberos ticket.

Additional resources

Authentication against external Identity Providers

RFC 8628: OAuth 2.0 Device Authorization Grant

112.2. CREATING A REFERENCE TO AN EXTERNAL IDENTITY
PROVIDER

To connect external identity providers (IdPs) to your Identity Management (IdM) environment, create
IdP references in IdM. These examples show how to configure references to external IdPs based on the
different IdP templates. Use the following options to specify your settings:

--provider

the predefined template for one of the known identity providers

--client-id

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

868

https://freeipa.readthedocs.io/en/latest/workshop/12-external-idp-support.html
https://www.rfc-editor.org/rfc/rfc8628

the OAuth 2.0 client identifier issued by the IdP during application registration. As the application
registration procedure is specific to each IdP, refer to their documentation for details. If the external
IdP is Red Hat Single Sign-On (SSO), see Creating an OpenID Connect Client .

--base-url

base URL for IdP templates, required by Keycloak and Okta

--organization

Domain or Organization ID from the IdP, required by Microsoft Azure

--secret

(optional) Use this option if you have configured your external IdP to require a secret from
confidential OAuth 2.0 clients. If you use this option when creating an IdP reference, you are
prompted for the secret interactively. Protect the client secret as a password.

NOTE

SSSD in RHEL 8.7 only supports non-confidential OAuth 2.0 clients that do not use a
client secret. If you want to use external IdPs that require a client secret from
confidential clients, you must use SSSD in RHEL 8.8 and later.

Prerequisites

You have registered IdM as an OAuth application to your external IdP, and obtained a client ID.

You can authenticate as the IdM admin account.

Your IdM servers are using RHEL 8.7 or later.

Your IdM servers are using SSSD 2.7.0 or later.

Procedure

1. Authenticate as the IdM admin on an IdM server.

[root@server ~]# kinit admin

2. Create a reference to the required IdP in IdM as outlined in the following table.

Identity
Provider

Important options Command example

Microsoft
Identity
Platform,
Azure AD

--provider microsoft
--organization # ipa idp-add my-azure-idp \

 --provider microsoft \
 --organization main \
 --client-id <azure_client_id>

Google --provider google
ipa idp-add my-google-idp \
 --provider google \
 --client-id <google_client_id>

CHAPTER 112. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

869

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/index#proc-creating-oidc-client_server_administration_guide

GitHub --provider github
ipa idp-add my-github-idp \
 --provider github \
 --client-id <github_client_id>

Keycloak,
Red Hat
Single Sign-
On

--provider keycloak
--organization
--base-url

ipa idp-add my-keycloak-idp \
 --provider keycloak \
 --organization main \
 --base-url
keycloak.idm.example.com:8443/auth \
 --client-id <keycloak_client_id>

NOTE

The Quarkus version of Keycloak
17 and later have removed the
/auth/ portion of the URI. If you
use the non-Quarkus
distribution of Keycloak in your
deployment, include /auth/ in
the --base-url option.

Okta --provider okta
ipa idp-add my-okta-idp \
 --provider okta
 --base-url dev-12345.okta.com \
 --client-id <okta_client_id>

Identity
Provider

Important options Command example

For example, the following command creates a reference called my-keycloak-idp to an IdP
based on the Keycloak template, where the --base-url option specifies the URL to the Keycloak
server in the format server-name.$DOMAIN:$PORT/prefix.

[root@server ~]# ipa idp-add my-keycloak-idp \
 --provider keycloak --organization main \
 --base-url keycloak.idm.example.com:8443/auth \
 --client-id id13778
--
Added Identity Provider reference "my-keycloak-idp"
--
 Identity Provider reference name: my-keycloak-idp
 Authorization URI:
https://keycloak.idm.example.com:8443/auth/realms/main/protocol/openid-connect/auth
 Device authorization URI:
https://keycloak.idm.example.com:8443/auth/realms/main/protocol/openid-
connect/auth/device
 Token URI: https://keycloak.idm.example.com:8443/auth/realms/main/protocol/openid-
connect/token
 User info URI: https://keycloak.idm.example.com:8443/auth/realms/main/protocol/openid-

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

870

connect/userinfo
 Client identifier: ipa_oidc_client
 Scope: openid email
 External IdP user identifier attribute: email

Verification

Verify that the output of the ipa idp-show command shows the IdP reference you have
created.

[root@server ~]# ipa idp-show my-keycloak-idp

Additional resources

List of templates for external identity providers

ipa help idp-add command output

112.3. MANAGING REFERENCES TO EXTERNAL IDPS

After you have created a reference to an external identity provider (IdP), you can find, show, modify, and
delete that reference. This example shows you how to manage a reference to an external IdP named
keycloak-server1.

Prerequisites

You can authenticate as the IdM admin account.

Your IdM servers are using RHEL 8.7 or later.

Your IdM servers are using SSSD 2.7.0 or later.

You have created a reference to an IdP in IdM. See Creating a reference to an external identity
provider.

Procedure

1. Authenticate as the IdM admin on an IdM server.

[root@server ~]# kinit admin

2. Manage the IdP reference.

To find an IdP reference whose entry includes the string keycloak:

[root@server ~]# ipa idp-find keycloak

To display an IdP reference named my-keycloak-idp:

[root@server ~]# ipa idp-show my-keycloak-idp

To modify an IdP reference, use the ipa idp-mod command. For example, to change the

CHAPTER 112. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

871

To modify an IdP reference, use the ipa idp-mod command. For example, to change the
secret for an IdP reference named my-keycloak-idp, specify the --secret option to be
prompted for the secret:

[root@server ~]# ipa idp-mod my-keycloak-idp --secret

To delete an IdP reference named my-keycloak-idp:

[root@server ~]# ipa idp-del my-keycloak-idp

112.4. ENABLING AN IDM USER TO AUTHENTICATE VIA AN EXTERNAL
IDP

To enable an IdM user to authenticate via an external identity provider (IdP), associate the external IdP
reference you have previously created with the user account. This example associates the external IdP
reference keycloak-server1 with the user external-idp-user.

Prerequisites

Your IdM client and IdM servers are using RHEL 8.7 or later.

Your IdM client and IdM servers are using SSSD 2.7.0 or later.

You have created a reference to an IdP in IdM. See Creating a reference to an external identity
provider.

Procedure

Modify the IdM user entry to associate an IdP reference with the user account:

[root@server ~]# ipa user-mod external-idp-user \
 --idp my-keycloak-idp \
 --idp-user-id external-idp-user@idm.example.com \
 --user-auth-type=idp

Modified user "external-idp-user"

 User login: external-idp-user
 First name: Test
 Last name: User1
 Home directory: /home/external-idp-user
 Login shell: /bin/sh
 Principal name: external-idp-user@idm.example.com
 Principal alias: external-idp-user@idm.example.com
 Email address: external-idp-user@idm.example.com
 UID: 35000003
 GID: 35000003
 User authentication types: idp
 External IdP configuration: keycloak
 External IdP user identifier: external-idp-user@idm.example.com
 Account disabled: False
 Password: False
 Member of groups: ipausers
 Kerberos keys available: False

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

872

Verification

Verify that the output of the ipa user-show command for that user displays references to the
IdP:

[root@server ~]# ipa user-show external-idp-user
 User login: external-idp-user
 First name: Test
 Last name: User1
 Home directory: /home/external-idp-user
 Login shell: /bin/sh
 Principal name: external-idp-user@idm.example.com
 Principal alias: external-idp-user@idm.example.com
 Email address: external-idp-user@idm.example.com
 ID: 35000003
 GID: 35000003
 User authentication types: idp
 External IdP configuration: keycloak
 External IdP user identifier: external-idp-user@idm.example.com
 Account disabled: False
 Password: False
 Member of groups: ipausers
 Kerberos keys available: False

112.5. RETRIEVING AN IDM TICKET-GRANTING TICKET AS AN IDP USER

To retrieve a Kerberos ticket-granting ticket (TGT) as a user from an external identity provider (IdP),
request an anonymous Kerberos ticket, and enable Flexible Authentication via Secure Tunneling (FAST)
channel to provide a secure connection between the Kerberos client and Kerberos Distribution Center
(KDC).

Prerequisites

Your IdM client and IdM servers are using RHEL 8.7 or later.

Your IdM client and IdM servers are using SSSD 2.7.0 or later.

You have created a reference to an IdP in IdM. See Creating a reference to an external identity
provider.

You have associated an external IdP reference with the user account. See Enabling an IdM user
to authenticate via an external IdP.

Procedure

1. Use Anonymous PKINIT to obtain a Kerberos ticket and store it in a file named ./fast.ccache.

[root@client ~]# kinit -n -c ./fast.ccache

2. Begin authenticating as the user, using the -T option to enable the FAST communication
channel.

CHAPTER 112. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

873

[root@client ~]# kinit -T ./fast.ccache external-idp-user
Authenticate at https://oauth2.idp.com:8443/auth/realms/master/device?user_code=YHMQ-
XKTL and press ENTER.:

3. In a browser, authenticate as the user at the website provided in the command output.

4. At the command line, press the Enter key to finish the authentication process.

Verification

Display your Kerberos ticket information and confirm that the line config: pa_type shows 152
for pre-authentication with an external IdP.

[root@client ~]# klist -C
Ticket cache: KCM:0:58420
Default principal: external-idp-user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
05/09/22 07:48:23 05/10/22 07:03:07 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: fast_avail(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = yes
08/17/2022 20:22:45 08/18/2022 20:22:43
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: pa_type(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = 152

112.6. LOGGING IN TO AN IDM CLIENT VIA SSH AS AN IDP USER

To log in to an IdM client via SSH as an external identity provider (IdP) user, begin the login process on
the command linel. When prompted, perform the authentication process at the website associated with
the IdP, and finish the process at the Identity Management (IdM) client.

Prerequisites

Your IdM client and IdM servers are using RHEL 8.7 or later.

Your IdM client and IdM servers are using SSSD 2.7.0 or later.

You have created a reference to an IdP in IdM. See Creating a reference to an external identity
provider.

You have associated an external IdP reference with the user account. See Enabling an IdM user
to authenticate via an external IdP.

Procedure

1. Attempt to log in to the IdM client via SSH.

[user@client ~]$ ssh external-idp-user@client.idm.example.com
(external-idp-user@client.idm.example.com) Authenticate at
https://oauth2.idp.com:8443/auth/realms/main/device?user_code=XYFL-ROYR and press
ENTER.

2. In a browser, authenticate as the user at the website provided in the command output.

3. At the command line, press the Enter key to finish the authentication process.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

874

Verification

Display your Kerberos ticket information and confirm that the line config: pa_type shows 152
for pre-authentication with an external IdP.

[external-idp-user@client ~]$ klist -C
Ticket cache: KCM:0:58420
Default principal: external-idp-user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
05/09/22 07:48:23 05/10/22 07:03:07 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: fast_avail(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = yes
08/17/2022 20:22:45 08/18/2022 20:22:43
krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
config: pa_type(krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM) = 152

112.7. LIST OF TEMPLATES FOR EXTERNAL IDENTITY PROVIDERS

The following identity providers (IdPs) support OAuth 2.0 device authorization grant flow:

Microsoft Identity Platform, including Azure AD

Google

GitHub

Keycloak, including Red Hat Single Sign-On (SSO)

Okta

When using the ipa idp-add command to create a reference to one of these external IdPs, you can
specify the IdP type with the --provider option, which expands into additional options as described
below:

--provider=microsoft

Microsoft Azure IdPs allow parametrization based on the Azure tenant ID, which you can specify with
the --organization option to the ipa idp-add command. If you need support for the live.com IdP,
specify the option --organization common.
Choosing --provider=microsoft expands to use the following options. The value of the --
organization option replaces the string ${ipaidporg} in the table.

Option Value

--auth-uri=URI https://login.microsoftonline.com/${ipaidporg}/oauth2/v2.0/
authorize

--dev-auth-uri=URI https://login.microsoftonline.com/${ipaidporg}/oauth2/v2.0/
devicecode

--token-uri=URI https://login.microsoftonline.com/${ipaidporg}/oauth2/v2.0/t
oken

--userinfo-uri=URI https://graph.microsoft.com/oidc/userinfo

CHAPTER 112. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

875

--keys-uri=URI https://login.microsoftonline.com/common/discovery/v2.0/k
eys

--scope=STR openid email

--idp-user-id=STR email

Option Value

--provider=google

Choosing --provider=google expands to use the following options:

Option Value

--auth-uri=URI https://accounts.google.com/o/oauth2/auth

--dev-auth-uri=URI https://oauth2.googleapis.com/device/code

--token-uri=URI https://oauth2.googleapis.com/token

--userinfo-uri=URI https://openidconnect.googleapis.com/v1/userinfo

--keys-uri=URI https://www.googleapis.com/oauth2/v3/certs

--scope=STR openid email

--idp-user-id=STR email

--provider=github

Choosing --provider=github expands to use the following options:

Option Value

--auth-uri=URI https://github.com/login/oauth/authorize

--dev-auth-uri=URI https://github.com/login/device/code

--token-uri=URI https://github.com/login/oauth/access_token

--userinfo-uri=URI https://openidconnect.googleapis.com/v1/userinfo

--keys-uri=URI https://api.github.com/user

--scope=STR user

--idp-user-id=STR login

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

876

--provider=keycloak

With Keycloak, you can define multiple realms or organizations. Since it is often a part of a custom
deployment, both base URL and realm ID are required, and you can specify them with the --base-url
and --organization options to the ipa idp-add command:

[root@client ~]# ipa idp-add MySSO --provider keycloak \
 --org main --base-url keycloak.domain.com:8443/auth \
 --client-id <your-client-id>

Choosing --provider=keycloak expands to use the following options. The value you specify in the --
base-url option replaces the string ${ipaidpbaseurl} in the table, and the value you specify for the --
organization `option replaces the string `${ipaidporg}.

Option Value

--auth-uri=URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/auth

--dev-auth-uri=URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/auth/device

--token-uri=URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/token

--userinfo-uri=URI https://${ipaidpbaseurl}/realms/${ipaidporg}/protocol/openi
d-connect/userinfo

--scope=STR openid email

--idp-user-id=STR email

--provider=okta

After registering a new organization in Okta, a new base URL is associated with it. You can specify this
base URL with the --base-url option to the ipa idp-add command:

[root@client ~]# ipa idp-add MyOkta --provider okta --base-url dev-12345.okta.com --client-id
<your-client-id>

Choosing --provider=okta expands to use the following options. The value you specify for the --
base-url option replaces the string ${ipaidpbaseurl} in the table.

Option Value

--auth-uri=URI https://${ipaidpbaseurl}/oauth2/v1/authorize

--dev-auth-uri=URI https://${ipaidpbaseurl}/oauth2/v1/device/authorize

--token-uri=URI https://${ipaidpbaseurl}/oauth2/v1/token

CHAPTER 112. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM

877

--userinfo-uri=URI https://${ipaidpbaseurl}/oauth2/v1/userinfo

--scope=STR openid email

--idp-user-id=STR email

Option Value

Additional resources

Pre-populated IdP templates

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

878

https://freeipa.readthedocs.io/en/latest/designs/external-idp/idp-api.html#pre-populated-idp-templates

CHAPTER 113. IDM INTEGRATION WITH OTHER RED HAT
PRODUCTS

The following links are to documentation for other Red Hat products that integrate with IdM. You can
configure these products to allow your IdM users to access their services.

Ansible Automation Platform

Setting up LDAP authentication

OpenShift Container Platform

Configuring an LDAP identity provider

OpenStack Platform

Integrating OpenStack Identity (keystone) with Red Hat Identity Manager (IdM)

Satellite

Using Red Hat Identity Management

Single Sign-On

SSSD and FreeIPA Identity Management integration

Virtualization

Configuring an external LDAP provider

CHAPTER 113. IDM INTEGRATION WITH OTHER RED HAT PRODUCTS

879

https://docs.ansible.com/ansible-tower/latest/html/administration/ldap_auth.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html/authentication_and_authorization/configuring-identity-providers#configuring-ldap-identity-provider
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/integrate_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-idm_rhosp
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.9/html/administering_red_hat_satellite/chap-red_hat_satellite-administering_red_hat_satellite-configuring_external_authentication#sect-Red_Hat_Satellite-Administering_Red_Hat_Satellite-Configuring_External_Authentication-Using_Identity_Management
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.5/html/server_administration_guide/user-storage-federation#sssd
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html/administration_guide/chap-users_and_roles#sect-Configuring_an_External_LDAP_Provider

CHAPTER 114. USING ANSIBLE TO INTEGRATE IDM WITH NIS
DOMAINS AND NETGROUPS

114.1. NIS AND ITS BENEFITS

In UNIX environments, the network information service (NIS) is a common way to centrally manage
identities and authentication. NIS, which was originally named Yellow Pages (YP), centrally manages
authentication and identity information such as:

Users and passwords

Host names and IP addresses

POSIX groups

For modern network infrastructures, NIS is considered too insecure because, for example, it neither
provides host authentication, nor is data sent encrypted over the network. To work around the
problems, NIS is often integrated with other protocols to enhance security.

If you use Identity Management (IdM), you can use the NIS server plug-in to connect clients that cannot
be fully migrated to IdM. IdM integrates netgroups and other NIS data into the IdM domain. Additionally,
you can easily migrate user and host identities from a NIS domain to IdM.

Netgroups can be used everywhere that NIS groups are expected.

Additional resources

NIS in IdM

NIS netgroups in IdM

Migrating from NIS to Identity Management

114.2. NIS IN IDM

NIS objects in IdM

NIS objects are integrated and stored in the Directory Server back end in compliance with RFC 2307.
IdM creates NIS objects in the LDAP directory and clients retrieve them through, for example, System
Security Services Daemon (SSSD) or nss_ldap using an encrypted LDAP connection.

IdM manages netgroups, accounts, groups, hosts, and other data. IdM uses a NIS listener to map
passwords, groups, and netgroups to IdM entries.

NIS Plug-ins in IdM

For NIS support, IdM uses the following plug-ins provided in the slapi-nis package:

NIS Server Plug-in

The NIS Server plug-in enables the IdM-integrated LDAP server to act as a NIS server for clients. In
this role, Directory Server dynamically generates and updates NIS maps according to the
configuration. Using the plug-in, IdM serves clients using the NIS protocol as an NIS server.

Schema Compatibility Plug-in

The Schema Compatibility plug-in enables the Directory Server back end to provide an alternate

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

880

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_migrating-from-nis-to-identity-management_configuring-and-managing-idm#
http://tools.ietf.org/html/rfc2307

view of entries stored in part of the directory information tree (DIT). This includes adding, dropping,
or renaming attribute values, and optionally retrieving values for attributes from multiple entries in
the tree.
For further details, see the /usr/share/doc/slapi-nis-version/sch-getting-started.txt file.

114.3. NIS NETGROUPS IN IDM

NIS entities can be stored in netgroups. Compared to UNIX groups, netgroups provide support for:

Nested groups (groups as members of other groups).

Grouping hosts.

A netgroup defines a set of the following information: host, user, and domain. This set is called a triple.
These three fields can contain:

A value.

A dash (-), which specifies "no valid value"

No value. An empty field specifies a wildcard.

(host.example.com,,nisdomain.example.com)
(-,user,nisdomain.example.com)

When a client requests a NIS netgroup, IdM translates the LDAP entry :

To a traditional NIS map and sends it to the client over the NIS protocol by using the NIS plug-in.

To an LDAP format that is compliant with RFC 2307 or RFC 2307bis.

114.4. USING ANSIBLE TO ENSURE THAT A NETGROUP IS PRESENT

You can use an Ansible playbook to ensure that an IdM netgroup is present. The example describes how
to ensure that the TestNetgroup1 group is present.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Procedure

1. Create your Ansible playbook file netgroup-present.yml with the following content:

CHAPTER 114. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS

881

https://www.ietf.org/rfc/rfc2307.txt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

- name: Playbook to manage IPA netgroup.
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure netgroup members are present
 ipanetgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: TestNetgroup1

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory_/netgroup-
present.yml

Additional resources

NIS in IdM

/usr/share/doc/ansible-freeipa/README-netgroup.md

/usr/share/doc/ansible-freeipa/playbooks/netgroup

114.5. USING ANSIBLE TO ENSURE THAT MEMBERS ARE PRESENT IN A
NETGROUP

You can use an Ansible playbook to ensure that IdM users, groups, and netgroups are members of a
netgroup. The example describes how to ensure that the TestNetgroup1 group has the following
members:

The user1 and user2 IdM users

The group1 IdM group

The admins netgroup

An idmclient1 host that is an IdM client

Prerequisites

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

The TestNetgroup1 IdM netgroup exists.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

882

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

The user1 and user2 IdM users exist.

The group1 IdM group exists.

The admins IdM netgroup exists.

Procedure

1. Create your Ansible playbook file IdM-members-present-in-a-netgroup.yml with the
following content:

- name: Playbook to manage IPA netgroup.
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure netgroup members are present
 ipanetgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: TestNetgroup1
 user: user1,user2
 group: group1
 host: idmclient1
 netgroup: admins
 action: member

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory_/IdM-
members-present-in-a-netgroup.yml

Additional resources

NIS in IdM

/usr/share/doc/ansible-freeipa/README-netgroup.md

/usr/share/doc/ansible-freeipa/playbooks/netgroup

114.6. USING ANSIBLE TO ENSURE THAT A MEMBER IS ABSENT FROM
A NETGROUP

You can use an Ansible playbook to ensure that IdM users are members of a netgroup. The example
describes how to ensure that the TestNetgroup1 group does not have the user1 IdM user among its
members. netgroup

Prerequisites

You have configured your Ansible control node to meet the following requirements:

CHAPTER 114. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS

883

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

The TestNetgroup1 netgroup exists.

