
Red Hat Decision Manager 7.11

Developing decision services in Red Hat
Decision Manager

Last Updated: 2021-06-18

Red Hat Decision Manager 7.11 Developing decision services in Red Hat
Decision Manager

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to develop decision services with Red Hat Decision Manager using
Decision Model and Notation (DMN) models, Drools Rule Language (DRL) files, guided decision
tables, and other decision-authoring assets.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

PART I. DESIGNING A DECISION SERVICE USING DMN MODELS

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 2. RED HAT DECISION MANAGER BPMN AND DMN MODELERS
2.1. INSTALLING THE RED HAT DECISION MANAGER VSCODE EXTENSION BUNDLE
2.2. CONFIGURING THE RED HAT DECISION MANAGER STANDALONE EDITORS

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)
4.1. DMN CONFORMANCE LEVELS
4.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS
4.3. RULE EXPRESSIONS IN FEEL

4.3.1. Data types in FEEL
4.3.2. Built-in functions in FEEL

4.3.2.1. Conversion functions
4.3.2.2. Boolean functions
4.3.2.3. String functions
4.3.2.4. List functions
4.3.2.5. Numeric functions
4.3.2.6. Date and time functions
4.3.2.7. Range functions
4.3.2.8. Temporal functions
4.3.2.9. Sort functions
4.3.2.10. Context functions

4.3.3. Variable and function names in FEEL
4.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS

4.4.1. DMN decision tables
4.4.1.1. Hit policies in DMN decision tables

4.4.2. Boxed literal expressions
4.4.3. Boxed context expressions
4.4.4. Boxed relation expressions
4.4.5. Boxed function expressions
4.4.6. Boxed invocation expressions
4.4.7. Boxed list expressions

4.5. DMN MODEL EXAMPLE

CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER
5.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION MANAGER
5.2. CONFIGURABLE DMN VALIDATION IN RED HAT DECISION MANAGER

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL
6.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN BUSINESS CENTRAL
6.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED EXPRESSIONS IN BUSINESS CENTRAL
6.3. INCLUDED MODELS IN DMN FILES IN BUSINESS CENTRAL

6.3.1. Including other DMN models within a DMN file in Business Central
6.3.2. Including PMML models within a DMN file in Business Central

6.4. CREATING DMN MODELS WITH MULTIPLE DIAGRAMS IN BUSINESS CENTRAL

11

12

13

14

18
18
19

23

25
25
25
29
30
34
35
39
39
44
52
56
56
64
66
66
67
68
68
70
71
71
72
73
75
76
77

86
86
88

90
98

107
117
117

120
126

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

6.5. DMN MODEL DOCUMENTATION IN BUSINESS CENTRAL
6.6. DMN DESIGNER NAVIGATION AND PROPERTIES IN BUSINESS CENTRAL

CHAPTER 7. DMN MODEL EXECUTION
7.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION
7.2. EXECUTING A DMN SERVICE USING THE KIE SERVER JAVA CLIENT API
7.3. EXECUTING A DMN SERVICE USING THE KIE SERVER REST API
7.4. REST ENDPOINTS FOR SPECIFIC DMN MODELS

CHAPTER 8. ADDITIONAL RESOURCES

PART II. DESIGNING A DECISION SERVICE USING PMML MODELS

CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 10. PREDICTIVE MODEL MARKUP LANGUAGE (PMML)
10.1. PMML CONFORMANCE LEVELS

CHAPTER 11. PMML MODEL EXAMPLES

CHAPTER 12. PMML SUPPORT IN RED HAT DECISION MANAGER
12.1. PMML TRUSTY SUPPORT AND NAMING CONVENTIONS IN RED HAT DECISION MANAGER

Known limitations of PMML trusty implementation
12.2. PMML LEGACY SUPPORT AND NAMING CONVENTIONS IN RED HAT DECISION MANAGER

12.2.1. PMML extensions in Red Hat Decision Manager

CHAPTER 13. PMML MODEL EXECUTION
13.1. EMBEDDING A PMML TRUSTY CALL DIRECTLY IN A JAVA APPLICATION
13.2. EMBEDDING A PMML LEGACY CALL DIRECTLY IN A JAVA APPLICATION

13.2.1. PMML execution helper class
13.3. EXECUTING A PMML MODEL USING KIE SERVER

CHAPTER 14. ADDITIONAL RESOURCES

PART III. DESIGNING A DECISION SERVICE USING DRL RULES

CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES
16.1. PACKAGES IN DRL
16.2. IMPORT STATEMENTS IN DRL
16.3. FUNCTIONS IN DRL
16.4. QUERIES IN DRL
16.5. TYPE DECLARATIONS AND METADATA IN DRL

16.5.1. Type declarations without metadata in DRL
16.5.2. Enumerative type declarations in DRL
16.5.3. Extended type declarations in DRL
16.5.4. Type declarations with metadata in DRL
16.5.5. Metadata tags for fact type and attribute declarations in DRL
16.5.6. Property-change settings and listeners for fact types
16.5.7. Access to DRL declared types in application code

16.6. GLOBAL VARIABLES IN DRL
16.7. RULE ATTRIBUTES IN DRL

16.7.1. Timer and calendar rule attributes in DRL
16.8. RULE CONDITIONS IN DRL (WHEN)

16.8.1. Patterns and constraints
16.8.2. Bound variables in patterns and constraints

131
132

139
139
141

144
149

161

162

163

167
167

168

175
175
176
177
178

180
180
182
186
189

196

197

198

202
203
203
203
204
205
205
207
207
207
208
214
216
217
218

220
224
225
229

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

2

. .

. .

. .

. .

. .

16.8.3. Nested constraints and inline casts
16.8.4. Date literal in constraints
16.8.5. Supported operators in DRL pattern constraints
16.8.6. Operator precedence in DRL pattern constraints
16.8.7. Supported rule condition elements in DRL (keywords)
16.8.8. OOPath syntax with graphs of objects in DRL rule conditions

16.9. RULE ACTIONS IN DRL (THEN)
16.9.1. Supported rule action methods in DRL
16.9.2. Other rule action methods from drools and kcontext variables
16.9.3. Advanced rule actions with conditional and named consequences

16.10. COMMENTS IN DRL FILES
16.11. ERROR MESSAGES FOR DRL TROUBLESHOOTING
16.12. RULE UNITS IN DRL RULE SETS

16.12.1. Data sources for rule units
16.12.2. Rule unit execution control
16.12.3. Rule unit identity conflicts

CHAPTER 17. DATA OBJECTS
17.1. CREATING DATA OBJECTS

CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL
18.1. ADDING WHEN CONDITIONS IN DRL RULES
18.2. ADDING THEN ACTIONS IN DRL RULES

CHAPTER 19. EXECUTING RULES

CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES
20.1. CREATING AND EXECUTING DRL RULES IN RED HAT CODEREADY STUDIO
20.2. CREATING AND EXECUTING DRL RULES USING JAVA
20.3. CREATING AND EXECUTING DRL RULES USING MAVEN

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE
21.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE
21.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
21.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)

State example using salience
State example using agenda groups
Dynamic facts in the State example

21.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
21.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

Spreadsheet decision table setup
Base pricing rules
Promotional discount rules

21.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION)

Rule execution behavior in the Pet Store example
Pet Store rule file imports, global variables, and Java functions
Pet Store rules with agenda groups
Pet Store example execution

21.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
Politician and Hope classes
Rule definitions for politician honesty
Example execution and audit trail

21.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI

230
231
231

235
236
246
249
250
252
253
255
255
259
263
264
268

271
271

273
277
281

283

289
289
293
296

302
302
305
308

311
314
315
316
322
323
326
327

327
328
330
331
335
339
340
341

342

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

INTEGRATION)
Sudoku example execution and interaction
Sudoku example classes
Sudoku validation rules (validate.drl)
Sudoku solving rules (sudoku.drl)

21.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
Conway example execution and interaction
Conway example rules with ruleflow groups

21.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
Recursive query and related rules
Transitive closure rule
Reactive query rule
Queries with unbound arguments in rules

CHAPTER 22. PERFORMANCE TUNING CONSIDERATIONS WITH DRL

CHAPTER 23. NEXT STEPS

PART IV. DESIGNING A DECISION SERVICE USING GUIDED DECISION TABLES

CHAPTER 24. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 25. GUIDED DECISION TABLES

CHAPTER 26. DATA OBJECTS
26.1. CREATING DATA OBJECTS

CHAPTER 27. CREATING GUIDED DECISION TABLES

CHAPTER 28. HIT POLICIES FOR GUIDED DECISION TABLES
28.1. HIT POLICY EXAMPLES: DECISION TABLE FOR DISCOUNTS ON MOVIE TICKETS

28.1.1. Types of guided decision tables

CHAPTER 29. ADDING COLUMNS TO GUIDED DECISION TABLES

CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLES
30.1. "ADD A CONDITION"

30.1.1. Inserting an any other value in condition column cells
30.2. "ADD A CONDITION BRL FRAGMENT"
30.3. "ADD A METADATA COLUMN"
30.4. "ADD AN ACTION BRL FRAGMENT"
30.5. "ADD AN ATTRIBUTE COLUMN"
30.6. "DELETE AN EXISTING FACT"
30.7. "EXECUTE A WORK ITEM"
30.8. "SET THE VALUE OF A FIELD"
30.9. "SET THE VALUE OF A FIELD WITH A WORK ITEM RESULT"

CHAPTER 31. VIEWING RULE NAME COLUMN IN GUIDED DECISION TABLES

CHAPTER 32. SORTING COLUMN VALUES IN GUIDED DECISION TABLES

CHAPTER 33. EDITING OR DELETING COLUMNS IN GUIDED DECISION TABLES

CHAPTER 34. ADDING ROWS AND DEFINING RULES IN GUIDED DECISION TABLES

CHAPTER 35. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS
35.1. ADVANCED ENUMERATION OPTIONS FOR RULE ASSETS

345
345
351
351
352
359
360
361

365
369
370
371
372

374

377

378

379

383

384
384

386

388
389
391

393

395
395
397
397
400
400
403
404
404
405
405

407

408

409

410

412
413

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

4

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 36. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES
36.1. TYPES OF PROBLEMS IN GUIDED DECISION TABLES
36.2. TYPES OF NOTIFICATIONS
36.3. DISABLING VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES

CHAPTER 37. CONVERTING A GUIDED DECISION TABLE TO A SPREADSHEET DECISION TABLE

CHAPTER 38. EXECUTING RULES

CHAPTER 39. NEXT STEPS

PART V. DESIGNING A DECISION SERVICE USING SPREADSHEET DECISION TABLES

CHAPTER 40. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 41. SPREADSHEET DECISION TABLES

CHAPTER 42. DATA OBJECTS
42.1. CREATING DATA OBJECTS

CHAPTER 43. DECISION TABLE USE CASE

CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES
44.1. RULESET DEFINITIONS
44.2. RULETABLE DEFINITIONS
44.3. ADDITIONAL RULE ATTRIBUTES FOR RULESET OR RULETABLE DEFINITIONS

CHAPTER 45. UPLOADING SPREADSHEET DECISION TABLES TO BUSINESS CENTRAL

CHAPTER 46. CONVERTING AN UPLOADED SPREADSHEET DECISION TABLE TO A GUIDED DECISION
TABLE IN BUSINESS CENTRAL

CHAPTER 47. EXECUTING RULES

CHAPTER 48. NEXT STEPS

PART VI. DESIGNING A DECISION SERVICE USING GUIDED RULES

CHAPTER 49. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

CHAPTER 50. GUIDED RULES

CHAPTER 51. DATA OBJECTS
51.1. CREATING DATA OBJECTS

CHAPTER 52. CREATING GUIDED RULES
52.1. ADDING WHEN CONDITIONS IN GUIDED RULES
52.2. ADDING THEN ACTIONS IN GUIDED RULES
52.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS

52.3.1. Advanced enumeration options for rule assets
52.4. ADDING OTHER RULE OPTIONS

52.4.1. Rule attributes

CHAPTER 53. EXECUTING RULES

CHAPTER 54. NEXT STEPS

PART VII. DESIGNING A DECISION SERVICE USING GUIDED RULE TEMPLATES

CHAPTER 55. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

416
416
417
417

419

420

426

427

428

432

433
433

435

437
439
441

443

447

448

449

455

456

457

461

462
462

464
465
468
471
472
474
475

478

484

485

486

Table of Contents

5

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 56. GUIDED RULE TEMPLATES

CHAPTER 57. DATA OBJECTS
57.1. CREATING DATA OBJECTS

CHAPTER 58. CREATING GUIDED RULE TEMPLATES
58.1. ADDING WHEN CONDITIONS IN GUIDED RULE TEMPLATES
58.2. ADDING THEN ACTIONS IN GUIDED RULE TEMPLATES
58.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS

58.3.1. Advanced enumeration options for rule assets
58.4. ADDING OTHER RULE OPTIONS

58.4.1. Rule attributes

CHAPTER 59. DEFINING DATA TABLES FOR GUIDED RULE TEMPLATES

CHAPTER 60. EXECUTING RULES

CHAPTER 61. NEXT STEPS

PART VIII. TESTING A DECISION SERVICE USING TEST SCENARIOS

CHAPTER 62. TEST SCENARIOS

CHAPTER 63. DATA OBJECTS
63.1. CREATING DATA OBJECTS

CHAPTER 64. TEST SCENARIOS DESIGNER IN BUSINESS CENTRAL
64.1. IMPORTING DATA OBJECTS
64.2. IMPORTING A TEST SCENARIO
64.3. SAVING A TEST SCENARIO
64.4. COPYING A TEST SCENARIO
64.5. DOWNLOADING A TEST SCENARIO
64.6. SWITCHING BETWEEN VERSIONS OF A TEST SCENARIO
64.7. VIEW OR HIDE THE ALERTS PANEL
64.8. CONTEXTUAL MENU OPTIONS
64.9. GLOBAL SETTINGS FOR TEST SCENARIOS

64.9.1. Configuring global settings for rule-based test scenarios
64.9.2. Configuring global settings for DMN-based test scenarios

CHAPTER 65. TEST SCENARIO TEMPLATE
65.1. CREATING A TEST SCENARIO TEMPLATE FOR RULE-BASED TEST SCENARIOS
65.2. USING ALIASES IN RULE-BASED TEST SCENARIOS

CHAPTER 66. TEST TEMPLATE FOR DMN-BASED TEST SCENARIOS
66.1. CREATING A TEST SCENARIO TEMPLATE FOR DMN-BASED TEST SCENARIOS

CHAPTER 67. DEFINING A TEST SCENARIO

CHAPTER 68. BACKGROUND INSTANCE IN TEST SCENARIOS
68.1. ADDING A BACKGROUND DATA IN RULE-BASED TEST SCENARIOS
68.2. ADDING A BACKGROUND DATA IN DMN-BASED TEST SCENARIOS

CHAPTER 69. USING LIST AND MAP COLLECTIONS IN TEST SCENARIOS

CHAPTER 70. EXPRESSION SYNTAX IN TEST SCENARIOS
70.1. EXPRESSION SYNTAX IN RULE-BASED TEST SCENARIOS
70.2. EXPRESSION SYNTAX IN DMN-BASED SCENARIOS

490

491
491

493
494
497
499
501

502
503

506

509

515

516

517

518
518

520
520
521
521
521

522
522
522
523
524
524
525

526
526
527

528
528

529

530
530
531

533

535
535
537

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

6

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 71. RUNNING THE TEST SCENARIOS

CHAPTER 72. RUNNING A TEST SCENARIO LOCALLY

CHAPTER 73. EXPORTING AND IMPORTING TEST SCENARIO SPREADSHEETS
73.1. EXPORTING A TEST SCENARIO SPREADSHEET
73.2. IMPORTING A TEST SCENARIO SPREADSHEET

CHAPTER 74. COVERAGE REPORTS FOR TEST SCENARIOS
74.1. GENERATING COVERAGE REPORTS FOR RULE-BASED TEST SCENARIOS
74.2. GENERATING COVERAGE REPORTS FOR DMN-BASED TEST SCENARIOS

CHAPTER 75. EXECUTING A TEST SCENARIO USING THE KIE SERVER REST API

CHAPTER 76. CREATING TEST SCENARIO USING THE SAMPLE MORTGAGES PROJECT

CHAPTER 77. TEST SCENARIOS (LEGACY) DESIGNER IN BUSINESS CENTRAL
77.1. CREATING AND RUNNING A TEST SCENARIO (LEGACY)

77.1.1. Adding GIVEN facts in test scenarios (legacy)
77.1.2. Adding EXPECT results in test scenarios (legacy)

CHAPTER 78. FEATURE COMPARISON OF LEGACY AND NEW TEST SCENARIO DESIGNER

CHAPTER 79. NEXT STEPS

PART IX. DECISION ENGINE IN RED HAT DECISION MANAGER

CHAPTER 80. DECISION ENGINE IN RED HAT DECISION MANAGER

CHAPTER 81. KIE SESSIONS
81.1. STATELESS KIE SESSIONS

81.1.1. Global variables in stateless KIE sessions
81.2. STATEFUL KIE SESSIONS
81.3. KIE SESSION POOLS

CHAPTER 82. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE
82.1. FACT EQUALITY MODES IN THE DECISION ENGINE

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE
83.1. SALIENCE FOR RULES
83.2. AGENDA GROUPS FOR RULES
83.3. ACTIVATION GROUPS FOR RULES
83.4. RULE EXECUTION MODES AND THREAD SAFETY IN THE DECISION ENGINE
83.5. FACT PROPAGATION MODES IN THE DECISION ENGINE
83.6. AGENDA EVALUATION FILTERS
83.7. RULE UNITS IN DRL RULE SETS

83.7.1. Data sources for rule units
83.7.2. Rule unit execution control
83.7.3. Rule unit identity conflicts

CHAPTER 84. PHREAK RULE ALGORITHM IN THE DECISION ENGINE
84.1. RULE EVALUATION IN PHREAK

84.1.1. Rule evaluation with forward and backward chaining
84.2. RULE BASE CONFIGURATION
84.3. SEQUENTIAL MODE IN PHREAK

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)
85.1. EVENTS IN COMPLEX EVENT PROCESSING

538

539

540
540
540

541
541
542

543

551

554
554
556
557

560

564

565

566

567
567
570
571

574

576
580

582
582
583
584
585
587
588
588
592
593
597

601
601
605
606
608

611
612

Table of Contents

7

. .

. .

. .

85.2. DECLARING FACTS AS EVENTS
85.3. METADATA TAGS FOR EVENTS
85.4. EVENT PROCESSING MODES IN THE DECISION ENGINE

85.4.1. Negative patterns in decision engine stream mode
85.5. PROPERTY-CHANGE SETTINGS AND LISTENERS FOR FACT TYPES
85.6. TEMPORAL OPERATORS FOR EVENTS
85.7. SESSION CLOCK IMPLEMENTATIONS IN THE DECISION ENGINE
85.8. EVENT STREAMS AND ENTRY POINTS

85.8.1. Declaring entry points for rule data
85.9. SLIDING WINDOWS OF TIME OR LENGTH

85.9.1. Declaring sliding windows for rule data
85.10. MEMORY MANAGEMENT FOR EVENTS

CHAPTER 86. DECISION ENGINE QUERIES AND LIVE QUERIES

CHAPTER 87. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING
87.1. CONFIGURING A LOGGING UTILITY IN THE DECISION ENGINE

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE
88.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE
88.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
88.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)

State example using salience
State example using agenda groups
Dynamic facts in the State example

88.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
88.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

Spreadsheet decision table setup
Base pricing rules
Promotional discount rules

88.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION)

Rule execution behavior in the Pet Store example
Pet Store rule file imports, global variables, and Java functions
Pet Store rules with agenda groups
Pet Store example execution

88.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
Politician and Hope classes
Rule definitions for politician honesty
Example execution and audit trail

88.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI
INTEGRATION)

Sudoku example execution and interaction
Sudoku example classes
Sudoku validation rules (validate.drl)
Sudoku solving rules (sudoku.drl)

88.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)

Conway example execution and interaction
Conway example rules with ruleflow groups

88.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
Recursive query and related rules
Transitive closure rule
Reactive query rule

612
613
615
617
618
621

629
631
631

633
633
634

636

638
639

641
641

644
647
650
653
654
655
661

662
665
666

666
667
669
670
674
678
679
680
681

684
684
690
690
691

698
699
700
704
708
709
710

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

8

. .

. .

. .

. .

. .

. .

. .

. .

Queries with unbound arguments in rules

CHAPTER 89. PERFORMANCE TUNING CONSIDERATIONS WITH THE DECISION ENGINE

CHAPTER 90. ADDITIONAL RESOURCES

PART X. INTEGRATING MACHINE LEARNING WITH RED HAT DECISION MANAGER

CHAPTER 91. PRAGMATIC AI

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE
92.1. USING A PMML MODEL WITH A DMN MODEL TO RESOLVE CREDIT CARD TRANSACTION DISPUTES

92.2. CREDIT CARD TRANSACTION DISPUTE EXERCISE PMML FILE

CHAPTER 93. ADDITIONAL RESOURCES

APPENDIX A. VERSIONING INFORMATION

APPENDIX B. CONTACT INFORMATION

711

713

715

716

717

720

720
730

739

740

741

Table of Contents

9

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

10

PREFACE
As a developer of business decisions, you can use Red Hat Decision Manager to develop decision
services using Decision Model and Notation (DMN) models, Drools Rule Language (DRL) rules, guided
decision tables, and other rule-authoring assets.

PREFACE

11

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

12

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PART I. DESIGNING A DECISION SERVICE USING DMN
MODELS

As a business analyst or business rules developer, you can use Decision Model and Notation (DMN) to
model a decision service graphically. The decision requirements of a DMN decision model are
determined by a decision requirements graph (DRG) that is depicted in one or more decision
requirements diagrams (DRDs). A DRD can represent part or all of the overall DRG for the DMN model.
DRDs trace business decisions from start to finish, with each decision node using logic defined in DMN
boxed expressions such as decision tables.

Red Hat Decision Manager provides design and runtime support for DMN 1.2 models at conformance
level 3, and runtime-only support for DMN 1.1 and 1.3 models at conformance level 3. You can design
your DMN models directly in Business Central or with the Red Hat Decision Manager DMN modeler in
VSCode, or import existing DMN models into your Red Hat Decision Manager projects for deployment
and execution. Any DMN 1.1 and 1.3 models (do not contain DMN 1.3 features) that you import into
Business Central, open in the DMN designer, and save are converted to DMN 1.2 models.

For more information about DMN, see the Object Management Group (OMG) Decision Model and
Notation specification.

For a step-by-step tutorial with an example DMN decision service, see Getting started with decision
services.

PART I. DESIGNING A DECISION SERVICE USING DMN MODELS

13

https://www.omg.org/spec/DMN
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 1.1. Decision-authoring assets supported in Red Hat Decision Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

14

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

15

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

16

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

17

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

CHAPTER 2. RED HAT DECISION MANAGER BPMN AND DMN
MODELERS

Red Hat Decision Manager provides the following extensions or applications that you can use to design
Business Process Model and Notation (BPMN) process models and Decision Model and Notation
(DMN) decision models using graphical modelers.

Business Central: Enables you to view and design BPMN models, DMN models, and test
scenario files in a related embedded designer.
To use Business Central, you can set up a development environment containing a Business
Central to design business rules and processes, and a KIE Server to execute and test the
created business rules and processes.

Red Hat Decision Manager VSCode extension: Enables you to view and design BPMN models,
DMN models, and test scenario files in Visual Studio Code (VSCode). The VSCode extension
requires VSCode 1.46.0 or later.
To install the Red Hat Decision Manager VSCode extension, select the Extensions menu option
in VSCode and search for and install the Red Hat Business Automation Bundle extension.

Standalone BPMN and DMN editors: Enable you to view and design BPMN and DMN models
embedded in your web applications. To download the necessary files, you can either use the
NPM artifacts from the NPM registry or download the JavaScript files directly for the DMN
standalone editor library at https://<YOUR_PAGE>/dmn/index.js and for the BPMN
standalone editor library at https://<YOUR_PAGE>/bpmn/index.js.

2.1. INSTALLING THE RED HAT DECISION MANAGER VSCODE
EXTENSION BUNDLE

Red Hat Decision Manager provides a Red Hat Business Automation Bundle VSCode extension that
enables you to design Decision Model and Notation (DMN) decision models, Business Process Model
and Notation (BPMN) 2.0 business processes, and test scenarios directly in VSCode. VSCode is the
preferred integrated development environment (IDE) for developing new business applications. Red
Hat Decision Manager also provides individual DMN Editor and BPMN Editor VSCode extensions for
DMN or BPMN support only, if needed.

IMPORTANT

The editors in the VSCode are partially compatible with the editors in the Business
Central, and several Business Central features are not supported in the VSCode.

Prerequisites

The latest stable version of VSCode is installed.

Procedure

1. In your VSCode IDE, select the Extensions menu option and search for Red Hat Business
Automation Bundle for DMN, BPMN, and test scenario file support.
For DMN or BPMN file support only, you can also search for the individual DMN Editor or
BPMN Editor extensions.

2. When the Red Hat Business Automation Bundle extension appears in VSCode, select it and
click Install.

3. For optimal VSCode editor behavior, after the extension installation is complete, reload or close

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

18

https://npm.registry.redhat.com/
https:/dmn/index.js
https:/bpmn/index.js
https://code.visualstudio.com/

3. For optimal VSCode editor behavior, after the extension installation is complete, reload or close
and re-launch your instance of VSCode.

After you install the VSCode extension bundle, any .dmn, .bpmn, or .bpmn2 files that you open or
create in VSCode are automatically displayed as graphical models. Additionally, any .scesim files that
you open or create are automatically displayed as tabular test scenario models for testing the
functionality of your business decisions.

If the DMN, BPMN, or test scenario modelers open only the XML source of a DMN, BPMN, or test
scenario file and displays an error message, review the reported errors and the model file to ensure that
all elements are correctly defined.

NOTE

For new DMN or BPMN models, you can also enter dmn.new or bpmn.new in a web
browser to design your DMN or BPMN model in the online modeler. When you finish
creating your model, you can click Download in the online modeler page to import your
DMN or BPMN file into your Red Hat Decision Manager project in VSCode.

2.2. CONFIGURING THE RED HAT DECISION MANAGER STANDALONE
EDITORS

Red Hat Decision Manager provides standalone editors that are distributed in a self-contained library
providing an all-in-one JavaScript file for each editor. The JavaScript file uses a comprehensive API to
set and control the editor.

You can install the standalone editors in three ways:

Download each JavaScript file manually

Use the NPM package

Procedure

1. Install the standalone editors using one of the following methods:
Download each JavaScript file manually: For this method, follow these steps:

a. Download the JavaScript files.

b. Add the downloaded Javascript files to your hosted application.

c. Add the following <script> tag to your HTML page:

Script tag for your HTML page for the DMN editor

<script src="https://<YOUR_PAGE>/dmn/index.js"></script>

Script tag for your HTML page for the BPMN editor

<script src="https://<YOUR_PAGE>/bpmn/index.js"></script>

Use the NPM package: For this method, follow these steps:

a. Add the NPM package to your package.json file:

CHAPTER 2. RED HAT DECISION MANAGER BPMN AND DMN MODELERS

19

Adding the NPM package

npm install @redhat/kogito-tooling-kie-editors-standalone

b. Import each editor library to your TypeScript file:

Importing each editor

import * as DmnEditor from "@redhat/kogito-tooling-kie-editors-standalone/dist/dmn"
import * as BpmnEditor from "@redhat/kogito-tooling-kie-editors-standalone/dist/bpmn"

2. After you install the standalone editors, open the required editor by using the provided editor
API, as shown in the following example for opening a DMN editor. The API is the same for each
editor.

Opening the DMN standalone editor

Use the following parameters with the editor API:

Table 2.1. Example parameters

Parameter Description

container HTML element in which the editor is appended.

initialContent Promise to a DMN model content. This parameter can be
empty, as shown in the following examples:

Promise.resolve("")

Promise.resolve("
<DIAGRAM_CONTENT_DIRECTLY_HERE>")

fetch("MyDmnModel.dmn").then(content ⇒
content.text())

const editor = DmnEditor.open({
 container: document.getElementById("dmn-editor-container"),
 initialContent: Promise.resolve(""),
 readOnly: false,
 origin: "",
 resources: new Map([
 [
 "MyIncludedModel.dmn",
 {
 contentType: "text",
 content: Promise.resolve("")
 }
]
])
});

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

20

readOnly (Optional) Enables you to allow changes in the editor. Set to false
(default) to allow content editing and true for read-only
mode in editor.

origin (Optional) Origin of the repository. The default value is
window.location.origin.

resources (Optional) Map of resources for the editor. For example, this
parameter is used to provide included models for the DMN
editor or work item definitions for the BPMN editor. Each
entry in the map contains a resource name and an object
that consists of content-type (text or binary) and
content (similar to the initialContent parameter).

Parameter Description

The returned object contains the methods that are required to manipulate the editor.

Table 2.2. Returned object methods

Method Description

getContent(): Promise<string> Returns a promise containing the editor content.

setContent(content: string): void Sets the content of the editor.

getPreview(): Promise<string> Returns a promise containing an SVG string of the current
diagram.

subscribeToContentChanges(ca
llback: (isDirty: boolean) ⇒
void): (isDirty: boolean) ⇒ void

Sets a callback to be called when the content changes in
the editor and returns the same callback to be used for
unsubscription.

unsubscribeToContentChanges(
callback: (isDirty: boolean) ⇒
void): void

Unsubscribes the passed callback when the content
changes in the editor.

markAsSaved(): void Resets the editor state that indicates that the content in
the editor is saved. Also, it activates the subscribed
callbacks related to content change.

undo(): void Undoes the last change in the editor. Also, it activates the
subscribed callbacks related to content change.

redo(): void Redoes the last undone change in the editor. Also, it
activates the subscribed callbacks related to content
change.

CHAPTER 2. RED HAT DECISION MANAGER BPMN AND DMN MODELERS

21

close(): void Closes the editor.

getElementPosition(selector:
string): Promise<Rect>

Provides an alternative to extend the standard query
selector when an element lives inside a canvas or a video
component. The selector parameter must follow the
<PROVIDER>:::<SELECT> format, such as
Canvas:::MySquare or Video:::PresenterHand. This
method returns a Rect representing the element position.

envelopeApi:
MessageBusClientApi<KogitoEd
itorEnvelopeApi>

This is an advanced editor API. For more information about
advanced editor API, see MessageBusClientApi and
KogitoEditorEnvelopeApi.

Method Description

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

22

https://github.com/kiegroup/kogito-tooling/blob/master/packages/envelope-bus/src/api/index.ts#L43-L56
https://github.com/kiegroup/kogito-tooling/blob/master/packages/editor/src/api/KogitoEditorEnvelopeApi.ts#L34-L41

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN
MODELS USING MAVEN

You can use Maven archetypes to develop DMN and BPMN models in VSCode using the Red Hat
Decision Manager VSCode extension instead of Business Central. You can then integrate your
archetypes with your Red Hat Decision Manager decision and process services in Business Central as
needed. This method of developing DMN and BPMN models is helpful for building new business
applications using the Red Hat Decision Manager VSCode extension.

Procedure

1. In a command terminal, navigate to a local folder where you want to store the new Red Hat
Decision Manager project.

2. Enter the following command to generate a project within a defined folder using the following
Maven archetype:

Generating a project using Maven archetype

mvn archetype:generate \
 -DarchetypeGroupId=org.kie \
 -DarchetypeArtifactId=kie-kjar-archetype \
 -DarchetypeVersion=7.52.0.Final-redhat-00007

This command generates a Maven project with required dependencies and generates required
directories and files to build your business application. You can set up and use Git version-
control system (recommended) when developing a project.

If you want to generate multiple projects in the same directory, you can specify the artifactId
and groupId of the generated business application by adding -DgroupId=<groupid> -
DartifactId=<artifactId> to the previous command.

3. In your VSCode IDE, click File, select Open Folder, and navigate to the folder that is generated
using the previous command.

4. Before creating the first asset, set a package for your business application, for example,
org.kie.businessapp, and create respective directories in the following paths:

PROJECT_HOME/src/main/java

PROJECT_HOME/src/main/resources

PROJECT_HOME/src/test/resources

For example, you can create PROJECT_HOME/src/main/java/org/kie/businessapp for
org.kie.businessapp package.

5. Use VSCode to create assets for your business application. You can create the assets
supported by Red Hat Decision Manager VSCode extension using the following ways:

To create a business process, create a new file with .bpmn or .bpmn2 in
PROJECT_HOME/src/main/java/org/kie/businessapp directory, such as Process.bpmn.

To create a DMN model, create a new file with .dmn in

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN

23

To create a DMN model, create a new file with .dmn in
PROJECT_HOME/src/main/java/org/kie/businessapp directory, such as
AgeDecision.dmn.

To create a test scenario simulation model, create a new file with .scesim in
PROJECT_HOME/src/main/java/org/kie/businessapp directory, such as
TestAgeScenario.scesim.

6. After you create the assets in your Maven archetype, navigate to the root directory (contains
pom.xml) of the project in the command line and run the following command to build the
knowledge JAR (KJAR) of your project:

mvn clean install

If the build fails, address any problems described in the command line error messages and try
again to validate the project until the build is successful. However, if the build is successful, you
can find the artifact of your business application in PROJECT_HOME/target directory.

NOTE

Use mvn clean install command often to validate your project after each major
change during development.

You can deploy the generated knowledge JAR (KJAR) of your business application on a running KIE
Server using the REST API. For more information about using REST API, see Interacting with Red Hat
Decision Manager using KIE APIs.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

24

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)
Decision Model and Notation (DMN) is a standard established by the Object Management Group
(OMG) for describing and modeling operational decisions. DMN defines an XML schema that enables
DMN models to be shared between DMN-compliant platforms and across organizations so that
business analysts and business rules developers can collaborate in designing and implementing DMN
decision services. The DMN standard is similar to and can be used together with the Business Process
Model and Notation (BPMN) standard for designing and modeling business processes.

For more information about the background and applications of DMN, see the OMG Decision Model and
Notation specification.

4.1. DMN CONFORMANCE LEVELS

The DMN specification defines three incremental levels of conformance in a software implementation. A
product that claims compliance at one level must also be compliant with any preceding levels. For
example, a conformance level 3 implementation must also include the supported components in
conformance levels 1 and 2. For the formal definitions of each conformance level, see the OMG Decision
Model and Notation specification.

The following list summarizes the three DMN conformance levels:

Conformance level 1

A DMN conformance level 1 implementation supports decision requirement diagrams (DRDs),
decision logic, and decision tables, but decision models are not executable. Any language can be used
to define the expressions, including natural, unstructured languages.

Conformance level 2

A DMN conformance level 2 implementation includes the requirements in conformance level 1, and
supports Simplified Friendly Enough Expression Language (S-FEEL) expressions and fully
executable decision models.

Conformance level 3

A DMN conformance level 3 implementation includes the requirements in conformance levels 1 and
2, and supports Friendly Enough Expression Language (FEEL) expressions, the full set of boxed
expressions, and fully executable decision models.

Red Hat Decision Manager provides design and runtime support for DMN 1.2 models at conformance
level 3, and runtime-only support for DMN 1.1 and 1.3 models at conformance level 3. You can design
your DMN models directly in Business Central or with the Red Hat Decision Manager DMN modeler in
VSCode, or import existing DMN models into your Red Hat Decision Manager projects for deployment
and execution. Any DMN 1.1 and 1.3 models (do not contain DMN 1.3 features) that you import into
Business Central, open in the DMN designer, and save are converted to DMN 1.2 models.

4.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS

A decision requirements diagram (DRD) is a visual representation of your DMN model. A DRD can
represent part or all of the overall decision requirements graph (DRG) for the DMN model. DRDs trace
business decisions using decision nodes, business knowledge models, sources of business knowledge,
input data, and decision services.

The following table summarizes the components in a DRD:

Table 4.1. DRD components

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

25

https://www.omg.org/spec/DMN
https://www.omg.org/spec/DMN

Component Description Notation

Elements Decision Node where one or more input elements
determine an output based on defined
decision logic.

Business
knowledge model

Reusable function with one or more
decision elements. Decisions that have
the same logic but depend on different
sub-input data or sub-decisions use
business knowledge models to determine
which procedure to follow.

Knowledge source External authorities, documents,
committees, or policies that regulate a
decision or business knowledge model.
Knowledge sources are references to
real-world factors rather than executable
business rules.

Input data Information used in a decision node or a
business knowledge model. Input data
usually includes business-level concepts
or objects relevant to the business, such
as loan applicant data used in a lending
strategy.

Decision service Top-level decision containing a set of
reusable decisions published as a service
for invocation. A decision service can be
invoked from an external application or a
BPMN business process.

Requirement
connectors

Information
requirement

Connection from an input data node or
decision node to another decision node
that requires the information.

Knowledge
requirement

Connection from a business knowledge
model to a decision node or to another
business knowledge model that invokes
the decision logic.

Authority
requirement

Connection from an input data node or a
decision node to a dependent knowledge
source or from a knowledge source to a
decision node, business knowledge
model, or another knowledge source.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

26

Artifacts Text annotation Explanatory note associated with an input
data node, decision node, business
knowledge model, or knowledge source.

Association Connection from an input data node,
decision node, business knowledge
model, or knowledge source to a text
annotation.

Component Description Notation

The following table summarizes the permitted connectors between DRD elements:

Table 4.2. DRD connector rules

Starts from Connects to Connection type Example

Decision Decision Information
requirement

Business
knowledge model

Decision Knowledge
requirement

Business
knowledge model

Decision service Decision Knowledge
requirement

Business
knowledge model

Input data Decision Information
requirement

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

27

Knowledge source Authority
requirement

Knowledge source Decision Authority
requirement

Business
knowledge model

Knowledge source

Decision Text annotation Association

Business
knowledge model

Knowledge source

Input data

Starts from Connects to Connection type Example

The following example DRD illustrates some of these DMN components in practice:

Figure 4.1. Example DRD: Loan prequalification

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

28

Figure 4.1. Example DRD: Loan prequalification

The following example DRD illustrates DMN components that are part of a reusable decision service:

Figure 4.2. Example DRD: Phone call handling as a decision service

In a DMN decision service node, the decision nodes in the bottom segment incorporate input data from
outside of the decision service to arrive at a final decision in the top segment of the decision service
node. The resulting top-level decisions from the decision service are then implemented in any
subsequent decisions or business knowledge requirements of the DMN model. You can reuse DMN
decision services in other DMN models to apply the same decision logic with different input data and
different outgoing connections.

4.3. RULE EXPRESSIONS IN FEEL

Friendly Enough Expression Language (FEEL) is an expression language defined by the Object
Management Group (OMG) DMN specification. FEEL expressions define the logic of a decision in a
DMN model. FEEL is designed to facilitate both decision modeling and execution by assigning
semantics to the decision model constructs. FEEL expressions in decision requirements diagrams
(DRDs) occupy table cells in boxed expressions for decision nodes and business knowledge models.

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

29

For more information about FEEL in DMN, see the OMG Decision Model and Notation specification .

4.3.1. Data types in FEEL

Friendly Enough Expression Language (FEEL) supports the following data types:

Numbers

Strings

Boolean values

Dates

Time

Date and time

Days and time duration

Years and months duration

Functions

Contexts

Ranges (or intervals)

Lists

NOTE

The DMN specification currently does not provide an explicit way of declaring a variable
as a function, context, range, or list, but Red Hat Decision Manager extends the DMN
built-in types to support variables of these types.

The following list describes each data type:

Numbers

Numbers in FEEL are based on the IEEE 754-2008 Decimal 128 format, with 34 digits of precision.
Internally, numbers are represented in Java as BigDecimals with MathContext DECIMAL128. FEEL
supports only one number data type, so the same type is used to represent both integers and
floating point numbers.
FEEL numbers use a dot (.) as a decimal separator. FEEL does not support -INF, +INF, or NaN. FEEL
uses null to represent invalid numbers.

Red Hat Decision Manager extends the DMN specification and supports additional number
notations:

Scientific: You can use scientific notation with the suffix e<exp> or E<exp>. For example,
1.2e3 is the same as writing the expression 1.2*10**3, but is a literal instead of an expression.

Hexadecimal: You can use hexadecimal numbers with the prefix 0x. For example, 0xff is the
same as the decimal number 255. Both uppercase and lowercase letters are supported. For
example, 0XFF is the same as 0xff.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

30

https://www.omg.org/spec/DMN
http://ieeexplore.ieee.org/document/4610935/
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

Type suffixes: You can use the type suffixes f, F, d, D, l, and L. These suffixes are ignored.

Strings

Strings in FEEL are any sequence of characters delimited by double quotation marks.

Example

"John Doe"

Boolean values

FEEL uses three-valued boolean logic, so a boolean logic expression may have values true, false, or
null.

Dates

Date literals are not supported in FEEL, but you can use the built-in date() function to construct date
values. Date strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The format is "YYYY-MM-DD" where YYYY is the year with four digits, MM is the number
of the month with two digits, and DD is the number of the day.
Example:

date("2017-06-23")

Date objects have time equal to "00:00:00", which is midnight. The dates are considered to be local,
without a timezone.

Time

Time literals are not supported in FEEL, but you can use the built-in time() function to construct time
values. Time strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The format is "hh:mm:ss[.uuu][(+-)hh:mm]" where hh is the hour of the day (from 00 to
23), mm is the minutes in the hour, and ss is the number of seconds in the minute. Optionally, the
string may define the number of milliseconds (uuu) within the second and contain a positive (+) or
negative (-) offset from UTC time to define its timezone. Instead of using an offset, you can use the
letter z to represent the UTC time, which is the same as an offset of -00:00. If no offset is defined,
the time is considered to be local.
Examples:

time("04:25:12")
time("14:10:00+02:00")
time("22:35:40.345-05:00")
time("15:00:30z")

Time values that define an offset or a timezone cannot be compared to local times that do not define
an offset or a timezone.

Date and time

Date and time literals are not supported in FEEL, but you can use the built-in date and time()
function to construct date and time values. Date and time strings in FEEL follow the format defined
in the XML Schema Part 2: Datatypes document. The format is "<date>T<time>", where <date> and
<time> follow the prescribed XML schema formatting, conjoined by T.
Examples:

date and time("2017-10-22T23:59:00")

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

31

https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#dateTime

date and time("2017-06-13T14:10:00+02:00")
date and time("2017-02-05T22:35:40.345-05:00")
date and time("2017-06-13T15:00:30z")

Date and time values that define an offset or a timezone cannot be compared to local date and time
values that do not define an offset or a timezone.

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dateTime as a synonym of date and time.

Days and time duration

Days and time duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Days and time duration strings in FEEL follow
the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only days,
hours, minutes and seconds. Months and years are not supported.
Examples:

duration("P1DT23H12M30S")
duration("P23D")
duration("PT12H")
duration("PT35M")

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dayTimeDuration as a synonym of days and time
duration.

Years and months duration

Years and months duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Years and months duration strings in FEEL
follow the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only
years and months. Days, hours, minutes, or seconds are not supported.
Examples:

duration("P3Y5M")
duration("P2Y")
duration("P10M")
duration("P25M")

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword yearMonthDuration as a synonym of years and months
duration.

Functions

FEEL has function literals (or anonymous functions) that you can use to create functions. The DMN

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

32

https://www.w3.org/TR/xmlschema-2/#duration
https://www.w3.org/TR/xmlschema-2/#duration

FEEL has function literals (or anonymous functions) that you can use to create functions. The DMN
specification currently does not provide an explicit way of declaring a variable as a function, but Red
Hat Decision Manager extends the DMN built-in types to support variables of functions.
Example:

function(a, b) a + b

In this example, the FEEL expression creates a function that adds the parameters a and b and
returns the result.

Contexts

FEEL has context literals that you can use to create contexts. A context in FEEL is a list of key and
value pairs, similar to maps in languages like Java. The DMN specification currently does not provide
an explicit way of declaring a variable as a context, but Red Hat Decision Manager extends the DMN
built-in types to support variables of contexts.
Example:

{ x : 5, y : 3 }

In this example, the expression creates a context with two entries, x and y, representing a coordinate
in a chart.

In DMN 1.2, another way to create contexts is to create an item definition that contains the list of
keys as attributes, and then declare the variable as having that item definition type.

The Red Hat Decision Manager DMN API supports DMN ItemDefinition structural types in a
DMNContext represented in two ways:

User-defined Java type: Must be a valid JavaBeans object defining properties and getters
for each of the components in the DMN ItemDefinition. If necessary, you can also use the
@FEELProperty annotation for those getters representing a component name which would
result in an invalid Java identifier.

java.util.Map interface: The map needs to define the appropriate entries, with the keys
corresponding to the component name in the DMN ItemDefinition.

Ranges (or intervals)

FEEL has range literals that you can use to create ranges or intervals. A range in FEEL is a value that
defines a lower and an upper bound, where either can be open or closed. The DMN specification
currently does not provide an explicit way of declaring a variable as a range, but Red Hat Decision
Manager extends the DMN built-in types to support variables of ranges.
The syntax of a range is defined in the following formats:

range := interval_start endpoint '..' endpoint interval_end
interval_start := open_start | closed_start
open_start := '(' | ']'
closed_start := '['
interval_end := open_end | closed_end
open_end := ')' | '['
closed_end := ']'
endpoint := expression

The expression for the endpoint must return a comparable value, and the lower bound endpoint
must be lower than the upper bound endpoint.

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

33

For example, the following literal expression defines an interval between 1 and 10, including the
boundaries (a closed interval on both endpoints):

[1 .. 10]

The following literal expression defines an interval between 1 hour and 12 hours, including the lower
boundary (a closed interval), but excluding the upper boundary (an open interval):

[duration("PT1H") .. duration("PT12H"))

You can use ranges in decision tables to test for ranges of values, or use ranges in simple literal
expressions. For example, the following literal expression returns true if the value of a variable x is
between 0 and 100:

x in [1 .. 100]

Lists

FEEL has list literals that you can use to create lists of items. A list in FEEL is represented by a
comma-separated list of values enclosed in square brackets. The DMN specification currently does
not provide an explicit way of declaring a variable as a list, but Red Hat Decision Manager extends
the DMN built-in types to support variables of lists.
Example:

[2, 3, 4, 5]

All lists in FEEL contain elements of the same type and are immutable. Elements in a list can be
accessed by index, where the first element is 1. Negative indexes can access elements starting from
the end of the list so that -1 is the last element.

For example, the following expression returns the second element of a list x:

x[2]

The following expression returns the second-to-last element of a list x:

x[-2]

Elements in a list can also be counted by the function count, which uses the list of elements as the
parameter.

For example, the following expression returns 4:

count([2, 3, 4, 5])

4.3.2. Built-in functions in FEEL

To promote interoperability with other platforms and systems, Friendly Enough Expression Language
(FEEL) includes a library of built-in functions. The built-in FEEL functions are implemented in the
Drools Decision Model and Notation (DMN) engine so that you can use the functions in your DMN
decision services.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

34

The following sections describe each built-in FEEL function, listed in the format NAME(PARAMETERS
). For more information about FEEL functions in DMN, see the OMG Decision Model and Notation
specification.

4.3.2.1. Conversion functions

The following functions support conversion between values of different types. Some of these functions
use specific string formats, such as the following examples:

date string: Follows the format defined in the XML Schema Part 2: Datatypes document, such
as 2020-06-01

time string: Follows one of the following formats:

Format defined in the XML Schema Part 2: Datatypes document, such as 23:59:00z

Format for a local time defined by ISO 8601 followed by @ and an IANA Timezone, such as
00:01:00@Etc/UTC

date time string: Follows the format of a date string followed by T and a time string, such as
2012-12-25T11:00:00Z

duration string: Follows the format of days and time duration and years and months
duration defined in the XQuery 1.0 and XPath 2.0 Data Model , such as P1Y2M

date(from) - using date

Converts from to a date value.

Table 4.3. Parameters

Parameter Type Format

from string date string

Example

date(from) - using date and time

Converts from to a date value and sets time components to null.

Table 4.4. Parameters

Parameter Type

from date and time

Example

date("2012-12-25") - date("2012-12-24") = duration("P1D")

date(date and time("2012-12-25T11:00:00Z")) = date("2012-12-25")

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

35

https://www.omg.org/spec/DMN
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xpath-datamodel/#types

date(year, month, day)

Produces a date from the specified year, month, and day values.

Table 4.5. Parameters

Parameter Type

year number

month number

day number

Example

date and time(date, time)

Produces a date and time from the specified date and ignores any time components and the
specified time.

Table 4.6. Parameters

Parameter Type

date date or date and time

time time

Example

date and time(from)

Produces a date and time from the specified string.

Table 4.7. Parameters

Parameter Type Format

from string date time string

Example

date(2012, 12, 25) = date("2012-12-25")

date and time ("2012-12-24T23:59:00") = date and time(date("2012-12-24"), time("23:59:00"))

date and time("2012-12-24T23:59:00") + duration("PT1M") = date and time("2012-12-
25T00:00:00")

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

36

time(from)

Produces a time from the specified string.

Table 4.8. Parameters

Parameter Type Format

from string time string

Example

time(from)

Produces a time from the specified parameter and ignores any date components.

Table 4.9. Parameters

Parameter Type

from time or date and time

Example

time(hour, minute, second, offset?)

Produces a time from the specified hour, minute, and second component values.

Table 4.10. Parameters

Parameter Type

hour number

minute number

second number

offset (Optional) days and time duration or null

Example

time("23:59:00z") + duration("PT2M") = time("00:01:00@Etc/UTC")

time(date and time("2012-12-25T11:00:00Z")) = time("11:00:00Z")

time("23:59:00z") = time(23, 59, 0, duration("PT0H"))

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

37

number(from, grouping separator, decimal separator)

Converts from to a number using the specified separators.

Table 4.11. Parameters

Parameter Type

from string representing a valid number

grouping separator Space (), comma (,), period (.), or null

decimal separator Same types as grouping separator, but the values cannot match

Example

string(from)

Provides a string representation of the specified parameter.

Table 4.12. Parameters

Parameter Type

from Non-null value

Examples

duration(from)

Converts from to a days and time duration value or years and months duration value.

Table 4.13. Parameters

Parameter Type Format

from string duration string

Examples

number("1 000,0", " ", ",") = number("1,000.0", ",", ".")

string(1.1) = "1.1"
string(null) = null

date and time("2012-12-24T23:59:00") - date and time("2012-12-22T03:45:00") = duration(
"P2DT20H14M")
duration("P2Y2M") = duration("P26M")

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

38

years and months duration(from, to)

Calculates the years and months duration between the two specified parameters.

Table 4.14. Parameters

Parameter Type

from date or date and time

to date or date and time

Example

4.3.2.2. Boolean functions

The following functions support Boolean operations.

not(negand)

Performs the logical negation of the negand operand.

Table 4.15. Parameters

Parameter Type

negand boolean

Examples

4.3.2.3. String functions

The following functions support string operations.

NOTE

In FEEL, Unicode characters are counted based on their code points.

substring(string, start position, length?)

Returns the substring from the start position for the specified length. The first character is at
position value 1.

Table 4.16. Parameters

years and months duration(date("2011-12-22"), date("2013-08-24")) = duration("P1Y8M")

not(true) = false
not(null) = null

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

39

Parameter Type

string string

start position number

length (Optional) number

Examples

NOTE

In FEEL, the string literal "\U01F40Eab" is the �ab string (horse symbol followed by a
and b).

string length(string)

Calculates the length of the specified string.

Table 4.17. Parameters

Parameter Type

string string

Examples

upper case(string)

Produces an uppercase version of the specified string.

Table 4.18. Parameters

Parameter Type

string string

Example

substring("testing",3) = "sting"
substring("testing",3,3) = "sti"
substring("testing", -2, 1) = "n"
substring("\U01F40Eab", 2) = "ab"

string length("tes") = 3
string length("\U01F40Eab") = 3

upper case("aBc4") = "ABC4"

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

40

lower case(string)

Produces a lowercase version of the specified string.

Table 4.19. Parameters

Parameter Type

string string

Example

substring before(string, match)

Calculates the substring before the match.

Table 4.20. Parameters

Parameter Type

string string

match string

Examples

substring after(string, match)

Calculates the substring after the match.

Table 4.21. Parameters

Parameter Type

string string

match string

Examples

lower case("aBc4") = "abc4"

substring before("testing", "ing") = "test"
substring before("testing", "xyz") = ""

substring after("testing", "test") = "ing"
substring after("", "a") = ""

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

41

replace(input, pattern, replacement, flags?)

Calculates the regular expression replacement.

Table 4.22. Parameters

Parameter Type

input string

pattern string

replacement string

flags (Optional) string

NOTE

This function uses regular expression parameters as defined in XQuery 1.0 and XPath
2.0 Functions and Operators.

Example

contains(string, match)

Returns true if the string contains the match.

Table 4.23. Parameters

Parameter Type

string string

match string

Example

starts with(string, match)

Returns true if the string starts with the match

Table 4.24. Parameters

replace("abcd", "(ab)|(a)", "[1=$1][2=$2]") = "[1=ab][2=]cd"

contains("testing", "to") = false

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

42

https://www.w3.org/TR/xquery-operators/#regex-syntax

Parameter Type

string string

match string

Example

ends with(string, match)

Returns true if the string ends with the match.

Table 4.25. Parameters

Parameter Type

string string

match string

Example

matches(input, pattern, flags?)

Returns true if the input matches the regular expression.

Table 4.26. Parameters

Parameter Type

input string

pattern string

flags (Optional) string

NOTE

This function uses regular expression parameters as defined in XQuery 1.0 and XPath
2.0 Functions and Operators.

Example

starts with("testing", "te") = true

ends with("testing", "g") = true

matches("teeesting", "^te*sting") = true

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

43

https://www.w3.org/TR/xquery-operators/#regex-syntax

split(string, delimiter)

Returns a list of the original string and splits it at the delimiter regular expression pattern.

Table 4.27. Parameters

Parameter Type

string string

delimiter string for a regular expression pattern

NOTE

This function uses regular expression parameters as defined in XQuery 1.0 and XPath
2.0 Functions and Operators.

Examples

4.3.2.4. List functions

The following functions support list operations.

NOTE

In FEEL, the index of the first element in a list is 1. The index of the last element in a list
can be identified as -1.

list contains(list, element)

Returns true if the list contains the element.

Table 4.28. Parameters

Parameter Type

list list

element Any type, including null

Example

count(list)

Counts the elements in the list.

split("John Doe", "\\s") = ["John", "Doe"]
split("a;b;c;;", ";") = ["a","b","c","",""]

list contains([1,2,3], 2) = true

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

44

https://www.w3.org/TR/xquery-operators/#regex-syntax

Table 4.29. Parameters

Parameter Type

list list

Examples

min(list)

Returns the minimum comparable element in the list.

Table 4.30. Parameters

Parameter Type

list list

Alternative signature

min(e1, e2, ..., eN)

Examples

max(list)

Returns the maximum comparable element in the list.

Table 4.31. Parameters

Parameter Type

list list

Alternative signature

max(e1, e2, ..., eN)

Examples

count([1,2,3]) = 3
count([]) = 0
count([1,[2,3]]) = 2

min([1,2,3]) = 1
min(1) = 1
min([1]) = 1

max(1,2,3) = 3
max([]) = null

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

45

sum(list)

Returns the sum of the numbers in the list.

Table 4.32. Parameters

Parameter Type

list list of number elements

Alternative signature

sum(n1, n2, ..., nN)

Examples

mean(list)

Calculates the average (arithmetic mean) of the elements in the list.

Table 4.33. Parameters

Parameter Type

list list of number elements

Alternative signature

mean(n1, n2, ..., nN)

Examples

all(list)

Returns true if all elements in the list are true.

Table 4.34. Parameters

sum([1,2,3]) = 6
sum(1,2,3) = 6
sum(1) = 1
sum([]) = null

mean([1,2,3]) = 2
mean(1,2,3) = 2
mean(1) = 1
mean([]) = null

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

46

Parameter Type

list list of boolean elements

Alternative signature

all(b1, b2, ..., bN)

Examples

any(list)

Returns true if any element in the list is true.

Table 4.35. Parameters

Parameter Type

list list of boolean elements

Alternative signature

any(b1, b2, ..., bN)

Examples

sublist(list, start position, length?)

Returns the sublist from the start position, limited to the length elements.

Table 4.36. Parameters

Parameter Type

list list

start position number

all([false,null,true]) = false
all(true) = true
all([true]) = true
all([]) = true
all(0) = null

any([false,null,true]) = true
any(false) = false
any([]) = false
any(0) = null

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

47

length (Optional) number

Parameter Type

Example

append(list, item)

Creates a list that is appended to the item or items.

Table 4.37. Parameters

Parameter Type

list list

item Any type

Example

concatenate(list)

Creates a list that is the result of the concatenated lists.

Table 4.38. Parameters

Parameter Type

list list

Example

insert before(list, position, newItem)

Creates a list with the newItem inserted at the specified position.

Table 4.39. Parameters

Parameter Type

list list

position number

sublist([4,5,6], 1, 2) = [4,5]

append([1], 2, 3) = [1,2,3]

concatenate([1,2],[3]) = [1,2,3]

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

48

newItem Any type

Parameter Type

Example

remove(list, position)

Creates a list with the removed element excluded from the specified position.

Table 4.40. Parameters

Parameter Type

list list

position number

Example

reverse(list)

Returns a reversed list.

Table 4.41. Parameters

Parameter Type

list list

Example

index of(list, match)

Returns indexes matching the element.

Parameters

list of type list

match of any type

Table 4.42. Parameters

insert before([1,3],1,2) = [2,1,3]

remove([1,2,3], 2) = [1,3]

reverse([1,2,3]) = [3,2,1]

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

49

Parameter Type

list list

match Any type

Example

union(list)

Returns a list of all the elements from multiple lists and excludes duplicates.

Table 4.43. Parameters

Parameter Type

list list

Example

distinct values(list)

Returns a list of elements from a single list and excludes duplicates.

Table 4.44. Parameters

Parameter Type

list list

Example

flatten(list)

Returns a flattened list.

Table 4.45. Parameters

Parameter Type

list list

Example

index of([1,2,3,2],2) = [2,4]

union([1,2],[2,3]) = [1,2,3]

distinct values([1,2,3,2,1]) = [1,2,3]

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

50

product(list)

Returns the product of the numbers in the list.

Table 4.46. Parameters

Parameter Type

list list of number elements

Alternative signature

product(n1, n2, ..., nN)

Examples

median(list)

Returns the median of the numbers in the list. If the number of elements is odd, the result is the
middle element. If the number of elements is even, the result is the average of the two middle
elements.

Table 4.47. Parameters

Parameter Type

list list of number elements

Alternative signature

median(n1, n2, ..., nN)

Examples

stddev(list)

Returns the standard deviation of the numbers in the list.

Table 4.48. Parameters

flatten([[1,2],[[3]], 4]) = [1,2,3,4]

product([2, 3, 4]) = 24
product(2, 3, 4) = 24

median(8, 2, 5, 3, 4) = 4
median([6, 1, 2, 3]) = 2.5
median([]) = null

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

51

Parameter Type

list list of number elements

Alternative signature

stddev(n1, n2, ..., nN)

Examples

mode(list)

Returns the mode of the numbers in the list. If multiple elements are returned, the numbers are
sorted in ascending order.

Table 4.49. Parameters

Parameter Type

list list of number elements

Alternative signature

mode(n1, n2, ..., nN)

Examples

4.3.2.5. Numeric functions

The following functions support number operations.

decimal(n, scale)

Returns a number with the specified scale.

Table 4.50. Parameters

Parameter Type

n number

stddev(2, 4, 7, 5) = 2.081665999466132735282297706979931
stddev([47]) = null
stddev(47) = null
stddev([]) = null

mode(6, 3, 9, 6, 6) = [6]
mode([6, 1, 9, 6, 1]) = [1, 6]
mode([]) = []

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

52

scale number in the range [−6111..6176]

Parameter Type

NOTE

This function is implemented to be consistent with the FEEL:number definition for
rounding decimal numbers to the nearest even decimal number.

Examples

floor(n)

Returns the greatest integer that is less than or equal to the specified number.

Table 4.51. Parameters

Parameter Type

n number

Examples

ceiling(n)

Returns the smallest integer that is greater than or equal to the specified number.

Table 4.52. Parameters

Parameter Type

n number

Examples

decimal(1/3, 2) = .33
decimal(1.5, 0) = 2
decimal(2.5, 0) = 2
decimal(1.035, 2) = 1.04
decimal(1.045, 2) = 1.04
decimal(1.055, 2) = 1.06
decimal(1.065, 2) = 1.06

floor(1.5) = 1
floor(-1.5) = -2

ceiling(1.5) = 2
ceiling(-1.5) = -1

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

53

abs(n)

Returns the absolute value.

Table 4.53. Parameters

Parameter Type

n number, days and time duration, or years and months duration

Examples

modulo(dividend, divisor)

Returns the remainder of the division of the dividend by the divisor. If either the dividend or divisor is
negative, the result is of the same sign as the divisor.

NOTE

This function is also expressed as modulo(dividend, divisor) = dividend -
divisor*floor(dividen d/divisor).

Table 4.54. Parameters

Parameter Type

dividend number

divisor number

Examples

sqrt(number)

Returns the square root of the specified number.

Table 4.55. Parameters

abs(10) = 10
abs(-10) = 10
abs(@"PT5H") = @"PT5H"
abs(@"-PT5H") = @"PT5H"

modulo(12, 5) = 2
modulo(-12,5)= 3
modulo(12,-5)= -3
modulo(-12,-5)= -2
modulo(10.1, 4.5)= 1.1
modulo(-10.1, 4.5)= 3.4
modulo(10.1, -4.5)= -3.4
modulo(-10.1, -4.5)= -1.1

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

54

Parameter Type

n number

Example

log(number)

Returns the logarithm of the specified number.

Table 4.56. Parameters

Parameter Type

n number

Example

exp(number)

Returns Euler’s number e raised to the power of the specified number.

Table 4.57. Parameters

Parameter Type

n number

Example

odd(number)

Returns true if the specified number is odd.

Table 4.58. Parameters

Parameter Type

n number

Examples

sqrt(16) = 4

decimal(log(10), 2) = 2.30

decimal(exp(5), 2) = 148.41

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

55

even(number)

Returns true if the specified number is even.

Table 4.59. Parameters

Parameter Type

n number

Examples

4.3.2.6. Date and time functions

The following functions support date and time operations.

is(value1, value2)

Returns true if both values are the same element in the FEEL semantic domain.

Table 4.60. Parameters

Parameter Type

value1 Any type

value2 Any type

Examples

4.3.2.7. Range functions

The following functions support temporal ordering operations to establish relationships between single
scalar values and ranges of such values. These functions are similar to the components in the Health
Level Seven (HL7) International Clinical Quality Language (CQL) 1.4 syntax .

before()

Returns true when an element A is before an element B and when the relevant requirements for
evaluating to true are also met.

odd(5) = true
odd(2) = false

even(5) = false
even (2) = true

is(date("2012-12-25"), time("23:00:50")) = false
is(date("2012-12-25"), date("2012-12-25")) = true
is(time("23:00:50z"), time("23:00:50")) = false

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

56

https://cql.hl7.org/08-a-cqlsyntax.html

Signatures

a. before(point1 point2)

b. before(point range)

c. before(range point)

d. before(range1,range2)

Requirements for evaluating to true

a. point1 < point2

b. point < range.start or (point = range.start and not(range.start included))

c. range.end < point or (range.end = point and not(range.end included))

d. range1.end < range2.start or ((not(range1.end included) or not(range2.start included))
and range1.end = range2.start)

Examples

after()

Returns true when an element A is after an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. after(point1 point2)

b. after(point range)

c. after(range, point)

d. after(range1 range2)

Requirements for evaluating to true

a. point1 > point2

b. point > range.end or (point = range.end and not(range.end included))

before(1, 10) = true
before(10, 1) = false
before(1, [1..10]) = false
before(1, (1..10]) = true
before(1, [5..10]) = true
before([1..10], 10) = false
before([1..10), 10) = true
before([1..10], 15) = true
before([1..10], [15..20]) = true
before([1..10], [10..20]) = false
before([1..10), [10..20]) = true
before([1..10], (10..20]) = true

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

57

c. range.start > point or (range.start = point and not(range.start included))

d. range1.start > range2.end or ((not(range1.start included) or not(range2.end included))
and range1.start = range2.end)

Examples

meets()

Returns true when an element A meets an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. meets(range1, range2)

Requirements for evaluating to true

a. range1.end included and range2.start included and range1.end = range2.start

Examples

met by()

Returns true when an element A is met by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. met by(range1, range2)

Requirements for evaluating to true

a. range1.start included and range2.end included and range1.start = range2.end

Examples

after(10, 5) = true
after(5, 10) = false
after(12, [1..10]) = true
after(10, [1..10)) = true
after(10, [1..10]) = false
after([11..20], 12) = false
after([11..20], 10) = true
after((11..20], 11) = true
after([11..20], 11) = false
after([11..20], [1..10]) = true
after([1..10], [11..20]) = false
after([11..20], [1..11)) = true
after((11..20], [1..11]) = true

meets([1..5], [5..10]) = true
meets([1..5), [5..10]) = false
meets([1..5], (5..10]) = false
meets([1..5], [6..10]) = false

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

58

overlaps()

Returns true when an element A overlaps an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. overlaps(range1, range2)

Requirements for evaluating to true

a. (range1.end > range2.start or (range1.end = range2.start and (range1.end included or
range2.end included))) and (range1.start < range2.end or (range1.start = range2.end
and range1.start included and range2.end included))

Examples

overlaps before()

Returns true when an element A overlaps before an element B and when the relevant requirements
for evaluating to true are also met.

Signatures

a. overlaps before(range1 range2)

Requirements for evaluating to true

a. (range1.start < range2.start or (range1.start = range2.start and range1.start included
and range2.start included)) and (range1.end > range2.start or (range1.end =
range2.start and range1.end included and range2.start included)) and (range1.end <
range2.end or (range1.end = range2.end and (not(range1.end included) or range2.end
included)))

Examples

met by([5..10], [1..5]) = true
met by([5..10], [1..5)) = false
met by((5..10], [1..5]) = false
met by([6..10], [1..5]) = false

overlaps([1..5], [3..8]) = true
overlaps([3..8], [1..5]) = true
overlaps([1..8], [3..5]) = true
overlaps([3..5], [1..8]) = true
overlaps([1..5], [6..8]) = false
overlaps([6..8], [1..5]) = false
overlaps([1..5], [5..8]) = true
overlaps([1..5], (5..8]) = false
overlaps([1..5), [5..8]) = false
overlaps([1..5), (5..8]) = false
overlaps([5..8], [1..5]) = true
overlaps((5..8], [1..5]) = false
overlaps([5..8], [1..5)) = false
overlaps((5..8], [1..5)) = false

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

59

overlaps after()

Returns true when an element A overlaps after an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. overlaps after(range1 range2)

Requirements for evaluating to true

a. (range2.start < range1.start or (range2.start = range1.start and range2.start included
and not(range1.start included))) and (range2.end > range1.start or (range2.end =
range1.start and range2.end included and range1.start included)) and (range2.end <
range1.end or (range2.end = range1.end and (not(range2.end included) or range1.end
included)))

Examples

finishes()

Returns true when an element A finishes an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. finishes(point, range)

b. finishes(range1, range2)

Requirements for evaluating to true

overlaps before([1..5], [3..8]) = true
overlaps before([1..5], [6..8]) = false
overlaps before([1..5], [5..8]) = true
overlaps before([1..5], (5..8]) = false
overlaps before([1..5), [5..8]) = false
overlaps before([1..5), (1..5]) = true
overlaps before([1..5], (1..5]) = true
overlaps before([1..5), [1..5]) = false
overlaps before([1..5], [1..5]) = false

overlaps after([3..8], [1..5])= true
overlaps after([6..8], [1..5])= false
overlaps after([5..8], [1..5])= true
overlaps after((5..8], [1..5])= false
overlaps after([5..8], [1..5))= false
overlaps after((1..5], [1..5))= true
overlaps after((1..5], [1..5])= true
overlaps after([1..5], [1..5))= false
overlaps after([1..5], [1..5])= false
overlaps after((1..5), [1..5])= false
overlaps after((1..5], [1..6])= false
overlaps after((1..5], (1..5])= false
overlaps after((1..5], [2..5])= false

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

60

a. range.end included and range.end = point

b. range1.end included = range2.end included and range1.end = range2.end and (
range1.start > range2.start or (range1.start = range2.start and (not(range1.start
included) or range2.start included)))

Examples

finished by()

Returns true when an element A is finished by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. finished by(range, point)

b. finished by(range1 range2)

Requirements for evaluating to true

a. range.end included and range.end = point

b. range1.end included = range2.end included and range1.end = range2.end and (
range1.start < range2.start or (range1.start = range2.start and (range1.start included or
not(range2.start included))))

Examples

includes()

Returns true when an element A includes an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. includes(range, point)

b. includes(range1, range2)

finishes(10, [1..10]) = true
finishes(10, [1..10)) = false
finishes([5..10], [1..10]) = true
finishes([5..10), [1..10]) = false
finishes([5..10), [1..10)) = true
finishes([1..10], [1..10]) = true
finishes((1..10], [1..10]) = true

finished by([1..10], 10) = true
finished by([1..10), 10) = false
finished by([1..10], [5..10]) = true
finished by([1..10], [5..10)) = false
finished by([1..10), [5..10)) = true
finished by([1..10], [1..10]) = true
finished by([1..10], (1..10]) = true

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

61

Requirements for evaluating to true

a. (range.start < point and range.end > point) or (range.start = point and range.start
included) or (range.end = point and range.end included)

b. (range1.start < range2.start or (range1.start = range2.start and (range1.start included
or not(range2.start included)))) and (range1.end > range2.end or (range1.end =
range2.end and (range1.end included or not(range2.end included))))

Examples

during()

Returns true when an element A is during an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. during(point, range)

b. during(range1 range2)

Requirements for evaluating to true

a. (range.start < point and range.end > point) or (range.start = point and range.start
included) or (range.end = point and range.end included)

b. (range2.start < range1.start or (range2.start = range1.start and (range2.start included
or not(range1.start included)))) and (range2.end > range1.end or (range2.end =
range1.end and (range2.end included or not(range1.end included))))

Examples

includes([1..10], 5) = true
includes([1..10], 12) = false
includes([1..10], 1) = true
includes([1..10], 10) = true
includes((1..10], 1) = false
includes([1..10), 10) = false
includes([1..10], [4..6]) = true
includes([1..10], [1..5]) = true
includes((1..10], (1..5]) = true
includes([1..10], (1..10)) = true
includes([1..10), [5..10)) = true
includes([1..10], [1..10)) = true
includes([1..10], (1..10]) = true
includes([1..10], [1..10]) = true

during(5, [1..10]) = true
during(12, [1..10]) = false
during(1, [1..10]) = true
during(10, [1..10]) = true
during(1, (1..10]) = false
during(10, [1..10)) = false
during([4..6], [1..10]) = true
during([1..5], [1..10]) = true

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

62

starts()

Returns true when an element A starts an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. starts(point, range)

b. starts(range1, range2)

Requirements for evaluating to true

a. range.start = point and range.start included

b. range1.start = range2.start and range1.start included = range2.start included and (
range1.end < range2.end or (range1.end = range2.end and (not(range1.end included)
or range2.end included)))

Examples

started by()

Returns true when an element A is started by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. started by(range, point)

b. started by(range1, range2)

Requirements for evaluating to true

a. range.start = point and range.start included

b. range1.start = range2.start and range1.start included = range2.start included and (

during((1..5], (1..10]) = true
during((1..10), [1..10]) = true
during([5..10), [1..10)) = true
during([1..10), [1..10]) = true
during((1..10], [1..10]) = true
during([1..10], [1..10]) = true

starts(1, [1..10]) = true
starts(1, (1..10]) = false
starts(2, [1..10]) = false
starts([1..5], [1..10]) = true
starts((1..5], (1..10]) = true
starts((1..5], [1..10]) = false
starts([1..5], (1..10]) = false
starts([1..10], [1..10]) = true
starts([1..10), [1..10]) = true
starts((1..10), (1..10)) = true

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

63

b. range1.start = range2.start and range1.start included = range2.start included and (
range2.end < range1.end or (range2.end = range1.end and (not(range2.end included)
or range1.end included)))

Examples

coincides()

Returns true when an element A coincides with an element B and when the relevant requirements
for evaluating to true are also met.