Procedure

1. Create your Ansible playbook file IdM-member-absent-from-a-netgroup.yml with the
following content:

- name: Playbook to manage IPA netgroup.
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure netgroup user, "user1", is absent
 ipanetgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: TestNetgroup1
 user: "user1"
 action: member
 state: absent

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory_/IdM-
member-absent-from-a-netgroup.yml

Additional resources

NIS in IdM

/usr/share/doc/ansible-freeipa/README-netgroup.md

/usr/share/doc/ansible-freeipa/playbooks/netgroup

114.7. USING ANSIBLE TO ENSURE THAT A NETGROUP IS ABSENT

You can use an Ansible playbook to ensure that a netgroup does not exist in Identity Management (IdM).
The example describes how to ensure that the TestNetgroup1 group does not exist in your IdM domain.

Prerequisites

You have configured your Ansible control node to meet the following requirements:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

884

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

You have created an Ansible inventory file with the fully-qualified domain name (FQDN) of
the IdM server in the ~/MyPlaybooks/ directory.

You have stored your ipaadmin_password in the secret.yml Ansible vault.

Procedure

1. Create your Ansible playbook file netgroup-absent.yml with the following content:

- name: Playbook to manage IPA netgroup.
 hosts: ipaserver
 become: no

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure netgroup my_netgroup1 is absent
 ipanetgroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: my_netgroup1
 state: absent

2. Run the playbook:

$ ansible-playbook --vault-password-file=password_file -v -i
path_to_inventory_directory/inventory.file path_to_playbooks_directory_/netgroup-
absent.yml

Additional resources

NIS in IdM

/usr/share/doc/ansible-freeipa/README-netgroup.md

/usr/share/doc/ansible-freeipa/playbooks/netgroup

CHAPTER 114. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS

885

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

CHAPTER 115. MIGRATING FROM NIS TO IDENTITY
MANAGEMENT

A Network Information Service (NIS) server can contain information about users, groups, hosts,
netgroups and automount maps. As a system administrator you can migrate these entry types,
authentication, and authorization from NIS server to an Identity Management (IdM) server so that all
user management operations are performed on the IdM server. Migrating from NIS to IdM will also allow
you access to more secure protocols such as Kerberos.

115.1. ENABLING NIS IN IDM

To allow communication between NIS and Identity Management (IdM) server, you must enable NIS
compatibility options on IdM server.

Prerequisites

You have root access on IdM server.

Procedure

1. Enable the NIS listener and compatibility plug-ins on IdM server:

[root@ipaserver ~]# ipa-nis-manage enable
[root@ipaserver ~]# ipa-compat-manage enable

2. Optional: For a more strict firewall configuration, set a fixed port.
For example, to set the port to unused port 514:

[root@ipaserver ~]# ldapmodify -x -D 'cn=directory manager' -W
dn: cn=NIS Server,cn=plugins,cn=config
changetype: modify
add: nsslapd-pluginarg0
nsslapd-pluginarg0: 514

WARNING

To avoid conflict with other services do not use any port number above
1024.

3. Enable and start the port mapper service:

[root@ipaserver ~]# systemctl enable rpcbind.service
[root@ipaserver ~]# systemctl start rpcbind.service

4. Restart Directory Server:

[root@ipaserver ~]# systemctl restart dirsrv.target

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

886

115.2. MIGRATING USER ENTRIES FROM NIS TO IDM

The NIS passwd map contains information about users, such as names, UIDs, primary group, GECOS,
shell, and home directory. Use this data to migrate NIS user accounts to Identity Management (IdM):

Prerequisites

You have root access on NIS server.

NIS is enabled in IdM.

The NIS server is enrolled into IdM.

Procedure

1. Install the yp-tools package:

[root@nis-server ~]# yum install yp-tools -y

2. On the NIS server create the /root/nis-users.sh script with the following content:

3. Authenticate as the IdM admin user:

[root@nis-server ~]# kinit admin

4. Run the script. For example:

[root@nis-server ~]# sh /root/nis-users.sh nisdomain nis-server.example.com

IMPORTANT

#!/bin/sh
$1 is the NIS domain, $2 is the primary NIS server
ypcat -d $1 -h $2 passwd > /dev/shm/nis-map.passwd 2>&1

IFS=$'\n'
for line in $(cat /dev/shm/nis-map.passwd) ; do
 IFS=' '
 username=$(echo $line | cut -f1 -d:)
 # Not collecting encrypted password because we need cleartext password
 # to create kerberos key
 uid=$(echo $line | cut -f3 -d:)
 gid=$(echo $line | cut -f4 -d:)
 gecos=$(echo $line | cut -f5 -d:)
 homedir=$(echo $line | cut -f6 -d:)
 shell=$(echo $line | cut -f7 -d:)

 # Now create this entry
 echo passw0rd1 | ipa user-add $username --first=NIS --last=USER \
 --password --gidnumber=$gid --uid=$uid --gecos="$gecos" --homedir=$homedir \
 --shell=$shell
 ipa user-show $username
done

CHAPTER 115. MIGRATING FROM NIS TO IDENTITY MANAGEMENT

887

IMPORTANT

This script uses hard-coded values for first name, last name, and sets the
password to passw0rd1. The user must change the temporary password at the
next login.

115.3. MIGRATING USER GROUP FROM NIS TO IDM

The NIS group map contains information about groups, such as group names, GIDs, or group members.
Use this data to migrate NIS groups to Identity Management (IdM):

Prerequisites

You have root access on NIS server.

NIS is enabled in IdM.

The NIS server is enrolled into IdM.

Procedure

1. Install the yp-tools package:

[root@nis-server ~]# yum install yp-tools -y

2. Create the /root/nis-groups.sh script with the following content on the NIS server:

3. Authenticate as the IdM admin user:

[root@nis-server ~]# kinit admin

4. Run the script. For example:

#!/bin/sh
$1 is the NIS domain, $2 is the primary NIS server
ypcat -d $1 -h $2 group > /dev/shm/nis-map.group 2>&1

IFS=$'\n'
for line in $(cat /dev/shm/nis-map.group); do
 IFS=' '
 groupname=$(echo $line | cut -f1 -d:)
 # Not collecting encrypted password because we need cleartext password
 # to create kerberos key
 gid=$(echo $line | cut -f3 -d:)
 members=$(echo $line | cut -f4 -d:)

 # Now create this entry
 ipa group-add $groupname --desc=NIS_GROUP_$groupname --gid=$gid
 if [-n "$members"]; then
 ipa group-add-member $groupname --users={$members}
 fi
 ipa group-show $groupname
done

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

888

[root@nis-server ~]# sh /root/nis-groups.sh nisdomain nis-server.example.com

115.4. MIGRATING HOST ENTRIES FROM NIS TO IDM

The NIS hosts map contains information about hosts, such as host names and IP addresses. Use this
data to migrate NIS host entries to Identity Management (IdM):

NOTE

When you create a host group in IdM, a corresponding shadow NIS group is automatically
created. Do not use the ipa netgroup-* commands on these shadow NIS groups. Use the
ipa netgroup-* commands only to manage native netgroups created via the netgroup-
add command.

Prerequisites

You have root access on NIS server.

NIS is enabled in IdM.

The NIS server is enrolled into IdM.

Procedure

1. Install the yp-tools package:

[root@nis-server ~]# yum install yp-tools -y

2. Create the /root/nis-hosts.sh script with the following content on the NIS server:

#!/bin/sh
$1 is the NIS domain, $2 is the primary NIS server
ypcat -d $1 -h $2 hosts | egrep -v "localhost|127.0.0.1" > /dev/shm/nis-map.hosts 2>&1

IFS=$'\n'
for line in $(cat /dev/shm/nis-map.hosts); do
 IFS=' '
 ipaddress=$(echo $line | awk '{print $1}')
 hostname=$(echo $line | awk '{print $2}')
 primary=$(ipa env xmlrpc_uri | tr -d '[:space:]' | cut -f3 -d: | cut -f3 -d/)
 domain=$(ipa env domain | tr -d '[:space:]' | cut -f2 -d:)
 if [$(echo $hostname | grep "\." |wc -l) -eq 0] ; then
 hostname=$(echo $hostname.$domain)
 fi
 zone=$(echo $hostname | cut -f2- -d.)
 if [$(ipa dnszone-show $zone 2>/dev/null | wc -l) -eq 0] ; then
 ipa dnszone-add --name-server=$primary --admin-email=root.$primary
 fi
 ptrzone=$(echo $ipaddress | awk -F. '{print $3 "." $2 "." $1 ".in-addr.arpa."}')
 if [$(ipa dnszone-show $ptrzone 2>/dev/null | wc -l) -eq 0] ; then
 ipa dnszone-add $ptrzone --name-server=$primary --admin-email=root.$primary
 fi
 # Now create this entry

CHAPTER 115. MIGRATING FROM NIS TO IDENTITY MANAGEMENT

889

3. Authenticate as the IdM admin user:

[root@nis-server ~]# kinit admin

4. Run the script. For example:

[root@nis-server ~]# sh /root/nis-hosts.sh nisdomain nis-server.example.com

NOTE

This script does not migrate special host configurations, such as aliases.

115.5. MIGRATING NETGROUP ENTRIES FROM NIS TO IDM

The NIS netgroup map contains information about netgroups. Use this data to migrate NIS netgroups to
Identity Management (IdM):

Prerequisites

You have root access on NIS server.

NIS is enabled in IdM.

The NIS server is enrolled into IdM.

Procedure

1. Install the yp-tools package:

[root@nis-server ~]# yum install yp-tools -y

2. Create the /root/nis-netgroups.sh script with the following content on the NIS server:

 ipa host-add $hostname --ip-address=$ipaddress
 ipa host-show $hostname
done

#!/bin/sh
$1 is the NIS domain, $2 is the primary NIS server
ypcat -k -d $1 -h $2 netgroup > /dev/shm/nis-map.netgroup 2>&1

IFS=$'\n'
for line in $(cat /dev/shm/nis-map.netgroup); do
 IFS=' '
 netgroupname=$(echo $line | awk '{print $1}')
 triples=$(echo $line | sed "s/^$netgroupname //")
 echo "ipa netgroup-add $netgroupname --desc=NIS_NG_$netgroupname"
 if [$(echo $line | grep "(," | wc -l) -gt 0]; then
 echo "ipa netgroup-mod $netgroupname --hostcat=all"
 fi
 if [$(echo $line | grep ",," | wc -l) -gt 0]; then
 echo "ipa netgroup-mod $netgroupname --usercat=all"
 fi

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

890

3. Authenticate as the IdM admin user:

[root@nis-server ~]# kinit admin

4. Run the script. For example:

[root@nis-server ~]# sh /root/nis-netgroups.sh nisdomain nis-server.example.com

115.6. MIGRATING AUTOMOUNT MAPS FROM NIS TO IDM

Automount maps are a series of nested and interrelated entries that define the location (the parent
entry), the associated keys, and maps. To migrate NIS automount maps to Identity Management (IdM):

Prerequisites

You have root access on NIS server.

NIS is enabled in IdM.

The NIS server is enrolled into IdM.

Procedure

1. Install the yp-tools package:

[root@nis-server ~]# yum install yp-tools -y

2. Create the /root/nis-automounts.sh script with the following content on the NIS server:

 for triple in $triples; do
 triple=$(echo $triple | sed -e 's/-//g' -e 's/(//' -e 's/)//')
 if [$(echo $triple | grep ",.*," | wc -l) -gt 0]; then
 hostname=$(echo $triple | cut -f1 -d,)
 username=$(echo $triple | cut -f2 -d,)
 domain=$(echo $triple | cut -f3 -d,)
 hosts=""; users=""; doms="";
 [-n "$hostname"] && hosts="--hosts=$hostname"
 [-n "$username"] && users="--users=$username"
 [-n "$domain"] && doms="--nisdomain=$domain"
 echo "ipa netgroup-add-member $netgroup $hosts $users $doms"
 else
 netgroup=$triple
 echo "ipa netgroup-add $netgroup --desc=<NIS_NG>_$netgroup"
 fi
 done
done

#!/bin/sh
$1 is for the automount entry in ipa

ipa automountlocation-add $1

$2 is the NIS domain, $3 is the primary NIS server, $4 is the map name

CHAPTER 115. MIGRATING FROM NIS TO IDENTITY MANAGEMENT

891

NOTE

The script exports the NIS automount information, generates an LDAP Data
Interchange Format (LDIF) for the automount location and associated map, and
imports the LDIF file into the IdM Directory Server.

3. Authenticate as the IdM admin user:

[root@nis-server ~]# kinit admin

4. Run the script. For example:

[root@nis-server ~]# sh /root/nis-automounts.sh location nisdomain
 nis-server.example.com map_name

ypcat -k -d $2 -h $3 $4 > /dev/shm/nis-map.$4 2>&1

ipa automountmap-add $1 $4

basedn=$(ipa env basedn | tr -d '[:space:]' | cut -f2 -d:)
cat > /tmp/amap.ldif <<EOF
dn: nis-domain=$2+nis-map=$4,cn=NIS Server,cn=plugins,cn=config
objectClass: extensibleObject
nis-domain: $2
nis-map: $4
nis-base: automountmapname=$4,cn=$1,cn=automount,$basedn
nis-filter: (objectclass=*)
nis-key-format: %{automountKey}
nis-value-format: %{automountInformation}
EOF
ldapadd -x -h $3 -D "cn=Directory Manager" -W -f /tmp/amap.ldif

IFS=$'\n'
for line in $(cat /dev/shm/nis-map.$4); do
 IFS=" "
 key=$(echo "$line" | awk '{print $1}')
 info=$(echo "$line" | sed -e "s^$key[\t]*")
 ipa automountkey-add nis $4 --key="$key" --info="$info"
done

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

892

CHAPTER 116. USING AUTOMOUNT IN IDM
Automount is a way to manage, organize, and access directories across multiple systems. Automount
automatically mounts a directory whenever access to it is requested. This works well within an
Identity Management (IdM) domain as it allows you to share directories on clients within the domain
easily.

The example uses the following scenario:

nfs-server.idm.example.com is the fully-qualified domain name (FQDN) of a Network File
System (NFS) server.

For the sake of simplicity, nfs-server.idm.example.com is an IdM client that provides the maps
for the raleigh automount location.

NOTE

An automount location is a unique set of NFS maps. Ideally, these maps are all
located in the same geographical region so that, for example, the clients can
benefit from fast connections, but this is not mandatory.

The NFS server exports the /exports/project directory as read-write.

Any IdM user belonging to the developers group can access the contents of the exported
directory as /devel/project/ on any IdM client that uses the raleigh automount location.

idm-client.idm.example.com is an IdM client that uses the raleigh automount location.

IMPORTANT

If you want to use a Samba server instead of an NFS server to provide the shares for IdM
clients, see the How do I configure kerberized CIFS mounts with Autofs in an IPA
environment? KCS solution.

116.1. AUTOFS AND AUTOMOUNT IN IDM

The autofs service automates the mounting of directories, as needed, by directing the automount
daemon to mount directories when they are accessed. In addition, after a period of inactivity, autofs
directs automount to unmount auto-mounted directories. Unlike static mounting, on-demand mounting
saves system resources.

Automount maps

On a system that utilizes autofs, the automount configuration is stored in several different files. The
primary automount configuration file is /etc/auto.master, which contains the master mapping of
automount mount points, and their associated resources, on a system. This mapping is known as
automount maps.
The /etc/auto.master configuration file contains the master map. It can contain references to other
maps. These maps can either be direct or indirect. Direct maps use absolute path names for their
mount points, while indirect maps use relative path names.

Automount configuration in IdM

While automount typically retrieves its map data from the local /etc/auto.master and associated

CHAPTER 116. USING AUTOMOUNT IN IDM

893

https://access.redhat.com/solutions/6596071

While automount typically retrieves its map data from the local /etc/auto.master and associated
files, it can also retrieve map data from other sources. One common source is an LDAP server. In the
context of Identity Management (IdM), this is a 389 Directory Server.
If a system that uses autofs is a client in an IdM domain, the automount configuration is not stored in
local configuration files. Instead, the autofs configuration, such as maps, locations, and keys, is stored
as LDAP entries in the IdM directory. For example, for the idm.example.com IdM domain, the
default master map is stored as follows:

dn:
automountmapname=auto.master,cn=default,cn=automount,dc=idm,dc=example,dc=com
objectClass: automountMap
objectClass: top
automountMapName: auto.master

Additional resources

Mounting file systems on demand

116.2. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT
IDENTITY MANAGEMENT DOMAIN

If you use Red Hat Identity Management (IdM), you can join your NFS server to the IdM domain. This
enables you to centrally manage users and groups and to use Kerberos for authentication, integrity
protection, and traffic encryption.

Prerequisites

The NFS server is enrolled in a Red Hat Identity Management (IdM) domain.

The NFS server is running and configured.

Procedure

1. Obtain a kerberos ticket as an IdM administrator:

kinit admin

2. Create a nfs/<FQDN> service principal:

ipa service-add nfs/nfs_server.idm.example.com

3. Retrieve the nfs service principal from IdM, and store it in the /etc/krb5.keytab file:

ipa-getkeytab -s idm_server.idm.example.com -p nfs/nfs_server.idm.example.com -k
/etc/krb5.keytab

4. Optional: Display the principals in the /etc/krb5.keytab file:

klist -k /etc/krb5.keytab
Keytab name: FILE:/etc/krb5.keytab
KVNO Principal
---- --

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

894

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/mounting-file-systems-on-demand_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management

 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM

By default, the IdM client adds the host principal to the /etc/krb5.keytab file when you join the
host to the IdM domain. If the host principal is missing, use the ipa-getkeytab -s
idm_server.idm.example.com -p host/nfs_server.idm.example.com -k /etc/krb5.keytab
command to add it.

5. Use the ipa-client-automount utility to configure mapping of IdM IDs:

ipa-client-automount
Searching for IPA server...
IPA server: DNS discovery
Location: default
Continue to configure the system with these values? [no]: yes
Configured /etc/idmapd.conf
Restarting sssd, waiting for it to become available.
Started autofs

6. Update your /etc/exports file, and add the Kerberos security method to the client options. For
example:

/nfs/projects/ 192.0.2.0/24(rw,sec=krb5i)

If you want that your clients can select from multiple security methods, specify them separated
by colons:

/nfs/projects/ 192.0.2.0/24(rw,sec=krb5:krb5i:krb5p)

7. Reload the exported file systems:

exportfs -r

116.3. CONFIGURING AUTOMOUNT LOCATIONS AND MAPS IN IDM
USING THE IDM CLI

A location is a set of maps, which are all stored in auto.master. A location can store multiple maps. The
location entry only works as a container for map entries; it is not an automount configuration in and of
itself.

As a system administrator in Identity Management (IdM), you can configure automount locations and
maps in IdM so that IdM users in the specified locations can access shares exported by an NFS server by
navigating to specific mount points on their hosts. Both the exported NFS server directory and the
mount points are specified in the maps. The example describes how to configure the raleigh location
and a map that mounts the nfs-server.idm.example.com:/exports/project share on the /devel/
mount point on the IdM client as a read-write directory.

CHAPTER 116. USING AUTOMOUNT IN IDM

895

Prerequisites

You are logged in as an IdM administrator on any IdM-enrolled host.

Procedure

1. Create the raleigh automount location:

$ ipa automountlocation-add raleigh

Added automount location "raleigh"

 Location: raleigh

2. Create an auto.devel automount map in the raleigh location:

$ ipa automountmap-add raleigh auto.devel

Added automount map "auto.devel"

 Map: auto.devel

3. Add the keys and mount information for the exports/ share:

a. Add the key and mount information for the auto.devel map:

$ ipa automountkey-add raleigh auto.devel --key='*' --info='-sec=krb5p,vers=4 nfs-
server.idm.example.com:/exports/&'

Added automount key "*"

 Key: *
 Mount information: -sec=krb5p,vers=4 nfs-server.idm.example.com:/exports/&

b. Add the key and mount information for the auto.master map:

$ ipa automountkey-add raleigh auto.master --key=/devel --info=auto.devel

Added automount key "/devel"

 Key: /devel
 Mount information: auto.devel

116.4. CONFIGURING AUTOMOUNT ON AN IDM CLIENT

As an Identity Management (IdM) system administrator, you can configure automount services on an
IdM client so that NFS shares configured for a location to which the client has been added are accessible
to an IdM user automatically when the user logs in to the client. The example describes how to configure
an IdM client to use automount services that are available in the raleigh location.

Prerequisites

You have root access to the IdM client.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

896

You are logged in as IdM administrator.

The automount location exists. The example location is raleigh.