Signatures

a. coincides(point1, point2)

b. coincides(range1, range2)

Requirements for evaluating to true

a. point1 = point2

b. range1.start = range2.start and range1.start included = range2.start included and
range1.end = range2.end and range1.end included = range2.end included

Examples

4.3.2.8. Temporal functions

The following functions support general temporal operations.

day of year(date)

Returns the Gregorian number of the day of the year.

Table 4.61. Parameters

started by([1..10], 1) = true
started by((1..10], 1) = false
started by([1..10], 2) = false
started by([1..10], [1..5]) = true
started by((1..10], (1..5]) = true
started by([1..10], (1..5]) = false
started by((1..10], [1..5]) = false
started by([1..10], [1..10]) = true
started by([1..10], [1..10)) = true
started by((1..10), (1..10)) = true

coincides(5, 5) = true
coincides(3, 4) = false
coincides([1..5], [1..5]) = true
coincides((1..5), [1..5]) = false
coincides([1..5], [2..6]) = false

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

64

Parameter Type

date date or date and time

Example

day of week(date)

Returns the Gregorian day of the week: "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", or "Sunday".

Table 4.62. Parameters

Parameter Type

date date or date and time

Example

month of year(date)

Returns the Gregorian month of the year: "January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", or "December".

Table 4.63. Parameters

Parameter Type

date date or date and time

Example

month of year(date)

Returns the Gregorian week of the year as defined by ISO 8601.

Table 4.64. Parameters

Parameter Type

date date or date and time

Examples

day of year(date(2019, 9, 17)) = 260

day of week(date(2019, 9, 17)) = "Tuesday"

month of year(date(2019, 9, 17)) = "September"

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

65

4.3.2.9. Sort functions

The following functions support sorting operations.

sort(list, precedes)

Returns a list of the same elements but ordered according to the sorting function.

Table 4.65. Parameters

Parameter Type

list list

precedes function

Example

4.3.2.10. Context functions

The following functions support context operations.

get value(m, key)

Returns the value from the context for the specified entry key.

Table 4.66. Parameters

Parameter Type

m context

key string

Examples

get entries(m)

week of year(date(2019, 9, 17)) = 38
week of year(date(2003, 12, 29)) = 1
week of year(date(2004, 1, 4)) = 1
week of year(date(2005, 1, 1)) = 53
week of year(date(2005, 1, 3)) = 1
week of year(date(2005, 1, 9)) = 1

sort(list: [3,1,4,5,2], precedes: function(x,y) x < y) = [1,2,3,4,5]

get value({key1 : "value1"}, "key1") = "value1"
get value({key1 : "value1"}, "unexistent-key") = null

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

66

Returns a list of key-value pairs for the specified context.

Table 4.67. Parameters

Parameter Type

m context

Example

4.3.3. Variable and function names in FEEL

Unlike many traditional expression languages, Friendly Enough Expression Language (FEEL) supports
spaces and a few special characters as part of variable and function names. A FEEL name must start with
a letter, ?, or _ element. The unicode letter characters are also allowed. Variable names cannot start with
a language keyword, such as and, true, or every. The remaining characters in a variable name can be any
of the starting characters, as well as digits, white spaces, and special characters such as +, -, /, *, ', and ..

For example, the following names are all valid FEEL names:

Age

Birth Date

Flight 234 pre-check procedure

Several limitations apply to variable and function names in FEEL:

Ambiguity

The use of spaces, keywords, and other special characters as part of names can make FEEL
ambiguous. The ambiguities are resolved in the context of the expression, matching names from left
to right. The parser resolves the variable name as the longest name matched in scope. You can use (
) to disambiguate names if necessary.

Spaces in names

The DMN specification limits the use of spaces in FEEL names. According to the DMN specification,
names can contain multiple spaces but not two consecutive spaces.
In order to make the language easier to use and avoid common errors due to spaces, Red Hat
Decision Manager removes the limitation on the use of consecutive spaces. Red Hat Decision
Manager supports variable names with any number of consecutive spaces, but normalizes them into
a single space. For example, the variable references First Name with one space and First Name with
two spaces are both acceptable in Red Hat Decision Manager.

Red Hat Decision Manager also normalizes the use of other white spaces, like the non-breakable
white space that is common in web pages, tabs, and line breaks. From a Red Hat Decision Manager
FEEL engine perspective, all of these characters are normalized into a single white space before
processing.

The keyword in

get entries({key1 : "value1", key2 : "value2"}) = [{ key : "key1", value : "value1" }, {key : "key2",
value : "value2"}]

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

67

The keyword in is the only keyword in the language that cannot be used as part of a variable name.
Although the specifications allow the use of keywords in the middle of variable names, the use of in
in variable names conflicts with the grammar definition of for, every and some expression
constructs.

4.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD). Some boxed expressions can
contain other boxed expressions, but the top-level boxed expression corresponds to the decision logic
of a single DRD artifact. While DRDs represent the flow of a DMN decision model, boxed expressions
define the actual decision logic of individual nodes. DRDs and boxed expressions together form a
complete and functional DMN decision model.

The following are the types of DMN boxed expressions:

Decision tables

Literal expressions

Contexts

Relations

Functions

Invocations

Lists

NOTE

Red Hat Decision Manager does not provide boxed list expressions in Business Central,
but supports a FEEL list data type that you can use in boxed literal expressions. For
more information about the list data type and other FEEL data types in Red Hat
Decision Manager, see Section 4.3.1, “Data types in FEEL” .

All Friendly Enough Expression Language (FEEL) expressions that you use in your boxed expressions
must conform to the FEEL syntax requirements in the OMG Decision Model and Notation specification .

4.4.1. DMN decision tables

A decision table in DMN is a visual representation of one or more business rules in a tabular format. You
use decision tables to define rules for a decision node that applies those rules at a given point in the
decision model. Each rule consists of a single row in the table, and includes columns that define the
conditions (input) and outcome (output) for that particular row. The definition of each row is precise
enough to derive the outcome using the values of the conditions. Input and output values can be FEEL
expressions or defined data type values.

For example, the following decision table determines credit score ratings based on a defined range of a
loan applicant’s credit score:

Figure 4.3. Decision table for credit score rating

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

68

https://www.omg.org/spec/DMN

Figure 4.3. Decision table for credit score rating

The following decision table determines the next step in a lending strategy for applicants depending on
applicant loan eligibility and the bureau call type:

Figure 4.4. Decision table for lending strategy

The following decision table determines applicant qualification for a loan as the concluding decision
node in a loan prequalification decision model:

Figure 4.5. Decision table for loan prequalification

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

69

Figure 4.5. Decision table for loan prequalification

Decision tables are a popular way of modeling rules and decision logic, and are used in many
methodologies (such as DMN) and implementation frameworks (such as Drools).

IMPORTANT

Red Hat Decision Manager supports both DMN decision tables and Drools-native
decision tables, but they are different types of assets with different syntax requirements
and are not interchangeable. For more information about Drools-native decision tables in
Red Hat Decision Manager, see Designing a decision service using spreadsheet decision
tables.

4.4.1.1. Hit policies in DMN decision tables

Hit policies determine how to reach an outcome when multiple rules in a decision table match the
provided input values. For example, if one rule in a decision table applies a sales discount to military
personnel and another rule applies a discount to students, then when a customer is both a student and in
the military, the decision table hit policy must indicate whether to apply one discount or the other
(Unique, First) or both discounts (Collect Sum). You specify the single character of the hit policy (U, F,
C+) in the upper-left corner of the decision table.

The following decision table hit policies are supported in DMN:

Unique (U): Permits only one rule to match. Any overlap raises an error.

Any (A): Permits multiple rules to match, but they must all have the same output. If multiple
matching rules do not have the same output, an error is raised.

Priority (P): Permits multiple rules to match, with different outputs. The output that comes first
in the output values list is selected.

First (F): Uses the first match in rule order.

Collect (C+, C>, C<, C#): Aggregates output from multiple rules based on an aggregation
function.

Collect (C): Aggregates values in an arbitrary list.

Collect Sum (C+): Outputs the sum of all collected values. Values must be numeric.

Collect Min (C<): Outputs the minimum value among the matches. The resulting values

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

70

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables

Collect Min (C<): Outputs the minimum value among the matches. The resulting values
must be comparable, such as numbers, dates, or text (lexicographic order).

Collect Max (C>): Outputs the maximum value among the matches. The resulting values
must be comparable, such as numbers, dates or text (lexicographic order).

Collect Count (C#): Outputs the number of matching rules.

4.4.2. Boxed literal expressions

A boxed literal expression in DMN is a literal FEEL expression as text in a table cell, typically with a
labeled column and an assigned data type. You use boxed literal expressions to define simple or
complex node logic or decision data directly in FEEL for a particular node in a decision. Literal FEEL
expressions must conform to FEEL syntax requirements in the OMG Decision Model and Notation
specification.

For example, the following boxed literal expression defines the minimum acceptable PITI calculation
(principal, interest, taxes, and insurance) in a lending decision, where acceptable rate is a variable
defined in the DMN model:

Figure 4.6. Boxed literal expression for minimum PITI value

The following boxed literal expression sorts a list of possible dating candidates (soul mates) in an online
dating application based on their score on criteria such as age, location, and interests:

Figure 4.7. Boxed literal expression for matching online dating candidates

4.4.3. Boxed context expressions

A boxed context expression in DMN is a set of variable names and values with a result value. Each name-

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

71

https://www.omg.org/spec/DMN

value pair is a context entry. You use context expressions to represent data definitions in decision logic
and set a value for a desired decision element within the DMN decision model. A value in a boxed context
expression can be a data type value or FEEL expression, or can contain a nested sub-expression of any
type, such as a decision table, a literal expression, or another context expression.

For example, the following boxed context expression defines the factors for sorting delayed passengers
in a flight-rebooking decision model, based on defined data types (tPassengerTable,
tFlightNumberList):

Figure 4.8. Boxed context expression for flight passenger waiting list

The following boxed context expression defines the factors that determine whether a loan applicant can
meet minimum mortgage payments based on principal, interest, taxes, and insurance (PITI), represented
as a front-end ratio calculation with a sub-context expression:

Figure 4.9. Boxed context expression for front-end client PITI ratio

4.4.4. Boxed relation expressions

A boxed relation expression in DMN is a traditional data table with information about given entities, listed
as rows. You use boxed relation tables to define decision data for relevant entities in a decision at a
particular node. Boxed relation expressions are similar to context expressions in that they set variable
names and values, but relation expressions contain no result value and list all variable values based on a
single defined variable in each column.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

72

For example, the following boxed relation expression provides information about employees in an
employee rostering decision:

Figure 4.10. Boxed relation expression with employee information

4.4.5. Boxed function expressions

A boxed function expression in DMN is a parameterized boxed expression containing a literal FEEL
expression, a nested context expression of an external JAVA or PMML function, or a nested boxed
expression of any type. By default, all business knowledge models are defined as boxed function
expressions. You use boxed function expressions to call functions on your decision logic and to define all
business knowledge models.

For example, the following boxed function expression determines airline flight capacity in a flight-
rebooking decision model:

Figure 4.11. Boxed function expression for flight capacity

The following boxed function expression contains a basic Java function as a context expression for
determining absolute value in a decision model calculation:

Figure 4.12. Boxed function expression for absolute value

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

73

Figure 4.12. Boxed function expression for absolute value

The following boxed function expression determines a monthly mortgage installment as a business
knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 4.13. Boxed function expression for installment calculation in business knowledge model

The following boxed function expression uses a PMML model included in the DMN file to define the
minimum acceptable PITI calculation (principal, interest, taxes, and insurance) in a lending decision:

Figure 4.14. Boxed function expression with an included PMML model in business knowledge model

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

74

Figure 4.14. Boxed function expression with an included PMML model in business knowledge model

4.4.6. Boxed invocation expressions

A boxed invocation expression in DMN is a boxed expression that invokes a business knowledge model.
A boxed invocation expression contains the name of the business knowledge model to be invoked and a
list of parameter bindings. Each binding is represented by two boxed expressions on a row: The box on
the left contains the name of a parameter and the box on the right contains the binding expression
whose value is assigned to the parameter to evaluate the invoked business knowledge model. You use
boxed invocations to invoke at a particular decision node a business knowledge model defined in the
decision model.

For example, the following boxed invocation expression invokes a Reassign Next Passenger business
knowledge model as the concluding decision node in a flight-rebooking decision model:

Figure 4.15. Boxed invocation expression to reassign flight passengers

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

75

Figure 4.15. Boxed invocation expression to reassign flight passengers

The following boxed invocation expression invokes an InstallmentCalculation business knowledge
model to calculate a monthly installment amount for a loan before proceeding to affordability decisions:

Figure 4.16. Boxed invocation expression for required monthly installment

4.4.7. Boxed list expressions

A boxed list expression in DMN represents a FEEL list of items. You use boxed lists to define lists of
relevant items for a particular node in a decision. You can also use literal FEEL expressions for list items
in cells to create more complex lists.

For example, the following boxed list expression identifies approved credit score agencies in a loan

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

76

For example, the following boxed list expression identifies approved credit score agencies in a loan
application decision service:

Figure 4.17. Boxed list expression for approved credit score agencies

The following boxed list expression also identifies approved credit score agencies but uses FEEL logic
to define the agency status (Inc., LLC, SA, GA) based on a DMN input node:

Figure 4.18. Boxed list expression using FEEL logic for approved credit score agency status

4.5. DMN MODEL EXAMPLE

The following is a real-world DMN model example that demonstrates how you can use decision
modeling to reach a decision based on input data, circumstances, and company guidelines. In this
scenario, a flight from San Diego to New York is canceled, requiring the affected airline to find alternate
arrangements for its inconvenienced passengers.

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

77

First, the airline collects the information necessary to determine how best to get the travelers to their
destinations:

Input data

List of flights

List of passengers

Decisions

Prioritize the passengers who will get seats on a new flight

Determine which flights those passengers will be offered

Business knowledge models

The company process for determining passenger priority

Any flights that have space available

Company rules for determining how best to reassign inconvenienced passengers

The airline then uses the DMN standard to model its decision process in the following decision
requirements diagram (DRD) for determining the best rebooking solution:

Figure 4.19. DRD for flight rebooking

Similar to flowcharts, DRDs use shapes to represent the different elements in a process. Ovals contain
the two necessary input data, rectangles contain the decision points in the model, and rectangles with
clipped corners (business knowledge models) contain reusable logic that can be repeatedly invoked.

The DRD draws logic for each element from boxed expressions that provide variable definitions using

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

78

The DRD draws logic for each element from boxed expressions that provide variable definitions using
FEEL expressions or data type values.

Some boxed expressions are basic, such as the following decision for establishing a prioritized waiting
list:

Figure 4.20. Boxed context expression example for prioritized wait list

Some boxed expressions are more complex with greater detail and calculation, such as the following
business knowledge model for reassigning the next delayed passenger:

Figure 4.21. Boxed function expression for passenger reassignment

The following is the DMN source file for this decision model:

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

79

<dmn:definitions xmlns="https://www.drools.org/kie-dmn/Flight-rebooking"
xmlns:dmn="http://www.omg.org/spec/DMN/20151101/dmn.xsd"
xmlns:feel="http://www.omg.org/spec/FEEL/20140401" id="_0019_flight_rebooking" name="0019-
flight-rebooking" namespace="https://www.drools.org/kie-dmn/Flight-rebooking">
 <dmn:itemDefinition id="_tFlight" name="tFlight">
 <dmn:itemComponent id="_tFlight_Flight" name="Flight Number">
 <dmn:typeRef>feel:string</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_tFlight_From" name="From">
 <dmn:typeRef>feel:string</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_tFlight_To" name="To">
 <dmn:typeRef>feel:string</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_tFlight_Dep" name="Departure">
 <dmn:typeRef>feel:dateTime</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_tFlight_Arr" name="Arrival">
 <dmn:typeRef>feel:dateTime</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_tFlight_Capacity" name="Capacity">
 <dmn:typeRef>feel:number</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_tFlight_Status" name="Status">
 <dmn:typeRef>feel:string</dmn:typeRef>
 </dmn:itemComponent>
 </dmn:itemDefinition>
 <dmn:itemDefinition id="_tFlightTable" isCollection="true" name="tFlightTable">
 <dmn:typeRef>tFlight</dmn:typeRef>
 </dmn:itemDefinition>
 <dmn:itemDefinition id="_tPassenger" name="tPassenger">
 <dmn:itemComponent id="_tPassenger_Name" name="Name">
 <dmn:typeRef>feel:string</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_tPassenger_Status" name="Status">
 <dmn:typeRef>feel:string</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_tPassenger_Miles" name="Miles">
 <dmn:typeRef>feel:number</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_tPassenger_Flight" name="Flight Number">
 <dmn:typeRef>feel:string</dmn:typeRef>
 </dmn:itemComponent>
 </dmn:itemDefinition>
 <dmn:itemDefinition id="_tPassengerTable" isCollection="true" name="tPassengerTable">
 <dmn:typeRef>tPassenger</dmn:typeRef>
 </dmn:itemDefinition>
 <dmn:itemDefinition id="_tFlightNumberList" isCollection="true" name="tFlightNumberList">
 <dmn:typeRef>feel:string</dmn:typeRef>
 </dmn:itemDefinition>
 <dmn:inputData id="i_Flight_List" name="Flight List">
 <dmn:variable name="Flight List" typeRef="tFlightTable"/>
 </dmn:inputData>
 <dmn:inputData id="i_Passenger_List" name="Passenger List">
 <dmn:variable name="Passenger List" typeRef="tPassengerTable"/>
 </dmn:inputData>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

80

 <dmn:decision name="Prioritized Waiting List" id="d_PrioritizedWaitingList">
 <dmn:variable name="Prioritized Waiting List" typeRef="tPassengerTable"/>
 <dmn:informationRequirement>
 <dmn:requiredInput href="#i_Passenger_List"/>
 </dmn:informationRequirement>
 <dmn:informationRequirement>
 <dmn:requiredInput href="#i_Flight_List"/>
 </dmn:informationRequirement>
 <dmn:knowledgeRequirement>
 <dmn:requiredKnowledge href="#b_PassengerPriority"/>
 </dmn:knowledgeRequirement>
 <dmn:context>
 <dmn:contextEntry>
 <dmn:variable name="Cancelled Flights" typeRef="tFlightNumberList"/>
 <dmn:literalExpression>
 <dmn:text>Flight List[Status = "cancelled"].Flight Number</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:variable name="Waiting List" typeRef="tPassengerTable"/>
 <dmn:literalExpression>
 <dmn:text>Passenger List[list contains(Cancelled Flights, Flight Number)]</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:literalExpression>
 <dmn:text>sort(Waiting List, passenger priority)</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 </dmn:context>
 </dmn:decision>
 <dmn:decision name="Rebooked Passengers" id="d_RebookedPassengers">
 <dmn:variable name="Rebooked Passengers" typeRef="tPassengerTable"/>
 <dmn:informationRequirement>
 <dmn:requiredDecision href="#d_PrioritizedWaitingList"/>
 </dmn:informationRequirement>
 <dmn:informationRequirement>
 <dmn:requiredInput href="#i_Flight_List"/>
 </dmn:informationRequirement>
 <dmn:knowledgeRequirement>
 <dmn:requiredKnowledge href="#b_ReassignNextPassenger"/>
 </dmn:knowledgeRequirement>
 <dmn:invocation>
 <dmn:literalExpression>
 <dmn:text>reassign next passenger</dmn:text>
 </dmn:literalExpression>
 <dmn:binding>
 <dmn:parameter name="Waiting List"/>
 <dmn:literalExpression>
 <dmn:text>Prioritized Waiting List</dmn:text>
 </dmn:literalExpression>
 </dmn:binding>
 <dmn:binding>
 <dmn:parameter name="Reassigned Passengers List"/>
 <dmn:literalExpression>
 <dmn:text>[]</dmn:text>

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

81

 </dmn:literalExpression>
 </dmn:binding>
 <dmn:binding>
 <dmn:parameter name="Flights"/>
 <dmn:literalExpression>
 <dmn:text>Flight List</dmn:text>
 </dmn:literalExpression>
 </dmn:binding>
 </dmn:invocation>
 </dmn:decision>
 <dmn:businessKnowledgeModel id="b_PassengerPriority" name="passenger priority">
 <dmn:encapsulatedLogic>
 <dmn:formalParameter name="Passenger1" typeRef="tPassenger"/>
 <dmn:formalParameter name="Passenger2" typeRef="tPassenger"/>
 <dmn:decisionTable hitPolicy="UNIQUE">
 <dmn:input id="b_Passenger_Priority_dt_i_P1_Status" label="Passenger1.Status">
 <dmn:inputExpression typeRef="feel:string">
 <dmn:text>Passenger1.Status</dmn:text>
 </dmn:inputExpression>
 <dmn:inputValues>
 <dmn:text>"gold", "silver", "bronze"</dmn:text>
 </dmn:inputValues>
 </dmn:input>
 <dmn:input id="b_Passenger_Priority_dt_i_P2_Status" label="Passenger2.Status">
 <dmn:inputExpression typeRef="feel:string">
 <dmn:text>Passenger2.Status</dmn:text>
 </dmn:inputExpression>
 <dmn:inputValues>
 <dmn:text>"gold", "silver", "bronze"</dmn:text>
 </dmn:inputValues>
 </dmn:input>
 <dmn:input id="b_Passenger_Priority_dt_i_P1_Miles" label="Passenger1.Miles">
 <dmn:inputExpression typeRef="feel:string">
 <dmn:text>Passenger1.Miles</dmn:text>
 </dmn:inputExpression>
 </dmn:input>
 <dmn:output id="b_Status_Priority_dt_o" label="Passenger1 has priority">
 <dmn:outputValues>
 <dmn:text>true, false</dmn:text>
 </dmn:outputValues>
 <dmn:defaultOutputEntry>
 <dmn:text>false</dmn:text>
 </dmn:defaultOutputEntry>
 </dmn:output>
 <dmn:rule id="b_Passenger_Priority_dt_r1">
 <dmn:inputEntry id="b_Passenger_Priority_dt_r1_i1">
 <dmn:text>"gold"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r1_i2">
 <dmn:text>"gold"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r1_i3">
 <dmn:text>>= Passenger2.Miles</dmn:text>
 </dmn:inputEntry>
 <dmn:outputEntry id="b_Passenger_Priority_dt_r1_o1">
 <dmn:text>true</dmn:text>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

82

 </dmn:outputEntry>
 </dmn:rule>
 <dmn:rule id="b_Passenger_Priority_dt_r2">
 <dmn:inputEntry id="b_Passenger_Priority_dt_r2_i1">
 <dmn:text>"gold"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r2_i2">
 <dmn:text>"silver","bronze"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r2_i3">
 <dmn:text>-</dmn:text>
 </dmn:inputEntry>
 <dmn:outputEntry id="b_Passenger_Priority_dt_r2_o1">
 <dmn:text>true</dmn:text>
 </dmn:outputEntry>
 </dmn:rule>
 <dmn:rule id="b_Passenger_Priority_dt_r3">
 <dmn:inputEntry id="b_Passenger_Priority_dt_r3_i1">
 <dmn:text>"silver"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r3_i2">
 <dmn:text>"silver"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r3_i3">
 <dmn:text>>= Passenger2.Miles</dmn:text>
 </dmn:inputEntry>
 <dmn:outputEntry id="b_Passenger_Priority_dt_r3_o1">
 <dmn:text>true</dmn:text>
 </dmn:outputEntry>
 </dmn:rule>
 <dmn:rule id="b_Passenger_Priority_dt_r4">
 <dmn:inputEntry id="b_Passenger_Priority_dt_r4_i1">
 <dmn:text>"silver"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r4_i2">
 <dmn:text>"bronze"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r4_i3">
 <dmn:text>-</dmn:text>
 </dmn:inputEntry>
 <dmn:outputEntry id="b_Passenger_Priority_dt_r4_o1">
 <dmn:text>true</dmn:text>
 </dmn:outputEntry>
 </dmn:rule>
 <dmn:rule id="b_Passenger_Priority_dt_r5">
 <dmn:inputEntry id="b_Passenger_Priority_dt_r5_i1">
 <dmn:text>"bronze"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r5_i2">
 <dmn:text>"bronze"</dmn:text>
 </dmn:inputEntry>
 <dmn:inputEntry id="b_Passenger_Priority_dt_r5_i3">
 <dmn:text>>= Passenger2.Miles</dmn:text>
 </dmn:inputEntry>
 <dmn:outputEntry id="b_Passenger_Priority_dt_r5_o1">
 <dmn:text>true</dmn:text>

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

83

 </dmn:outputEntry>
 </dmn:rule>
 </dmn:decisionTable>
 </dmn:encapsulatedLogic>
 <dmn:variable name="passenger priority" typeRef="feel:boolean"/>
 </dmn:businessKnowledgeModel>
 <dmn:businessKnowledgeModel id="b_ReassignNextPassenger" name="reassign next passenger">
 <dmn:encapsulatedLogic>
 <dmn:formalParameter name="Waiting List" typeRef="tPassengerTable"/>
 <dmn:formalParameter name="Reassigned Passengers List" typeRef="tPassengerTable"/>
 <dmn:formalParameter name="Flights" typeRef="tFlightTable"/>
 <dmn:context>
 <dmn:contextEntry>
 <dmn:variable name="Next Passenger" typeRef="tPassenger"/>
 <dmn:literalExpression>
 <dmn:text>Waiting List[1]</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:variable name="Original Flight" typeRef="tFlight"/>
 <dmn:literalExpression>
 <dmn:text>Flights[Flight Number = Next Passenger.Flight Number][1]</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:variable name="Best Alternate Flight" typeRef="tFlight"/>
 <dmn:literalExpression>
 <dmn:text>Flights[From = Original Flight.From and To = Original Flight.To and Departure >
Original Flight.Departure and Status = "scheduled" and has capacity(item, Reassigned Passengers
List)][1]</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:variable name="Reassigned Passenger" typeRef="tPassenger"/>
 <dmn:context>
 <dmn:contextEntry>
 <dmn:variable name="Name" typeRef="feel:string"/>
 <dmn:literalExpression>
 <dmn:text>Next Passenger.Name</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:variable name="Status" typeRef="feel:string"/>
 <dmn:literalExpression>
 <dmn:text>Next Passenger.Status</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:variable name="Miles" typeRef="feel:number"/>
 <dmn:literalExpression>
 <dmn:text>Next Passenger.Miles</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:variable name="Flight Number" typeRef="feel:string"/>
 <dmn:literalExpression>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

84

 <dmn:text>Best Alternate Flight.Flight Number</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 </dmn:context>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:variable name="Remaining Waiting List" typeRef="tPassengerTable"/>
 <dmn:literalExpression>
 <dmn:text>remove(Waiting List, 1)</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:variable name="Updated Reassigned Passengers List" typeRef="tPassengerTable"/>
 <dmn:literalExpression>
 <dmn:text>append(Reassigned Passengers List, Reassigned Passenger)</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 <dmn:contextEntry>
 <dmn:literalExpression>
 <dmn:text>if count(Remaining Waiting List) > 0 then reassign next passenger(Remaining
Waiting List, Updated Reassigned Passengers List, Flights) else Updated Reassigned Passengers
List</dmn:text>
 </dmn:literalExpression>
 </dmn:contextEntry>
 </dmn:context>
 </dmn:encapsulatedLogic>
 <dmn:variable name="reassign next passenger" typeRef="tPassengerTable"/>
 <dmn:knowledgeRequirement>
 <dmn:requiredKnowledge href="#b_HasCapacity"/>
 </dmn:knowledgeRequirement>
 </dmn:businessKnowledgeModel>
 <dmn:businessKnowledgeModel id="b_HasCapacity" name="has capacity">
 <dmn:encapsulatedLogic>
 <dmn:formalParameter name="flight" typeRef="tFlight"/>
 <dmn:formalParameter name="rebooked list" typeRef="tPassengerTable"/>
 <dmn:literalExpression>
 <dmn:text>flight.Capacity > count(rebooked list[Flight Number = flight.Flight Number]
)</dmn:text>
 </dmn:literalExpression>
 </dmn:encapsulatedLogic>
 <dmn:variable name="has capacity" typeRef="feel:boolean"/>
 </dmn:businessKnowledgeModel>
</dmn:definitions>

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

85

CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER
Red Hat Decision Manager provides design and runtime support for DMN 1.2 models at conformance
level 3, and runtime-only support for DMN 1.1 and 1.3 models at conformance level 3. You can integrate
DMN models with your Red Hat Decision Manager decision services in several ways:

Design your DMN models directly in Business Central using the DMN designer.

Import DMN files into your project in Business Central (Menu → Design → Projects → Import
Asset). Any DMN 1.1 and 1.3 models (do not contain DMN 1.3 features) that you import into
Business Central, open in the DMN designer, and save are converted to DMN 1.2 models.

Package DMN files as part of your project knowledge JAR (KJAR) file without Business Central.

The following table summarizes the design and runtime support for each DMN version in Red Hat
Decision Manager:

Table 5.1. DMN support in Red Hat Decision Manager

DMN version DMN engine support DMN modeler support

Execution Open Save

DMN 1.1

DMN 1.2

DMN 1.3

In addition to all DMN conformance level 3 requirements, Red Hat Decision Manager also includes
enhancements and fixes to FEEL and DMN model components to optimize the experience of
implementing DMN decision services with Red Hat Decision Manager. From a platform perspective,
DMN models are like any other business asset in Red Hat Decision Manager, such as DRL files or
spreadsheet decision tables, that you can include in your Red Hat Decision Manager project and deploy
to KIE Server in order to start your DMN decision services.

For more information about including external DMN files with your Red Hat Decision Manager project
packaging and deployment method, see Packaging and deploying a Red Hat Decision Manager project .

5.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION
MANAGER

Red Hat Decision Manager provides the following DMN properties that you can configure when you
execute your DMN models on KIE Server or on your client application. You can configure some of these
properties using the kmodule.xml file in your Red Hat Decision Manager project when you deploy your
project on KIE Server.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

86

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

org.kie.dmn.strictConformance

When enabled, this property disables by default any extensions or profiles provided beyond the DMN
standard, such as some helper functions or enhanced features of DMN 1.2 backported into DMN 1.1.
You can use this property to configure the decision engine to support only pure DMN features, such
as when running the DMN Technology Compatibility Kit (TCK).
Default value: false

-Dorg.kie.dmn.strictConformance=true

org.kie.dmn.runtime.typecheck

When enabled, this property enables verification of actual values conforming to their declared types
in the DMN model, as input or output of DRD elements. You can use this property to verify whether
data supplied to the DMN model or produced by the DMN model is compliant with what is specified
in the model.
Default value: false

-Dorg.kie.dmn.runtime.typecheck=true

org.kie.dmn.decisionservice.coercesingleton

By default, this property makes the result of a decision service defining a single output decision be
the single value of the output decision value. When disabled, this property makes the result of a
decision service defining a single output decision be a context with the single entry for that decision.
You can use this property to adjust your decision service outputs according to your project
requirements.
Default value: true

-Dorg.kie.dmn.decisionservice.coercesingleton=false

org.kie.dmn.profiles.$PROFILE_NAME

When valorized with a Java fully qualified name, this property loads a DMN profile onto the decision
engine at start time. You can use this property to implement a predefined DMN profile with
supported features different from or beyond the DMN standard. For example, if you are creating
DMN models using the Signavio DMN modeller, use this property to implement features from the
Signavio DMN profile into your DMN decision service.

-Dorg.kie.dmn.profiles.signavio=org.kie.dmn.signavio.KieDMNSignavioProfile

org.kie.dmn.runtime.listeners.$LISTENER_NAME

When valorized with a Java fully qualified name, this property loads and registers a DMN Runtime
Listener onto the decision engine at start time. You can use this property to register a DMN listener
in order to be notified of several events during DMN model evaluations.
To configure this property when deploying your project on KIE Server, modify this property in the
kmodule.xml file of your project. This approach is helpful when the listener is specific to your project
and when the configuration must be applied in KIE Server only to your deployed project.

<kmodule xmlns="http://www.drools.org/xsd/kmodule">
 <configuration>
 <property key="org.kie.dmn.runtime.listeners.mylistener" value="org.acme.MyDMNListener"/>
 </configuration>
</kmodule>

CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER

87

https://dmn-tck.github.io/tck/

To configure this property globally for your Red Hat Decision Manager environment, modify this
property using a command terminal or any other global application configuration mechanism. This
approach is helpful when the decision engine is embedded as part of your Java application.

-Dorg.kie.dmn.runtime.listeners.mylistener=org.acme.MyDMNListener

org.kie.dmn.compiler.execmodel

When enabled, this property enables DMN decision table logic to be compiled into executable rule
models during run time. You can use this property to evaluate DMN decision table logic more
efficiently. This property is helpful when the executable model compilation was not originally
performed during project compile time. Enabling this property may result in added compile time
during the first evaluation by the decision engine, but subsequent compilations are more efficient.
Default value: false

-Dorg.kie.dmn.compiler.execmodel=true

5.2. CONFIGURABLE DMN VALIDATION IN RED HAT DECISION
MANAGER

By default, the kie-maven-plugin component in the pom.xml file of your Red Hat Decision Manager
project uses the following <validateDMN> configurations to perform pre-compilation validation of DMN
model assets and to perform DMN decision table static analysis:

VALIDATE_SCHEMA: DMN model files are verified against the DMN specification XSD schema
to ensure that the files are valid XML and compliant with the specification.

VALIDATE_MODEL: The pre-compilation analysis is performed for the DMN model to ensure
that the basic semantic is aligned with the DMN specification.

ANALYZE_DECISION_TABLE: DMN decision tables are statically analyzed for gaps or overlaps
and to ensure that the semantic of the decision table follows best practices.

You can modify the default DMN validation and DMN decision table analysis behavior to perform only a
specified validation during the project build, or you can disable this default behavior completely, as
shown in the following examples:

Default configuration for DMN validation and decision table analysis

Configuration to perform only the DMN decision table static analysis

<plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>

<validateDMN>VALIDATE_SCHEMA,VALIDATE_MODEL,ANALYZE_DECISION_TABLE</validateD
MN>
 </configuration>
</plugin>

<plugin>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

88

Configuration to perform only the XSD schema validation

Configuration to perform only the DMN model validation

Configuration to disable all DMN validation

NOTE

If you enter an unrecognized <validateDMN> configuration flag, all pre-compilation
validation is disabled and the Maven plugin emits related log messages.

 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <validateDMN>ANALYZE_DECISION_TABLE</validateDMN>
 </configuration>
</plugin>

<plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <validateDMN>VALIDATE_SCHEMA</validateDMN>
 </configuration>
</plugin>

<plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <validateDMN>VALIDATE_MODEL</validateDMN>
 </configuration>
</plugin>

<plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <validateDMN>disable</validateDMN>
 </configuration>
</plugin>

CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER

89

CHAPTER 6. CREATING AND EDITING DMN MODELS IN
BUSINESS CENTRAL

You can use the DMN designer in Business Central to design DMN decision requirements diagrams
(DRDs) and define decision logic for a complete and functional DMN decision model. Red Hat Decision
Manager provides design and runtime support for DMN 1.2 models at conformance level 3, and includes
enhancements and fixes to FEEL and DMN model components to optimize the experience of
implementing DMN decision services with Red Hat Decision Manager. Red Hat Decision Manager also
provides runtime-only support for DMN 1.1 and 1.3 models at conformance level 3, but any DMN 1.1 and
1.3 models (do not contain DMN 1.3 features) that you import into Business Central, open in the DMN
designer, and save are converted to DMN 1.2 models.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Create or import a DMN file in your Business Central project.
To create a DMN file, click Add Asset → DMN, enter an informative DMN model name, select
the appropriate Package, and click Ok.

To import an existing DMN file, click Import Asset, enter the DMN model name, select the
appropriate Package, select the DMN file to upload, and click Ok.

The new DMN file is now listed in the DMN panel of the Project Explorer, and the DMN decision
requirements diagram (DRD) canvas appears.

NOTE

If you imported a DMN file that does not contain layout information, the
imported decision requirements diagram (DRD) is formatted automatically in the
DMN designer. Click Save in the DMN designer to save the DRD layout.

If an imported DRD is not automatically formatted, you can select the Perform
automatic layout icon in the upper-right toolbar in the DMN designer to format
the DRD.

3. Begin adding components to your new or imported DMN decision requirements diagram (DRD)
by clicking and dragging one of the DMN nodes from the left toolbar:

Figure 6.1. Adding DRD components

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

90

Figure 6.1. Adding DRD components

The following DRD components are available:

Decision: Use this node for a DMN decision, where one or more input elements determine
an output based on defined decision logic.

Business knowledge model: Use this node for reusable functions with one or more decision
elements. Decisions that have the same logic but depend on different sub-input data or
sub-decisions use business knowledge models to determine which procedure to follow.

Knowledge source: Use this node for external authorities, documents, committees, or
policies that regulate a decision or business knowledge model. Knowledge sources are
references to real-world factors rather than executable business rules.

Input data: Use this node for information used in a decision node or a business knowledge
model. Input data usually includes business-level concepts or objects relevant to the
business, such as loan applicant data used in a lending strategy.

Text annotation: Use this node for explanatory notes associated with an input data node,
decision node, business knowledge model, or knowledge source.

Decision service: Use this node to enclose a set of reusable decisions implemented as a
decision service for invocation. A decision service can be used in other DMN models and can
be invoked from an external application or a BPMN business process.

4. In the DMN designer canvas, double-click the new DRD node to enter an informative node
name.

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

91

5. If the node is a decision or business knowledge model, select the node to display the node
options and click the Edit icon to open the DMN boxed expression designer to define the
decision logic for the node:

Figure 6.2. Opening a new decision node boxed expression

Figure 6.3. Opening a new business knowledge model boxed expression

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,
or a nested boxed expression of any type.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

92

For decision nodes, you click the undefined table to select the type of boxed expression you
want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

Figure 6.4. Selecting the logic type for a decision node

For business knowledge models, you click the top-left function cell to select the function type,
or right-click the function value cell, select Clear, and select a boxed expression of another type.

Figure 6.5. Selecting the function or other logic type for a business knowledge model

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

93

Figure 6.5. Selecting the function or other logic type for a business knowledge model

6. In the selected boxed expression designer for either a decision node (any expression type) or

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

94

business knowledge model (function expression), click the applicable table cells to define the
table name, variable data types, variable names and values, function parameters and bindings,
or FEEL expressions to include in the decision logic.
You can right-click cells for additional actions where applicable, such as inserting or removing
table rows and columns or clearing table contents.

The following is an example decision table for a decision node that determines credit score
ratings based on a defined range of a loan applicant’s credit score:

Figure 6.6. Decision node decision table for credit score rating

The following is an example boxed function expression for a business knowledge model that
calculates mortgage payments based on principal, interest, taxes, and insurance (PITI) as a
literal expression:

Figure 6.7. Business knowledge model function for PITI calculation

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

95

Figure 6.7. Business knowledge model function for PITI calculation

7. After you define the decision logic for the selected node, click Back to "<MODEL_NAME>" to
return to the DRD view.

8. For the selected DRD node, use the available connection options to create and connect to the
next node in the DRD, or click and drag a new node onto the DRD canvas from the left toolbar.
The node type determines which connection options are supported. For example, an Input data
node can connect to a decision node, knowledge source, or text annotation using the applicable
connection type, whereas a Knowledge source node can connect to any DRD element. A
Decision node can connect only to another decision or a text annotation.

The following connection types are available, depending on the node type:

Information requirement: Use this connection from an input data node or decision node to
another decision node that requires the information.

Knowledge requirement: Use this connection from a business knowledge model to a
decision node or to another business knowledge model that invokes the decision logic.

Authority requirement: Use this connection from an input data node or a decision node to a
dependent knowledge source or from a knowledge source to a decision node, business
knowledge model, or another knowledge source.

Association: Use this connection from an input data node, decision node, business
knowledge model, or knowledge source to a text annotation.

Figure 6.8. Connecting credit score input to the credit score rating decision

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

96

Figure 6.8. Connecting credit score input to the credit score rating decision

9. Continue adding and defining the remaining DRD components of your decision model.
Periodically click Save in the DMN designer to save your work.

NOTE

As you periodically save a DRD, the DMN designer performs a static validation of
the DMN model and might produce error messages until the model is defined
completely. After you finish defining the DMN model completely, if any errors
remain, troubleshoot the specified problems accordingly.

10. After you add and define all components of the DRD, click Save to save and validate the
completed DRD.
To adjust the DRD layout, you can select the Perform automatic layout icon in the upper-right
toolbar of the DMN designer.

The following is an example DRD for a loan prequalification decision model:

Figure 6.9. Completed DRD for loan prequalification

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

97

Figure 6.9. Completed DRD for loan prequalification

The following is an example DRD for a phone call handling decision model using a reusable
decision service:

Figure 6.10. Completed DRD for phone call handling with a decision service

In a DMN decision service node, the decision nodes in the bottom segment incorporate input
data from outside of the decision service to arrive at a final decision in the top segment of the
decision service node. The resulting top-level decisions from the decision service are then
implemented in any subsequent decisions or business knowledge requirements of the DMN
model. You can reuse DMN decision services in other DMN models to apply the same decision
logic with different input data and different outgoing connections.

6.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN
BUSINESS CENTRAL

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD). Some boxed expressions can
contain other boxed expressions, but the top-level boxed expression corresponds to the decision logic

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

98

of a single DRD artifact. While DRDs represent the flow of a DMN decision model, boxed expressions
define the actual decision logic of individual nodes. DRDs and boxed expressions together form a
complete and functional DMN decision model.

You can use the DMN designer in Business Central to define decision logic for your DRD components
using built-in boxed expressions.

Prerequisites

A DMN file is created or imported in Business Central.

Procedure

1. In Business Central, go to Menu → Design → Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer canvas, select a decision node or business knowledge model node that you
want to define and click the Edit icon to open the DMN boxed expression designer:

Figure 6.11. Opening a new decision node boxed expression

Figure 6.12. Opening a new business knowledge model boxed expression

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

99

Figure 6.12. Opening a new business knowledge model boxed expression

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,
or a nested boxed expression of any type.

For decision nodes, you click the undefined table to select the type of boxed expression you
want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

Figure 6.13. Selecting the logic type for a decision node

For business knowledge model nodes, you click the top-left function cell to select the function
type, or right-click the function value cell, select Clear, and select a boxed expression of another
type.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

100

Figure 6.14. Selecting the function or other logic type for a business knowledge model

3. For this example, use a decision node and select Decision Table as the boxed expression type.

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

101

A decision table in DMN is a visual representation of one or more rules in a tabular format. Each
rule consists of a single row in the table, and includes columns that define the conditions (input)
and outcome (output) for that particular row.

4. Click the input column header to define the name and data type for the input condition. For
example, name the input column Credit Score.FICO with a number data type. This column
specifies numeric credit score values or ranges of loan applicants.

5. Click the output column header to define the name and data type for the output values. For
example, name the output column Credit Score Rating and next to the Data Type option, click
Manage to go to the Data Types page where you can create a custom data type with score
ratings as constraints.

Figure 6.15. Managing data types for a column header value

6. On the Data Types page, click New Data Type to add a new data type or click Import Data
Object to import an existing data object from your project that you want to use as a DMN data
type.
If you import a data object from your project as a DMN data type and then that object is
updated, you must re-import the data object as a DMN data type to apply the changes in your
DMN model.

For this example, click New Data Type and create a Credit_Score_Rating data type as a string:

Figure 6.16. Adding a new data type

7. Click Add Constraints, select Enumeration from the drop-down options, and add the following
constraints:

"Excellent"

"Good"

"Fair"

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

102

"Poor"

"Bad"

Figure 6.17. Adding constraints to the new data type

To change the order of data type constraints, you can click the left end of the constraint row
and drag the row as needed:

Figure 6.18. Dragging constraints to change constraint order

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

103

Figure 6.18. Dragging constraints to change constraint order

For information about constraint types and syntax requirements for the specified data type, see
the Decision Model and Notation specification .

8. Click OK to save the constraints and click the check mark to the right of the data type to save
the data type.

9. Return to the Credit Score Rating decision table, click the Credit Score Rating column header,
and set the data type to this new custom data type.

10. Use the Credit Score.FICO input column to define credit score values or ranges of values, and
use the Credit Score Rating column to specify one of the corresponding ratings you defined in
the Credit_Score_Rating data type.
Right-click any value cell to insert or delete rows (rules) or columns (clauses).

Figure 6.19. Decision node decision table for credit score rating

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

104

https://www.omg.org/spec/DMN

Figure 6.19. Decision node decision table for credit score rating

11. After you define all rules, click the top-left corner of the decision table to define the rule Hit
Policy and Builtin Aggregator (for COLLECT hit policy only).
The hit policy determines how to reach an outcome when multiple rules in a decision table match
the provided input values. The built-in aggregator determines how to aggregate rule values
when you use the COLLECT hit policy.

Figure 6.20. Defining the decision table hit policy

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

105

Figure 6.20. Defining the decision table hit policy

The following example is a more complex decision table that determines applicant qualification
for a loan as the concluding decision node in the same loan prequalification decision model:

Figure 6.21. Decision table for loan prequalification

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate
the boxed expression tables and define variables and parameters for decision logic, but according to the
requirements of the boxed expression type. Some boxed expressions, such as boxed literal expressions,
can be single-column tables, while other boxed expressions, such as function, context, and invocation
expressions, can be multi-column tables with nested boxed expressions of other types.

For example, the following boxed context expression defines the parameters that determine whether a

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

106

For example, the following boxed context expression defines the parameters that determine whether a
loan applicant can meet minimum mortgage payments based on principal, interest, taxes, and insurance
(PITI), represented as a front-end ratio calculation with a sub-context expression:

Figure 6.22. Boxed context expression for front-end client PITI ratio

The following boxed function expression determines a monthly mortgage installment as a business
knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 6.23. Boxed function expression for installment calculation in business knowledge model

For more information and examples of each boxed expression type, see Section 4.4, “DMN decision
logic in boxed expressions”.

6.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED
EXPRESSIONS IN BUSINESS CENTRAL

In DMN boxed expressions in Business Central, data types determine the structure of the data that you
use within an associated table, column, or field in the boxed expression. You can use default DMN data
types (such as String, Number, Boolean) or you can create custom data types to specify additional
fields and constraints that you want to implement for the boxed expression values.

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

107

Custom data types that you create for a boxed expression can be simple or structured:

Simple data types have only a name and a type assignment. Example: Age (number).

Structured data types contain multiple fields associated with a parent data type. Example: A
single type Person containing the fields Name (string), Age (number), Email (string).

Prerequisites

A DMN file is created or imported in Business Central.

Procedure

1. In Business Central, go to Menu → Design → Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer canvas, select a decision node or business knowledge model for which you
want to define the data types and click the Edit icon to open the DMN boxed expression
designer.

3. If the boxed expression is for a decision node that is not yet defined, click the undefined table to
select the type of boxed expression you want to use, such as a boxed literal expression, boxed
context expression, decision table, or other DMN boxed expression.

Figure 6.24. Selecting the logic type for a decision node

4. Click the cell for the table header, column header, or parameter field (depending on the boxed
expression type) for which you want to define the data type and click Manage to go to the Data
Types page where you can create a custom data type.

Figure 6.25. Managing data types for a column header value

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

108

Figure 6.25. Managing data types for a column header value

You can also set and manage custom data types for a specified decision node or business
knowledge model node by selecting the Properties icon in the upper-right corner of the DMN
designer:

Figure 6.26. Managing data types in decision requirements diagram (DRD) properties

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

109

Figure 6.26. Managing data types in decision requirements diagram (DRD) properties

The data type that you define for a specified cell in a boxed expression determines the structure
of the data that you use within that associated table, column, or field in the boxed expression.

In this example, an output column Credit Score Rating for a DMN decision table defines a set of
custom credit score ratings based on an applicant’s credit score.

5. On the Data Types page, click New Data Type to add a new data type or click Import Data
Object to import an existing data object from your project that you want to use as a DMN data
type.
If you import a data object from your project as a DMN data type and then that object is
updated, you must re-import the data object as a DMN data type to apply the changes in your
DMN model.

For this example, click New Data Type and create a Credit_Score_Rating data type as a string:

Figure 6.27. Adding a new data type

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

110

Figure 6.27. Adding a new data type

If the data type requires a list of items, enable the List setting.

6. Click Add Constraints, select Enumeration from the drop-down options, and add the following
constraints:

"Excellent"

"Good"

"Fair"

"Poor"

"Bad"

Figure 6.28. Adding constraints to the new data type

To change the order of data type constraints, you can click the left end of the constraint row
and drag the row as needed:

Figure 6.29. Dragging constraints to change constraint order

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

111

Figure 6.29. Dragging constraints to change constraint order

For information about constraint types and syntax requirements for the specified data type, see
the Decision Model and Notation specification .

7. Click OK to save the constraints and click the check mark to the right of the data type to save
the data type.

8. Return to the Credit Score Rating decision table, click the Credit Score Rating column header,
set the data type to this new custom data type, and define the rule values for that column with
the rating constraints that you specified.

Figure 6.30. Decision table for credit score rating

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

112

https://www.omg.org/spec/DMN

Figure 6.30. Decision table for credit score rating

In the DMN decision model for this scenario, the Credit Score Rating decision flows into the
following Loan Prequalification decision that also requires custom data types:

Figure 6.31. Decision table for loan prequalification

9. Continuing with this example, return to the Data Types window, click New Data Type, and
create a Loan_Qualification data type as a Structure with no constraints.
When you save the new structured data type, the first sub-field appears so that you can begin
defining nested data fields in this parent data type. You can use these sub-fields in association
with the parent structured data type in boxed expressions, such as nested column headers in
decision tables or nested table parameters in context or function expressions.

For additional sub-fields, select the addition icon next to the Loan_Qualification data type:

Figure 6.32. Adding a new structured data type with nested fields

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

113

Figure 6.32. Adding a new structured data type with nested fields

10. For this example, under the structured Loan_Qualification data type, add a Qualification field
with "Qualified" and "Not Qualified" enumeration constraints, and a Reason field with no
constraints. Add also a simple Back_End_Ratio and a Front_End_Ratio data type, both with
"Sufficient" and "Insufficient" enumeration constraints.
Click the check mark to the right of each data type that you create to save your changes.

Figure 6.33. Adding nested data types with constraints

To change the order or nesting of data types, you can click the left end of the data type row and
drag the row as needed:

Figure 6.34. Dragging data types to change data type order or nesting

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

114

Figure 6.34. Dragging data types to change data type order or nesting

11. Return to the decision table and, for each column, click the column header cell, set the data type
to the new corresponding custom data type, and define the rule values as needed for the
column with the constraints that you specified, if applicable.

Figure 6.35. Decision table for loan prequalification

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate
the boxed expression tables and define custom data types as needed.

For example, the following boxed function expression uses custom tCandidate and tProfile structured
data types to associate data for online dating compatibility:

Figure 6.36. Boxed function expression for online dating compatibility

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

115

Figure 6.36. Boxed function expression for online dating compatibility

Figure 6.37. Custom data type definitions for online dating compatibility

Figure 6.38. Parameter definitions with custom data types for online dating compatibility

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

116

Figure 6.38. Parameter definitions with custom data types for online dating compatibility

6.3. INCLUDED MODELS IN DMN FILES IN BUSINESS CENTRAL

In the DMN designer in Business Central, you can use the Included Models tab to include other DMN
models and Predictive Model Markup Language (PMML) models from your project in a specified DMN
file. When you include a DMN model within another DMN file, you can use all of the nodes and logic from
both models in the same decision requirements diagram (DRD). When you include a PMML model within
a DMN file, you can invoke that PMML model as a boxed function expression for a DMN decision node or
business knowledge model node.

You cannot include DMN or PMML models from other projects in Business Central.

6.3.1. Including other DMN models within a DMN file in Business Central

In Business Central, you can include other DMN models from your project in a specified DMN file. When
you include a DMN model within another DMN file, you can use all of the nodes and logic from both
models in the same decision requirements diagram (DRD), but you cannot edit the nodes from the
included model. To edit nodes from included models, you must update the source file for the included
model directly. If you update the source file for an included DMN model, open the DMN file where the
DMN model is included (or close an re-open) to verify the changes.

You cannot include DMN models from other projects in Business Central.

Prerequisites

The DMN models are created or imported (as .dmn files) in the same project in Business
Central as the DMN file in which you want to include the models.

Procedure

1. In Business Central, go to Menu → Design → Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer, click the Included Models tab.

3. Click Include Model, select a DMN model from your project in the Models list, enter a unique

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

117

3. Click Include Model, select a DMN model from your project in the Models list, enter a unique
name for the included model, and click Include:

Figure 6.39. Including a DMN model

The DMN model is added to this DMN file, and all DRD nodes from the included model are listed
under Decision Components in the Decision Navigator view:

Figure 6.40. DMN file with decision components from the included DMN model

All data types from the included model are also listed in read-only mode in the Data Types tab
for the DMN file:

Figure 6.41. DMN file with data types from the included DMN model

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

118

Figure 6.41. DMN file with data types from the included DMN model

4. In the Model tab of the DMN designer, click and drag the included DRD components onto the
canvas to begin implementing them in your DRD:

Figure 6.42. Adding DRD components from the included DMN model

To edit DRD nodes or data types from included models, you must update the source file for the
included model directly. If you update the source file for an included DMN model, open the DMN
file where the DMN model is included (or close an re-open) to verify the changes.

To edit the included model name or to remove the included model from the DMN file, use the
Included Models tab in the DMN designer.

IMPORTANT

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

119

IMPORTANT

When you remove an included model, any nodes from that included model that
are currently used in the DRD are also removed.

6.3.2. Including PMML models within a DMN file in Business Central

In Business Central, you can include Predictive Model Markup Language (PMML) models from your
project in a specified DMN file. When you include a PMML model within a DMN file, you can invoke that
PMML model as a boxed function expression for a DMN decision node or business knowledge model
node. If you update the source file for an included PMML model, you must remove and re-include the
PMML model in the DMN file to apply the source changes.

You cannot include PMML models from other projects in Business Central.

Prerequisites

The PMML models are imported (as .pmml files) in the same project in Business Central as the
DMN file in which you want to include the models.

Procedure

1. In your DMN project, add the following dependencies to the project pom.xml file to enable
PMML evaluation:

To access the project pom.xml file in Business Central, you can select any existing asset in the

<!-- Required for the PMML compiler -->
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>kie-pmml</artifactId>
 <version>${rhdm.version}</version>
 <scope>provided</scope>
</dependency>

<!-- Alternative dependencies for JPMML Evaluator, override `kie-pmml` dependency -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-dmn-jpmml</artifactId>
 <version>${rhdm.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.jpmml</groupId>
 <artifactId>pmml-evaluator</artifactId>
 <version>1.5.1</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.jpmml</groupId>
 <artifactId>pmml-evaluator-extension</artifactId>
 <version>1.5.1</version>
 <scope>provided</scope>
</dependency>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

120

To access the project pom.xml file in Business Central, you can select any existing asset in the
project and then in the Project Explorer menu on the left side of the screen, click the
Customize View gear icon and select Repository View → pom.xml.

If you want to use the full PMML specification implementation with the Java Evaluator API for
PMML (JPMML), use the alternative set of JPMML dependencies in your DMN project. If the
JPMML dependencies and the standard kie-pmml dependency are both present, the kie-pmml
dependency is disabled. For information about JPMML licensing terms, see Openscoring.io.

IMPORTANT

The legacy kie-pmml dependency is deprecated with Red Hat Decision Manager
7.10.0 and will be replaced by kie-pmml-trusty dependency in a future Red Hat
Decision Manager release.

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to dependencyManagement section of your project
pom.xml file. The Red Hat Business Automation BOM applies to both Red Hat
Decision Manager and Red Hat Process Automation Manager. When you add the
BOM files, the correct versions of transitive dependencies from the provided
Maven repositories are included in the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. If you added the JPMML dependencies in your DMN project to use the JPMML Evaluator,
download the following JAR files and add them to the ~/kie-server.war/WEB-INF/lib and
~/business-central.war/WEB-INF/lib directories in your Red Hat Decision Manager
distribution:

kie-dmn-jpmml JAR file in the Red Hat Decision Manager 7.11.0 Maven Repository
distribution (rhdm-7.11.0-maven-repository/maven-repository/org/kie/kie-dmn-
jpmml/7.52.0.Final-redhat-00007/kie-dmn-jpmml-7.52.0.Final-redhat-00007.jar) from the
Red Hat Customer Portal

JPMML Evaluator 1.5.1 JAR file from the online Maven repository

JPMML Evaluator Extensions 1.5.1 JAR file from the online Maven repository

These artifacts are required to enable JPMML evaluation in KIE Server and Business Central.

IMPORTANT

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

121

https://openscoring.io/
https://access.redhat.com/solutions/3363991
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhdm&version=7.11.0
https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator/1.5.1
https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator-extension/1.5.1

IMPORTANT

Red Hat supports integration with the Java Evaluator API for PMML (JPMML)
for PMML execution in Red Hat Decision Manager. However, Red Hat does not
support the JPMML libraries directly. If you include JPMML libraries in your Red
Hat Decision Manager distribution, see the Openscoring.io licensing terms for
JPMML.

3. In Business Central, go to Menu → Design → Projects, click the project name, and select the
DMN file you want to modify.

4. In the DMN designer, click the Included Models tab.

5. Click Include Model, select a PMML model from your project in the Models list, enter a unique
name for the included model, and click Include:

Figure 6.43. Including a PMML model

The PMML model is added to this DMN file:

Figure 6.44. DMN file with included PMML model

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

122

https://openscoring.io/

Figure 6.44. DMN file with included PMML model

6. In the Model tab of the DMN designer, select or create the decision node or business
knowledge model node in which you want to invoke the PMML model and click the Edit icon to
open the DMN boxed expression designer:

Figure 6.45. Opening a new decision node boxed expression

Figure 6.46. Opening a new business knowledge model boxed expression

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

123

Figure 6.46. Opening a new business knowledge model boxed expression

7. Set the expression type to Function (default for business knowledge model nodes), click the
top-left function cell, and select PMML.

8. In the document and model rows in the table, double-click the undefined cells to specify the
included PMML document and the relevant PMML model within that document:

Figure 6.47. Adding a PMML model in a DMN business knowledge model

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

124

Figure 6.47. Adding a PMML model in a DMN business knowledge model

Figure 6.48. Example PMML definition in a DMN business knowledge model

If you update the source file for an included PMML model, you must remove and re-include the
PMML model in the DMN file to apply the source changes.

To edit the included model name or to remove the included model from the DMN file, use the
Included Models tab in the DMN designer.

6.4. CREATING DMN MODELS WITH MULTIPLE DIAGRAMS IN

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

125

6.4. CREATING DMN MODELS WITH MULTIPLE DIAGRAMS IN
BUSINESS CENTRAL

For complex DMN models, you can use the DMN designer in Business Central to design multiple DMN
decision requirements diagrams (DRDs) that represent parts of the overall decision requirements graph
(DRG) for the DMN decision model. In simple cases, you can use a single DRD to represent all of the
overall DRG for the decision model, but in complex cases, a single DRD can become large and difficult to
follow. Therefore, to better organize DMN decision models with many decision requirements, you can
divide the model into smaller nested DRDs that constitute the larger central DRD representation of the
overall DRG.

Prerequisites

You understand how to design DRDs in Business Central. For information about creating DRDs,
see Chapter 6, Creating and editing DMN models in Business Central .

Procedure

1. In Business Central, navigate to your DMN project and create or import a DMN file in the
project.

2. Open the new or imported DMN file to view the DRD in the DMN designer, and begin designing
or modifying the DRD using the DMN nodes in the left toolbar.

3. For any DMN nodes that you want to define in a separate nested DRD, select the node, click the
DRD Actions icon, and select from the available options.

Figure 6.49. DRD actions icon for subdividing a DRD

The following options are available:

Create: Use this option to create a nested DRD where you can separately define the DMN
components and diagram for the selected node.

Add to: If you already created a nested DRD, use this option to add the selected node to an
existing DRD.

Remove: If the node that you selected is already within a nested DRD, use this option to
remove the node from that nested DRD.

After you create a nested DRD within your DMN decision model, the new DRD opens in a
separate DRD canvas and the available DRD and components are listed in the Decision
Navigator left menu. You can use the Decision Navigator menu to rename or remove a nested
DRD.

Figure 6.50. Rename new nested DRD in the Decision Navigator menu

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

126

Figure 6.50. Rename new nested DRD in the Decision Navigator menu

4. In the separate canvas for the new nested DRD, design the flow and logic for all required
components in this portion of the DMN model, as usual.

5. Continue adding and defining any other nested DRDs for your decision model and save the
completed DMN file.
For example, the following DRD for a loan prequalification decision model contains all DMN
components for the model without any nested DRDs. This example relies on the single DRD for
all components and logic, resulting in a large and complex diagram.

Figure 6.51. Single DRD for loan prequalification

Alternatively, by following the steps in this procedure, you can divide this example DRD into
multiple nested DRDs to better organize the decision requirements, as shown in the following
example:

Figure 6.52. Multiple nested DRDs for loan prequalification

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

127

Figure 6.52. Multiple nested DRDs for loan prequalification

Figure 6.53. Overview of front end ratio DRD

Figure 6.54. DRD for front end ratio

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

128

Figure 6.54. DRD for front end ratio

Figure 6.55. Overview of credit score rating DRD

Figure 6.56. DRD for credit score rating

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

129

Figure 6.56. DRD for credit score rating

Figure 6.57. Overview of back end ratio DRD

Figure 6.58. DRD for back end ratio

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

130

Figure 6.58. DRD for back end ratio

6.5. DMN MODEL DOCUMENTATION IN BUSINESS CENTRAL

In the DMN designer in Business Central, you can use the Documentation tab to generate a report of
your DMN model that you can print or download as an HTML file for offline use. The DMN model report
contains all decision requirements diagrams (DRDs), data types, and boxed expressions in your DMN
model. You can use this report to share your DMN model details or as part of your internal reporting
workflow.

Figure 6.59. Example DMN model report

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

131

Figure 6.59. Example DMN model report

6.6. DMN DESIGNER NAVIGATION AND PROPERTIES IN BUSINESS
CENTRAL

The DMN designer in Business Central provides the following additional features to help you navigate
through the components and properties of decision requirements diagrams (DRDs).

DMN file and diagram views

In the upper-left corner of the DMN designer, select the Project Explorer view to navigate between
all DMN and other files or select the Decision Navigator view to navigate between the decision
components, graphs, and boxed expressions of a selected DRD:

Figure 6.60. Project Explorer view

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

132

Figure 6.60. Project Explorer view

Figure 6.61. Decision Navigator view

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

133

Figure 6.61. Decision Navigator view

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

134

NOTE

The DRD components from any DMN models included in the DMN file (in the
Included Models tab) are also listed in the Decision Components panel for the DMN
file.

In the upper-right corner of the DMN designer, select the Explore diagram icon to view an elevated
preview of the selected DRD and to navigate between the nodes of the selected DRD:

Figure 6.62. Explore diagram view

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

135

Figure 6.62. Explore diagram view

DRD properties and design

In the upper-right corner of the DMN designer, select the Properties icon to modify the identifying
information, data types, and appearance of a selected DRD, DRD node, or boxed expression cell:

Figure 6.63. DRD node properties

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

136

Figure 6.63. DRD node properties

To view the properties of the entire DRD, click the DRD canvas background instead of a specific
node.

DRD search

In the upper-right corner of the DMN designer, use the search bar to search for text that appears in
your DRD. The search feature is especially helpful in complex DRDs with many nodes:

Figure 6.64. DRD search

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

137

Figure 6.64. DRD search

DMN decision service details

Select a decision service node in the DMN designer to view additional properties, including Input
Data, Encapsulated Decisions, and Output Decisions in the Properties panel.

Figure 6.65. Decision Service details

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

138

CHAPTER 7. DMN MODEL EXECUTION
You can create or import DMN files in your Red Hat Decision Manager project using Business Central or
package the DMN files as part of your project knowledge JAR (KJAR) file without Business Central.
After you implement your DMN files in your Red Hat Decision Manager project, you can execute the
DMN decision service by deploying the KIE container that contains it to KIE Server for remote access or
by manipulating the KIE container directly as a dependency of the calling application. Other options for
creating and deploying DMN knowledge packages are also available, and most are similar for all types of
knowledge assets, such as DRL files or process definitions.

For information about including external DMN assets with your project packaging and deployment
method, see Packaging and deploying a Red Hat Decision Manager project .

7.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You typically embed
knowledge assets directly into a project if there is a tight relationship between the version of the code
and the version of the DMN definition. Any changes to the decision take effect after you have
intentionally updated and redeployed the application. A benefit of this approach is that proper
operation does not rely on any external dependencies to the run time, which can be a limitation of
locked-down environments.

Using Maven dependencies enables further flexibility because the specific version of the decision can
dynamically change, (for example, by using a system property), and it can be periodically scanned for
updates and automatically updated. This introduces an external dependency on the deploy time of the
service, but executes the decision locally, reducing reliance on an external service being available during
run time.

Prerequisites

You have built the DMN project as a KJAR artifact and deployed it to a Maven repository, or you
have included your DMN assets as part of your project classpath. Ideally, you have built the DMN
project as an executable model for more efficient execution:

mvn clean install -DgenerateDMNModel=yes

For more information about project packaging and deployment and executable models, see
Packaging and deploying a Red Hat Decision Manager project .

Procedure

1. In your client application, add the following dependencies to the relevant classpath of your Java
project:

<!-- Required for the DMN runtime API -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-dmn-core</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<!-- Required if not using classpath KIE container -->
<dependency>

CHAPTER 7. DMN MODEL EXECUTION

139

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

The <version> is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.52.0.Final-redhat-00007).

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Create a KIE container from classpath or ReleaseId:

Alternative option:

3. Obtain DMNRuntime from the KIE container and a reference to the DMN model to be
evaluated, by using the model namespace and modelName:

 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseId);

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

DMNRuntime dmnRuntime =
KieRuntimeFactory.of(kieContainer.getKieBase()).get(DMNRuntime.class);

String namespace = "http://www.redhat.com/_c7328033-c355-43cd-b616-0aceef80e52a";
String modelName = "dmn-movieticket-ageclassification";

DMNModel dmnModel = dmnRuntime.getModel(namespace, modelName);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

140

https://access.redhat.com/solutions/3363991

1

2

3

4

4. Execute the decision services for the desired model:

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

Assign input variables for the input DMN context.

Evaluate all DMN decisions defined in the DMN model.

Each evaluation may result in one or more results, creating the loop.

This example prints the following output:

Age 1 Decision 'AgeClassification' : Child
Age 12 Decision 'AgeClassification' : Child
Age 13 Decision 'AgeClassification' : Adult
Age 64 Decision 'AgeClassification' : Adult
Age 65 Decision 'AgeClassification' : Senior
Age 66 Decision 'AgeClassification' : Senior

If the DMN model was not previously compiled as an executable model for more efficient
execution, you can enable the following property when you execute your DMN models:

-Dorg.kie.dmn.compiler.execmodel=true

7.2. EXECUTING A DMN SERVICE USING THE KIE SERVER JAVA
CLIENT API

The KIE Server Java client API provides a lightweight approach to invoking a remote DMN service either
through the REST or JMS interfaces of KIE Server. This approach reduces the number of runtime
dependencies necessary to interact with a KIE base. Decoupling the calling code from the decision
definition also increases flexibility by enabling them to iterate independently at the appropriate pace.

For more information about the KIE Server Java client API, see Interacting with Red Hat Decision
Manager using KIE APIs.

Prerequisites

KIE Server is installed and configured, including a known user name and credentials for a user

DMNContext dmnContext = dmnRuntime.newContext(); 1

for (Integer age : Arrays.asList(1,12,13,64,65,66)) {
 dmnContext.set("Age", age); 2
 DMNResult dmnResult =
 dmnRuntime.evaluateAll(dmnModel, dmnContext); 3

 for (DMNDecisionResult dr : dmnResult.getDecisionResults()) { 4
 log.info("Age: " + age + ", " +
 "Decision: '" + dr.getDecisionName() + "', " +
 "Result: " + dr.getResult());
 }
}

CHAPTER 7. DMN MODEL EXECUTION

141

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

KIE Server is installed and configured, including a known user name and credentials for a user
with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

You have built the DMN project as a KJAR artifact and deployed it to KIE Server. Ideally, you
have built the DMN project as an executable model for more efficient execution:

mvn clean install -DgenerateDMNModel=yes

For more information about project packaging and deployment and executable models, see
Packaging and deploying a Red Hat Decision Manager project .

You have the ID of the KIE container containing the DMN model. If more than one model is
present, you must also know the model namespace and model name of the relevant model.

Procedure

1. In your client application, add the following dependency to the relevant classpath of your Java
project:

The <version> is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.52.0.Final-redhat-00007).

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Instantiate a KieServicesClient instance with the appropriate connection information.

<!-- Required for the KIE Server Java client API -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

142

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/solutions/3363991

1

2

1

2

3

Example:

The connection information:

Example URL: http://localhost:8080/kie-server/services/rest/server

The credentials should reference a user with the kie-server role.

The Marshalling format is an instance of
org.kie.server.api.marshalling.MarshallingFormat. It controls whether the messages will
be JSON or XML. Options for Marshalling format are JSON, JAXB, or XSTREAM.

3. Obtain a DMNServicesClient from the KIE server Java client connected to the related KIE
Server by invoking the method getServicesClient() on the KIE server Java client instance:

The dmnClient can now execute decision services on KIE Server.

4. Execute the decision services for the desired model.
Example:

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

Assign input variables for the input DMN Context.

Evaluate all the DMN Decisions defined in the DMN model:

KieServicesConfiguration conf =
 KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD); 1

conf.setMarshallingFormat(MarshallingFormat.JSON); 2

KieServicesClient kieServicesClient = KieServicesFactory.newKieServicesClient(conf);

DMNServicesClient dmnClient =
kieServicesClient.getServicesClient(DMNServicesClient.class);

for (Integer age : Arrays.asList(1,12,13,64,65,66)) {
 DMNContext dmnContext = dmnClient.newContext(); 1
 dmnContext.set("Age", age); 2
 ServiceResponse<DMNResult> serverResp = 3
 dmnClient.evaluateAll($kieContainerId,
 $modelNamespace,
 $modelName,
 dmnContext);

 DMNResult dmnResult = serverResp.getResult(); 4
 for (DMNDecisionResult dr : dmnResult.getDecisionResults()) {
 log.info("Age: " + age + ", " +
 "Decision: '" + dr.getDecisionName() + "', " +
 "Result: " + dr.getResult());
 }
}

CHAPTER 7. DMN MODEL EXECUTION

143

4

$kieContainerId is the ID of the container where the KJAR containing the DMN model
is deployed

$modelNamespace is the namespace for the model.

$modelName is the name for the model.

The DMN Result object is available from the server response.

At this point, the dmnResult contains all the decision results from the evaluated DMN model.

You can also execute only a specific DMN decision in the model by using alternative methods of
the DMNServicesClient.

NOTE

If the KIE container only contains one DMN model, you can omit
$modelNamespace and $modelName because the KIE Server API selects it by
default.

7.3. EXECUTING A DMN SERVICE USING THE KIE SERVER REST API

Directly interacting with the REST endpoints of KIE Server provides the most separation between the
calling code and the decision logic definition. The calling code is completely free of direct
dependencies, and you can implement it in an entirely different development platform such as Node.js
or .NET. The examples in this section demonstrate Nix-style curl commands but provide relevant
information to adapt to any REST client.

When you use a REST endpoint of KIE Server, the best practice is to define a domain object POJO Java
class, annotated with standard KIE Server marshalling annotations. For example, the following code is
using a domain object Person class that is annotated properly:

Example POJO Java class

@javax.xml.bind.annotation.XmlAccessorType(javax.xml.bind.annotation.XmlAccessType.FIELD)
public class Person implements java.io.Serializable {

 static final long serialVersionUID = 1L;

 private java.lang.String id;
 private java.lang.String name;

@javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter(org.kie.internal.jaxb.LocalDateXmlAdapter.c
lass)
 private java.time.LocalDate dojoining;

 public Person() {
 }

 public java.lang.String getId() {
 return this.id;
 }

 public void setId(java.lang.String id) {
 this.id = id;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

144

For more information about the KIE Server REST API, see Interacting with Red Hat Decision Manager
using KIE APIs.

Prerequisites

KIE Server is installed and configured, including a known user name and credentials for a user
with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

You have built the DMN project as a KJAR artifact and deployed it to KIE Server. Ideally, you
have built the DMN project as an executable model for more efficient execution:

mvn clean install -DgenerateDMNModel=yes

For more information about project packaging and deployment and executable models, see
Packaging and deploying a Red Hat Decision Manager project .

You have the ID of the KIE container containing the DMN model. If more than one model is
present, you must also know the model namespace and model name of the relevant model.

Procedure

1. Determine the base URL for accessing the KIE Server REST API endpoints. This requires
knowing the following values (with the default local deployment values as an example):

Host (localhost)

Port (8080)

 }

 public java.lang.String getName() {
 return this.name;
 }

 public void setName(java.lang.String name) {
 this.name = name;
 }

 public java.time.LocalDate getDojoining() {
 return this.dojoining;
 }

 public void setDojoining(java.time.LocalDate dojoining) {
 this.dojoining = dojoining;
 }

 public Person(java.lang.String id, java.lang.String name,
 java.time.LocalDate dojoining) {
 this.id = id;
 this.name = name;
 this.dojoining = dojoining;
 }

}

CHAPTER 7. DMN MODEL EXECUTION

145

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Root context (kie-server)

Base REST path (services/rest/)

Example base URL in local deployment:

http://localhost:8080/kie-server/services/rest/

2. Determine user authentication requirements.
When users are defined directly in the KIE Server configuration, HTTP Basic authentication is
used and requires the user name and password. Successful requests require that the user have
the kie-server role.

The following example demonstrates how to add credentials to a curl request:

curl -u username:password <request>

If KIE Server is configured with Red Hat Single Sign-On, the request must include a bearer
token:

3. Specify the format of the request and response. The REST API endpoints work with both JSON
and XML formats and are set using request headers:

JSON

curl -H "accept: application/json" -H "content-type: application/json"

XML

curl -H "accept: application/xml" -H "content-type: application/xml"

4. Optional: Query the container for a list of deployed decision models:
[GET] server/containers/{containerId}/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/xml" -X GET "http://localhost:8080/kie-
server/services/rest/server/containers/MovieDMNContainer/dmn"

Sample XML output:

curl -H "Authorization: bearer $TOKEN" <request>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="OK models successfully retrieved from container
'MovieDMNContainer'">
 <dmn-model-info-list>
 <model>
 <model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a</model-namespace>
 <model-name>dmn-movieticket-ageclassification</model-name>
 <model-id>_99</model-id>
 <decisions>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

146

Sample JSON output:

5. Execute the model:
[POST] server/containers/{containerId}/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/json" -H "content-type: application/json" -X POST
"http://localhost:8080/kie-server/services/rest/server/containers/MovieDMNContainer/dmn" -d
"{ \"model-namespace\" : \"http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a\", \"model-name\" : \"dmn-movieticket-ageclassification\", \"decision-name\" : [
], \"decision-id\" : [], \"dmn-context\" : {\"Age\" : 66}}"

Example JSON request:

Example XML request (JAXB format):

 <dmn-decision-info>
 <decision-id>_3</decision-id>
 <decision-name>AgeClassification</decision-name>
 </dmn-decision-info>
 </decisions>
 </model>
 </dmn-model-info-list>
</response>

{
 "type" : "SUCCESS",
 "msg" : "OK models successfully retrieved from container 'MovieDMNContainer'",
 "result" : {
 "dmn-model-info-list" : {
 "models" : [{
 "model-namespace" : "http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a",
 "model-name" : "dmn-movieticket-ageclassification",
 "model-id" : "_99",
 "decisions" : [{
 "decision-id" : "_3",
 "decision-name" : "AgeClassification"
 }]
 }]
 }
 }
}

{
 "model-namespace" : "http://www.redhat.com/_c7328033-c355-43cd-b616-0aceef80e52a",
 "model-name" : "dmn-movieticket-ageclassification",
 "decision-name" : [],
 "decision-id" : [],
 "dmn-context" : {"Age" : 66}
}

<?xml version="1.0" encoding="UTF-8"?>

CHAPTER 7. DMN MODEL EXECUTION

147

NOTE

Regardless of the request format, the request requires the following elements:

Model namespace

Model name

Context object containing input values

Example JSON response:

Example XML (JAXB format) response:

<dmn-evaluation-context>
 <model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a</model-namespace>
 <model-name>dmn-movieticket-ageclassification</model-name>
 <dmn-context xsi:type="jaxbListWrapper" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <type>MAP</type>
 <element xsi:type="jaxbStringObjectPair" key="Age">
 <value xsi:type="xs:int" xmlns:xs="http://www.w3.org/2001/XMLSchema">66</value>
 </element>
 </dmn-context>
</dmn-evaluation-context>

{
 "type" : "SUCCESS",
 "msg" : "OK from container 'MovieDMNContainer'",
 "result" : {
 "dmn-evaluation-result" : {
 "messages" : [],
 "model-namespace" : "http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a",
 "model-name" : "dmn-movieticket-ageclassification",
 "decision-name" : [],
 "dmn-context" : {
 "Age" : 66,
 "AgeClassification" : "Senior"
 },
 "decision-results" : {
 "_3" : {
 "messages" : [],
 "decision-id" : "_3",
 "decision-name" : "AgeClassification",
 "result" : "Senior",
 "status" : "SUCCEEDED"
 }
 }
 }
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

148

7.4. REST ENDPOINTS FOR SPECIFIC DMN MODELS

Red Hat Decision Manager provides model-specific DMN KIE Server endpoints that you can use to
interact with your specific DMN model without using the Business Central user interface.

For each DMN model in a container in Red Hat Decision Manager, the following REST endpoints of the
KIE Server are automatically generated based on the content of the DMN model:

POST /server/containers/{containerId}/dmn/models/{modelname}: A business-domain
endpoint for evaluating a specified DMN model in a container

POST /server/containers/{containerId}/dmn/models/{modelname}/{decisionServiceName}:
A business-domain endpoint for evaluating a specified decision service component in a specific
DMN model available in a container

POST /server/containers/{containerId}/dmn/models/{modelname}/dmnresult: An endpoint
for evaluating a specified DMN model containing customized body payload and returning a
DMNResult response, including business-domain context, helper messages, and helper
decision pointers

POST

<response type="SUCCESS" msg="OK from container 'MovieDMNContainer'">
 <dmn-evaluation-result>
 <model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a</model-namespace>
 <model-name>dmn-movieticket-ageclassification</model-name>
 <dmn-context xsi:type="jaxbListWrapper"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <type>MAP</type>
 <element xsi:type="jaxbStringObjectPair" key="Age">
 <value xsi:type="xs:int"
xmlns:xs="http://www.w3.org/2001/XMLSchema">66</value>
 </element>
 <element xsi:type="jaxbStringObjectPair" key="AgeClassification">
 <value xsi:type="xs:string"
xmlns:xs="http://www.w3.org/2001/XMLSchema">Senior</value>
 </element>
 </dmn-context>
 <messages/>
 <decisionResults>
 <entry>
 <key>_3</key>
 <value>
 <decision-id>_3</decision-id>
 <decision-name>AgeClassification</decision-name>
 <result xsi:type="xs:string"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Senior</result>
 <messages/>
 <status>SUCCEEDED</status>
 </value>
 </entry>
 </decisionResults>
 </dmn-evaluation-result>
</response>

CHAPTER 7. DMN MODEL EXECUTION

149

/server/containers/{containerId}/dmn/models/{modelname}/{decisionServiceName}/dmnre
sult: An endpoint for evaluating a specified decision service component in a specific DMN model
and returning a DMNResult response, including the business-domain context, helper messages,
and help decision pointers for the decision service

GET /server/containers/{containerId}/dmn/models/{modelname}: An endpoint for returning
standard DMN XML without decision logic and containing the inputs and decisions of the
specified DMN model

GET /server/containers/{containerId}/dmn/openapi.json (|.yaml): An endpoint for retrieving
Swagger or OAS for the DMN models in a specified container

You can use these endpoints to interact with a DMN model or a specific decision service within a model.
As you decide between using business-domain and dmnresult variants of these REST endpoints, review
the following considerations:

REST business-domain endpoints: Use this endpoint type if a client application is only
concerned with a positive evaluation outcome, is not interested in parsing Info or Warn
messages, and only needs an HTTP 5xx response for any errors. This type of endpoint is also
helpful for single-page application-like clients, due to singleton coercion of decision service
results that resemble the DMN modeling behavior.

REST dmnresult endpoints: Use this endpoint type if a client needs to parse Info, Warn, or
Error messages in all cases.

For each endpoint, use a REST client or curl utility to send requests with the following components:

Base URL: http://HOST:PORT/kie-server/services/rest/

Path parameters:

{containerId}: The string identifier of the container, such as mykjar-project

{modelName}: The string identifier of the DMN model, such as Traffic Violation

{decisionServiceName}: The string identifier of the decision service component in the
DMN DRG, such as TrafficViolationDecisionService

dmnresult: The string identifier that enables the endpoint to return a full DMNResult
response with more detailed Info, Warn, and Error messaging

HTTP headers: For POST requests only:

accept: application/json

content-type: application/json

HTTP methods: GET or POST

The examples in the following endpoints are based on a mykjar-project container that contains a
Traffic Violation DMN model, containing a TrafficViolationDecisionService decision service
component.

For all of these endpoints, if a DMN evaluation Error message occurs, a DMNResult response is
returned along with an HTTP 5xx error. If a DMN Info or Warn message occurs, the relevant response is
returned along with the business-domain REST body, in the X-Kogito-decision-messages extended
HTTP header, to be used for client-side business logic. When there is a requirement of more refined
client-side business logic, the client can use the dmnresult variant of the endpoints.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

150

Retrieve Swagger or OAS for DMN models in a specified container

GET /server/containers/{containerId}/dmn/openapi.json (|.yaml)

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/openapi.json (|.yaml)

Return the DMN XML without decision logic

GET /server/containers/{containerId}/dmn/models/{modelname}

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation

Example curl request

curl -u wbadmin:wbadmin -X GET "http://localhost:8080/kie-
server/services/rest/server/containers/mykjar-project/dmn/models/Traffic%20Violation" -H
"accept: application/xml"

Example response (XML)

<?xml version='1.0' encoding='UTF-8'?>
<dmn:definitions xmlns:dmn="http://www.omg.org/spec/DMN/20180521/MODEL/"
xmlns="https://github.com/kiegroup/drools/kie-dmn/_A4BCA8B8-CF08-433F-93B2-
A2598F19ECFF" xmlns:di="http://www.omg.org/spec/DMN/20180521/DI/"
xmlns:kie="http://www.drools.org/kie/dmn/1.2"
xmlns:feel="http://www.omg.org/spec/DMN/20180521/FEEL/"
xmlns:dmndi="http://www.omg.org/spec/DMN/20180521/DMNDI/"
xmlns:dc="http://www.omg.org/spec/DMN/20180521/DC/" id="_1C792953-80DB-4B32-99EB-
25FBE32BAF9E" name="Traffic Violation"
expressionLanguage="http://www.omg.org/spec/DMN/20180521/FEEL/"
typeLanguage="http://www.omg.org/spec/DMN/20180521/FEEL/"
namespace="https://github.com/kiegroup/drools/kie-dmn/_A4BCA8B8-CF08-433F-93B2-
A2598F19ECFF">
 <dmn:extensionElements/>
 <dmn:itemDefinition id="_63824D3F-9173-446D-A940-6A7F0FA056BB" name="tDriver"
isCollection="false">
 <dmn:itemComponent id="_9DAB5DAA-3B44-4F6D-87F2-95125FB2FEE4" name="Name"
isCollection="false">
 <dmn:typeRef>string</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_856BA8FA-EF7B-4DF9-A1EE-E28263CE9955" name="Age"
isCollection="false">
 <dmn:typeRef>number</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_FDC2CE03-D465-47C2-A311-98944E8CC23F" name="State"
isCollection="false">
 <dmn:typeRef>string</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_D6FD34C4-00DC-4C79-B1BF-BBCF6FC9B6D7" name="City"
isCollection="false">
 <dmn:typeRef>string</dmn:typeRef>

CHAPTER 7. DMN MODEL EXECUTION

151

 </dmn:itemComponent>
 <dmn:itemComponent id="_7110FE7E-1A38-4C39-B0EB-AEEF06BA37F4" name="Points"
isCollection="false">
 <dmn:typeRef>number</dmn:typeRef>
 </dmn:itemComponent>
 </dmn:itemDefinition>
 <dmn:itemDefinition id="_40731093-0642-4588-9183-1660FC55053B" name="tViolation"
isCollection="false">
 <dmn:itemComponent id="_39E88D9F-AE53-47AD-B3DE-8AB38D4F50B3" name="Code"
isCollection="false">
 <dmn:typeRef>string</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_1648EA0A-2463-4B54-A12A-D743A3E3EE7B" name="Date"
isCollection="false">
 <dmn:typeRef>date</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_9F129EAA-4E71-4D99-B6D0-84EEC3AC43CC" name="Type"
isCollection="false">
 <dmn:typeRef>string</dmn:typeRef>
 <dmn:allowedValues kie:constraintType="enumeration" id="_626A8F9C-9DD1-44E0-9568-
0F6F8F8BA228">
 <dmn:text>"speed", "parking", "driving under the influence"</dmn:text>
 </dmn:allowedValues>
 </dmn:itemComponent>
 <dmn:itemComponent id="_DDD10D6E-BD38-4C79-9E2F-8155E3A4B438" name="Speed
Limit" isCollection="false">
 <dmn:typeRef>number</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_229F80E4-2892-494C-B70D-683ABF2345F6" name="Actual
Speed" isCollection="false">
 <dmn:typeRef>number</dmn:typeRef>
 </dmn:itemComponent>
 </dmn:itemDefinition>
 <dmn:itemDefinition id="_2D4F30EE-21A6-4A78-A524-A5C238D433AE" name="tFine"
isCollection="false">
 <dmn:itemComponent id="_B9F70BC7-1995-4F51-B949-1AB65538B405" name="Amount"
isCollection="false">
 <dmn:typeRef>number</dmn:typeRef>
 </dmn:itemComponent>
 <dmn:itemComponent id="_F49085D6-8F08-4463-9A1A-EF6B57635DBD" name="Points"
isCollection="false">
 <dmn:typeRef>number</dmn:typeRef>
 </dmn:itemComponent>
 </dmn:itemDefinition>
 <dmn:inputData id="_1929CBD5-40E0-442D-B909-49CEDE0101DC" name="Violation">
 <dmn:variable id="_C16CF9B1-5FAB-48A0-95E0-5FCD661E0406" name="Violation"
typeRef="tViolation"/>
 </dmn:inputData>
 <dmn:decision id="_4055D956-1C47-479C-B3F4-BAEB61F1C929" name="Fine">
 <dmn:variable id="_8C1EAC83-F251-4D94-8A9E-B03ACF6849CD" name="Fine"
typeRef="tFine"/>
 <dmn:informationRequirement id="_800A3BBB-90A3-4D9D-BA5E-A311DED0134F">
 <dmn:requiredInput href="#_1929CBD5-40E0-442D-B909-49CEDE0101DC"/>
 </dmn:informationRequirement>
 </dmn:decision>
 <dmn:inputData id="_1F9350D7-146D-46F1-85D8-15B5B68AF22A" name="Driver">

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

152

 <dmn:variable id="_A80F16DF-0DB4-43A2-B041-32900B1A3F3D" name="Driver"
typeRef="tDriver"/>
 </dmn:inputData>
 <dmn:decision id="_8A408366-D8E9-4626-ABF3-5F69AA01F880" name="Should the driver be
suspended?">
 <dmn:question>Should the driver be suspended due to points on his license?</dmn:question>
 <dmn:allowedAnswers>"Yes", "No"</dmn:allowedAnswers>
 <dmn:variable id="_40387B66-5D00-48C8-BB90-E83EE3332C72" name="Should the driver be
suspended?" typeRef="string"/>
 <dmn:informationRequirement id="_982211B1-5246-49CD-BE85-3211F71253CF">
 <dmn:requiredInput href="#_1F9350D7-146D-46F1-85D8-15B5B68AF22A"/>
 </dmn:informationRequirement>
 <dmn:informationRequirement id="_AEC4AA5F-50C3-4FED-A0C2-261F90290731">
 <dmn:requiredDecision href="#_4055D956-1C47-479C-B3F4-BAEB61F1C929"/>
 </dmn:informationRequirement>
 </dmn:decision>
 <dmndi:DMNDI>
 <dmndi:DMNDiagram>
 <di:extension/>
 <dmndi:DMNShape id="dmnshape-_1929CBD5-40E0-442D-B909-49CEDE0101DC"
dmnElementRef="_1929CBD5-40E0-442D-B909-49CEDE0101DC" isCollapsed="false">
 <dmndi:DMNStyle>
 <dmndi:FillColor red="255" green="255" blue="255"/>
 <dmndi:StrokeColor red="0" green="0" blue="0"/>
 <dmndi:FontColor red="0" green="0" blue="0"/>
 </dmndi:DMNStyle>
 <dc:Bounds x="708" y="350" width="100" height="50"/>
 <dmndi:DMNLabel/>
 </dmndi:DMNShape>
 <dmndi:DMNShape id="dmnshape-_4055D956-1C47-479C-B3F4-BAEB61F1C929"
dmnElementRef="_4055D956-1C47-479C-B3F4-BAEB61F1C929" isCollapsed="false">
 <dmndi:DMNStyle>
 <dmndi:FillColor red="255" green="255" blue="255"/>
 <dmndi:StrokeColor red="0" green="0" blue="0"/>
 <dmndi:FontColor red="0" green="0" blue="0"/>
 </dmndi:DMNStyle>
 <dc:Bounds x="709" y="210" width="100" height="50"/>
 <dmndi:DMNLabel/>
 </dmndi:DMNShape>
 <dmndi:DMNShape id="dmnshape-_1F9350D7-146D-46F1-85D8-15B5B68AF22A"
dmnElementRef="_1F9350D7-146D-46F1-85D8-15B5B68AF22A" isCollapsed="false">
 <dmndi:DMNStyle>
 <dmndi:FillColor red="255" green="255" blue="255"/>
 <dmndi:StrokeColor red="0" green="0" blue="0"/>
 <dmndi:FontColor red="0" green="0" blue="0"/>
 </dmndi:DMNStyle>
 <dc:Bounds x="369" y="344" width="100" height="50"/>
 <dmndi:DMNLabel/>
 </dmndi:DMNShape>
 <dmndi:DMNShape id="dmnshape-_8A408366-D8E9-4626-ABF3-5F69AA01F880"
dmnElementRef="_8A408366-D8E9-4626-ABF3-5F69AA01F880" isCollapsed="false">
 <dmndi:DMNStyle>
 <dmndi:FillColor red="255" green="255" blue="255"/>
 <dmndi:StrokeColor red="0" green="0" blue="0"/>
 <dmndi:FontColor red="0" green="0" blue="0"/>
 </dmndi:DMNStyle>

CHAPTER 7. DMN MODEL EXECUTION

153

Evaluate a specified DMN model in a specified container

POST /server/containers/{containerId}/dmn/models/{modelname}

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation

Example curl request

curl -u wbadmin:wbadmin-X POST "http://localhost:8080/kie-
server/services/rest/server/containers/mykjar-project/dmn/models/Traffic Violation" -H "accept:
application/json" -H "Content-Type: application/json" -d "{\"Driver\":{\"Points\":15},\"Violation\":
{\"Date\":\"2021-04-08\",\"Type\":\"speed\",\"Actual Speed\":135,\"Speed Limit\":100}}"

Example POST request body with input data

Example response (JSON)

 <dc:Bounds x="534" y="83" width="133" height="63"/>
 <dmndi:DMNLabel/>
 </dmndi:DMNShape>
 <dmndi:DMNEdge id="dmnedge-_800A3BBB-90A3-4D9D-BA5E-A311DED0134F"
dmnElementRef="_800A3BBB-90A3-4D9D-BA5E-A311DED0134F">
 <di:waypoint x="758" y="375"/>
 <di:waypoint x="759" y="235"/>
 </dmndi:DMNEdge>
 <dmndi:DMNEdge id="dmnedge-_982211B1-5246-49CD-BE85-3211F71253CF"
dmnElementRef="_982211B1-5246-49CD-BE85-3211F71253CF">
 <di:waypoint x="419" y="369"/>
 <di:waypoint x="600.5" y="114.5"/>
 </dmndi:DMNEdge>
 <dmndi:DMNEdge id="dmnedge-_AEC4AA5F-50C3-4FED-A0C2-261F90290731"
dmnElementRef="_AEC4AA5F-50C3-4FED-A0C2-261F90290731">
 <di:waypoint x="759" y="235"/>
 <di:waypoint x="600.5" y="114.5"/>
 </dmndi:DMNEdge>
 </dmndi:DMNDiagram>
 </dmndi:DMNDI>

{
 "Driver": {
 "Points": 15
 },
 "Violation": {
 "Date": "2021-04-08",
 "Type": "speed",
 "Actual Speed": 135,
 "Speed Limit": 100
 }
}

{
 "Violation": {

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

154

Evaluate a specified decision service within a specified DMN model in a container

POST /server/containers/{containerId}/dmn/models/{modelname}/{decisionServiceName}
For this endpoint, the request body must contain all the requirements of the decision service. The
response is the resulting DMN context of the decision service, including the decision values, the
original input values, and all other parametric DRG components in serialized form. For example, a
business knowledge model is available in string-serialized form in its signature.

If the decision service is composed of a single-output decision, the response is the resulting value of
that specific decision. This behavior provides an equivalent value at the API level of a specification
feature when invoking the decision service in the model itself. As a result, you can, for example,
interact with a DMN decision service from single-page web applications.

Figure 7.1. Example TrafficViolationDecisionService decision service with single-output decision

 "Type": "speed",
 "Speed Limit": 100,
 "Actual Speed": 135,
 "Code": null,
 "Date": "2021-04-08"
 },
 "Driver": {
 "Points": 15,
 "State": null,
 "City": null,
 "Age": null,
 "Name": null
 },
 "Fine": {
 "Points": 7,
 "Amount": 1000
 },
 "Should the driver be suspended?": "Yes"
}

CHAPTER 7. DMN MODEL EXECUTION

155

Figure 7.1. Example TrafficViolationDecisionService decision service with single-output decision

Figure 7.2. Example TrafficViolationDecisionService decision service with multiple-output
decision

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

156

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService

Example POST request body with input data

Example curl request

curl -X POST http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService -H 'content-type:
application/json' -H 'accept: application/json' -d '{"Driver": {"Points": 2}, "Violation": {"Type":
"speed", "Actual Speed": 120, "Speed Limit": 100}}'

Example response for single-output decision (JSON)

Example response for multiple-output decision (JSON)

Evaluate a specified DMN model in a specified container and return a DMNResult response

POST /server/containers/{containerId}/dmn/models/{modelname}/dmnresult

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/dmnresult

Example POST request body with input data

{
 "Driver": {
 "Points": 2
 },
 "Violation": {
 "Type": "speed",
 "Actual Speed": 120,
 "Speed Limit": 100
 }
}

"No"

{
 "Violation": {
 "Type": "speed",
 "Speed Limit": 100,
 "Actual Speed": 120
 },
 "Driver": {
 "Points": 2
 },
 "Fine": {
 "Points": 3,
 "Amount": 500
 },
 "Should the driver be suspended?": "No"
}

CHAPTER 7. DMN MODEL EXECUTION

157

Example curl request

curl -X POST http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/dmnresult -H 'content-type: application/json' -H 'accept:
application/json' -d '{"Driver": {"Points": 2}, "Violation": {"Type": "speed", "Actual Speed": 120,
"Speed Limit": 100}}'

Example response (JSON)

{
 "Driver": {
 "Points": 2
 },
 "Violation": {
 "Type": "speed",
 "Actual Speed": 120,
 "Speed Limit": 100
 }
}

{
 "namespace": "https://github.com/kiegroup/drools/kie-dmn/_A4BCA8B8-CF08-433F-93B2-
A2598F19ECFF",
 "modelName": "Traffic Violation",
 "dmnContext": {
 "Violation": {
 "Type": "speed",
 "Speed Limit": 100,
 "Actual Speed": 120,
 "Code": null,
 "Date": null
 },
 "Driver": {
 "Points": 2,
 "State": null,
 "City": null,
 "Age": null,
 "Name": null
 },
 "Fine": {
 "Points": 3,
 "Amount": 500
 },
 "Should the driver be suspended?": "No"
 },
 "messages": [],
 "decisionResults": [
 {
 "decisionId": "_4055D956-1C47-479C-B3F4-BAEB61F1C929",
 "decisionName": "Fine",
 "result": {
 "Points": 3,
 "Amount": 500
 },
 "messages": [],

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

158

Evaluate a specified decision service within a DMN model in a specified container and return a
DMNResult response

POST
/server/containers/{containerId}/dmn/models/{modelname}/{decisionServiceName}/dmnresult

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService/dmnresult

Example POST request body with input data

Example curl request

curl -X POST http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService/dmnresult -H 'content-type:
application/json' -H 'accept: application/json' -d '{"Driver": {"Points": 2}, "Violation": {"Type":
"speed", "Actual Speed": 120, "Speed Limit": 100}}'

Example response (JSON)

 "evaluationStatus": "SUCCEEDED"
 },
 {
 "decisionId": "_8A408366-D8E9-4626-ABF3-5F69AA01F880",
 "decisionName": "Should the driver be suspended?",
 "result": "No",
 "messages": [],
 "evaluationStatus": "SUCCEEDED"
 }
]
}

{
 "Driver": {
 "Points": 2
 },
 "Violation": {
 "Type": "speed",
 "Actual Speed": 120,
 "Speed Limit": 100
 }
}

{
 "namespace": "https://github.com/kiegroup/drools/kie-dmn/_A4BCA8B8-CF08-433F-93B2-
A2598F19ECFF",
 "modelName": "Traffic Violation",
 "dmnContext": {
 "Violation": {
 "Type": "speed",
 "Speed Limit": 100,
 "Actual Speed": 120,
 "Code": null,

CHAPTER 7. DMN MODEL EXECUTION

159

 "Date": null
 },
 "Driver": {
 "Points": 2,
 "State": null,
 "City": null,
 "Age": null,
 "Name": null
 },
 "Should the driver be suspended?": "No"
 },
 "messages": [],
 "decisionResults": [
 {
 "decisionId": "_8A408366-D8E9-4626-ABF3-5F69AA01F880",
 "decisionName": "Should the driver be suspended?",
 "result": "No",
 "messages": [],
 "evaluationStatus": "SUCCEEDED"
 }
]
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

160

CHAPTER 8. ADDITIONAL RESOURCES
Decision Model and Notation specification

DMN Technology Compatibility Kit

Packaging and deploying a Red Hat Decision Manager project

Interacting with Red Hat Decision Manager using KIE APIs

CHAPTER 8. ADDITIONAL RESOURCES

161

https://www.omg.org/spec/DMN
https://dmn-tck.github.io/tck/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

PART II. DESIGNING A DECISION SERVICE USING PMML
MODELS

As a business rules developer, you can use Predictive Model Markup Language (PMML) to define
statistical or data-mining models that you can integrate with your decision services in Red Hat Decision
Manager. Red Hat Decision Manager includes consumer conformance support of PMML 4.2.1 for
Regression, Scorecard, Tree, and Mining models. Red Hat Decision Manager does not include a built-in
PMML model editor, but you can use an XML or PMML-specific authoring tool to create PMML models
and then integrate them with your Red Hat Decision Manager projects.

For more information about PMML, see the DMG PMML specification.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models and include your PMML models as part of your DMN service. For information
about DMN support in Red Hat Decision Manager 7.11, see the following resources:

Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

162

http://dmg.org/pmml/pmml-v4-2-1.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#dmn-included-models-pmml-proc_dmn-models

CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 9.1. Decision-authoring assets supported in Red Hat Decision Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

163

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

164

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

165

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

166

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

CHAPTER 10. PREDICTIVE MODEL MARKUP LANGUAGE
(PMML)

Predictive Model Markup Language (PMML) is an XML-based standard established by the Data Mining
Group (DMG) for defining statistical and data-mining models. PMML models can be shared between
PMML-compliant platforms and across organizations so that business analysts and developers are
unified in designing, analyzing, and implementing PMML-based assets and services.

For more information about the background and applications of PMML, see the DMG PMML
specification.

10.1. PMML CONFORMANCE LEVELS

The PMML specification defines producer and consumer conformance levels in a software
implementation to ensure that PMML models are created and integrated reliably. For the formal
definitions of each conformance level, see the DMG PMML conformance page.

The following list summarizes the PMML conformance levels:

Producer conformance

A tool or application is producer conforming if it generates valid PMML documents for at least one
type of model. Satisfying PMML producer conformance requirements ensures that a model
definition document is syntactically correct and defines a model instance that is consistent with
semantic criteria that are defined in model specifications.

Consumer conformance

An application is consumer conforming if it accepts valid PMML documents for at least one type of
model. Satisfying consumer conformance requirements ensures that a PMML model created
according to producer conformance can be integrated and used as defined. For example, if an
application is consumer conforming for Regression model types, then valid PMML documents
defining models of this type produced by different conforming producers would be interchangeable
in the application.

Red Hat Decision Manager includes consumer conformance support for the following PMML 4.2.1
model types:

Regression models

Scorecard models

Tree models

Mining models (with sub-types modelChain, selectAll, and selectFirst)

For a list of all PMML model types, including those not supported in Red Hat Decision Manager, see the
DMG PMML specification.

CHAPTER 10. PREDICTIVE MODEL MARKUP LANGUAGE (PMML)

167

http://dmg.org/pmml/pmml-v4-2-1.html
http://dmg.org/pmml/v4-2-1/Conformance.html
http://dmg.org/pmml/v4-2-1/Regression.html
http://dmg.org/pmml/v4-2-1/Scorecard.html
http://dmg.org/pmml/v4-2-1/TreeModel.html
http://dmg.org/pmml/v4-2-1/MultipleModels.html#xsdElement_MiningModel
http://dmg.org/pmml/v4-2-1/GeneralStructure.html

CHAPTER 11. PMML MODEL EXAMPLES
PMML defines an XML schema that enables PMML models to be used between different PMML-
compliant platforms. The PMML specification enables multiple software platforms to work with the
same file for authoring, testing, and production execution, assuming producer and consumer
conformance are met.

The following are examples of PMML Regression, Scorecard, Tree, and Mining models. These examples
illustrate the supported types of models that you can integrate with your decision services in Red Hat
Decision Manager.

For more PMML examples, see the DMG PMML Sample Files page.

Example PMML Regression model

Example PMML Scorecard model

<PMML version="4.2" xsi:schemaLocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.dmg.org/PMML-4_2">
 <Header copyright="JBoss"/>
 <DataDictionary numberOfFields="5">
 <DataField dataType="double" name="fld1" optype="continuous"/>
 <DataField dataType="double" name="fld2" optype="continuous"/>
 <DataField dataType="string" name="fld3" optype="categorical">
 <Value value="x"/>
 <Value value="y"/>
 </DataField>
 <DataField dataType="double" name="fld4" optype="continuous"/>
 <DataField dataType="double" name="fld5" optype="continuous"/>
 </DataDictionary>
 <RegressionModel algorithmName="linearRegression" functionName="regression"
modelName="LinReg" normalizationMethod="logit" targetFieldName="fld4">
 <MiningSchema>
 <MiningField name="fld1"/>
 <MiningField name="fld2"/>
 <MiningField name="fld3"/>
 <MiningField name="fld4" usageType="predicted"/>
 <MiningField name="fld5" usageType="target"/>
 </MiningSchema>
 <RegressionTable intercept="0.5">
 <NumericPredictor coefficient="5" exponent="2" name="fld1"/>
 <NumericPredictor coefficient="2" exponent="1" name="fld2"/>
 <CategoricalPredictor coefficient="-3" name="fld3" value="x"/>
 <CategoricalPredictor coefficient="3" name="fld3" value="y"/>
 <PredictorTerm coefficient="0.4">
 <FieldRef field="fld1"/>
 <FieldRef field="fld2"/>
 </PredictorTerm>
 </RegressionTable>
 </RegressionModel>
</PMML>

<PMML version="4.2" xsi:schemaLocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

168

http://dmg.org/pmml/v4-2-1/pmml-4-2.xsd
http://dmg.org/pmml/pmml_examples/index.html

Example PMML Tree model

xmlns="http://www.dmg.org/PMML-4_2">
 <Header copyright="JBoss"/>
 <DataDictionary numberOfFields="4">
 <DataField name="param1" optype="continuous" dataType="double"/>
 <DataField name="param2" optype="continuous" dataType="double"/>
 <DataField name="overallScore" optype="continuous" dataType="double" />
 <DataField name="finalscore" optype="continuous" dataType="double" />
 </DataDictionary>
 <Scorecard modelName="ScorecardCompoundPredicate" useReasonCodes="true"
isScorable="true" functionName="regression" baselineScore="15" initialScore="0.8"
reasonCodeAlgorithm="pointsAbove">
 <MiningSchema>
 <MiningField name="param1" usageType="active" invalidValueTreatment="asMissing">
 </MiningField>
 <MiningField name="param2" usageType="active" invalidValueTreatment="asMissing">
 </MiningField>
 <MiningField name="overallScore" usageType="target"/>
 <MiningField name="finalscore" usageType="predicted"/>
 </MiningSchema>
 <Characteristics>
 <Characteristic name="ch1" baselineScore="50" reasonCode="reasonCh1">
 <Attribute partialScore="20">
 <SimplePredicate field="param1" operator="lessThan" value="20"/>
 </Attribute>
 <Attribute partialScore="100">
 <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="param1" operator="greaterOrEqual" value="20"/>
 <SimplePredicate field="param2" operator="lessOrEqual" value="25"/>
 </CompoundPredicate>
 </Attribute>
 <Attribute partialScore="200">
 <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="param1" operator="greaterOrEqual" value="20"/>
 <SimplePredicate field="param2" operator="greaterThan" value="25"/>
 </CompoundPredicate>
 </Attribute>
 </Characteristic>
 <Characteristic name="ch2" reasonCode="reasonCh2">
 <Attribute partialScore="10">
 <CompoundPredicate booleanOperator="or">
 <SimplePredicate field="param2" operator="lessOrEqual" value="-5"/>
 <SimplePredicate field="param2" operator="greaterOrEqual" value="50"/>
 </CompoundPredicate>
 </Attribute>
 <Attribute partialScore="20">
 <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="param2" operator="greaterThan" value="-5"/>
 <SimplePredicate field="param2" operator="lessThan" value="50"/>
 </CompoundPredicate>
 </Attribute>
 </Characteristic>
 </Characteristics>
 </Scorecard>
</PMML>

CHAPTER 11. PMML MODEL EXAMPLES

169

<PMML version="4.2" xsi:schemaLocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.dmg.org/PMML-4_2">
 <Header copyright="JBOSS"/>
 <DataDictionary numberOfFields="5">
 <DataField dataType="double" name="fld1" optype="continuous"/>
 <DataField dataType="double" name="fld2" optype="continuous"/>
 <DataField dataType="string" name="fld3" optype="categorical">
 <Value value="true"/>
 <Value value="false"/>
 </DataField>
 <DataField dataType="string" name="fld4" optype="categorical">
 <Value value="optA"/>
 <Value value="optB"/>
 <Value value="optC"/>
 </DataField>
 <DataField dataType="string" name="fld5" optype="categorical">
 <Value value="tgtX"/>
 <Value value="tgtY"/>
 <Value value="tgtZ"/>
 </DataField>
 </DataDictionary>
 <TreeModel functionName="classification" modelName="TreeTest">
 <MiningSchema>
 <MiningField name="fld1"/>
 <MiningField name="fld2"/>
 <MiningField name="fld3"/>
 <MiningField name="fld4"/>
 <MiningField name="fld5" usageType="predicted"/>
 </MiningSchema>
 <Node score="tgtX">
 <True/>
 <Node score="tgtX">
 <SimplePredicate field="fld4" operator="equal" value="optA"/>
 <Node score="tgtX">
 <CompoundPredicate booleanOperator="surrogate">
 <SimplePredicate field="fld1" operator="lessThan" value="30.0"/>
 <SimplePredicate field="fld2" operator="greaterThan" value="20.0"/>
 </CompoundPredicate>
 <Node score="tgtX">
 <SimplePredicate field="fld2" operator="lessThan" value="40.0"/>
 </Node>
 <Node score="tgtZ">
 <SimplePredicate field="fld2" operator="greaterOrEqual" value="10.0"/>
 </Node>
 </Node>
 <Node score="tgtZ">
 <CompoundPredicate booleanOperator="or">
 <SimplePredicate field="fld1" operator="greaterOrEqual" value="60.0"/>
 <SimplePredicate field="fld1" operator="lessOrEqual" value="70.0"/>
 </CompoundPredicate>
 <Node score="tgtZ">
 <SimpleSetPredicate booleanOperator="isNotIn" field="fld4">
 <Array type="string">optA optB</Array>
 </SimpleSetPredicate>
 </Node>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

170

Example PMML Mining model (modelChain)

 </Node>
 </Node>
 <Node score="tgtY">
 <CompoundPredicate booleanOperator="or">
 <SimplePredicate field="fld4" operator="equal" value="optA"/>
 <SimplePredicate field="fld4" operator="equal" value="optC"/>
 </CompoundPredicate>
 <Node score="tgtY">
 <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="fld1" operator="greaterThan" value="10.0"/>
 <SimplePredicate field="fld1" operator="lessThan" value="50.0"/>
 <SimplePredicate field="fld4" operator="equal" value="optA"/>
 <SimplePredicate field="fld2" operator="lessThan" value="100.0"/>
 <SimplePredicate field="fld3" operator="equal" value="false"/>
 </CompoundPredicate>
 </Node>
 <Node score="tgtZ">
 <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="fld4" operator="equal" value="optC"/>
 <SimplePredicate field="fld2" operator="lessThan" value="30.0"/>
 </CompoundPredicate>
 </Node>
 </Node>
 </Node>
 </TreeModel>
</PMML>

<PMML version="4.2" xsi:schemaLocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.dmg.org/PMML-4_2">
 <Header>
 <Application name="Drools-PMML" version="7.0.0-SNAPSHOT" />
 </Header>
 <DataDictionary numberOfFields="7">
 <DataField name="age" optype="continuous" dataType="double" />
 <DataField name="occupation" optype="categorical" dataType="string">
 <Value value="SKYDIVER" />
 <Value value="ASTRONAUT" />
 <Value value="PROGRAMMER" />
 <Value value="TEACHER" />
 <Value value="INSTRUCTOR" />
 </DataField>
 <DataField name="residenceState" optype="categorical" dataType="string">
 <Value value="AP" />
 <Value value="KN" />
 <Value value="TN" />
 </DataField>
 <DataField name="validLicense" optype="categorical" dataType="boolean" />
 <DataField name="overallScore" optype="continuous" dataType="double" />
 <DataField name="grade" optype="categorical" dataType="string">
 <Value value="A" />
 <Value value="B" />
 <Value value="C" />
 <Value value="D" />

CHAPTER 11. PMML MODEL EXAMPLES

171

 <Value value="F" />
 </DataField>
 <DataField name="qualificationLevel" optype="categorical" dataType="string">
 <Value value="Unqualified" />
 <Value value="Barely" />
 <Value value="Well" />
 <Value value="Over" />
 </DataField>
 </DataDictionary>
 <MiningModel modelName="SampleModelChainMine" functionName="classification">
 <MiningSchema>
 <MiningField name="age" />
 <MiningField name="occupation" />
 <MiningField name="residenceState" />
 <MiningField name="validLicense" />
 <MiningField name="overallScore" />
 <MiningField name="qualificationLevel" usageType="target"/>
 </MiningSchema>
 <Segmentation multipleModelMethod="modelChain">
 <Segment id="1">
 <True />
 <Scorecard modelName="Sample Score 1" useReasonCodes="true" isScorable="true"
functionName="regression" baselineScore="0.0" initialScore="0.345">
 <MiningSchema>
 <MiningField name="age" usageType="active" invalidValueTreatment="asMissing" />
 <MiningField name="occupation" usageType="active" invalidValueTreatment="asMissing" />
 <MiningField name="residenceState" usageType="active" invalidValueTreatment="asMissing"
/>
 <MiningField name="validLicense" usageType="active" invalidValueTreatment="asMissing" />
 <MiningField name="overallScore" usageType="predicted" />
 </MiningSchema>
 <Output>
 <OutputField name="calculatedScore" displayName="Final Score" dataType="double"
feature="predictedValue" targetField="overallScore" />
 </Output>
 <Characteristics>
 <Characteristic name="AgeScore" baselineScore="0.0" reasonCode="ABZ">
 <Extension name="cellRef" value="B8" />
 <Attribute partialScore="10.0">
 <Extension name="cellRef" value="C10" />
 <SimplePredicate field="age" operator="lessOrEqual" value="5" />
 </Attribute>
 <Attribute partialScore="30.0" reasonCode="CX1">
 <Extension name="cellRef" value="C11" />
 <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="age" operator="greaterOrEqual" value="5" />
 <SimplePredicate field="age" operator="lessThan" value="12" />
 </CompoundPredicate>
 </Attribute>
 <Attribute partialScore="40.0" reasonCode="CX2">
 <Extension name="cellRef" value="C12" />
 <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="age" operator="greaterOrEqual" value="13" />
 <SimplePredicate field="age" operator="lessThan" value="44" />
 </CompoundPredicate>
 </Attribute>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

172

 <Attribute partialScore="25.0">
 <Extension name="cellRef" value="C13" />
 <SimplePredicate field="age" operator="greaterOrEqual" value="45" />
 </Attribute>
 </Characteristic>
 <Characteristic name="OccupationScore" baselineScore="0.0">
 <Extension name="cellRef" value="B16" />
 <Attribute partialScore="-10.0" reasonCode="CX2">
 <Extension name="description" value="skydiving is a risky occupation" />
 <Extension name="cellRef" value="C18" />
 <SimpleSetPredicate field="occupation" booleanOperator="isIn">
 <Array n="2" type="string">SKYDIVER ASTRONAUT</Array>
 </SimpleSetPredicate>
 </Attribute>
 <Attribute partialScore="10.0">
 <Extension name="cellRef" value="C19" />
 <SimpleSetPredicate field="occupation" booleanOperator="isIn">
 <Array n="2" type="string">TEACHER INSTRUCTOR</Array>
 </SimpleSetPredicate>
 </Attribute>
 <Attribute partialScore="5.0">
 <Extension name="cellRef" value="C20" />
 <SimplePredicate field="occupation" operator="equal" value="PROGRAMMER" />
 </Attribute>
 </Characteristic>
 <Characteristic name="ResidenceStateScore" baselineScore="0.0" reasonCode="RES">
 <Extension name="cellRef" value="B22" />
 <Attribute partialScore="-10.0">
 <Extension name="cellRef" value="C24" />
 <SimplePredicate field="residenceState" operator="equal" value="AP" />
 </Attribute>
 <Attribute partialScore="10.0">
 <Extension name="cellRef" value="C25" />
 <SimplePredicate field="residenceState" operator="equal" value="KN" />
 </Attribute>
 <Attribute partialScore="5.0">
 <Extension name="cellRef" value="C26" />
 <SimplePredicate field="residenceState" operator="equal" value="TN" />
 </Attribute>
 </Characteristic>
 <Characteristic name="ValidLicenseScore" baselineScore="0.0">
 <Extension name="cellRef" value="B28" />
 <Attribute partialScore="1.0" reasonCode="LX00">
 <Extension name="cellRef" value="C30" />
 <SimplePredicate field="validLicense" operator="equal" value="true" />
 </Attribute>
 <Attribute partialScore="-1.0" reasonCode="LX00">
 <Extension name="cellRef" value="C31" />
 <SimplePredicate field="validLicense" operator="equal" value="false" />
 </Attribute>
 </Characteristic>
 </Characteristics>
 </Scorecard>
 </Segment>
 <Segment id="2">
 <True />

CHAPTER 11. PMML MODEL EXAMPLES

173

 <TreeModel modelName="SampleTree" functionName="classification"
missingValueStrategy="lastPrediction" noTrueChildStrategy="returnLastPrediction">
 <MiningSchema>
 <MiningField name="age" usageType="active" />
 <MiningField name="validLicense" usageType="active" />
 <MiningField name="calculatedScore" usageType="active" />
 <MiningField name="qualificationLevel" usageType="predicted" />
 </MiningSchema>
 <Output>
 <OutputField name="qualification" displayName="Qualification Level" dataType="string"
feature="predictedValue" targetField="qualificationLevel" />
 </Output>
 <Node score="Well" id="1">
 <True/>
 <Node score="Barely" id="2">
 <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="age" operator="greaterOrEqual" value="16" />
 <SimplePredicate field="validLicense" operator="equal" value="true" />
 </CompoundPredicate>
 <Node score="Barely" id="3">
 <SimplePredicate field="calculatedScore" operator="lessOrEqual" value="50.0" />
 </Node>
 <Node score="Well" id="4">
 <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="calculatedScore" operator="greaterThan" value="50.0" />
 <SimplePredicate field="calculatedScore" operator="lessOrEqual" value="60.0" />
 </CompoundPredicate>
 </Node>
 <Node score="Over" id="5">
 <SimplePredicate field="calculatedScore" operator="greaterThan" value="60.0" />
 </Node>
 </Node>
 <Node score="Unqualified" id="6">
 <CompoundPredicate booleanOperator="surrogate">
 <SimplePredicate field="age" operator="lessThan" value="16" />
 <SimplePredicate field="calculatedScore" operator="lessOrEqual" value="40.0" />
 <True />
 </CompoundPredicate>
 </Node>
 </Node>
 </TreeModel>
 </Segment>
 </Segmentation>
 </MiningModel>
</PMML>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

174

CHAPTER 12. PMML SUPPORT IN RED HAT DECISION
MANAGER

Red Hat Decision Manager includes consumer conformance support for the following PMML model
types:

Regression models

Scorecard models

Tree models

Mining models (with sub-types modelChain, selectAll, and selectFirst)

For a list of all PMML model types, including those not supported in Red Hat Decision Manager, see the
DMG PMML specification.

Red Hat Decision Manager offers two implementations including PMML legacy and PMML trusty.

IMPORTANT

The PMML legacy implementation is deprecated with Red Hat Decision Manager 7.10.0
and will be replaced by PMML trusty implementation in a future Red Hat Decision
Manager release.

Red Hat Decision Manager does not include a built-in PMML model editor, but you can use an XML or
PMML-specific authoring tool to create PMML models and then integrate the PMML models in your
decision services in Red Hat Decision Manager. You can import PMML files into your project in Business
Central (Menu → Design → Projects → Import Asset) or package the PMML files as part of your project
knowledge JAR (KJAR) file without Business Central.

For more information about including assets such as PMML files with your project packaging and
deployment method, see Packaging and deploying a Red Hat Decision Manager project .

12.1. PMML TRUSTY SUPPORT AND NAMING CONVENTIONS IN RED
HAT DECISION MANAGER

When you add a PMML file to a project in Red Hat Decision Manager, multiple assets are generated. The
tree and scorecard models are translated to rules, and regression and mining models are translated to
Java classes. Each type of PMML model generates a different set of assets, but all PMML model types
generate at least the following set of assets:

A root package whose name is derived from the PMML file name

In the root package, a Java factory class that is used to instantiate the model

A subpackage specific to the model whose name is derived from the model name

For rule models, two rule-mapper classes that are used to instantiate the rule network

For mining models, children model packages and classes are nested in the parent model

NOTE

CHAPTER 12. PMML SUPPORT IN RED HAT DECISION MANAGER

175

http://dmg.org/pmml/v4-4-1/Regression.html
http://dmg.org/pmml/v4-4-1/Scorecard.html
http://dmg.org/pmml/v4-4-1/TreeModel.html
http://dmg.org/pmml/v4-4-1/MultipleModels.html#xsdElement_MiningModel
http://dmg.org/pmml/v4-4-1/GeneralStructure.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

NOTE

Currently, only one model for each PMML file is allowed. Also, extensions are temporarily
not supported.

The following are naming conventions for generated PMML packages and classes:

The root package name is the name of the original PMML file in lowercase and without space,
for example, sampleregression.

The name of the generated factory Java class is the PMML file name with Factory added to it
in the format fileName+"Factory" and first uppercase letter, for example,
SampleRegressionFactory.

The subpackage name of a model is the name of the original model in lowercase and without
space, for example, compoundnestedpredicatescorecard.

The names of the generated data classes are determined by the model type:

Rules models: A top-level PMMLRuleMappersImpl is generated including references to
PMMLRuleMapperImpl classes that are nested in the subpackages.

Mining models:

The name of the created segmentation subpackage is the name of the original model
in lowercase, without space, and segmentation added to it in the format
modelName+”segmentation”, for example, mixedminingsegmentation.

In the segmentation subpackage, a segmentation Java class is created that contains
the references to the nested models. The name of the created segmentation Java
class is the model name with Segmentation added to it in the format
modelName+Segmentation, for example, MixedMiningSegmentation.

For each segment, a specific subpackage is created. The name of the segment specific
subpackage is the original model name in lowercase with segment and a progressive
integer starting from 0 added to it in the format modelName+segment+integer. For
example, mixedminingsegment0, mixedminingsegment1.

Known limitations of PMML trusty implementation
The following list shows elements that are not implemented for PMML trusty:

Target element is not implemented

Extension element is not implemented

MiningSchema or MiningField elements that are not implemented, include:

importance

outliers

lowValue

highValue

invalidValueTreatment

invalidValueReplacement

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

176

OutputField elements that are not implemented, include:

Decisions

Value

Rule feature

Algorithm

isMultiValued

segmentId

isFinalResult

TransformationDictionary or LocalTransformation expressions that are not supported,
include:

NormContinuous

NormDiscrete

MapValues

TextIndex

Aggregate

Lag

ModelStats, ModelExplanation, and ModelExplanation element is not implemented in all
models including regression, tree, scorecard, and mining

verification element is not implemented in tree, scorecard, and mining model

VariableWeight element is not implemented in mining model

Tree model elements that are not implemented, include:

IsMissing or IsNotMissing

Surrogate in CompoundPredicate

missingValuePenalty

splitCharacteristic

isScorable

12.2. PMML LEGACY SUPPORT AND NAMING CONVENTIONS IN RED
HAT DECISION MANAGER

When you add a PMML file to a project in Red Hat Decision Manager, multiple assets are generated.
Each type of PMML model generates a different set of assets, but all PMML model types generate at
least the following set of assets:

CHAPTER 12. PMML SUPPORT IN RED HAT DECISION MANAGER

177

A DRL file that contains all of the rules associated with your PMML model

At least two Java classes:

A data class that is used as the default object type for the model type

A RuleUnit class that is used to manage data sources and rule execution

If a PMML file has MiningModel as the root model, multiple instances of each of these files are
generated.

The following are naming conventions for generated PMML legacy packages, classes, and rules:

If no package name is given in a PMML model file, then the default package name
org.kie.pmml.pmml_4_2 is prefixed to the model name for the generated rules in the format
"org.kie.pmml.pmml_4_2"+modelName.

The package name for the generated RuleUnit Java class is the same as the package name for
the generated rules.

The name of the generated RuleUnit Java class is the model name with RuleUnit added to it in
the format modelName+"RuleUnit".

Each PMML model has at least one data class that is generated. The package name for these
classes is org.kie.pmml.pmml_4_2.model.

The names of generated data classes are determined by the model type, prefixed with the
model name:

Regression models: One data class named modelName+"RegressionData"

Scorecard models: One data class named modelName+"ScoreCardData"

Tree models: Two data classes, the first named modelName+"TreeNode" and the second
named modelName+"TreeToken"

Mining models: One data class named modelName+"MiningModelData"

NOTE

The mining model also generates all of the rules and classes that are within each of its
segments.

12.2.1. PMML extensions in Red Hat Decision Manager

The PMML legacy specification supports Extension elements that extend the content of a PMML
model. You can use extensions at almost every level of a PMML model definition, and as the first and
last child in the main element of a model for maximum flexibility. For more information about PMML
extensions, see the DMG PMML Extension Mechanism.

To optimize PMML integration, Red Hat Decision Manager supports the following additional PMML
extensions:

modelPackage: Designates a package name for the generated rules and Java classes. Include
this extension in the Header section of the PMML model file.

adapter: Designates the type of construct (bean or trait) that is used to contain input and

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

178

http://dmg.org/pmml/v4-2-1/GeneralStructure.html#xsdElement_Extension

adapter: Designates the type of construct (bean or trait) that is used to contain input and
output data for rules. Insert this extension in the MiningSchema or Output section (or both) of
the PMML model file.

externalClass: Used in conjunction with the adapter extension in defining a MiningField or
OutputField. This extension contains a class with an attribute name that matches the name of
the MiningField or OutputField element.

CHAPTER 12. PMML SUPPORT IN RED HAT DECISION MANAGER

179

CHAPTER 13. PMML MODEL EXECUTION
You can import PMML files into your Red Hat Decision Manager project using Business Central (Menu
→ Design → Projects → Import Asset) or package the PMML files as part of your project knowledge
JAR (KJAR) file without Business Central. After you implement your PMML files in your Red Hat
Decision Manager project, you can execute the PMML-based decision service by embedding PMML
calls directly in your Java application or by sending an ApplyPmmlModelCommand command to a
configured KIE Server.

For more information about including PMML assets with your project packaging and deployment
method, see Packaging and deploying a Red Hat Decision Manager project .

NOTE

You can also include a PMML model as part of a Decision Model and Notation (DMN)
service in Business Central. When you include a PMML model within a DMN file, you can
invoke that PMML model as a boxed function expression for a DMN decision node or
business knowledge model node. For more information about including PMML models in a
DMN service, see Designing a decision service using DMN models .

13.1. EMBEDDING A PMML TRUSTY CALL DIRECTLY IN A JAVA
APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You embed knowledge
assets directly into a project if there is a tight relationship between the version of the code and the
version of the PMML definition. Any changes to the decision take effect after you have intentionally
updated and redeployed the application. A benefit of this approach is that proper operation does not
rely on any external dependencies to the run time, which can be a limitation of locked-down
environments.

Prerequisites

A KJAR containing the PMML model to execute has been created. For more information about
project packaging, see Packaging and deploying a Red Hat Decision Manager project .

Procedure

1. In your client application, add the following dependencies to the relevant classpath of your Java
project:

<!-- Required for the PMML compiler -->
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>kie-pmml-dependencies</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<!-- Required for the KIE public API -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>${rhdm.version}</version>
</dependencies>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

180

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#dmn-included-models-pmml-proc_dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

The <version> is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.52.0.Final-redhat-00007).

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Create a KIE container from classpath or ReleaseId:

Alternative option:

3. Create an instance of the PMMLRuntime that is used to execute the model:

4. Create an instance of the PMMLRequestData class that applies your PMML model to a data
set:

<!-- Required if not using classpath KIE container -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseId);

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

PMMLRuntime pmmlRuntime =
KieRuntimeFactory.of(kieContainer.getKieBase()).get(PMMLRuntime.class);

CHAPTER 13. PMML MODEL EXECUTION

181

https://access.redhat.com/solutions/3363991

5. Create an instance of the PMMLContext class that contains the input data:

6. Retrieve the PMML4Result while executing the PMML model with the required PMML class
instances that you created:

13.2. EMBEDDING A PMML LEGACY CALL DIRECTLY IN A JAVA
APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You embed knowledge
assets directly into a project if there is a tight relationship between the version of the code and the
version of the PMML definition. Any changes to the decision take effect after you have intentionally
updated and redeployed the application. A benefit of this approach is that proper operation does not
rely on any external dependencies to the run time, which can be a limitation of locked-down
environments.

Using Maven dependencies enables further flexibility because the specific version of the decision can
dynamically change (for example, by using a system property), and it can be periodically scanned for
updates and automatically updated. This introduces an external dependency on the deploy time of the
service, but executes the decision locally, reducing reliance on an external service being available during
run time.

Prerequisites

A KJAR containing the PMML model to execute has been created. For more information about
project packaging, see Packaging and deploying a Red Hat Decision Manager project .

Procedure

1. In your client application, add the following dependencies to the relevant classpath of your Java
project:

PMMLRequestData pmmlRequestData = new PMMLRequestData({correlation_id},
{model_name});
pmmlRequestData.addRequestParam({parameter_name}, {parameter_value})
...

PMMLContext pmmlContext = new PMMLContextImpl(pmmlRequestData);

PMML4Result pmml4Result = pmmlRuntime.evaluate({model_name}, pmmlContext);

<!-- Required for the PMML compiler -->
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>kie-pmml</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<!-- Required for the KIE public API -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>${rhdm.version}</version>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

182

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

The <version> is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.52.0.Final-redhat-00007).

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

IMPORTANT

To use the legacy implementation, ensure that the kie-pmml-implementation
system property is set as legacy.

2. Create a KIE container from classpath or ReleaseId:

Alternative option:

3. Create an instance of the PMMLRequestData class, which applies your PMML model to a set of

</dependencies>

<!-- Required if not using classpath KIE container -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseId);

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

CHAPTER 13. PMML MODEL EXECUTION

183

https://access.redhat.com/solutions/3363991

1

2

3

4

1

2

3

4

5

3. Create an instance of the PMMLRequestData class, which applies your PMML model to a set of
data:

Identifies data that is associated with a particular request or result

The name of the model that should be applied to the request data

Used by internally generated PMMLRequestData objects to identify the segment that
generated the request

The default mechanism for sending input data points

4. Create an instance of the PMML4Result class, which holds the output information that is the
result of applying the PMML-based rules to the input data:

Used when the model type is MiningModel. The segmentationId is used to differentiate
between multiple segmentations.

Used in conjunction with the segmentationId to identify which segment generated the
results.

Used to maintain the order of segments.

Used to determine whether the model was successfully applied, where OK indicates
success.

Contains the name of a resultant variable and its associated value.

In addition to the normal getter methods, the PMML4Result class also supports the following
methods for directly retrieving the values for result variables:

5. Create an instance of the ParameterInfo class, which serves as a wrapper for basic data type

public class PMMLRequestData {
 private String correlationId; 1
 private String modelName; 2
 private String source; 3
 private List<ParameterInfo<?>> requestParams; 4
 ...
}

public class PMML4Result {
 private String correlationId;
 private String segmentationId; 1
 private String segmentId; 2
 private int segmentIndex; 3
 private String resultCode; 4
 private Map<String, Object> resultVariables; 5
 ...
}

public <T> Optional<T> getResultValue(String objName, String objField, Class<T> clazz,
Object...params)

public Object getResultValue(String objName, String objField, Object...params)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

184

1

2

3

4

5. Create an instance of the ParameterInfo class, which serves as a wrapper for basic data type
objects used as part of the PMMLRequestData class:

The parameterized class to handle many different types

The name of the variable that is expected as input for the model

The class that is the actual type of the variable

The actual value of the variable

6. Execute the PMML model based on the required PMML class instances that you have created:

public class ParameterInfo<T> { 1
 private String correlationId;
 private String name; 2
 private String capitalizedName;
 private Class<T> type; 3
 private T value; 4
 ...
}

public void executeModel(KieBase kbase,
 Map<String,Object> variables,
 String modelName,
 String correlationId,
 String modelPkgName) {
 RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
 PMMLRequestData request = new PMMLRequestData(correlationId, modelName);
 PMML4Result resultHolder = new PMML4Result(correlationId);
 variables.entrySet().forEach(es -> {
 request.addRequestParam(es.getKey(), es.getValue());
 });

 DataSource<PMMLRequestData> requestData = executor.newDataSource("request");
 DataSource<PMML4Result> resultData = executor.newDataSource("results");
 DataSource<PMMLData> internalData = executor.newDataSource("pmmlData");

 requestData.insert(request);
 resultData.insert(resultHolder);

 List<String> possiblePackageNames = calculatePossiblePackageNames(modelName,
 modelPkgName);
 Class<? extends RuleUnit> ruleUnitClass = getStartingRuleUnit("RuleUnitIndicator",
 (InternalKnowledgeBase)kbase,
 possiblePackageNames);

 if (ruleUnitClass != null) {
 executor.run(ruleUnitClass);
 if ("OK".equals(resultHolder.getResultCode())) {
 // extract result variables here
 }
 }
}

CHAPTER 13. PMML MODEL EXECUTION

185

Rules are executed by the RuleUnitExecutor class. The RuleUnitExecutor class creates KIE
sessions and adds the required DataSource objects to those sessions, and then executes the
rules based on the RuleUnit that is passed as a parameter to the run() method. The
calculatePossiblePackageNames and the getStartingRuleUnit methods determine the fully
qualified name of the RuleUnit class that is passed to the run() method.

To facilitate your PMML model execution, you can also use a PMML4ExecutionHelper class supported
in Red Hat Decision Manager. For more information about the PMML helper class, see Section 13.2.1,
“PMML execution helper class”.

13.2.1. PMML execution helper class

Red Hat Decision Manager provides a PMML4ExecutionHelper class that helps create the
PMMLRequestData class required for PMML model execution and that helps execute rules using the
RuleUnitExecutor class.

The following are examples of a PMML model execution without and with the PMML4ExecutionHelper
class, as a comparison:

Example PMML model execution without using PMML4ExecutionHelper

protected Class<? extends RuleUnit> getStartingRuleUnit(String startingRule,
InternalKnowledgeBase ikb, List<String> possiblePackages) {
 RuleUnitRegistry unitRegistry = ikb.getRuleUnitRegistry();
 Map<String,InternalKnowledgePackage> pkgs = ikb.getPackagesMap();
 RuleImpl ruleImpl = null;
 for (String pkgName: possiblePackages) {
 if (pkgs.containsKey(pkgName)) {
 InternalKnowledgePackage pkg = pkgs.get(pkgName);
 ruleImpl = pkg.getRule(startingRule);
 if (ruleImpl != null) {
 RuleUnitDescr descr = unitRegistry.getRuleUnitFor(ruleImpl).orElse(null);
 if (descr != null) {
 return descr.getRuleUnitClass();
 }
 }
 }
 }
 return null;
}

protected List<String> calculatePossiblePackageNames(String modelId,
String...knownPackageNames) {
 List<String> packageNames = new ArrayList<>();
 String javaModelId = modelId.replaceAll("\\s","");
 if (knownPackageNames != null && knownPackageNames.length > 0) {
 for (String knownPkgName: knownPackageNames) {
 packageNames.add(knownPkgName + "." + javaModelId);
 }
 }
 String basePkgName = PMML4UnitImpl.DEFAULT_ROOT_PACKAGE+"."+javaModelId;
 packageNames.add(basePkgName);
 return packageNames;
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

186

public void executeModel(KieBase kbase,
 Map<String,Object> variables,
 String modelName,
 String correlationId,
 String modelPkgName) {
 RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
 PMMLRequestData request = new PMMLRequestData(correlationId, modelName);
 PMML4Result resultHolder = new PMML4Result(correlationId);
 variables.entrySet().forEach(es -> {
 request.addRequestParam(es.getKey(), es.getValue());
 });

 DataSource<PMMLRequestData> requestData = executor.newDataSource("request");
 DataSource<PMML4Result> resultData = executor.newDataSource("results");
 DataSource<PMMLData> internalData = executor.newDataSource("pmmlData");

 requestData.insert(request);
 resultData.insert(resultHolder);

 List<String> possiblePackageNames = calculatePossiblePackageNames(modelName,
 modelPkgName);
 Class<? extends RuleUnit> ruleUnitClass = getStartingRuleUnit("RuleUnitIndicator",
 (InternalKnowledgeBase)kbase,
 possiblePackageNames);

 if (ruleUnitClass != null) {
 executor.run(ruleUnitClass);
 if ("OK".equals(resultHolder.getResultCode())) {
 // extract result variables here
 }
 }
}

protected Class<? extends RuleUnit> getStartingRuleUnit(String startingRule,
InternalKnowledgeBase ikb, List<String> possiblePackages) {
 RuleUnitRegistry unitRegistry = ikb.getRuleUnitRegistry();
 Map<String,InternalKnowledgePackage> pkgs = ikb.getPackagesMap();
 RuleImpl ruleImpl = null;
 for (String pkgName: possiblePackages) {
 if (pkgs.containsKey(pkgName)) {
 InternalKnowledgePackage pkg = pkgs.get(pkgName);
 ruleImpl = pkg.getRule(startingRule);
 if (ruleImpl != null) {
 RuleUnitDescr descr = unitRegistry.getRuleUnitFor(ruleImpl).orElse(null);
 if (descr != null) {
 return descr.getRuleUnitClass();
 }
 }
 }
 }
 return null;
}

protected List<String> calculatePossiblePackageNames(String modelId,
String...knownPackageNames) {
 List<String> packageNames = new ArrayList<>();

CHAPTER 13. PMML MODEL EXECUTION

187

Example PMML model execution using PMML4ExecutionHelper

When you use the PMML4ExecutionHelper, you do not need to specify the possible package names nor
the RuleUnit class as you would in a typical PMML model execution.

To construct a PMML4ExecutionHelper class, you use the PMML4ExecutionHelperFactory class to
determine how instances of PMML4ExecutionHelper are retrieved.

The following are the available PMML4ExecutionHelperFactory class methods for constructing a
PMML4ExecutionHelper class:

PMML4ExecutionHelperFactory methods for PMML assets in a KIE base

Use these methods when PMML assets have already been compiled and are being used from an
existing KIE base:

PMML4ExecutionHelperFactory methods for PMML assets on the project classpath

Use these methods when PMML assets are on the project classpath. The classPath argument is the
project classpath location of the PMML file:

 String javaModelId = modelId.replaceAll("\\s","");
 if (knownPackageNames != null && knownPackageNames.length > 0) {
 for (String knownPkgName: knownPackageNames) {
 packageNames.add(knownPkgName + "." + javaModelId);
 }
 }
 String basePkgName = PMML4UnitImpl.DEFAULT_ROOT_PACKAGE+"."+javaModelId;
 packageNames.add(basePkgName);
 return packageNames;
}

public void executeModel(KieBase kbase,
 Map<String,Object> variables,
 String modelName,
 String modelPkgName,
 String correlationId) {
 PMML4ExecutionHelper helper = PMML4ExecutionHelperFactory.getExecutionHelper(modelName,
kbase);
 helper.addPossiblePackageName(modelPkgName);

 PMMLRequestData request = new PMMLRequestData(correlationId, modelName);
 variables.entrySet().forEach(entry -> {
 request.addRequestParam(entry.getKey(), entry.getValue);
 });

 PMML4Result resultHolder = helper.submitRequest(request);
 if ("OK".equals(resultHolder.getResultCode)) {
 // extract result variables here
 }
}

public static PMML4ExecutionHelper getExecutionHelper(String modelName, KieBase kbase)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, KieBase kbase,
boolean includeMiningDataSources)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

188

PMML4ExecutionHelperFactory methods for PMML assets in a byte array

Use these methods when PMML assets are in the form of a byte array:

PMML4ExecutionHelperFactory methods for PMML assets in a Resource

Use these methods when PMML assets are in the form of an org.kie.api.io.Resource object:

NOTE

The classpath, byte array, and resource PMML4ExecutionHelperFactory methods
create a KIE container for the generated rules and Java classes. The container is used as
the source of the KIE base that the RuleUnitExecutor uses. The container is not
persisted. The PMML4ExecutionHelperFactory method for PMML assets that are
already in a KIE base does not create a KIE container in this way.

13.3. EXECUTING A PMML MODEL USING KIE SERVER

You can execute PMML models that have been deployed to KIE Server by sending the
ApplyPmmlModelCommand command to the configured KIE Server. When you use this command, a
PMMLRequestData object is sent to the KIE Server and a PMML4Result result object is received as a
reply. You can send PMML requests to KIE Server through the KIE Server REST API from a configured
Java class or directly from a REST client.

Prerequisites

KIE Server is installed and configured, including a known user name and credentials for a user
with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

A KIE container is deployed in KIE Server in the form of a KJAR that includes the PMML model.
For more information about project packaging, see Packaging and deploying a Red Hat Decision
Manager project.

You have the container ID of the KIE container containing the PMML model.

public static PMML4ExecutionHelper getExecutionHelper(String modelName, String classPath,
KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName,String classPath,
KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, byte[] content,
KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, byte[] content,
KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, Resource resource,
KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, Resource resource,
KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)

CHAPTER 13. PMML MODEL EXECUTION

189

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Procedure

1. In your client application, add the following dependencies to the relevant classpath of your Java
project:

Example of legacy implementation

IMPORTANT

To use the legacy implementation, ensure that the kie-pmml-implementation
system property is set as legacy.