Procedure

1. On the IdM client, enter the ipa-client-automount command and specify the location. Use the -
U option to run the script unattended:

ipa-client-automount --location raleigh -U

2. Stop the autofs service, clear the SSSD cache, and start the autofs service to load the new
configuration settings:

systemctl stop autofs ; sss_cache -E ; systemctl start autofs

116.5. VERIFYING THAT AN IDM USER CAN ACCESS NFS SHARES ON
AN IDM CLIENT

As an Identity Management (IdM) system administrator, you can test if an IdM user that is a member of a
specific group can access NFS shares when logged in to a specific IdM client.

In the example, the following scenario is tested:

An IdM user named idm_user belonging to the developers group can read and write the
contents of the files in the /devel/project directory automounted on idm-
client.idm.example.com, an IdM client located in the raleigh automount location.

Prerequisites

You have set up an NFS server with Kerberos on an IdM host .

You have configured automount locations, maps, and mount points in IdM in which you
configured how IdM users can access the NFS share.

You have configured automount on the IdM client .

Procedure

1. Verify that the IdM user can access the read-write directory:

a. Connect to the IdM client as the IdM user:

$ ssh idm_user@idm-client.idm.example.com
Password:

b. Obtain the ticket-granting ticket (TGT) for the IdM user:

$ kinit idm_user

c. [Optional] View the group membership of the IdM user:

$ ipa user-show idm_user

CHAPTER 116. USING AUTOMOUNT IN IDM

897

 User login: idm_user
 [...]
 Member of groups: developers, ipausers

d. Navigate to the /devel/project directory:

$ cd /devel/project

e. List the directory contents:

$ ls
rw_file

f. Add a line to the file in the directory to test the write permission:

$ echo "idm_user can write into the file" > rw_file

g. [Optional] View the updated contents of the file:

$ cat rw_file
this is a read-write file
idm_user can write into the file

The output confirms that idm_user can write into the file.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

898

CHAPTER 117. USING ANSIBLE TO AUTOMOUNT NFS SHARES
FOR IDM USERS

Automount is a way to manage, organize, and access directories across multiple systems. Automount
automatically mounts a directory whenever access to it is requested. This works well within an
Identity Management (IdM) domain as it allows you to share directories on clients within the domain
easily.

You can use Ansible to configure NFS shares to be mounted automatically for IdM users logged in to
IdM clients in an IdM location.

The example in this chapter uses the following scenario:

nfs-server.idm.example.com is the fully-qualified domain name (FQDN) of a Network File
System (NFS) server.

nfs-server.idm.example.com is an IdM client located in the raleigh automount location.

The NFS server exports the /exports/project directory as read-write.

Any IdM user belonging to the developers group can access the contents of the exported
directory as /devel/project/ on any IdM client that is located in the same raleigh automount
location as the NFS server.

idm-client.idm.example.com is an IdM client located in the raleigh automount location.

IMPORTANT

If you want to use a Samba server instead of an NFS server to provide the shares for IdM
clients, see the How do I configure kerberized CIFS mounts with Autofs in an IPA
environment? KCS solution.

The chapter contains the following sections:

1. Autofs and automount in IdM

2. Setting up an NFS server with Kerberos in IdM

3. Configuring automount locations, maps, and keys in IdM by using Ansible

4. Using Ansible to add IdM users to a group that owns NFS shares

5. Configuring automount on an IdM client

6. Verifying that an IdM user can access NFS shares on an IdM client

117.1. AUTOFS AND AUTOMOUNT IN IDM

The autofs service automates the mounting of directories, as needed, by directing the automount
daemon to mount directories when they are accessed. In addition, after a period of inactivity, autofs
directs automount to unmount auto-mounted directories. Unlike static mounting, on-demand mounting
saves system resources.

CHAPTER 117. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS

899

https://access.redhat.com/solutions/6596071

Automount maps

On a system that utilizes autofs, the automount configuration is stored in several different files. The
primary automount configuration file is /etc/auto.master, which contains the master mapping of
automount mount points, and their associated resources, on a system. This mapping is known as
automount maps.
The /etc/auto.master configuration file contains the master map. It can contain references to other
maps. These maps can either be direct or indirect. Direct maps use absolute path names for their
mount points, while indirect maps use relative path names.

Automount configuration in IdM

While automount typically retrieves its map data from the local /etc/auto.master and associated
files, it can also retrieve map data from other sources. One common source is an LDAP server. In the
context of Identity Management (IdM), this is a 389 Directory Server.
If a system that uses autofs is a client in an IdM domain, the automount configuration is not stored in
local configuration files. Instead, the autofs configuration, such as maps, locations, and keys, is stored
as LDAP entries in the IdM directory. For example, for the idm.example.com IdM domain, the
default master map is stored as follows:

dn:
automountmapname=auto.master,cn=default,cn=automount,dc=idm,dc=example,dc=com
objectClass: automountMap
objectClass: top
automountMapName: auto.master

Additional resources

Mounting file systems on demand

117.2. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT
IDENTITY MANAGEMENT DOMAIN

If you use Red Hat Identity Management (IdM), you can join your NFS server to the IdM domain. This
enables you to centrally manage users and groups and to use Kerberos for authentication, integrity
protection, and traffic encryption.

Prerequisites

The NFS server is enrolled in a Red Hat Identity Management (IdM) domain.

The NFS server is running and configured.

Procedure

1. Obtain a kerberos ticket as an IdM administrator:

kinit admin

2. Create a nfs/<FQDN> service principal:

ipa service-add nfs/nfs_server.idm.example.com

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

900

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/mounting-file-systems-on-demand_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management

3. Retrieve the nfs service principal from IdM, and store it in the /etc/krb5.keytab file:

ipa-getkeytab -s idm_server.idm.example.com -p nfs/nfs_server.idm.example.com -k
/etc/krb5.keytab

4. Optional: Display the principals in the /etc/krb5.keytab file:

klist -k /etc/krb5.keytab
Keytab name: FILE:/etc/krb5.keytab
KVNO Principal
---- --
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 1 nfs/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM
 7 host/nfs_server.idm.example.com@IDM.EXAMPLE.COM

By default, the IdM client adds the host principal to the /etc/krb5.keytab file when you join the
host to the IdM domain. If the host principal is missing, use the ipa-getkeytab -s
idm_server.idm.example.com -p host/nfs_server.idm.example.com -k /etc/krb5.keytab
command to add it.

5. Use the ipa-client-automount utility to configure mapping of IdM IDs:

ipa-client-automount
Searching for IPA server...
IPA server: DNS discovery
Location: default
Continue to configure the system with these values? [no]: yes
Configured /etc/idmapd.conf
Restarting sssd, waiting for it to become available.
Started autofs

6. Update your /etc/exports file, and add the Kerberos security method to the client options. For
example:

/nfs/projects/ 192.0.2.0/24(rw,sec=krb5i)

If you want that your clients can select from multiple security methods, specify them separated
by colons:

/nfs/projects/ 192.0.2.0/24(rw,sec=krb5:krb5i:krb5p)

7. Reload the exported file systems:

exportfs -r

117.3. CONFIGURING AUTOMOUNT LOCATIONS, MAPS, AND KEYS IN
IDM BY USING ANSIBLE

CHAPTER 117. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS

901

As an Identity Management (IdM) system administrator, you can configure automount locations and
maps in IdM so that IdM users in the specified locations can access shares exported by an NFS server by
navigating to specific mount points on their hosts. Both the exported NFS server directory and the
mount points are specified in the maps. In LDAP terms, a location is a container for such map entries.

The example describes how to use Ansible to configure the raleigh location and a map that mounts the
nfs-server.idm.example.com:/exports/project share on the /devel/project mount point on the IdM
client as a read-write directory.

Prerequisites

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. On your Ansible control node, navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Copy the automount-location-present.yml Ansible playbook file located in the
/usr/share/doc/ansible-freeipa/playbooks/automount/ directory:

$ cp /usr/share/doc/ansible-freeipa/playbooks/automount/automount-location-
present.yml automount-location-map-and-key-present.yml

3. Open the automount-location-map-and-key-present.yml file for editing.

4. Adapt the file by setting the following variables in the ipaautomountlocation task section:

Set the ipaadmin_password variable to the password of the IdM admin.

Set the name variable to raleigh.

Ensure that the state variable is set to present.
This is the modified Ansible playbook file for the current example:

- name: Automount location present example
 hosts: ipaserver
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

902

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - name: Ensure automount location is present
 ipaautomountlocation:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: raleigh
 state: present

5. Continue editing the automount-location-map-and-key-present.yml file:

a. In the tasks section, add a task to ensure the presence of an automount map:

[...]
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
[...]
 - name: ensure map named auto.devel in location raleigh is created
 ipaautomountmap:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: auto.devel
 location: raleigh
 state: present

b. Add another task to add the mount point and NFS server information to the map:

[...]
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
[...]
 - name: ensure automount key /devel/project is present
 ipaautomountkey:
 ipaadmin_password: "{{ ipaadmin_password }}"
 location: raleigh
 mapname: auto.devel
 key: /devel/project
 info: nfs-server.idm.example.com:/exports/project
 state: present

c. Add another task to ensure auto.devel is connected to auto.master:

[...]
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
[...]
- name: Ensure auto.devel is connected in auto.master:
 ipaautomountkey:
 ipaadmin_password: "{{ ipaadmin_password }}"
 location: raleigh
 mapname: auto.map
 key: /devel
 info: auto.devel
 state: present

6. Save the file.

CHAPTER 117. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS

903

7. Run the Ansible playbook and specify the playbook and inventory files:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automount-
location-map-and-key-present.yml

117.4. USING ANSIBLE TO ADD IDM USERS TO A GROUP THAT OWNS
NFS SHARES

As an Identity Management (IdM) system administrator, you can use Ansible to create a group of users
that is able to access NFS shares, and add IdM users to this group.

This example describes how to use an Ansible playbook to ensure that the idm_user account belongs to
the developers group, so that idm_user can access the /exports/project NFS share.

Prerequisites

You have root access to the nfs-server.idm.example.com NFS server, which is an IdM client
located in the raleigh automount location.

You know the IdM admin password.

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

In ~/MyPlaybooks/, you have created the automount-location-map-and-key-present.yml
file that already contains tasks from Configuring automount locations, maps, and keys in
IdM by using Ansible.

Procedure

1. On your Ansible control node, navigate to the ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Open the automount-location-map-and-key-present.yml file for editing.

3. In the tasks section, add a task to ensure that the IdM developers group exists and idm_user is
added to this group:

[...]
 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
[...]

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

904

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 - ipagroup:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: developers
 user:
 - idm_user
 state: present

4. Save the file.

5. Run the Ansible playbook and specify the playbook and inventory files:

$ ansible-playbook --vault-password-file=password_file -v -i inventory automount-
location-map-and-key-present.yml

6. On the NFS server, change the group ownership of the /exports/project directory to
developers so that every IdM user in the group can access the directory:

chgrp developers /exports/project

117.5. CONFIGURING AUTOMOUNT ON AN IDM CLIENT

As an Identity Management (IdM) system administrator, you can configure automount services on an
IdM client so that NFS shares configured for a location to which the client has been added are accessible
to an IdM user automatically when the user logs in to the client. The example describes how to configure
an IdM client to use automount services that are available in the raleigh location.

Prerequisites

You have root access to the IdM client.

You are logged in as IdM administrator.

The automount location exists. The example location is raleigh.

Procedure

1. On the IdM client, enter the ipa-client-automount command and specify the location. Use the -
U option to run the script unattended:

ipa-client-automount --location raleigh -U

2. Stop the autofs service, clear the SSSD cache, and start the autofs service to load the new
configuration settings:

systemctl stop autofs ; sss_cache -E ; systemctl start autofs

117.6. VERIFYING THAT AN IDM USER CAN ACCESS NFS SHARES ON
AN IDM CLIENT

As an Identity Management (IdM) system administrator, you can test if an IdM user that is a member of a
specific group can access NFS shares when logged in to a specific IdM client.

CHAPTER 117. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS

905

In the example, the following scenario is tested:

An IdM user named idm_user belonging to the developers group can read and write the
contents of the files in the /devel/project directory automounted on idm-
client.idm.example.com, an IdM client located in the raleigh automount location.

Prerequisites

You have set up an NFS server with Kerberos on an IdM host .

You have configured automount locations, maps, and mount points in IdM in which you
configured how IdM users can access the NFS share.

You have used Ansible to add IdM users to the developers group that owns the NFS shares .

You have configured automount on the IdM client .

Procedure

1. Verify that the IdM user can access the read-write directory:

a. Connect to the IdM client as the IdM user:

$ ssh idm_user@idm-client.idm.example.com
Password:

b. Obtain the ticket-granting ticket (TGT) for the IdM user:

$ kinit idm_user

c. [Optional] View the group membership of the IdM user:

$ ipa user-show idm_user
 User login: idm_user
 [...]
 Member of groups: developers, ipausers

d. Navigate to the /devel/project directory:

$ cd /devel/project

e. List the directory contents:

$ ls
rw_file

f. Add a line to the file in the directory to test the write permission:

$ echo "idm_user can write into the file" > rw_file

g. [Optional] View the updated contents of the file:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

906

$ cat rw_file
this is a read-write file
idm_user can write into the file

The output confirms that idm_user can write into the file.

CHAPTER 117. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS

907

CHAPTER 118. IDM LOG FILES AND DIRECTORIES
Use the following sections to monitor, analyze, and troubleshoot the individual components of
Identity Management (IdM):

LDAP

Apache web server

Certificate system

Kerberos

DNS

Custodia

Additionally, you can monitor, analyze, and troubleshoot the IdM server and client and enable audit
logging on an IdM server.

118.1. IDM SERVER AND CLIENT LOG FILES AND DIRECTORIES

The following table presents directories and files that the Identity Management (IdM) server and client
use to log information. You can use the files and directories for troubleshooting installation errors.

Directory or File Description

/var/log/ipaserver-install.log The installation log for the IdM server.

/var/log/ipareplica-install.log The installation log for the IdM replica.

/var/log/ipaclient-install.log The installation log for the IdM client.

/var/log/sssd/ Log files for SSSD. You can enable detailed logging for SSSD in
the sssd.conf file or with the sssctl command.

~/.ipa/log/cli.log The log file for errors returned by remote procedure calls
(RPCs) and responses by the ipa utility. Created in the home
directory for the effective user that runs the tools. This user
might have a different user name than the IdM user principal,
that is the IdM user whose ticket granting ticket (TGT) has been
obtained before attempting to perform the failed ipa
commands. For example, if you are logged in to the system as
root and have obtained the TGT of IdM admin, then the errors
are logged in to the /root/.ipa/log/cli.log file.

/etc/logrotate.d/ The log rotation policies for DNS, SSSD, Apache, Tomcat, and
Kerberos.

/etc/pki/pki-
tomcat/logging.properties

This link points to the default Certificate Authority logging
configuration at
/usr/share/pki/server/conf/logging.properties.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

908

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_authentication_and_authorization_in_rhel/assembly_troubleshooting-authentication-with-sssd-in-idm_restricting-domains-for-pam-services-using-sssd#proc_enabling-detailed-logging-for-sssd-in-the-sssdconf-file_assembly_troubleshooting-authentication-with-sssd-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_authentication_and_authorization_in_rhel/assembly_troubleshooting-authentication-with-sssd-in-idm_restricting-domains-for-pam-services-using-sssd#proc_enabling-detailed-logging-for-sssd-with-the-sssctl-command_assembly_troubleshooting-authentication-with-sssd-in-idm

Additional resources

Troubleshooting IdM server installation

Troubleshooting IdM client installation

Troubleshooting IdM replica installation

Troubleshooting authentication with SSSD in IdM

118.2. DIRECTORY SERVER LOG FILES

The following table presents directories and files that the Identity Management (IdM) Directory Server
(DS) instance uses to log information. You can use the files and directories for troubleshooting DS-
related problems.

Table 118.1. Directory Server log files

Directory or file Description

/var/log/dirsrv/slapd-REALM_NA
ME/

Log files associated with the DS instance used by the IdM server.
Most operational data recorded here are related to server-replica
interactions.

/var/log/dirsrv/slapd-REALM_NA
ME/audit

Contains audit trails of all DS operations when auditing is enabled
in the DS configuration.

NOTE

You can also audit the Apache error logs, where
the IdM API logs access. However, because
changes can be made directly over LDAP too,
Red Hat recommends enabling the more
comprehensive /var/log/dirsrv/slapd-
REALM_NAME/audit log for auditing purposes.

/var/log/dirsrv/slapd-REALM_NA
ME/access

Contains detailed information about attempted access for the
domain DS instance.

/var/log/dirsrv/slapd-REALM_NA
ME/errors

Contains detailed information about failed operations for the
domain DS instance.

Additional resources

Monitoring Server and Database Activity

Log File Reference

118.3. ENABLING AUDIT LOGGING ON AN IDM SERVER

Follow this procedure to enable logging on an Identity Management (IdM) server for audit purposes.
Using detailed logs, you can monitor data, troubleshoot issues, and examine suspicious activity on the
network.

CHAPTER 118. IDM LOG FILES AND DIRECTORIES

909

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/troubleshooting-idm-server-installation_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/troubleshooting-idm-client-installation_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/troubleshooting-idm-replica-installation_installing-identity-management
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_authentication_and_authorization_in_rhel/assembly_troubleshooting-authentication-with-sssd-in-idm_configuring-authentication-and-authorization-in-rhel
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/monitoring_server_and_database_activity
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/logs-reference

NOTE

The LDAP service may become slower if there are many LDAP changes logged, especially
if the values are large.

Prerequisites

The Directory Manager password

Procedure

1. Bind to the LDAP server:

$ ldapmodify -D "cn=Directory Manager" -W << EOF

2. Press [Enter].

3. Specify all the modifications you want to make, for example:

dn: cn=config
changetype: modify
replace: nsslapd-auditlog-logging-enabled
nsslapd-auditlog-logging-enabled: on
-
replace:nsslapd-auditlog
nsslapd-auditlog: /var/log/dirsrv/slapd-REALM_NAME/audit
-
replace:nsslapd-auditlog-mode
nsslapd-auditlog-mode: 600
-
replace:nsslapd-auditlog-maxlogsize
nsslapd-auditlog-maxlogsize: 100
-
replace:nsslapd-auditlog-logrotationtime
nsslapd-auditlog-logrotationtime: 1
-
replace:nsslapd-auditlog-logrotationtimeunit
nsslapd-auditlog-logrotationtimeunit: day

4. Indicate the end of the ldapmodify command by entering EOF on a new line.

5. Press [Enter] twice.

6. Repeat the previous steps on all the other IdM servers on which you want to enable audit
logging.

Verification

Open the /var/log/dirsrv/slapd-REALM_NAME/audit file:

389-Directory/1.4.3.231 B2021.322.1803
server.idm.example.com:636 (/etc/dirsrv/slapd-IDM-EXAMPLE-COM)

time: 20220607102705
dn: cn=config

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

910

result: 0
changetype: modify
replace: nsslapd-auditlog-logging-enabled
nsslapd-auditlog-logging-enabled: on
[...]

The fact that the file is not empty anymore confirms that auditing is enabled.

IMPORTANT

The system logs the bound LDAP distinguished name (DN) of the entry that
makes a change. For this reason, you might have to post-process the log. For
example, in the IdM Directory Server, it is an ID override DN that represents the
identity of an AD user that modified a record:

$ modifiersName: ipaanchoruuid=:sid:s-1-5-21-19610888-1443184010-
1631745340-279100,cn=default trust
view,cn=views,cn=accounts,dc=idma,dc=idm,dc=example,dc=com

Use the pysss_nss_idmap.getnamebysid Python command to look up an AD
user if you have the user SID:

>>> import pysss_nss_idmap
>>> pysss_nss_idmap.getnamebysid('S-1-5-21-1273159419-3736181166-
4190138427-500'))
{'S-1-5-21-1273159419-3736181166-4190138427-500': {'name':
'administrator@ad.vm', 'type': 3}}

Additional resources

Directory Server log files

The How to enable Audit logging in IPA/IDM Server and Replica Servers KCS solution

118.4. MODIFYING ERROR LOGGING ON AN IDM SERVER

Follow this procedure to obtain debugging information about specific types of errors. The example
focuses on obtaining detailed error logs about replication by setting the error log level to 8192. To
record a different type of information, select a different number from the table in Error Log Logging
Levels in the Red Hat Directory Server documentation.

NOTE

The LDAP service may become slower if there are many types of LDAP errors logged,
especially if the values are large.

Prerequisites

The Directory Manager password.

Procedure

1. Bind to the LDAP server:

CHAPTER 118. IDM LOG FILES AND DIRECTORIES

911

https://access.redhat.com/solutions/772563
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/logs-reference#error-logs-levels

$ ldapmodify -x -D "cn=directory manager" -w <password>

2. Press [Enter].

3. Specify the modifications you want to make. For example to collect only logs related to
replication:

dn: cn=config
changetype: modify
add: nsslapd-errorlog-level
nsslapd-errorlog-level: 8192

4. Press [Enter] twice, to indicate the end of the ldapmodify instruction. This displays the
modifying entry "cn=config" message.

5. Press [Ctrl+C] to exit the ldapmodify command.

6. Repeat the previous steps on all the other IdM servers on which you want to collect detailed logs
about replication errors.

IMPORTANT

After you finish troubleshooting, set nsslapd-errorlog-level back to 0 to prevent
performance problems.

Additional resources

The Directory Server error logging levels

118.5. THE IDM APACHE SERVER LOG FILES

The following table presents directories and files that the Identity Management (IdM) Apache Server
uses to log information.

Table 118.2. Apache Server log files

Directory or File Description

/var/log/httpd/ Log files for the Apache web server.

/var/log/httpd/access_log Standard access and error logs for Apache servers.
Messages specific to IdM are recorded along with the
Apache messages because the IdM web UI and the
RPC command-line interface use Apache. The access
logs log mostly only the user principal and the URI
used, which is often an RPC endpoint. The error logs
contain the IdM server logs.

/var/log/httpd/error_log

Additional resources

Log Files in the Apache documentation

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

912

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/logs-reference#error-logs-levels
http://httpd.apache.org/docs/current/logs.html

118.6. CERTIFICATE SYSTEM LOG FILES IN IDM

The following table presents directories and files that the Identity Management (IdM) Certificate
System uses to log information.

Table 118.3. Certificate System log files

Directory or File Description

/var/log/pki/pki-ca-
spawn.time_of_installation.log

The installation log for the IdM certificate authority
(CA).

/var/log/pki/pki-kra-
spawn.time_of_installation.log

The installation log for the IdM Key Recovery
Authority (KRA).

/var/log/pki/pki-tomcat/ The top level directory for PKI operation logs.
Contains CA and KRA logs.

/var/log/pki/pki-tomcat/ca/ Directory with logs related to certificate operations.
In IdM, these logs are used for service principals,
hosts, and other entities which use certificates.

/var/log/pki/pki-tomcat/kra Directory with logs related to KRA.

/var/log/messages Includes certificate error messages among other
system messages.

Additional resources

Configuring subsystem logs in the Red Hat Certificate System Administration Guide

118.7. KERBEROS LOG FILES IN IDM

The following table presents directories and files that Kerberos uses to log information in
Identity Management (IdM).

Table 118.4. Kerberos Log Files

Directory or File Description

/var/log/krb5kdc.log The primary log file for the Kerberos KDC server.

/var/log/kadmind.log The primary log file for the Kerberos administration
server.

Locations for these files are configured in the krb5.conf file. They can be different on some systems.

118.8. DNS LOG FILES IN IDM

The following table presents directories and files that DNS uses to log information in

CHAPTER 118. IDM LOG FILES AND DIRECTORIES

913

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/9/html/administration_guide/logs

The following table presents directories and files that DNS uses to log information in
Identity Management (IdM).

Table 118.5. DNS log files

Directory or File Description

/var/log/messages Includes DNS error messages and other system messages. DNS logging in this file
is not enabled by default. To enable it, enter the # /usr/sbin/rndc querylog
command. The command results in the following lines being added to
var/log/messages:

Jun 26 17:37:33 r8server named-pkcs11[1445]: received control
channel command 'querylog'

Jun 26 17:37:33 r8server named-pkcs11[1445]: query logging is now
on

To disable logging, run the command again.

118.9. CUSTODIA LOG FILES IN IDM

The following table presents directories and files that Custodia uses to log information in
Identity Management (IdM).

Table 118.6. Custodia Log Files

Directory or File Description

/var/log/custodia/ Log file directory for the Custodia service.

118.10. ADDITIONAL RESOURCES

Viewing Log Files. You can use journalctl to view the logging output of systemd unit files.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

914

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/assembly_troubleshooting-problems-using-log-files_configuring-basic-system-settings

CHAPTER 119. CONFIGURING SINGLE SIGN-ON FOR THE
RHEL 8 WEB CONSOLE IN THE IDM DOMAIN

Learn how to use Single Sign-on (SSO) authentication provided by Identity Management (IdM) in the
RHEL 8 web console.

Advantages:

IdM domain administrators can use the RHEL 8 web console to manage local machines.

Users with a Kerberos ticket in the IdM domain do not need to provide login credentials to
access the web console.

All hosts known to the IdM domain are accessible via SSH from the local instance of the RHEL 8
web console.

Certificate configuration is not necessary. The console’s web server automatically switches to a
certificate issued by the IdM certificate authority and accepted by browsers.

This chapter covers the following steps to configure SSO for logging into the RHEL web console:

1. Add machines to the IdM domain using the RHEL 8 web console.
For details, see Joining a RHEL 8 system to an IdM domain using the web console .

2. If you want to use Kerberos for authentication, you need to obtain a Kerberos ticket on your
machine.
For details, see Logging in to the web console using Kerberos authentication .

3. Allow administrators on the IdM server to run any command on any host.
For details, see Enabling admin sudo access to domain administrators on the IdM server

Prerequisites

The RHEL web console installed on RHEL 8 systems.
For details, see Installing the web console .

IdM client installed on systems with the RHEL web console.
For details, see IdM client installation .

119.1. JOINING A RHEL 8 SYSTEM TO AN IDM DOMAIN USING THE WEB
CONSOLE

You can use the web console to join the Red Hat Enterprise Linux 8 system to the Identity Management
(IdM) domain.

Prerequisites

The IdM domain is running and reachable from the client you want to join.

You have the IdM domain administrator credentials.

Procedure

1. Log into the RHEL web console.

CHAPTER 119. CONFIGURING SINGLE SIGN-ON FOR THE RHEL 8 WEB CONSOLE IN THE IDM DOMAIN

915

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring_single_sign_on_for_the_rhel_8_web_console_in_the_idm_domain_system-management-using-the-rhel-8-web-console#joining-a-rhel-8-system-to-an-idm-domain-using-the-web-console_configuring-single-sign-on-for-the-web-console-in-the-idm-domain
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring_single_sign_on_for_the_rhel_8_web_console_in_the_idm_domain_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console-using-a-kerberos-ticket_configuring-single-sign-on-for-the-web-console-in-the-idm-domain
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring_single_sign_on_for_the_rhel_8_web_console_in_the_idm_domain_system-management-using-the-rhel-8-web-console#enabling-admin-sudo-access-to-domain-administrators-on-the-idm-server_configuring-single-sign-on-for-the-web-console-in-the-idm-domain
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/assembly_installing-an-idm-client_installing-identity-management

For details, see Logging in to the web console .

2. In the Configuration field of the Overview tab click Join Domain.

3. In the Join a Domain dialog box, enter the host name of the IdM server in the Domain Address
field.

4. In the Domain administrator name field, enter the user name of the IdM administration
account.

5. In the Domain administrator password, add a password.

6. Click Join.

Verification steps

1. If the RHEL 8 web console did not display an error, the system has been joined to the IdM
domain and you can see the domain name in the System screen.

2. To verify that the user is a member of the domain, click the Terminal page and type the id
command:

$ id
euid=548800004(example_user) gid=548800004(example_user)
groups=548800004(example_user) context=unconfined_u:unconfined_r:unconfined_t:s0-
s0:c0.c1023

Additional resources

Planning Identity Management

Installing Identity Management

119.2. LOGGING IN TO THE WEB CONSOLE USING KERBEROS
AUTHENTICATION

The following procedure describes steps on how to set up the RHEL 8 system to use Kerberos
authentication.

IMPORTANT

With SSO you usually do not have any administrative privileges in the web console. This
only works if you configured passwordless sudo. The web console does not interactively
ask for a sudo password.

Prerequisites

IdM domain running and reachable in your company environment.
For details, see Joining a RHEL 8 system to an IdM domain using the web console .

Enable the cockpit.socket service on remote systems to which you want to connect and
manage them with the RHEL web console.
For details, see Installing the web console .

If the system does not use a Kerberos ticket managed by the SSSD client, try to request the

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

916

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/planning_identity_management/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring_single_sign_on_for_the_rhel_8_web_console_in_the_idm_domain_system-management-using-the-rhel-8-web-console#joining-a-rhel-8-system-to-an-idm-domain-using-the-web-console_configuring-single-sign-on-for-the-web-console-in-the-idm-domain
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console

If the system does not use a Kerberos ticket managed by the SSSD client, try to request the
ticket with the kinit utility manually.

Procedure

Log in to the RHEL web console with the following address: https://dns_name:9090.

At this point, you are successfully connected to the RHEL web console and you can start with
configuration.

119.3. ENABLING ADMIN SUDO ACCESS TO DOMAIN
ADMINISTRATORS ON THE IDM SERVER

The following procedure describes steps on how to allow domain administrators to run any command on
any host in the Identity Management (IdM) domain.

To accomplish this, enable sudo access to the admins user group created automatically during the IdM
server installation.

All users added to the admins group will have sudo access if you run ipa-advise script on the group.

Prerequisites

The server runs IdM 4.7.1 or later.

Procedure

1. Connect to the IdM server.

2. Run the ipa-advise script:

$ ipa-advise enable-admins-sudo | sh -ex

If the console did not display an error, the admins group have admin permissions on all machines in the

CHAPTER 119. CONFIGURING SINGLE SIGN-ON FOR THE RHEL 8 WEB CONSOLE IN THE IDM DOMAIN

917

If the console did not display an error, the admins group have admin permissions on all machines in the
IdM domain.

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

918

CHAPTER 120. USING CONSTRAINED DELEGATION IN IDM
Learn more about how you can use the constrained delegation feature in Identity Management (IdM):

Constrained delegation in Identity Management describes how constrained delegation works.

Configuring a web console to allow a user authenticated with a smart card to SSH to a remote
host without being asked to authenticate again describes a use case for constrained delegation
in the context of using the Red Hat Enterprise Linux web console to SSH to a remote host
without requiring authentication.

Using Ansible to configure a web console to allow a user authenticated with a smart card to SSH
to a remote host without being asked to authenticate again describes a use case for constrained
delegation in the context of using Ansible to configure the use of the Red Hat Enterprise Linux
web console to SSH to a remote host without requiring authentication.

Configuring a web console client to allow a user authenticated with a smart card to run sudo
without being asked to authenticate describes a use case for constrained delegation in the
context of using the Red Hat Enterprise Linux web console to run sudo without requiring
authentication.

Using Ansible to configure a web console to allow a user authenticated with a smart card to run
sudo without being asked to authenticate again describes a use case for constrained delegation
in the context of using Ansible to configure the use of the Red Hat Enterprise Linux web
console to run sudo without requiring authentication.

120.1. CONSTRAINED DELEGATION IN IDENTITY MANAGEMENT

The Service for User to Proxy (S4U2proxy) extension provides a service that obtains a service ticket to
another service on behalf of a user. This feature is known as constrained delegation. The second
service is typically a proxy performing some work on behalf of the first service, under the authorization
context of the user. Using constrained delegation eliminates the need for the user to delegate their full
ticket-granting ticket (TGT).

Identity Management (IdM) traditionally uses the Kerberos S4U2proxy feature to allow the web server
framework to obtain an LDAP service ticket on the user’s behalf. The IdM-AD trust system also uses
constrained delegation to obtain a cifs principal.

You can use the S4U2proxy feature to configure a web console client to allow an IdM user that has
authenticated with a smart card to achieve the following:

Run commands with superuser privileges on the RHEL host on which the web console service is
running without being asked to authenticate again.

Access a remote host using SSH and access services on the host without being asked to
authenticate again.

Additional resources

Using Ansible to configure a web console to allow a user authenticated with a smart card to SSH
to a remote host without being asked to authenticate again

Using Ansible to configure a web console to allow a user authenticated with a smart card to run
sudo without being asked to authenticate again

S4U2proxy

CHAPTER 120. USING CONSTRAINED DELEGATION IN IDM

919

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-constrained-delegation-in-idm_configuring-and-managing-idm#proc_using-ansible-to-configure-a-web-console-to-allow-a-user-authenticated-with-a-smart-card-to-ssh-to-a-remote-host-without-being-asked-to-authenticate-again_assembly_using-constrained-delegation-in-idm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/assembly_using-constrained-delegation-in-idm_configuring-and-managing-idm#proc_using-ansible-to-configure-a-web-console-to-allow-a-user-authenticated-with-a-smart-card-to-run-sudo-without-being-asked-to-authenticate-again_assembly_using-constrained-delegation-in-idm
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sfu/bde93b0e-f3c9-4ddf-9f44-e1453be7af5a

Service constrained delegation

120.2. CONFIGURING A WEB CONSOLE TO ALLOW A USER
AUTHENTICATED WITH A SMART CARD TO SSH TO A REMOTE HOST
WITHOUT BEING ASKED TO AUTHENTICATE AGAIN

After you have logged in to a user account on the RHEL web console, as an Identity Management (IdM)
system administrator you might need to connect to remote machines by using the SSH protocol. You
can use the constrained delegation feature to use SSH without being asked to authenticate again.

Follow this procedure to configure the web console to use constrained delegation. In the example below,
the web console session runs on the myhost.idm.example.com host and it is being configured to access
the remote.idm.example.com host by using SSH on behalf of the authenticated user.

Prerequisites

You have obtained an IdM admin ticket-granting ticket (TGT).

You have root access to remote.idm.example.com.

The web console service is present in IdM.

The remote.idm.example.com host is present in IdM.

The web console has created an S4U2Proxy Kerberos ticket in the user session. To verify that
this is the case, log in to the web console as an IdM user, open the Terminal page, and enter:

$ klist
Ticket cache: FILE:/run/user/1894000001/cockpit-session-3692.ccache
Default principal: user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/30/21 09:19:06 07/31/21 09:19:06
HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM
07/30/21 09:19:06 07/31/21 09:19:06 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 for client HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM

Procedure

1. Create a list of the target hosts that can be accessed by the delegation rule:

a. Create a service delegation target:

$ ipa servicedelegationtarget-add cockpit-target

b. Add the target host to the delegation target:

$ ipa servicedelegationtarget-add-member cockpit-target \ --
principals=host/remote.idm.example.com@IDM.EXAMPLE.COM

2. Allow cockpit sessions to access the target host list by creating a service delegation rule and
adding the HTTP service Kerberos principal to it:

a. Create a service delegation rule:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

920

https://www.freeipa.org/page/V4/Service_Constraint_Delegation

$ ipa servicedelegationrule-add cockpit-delegation

b. Add the web console client to the delegation rule:

$ ipa servicedelegationrule-add-member cockpit-delegation \ --
principals=HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM

c. Add the delegation target to the delegation rule:

$ ipa servicedelegationrule-add-target cockpit-delegation \ --
servicedelegationtargets=cockpit-target

3. Enable Kerberos authentication on the remote.idm.example.com host:

a. SSH to remote.idm.example.com as root.

b. Open the /etc/ssh/sshd_config file for editing.

c. Enable GSSAPIAuthentication by uncommenting the GSSAPIAuthentication no line and
replacing it with GSSAPIAuthentication yes.

4. Restart the SSH service on remote.idm.example.com so that the above changes take effect
immediately:

$ systemctl try-restart sshd.service

Additional resources

Logging in to the web console with smart cards

Constrained delegation in Identity Management

120.3. USING ANSIBLE TO CONFIGURE A WEB CONSOLE TO ALLOW A
USER AUTHENTICATED WITH A SMART CARD TO SSH TO A REMOTE
HOST WITHOUT BEING ASKED TO AUTHENTICATE AGAIN

After you have logged in to a user account on the RHEL web console, as an Identity Management (IdM)
system administrator you might need to connect to remote machines by using the SSH protocol. You
can use the constrained delegation feature to use SSH without being asked to authenticate again.

Follow this procedure to use the servicedelegationrule and servicedelegationtarget ansible-freeipa
modules to configure a web console to use constrained delegation. In the example below, the web
console session runs on the myhost.idm.example.com host and it is being configured to access the
remote.idm.example.com host by using SSH on behalf of the authenticated user.

Prerequisites

The IdM admin password.

root access to remote.idm.example.com.

The web console service is present in IdM.

CHAPTER 120. USING CONSTRAINED DELEGATION IN IDM

921

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring-smart-card-authentication-with-the-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console-with-smart-cards_configuring-smart-card-authentication-with-the-web-console

The remote.idm.example.com host is present in IdM.

The web console has created an S4U2Proxy Kerberos ticket in the user session. To verify that
this is the case, log in to the web console as an IdM user, open the Terminal page, and enter:

$ klist
Ticket cache: FILE:/run/user/1894000001/cockpit-session-3692.ccache
Default principal: user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/30/21 09:19:06 07/31/21 09:19:06
HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM
07/30/21 09:19:06 07/31/21 09:19:06 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 for client HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. Navigate to your ~/MyPlaybooks/ directory:

$ cd ~/MyPlaybooks/

2. Create a web-console-smart-card-ssh.yml playbook with the following content:

a. Create a task that ensures the presence of a delegation target:

- name: Playbook to create a constrained delegation target
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure servicedelegationtarget web-console-delegation-target is present
 ipaservicedelegationtarget:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-target

b. Add a task that adds the target host to the delegation target:

 - name: Ensure servicedelegationtarget web-console-delegation-target member
principal host/remote.idm.example.com@IDM.EXAMPLE.COM is present

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

922

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

 ipaservicedelegationtarget:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-target
 principal: host/remote.idm.example.com@IDM.EXAMPLE.COM
 action: member

c. Add a task that ensures the presence of a delegation rule:

 - name: Ensure servicedelegationrule delegation-rule is present
 ipaservicedelegationrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-rule

d. Add a task that ensures that the Kerberos principal of the web console client service is a
member of the constrained delegation rule:

 - name: Ensure the Kerberos principal of the web console client service is added to the
servicedelegationrule web-console-delegation-rule
 ipaservicedelegationrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-rule
 principal: HTTP/myhost.idm.example.com
 action: member

e. Add a task that ensures that the constrained delegation rule is associated with the web-
console-delegation-target delegation target:

 - name: Ensure a constrained delegation rule is associated with a specific delegation
target
 ipaservicedelegationrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: web-console-delegation-rule
 target: web-console-delegation-target
 action: member

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory web-console-
smart-card-ssh.yml

5. Enable Kerberos authentication on remote.idm.example.com:

a. SSH to remote.idm.example.com as root.

b. Open the /etc/ssh/sshd_config file for editing.

c. Enable GSSAPIAuthentication by uncommenting the GSSAPIAuthentication no line and
replacing it with GSSAPIAuthentication yes.

Additional resources

CHAPTER 120. USING CONSTRAINED DELEGATION IN IDM

923

Logging in to the web console with smart cards

Constrained delegation in Identity Management

README-servicedelegationrule.md and README-servicedelegationtarget.md in the
/usr/share/doc/ansible-freeipa/ directory

Sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/servicedelegationtarget
and /usr/share/doc/ansible-freeipa/playbooks/servicedelegationrule directories

120.4. CONFIGURING A WEB CONSOLE TO ALLOW A USER
AUTHENTICATED WITH A SMART CARD TO RUN SUDO WITHOUT
BEING ASKED TO AUTHENTICATE AGAIN

After you have logged in to a user account on the RHEL web console, as an Identity Management (IdM)
system administrator you might need to run commands with superuser privileges. You can use the
constrained delegation feature to run sudo on the system without being asked to authenticate again.

Follow this procedure to configure a web console to use constrained delegation. In the example below,
the web console session runs on the myhost.idm.example.com host.

Prerequisites

You have obtained an IdM admin ticket-granting ticket (TGT).

The web console service is present in IdM.

The myhost.idm.example.com host is present in IdM.

You have enabled admin sudo access to domain administrators on the IdM server .

The web console has created an S4U2Proxy Kerberos ticket in the user session. To verify that
this is the case, log in to the web console as an IdM user, open the Terminal page, and enter:

$ klist
Ticket cache: FILE:/run/user/1894000001/cockpit-session-3692.ccache
Default principal: user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/30/21 09:19:06 07/31/21 09:19:06
HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM
07/30/21 09:19:06 07/31/21 09:19:06 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 for client HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM

Procedure

1. Create a list of the target hosts that can be accessed by the delegation rule:

a. Create a service delegation target:

$ ipa servicedelegationtarget-add cockpit-target

b. Add the target host to the delegation target:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

924

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring-smart-card-authentication-with-the-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console-with-smart-cards_configuring-smart-card-authentication-with-the-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring_single_sign_on_for_the_rhel_8_web_console_in_the_idm_domain_system-management-using-the-rhel-8-web-console#enabling-admin-sudo-access-to-domain-administrators-on-the-idm-server_configuring-single-sign-on-for-the-web-console-in-the-idm-domain

$ ipa servicedelegationtarget-add-member cockpit-target \ --
principals=host/myhost.idm.example.com@IDM.EXAMPLE.COM

2. Allow cockpit sessions to access the target host list by creating a service delegation rule and
adding the HTTP service Kerberos principal to it:

a. Create a service delegation rule:

$ ipa servicedelegationrule-add cockpit-delegation

b. Add the web console service to the delegation rule:

$ ipa servicedelegationrule-add-member cockpit-delegation \ --
principals=HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM

c. Add the delegation target to the delegation rule:

$ ipa servicedelegationrule-add-target cockpit-delegation \ --
servicedelegationtargets=cockpit-target

3. Enable pam_sss_gss, the PAM module for authenticating users over the Generic Security
Service Application Program Interface (GSSAPI) in cooperation with the System Security
Services Daemon (SSSD):

a. Open the /etc/sssd/sssd.conf file for editing.

b. Specify that pam_sss_gss can provide authentication for the sudo and sudo -i
commands in IdM your domain:

[domain/idm.example.com]
pam_gssapi_services = sudo, sudo-i

c. Save and exit the file.

d. Open the /etc/pam.d/sudo file for editing.

e. Insert the following line to the top of the #%PAM-1.0 list to allow, but not require, GSSAPI
authentication for sudo commands:

auth sufficient pam_sss_gss.so

f. Save and exit the file.