Example of trusty implementation

<!-- Required for the PMML compiler -->
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>kie-pmml</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<!-- Required for the KIE public API -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>${rhdm.version}</version>
</dependencies>

<!-- Required for the KIE Server Java client API -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<!-- Required if not using classpath KIE container -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<!-- Required for the PMML compiler -->
<dependency>
 <groupId>org.drools</groupId>
 <artifactId>kie-pmml-dependencies</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<!-- Required for the KIE public API -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>${rhdm.version}</version>
</dependencies>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

190

The <version> is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.52.0.Final-redhat-00007).

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Create a KIE container from classpath or ReleaseId:

Alternative option:

<!-- Required for the KIE Server Java client API -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<!-- Required if not using classpath KIE container -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseId);

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

CHAPTER 13. PMML MODEL EXECUTION

191

https://access.redhat.com/solutions/3363991

3. Create a class for sending requests to KIE Server and receiving responses:

public class ApplyScorecardModel {
 private static final ReleaseId releaseId =
 new ReleaseId("org.acme","my-kjar","1.0.0");
 private static final String containerId = "SampleModelContainer";
 private static KieCommands commandFactory;
 private static ClassLoader kjarClassLoader; 1
 private RuleServicesClient serviceClient; 2

 // Attributes specific to your class instance
 private String rankedFirstCode;
 private Double score;

 // Initialization of non-final static attributes
 static {
 commandFactory = KieServices.Factory.get().getCommands();

 // Specifications for kjarClassLoader, if used
 KieMavenRepository kmp = KieMavenRepository.getMavenRepository();
 File artifactFile = kmp.resolveArtifact(releaseId).getFile();
 if (artifactFile != null) {
 URL urls[] = new URL[1];
 try {
 urls[0] = artifactFile.toURI().toURL();
 classLoader = new KieURLClassLoader(urls,PMML4Result.class.getClassLoader());
 } catch (MalformedURLException e) {
 logger.error("Error getting classLoader for "+containerId);
 logger.error(e.getMessage());
 }
 } else {
 logger.warn("Did not find the artifact file for "+releaseId.toString());
 }
 }

 public ApplyScorecardModel(KieServicesConfiguration kieConfig) {
 KieServicesClient clientFactory = KieServicesFactory.newKieServicesClient(kieConfig);
 serviceClient = clientFactory.getServicesClient(RuleServicesClient.class);
 }
 ...
 // Getters and setters
 ...

 // Method for executing the PMML model on KIE Server
 public void applyModel(String occupation, int age) {
 PMMLRequestData input = new PMMLRequestData("1234","SampleModelName"); 3
 input.addRequestParam(new ParameterInfo("1234","occupation",String.class,occupation));
 input.addRequestParam(new ParameterInfo("1234","age",Integer.class,age));

 CommandFactoryServiceImpl cf = (CommandFactoryServiceImpl)commandFactory;
 ApplyPmmlModelCommand command = (ApplyPmmlModelCommand)
cf.newApplyPmmlModel(request); 4

 ServiceResponse<ExecutionResults> results =
 ruleClient.executeCommandsWithResults(CONTAINER_ID, command); 5

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

192

1

2

3

4

5

6

Defines the class loader if you did not include the KJAR in your client project dependencies

Identifies the service client as defined in the configuration settings, including KIE Server
REST API access credentials

Initializes a PMMLRequestData object

Creates an instance of the ApplyPmmlModelCommand

Sends the command using the service client

Retrieves the results of the executed PMML model

4. Execute the class instance to send the PMML invocation request to KIE Server.
Alternatively, you can use JMS and REST interfaces to send the ApplyPmmlModelCommand
command to KIE Server. For REST requests, you use the ApplyPmmlModelCommand
command as a POST request to http://SERVER:PORT/kie-
server/services/rest/server/containers/instances/{containerId} in JSON, JAXB, or XStream
request format.

Example POST endpoint

http://localhost:8080/kie-
server/services/rest/server/containers/instances/SampleModelContainer

Example JSON request body

 if (results != null) { 6
 PMML4Result resultHolder = (PMML4Result)results.getResult().getValue("results");
 if (resultHolder != null && "OK".equals(resultHolder.getResultCode())) {
 this.score = resultHolder.getResultValue("ScoreCard","score",Double.class).get();
 Map<String,Object> rankingMap =
 (Map<String,Object>)resultHolder.getResultValue("ScoreCard","ranking");
 if (rankingMap != null && !rankingMap.isEmpty()) {
 this.rankedFirstCode = rankingMap.keySet().iterator().next();
 }
 }
 }
 }
}

{
 "commands": [{
 "apply-pmml-model-command": {
 "outIdentifier": null,
 "packageName": null,
 "hasMining": false,
 "requestData": {
 "correlationId": "123",
 "modelName": "SimpleScorecard",
 "source": null,
 "requestParams": [
 {

CHAPTER 13. PMML MODEL EXECUTION

193

Example curl request with endpoint and body

curl -X POST "http://localhost:8080/kie-
server/services/rest/server/containers/instances/SampleModelContainer" -H "accept:
application/json" -H "content-type: application/json" -d "{ \"commands\": [{ \"apply-pmml-
model-command\": { \"outIdentifier\": null, \"packageName\": null, \"hasMining\": false,
\"requestData\": { \"correlationId\": \"123\", \"modelName\": \"SimpleScorecard\", \"source\":
null, \"requestParams\": [{ \"correlationId\": \"123\", \"name\": \"param1\", \"type\":
\"java.lang.Double\", \"value\": \"10.0\" }, { \"correlationId\": \"123\", \"name\": \"param2\",
\"type\": \"java.lang.Double\", \"value\": \"15.0\" }] } } }]}"

Example JSON response

 "correlationId": "123",
 "name": "param1",
 "type": "java.lang.Double",
 "value": "10.0"
 },
 {
 "correlationId": "123",
 "name": "param2",
 "type": "java.lang.Double",
 "value": "15.0"
 }
]
 }
 }
 }
]
}

{
 "results" : [{
 "value" : {"org.kie.api.pmml.DoubleFieldOutput":{
 "value" : 40.8,
 "correlationId" : "123",
 "segmentationId" : null,
 "segmentId" : null,
 "name" : "OverallScore",
 "displayValue" : "OverallScore",
 "weight" : 1.0
}},
 "key" : "OverallScore"
 }, {
 "value" : {"org.kie.api.pmml.PMML4Result":{
 "resultVariables" : {
 "OverallScore" : {
 "value" : 40.8,
 "correlationId" : "123",
 "segmentationId" : null,
 "segmentId" : null,
 "name" : "OverallScore",
 "displayValue" : "OverallScore",
 "weight" : 1.0
 },

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

194

 "ScoreCard" : {
 "modelName" : "SimpleScorecard",
 "score" : 40.8,
 "holder" : {
 "modelName" : "SimpleScorecard",
 "correlationId" : "123",
 "voverallScore" : null,
 "moverallScore" : true,
 "vparam1" : 10.0,
 "mparam1" : false,
 "vparam2" : 15.0,
 "mparam2" : false
 },
 "enableRC" : true,
 "pointsBelow" : true,
 "ranking" : {
 "reasonCh1" : 5.0,
 "reasonCh2" : -6.0
 }
 }
 },
 "correlationId" : "123",
 "segmentationId" : null,
 "segmentId" : null,
 "segmentIndex" : 0,
 "resultCode" : "OK",
 "resultObjectName" : null
}},
 "key" : "results"
 }],
 "facts" : []
}

CHAPTER 13. PMML MODEL EXECUTION

195

CHAPTER 14. ADDITIONAL RESOURCES
PMML specification

Packaging and deploying a Red Hat Decision Manager project

Interacting with Red Hat Decision Manager using KIE APIs

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

196

http://dmg.org/pmml/pmml-v4-2-1.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

PART III. DESIGNING A DECISION SERVICE USING DRL RULES
As a business rules developer, you can define business rules using the DRL (Drools Rule Language)
designer in Business Central. DRL rules are defined directly in free-form .drl text files instead of in a
guided or tabular format like other types of rule assets in Business Central. These DRL files form the
core of the decision service for your project.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models instead of rule-based or table-based assets. For information about DMN support
in Red Hat Decision Manager 7.11, see the following resources:

Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

Prerequisites

The space and project for the DRL rules have been created in Business Central. Each asset is
associated with a project assigned to a space. For details, see Getting started with decision
services.

PART III. DESIGNING A DECISION SERVICE USING DRL RULES

197

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 15.1. Decision-authoring assets supported in Red Hat Decision Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

198

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

199

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

200

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

201

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES
DRL (Drools Rule Language) rules are business rules that you define directly in .drl text files. These DRL
files are the source in which all other rule assets in Business Central are ultimately rendered. You can
create and manage DRL files within the Business Central interface, or create them externally as part of a
Maven or Java project using Red Hat CodeReady Studio or another integrated development
environment (IDE). A DRL file can contain one or more rules that define at a minimum the rule
conditions (when) and actions (then). The DRL designer in Business Central provides syntax
highlighting for Java, DRL, and XML.

DRL files consist of the following components:

Components in a DRL file

package

import

function // Optional

query // Optional

declare // Optional

global // Optional

rule "rule name"
 // Attributes
 when
 // Conditions
 then
 // Actions
end

rule "rule2 name"

...

The following example DRL rule determines the age limit in a loan application decision service:

Example rule for loan application age limit

rule "Underage"
 salience 15
 agenda-group "applicationGroup"
 when
 $application : LoanApplication()
 Applicant(age < 21)
 then
 $application.setApproved(false);
 $application.setExplanation("Underage");
end

A DRL file can contain single or multiple rules, queries, and functions, and can define resource
declarations such as imports, globals, and attributes that are assigned and used by your rules and

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

202

queries. The DRL package must be listed at the top of a DRL file and the rules are typically listed last. All
other DRL components can follow any order.

Each rule must have a unique name within the rule package. If you use the same rule name more than
once in any DRL file in the package, the rules fail to compile. Always enclose rule names with double
quotation marks (rule "rule name") to prevent possible compilation errors, especially if you use spaces
in rule names.

All data objects related to a DRL rule must be in the same project package as the DRL file in Business
Central. Assets in the same package are imported by default. Existing assets in other packages can be
imported with the DRL rule.

16.1. PACKAGES IN DRL

A package is a folder of related assets in Red Hat Decision Manager, such as data objects, DRL files,
decision tables, and other asset types. A package also serves as a unique namespace for each group of
rules. A single rule base can contain multiple packages. You typically store all the rules for a package in
the same file as the package declaration so that the package is self-contained. However, you can import
objects from other packages that you want to use in the rules.

The following example is a package name and namespace for a DRL file in a mortgage application
decision service:

Example package definition in a DRL file

package org.mortgages;

16.2. IMPORT STATEMENTS IN DRL

Similar to import statements in Java, imports in DRL files identify the fully qualified paths and type
names for any objects that you want to use in the rules. You specify the package and data object in the
format packageName.objectName, with multiple imports on separate lines. The decision engine
automatically imports classes from the Java package with the same name as the DRL package and from
the package java.lang.

The following example is an import statement for a loan application object in a mortgage application
decision service:

Example import statement in a DRL file

import org.mortgages.LoanApplication;

16.3. FUNCTIONS IN DRL

Functions in DRL files put semantic code in your rule source file instead of in Java classes. Functions are
especially useful if an action (then) part of a rule is used repeatedly and only the parameters differ for
each rule. Above the rules in the DRL file, you can declare the function or import a static method from a
helper class as a function, and then use the function by name in an action (then) part of the rule.

The following examples illustrate a function that is either declared or imported in a DRL file:

Example function declaration with a rule (option 1)

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

203

function String hello(String applicantName) {
 return "Hello " + applicantName + "!";
}

rule "Using a function"
 when
 // Empty
 then
 System.out.println(hello("James"));
end

Example function import with a rule (option 2)

import function my.package.applicant.hello;

rule "Using a function"
 when
 // Empty
 then
 System.out.println(hello("James"));
end

16.4. QUERIES IN DRL

Queries in DRL files search the working memory of the decision engine for facts related to the rules in
the DRL file. You add the query definitions in DRL files and then obtain the matching results in your
application code. Queries search for a set of defined conditions and do not require when or then
specifications. Query names are global to the KIE base and therefore must be unique among all other
rule queries in the project. To return the results of a query, you construct a QueryResults definition
using ksession.getQueryResults("name"), where "name" is the query name. This returns a list of query
results, which enable you to retrieve the objects that matched the query. You define the query and
query results parameters above the rules in the DRL file.

The following example is a query definition in a DRL file for underage applicants in a mortgage
application decision service, with the accompanying application code:

Example query definition in a DRL file

query "people under the age of 21"
 $person : Person(age < 21)
end

Example application code to obtain query results

You can also iterate over the returned QueryResults using a standard for loop. Each element is a
QueryResultsRow that you can use to access each of the columns in the tuple.

Example application code to obtain and iterate over query results

QueryResults results = ksession.getQueryResults("people under the age of 21");
System.out.println("we have " + results.size() + " people under the age of 21");

QueryResults results = ksession.getQueryResults("people under the age of 21");

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

204

16.5. TYPE DECLARATIONS AND METADATA IN DRL

Declarations in DRL files define new fact types or metadata for fact types to be used by rules in the DRL
file:

New fact types: The default fact type in the java.lang package of Red Hat Decision Manager is
Object, but you can declare other types in DRL files as needed. Declaring fact types in DRL files
enables you to define a new fact model directly in the decision engine, without creating models
in a lower-level language like Java. You can also declare a new type when a domain model is
already built and you want to complement this model with additional entities that are used
mainly during the reasoning process.

Metadata for fact types: You can associate metadata in the format @key(value) with new or
existing facts. Metadata can be any kind of data that is not represented by the fact attributes
and is consistent among all instances of that fact type. The metadata can be queried at run time
by the decision engine and used in the reasoning process.

16.5.1. Type declarations without metadata in DRL

A declaration of a new fact does not require any metadata, but must include a list of attributes or fields.
If a type declaration does not include identifying attributes, the decision engine searches for an existing
fact class in the classpath and raises an error if the class is missing.

The following example is a declaration of a new fact type Person with no metadata in a DRL file:

Example declaration of a new fact type with a rule

declare Person
 name : String
 dateOfBirth : java.util.Date
 address : Address
end

rule "Using a declared type"
 when
 $p : Person(name == "James")
 then // Insert Mark, who is a customer of James.
 Person mark = new Person();
 mark.setName("Mark");
 insert(mark);
end

In this example, the new fact type Person has the three attributes name, dateOfBirth, and address.
Each attribute has a type that can be any valid Java type, including another class that you create or a
fact type that you previously declared. The dateOfBirth attribute has the type java.util.Date, from the
Java API, and the address attribute has the previously defined fact type Address.

System.out.println("we have " + results.size() + " people under the age of 21");

System.out.println("These people are under the age of 21:");

for (QueryResultsRow row : results) {
 Person person = (Person) row.get("person");
 System.out.println(person.getName() + "\n");
}

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

205

To avoid writing the fully qualified name of a class every time you declare it, you can define the full class
name as part of the import clause:

Example type declaration with the fully qualified class name in the import

import java.util.Date

declare Person
 name : String
 dateOfBirth : Date
 address : Address
end

When you declare a new fact type, the decision engine generates at compile time a Java class
representing the fact type. The generated Java class is a one-to-one JavaBeans mapping of the type
definition.

For example, the following Java class is generated from the example Person type declaration:

Generated Java class for the Person fact type declaration

You can then use the generated class in your rules like any other fact, as illustrated in the previous rule
example with the Person type declaration:

Example rule that uses the declared Person fact type

rule "Using a declared type"
 when
 $p : Person(name == "James")
 then // Insert Mark, who is a customer of James.
 Person mark = new Person();
 mark.setName("Mark");
 insert(mark);
end

public class Person implements Serializable {
 private String name;
 private java.util.Date dateOfBirth;
 private Address address;

 // Empty constructor
 public Person() {...}

 // Constructor with all fields
 public Person(String name, Date dateOfBirth, Address address) {...}

 // If keys are defined, constructor with keys
 public Person(...keys...) {...}

 // Getters and setters
 // `equals` and `hashCode`
 // `toString`
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

206

16.5.2. Enumerative type declarations in DRL

DRL supports the declaration of enumerative types in the format declare enum <factType>, followed
by a comma-separated list of values ending with a semicolon. You can then use the enumerative list in
the rules in the DRL file.

For example, the following enumerative type declaration defines days of the week for an employee
scheduling rule:

Example enumerative type declaration with a scheduling rule

declare enum DaysOfWeek

SUN("Sunday"),MON("Monday"),TUE("Tuesday"),WED("Wednesday"),THU("Thursday"),FRI("Friday"
),SAT("Saturday");

 fullName : String
end

rule "Using a declared Enum"
when
 $emp : Employee(dayOff == DaysOfWeek.MONDAY)
then
 ...
end

16.5.3. Extended type declarations in DRL

DRL supports type declaration inheritance in the format declare <factType1> extends <factType2>.
To extend a type declared in Java by a subtype declared in DRL, you repeat the parent type in a
declaration statement without any fields.

For example, the following type declarations extend a Student type from a top-level Person type, and a
LongTermStudent type from the Student subtype:

Example extended type declarations

import org.people.Person

declare Person end

declare Student extends Person
 school : String
end

declare LongTermStudent extends Student
 years : int
 course : String
end

16.5.4. Type declarations with metadata in DRL

You can associate metadata in the format @key(value) (the value is optional) with fact types or fact
attributes. Metadata can be any kind of data that is not represented by the fact attributes and is

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

207

consistent among all instances of that fact type. The metadata can be queried at run time by the
decision engine and used in the reasoning process. Any metadata that you declare before the attributes
of a fact type are assigned to the fact type, while metadata that you declare after an attribute are
assigned to that particular attribute.

In the following example, the two metadata attributes @author and @dateOfCreation are declared for
the Person fact type, and the two metadata items @key and @maxLength are declared for the name
attribute. The @key metadata attribute has no required value, so the parentheses and the value are
omitted.

Example metadata declaration for fact types and attributes

import java.util.Date

declare Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)

 name : String @key @maxLength(30)
 dateOfBirth : Date
 address : Address
end

For declarations of metadata attributes for existing types, you can identify the fully qualified class name
as part of the import clause for all declarations or as part of the individual declare clause:

Example metadata declaration for an imported type

import org.drools.examples.Person

declare Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)
end

Example metadata declaration for a declared type

declare org.drools.examples.Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)
end

16.5.5. Metadata tags for fact type and attribute declarations in DRL

Although you can define custom metadata attributes in DRL declarations, the decision engine also
supports the following predefined metadata tags for declarations of fact types or fact type attributes.

NOTE

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

208

NOTE

The examples in this section that refer to the VoiceCall class assume that the sample
application domain model includes the following class details:

VoiceCall fact class in an example Telecom domain model

@role

This tag determines whether a given fact type is handled as a regular fact or an event in the decision
engine during complex event processing.
Default parameter: fact

Supported parameters: fact, event

@role(fact | event)

Example: Declare VoiceCall as event type

declare VoiceCall
 @role(event)
end

@timestamp

This tag is automatically assigned to every event in the decision engine. By default, the time is
provided by the session clock and assigned to the event when it is inserted into the working memory
of the decision engine. You can specify a custom time stamp attribute instead of the default time
stamp added by the session clock.
Default parameter: The time added by the decision engine session clock

Supported parameters: Session clock time or custom time stamp attribute

@timestamp(<attributeName>)

Example: Declare VoiceCall timestamp attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
end

@duration

This tag determines the duration time for events in the decision engine. Events can be interval-

public class VoiceCall {
 private String originNumber;
 private String destinationNumber;
 private Date callDateTime;
 private long callDuration; // in milliseconds

 // Constructors, getters, and setters
}

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

209

based events or point-in-time events. Interval-based events have a duration time and persist in the
working memory of the decision engine until their duration time has lapsed. Point-in-time events
have no duration and are essentially interval-based events with a duration of zero. By default, every
event in the decision engine has a duration of zero. You can specify a custom duration attribute
instead of the default.
Default parameter: Null (zero)

Supported parameters: Custom duration attribute

@duration(<attributeName>)

Example: Declare VoiceCall duration attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
end

@expires

This tag determines the time duration before an event expires in the working memory of the decision
engine. By default, an event expires when the event can no longer match and activate any of the
current rules. You can define an amount of time after which an event should expire. This tag
definition also overrides the implicit expiration offset calculated from temporal constraints and
sliding windows in the KIE base. This tag is available only when the decision engine is running in
stream mode.
Default parameter: Null (event expires after event can no longer match and activate rules)

Supported parameters: Custom timeOffset attribute in the format [#d][#h][#m][#s][[ms]]

@expires(<timeOffset>)

Example: Declare expiration offset for VoiceCall events

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
 @expires(1h35m)
end

@typesafe

This tab determines whether a given fact type is compiled with or without type safety. By default, all
type declarations are compiled with type safety enabled. You can override this behavior to type-
unsafe evaluation, where all constraints are generated as MVEL constraints and executed
dynamically. This is useful when dealing with collections that do not have any generics or mixed type
collections.
Default parameter: true

Supported parameters: true, false

@typesafe(<boolean>)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

210

Example: Declare VoiceCall for type-unsafe evaluation

declare VoiceCall
 @role(fact)
 @typesafe(false)
end

@serialVersionUID

This tag defines an identifying serialVersionUID value for a serializable class in a fact declaration. If a
serializable class does not explicitly declare a serialVersionUID, the serialization run time calculates a
default serialVersionUID value for that class based on various aspects of the class, as described in
the Java Object Serialization Specification . However, for optimal deserialization results and for
greater compatibility with serialized KIE sessions, set the serialVersionUID as needed in the relevant
class or in your DRL declarations.
Default parameter: Null

Supported parameters: Custom serialVersionUID integer

@serialVersionUID(<integer>)

Example: Declare serialVersionUID for a VoiceCall class

declare VoiceCall
 @serialVersionUID(42)
end

@key

This tag enables a fact type attribute to be used as a key identifier for the fact type. The generated
class can then implement the equals() and hashCode() methods to determine if two instances of
the type are equal to each other. The decision engine can also generate a constructor using all the
key attributes as parameters.
Default parameter: None

Supported parameters: None

<attributeDefinition> @key

Example: Declare Person type attributes as keys

declare Person
 firstName : String @key
 lastName : String @key
 age : int
end

For this example, the decision engine checks the firstName and lastName attributes to determine if
two instances of Person are equal to each other, but it does not check the age attribute. The
decision engine also implicitly generates three constructors: one without parameters, one with the
@key fields, and one with all fields:

Example constructors from the key declarations

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

211

https://docs.oracle.com/javase/10/docs/specs/serialization/index.html

Person() // Empty constructor

Person(String firstName, String lastName)

Person(String firstName, String lastName, int age)

You can then create instances of the type based on the key constructors, as shown in the following
example:

Example instance using the key constructor

@position

This tag determines the position of a declared fact type attribute or field in a positional argument,
overriding the default declared order of attributes. You can use this tag to modify positional
constraints in patterns while maintaining a consistent format in your type declarations and positional
arguments. You can use this tag only for fields in classes on the classpath. If some fields in a single
class use this tag and some do not, the attributes without this tag are positioned last, in the declared
order. Inheritance of classes is supported, but not interfaces of methods.
Default parameter: None

Supported parameters: Any integer

<attributeDefinition> @position (<integer>)

Example: Declare a fact type and override declared order

declare Person
 firstName : String @position(1)
 lastName : String @position(0)
 age : int @position(2)
 occupation: String
end

In this example, the attributes are prioritized in positional arguments in the following order:

1. lastName

2. firstName

3. age

4. occupation

In positional arguments, you do not need to specify the field name because the position maps to a
known named field. For example, the argument Person(lastName == "Doe") is the same as
Person("Doe";), where the lastName field has the highest position annotation in the DRL
declaration. The semicolon ; indicates that everything before it is a positional argument. You can mix
positional and named arguments on a pattern by using the semicolon to separate them. Any variables
in a positional argument that have not yet been bound are bound to the field that maps to that
position.

The following example patterns illustrate different ways of constructing positional and named

Person person = new Person("John", "Doe");

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

212

arguments. The patterns have two constraints and a binding, and the semicolon differentiates the
positional section from the named argument section. Variables and literals and expressions using only
literals are supported in positional arguments, but not variables alone.

Example patterns with positional and named arguments

Person("Doe", "John", $a;)

Person("Doe", "John"; $a : age)

Person("Doe"; firstName == "John", $a : age)

Person(lastName == "Doe"; firstName == "John", $a : age)

Positional arguments can be classified as input arguments or output arguments . Input arguments
contain a previously declared binding and constrain against that binding using unification. Output
arguments generate the declaration and bind it to the field represented by the positional argument
when the binding does not yet exist.

In extended type declarations, use caution when defining @position annotations because the
attribute positions are inherited in subtypes. This inheritance can result in a mixed attribute order
that can be confusing in some cases. Two fields can have the same @position value and consecutive
values do not need to be declared. If a position is repeated, the conflict is solved using inheritance,
where position values in the parent type have precedence, and then using the declaration order from
the first to last declaration.

For example, the following extended type declarations result in mixed positional priorities:

Example extended fact type with mixed position annotations

declare Person
 firstName : String @position(1)
 lastName : String @position(0)
 age : int @position(2)
 occupation: String
end

declare Student extends Person
 degree : String @position(1)
 school : String @position(0)
 graduationDate : Date
end

In this example, the attributes are prioritized in positional arguments in the following order:

1. lastName (position 0 in the parent type)

2. school (position 0 in the subtype)

3. firstName (position 1 in the parent type)

4. degree (position 1 in the subtype)

5. age (position 2 in the parent type)

6. occupation (first field with no position annotation)

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

213

7. graduationDate (second field with no position annotation)

16.5.6. Property-change settings and listeners for fact types

By default, the decision engine does not re-evaluate all fact patterns for fact types each time a rule is
triggered, but instead reacts only to modified properties that are constrained or bound inside a given
pattern. For example, if a rule calls modify() as part of the rule actions but the action does not generate
new data in the KIE base, the decision engine does not automatically re-evaluate all fact patterns
because no data was modified. This property reactivity behavior prevents unwanted recursions in the
KIE base and results in more efficient rule evaluation. This behavior also means that you do not always
need to use the no-loop rule attribute to avoid infinite recursion.

You can modify or disable this property reactivity behavior with the following
KnowledgeBuilderConfiguration options, and then use a property-change setting in your Java class or
DRL files to fine-tune property reactivity as needed:

ALWAYS: (Default) All types are property reactive, but you can disable property reactivity for a
specific type by using the @classReactive property-change setting.

ALLOWED: No types are property reactive, but you can enable property reactivity for a specific
type by using the @propertyReactive property-change setting.

DISABLED: No types are property reactive. All property-change listeners are ignored.

Example property reactivity setting in KnowledgeBuilderConfiguration

KnowledgeBuilderConfiguration config =
KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
config.setOption(PropertySpecificOption.ALLOWED);
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(config);

Alternatively, you can update the drools.propertySpecific system property in the standalone.xml file
of your Red Hat Decision Manager distribution:

Example property reactivity setting in system properties

The decision engine supports the following property-change settings and listeners for fact classes or
declared DRL fact types:

@classReactive

If property reactivity is set to ALWAYS in the decision engine (all types are property reactive), this
tag disables the default property reactivity behavior for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to re-evaluate all fact patterns for the
specified fact type each time the rule is triggered, instead of reacting only to modified properties
that are constrained or bound inside a given pattern.

Example: Disable default property reactivity in a DRL type declaration

<system-properties>
 ...
 <property name="drools.propertySpecific" value="ALLOWED"/>
 ...
</system-properties>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

214

declare Person
 @classReactive
 firstName : String
 lastName : String
end

Example: Disable default property reactivity in a Java class

@propertyReactive

If property reactivity is set to ALLOWED in the decision engine (no types are property reactive
unless specified), this tag enables property reactivity for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to react only to modified properties that
are constrained or bound inside a given pattern for the specified fact type, instead of re-evaluating
all fact patterns for the fact each time the rule is triggered.

Example: Enable property reactivity in a DRL type declaration (when reactivity is
disabled globally)

declare Person
 @propertyReactive
 firstName : String
 lastName : String
end

Example: Enable property reactivity in a Java class (when reactivity is disabled globally)

@watch

This tag enables property reactivity for additional properties that you specify in-line in fact patterns
in DRL rules. This tag is supported only if property reactivity is set to ALWAYS in the decision
engine, or if property reactivity is set to ALLOWED and the relevant fact type uses the
@propertyReactive tag. You can use this tag in DRL rules to add or exclude specific properties in
fact property reactivity logic.
Default parameter: None

Supported parameters: Property name, * (all), ! (not), !* (no properties)

<factPattern> @watch (<property>)

Example: Enable or disable property reactivity in fact patterns

@classReactive
public static class Person {
 private String firstName;
 private String lastName;
}

@propertyReactive
public static class Person {
 private String firstName;
 private String lastName;
}

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

215

// Listens for changes in both `firstName` (inferred) and `lastName`:
Person(firstName == $expectedFirstName) @watch(lastName)

// Listens for changes in all properties of the `Person` fact:
Person(firstName == $expectedFirstName) @watch(*)

// Listens for changes in `lastName` and explicitly excludes changes in `firstName`:
Person(firstName == $expectedFirstName) @watch(lastName, !firstName)

// Listens for changes in all properties of the `Person` fact except `age`:
Person(firstName == $expectedFirstName) @watch(*, !age)

// Excludes changes in all properties of the `Person` fact (equivalent to using `@classReactivity`
tag):
Person(firstName == $expectedFirstName) @watch(!*)

The decision engine generates a compilation error if you use the @watch tag for properties in a fact
type that uses the @classReactive tag (disables property reactivity) or when property reactivity is
set to ALLOWED in the decision engine and the relevant fact type does not use the
@propertyReactive tag. Compilation errors also arise if you duplicate properties in listener
annotations, such as @watch(firstName, ! firstName).

@propertyChangeSupport

For facts that implement support for property changes as defined in the JavaBeans Specification,
this tag enables the decision engine to monitor changes in the fact properties.

Example: Declare property change support in JavaBeans object

declare Person
 @propertyChangeSupport
end

16.5.7. Access to DRL declared types in application code

Declared types in DRL are typically used within the DRL files while Java models are typically used when
the model is shared between rules and applications. Because declared types are generated at KIE base
compile time, an application cannot access them until application run time. In some cases, an application
needs to access and handle facts directly from the declared types, especially when the application wraps
the decision engine and provides higher-level, domain-specific user interfaces for rules management.

To handle declared types directly from the application code, you can use the
org.drools.definition.type.FactType API in Red Hat Decision Manager. Through this API, you can
instantiate, read, and write fields in the declared fact types.

The following example code modifies a Person fact type directly from an application:

Example application code to handle a declared fact type through the FactType API

import java.util.Date;

import org.kie.api.definition.type.FactType;
import org.kie.api.KieBase;
import org.kie.api.runtime.KieSession;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

216

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

The API also includes other helpful methods, such as setting all the attributes at once, reading values
from a Map collection, or reading all attributes at once into a Map collection.

Although the API behavior is similar to Java reflection, the API does not use reflection and relies on
more performant accessors that are implemented with generated bytecode.

16.6. GLOBAL VARIABLES IN DRL

Global variables in DRL files typically provide data or services for the rules, such as application services
used in rule consequences, and return data from rules, such as logs or values added in rule
consequences. You set the global value in the working memory of the decision engine through a KIE
session configuration or REST operation, declare the global variable above the rules in the DRL file, and
then use it in an action (then) part of the rule. For multiple global variables, use separate lines in the DRL
file.

The following example illustrates a global variable list configuration for the decision engine and the
corresponding global variable definition in the DRL file:

Example global list configuration for the decision engine

List<String> list = new ArrayList<>();
KieSession kieSession = kiebase.newKieSession();
kieSession.setGlobal("myGlobalList", list);

Example global variable definition with a rule

global java.util.List myGlobalList;

rule "Using a global"

...

// Get a reference to a KIE base with the declared type:
KieBase kbase = ...

// Get the declared fact type:
FactType personType = kbase.getFactType("org.drools.examples", "Person");

// Create instances:
Object bob = personType.newInstance();

// Set attribute values:
personType.set(bob, "name", "Bob");
personType.set(bob, "dateOfBirth", new Date());
personType.set(bob, "address", new Address("King's Road","London","404"));

// Insert the fact into a KIE session:
KieSession ksession = ...
ksession.insert(bob);
ksession.fireAllRules();

// Read attributes:
String name = (String) personType.get(bob, "name");
Date date = (Date) personType.get(bob, "dateOfBirth");

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

217

 when
 // Empty
 then
 myGlobalList.add("My global list");
end

WARNING

Do not use global variables to establish conditions in rules unless a global variable
has a constant immutable value. Global variables are not inserted into the working
memory of the decision engine, so the decision engine cannot track value changes
of variables.

Do not use global variables to share data between rules. Rules always reason and
react to the working memory state, so if you want to pass data from rule to rule,
assert the data as facts into the working memory of the decision engine.

A use case for a global variable might be an instance of an email service. In your integration code that is
calling the decision engine, you obtain your emailService object and then set it in the working memory
of the decision engine. In the DRL file, you declare that you have a global of type emailService and give
it the name "email", and then in your rule consequences, you can use actions such as
email.sendSMS(number, message).

If you declare global variables with the same identifier in multiple packages, then you must set all the
packages with the same type so that they all reference the same global value.

16.7. RULE ATTRIBUTES IN DRL

Rule attributes are additional specifications that you can add to business rules to modify rule behavior.
In DRL files, you typically define rule attributes above the rule conditions and actions, with multiple
attributes on separate lines, in the following format:

rule "rule_name"
 // Attribute
 // Attribute
 when
 // Conditions
 then
 // Actions
end

The following table lists the names and supported values of the attributes that you can assign to rules:

Table 16.1. Rule attributes

Attribute Value

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

218

salience An integer defining the priority of the rule. Rules with a higher salience value
are given higher priority when ordered in the activation queue.

Example: salience 10

enabled A Boolean value. When the option is selected, the rule is enabled. When the
option is not selected, the rule is disabled.

Example: enabled true

date-effective A string containing a date and time definition. The rule can be activated
only if the current date and time is after a date-effective attribute.

Example: date-effective "4-Sep-2018"

date-expires A string containing a date and time definition. The rule cannot be activated
if the current date and time is after the date-expires attribute.

Example: date-expires "4-Oct-2018"

no-loop A Boolean value. When the option is selected, the rule cannot be reactivated
(looped) if a consequence of the rule re-triggers a previously met condition.
When the condition is not selected, the rule can be looped in these
circumstances.

Example: no-loop true

agenda-group A string identifying an agenda group to which you want to assign the rule.
Agenda groups allow you to partition the agenda to provide more execution
control over groups of rules. Only rules in an agenda group that has
acquired a focus are able to be activated.

Example: agenda-group "GroupName"

activation-group A string identifying an activation (or XOR) group to which you want to
assign the rule. In activation groups, only one rule can be activated. The first
rule to fire will cancel all pending activations of all rules in the activation
group.

Example: activation-group "GroupName"

duration A long integer value defining the duration of time in milliseconds after which
the rule can be activated, if the rule conditions are still met.

Example: duration 10000

timer A string identifying either int (interval) or cron timer definitions for
scheduling the rule.

Example: timer (cron:* 0/15 * * * ?) (every 15 minutes)

Attribute Value

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

219

calendar A Quartz calendar definition for scheduling the rule.

Example: calendars "* * 0-7,18-23 ? * *" (exclude non-business hours)

auto-focus A Boolean value, applicable only to rules within agenda groups. When the
option is selected, the next time the rule is activated, a focus is
automatically given to the agenda group to which the rule is assigned.

Example: auto-focus true

lock-on-active A Boolean value, applicable only to rules within rule flow groups or agenda
groups. When the option is selected, the next time the ruleflow group for the
rule becomes active or the agenda group for the rule receives a focus, the
rule cannot be activated again until the ruleflow group is no longer active or
the agenda group loses the focus. This is a stronger version of the no-loop
attribute, because the activation of a matching rule is discarded regardless
of the origin of the update (not only by the rule itself). This attribute is ideal
for calculation rules where you have a number of rules that modify a fact
and you do not want any rule re-matching and firing again.

Example: lock-on-active true

ruleflow-group A string identifying a rule flow group. In rule flow groups, rules can fire only
when the group is activated by the associated rule flow.

Example: ruleflow-group "GroupName"

dialect A string identifying either JAVA or MVEL as the language to be used for
code expressions in the rule. By default, the rule uses the dialect specified at
the package level. Any dialect specified here overrides the package dialect
setting for the rule.

Example: dialect "JAVA"

NOTE

When you use Red Hat Decision Manager without the
executable model, the dialect "JAVA" rule consequences
support only Java 5 syntax. For more information about
executable models, see Packaging and deploying a Red Hat
Decision Manager project.

Attribute Value

16.7.1. Timer and calendar rule attributes in DRL

Timers and calendars are DRL rule attributes that enable you to apply scheduling and timing constraints
to your DRL rules. These attributes require additional configurations depending on the use case.

The timer attribute in DRL rules is a string identifying either int (interval) or cron timer definitions for

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

220

http://www.quartz-scheduler.org/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying

The timer attribute in DRL rules is a string identifying either int (interval) or cron timer definitions for
scheduling a rule and supports the following formats:

Timer attribute formats

timer (int: <initial delay> <repeat interval>)

timer (cron: <cron expression>)

Example interval timer attributes

// Run after a 30-second delay
timer (int: 30s)

// Run every 5 minutes after a 30-second delay each time
timer (int: 30s 5m)

Example cron timer attribute

// Run every 15 minutes
timer (cron:* 0/15 * * * ?)

Interval timers follow the semantics of java.util.Timer objects, with an initial delay and an optional
repeat interval. Cron timers follow standard Unix cron expressions.

The following example DRL rule uses a cron timer to send an SMS text message every 15 minutes:

Example DRL rule with a cron timer

rule "Send SMS message every 15 minutes"
 timer (cron:* 0/15 * * * ?)
 when
 $a : Alarm(on == true)
 then
 channels["sms"].insert(new Sms($a.mobileNumber, "The alarm is still on.");
end

Generally, a rule that is controlled by a timer becomes active when the rule is triggered and the rule
consequence is executed repeatedly, according to the timer settings. The execution stops when the rule
condition no longer matches incoming facts. However, the way the decision engine handles rules with
timers depends on whether the decision engine is in active mode or in passive mode.

By default, the decision engine runs in passive mode and evaluates rules, according to the defined timer
settings, when a user or an application explicitly calls fireAllRules(). Conversely, if a user or application
calls fireUntilHalt(), the decision engine starts in active mode and evaluates rules continually until the
user or application explicitly calls halt().

When the decision engine is in active mode, rule consequences are executed even after control returns
from a call to fireUntilHalt() and the decision engine remains reactive to any changes made to the
working memory. For example, removing a fact that was involved in triggering the timer rule execution
causes the repeated execution to terminate, and inserting a fact so that some rule matches causes that
rule to be executed. However, the decision engine is not continually active, but is active only after a rule
is executed. Therefore, the decision engine does not react to asynchronous fact insertions until the next
execution of a timer-controlled rule. Disposing a KIE session terminates all timer activity.

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

221

When the decision engine is in passive mode, rule consequences of timed rules are evaluated only when
fireAllRules() is invoked again. However, you can change the default timer-execution behavior in
passive mode by configuring the KIE session with a TimedRuleExecutionOption option, as shown in the
following example:

KIE session configuration to automatically execute timed rules in passive mode

You can additionally set a FILTERED specification on the TimedRuleExecutionOption option that
enables you to define a callback to filter those rules, as shown in the following example:

KIE session configuration to filter which timed rules are automatically executed

For interval timers, you can also use an expression timer with expr instead of int to define both the delay
and interval as an expression instead of a fixed value.

The following example DRL file declares a fact type with a delay and period that are then used in the
subsequent rule with an expression timer:

Example rule with an expression timer

declare Bean
 delay : String = "30s"
 period : long = 60000
end

rule "Expression timer"
 timer (expr: $d, $p)
 when
 Bean($d : delay, $p : period)
 then
 // Actions
end

The expressions, such as $d and $p in this example, can use any variable defined in the pattern-
matching part of the rule. The variable can be any String value that can be parsed into a time duration
or any numeric value that is internally converted in a long value for a duration in milliseconds.

Both interval and expression timers can use the following optional parameters:

start and end: A Date or a String representing a Date or a long value. The value can also be a
Number that is transformed into a Java Date in the format new Date(((Number)
n).longValue()).

repeat-limit: An integer that defines the maximum number of repetitions allowed by the timer. If

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();
ksconf.setOption(TimedRuleExecutionOption.YES);
KSession ksession = kbase.newKieSession(ksconf, null);

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();
conf.setOption(new TimedRuleExecutionOption.FILTERED(new TimedRuleExecutionFilter() {
 public boolean accept(Rule[] rules) {
 return rules[0].getName().equals("MyRule");
 }
}));

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

222

repeat-limit: An integer that defines the maximum number of repetitions allowed by the timer. If
both the end and the repeat-limit parameters are set, the timer stops when the first of the two
is reached.

Example timer attribute with optional start, end, and repeat-limit parameters

In this example, the rule is scheduled for every hour, after a delay of 30 seconds each hour, beginning on
3 January 2020 and ending either on 4 January 2020 or when the cycle repeats 50 times.

If the system is paused (for example, the session is serialized and then later deserialized), the rule is
scheduled only one time to recover from missing activations regardless of how many activations were
missed during the pause, and then the rule is subsequently scheduled again to continue in sync with the
timer setting.

The calendar attribute in DRL rules is a Quartz calendar definition for scheduling a rule and supports
the following format:

Calendar attribute format

calendars "<definition or registered name>"

Example calendar attributes

// Exclude non-business hours
calendars "* * 0-7,18-23 ? * *"

// Weekdays only, as registered in the KIE session
calendars "weekday"

You can adapt a Quartz calendar based on the Quartz calendar API and then register the calendar in the
KIE session, as shown in the following example:

Adapting a Quartz Calendar

Registering the calendar in the KIE session

You can use calendars with standard rules and with rules that use timers. The calendar attribute can
contain one or more comma-separated calendar names written as String literals.

The following example rules use both calendars and timers to schedule the rules:

Example rules with calendars and timers

rule "Weekdays are high priority"
 calendars "weekday"
 timer (int:0 1h)
 when

timer (int: 30s 1h; start=3-JAN-2020, end=4-JAN-2020, repeat-limit=50)

Calendar weekDayCal = QuartzHelper.quartzCalendarAdapter(org.quartz.Calendar quartzCal)

ksession.getCalendars().set("weekday", weekDayCal);

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

223

http://www.quartz-scheduler.org/

 Alarm()
 then
 send("priority high - we have an alarm");
end

rule "Weekends are low priority"
 calendars "weekend"
 timer (int:0 4h)
 when
 Alarm()
 then
 send("priority low - we have an alarm");
end

16.8. RULE CONDITIONS IN DRL (WHEN)

The when part of a DRL rule (also known as the Left Hand Side (LHS) of the rule) contains the
conditions that must be met to execute an action. Conditions consist of a series of stated patterns and
constraints, with optional bindings and supported rule condition elements (keywords), based on the
available data objects in the package. For example, if a bank requires loan applicants to have over 21
years of age, then the when condition of an "Underage" rule would be Applicant(age < 21).

NOTE

DRL uses when instead of if because if is typically part of a procedural execution flow
during which a condition is checked at a specific point in time. In contrast, when indicates
that the condition evaluation is not limited to a specific evaluation sequence or point in
time, but instead occurs continually at any time. Whenever the condition is met, the
actions are executed.

If the when section is empty, then the conditions are considered to be true and the actions in the then
section are executed the first time a fireAllRules() call is made in the decision engine. This is useful if
you want to use rules to set up the decision engine state.

The following example rule uses empty conditions to insert a fact every time the rule is executed:

Example rule without conditions

rule "Always insert applicant"
 when
 // Empty
 then // Actions to be executed once
 insert(new Applicant());
end

// The rule is internally rewritten in the following way:

rule "Always insert applicant"
 when
 eval(true)
 then
 insert(new Applicant());
end

If rule conditions use multiple patterns with no defined keyword conjunctions (such as and, or, or not),

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

224

If rule conditions use multiple patterns with no defined keyword conjunctions (such as and, or, or not),
the default conjunction is and:

Example rule without keyword conjunctions

rule "Underage"
 when
 application : LoanApplication()
 Applicant(age < 21)
 then
 // Actions
end

// The rule is internally rewritten in the following way:

rule "Underage"
 when
 application : LoanApplication()
 and Applicant(age < 21)
 then
 // Actions
end

16.8.1. Patterns and constraints

A pattern in a DRL rule condition is the segment to be matched by the decision engine. A pattern can
potentially match each fact that is inserted into the working memory of the decision engine. A pattern
can also contain constraints to further define the facts to be matched.

In the simplest form, with no constraints, a pattern matches a fact of the given type. In the following
example, the type is Person, so the pattern will match against all Person objects in the working memory
of the decision engine:

Example pattern for a single fact type

Person()

The type does not need to be the actual class of some fact object. Patterns can refer to superclasses or
even interfaces, potentially matching facts from many different classes. For example, the following
pattern matches all objects in the working memory of the decision engine:

Example pattern for all objects

Object() // Matches all objects in the working memory

The parentheses of a pattern enclose the constraints, such as the following constraint on the person’s
age:

Example pattern with a constraint

Person(age == 50)

A constraint is an expression that returns true or false. Pattern constraints in DRL are essentially Java

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

225

A constraint is an expression that returns true or false. Pattern constraints in DRL are essentially Java
expressions with some enhancements, such as property access, and some differences, such as equals()
and !equals() semantics for == and != (instead of the usual same and not same semantics).

Any JavaBeans property can be accessed directly from pattern constraints. A bean property is exposed
internally using a standard JavaBeans getter that takes no arguments and returns something. For
example, the age property is written as age in DRL instead of the getter getAge():

DRL constraint syntax with JavaBeans properties

Person(age == 50)

// This is the same as the following getter format:

Person(getAge() == 50)

Red Hat Decision Manager uses the standard JDK Introspector class to achieve this mapping, so it
follows the standard JavaBeans specification. For optimal decision engine performance, use the
property access format, such as age, instead of using getters explicitly, such as getAge().

WARNING

Do not use property accessors to change the state of the object in a way that might
affect the rules because the decision engine caches the results of the match
between invocations for higher efficiency.

For example, do not use property accessors in the following ways:

Instead of following the second example, insert a fact that wraps the current date in
the working memory and update that fact between fireAllRules() as needed.

However, if the getter of a property cannot be found, the compiler uses the property name as a fallback
method name, without arguments:

Fallback method if object is not found

Person(age == 50)

// If `Person.getAge()` does not exist, the compiler uses the following syntax:

public int getAge() {
 age++; // Do not do this.
 return age;
}

public int getAge() {
 Date now = DateUtil.now(); // Do not do this.
 return DateUtil.differenceInYears(now, birthday);
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

226

Person(age() == 50)

You can also nest access properties in patterns, as shown in the following example. Nested properties
are indexed by the decision engine.

Example pattern with nested property access

Person(address.houseNumber == 50)

// This is the same as the following format:

Person(getAddress().getHouseNumber() == 50)

WARNING

In stateful KIE sessions, use nested accessors carefully because the working
memory of the decision engine is not aware of any of the nested values and does
not detect when they change. Either consider the nested values immutable while
any of their parent references are inserted into the working memory, or, if you want
to modify a nested value, mark all of the outer facts as updated. In the previous
example, when the houseNumber property changes, any Person with that
Address must be marked as updated.

You can use any Java expression that returns a boolean value as a constraint inside the parentheses of
a pattern. Java expressions can be mixed with other expression enhancements, such as property access:

Example pattern with a constraint using property access and Java expression

Person(age == 50)

You can change the evaluation priority by using parentheses, as in any logical or mathematical
expression:

Example evaluation order of constraints

Person(age > 100 && (age % 10 == 0))

You can also reuse Java methods in constraints, as shown in the following example:

Example constraints with reused Java methods

Person(Math.round(weight / (height * height)) < 25.0)

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

227

WARNING

Do not use constraints to change the state of the object in a way that might affect
the rules because the decision engine caches the results of the match between
invocations for higher efficiency. Any method that is executed on a fact in the rule
conditions must be a read-only method. Also, the state of a fact should not change
between rule invocations unless those facts are marked as updated in the working
memory on every change.

For example, do not use a pattern constraint in the following ways:

Person(incrementAndGetAge() == 10) // Do not do this.

Person(System.currentTimeMillis() % 1000 == 0) // Do not do this.

Standard Java operator precedence applies to constraint operators in DRL, and DRL operators follow
standard Java semantics except for the == and != operators.

The == operator uses null-safe equals() semantics instead of the usual same semantics. For example,
the pattern Person(firstName == "John") is similar to
java.util.Objects.equals(person.getFirstName(), "John"), and because "John" is not null, the pattern
is also similar to "John".equals(person.getFirstName()).

The != operator uses null-safe !equals() semantics instead of the usual not same semantics. For
example, the pattern Person(firstName != "John") is similar to
!java.util.Objects.equals(person.getFirstName(), "John").

If the field and the value of a constraint are of different types, the decision engine uses type coercion to
resolve the conflict and reduce compilation errors. For instance, if "ten" is provided as a string in a
numeric evaluator, a compilation error occurs, whereas "10" is coerced to a numeric 10. In coercion, the
field type always takes precedence over the value type:

Example constraint with a value that is coerced

Person(age == "10") // "10" is coerced to 10

For groups of constraints, you can use a delimiting comma , to use implicit and connective semantics:

Example patterns with multiple constraints

// Person is at least 50 years old and weighs at least 80 kilograms:
Person(age > 50, weight > 80)

// Person is at least 50 years old, weighs at least 80 kilograms, and is taller than 2 meters:
Person(age > 50, weight > 80, height > 2)

NOTE

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

228

NOTE

Although the && and , operators have the same semantics, they are resolved with
different priorities. The && operator precedes the || operator, and both the && and ||
operators together precede the , operator. Use the comma operator at the top-level
constraint for optimal decision engine performance and human readability.

You cannot embed a comma operator in a composite constraint expression, such as in parentheses:

Example of misused comma in composite constraint expression

// Do not use the following format:
Person((age > 50, weight > 80) || height > 2)

// Use the following format instead:
Person((age > 50 && weight > 80) || height > 2)

16.8.2. Bound variables in patterns and constraints

You can bind variables to patterns and constraints to refer to matched objects in other portions of a
rule. Bound variables can help you define rules more efficiently or more consistently with how you
annotate facts in your data model. To differentiate more easily between variables and fields in a rule, use
the standard format $variable for variables, especially in complex rules. This convention is helpful but
not required in DRL.

For example, the following DRL rule uses the variable $p for a pattern with the Person fact:

Pattern with a bound variable

rule "simple rule"
 when
 $p : Person()
 then
 System.out.println("Person " + $p);
end

Similarly, you can also bind variables to properties in pattern constraints, as shown in the following
example:

// Two persons of the same age:
Person($firstAge : age) // Binding
Person(age == $firstAge) // Constraint expression

NOTE

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

229

NOTE

Ensure that you separate constraint bindings and constraint expressions for clearer and
more efficient rule definitions. Although mixed bindings and expressions are supported,
they can complicate patterns and affect evaluation efficiency.

// Do not use the following format:
Person($age : age * 2 < 100)

// Use the following format instead:
Person(age * 2 < 100, $age : age)

The decision engine does not support bindings to the same declaration, but does support unification of
arguments across several properties. While positional arguments are always processed with unification,
the unification symbol := exists for named arguments.

The following example patterns unify the age property across two Person facts:

Example pattern with unification

Person($age := age)
Person($age := age)

Unification declares a binding for the first occurrence and constrains to the same value of the bound
field for sequence occurrences.

16.8.3. Nested constraints and inline casts

In some cases, you might need to access multiple properties of a nested object, as shown in the following
example:

Example pattern to access multiple properties

Person(name == "mark", address.city == "london", address.country == "uk")

You can group these property accessors to nested objects with the syntax .(<constraints>) for more
readable rules, as shown in the following example:

Example pattern with grouped constraints

Person(name == "mark", address.(city == "london", country == "uk"))

NOTE

The period prefix . differentiates the nested object constraints from a method call.

When you work with nested objects in patterns, you can use the syntax <type>#<subtype> to cast to a
subtype and make the getters from the parent type available to the subtype. You can use either the
object name or fully qualified class name, and you can cast to one or multiple subtypes, as shown in the
following examples:

Example patterns with inline casting to a subtype

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

230

// Inline casting with subtype name:
Person(name == "mark", address#LongAddress.country == "uk")

// Inline casting with fully qualified class name:
Person(name == "mark", address#org.domain.LongAddress.country == "uk")

// Multiple inline casts:
Person(name == "mark", address#LongAddress.country#DetailedCountry.population > 10000000)

These example patterns cast Address to LongAddress, and additionally to DetailedCountry in the last
example, making the parent getters available to the subtypes in each case.

You can use the instanceof operator to infer the results of the specified type in subsequent uses of
that field with the pattern, as shown in the following example:

Person(name == "mark", address instanceof LongAddress, address.country == "uk")

If an inline cast is not possible (for example, if instanceof returns false), the evaluation is considered
false.

16.8.4. Date literal in constraints

By default, the decision engine supports the date format dd-mmm-yyyy. You can customize the date
format, including a time format mask if needed, by providing an alternative format mask with the system
property drools.dateformat="dd-mmm-yyyy hh:mm". You can also customize the date format by
changing the language locale with the drools.defaultlanguage and drools.defaultcountry system
properties (for example, the locale of Thailand is set as drools.defaultlanguage=th and
drools.defaultcountry=TH).

Example pattern with a date literal restriction

Person(bornBefore < "27-Oct-2009")

16.8.5. Supported operators in DRL pattern constraints

DRL supports standard Java semantics for operators in pattern constraints, with some exceptions and
with some additional operators that are unique in DRL. The following list summarizes the operators that
are handled differently in DRL constraints than in standard Java semantics or that are unique in DRL
constraints.

.(), #

Use the .() operator to group property accessors to nested objects, and use the # operator to cast to
a subtype in nested objects. Casting to a subtype makes the getters from the parent type available to
the subtype. You can use either the object name or fully qualified class name, and you can cast to
one or multiple subtypes.

Example patterns with nested objects

// Ungrouped property accessors:
Person(name == "mark", address.city == "london", address.country == "uk")

// Grouped property accessors:
Person(name == "mark", address.(city == "london", country == "uk"))

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

231

NOTE

The period prefix . differentiates the nested object constraints from a method call.

Example patterns with inline casting to a subtype

// Inline casting with subtype name:
Person(name == "mark", address#LongAddress.country == "uk")

// Inline casting with fully qualified class name:
Person(name == "mark", address#org.domain.LongAddress.country == "uk")

// Multiple inline casts:
Person(name == "mark", address#LongAddress.country#DetailedCountry.population > 10000000
)

!.

Use this operator to dereference a property in a null-safe way. The value to the left of the !. operator
must be not null (interpreted as != null) in order to give a positive result for pattern matching.

Example constraint with null-safe dereferencing

Person($streetName : address!.street)

// This is internally rewritten in the following way:

Person(address != null, $streetName : address.street)

[]

Use this operator to access a List value by index or a Map value by key.

Example constraints with List and Map access

// The following format is the same as `childList(0).getAge() == 18`:
Person(childList[0].age == 18)

// The following format is the same as `credentialMap.get("jdoe").isValid()`:
Person(credentialMap["jdoe"].valid)

<, <=, >, >=

Use these operators on properties with natural ordering. For example, for Date fields, the < operator
means before, and for String fields, the operator means alphabetically before. These properties
apply only to comparable properties.

Example constraints with before operator

Person(birthDate < $otherBirthDate)

Person(firstName < $otherFirstName)

==, !=

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

232

Use these operators as equals() and !equals() methods in constraints, instead of the usual same
and not same semantics.

Example constraint with null-safe equality

Person(firstName == "John")

// This is similar to the following formats:

java.util.Objects.equals(person.getFirstName(), "John")
"John".equals(person.getFirstName())

Example constraint with null-safe not equality

Person(firstName != "John")

// This is similar to the following format:

!java.util.Objects.equals(person.getFirstName(), "John")

&&, ||

Use these operators to create an abbreviated combined relation condition that adds more than one
restriction on a field. You can group constraints with parentheses () to create a recursive syntax
pattern.

Example constraints with abbreviated combined relation

// Simple abbreviated combined relation condition using a single `&&`:
Person(age > 30 && < 40)

// Complex abbreviated combined relation using groupings:
Person(age ((> 30 && < 40) || (> 20 && < 25)))

// Mixing abbreviated combined relation with constraint connectives:
Person(age > 30 && < 40 || location == "london")

matches, not matches

Use these operators to indicate that a field matches or does not match a specified Java regular
expression. Typically, the regular expression is a String literal, but variables that resolve to a valid
regular expression are also supported. These operators apply only to String properties. If you use
matches against a null value, the resulting evaluation is always false. If you use not matches against
a null value, the resulting evaluation is always true. As in Java, regular expressions that you write as
String literals must use a double backslash \\ to escape.

Example constraint to match or not match a regular expression

Person(country matches "(USA)?\\S*UK")

Person(country not matches "(USA)?\\S*UK")

contains, not contains

Use these operators to verify whether a field that is an Array or a Collection contains or does not

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

233

Use these operators to verify whether a field that is an Array or a Collection contains or does not
contain a specified value. These operators apply to Array or Collection properties, but you can also
use these operators in place of String.contains() and !String.contains() constraints checks.

Example constraints with contains and not contains for a Collection

// Collection with a specified field:
FamilyTree(countries contains "UK")

FamilyTree(countries not contains "UK")

// Collection with a variable:
FamilyTree(countries contains $var)

FamilyTree(countries not contains $var)

Example constraints with contains and not contains for a String literal

// Sting literal with a specified field:
Person(fullName contains "Jr")

Person(fullName not contains "Jr")

// String literal with a variable:
Person(fullName contains $var)

Person(fullName not contains $var)

NOTE

For backward compatibility, the excludes operator is a supported synonym for not
contains.

memberOf, not memberOf

Use these operators to verify whether a field is a member of or is not a member of an Array or a
Collection that is defined as a variable. The Array or Collection must be a variable.

Example constraints with memberOf and not memberOf with a Collection

FamilyTree(person memberOf $europeanDescendants)

FamilyTree(person not memberOf $europeanDescendants)

soundslike

Use this operator to verify whether a word has almost the same sound, using English pronunciation,
as the given value (similar to the matches operator). This operator uses the Soundex algorithm.

Example constraint with soundslike

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

234

// Match firstName "Jon" or "John":
Person(firstName soundslike "John")

str

Use this operator to verify whether a field that is a String starts with or ends with a specified value.
You can also use this operator to verify the length of the String.

Example constraints with str

// Verify what the String starts with:
Message(routingValue str[startsWith] "R1")

// Verify what the String ends with:
Message(routingValue str[endsWith] "R2")

// Verify the length of the String:
Message(routingValue str[length] 17)

in, notin

Use these operators to specify more than one possible value to match in a constraint (compound
value restriction). This functionality of compound value restriction is supported only in the in and not
in operators. The second operand of these operators must be a comma-separated list of values
enclosed in parentheses. You can provide values as variables, literals, return values, or qualified
identifiers. These operators are internally rewritten as a list of multiple restrictions using the
operators == or !=.

Example constraints with in and notin

Person($color : favoriteColor)
Color(type in ("red", "blue", $color))

Person($color : favoriteColor)
Color(type notin ("red", "blue", $color))

16.8.6. Operator precedence in DRL pattern constraints

DRL supports standard Java operator precedence for applicable constraint operators, with some
exceptions and with some additional operators that are unique in DRL. The following table lists DRL
operator precedence where applicable, from highest to lowest precedence:

Table 16.2. Operator precedence in DRL pattern constraints

Operator type Operators Notes

Nested or null-safe property
access

., .(), !. Not standard Java semantics

List or Map access [] Not standard Java semantics

Constraint binding : Not standard Java semantics

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

235

Multiplicative *, /%

Additive +, -

Shift >>, >>>, <<

Relational <, <=, >, >=, instanceof

Equality == != Uses equals() and !equals() semantics, not
standard Java same and not same
semantics

Non-short-circuiting AND &

Non-short-circuiting
exclusive OR

^

Non-short-circuiting
inclusive OR

|

Logical AND &&

Logical OR ||

Ternary ? :

Comma-separated AND , Not standard Java semantics

Operator type Operators Notes

16.8.7. Supported rule condition elements in DRL (keywords)

DRL supports the following rule condition elements (keywords) that you can use with the patterns that
you define in DRL rule conditions:

and

Use this to group conditional components into a logical conjunction. Infix and prefix and are
supported. You can group patterns explicitly with parentheses (). By default, all listed patterns are
combined with and when no conjunction is specified.

Example patterns with and

//Infix `and`:
Color(colorType : type) and Person(favoriteColor == colorType)

//Infix `and` with grouping:
(Color(colorType : type) and (Person(favoriteColor == colorType) or Person(favoriteColor ==
colorType))

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

236

// Prefix `and`:
(and Color(colorType : type) Person(favoriteColor == colorType))

// Default implicit `and`:
Color(colorType : type)
Person(favoriteColor == colorType)

NOTE

Do not use a leading declaration binding with the and keyword (as you can with or, for
example). A declaration can only reference a single fact at a time, and if you use a
declaration binding with and, then when and is satisfied, it matches both facts and
results in an error.

Example misuse of and

// Causes compile error:
$person : (Person(name == "Romeo") and Person(name == "Juliet"))

or

Use this to group conditional components into a logical disjunction. Infix and prefix or are supported.
You can group patterns explicitly with parentheses (). You can also use pattern binding with or, but
each pattern must be bound separately.

Example patterns with or

//Infix `or`:
Color(colorType : type) or Person(favoriteColor == colorType)

//Infix `or` with grouping:
(Color(colorType : type) or (Person(favoriteColor == colorType) and Person(favoriteColor ==
colorType))

// Prefix `or`:
(or Color(colorType : type) Person(favoriteColor == colorType))

Example patterns with or and pattern binding

pensioner : (Person(sex == "f", age > 60) or Person(sex == "m", age > 65))

(or pensioner : Person(sex == "f", age > 60)
 pensioner : Person(sex == "m", age > 65))

The behavior of the or condition element is different from the connective || operator for constraints
and restrictions in field constraints. The decision engine does not directly interpret the or element
but uses logical transformations to rewrite a rule with or as a number of sub-rules. This process
ultimately results in a rule that has a single or as the root node and one sub-rule for each of its
condition elements. Each sub-rule is activated and executed like any normal rule, with no special
behavior or interaction between the sub-rules.

Therefore, consider the or condition element a shortcut for generating two or more similar rules that,
in turn, can create multiple activations when two or more terms of the disjunction are true.

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

237

exists

Use this to specify facts and constraints that must exist. This option is triggered on only the first
match, not subsequent matches. If you use this element with multiple patterns, enclose the patterns
with parentheses ().

Example patterns with exists

exists Person(firstName == "John")

exists (Person(firstName == "John", age == 42))

exists (Person(firstName == "John") and
 Person(lastName == "Doe"))

not

Use this to specify facts and constraints that must not exist. If you use this element with multiple
patterns, enclose the patterns with parentheses ().

Example patterns with not

not Person(firstName == "John")

not (Person(firstName == "John", age == 42))

not (Person(firstName == "John") and
 Person(lastName == "Doe"))

forall

Use this to verify whether all facts that match the first pattern match all the remaining patterns.
When a forall construct is satisfied, the rule evaluates to true. This element is a scope delimiter, so it
can use any previously bound variable, but no variable bound inside of it is available for use outside of
it.

Example rule with forall

rule "All full-time employees have red ID badges"
 when
 forall($emp : Employee(type == "fulltime")
 Employee(this == $emp, badgeColor = "red"))
 then
 // True, all full-time employees have red ID badges.
end

In this example, the rule selects all Employee objects whose type is "fulltime". For each fact that
matches this pattern, the rule evaluates the patterns that follow (badge color) and if they match, the
rule evaluates to true.

To state that all facts of a given type in the working memory of the decision engine must match a set
of constraints, you can use forall with a single pattern for simplicity.

Example rule with forall and a single pattern

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

238

rule "All full-time employees have red ID badges"
 when
 forall(Employee(badgeColor = "red"))
 then
 // True, all full-time employees have red ID badges.
end

You can use forall constructs with multiple patterns or nest them with other condition elements, such
as inside a not element construct.

Example rule with forall and multiple patterns

rule "All employees have health and dental care programs"
 when
 forall($emp : Employee()
 HealthCare(employee == $emp)
 DentalCare(employee == $emp)
)
 then
 // True, all employees have health and dental care.
end

Example rule with forall and not

rule "Not all employees have health and dental care"
 when
 not (forall($emp : Employee()
 HealthCare(employee == $emp)
 DentalCare(employee == $emp))
)
 then
 // True, not all employees have health and dental care.
end

NOTE

The format forall(p1 p2 p3 …) is equivalent to not(p1 and not(and p2 p3 …)).

from

Use this to specify a data source for a pattern. This enables the decision engine to reason over data
that is not in the working memory. The data source can be a sub-field on a bound variable or the
result of a method call. The expression used to define the object source is any expression that
follows regular MVEL syntax. Therefore, the from element enables you to easily use object property
navigation, execute method calls, and access maps and collection elements.

Example rule with from and pattern binding

rule "Validate zipcode"
 when
 Person($personAddress : address)
 Address(zipcode == "23920W") from $personAddress

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

239

 then
 // Zip code is okay.
end

Example rule with from and a graph notation

rule "Validate zipcode"
 when
 $p : Person()
 $a : Address(zipcode == "23920W") from $p.address
 then
 // Zip code is okay.
end

Example rule with from to iterate over all objects

rule "Apply 10% discount to all items over US$ 100 in an order"
 when
 $order : Order()
 $item : OrderItem(value > 100) from $order.items
 then
 // Apply discount to `$item`.
end

NOTE

For large collections of objects, instead of adding an object with a large graph that the
decision engine must iterate over frequently, add the collection directly to the KIE
session and then join the collection in the condition, as shown in the following
example:

when
 $order : Order()
 OrderItem(value > 100, order == $order)

Example rule with from and lock-on-active rule attribute

rule "Assign people in North Carolina (NC) to sales region 1"
 ruleflow-group "test"
 lock-on-active true
 when
 $p : Person()
 $a : Address(state == "NC") from $p.address
 then
 modify ($p) {} // Assign the person to sales region 1.
end

rule "Apply a discount to people in the city of Raleigh"
 ruleflow-group "test"
 lock-on-active true
 when
 $p : Person()
 $a : Address(city == "Raleigh") from $p.address

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

240

 then
 modify ($p) {} // Apply discount to the person.
end

IMPORTANT

Using from with lock-on-active rule attribute can result in rules not being executed.
You can address this issue in one of the following ways:

Avoid using the from element when you can insert all facts into the working
memory of the decision engine or use nested object references in your
constraint expressions.

Place the variable used in the modify() block as the last sentence in your rule
condition.

Avoid using the lock-on-active rule attribute when you can explicitly manage
how rules within the same ruleflow group place activations on one another.

The pattern that contains a from clause cannot be followed by another pattern starting with a
parenthesis. The reason for this restriction is that the DRL parser reads the from expression as
"from $l (String() or Number())" and it cannot differentiate this expression from a function call. The
simplest workaround to this is to wrap the from clause in parentheses, as shown in the following
example:

Example rules with from used incorrectly and correctly

// Do not use `from` in this way:
rule R
 when
 $l : List()
 String() from $l
 (String() or Number())
 then
 // Actions
end

// Use `from` in this way instead:
rule R
 when
 $l : List()
 (String() from $l)
 (String() or Number())
 then
 // Actions
end

entry-point

Use this to define an entry point, or event stream, corresponding to a data source for the pattern.
This element is typically used with the from condition element. You can declare an entry point for
events so that the decision engine uses data from only that entry point to evaluate the rules. You can
declare an entry point either implicitly by referencing it in DRL rules or explicitly in your Java
application.

Example rule with from entry-point

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

241

Example rule with from entry-point

rule "Authorize withdrawal"
 when
 WithdrawRequest($ai : accountId, $am : amount) from entry-point "ATM Stream"
 CheckingAccount(accountId == $ai, balance > $am)
 then
 // Authorize withdrawal.
end

Example Java application code with EntryPoint object and inserted facts

collect

Use this to define a collection of objects that the rule can use as part of the condition. The rule
obtains the collection either from a specified source or from the working memory of the decision
engine. The result pattern of the collect element can be any concrete class that implements the
java.util.Collection interface and provides a default no-arg public constructor. You can use Java
collections like List, LinkedList, and HashSet, or your own class. If variables are bound before the
collect element in a condition, you can use the variables to constrain both your source and result
patterns. However, any binding made inside the collect element is not available for use outside of it.

Example rule with collect

import java.util.List

rule "Raise priority when system has more than three pending alarms"
 when
 $system : System()
 $alarms : List(size >= 3)
 from collect(Alarm(system == $system, status == 'pending'))
 then
 // Raise priority because `$system` has three or more `$alarms` pending.
end

In this example, the rule assesses all pending alarms in the working memory of the decision engine for
each given system and groups them in a List. If three or more alarms are found for a given system,
the rule is executed.

You can also use the collect element with nested from elements, as shown in the following example:

Example rule with collect and nested from

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.rule.EntryPoint;

// Create your KIE base and KIE session as usual:
KieSession session = ...

// Create a reference to the entry point:
EntryPoint atmStream = session.getEntryPoint("ATM Stream");

// Start inserting your facts into the entry point:
atmStream.insert(aWithdrawRequest);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

242

import java.util.LinkedList;

rule "Send a message to all parents"
 when
 $town : Town(name == 'Paris')
 $mothers : LinkedList()
 from collect(Person(children > 0)
 from $town.getPeople()
)
 then
 // Send a message to all parents.
end

accumulate

Use this to iterate over a collection of objects, execute custom actions for each of the elements, and
return one or more result objects (if the constraints evaluate to true). This element is a more flexible
and powerful form of the collect condition element. You can use predefined functions in your
accumulate conditions or implement custom functions as needed. You can also use the abbreviation
acc for accumulate in rule conditions.
Use the following format to define accumulate conditions in rules:

Preferred format for accumulate

accumulate(<source pattern>; <functions> [;<constraints>])

NOTE

Although the decision engine supports alternate formats for the accumulate element
for backward compatibility, this format is preferred for optimal performance in rules
and applications.

The decision engine supports the following predefined accumulate functions. These functions
accept any expression as input.

average

min

max

count

sum

collectList

collectSet

In the following example rule, min, max, and average are accumulate functions that calculate the
minimum, maximum, and average temperature values over all the readings for each sensor:

Example rule with accumulate to calculate temperature values

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

243

rule "Raise alarm"
 when
 $s : Sensor()
 accumulate(Reading(sensor == $s, $temp : temperature);
 $min : min($temp),
 $max : max($temp),
 $avg : average($temp);
 $min < 20, $avg > 70)
 then
 // Raise the alarm.
end

The following example rule uses the average function with accumulate to calculate the average
profit for all items in an order:

Example rule with accumulate to calculate average profit

rule "Average profit"
 when
 $order : Order()
 accumulate(OrderItem(order == $order, $cost : cost, $price : price);
 $avgProfit : average(1 - $cost / $price))
 then
 // Average profit for `$order` is `$avgProfit`.
end

To use custom, domain-specific functions in accumulate conditions, create a Java class that
implements the org.kie.api.runtime.rule.AccumulateFunction interface. For example, the following
Java class defines a custom implementation of an AverageData function:

Example Java class with custom implementation of average function

// An implementation of an accumulator capable of calculating average values

public class AverageAccumulateFunction implements
org.kie.api.runtime.rule.AccumulateFunction<AverageAccumulateFunction.AverageData> {

 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {

 }

 public void writeExternal(ObjectOutput out) throws IOException {

 }

 public static class AverageData implements Externalizable {
 public int count = 0;
 public double total = 0;

 public AverageData() {}

 public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
 count = in.readInt();
 total = in.readDouble();
 }

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

244

 public void writeExternal(ObjectOutput out) throws IOException {
 out.writeInt(count);
 out.writeDouble(total);
 }

 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#createContext()
 */
 public AverageData createContext() {
 return new AverageData();
 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#init(java.io.Serializable)
 */
 public void init(AverageData context) {
 context.count = 0;
 context.total = 0;
 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#accumulate(java.io.Serializable,
java.lang.Object)
 */
 public void accumulate(AverageData context,
 Object value) {
 context.count++;
 context.total += ((Number) value).doubleValue();
 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#reverse(java.io.Serializable,
java.lang.Object)
 */
 public void reverse(AverageData context, Object value) {
 context.count--;
 context.total -= ((Number) value).doubleValue();
 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#getResult(java.io.Serializable)
 */
 public Object getResult(AverageData context) {
 return new Double(context.count == 0 ? 0 : context.total / context.count);
 }

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#supportsReverse()
 */
 public boolean supportsReverse() {
 return true;
 }

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

245

To use the custom function in a DRL rule, import the function using the import accumulate
statement:

Format to import a custom function

import accumulate <class_name> <function_name>

Example rule with the imported average function

import accumulate AverageAccumulateFunction.AverageData average

rule "Average profit"
 when
 $order : Order()
 accumulate(OrderItem(order == $order, $cost : cost, $price : price);
 $avgProfit : average(1 - $cost / $price))
 then
 // Average profit for `$order` is `$avgProfit`.
end

16.8.8. OOPath syntax with graphs of objects in DRL rule conditions

OOPath is an object-oriented syntax extension of XPath that is designed for browsing graphs of objects
in DRL rule condition constraints. OOPath uses the compact notation from XPath for navigating
through related elements while handling collections and filtering constraints, and is specifically useful for
graphs of objects.

When the field of a fact is a collection, you can use the from condition element (keyword) to bind and
reason over all the items in that collection one by one. If you need to browse a graph of objects in the
rule condition constraints, the extensive use of the from condition element results in a verbose and
repetitive syntax, as shown in the following example:

Example rule that browses a graph of objects with from

rule "Find all grades for Big Data exam"
 when
 $student: Student($plan: plan)
 $exam: Exam(course == "Big Data") from $plan.exams
 $grade: Grade() from $exam.grades
 then
 // Actions
end

In this example, the domain model contains a Student object with a Plan of study. The Plan can have

 /* (non-Javadoc)
 * @see org.kie.api.runtime.rule.AccumulateFunction#getResultType()
 */
 public Class< ? > getResultType() {
 return Number.class;
 }

}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

246

zero or more Exam instances and an Exam can have zero or more Grade instances. Only the root object
of the graph, the Student in this case, needs to be in the working memory of the decision engine for this
rule setup to function.

As a more efficient alternative to using extensive from statements, you can use the abbreviated
OOPath syntax, as shown in the following example:

Example rule that browses a graph of objects with OOPath syntax

rule "Find all grades for Big Data exam"
 when
 Student($grade: /plan/exams[course == "Big Data"]/grades)
 then
 // Actions
end

Formally, the core grammar of an OOPath expression is defined in extended Backus-Naur form (EBNF)
notation in the following way:

EBNF notation for OOPath expressions

OOPExpr = [ID (":" | ":=")] ("/" | "?/") OOPSegment { ("/" | "?/" | ".") OOPSegment } ;
OOPSegment = ID ["#" ID] ["[" (Number | Constraints) "]"]

In practice, an OOPath expression has the following features and capabilities:

Starts with a forward slash / or with a question mark and forward slash ?/ if it is a non-reactive
OOPath expression (described later in this section).

Can dereference a single property of an object with the period . operator.

Can dereference multiple properties of an object with the forward slash / operator. If a
collection is returned, the expression iterates over the values in the collection.

Can filter out traversed objects that do not satisfy one or more constraints. The constraints are
written as predicate expressions between square brackets, as shown in the following example:

Constraints as a predicate expression

Student($grade: /plan/exams[course == "Big Data"]/grades)

Can downcast a traversed object to a subclass of the class declared in the generic collection.
Subsequent constraints can also safely access the properties declared only in that subclass, as
shown in the following example. Objects that are not instances of the class specified in this inline
cast are automatically filtered out.

Constraints with downcast objects

Student($grade: /plan/exams#AdvancedExam[course == "Big Data", level > 3]/grades)

Can backreference an object of the graph that was traversed before the currently iterated
graph. For example, the following OOPath expression matches only the grades that are above
the average for the passed exam:

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

247

Constraints with backreferenced object

Student($grade: /plan/exams/grades[result > ../averageResult])

Can recursively be another OOPath expression, as shown in the following example:

Recursive constraint expression

Student($exam: /plan/exams[/grades[result > 20]])

Can access objects by their index between square brackets [], as shown in the following
example. To adhere to Java convention, OOPath indexes are 0-based, while XPath indexes are
1-based.

Constraints with access to objects by index

Student($grade: /plan/exams[0]/grades)

OOPath expressions can be reactive or non-reactive. The decision engine does not react to updates
involving a deeply nested object that is traversed during the evaluation of an OOPath expression.

To make these objects reactive to changes, modify the objects to extend the class
org.drools.core.phreak.ReactiveObject. After you modify an object to extend the ReactiveObject
class, the domain object invokes the inherited method notifyModification to notify the decision engine
when one of the fields has been updated, as shown in the following example:

Example object method to notify the decision engine that an exam has been moved to a
different course

With the following corresponding OOPath expression, when an exam is moved to a different course, the
rule is re-executed and the list of grades matching the rule is recomputed:

Example OOPath expression from "Big Data" rule

Student($grade: /plan/exams[course == "Big Data"]/grades)

You can also use the ?/ separator instead of the / separator to disable reactivity in only one sub-portion
of an OOPath expression, as shown in the following example:

Example OOPath expression that is partially non-reactive

Student($grade: /plan/exams[course == "Big Data"]?/grades)

With this example, the decision engine reacts to a change made to an exam or if an exam is added to the
plan, but not if a new grade is added to an existing exam.

If an OOPath portion is non-reactive, all remaining portions of the OOPath expression also become non-
reactive. For example, the following OOPath expression is completely non-reactive:

public void setCourse(String course) {
 this.course = course;
 notifyModification(this);
 }

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

248

1

2

3

Example OOPath expression that is completely non-reactive

Student($grade: ?/plan/exams[course == "Big Data"]/grades)

For this reason, you cannot use the ?/ separator more than once in the same OOPath expression. For
example, the following expression causes a compilation error:

Example OOPath expression with duplicate non-reactivity markers

Student($grade: /plan?/exams[course == "Big Data"]?/grades)

Another alternative for enabling OOPath expression reactivity is to use the dedicated implementations
for List and Set interfaces in Red Hat Decision Manager. These implementations are the ReactiveList
and ReactiveSet classes. A ReactiveCollection class is also available. The implementations also provide
reactive support for performing mutable operations through the Iterator and ListIterator classes.

The following example class uses these classes to configure OOPath expression reactivity:

Example Java class to configure OOPath expression reactivity

Uses the ReactiveList instance for reactive support over the standard Java List instance.

Uses the required notifyModification() method for when a field is changed in reactive support.

The children field is a ReactiveList instance, so the notifyModification() method call is not
required. The notification is handled automatically, like all other mutating operations performed
over the children field.

16.9. RULE ACTIONS IN DRL (THEN)

The then part of the rule (also known as the Right Hand Side (RHS) of the rule) contains the actions to
be performed when the conditional part of the rule has been met. Actions consist of one or more
methods that execute consequences based on the rule conditions and on available data objects in the
package. For example, if a bank requires loan applicants to be over 21 years of age (with a rule condition
Applicant(age < 21)) and a loan applicant is under 21 years old, the then action of an "Underage" rule
would be setApproved(false), declining the loan because the applicant is under age.

The main purpose of rule actions is to insert, delete, or modify data in the working memory of the

public class School extends AbstractReactiveObject {
 private String name;
 private final List<Child> children = new ReactiveList<Child>(); 1

 public void setName(String name) {
 this.name = name;
 notifyModification(); 2
 }

 public void addChild(Child child) {
 children.add(child); 3
 // No need to call `notifyModification()` here
 }
 }

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

249

The main purpose of rule actions is to insert, delete, or modify data in the working memory of the
decision engine. Effective rule actions are small, declarative, and readable. If you need to use imperative
or conditional code in rule actions, then divide the rule into multiple smaller and more declarative rules.

Example rule for loan application age limit

rule "Underage"
 when
 application : LoanApplication()
 Applicant(age < 21)
 then
 application.setApproved(false);
 application.setExplanation("Underage");
end

16.9.1. Supported rule action methods in DRL

DRL supports the following rule action methods that you can use in DRL rule actions. You can use these
methods to modify the working memory of the decision engine without having to first reference a
working memory instance. These methods act as shortcuts to the methods provided by the
KnowledgeHelper class in your Red Hat Decision Manager distribution.

For all rule action methods, download the Red Hat Decision Manager 7.11.0 Source Distribution ZIP file
from the Red Hat Customer Portal and navigate to ~/rhdm-7.11.0-sources/src/drools-
$VERSION/drools-core/src/main/java/org/drools/core/spi/KnowledgeHelper.java.

set

Use this to set the value of a field.

set<field> (<value>)

Example rule action to set the values of a loan application approval

$application.setApproved (false);
$application.setExplanation("has been bankrupt");

modify

Use this to specify fields to be modified for a fact and to notify the decision engine of the change.
This method provides a structured approach to fact updates. It combines the update operation with
setter calls to change object fields.

modify (<fact-expression>) {
 <expression>,
 <expression>,
 ...
}

Example rule action to modify a loan application amount and approval

modify(LoanApplication) {
 setAmount(100),
 setApproved (true)
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

250

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

update

Use this to specify fields and the entire related fact to be updated and to notify the decision engine
of the change. After a fact has changed, you must call update before changing another fact that
might be affected by the updated values. To avoid this added step, use the modify method instead.

update (<object, <handle>) // Informs the decision engine that an object has changed

update (<object>) // Causes `KieSession` to search for a fact handle of the object

Example rule action to update a loan application amount and approval

LoanApplication.setAmount(100);
update(LoanApplication);

NOTE

If you provide property-change listeners, you do not need to call this method when an
object changes. For more information about property-change listeners, see Decision
engine in Red Hat Decision Manager.

insert

Use this to insert a new fact into the working memory of the decision engine and to define resulting
fields and values as needed for the fact.

insert(new <object>);

Example rule action to insert a new loan applicant object

insert(new Applicant());

insertLogical

Use this to insert a new fact logically into the decision engine. The decision engine is responsible for
logical decisions on insertions and retractions of facts. After regular or stated insertions, facts must
be retracted explicitly. After logical insertions, the facts that were inserted are automatically
retracted when the conditions in the rules that inserted the facts are no longer true.

insertLogical(new <object>);

Example rule action to logically insert a new loan applicant object

insertLogical(new Applicant());

delete

Use this to remove an object from the decision engine. The keyword retract is also supported in DRL
and executes the same action, but delete is typically preferred in DRL code for consistency with the
keyword insert.

delete(<object>);

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

251

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#property-change-listeners-con_decision-engine

Example rule action to delete a loan applicant object

delete(Applicant);

16.9.2. Other rule action methods from drools and kcontext variables

In addition to the standard rule action methods, the decision engine supports methods in conjunction
with the predefined drools and kcontext variables that you can also use in rule actions.

You can use the drools variable to call methods from the KnowledgeHelper class in your Red Hat
Decision Manager distribution, which is also the class that the standard rule action methods are based
on. For all drools rule action options, download the Red Hat Decision Manager 7.11.0 Source
Distribution ZIP file from the Red Hat Customer Portal and navigate to ~/rhdm-7.11.0-
sources/src/drools-$VERSION/drools-
core/src/main/java/org/drools/core/spi/KnowledgeHelper.java.

The following examples are common methods that you can use with the drools variable:

drools.halt(): Terminates rule execution if a user or application has previously called
fireUntilHalt(). When a user or application calls fireUntilHalt(), the decision engine starts in
active mode and evaluates rules continually until the user or application explicitly calls halt().
Otherwise, by default, the decision engine runs in passive mode and evaluates rules only when a
user or an application explicitly calls fireAllRules().

drools.getWorkingMemory(): Returns the WorkingMemory object.

drools.setFocus("<agenda_group>"): Sets the focus to a specified agenda group to which
the rule belongs.

drools.getRule().getName(): Returns the name of the rule.

drools.getTuple(), drools.getActivation(): Returns the Tuple that matches the currently
executing rule and then delivers the corresponding Activation. These calls are useful for logging
and debugging purposes.

You can use the kcontext variable with the getKieRuntime() method to call other methods from the
KieContext class and, by extension, the RuleContext class in your Red Hat Decision Manager
distribution. The full Knowledge Runtime API is exposed through the kcontext variable and provides
extensive rule action methods. For all kcontext rule action options, download the Red Hat Decision
Manager 7.11.0 Source Distribution ZIP file from the Red Hat Customer Portal and navigate to
~/rhdm-7.11.0-sources/src/kie-api-parent-$VERSION/kie-
api/src/main/java/org/kie/api/runtime/rule/RuleContext.java.

The following examples are common methods that you can use with the kcontext.getKieRuntime()
variable-method combination:

kcontext.getKieRuntime().halt(): Terminates rule execution if a user or application has
previously called fireUntilHalt(). This method is equivalent to the drools.halt() method. When a
user or application calls fireUntilHalt(), the decision engine starts in active mode and evaluates
rules continually until the user or application explicitly calls halt(). Otherwise, by default, the
decision engine runs in passive mode and evaluates rules only when a user or an application
explicitly calls fireAllRules().

kcontext.getKieRuntime().getAgenda(): Returns a reference to the KIE session Agenda, and in
turn provides access to rule activation groups, rule agenda groups, and ruleflow groups.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

252

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Example call to access agenda group "CleanUp" and set the focus

This example is equivalent to drools.setFocus("CleanUp").

kcontext.getKieRuntime().getQueryResults(<string> query): Runs a query and returns the
results. This method is equivalent to drools.getKieRuntime().getQueryResults().

kcontext.getKieRuntime().getKieBase(): Returns the KieBase object. The KIE base is the
source of all the knowledge in your rule system and the originator of the current KIE session.

kcontext.getKieRuntime().setGlobal(), ~.getGlobal(), ~.getGlobals(): Sets or retrieves global
variables.

kcontext.getKieRuntime().getEnvironment(): Returns the runtime Environment, similar to
your operating system environment.

16.9.3. Advanced rule actions with conditional and named consequences

In general, effective rule actions are small, declarative, and readable. However, in some cases, the
limitation of having a single consequence for each rule can be challenging and lead to verbose and
repetitive rule syntax, as shown in the following example rules:

Example rules with verbose and repetitive syntax

rule "Give 10% discount to customers older than 60"
 when
 $customer : Customer(age > 60)
 then
 modify($customer) { setDiscount(0.1) };
end

rule "Give free parking to customers older than 60"
 when
 $customer : Customer(age > 60)
 $car : Car(owner == $customer)
 then
 modify($car) { setFreeParking(true) };
end

A partial solution to the repetition is to make the second rule extend the first rule, as shown in the
following modified example:

Partially enhanced example rules with an extended condition

rule "Give 10% discount to customers older than 60"
 when
 $customer : Customer(age > 60)
 then
 modify($customer) { setDiscount(0.1) };
end

rule "Give free parking to customers older than 60"
 extends "Give 10% discount to customers older than 60"

kcontext.getKieRuntime().getAgenda().getAgendaGroup("CleanUp").setFocus();

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

253

 when
 $car : Car(owner == $customer)
 then
 modify($car) { setFreeParking(true) };
end

As a more efficient alternative, you can consolidate the two rules into a single rule with modified
conditions and labelled corresponding rule actions, as shown in the following consolidated example:

Consolidated example rule with conditional and named consequences

rule "Give 10% discount and free parking to customers older than 60"
 when
 $customer : Customer(age > 60)
 do[giveDiscount]
 $car : Car(owner == $customer)
 then
 modify($car) { setFreeParking(true) };
 then[giveDiscount]
 modify($customer) { setDiscount(0.1) };
end

This example rule uses two actions: the usual default action and another action named giveDiscount.
The giveDiscount action is activated in the condition with the keyword do when a customer older than
60 years old is found in the KIE base, regardless of whether or not the customer owns a car.

You can configure the activation of a named consequence with an additional condition, such as the if
statement in the following example. The condition in the if statement is always evaluated on the pattern
that immediately precedes it.

Consolidated example rule with an additional condition

rule "Give free parking to customers older than 60 and 10% discount to golden ones among them"
 when
 $customer : Customer(age > 60)
 if (type == "Golden") do[giveDiscount]
 $car : Car(owner == $customer)
 then
 modify($car) { setFreeParking(true) };
 then[giveDiscount]
 modify($customer) { setDiscount(0.1) };
end

You can also evaluate different rule conditions using a nested if and else if construct, as shown in the
following more complex example:

Consolidated example rule with more complex conditions

rule "Give free parking and 10% discount to over 60 Golden customer and 5% to Silver ones"
 when
 $customer : Customer(age > 60)
 if (type == "Golden") do[giveDiscount10]
 else if (type == "Silver") break[giveDiscount5]
 $car : Car(owner == $customer)
 then

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

254

 modify($car) { setFreeParking(true) };
 then[giveDiscount10]
 modify($customer) { setDiscount(0.1) };
 then[giveDiscount5]
 modify($customer) { setDiscount(0.05) };
end

This example rule gives a 10% discount and free parking to Golden customers over 60, but only a 5%
discount without free parking to Silver customers. The rule activates the consequence named
giveDiscount5 with the keyword break instead of do. The keyword do schedules a consequence in the
decision engine agenda, enabling the remaining part of the rule conditions to continue being evaluated,
while break blocks any further condition evaluation. If a named consequence does not correspond to
any condition with do but is activated with break, the rule fails to compile because the conditional part
of the rule is never reached.

16.10. COMMENTS IN DRL FILES

DRL supports single-line comments prefixed with a double forward slash // and multi-line comments
enclosed with a forward slash and asterisk /* … */. You can use DRL comments to annotate rules or any
related components in DRL files. DRL comments are ignored by the decision engine when the DRL file is
processed.

Example rule with comments

rule "Underage"
 // This is a single-line comment.
 when
 $application : LoanApplication() // This is an in-line comment.
 Applicant(age < 21)
 then
 /* This is a multi-line comment
 in the rule actions. */
 $application.setApproved(false);
 $application.setExplanation("Underage");
end

IMPORTANT

The hash symbol # is not supported for DRL comments.

16.11. ERROR MESSAGES FOR DRL TROUBLESHOOTING

Red Hat Decision Manager provides standardized messages for DRL errors to help you troubleshoot
and resolve problems in your DRL files. The error messages use the following format:

Figure 16.1. Error message format for DRL file problems

1st Block: Error code

2nd Block: Line and column in the DRL source where the error occurred

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

255

3rd Block: Description of the problem

4th Block: Component in the DRL source (rule, function, query) where the error occurred

5th Block: Pattern in the DRL source where the error occurred (if applicable)

Red Hat Decision Manager supports the following standardized error messages:

101: no viable alternative

Indicates that the parser reached a decision point but could not identify an alternative.

Example rule with incorrect spelling

1: rule "simple rule"
2: when
3: exists Person()
4: exits Student() // Must be `exists`
5: then
6: end

Error message

[ERR 101] Line 4:4 no viable alternative at input 'exits' in rule "simple rule"

Example rule without a rule name

1: package org.drools.examples;
2: rule // Must be `rule "rule name"` (or `rule rule_name` if no spacing)
3: when
4: Object()
5: then
6: System.out.println("A RHS");
7: end

Error message

[ERR 101] Line 3:2 no viable alternative at input 'when'

In this example, the parser encountered the keyword when but expected the rule name, so it flags
when as the incorrect expected token.

Example rule with incorrect syntax

1: rule "simple rule"
2: when
3: Student(name == "Andy) // Must be `"Andy"`
4: then
5: end

Error message

[ERR 101] Line 0:-1 no viable alternative at input '<eof>' in rule "simple rule" in pattern Student

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

256

NOTE

A line and column value of 0:-1 means the parser reached the end of the source file
(<eof>) but encountered incomplete constructs, usually due to missing quotation
marks "… ", apostrophes '… ', or parentheses (…).

102: mismatched input

Indicates that the parser expected a particular symbol that is missing at the current input position.

Example rule with an incomplete rule statement

1: rule simple_rule
2: when
3: $p : Person(
 // Must be a complete rule statement

Error message

[ERR 102] Line 0:-1 mismatched input '<eof>' expecting ')' in rule "simple rule" in pattern Person

NOTE

A line and column value of 0:-1 means the parser reached the end of the source file
(<eof>) but encountered incomplete constructs, usually due to missing quotation
marks "… ", apostrophes '… ', or parentheses (…).

Example rule with incorrect syntax

1: package org.drools.examples;
2:
3: rule "Wrong syntax"
4: when
5: not(Car((type == "tesla", price == 10000) || (type == "kia", price == 1000)) from $carList)
 // Must use `&&` operators instead of commas `,`
6: then
7: System.out.println("OK");
8: end

Error messages

[ERR 102] Line 5:36 mismatched input ',' expecting ')' in rule "Wrong syntax" in pattern Car
[ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Wrong syntax"
[ERR 102] Line 5:106 mismatched input ')' expecting 'then' in rule "Wrong syntax"

In this example, the syntactic problem results in multiple error messages related to each other. The
single solution of replacing the commas , with && operators resolves all errors. If you encounter
multiple errors, resolve one at a time in case errors are consequences of previous errors.

103: failed predicate

Indicates that a validating semantic predicate evaluated to false. These semantic predicates are

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

257

Indicates that a validating semantic predicate evaluated to false. These semantic predicates are
typically used to identify component keywords in DRL files, such as declare, rule, exists, not, and
others.

Example rule with an invalid keyword

 1: package nesting;
 2:
 3: import org.drools.compiler.Person
 4: import org.drools.compiler.Address
 5:
 6: Some text // Must be a valid DRL keyword
 7:
 8: rule "test something"
 9: when
10: $p: Person(name=="Michael")
11: then
12: $p.name = "other";
13: System.out.println(p.name);
14: end

Error message

[ERR 103] Line 6:0 rule 'rule_key' failed predicate:
{(validateIdentifierKey(DroolsSoftKeywords.RULE))}? in rule

The Some text line is invalid because it does not begin with or is not a part of a DRL keyword
construct, so the parser fails to validate the rest of the DRL file.

NOTE

This error is similar to 102: mismatched input, but usually involves DRL keywords.

104: trailing semi-colon not allowed

Indicates that an eval() clause in a rule condition uses a semicolon ; but must not use one.

Example rule with eval() and trailing semicolon

1: rule "simple rule"
2: when
3: eval(abc();) // Must not use semicolon `;`
4: then
5: end

Error message

[ERR 104] Line 3:4 trailing semi-colon not allowed in rule "simple rule"

105: did not match anything

Indicates that the parser reached a sub-rule in the grammar that must match an alternative at least
once, but the sub-rule did not match anything. The parser has entered a branch with no way out.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

258

Example rule with invalid text in an empty condition

1: rule "empty condition"
2: when
3: None // Must remove `None` if condition is empty
4: then
5: insert(new Person());
6: end

Error message

[ERR 105] Line 2:2 required (...)+ loop did not match anything at input 'WHEN' in rule "empty
condition"

In this example, the condition is intended to be empty but the word None is used. This error is
resolved by removing None, which is not a valid DRL keyword, data type, or pattern construct.

NOTE

If you encounter other DRL error messages that you cannot resolve, contact your Red
Hat Technical Account Manager.

16.12. RULE UNITS IN DRL RULE SETS

Rule units are groups of data sources, global variables, and DRL rules that function together for a
specific purpose. You can use rule units to partition a rule set into smaller units, bind different data
sources to those units, and then execute the individual unit. Rule units are an enhanced alternative to
rule-grouping DRL attributes such as rule agenda groups or activation groups for execution control.

Rule units are helpful when you want to coordinate rule execution so that the complete execution of one
rule unit triggers the start of another rule unit and so on. For example, assume that you have a set of
rules for data enrichment, another set of rules that processes that data, and another set of rules that
extract the output from the processed data. If you add these rule sets into three distinct rule units, you
can coordinate those rule units so that complete execution of the first unit triggers the start of the
second unit and the complete execution of the second unit triggers the start of third unit.

To define a rule unit, implement the RuleUnit interface as shown in the following example:

Example rule unit class

package org.mypackage.myunit;

public static class AdultUnit implements RuleUnit {
 private int adultAge;
 private DataSource<Person> persons;

 public AdultUnit() { }

 public AdultUnit(DataSource<Person> persons, int age) {
 this.persons = persons;
 this.age = age;
 }

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

259

In this example, persons is a source of facts of type Person. A rule unit data source is a source of the
data processed by a given rule unit and represents the entry point that the decision engine uses to
evaluate the rule unit. The adultAge global variable is accessible from all the rules belonging to this rule
unit. The last two methods are part of the rule unit life cycle and are invoked by the decision engine.

The decision engine supports the following optional life-cycle methods for rule units:

Table 16.3. Rule unit life-cycle methods

Method Invoked when

onStart() Rule unit execution starts

onEnd() Rule unit execution ends

onSuspend() Rule unit execution is suspended (used only with
runUntilHalt())

onResume() Rule unit execution is resumed (used only with
runUntilHalt())

onYield(RuleUnit other) The consequence of a rule in the rule unit triggers the
execution of a different rule unit

You can add one or more rules to a rule unit. By default, all the rules in a DRL file are automatically
associated with a rule unit that follows the naming convention of the DRL file name. If the DRL file is in
the same package and has the same name as a class that implements the RuleUnit interface, then all of
the rules in that DRL file implicitly belong to that rule unit. For example, all the rules in the AdultUnit.drl
file in the org.mypackage.myunit package are automatically part of the rule unit
org.mypackage.myunit.AdultUnit.

 // A data source of `Persons` in this rule unit:
 public DataSource<Person> getPersons() {
 return persons;
 }

 // A global variable in this rule unit:
 public int getAdultAge() {
 return adultAge;
 }

 // Life-cycle methods:
 @Override
 public void onStart() {
 System.out.println("AdultUnit started.");
 }

 @Override
 public void onEnd() {
 System.out.println("AdultUnit ended.");
 }
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

260

To override this naming convention and explicitly declare the rule unit that the rules in a DRL file belong
to, use the unit keyword in the DRL file. The unit declaration must immediately follow the package
declaration and contain the name of the class in that package that the rules in the DRL file are part of.

Example rule unit declaration in a DRL file

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 $p : Person(age >= adultAge) from persons
 then
 System.out.println($p.getName() + " is adult and greater than " + adultAge);
end

WARNING

Do not mix rules with and without a rule unit in the same KIE base. Mixing two rule
paradigms in a KIE base results in a compilation error.

You can also rewrite the same pattern in a more convenient way using OOPath notation, as shown in the
following example:

Example rule unit declaration in a DRL file that uses OOPath notation

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 $p : /persons[age >= adultAge]
 then
 System.out.println($p.getName() + " is adult and greater than " + adultAge);
end

NOTE

OOPath is an object-oriented syntax extension of XPath that is designed for browsing
graphs of objects in DRL rule condition constraints. OOPath uses the compact notation
from XPath for navigating through related elements while handling collections and
filtering constraints, and is specifically useful for graphs of objects.

In this example, any matching facts in the rule conditions are retrieved from the persons data source
defined in the DataSource definition in the rule unit class. The rule condition and action use the
adultAge variable in the same way that a global variable is defined at the DRL file level.

To execute one or more rule units defined in a KIE base, create a new RuleUnitExecutor class bound to
the KIE base, create the rule unit from the relevant data source, and run the rule unit executer:

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

261

Example rule unit execution

Rules are executed by the RuleUnitExecutor class. The RuleUnitExecutor class creates KIE sessions
and adds the required DataSource objects to those sessions, and then executes the rules based on the
RuleUnit that is passed as a parameter to the run() method.

The example execution code produces the following output when the relevant Person facts are inserted
in the persons data source:

Example rule unit execution output

org.mypackage.myunit.AdultUnit started.
Jane is adult and greater than 18
John is adult and greater than 18
org.mypackage.myunit.AdultUnit ended.

Instead of explicitly creating the rule unit instance, you can register the rule unit variables in the executor
and pass to the executor the rule unit class that you want to run, and then the executor creates an
instance of the rule unit. You can then set the DataSource definition and other variables as needed
before running the rule unit.

Alternate rule unit execution option with registered variables

The name that you pass to the RuleUnitExecutor.bindVariable() method is used at run time to bind
the variable to the field of the rule unit class with the same name. In the previous example, the
RuleUnitExecutor inserts into the new rule unit the data source bound to the "persons" name and
inserts the value 18 bound to the String "adultAge" into the fields with the corresponding names inside
the AdultUnit class.

To override this default variable-binding behavior, use the @UnitVar annotation to explicitly define a
logical binding name for each field of the rule unit class. For example, the field bindings in the following
class are redefined with alternative names:

Example code to modify variable binding names with @UnitVar

// Create a `RuleUnitExecutor` class and bind it to the KIE base:
KieBase kbase = kieContainer.getKieBase();
RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

// Create the `AdultUnit` rule unit using the `persons` data source and run the executor:
RuleUnit adultUnit = new AdultUnit(persons, 18);
executor.run(adultUnit);

executor.bindVariable("persons", persons);
 .bindVariable("adultAge", 18);
executor.run(AdultUnit.class);

package org.mypackage.myunit;

public static class AdultUnit implements RuleUnit {
 @UnitVar("minAge")
 private int adultAge = 18;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

262

You can then bind the variables to the executor using those alternative names and run the rule unit:

Example rule unit execution with modified variable names

You can execute a rule unit in passive mode by using the run() method (equivalent to invoking
fireAllRules() on a KIE session) or in active mode using the runUntilHalt() method (equivalent to
invoking fireUntilHalt() on a KIE session). By default, the decision engine runs in passive mode and
evaluates rule units only when a user or an application explicitly calls run() (or fireAllRules() for standard
rules). If a user or application calls runUntilHalt() for rule units (or fireUntilHalt() for standard rules), the
decision engine starts in active mode and evaluates rule units continually until the user or application
explicitly calls halt().

If you use the runUntilHalt() method, invoke the method on a separate execution thread to avoid
blocking the main thread:

Example rule unit execution with runUntilHalt() on a separate thread

16.12.1. Data sources for rule units

A rule unit data source is a source of the data processed by a given rule unit and represents the entry
point that the decision engine uses to evaluate the rule unit. A rule unit can have zero or more data
sources and each DataSource definition declared inside a rule unit can correspond to a different entry
point into the rule unit executor. Multiple rule units can share a single data source, but each rule unit
must use different entry points through which the same objects are inserted.

You can create a DataSource definition with a fixed set of data in a rule unit class, as shown in the
following example:

Example data source definition

Because a data source represents the entry point of the rule unit, you can insert, update, or delete facts
in a rule unit:

Example code to insert, modify, and delete a fact in a rule unit

 @UnitVar("data")
 private DataSource<Person> persons;
}

executor.bindVariable("data", persons);
 .bindVariable("minAge", 18);
executor.run(AdultUnit.class);

new Thread(() -> executor.runUntilHalt(adultUnit)).start();

DataSource<Person> persons = DataSource.create(new Person("John", 42),
 new Person("Jane", 44),
 new Person("Sally", 4));

// Insert a fact:
Person john = new Person("John", 42);
FactHandle johnFh = persons.insert(john);

// Modify the fact and optionally specify modified properties (for property reactivity):

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

263

16.12.2. Rule unit execution control

Rule units are helpful when you want to coordinate rule execution so that the execution of one rule unit
triggers the start of another rule unit and so on.

To facilitate rule unit execution control, the decision engine supports the following rule unit methods
that you can use in DRL rule actions to coordinate the execution of rule units:

drools.run(): Triggers the execution of a specified rule unit class. This method imperatively
interrupts the execution of the rule unit and activates the other specified rule unit.

drools.guard(): Prevents (guards) a specified rule unit class from being executed until the
associated rule condition is met. This method declaratively schedules the execution of the other
specified rule unit. When the decision engine produces at least one match for the condition in
the guarding rule, the guarded rule unit is considered active. A rule unit can contain multiple
guarding rules.

As an example of the drools.run() method, consider the following DRL rules that each belong to a
specified rule unit. The NotAdult rule uses the drools.run(AdultUnit.class) method to trigger the
execution of the AdultUnit rule unit:

Example DRL rules with controlled execution using drools.run()

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 Person(age >= 18, $name : name) from persons
 then
 System.out.println($name + " is adult");
end

package org.mypackage.myunit
unit NotAdultUnit

rule NotAdult
 when
 $p : Person(age < 18, $name : name) from persons
 then
 System.out.println($name + " is NOT adult");
 modify($p) { setAge(18); }
 drools.run(AdultUnit.class);
end

The example also uses a RuleUnitExecutor class created from the KIE base that was built from these
rules and a DataSource definition of persons bound to it:

Example rule executor and data source definitions

john.setAge(43);
persons.update(johnFh, john, "age");

// Delete the fact:
persons.delete(johnFh);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

264

In this case, the example creates the DataSource definition directly from the RuleUnitExecutor class
and binds it to the "persons" variable in a single statement.

The example execution code produces the following output when the relevant Person facts are inserted
in the persons data source:

Example rule unit execution output

Sally is NOT adult
John is adult
Jane is adult
Sally is adult

The NotAdult rule detects a match when evaluating the person "Sally", who is under 18 years old. The
rule then modifies her age to 18 and uses the drools.run(AdultUnit.class) method to trigger the
execution of the AdultUnit rule unit. The AdultUnit rule unit contains a rule that can now be executed
for all of the 3 persons in the DataSource definition.

As an example of the drools.guard() method, consider the following BoxOffice class and
BoxOfficeUnit rule unit class:

Example BoxOffice class

Example BoxOfficeUnit rule unit class

RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
DataSource<Person> persons = executor.newDataSource("persons",
 new Person("John", 42),
 new Person("Jane", 44),
 new Person("Sally", 4));

public class BoxOffice {
 private boolean open;

 public BoxOffice(boolean open) {
 this.open = open;
 }

 public boolean isOpen() {
 return open;
 }

 public void setOpen(boolean open) {
 this.open = open;
 }
}

public class BoxOfficeUnit implements RuleUnit {
 private DataSource<BoxOffice> boxOffices;

 public DataSource<BoxOffice> getBoxOffices() {
 return boxOffices;
 }
}

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

265

The example also uses the following TicketIssuerUnit rule unit class to keep selling box office tickets for
the event as long as at least one box office is open. This rule unit uses DataSource definitions of
persons and tickets:

Example TicketIssuerUnit rule unit class

The BoxOfficeUnit rule unit contains a BoxOfficeIsOpen DRL rule that uses the drools.guard(
TicketIssuerUnit.class) method to guard the execution of the TicketIssuerUnit rule unit that
distributes the event tickets, as shown in the following DRL rule examples:

Example DRL rules with controlled execution using drools.guard()

package org.mypackage.myunit;
unit TicketIssuerUnit;

rule IssueAdultTicket when
 $p: /persons[age >= 18]
then
 tickets.insert(new AdultTicket($p));
end
rule RegisterAdultTicket when
 $t: /tickets
then
 results.add($t.getPerson().getName());
end

package org.mypackage.myunit;
unit BoxOfficeUnit;

public class TicketIssuerUnit implements RuleUnit {
 private DataSource<Person> persons;
 private DataSource<AdultTicket> tickets;

 private List<String> results;

 public TicketIssuerUnit() { }

 public TicketIssuerUnit(DataSource<Person> persons, DataSource<AdultTicket> tickets) {
 this.persons = persons;
 this.tickets = tickets;
 }

 public DataSource<Person> getPersons() {
 return persons;
 }

 public DataSource<AdultTicket> getTickets() {
 return tickets;
 }

 public List<String> getResults() {
 return results;
 }
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

266

rule BoxOfficeIsOpen
 when
 $box: /boxOffices[open]
 then
 drools.guard(TicketIssuerUnit.class);
end

In this example, so long as at least one box office is open, the guarded TicketIssuerUnit rule unit is
active and distributes event tickets. When no more box offices are in open state, the guarded
TicketIssuerUnit rule unit is prevented from being executed.

The following example class illustrates a more complete box office scenario:

Example class for the box office scenario

DataSource<Person> persons = executor.newDataSource("persons");
DataSource<BoxOffice> boxOffices = executor.newDataSource("boxOffices");
DataSource<AdultTicket> tickets = executor.newDataSource("tickets");

List<String> list = new ArrayList<>();
executor.bindVariable("results", list);

// Two box offices are open:
BoxOffice office1 = new BoxOffice(true);
FactHandle officeFH1 = boxOffices.insert(office1);
BoxOffice office2 = new BoxOffice(true);
FactHandle officeFH2 = boxOffices.insert(office2);

persons.insert(new Person("John", 40));

// Execute `BoxOfficeIsOpen` rule, run `TicketIssuerUnit` rule unit, and execute `RegisterAdultTicket`
rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("John", list.get(0));
list.clear();

persons.insert(new Person("Matteo", 30));

// Execute `RegisterAdultTicket` rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Matteo", list.get(0));
list.clear();

// One box office is closed, the other is open:
office1.setOpen(false);
boxOffices.update(officeFH1, office1);
persons.insert(new Person("Mark", 35));
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Mark", list.get(0));

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

267

16.12.3. Rule unit identity conflicts

In rule unit execution scenarios with guarded rule units, a rule can guard multiple rule units and at the
same time a rule unit can be guarded and then activated by multiple rules. For these two-way guarding
scenarios, rule units must have a clearly defined identity to avoid identity conflicts.

By default, the identity of a rule unit is the rule unit class name and is treated as a singleton class by the
RuleUnitExecutor. This identification behavior is encoded in the getUnitIdentity() default method of
the RuleUnit interface:

Default identity method in the RuleUnit interface

In some cases, you may need to override this default identification behavior to avoid conflicting
identities between rule units.

For example, the following RuleUnit class contains a DataSource definition that accepts any kind of
object:

Example Unit0 rule unit class

This rule unit contains the following DRL rule that guards another rule unit based on two conditions (in
OOPath notation):

Example GuardAgeCheck DRL rule in the rule unit

package org.mypackage.myunit
unit Unit0

rule GuardAgeCheck
 when
 $i: /input#Integer
 $s: /input#String

list.clear();

// All box offices are closed:
office2.setOpen(false);
boxOffices.update(officeFH2, office2); // Guarding rule is no longer true.
persons.insert(new Person("Edson", 35));
executor.run(BoxOfficeUnit.class); // No execution

assertEquals(0, list.size());

default Identity getUnitIdentity() {
 return new Identity(getClass());
}

public class Unit0 implements RuleUnit {
 private DataSource<Object> input;

 public DataSource<Object> getInput() {
 return input;
 }
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

268

 then
 drools.guard(new AgeCheckUnit($i));
 drools.guard(new AgeCheckUnit($s.length()));
end

The guarded AgeCheckUnit rule unit verifies the age of a set of persons. The AgeCheckUnit contains
a DataSource definition of the persons to check, a minAge variable that it verifies against, and a List
for gathering the results:

Example AgeCheckUnit rule unit

The AgeCheckUnit rule unit contains the following DRL rule that performs the verification of the
persons in the data source:

Example CheckAge DRL rule in the rule unit

package org.mypackage.myunit
unit AgeCheckUnit

rule CheckAge
 when
 $p : /persons{ age > minAge }
 then
 results.add($p.getName() + ">" + minAge);
end

This example creates a RuleUnitExecutor class, binds the class to the KIE base that contains these two
rule units, and creates the two DataSource definitions for the same rule units:

Example executor and data source definitions

public class AgeCheckUnit implements RuleUnit {
 private final int minAge;
 private DataSource<Person> persons;
 private List<String> results;

 public AgeCheckUnit(int minAge) {
 this.minAge = minAge;
 }

 public DataSource<Person> getPersons() {
 return persons;
 }

 public int getMinAge() {
 return minAge;
 }

 public List<String> getResults() {
 return results;
 }
}

RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

269

You can now insert some objects into the input data source and execute the Unit0 rule unit:

Example rule unit execution with inserted objects

Example results list from the execution

In this example, the rule unit named AgeCheckUnit is considered a singleton class and then executed
only once, with the minAge variable set to 3. Both the String "test" and the Integer 4 inserted into the
input data source can also trigger a second execution with the minAge variable set to 4. However, the
second execution does not occur because another rule unit with the same identity has already been
evaluated.

To resolve this rule unit identity conflict, override the getUnitIdentity() method in the AgeCheckUnit
class to include also the minAge variable in the rule unit identity:

Modified AgeCheckUnit rule unit to override the getUnitIdentity() method

With this override in place, the previous example rule unit execution produces the following output:

Example results list from executing the modified rule unit

The rule units with minAge set to 3 and 4 are now considered two different rule units and both are
executed.

DataSource<Object> input = executor.newDataSource("input");
DataSource<Person> persons = executor.newDataSource("persons",
 new Person("John", 42),
 new Person("Sally", 4));

List<String> results = new ArrayList<>();
executor.bindVariable("results", results);

ds.insert("test");
ds.insert(3);
ds.insert(4);
executor.run(Unit0.class);

[Sally>3, John>3]

public class AgeCheckUnit implements RuleUnit {

 ...

 @Override
 public Identity getUnitIdentity() {
 return new Identity(getClass(), minAge);
 }
}

[John>4, Sally>3, John>3]

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

270

CHAPTER 17. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

17.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designers like guided rules or guided decision table designers. Select the
relevant rule asset within the project and in the asset designer, go to Data
Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: (Optional) Select this check box to enable the field to hold multiple items for the
specified type.

Figure 17.1. Add data fields to a data object

CHAPTER 17. DATA OBJECTS

271

Figure 17.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

272

CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL
You can create and manage DRL rules for your project in Business Central. In each DRL rule file, you
define rule conditions, actions, and other components related to the rule, based on the data objects you
create or import in the package.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → DRL file.

3. Enter an informative DRL file name and select the appropriate Package. The package that you
specify must be the same package where the required data objects have been assigned or will
be assigned.
You can also select Show declared DSL sentences if any domain specific language (DSL)
assets have been defined in your project. These DSL assets will then become usable objects for
conditions and actions that you define in the DRL designer.

4. Click Ok to create the rule asset.
The new DRL file is now listed in the DRL panel of the Project Explorer, or in the DSLR panel if
you selected the Show declared DSL sentences option. The package to which you assigned
this DRL file is listed at the top of the file.

5. In the Fact types list in the left panel of the DRL designer, confirm that all data objects and data
object fields (expand each) required for your rules are listed. If not, you can either import
relevant data objects from other packages by using import statements in the DRL file, or create
data objects within your package.

6. After all data objects are in place, return to the Model tab of the DRL designer and define the
DRL file with any of the following components:

Components in a DRL file

package

import

function // Optional

query // Optional

declare // Optional

global // Optional

rule "rule name"
 // Attributes
 when
 // Conditions
 then
 // Actions
end

CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL

273

rule "rule2 name"

...

package: (automatic) This was defined for you when you created the DRL file and selected
the package.

import: Use this to identify the data objects from either this package or another package
that you want to use in the DRL file. Specify the package and data object in the format
packageName.objectName, with multiple imports on separate lines.

Importing data objects

import org.mortgages.LoanApplication;

function: (optional) Use this to include a function to be used by rules in the DRL file.
Functions in DRL files put semantic code in your rule source file instead of in Java classes.
Functions are especially useful if an action (then) part of a rule is used repeatedly and only
the parameters differ for each rule. Above the rules in the DRL file, you can declare the
function or import a static method from a helper class as a function, and then use the
function by name in an action (then) part of the rule.

Declaring and using a function with a rule (option 1)

function String hello(String applicantName) {
 return "Hello " + applicantName + "!";
}

rule "Using a function"
 when
 // Empty
 then
 System.out.println(hello("James"));
end

Importing and using the function with a rule (option 2)

import function my.package.applicant.hello;

rule "Using a function"
 when
 // Empty
 then
 System.out.println(hello("James"));
end

query: (optional) Use this to search the decision engine for facts related to the rules in the
DRL file. You add the query definitions in DRL files and then obtain the matching results in
your application code. Queries search for a set of defined conditions and do not require
when or then specifications. Query names are global to the KIE base and therefore must be
unique among all other rule queries in the project. To return the results of a query, construct
a traditional QueryResults definition using ksession.getQueryResults("name"), where

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

274

"name" is the query name. This returns a list of query results, which enable you to retrieve
the objects that matched the query. Define the query and query results parameters above
the rules in the DRL file.

Example query definition in a DRL file

query "people under the age of 21"
 $person : Person(age < 21)
end

Example application code to obtain query results

declare: (optional) Use this to declare a new fact type to be used by rules in the DRL file.
The default fact type in the java.lang package of Red Hat Decision Manager is Object, but
you can declare other types in DRL files as needed. Declaring fact types in DRL files enables
you to define a new fact model directly in the decision engine, without creating models in a
lower-level language like Java.

Declaring and using a new fact type

declare Person
 name : String
 dateOfBirth : java.util.Date
 address : Address
end

rule "Using a declared type"
 when
 $p : Person(name == "James")
 then // Insert Mark, who is a customer of James.
 Person mark = new Person();
 mark.setName("Mark");
 insert(mark);
end

global: (optional) Use this to include a global variable to be used by rules in the DRL file.
Global variables typically provide data or services for the rules, such as application services
used in rule consequences, and return data from rules, such as logs or values added in rule
consequences. Set the global value in the working memory of the decision engine through a
KIE session configuration or REST operation, declare the global variable above the rules in
the DRL file, and then use it in an action (then) part of the rule. For multiple global variables,
use separate lines in the DRL file.

Setting the global list configuration for the decision engine

List<String> list = new ArrayList<>();
KieSession kieSession = kiebase.newKieSession();
kieSession.setGlobal("myGlobalList", list);

Defining the global list in a rule

QueryResults results = ksession.getQueryResults("people under the age of 21");
System.out.println("we have " + results.size() + " people under the age of 21");

CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL

275

global java.util.List myGlobalList;

rule "Using a global"
 when
 // Empty
 then
 myGlobalList.add("My global list");
end

WARNING

Do not use global variables to establish conditions in rules unless a
global variable has a constant immutable value. Global variables are not
inserted into the working memory of the decision engine, so the
decision engine cannot track value changes of variables.

Do not use global variables to share data between rules. Rules always
reason and react to the working memory state, so if you want to pass
data from rule to rule, assert the data as facts into the working memory
of the decision engine.

rule: Use this to define each rule in the DRL file. Rules consist of a rule name in the format
rule "name", followed by optional attributes that define rule behavior (such as salience or
no-loop), followed by when and then definitions. Each rule must have a unique name within
the rule package. The when part of the rule contains the conditions that must be met to
execute an action. For example, if a bank requires loan applicants to have over 21 years of
age, then the when condition for an "Underage" rule would be Applicant(age < 21). The
then part of the rule contains the actions to be performed when the conditional part of the
rule has been met. For example, when the loan applicant is under 21 years old, the then
action would be setApproved(false), declining the loan because the applicant is under
age.

Rule for loan application age limit

rule "Underage"
 salience 15
 when
 $application : LoanApplication()
 Applicant(age < 21)
 then
 $application.setApproved(false);
 $application.setExplanation("Underage");
end

At a minimum, each DRL file must specify the package, import, and rule components. All
other components are optional.

The following is an example DRL file in a loan application decision service:

Example DRL file for a loan application

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

276

package org.mortgages;

import org.mortgages.LoanApplication;
import org.mortgages.Bankruptcy;
import org.mortgages.Applicant;

rule "Bankruptcy history"
 salience 10
 when
 $a : LoanApplication()
 exists (Bankruptcy(yearOfOccurrence > 1990 || amountOwed > 10000))
 then
 $a.setApproved(false);
 $a.setExplanation("has been bankrupt");
 delete($a);
end

rule "Underage"
 salience 15
 when
 $application : LoanApplication()
 Applicant(age < 21)
 then
 $application.setApproved(false);
 $application.setExplanation("Underage");
 delete($application);
end

Figure 18.1. Example DRL file for a loan application in Business Central

7. After you define all components of the rule, click Validate in the upper-right toolbar of the DRL
designer to validate the DRL file. If the file validation fails, address any problems described in
the error message, review all syntax and components in the DRL file, and try again to validate
the file until the file passes.

8. Click Save in the DRL designer to save your work.

18.1. ADDING WHEN CONDITIONS IN DRL RULES

CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL

277

The when part of the rule contains the conditions that must be met to execute an action. For example, if
a bank requires loan applicants to have over 21 years of age, then the when condition of an "Underage"
rule would be Applicant(age < 21). Conditions consist of a series of stated patterns and constraints,
with optional bindings and other supported DRL elements, based on the available data objects in the
package.

Prerequisites

The package is defined at the top of the DRL file. This should have been done for you when you
created the file.

The import list of data objects used in the rule is defined below the package line of the DRL
file. Data objects can be from this package or from another package in Business Central.

The rule name is defined in the format rule "name" below the package, import, and other lines
that apply to the entire DRL file. The same rule name cannot be used more than once in the
same package. Optional rule attributes (such as salience or no-loop) that define rule behavior
are below the rule name, before the when section.

Procedure

1. In the DRL designer, enter when within the rule to begin adding condition statements. The
when section consists of zero or more fact patterns that define conditions for the rule.
If the when section is empty, then the conditions are considered to be true and the actions in
the then section are executed the first time a fireAllRules() call is made in the decision engine.
This is useful if you want to use rules to set up the decision engine state.

Example rule without conditions

rule "Always insert applicant"
 when
 // Empty
 then // Actions to be executed once
 insert(new Applicant());
end

// The rule is internally rewritten in the following way:

rule "Always insert applicant"
 when
 eval(true)
 then
 insert(new Applicant());
end

2. Enter a pattern for the first condition to be met, with optional constraints, bindings, and other
supported DRL elements. A basic pattern format is <patternBinding> : <patternType> (
<constraints>). Patterns are based on the available data objects in the package and define the
conditions to be met in order to trigger actions in the then section.

Simple pattern: A simple pattern with no constraints matches against a fact of the given
type. For example, the following condition is only that the applicant exists.

when
 Applicant()

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

278

Pattern with constraints: A pattern with constraints matches against a fact of the given
type and the additional restrictions in parentheses that are true or false. For example, the
following condition is that the applicant is under the age of 21.

when
 Applicant(age < 21)

Pattern with binding: A binding on a pattern is a shorthand reference that other
components of the rule can use to refer back to the defined pattern. For example, the
following binding a on LoanApplication is used in a related action for underage applicants.

when
 $a : LoanApplication()
 Applicant(age < 21)
then
 $a.setApproved(false);
 $a.setExplanation("Underage")

3. Continue defining all condition patterns that apply to this rule. The following are some of the
keyword options for defining DRL conditions:

and: Use this to group conditional components into a logical conjunction. Infix and prefix
and are supported. By default, all listed patterns are combined with and when no
conjunction is specified.

// All of the following examples are interpreted the same way:
$a : LoanApplication() and Applicant(age < 21)

$a : LoanApplication()
and Applicant(age < 21)

$a : LoanApplication()
Applicant(age < 21)

(and $a : LoanApplication() Applicant(age < 21))

or: Use this to group conditional components into a logical disjunction. Infix and prefix or are
supported.

// All of the following examples are interpreted the same way:
Bankruptcy(amountOwed == 100000) or IncomeSource(amount == 20000)

Bankruptcy(amountOwed == 100000)
or IncomeSource(amount == 20000)

(or Bankruptcy(amountOwed == 100000) IncomeSource(amount == 20000))

exists: Use this to specify facts and constraints that must exist. This option is triggered on
only the first match, not subsequent matches. If you use this element with multiple patterns,
enclose the patterns with parentheses ().

exists (Bankruptcy(yearOfOccurrence > 1990 || amountOwed > 10000))

not: Use this to specify facts and constraints that must not exist.

CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL

279

not (Applicant(age < 21))

forall: Use this to verify whether all facts that match the first pattern match all the remaining
patterns. When a forall construct is satisfied, the rule evaluates to true.

forall($app : Applicant(age < 21)
 Applicant(this == $app, status = 'underage'))

from: Use this to specify a data source for a pattern.

Applicant(ApplicantAddress : address)
Address(zipcode == "23920W") from ApplicantAddress

entry-point: Use this to define an Entry Point corresponding to a data source for the
pattern. Typically used with from.

Applicant() from entry-point "LoanApplication"

collect: Use this to define a collection of objects that the rule can use as part of the
condition. In the example, all pending applications in the decision engine for each given
mortgage are grouped in a List. If three or more pending applications are found, the rule is
executed.

$m : Mortgage()
$a : List(size >= 3)
 from collect(LoanApplication(Mortgage == $m, status == 'pending'))

accumulate: Use this to iterate over a collection of objects, execute custom actions for each
of the elements, and return one or more result objects (if the constraints evaluate to true).
This option is a more flexible and powerful form of collect. Use the format accumulate(
<source pattern>; <functions> [;<constraints>]). In the example, min, max, and average
are accumulate functions that calculate the minimum, maximum, and average temperature
values over all the readings for each sensor. Other supported functions include count, sum,
variance, standardDeviation, collectList, and collectSet.

$s : Sensor()
accumulate(Reading(sensor == $s, $temp : temperature);
 $min : min($temp),
 $max : max($temp),
 $avg : average($temp);
 $min < 20, $avg > 70)

NOTE

For more information about DRL rule conditions, see Section 16.8, “Rule
conditions in DRL (WHEN)”.

4. After you define all condition components of the rule, click Validate in the upper-right toolbar of
the DRL designer to validate the DRL file. If the file validation fails, address any problems
described in the error message, review all syntax and components in the DRL file, and try again
to validate the file until the file passes.

5. Click Save in the DRL designer to save your work.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

280

18.2. ADDING THEN ACTIONS IN DRL RULES

The then part of the rule contains the actions to be performed when the conditional part of the rule has
been met. For example, when a loan applicant is under 21 years old, the then action of an "Underage"
rule would be setApproved(false), declining the loan because the applicant is under age. Actions
consist of one or more methods that execute consequences based on the rule conditions and on
available data objects in the package. The main purpose of rule actions is to insert, delete, or modify
data in the working memory of the decision engine.

Prerequisites

The package is defined at the top of the DRL file. This should have been done for you when you
created the file.

The import list of data objects used in the rule is defined below the package line of the DRL
file. Data objects can be from this package or from another package in Business Central.

The rule name is defined in the format rule "name" below the package, import, and other lines
that apply to the entire DRL file. The same rule name cannot be used more than once in the
same package. Optional rule attributes (such as salience or no-loop) that define rule behavior
are below the rule name, before the when section.

Procedure

1. In the DRL designer, enter then after the when section of the rule to begin adding action
statements.

2. Enter one or more actions to be executed on fact patterns based on the conditions for the rule.
The following are some of the keyword options for defining DRL actions:

set: Use this to set the value of a field.

$application.setApproved (false);
$application.setExplanation("has been bankrupt");

modify: Use this to specify fields to be modified for a fact and to notify the decision engine
of the change. This method provides a structured approach to fact updates. It combines the
update operation with setter calls to change object fields.

modify(LoanApplication) {
 setAmount(100),
 setApproved (true)
}

update: Use this to specify fields and the entire related fact to be updated and to notify the
decision engine of the change. After a fact has changed, you must call update before
changing another fact that might be affected by the updated values. To avoid this added
step, use the modify method instead.

LoanApplication.setAmount(100);
update(LoanApplication);

insert: Use this to insert a new fact into the decision engine.

CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL

281

insert(new Applicant());

insertLogical: Use this to insert a new fact logically into the decision engine. The decision
engine is responsible for logical decisions on insertions and retractions of facts. After
regular or stated insertions, facts must be retracted explicitly. After logical insertions, the
facts that were inserted are automatically retracted when the conditions in the rules that
inserted the facts are no longer true.

insertLogical(new Applicant());

delete: Use this to remove an object from the decision engine. The keyword retract is also
supported in DRL and executes the same action, but delete is typically preferred in DRL
code for consistency with the keyword insert.

delete(Applicant);

NOTE

For more information about DRL rule actions, see Section 16.9, “Rule actions in
DRL (THEN)”.

3. After you define all action components of the rule, click Validate in the upper-right toolbar of
the DRL designer to validate the DRL file. If the file validation fails, address any problems
described in the error message, review all syntax and components in the DRL file, and try again
to validate the file until the file passes.

4. Click Save in the DRL designer to save your work.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

282

CHAPTER 19. EXECUTING RULES
After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on KIE Server to test the rules.

Prerequisites

Business Central and KIE Server are installed and running. For installation options, see Planning
a Red Hat Decision Manager installation.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to KIE Server. If the build fails, address any problems described in the Alerts panel at
the bottom of the screen.
For more information about project deployment options, see Packaging and deploying a Red Hat
Decision Manager project.

NOTE

If the rule assets in your project are not built from an executable rule model by
default, verify that the following dependency is in the pom.xml file of your
project and rebuild the project:

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models by default. This dependency is included as part
of the Red Hat Decision Manager core packaging, but depending on your Red
Hat Decision Manager upgrade history, you may need to manually add this
dependency to enable the executable rule model behavior.

For more information about executable rule models, see Packaging and deploying
a Red Hat Decision Manager project.

3. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
KIE Server. The project must contain a pom.xml file and any other required components for
executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Business Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on KIE

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhdm.version}</version>
</dependency>

CHAPTER 19. EXECUTING RULES

283

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#drl-rules-other-con

kie-server-client: Enables your client application to interact remotely with assets on KIE
Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with KIE Server

Example dependencies for Red Hat Decision Manager 7.11 in a client application pom.xml file:

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For remote execution on KIE Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For debug logging (optional) -->
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

284

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3363991

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of KIE Server (if needed), configure the .java class to import KIE
services, a KIE container, and a KIE session, and then use the main() method to fire all rules
against a defined fact model:

Executing rules locally

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

org.slf4j.simpleLogger.defaultLogLevel=debug

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.builder.ReleaseId;
import org.kie.api.runtime.KieContainer;

CHAPTER 19. EXECUTING RULES

285

To test this rule on KIE Server, configure the .java class with the imports and rule execution
information similarly to the local example, and additionally specify KIE services configuration
and KIE services client details:

Executing rules on KIE Server

import org.kie.api.runtime.KieSession;
import org.drools.compiler.kproject.ReleaseIdImpl;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseIdImpl("com.myspace", "MyProject", "1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

286

import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";
 KieServicesConfiguration config =
 KieServicesFactory.newRestConfiguration(serverUrl,
 username,
 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

CHAPTER 19. EXECUTING RULES

287

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat CodeReady Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

288

CHAPTER 20. OTHER METHODS FOR CREATING AND
EXECUTING DRL RULES

As an alternative to creating and managing DRL rules within the Business Central interface, you can
create DRL rule files externally as part of a Maven or Java project using Red Hat CodeReady Studio or
another integrated development environment (IDE). These standalone projects can then be integrated
as knowledge JAR (KJAR) dependencies in existing Red Hat Decision Manager projects in Business
Central. The DRL files in your standalone project must contain at a minimum the required package
specification, import lists, and rule definitions. Any other DRL components, such as global variables and
functions, are optional. All data objects related to a DRL rule must be included with your standalone DRL
project or deployment.

You can also use executable rule models in your Maven or Java projects to provide a Java-based
representation of a rule set for execution at build time. The executable model is a more efficient
alternative to the standard asset packaging in Red Hat Decision Manager and enables KIE containers
and KIE bases to be created more quickly, especially when you have large lists of DRL (Drools Rule
Language) files and other Red Hat Decision Manager assets.

20.1. CREATING AND EXECUTING DRL RULES IN RED HAT
CODEREADY STUDIO

You can use Red Hat CodeReady Studio to create DRL files with rules and integrate the files with your
Red Hat Decision Manager decision service. This method of creating DRL rules is helpful if you already
use Red Hat CodeReady Studio for your decision service and want to continue with the same workflow.
If you do not already use this method, then the Business Central interface of Red Hat Decision Manager
is recommended for creating DRL files and other rule assets.

Prerequisites

Red Hat CodeReady Studio has been installed from the Red Hat Customer Portal .

Procedure

1. In the Red Hat CodeReady Studio, click File → New → Project.

2. In the New Project window that opens, select Drools → Drools Project and click Next.

3. Click the second icon to Create a project and populate it with some example files to help you
get started quickly. Click Next.

4. Enter a Project name and select the Maven radio button as the project building option. The
GAV values are generated automatically. You can update these values as needed for your
project:

Group ID: com.sample

Artifact ID: my-project

Version: 1.0.0-SNAPSHOT

5. Click Finish to create the project.
This configuration sets up a basic project structure, class path, and sample rules. The following is
an overview of the project structure:

CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

289

https://access.redhat.com/downloads/

my-project
 `-- src/main/java
 | `-- com.sample
 | `-- DecisionTableTest.java
 | `-- DroolsTest.java
 | `-- ProcessTest.java
 |
 `-- src/main/resources
 | `-- dtables
 | `-- Sample.xls
 | `-- process
 | `-- sample.bpmn
 | `-- rules
 | `-- Sample.drl
 | `-- META-INF
 |
 `-- JRE System Library
 |
 `-- Maven Dependencies
 |
 `-- Drools Library
 |
 `-- src
 |
 `-- target
 |
 `-- pom.xml

Notice the following elements:

A Sample.drl rule file in the src/main/resources directory, containing an example Hello
World and GoodBye rules.

A DroolsTest.java file under the src/main/java directory in the com.sample package. The
DroolsTest class can be used to execute the Sample.drl rule.

The Drools Library directory, which acts as a custom class path containing JAR files
necessary for execution.

You can edit the existing Sample.drl file and DroolsTest.java files with new configurations as
needed, or create new rule and object files. In this procedure, you are creating a new rule and
new Java objects.

6. Create a Java object on which the rule or rules will operate.
In this example, a Person.java file is created in my-project/src/main/java/com.sample. The
Person class contains getter and setter methods to set and retrieve the first name, last name,
hourly rate, and the wage of a person:

 public class Person {
 private String firstName;
 private String lastName;
 private Integer hourlyRate;
 private Integer wage;

 public String getFirstName() {
 return firstName;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

290

7. Click File → Save to save the file.

8. Create a rule file in .drl format in my-project/src/main/resources/rules. The DRL file must
contain at a minimum a package specification, an import list of data objects to be used by the
rule or rules, and one or more rules with when conditions and then actions.
The following Wage.drl file contains a Wage rule that imports the Person class, calculates the
wage and hourly rate values, and displays a message based on the result:

9. Click File → Save to save the file.

 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Integer getHourlyRate() {
 return hourlyRate;
 }

 public void setHourlyRate(Integer hourlyRate) {
 this.hourlyRate = hourlyRate;
 }

 public Integer getWage(){
 return wage;
 }

 public void setWage(Integer wage){
 this.wage = wage;
 }
 }

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

291

10. Create a main class and save it to the same directory as the Java object that you created. The
main class will load the KIE base and execute rules.

NOTE

You can also add the main() method and Person class within a single Java object
file, similar to the DroolsTest.java sample file.

11. In the main class, add the required import statements to import KIE services, a KIE container,
and a KIE session. Then load the KIE base, insert facts, and execute the rule from the main()
method that passes the fact model to the rule.
In this example, a RulesTest.java file is created in my-project/src/main/java/com.sample with
the required imports and main() method:

12. Click File → Save to save the file.

13. After you create and save all DRL assets in your project, right-click your project folder and select
Run As → Java Application to build the project. If the project build fails, address any problems
described in the Problems tab of the lower window in CodeReady Studio, and try again to
validate the project until the project builds.

package com.sample;

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {
 public static final void main(String[] args) {
 try {
 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

292

IF THE RUN AS → JAVA APPLICATION OPTION IS NOT AVAILABLE

If Java Application is not an option when you right-click your project and select Run As,
then go to Run As → Run Configurations, right-click Java Application, and click New.
Then in the Main tab, browse for and select your Project and the associated Main class.
Click Apply and then click Run to test the project. The next time you right-click your
project folder, the Java Application option will appear.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new project as a knowledge JAR (KJAR) and add it as a dependency in the pom.xml file of the
project in Business Central. To access the project pom.xml file in Business Central, you can select any
existing asset in the project and then in the Project Explorer menu on the left side of the screen, click
the Customize View gear icon and select Repository View → pom.xml.

20.2. CREATING AND EXECUTING DRL RULES USING JAVA

You can use Java objects to create DRL files with rules and integrate the objects with your Red Hat
Decision Manager decision service. This method of creating DRL rules is helpful if you already use
external Java objects for your decision service and want to continue with the same workflow. If you do
not already use this method, then the Business Central interface of Red Hat Decision Manager is
recommended for creating DRL files and other rule assets.

Procedure

1. Create a Java object on which the rule or rules will operate.
In this example, a Person.java file is created in a directory my-project. The Person class
contains getter and setter methods to set and retrieve the first name, last name, hourly rate,
and the wage of a person:

 public class Person {
 private String firstName;
 private String lastName;
 private Integer hourlyRate;
 private Integer wage;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Integer getHourlyRate() {
 return hourlyRate;
 }

CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

293

2. Create a rule file in .drl format under the my-project directory. The DRL file must contain at a
minimum a package specification (if applicable), an import list of data objects to be used by the
rule or rules, and one or more rules with when conditions and then actions.
The following Wage.drl file contains a Wage rule that calculates the wage and hourly rate
values and displays a message based on the result:

3. Create a main class and save it to the same directory as the Java object that you created. The
main class will load the KIE base and execute rules.

4. In the main class, add the required import statements to import KIE services, a KIE container,
and a KIE session. Then load the KIE base, insert facts, and execute the rule from the main()
method that passes the fact model to the rule.
In this example, a RulesTest.java file is created in my-project with the required imports and
main() method:

 public void setHourlyRate(Integer hourlyRate) {
 this.hourlyRate = hourlyRate;
 }

 public Integer getWage(){
 return wage;
 }

 public void setWage(Integer wage){
 this.wage = wage;
 }
 }

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class RulesTest {
 public static final void main(String[] args) {
 try {
 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession();

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

294

5. Download the Red Hat Decision Manager 7.11.0 Source Distribution ZIP file from the Red Hat
Customer Portal and extract it under my-project/dm-engine-jars/.

6. In the my-project/META-INF directory, create a kmodule.xml metadata file with the following
content:

This kmodule.xml file is a KIE module descriptor that selects resources to KIE bases and
configures sessions. This file enables you to define and configure one or more KIE bases, and to
include DRL files from specific packages in a specific KIE base. You can also create one or more
KIE sessions from each KIE base.

The following example shows a more advanced kmodule.xml file:

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.drools.org/xsd/kmodule">
 <kbase name="KBase1" default="true" eventProcessingMode="cloud"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">
 <ksession name="KSession1_1" type="stateful" default="true" />
 <ksession name="KSession1_2" type="stateful" default="true" beliefSystem="jtms" />
 </kbase>
 <kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 <ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
 <fileLogger file="debugInfo" threaded="true" interval="10" />
 <workItemHandlers>
 <workItemHandler name="name" type="new org.domain.WorkItemHandler()" />
 </workItemHandlers>
 <listeners>

CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

295

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

This example defines two KIE bases. Two KIE sessions are instantiated from the KBase1 KIE
base, and one KIE session from KBase2. The KIE session from KBase2 is a stateless KIE
session, which means that data from a previous invocation of the KIE session (the previous
session state) is discarded between session invocations. Specific packages of rule assets are
included with both KIE bases. When you specify packages in this way, you must organize your
DRL files in a folder structure that reflects the specified packages.

7. After you create and save all DRL assets in your Java object, navigate to the my-project
directory in the command line and run the following command to build your Java files. Replace
RulesTest.java with the name of your Java main class.

javac -classpath "./dm-engine-jars/*:." RulesTest.java

If the build fails, address any problems described in the command line error messages and try
again to validate the Java object until the object passes.

8. After your Java files build successfully, run the following command to execute the rules locally.
Replace RulesTest with the prefix of your Java main class.

java -classpath "./dm-engine-jars/*:." RulesTest

9. Review the rules to ensure that they executed properly, and address any needed changes in the
Java files.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new Java project as a knowledge JAR (KJAR) and add it as a dependency in the pom.xml file of the
project in Business Central. To access the project pom.xml file in Business Central, you can select any
existing asset in the project and then in the Project Explorer menu on the left side of the screen, click
the Customize View gear icon and select Repository View → pom.xml.

20.3. CREATING AND EXECUTING DRL RULES USING MAVEN

You can use Maven archetypes to create DRL files with rules and integrate the archetypes with your
Red Hat Decision Manager decision service. This method of creating DRL rules is helpful if you already
use external Maven archetypes for your decision service and want to continue with the same workflow. If
you do not already use this method, then the Business Central interface of Red Hat Decision Manager is
recommended for creating DRL files and other rule assets.