4. Restart the SSSD service so that the above changes take effect immediately:

$ systemctl restart sssd

Additional resources

Logging in to the web console with smart cards

Constrained delegation in Identity Management

CHAPTER 120. USING CONSTRAINED DELEGATION IN IDM

925

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring-smart-card-authentication-with-the-web-console_system-management-using-the-rhel-8-web-console#logging-in-to-the-web-console-with-smart-cards_configuring-smart-card-authentication-with-the-web-console

120.5. USING ANSIBLE TO CONFIGURE A WEB CONSOLE TO ALLOW A
USER AUTHENTICATED WITH A SMART CARD TO RUN SUDO
WITHOUT BEING ASKED TO AUTHENTICATE AGAIN

After you have logged in to a user account on the RHEL web console, as an Identity Management (IdM)
system administrator you might need to run commands with superuser privileges. You can use the
constrained delegation feature to run sudo on the system without being asked to authenticate again.

Follow this procedure to use the ipaservicedelegationrule and ipaservicedelegationtarget ansible-
freeipa modules to configure a web console to use constrained delegation. In the example below, the
web console session runs on the myhost.idm.example.com host.

Prerequisites

You have obtained an IdM admin ticket-granting ticket (TGT) by authenticating to the web
console session with a smart card..

The web console service has been enrolled into IdM.

The myhost.idm.example.com host is present in IdM.

You have enabled admin sudo access to domain administrators on the IdM server .

The web console has created an S4U2Proxy Kerberos ticket in the user session. To verify that
this is the case, log in to the web console as an IdM user, open the Terminal page, and enter:

$ klist
Ticket cache: FILE:/run/user/1894000001/cockpit-session-3692.ccache
Default principal: user@IDM.EXAMPLE.COM

Valid starting Expires Service principal
07/30/21 09:19:06 07/31/21 09:19:06
HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM
07/30/21 09:19:06 07/31/21 09:19:06 krbtgt/IDM.EXAMPLE.COM@IDM.EXAMPLE.COM
 for client HTTP/myhost.idm.example.com@IDM.EXAMPLE.COM

You have configured your Ansible control node to meet the following requirements:

You are using Ansible version 2.14 or later.

You have installed the ansible-freeipa package on the Ansible controller.

The example assumes that in the ~/MyPlaybooks/ directory, you have created an Ansible
inventory file with the fully-qualified domain name (FQDN) of the IdM server where you are
configuring the constrained delegation.

The example assumes that the secret.yml Ansible vault stores your ipaadmin_password.

The target node, that is the node on which the ansible-freeipa module is executed, is part of
the IdM domain as an IdM client, server or replica.

Procedure

1. On your Ansible control node, navigate to your ~/MyPlaybooks/ directory:

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

926

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring_single_sign_on_for_the_rhel_8_web_console_in_the_idm_domain_system-management-using-the-rhel-8-web-console#enabling-admin-sudo-access-to-domain-administrators-on-the-idm-server_configuring-single-sign-on-for-the-web-console-in-the-idm-domain
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-identity-management-server-using-an-ansible-playbook_installing-identity-management#installing-the-ansible-freeipa-package_server-ansible
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_ansible_to_install_and_manage_identity_management/preparing-your-environment-for-managing-idm-using-ansible-playbooks_using-ansible-to-install-and-manage-idm

$ cd ~/MyPlaybooks/

2. Create a web-console-smart-card-sudo.yml playbook with the following content:

a. Create a task that ensures the presence of a delegation target:

- name: Playbook to create a constrained delegation target
 hosts: ipaserver

 vars_files:
 - /home/user_name/MyPlaybooks/secret.yml
 tasks:
 - name: Ensure servicedelegationtarget named sudo-web-console-delegation-target is
present
 ipaservicedelegationtarget:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: sudo-web-console-delegation-target

b. Add a task that adds the target host to the delegation target:

 - name: Ensure that a member principal named
host/myhost.idm.example.com@IDM.EXAMPLE.COM is present in a service delegation
target named sudo-web-console-delegation-target
 ipaservicedelegationtarget:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: sudo-web-console-delegation-target
 principal: host/myhost.idm.example.com@IDM.EXAMPLE.COM
 action: member

c. Add a task that ensures the presence of a delegation rule:

 - name: Ensure servicedelegationrule named sudo-web-console-delegation-rule is
present
 ipaservicedelegationrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: sudo-web-console-delegation-rule

d. Add a task that ensures that the Kerberos principal of the web console service is a member
of the constrained delegation rule:

 - name: Ensure the Kerberos principal of the web console service is added to the
service delegation rule named sudo-web-console-delegation-rule
 ipaservicedelegationrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: sudo-web-console-delegation-rule
 principal: HTTP/myhost.idm.example.com
 action: member

e. Add a task that ensures that the constrained delegation rule is associated with the sudo-
web-console-delegation-target delegation target:

 - name: Ensure a constrained delegation rule is associated with a specific delegation
target

CHAPTER 120. USING CONSTRAINED DELEGATION IN IDM

927

 ipaservicedelegationrule:
 ipaadmin_password: "{{ ipaadmin_password }}"
 name: sudo-web-console-delegation-rule
 target: sudo-web-console-delegation-target
 action: member

3. Save the file.

4. Run the Ansible playbook. Specify the playbook file, the file storing the password protecting the
secret.yml file, and the inventory file:

$ ansible-playbook --vault-password-file=password_file -v -i inventory web-console-
smart-card-sudo.yml

5. Enable pam_sss_gss, the PAM module for authenticating users over the Generic Security
Service Application Program Interface (GSSAPI) in cooperation with the System Security
Services Daemon (SSSD):

a. Open the /etc/sssd/sssd.conf file for editing.

b. Specify that pam_sss_gss can provide authentication for the sudo and sudo -i
commands in IdM your domain:

[domain/idm.example.com]
pam_gssapi_services = sudo, sudo-i

c. Save and exit the file.

d. Open the /etc/pam.d/sudo file for editing.

e. Insert the following line to the top of the #%PAM-1.0 list to allow, but not require, GSSAPI
authentication for sudo commands:

auth sufficient pam_sss_gss.so

f. Save and exit the file.

6. Restart the SSSD service so that the above changes take effect immediately:

$ systemctl restart sssd

Additional resources

Constrained delegation in Identity Management

README-servicedelegationrule.md and README-servicedelegationtarget.md in the
/usr/share/doc/ansible-freeipa/ directory

Sample playbooks in the /usr/share/doc/ansible-freeipa/playbooks/servicedelegationtarget
and /usr/share/doc/ansible-freeipa/playbooks/servicedelegationrule directories

120.6. ADDITIONAL RESOURCES

Managing remote systems in the web console

Red Hat Enterprise Linux 8 Configuring and managing Identity Management

928

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/managing-remote-systems-in-the-web-console_system-management-using-the-rhel-8-web-console

CHAPTER 120. USING CONSTRAINED DELEGATION IN IDM

929

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. LOGGING IN TO IDENTITY MANAGEMENT FROM THE COMMAND LINE
	1.1. USING KINIT TO LOG IN TO IDM MANUALLY
	1.2. DESTROYING A USER’S ACTIVE KERBEROS TICKET
	1.3. CONFIGURING AN EXTERNAL SYSTEM FOR KERBEROS AUTHENTICATION
	1.4. ADDITIONAL RESOURCES

	CHAPTER 2. VIEWING, STARTING AND STOPPING THE IDENTITY MANAGEMENT SERVICES
	2.1. THE IDM SERVICES
	2.2. VIEWING THE STATUS OF IDM SERVICES
	2.3. STARTING AND STOPPING THE ENTIRE IDENTITY MANAGEMENT SERVER
	2.4. STARTING AND STOPPING AN INDIVIDUAL IDENTITY MANAGEMENT SERVICE
	2.5. METHODS FOR DISPLAYING IDM SOFTWARE VERSION

	CHAPTER 3. INTRODUCTION TO THE IDM COMMAND-LINE UTILITIES
	3.1. WHAT IS THE IPA COMMAND LINE INTERFACE
	3.2. WHAT IS THE IPA HELP
	3.3. USING IPA HELP TOPICS
	3.4. USING IPA HELP COMMANDS
	3.5. STRUCTURE OF IPA COMMANDS
	3.6. USING AN IPA COMMAND TO ADD A USER ACCOUNT TO IDM
	3.7. USING AN IPA COMMAND TO MODIFY A USER ACCOUNT IN IDM
	3.8. HOW TO SUPPLY A LIST OF VALUES TO THE IDM UTILITIES
	3.9. HOW TO USE SPECIAL CHARACTERS WITH THE IDM UTILITIES

	CHAPTER 4. SEARCHING IDENTITY MANAGEMENT ENTRIES FROM THE COMMAND LINE
	4.1. OVERVIEW OF LISTING IDM ENTRIES
	4.2. SHOWING DETAILS FOR A PARTICULAR ENTRY
	4.3. ADJUSTING THE SEARCH SIZE AND TIME LIMIT
	4.3.1. Adjusting the search size and time limit in the command line
	4.3.2. Adjusting the search size and time limit in the Web UI

	CHAPTER 5. ACCESSING THE IDM WEB UI IN A WEB BROWSER
	5.1. WHAT IS THE IDM WEB UI
	5.2. WEB BROWSERS SUPPORTED FOR ACCESSING THE WEB UI
	5.3. ACCESSING THE WEB UI

	CHAPTER 6. LOGGING IN TO IDM IN THE WEB UI: USING A KERBEROS TICKET
	6.1. KERBEROS AUTHENTICATION IN IDENTITY MANAGEMENT
	6.2. USING KINIT TO LOG IN TO IDM MANUALLY
	6.3. CONFIGURING THE BROWSER FOR KERBEROS AUTHENTICATION
	6.4. LOGGING IN TO THE WEB UI USING A KERBEROS TICKET
	6.5. CONFIGURING AN EXTERNAL SYSTEM FOR KERBEROS AUTHENTICATION
	6.6. WEB UI LOGIN FOR ACTIVE DIRECTORY USERS

	CHAPTER 7. LOGGING IN TO THE IDENTITY MANAGEMENT WEB UI USING ONE TIME PASSWORDS
	7.1. PREREQUISITES
	7.2. ONE TIME PASSWORD (OTP) AUTHENTICATION IN IDENTITY MANAGEMENT
	7.3. ENABLING THE ONE-TIME PASSWORD IN THE WEB UI
	7.4. CONFIGURING A RADIUS SERVER FOR OTP VALIDATION IN IDM
	7.4.1. Changing the timeout value of a KDC when running a RADIUS server in a slow network

	7.5. ADDING OTP TOKENS IN THE WEB UI
	7.6. LOGGING INTO THE WEB UI WITH A ONE TIME PASSWORD
	7.7. SYNCHRONIZING OTP TOKENS USING THE WEB UI
	7.8. CHANGING EXPIRED PASSWORDS

	CHAPTER 8. TROUBLESHOOTING AUTHENTICATION WITH SSSD IN IDM
	8.1. DATA FLOW WHEN RETRIEVING IDM USER INFORMATION WITH SSSD
	8.2. DATA FLOW WHEN RETRIEVING AD USER INFORMATION WITH SSSD
	8.3. DATA FLOW WHEN AUTHENTICATING AS A USER WITH SSSD IN IDM
	8.4. NARROWING THE SCOPE OF AUTHENTICATION ISSUES
	8.5. SSSD LOG FILES AND LOGGING LEVELS
	8.5.1. SSSD log file purposes
	8.5.2. SSSD logging levels

	8.6. ENABLING DETAILED LOGGING FOR SSSD IN THE SSSD.CONF FILE
	8.7. ENABLING DETAILED LOGGING FOR SSSD WITH THE SSSCTL COMMAND
	8.8. GATHERING DEBUGGING LOGS FROM THE SSSD SERVICE TO TROUBLESHOOT AUTHENTICATION ISSUES WITH AN IDM SERVER
	8.9. GATHERING DEBUGGING LOGS FROM THE SSSD SERVICE TO TROUBLESHOOT AUTHENTICATION ISSUES WITH AN IDM CLIENT
	8.10. TRACKING CLIENT REQUESTS IN THE SSSD BACKEND
	8.11. TRACKING CLIENT REQUESTS USING THE LOG ANALYZER TOOL
	8.11.1. How the log analyzer tool works
	8.11.2. Running the log analyzer tool

	8.12. ADDITIONAL RESOURCES

	CHAPTER 9. PREPARING YOUR ENVIRONMENT FOR MANAGING IDM USING ANSIBLE PLAYBOOKS
	9.1. PREPARING A CONTROL NODE AND MANAGED NODES FOR MANAGING IDM USING ANSIBLE PLAYBOOKS
	9.2. DIFFERENT METHODS TO PROVIDE THE CREDENTIALS REQUIRED FOR ANSIBLE-FREEIPA PLAYBOOKS

	CHAPTER 10. CONFIGURING GLOBAL IDM SETTINGS USING ANSIBLE PLAYBOOKS
	10.1. RETRIEVING IDM CONFIGURATION USING AN ANSIBLE PLAYBOOK
	10.2. CONFIGURING THE IDM CA RENEWAL SERVER USING AN ANSIBLE PLAYBOOK
	10.3. CONFIGURING THE DEFAULT SHELL FOR IDM USERS USING AN ANSIBLE PLAYBOOK
	10.4. CONFIGURING A NETBIOS NAME FOR AN IDM DOMAIN BY USING ANSIBLE
	10.5. ENSURING THAT IDM USERS AND GROUPS HAVE SIDS BY USING ANSIBLE
	10.6. ADDITIONAL RESOURCES

	CHAPTER 11. MANAGING USER ACCOUNTS USING THE COMMAND LINE
	11.1. USER LIFE CYCLE
	11.2. ADDING USERS USING THE COMMAND LINE
	11.3. ACTIVATING USERS USING THE COMMAND LINE
	11.4. PRESERVING USERS USING THE COMMAND LINE
	11.5. DELETING USERS USING THE COMMAND LINE
	11.6. RESTORING USERS USING THE COMMAND LINE

	CHAPTER 12. MANAGING USER ACCOUNTS USING THE IDM WEB UI
	12.1. USER LIFE CYCLE
	12.2. ADDING USERS IN THE WEB UI
	12.3. ACTIVATING STAGE USERS IN THE IDM WEB UI
	12.4. DISABLING USER ACCOUNTS IN THE WEB UI
	12.5. ENABLING USER ACCOUNTS IN THE WEB UI
	12.6. PRESERVING ACTIVE USERS IN THE IDM WEB UI
	12.7. RESTORING USERS IN THE IDM WEB UI
	12.8. DELETING USERS IN THE IDM WEB UI

	CHAPTER 13. MANAGING USER ACCOUNTS USING ANSIBLE PLAYBOOKS
	13.1. USER LIFE CYCLE
	13.2. ENSURING THE PRESENCE OF AN IDM USER USING AN ANSIBLE PLAYBOOK
	13.3. ENSURING THE PRESENCE OF MULTIPLE IDM USERS USING ANSIBLE PLAYBOOKS
	13.4. ENSURING THE PRESENCE OF MULTIPLE IDM USERS FROM A JSON FILE USING ANSIBLE PLAYBOOKS
	13.5. ENSURING THE ABSENCE OF USERS USING ANSIBLE PLAYBOOKS
	13.6. ADDITIONAL RESOURCES

	CHAPTER 14. MANAGING USER GROUPS IN IDM CLI
	14.1. THE DIFFERENT GROUP TYPES IN IDM
	14.2. DIRECT AND INDIRECT GROUP MEMBERS
	14.3. ADDING A USER GROUP USING IDM CLI
	14.4. SEARCHING FOR USER GROUPS USING IDM CLI
	14.5. DELETING A USER GROUP USING IDM CLI
	14.6. ADDING A MEMBER TO A USER GROUP USING IDM CLI
	14.7. ADDING USERS WITHOUT A USER PRIVATE GROUP
	14.7.1. Users without a user private group
	14.7.2. Adding a user without a user private group when private groups are globally enabled
	14.7.3. Disabling user private groups globally for all users
	14.7.4. Adding a user when user private groups are globally disabled

	14.8. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM USER GROUP USING THE IDM CLI
	14.9. VIEWING GROUP MEMBERS USING IDM CLI
	14.10. REMOVING A MEMBER FROM A USER GROUP USING IDM CLI
	14.11. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM AN IDM USER GROUP USING THE IDM CLI
	14.12. ENABLING GROUP MERGING FOR LOCAL AND REMOTE GROUPS IN IDM

	CHAPTER 15. MANAGING USER GROUPS IN IDM WEB UI
	15.1. THE DIFFERENT GROUP TYPES IN IDM
	15.2. DIRECT AND INDIRECT GROUP MEMBERS
	15.3. ADDING A USER GROUP USING IDM WEB UI
	15.4. DELETING A USER GROUP USING IDM WEB UI
	15.5. ADDING A MEMBER TO A USER GROUP USING IDM WEB UI
	15.6. ADDING USERS OR GROUPS AS MEMBER MANAGERS TO AN IDM USER GROUP USING THE WEB UI
	15.7. VIEWING GROUP MEMBERS USING IDM WEB UI
	15.8. REMOVING A MEMBER FROM A USER GROUP USING IDM WEB UI
	15.9. REMOVING USERS OR GROUPS AS MEMBER MANAGERS FROM AN IDM USER GROUP USING THE WEB UI

	CHAPTER 16. MANAGING USER GROUPS USING ANSIBLE PLAYBOOKS
	16.1. THE DIFFERENT GROUP TYPES IN IDM
	16.2. DIRECT AND INDIRECT GROUP MEMBERS
	16.3. ENSURING THE PRESENCE OF IDM GROUPS AND GROUP MEMBERS USING ANSIBLE PLAYBOOKS
	16.4. USING ANSIBLE TO ADD MULTIPLE IDM GROUPS IN A SINGLE TASK
	16.5. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
	16.6. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE PLAYBOOKS
	16.7. ENSURING THE ABSENCE OF MEMBER MANAGERS IN IDM USER GROUPS USING ANSIBLE PLAYBOOKS

	CHAPTER 17. AUTOMATING GROUP MEMBERSHIP USING IDM CLI
	17.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP
	17.2. AUTOMEMBER RULES
	17.3. ADDING AN AUTOMEMBER RULE USING IDM CLI
	17.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM CLI
	17.5. VIEWING EXISTING AUTOMEMBER RULES USING IDM CLI
	17.6. DELETING AN AUTOMEMBER RULE USING IDM CLI
	17.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING IDM CLI
	17.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING IDM CLI
	17.9. CONFIGURING A DEFAULT AUTOMEMBER GROUP USING IDM CLI

	CHAPTER 18. AUTOMATING GROUP MEMBERSHIP USING IDM WEB UI
	18.1. BENEFITS OF AUTOMATIC GROUP MEMBERSHIP
	18.2. AUTOMEMBER RULES
	18.3. ADDING AN AUTOMEMBER RULE USING IDM WEB UI
	18.4. ADDING A CONDITION TO AN AUTOMEMBER RULE USING IDM WEB UI
	18.5. VIEWING EXISTING AUTOMEMBER RULES AND CONDITIONS USING IDM WEB UI
	18.6. DELETING AN AUTOMEMBER RULE USING IDM WEB UI
	18.7. REMOVING A CONDITION FROM AN AUTOMEMBER RULE USING IDM WEB UI
	18.8. APPLYING AUTOMEMBER RULES TO EXISTING ENTRIES USING IDM WEB UI
	18.8.1. Rebuilding automatic membership for all users or hosts
	18.8.2. Rebuilding automatic membership for a single user or host only

	18.9. CONFIGURING A DEFAULT USER GROUP USING IDM WEB UI
	18.10. CONFIGURING A DEFAULT HOST GROUP USING IDM WEB UI

	CHAPTER 19. USING ANSIBLE TO AUTOMATE GROUP MEMBERSHIP IN IDM
	19.1. PREPARING YOUR ANSIBLE CONTROL NODE FOR MANAGING IDM
	19.2. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS PRESENT
	19.3. USING ANSIBLE TO ENSURE THAT A SPECIFIED CONDITION IS PRESENT IN AN IDM USER GROUP AUTOMEMBER RULE
	19.4. USING ANSIBLE TO ENSURE THAT A CONDITION IS ABSENT FROM AN IDM USER GROUP AUTOMEMBER RULE
	19.5. USING ANSIBLE TO ENSURE THAT AN AUTOMEMBER RULE FOR AN IDM USER GROUP IS ABSENT
	19.6. USING ANSIBLE TO ENSURE THAT A CONDITION IS PRESENT IN AN IDM HOST GROUP AUTOMEMBER RULE
	19.7. ADDITIONAL RESOURCES