Procedure

1. Navigate to a directory where you want to create a Maven archetype and run the following
command:

mvn archetype:generate -DgroupId=com.sample.app -DartifactId=my-app -
DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

 <ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
 <agendaEventListener type="org.domain.FirstAgendaListener" />
 <agendaEventListener type="org.domain.SecondAgendaListener" />
 <processEventListener type="org.domain.ProcessListener" />
 </listeners>
 </ksession>
 </kbase>
</kmodule>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

296

This creates a directory my-app with the following structure:

my-app
|-- pom.xml
`-- src
 |-- main
 | `-- java
 | `-- com
 | `-- sample
 | `-- app
 | `-- App.java
 `-- test
 `-- java
 `-- com
 `-- sample
 `-- app
 `-- AppTest.java

The my-app directory contains the following key components:

A src/main directory for storing the application sources

A src/test directory for storing the test sources

A pom.xml file with the project configuration

2. Create a Java object on which the rule or rules will operate within the Maven archetype.
In this example, a Person.java file is created in the directory my-
app/src/main/java/com/sample/app. The Person class contains getter and setter methods to
set and retrieve the first name, last name, hourly rate, and the wage of a person:

package com.sample.app;

 public class Person {

 private String firstName;
 private String lastName;
 private Integer hourlyRate;
 private Integer wage;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

297

3. Create a rule file in .drl format in my-app/src/main/resources/rules. The DRL file must contain
at a minimum a package specification, an import list of data objects to be used by the rule or
rules, and one or more rules with when conditions and then actions.
The following Wage.drl file contains a Wage rule that imports the Person class, calculates the
wage and hourly rate values, and displays a message based on the result:

4. In the my-app/src/main/resources/META-INF directory, create a kmodule.xml metadata file
with the following content:

This kmodule.xml file is a KIE module descriptor that selects resources to KIE bases and
configures sessions. This file enables you to define and configure one or more KIE bases, and to
include DRL files from specific packages in a specific KIE base. You can also create one or more
KIE sessions from each KIE base.

The following example shows a more advanced kmodule.xml file:

 public Integer getHourlyRate() {
 return hourlyRate;
 }

 public void setHourlyRate(Integer hourlyRate) {
 this.hourlyRate = hourlyRate;
 }

 public Integer getWage(){
 return wage;
 }

 public void setWage(Integer wage){
 this.wage = wage;
 }
 }

package com.sample.app;

import com.sample.app.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.drools.org/xsd/kmodule">

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

298

This example defines two KIE bases. Two KIE sessions are instantiated from the KBase1 KIE
base, and one KIE session from KBase2. The KIE session from KBase2 is a stateless KIE
session, which means that data from a previous invocation of the KIE session (the previous
session state) is discarded between session invocations. Specific packages of rule assets are
included with both KIE bases. When you specify packages in this way, you must organize your
DRL files in a folder structure that reflects the specified packages.

5. In the my-app/pom.xml configuration file, specify the libraries that your application requires.
Provide the Red Hat Decision Manager dependencies as well as the group ID, artifact ID, and
version (GAV) of your application.

 <kbase name="KBase1" default="true" eventProcessingMode="cloud"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">
 <ksession name="KSession1_1" type="stateful" default="true" />
 <ksession name="KSession1_2" type="stateful" default="true" beliefSystem="jtms" />
 </kbase>
 <kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 <ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
 <fileLogger file="debugInfo" threaded="true" interval="10" />
 <workItemHandlers>
 <workItemHandler name="name" type="new org.domain.WorkItemHandler()" />
 </workItemHandlers>
 <listeners>
 <ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
 <agendaEventListener type="org.domain.FirstAgendaListener" />
 <agendaEventListener type="org.domain.SecondAgendaListener" />
 <processEventListener type="org.domain.ProcessListener" />
 </listeners>
 </ksession>
 </kbase>
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.sample.app</groupId>
<artifactId>my-app</artifactId>
<version>1.0.0</version>
<repositories>
 <repository>
 <id>jboss-ga-repository</id>
 <url>http://maven.repository.redhat.com/ga/</url>
 </repository>
</repositories>
<dependencies>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>VERSION</version>
 </dependency>
 <dependency>

CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

299

For information about Maven dependencies and the BOM (Bill of Materials) in Red Hat Decision
Manager, see What is the mapping between Red Hat Decision Manager and Maven library
version?.

6. Use the testApp method in my-app/src/test/java/com/sample/app/AppTest.java to test the
rule. The AppTest.java file is created by Maven by default.

7. In the AppTest.java file, add the required import statements to import KIE services, a KIE
container, and a KIE session. Then load the KIE base, insert facts, and execute the rule from the
testApp() method that passes the fact model to the rule.

8. After you create and save all DRL assets in your Maven archetype, navigate to the my-app
directory in the command line and run the following command to build your files:

mvn clean install

If the build fails, address any problems described in the command line error messages and try

 <groupId>org.kie</groupId>
 <artifactId>kie-api</artifactId>
 <version>VERSION</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
</dependencies>
</project>

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public void testApp() {

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

300

https://access.redhat.com/solutions/3405361

If the build fails, address any problems described in the command line error messages and try
again to validate the files until the build is successful.

9. After your files build successfully, run the following command to execute the rules locally.
Replace com.sample.app with your package name.

mvn exec:java -Dexec.mainClass="com.sample.app"

10. Review the rules to ensure that they executed properly, and address any needed changes in the
files.

To integrate the new rule assets with an existing project in Red Hat Decision Manager, you can compile
the new Maven project as a knowledge JAR (KJAR) and add it as a dependency in the pom.xml file of
the project in Business Central. To access the project pom.xml file in Business Central, you can select
any existing asset in the project and then in the Project Explorer menu on the left side of the screen,
click the Customize View gear icon and select Repository View → pom.xml.

CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES

301

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION
MANAGER FOR AN IDE

Red Hat Decision Manager provides example decisions distributed as Java classes that you can import
into your integrated development environment (IDE). You can use these examples to better understand
decision engine capabilities or use them as a reference for the decisions that you define in your own Red
Hat Decision Manager projects.

The following example decision sets are some of the examples available in Red Hat Decision Manager:

Hello World example: Demonstrates basic rule execution and use of debug output

State example: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

Fibonacci example: Demonstrates recursion and conflict resolution through rule salience

Banking example: Demonstrates pattern matching, basic sorting, and calculation

Pet Store example: Demonstrates rule agenda groups, global variables, callbacks, and GUI
integration

Sudoku example: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

House of Doom example: Demonstrates backward chaining and recursion

NOTE

For optimization examples provided with Red Hat build of OptaPlanner, see Getting
started with Red Hat build of OptaPlanner.

21.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER
EXAMPLE DECISIONS IN AN IDE

You can import Red Hat Decision Manager example decisions into your integrated development
environment (IDE) and execute them to explore how the rules and code function. You can use these
examples to better understand decision engine capabilities or use them as a reference for the decisions
that you define in your own Red Hat Decision Manager projects.

Prerequisites

Java 8 or later is installed.

Maven 3.5.x or later is installed.

An IDE is installed, such as Red Hat CodeReady Studio.

Procedure

1. Download and unzip the Red Hat Decision Manager 7.11.0 Source Distribution from the Red
Hat Customer Portal to a temporary directory, such as /rhdm-7.11.0-sources.

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

302

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#examples-con
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the
equivalent option for importing a Maven project.

3. Click Browse, navigate to ~/rhdm-7.11.0-sources/src/drools-$VERSION/drools-examples
(or, for the Conway’s Game of Life example, ~/rhdm-7.11.0-sources/src/droolsjbpm-
integration-$VERSION/droolsjbpm-integration-examples), and import the project.

4. Navigate to the example package that you want to run and find the Java class with the main
method.

5. Right-click the Java class and select Run As → Java Application to run the example.
To run all examples through a basic user interface, run the DroolsExamplesApp.java class (or,
for Conway’s Game of Life, the DroolsJbpmIntegrationExamplesApp.java class) in the
org.drools.examples main class.

Figure 21.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

303

Figure 21.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

Figure 21.2. Interface for all examples in droolsjbpm-integration-examples

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

304

1

2

3

Figure 21.2. Interface for all examples in droolsjbpm-integration-examples
(DroolsJbpmIntegrationExamplesApp.java)

21.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND
DEBUGGING)

The Hello World example decision set demonstrates how to insert objects into the decision engine
working memory, how to match the objects using rules, and how to configure logging to trace the
internal activity of the decision engine.

The following is an overview of the Hello World example:

Name: helloworld

Main class: org.drools.examples.helloworld.HelloWorldExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.helloworld.HelloWorld.drl (in src/main/resources)

Objective: Demonstrates basic rule execution and use of debug output

In the Hello World example, a KIE session is generated to enable rule execution. All rules require a KIE
session for execution.

KIE session for rule execution

Obtains the KieServices factory. This is the main interface that applications use to interact with
the decision engine.

Creates a KieContainer from the project class path. This detects a /META-INF/kmodule.xml file
from which it configures and instantiates a KieContainer with a KieModule.

Creates a KieSession based on the "HelloWorldKS" KIE session configuration defined in the
/META-INF/kmodule.xml file.

KieServices ks = KieServices.Factory.get(); 1
KieContainer kc = ks.getKieClasspathContainer(); 2
KieSession ksession = kc.newKieSession("HelloWorldKS"); 3

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

305

NOTE

For more information about Red Hat Decision Manager project packaging, see Packaging
and deploying a Red Hat Decision Manager project.

Red Hat Decision Manager has an event model that exposes internal engine activity. Two default debug
listeners, DebugAgendaEventListener and DebugRuleRuntimeEventListener, print debug event
information to the System.err output. The KieRuntimeLogger provides execution auditing, the result
of which you can view in a graphical viewer.

Debug listeners and audit loggers

The logger is a specialized implementation built on the Agenda and RuleRuntime listeners. When the
decision engine has finished executing, logger.close() is called.

The example creates a single Message object with the message "Hello World", inserts the status
HELLO into the KieSession, executes rules with fireAllRules().

Data insertion and execution

Rule execution uses a data model to pass data as inputs and outputs to the KieSession. The data
model in this example has two fields: the message, which is a String, and the status, which can be
HELLO or GOODBYE.

Data model class

// Set up listeners.
ksession.addEventListener(new DebugAgendaEventListener());
ksession.addEventListener(new DebugRuleRuntimeEventListener());

// Set up a file-based audit logger.
KieRuntimeLogger logger = KieServices.get().getLoggers().newFileLogger(ksession,
"./target/helloworld");

// Set up a ThreadedFileLogger so that the audit view reflects events while debugging.
KieRuntimeLogger logger = ks.getLoggers().newThreadedFileLogger(ksession, "./target/helloworld",
1000);

// Insert facts into the KIE session.
final Message message = new Message();
message.setMessage("Hello World");
message.setStatus(Message.HELLO);
ksession.insert(message);

// Fire the rules.
ksession.fireAllRules();

public static class Message {
 public static final int HELLO = 0;
 public static final int GOODBYE = 1;

 private String message;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

306

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

The two rules are located in the file
src/main/resources/org/drools/examples/helloworld/HelloWorld.drl.

The when condition of the "Hello World" rule states that the rule is activated for each Message object
inserted into the KIE session that has the status Message.HELLO. Additionally, two variable bindings
are created: the variable message is bound to the message attribute and the variable m is bound to
the matched Message object itself.

The then action of the rule specifies to print the content of the bound variable message to System.out,
and then changes the values of the message and status attributes of the Message object bound to m.
The rule uses the modify statement to apply a block of assignments in one statement and to notify the
decision engine of the changes at the end of the block.

"Hello World" rule

rule "Hello World"
 when
 m : Message(status == Message.HELLO, message : message)
 then
 System.out.println(message);
 modify (m) { message = "Goodbye cruel world",
 status = Message.GOODBYE };
end

The "Good Bye" rule is similar to the "Hello World" rule except that it matches Message objects that
have the status Message.GOODBYE.

"Good Bye" rule

rule "Good Bye"
 when
 Message(status == Message.GOODBYE, message : message)
 then
 System.out.println(message);
end

To execute the example, run the org.drools.examples.helloworld.HelloWorldExample class as a Java
application in your IDE. The rule writes to System.out, the debug listener writes to System.err, and the
audit logger creates a log file in target/helloworld.log.

System.out output in the IDE console

Hello World
Goodbye cruel world

System.err output in the IDE console

==>[ActivationCreated(0): rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectInserted: handle=

 private int status;
 ...
}

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

307

[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[BeforeActivationFired: rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
==>[ActivationCreated(4): rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectUpdated: handle=
[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 old_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96;
 new_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[AfterActivationFired(0): rule=Hello World]
[BeforeActivationFired: rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[AfterActivationFired(4): rule=Good Bye]

To better understand the execution flow of this example, you can load the audit log file from
target/helloworld.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit view shows that the object is inserted, which creates an activation for the
"Hello World" rule. The activation is then executed, which updates the Message object and causes the
"Good Bye" rule to activate. Finally, the "Good Bye" rule is executed. When you select an event in the
Audit View, the origin event, which is the "Activation created" event in this example, is highlighted in
green.

Figure 21.3. Hello World example Audit View

21.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND
CONFLICT RESOLUTION)

The State example decision set demonstrates how the decision engine uses forward chaining and any
changes to facts in the working memory to resolve execution conflicts for rules in a sequence. The
example focuses on resolving conflicts through salience values or through agenda groups that you can
define in rules.

The following is an overview of the State example:

Name: state

Main classes: org.drools.examples.state.StateExampleUsingSalience,
org.drools.examples.state.StateExampleUsingAgendaGroup (in src/main/java)

Module: drools-examples

Type: Java application

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

308

Rule files: org.drools.examples.state.*.drl (in src/main/resources)

Objective: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

A forward-chaining rule system is a data-driven system that starts with a fact in the working memory of
the decision engine and reacts to changes to that fact. When objects are inserted into working memory,
any rule conditions that become true as a result of the change are scheduled for execution by the
agenda.

In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion that
the decision engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion
or goal, it searches for subgoals, which are conclusions that complete part of the current goal. The
system continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 21.4. Rule evaluation logic using forward and backward chaining

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

309

Figure 21.4. Rule evaluation logic using forward and backward chaining

In the State example, each State class has fields for its name and its current state (see the class
org.drools.examples.state.State). The following states are the two possible states for each object:

NOTRUN

FINISHED

State class

public class State {
 public static final int NOTRUN = 0;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

310

The State example contains two versions of the same example to resolve rule execution conflicts:

A StateExampleUsingSalience version that resolves conflicts by using rule salience

A StateExampleUsingAgendaGroups version that resolves conflicts by using rule agenda
groups

Both versions of the state example involve four State objects: A, B, C, and D. Initially, their states are set
to NOTRUN, which is the default value for the constructor that the example uses.

State example using salience
The StateExampleUsingSalience version of the State example uses salience values in rules to resolve
rule execution conflicts. Rules with a higher salience value are given higher priority when ordered in the
activation queue.

The example inserts each State instance into the KIE session and then calls fireAllRules().

Salience State example execution

To execute the example, run the org.drools.examples.state.StateExampleUsingSalience class as a
Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Salience State example output in the IDE console

A finished
B finished
C finished

 public static final int FINISHED = 1;

 private final PropertyChangeSupport changes =
 new PropertyChangeSupport(this);

 private String name;
 private int state;

 ... setters and getters go here...
}

final State a = new State("A");
final State b = new State("B");
final State c = new State("C");
final State d = new State("D");

ksession.insert(a);
ksession.insert(b);
ksession.insert(c);
ksession.insert(d);

ksession.fireAllRules();

// Dispose KIE session if stateful (not required if stateless).
ksession.dispose();

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

311

D finished

Four rules are present.

First, the "Bootstrap" rule fires, setting A to state FINISHED, which then causes B to change its state
to FINISHED. Objects C and D are both dependent on B, causing a conflict that is resolved by the
salience values.

To better understand the execution flow of this example, you can load the audit log file from
target/state.log into your IDE debug view or Audit View, if available (for example, in Window → Show
View in some IDEs).

In this example, the Audit View shows that the assertion of the object A in the state NOTRUN activates
the "Bootstrap" rule, while the assertions of the other objects have no immediate effect.

Figure 21.5. Salience State example Audit View

Rule "Bootstrap" in salience State example

rule "Bootstrap"
 when
 a : State(name == "A", state == State.NOTRUN)
 then
 System.out.println(a.getName() + " finished");
 a.setState(State.FINISHED);
end

The execution of the "Bootstrap" rule changes the state of A to FINISHED, which activates rule "A to
B".

Rule "A to B" in salience State example

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

312

rule "A to B"
 when
 State(name == "A", state == State.FINISHED)
 b : State(name == "B", state == State.NOTRUN)
 then
 System.out.println(b.getName() + " finished");
 b.setState(State.FINISHED);
end

The execution of rule "A to B" changes the state of B to FINISHED, which activates both rules "B to C"
and "B to D", placing their activations onto the decision engine agenda.

Rules "B to C" and "B to D" in salience State example

rule "B to C"
 salience 10
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
end

rule "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

From this point on, both rules may fire and, therefore, the rules are in conflict. The conflict resolution
strategy enables the decision engine agenda to decide which rule to fire. Rule "B to C" has the higher
salience value (10 versus the default salience value of 0), so it fires first, modifying object C to state
FINISHED.

The Audit View in your IDE shows the modification of the State object in the rule "A to B", which results
in two activations being in conflict.

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda. In
this example, the Agenda View shows the breakpoint in the rule "A to B" and the state of the agenda
with the two conflicting rules. Rule "B to D" fires last, modifying object D to state FINISHED.

Figure 21.6. Salience State example Agenda View

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

313

Figure 21.6. Salience State example Agenda View

State example using agenda groups
The StateExampleUsingAgendaGroups version of the State example uses agenda groups in rules to
resolve rule execution conflicts. Agenda groups enable you to partition the decision engine agenda to
provide more execution control over groups of rules. By default, all rules are in the agenda group MAIN.
You can use the agenda-group attribute to specify a different agenda group for the rule.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

314

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

In this example, the auto-focus attribute enables rule "B to C" to fire before "B to D".

Rule "B to C" in agenda group State example

rule "B to C"
 agenda-group "B to C"
 auto-focus true
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to D").setFocus();
end

The rule "B to C" calls setFocus() on the agenda group "B to D", enabling its active rules to fire, which
then enables the rule "B to D" to fire.

Rule "B to D" in agenda group State example

rule "B to D"
 agenda-group "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

To execute the example, run the org.drools.examples.state.StateExampleUsingAgendaGroups class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window (same as the salience
version of the State example):

Agenda group State example output in the IDE console

A finished
B finished
C finished
D finished

Dynamic facts in the State example
Another notable concept in this State example is the use of dynamic facts, based on objects that
implement a PropertyChangeListener object. In order for the decision engine to see and react to
changes of fact properties, the application must notify the decision engine that changes occurred. You

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

315

can configure this communication explicitly in the rules by using the modify statement, or implicitly by
specifying that the facts implement the PropertyChangeSupport interface as defined by the
JavaBeans specification.

This example demonstrates how to use the PropertyChangeSupport interface to avoid the need for
explicit modify statements in the rules. To make use of this interface, ensure that your facts implement
PropertyChangeSupport in the same way that the class org.drools.example.State implements it, and
then use the following code in the DRL rule file to configure the decision engine to listen for property
changes on those facts:

Declaring a dynamic fact

declare type State
 @propertyChangeSupport
end

When you use PropertyChangeListener objects, each setter must implement additional code for the
notification. For example, the following setter for state is in the class org.drools.examples:

Setter example with PropertyChangeSupport

21.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT
RESOLUTION)

The Fibonacci example decision set demonstrates how the decision engine uses recursion to resolve
execution conflicts for rules in a sequence. The example focuses on resolving conflicts through salience
values that you can define in rules.

The following is an overview of the Fibonacci example:

Name: fibonacci

Main class: org.drools.examples.fibonacci.FibonacciExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.fibonacci.Fibonacci.drl (in src/main/resources)

Objective: Demonstrates recursion and conflict resolution through rule salience

The Fibonacci Numbers form a sequence starting with 0 and 1. The next Fibonacci number is obtained by
adding the two preceding Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, and so on.

The Fibonacci example uses the single fact class Fibonacci with the following two fields:

public void setState(final int newState) {
 int oldState = this.state;
 this.state = newState;
 this.changes.firePropertyChange("state",
 oldState,
 newState);
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

316

sequence

value

The sequence field indicates the position of the object in the Fibonacci number sequence. The value
field shows the value of that Fibonacci object for that sequence position, where -1 indicates a value that
still needs to be computed.

Fibonacci class

To execute the example, run the org.drools.examples.fibonacci.FibonacciExample class as a Java
application in your IDE.

After the execution, the following output appears in the IDE console window:

Fibonacci example output in the IDE console

recurse for 50
recurse for 49
recurse for 48
recurse for 47
...
recurse for 5
recurse for 4
recurse for 3
recurse for 2
1 == 1
2 == 1
3 == 2
4 == 3
5 == 5
6 == 8
...
47 == 2971215073
48 == 4807526976
49 == 7778742049
50 == 12586269025

To achieve this behavior in Java, the example inserts a single Fibonacci object with a sequence field of
50. The example then uses a recursive rule to insert the other 49 Fibonacci objects.

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example

public static class Fibonacci {
 private int sequence;
 private long value;

 public Fibonacci(final int sequence) {
 this.sequence = sequence;
 this.value = -1;
 }

 ... setters and getters go here...
}

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

317

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example
uses the MVEL dialect modify keyword to enable a block setter action and notify the decision engine of
changes.

Fibonacci example execution

This example uses the following three rules:

"Recurse"

"Bootstrap"

"Calculate"

The rule "Recurse" matches each asserted Fibonacci object with a value of -1, creating and asserting a
new Fibonacci object with a sequence of one less than the currently matched object. Each time a
Fibonacci object is added while the one with a sequence field equal to 1 does not exist, the rule re-
matches and fires again. The not conditional element is used to stop the rule matching once you have all
50 Fibonacci objects in memory. The rule also has a salience value because you need to have all 50
Fibonacci objects asserted before you execute the "Bootstrap" rule.

Rule "Recurse"

rule "Recurse"
 salience 10
 when
 f : Fibonacci (value == -1)
 not (Fibonacci (sequence == 1))
 then
 insert(new Fibonacci(f.sequence - 1));
 System.out.println("recurse for " + f.sequence);
end

To better understand the execution flow of this example, you can load the audit log file from
target/fibonacci.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit View shows the original assertion of the Fibonacci object with a sequence
field of 50, done from Java code. From there on, the Audit View shows the continual recursion of the
rule, where each asserted Fibonacci object causes the "Recurse" rule to become activated and to fire
again.

Figure 21.7. Rule "Recurse" in Audit View

ksession.insert(new Fibonacci(50));
ksession.fireAllRules();

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

318

Figure 21.7. Rule "Recurse" in Audit View

When a Fibonacci object with a sequence field of 2 is asserted, the "Bootstrap" rule is matched and
activated along with the "Recurse" rule. Notice the multiple restrictions on field sequence that test for
equality with 1 or 2:

Rule "Bootstrap"

rule "Bootstrap"
 when
 f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-restriction
 then
 modify (f){ value = 1 };
 System.out.println(f.sequence + " == " + f.value);
end

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda.
The "Bootstrap" rule does not fire yet because the "Recurse" rule has a higher salience value.

Figure 21.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

319

Figure 21.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

When a Fibonacci object with a sequence of 1 is asserted, the "Bootstrap" rule is matched again,
causing two activations for this rule. The "Recurse" rule does not match and activate because the not
conditional element stops the rule matching as soon as a Fibonacci object with a sequence of 1 exists.

Figure 21.9. Rules "Recurse" and "Bootstrap" in Agenda View 2

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

320

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have
two Fibonacci objects with values not equal to -1, the "Calculate" rule is able to match.

At this point in the example, nearly 50 Fibonacci objects exist in the working memory. You need to
select a suitable triple to calculate each of their values in turn. If you use three Fibonacci patterns in a
rule without field constraints to confine the possible cross products, the result would be 50x49x48
possible combinations, leading to about 125,000 possible rule firings, most of them incorrect.

The "Calculate" rule uses field constraints to evaluate the three Fibonacci patterns in the correct order.
This technique is called cross-product matching.

The first pattern finds any Fibonacci object with a value != -1 and binds both the pattern and the field.
The second Fibonacci object does the same thing, but adds an additional field constraint to ensure that
its sequence is greater by one than the Fibonacci object bound to f1. When this rule fires for the first
time, you know that only sequences 1 and 2 have values of 1, and the two constraints ensure that f1
references sequence 1 and that f2 references sequence 2.

The final pattern finds the Fibonacci object with a value equal to -1 and with a sequence one greater
than f2.

At this point in the example, three Fibonacci objects are correctly selected from the available cross
products, and you can calculate the value for the third Fibonacci object that is bound to f3.

Rule "Calculate"

rule "Calculate"
 when
 // Bind f1 and s1.
 f1 : Fibonacci(s1 : sequence, value != -1)
 // Bind f2 and v2, refer to bound variable s1.
 f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1)
 // Bind f3 and s3, alternative reference of f2.sequence.
 f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)
 then
 // Note the various referencing techniques.
 modify (f3) { value = f1.value + v2 };
 System.out.println(s3 + " == " + f3.value);
end

The modify statement updates the value of the Fibonacci object bound to f3. This means that you now
have another new Fibonacci object with a value not equal to -1, which allows the "Calculate" rule to re-
match and calculate the next Fibonacci number.

The debug view or Audit View of your IDE shows how the firing of the last "Bootstrap" rule modifies
the Fibonacci object, enabling the "Calculate" rule to match, which then modifies another Fibonacci
object that enables the "Calculate" rule to match again. This process continues until the value is set for
all Fibonacci objects.

Figure 21.10. Rules in Audit View

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

321

Figure 21.10. Rules in Audit View

21.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

The Pricing example decision set demonstrates how to use a spreadsheet decision table for calculating
the retail cost of an insurance policy in tabular format instead of directly in a DRL file.

The following is an overview of the Pricing example:

Name: decisiontable

Main class: org.drools.examples.decisiontable.PricingRuleDTExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.decisiontable.ExamplePolicyPricing.xls (in
src/main/resources)

Objective: Demonstrates use of spreadsheet decision tables to define rules

Spreadsheet decision tables are XLS or XLSX spreadsheets that contain business rules defined in a
tabular format. You can include spreadsheet decision tables with standalone Red Hat Decision Manager
projects or upload them to projects in Business Central. Each row in a decision table is a rule, and each
column is a condition, an action, or another rule attribute. After you create and upload your decision
tables into your Red Hat Decision Manager project, the rules you defined are compiled into Drools Rule
Language (DRL) rules as with all other rule assets.

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

322

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a
discount for a car driver applying for a specific type of insurance policy. The driver’s age and history and
the policy type all contribute to calculate the basic premium, and additional rules calculate potential
discounts for which the driver might be eligible.

To execute the example, run the org.drools.examples.decisiontable.PricingRuleDTExample class as
a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Cheapest possible
BASE PRICE IS: 120
DISCOUNT IS: 20

The code to execute the example follows the typical execution pattern: the rules are loaded, the facts
are inserted, and a stateless KIE session is created. The difference in this example is that the rules are
defined in an ExamplePolicyPricing.xls file instead of a DRL file or other source. The spreadsheet file
is loaded into the decision engine using templates and DRL rules.

Spreadsheet decision table setup
The ExamplePolicyPricing.xls spreadsheet contains two decision tables in the first tab:

Base pricing rules

Promotional discount rules

As the example spreadsheet demonstrates, you can use only the first tab of a spreadsheet to create
decision tables, but multiple tables can be within a single tab. Decision tables do not necessarily follow
top-down logic, but are more of a means to capture data resulting in rules. The evaluation of the rules is
not necessarily in the given order, because all of the normal mechanics of the decision engine still apply.
This is why you can have multiple decision tables in the same tab of a spreadsheet.

The decision tables are executed through the corresponding rule template files BasePricing.drt and
PromotionalPricing.drt. These template files reference the decision tables through their template
parameter and directly reference the various headers for the conditions and actions in the decision
tables.

BasePricing.drt rule template file

template header
age[]
profile
priorClaims
policyType
base
reason

package org.drools.examples.decisiontable;

template "Pricing bracket"
age
policyType
base

rule "Pricing bracket_@{row.rowNumber}"
 when

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

323

 Driver(age >= @{age0}, age <= @{age1}
 , priorClaims == "@{priorClaims}"
 , locationRiskProfile == "@{profile}"
)
 policy: Policy(type == "@{policyType}")
 then
 policy.setBasePrice(@{base});
 System.out.println("@{reason}");
end
end template

PromotionalPricing.drt rule template file

template header
age[]
priorClaims
policyType
discount

package org.drools.examples.decisiontable;

template "discounts"
age
priorClaims
policyType
discount

rule "Discounts_@{row.rowNumber}"
 when
 Driver(age >= @{age0}, age <= @{age1}, priorClaims == "@{priorClaims}")
 policy: Policy(type == "@{policyType}")
 then
 policy.applyDiscount(@{discount});
end
end template

The rules are executed through the kmodule.xml reference of the KIE Session
DTableWithTemplateKB, which specifically mentions the ExamplePolicyPricing.xls spreadsheet and
is required for successful execution of the rules. This execution method enables you to execute the rules
as a standalone unit (as in this example) or to include the rules in a packaged knowledge JAR (KJAR)
file, so that the spreadsheet is packaged along with the rules for execution.

The following section of the kmodule.xml file is required for the execution of the rules and spreadsheet
to work successfully:

 <kbase name="DecisionTableKB" packages="org.drools.examples.decisiontable">
 <ksession name="DecisionTableKS" type="stateless"/>
 </kbase>

 <kbase name="DTableWithTemplateKB" packages="org.drools.examples.decisiontable-template">
 <ruleTemplate dtable="org/drools/examples/decisiontable-
template/ExamplePolicyPricingTemplateData.xls"
 template="org/drools/examples/decisiontable-template/BasePricing.drt"
 row="3" col="3"/>
 <ruleTemplate dtable="org/drools/examples/decisiontable-

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

324

As an alternative to executing the decision tables using rule template files, you can use the
DecisionTableConfiguration object and specify an input spreadsheet as the input type, such as
DecisionTableInputType.xls:

The Pricing example uses two fact types:

Driver

Policy.

The example sets the default values for both facts in their respective Java classes Driver.java and
Policy.java. The Driver is 30 years old, has had no prior claims, and currently has a risk profile of LOW.
The Policy that the driver is applying for is COMPREHENSIVE.

In any decision table, each row is considered a different rule and each column is a condition or an action.
Each row is evaluated in a decision table unless the agenda is cleared upon execution.

Decision table spreadsheets (XLS or XLSX) require two key areas that define rule data:

A RuleSet area

A RuleTable area

The RuleSet area of the spreadsheet defines elements that you want to apply globally to all rules in the
same package (not only the spreadsheet), such as a rule set name or universal rule attributes. The
RuleTable area defines the actual rules (rows) and the conditions, actions, and other rule attributes
(columns) that constitute that rule table within the specified rule set. A decision table spreadsheet can
contain multiple RuleTable areas, but only one RuleSet area.

Figure 21.11. Decision table configuration

template/ExamplePolicyPricingTemplateData.xls"
 template="org/drools/examples/decisiontable-template/PromotionalPricing.drt"
 row="18" col="3"/>
 <ksession name="DTableWithTemplateKS"/>
 </kbase>

DecisionTableConfiguration dtableconfiguration =
 KnowledgeBuilderFactory.newDecisionTableConfiguration();
 dtableconfiguration.setInputType(DecisionTableInputType.XLS);

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 Resource xlsRes = ResourceFactory.newClassPathResource("ExamplePolicyPricing.xls",
 getClass());
 kbuilder.add(xlsRes,
 ResourceType.DTABLE,
 dtableconfiguration);

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

325

Figure 21.11. Decision table configuration

The RuleTable area also defines the objects to which the rule attributes apply, in this case Driver and
Policy, followed by constraints on the objects. For example, the Driver object constraint that defines
the Age Bracket column is age >= $1, age <= $2, where the comma-separated range is defined in the
table column values, such as 18,24.

Base pricing rules
The Base pricing rules decision table in the Pricing example evaluates the age, risk profile, number of
claims, and policy type of the driver and produces the base price of the policy based on these
conditions.

Figure 21.12. Base price calculation

The Driver attributes are defined in the following table columns:

Age Bracket: The age bracket has a definition for the condition age >=$1, age <=$2, which
defines the condition boundaries for the driver’s age. This condition column highlights the use of
$1 and $2, which is comma delimited in the spreadsheet. You can write these values as 18,24 or
18, 24 and both formats work in the execution of the business rules.

Location risk profile: The risk profile is a string that the example program passes always as

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

326

Location risk profile: The risk profile is a string that the example program passes always as
LOW but can be changed to reflect MED or HIGH.

Number of prior claims: The number of claims is defined as an integer that the condition
column must exactly equal to trigger the action. The value is not a range, only exact matches.

The Policy of the decision table is used in both the conditions and the actions of the rule and has
attributes defined in the following table columns:

Policy type applying for: The policy type is a condition that is passed as a string that defines
the type of coverage: COMPREHENSIVE, FIRE_THEFT, or THIRD_PARTY.

Base $ AUD: The basePrice is defined as an ACTION that sets the price through the constraint
policy.setBasePrice($param); based on the spreadsheet cells corresponding to this value.
When you execute the corresponding DRL rule for this decision table, the then portion of the
rule executes this action statement on the true conditions matching the facts and sets the base
price to the corresponding value.

Record Reason: When the rule successfully executes, this action generates an output message
to the System.out console reflecting which rule fired. This is later captured in the application
and printed.

The example also uses the first column on the left to categorize rules. This column is for annotation only
and has no affect on rule execution.

Promotional discount rules
The Promotional discount rules decision table in the Pricing example evaluates the age, number of
prior claims, and policy type of the driver to generate a potential discount on the price of the insurance
policy.

Figure 21.13. Discount calculation

This decision table contains the conditions for the discount for which the driver might be eligible. Similar
to the base price calculation, this table evaluates the Age, Number of prior claims of the driver, and
the Policy type applying for to determine a Discount % rate to be applied. For example, if the driver is
30 years old, has no prior claims, and is applying for a COMPREHENSIVE policy, the driver is given a
discount of 20 percent.

21.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL
VARIABLES, CALLBACKS, AND GUI INTEGRATION)

The Pet Store example decision set demonstrates how to use agenda groups and global variables in
rules and how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in this
case a Swing-based desktop application. The example also demonstrates how to use callbacks to
interact with a running decision engine to update the GUI based on changes in the working memory at
run time.

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

327

The following is an overview of the Pet Store example:

Name: petstore

Main class: org.drools.examples.petstore.PetStoreExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.petstore.PetStore.drl (in src/main/resources)

Objective: Demonstrates rule agenda groups, global variables, callbacks, and GUI integration

In the Pet Store example, the sample PetStoreExample.java class defines the following principal
classes (in addition to several classes to handle Swing events):

Petstore contains the main() method.

PetStoreUI is responsible for creating and displaying the Swing-based GUI. This class contains
several smaller classes, mainly for responding to various GUI events, such as user mouse clicks.

TableModel holds the table data. This class is essentially a JavaBean that extends the Swing
class AbstractTableModel.

CheckoutCallback enables the GUI to interact with the rules.

Ordershow keeps the items that you want to buy.

Purchase stores details of the order and the products that you are buying.

Product is a JavaBean containing details of the product available for purchase and its price.

Much of the Java code in this example is either plain JavaBean or Swing based. For more information
about Swing components, see the Java tutorial on Creating a GUI with JFC/Swing .

Rule execution behavior in the Pet Store example
Unlike other example decision sets where the facts are asserted and fired immediately, the Pet Store
example does not execute the rules until more facts are gathered based on user interaction. The
example executes rules through a PetStoreUI object, created by a constructor, that accepts the Vector
object stock for collecting the products. The example then uses an instance of the CheckoutCallback
class containing the rule base that was previously loaded.

Pet Store KIE container and fact execution setup

// KieServices is the factory for all KIE services.
KieServices ks = KieServices.Factory.get();

// Create a KIE container on the class path.
KieContainer kc = ks.getKieClasspathContainer();

// Create the stock.
Vector<Product> stock = new Vector<Product>();
stock.add(new Product("Gold Fish", 5));
stock.add(new Product("Fish Tank", 25));
stock.add(new Product("Fish Food", 2));

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

328

https://docs.oracle.com/javase/tutorial/uiswing/

The Java code that fires the rules is in the CheckoutCallBack.checkout() method. This method is
triggered when the user clicks Checkout in the UI.

Rule execution from CheckoutCallBack.checkout()

The example code passes two elements into the CheckoutCallBack.checkout() method. One element
is the handle for the JFrame Swing component surrounding the output text frame, found at the bottom
of the GUI. The second element is a list of order items, which comes from the TableModel that stores
the information from the Table area at the upper-right section of the GUI.

The for loop transforms the list of order items coming from the GUI into the Order JavaBean, also
contained in the file PetStoreExample.java.

In this case, the rule is firing in a stateless KIE session because all of the data is stored in Swing
components and is not executed until the user clicks Checkout in the UI. Each time the user clicks
Checkout, the content of the list is moved from the Swing TableModel into the KIE session working
memory and is then executed with the ksession.fireAllRules() method.

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from

// A callback is responsible for populating the working memory and for firing all rules.
PetStoreUI ui = new PetStoreUI(stock,
 new CheckoutCallback(kc));
ui.createAndShowGUI();

public String checkout(JFrame frame, List<Product> items) {
 Order order = new Order();

 // Iterate through list and add to cart.
 for (Product p: items) {
 order.addItem(new Purchase(order, p));
 }

 // Add the JFrame to the ApplicationData to allow for user interaction.

 // From the KIE container, a KIE session is created based on
 // its definition and configuration in the META-INF/kmodule.xml file.
 KieSession ksession = kcontainer.newKieSession("PetStoreKS");

 ksession.setGlobal("frame", frame);
 ksession.setGlobal("textArea", this.output);

 ksession.insert(new Product("Gold Fish", 5));
 ksession.insert(new Product("Fish Tank", 25));
 ksession.insert(new Product("Fish Food", 2));

 ksession.insert(new Product("Fish Food Sample", 0));

 ksession.insert(order);

 // Execute rules.
 ksession.fireAllRules();

 // Return the state of the cart
 return order.toString();
}

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

329

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from
the KieContainer (the example passed in this KieContainer from the CheckoutCallBack class in the
main() method). The next two calls pass in the two objects that hold the global variables in the rules: the
Swing text area and the Swing frame used for writing messages. More inserts put information on
products into the KieSession, as well as the order list. The final call is the standard fireAllRules().

Pet Store rule file imports, global variables, and Java functions
The PetStore.drl file contains the standard package and import statements to make various Java
classes available to the rules. The rule file also includes global variables to be used within the rules,
defined as frame and textArea. The global variables hold references to the Swing components JFrame
and JTextArea components that were previously passed on by the Java code that called the
setGlobal() method. Unlike standard variables in rules, which expire as soon as the rule has fired, global
variables retain their value for the lifetime of the KIE session. This means the contents of these global
variables are available for evaluation on all subsequent rules.

PetStore.drl package, imports, and global variables

The PetStore.drl file also contains two functions that the rules in the file use:

PetStore.drl Java functions

package org.drools.examples;

import org.kie.api.runtime.KieRuntime;
import org.drools.examples.petstore.PetStoreExample.Order;
import org.drools.examples.petstore.PetStoreExample.Purchase;
import org.drools.examples.petstore.PetStoreExample.Product;
import java.util.ArrayList;
import javax.swing.JOptionPane;

import javax.swing.JFrame;

global JFrame frame
global javax.swing.JTextArea textArea

function void doCheckout(JFrame frame, KieRuntime krt) {
 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to checkout?",
 "",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

 if (n == 0) {
 krt.getAgenda().getAgendaGroup("checkout").setFocus();
 }
}

function boolean requireTank(JFrame frame, KieRuntime krt, Order order, Product fishTank, int total)
{

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

330

The two functions perform the following actions:

doCheckout() displays a dialog that asks the user if she or he wants to check out. If the user
does, the focus is set to the checkout agenda group, enabling rules in that group to
(potentially) fire.

requireTank() displays a dialog that asks the user if she or he wants to buy a fish tank. If the user
does, a new fish tank Product is added to the order list in the working memory.

NOTE

For this example, all rules and functions are within the same rule file for efficiency. In a
production environment, you typically separate the rules and functions in different files or
build a static Java method and import the files using the import function, such as import
function my.package.name.hello.

Pet Store rules with agenda groups
Most of the rules in the Pet Store example use agenda groups to control rule execution. Agenda groups
allow you to partition the decision engine agenda to provide more execution control over groups of
rules. By default, all rules are in the agenda group MAIN. You can use the agenda-group attribute to
specify a different agenda group for the rule.

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

The Pet Store example uses the following agenda groups for rules:

 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to buy a tank for your " + total + " fish?",
 "Purchase Suggestion",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

 System.out.print("SUGGESTION: Would you like to buy a tank for your "
 + total + " fish? - ");

 if (n == 0) {
 Purchase purchase = new Purchase(order, fishTank);
 krt.insert(purchase);
 order.addItem(purchase);
 System.out.println("Yes");
 } else {
 System.out.println("No");
 }
 return true;
}

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

331

"init"

"evaluate"

"show items"

"checkout"

For example, the sample rule "Explode Cart" uses the "init" agenda group to ensure that it has the
option to fire and insert shopping cart items into the KIE session working memory:

Rule "Explode Cart"

// Insert each item in the shopping cart into the working memory.
rule "Explode Cart"
 agenda-group "init"
 auto-focus true
 salience 10
 when
 $order : Order(grossTotal == -1)
 $item : Purchase() from $order.items
 then
 insert($item);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show items").setFocus();
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate").setFocus();
end

This rule matches against all orders that do not yet have their grossTotal calculated. The execution
loops for each purchase item in that order.

The rule uses the following features related to its agenda group:

agenda-group "init" defines the name of the agenda group. In this case, only one rule is in the
group. However, neither the Java code nor a rule consequence sets the focus to this group, and
therefore it relies on the auto-focus attribute for its chance to fire.

auto-focus true ensures that this rule, while being the only rule in the agenda group, gets a
chance to fire when fireAllRules() is called from the Java code.

kcontext… .setFocus() sets the focus to the "show items" and "evaluate" agenda groups,
enabling their rules to fire. In practice, you loop through all items in the order, insert them into
memory, and then fire the other rules after each insertion.

The "show items" agenda group contains only one rule, "Show Items". For each purchase in the order
currently in the KIE session working memory, the rule logs details to the text area at the bottom of the
GUI, based on the textArea variable defined in the rule file.

Rule "Show Items"

rule "Show Items"
 agenda-group "show items"
 when
 $order : Order()
 $p : Purchase(order == $order)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

332

1

2

3

4

 then
 textArea.append($p.product + "\n");
end

The "evaluate" agenda group also gains focus from the "Explode Cart" rule. This agenda group
contains two rules, "Free Fish Food Sample" and "Suggest Tank", which are executed in that order.

Rule "Free Fish Food Sample"

// Free fish food sample when users buy a goldfish if they did not already buy
// fish food and do not already have a fish food sample.
rule "Free Fish Food Sample"
 agenda-group "evaluate" 1
 when
 $order : Order()
 not ($p : Product(name == "Fish Food") && Purchase(product == $p)) 2
 not ($p : Product(name == "Fish Food Sample") && Purchase(product == $p)) 3
 exists ($p : Product(name == "Gold Fish") && Purchase(product == $p)) 4
 $fishFoodSample : Product(name == "Fish Food Sample");
 then
 System.out.println("Adding free Fish Food Sample to cart");
 purchase = new Purchase($order, $fishFoodSample);
 insert(purchase);
 $order.addItem(purchase);
end

The rule "Free Fish Food Sample" fires only if all of the following conditions are true:

The agenda group "evaluate" is being evaluated in the rules execution.

User does not already have fish food.

User does not already have a free fish food sample.

User has a goldfish in the order.

If the order facts meet all of these requirements, then a new product is created (Fish Food Sample) and
is added to the order in working memory.

Rule "Suggest Tank"

// Suggest a fish tank if users buy more than five goldfish and
// do not already have a tank.
rule "Suggest Tank"
 agenda-group "evaluate"
 when
 $order : Order()
 not ($p : Product(name == "Fish Tank") && Purchase(product == $p)) 1
 ArrayList($total : size > 5) from collect(Purchase(product.name == "Gold Fish")) 2
 $fishTank : Product(name == "Fish Tank")
 then
 requireTank(frame, kcontext.getKieRuntime(), $order, $fishTank, $total);
end

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

333

1

2

The rule "Suggest Tank" fires only if the following conditions are true:

User does not have a fish tank in the order.

User has more than five fish in the order.

When the rule fires, it calls the requireTank() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to buy a fish tank. If the user does, a new fish tank Product is
added to the order list in the working memory. When the rule calls the requireTank() function, the rule
passes the frame global variable so that the function has a handle for the Swing GUI.

The "do checkout" rule in the Pet Store example has no agenda group and no when conditions, so the
rule is always executed and considered part of the default MAIN agenda group.

Rule "do checkout"

rule "do checkout"
 when
 then
 doCheckout(frame, kcontext.getKieRuntime());
end

When the rule fires, it calls the doCheckout() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to check out. If the user does, the focus is set to the
checkout agenda group, enabling rules in that group to (potentially) fire. When the rule calls the
doCheckout() function, the rule passes the frame global variable so that the function has a handle for
the Swing GUI.

NOTE

This example also demonstrates a troubleshooting technique if results are not executing
as you expect: You can remove the conditions from the when statement of a rule and
test the action in the then statement to verify that the action is performed correctly.

The "checkout" agenda group contains three rules for processing the order checkout and applying any
discounts: "Gross Total", "Apply 5% Discount", and "Apply 10% Discount".

Rules "Gross Total", "Apply 5% Discount", and "Apply 10% Discount"

rule "Gross Total"
 agenda-group "checkout"
 when
 $order : Order(grossTotal == -1)
 Number(total : doubleValue) from accumulate(Purchase($price : product.price),
 sum($price))
 then
 modify($order) { grossTotal = total }
 textArea.append("\ngross total=" + total + "\n");
end

rule "Apply 5% Discount"
 agenda-group "checkout"
 when
 $order : Order(grossTotal >= 10 && < 20)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

334

 then
 $order.discountedTotal = $order.grossTotal * 0.95;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

rule "Apply 10% Discount"
 agenda-group "checkout"
 when
 $order : Order(grossTotal >= 20)
 then
 $order.discountedTotal = $order.grossTotal * 0.90;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

If the user has not already calculated the gross total, the Gross Total accumulates the product prices
into a total, puts this total into the KIE session, and displays it through the Swing JTextArea using the
textArea global variable.

If the gross total is between 10 and 20 (currency units), the "Apply 5% Discount" rule calculates the
discounted total, adds it to the KIE session, and displays it in the text area.

If the gross total is not less than 20, the "Apply 10% Discount" rule calculates the discounted total,
adds it to the KIE session, and displays it in the text area.

Pet Store example execution
Similar to other Red Hat Decision Manager decision examples, you execute the Pet Store example by
running the org.drools.examples.petstore.PetStoreExample class as a Java application in your IDE.

When you execute the Pet Store example, the Pet Store Demo GUI window appears. This window
displays a list of available products (upper left), an empty list of selected products (upper right),
Checkout and Reset buttons (middle), and an empty system messages area (bottom).

Figure 21.14. Pet Store example GUI after launch

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

335

Figure 21.14. Pet Store example GUI after launch

The following events occurred in this example to establish this execution behavior:

1. The main() method has run and loaded the rule base but has not yet fired the rules. So far, this is
the only code in connection with rules that has been run.

2. A new PetStoreUI object has been created and given a handle for the rule base, for later use.

3. Various Swing components have performed their functions, and the initial UI screen is displayed
and waits for user input.

You can click various products from the list to explore the UI setup:

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

336

Figure 21.15. Explore the Pet Store example GUI

No rules code has been fired yet. The UI uses Swing code to detect user mouse clicks and add selected
products to the TableModel object for display in the upper-right corner of the UI. This example
illustrates the Model-View-Controller design pattern.

When you click Checkout, the rules are then fired in the following way:

1. Method CheckOutCallBack.checkout() is called (eventually) by the Swing class waiting for a
user to click Checkout. This inserts the data from the TableModel object (upper-right corner of
the UI) into the KIE session working memory. The method then fires the rules.

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

337

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule
loops through all of the products in the cart, ensures that the products are in the working
memory, and then gives the "show Items" and "evaluate" agenda groups the option to fire.
The rules in these groups add the contents of the cart to the text area (bottom of the UI),
evaluate if you are eligible for free fish food, and determine whether to ask if you want to buy a
fish tank.

Figure 21.16. Fish tank qualification

3. The "do checkout" rule is the next to fire because no other agenda group currently has focus
and because it is part of the default MAIN agenda group. This rule always calls the
doCheckout() function, which asks you if you want to check out.

4. The doCheckout() function sets the focus to the "checkout" agenda group, giving the rules in
that group the option to fire.

5. The rules in the "checkout" agenda group display the contents of the cart and apply the
appropriate discount.

6. Swing then waits for user input to either select more products (and cause the rules to fire again)
or to close the UI.

Figure 21.17. Pet Store example GUI after all rules have fired

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

338

Figure 21.17. Pet Store example GUI after all rules have fired

You can add more System.out calls to demonstrate this flow of events in your IDE console:

System.out output in the IDE console

Adding free Fish Food Sample to cart
SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

21.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH
MAINTENANCE AND SALIENCE)

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

339

The Honest Politician example decision set demonstrates the concept of truth maintenance with logical
insertions and the use of salience in rules.

The following is an overview of the Honest Politician example:

Name: honestpolitician

Main class: org.drools.examples.honestpolitician.HonestPoliticianExample (in
src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.honestpolitician.HonestPolitician.drl (in
src/main/resources)

Objective: Demonstrates the concept of truth maintenance based on the logical insertion of
facts and the use of salience in rules

The basic premise of the Honest Politician example is that an object can only exist while a statement is
true. A rule consequence can logically insert an object with the insertLogical() method. This means the
object remains in the KIE session working memory as long as the rule that logically inserted it remains
true. When the rule is no longer true, the object is automatically retracted.

In this example, rule execution causes a group of politicians to change from being honest to being
dishonest as a result of a corrupt corporation. As each politician is evaluated, they start out with their
honesty attribute being set to true, but a rule fires that makes the politicians no longer honest. As they
switch their state from being honest to dishonest, they are then removed from the working memory. The
rule salience notifies the decision engine how to prioritize any rules that have a salience defined for
them, otherwise utilizing the default salience value of 0. Rules with a higher salience value are given
higher priority when ordered in the activation queue.

Politician and Hope classes
The sample class Politician in the example is configured for an honest politician. The Politician class is
made up of a String item name and a Boolean item honest:

Politician class

The Hope class determines if a Hope object exists. This class has no meaningful members, but is present
in the working memory as long as society has hope.

Hope class

public class Politician {
 private String name;
 private boolean honest;
 ...
}

public class Hope {

 public Hope() {

 }
 }

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

340

Rule definitions for politician honesty
In the Honest Politician example, when at least one honest politician exists in the working memory, the
"We have an honest Politician" rule logically inserts a new Hope object. As soon as all politicians
become dishonest, the Hope object is automatically retracted. This rule has a salience attribute with a
value of 10 to ensure that it fires before any other rule, because at that stage the "Hope is Dead" rule
is true.

Rule "We have an honest politician"

rule "We have an honest Politician"
 salience 10
 when
 exists(Politician(honest == true))
 then
 insertLogical(new Hope());
end

As soon as a Hope object exists, the "Hope Lives" rule matches and fires. This rule also has a salience
value of 10 so that it takes priority over the "Corrupt the Honest" rule.

Rule "Hope Lives"

rule "Hope Lives"
 salience 10
 when
 exists(Hope())
 then
 System.out.println("Hurrah!!! Democracy Lives");
end

Initially, four honest politicians exist so this rule has four activations, all in conflict. Each rule fires in turn,
corrupting each politician so that they are no longer honest. When all four politicians have been
corrupted, no politicians have the property honest == true. The rule "We have an honest Politician" is
no longer true and the object it logically inserted (due to the last execution of new Hope()) is
automatically retracted.

Rule "Corrupt the Honest"

rule "Corrupt the Honest"
 when
 politician : Politician(honest == true)
 exists(Hope())
 then
 System.out.println("I'm an evil corporation and I have corrupted " + politician.getName());
 modify (politician) { honest = false };
end

With the Hope object automatically retracted through the truth maintenance system, the conditional
element not applied to Hope is no longer true so that the "Hope is Dead" rule matches and fires.

Rule "Hope is Dead"

rule "Hope is Dead"
 when

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

341

 not(Hope())
 then
 System.out.println("We are all Doomed!!! Democracy is Dead");
end

Example execution and audit trail
In the HonestPoliticianExample.java class, the four politicians with the honest state set to true are
inserted for evaluation against the defined business rules:

HonestPoliticianExample.java class execution

To execute the example, run the org.drools.examples.honestpolitician.HonestPoliticianExample
class as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

Hurrah!!! Democracy Lives
I'm an evil corporation and I have corrupted President of Umpa Lumpa
I'm an evil corporation and I have corrupted Prime Minster of Cheeseland
I'm an evil corporation and I have corrupted Tsar of Pringapopaloo
I'm an evil corporation and I have corrupted Omnipotence Om
We are all Doomed!!! Democracy is Dead

The output shows that, while there is at least one honest politician, democracy lives. However, as each
politician is corrupted by some corporation, all politicians become dishonest, and democracy is dead.

To better understand the execution flow of this example, you can modify the
HonestPoliticianExample.java class to include a DebugRuleRuntimeEventListener listener and an
audit logger to view execution details:

HonestPoliticianExample.java class with an audit logger

public static void execute(KieContainer kc) {
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 ksession.fireAllRules();

 ksession.dispose();
 }

package org.drools.examples.honestpolitician;

import org.kie.api.KieServices;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

342

1

2

3

4

Adds to your imports the packages that handle the DebugAgendaEventListener and
DebugRuleRuntimeEventListener

Creates a KieServices Factory and a ks element to produce the logs because this audit log is not
available at the KieContainer level

Modifies the execute method to use both KieServices and KieContainer

Modifies the execute method to pass in KieServices in addition to the KieContainer

import org.kie.api.event.rule.DebugAgendaEventListener; 1
import org.kie.api.event.rule.DebugRuleRuntimeEventListener;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class HonestPoliticianExample {

 /**
 * @param args
 */
 public static void main(final String[] args) {
 KieServices ks = KieServices.Factory.get(); 2
 //ks = KieServices.Factory.get();
 KieContainer kc = KieServices.Factory.get().getKieClasspathContainer();
 System.out.println(kc.verify().getMessages().toString());
 //execute(kc);
 execute(ks, kc); 3
 }

 public static void execute(KieServices ks, KieContainer kc) { 4
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 // The application can also setup listeners 5
 ksession.addEventListener(new DebugAgendaEventListener());
 ksession.addEventListener(new DebugRuleRuntimeEventListener());

 // Set up a file-based audit logger.
 ks.getLoggers().newFileLogger(ksession, "./target/honestpolitician"); 6

 ksession.fireAllRules();

 ksession.dispose();
 }

}

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

343

5

6

Creates the listeners

Builds the log that can be passed into the debug view or Audit View or your IDE after executing of
the rules

When you run the Honest Politician with this modified logging capability, you can load the audit log file
from target/honestpolitician.log into your IDE debug view or Audit View, if available (for example, in
Window → Show View in some IDEs).

In this example, the Audit View shows the flow of executions, insertions, and retractions as defined in
the example classes and rules:

Figure 21.18. Honest Politician example Audit View

When the first politician is inserted, two activations occur. The rule "We have an honest Politician" is
activated only one time for the first inserted politician because it uses an exists conditional element,
which matches when at least one politician is inserted. The rule "Hope is Dead" is also activated at this
stage because the Hope object is not yet inserted. The rule "We have an honest Politician" fires first
because it has a higher salience value than the rule "Hope is Dead", and inserts the Hope object
(highlighted in green). The insertion of the Hope object activates the rule "Hope Lives" and
deactivates the rule "Hope is Dead". The insertion also activates the rule "Corrupt the Honest" for
each inserted honest politician. The rule "Hope Lives" is executed and prints "Hurrah!!! Democracy
Lives".

Next, for each politician, the rule "Corrupt the Honest" fires, printing "I’m an evil corporation and I
have corrupted X", where X is the name of the politician, and modifies the politician honesty value to
false. When the last honest politician is corrupted, Hope is automatically retracted by the truth
maintenance system (highlighted in blue). The green highlighted area shows the origin of the currently
selected blue highlighted area. After the Hope fact is retracted, the rule "Hope is dead" fires, printing
"We are all Doomed!!! Democracy is Dead".

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

344

21.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN
MATCHING, CALLBACKS, AND GUI INTEGRATION)

The Sudoku example decision set, based on the popular number puzzle Sudoku, demonstrates how to
use rules in Red Hat Decision Manager to find a solution in a large potential solution space based on
various constraints. This example also shows how to integrate Red Hat Decision Manager rules into a
graphical user interface (GUI), in this case a Swing-based desktop application, and how to use callbacks
to interact with a running decision engine to update the GUI based on changes in the working memory
at run time.

The following is an overview of the Sudoku example:

Name: sudoku

Main class: org.drools.examples.sudoku.SudokuExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule files: org.drools.examples.sudoku.*.drl (in src/main/resources)

Objective: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each
column, each row, and each of the nine 3x3 zones contains the digits from 1 to 9 only one time. The
puzzle setter provides a partially completed grid and the puzzle solver’s task is to complete the grid with
these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number, it must be
unique in its particular 3x3 zone, row, and column. This Sudoku example decision set uses Red Hat
Decision Manager rules to solve Sudoku puzzles from a range of difficulty levels, and to attempt to
resolve flawed puzzles that contain invalid entries.

Sudoku example execution and interaction
Similar to other Red Hat Decision Manager decision examples, you execute the Sudoku example by
running the org.drools.examples.sudoku.SudokuExample class as a Java application in your IDE.

When you execute the Sudoku example, the Drools Sudoku Example GUI window appears. This
window contains an empty grid, but the program comes with various grids stored internally that you can
load and solve.

Click File → Samples → Simple to load one of the examples. Notice that all buttons are disabled until a
grid is loaded.

Figure 21.19. Sudoku example GUI after launch

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

345

Figure 21.19. Sudoku example GUI after launch

When you load the Simple example, the grid is filled according to the puzzle’s initial state.

Figure 21.20. Sudoku example GUI after loading Simple sample

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

346

Figure 21.20. Sudoku example GUI after loading Simple sample

Choose from the following options:

Click Solve to fire the rules defined in the Sudoku example that fill out the remaining values and
that make the buttons inactive again.

Figure 21.21. Simple sample solved

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

347

Figure 21.21. Simple sample solved

Click Step to see the next digit found by the rule set. The console window in your IDE displays
detailed information about the rules that are executing to solve the step.

Step execution output in the IDE console

single 8 at [0,1]
column elimination due to [1,2]: remove 9 from [4,2]
hidden single 9 at [1,2]
row elimination due to [2,8]: remove 7 from [2,4]
remove 6 from [3,8] due to naked pair at [3,2] and [3,7]
hidden pair in row at [4,6] and [4,4]

Click Dump to see the state of the grid, with cells showing either the established value or the
remaining possibilities.

Dump execution output in the IDE console

 Col: 0 Col: 1 Col: 2 Col: 3 Col: 4 Col: 5 Col: 6 Col: 7 Col: 8
Row 0: 123456789 --- 5 --- --- 6 --- --- 8 --- 123456789 --- 1 --- --- 9 --- --- 4 ---
123456789
Row 1: --- 9 --- 123456789 123456789 --- 6 --- 123456789 --- 5 --- 123456789
123456789 --- 3 ---
Row 2: --- 7 --- 123456789 123456789 --- 4 --- --- 9 --- --- 3 --- 123456789 123456789
--- 8 ---

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

348

Row 3: --- 8 --- --- 9 --- --- 7 --- 123456789 --- 4 --- 123456789 --- 6 --- --- 3 --- --- 5 ---
Row 4: 123456789 123456789 --- 3 --- --- 9 --- 123456789 --- 6 --- --- 8 --- 123456789
123456789
Row 5: --- 4 --- --- 6 --- --- 5 --- 123456789 --- 8 --- 123456789 --- 2 --- --- 9 --- --- 1 ---
Row 6: --- 5 --- 123456789 123456789 --- 2 --- --- 6 --- --- 9 --- 123456789 123456789
--- 7 ---
Row 7: --- 6 --- 123456789 123456789 --- 5 --- 123456789 --- 4 --- 123456789
123456789 --- 9 ---
Row 8: 123456789 --- 4 --- --- 9 --- --- 7 --- 123456789 --- 8 --- --- 3 --- --- 5 ---
123456789

The Sudoku example includes a deliberately broken sample file that the rules defined in the example can
resolve.

Click File → Samples → !DELIBERATELY BROKEN! to load the broken sample. The grid starts with
some issues, for example, the value 5 appears two times in the first row, which is not allowed.

Figure 21.22. Broken Sudoku example initial state

Click Solve to apply the solving rules to this invalid grid. The associated solving rules in the Sudoku
example detect the issues in the sample and attempts to solve the puzzle as far as possible. This
process does not complete and leaves some cells empty.

The solving rule activity is displayed in the IDE console window:

Detected issues in the broken sample

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

349

cell [0,8]: 5 has a duplicate in row 0
cell [0,0]: 5 has a duplicate in row 0
cell [6,0]: 8 has a duplicate in col 0
cell [4,0]: 8 has a duplicate in col 0
Validation complete.

Figure 21.23. Broken sample solution attempt

The sample Sudoku files labeled Hard are more complex and the solving rules might not be able to solve
them. The unsuccessful solution attempt is displayed in the IDE console window:

Hard sample unresolved

Validation complete.
...
Sorry - can't solve this grid.

The rules that work to solve the broken sample implement standard solving techniques based on the
sets of values that are still candidates for a cell. For example, if a set contains a single value, then this is
the value for the cell. For a single occurrence of a value in one of the groups of nine cells, the rules insert
a fact of type Setting with the solution value for some specific cell. This fact causes the elimination of
this value from all other cells in any of the groups the cell belongs to and the value is retracted.

Other rules in the example reduce the permissible values for some cells. The rules "naked pair",
"hidden pair in row", "hidden pair in column", and "hidden pair in square" eliminate possibilities but
do not establish solutions. The rules "X-wings in rows", "`X-wings in columns"`, "intersection removal

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

350

row", and "intersection removal column" perform more sophisticated eliminations.

Sudoku example classes
The package org.drools.examples.sudoku.swing contains the following core set of classes that
implement a framework for Sudoku puzzles:

The SudokuGridModel class defines an interface that is implemented to store a Sudoku puzzle
as a 9x9 grid of Cell objects.

The SudokuGridView class is a Swing component that can visualize any implementation of the
SudokuGridModel class.

The SudokuGridEvent and SudokuGridListener classes communicate state changes between
the model and the view. Events are fired when a cell value is resolved or changed.

The SudokuGridSamples class provides partially filled Sudoku puzzles for demonstration
purposes.

NOTE

This package does not have any dependencies on Red Hat Decision Manager libraries.

The package org.drools.examples.sudoku contains the following core set of classes that implement
the elementary Cell object and its various aggregations:

The CellFile class, with subtypes CellRow, CellCol, and CellSqr, all of which are subtypes of the
CellGroup class.

The Cell and CellGroup subclasses of SetOfNine, which provides a property free with the type
Set<Integer>. For a Cell class, the set represents the individual candidate set. For a CellGroup
class, the set is the union of all candidate sets of its cells (the set of digits that still need to be
allocated).
In the Sudoku example are 81 Cell and 27 CellGroup objects and a linkage provided by the Cell
properties cellRow, cellCol, and cellSqr, and by the CellGroup property cells (a list of Cell
objects). With these components, you can write rules that detect the specific situations that
permit the allocation of a value to a cell or the elimination of a value from some candidate set.

The Setting class is used to trigger the operations that accompany the allocation of a value. The
presence of a Setting fact is used in all rules that detect a new situation in order to avoid
reactions to inconsistent intermediary states.

The Stepping class is used in a low priority rule to execute an emergency halt when a "Step"
does not terminate regularly. This behavior indicates that the program cannot solve the puzzle.

The main class org.drools.examples.sudoku.SudokuExample implements a Java application
combining all of these components.

Sudoku validation rules (validate.drl)
The validate.drl file in the Sudoku example contains validation rules that detect duplicate numbers in
cell groups. They are combined in a "validate" agenda group that enables the rules to be explicitly
activated after a user loads the puzzle.

The when conditions of the three rules "duplicate in cell … " all function in the following ways:

The first condition in the rule locates a cell with an allocated value.

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

351

The second condition in the rule pulls in any of the three cell groups to which the cell belongs.

The final condition finds a cell (other than the first one) with the same value as the first cell and
in the same row, column, or square, depending on the rule.

Rules "duplicate in cell …"

rule "duplicate in cell row"
 when
 $c: Cell($v: value != null)
 $cr: CellRow(cells contains $c)
 exists Cell(this != $c, value == $v, cellRow == $cr)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in row " + $cr.getNumber());
end

rule "duplicate in cell col"
 when
 $c: Cell($v: value != null)
 $cc: CellCol(cells contains $c)
 exists Cell(this != $c, value == $v, cellCol == $cc)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in col " + $cc.getNumber());
end

rule "duplicate in cell sqr"
 when
 $c: Cell($v: value != null)
 $cs: CellSqr(cells contains $c)
 exists Cell(this != $c, value == $v, cellSqr == $cs)
 then
 System.out.println("cell " + $c.toString() + " has duplicate in its square of nine.");
end

The rule "terminate group" is the last to fire. This rule prints a message and stops the sequence.

Rule "terminate group"

rule "terminate group"
 salience -100
 when
 then
 System.out.println("Validation complete.");
 drools.halt();
end

Sudoku solving rules (sudoku.drl)
The sudoku.drl file in the Sudoku example contains three types of rules: one group handles the
allocation of a number to a cell, another group detects feasible allocations, and the third group
eliminates values from candidate sets.

The rules "set a value", "eliminate a value from Cell", and "retract setting" depend on the presence
of a Setting object. The first rule handles the assignment to the cell and the operations for removing the
value from the free sets of the three groups of the cell. This group also reduces a counter that, when
zero, returns control to the Java application that has called fireUntilHalt().

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

352

The purpose of the rule "eliminate a value from Cell" is to reduce the candidate lists of all cells that are
related to the newly assigned cell. Finally, when all eliminations have been made, the rule "retract
setting" retracts the triggering Setting fact.

Rules "set a value", "eliminate a value from a Cell", and "retract setting"

// A Setting object is inserted to define the value of a Cell.
// Rule for updating the cell and all cell groups that contain it
rule "set a value"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // A matching Cell, with no value set
 $c: Cell(rowNo == $rn, colNo == $cn, value == null,
 $cr: cellRow, $cc: cellCol, $cs: cellSqr)

 // Count down
 $ctr: Counter($count: count)
 then
 // Modify the Cell by setting its value.
 modify($c){ setValue($v) }
 // System.out.println("set cell " + $c.toString());
 modify($cr){ blockValue($v) }
 modify($cc){ blockValue($v) }
 modify($cs){ blockValue($v) }
 modify($ctr){ setCount($count - 1) }
end

// Rule for removing a value from all cells that are siblings
// in one of the three cell groups
rule "eliminate a value from Cell"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 Cell(rowNo == $rn, colNo == $cn, value == $v, $exCells: exCells)

 // For all Cells that are associated with the updated cell
 $c: Cell(free contains $v) from $exCells
 then
 // System.out.println("clear " + $v + " from cell " + $c.posAsString());
 // Modify a related Cell by blocking the assigned value.
 modify($c){ blockValue($v) }
end

// Rule for eliminating the Setting fact
rule "retract setting"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 $c: Cell(rowNo == $rn, colNo == $cn, value == $v)

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

353

 // This is the negation of the last pattern in the previous rule.
 // Now the Setting fact can be safely retracted.
 not($x: Cell(free contains $v)
 and
 Cell(this == $c, exCells contains $x))
 then
 // System.out.println("done setting cell " + $c.toString());
 // Discard the Setter fact.
 delete($s);
 // Sudoku.sudoku.consistencyCheck();
end

Two solving rules detect a situation where an allocation of a number to a cell is possible. The rule
"single" fires for a Cell with a candidate set containing a single number. The rule "hidden single" fires
when no cell exists with a single candidate, but when a cell exists containing a candidate, this candidate is
absent from all other cells in one of the three groups to which the cell belongs. Both rules create and
insert a Setting fact.

Rules "single" and "hidden single"

// Detect a set of candidate values with cardinality 1 for some Cell.
// This is the value to be set.
rule "single"
 when
 // Currently no setting underway
 not Setting()

 // One element in the "free" set
 $c: Cell($rn: rowNo, $cn: colNo, freeCount == 1)
 then
 Integer i = $c.getFreeValue();
 if (explain) System.out.println("single " + i + " at " + $c.posAsString());
 // Insert another Setter fact.
 insert(new Setting($rn, $cn, i));
end

// Detect a set of candidate values with a value that is the only one
// in one of its groups. This is the value to be set.
rule "hidden single"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Some integer
 $i: Integer()

 // The "free" set contains this number
 $c: Cell($rn: rowNo, $cn: colNo, freeCount > 1, free contains $i)

 // A cell group contains this cell $c.
 $cg: CellGroup(cells contains $c)
 // No other cell from that group contains $i.
 not (Cell(this != $c, free contains $i) from $cg.getCells())
 then
 if (explain) System.out.println("hidden single " + $i + " at " + $c.posAsString());

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

354

 // Insert another Setter fact.
 insert(new Setting($rn, $cn, $i));
end

Rules from the largest group, either individually or in groups of two or three, implement various solving
techniques used for solving Sudoku puzzles manually.

The rule "naked pair" detects identical candidate sets of size 2 in two cells of a group. These two values
may be removed from all other candidate sets of that group.

Rule "naked pair"

// A "naked pair" is two cells in some cell group with their sets of
// permissible values being equal with cardinality 2. These two values
// can be removed from all other candidate lists in the group.
rule "naked pair"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // One cell with two candidates
 $c1: Cell(freeCount == 2, $f1: free, $r1: cellRow, $rn1: rowNo, $cn1: colNo, $b1: cellSqr)

 // The containing cell group
 $cg: CellGroup(freeCount > 2, cells contains $c1)

 // Another cell with two candidates, not the one we already have
 $c2: Cell(this != $c1, free == $f1 /*** , rowNo >= $rn1, colNo >= $cn1 ***/) from $cg.cells

 // Get one of the "naked pair".
 Integer($v: intValue) from $c1.getFree()

 // Get some other cell with a candidate equal to one from the pair.
 $c3: Cell(this != $c1 && != $c2, freeCount > 1, free contains $v) from $cg.cells
 then
 if (explain) System.out.println("remove " + $v + " from " + $c3.posAsString() + " due to naked pair
at " + $c1.posAsString() + " and " + $c2.posAsString());
 // Remove the value.
 modify($c3){ blockValue($v) }
end

The three rules "hidden pair in … " functions similarly to the rule "naked pair". These rules detect a
subset of two numbers in exactly two cells of a group, with neither value occurring in any of the other
cells of the group. This means that all other candidates can be eliminated from the two cells harboring
the hidden pair.