	CHAPTER 20. ACCESS CONTROL IN IDM
	20.1. ACCESS CONTROL INSTRUCTIONS IN IDM
	20.2. ACCESS CONTROL METHODS IN IDM

	CHAPTER 21. MANAGING SELF-SERVICE RULES IN IDM USING THE CLI
	21.1. SELF-SERVICE ACCESS CONTROL IN IDM
	21.2. CREATING SELF-SERVICE RULES USING THE CLI
	21.3. EDITING SELF-SERVICE RULES USING THE CLI
	21.4. DELETING SELF-SERVICE RULES USING THE CLI

	CHAPTER 22. MANAGING SELF-SERVICE RULES USING THE IDM WEB UI
	22.1. SELF-SERVICE ACCESS CONTROL IN IDM
	22.2. CREATING SELF-SERVICE RULES USING THE IDM WEB UI
	22.3. EDITING SELF-SERVICE RULES USING THE IDM WEB UI
	22.4. DELETING SELF-SERVICE RULES USING THE IDM WEB UI

	CHAPTER 23. USING ANSIBLE PLAYBOOKS TO MANAGE SELF-SERVICE RULES IN IDM
	23.1. SELF-SERVICE ACCESS CONTROL IN IDM
	23.2. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS PRESENT
	23.3. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE IS ABSENT
	23.4. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE HAS SPECIFIC ATTRIBUTES
	23.5. USING ANSIBLE TO ENSURE THAT A SELF-SERVICE RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

	CHAPTER 24. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM CLI
	24.1. DELEGATION RULES
	24.2. CREATING A DELEGATION RULE USING IDM CLI
	24.3. VIEWING EXISTING DELEGATION RULES USING IDM CLI
	24.4. MODIFYING A DELEGATION RULE USING IDM CLI
	24.5. DELETING A DELEGATION RULE USING IDM CLI

	CHAPTER 25. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING IDM WEBUI
	25.1. DELEGATION RULES
	25.2. CREATING A DELEGATION RULE USING IDM WEBUI
	25.3. VIEWING EXISTING DELEGATION RULES USING IDM WEBUI
	25.4. MODIFYING A DELEGATION RULE USING IDM WEBUI
	25.5. DELETING A DELEGATION RULE USING IDM WEBUI

	CHAPTER 26. DELEGATING PERMISSIONS TO USER GROUPS TO MANAGE USERS USING ANSIBLE PLAYBOOKS
	26.1. DELEGATION RULES
	26.2. CREATING AN ANSIBLE INVENTORY FILE FOR IDM
	26.3. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS PRESENT
	26.4. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE IS ABSENT
	26.5. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE HAS SPECIFIC ATTRIBUTES
	26.6. USING ANSIBLE TO ENSURE THAT A DELEGATION RULE DOES NOT HAVE SPECIFIC ATTRIBUTES

	CHAPTER 27. MANAGING ROLE-BASED ACCESS CONTROLS IN IDM USING THE CLI
	27.1. ROLE-BASED ACCESS CONTROL IN IDM
	27.1.1. Permissions in IdM
	27.1.2. Default managed permissions
	27.1.3. Privileges in IdM
	27.1.4. Roles in IdM
	27.1.5. Predefined roles in Identity Management

	27.2. MANAGING IDM PERMISSIONS IN THE CLI
	27.3. COMMAND OPTIONS FOR EXISTING PERMISSIONS
	27.4. MANAGING IDM PRIVILEGES IN THE CLI
	27.5. COMMAND OPTIONS FOR EXISTING PRIVILEGES
	27.6. MANAGING IDM ROLES IN THE CLI
	27.7. COMMAND OPTIONS FOR EXISTING ROLES

	CHAPTER 28. MANAGING ROLE-BASED ACCESS CONTROLS USING THE IDM WEB UI
	28.1. ROLE-BASED ACCESS CONTROL IN IDM
	28.1.1. Permissions in IdM
	28.1.2. Default managed permissions
	28.1.3. Privileges in IdM
	28.1.4. Roles in IdM
	28.1.5. Predefined roles in Identity Management

	28.2. MANAGING PERMISSIONS IN THE IDM WEB UI
	28.3. MANAGING PRIVILEGES IN THE IDM WEBUI
	28.4. MANAGING ROLES IN THE IDM WEB UI

	CHAPTER 29. USING ANSIBLE PLAYBOOKS TO MANAGE ROLE-BASED ACCESS CONTROL IN IDM
	29.1. PERMISSIONS IN IDM
	29.2. DEFAULT MANAGED PERMISSIONS
	29.3. PRIVILEGES IN IDM
	29.4. ROLES IN IDM
	29.5. PREDEFINED ROLES IN IDENTITY MANAGEMENT
	29.6. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE WITH PRIVILEGES IS PRESENT
	29.7. USING ANSIBLE TO ENSURE AN IDM RBAC ROLE IS ABSENT
	29.8. USING ANSIBLE TO ENSURE THAT A GROUP OF USERS IS ASSIGNED TO AN IDM RBAC ROLE
	29.9. USING ANSIBLE TO ENSURE THAT SPECIFIC USERS ARE NOT ASSIGNED TO AN IDM RBAC ROLE
	29.10. USING ANSIBLE TO ENSURE A SERVICE IS A MEMBER OF AN IDM RBAC ROLE
	29.11. USING ANSIBLE TO ENSURE A HOST IS A MEMBER OF AN IDM RBAC ROLE
	29.12. USING ANSIBLE TO ENSURE A HOST GROUP IS A MEMBER OF AN IDM RBAC ROLE

	CHAPTER 30. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PRIVILEGES
	30.1. USING ANSIBLE TO ENSURE A CUSTOM IDM RBAC PRIVILEGE IS PRESENT
	30.2. USING ANSIBLE TO ENSURE MEMBER PERMISSIONS ARE PRESENT IN A CUSTOM IDM RBAC PRIVILEGE
	30.3. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE DOES NOT INCLUDE A PERMISSION
	30.4. USING ANSIBLE TO RENAME A CUSTOM IDM RBAC PRIVILEGE
	30.5. USING ANSIBLE TO ENSURE AN IDM RBAC PRIVILEGE IS ABSENT
	30.6. ADDITIONAL RESOURCES

	CHAPTER 31. USING ANSIBLE PLAYBOOKS TO MANAGE RBAC PERMISSIONS IN IDM
	31.1. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS PRESENT
	31.2. USING ANSIBLE TO ENSURE AN RBAC PERMISSION WITH AN ATTRIBUTE IS PRESENT
	31.3. USING ANSIBLE TO ENSURE AN RBAC PERMISSION IS ABSENT
	31.4. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS A MEMBER OF AN IDM RBAC PERMISSION
	31.5. USING ANSIBLE TO ENSURE AN ATTRIBUTE IS NOT A MEMBER OF AN IDM RBAC PERMISSION
	31.6. USING ANSIBLE TO RENAME AN IDM RBAC PERMISSION
	31.7. ADDITIONAL RESOURCES

	CHAPTER 32. MANAGING USER PASSWORDS IN IDM
	32.1. WHO CAN CHANGE IDM USER PASSWORDS AND HOW
	32.2. CHANGING YOUR USER PASSWORD IN THE IDM WEB UI
	32.3. RESETTING ANOTHER USER’S PASSWORD IN THE IDM WEB UI
	32.4. RESETTING THE DIRECTORY MANAGER USER PASSWORD
	32.5. CHANGING YOUR USER PASSWORD OR RESETTING ANOTHER USER’S PASSWORD IN IDM CLI
	32.6. ENABLING PASSWORD RESET IN IDM WITHOUT PROMPTING THE USER FOR A PASSWORD CHANGE AT THE NEXT LOGIN
	32.7. CHECKING IF AN IDM USER’S ACCOUNT IS LOCKED
	32.8. UNLOCKING USER ACCOUNTS AFTER PASSWORD FAILURES IN IDM
	32.9. ENABLING THE TRACKING OF LAST SUCCESSFUL KERBEROS AUTHENTICATION FOR USERS IN IDM

	CHAPTER 33. DEFINING IDM PASSWORD POLICIES
	33.1. WHAT IS A PASSWORD POLICY
	33.2. PASSWORD POLICIES IN IDM
	33.3. ENSURING THE PRESENCE OF A PASSWORD POLICY IN IDM USING AN ANSIBLE PLAYBOOK
	33.4. ADDITIONAL PASSWORD POLICY OPTIONS IN IDM
	33.5. APPLYING ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM GROUP
	33.6. USING AN ANSIBLE PLAYBOOK TO APPLY ADDITIONAL PASSWORD POLICY OPTIONS TO AN IDM GROUP

	CHAPTER 34. MANAGING EXPIRING PASSWORD NOTIFICATIONS
	34.1. WHAT IS THE EXPIRING PASSWORD NOTIFICATION TOOL
	34.2. INSTALLING THE EXPIRING PASSWORD NOTIFICATION TOOL
	34.3. RUNNING THE EPN TOOL TO SEND EMAILS TO USERS WHOSE PASSWORDS ARE EXPIRING
	34.4. ENABLING THE IPA-EPN.TIMER TO SEND AN EMAIL TO ALL USERS WHOSE PASSWORDS ARE EXPIRING
	34.5. MODIFYING THE EXPIRING PASSWORD NOTIFICATION EMAIL TEMPLATE

	CHAPTER 35. USING AN ID VIEW TO OVERRIDE A USER ATTRIBUTE VALUE ON AN IDM CLIENT
	35.1. ID VIEWS
	35.2. POTENTIAL NEGATIVE IMPACT OF ID VIEWS ON SSSD PERFORMANCE
	35.3. ATTRIBUTES AN ID VIEW CAN OVERRIDE
	35.4. GETTING HELP FOR ID VIEW COMMANDS
	35.5. USING AN ID VIEW TO OVERRIDE THE LOGIN NAME OF AN IDM USER ON A SPECIFIC HOST
	35.6. MODIFYING AN IDM ID VIEW
	35.7. ADDING AN ID VIEW TO OVERRIDE AN IDM USER HOME DIRECTORY ON AN IDM CLIENT
	35.8. APPLYING AN ID VIEW TO AN IDM HOST GROUP
	35.9. MIGRATING NIS DOMAINS TO IDENTITY MANAGEMENT

	CHAPTER 36. USING ID VIEWS FOR ACTIVE DIRECTORY USERS
	36.1. HOW THE DEFAULT TRUST VIEW WORKS
	36.2. DEFINING GLOBAL ATTRIBUTES FOR AN AD USER BY MODIFYING THE DEFAULT TRUST VIEW
	36.3. OVERRIDING DEFAULT TRUST VIEW ATTRIBUTES FOR AN AD USER ON AN IDM CLIENT WITH AN ID VIEW
	36.4. APPLYING AN ID VIEW TO AN IDM HOST GROUP

	CHAPTER 37. ADJUSTING ID RANGES MANUALLY
	37.1. ID RANGES
	37.2. AUTOMATIC ID RANGES ASSIGNMENT
	37.3. ASSIGNING THE IDM ID RANGE MANUALLY DURING SERVER INSTALLATION
	37.4. ADDING A NEW IDM ID RANGE
	37.5. THE ROLE OF SECURITY AND RELATIVE IDENTIFIERS IN IDM ID RANGES
	37.6. USING ANSIBLE TO ADD A NEW LOCAL IDM ID RANGE
	37.7. REMOVING AN ID RANGE AFTER REMOVING A TRUST TO AD
	37.8. DISPLAYING CURRENTLY ASSIGNED DNA ID RANGES
	37.9. MANUAL ID RANGE ASSIGNMENT
	37.10. ASSIGNING DNA ID RANGES MANUALLY

	CHAPTER 38. MANAGING SUBID RANGES MANUALLY
	38.1. GENERATING SUBID RANGES USING IDM CLI
	38.2. GENERATING SUBID RANGES USING IDM WEBUI INTERFACE
	38.3. MANAGING EXISTING SUBID RANGES USING IDM CLI
	38.4. LISTING SUBID RANGES USING THE GETSUBID COMMAND

	CHAPTER 39. USING ANSIBLE TO MANAGE THE REPLICATION TOPOLOGY IN IDM
	39.1. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT EXISTS IN IDM
	39.2. USING ANSIBLE TO ENSURE REPLICATION AGREEMENTS EXIST BETWEEN MULTIPLE IDM REPLICAS
	39.3. USING ANSIBLE TO CHECK IF A REPLICATION AGREEMENT EXISTS BETWEEN TWO REPLICAS
	39.4. USING ANSIBLE TO VERIFY THAT A TOPOLOGY SUFFIX EXISTS IN IDM
	39.5. USING ANSIBLE TO REINITIALIZE AN IDM REPLICA
	39.6. USING ANSIBLE TO ENSURE A REPLICATION AGREEMENT IS ABSENT IN IDM
	39.7. ADDITIONAL RESOURCES

	CHAPTER 40. CONFIGURING IDM FOR EXTERNAL PROVISIONING OF USERS
	40.1. PREPARING IDM ACCOUNTS FOR AUTOMATIC ACTIVATION OF STAGE USER ACCOUNTS
	40.2. CONFIGURING AUTOMATIC ACTIVATION OF IDM STAGE USER ACCOUNTS
	40.3. ADDING AN IDM STAGE USER DEFINED IN AN LDIF FILE
	40.4. ADDING AN IDM STAGE USER DIRECTLY FROM THE CLI USING LDAPMODIFY
	40.5. ADDITIONAL RESOURCES

	CHAPTER 41. USING LDAPMODIFY TO MANAGE IDM USERS EXTERNALLY
	41.1. TEMPLATES FOR MANAGING IDM USER ACCOUNTS EXTERNALLY
	41.2. TEMPLATES FOR MANAGING IDM GROUP ACCOUNTS EXTERNALLY
	41.3. USING LDAPMODIFY COMMAND INTERACTIVELY
	41.4. PRESERVING AN IDM USER WITH LDAPMODIFY

	CHAPTER 42. MANAGING HOSTS IN IDM CLI
	42.1. HOSTS IN IDM
	42.2. HOST ENROLLMENT
	42.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT
	42.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND USERS: COMPARISON
	42.5. HOST OPERATIONS
	42.6. HOST ENTRY IN IDM LDAP
	42.7. ADDING IDM HOST ENTRIES FROM IDM CLI
	42.8. DELETING HOST ENTRIES FROM IDM CLI
	42.9. RE-ENROLLING AN IDENTITY MANAGEMENT CLIENT
	42.9.1. Client re-enrollment in IdM
	42.9.2. Re-enrolling a client by using user credentials: Interactive re-enrollment
	42.9.3. Re-enrolling a client by using the client keytab: Non-interactive re-enrollment
	42.9.4. Testing an Identity Management client after installation

	42.10. RENAMING IDENTITY MANAGEMENT CLIENT SYSTEMS
	42.10.1. Preparing an IdM client for its renaming
	42.10.2. Uninstalling an Identity Management client
	42.10.3. Renaming the host system
	42.10.4. Re-adding services, re-generating certificates, and re-adding host groups

	42.11. DISABLING AND RE-ENABLING HOST ENTRIES
	42.11.1. Disabling Hosts
	42.11.2. Re-enabling Hosts

	CHAPTER 43. ADDING HOST ENTRIES FROM IDM WEB UI
	43.1. HOSTS IN IDM
	43.2. HOST ENROLLMENT
	43.3. USER PRIVILEGES REQUIRED FOR HOST ENROLLMENT
	43.4. ENROLLMENT AND AUTHENTICATION OF IDM HOSTS AND USERS: COMPARISON
	43.5. HOST ENTRY IN IDM LDAP
	43.6. ADDING HOST ENTRIES FROM THE WEB UI

	CHAPTER 44. MANAGING HOSTS USING ANSIBLE PLAYBOOKS
	44.1. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH FQDN USING ANSIBLE PLAYBOOKS
	44.2. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH DNS INFORMATION USING ANSIBLE PLAYBOOKS
	44.3. ENSURING THE PRESENCE OF MULTIPLE IDM HOST ENTRIES WITH RANDOM PASSWORDS USING ANSIBLE PLAYBOOKS
	44.4. ENSURING THE PRESENCE OF AN IDM HOST ENTRY WITH MULTIPLE IP ADDRESSES USING ANSIBLE PLAYBOOKS
	44.5. ENSURING THE ABSENCE OF AN IDM HOST ENTRY USING ANSIBLE PLAYBOOKS
	44.6. ADDITIONAL RESOURCES

	CHAPTER 45. MANAGING HOST GROUPS USING THE IDM CLI
	45.1. HOST GROUPS IN IDM
	45.2. VIEWING IDM HOST GROUPS USING THE CLI
	45.3. CREATING IDM HOST GROUPS USING THE CLI
	45.4. DELETING IDM HOST GROUPS USING THE CLI
	45.5. ADDING IDM HOST GROUP MEMBERS USING THE CLI
	45.6. REMOVING IDM HOST GROUP MEMBERS USING THE CLI
	45.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE CLI
	45.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE CLI

	CHAPTER 46. MANAGING HOST GROUPS USING THE IDM WEB UI
	46.1. HOST GROUPS IN IDM
	46.2. VIEWING HOST GROUPS IN THE IDM WEB UI
	46.3. CREATING HOST GROUPS IN THE IDM WEB UI
	46.4. DELETING HOST GROUPS IN THE IDM WEB UI
	46.5. ADDING HOST GROUP MEMBERS IN THE IDM WEB UI
	46.6. REMOVING HOST GROUP MEMBERS IN THE IDM WEB UI
	46.7. ADDING IDM HOST GROUP MEMBER MANAGERS USING THE WEB UI
	46.8. REMOVING IDM HOST GROUP MEMBER MANAGERS USING THE WEB UI

	CHAPTER 47. MANAGING HOST GROUPS USING ANSIBLE PLAYBOOKS
	47.1. HOST GROUPS IN IDM
	47.2. ENSURING THE PRESENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	47.3. ENSURING THE PRESENCE OF HOSTS IN IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	47.4. NESTING IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	47.5. ENSURING THE PRESENCE OF MEMBER MANAGERS IN IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	47.6. ENSURING THE ABSENCE OF HOSTS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	47.7. ENSURING THE ABSENCE OF NESTED HOST GROUPS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	47.8. ENSURING THE ABSENCE OF IDM HOST GROUPS USING ANSIBLE PLAYBOOKS
	47.9. ENSURING THE ABSENCE OF MEMBER MANAGERS FROM IDM HOST GROUPS USING ANSIBLE PLAYBOOKS

	CHAPTER 48. MANAGING KERBEROS PRINCIPAL ALIASES FOR USERS, HOSTS, AND SERVICES
	48.1. ADDING A KERBEROS PRINCIPAL ALIAS
	48.2. REMOVING A KERBEROS PRINCIPAL ALIAS
	48.3. ADDING A KERBEROS ENTERPRISE PRINCIPAL ALIAS
	48.4. REMOVING A KERBEROS ENTERPRISE PRINCIPAL ALIAS

	CHAPTER 49. STRENGTHENING KERBEROS SECURITY WITH PAC INFORMATION
	49.1. PRIVILEGE ATTRIBUTE CERTIFICATE (PAC) USE IN IDM
	49.2. ENABLING SECURITY IDENTIFIERS (SIDS) IN IDM

	CHAPTER 50. MANAGING KERBEROS TICKET POLICIES
	50.1. THE ROLE OF THE IDM KDC
	50.2. IDM KERBEROS TICKET POLICY TYPES
	50.3. KERBEROS AUTHENTICATION INDICATORS
	50.4. ENFORCING AUTHENTICATION INDICATORS FOR AN IDM SERVICE
	50.4.1. Creating an IdM service entry and its Kerberos keytab
	50.4.2. Associating authentication indicators with an IdM service using IdM CLI
	50.4.3. Associating authentication indicators with an IdM service using IdM Web UI
	50.4.4. Retrieving a Kerberos service ticket for an IdM service
	50.4.5. Additional resources

	50.5. CONFIGURING THE GLOBAL TICKET LIFECYCLE POLICY
	50.6. CONFIGURING GLOBAL TICKET POLICIES PER AUTHENTICATION INDICATOR
	50.7. CONFIGURING THE DEFAULT TICKET POLICY FOR A USER
	50.8. CONFIGURING INDIVIDUAL AUTHENTICATION INDICATOR TICKET POLICIES FOR A USER
	50.9. AUTHENTICATION INDICATOR OPTIONS FOR THE KRBTPOLICY-MOD COMMAND

	CHAPTER 51. KERBEROS PKINIT AUTHENTICATION IN IDM
	51.1. DEFAULT PKINIT CONFIGURATION
	51.2. DISPLAYING THE CURRENT PKINIT CONFIGURATION
	51.3. CONFIGURING PKINIT IN IDM
	51.4. ADDITIONAL RESOURCES

	CHAPTER 52. MAINTAINING IDM KERBEROS KEYTAB FILES
	52.1. HOW IDENTITY MANAGEMENT USES KERBEROS KEYTAB FILES
	52.2. VERIFYING THAT KERBEROS KEYTAB FILES ARE IN SYNC WITH THE IDM DATABASE
	52.3. LIST OF IDM KERBEROS KEYTAB FILES AND THEIR CONTENTS
	52.4. VIEWING THE ENCRYPTION TYPE OF YOUR IDM MASTER KEY

	CHAPTER 53. USING THE KDC PROXY IN IDM
	53.1. CONFIGURING AN IDM CLIENT TO USE KKDCP
	53.2. VERIFYING THAT KKDCP IS ENABLED ON AN IDM SERVER
	53.3. DISABLING KKDCP ON AN IDM SERVER
	53.4. RE-ENABLING KKDCP ON AN IDM SERVER
	53.5. CONFIGURING THE KKDCP SERVER I
	53.6. CONFIGURING THE KKDCP SERVER II

	CHAPTER 54. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT
	54.1. SUDO ACCESS ON AN IDM CLIENT
	54.2. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE CLI
	54.3. GRANTING SUDO ACCESS TO AN AD USER ON AN IDM CLIENT USING THE CLI
	54.4. GRANTING SUDO ACCESS TO AN IDM USER ON AN IDM CLIENT USING THE IDM WEB UI
	54.5. CREATING A SUDO RULE ON THE CLI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN IDM CLIENT
	54.6. CREATING A SUDO RULE IN THE IDM WEBUI THAT RUNS A COMMAND AS A SERVICE ACCOUNT ON AN IDM CLIENT
	54.7. ENABLING GSSAPI AUTHENTICATION FOR SUDO ON AN IDM CLIENT
	54.8. ENABLING GSSAPI AUTHENTICATION AND ENFORCING KERBEROS AUTHENTICATION INDICATORS FOR SUDO ON AN IDM CLIENT
	54.9. SSSD OPTIONS CONTROLLING GSSAPI AUTHENTICATION FOR PAM SERVICES
	54.10. TROUBLESHOOTING GSSAPI AUTHENTICATION FOR SUDO
	54.11. USING AN ANSIBLE PLAYBOOK TO ENSURE SUDO ACCESS FOR AN IDM USER ON AN IDM CLIENT

	CHAPTER 55. CONFIGURING HOST-BASED ACCESS CONTROL RULES
	55.1. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE WEBUI
	55.1.1. Creating HBAC rules in the IdM WebUI
	55.1.2. Testing HBAC rules in the IdM WebUI
	55.1.3. Disabling HBAC rules in the IdM WebUI

	55.2. CONFIGURING HBAC RULES IN AN IDM DOMAIN USING THE CLI
	55.2.1. Creating HBAC rules in the IdM CLI
	55.2.2. Testing HBAC rules in the IdM CLI
	55.2.3. Disabling HBAC rules in the IdM CLI

	55.3. ADDING HBAC SERVICE ENTRIES FOR CUSTOM HBAC SERVICES
	55.3.1. Adding HBAC service entries for custom HBAC services in the IdM WebUI
	55.3.2. Adding HBAC service entries for custom HBAC services in the IdM CLI

	55.4. ADDING HBAC SERVICE GROUPS
	55.4.1. Adding HBAC service groups in the IdM WebUI
	55.4.2. Adding HBAC service groups in the IdM CLI

	CHAPTER 56. ENSURING THE PRESENCE OF HOST-BASED ACCESS CONTROL RULES IN IDM USING ANSIBLE PLAYBOOKS
	56.1. HOST-BASED ACCESS CONTROL RULES IN IDM
	56.2. ENSURING THE PRESENCE OF AN HBAC RULE IN IDM USING AN ANSIBLE PLAYBOOK

	CHAPTER 57. MANAGING REPLICATION TOPOLOGY
	57.1. EXPLAINING REPLICATION AGREEMENTS, TOPOLOGY SUFFIXES AND TOPOLOGY SEGMENTS
	57.1.1. Replication agreements between IdM replicas
	57.1.2. Topology suffixes
	57.1.3. Topology segments

	57.2. USING THE TOPOLOGY GRAPH TO MANAGE REPLICATION TOPOLOGY
	57.3. SETTING UP REPLICATION BETWEEN TWO SERVERS USING THE WEB UI
	57.4. STOPPING REPLICATION BETWEEN TWO SERVERS USING THE WEB UI
	57.5. SETTING UP REPLICATION BETWEEN TWO SERVERS USING THE CLI
	57.6. STOPPING REPLICATION BETWEEN TWO SERVERS USING THE CLI
	57.7. REMOVING SERVER FROM TOPOLOGY USING THE WEB UI
	57.8. REMOVING SERVER FROM TOPOLOGY USING THE CLI
	57.9. VIEWING SERVER ROLES ON AN IDM SERVER USING THE WEB UI
	57.10. VIEWING SERVER ROLES ON AN IDM SERVER USING THE CLI
	57.11. PROMOTING A REPLICA TO A CA RENEWAL SERVER AND CRL PUBLISHER SERVER
	57.12. DEMOTING OR PROMOTING HIDDEN REPLICAS

	CHAPTER 58. PUBLIC KEY CERTIFICATES IN IDENTITY MANAGEMENT
	58.1. CERTIFICATE AUTHORITIES IN IDM
	58.2. COMPARISON OF CERTIFICATES AND KERBEROS
	58.3. THE PROS AND CONS OF USING CERTIFICATES TO AUTHENTICATE USERS IN IDM

	CHAPTER 59. CONVERTING CERTIFICATE FORMATS TO WORK WITH IDM
	59.1. CERTIFICATE FORMATS AND ENCODINGS IN IDM
	59.2. CONVERTING AN EXTERNAL CERTIFICATE TO LOAD INTO AN IDM USER ACCOUNT
	59.2.1. Prerequisites
	59.2.2. Converting an external certificate in the IdM CLI and loading it into an IdM user account
	59.2.3. Converting an external certificate in the IdM web UI for loading into an IdM user account

	59.3. PREPARING TO LOAD A CERTIFICATE INTO THE BROWSER
	59.3.1. Exporting a certificate and private key from an NSS database into a PKCS #12 file
	59.3.2. Combining certificate and private key PEM files into a PKCS #12 file

	59.4. CERTIFICATE-RELATED COMMANDS AND FORMATS IN IDM

	CHAPTER 60. MANAGING CERTIFICATES FOR USERS, HOSTS, AND SERVICES USING THE INTEGRATED IDM CA
	60.1. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE USING IDM WEB UI
	60.2. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE FROM IDM CA USING CERTUTIL
	60.3. REQUESTING NEW CERTIFICATES FOR A USER, HOST, OR SERVICE FROM IDM CA USING OPENSSL
	60.4. ADDITIONAL RESOURCES

	CHAPTER 61. MANAGING IDM CERTIFICATES USING ANSIBLE
	61.1. USING ANSIBLE TO REQUEST SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
	61.2. USING ANSIBLE TO REVOKE SSL CERTIFICATES FOR IDM HOSTS, SERVICES AND USERS
	61.3. USING ANSIBLE TO RESTORE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES
	61.4. USING ANSIBLE TO RETRIEVE SSL CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES

	CHAPTER 62. MANAGING EXTERNALLY SIGNED CERTIFICATES FOR IDM USERS, HOSTS, AND SERVICES
	62.1. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM USER, HOST, OR SERVICE BY USING THE IDM CLI
	62.2. ADDING A CERTIFICATE ISSUED BY AN EXTERNAL CA TO AN IDM USER, HOST, OR SERVICE BY USING THE IDM WEB UI
	62.3. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM AN IDM USER, HOST, OR SERVICE ACCOUNT BY USING THE IDM CLI
	62.4. REMOVING A CERTIFICATE ISSUED BY AN EXTERNAL CA FROM AN IDM USER, HOST, OR SERVICE ACCOUNT BY USING THE IDM WEB UI
	62.5. ADDITIONAL RESOURCES

	CHAPTER 63. CREATING AND MANAGING CERTIFICATE PROFILES IN IDENTITY MANAGEMENT
	63.1. WHAT IS A CERTIFICATE PROFILE?
	63.2. CREATING A CERTIFICATE PROFILE
	63.3. WHAT IS A CA ACCESS CONTROL LIST?
	63.4. DEFINING A CA ACL TO CONTROL ACCESS TO CERTIFICATE PROFILES
	63.5. USING CERTIFICATE PROFILES AND CA ACLS TO ISSUE CERTIFICATES
	63.6. MODIFYING A CERTIFICATE PROFILE
	63.7. CERTIFICATE PROFILE CONFIGURATION PARAMETERS

	CHAPTER 64. MANAGING THE VALIDITY OF CERTIFICATES IN IDM
	64.1. MANAGING THE VALIDITY OF AN EXISTING CERTIFICATE THAT WAS ISSUED BY IDM CA
	64.2. MANAGING THE VALIDITY OF FUTURE CERTIFICATES ISSUED BY IDM CA
	64.3. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN IDM WEBUI
	64.4. VIEWING THE EXPIRY DATE OF A CERTIFICATE IN THE CLI
	64.5. REVOKING CERTIFICATES WITH THE INTEGRATED IDM CAS
	64.5.1. Certificate revocation reasons
	64.5.2. Revoking certificates with the integrated IdM CAs using IdM WebUI
	64.5.3. Revoking certificates with the integrated IdM CAs using IdM CLI

	64.6. RESTORING CERTIFICATES WITH THE INTEGRATED IDM CAS
	64.6.1. Restoring certificates with the integrated IdM CAs using IdM WebUI
	64.6.2. Restoring certificates with the integrated IdM CAs using IdM CLI

	CHAPTER 65. CONFIGURING IDENTITY MANAGEMENT FOR SMART CARD AUTHENTICATION
	65.1. CONFIGURING THE IDM SERVER FOR SMART CARD AUTHENTICATION
	65.2. USING ANSIBLE TO CONFIGURE THE IDM SERVER FOR SMART CARD AUTHENTICATION
	65.3. CONFIGURING THE IDM CLIENT FOR SMART CARD AUTHENTICATION
	65.4. USING ANSIBLE TO CONFIGURE IDM CLIENTS FOR SMART CARD AUTHENTICATION
	65.5. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM WEB UI
	65.6. ADDING A CERTIFICATE TO A USER ENTRY IN THE IDM CLI
	65.7. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
	65.8. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART CARD
	65.9. LOGGING IN TO IDM WITH SMART CARDS
	65.10. LOGGING IN TO GDM USING SMART CARD AUTHENTICATION ON AN IDM CLIENT
	65.11. USING SMART CARD AUTHENTICATION WITH THE SU COMMAND

	CHAPTER 66. CONFIGURING CERTIFICATES ISSUED BY ADCS FOR SMART CARD AUTHENTICATION IN IDM
	66.1. WINDOWS SERVER SETTINGS REQUIRED FOR TRUST CONFIGURATION AND CERTIFICATE USAGE
	66.2. COPYING CERTIFICATES FROM ACTIVE DIRECTORY USING SFTP
	66.3. CONFIGURING THE IDM SERVER AND CLIENTS FOR SMART CARD AUTHENTICATION USING ADCS CERTIFICATES
	66.4. CONVERTING THE PFX FILE
	66.5. INSTALLING TOOLS FOR MANAGING AND USING SMART CARDS
	66.6. PREPARING YOUR SMART CARD AND UPLOADING YOUR CERTIFICATES AND KEYS TO YOUR SMART CARD
	66.7. CONFIGURING TIMEOUTS IN SSSD.CONF
	66.8. CREATING CERTIFICATE MAPPING RULES FOR SMART CARD AUTHENTICATION

	CHAPTER 67. CONFIGURING CERTIFICATE MAPPING RULES IN IDENTITY MANAGEMENT
	67.1. CERTIFICATE MAPPING RULES FOR CONFIGURING AUTHENTICATION
	67.2. COMPONENTS OF AN IDENTITY MAPPING RULE IN IDM
	67.3. OBTAINING DATA FROM A CERTIFICATE FOR USE IN A MATCHING RULE
	67.4. CONFIGURING CERTIFICATE MAPPING FOR USERS STORED IN IDM
	67.4.1. Adding a certificate mapping rule in the IdM web UI
	67.4.2. Adding a certificate mapping rule in the IdM CLI
	67.4.3. Adding certificate mapping data to a user entry in the IdM web UI
	67.4.4. Adding certificate mapping data to a user entry in the IdM CLI

	67.5. CERTIFICATE MAPPING RULES FOR TRUSTS WITH ACTIVE DIRECTORY DOMAINS
	67.6. CONFIGURING CERTIFICATE MAPPING FOR USERS WHOSE AD USER ENTRY CONTAINS THE WHOLE CERTIFICATE
	67.6.1. Adding a certificate mapping rule in the IdM web UI
	67.6.2. Adding a certificate mapping rule in the IdM CLI

	67.7. CONFIGURING CERTIFICATE MAPPING IF AD IS CONFIGURED TO MAP USER CERTIFICATES TO USER ACCOUNTS
	67.7.1. Adding a certificate mapping rule in the IdM web UI
	67.7.2. Adding a certificate mapping rule in the IdM CLI
	67.7.3. Checking certificate mapping data on the AD side

	67.8. CONFIGURING CERTIFICATE MAPPING IF AD USER ENTRY CONTAINS NO CERTIFICATE OR MAPPING DATA
	67.8.1. Adding a certificate mapping rule in the IdM web UI
	67.8.2. Adding a certificate mapping rule in the IdM CLI
	67.8.3. Adding a certificate to an AD user’s ID override in the IdM web UI
	67.8.4. Adding a certificate to an AD user’s ID override in the IdM CLI

	67.9. COMBINING SEVERAL IDENTITY MAPPING RULES INTO ONE
	67.10. ADDITIONAL RESOURCES

	CHAPTER 68. CONFIGURING AUTHENTICATION WITH A CERTIFICATE STORED ON THE DESKTOP OF AN IDM CLIENT
	68.1. CONFIGURING THE IDENTITY MANAGEMENT SERVER FOR CERTIFICATE AUTHENTICATION IN THE WEB UI
	68.2. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO THE CLIENT
	68.3. MAKING SURE THE CERTIFICATE AND USER ARE LINKED TOGETHER
	68.4. CONFIGURING A BROWSER TO ENABLE CERTIFICATE AUTHENTICATION
	68.5. AUTHENTICATING TO THE IDENTITY MANAGEMENT WEB UI WITH A CERTIFICATE AS AN IDENTITY MANAGEMENT USER
	68.6. CONFIGURING AN IDM CLIENT TO ENABLE AUTHENTICATING TO THE CLI USING A CERTIFICATE

	CHAPTER 69. USING IDM CA RENEWAL SERVER
	69.1. EXPLANATION OF IDM CA RENEWAL SERVER
	69.2. CHANGING AND RESETTING IDM CA RENEWAL SERVER

	CHAPTER 70. MANAGING EXTERNALLY-SIGNED CA CERTIFICATES
	70.1. SWITCHING FROM AN EXTERNALLY-SIGNED TO A SELF-SIGNED CA IN IDM
	70.2. SWITCHING FROM A SELF-SIGNED TO AN EXTERNALLY-SIGNED CA IN IDM
	70.3. RENEWING THE IDM CA RENEWAL SERVER CERTIFICATE USING AN EXTERNAL CA

	CHAPTER 71. RENEWING EXPIRED SYSTEM CERTIFICATES WHEN IDM IS OFFLINE
	71.1. RENEWING EXPIRED SYSTEM CERTIFICATES ON A CA RENEWAL SERVER
	71.2. VERIFYING OTHER IDM SERVERS IN THE IDM DOMAIN AFTER RENEWAL

	CHAPTER 72. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE NOT YET EXPIRED ON AN IDM REPLICA
	CHAPTER 73. REPLACING THE WEB SERVER AND LDAP SERVER CERTIFICATES IF THEY HAVE EXPIRED IN THE WHOLE IDM DEPLOYMENT
	CHAPTER 74. GENERATING CRL ON THE IDM CA SERVER
	74.1. STOPPING CRL GENERATION ON AN IDM SERVER
	74.2. STARTING CRL GENERATION ON AN IDM REPLICA SERVER

	CHAPTER 75. DECOMMISSIONING A SERVER THAT PERFORMS THE CA RENEWAL SERVER AND CRL PUBLISHER ROLES
	CHAPTER 76. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
	76.1. CERTMONGER OVERVIEW
	76.2. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
	76.3. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A SERVICE CERTIFICATE
	76.4. VIEWING THE DETAILS OF A CERTIFICATE REQUEST TRACKED BY CERTMONGER
	76.5. STARTING AND STOPPING CERTIFICATE TRACKING
	76.6. RENEWING A CERTIFICATE MANUALLY
	76.7. MAKING CERTMONGER RESUME TRACKING OF IDM CERTIFICATES ON A CA REPLICA
	76.8. USING SCEP WITH CERTMONGER
	76.8.1. SCEP overview
	76.8.2. Requesting an IdM CA-signed certificate through SCEP
	76.8.3. Automatically renewing AD SCEP certificates with certmonger

	CHAPTER 77. REQUESTING CERTIFICATES BY USING RHEL SYSTEM ROLES
	77.1. THE CERTIFICATE SYSTEM ROLE
	77.2. REQUESTING A NEW SELF-SIGNED CERTIFICATE BY USING THE CERTIFICATE SYSTEM ROLE
	77.3. REQUESTING A NEW CERTIFICATE FROM IDM CA BY USING THE CERTIFICATE SYSTEM ROLE
	77.4. SPECIFYING COMMANDS TO RUN BEFORE OR AFTER CERTIFICATE ISSUANCE BY USING THE CERTIFICATE SYSTEM ROLE

	CHAPTER 78. RESTRICTING AN APPLICATION TO TRUST ONLY A SUBSET OF CERTIFICATES
	78.1. MANAGING LIGHTWEIGHT SUB-CAS
	78.1.1. Creating a sub-CA from the IdM WebUI
	78.1.2. Deleting a sub-CA from the IdM WebUI
	78.1.3. Creating a sub-CA from the IdM CLI
	78.1.4. Disabling a sub-CA from the IdM CLI
	78.1.5. Deleting a sub-CA from the IdM CLI

	78.2. DOWNLOADING THE SUB-CA CERTIFICATE FROM IDM WEBUI
	78.3. CREATING CA ACLS FOR WEB SERVER AND CLIENT AUTHENTICATION
	78.3.1. Viewing CA ACLs in IdM CLI
	78.3.2. Creating a CA ACL for web servers authenticating to web clients using certificates issued by webserver-ca
	78.3.3. Creating a CA ACL for user web browsers authenticating to web servers using certificates issued by webclient-ca

	78.4. OBTAINING AN IDM CERTIFICATE FOR A SERVICE USING CERTMONGER
	78.5. COMMUNICATION FLOW FOR CERTMONGER REQUESTING A SERVICE CERTIFICATE
	78.6. SETTING UP A SINGLE-INSTANCE APACHE HTTP SERVER
	78.7. ADDING TLS ENCRYPTION TO AN APACHE HTTP SERVER
	78.8. SETTING THE SUPPORTED TLS PROTOCOL VERSIONS ON AN APACHE HTTP SERVER
	78.9. SETTING THE SUPPORTED CIPHERS ON AN APACHE HTTP SERVER
	78.10. CONFIGURING TLS CLIENT CERTIFICATE AUTHENTICATION
	78.11. REQUESTING A NEW USER CERTIFICATE AND EXPORTING IT TO THE CLIENT
	78.12. CONFIGURING A BROWSER TO ENABLE CERTIFICATE AUTHENTICATION

	CHAPTER 79. INVALIDATING A SPECIFIC GROUP OF RELATED CERTIFICATES QUICKLY
	79.1. DISABLING CA ACLS IN IDM CLI
	79.2. DISABLING AN IDM SUB-CA

	CHAPTER 80. VAULTS IN IDM
	80.1. VAULTS AND THEIR BENEFITS
	80.2. VAULT OWNERS, MEMBERS, AND ADMINISTRATORS
	80.3. STANDARD, SYMMETRIC, AND ASYMMETRIC VAULTS
	80.4. USER, SERVICE, AND SHARED VAULTS
	80.5. VAULT CONTAINERS
	80.6. BASIC IDM VAULT COMMANDS
	80.7. INSTALLING THE KEY RECOVERY AUTHORITY IN IDM

	CHAPTER 81. USING IDM USER VAULTS: STORING AND RETRIEVING SECRETS
	81.1. STORING A SECRET IN A USER VAULT
	81.2. RETRIEVING A SECRET FROM A USER VAULT
	81.3. ADDITIONAL RESOURCES

	CHAPTER 82. USING ANSIBLE TO MANAGE IDM USER VAULTS: STORING AND RETRIEVING SECRETS
	82.1. ENSURING THE PRESENCE OF A STANDARD USER VAULT IN IDM USING ANSIBLE
	82.2. ARCHIVING A SECRET IN A STANDARD USER VAULT IN IDM USING ANSIBLE
	82.3. RETRIEVING A SECRET FROM A STANDARD USER VAULT IN IDM USING ANSIBLE

	CHAPTER 83. MANAGING IDM SERVICE SECRETS: STORING AND RETRIEVING SECRETS
	83.1. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT
	83.2. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE INSTANCE
	83.3. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED
	83.4. ADDITIONAL RESOURCES

	CHAPTER 84. USING ANSIBLE TO MANAGE IDM SERVICE VAULTS: STORING AND RETRIEVING SECRETS
	84.1. ENSURING THE PRESENCE OF AN ASYMMETRIC SERVICE VAULT IN IDM USING ANSIBLE
	84.2. ADDING MEMBER SERVICES TO AN ASYMMETRIC VAULT USING ANSIBLE
	84.3. STORING AN IDM SERVICE SECRET IN AN ASYMMETRIC VAULT USING ANSIBLE
	84.4. RETRIEVING A SERVICE SECRET FOR AN IDM SERVICE USING ANSIBLE
	84.5. CHANGING AN IDM SERVICE VAULT SECRET WHEN COMPROMISED USING ANSIBLE
	84.6. ADDITIONAL RESOURCES