Rules "hidden pair in …"

// If two cells within the same cell group contain candidate sets with more than
// two values, with two values being in both of them but in none of the other
// cells, then we have a "hidden pair". We can remove all other candidates from
// these two cells.
rule "hidden pair in row"
 when

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

355

 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Establish a pair of Integer facts.
 $i1: Integer()
 $i2: Integer(this > $i1)

 // Look for a Cell with these two among its candidates. (The upper bound on
 // the number of candidates avoids a lot of useless work during startup.)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellRow: cellRow)

 // Get another one from the same row, with the same pair among its candidates.
 $c2: Cell(this != $c1, cellRow == $cellRow, freeCount > 2, free contains $i1 && contains $i2)

 // Ascertain that no other cell in the group has one of these two values.
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellRow.getCells())
 then
 if(explain) System.out.println("hidden pair in row at " + $c1.posAsString() + " and " +
$c2.posAsString());
 // Set the candidate lists of these two Cells to the "hidden pair".
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellCol: cellCol)
 $c2: Cell(this != $c1, cellCol == $cellCol, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellCol.getCells())
 then
 if (explain) System.out.println("hidden pair in column at " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in square"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
 $cellSqr: cellSqr)
 $c2: Cell(this != $c1, cellSqr == $cellSqr, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellSqr.getCells())
 then

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

356

 if (explain) System.out.println("hidden pair in square " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

Two rules deal with "X-wings" in rows and columns. When only two possible cells for a value exist in each
of two different rows (or columns) and these candidates lie also in the same columns (or rows), then all
other candidates for this value in the columns (or rows) can be eliminated. When you follow the pattern
sequence in one of these rules, notice how the conditions that are conveniently expressed by words such
as same or only result in patterns with suitable constraints or that are prefixed with not.

Rules "X-wings in …"

rule "X-wings in rows"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $ra: cellRow, $rano: rowNo, $c1: cellCol, $c1no: colNo)
 $cb1: Cell(freeCount > 1, free contains $i,
 $rb: cellRow, $rbno: rowNo > $rano, cellCol == $c1)
 not(Cell(this != $ca1 && != $cb1, free contains $i) from $c1.getCells())

 $ca2: Cell(freeCount > 1, free contains $i,
 cellRow == $ra, $c2: cellCol, $c2no: colNo > $c1no)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellRow == $rb, cellCol == $c2)
 not(Cell(this != $ca2 && != $cb2, free contains $i) from $c2.getCells())

 $cx: Cell(rowNo == $rano || == $rbno, colNo != $c1no && != $c2no,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in rows " +
 $ca1.posAsString() + " - " + $cb1.posAsString() +
 $ca2.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "X-wings in columns"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $c1: cellCol, $c1no: colNo, $ra: cellRow, $rano: rowNo)
 $ca2: Cell(freeCount > 1, free contains $i,
 $c2: cellCol, $c2no: colNo > $c1no, cellRow == $ra)
 not(Cell(this != $ca1 && != $ca2, free contains $i) from $ra.getCells())

 $cb1: Cell(freeCount > 1, free contains $i,

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

357

 cellCol == $c1, $rb: cellRow, $rbno: rowNo > $rano)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellCol == $c2, cellRow == $rb)
 not(Cell(this != $cb1 && != $cb2, free contains $i) from $rb.getCells())

 $cx: Cell(colNo == $c1no || == $c2no, rowNo != $rano && != $rbno,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in columns " +
 $ca1.posAsString() + " - " + $ca2.posAsString() +
 $cb1.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

The two rules "intersection removal … " are based on the restricted occurrence of some number within
one square, either in a single row or in a single column. This means that this number must be in one of
those two or three cells of the row or column and can be removed from the candidate sets of all other
cells of the group. The pattern establishes the restricted occurrence and then fires for each cell outside
of the square and within the same cell file.

Rules "intersection removal …"

rule "intersection removal column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cc: cellCol)
 // Does not occur in another cell of the same square and a different column
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellCol != $cc)

 // A cell exists in the same column and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellCol == $cc, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("column elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "intersection removal row"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cr: cellRow)
 // Does not occur in another cell of the same square and a different row.
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellRow != $cr)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

358

 // A cell exists in the same row and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellRow == $cr, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("row elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

These rules are sufficient for many but not all Sudoku puzzles. To solve very difficult grids, the rule set
requires more complex rules. (Ultimately, some puzzles can be solved only by trial and error.)

21.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW
GROUPS AND GUI INTEGRATION)

The Conway’s Game of Life example decision set, based on the famous cellular automaton by John
Conway, demonstrates how to use ruleflow groups in rules to control rule execution. The example also
demonstrates how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in
this case a Swing-based implementation of Conway’s Game of Life.

The following is an overview of the Conway’s Game of Life (Conway) example:

Name: conway

Main classes: org.drools.examples.conway.ConwayRuleFlowGroupRun,
org.drools.examples.conway.ConwayAgendaGroupRun (in src/main/java)

Module: droolsjbpm-integration-examples

Type: Java application

Rule files: org.drools.examples.conway.*.drl (in src/main/resources)

Objective: Demonstrates ruleflow groups and GUI integration

NOTE

The Conway’s Game of Life example is separate from most of the other example decision
sets in Red Hat Decision Manager and is located in ~/rhdm-7.11.0-
sources/src/droolsjbpm-integration-$VERSION/droolsjbpm-integration-examples of
the Red Hat Decision Manager 7.11.0 Source Distribution from the Red Hat Customer
Portal.

In Conway’s Game of Life, a user interacts with the game by creating an initial configuration or an
advanced pattern with defined properties and then observing how the initial state evolves. The
objective of the game is to show the development of a population, generation by generation. Each
generation results from the preceding one, based on the simultaneous evaluation of all cells.

The following basic rules govern what the next generation looks like:

If a live cell has fewer than two live neighbors, it dies of loneliness.

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

359

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

If a live cell has more than three live neighbors, it dies from overcrowding.

If a dead cell has exactly three live neighbors, it comes to life.

Any cell that does not meet any of those criteria is left as is for the next generation.

The Conway’s Game of Life example uses Red Hat Decision Manager rules with ruleflow-group
attributes to define the pattern implemented in the game. The example also contains a version of the
decision set that achieves the same behavior using agenda groups. Agenda groups enable you to
partition the decision engine agenda to provide execution control over groups of rules. By default, all
rules are in the agenda group MAIN. You can use the agenda-group attribute to specify a different
agenda group for the rule.

This overview does not explore the version of the Conway example using agenda groups. For more
information about agenda groups, see the Red Hat Decision Manager example decision sets that
specifically address agenda groups.

Conway example execution and interaction
Similar to other Red Hat Decision Manager decision examples, you execute the Conway ruleflow
example by running the org.drools.examples.conway.ConwayRuleFlowGroupRun class as a Java
application in your IDE.

When you execute the Conway example, the Conway’s Game of Life GUI window appears. This window
contains an empty grid, or "arena" where the life simulation takes place. Initially the grid is empty
because no live cells are in the system yet.

Figure 21.24. Conway example GUI after launch

Select a predefined pattern from the Pattern drop-down menu and click Next Generation to click
through each population generation. Each cell is either alive or dead, where live cells contain a green ball.
As the population evolves from the initial pattern, cells live or die relative to neighboring cells, according
to the rules of the game.

Figure 21.25. Generation evolution in Conway example

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

360

Figure 21.25. Generation evolution in Conway example

Neighbors include not only cells to the left, right, top, and bottom but also cells that are connected
diagonally, so that each cell has a total of eight neighbors. Exceptions are the corner cells, which have
only three neighbors, and the cells along the four borders, with five neighbors each.

You can manually intervene to create or kill cells by clicking the cell.

To run through an evolution automatically from the initial pattern, click Start.

Conway example rules with ruleflow groups
The rules in the ConwayRuleFlowGroupRun example use ruleflow groups to control rule execution. A
ruleflow group is a group of rules associated by the ruleflow-group rule attribute. These rules can only
fire when the group is activated. The group itself can only become active when the elaboration of the
ruleflow diagram reaches the node representing the group.

The Conway example uses the following ruleflow groups for rules:

"register neighbor"

"evaluate"

"calculate"

"reset calculate"

"birth"

"kill"

"kill all"

All of the Cell objects are inserted into the KIE session and the "register … " rules in the ruleflow group
"register neighbor" are allowed to execute by the ruleflow process. This group of four rules creates
Neighbor relations between some cell and its northeastern, northern, northwestern, and western
neighbors.

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

361

This relation is bidirectional and handles the other four directions. Border cells do not require any special
treatment. These cells are not paired with neighboring cells where there is not any.

By the time all activations have fired for these rules, all cells are related to all their neighboring cells.

Rules "register …"

rule "register north east"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northEast : Cell(row == ($row - 1), col == ($col + 1))
 then
 insert(new Neighbor($cell, $northEast));
 insert(new Neighbor($northEast, $cell));
end

rule "register north"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $north : Cell(row == ($row - 1), col == $col)
 then
 insert(new Neighbor($cell, $north));
 insert(new Neighbor($north, $cell));
end

rule "register north west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northWest : Cell(row == ($row - 1), col == ($col - 1))
 then
 insert(new Neighbor($cell, $northWest));
 insert(new Neighbor($northWest, $cell));
end

rule "register west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $west : Cell(row == $row, col == ($col - 1))
 then
 insert(new Neighbor($cell, $west));
 insert(new Neighbor($west, $cell));
end

After all the cells are inserted, some Java code applies the pattern to the grid, setting certain cells to
Live. Then, when the user clicks Start or Next Generation, the example executes the Generation
ruleflow. This ruleflow manages all changes of cells in each generation cycle.

Figure 21.26. Generation ruleflow

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

362

Figure 21.26. Generation ruleflow

The ruleflow process enters the "evaluate" ruleflow group and any active rules in the group can fire.
The rules "Kill the … " and "Give Birth" in this group apply the game rules to birth or kill cells. The
example uses the phase attribute to drive the reasoning of the Cell object by specific groups of rules.
Typically, the phase is tied to a ruleflow group in the ruleflow process definition.

Notice that the example does not change the state of any Cell objects at this point because it must
complete the full evaluation before those changes can be applied. The example sets the cell to a phase
that is either Phase.KILL or Phase.BIRTH, which is used later to control actions applied to the Cell
object.

Rules "Kill the …" and "Give Birth"

rule "Kill The Lonely"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has fewer than 2 live neighbors.
 theCell: Cell(liveNeighbors < 2, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Kill The Overcrowded"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has more than 3 live neighbors.
 theCell: Cell(liveNeighbors > 3, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

363

 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Give Birth"
 ruleflow-group "evaluate"
 no-loop
 when
 // A dead cell has 3 live neighbors.
 theCell: Cell(liveNeighbors == 3, cellState == CellState.DEAD,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 theCell.setPhase(Phase.BIRTH);
 }
end

After all Cell objects in the grid have been evaluated, the example uses the "reset calculate" rule to
clear any activations in the "calculate" ruleflow group. The example then enters a split in the ruleflow
that enables the rules "kill" and "birth" to fire, if the ruleflow group is activated. These rules apply the
state change.

Rules "reset calculate", "kill", and "birth"

rule "reset calculate"
 ruleflow-group "reset calculate"
 when
 then
 WorkingMemory wm = drools.getWorkingMemory();
 wm.clearRuleFlowGroup("calculate");
end

rule "kill"
 ruleflow-group "kill"
 no-loop
 when
 theCell: Cell(phase == Phase.KILL)
 then
 modify(theCell){
 setCellState(CellState.DEAD),
 setPhase(Phase.DONE);
 }
end

rule "birth"
 ruleflow-group "birth"
 no-loop
 when
 theCell: Cell(phase == Phase.BIRTH)
 then
 modify(theCell){
 setCellState(CellState.LIVE),
 setPhase(Phase.DONE);
 }
end

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

364

At this stage, several Cell objects have been modified with the state changed to either LIVE or DEAD.
When a cell becomes live or dead, the example uses the Neighbor relation in the rules "Calculate … " to
iterate over all surrounding cells, increasing or decreasing the liveNeighbor count. Any cell that has its
count changed is also set to the EVALUATE phase to make sure it is included in the reasoning during
the evaluation stage of the ruleflow process.

After the live count has been determined and set for all cells, the ruleflow process ends. If the user
initially clicked Start, the decision engine restarts the ruleflow at that point. If the user initially clicked
Next Generation, the user can request another generation.

Rules "Calculate …"

rule "Calculate Live"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.LIVE)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() + 1),
 setPhase(Phase.EVALUATE);
 }
end

rule "Calculate Dead"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.DEAD)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() - 1),
 setPhase(Phase.EVALUATE);
 }
end

21.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING
AND RECURSION)

The House of Doom example decision set demonstrates how the decision engine uses backward
chaining and recursion to reach defined goals or subgoals in a hierarchical system.

The following is an overview of the House of Doom example:

Name: backwardchaining

Main class: org.drools.examples.backwardchaining.HouseOfDoomMain (in src/main/java)

Module: drools-examples

Type: Java application

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

365

Rule file: org.drools.examples.backwardchaining.BC-Example.drl (in src/main/resources)

Objective: Demonstrates backward chaining and recursion

A backward-chaining rule system is a goal-driven system that starts with a conclusion that the decision
engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion or goal, it
searches for subgoals, which are conclusions that complete part of the current goal. The system
continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

In contrast, a forward-chaining rule system is a data-driven system that starts with a fact in the working
memory of the decision engine and reacts to changes to that fact. When objects are inserted into
working memory, any rule conditions that become true as a result of the change are scheduled for
execution by the agenda.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 21.27. Rule evaluation logic using forward and backward chaining

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

366

Figure 21.27. Rule evaluation logic using forward and backward chaining

The House of Doom example uses rules with various types of queries to find the location of rooms and
items within the house. The sample class Location.java contains the item and location elements used
in the example. The sample class HouseOfDoomMain.java inserts the items or rooms in their respective
locations in the house and executes the rules.

Items and locations in HouseOfDoomMain.java class

ksession.insert(new Location("Office", "House"));
ksession.insert(new Location("Kitchen", "House"));
ksession.insert(new Location("Knife", "Kitchen"));
ksession.insert(new Location("Cheese", "Kitchen"));

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

367

The example rules rely on backward chaining and recursion to determine the location of all items and
rooms in the house structure.

The following diagram illustrates the structure of the House of Doom and the items and rooms within it:

Figure 21.28. House of Doom structure

To execute the example, run the org.drools.examples.backwardchaining.HouseOfDoomMain class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

go1
Office is in the House

go2
Drawer is in the House

go3

Key is in the Office

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

go5
Chair is in Office
Desk is in Office
Drawer is in Desk
Key is in Drawer

ksession.insert(new Location("Desk", "Office"));
ksession.insert(new Location("Chair", "Office"));
ksession.insert(new Location("Computer", "Desk"));
ksession.insert(new Location("Drawer", "Desk"));

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

368

Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

All rules in the example have fired to detect the location of all items in the house and to print the
location of each in the output.

Recursive query and related rules
A recursive query repeatedly searches through the hierarchy of a data structure for relationships
between elements.

In the House of Doom example, the BC-Example.drl file contains an isContainedIn query that most of
the rules in the example use to recursively evaluate the house data structure for data inserted into the
decision engine:

Recursive query in BC-Example.drl

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

The rule "go" prints every string inserted into the system to determine how items are implemented, and
the rule "go1" calls the query isContainedIn:

Rules "go" and "go1"

rule "go" salience 10
 when
 $s : String()
 then
 System.out.println($s);
end

rule "go1"
 when
 String(this == "go1")
 isContainedIn("Office", "House";)
 then
 System.out.println("Office is in the House");
end

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

369

The example inserts the "go1" string into the decision engine and activates the "go1" rule to detect
that item Office is in the location House:

Insert string and fire rules

ksession.insert("go1");
ksession.fireAllRules();

Rule "go1" output in the IDE console

go1
Office is in the House

Transitive closure rule
Transitive closure is a relationship between an element contained in a parent element that is multiple
levels higher in a hierarchical structure.

The rule "go2" identifies the transitive closure relationship of the Drawer and the House: The Drawer is
in the Desk in the Office in the House.

rule "go2"
 when
 String(this == "go2")
 isContainedIn("Drawer", "House";)
 then
 System.out.println("Drawer is in the House");
end

The example inserts the "go2" string into the decision engine and activates the "go2" rule to detect
that item Drawer is ultimately within the location House:

Insert string and fire rules

ksession.insert("go2");
ksession.fireAllRules();

Rule "go2" output in the IDE console

go2
Drawer is in the House

The decision engine determines this outcome based on the following logic:

1. The query recursively searches through several levels in the house to detect the transitive
closure between Drawer and House.

2. Instead of using Location(x, y;), the query uses the value of (z, y;) because Drawer is not
directly in House.

3. The z argument is currently unbound, which means it has no value and returns everything that is
in the argument.

4. The y argument is currently bound to House, so z returns Office and Kitchen.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

370

5. The query gathers information from the Office and checks recursively if the Drawer is in the
Office. The query line isContainedIn(x, z;) is called for these parameters.

6. No instance of Drawer exists directly in Office, so no match is found.

7. With z unbound, the query returns data within the Office and determines that z == Desk.

isContainedIn(x==drawer, z==desk)

8. The isContainedIn query recursively searches three times, and on the third time, the query
detects an instance of Drawer in Desk.

Location(x==drawer, y==desk)

9. After this match on the first location, the query recursively searches back up the structure to
determine that the Drawer is in the Desk, the Desk is in the Office, and the Office is in the
House. Therefore, the Drawer is in the House and the rule is satisfied.

Reactive query rule
A reactive query searches through the hierarchy of a data structure for relationships between elements
and is dynamically updated when elements in the structure are modified.

The rule "go3" functions as a reactive query that detects if a new item Key ever becomes present in the
Office by transitive closure: A Key in the Drawer in the Office.

Rule "go3"

rule "go3"
 when
 String(this == "go3")
 isContainedIn("Key", "Office";)
 then
 System.out.println("Key is in the Office");
end

The example inserts the "go3" string into the decision engine and activates the "go3" rule. Initially, this
rule is not satisfied because no item Key exists in the house structure, so the rule produces no output.

Insert string and fire rules

ksession.insert("go3");
ksession.fireAllRules();

Rule "go3" output in the IDE console (unsatisfied)

go3

The example then inserts a new item Key in the location Drawer, which is in Office. This change satisfies
the transitive closure in the "go3" rule and the output is populated accordingly.

Insert new item location and fire rules

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

371

ksession.insert(new Location("Key", "Drawer"));
ksession.fireAllRules();

Rule "go3" output in the IDE console (satisfied)

Key is in the Office

This change also adds another level in the structure that the query includes in subsequent recursive
searches.

Queries with unbound arguments in rules
A query with one or more unbound arguments returns all undefined (unbound) items within a defined
(bound) argument of the query. If all arguments in a query are unbound, then the query returns all items
within the scope of the query.

The rule "go4" uses an unbound argument thing to search for all items within the bound argument
Office, instead of using a bound argument to search for a specific item in the Office:

Rule "go4"

rule "go4"
 when
 String(this == "go4")
 isContainedIn(thing, "Office";)
 then
 System.out.println(thing + "is in the Office");
end

The example inserts the "go4" string into the decision engine and activates the "go4" rule to return all
items in the Office:

Insert string and fire rules

ksession.insert("go4");
ksession.fireAllRules();

Rule "go4" output in the IDE console

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

The rule "go5" uses both unbound arguments thing and location to search for all items and their
locations in the entire House data structure:

Rule "go5"

rule "go5"
 when
 String(this == "go5")

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

372

 isContainedIn(thing, location;)
 then
 System.out.println(thing + " is in " + location);
end

The example inserts the "go5" string into the decision engine and activates the "go5" rule to return all
items and their locations in the House data structure:

Insert string and fire rules

ksession.insert("go5");
ksession.fireAllRules();

Rule "go5" output in the IDE console

go5
Chair is in Office
Desk is in Office
Drawer is in Desk
Key is in Drawer
Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

373

CHAPTER 22. PERFORMANCE TUNING CONSIDERATIONS
WITH DRL

The following key concepts or suggested practices can help you optimize DRL rules and decision engine
performance. These concepts are summarized in this section as a convenience and are explained in
more detail in the cross-referenced documentation, where applicable. This section will expand or
change as needed with new releases of Red Hat Decision Manager.

Define the property and value of pattern constraints from left to right

In DRL pattern constraints, ensure that the fact property name is on the left side of the operator and
that the value (constant or a variable) is on the right side. The property name must always be the key
in the index and not the value. For example, write Person(firstName == "John") instead of
Person("John" == firstName). Defining the constraint property and value from right to left can
hinder decision engine performance.
For more information about DRL patterns and constraints, see Section 16.8, “Rule conditions in DRL
(WHEN)”.

Use equality operators more than other operator types in pattern constraints when possible

Although the decision engine supports many DRL operator types that you can use to define your
business rule logic, the equality operator == is evaluated most efficiently by the decision engine.
Whenever practical, use this operator instead of other operator types. For example, the pattern
Person(firstName == "John") is evaluated more efficiently than Person(firstName !=
"OtherName"). In some cases, using only equality operators might be impractical, so consider all of
your business logic needs and options as you use DRL operators.

List the most restrictive rule conditions first

For rules with multiple conditions, list the conditions from most to least restrictive so that the
decision engine can avoid assessing the entire set of conditions if the more restrictive conditions are
not met.
For example, the following conditions are part of a travel-booking rule that applies a discount to
travelers who book both a flight and a hotel together. In this scenario, customers rarely book hotels
with flights to receive this discount, so the hotel condition is rarely met and the rule is rarely
executed. Therefore, the first condition ordering is more efficient because it prevents the decision
engine from evaluating the flight condition frequently and unnecessarily when the hotel condition is
not met.

Preferred condition order: hotel and flight

when
 $h:hotel() // Rarely booked
 $f:flight()

Inefficient condition order: flight and hotel

when
 $f:flight()
 $h:hotel() // Rarely booked

For more information about DRL patterns and constraints, see Section 16.8, “Rule conditions in DRL
(WHEN)”.

Avoid iterating over large collections of objects with excessive from clauses

Avoid using the from condition element in DRL rules to iterate over large collections of objects, as

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

374

Avoid using the from condition element in DRL rules to iterate over large collections of objects, as
shown in the following example:

Example conditions with from clause

when
 $c: Company()
 $e : Employee (salary > 100000.00) from $c.employees

In such cases, the decision engine iterates over the large graph every time the rule condition is
evaluated and impedes rule evaluation.

Alternatively, instead of adding an object with a large graph that the decision engine must iterate
over frequently, add the collection directly to the KIE session and then join the collection in the
condition, as shown in the following example:

Example conditions without from clause

when
 $c: Company();
 Employee (salary > 100000.00, company == $c)

In this example, the decision engine iterates over the list only one time and can evaluate rules more
efficiently.

For more information about the from element or other DRL condition elements, see Section 16.8.7,
“Supported rule condition elements in DRL (keywords)”.

Use decision engine event listeners instead of System.out.println statements in rules for debug
logging

You can use System.out.println statements in your rule actions for debug logging and console
output, but doing this for many rules can impede rule evaluation. As a more efficient alternative, use
the built-in decision engine event listeners when possible. If these listeners do not meet your
requirements, use a system logging utility supported by the decision engine, such as Logback,
Apache Commons Logging, or Apache Log4j.
For more information about supported decision engine event listeners and logging utilities, see
Decision engine in Red Hat Decision Manager .

Use the drools-metric module to identify the obstruction in your rules

You can use the drools-metric module to identify slow rules especially when you process many rules.
The drools-metric module can also assist in analyzing the decision engine performance. Note that
the drools-metric module is not for production environment use. However, you can perform the
analysis in your test environment.
To analyze the decision engine performance using drools-metric, add drools-metric to your project
dependencies and enable trace logging for org.drools.metric.util.MetricLogUtils , as shown in the
following example:

Example project dependency for drools-metric

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-metric</artifactId>
</dependency>

CHAPTER 22. PERFORMANCE TUNING CONSIDERATIONS WITH DRL

375

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#engine-event-listeners-con_decision-engine

Example logback.xml configuration file

Also, enable MetricLogUtils by setting the system property drools.metric.logger.enabled to true.
Optionally, you can change the microseconds threshold of metric logging by setting the
drools.metric.logger.threshold system property.

NOTE

Only node executions exceeding the threshold are logged. The default value is 500.

After you complete the configuration, rule execution produces logs as shown in the following
example:

Example rule execution output

TRACE [JoinNode(6) - [ClassObjectType class=com.sample.Order]], evalCount:1000,
elapsedMicro:5962
TRACE [JoinNode(7) - [ClassObjectType class=com.sample.Order]], evalCount:100000,
elapsedMicro:95553
TRACE [AccumulateNode(8)], evalCount:4999500, elapsedMicro:2172836
TRACE [EvalConditionNode(9)]:
cond=com.sample.Rule_Collect_expensive_orders_combination930932360Eval1Invoker@ee2a6922
], evalCount:49500, elapsedMicro:18787

This example includes the following key parameters:

evalCount is the number of constraint evaluations against inserted facts during the node
execution.

elapsedMicro is the elapsed time of the node execution in microseconds.

If you find an outstanding evalCount or elapsedMicro log, correlate the node name with
ReteDumper.dumpAssociatedRulesRete() output to identify the rule associated with the node.

Example ReteDumper usage

Example ReteDumper output

[AccumulateNode(8)] : [Collect expensive orders combination]
...

<configuration>
 <logger name="org.drools.metric.util.MetricLogUtils" level="trace"/>
 ...
<configuration>

ReteDumper.dumpAssociatedRulesRete(kbase);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

376

CHAPTER 23. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a Red Hat Decision Manager project

CHAPTER 23. NEXT STEPS

377

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-test-scenarios
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

PART IV. DESIGNING A DECISION SERVICE USING GUIDED
DECISION TABLES

As a business analyst or business rules developer, you can use guided decision tables to define business
rules in a wizard-led tabular format. These rules are compiled into Drools Rule Language (DRL) and
form the core of the decision service for your project.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models instead of rule-based or table-based assets. For information about DMN support
in Red Hat Decision Manager 7.11, see the following resources:

Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

Prerequisites

The space and project for the guided decision tables have been created in Business Central.
Each asset is associated with a project assigned to a space. For details, see Getting started with
decision services.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

378

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

CHAPTER 24. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 24.1. Decision-authoring assets supported in Red Hat Decision Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

CHAPTER 24. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

379

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

380

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

CHAPTER 24. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

381

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

382

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

CHAPTER 25. GUIDED DECISION TABLES
Guided decision tables are a wizard-led alternative to spreadsheet decision tables for defining business
rules in a tabular format. With guided decision tables, you are led by a UI-based wizard in Business
Central that helps you define rule attributes, metadata, conditions, and actions based on specified data
objects in your project. After you create your guided decision tables, the rules you defined are compiled
into Drools Rule Language (DRL) rules as with all other rule assets.

All data objects related to a guided decision table must be in the same project package as the guided
decision table. Assets in the same package are imported by default. After you create the necessary data
objects and the guided decision table, you can use the Data Objects tab of the guided decision tables
designer to verify that all required data objects are listed or to import other existing data objects by
adding a New item.

CHAPTER 25. GUIDED DECISION TABLES

383

CHAPTER 26. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

26.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designers like guided rules or guided decision table designers. Select the
relevant rule asset within the project and in the asset designer, go to Data
Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: (Optional) Select this check box to enable the field to hold multiple items for the
specified type.

Figure 26.1. Add data fields to a data object

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

384

Figure 26.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

CHAPTER 26. DATA OBJECTS

385

CHAPTER 27. CREATING GUIDED DECISION TABLES
You can use guided decision tables to define rule attributes, metadata, conditions, and actions in a
tabular format that can be added to your business rules project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Decision Table.

3. Enter an informative Guided Decision Table name and select the appropriate Package. The
package that you specify must be the same package where the required data objects have been
assigned or will be assigned.

4. Select Use Wizard to finish setting up the table in the wizard, or leave this option unselected to
finish creating the table and specify remaining configurations in the guided decision tables
designer.

5. Select the hit policy that you want your rows of rules in the table to conform to. For details, see
Chapter 28, Hit policies for guided decision tables .

6. Specify whether you want the Extended entry or Limited entry table. For details, see
Section 28.1.1, “Types of guided decision tables” .

7. Click Ok to complete the setup. If you have selected Use Wizard, the Guided Decision Table
wizard is displayed. If you did not select the Use Wizard option, this prompt does not appear and
you are taken directly to the table designer.
For example, the following wizard setup is for a guided decision table in a loan application
decision service:

Figure 27.1. Create guided decision table

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

386

Figure 27.1. Create guided decision table

8. If you are using the wizard, add any available imports, fact patterns, constraints, and actions, and
select whether table columns should expand. Click Finish to close the wizard and view the table
designer.

Figure 27.2. Guided Decision Table wizard

In the guided decision tables designer, you can add or edit columns and rows, and make other final
adjustments.

CHAPTER 27. CREATING GUIDED DECISION TABLES

387

CHAPTER 28. HIT POLICIES FOR GUIDED DECISION TABLES
Hit policies determine the order in which rules (rows) in a guided decision table are applied, whether top
to bottom, per specified priority, or other options.

The following hit policies are available:

None: (Default hit policy) Multiple rows can be executed and the verification warns about rows
that conflict. Any decision tables that have been uploaded (using a non-guided decision table
spreadsheet) will adopt this hit policy.

Resolved Hit: Only one row at a time can be executed according to specified priority, regardless
of list order (you can give row 10 priority over row 5, for example). This means you can keep the
order of the rows you want for visual readability, but specify priority exceptions.

Unique Hit: Only one row at a time can be executed, and each row must be unique, with no
overlap of conditions being met. If more than one row is executed, then the verification
produces a warning at development time.

First Hit: Only one row at a time can be executed in the order listed in the table, top to bottom.

Rule Order: Multiple rows can be executed and verification does not report conflicts between
the rows since they are expected to happen.

Figure 28.1. Available hit policies

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

388

Figure 28.1. Available hit policies

28.1. HIT POLICY EXAMPLES: DECISION TABLE FOR DISCOUNTS ON
MOVIE TICKETS

The following is part of an example decision table for discounts on movie tickets based on customer age,
student status, or military status, or all three.

Table 28.1. Example decision table for available discounts on movie tickets

Row Number Discount Type Discount

1 Senior citizen (age 60+) 10%

2 Student 10%

3 Military 10%

In this example, the total discount to be applied in the end will vary depending on the hit policy specified
for the table:

CHAPTER 28. HIT POLICIES FOR GUIDED DECISION TABLES

389

None/Rule Order: With both None and Rule Order hit policies, all applicable rules are
incorporated, in this case allowing discounts to be stacked for each customer.
Example: A senior citizen who is also a student and a military veteran will receive all three
discounts, totaling 30%.

Key difference: With None, warnings are created for multiple rows applied. With Rule Order,
those warnings are not created.

First Hit/Resolved Hit: With both First Hit and Resolved Hit policies, only one of the discounts
can be applied.
For First Hit, the discount that is satisfied first in the list is applied and the others are ignored.

Example: A senior citizen who is also a student and a military veteran will receive only the senior
citizen discount of 10%, since that is listed first in the table.

For Resolved Hit, a modified table is required. The discount that you assign a priority exception
to in the table, regardless of listed order, will be applied first. To assign this exception, include a
new column that specifies the priority of one discount (row) over others.

Example: If military discounts are prioritized higher than age or student discounts, despite the
listed order, then a senior citizen who is also a student and a military veteran will receive only the
military discount of 10%, regardless of age or student status.

Consider the following modified decision table that accommodates a Resolved Hit policy:

Table 28.2. Modified decision table that accommodates a Resolved Hit policy

Row Number Discount Type Has Priority over Row Discount

1 Senior citizen (age
60+)

 10%

2 Student 10%

3 Military 1 10%

In this modified table, the military discount is essentially the new row 1 and therefore takes
priority over both age and student discounts, and any other discounts added later. You do not
need to specify priority over rows "1 and 2", only over row "1". This changes the row hit order to 3
→ 1 → 2 → … and so on as the table grows.

NOTE

The row order would be changed in the same way if you actually moved the
military discount to row 1 and applied a First Hit policy to the table instead.
However, if you want the rules listed in a certain way and applied differently, such
as in an alphabetized table, the Resolved Hit policy is useful.

Key difference: With First Hit, rules are applied strictly in the listed order. With Resolved Hit,
rules are applied in the listed order unless priority exceptions are specified.

Unique Hit: A modified table is required. With a Unique Hit policy, rows must be created in a
way that it is impossible to satisfy multiple rules at one time. However, you can still specify row-
by-row whether to apply one rule or multiple. In this way, with a Unique Hit policy you can make

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

390

decision tables more granular and prevent overlap warnings.
Consider the following modified decision table that accommodates a Unique Hit policy:

Table 28.3. Modified decision table that accommodates a Unique Hit policy

Row Number Is Senior Citizen
(age 65+)

Is Student Is Military Discount

1 yes no no 10%

2 no yes no 10%

3 no no yes 10%

4 yes yes no 20%

5 yes no yes 20%

6 no yes yes 20%

7 yes yes yes 30%

In this modified table, each row is unique, with no allowance of overlap, and any single discount
or any combination of discounts is accommodated.

28.1.1. Types of guided decision tables

Two types of decision tables are supported in Red Hat Decision Manager: Extended entry and Limited
entry tables.

Extended entry: An Extended Entry decision table is one for which the column definitions
specify Pattern, Field, and Operator but not value. The values, or states, are themselves held in
the body of the decision table.

Limited entry: A Limited Entry decision table is one for which the column definitions specify
value in addition to Pattern, Field, and Operator. The decision table states, held in the body of
the table, are boolean where a positive value (a marked check box) has the effect of meaning
the column should apply, or be matched. A negative value (a cleared check box) means the
column does not apply.

CHAPTER 28. HIT POLICIES FOR GUIDED DECISION TABLES

391

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

392

CHAPTER 29. ADDING COLUMNS TO GUIDED DECISION
TABLES

After you have created the guided decision table, you can define and add various types of columns
within the guided decision tables designer.

Prerequisites

Any data objects that will be used for column parameters, such as Facts and Fields, have been
created within the same package where the guided decision table is found, or have been
imported from another package in Data Objects → New item of the guided decision tables
designer.

For descriptions of these column parameters, see the "Required column parameters" segments for each
column type in Chapter 30, Types of columns in guided decision tables .

For details about creating data objects, see Section 26.1, “Creating data objects”.

Procedure

1. In the guided decision tables designer, click Columns → Insert Column.

2. Click Include advanced options to view the full list of column options.

Figure 29.1. Add columns

3. Select the column type that you want to add, click Next, and follow the steps in the wizard to
specify the data required to add the column.
For descriptions of each column type and required parameters for setup, see Chapter 30, Types
of columns in guided decision tables.

4. Click Finish to add the configured column.

CHAPTER 29. ADDING COLUMNS TO GUIDED DECISION TABLES

393

After all columns are added, you can begin adding rows of rules correlating to your columns to complete
the decision table. For details, see Chapter 34, Adding rows and defining rules in guided decision tables .

The following is an example decision table for a loan application decision service:

Figure 29.2. Example of complete guided decision table

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

394

CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION
TABLES

The Add a new column wizard for guided decision tables provides the following column options. (Select
Include advanced options to view all options.)

Add a Condition

Add a Condition BRL fragment

Add a Metadata column

Add an Action BRL fragment

Add an Attribute column

Delete an existing fact

Execute a Work Item

Set the value of a field

Set the value of a field with a Work Item result

These column types and the parameters required for each in the Add a new column wizard are
described in the sections that follow.

IMPORTANT: REQUIRED DATA OBJECTS FOR COLUMN PARAMETERS

Some of the column parameters described in this section, such as Fact Patterns and
Fields, provide drop-down options consisting only of data objects already defined within
the same package where the guided decision table is found. Available data objects for the
package are listed in the Data Objects panel of the Project Explorer and in the Data
Objects tab of the guided decision tables designer. You can create additional data
objects within the package as needed, or import them from another package in Data
Objects → New item of the guided decision tables designer. For details about creating
data objects, see Section 26.1, “Creating data objects”.

30.1. "ADD A CONDITION"

Conditions represent fact patterns defined in the left ("WHEN") portion of a rule. With this column
option, you can define one or more condition columns that check for the presence or absence of data
objects with certain field values, and that affect the action ("THEN") portion of the rule. You can define
a binding for the fact in the condition table, or select one that has previously been defined. You can also
choose to negate the pattern.

Example rule conditions

when
 $i : IncomeSource(type == "Asset") // Binds the IncomeSource object to the $i variable
then
 ...
end

CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLES

395

when
 not IncomeSource(type == "Asset") // Negates matching pattern
then
 ...
end

After a binding is specified, you can define field constraints. If two or more columns are defined using the
same fact pattern binding, the field constraints become composite field constraints on the same
pattern. If you define multiple bindings for a single model class, each binding becomes a separate model
class in the condition ("WHEN") side of the rule.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Pattern: Select from the list of fact patterns already used in conditions in your table or create a
new fact pattern. A fact pattern is a combination of an available data object in the package (see
the note on Required data objects for details) and a model class binding that you specify.
(Examples: LoanApplication [application] or IncomeSource [income] where the bracketed
portion is the binding to the given fact type)

Entry point: Define the entry point for the fact pattern, if applicable. An entry point is a gate or
stream through which facts enter the decision engine, if specified. (Examples: Application
Stream, Credit Check Stream)

Calculation type: Select one of the following calculation types:

Literal value: The value in the cell will be compared with the field using the operator.

Formula: The expression in the cell will be evaluated and then compared with the field.

Predicate: No field is needed; the expression will be evaluated to true or false.

Field: Select a field from the previously specified fact pattern. The field options are defined in
the fact file in the Data Objects panel of your project. (Examples: amount or lengthYears
fields within the LoanApplication fact type)

Binding (optional): Define a binding for the previously selected field, if needed. (Example: For
pattern LoanApplication [application], field amount, and operator equal to, if binding is set to
$amount, the end condition will be application : LoanAppplication($amount : amount ==
[value]).)

Operator: Select the operator to be applied to the fact pattern and field previously specified.

Value list (optional): Enter a list of value options, delimited by a comma and space, to limit table
input data for the condition ("WHEN") portion of the rule. When this value list is defined, the
values will be provided in the table cells for that column as a drop-down list, from which users
can select only one option. (Example list: Monday, Wednesday, Friday to specify only these
three options)

Default value (optional): Select one of the previously defined value options as the default
value that will appear in the cell automatically in a new row. If the default value is not specified,
the table cell will be blank by default. You can also select a default value from any previously
configured data enumerations in the project, listed in the Enumeration Definitions panel of the
Project Explorer. (You can create enumerations in Menu → Design → Projects → [select
project] → Add Asset → Enumeration.)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

396

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

30.1.1. Inserting an any other value in condition column cells

For simple condition columns in guided decision tables, you can apply an any other value to table cells
within the column if the following parameters are set:

Calculation type for the condition column has been set to Literal value.

Operator has been set as equality == or inequality !=.

The any other value enables a rule to be defined for any other field values not explicitly defined in the
rules already in the table. In the DRL source, any other is notated as not in.

Example rule condition with not in used for any other

when
 IncomeSource(type not in ("Asset", "Job"))
 ...
then
 ...
end

Procedure

1. Select a cell of a condition column that uses the == or != operator.

2. In the upper-right toolbar of the table designer, click Edit → Insert "any other" value.

30.2. "ADD A CONDITION BRL FRAGMENT"

A Business Rule Language (BRL) fragment is a section of a rule created using the guided rules designer.
The condition BRL fragment is the "WHEN" portion of the rule, and the action BRL fragment is the
"THEN" portion of the rule. With this column option, you can define a condition BRL fragment to be used
in the left ("WHEN") side of a rule. Simpler column types can refer to Facts and Fact fields bound in the
BRL fragment and vice-versa.

The following example is a condition BRL fragment for a loan application:

Figure 30.1. Add a condition BRL fragment with the embedded guided rules designer

CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLES

397

Figure 30.1. Add a condition BRL fragment with the embedded guided rules designer

You can also select Free form DRL from the list of condition options to define the condition BRL
fragment without the embedded guided rules designer.

Figure 30.2. Add a condition BRL fragment with free form DRL

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

398

Figure 30.2. Add a condition BRL fragment with free form DRL

TEMPLATE KEYS

CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLES

399

TEMPLATE KEYS

When you add a field for a condition BRL fragment, one of the value options is Template
key (as opposed to Literal or Formula). Template keys are placeholder variables that
are interchanged with a specified value when the guided decision table is generated, and
form separate columns in the table for each template key value specified. You can
specify the default value of Template key in the Value options page. While Literal and
Formula values are static in a decision table, Template key values can be modified as
needed.

In the embedded guided rules designer, you can add a template key value to a field by
selecting the Template key field option and entering the value in the editor in the format
$key. For example, $age creates an $age column in the decision table.

In free form DRL, you can add a template key value to facts in the format @{key}. For
example, Person(age > @{age}) creates an $age column in the decision table.

The data type is String for new columns added using template keys.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Rule Modeller: Define the condition BRL fragment ("WHEN" portion) for the rule.

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

30.3. "ADD A METADATA COLUMN"

With this column option, you can define a metadata element as a column in your decision table. Each
column represents the normal metadata annotation in DRL rules. By default, the metadata column is
hidden. To display the column, click Edit Columns in the guided decision tables designer and clear the
Hide column check box.

Required column parameter

The following parameter is required in the Add a new column wizard to set up this column type:

Metadata: Enter the name of the metadata item in Java variable form (that is, it cannot start
with a number or contain spaces or special characters).

30.4. "ADD AN ACTION BRL FRAGMENT"

A Business Rule Language (BRL) fragment is a section of a rule created using the guided rules designer.
The condition BRL fragment is the "WHEN" portion of the rule, and the action BRL fragment is the
"THEN" portion of the rule. With this column option you can define an action BRL fragment to be used in
the right ("THEN") side of a rule. Simpler column types can refer to Facts and Fact fields bound in the
BRL fragment and vice-versa.

The following example is an action BRL fragment for a loan application:

Figure 30.3. Add an action BRL fragment with the embedded guided rules designer

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

400

Figure 30.3. Add an action BRL fragment with the embedded guided rules designer

You can also select Add free form DRL from the list of action options to define the action BRL
fragment without the embedded guided rules designer.

Figure 30.4. Add an action BRL fragment with free form DRL

CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLES

401

Figure 30.4. Add an action BRL fragment with free form DRL

TEMPLATE KEYS

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

402

TEMPLATE KEYS

When you add a field for an action BRL fragment, one of the value options is Template
key (as opposed to Literal or Formula). Template keys are placeholder variables that
are interchanged with a specified value when the guided decision table is generated, and
form separate columns in the table for each template key value specified. You can
specify the default value of Template key in the Value options page. While Literal and
Formula values are static in a decision table, Template key values can be modified as
needed.

In the embedded guided rules designer, you can add a template key value to a field by
selecting the Template key field option and entering the value in the editor in the format
$key. For example, $age creates an $age column in the decision table.

In free form DRL, you can add a template key value to facts in the format @{key}. For
example, Person(age > @{age}) creates an $age column in the decision table.

The data type is String for new columns added using template keys.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Rule Modeller: Define the action BRL fragment ("THEN" portion) for the rule.

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

30.5. "ADD AN ATTRIBUTE COLUMN"

With this column option, you can add one or more attribute columns representing any of the DRL rule
attributes, such as Saliance, Enabled, Date-Effective, and others.

For example, the following guided decision table uses the salience attribute to specify rule priority and
the enabled attribute to enable or disable rules for evaluation. Rules with a higher salience value are
evaluated first, and rules with the enabled attribute are evaluated only if the check box is selected.

Figure 30.5. Example rules with salience and enabled attributes to define evaluation behavior

Example rule source with the rule attributes

rule "Row 1 Pricing loans"
 salience 100
 enabled true
 when
 ...
 then

CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLES

403

 ...
end
...
rule "Row 3 Pricing loans"
 enabled false
 when
 ...
 then
 ...
end

For descriptions of each attribute, select the attribute from the list in the wizard.

HIT POLICIES AND ATTRIBUTES

Note that depending on the hit policy that you have defined for the decision table, some
attributes may be disabled because they are internally used by the hit policy. For example,
if you have assigned the Resolved Hit policy to this table so that rows (rules) are applied
according to a priority order specified in the table, then the Salience attribute would be
obsolete. The reason is that the Salience attribute escalates rule priority according to a
defined salience value, and that value would be overridden by the Resolved Hit policy in
the table.

Required Column Parameter

The following parameter is required in the Add a new column wizard to set up this column type:

Attribute: Select the attribute to be applied to the column.

30.6. "DELETE AN EXISTING FACT"

With this column option, you can implement an action to delete a fact that was added previously as a
fact pattern in the table. When this column is created, the fact types are provided in the table cells for
that column as a drop-down list, from which users can select only one option.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

30.7. "EXECUTE A WORK ITEM"

With this column option, you can execute a work item handler, based on your predefined work item
definitions in Business Central. (You can create work items in Menu → Design → Projects → [select
project] → Add Asset → Work Item definition.)

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Work Item: Select from the list of your predefined work items.

Header (description): Add header text for the column.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

404

Hide column: Select this to hide the column, or clear this to display the column.

30.8. "SET THE VALUE OF A FIELD"

With this column option, you can implement an action to set the value of a field on a previously bound
fact for the "THEN" portion of the rule. You have the option to notify the decision engine of the
modified values which could lead to other rules being reactivated.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Pattern: Select from the list of fact patterns already used in conditions or condition BRL
fragments in your table or create a new fact pattern. A fact pattern is a combination of an
available data object in the package (see the note on Required data objects for details) and a
model class binding that you specify. (Examples: LoanApplication [application] or
IncomeSource [income] where the bracketed portion is the binding to the given fact type)

Field: Select a field from the previously specified fact pattern. The field options are defined in
the fact file in the Data Objects panel of your project. (Examples: amount or lengthYears
fields within the LoanApplication fact type)

Value list (optional): Enter a list of value options, delimited by a comma and space, to limit table
input data for the action ("THEN") portion of the rule. When this value list is defined, the values
will be provided in the table cells for that column as a drop-down list, from which users can
select only one option. (Example list: Accepted, Declined, Pending)

Default value (optional): Select one of the previously defined value options as the default
value that will appear in the cell automatically in a new row. If the default value is not specified,
the table cell will be blank by default. You can also select a default value from any previously
configured data enumerations in the project, listed in the Enumeration Definitions panel of the
Project Explorer. (You can create enumerations in Menu → Design → Projects → [select
project] → Add Asset → Enumeration.)

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

Logically insert: This option appears when the selected Fact Pattern is not currently used in
another column in the guided decision table (see the next field description). Select this to insert
the fact pattern logically into the decision engine, or clear this to insert it regularly. The decision
engine is responsible for logical decisions on insertions and retractions of facts. After regular or
stated insertions, facts have to be retracted explicitly. After logical insertions, facts are
automatically retracted when the conditions that asserted the facts in the first place are no
longer true.

Update engine with changes: This option appears when the selected Fact Pattern is already
used in another column in the guided decision table. Select this to update the decision engine
with the modified field values, or clear this to not update the decision engine.

30.9. "SET THE VALUE OF A FIELD WITH A WORK ITEM RESULT"

With this column option, you can implement an action to set the value of a previously defined fact field
to the value of a result of a work item handler for the "THEN" portion of the rule. The work item must
define a result parameter of the same data type as a field on a bound fact in order for you to set the field

CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLES

405

to the return parameter. (You can create work items in Menu → Design → Projects → [select project]
→ Add Asset → Work Item definition.)

An Execute a Work Item column must already be created in the table for this column option to be
created.

Required column parameters

The following parameters are required in the Add a new column wizard to set up this column type:

Pattern: Select from the list of fact patterns already used in your table or create a new fact
pattern. A fact pattern is a combination of an available data object in the package (see the note
on Required data objects for details) and a model class binding that you specify. (Examples:
LoanApplication [application] or IncomeSource [income] where the bracketed portion is the
binding to the given fact type)

Field: Select a field from the previously specified fact pattern. The field options are defined in
the fact file in the Data Objects panel of your project. (Examples: amount or lengthYears
fields within the LoanApplication fact type)

Work Item: Select from the list of your predefined work items. (The work item must define a
result parameter of the same data type as a field on a bound fact in order for you to set the field
to the return parameter.)

Header (description): Add header text for the column.

Hide column: Select this to hide the column, or clear this to display the column.

Logically insert: This option appears when the selected Fact Pattern is not currently used in
another column in the guided decision table (see the next field description). Select this to insert
the fact pattern logically into the decision engine, or clear this to insert it regularly. The decision
engine is responsible for logical decisions on insertions and retractions of facts. After regular or
stated insertions, facts have to be retracted explicitly. After logical insertions, facts are
automatically retracted when the conditions that asserted the facts in the first place are no
longer true.

Update engine with changes: This option appears when the selected Fact Pattern is already
used in another column in the guided decision table. Select this to update the decision engine
with the modified field values, or clear this to not update the decision engine.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

406

CHAPTER 31. VIEWING RULE NAME COLUMN IN GUIDED
DECISION TABLES

You can view the Rule Name column in the guided decision table if needed.

Procedure

1. In the guided decision tables designer, click Columns.

2. Select the Show rule name column check box.

3. Click Finish to save.

The default rule name format is Row (row_number)(table_name). The Source contains the default
value if you do not specify a rule name. In the guided decision table, you can add a rule name in the Rule
Name column and override the default value.

CHAPTER 31. VIEWING RULE NAME COLUMN IN GUIDED DECISION TABLES

407

CHAPTER 32. SORTING COLUMN VALUES IN GUIDED
DECISION TABLES

You can sort the values in columns that you created in a guided decision table.

Prerequisites

You created the required columns in a guided decision table.

Procedure

1. Double-click a column header that you want to sort in ascending order.

2. To sort the values of the same column in descending order, double-click the column header
again.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

408

CHAPTER 33. EDITING OR DELETING COLUMNS IN GUIDED
DECISION TABLES

You can edit or delete the columns you have created at any time in the guided decision tables designer.

Procedure

1. In the guided decision tables designer, click Columns.

2. Expand the appropriate section and click Edit or Delete next to the column name.

Figure 33.1. Edit or delete columns

NOTE

A condition column cannot be deleted if an existing action column uses the same
pattern-matching parameters as the condition column.

3. After any column changes, click Finish in the wizard to save.

CHAPTER 33. EDITING OR DELETING COLUMNS IN GUIDED DECISION TABLES

409

CHAPTER 34. ADDING ROWS AND DEFINING RULES IN
GUIDED DECISION TABLES

After you have created your columns in the guided decision table, you can add rows and define rules
within the guided decision tables designer.

Prerequisites

Columns for the guided decision table have been added as described in Chapter 29, Adding
columns to guided decision tables.

Procedure

1. In the guided decision tables designer, click Insert → Append row or one of the Insert row
options. (You can also click Insert column to open the column wizard and define a new column.)

Figure 34.1. Add Rows

2. Double-click each cell and enter data. For cells with specified values, select from the cell drop-
down options.

Figure 34.2. Enter input data in each cell

3. After you define all rows of data in the guided decision table, click Validate in the upper-right
toolbar of the guided decision tables designer to validate the table. If the table validation fails,
address any problems described in the error message, review all components in the table, and
try again to validate the table until the table passes.

NOTE

Although guided decision tables have real-time verification and validation, you
should still manually validate the completed decision table to ensure optimal
results.

4. Click Save in the table designer to save your changes.
After you define your guided decision table contents, in the upper-right corner of the guided
decision tables designer, you can use the search bar if needed to search for text that appears in
your guided decision table. The search feature is especially helpful in complex guided decision
tables with many values:

Figure 34.3. Search guided decision table contents

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

410

Figure 34.3. Search guided decision table contents

CHAPTER 34. ADDING ROWS AND DEFINING RULES IN GUIDED DECISION TABLES

411

CHAPTER 35. DEFINING ENUMERATIONS FOR DROP-DOWN
LISTS IN RULE ASSETS

Enumeration definitions in Business Central determine the possible values of fields for conditions or
actions in guided rules, guided rule templates, and guided decision tables. An enumeration definition
contains a fact.field mapping to a list of supported values that are displayed as a drop-down list in the
relevant field of a rule asset. When a user selects a field that is based on the same fact and field as the
enumeration definition, the drop-down list of defined values is displayed.

You can define enumerations in Business Central or in the DRL source for your Red Hat Decision
Manager project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Enumeration.

3. Enter an informative Enumeration name and select the appropriate Package. The package that
you specify must be the same package where the required data objects and relevant rule assets
have been assigned or will be assigned.

4. Click Ok to create the enumeration.
The new enumeration is now listed in the Enumeration Definitions panel of the Project
Explorer.

5. In the Model tab of the enumerations designer, click Add enum and define the following values
for the enumeration:

Fact: Specify an existing data object within the same package of your project with which you
want to associate this enumeration. Open the Data Objects panel in the Project Explorer
to view the available data objects, or create the relevant data object as a new asset if
needed.

Field: Specify an existing field identifier that you defined as part of the data object that you
selected for the Fact. Open the Data Objects panel in the Project Explorer to select the
relevant data object and view the list of available Identifier options. You can create the
relevant identifier for the data object if needed.

Context: Specify a list of values in the format ['string1','string2','string3'] or
[integer1,integer2,integer3] that you want to map to the Fact and Field definitions. These
values will be displayed as a drop-down list for the relevant field of the rule asset.

For example, the following enumeration defines the drop-down values for applicant credit
rating in a loan application decision service:

Figure 35.1. Example enumeration for applicant credit rating in Business Central

Example enumeration for applicant credit rating in the DRL source

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

412

'Applicant.creditRating' : ['AA', 'OK', 'Sub prime']

In this example, for any guided rule, guided rule template, or guided decision table that is in the
same package of the project and that uses the Applicant data object and the creditRating
field, the configured values are available as drop-down options:

Figure 35.2. Example enumeration drop-down options in a guided rule or guided rule
template

Figure 35.3. Example enumeration drop-down options in a guided decision table

35.1. ADVANCED ENUMERATION OPTIONS FOR RULE ASSETS

For advanced use cases with enumeration definitions in your Red Hat Decision Manager project,
consider the following extended options for defining enumerations:

Mapping between DRL values and values in Business Central

If you want the enumeration values to appear differently or more completely in the Business Central
interface than they appear in the DRL source, use a mapping in the format 'fact.field' :
['sourceValue1=UIValue1','sourceValue2=UIValue2', …] for your enumeration definition values.
For example, in the following enumeration definition for loan status, the options A or D are used in
the DRL file but the options Approved or Declined are displayed in Business Central:

'Loan.status' : ['A=Approved','D=Declined']

Enumeration value dependencies

If you want the selected value in one drop-down list to determine the available options in a
subsequent drop-down list, use the format 'fact.fieldB[fieldA=value1]' : ['value2', 'value3', …] for
your enumeration definition.
For example, in the following enumeration definition for insurance policies, the policyType field
accepts the values Home or Car. The type of policy that the user selects determines the policy
coverage field options that are then available:

'Insurance.policyType' : ['Home', 'Car']
'Insurance.coverage[policyType=Home]' : ['property', 'liability']
'Insurance.coverage[policyType=Car]' : ['collision', 'fullCoverage']

CHAPTER 35. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS

413

NOTE

Enumeration dependencies are not applied across rule conditions and actions. For
example, in this insurance policy use case, the selected policy in the rule condition
does not determine the available coverage options in the rule actions, if applicable.

External data sources in enumerations

If you want to retrieve a list of enumeration values from an external data source instead of defining
the values directly in the enumeration definition, on the class path of your project, add a helper class
that returns a java.util.List list of strings. In the enumeration definition, instead of specifying a list of
values, identify the helper class that you configured to retrieve the values externally.
For example, in the following enumeration definition for loan applicant region, instead of defining
applicant regions explicitly in the format 'Applicant.region' : ['country1', 'country2', …], the
enumeration uses a helper class that returns the list of values defined externally:

'Applicant.region' : (new com.mycompany.DataHelper()).getListOfRegions()

In this example, a DataHelper class contains a getListOfRegions() method that returns a list of
strings. The enumerations are loaded in the drop-down list for the relevant field in the rule asset.

You can also load dependent enumeration definitions dynamically from a helper class by identifying
the dependent field as usual and enclosing the call to the helper class within quotation marks:

'Applicant.region[countryCode]' : '(new
com.mycompany.DataHelper()).getListOfRegions("@{countryCode}")'

If you want to load all enumeration data entirely from an external data source, such as a relational
database, you can implement a Java class that returns a Map<String, List<String>> map. The key of
the map is the fact.field mapping and the value is a java.util.List<String> list of values.

For example, the following Java class defines loan applicant regions for the related enumeration:

The following enumeration definition correlates to this example Java class. The enumeration
contains no references to fact or field names because they are defined in the Java class:

public class SampleDataSource {

 public Map<String, List<String>> loadData() {
 Map data = new HashMap();

 List d = new ArrayList();
 d.add("AU");
 d.add("DE");
 d.add("ES");
 d.add("UK");
 d.add("US");
 ...
 data.put("Applicant.region", d);

 return data;
 }

}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

414

=(new SampleDataSource()).loadData()

The = operator enables Business Central to load all enumeration data from the helper class. The
helper methods are statically evaluated when the enumeration definition is requested for use in an
editor.

NOTE

Defining an enumeration without a fact and field definition is currently not supported
in Business Central. To define the enumeration for the associated Java class in this
way, use the DRL source in your Red Hat Decision Manager project.

CHAPTER 35. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS

415

CHAPTER 36. REAL-TIME VERIFICATION AND VALIDATION
OF GUIDED DECISION TABLES

Business Central provides a real-time verification and validation feature for guided decision tables to
ensure that your tables are complete and error free. Guided decision tables are validated after each cell
change. If a problem in logic is detected, an error notification appears and describes the problem.

36.1. TYPES OF PROBLEMS IN GUIDED DECISION TABLES

The validation and verification feature detects the following types of problems:

Redundancy

Redundancy occurs when two rows in a decision table execute the same consequences for the same
set of facts. For example, two rows checking a client’s birthday and providing a birthday discount may
result in double discount.

Subsumption

Subsumption is similar to redundancy and occurs when two rules execute the same consequences,
but one executes on a subset of facts of the other. For example, consider these two rules:

when Person age > 10 then Increase Counter

when Person age > 20 then Increase Counter

In this case, if a person is 15 years old, only one rule fires and if a person is 20 years old, both rules fire.
Such cases cause similar trouble during runtime as redundancy.

Conflicts

A conflicting situation occurs when two similar conditions have different consequences. Conflicts can
occur between two rows (rules) or two cells in a decision table.
The following example illustrates conflict between two rows in a decision table:

when Deposit > 20000 then Approve Loan

when Deposit > 20000 then Refuse Loan

In this case, there is no way to know if the loan will be approved or not.

The following example illustrates conflict between two cells in a decision table:

when Age > 25

when Age < 25

A row with conflicting cells never executes.

Broken Unique Hit Policy

When the Unique Hit policy is applied to a decision table, only one row at a time can be executed and
each row must be unique, with no overlap of conditions being met. If more than one row is executed,
then the verification report identifies the broken hit policy. For example, consider the following
conditions in a table that determines eligibility for a price discount:

when Is Student = true

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

416

when Is Military = true

If a customer is both a student and in the military, both conditions apply and break the Unique Hit
policy. Rows in this type of table must therefore be created in a way that does not allow multiple rules
to fire at one time. For details about hit policies, see Chapter 28, Hit policies for guided decision
tables.

Deficiency

Deficiency is similar to a conflict and occurs the logic of a rule in a decision table is incomplete. For
example, consider the following two deficient rules:

when Age > 20 then Approve Loan

when Deposit < 20000 then Refuse Loan

These two rules may lead to confusion for a person who is over 20 years old and has deposited less
than 20000. You can add more constraints to avoid the conflict.

Missing Columns

When deleted columns result in incomplete or incorrect logic, rules cannot fire properly. This is
detected so that you can address the missing columns, or adjust the logic to not rely on intentionally
deleted conditions or actions.

Incomplete Ranges

Ranges of field values are incomplete if a table contains constraints against possible field values but
does not define all possible values. The verification report identifies any incomplete ranges provided.
For example, if your table has a check for if an application is approved, the verification report reminds
you to make sure you also handle situations where the application was not approved.

36.2. TYPES OF NOTIFICATIONS

The verification and validation feature uses three types of notifications:

 Error: A serious problem that may lead to the guided decision table failing to work as
designed at run time. Conflicts, for example, are reported as errors.

 Warning: Likely a serious problem that may not prevent the guided decision table from
working but requires attention. Subsumptions, for example, are reported as warnings.

 Information: A moderate or minor problem that may not prevent the guided decision table
from working but requires attention. Missing columns, for example, are reported as information.

NOTE

Business Central verification and validation does not prevent you from saving an incorrect
change. The feature only reports issues while editing and you can still continue to
overlook those and save your changes.

36.3. DISABLING VERIFICATION AND VALIDATION OF GUIDED
DECISION TABLES

The decision table verification and validation feature of Business Central is enabled by default. This
feature helps you validate your guided decision tables, but with complex guided decision tables, this

CHAPTER 36. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES

417

feature can hinder decision engine performance. You can disable this feature by setting the
org.kie.verification.disable-dtable-realtime-verification system property value to true in your Red Hat
Decision Manager distribution.

Procedure

Navigate to ~/standalone-full.xml and add the following system property:

<property name="org.kie.verification.disable-dtable-realtime-verification" value="true"/>

For example, on Red Hat JBoss EAP, you add this system property in
$EAP_HOME/standalone/configuration/standalone-full.xml.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

418

CHAPTER 37. CONVERTING A GUIDED DECISION TABLE TO A
SPREADSHEET DECISION TABLE

After you define a guided decision table in Business Central, you can convert the guided decision table to
an XLS spreadsheet decision table file for offline reference and file sharing. The guided decision table
must be an extended entry guided decision table in order to be converted. The conversion tool does not
support limited entry guided decision tables.

For more information about spreadsheet decision tables, see Designing a decision service using
spreadsheet decision tables.

WARNING

Guided decision tables and spreadsheet decision tables are different table formats
that support different features. Any supported features that differ between the two
decision table formats (Hit policy, for example) are modified or lost when you
convert one decision table format to the other.

Procedure

In Business Central, navigate to the guided decision table asset that you want to convert and in the
upper-right toolbar of the decision tables designer, click Convert to XLS:

Figure 37.1. Convert an uploaded decision table

After the conversion, the converted decision table is then available as a spreadsheet decision table asset
in your project that you can download for offline reference.

CHAPTER 37. CONVERTING A GUIDED DECISION TABLE TO A SPREADSHEET DECISION TABLE

419

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables

CHAPTER 38. EXECUTING RULES
After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on KIE Server to test the rules.

Prerequisites

Business Central and KIE Server are installed and running. For installation options, see Planning
a Red Hat Decision Manager installation.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to KIE Server. If the build fails, address any problems described in the Alerts panel at
the bottom of the screen.
For more information about project deployment options, see Packaging and deploying a Red Hat
Decision Manager project.

NOTE

If the rule assets in your project are not built from an executable rule model by
default, verify that the following dependency is in the pom.xml file of your
project and rebuild the project:

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models by default. This dependency is included as part
of the Red Hat Decision Manager core packaging, but depending on your Red
Hat Decision Manager upgrade history, you may need to manually add this
dependency to enable the executable rule model behavior.

For more information about executable rule models, see Packaging and deploying
a Red Hat Decision Manager project.

3. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
KIE Server. The project must contain a pom.xml file and any other required components for
executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Business Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on KIE

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhdm.version}</version>
</dependency>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

420

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#drl-rules-other-con

kie-server-client: Enables your client application to interact remotely with assets on KIE
Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with KIE Server

Example dependencies for Red Hat Decision Manager 7.11 in a client application pom.xml file:

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For remote execution on KIE Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For debug logging (optional) -->
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

CHAPTER 38. EXECUTING RULES

421

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3363991

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of KIE Server (if needed), configure the .java class to import KIE
services, a KIE container, and a KIE session, and then use the main() method to fire all rules
against a defined fact model:

Executing rules locally

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

org.slf4j.simpleLogger.defaultLogLevel=debug

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.builder.ReleaseId;
import org.kie.api.runtime.KieContainer;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

422

To test this rule on KIE Server, configure the .java class with the imports and rule execution
information similarly to the local example, and additionally specify KIE services configuration
and KIE services client details:

Executing rules on KIE Server

import org.kie.api.runtime.KieSession;
import org.drools.compiler.kproject.ReleaseIdImpl;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseIdImpl("com.myspace", "MyProject", "1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;

CHAPTER 38. EXECUTING RULES

423

import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";
 KieServicesConfiguration config =
 KieServicesFactory.newRestConfiguration(serverUrl,
 username,
 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

424

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat CodeReady Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

CHAPTER 38. EXECUTING RULES

425

CHAPTER 39. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a Red Hat Decision Manager project

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

426

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-test-scenarios
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

PART V. DESIGNING A DECISION SERVICE USING
SPREADSHEET DECISION TABLES

As a business analyst or business rules developer, you can define business rules in a tabular format in
spreadsheet decision tables and then upload the spreadsheets to your project in Business Central.
These rules are compiled into Drools Rule Language (DRL) and form the core of the decision service for
your project.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models instead of rule-based or table-based assets. For information about DMN support
in Red Hat Decision Manager 7.11, see the following resources:

Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

Prerequisites

The space and project for the decision tables have been created in Business Central. Each asset
is associated with a project assigned to a space. For details, see Getting started with decision
services.

PART V. DESIGNING A DECISION SERVICE USING SPREADSHEET DECISION TABLES

427

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

CHAPTER 40. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 40.1. Decision-authoring assets supported in Red Hat Decision Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

428

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

CHAPTER 40. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

429

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

430

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

CHAPTER 40. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

431

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

CHAPTER 41. SPREADSHEET DECISION TABLES
Spreadsheet decision tables are XLS or XLSX spreadsheets that contain business rules defined in a
tabular format. You can include spreadsheet decision tables with standalone Red Hat Decision Manager
projects or upload them to projects in Business Central. Each row in a decision table is a rule, and each
column is a condition, an action, or another rule attribute. After you create and upload your spreadsheet
decision tables, the rules you defined are compiled into Drools Rule Language (DRL) rules as with all
other rule assets.

All data objects related to a spreadsheet decision table must be in the same project package as the
spreadsheet decision table. Assets in the same package are imported by default. Existing assets in other
packages can be imported with the decision table.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

432

CHAPTER 42. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

42.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designers like guided rules or guided decision table designers. Select the
relevant rule asset within the project and in the asset designer, go to Data
Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: (Optional) Select this check box to enable the field to hold multiple items for the
specified type.

Figure 42.1. Add data fields to a data object

CHAPTER 42. DATA OBJECTS

433

Figure 42.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

434

CHAPTER 43. DECISION TABLE USE CASE
An online shopping site lists the shipping charges for ordered items. The site provides free shipping
under the following conditions:

The number of items ordered is 4 or more and the checkout total is $300 or more.

Standard shipping is selected (4 or 5 business days from the date of purchase).

The following are the shipping rates under these conditions:

Table 43.1. For orders less than $300

Number of items Delivery day Shipping charge in USD, N =
Number of items

3 or fewer Next day

2nd day

Standard

35

15

10

4 or more Next day

2nd day

Standard

N*7.50

N*3.50

N*2.50

Table 43.2. For orders more than $300

Number of items Delivery day Shipping charge in USD, N =
Number of items

3 or fewer Next day

2nd day

Standard

25

10

N*1.50

4 or more Next day

2nd day

Standard

N*5

N*2

FREE

These conditions and rates are shown in the following example spreadsheet decision table:

Figure 43.1. Decision table for shipping charges

CHAPTER 43. DECISION TABLE USE CASE

435

Figure 43.1. Decision table for shipping charges

In order for a decision table to be uploaded in Business Central, the table must comply with certain
structure and syntax requirements, within an XLS or XLSX spreadsheet, as shown in this example. For
more information, see Chapter 44, Defining spreadsheet decision tables .

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

436

CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES
Spreadsheet decision tables (XLS or XLSX) require two key areas that define rule data: a RuleSet area
and a RuleTable area. The RuleSet area of the spreadsheet defines elements that you want to apply
globally to all rules in the same package (not only the spreadsheet), such as a rule set name or universal
rule attributes. The RuleTable area defines the actual rules (rows) and the conditions, actions, and other
rule attributes (columns) that constitute that rule table within the specified rule set. A spreadsheet of
decision tables can contain multiple RuleTable areas, but only one RuleSet area.

IMPORTANT

You should typically upload only one spreadsheet of decision tables, containing all
necessary RuleTable definitions, per rule package in Business Central. You can upload
separate decision table spreadsheets for separate packages, but uploading multiple
spreadsheets in the same package can cause compilation errors from conflicting RuleSet
or RuleTable attributes and is therefore not recommended.

Refer to the following sample spreadsheet as you define your decision table:

Figure 44.1. Sample spreadsheet decision table for shipping charges

Procedure

1. In a new XLS or XLSX spreadsheet, go to the second or third column and label a cell RuleSet
(row 1 in example). Reserve the column or columns to the left for descriptive metadata
(optional).

2. In the next cell to the right, enter a name for the RuleSet. This named rule set will contain all

CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES

437

2. In the next cell to the right, enter a name for the RuleSet. This named rule set will contain all
RuleTable rules defined in the rule package.

3. Under the RuleSet cell, define any rule attributes (one per cell) that you want to apply globally
to all rule tables in the package. Specify attribute values in the cells to the right. For example,
you can enter an Import label and in the cell to the right, specify relevant data objects from
other packages that you want to import into the package for the decision table (in the format
package.name.object.name). For supported cell labels and values, see Section 44.1, “RuleSet
definitions”.

4. Below the RuleSet area and in the same column as the RuleSet cell, skip a row and label a new
cell RuleTable (row 7 in example) and enter a table name in the same cell. The name is used as
the initial part of the name for all rules derived from this rule table, with the row number
appended for distinction. You can override this automatic naming by inserting a NAME attribute
column.

5. Use the next four rows to define the following elements as needed (rows 8-11 in example):

Rule attributes: Conditions, actions, or other attributes. For supported cell labels and
values, see Section 44.2, “RuleTable definitions” .

Object types: The data objects to which the rule attributes apply. If the same object type
applies to multiple columns, merge the object cells into one cell across multiple columns (as
shown in the sample decision table), instead of repeating the object type in multiple cells.
When an object type is merged, all columns below the merged range will be combined into
one set of constraints within a single pattern for matching a single fact at a time. When an
object is repeated in separate columns, the separate columns can create different patterns,
potentially matching different or identical facts.

Constraints: Constraints on the object types.

Column label: (Optional) Any descriptive label for the column, as a visual aid. Leave blank if
unused.

NOTE

As an alternative to populating both the object type and constraint cells, you
can leave the object type cell or cells empty and enter the full expression in
the corresponding constraint cell or cells. For example, instead of Order as
the object type and itemsCount > $1 as a constraint (separate cells), you can
leave the object type cell empty and enter Order(itemsCount > $1) in the
constraint cell, and then do the same for other constraint cells.