	CHAPTER 85. ENSURING THE PRESENCE AND ABSENCE OF SERVICES IN IDM USING ANSIBLE
	85.1. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM USING AN ANSIBLE PLAYBOOK
	85.2. ENSURING THE PRESENCE OF MULTIPLE SERVICES IN IDM ON AN IDM CLIENT USING A SINGLE ANSIBLE TASK
	85.3. ENSURING THE PRESENCE OF AN HTTP SERVICE IN IDM ON A NON-IDM CLIENT USING AN ANSIBLE PLAYBOOK
	85.4. ENSURING THE PRESENCE OF AN HTTP SERVICE ON AN IDM CLIENT WITHOUT DNS USING AN ANSIBLE PLAYBOOK
	85.5. ENSURING THE PRESENCE OF AN EXTERNALLY SIGNED CERTIFICATE IN AN IDM SERVICE ENTRY USING AN ANSIBLE PLAYBOOK
	85.6. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS, GROUPS, HOSTS, OR HOST GROUPS TO CREATE A KEYTAB OF A SERVICE
	85.7. USING AN ANSIBLE PLAYBOOK TO ALLOW IDM USERS, GROUPS, HOSTS, OR HOST GROUPS TO RETRIEVE A KEYTAB OF A SERVICE
	85.8. ENSURING THE PRESENCE OF A KERBEROS PRINCIPAL ALIAS OF A SERVICE USING AN ANSIBLE PLAYBOOK
	85.9. ENSURING THE ABSENCE OF AN HTTP SERVICE IN IDM USING AN ANSIBLE PLAYBOOK
	85.10. ADDITIONAL RESOURCES

	CHAPTER 86. ENABLING AD USERS TO ADMINISTER IDM
	86.1. ID OVERRIDES FOR AD USERS
	86.2. USING ID OVERRIDES TO ENABLE AD USERS TO ADMINISTER IDM
	86.3. USING ANSIBLE TO ENABLE AD USERS TO ADMINISTER IDM
	86.4. VERIFYING THAT AN AD USER CAN PERFORM CORRECT COMMANDS IN THE IDM CLI

	CHAPTER 87. CONFIGURING THE DOMAIN RESOLUTION ORDER TO RESOLVE SHORT AD USER NAMES
	87.1. HOW DOMAIN RESOLUTION ORDER WORKS
	87.2. SETTING THE GLOBAL DOMAIN RESOLUTION ORDER ON AN IDM SERVER
	87.3. SETTING THE DOMAIN RESOLUTION ORDER FOR AN ID VIEW ON AN IDM SERVER
	87.4. SETTING THE DOMAIN RESOLUTION ORDER IN SSSD ON AN IDM CLIENT
	87.5. ADDITIONAL RESOURCES

	CHAPTER 88. ENABLING AUTHENTICATION USING AD USER PRINCIPAL NAMES IN IDM
	88.1. USER PRINCIPAL NAMES IN AN AD FOREST TRUSTED BY IDM
	88.2. ENSURING THAT AD UPNS ARE UP-TO-DATE IN IDM
	88.3. GATHERING TROUBLESHOOTING DATA FOR AD UPN AUTHENTICATION ISSUES

	CHAPTER 89. USING CANONICALIZED DNS HOST NAMES IN IDM
	89.1. ADDING AN ALIAS TO A HOST PRINCIPAL
	89.2. ENABLING CANONICALIZATION OF HOST NAMES IN SERVICE PRINCIPALS ON CLIENTS
	89.3. OPTIONS FOR USING HOST NAMES WITH DNS HOST NAME CANONICALIZATION ENABLED

	CHAPTER 90. MANAGING GLOBAL DNS CONFIGURATION IN IDM USING ANSIBLE PLAYBOOKS
	90.1. HOW IDM ENSURES THAT GLOBAL FORWARDERS FROM /ETC/RESOLV.CONF ARE NOT REMOVED BY NETWORKMANAGER
	90.2. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	90.3. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	90.4. THE ACTION: MEMBER OPTION IN IPADNSCONFIG ANSIBLE-FREEIPA MODULES
	90.5. DNS FORWARD POLICIES IN IDM
	90.6. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT THE FORWARD FIRST POLICY IS SET IN IDM DNS GLOBAL CONFIGURATION
	90.7. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT GLOBAL FORWARDERS ARE DISABLED IN IDM DNS
	90.8. USING AN ANSIBLE PLAYBOOK TO ENSURE THAT SYNCHRONIZATION OF FORWARD AND REVERSE LOOKUP ZONES IS DISABLED IN IDM DNS

	CHAPTER 91. MANAGING DNS ZONES IN IDM
	91.1. SUPPORTED DNS ZONE TYPES
	91.2. ADDING A PRIMARY DNS ZONE IN IDM WEB UI
	91.3. ADDING A PRIMARY DNS ZONE IN IDM CLI
	91.4. REMOVING A PRIMARY DNS ZONE IN IDM WEB UI
	91.5. REMOVING A PRIMARY DNS ZONE IN IDM CLI
	91.6. DNS CONFIGURATION PRIORITIES
	91.7. CONFIGURATION ATTRIBUTES OF PRIMARY IDM DNS ZONES
	91.8. EDITING THE CONFIGURATION OF A PRIMARY DNS ZONE IN IDM WEB UI
	91.9. EDITING THE CONFIGURATION OF A PRIMARY DNS ZONE IN IDM CLI
	91.10. ZONE TRANSFERS IN IDM
	91.11. ENABLING ZONE TRANSFERS IN IDM WEB UI
	91.12. ENABLING ZONE TRANSFERS IN IDM CLI
	91.13. ADDITIONAL RESOURCES

	CHAPTER 92. USING ANSIBLE PLAYBOOKS TO MANAGE IDM DNS ZONES
	92.1. SUPPORTED DNS ZONE TYPES
	92.2. CONFIGURATION ATTRIBUTES OF PRIMARY IDM DNS ZONES
	92.3. USING ANSIBLE TO CREATE A PRIMARY ZONE IN IDM DNS
	92.4. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF A PRIMARY DNS ZONE IN IDM WITH MULTIPLE VARIABLES
	92.5. USING AN ANSIBLE PLAYBOOK TO ENSURE THE PRESENCE OF A ZONE FOR REVERSE DNS LOOKUP WHEN AN IP ADDRESS IS GIVEN

	CHAPTER 93. MANAGING DNS LOCATIONS IN IDM
	93.1. DNS-BASED SERVICE DISCOVERY
	93.2. DEPLOYMENT CONSIDERATIONS FOR DNS LOCATIONS
	93.3. DNS TIME TO LIVE (TTL)
	93.4. CREATING DNS LOCATIONS USING THE IDM WEB UI
	93.5. CREATING DNS LOCATIONS USING THE IDM CLI
	93.6. ASSIGNING AN IDM SERVER TO A DNS LOCATION USING THE IDM WEB UI
	93.7. ASSIGNING AN IDM SERVER TO A DNS LOCATION USING THE IDM CLI
	93.8. CONFIGURING AN IDM CLIENT TO USE IDM SERVERS IN THE SAME LOCATION
	93.9. ADDITIONAL RESOURCES

	CHAPTER 94. USING ANSIBLE TO MANAGE DNS LOCATIONS IN IDM
	94.1. DNS-BASED SERVICE DISCOVERY
	94.2. DEPLOYMENT CONSIDERATIONS FOR DNS LOCATIONS
	94.3. DNS TIME TO LIVE (TTL)
	94.4. USING ANSIBLE TO ENSURE AN IDM LOCATION IS PRESENT
	94.5. USING ANSIBLE TO ENSURE AN IDM LOCATION IS ABSENT
	94.6. ADDITIONAL RESOURCES

	CHAPTER 95. MANAGING DNS FORWARDING IN IDM
	95.1. THE TWO ROLES OF AN IDM DNS SERVER
	95.2. DNS FORWARD POLICIES IN IDM
	95.3. ADDING A GLOBAL FORWARDER IN THE IDM WEB UI
	95.4. ADDING A GLOBAL FORWARDER IN THE CLI
	95.5. ADDING A DNS FORWARD ZONE IN THE IDM WEB UI
	95.6. ADDING A DNS FORWARD ZONE IN THE CLI
	95.7. ESTABLISHING A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	95.8. ENSURING THE PRESENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	95.9. ENSURING THE ABSENCE OF A DNS GLOBAL FORWARDER IN IDM USING ANSIBLE
	95.10. ENSURING DNS GLOBAL FORWARDERS ARE DISABLED IN IDM USING ANSIBLE
	95.11. ENSURING THE PRESENCE OF A DNS FORWARD ZONE IN IDM USING ANSIBLE
	95.12. ENSURING A DNS FORWARD ZONE HAS MULTIPLE FORWARDERS IN IDM USING ANSIBLE
	95.13. ENSURING A DNS FORWARD ZONE IS DISABLED IN IDM USING ANSIBLE
	95.14. ENSURING THE ABSENCE OF A DNS FORWARD ZONE IN IDM USING ANSIBLE

	CHAPTER 96. MANAGING DNS RECORDS IN IDM
	96.1. DNS RECORDS IN IDM
	96.2. ADDING DNS RESOURCE RECORDS IN THE IDM WEB UI
	96.3. ADDING DNS RESOURCE RECORDS FROM THE IDM CLI
	96.4. COMMON IPA DNSRECORD-* OPTIONS
	96.5. DELETING DNS RECORDS IN THE IDM WEB UI
	96.6. DELETING AN ENTIRE DNS RECORD IN THE IDM WEB UI
	96.7. DELETING DNS RECORDS IN THE IDM CLI
	96.8. ADDITIONAL RESOURCES

	CHAPTER 97. UPDATING DNS RECORDS SYSTEMATICALLY WHEN USING EXTERNAL DNS
	97.1. UPDATING EXTERNAL DNS RECORDS WITH GUI
	97.2. UPDATING EXTERNAL DNS RECORDS USING NSUPDATE
	97.3. SENDING AN NSUPDATE REQUEST SECURED USING TSIG
	97.4. SENDING AN NSUPDATE REQUEST SECURED USING GSS-TSIG
	97.5. ADDITIONAL RESOURCES

	CHAPTER 98. USING ANSIBLE TO MANAGE DNS RECORDS IN IDM
	98.1. DNS RECORDS IN IDM
	98.2. COMMON IPA DNSRECORD-* OPTIONS
	98.3. ENSURING THE PRESENCE OF A AND AAAA DNS RECORDS IN IDM USING ANSIBLE
	98.4. ENSURING THE PRESENCE OF A AND PTR DNS RECORDS IN IDM USING ANSIBLE
	98.5. ENSURING THE PRESENCE OF MULTIPLE DNS RECORDS IN IDM USING ANSIBLE
	98.6. ENSURING THE PRESENCE OF MULTIPLE CNAME RECORDS IN IDM USING ANSIBLE
	98.7. ENSURING THE PRESENCE OF AN SRV RECORD IN IDM USING ANSIBLE

	CHAPTER 99. MANAGING IDM SERVERS BY USING ANSIBLE
	99.1. CHECKING THAT AN IDM SERVER IS PRESENT BY USING ANSIBLE
	99.2. ENSURING THAT AN IDM SERVER IS ABSENT FROM AN IDM TOPOLOGY BY USING ANSIBLE
	99.3. ENSURING THE ABSENCE OF AN IDM SERVER DESPITE HOSTING A LAST IDM SERVER ROLE
	99.4. ENSURING THAT AN IDM SERVER IS ABSENT BUT NOT NECESSARILY DISCONNECTED FROM OTHER IDM SERVERS
	99.5. ENSURING THAT AN EXISTING IDM SERVER IS HIDDEN USING AN ANSIBLE PLAYBOOK
	99.6. ENSURING THAT AN EXISTING IDM SERVER IS VISIBLE BY USING AN ANSIBLE PLAYBOOK
	99.7. ENSURING THAT AN EXISTING IDM SERVER HAS AN IDM DNS LOCATION ASSIGNED
	99.8. ENSURING THAT AN EXISTING IDM SERVER HAS NO IDM DNS LOCATION ASSIGNED

	CHAPTER 100. COLLECTING IDM HEALTHCHECK INFORMATION
	100.1. HEALTHCHECK IN IDM
	100.2. LOG ROTATION
	100.3. CONFIGURING LOG ROTATION USING THE IDM HEALTHCHECK
	100.4. CHANGING IDM HEALTHCHECK CONFIGURATION
	100.5. CONFIGURING HEALTHCHECK TO CHANGE THE OUTPUT LOGS FORMAT

	CHAPTER 101. CHECKING SERVICES USING IDM HEALTHCHECK
	101.1. SERVICES HEALTHCHECK TEST
	101.2. SCREENING SERVICES USING HEALTHCHECK

	CHAPTER 102. VERIFYING YOUR IDM AND AD TRUST CONFIGURATION USING IDM HEALTHCHECK
	102.1. IDM AND AD TRUST HEALTHCHECK TESTS
	102.2. SCREENING THE TRUST WITH THE HEALTHCHECK TOOL

	CHAPTER 103. VERIFYING CERTIFICATES USING IDM HEALTHCHECK
	103.1. IDM CERTIFICATES HEALTHCHECK TESTS
	103.2. SCREENING CERTIFICATES USING THE HEALTHCHECK TOOL

	CHAPTER 104. VERIFYING SYSTEM CERTIFICATES USING IDM HEALTHCHECK
	104.1. SYSTEM CERTIFICATES HEALTHCHECK TESTS
	104.2. SCREENING SYSTEM CERTIFICATES USING HEALTHCHECK

	CHAPTER 105. CHECKING DISK SPACE USING IDM HEALTHCHECK
	105.1. DISK SPACE HEALTHCHECK TEST
	105.2. SCREENING DISK SPACE USING THE HEALTHCHECK TOOL

	CHAPTER 106. VERIFYING PERMISSIONS OF IDM CONFIGURATION FILES USING HEALTHCHECK
	106.1. FILE PERMISSIONS HEALTHCHECK TESTS
	106.2. SCREENING CONFIGURATION FILES USING HEALTHCHECK

	CHAPTER 107. CHECKING IDM REPLICATION USING HEALTHCHECK
	107.1. REPLICATION HEALTHCHECK TESTS
	107.2. SCREENING REPLICATION USING HEALTHCHECK

	CHAPTER 108. CHECKING DNS RECORDS USING IDM HEALTHCHECK
	108.1. DNS RECORDS HEALTHCHECK TEST
	108.2. SCREENING DNS RECORDS USING THE HEALTHCHECK TOOL

	CHAPTER 109. DEMOTING OR PROMOTING HIDDEN REPLICAS
	CHAPTER 110. IDENTITY MANAGEMENT SECURITY SETTINGS
	110.1. HOW IDENTITY MANAGEMENT APPLIES DEFAULT SECURITY SETTINGS
	110.2. ANONYMOUS LDAP BINDS IN IDENTITY MANAGEMENT
	110.3. DISABLING ANONYMOUS BINDS

	CHAPTER 111. SETTING UP SAMBA ON AN IDM DOMAIN MEMBER
	111.1. PREPARING THE IDM DOMAIN FOR INSTALLING SAMBA ON DOMAIN MEMBERS
	111.2. INSTALLING AND CONFIGURING A SAMBA SERVER ON AN IDM CLIENT
	111.3. MANUALLY ADDING AN ID MAPPING CONFIGURATION IF IDM TRUSTS A NEW DOMAIN
	111.4. ADDITIONAL RESOURCES

	CHAPTER 112. USING EXTERNAL IDENTITY PROVIDERS TO AUTHENTICATE TO IDM
	112.1. THE BENEFITS OF CONNECTING IDM TO AN EXTERNAL IDP
	112.1.1. How IdM incorporates logins via external IdPs

	112.2. CREATING A REFERENCE TO AN EXTERNAL IDENTITY PROVIDER
	112.3. MANAGING REFERENCES TO EXTERNAL IDPS
	112.4. ENABLING AN IDM USER TO AUTHENTICATE VIA AN EXTERNAL IDP
	112.5. RETRIEVING AN IDM TICKET-GRANTING TICKET AS AN IDP USER
	112.6. LOGGING IN TO AN IDM CLIENT VIA SSH AS AN IDP USER
	112.7. LIST OF TEMPLATES FOR EXTERNAL IDENTITY PROVIDERS

	CHAPTER 113. IDM INTEGRATION WITH OTHER RED HAT PRODUCTS
	CHAPTER 114. USING ANSIBLE TO INTEGRATE IDM WITH NIS DOMAINS AND NETGROUPS
	114.1. NIS AND ITS BENEFITS
	114.2. NIS IN IDM
	114.3. NIS NETGROUPS IN IDM
	114.4. USING ANSIBLE TO ENSURE THAT A NETGROUP IS PRESENT
	114.5. USING ANSIBLE TO ENSURE THAT MEMBERS ARE PRESENT IN A NETGROUP
	114.6. USING ANSIBLE TO ENSURE THAT A MEMBER IS ABSENT FROM A NETGROUP
	114.7. USING ANSIBLE TO ENSURE THAT A NETGROUP IS ABSENT

	CHAPTER 115. MIGRATING FROM NIS TO IDENTITY MANAGEMENT
	115.1. ENABLING NIS IN IDM
	115.2. MIGRATING USER ENTRIES FROM NIS TO IDM
	115.3. MIGRATING USER GROUP FROM NIS TO IDM
	115.4. MIGRATING HOST ENTRIES FROM NIS TO IDM
	115.5. MIGRATING NETGROUP ENTRIES FROM NIS TO IDM
	115.6. MIGRATING AUTOMOUNT MAPS FROM NIS TO IDM

	CHAPTER 116. USING AUTOMOUNT IN IDM
	116.1. AUTOFS AND AUTOMOUNT IN IDM
	116.2. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT IDENTITY MANAGEMENT DOMAIN
	116.3. CONFIGURING AUTOMOUNT LOCATIONS AND MAPS IN IDM USING THE IDM CLI
	116.4. CONFIGURING AUTOMOUNT ON AN IDM CLIENT
	116.5. VERIFYING THAT AN IDM USER CAN ACCESS NFS SHARES ON AN IDM CLIENT

	CHAPTER 117. USING ANSIBLE TO AUTOMOUNT NFS SHARES FOR IDM USERS
	117.1. AUTOFS AND AUTOMOUNT IN IDM
	117.2. SETTING UP AN NFS SERVER WITH KERBEROS IN A RED HAT IDENTITY MANAGEMENT DOMAIN
	117.3. CONFIGURING AUTOMOUNT LOCATIONS, MAPS, AND KEYS IN IDM BY USING ANSIBLE
	117.4. USING ANSIBLE TO ADD IDM USERS TO A GROUP THAT OWNS NFS SHARES
	117.5. CONFIGURING AUTOMOUNT ON AN IDM CLIENT
	117.6. VERIFYING THAT AN IDM USER CAN ACCESS NFS SHARES ON AN IDM CLIENT

	CHAPTER 118. IDM LOG FILES AND DIRECTORIES
	118.1. IDM SERVER AND CLIENT LOG FILES AND DIRECTORIES
	118.2. DIRECTORY SERVER LOG FILES
	118.3. ENABLING AUDIT LOGGING ON AN IDM SERVER
	118.4. MODIFYING ERROR LOGGING ON AN IDM SERVER
	118.5. THE IDM APACHE SERVER LOG FILES
	118.6. CERTIFICATE SYSTEM LOG FILES IN IDM
	118.7. KERBEROS LOG FILES IN IDM
	118.8. DNS LOG FILES IN IDM
	118.9. CUSTODIA LOG FILES IN IDM
	118.10. ADDITIONAL RESOURCES

	CHAPTER 119. CONFIGURING SINGLE SIGN-ON FOR THE RHEL 8 WEB CONSOLE IN THE IDM DOMAIN
	119.1. JOINING A RHEL 8 SYSTEM TO AN IDM DOMAIN USING THE WEB CONSOLE
	119.2. LOGGING IN TO THE WEB CONSOLE USING KERBEROS AUTHENTICATION
	119.3. ENABLING ADMIN SUDO ACCESS TO DOMAIN ADMINISTRATORS ON THE IDM SERVER

	CHAPTER 120. USING CONSTRAINED DELEGATION IN IDM
	120.1. CONSTRAINED DELEGATION IN IDENTITY MANAGEMENT
	120.2. CONFIGURING A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A SMART CARD TO SSH TO A REMOTE HOST WITHOUT BEING ASKED TO AUTHENTICATE AGAIN
	120.3. USING ANSIBLE TO CONFIGURE A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A SMART CARD TO SSH TO A REMOTE HOST WITHOUT BEING ASKED TO AUTHENTICATE AGAIN
	120.4. CONFIGURING A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A SMART CARD TO RUN SUDO WITHOUT BEING ASKED TO AUTHENTICATE AGAIN
	120.5. USING ANSIBLE TO CONFIGURE A WEB CONSOLE TO ALLOW A USER AUTHENTICATED WITH A SMART CARD TO RUN SUDO WITHOUT BEING ASKED TO AUTHENTICATE AGAIN
	120.6. ADDITIONAL RESOURCES