6. After you have defined all necessary rule attributes (columns), enter values for each column as
needed, row by row, to generate rules (rows 12-17 in example). Cells with no data are ignored
(such as when a condition or action does not apply).
If you need to add more rule tables to this decision table spreadsheet, skip a row after the last
rule in the previous table, label another RuleTable cell in the same column as the previous
RuleTable and RuleSet cells, and create the new table following the same steps in this section
(rows 19-29 in example).

7. Save your XLS or XLSX spreadsheet to finish.

NOTE

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

438

NOTE

By default, only the first worksheet in a spreadsheet workbook is processed as a decision
table when you upload the spreadsheet in Business Central. Each RuleSet name
combined with the RuleTable name must be unique across all decision table files in the
same package.

If you want to process multiple worksheet decision tables, then create a .properties file
with the same name as the spreadsheet workbook. The .properties file must contain a
property sheet with comma-separated values (CSV) for the names of the worksheets, for
example:

sheets=Sheet1,Sheet2

After you upload the decision table in Business Central, the rules are rendered as DRL rules like the
following example, from the sample spreadsheet:

//row 12
rule "Basic_12"
salience 10
 when
 $order : Order(itemsCount > 0, itemsCount <= 3, deliverInDays == 1)
 then
 insert(new Charge(35));
end

ENABLING WHITE SPACE USED IN CELL VALUES

By default, any white space before or after values in decision table cells is removed
before the decision table is processed by the decision engine. To retain white space that
you use intentionally before or after values in cells, set the drools.trimCellsInDTable
system property to false in your Red Hat Decision Manager distribution.

For example, if you use Red Hat Decision Manager with Red Hat JBoss EAP, add the
following system property to your $EAP_HOME/standalone/configuration/standalone-
full.xml file:

<property name="drools.trimCellsInDTable" value="false"/>

If you use the decision engine embedded in your Java application, add the system
property with the following command:

java -jar yourApplication.jar -Ddrools.trimCellsInDTable=false

44.1. RULESET DEFINITIONS

Entries in the RuleSet area of a decision table define DRL constructs and rule attributes that you want
to apply to all rules in a package (not only in the spreadsheet). Entries must be in a vertically stacked
sequence of cell pairs, where the first cell contains a label and the cell to the right contains the value. A
decision table spreadsheet can have only one RuleSet area.

The following table lists the supported labels and values for RuleSet definitions:

CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES

439

Table 44.1. Supported RuleSet definitions

Label Value Usage

RuleSet The package name for the generated
DRL file. Optional, the default is
rule_table.

Must be the first entry.

Sequential true or false. If true, then salience is
used to ensure that rules fire from the
top down.

Optional, at most once. If
omitted, no firing order is
imposed.

SequentialMaxPriority Integer numeric value Optional, at most once. In
sequential mode, this option is
used to set the start value of
the salience. If omitted, the
default value is 65535.

SequentialMinPriority Integer numeric value Optional, at most once. In
sequential mode, this option is
used to check if this minimum
salience value is not violated.
If omitted, the default value is
0.

EscapeQuotes true or false. If true, then quotation
marks are escaped so that they appear
literally in the DRL.

Optional, at most once. If
omitted, quotation marks are
escaped.

Import A comma-separated list of Java classes
to import from another package.

Optional, may be used
repeatedly.

Variables Declarations of DRL globals (a type
followed by a variable name). Multiple
global definitions must be separated by
commas.

Optional, may be used
repeatedly.

Functions One or more function definitions,
according to DRL syntax.

Optional, may be used
repeatedly.

Queries One or more query definitions, according
to DRL syntax.

Optional, may be used
repeatedly.

Declare One or more declarative types, according
to DRL syntax.

Optional, may be used
repeatedly.

Unit The rule units that the rules generated
from this decision table belong to.

Optional, at most once. If
omitted, the rules do not
belong to any unit.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

440

Dialect java or mvel. The dialect used in the
actions of the decision table.

Optional, at most once. If
omitted, java is imposed.

Label Value Usage

WARNING

In some cases, Microsoft Office, LibreOffice, and OpenOffice might encode a
double quotation mark differently, causing a compilation error. For example, “A” will
fail, but "A" will pass.

44.2. RULETABLE DEFINITIONS

Entries in the RuleTable area of a decision table define conditions, actions, and other rule attributes for
the rules in that rule table. A spreadsheet of decision tables can contain multiple RuleTable areas.

The following table lists the supported labels (column headers) and values for RuleTable definitions.
For column headers, you can use either the given labels or any custom labels that begin with the letters
listed in the table.

Table 44.2. Supported RuleTable definitions

Label Or custom label
that begins with

Value Usage

NAME N Provides the name for the rule
generated from that row. The
default is constructed from the text
following the RuleTable tag and
the row number.

At most one
column.

DESCRIPTION I Results in a comment within the
generated rule.

At most one
column.

CONDITION C Code snippet and interpolated
values for constructing a constraint
within a pattern in a condition.

At least one per
rule table.

ACTION A Code snippet and interpolated
values for constructing an action for
the consequence of the rule.

At least one per
rule table.

METADATA @ Code snippet and interpolated
values for constructing a metadata
entry for the rule.

Optional, any
number of
columns.

CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES

441

The following sections provide more details about how condition, action, and metadata columns use cell
data:

Conditions

For columns headed CONDITION, the cells in consecutive lines result in a conditional element:

First cell: Text in the first cell below CONDITION develops into a pattern for the rule
condition, and uses the snippet in the next line as a constraint. If the cell is merged with one
or more neighboring cells, a single pattern with multiple constraints is formed. All constraints
are combined into a parenthesized list and appended to the text in this cell.
If this cell is empty, the code snippet in the cell below it must result in a valid conditional
element on its own. For example, instead of Order as the object type and itemsCount > $1
as a constraint (separate cells), you can leave the object type cell empty and enter Order(
itemsCount > $1) in the constraint cell, and then do the same for any other constraint cells.

To include a pattern without constraints, you can write the pattern in front of the text of
another pattern, with or without an empty pair of parentheses. You can also append a from
clause to the pattern.

If the pattern ends with eval, code snippets produce boolean expressions for inclusion into a
pair of parentheses after eval.

You can terminate the pattern with @watch annotation, which is used to customize the
properties that the pattern is reactive on.

Second cell: Text in the second cell below CONDITION is processed as a constraint on the
object reference in the first cell. The code snippet in this cell is modified by interpolating
values from cells farther down in the column. If you want to create a constraint consisting of a
comparison using == with the value from the cells below, then the field selector alone is
sufficient. If you use the field selector alone, but you want to use the condition as it is without
appending any == comparison, you must terminate the condition with the symbol ?. Any
other comparison operator must be specified as the last item within the snippet, and the
value from the cells below is appended. For all other constraint forms, you must mark the
position for including the contents of a cell with the symbol $param. Multiple insertions are
possible if you use the symbols $1, $2, and so on, and a comma-separated list of values in the
cells below. However, do not separate $1, $2, and so on, by commas, or the table will fail to
process.
To expand a text according to the pattern forall($delimiter){$snippet}, repeat the $snippet
once for each of the values of the comma-separated list in each of the cells below, insert the
value in place of the symbol $, and join these expansions by the given $delimiter. Note that
the forall construct may be surrounded by other text.

If the first cell contains an object, the completed code snippet is added to the conditional
element from that cell. A pair of parentheses is provided automatically, as well as a
separating comma if multiple constraints are added to a pattern in a merged cell. If the first
cell is empty, the code snippet in this cell must result in a valid conditional element on its own.
For example, instead of Order as the object type and itemsCount > $1 as a constraint
(separate cells), you can leave the object type cell empty and enter Order(itemsCount > $1
) in the constraint cell, and then do the same for any other constraint cells.

Third cell: Text in the third cell below CONDITION is a descriptive label that you define for
the column, as a visual aid.

Fourth cell: From the fourth row on, non-blank entries provide data for interpolation. A blank
cell omits the condition or constraint for this rule.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

442

Actions

For columns headed ACTION, the cells in consecutive lines result in an action statement:

First cell: Text in the first cell below ACTION is optional. If present, the text is interpreted as
an object reference.

Second cell: Text in the second cell below ACTION is a code snippet that is modified by
interpolating values from cells farther down in the column. For a singular insertion, mark the
position for including the contents of a cell with the symbol $param. Multiple insertions are
possible if you use the symbols $1, $2, and so on, and a comma-separated list of values in the
cells below. However, do not separate $1, $2, and so on, by commas, or the table will fail to
process.
A text without any marker symbols can execute a method call without interpolation. In this
case, use any non-blank entry in a row below the cell to include the statement. The forall
construct is supported.

If the first cell contains an object, then the cell text (followed by a period), the text in the
second cell, and a terminating semicolon are strung together, resulting in a method call that
is added as an action statement for the consequence. If the first cell is empty, the code
snippet in this cell must result in a valid action element on its own.

Third cell: Text in the third cell below ACTION is a descriptive label that you define for the
column, as a visual aid.

Fourth cell: From the fourth row on, non-blank entries provide data for interpolation. A blank
cell omits the condition or constraint for this rule.

Metadata

For columns headed METADATA, the cells in consecutive lines result in a metadata annotation for
the generated rules:

First cell: Text in the first cell below METADATA is ignored.

Second cell: Text in the second cell below METADATA is subject to interpolation, using
values from the cells in the rule rows. The metadata marker character @ is prefixed
automatically, so you do not need to include that character in the text for this cell.

Third cell: Text in the third cell below METADATA is a descriptive label that you define for
the column, as a visual aid.

Fourth cell: From the fourth row on, non-blank entries provide data for interpolation. A blank
cell results in the omission of the metadata annotation for this rule.

44.3. ADDITIONAL RULE ATTRIBUTES FOR RULESET OR RULETABLE
DEFINITIONS

The RuleSet and RuleTable areas also support labels and values for other rule attributes, such as
PRIORITY or NO-LOOP. Rule attributes specified in a RuleSet area will affect all rule assets in the same
package (not only in the spreadsheet). Rule attributes specified in a RuleTable area will affect only the
rules in that rule table. You can use each rule attribute only once in a RuleSet area and once in a
RuleTable area. If the same attribute is used in both RuleSet and RuleTable areas within the
spreadsheet, then RuleTable takes priority and the attribute in the RuleSet area is overridden.

The following table lists the supported labels (column headers) and values for additional RuleSet or

CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES

443

The following table lists the supported labels (column headers) and values for additional RuleSet or
RuleTable definitions. For column headers, you can use either the given labels or any custom labels that
begin with the letters listed in the table.

Table 44.3. Additional rule attributes for RuleSet or RuleTable definitions

Label Or custom label
that begins with

Value

PRIORITY P An integer defining the salience value of the rule. Rules
with a higher salience value are given higher priority when
ordered in the activation queue. Overridden by the
Sequential flag.

Example: PRIORITY 10

DATE-EFFECTIVE V A string containing a date and time definition. The rule can
be activated only if the current date and time is after a
DATE-EFFECTIVE attribute.

Example: DATE-EFFECTIVE "4-Sep-2018"

DATE-EXPIRES Z A string containing a date and time definition. The rule
cannot be activated if the current date and time is after
the DATE-EXPIRES attribute.

Example: DATE-EXPIRES "4-Oct-2018"

NO-LOOP U A Boolean value. When this option is set to true, the rule
cannot be reactivated (looped) if a consequence of the
rule re-triggers a previously met condition.

Example: NO-LOOP true

AGENDA-GROUP G A string identifying an agenda group to which you want to
assign the rule. Agenda groups allow you to partition the
agenda to provide more execution control over groups of
rules. Only rules in an agenda group that has acquired a
focus are able to be activated.

Example: AGENDA-GROUP "GroupName"

ACTIVATION-GROUP X A string identifying an activation (or XOR) group to which
you want to assign the rule. In activation groups, only one
rule can be activated. The first rule to fire will cancel all
pending activations of all rules in the activation group.

Example: ACTIVATION-GROUP "GroupName"

DURATION D A long integer value defining the duration of time in
milliseconds after which the rule can be activated, if the
rule conditions are still met.

Example: DURATION 10000

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

444

TIMER T A string identifying either int (interval) or cron timer
definitions for scheduling the rule.

Example: TIMER "*/5 * * * *" (every 5 minutes)

CALENDAR E A Quartz calendar definition for scheduling the rule.

Example: CALENDAR "* * 0-7,18-23 ? * *" (exclude
non-business hours)

AUTO-FOCUS F A Boolean value, applicable only to rules within agenda
groups. When this option is set to true, the next time the
rule is activated, a focus is automatically given to the
agenda group to which the rule is assigned.

Example: AUTO-FOCUS true

LOCK-ON-ACTIVE L A Boolean value, applicable only to rules within rule flow
groups or agenda groups. When this option is set to true,
the next time the ruleflow group for the rule becomes
active or the agenda group for the rule receives a focus,
the rule cannot be activated again until the ruleflow group
is no longer active or the agenda group loses the focus.
This is a stronger version of the no-loop attribute,
because the activation of a matching rule is discarded
regardless of the origin of the update (not only by the rule
itself). This attribute is ideal for calculation rules where you
have a number of rules that modify a fact and you do not
want any rule re-matching and firing again.

Example: LOCK-ON-ACTIVE true

RULEFLOW-GROUP R A string identifying a rule flow group. In rule flow groups,
rules can fire only when the group is activated by the
associated rule flow.

Example: RULEFLOW-GROUP "GroupName"

Label Or custom label
that begins with

Value

Figure 44.2. Sample decision table spreadsheet with attribute columns

CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES

445

Figure 44.2. Sample decision table spreadsheet with attribute columns

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

446

CHAPTER 45. UPLOADING SPREADSHEET DECISION TABLES
TO BUSINESS CENTRAL

After you define your rules in an external XLS or XLSX spreadsheet of decision tables, you can upload
the spreadsheet file to your project in Business Central.

IMPORTANT

You should typically upload only one spreadsheet of decision tables, containing all
necessary RuleTable definitions, per rule package in Business Central. You can upload
separate decision table spreadsheets for separate packages, but uploading multiple
spreadsheets in the same package can cause compilation errors from conflicting RuleSet
or RuleTable attributes and is therefore not recommended.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Decision Table (Spreadsheet).

3. Enter an informative Decision Table name and select the appropriate Package.

4. Click the Choose File icon, and select the spreadsheet. Click Ok to upload.

5. In the decision tables designer, click Validate in the upper-right toolbar to validate the table. If
the table validation fails, open the XLS or XLSX file and address any syntax errors. For syntax
help, see Chapter 44, Defining spreadsheet decision tables .
You can upload a new version of the decision table or download the current version:

Figure 45.1. Uploaded decision table options

CHAPTER 45. UPLOADING SPREADSHEET DECISION TABLES TO BUSINESS CENTRAL

447

CHAPTER 46. CONVERTING AN UPLOADED SPREADSHEET
DECISION TABLE TO A GUIDED DECISION TABLE IN

BUSINESS CENTRAL
After you upload an XLS or XLSX spreadsheet decision table file to your project in Business Central, you
can convert the decision table to a guided decision table that you can modify directly in Business
Central.

For more information about guided decision tables, see Designing a decision service using guided
decision tables.

WARNING

Guided decision tables and spreadsheet decision tables are different decision table
formats that support different features. Any supported features that differ
between the two decision table formats are modified or lost when you convert one
decision table format to the other.

Procedure

In Business Central, navigate to the uploaded decision table asset that you want to convert and in the
upper-right toolbar of the decision tables designer, click Convert:

Figure 46.1. Convert an uploaded decision table

After the conversion, the converted decision table is then available as a guided decision table asset in
your project that you can modify directly in Business Central.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

448

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables

CHAPTER 47. EXECUTING RULES
After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on KIE Server to test the rules.

Prerequisites

Business Central and KIE Server are installed and running. For installation options, see Planning
a Red Hat Decision Manager installation.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to KIE Server. If the build fails, address any problems described in the Alerts panel at
the bottom of the screen.
For more information about project deployment options, see Packaging and deploying a Red Hat
Decision Manager project.

NOTE

If the rule assets in your project are not built from an executable rule model by
default, verify that the following dependency is in the pom.xml file of your
project and rebuild the project:

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models by default. This dependency is included as part
of the Red Hat Decision Manager core packaging, but depending on your Red
Hat Decision Manager upgrade history, you may need to manually add this
dependency to enable the executable rule model behavior.

For more information about executable rule models, see Packaging and deploying
a Red Hat Decision Manager project.

3. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
KIE Server. The project must contain a pom.xml file and any other required components for
executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Business Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on KIE

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhdm.version}</version>
</dependency>

CHAPTER 47. EXECUTING RULES

449

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#drl-rules-other-con

kie-server-client: Enables your client application to interact remotely with assets on KIE
Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with KIE Server

Example dependencies for Red Hat Decision Manager 7.11 in a client application pom.xml file:

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For remote execution on KIE Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For debug logging (optional) -->
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

450

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3363991

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of KIE Server (if needed), configure the .java class to import KIE
services, a KIE container, and a KIE session, and then use the main() method to fire all rules
against a defined fact model:

Executing rules locally

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

org.slf4j.simpleLogger.defaultLogLevel=debug

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.builder.ReleaseId;
import org.kie.api.runtime.KieContainer;

CHAPTER 47. EXECUTING RULES

451

To test this rule on KIE Server, configure the .java class with the imports and rule execution
information similarly to the local example, and additionally specify KIE services configuration
and KIE services client details:

Executing rules on KIE Server

import org.kie.api.runtime.KieSession;
import org.drools.compiler.kproject.ReleaseIdImpl;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseIdImpl("com.myspace", "MyProject", "1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

452

import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";
 KieServicesConfiguration config =
 KieServicesFactory.newRestConfiguration(serverUrl,
 username,
 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

CHAPTER 47. EXECUTING RULES

453

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat CodeReady Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

454

CHAPTER 48. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a Red Hat Decision Manager project

CHAPTER 48. NEXT STEPS

455

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-test-scenarios
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

PART VI. DESIGNING A DECISION SERVICE USING GUIDED
RULES

As a business analyst or business rules developer, you can define business rules using the guided rules
designer in Business Central. These guided rules are compiled into Drools Rule Language (DRL) and
form the core of the decision service for your project.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models instead of rule-based or table-based assets. For information about DMN support
in Red Hat Decision Manager 7.11, see the following resources:

Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

Prerequisites

The space and project for the guided rules have been created in Business Central. Each asset is
associated with a project assigned to a space. For details, see Getting started with decision
services.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

456

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

CHAPTER 49. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 49.1. Decision-authoring assets supported in Red Hat Decision Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

CHAPTER 49. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

457

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

458

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

CHAPTER 49. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

459

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

460

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

CHAPTER 50. GUIDED RULES
Guided rules are business rules that you create in a UI-based guided rules designer in Business Central
that leads you through the rule-creation process. The guided rules designer provides fields and options
for acceptable input based on the data objects for the rule being defined. The guided rules that you
define are compiled into Drools Rule Language (DRL) rules as with all other rule assets.

All data objects related to a guided rule must be in the same project package as the guided rule. Assets
in the same package are imported by default. After you create the necessary data objects and the
guided rule, you can use the Data Objects tab of the guided rules designer to verify that all required
data objects are listed or to import other existing data objects by adding a New item.

CHAPTER 50. GUIDED RULES

461

CHAPTER 51. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

51.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designers like guided rules or guided decision table designers. Select the
relevant rule asset within the project and in the asset designer, go to Data
Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: (Optional) Select this check box to enable the field to hold multiple items for the
specified type.

Figure 51.1. Add data fields to a data object

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

462

Figure 51.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

CHAPTER 51. DATA OBJECTS

463

CHAPTER 52. CREATING GUIDED RULES
Guided rules enable you to define business rules in a structured format, based on the data objects
associated with the rules. You can create and define guided rules individually for your project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter an informative Guided Rule name and select the appropriate Package. The package that
you specify must be the same package where the required data objects have been assigned or
will be assigned.
You can also select Show declared DSL sentences if any domain specific language (DSL)
assets have been defined in your project. These DSL assets will then become usable objects for
conditions and actions that you define in the guided rules designer.

4. Click Ok to create the rule asset.
The new guided rule is now listed in the Guided Rules panel of the Project Explorer, or in the
Guided Rules (with DSL) panel if you selected the Show declared DSL sentences option.

5. Click the Data Objects tab and confirm that all data objects required for your rules are listed. If
not, click New item to import data objects from other packages, or create data objects within
your package.

6. After all data objects are in place, return to the Model tab of the guided rules designer and use
the buttons on the right side of the window to add and define the WHEN (condition) and THEN
(action) sections of the rule, based on the available data objects.

Figure 52.1. The guided rules designer

The WHEN part of the rule contains the conditions that must be met to execute an action. For
example, if a bank requires loan applicants to have over 21 years of age, then the WHEN
condition of an Underage rule would be Age | less than | 21.

The THEN part of the rule contains the actions to be performed when the conditional part of
the rule has been met. For example, when the loan applicant is under 21 years old, the THEN
action would set approved to false, declining the loan because the applicant is under age.

You can also specify exceptions for more complex rules, such as if a bank may approve of an
under-aged applicant when a guarantor is involved. In that case, you would create or import a
guarantor data object and then add the field to the guided rule.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

464

7. After you define all components of the rule, click Validate in the upper-right toolbar of the
guided rules designer to validate the guided rule. If the rule validation fails, address any
problems described in the error message, review all components in the rule, and try again to
validate the rule until the rule passes.

8. Click Save in the guided rules designer to save your work.

52.1. ADDING WHEN CONDITIONS IN GUIDED RULES

The WHEN part of the rule contains the conditions that must be met to execute an action. For example,
if a bank requires loan applicants to have over 21 years of age, then the WHEN condition of an Underage
rule would be Age | less than | 21. You can set simple or complex conditions to determine how and
when your rules are applied.

Prerequisites

All data objects required for your rules have been created or imported and are listed in the Data
Objects tab of the guided rules designer.

Procedure

1. In the guided rules designer, click the plus icon () on the right side of the WHEN section.
The Add a condition to the rule window with the available condition elements opens.

Figure 52.2. Add a condition to the rule

CHAPTER 52. CREATING GUIDED RULES

465

Figure 52.2. Add a condition to the rule

The list includes the data objects from the Data Objects tab of the guided rules designer, any
DSL objects defined for the package (if you selected Show declared DSL sentences when you
created this guided rule), and the following standard options:

The following does not exist: Use this to specify facts and constraints that must not exist.

The following exists: Use this to specify facts and constraints that must exist. This option is
triggered on only the first match, not subsequent matches.

Any of the following are true: Use this to list any facts or constraints that must be true.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

466

From: Use this to define a From conditional element for the rule.

From Accumulate: Use this to define an Accumulate conditional element for the rule.

From Collect: Use this to define a Collect conditional element for the rule.

From Entry Point: Use this to define an Entry Point for the pattern.

Free form DRL: Use this to insert a free-form DRL field where you can define condition
elements freely, without the guided rules designer.

2. Choose a condition element (for example, LoanApplication) and click Ok.

3. Click the condition element in the guided rules designer and use the Modify constraints for
LoanApplication window to add a restriction on a field, apply multiple field constraints, add a
new formula style expression, apply an expression editor, or set a variable name.

Figure 52.3. Modify a condition

NOTE

A variable name enables you to identify a fact or field in other constructs within
the guided rule. For example, you could set the variable of LoanApplication to a
and then reference a in a separate Bankruptcy constraint that specifies which
application the bankruptcy is based on.

a : LoanApplication()
Bankruptcy(application == a).

CHAPTER 52. CREATING GUIDED RULES

467

After you select a constraint, the window closes automatically.

4. Choose an operator for the restriction (for example, greater than) from the drop-down menu
next to the added restriction.

5. Click the edit icon () to define the field value. The field value can be a literal value, a
formula, or a full MVEL expression.

6. To apply multiple field constraints, click the condition and in the Modify constraints for
LoanApplication window, select All of(And) or Any of(Or) from the Multiple field constraint
drop-down menu.

Figure 52.4. Add multiple field constraints

7. Click the constraint in the guided rules designer and further define the field value.

8. After you define all condition components of the rule, click Validate in the upper-right toolbar of
the guided rules designer to validate the guided rule conditions. If the rule validation fails,
address any problems described in the error message, review all components in the rule, and try
again to validate the rule until the rule passes.

9. Click Save in the guided rules designer to save your work.

52.2. ADDING THEN ACTIONS IN GUIDED RULES

The THEN part of the rule contains the actions to be performed when the WHEN condition of the rule
has been met. For example, when a loan applicant is under 21 years old, the THEN action might set
approved to false, declining the loan because the applicant is under age. You can set simple or complex
actions to determine how and when your rules are applied.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

468

Prerequisites

All data objects required for your rules have been created or imported and are listed in the Data
Objects tab of the guided rules designer.

Procedure

1. In the guided rules designer, click the plus icon () on the right side of the THEN section.
The Add a new action window with the available action elements opens.

Figure 52.5. Add a new action to the rule

The list includes insertion and modification options based on the data objects in the Data

CHAPTER 52. CREATING GUIDED RULES

469

The list includes insertion and modification options based on the data objects in the Data
Objects tab of the guided rules designer, and on any DSL objects defined for the package (if
you selected Show declared DSL sentences when you created this guided rule):

Change field values of: Use this to set the value of fields on a fact (such as
LoanApplication) without notifying the decision engine of the change.

Delete: Use this to delete a fact.

Modify: Use this to specify fields to be modified for a fact and to notify the decision engine
of the change.

Insert fact: Use this to insert a fact and define resulting fields and values for the fact.

Logically Insert fact: Use this to insert a fact logically into the decision engine and define
resulting fields and values for the fact. The decision engine is responsible for logical
decisions on insertions and retractions of facts. After regular or stated insertions, facts have
to be retracted explicitly. After logical insertions, facts are automatically retracted when the
conditions that originally asserted the facts are no longer true.

Add free form DRL: Use this to insert a free-form DRL field where you can define condition
elements freely, without the guided rules designer.

Call method on: Use this to invoke a method from another fact.

2. Choose an action element (for example, Modify) and click Ok.

3. Click the action element in the guided rules designer and use the Add a field window to select a
field.

Figure 52.6. Add a field

After you select a field, the window closes automatically.

4. Click the edit icon () to define the field value. The field value can be a literal value or a
formula.

5. After you define all action components of the rule, click Validate in the upper-right toolbar of
the guided rules designer to validate the guided rule actions. If the rule validation fails, address
any problems described in the error message, review all components in the rule, and try again to
validate the rule until the rule passes.

6. Click Save in the guided rules designer to save your work.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

470

52.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE
ASSETS

Enumeration definitions in Business Central determine the possible values of fields for conditions or
actions in guided rules, guided rule templates, and guided decision tables. An enumeration definition
contains a fact.field mapping to a list of supported values that are displayed as a drop-down list in the
relevant field of a rule asset. When a user selects a field that is based on the same fact and field as the
enumeration definition, the drop-down list of defined values is displayed.

You can define enumerations in Business Central or in the DRL source for your Red Hat Decision
Manager project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Enumeration.

3. Enter an informative Enumeration name and select the appropriate Package. The package that
you specify must be the same package where the required data objects and relevant rule assets
have been assigned or will be assigned.

4. Click Ok to create the enumeration.
The new enumeration is now listed in the Enumeration Definitions panel of the Project
Explorer.

5. In the Model tab of the enumerations designer, click Add enum and define the following values
for the enumeration:

Fact: Specify an existing data object within the same package of your project with which you
want to associate this enumeration. Open the Data Objects panel in the Project Explorer
to view the available data objects, or create the relevant data object as a new asset if
needed.

Field: Specify an existing field identifier that you defined as part of the data object that you
selected for the Fact. Open the Data Objects panel in the Project Explorer to select the
relevant data object and view the list of available Identifier options. You can create the
relevant identifier for the data object if needed.

Context: Specify a list of values in the format ['string1','string2','string3'] or
[integer1,integer2,integer3] that you want to map to the Fact and Field definitions. These
values will be displayed as a drop-down list for the relevant field of the rule asset.

For example, the following enumeration defines the drop-down values for applicant credit
rating in a loan application decision service:

Figure 52.7. Example enumeration for applicant credit rating in Business Central

Example enumeration for applicant credit rating in the DRL source

CHAPTER 52. CREATING GUIDED RULES

471

'Applicant.creditRating' : ['AA', 'OK', 'Sub prime']

In this example, for any guided rule, guided rule template, or guided decision table that is in the
same package of the project and that uses the Applicant data object and the creditRating
field, the configured values are available as drop-down options:

Figure 52.8. Example enumeration drop-down options in a guided rule or guided rule
template

Figure 52.9. Example enumeration drop-down options in a guided decision table

52.3.1. Advanced enumeration options for rule assets

For advanced use cases with enumeration definitions in your Red Hat Decision Manager project,
consider the following extended options for defining enumerations:

Mapping between DRL values and values in Business Central

If you want the enumeration values to appear differently or more completely in the Business Central
interface than they appear in the DRL source, use a mapping in the format 'fact.field' :
['sourceValue1=UIValue1','sourceValue2=UIValue2', …] for your enumeration definition values.
For example, in the following enumeration definition for loan status, the options A or D are used in
the DRL file but the options Approved or Declined are displayed in Business Central:

'Loan.status' : ['A=Approved','D=Declined']

Enumeration value dependencies

If you want the selected value in one drop-down list to determine the available options in a
subsequent drop-down list, use the format 'fact.fieldB[fieldA=value1]' : ['value2', 'value3', …] for
your enumeration definition.
For example, in the following enumeration definition for insurance policies, the policyType field
accepts the values Home or Car. The type of policy that the user selects determines the policy
coverage field options that are then available:

'Insurance.policyType' : ['Home', 'Car']
'Insurance.coverage[policyType=Home]' : ['property', 'liability']
'Insurance.coverage[policyType=Car]' : ['collision', 'fullCoverage']

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

472

NOTE

Enumeration dependencies are not applied across rule conditions and actions. For
example, in this insurance policy use case, the selected policy in the rule condition
does not determine the available coverage options in the rule actions, if applicable.

External data sources in enumerations

If you want to retrieve a list of enumeration values from an external data source instead of defining
the values directly in the enumeration definition, on the class path of your project, add a helper class
that returns a java.util.List list of strings. In the enumeration definition, instead of specifying a list of
values, identify the helper class that you configured to retrieve the values externally.
For example, in the following enumeration definition for loan applicant region, instead of defining
applicant regions explicitly in the format 'Applicant.region' : ['country1', 'country2', …], the
enumeration uses a helper class that returns the list of values defined externally:

'Applicant.region' : (new com.mycompany.DataHelper()).getListOfRegions()

In this example, a DataHelper class contains a getListOfRegions() method that returns a list of
strings. The enumerations are loaded in the drop-down list for the relevant field in the rule asset.

You can also load dependent enumeration definitions dynamically from a helper class by identifying
the dependent field as usual and enclosing the call to the helper class within quotation marks:

'Applicant.region[countryCode]' : '(new
com.mycompany.DataHelper()).getListOfRegions("@{countryCode}")'

If you want to load all enumeration data entirely from an external data source, such as a relational
database, you can implement a Java class that returns a Map<String, List<String>> map. The key of
the map is the fact.field mapping and the value is a java.util.List<String> list of values.

For example, the following Java class defines loan applicant regions for the related enumeration:

The following enumeration definition correlates to this example Java class. The enumeration
contains no references to fact or field names because they are defined in the Java class:

public class SampleDataSource {

 public Map<String, List<String>> loadData() {
 Map data = new HashMap();

 List d = new ArrayList();
 d.add("AU");
 d.add("DE");
 d.add("ES");
 d.add("UK");
 d.add("US");
 ...
 data.put("Applicant.region", d);

 return data;
 }

}

CHAPTER 52. CREATING GUIDED RULES

473

=(new SampleDataSource()).loadData()

The = operator enables Business Central to load all enumeration data from the helper class. The
helper methods are statically evaluated when the enumeration definition is requested for use in an
editor.

NOTE

Defining an enumeration without a fact and field definition is currently not supported
in Business Central. To define the enumeration for the associated Java class in this
way, use the DRL source in your Red Hat Decision Manager project.

52.4. ADDING OTHER RULE OPTIONS

You can also use the rule designer to add metadata within a rule, define additional rule attributes (such
as salience and no-loop), and freeze areas of the rule to restrict modifications to conditions or actions.

Procedure

1. In the rule designer, click (show options…) under the THEN section.

2. Click the plus icon () on the right side of the window to add options.

3. Select an option to be added to the rule:

Metadata: Enter a metadata label and click the plus icon (). Then enter any needed
data in the field provided in the rule designer.

Attribute: Select from the list of rule attributes. Then further define the value in the field or
option displayed in the rule designer.

Freeze areas for editing: Select Conditions or Actions to restrict the area from being
modified in the rule designer.

Figure 52.10. Rule options

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

474

Figure 52.10. Rule options

4. Click Save in the rule designer to save your work.

52.4.1. Rule attributes

Rule attributes are additional specifications that you can add to business rules to modify rule behavior.

The following table lists the names and supported values of the attributes that you can assign to rules:

Table 52.1. Rule attributes

Attribute Value

salience An integer defining the priority of the rule. Rules with a higher salience value
are given higher priority when ordered in the activation queue.

Example: salience 10

enabled A Boolean value. When the option is selected, the rule is enabled. When the
option is not selected, the rule is disabled.

Example: enabled true

date-effective A string containing a date and time definition. The rule can be activated
only if the current date and time is after a date-effective attribute.

Example: date-effective "4-Sep-2018"

CHAPTER 52. CREATING GUIDED RULES

475

date-expires A string containing a date and time definition. The rule cannot be activated
if the current date and time is after the date-expires attribute.

Example: date-expires "4-Oct-2018"

no-loop A Boolean value. When the option is selected, the rule cannot be reactivated
(looped) if a consequence of the rule re-triggers a previously met condition.
When the condition is not selected, the rule can be looped in these
circumstances.

Example: no-loop true

agenda-group A string identifying an agenda group to which you want to assign the rule.
Agenda groups allow you to partition the agenda to provide more execution
control over groups of rules. Only rules in an agenda group that has
acquired a focus are able to be activated.

Example: agenda-group "GroupName"

activation-group A string identifying an activation (or XOR) group to which you want to
assign the rule. In activation groups, only one rule can be activated. The first
rule to fire will cancel all pending activations of all rules in the activation
group.

Example: activation-group "GroupName"

duration A long integer value defining the duration of time in milliseconds after which
the rule can be activated, if the rule conditions are still met.

Example: duration 10000

timer A string identifying either int (interval) or cron timer definitions for
scheduling the rule.

Example: timer (cron:* 0/15 * * * ?) (every 15 minutes)

calendar A Quartz calendar definition for scheduling the rule.

Example: calendars "* * 0-7,18-23 ? * *" (exclude non-business hours)

auto-focus A Boolean value, applicable only to rules within agenda groups. When the
option is selected, the next time the rule is activated, a focus is
automatically given to the agenda group to which the rule is assigned.

Example: auto-focus true

Attribute Value

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

476

http://www.quartz-scheduler.org/

lock-on-active A Boolean value, applicable only to rules within rule flow groups or agenda
groups. When the option is selected, the next time the ruleflow group for the
rule becomes active or the agenda group for the rule receives a focus, the
rule cannot be activated again until the ruleflow group is no longer active or
the agenda group loses the focus. This is a stronger version of the no-loop
attribute, because the activation of a matching rule is discarded regardless
of the origin of the update (not only by the rule itself). This attribute is ideal
for calculation rules where you have a number of rules that modify a fact
and you do not want any rule re-matching and firing again.

Example: lock-on-active true

ruleflow-group A string identifying a rule flow group. In rule flow groups, rules can fire only
when the group is activated by the associated rule flow.

Example: ruleflow-group "GroupName"

dialect A string identifying either JAVA or MVEL as the language to be used for
code expressions in the rule. By default, the rule uses the dialect specified at
the package level. Any dialect specified here overrides the package dialect
setting for the rule.

Example: dialect "JAVA"

NOTE

When you use Red Hat Decision Manager without the
executable model, the dialect "JAVA" rule consequences
support only Java 5 syntax. For more information about
executable models, see Packaging and deploying a Red Hat
Decision Manager project.

Attribute Value

CHAPTER 52. CREATING GUIDED RULES

477

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying

CHAPTER 53. EXECUTING RULES
After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on KIE Server to test the rules.

Prerequisites

Business Central and KIE Server are installed and running. For installation options, see Planning
a Red Hat Decision Manager installation.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to KIE Server. If the build fails, address any problems described in the Alerts panel at
the bottom of the screen.
For more information about project deployment options, see Packaging and deploying a Red Hat
Decision Manager project.

NOTE

If the rule assets in your project are not built from an executable rule model by
default, verify that the following dependency is in the pom.xml file of your
project and rebuild the project:

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models by default. This dependency is included as part
of the Red Hat Decision Manager core packaging, but depending on your Red
Hat Decision Manager upgrade history, you may need to manually add this
dependency to enable the executable rule model behavior.

For more information about executable rule models, see Packaging and deploying
a Red Hat Decision Manager project.

3. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
KIE Server. The project must contain a pom.xml file and any other required components for
executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Business Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on KIE

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhdm.version}</version>
</dependency>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

478

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#drl-rules-other-con

kie-server-client: Enables your client application to interact remotely with assets on KIE
Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with KIE Server

Example dependencies for Red Hat Decision Manager 7.11 in a client application pom.xml file:

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For remote execution on KIE Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For debug logging (optional) -->
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

CHAPTER 53. EXECUTING RULES

479

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3363991

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of KIE Server (if needed), configure the .java class to import KIE
services, a KIE container, and a KIE session, and then use the main() method to fire all rules
against a defined fact model:

Executing rules locally

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

org.slf4j.simpleLogger.defaultLogLevel=debug

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.builder.ReleaseId;
import org.kie.api.runtime.KieContainer;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

480

To test this rule on KIE Server, configure the .java class with the imports and rule execution
information similarly to the local example, and additionally specify KIE services configuration
and KIE services client details:

Executing rules on KIE Server

import org.kie.api.runtime.KieSession;
import org.drools.compiler.kproject.ReleaseIdImpl;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseIdImpl("com.myspace", "MyProject", "1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;

CHAPTER 53. EXECUTING RULES

481

import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";
 KieServicesConfiguration config =
 KieServicesFactory.newRestConfiguration(serverUrl,
 username,
 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

482

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat CodeReady Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

CHAPTER 53. EXECUTING RULES

483

CHAPTER 54. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a Red Hat Decision Manager project

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

484

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-test-scenarios
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

PART VII. DESIGNING A DECISION SERVICE USING GUIDED
RULE TEMPLATES

As a business analyst or business rules developer, you can define business rule templates using the
guided rule templates designer in Business Central. These guided rule templates provide a reusable rule
structure for multiple rules that are compiled into Drools Rule Language (DRL) and form the core of the
decision service for your project.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models instead of rule-based or table-based assets. For information about DMN support
in Red Hat Decision Manager 7.11, see the following resources:

Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

Prerequisites

The space and project for the guided rule templates have been created in Business Central.
Each asset is associated with a project assigned to a space. For details, see Getting started with
decision services.

PART VII. DESIGNING A DECISION SERVICE USING GUIDED RULE TEMPLATES

485

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

CHAPTER 55. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 55.1. Decision-authoring assets supported in Red Hat Decision Manager

Asset Highlights Authoring tools Documentation

Decision Model
and Notation
(DMN) models

Are decision models based on a
notation standard defined by the
Object Management Group
(OMG)

Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

Are optimal for creating
comprehensive, illustrative, and
stable decision flows

Business Central
or other DMN-
compliant editor

Designing a
decision service
using DMN models

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

486

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

Guided decision
tables Are tables of rules that you

create in a UI-based table
designer in Business Central

Are a wizard-led alternative to
spreadsheet decision tables

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates

Support hit policies, real-time
validation, and other additional
features not supported in other
assets

Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

Business Central Designing a
decision service
using guided
decision tables

Spreadsheet
decision tables Are XLS or XLSX spreadsheet

decision tables that you can
upload into Business Central

Support template keys and
values for creating rule
templates

Are optimal for creating rules in
decision tables already managed
outside of Business Central

Have strict syntax requirements
for rules to be compiled properly
when uploaded

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Guided rules
Are individual rules that you
create in a UI-based rule
designer in Business Central

Provide fields and options for
acceptable input

Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided rules

Asset Highlights Authoring tools Documentation

CHAPTER 55. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

487

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Guided rule
templates Are reusable rule structures that

you create in a UI-based
template designer in Business
Central

Provide fields and options for
acceptable input

Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

Are optimal for creating many
rules with the same rule structure
but with different defined field
values

Business Central Designing a
decision service
using guided rule
templates

DRL rules
Are individual rules that you
define directly in .drl text files

Provide the most flexibility for
defining rules and other
technicalities of rule behavior

Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

Are optimal for creating rules
that require advanced DRL
options

Have strict syntax requirements
for rules to be compiled properly

Business Central
or integrated
development
environment (IDE)

Designing a
decision service
using DRL rules

Asset Highlights Authoring tools Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

488

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

Predictive Model
Markup Language
(PMML) models

Are predictive data-analytic
models based on a notation
standard defined by the Data
Mining Group (DMG)

Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

Support Regression, Scorecard,
Tree, Mining, and other model
types

Can be included with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

PMML or XML
editor

Designing a
decision service
using PMML
models

Asset Highlights Authoring tools Documentation

CHAPTER 55. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

489

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models

CHAPTER 56. GUIDED RULE TEMPLATES
Guided rule templates are business rule structures with placeholder values (template keys) that are
interchanged with actual values defined in separate data tables. Each row of values defined in the
corresponding data table for that template results in a rule. Guided rule templates are ideal when many
rules have the same conditions, actions, and other attributes but differ in values of facts or constraints.
In such cases, instead of creating many similar guided rules and defining values in each rule, you can
create a guided rule template with the rule structure that applies to each rule and then define only the
differing values in the data table.

The guided rule templates designer provides fields and options for acceptable template input based on
the data objects for the rule template being defined, and a corresponding data table where you add
template key values. After you create your guided rule template and add values in the corresponding
data table, the rules you defined are compiled into Drools Rule Language (DRL) rules as with all other
rule assets.

All data objects related to a guided rule template must be in the same project package as the guided
rule template. Assets in the same package are imported by default. After you create the necessary data
objects and the guided rule template, you can use the Data Objects tab of the guided rule templates
designer to verify that all required data objects are listed or to import other existing data objects by
adding a New item.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

490

CHAPTER 57. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

57.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designers like guided rules or guided decision table designers. Select the
relevant rule asset within the project and in the asset designer, go to Data
Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: (Optional) Select this check box to enable the field to hold multiple items for the
specified type.

Figure 57.1. Add data fields to a data object

CHAPTER 57. DATA OBJECTS

491

Figure 57.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

492

CHAPTER 58. CREATING GUIDED RULE TEMPLATES
You can use guided rule templates to define rule structures with placeholder values (template keys) that
correspond to actual values defined in a data table. Guided rule templates are an efficient alternative to
defining sets of many guided rules individually that use the same structure.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule Template.

3. Enter an informative Guided Rule Template name and select the appropriate Package. The
package that you specify must be the same package where the required data objects have been
assigned or will be assigned.

4. Click Ok to create the rule template.
The new guided rule template is now listed in the Guided Rule Templates panel of the Project
Explorer.

5. Click the Data Objects tab and confirm that all data objects required for your rules are listed. If
not, click New item to import data objects from other packages, or create data objects within
your package.

6. After all data objects are in place, return to the Model tab and use the buttons on the right side
of the window to add and define the WHEN (condition) and THEN (action) sections of the rule
template, based on the available data objects. For the field values that vary per rule, use
template keys in the format $key in the rule designer or in the format @{key} in free form DRL
(if used).

Figure 58.1. Sample guided rule template

NOTE ON TEMPLATE KEYS

CHAPTER 58. CREATING GUIDED RULE TEMPLATES

493

NOTE ON TEMPLATE KEYS

Template keys are fundamental in guided rule templates. Template keys are what
enable field values in the templates to be interchanged with actual values that
you define in the corresponding data table to generate different rules from the
same template. You can use other value types, such as Literal or Formula, for
values that are part of the rule structure of all rules based on that template.
However, for any values that differ among the rules, use the Template key field
type with a specified key. Without template keys in a guided rule template, the
corresponding data table is not generated in the template designer and the
template essentially functions as an individual guided rule.

The WHEN part of the rule template is the condition that must be met to execute an action. For
example, if a telecommunications company charges customers based on the services they
subscribe to (Internet, phone, and TV), then one of the WHEN conditions would be
internetService | equal to | $hasInternetService. The template key $hasInternetService is
interchanged with an actual Boolean value (true or false) defined in the data table for the
template.

The THEN part of the rule template is the action to be performed when the conditional part of
the rule has been met. For example, if a customer subscribes to only Internet service, a THEN
action for RecurringPayment with a template key $amount would set the actual monthly
amount to the integer value defined for Internet service charges in the data table.

7. After you define all components of the rule, click Save in the guided rule templates designer to
save your work.

58.1. ADDING WHEN CONDITIONS IN GUIDED RULE TEMPLATES

The WHEN part of the rule contains the conditions that must be met to execute an action. For example,
if a telecommunications company charges customers based on the services they subscribe to (Internet,
phone, and TV), then one of the WHEN conditions would be internetService | equal to |
$hasInternetService. The template key $hasInternetService is interchanged with an actual Boolean
value (true or false) defined in the data table for the template.

Prerequisites

All data objects required for your rules have been created or imported and are listed in the Data
Objects tab of the guided rule templates designer.

Procedure

1. In the guided rule templates designer, click the plus icon () on the right side of the WHEN
section.
The Add a condition to the rule window with the available condition elements opens.

Figure 58.2. Add a condition to the rule

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

494

Figure 58.2. Add a condition to the rule

The list includes the data objects from the Data Objects tab of the guided rule templates
designer, any DSL objects defined for the package, and the following standard options:

The following does not exist: Use this to specify facts and constraints that must not exist.

The following exists: Use this to specify facts and constraints that must exist. This option is
triggered on only the first match, not subsequent matches.

Any of the following are true: Use this to list any facts or constraints that must be true.

From: Use this to define a From conditional element for the rule.

CHAPTER 58. CREATING GUIDED RULE TEMPLATES

495

From Accumulate: Use this to define an Accumulate conditional element for the rule.

From Collect: Use this to define a Collect conditional element for the rule.

From Entry Point: Use this to define an Entry Point for the pattern.

Free form DRL: Use this to insert a free-form DRL field where you can define condition
elements freely, without the guided rules designer. For template keys in free form DRL, use
the format @{key}.

2. Choose a condition element (for example, Customer) and click Ok.

3. Click the condition element in the guided rule templates designer and use the Modify
constraints for Customer window to add a restriction on a field, apply multiple field constraints,
add a new formula style expression, apply an expression editor, or set a variable name.

Figure 58.3. Modify a condition

NOTE

A variable name enables you to identify a fact or field in other constructs within
the guided rule. For example, you could set the variable of Customer to c and
then reference c in a separate Applicant constraint that specifies that the
Customer is the Applicant.

After you select a constraint, the window closes automatically.

4. Choose an operator for the restriction (for example, equal to) from the drop-down menu next
to the added restriction.

c : Customer()
Applicant(this == c)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

496

5. Click the edit icon () to define the field value.

6. Select Template key and add a template key in the format $key if this value varies among the
rules that are based on this template. This allows the field value to be interchanged with actual
values that you define in the corresponding data table to generate different rules from the
same template. For field values that do not vary among the rules and are part of the rule
template, you can use any other value type.

7. To apply multiple field constraints, click the condition and in the Modify constraints for
Customer window, select All of(And) or Any of(Or) from the Multiple field constraint drop-
down menu.

Figure 58.4. Add multiple field constraints

8. Click the constraint in the guided rule templates designer and further define the field values.

9. After you define all condition elements, click Save in the guided rule templates designer to save
your work.

58.2. ADDING THEN ACTIONS IN GUIDED RULE TEMPLATES

The THEN part of the rule template is the action to be performed when the conditional part of the rule
has been met. For example, if a customer subscribes to only Internet service, a THEN action for
RecurringPayment with a template key $amount would set the actual monthly amount to the integer
value defined for Internet service charges in the data table.

Prerequisites

All data objects required for your rules have been created or imported and are listed in the Data
Objects tab of the guided rule templates designer.

Procedure

CHAPTER 58. CREATING GUIDED RULE TEMPLATES

497

1. In the guided rule templates designer, click the plus icon () on the right side of the THEN
section.
The Add a new action window with the available action elements opens.

Figure 58.5. Add a new action to the rule

The list includes insertion and modification options based on the data objects in the Data
Objects tab of the guided rule templates designer, and on any DSL objects defined for the
package:

Insert fact: Use this to insert a fact and define resulting fields and values for the fact.

Logically Insert fact: Use this to insert a fact logically into the decision engine and define

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

498

resulting fields and values for the fact. The decision engine is responsible for logical
decisions on insertions and retractions of facts. After regular or stated insertions, facts have
to be retracted explicitly. After logical insertions, facts are automatically retracted when the
conditions that originally asserted the facts are no longer true.

Add free form DRL: Use this to insert a free-form DRL field where you can define condition
elements freely, without the guided rules designer. For template keys in free form DRL, use
the format @{key}.

2. Choose an action element (for example, Logically Insert fact RecurringPayment) and click Ok.

3. Click the action element in the guided rule templates designer and use the Add a field window
to select a field.

Figure 58.6. Add a field

After you select a field, the window closes automatically.

4. Click the edit icon () to define the field value.

5. Select Template key and add a template key in the format $key if this value varies among the
rules that are based on this template. This allows the field value to be interchanged with actual
values that you define in the corresponding data table to generate different rules from the
same template. For field values that do not vary among the rules and are part of the rule
template, you can use any other value type.

6. After you define all action elements, click Save in the guided rule templates designer to save
your work.

58.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE
ASSETS

Enumeration definitions in Business Central determine the possible values of fields for conditions or
actions in guided rules, guided rule templates, and guided decision tables. An enumeration definition
contains a fact.field mapping to a list of supported values that are displayed as a drop-down list in the
relevant field of a rule asset. When a user selects a field that is based on the same fact and field as the
enumeration definition, the drop-down list of defined values is displayed.

You can define enumerations in Business Central or in the DRL source for your Red Hat Decision
Manager project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

CHAPTER 58. CREATING GUIDED RULE TEMPLATES

499

2. Click Add Asset → Enumeration.

3. Enter an informative Enumeration name and select the appropriate Package. The package that
you specify must be the same package where the required data objects and relevant rule assets
have been assigned or will be assigned.

4. Click Ok to create the enumeration.
The new enumeration is now listed in the Enumeration Definitions panel of the Project
Explorer.

5. In the Model tab of the enumerations designer, click Add enum and define the following values
for the enumeration:

Fact: Specify an existing data object within the same package of your project with which you
want to associate this enumeration. Open the Data Objects panel in the Project Explorer
to view the available data objects, or create the relevant data object as a new asset if
needed.

Field: Specify an existing field identifier that you defined as part of the data object that you
selected for the Fact. Open the Data Objects panel in the Project Explorer to select the
relevant data object and view the list of available Identifier options. You can create the
relevant identifier for the data object if needed.

Context: Specify a list of values in the format ['string1','string2','string3'] or
[integer1,integer2,integer3] that you want to map to the Fact and Field definitions. These
values will be displayed as a drop-down list for the relevant field of the rule asset.

For example, the following enumeration defines the drop-down values for applicant credit
rating in a loan application decision service:

Figure 58.7. Example enumeration for applicant credit rating in Business Central

Example enumeration for applicant credit rating in the DRL source

'Applicant.creditRating' : ['AA', 'OK', 'Sub prime']

In this example, for any guided rule, guided rule template, or guided decision table that is in the
same package of the project and that uses the Applicant data object and the creditRating
field, the configured values are available as drop-down options:

Figure 58.8. Example enumeration drop-down options in a guided rule or guided rule
template

Figure 58.9. Example enumeration drop-down options in a guided decision table

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

500

Figure 58.9. Example enumeration drop-down options in a guided decision table

58.3.1. Advanced enumeration options for rule assets

For advanced use cases with enumeration definitions in your Red Hat Decision Manager project,
consider the following extended options for defining enumerations:

Mapping between DRL values and values in Business Central

If you want the enumeration values to appear differently or more completely in the Business Central
interface than they appear in the DRL source, use a mapping in the format 'fact.field' :
['sourceValue1=UIValue1','sourceValue2=UIValue2', …] for your enumeration definition values.
For example, in the following enumeration definition for loan status, the options A or D are used in
the DRL file but the options Approved or Declined are displayed in Business Central:

'Loan.status' : ['A=Approved','D=Declined']

Enumeration value dependencies

If you want the selected value in one drop-down list to determine the available options in a
subsequent drop-down list, use the format 'fact.fieldB[fieldA=value1]' : ['value2', 'value3', …] for
your enumeration definition.
For example, in the following enumeration definition for insurance policies, the policyType field
accepts the values Home or Car. The type of policy that the user selects determines the policy
coverage field options that are then available:

'Insurance.policyType' : ['Home', 'Car']
'Insurance.coverage[policyType=Home]' : ['property', 'liability']
'Insurance.coverage[policyType=Car]' : ['collision', 'fullCoverage']

NOTE

Enumeration dependencies are not applied across rule conditions and actions. For
example, in this insurance policy use case, the selected policy in the rule condition
does not determine the available coverage options in the rule actions, if applicable.

External data sources in enumerations

If you want to retrieve a list of enumeration values from an external data source instead of defining
the values directly in the enumeration definition, on the class path of your project, add a helper class
that returns a java.util.List list of strings. In the enumeration definition, instead of specifying a list of
values, identify the helper class that you configured to retrieve the values externally.
For example, in the following enumeration definition for loan applicant region, instead of defining
applicant regions explicitly in the format 'Applicant.region' : ['country1', 'country2', …], the
enumeration uses a helper class that returns the list of values defined externally:

'Applicant.region' : (new com.mycompany.DataHelper()).getListOfRegions()

CHAPTER 58. CREATING GUIDED RULE TEMPLATES

501

In this example, a DataHelper class contains a getListOfRegions() method that returns a list of
strings. The enumerations are loaded in the drop-down list for the relevant field in the rule asset.

You can also load dependent enumeration definitions dynamically from a helper class by identifying
the dependent field as usual and enclosing the call to the helper class within quotation marks:

'Applicant.region[countryCode]' : '(new
com.mycompany.DataHelper()).getListOfRegions("@{countryCode}")'

If you want to load all enumeration data entirely from an external data source, such as a relational
database, you can implement a Java class that returns a Map<String, List<String>> map. The key of
the map is the fact.field mapping and the value is a java.util.List<String> list of values.

For example, the following Java class defines loan applicant regions for the related enumeration:

The following enumeration definition correlates to this example Java class. The enumeration
contains no references to fact or field names because they are defined in the Java class:

=(new SampleDataSource()).loadData()

The = operator enables Business Central to load all enumeration data from the helper class. The
helper methods are statically evaluated when the enumeration definition is requested for use in an
editor.

NOTE

Defining an enumeration without a fact and field definition is currently not supported
in Business Central. To define the enumeration for the associated Java class in this
way, use the DRL source in your Red Hat Decision Manager project.

58.4. ADDING OTHER RULE OPTIONS

You can also use the rule designer to add metadata within a rule, define additional rule attributes (such
as salience and no-loop), and freeze areas of the rule to restrict modifications to conditions or actions.

public class SampleDataSource {

 public Map<String, List<String>> loadData() {
 Map data = new HashMap();

 List d = new ArrayList();
 d.add("AU");
 d.add("DE");
 d.add("ES");
 d.add("UK");
 d.add("US");
 ...
 data.put("Applicant.region", d);

 return data;
 }

}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

502

Procedure

1. In the rule designer, click (show options…) under the THEN section.

2. Click the plus icon () on the right side of the window to add options.

3. Select an option to be added to the rule:

Metadata: Enter a metadata label and click the plus icon (). Then enter any needed
data in the field provided in the rule designer.

Attribute: Select from the list of rule attributes. Then further define the value in the field or
option displayed in the rule designer.

Freeze areas for editing: Select Conditions or Actions to restrict the area from being
modified in the rule designer.

Figure 58.10. Rule options

4. Click Save in the rule designer to save your work.

58.4.1. Rule attributes

Rule attributes are additional specifications that you can add to business rules to modify rule behavior.

The following table lists the names and supported values of the attributes that you can assign to rules:

Table 58.1. Rule attributes

Attribute Value

CHAPTER 58. CREATING GUIDED RULE TEMPLATES

503

salience An integer defining the priority of the rule. Rules with a higher salience value
are given higher priority when ordered in the activation queue.

Example: salience 10

enabled A Boolean value. When the option is selected, the rule is enabled. When the
option is not selected, the rule is disabled.

Example: enabled true

date-effective A string containing a date and time definition. The rule can be activated
only if the current date and time is after a date-effective attribute.

Example: date-effective "4-Sep-2018"

date-expires A string containing a date and time definition. The rule cannot be activated
if the current date and time is after the date-expires attribute.

Example: date-expires "4-Oct-2018"

no-loop A Boolean value. When the option is selected, the rule cannot be reactivated
(looped) if a consequence of the rule re-triggers a previously met condition.
When the condition is not selected, the rule can be looped in these
circumstances.

Example: no-loop true

agenda-group A string identifying an agenda group to which you want to assign the rule.
Agenda groups allow you to partition the agenda to provide more execution
control over groups of rules. Only rules in an agenda group that has
acquired a focus are able to be activated.

Example: agenda-group "GroupName"

activation-group A string identifying an activation (or XOR) group to which you want to
assign the rule. In activation groups, only one rule can be activated. The first
rule to fire will cancel all pending activations of all rules in the activation
group.

Example: activation-group "GroupName"

duration A long integer value defining the duration of time in milliseconds after which
the rule can be activated, if the rule conditions are still met.

Example: duration 10000

timer A string identifying either int (interval) or cron timer definitions for
scheduling the rule.

Example: timer (cron:* 0/15 * * * ?) (every 15 minutes)

Attribute Value

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

504

calendar A Quartz calendar definition for scheduling the rule.

Example: calendars "* * 0-7,18-23 ? * *" (exclude non-business hours)

auto-focus A Boolean value, applicable only to rules within agenda groups. When the
option is selected, the next time the rule is activated, a focus is
automatically given to the agenda group to which the rule is assigned.

Example: auto-focus true

lock-on-active A Boolean value, applicable only to rules within rule flow groups or agenda
groups. When the option is selected, the next time the ruleflow group for the
rule becomes active or the agenda group for the rule receives a focus, the
rule cannot be activated again until the ruleflow group is no longer active or
the agenda group loses the focus. This is a stronger version of the no-loop
attribute, because the activation of a matching rule is discarded regardless
of the origin of the update (not only by the rule itself). This attribute is ideal
for calculation rules where you have a number of rules that modify a fact
and you do not want any rule re-matching and firing again.

Example: lock-on-active true

ruleflow-group A string identifying a rule flow group. In rule flow groups, rules can fire only
when the group is activated by the associated rule flow.

Example: ruleflow-group "GroupName"

dialect A string identifying either JAVA or MVEL as the language to be used for
code expressions in the rule. By default, the rule uses the dialect specified at
the package level. Any dialect specified here overrides the package dialect
setting for the rule.

Example: dialect "JAVA"

NOTE

When you use Red Hat Decision Manager without the
executable model, the dialect "JAVA" rule consequences
support only Java 5 syntax. For more information about
executable models, see Packaging and deploying a Red Hat
Decision Manager project.

Attribute Value

CHAPTER 58. CREATING GUIDED RULE TEMPLATES

505

http://www.quartz-scheduler.org/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying

CHAPTER 59. DEFINING DATA TABLES FOR GUIDED RULE
TEMPLATES

After you create a guided rule template and add template keys for field values, a data table is displayed
in the Data table of the guided rule templates designer. Each column in the data table corresponds to a
template key that you added in the guided rule template. Use this table to define values for each
template key row by row. Each row of values that you define in the data table for that template results in
a rule.

Procedure

1. In the guided rule templates designer, click the Data tab to view the data table. Each column in
the data table corresponds to a template key that you added in the guided rule template.

NOTE

If you did not add any template keys to the rule template, then this data table
does not appear and the template does not function as a genuine template but
essentially as an individual guided rule. For this reason, template keys are
fundamental in creating guided rule templates.

2. Click Add row and define the data values for each template key column to generate that rule
(row).

3. Continue adding rows and defining data values for each rule that will be generated. You can
click Add row for each new row, or click the plus icon () or minus icon to add or remove rows.

Figure 59.1. Sample data table for a guided rule template

To view the DRL code, click the Source tab in the guided rule templates designer.

Example:

rule "PaymentRules_6"
 when
 Customer(internetService == false ,

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

506

 phoneService == false ,
 TVService == true)
 then
 RecurringPayment fact0 = new RecurringPayment();
 fact0.setAmount(5);
 insertLogical(fact0);
end

rule "PaymentRules_5"
 when
 Customer(internetService == false ,
 phoneService == true ,
 TVService == false)
 then
 RecurringPayment fact0 = new RecurringPayment();
 fact0.setAmount(5);
 insertLogical(fact0);
end
...
//Other rules omitted for brevity.

4. As a visual aid, click the grid icon in the upper-left corner of the data table to toggle cell merging
on and off, if needed. Cells in the same column with identical values are merged into a single cell.

Figure 59.2. Merge cells in a data table

You can then use the expand/collapse icon [+/-] in the upper-left corner of each newly merged
cell to collapse the rows corresponding to the merged cell, or to re-expand the collapsed rows.

Figure 59.3. Collapse merged cells

CHAPTER 59. DEFINING DATA TABLES FOR GUIDED RULE TEMPLATES

507

Figure 59.3. Collapse merged cells

5. After you define the template key data for all rules and adjust the table display as needed, click
Validate in the upper-right toolbar of the guided rule templates designer to validate the guided
rule template. If the rule template validation fails, address any problems described in the error
message, review all components in the rule template and data defined in the data table, and try
again to validate the rule template until the rule template passes.

6. Click Save in the guided rule templates designer to save your work.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

508

CHAPTER 60. EXECUTING RULES
After you identify example rules or create your own rules in Business Central, you can build and deploy
the associated project and execute rules locally or on KIE Server to test the rules.

Prerequisites

Business Central and KIE Server are installed and running. For installation options, see Planning
a Red Hat Decision Manager installation.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner of the project Assets page, click Deploy to build the project and
deploy it to KIE Server. If the build fails, address any problems described in the Alerts panel at
the bottom of the screen.
For more information about project deployment options, see Packaging and deploying a Red Hat
Decision Manager project.

NOTE

If the rule assets in your project are not built from an executable rule model by
default, verify that the following dependency is in the pom.xml file of your
project and rebuild the project:

This dependency is required for rule assets in Red Hat Decision Manager to be
built from executable rule models by default. This dependency is included as part
of the Red Hat Decision Manager core packaging, but depending on your Red
Hat Decision Manager upgrade history, you may need to manually add this
dependency to enable the executable rule model behavior.

For more information about executable rule models, see Packaging and deploying
a Red Hat Decision Manager project.

3. Create a Maven or Java project outside of Business Central, if not created already, that you can
use for executing rules locally or that you can use as a client application for executing rules on
KIE Server. The project must contain a pom.xml file and any other required components for
executing the project resources.
For example test projects, see "Other methods for creating and executing DRL rules" .

4. Open the pom.xml file of your test project or client application and add the following
dependencies, if not added already:

kie-ci: Enables your client application to load Business Central project data locally using
ReleaseId

kie-server-client: Enables your client application to interact remotely with assets on KIE

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhdm.version}</version>
</dependency>

CHAPTER 60. EXECUTING RULES

509

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#drl-rules-other-con

kie-server-client: Enables your client application to interact remotely with assets on KIE
Server

slf4j: (Optional) Enables your client application to use Simple Logging Facade for Java
(SLF4J) to return debug logging information after you interact with KIE Server

Example dependencies for Red Hat Decision Manager 7.11 in a client application pom.xml file:

For available versions of these artifacts, search the group ID and artifact ID in the Nexus
Repository Manager online.

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

<!-- For local execution -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For remote execution on KIE Server -->
<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>7.52.0.Final-redhat-00007</version>
</dependency>

<!-- For debug logging (optional) -->
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.25</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.11.0.redhat-00005</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

510

https://repository.jboss.org/nexus/index.html#welcome
https://access.redhat.com/solutions/3363991

5. Ensure that the dependencies for artifacts containing model classes are defined in the client
application pom.xml file exactly as they appear in the pom.xml file of the deployed project. If
dependencies for model classes differ between the client application and your projects,
execution errors can occur.
To access the project pom.xml file in Business Central, select any existing asset in the project
and then in the Project Explorer menu on the left side of the screen, click the Customize View
gear icon and select Repository View → pom.xml.

For example, the following Person class dependency appears in both the client and deployed
project pom.xml files:

6. If you added the slf4j dependency to the client application pom.xml file for debug logging,
create a simplelogger.properties file on the relevant classpath (for example, in
src/main/resources/META-INF in Maven) with the following content:

7. In your client application, create a .java main class containing the necessary imports and a
main() method to load the KIE base, insert facts, and execute the rules.
For example, a Person object in a project contains getter and setter methods to set and
retrieve the first name, last name, hourly rate, and the wage of a person. The following Wage
rule in a project calculates the wage and hourly rate values and displays a message based on the
result:

To test this rule locally outside of KIE Server (if needed), configure the .java class to import KIE
services, a KIE container, and a KIE session, and then use the main() method to fire all rules
against a defined fact model:

Executing rules locally

<dependency>
 <groupId>com.sample</groupId>
 <artifactId>Person</artifactId>
 <version>1.0.0</version>
</dependency>

org.slf4j.simpleLogger.defaultLogLevel=debug

package com.sample;

import com.sample.Person;

dialect "java"

rule "Wage"
 when
 Person(hourlyRate * wage > 100)
 Person(name : firstName, surname : lastName)
 then
 System.out.println("Hello" + " " + name + " " + surname + "!");
 System.out.println("You are rich!");
end

import org.kie.api.KieServices;
import org.kie.api.builder.ReleaseId;
import org.kie.api.runtime.KieContainer;

CHAPTER 60. EXECUTING RULES

511

To test this rule on KIE Server, configure the .java class with the imports and rule execution
information similarly to the local example, and additionally specify KIE services configuration
and KIE services client details:

Executing rules on KIE Server

import org.kie.api.runtime.KieSession;
import org.drools.compiler.kproject.ReleaseIdImpl;

public class RulesTest {

 public static final void main(String[] args) {
 try {
 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseIdImpl("com.myspace", "MyProject", "1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert the person into the session:
 kSession.insert(p);

 // Fire all rules:
 kSession.fireAllRules();
 kSession.dispose();
 }

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

package com.sample;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.kie.api.command.BatchExecutionCommand;
import org.kie.api.command.Command;
import org.kie.api.KieServices;
import org.kie.api.runtime.ExecutionResults;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;
import org.kie.server.api.marshalling.MarshallingFormat;

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

512

import org.kie.server.api.model.ServiceResponse;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;
import org.kie.server.client.KieServicesFactory;
import org.kie.server.client.RuleServicesClient;

import com.sample.Person;

public class RulesTest {

 private static final String containerName = "testProject";
 private static final String sessionName = "myStatelessSession";

 public static final void main(String[] args) {
 try {
 // Define KIE services configuration and client:
 Set<Class<?>> allClasses = new HashSet<Class<?>>();
 allClasses.add(Person.class);
 String serverUrl = "http://$HOST:$PORT/kie-server/services/rest/server";
 String username = "$USERNAME";
 String password = "$PASSWORD";
 KieServicesConfiguration config =
 KieServicesFactory.newRestConfiguration(serverUrl,
 username,
 password);
 config.setMarshallingFormat(MarshallingFormat.JAXB);
 config.addExtraClasses(allClasses);
 KieServicesClient kieServicesClient =
 KieServicesFactory.newKieServicesClient(config);

 // Set up the fact model:
 Person p = new Person();
 p.setWage(12);
 p.setFirstName("Tom");
 p.setLastName("Summers");
 p.setHourlyRate(10);

 // Insert Person into the session:
 KieCommands kieCommands = KieServices.Factory.get().getCommands();
 List<Command> commandList = new ArrayList<Command>();
 commandList.add(kieCommands.newInsert(p, "personReturnId"));

 // Fire all rules:
 commandList.add(kieCommands.newFireAllRules("numberOfFiredRules"));
 BatchExecutionCommand batch = kieCommands.newBatchExecution(commandList,
sessionName);

 // Use rule services client to send request:
 RuleServicesClient ruleClient =
kieServicesClient.getServicesClient(RuleServicesClient.class);
 ServiceResponse<ExecutionResults> executeResponse =
ruleClient.executeCommandsWithResults(containerName, batch);
 System.out.println("number of fired rules:" +
executeResponse.getResult().getValue("numberOfFiredRules"));
 }

CHAPTER 60. EXECUTING RULES

513

8. Run the configured .java class from your project directory. You can run the file in your
development platform (such as Red Hat CodeReady Studio) or in the command line.
Example Maven execution (within project directory):

mvn clean install exec:java -Dexec.mainClass="com.sample.app.RulesTest"

Example Java execution (within project directory)

javac -classpath "./$DEPENDENCIES/*:." RulesTest.java
java -classpath "./$DEPENDENCIES/*:." RulesTest

9. Review the rule execution status in the command line and in the server log. If any rules do not
execute as expected, review the configured rules in the project and the main class configuration
to validate the data provided.

 catch (Throwable t) {
 t.printStackTrace();
 }
 }
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

514

CHAPTER 61. NEXT STEPS
Testing a decision service using test scenarios

Packaging and deploying a Red Hat Decision Manager project

CHAPTER 61. NEXT STEPS

515

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-test-scenarios
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

PART VIII. TESTING A DECISION SERVICE USING TEST
SCENARIOS

As a business analyst or business rules developer, you can use test scenarios in Business Central to test
a decision service before a project is deployed. You can test DMN-based and rules-based decision
services to ensure these are functioning properly and as expected. Also, you can test a decision service
at any time during project development.

Prerequisites

The space and project for the decision service have been created in Business Central. For
details, see Getting started with decision services .

Business rules and their associated data objects have been defined for the rules-based decision
service. For details, see Designing a decision service using guided decision tables .

DMN decision logic and its associated custom data types have been defined for the DMN-
based decision service. For details, see Designing a decision service using DMN models .

NOTE

Having defined business rules is not a technical prerequisite for test scenarios, because
the scenarios can test the defined data that constitutes the business rules. However,
creating the rules first is helpful so that you can also test entire rules in test scenarios and
so that the scenarios more closely match the intended decision service. For DMN-based
test scenarios ensure that the DMN decision logic and its associated custom data types
are defined for the decision service.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

516

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

CHAPTER 62. TEST SCENARIOS
Test scenarios in Red Hat Decision Manager enable you to validate the functionality of business rules
and business rule data (for rules-based test scenarios) or of DMN models (for DMN-based test
scenarios) before deploying them into a production environment. With a test scenario, you use data
from your project to set given conditions and expected results based on one or more defined business
rules. When you run the scenario, the expected results and actual results of the rule instance are
compared. If the expected results match the actual results, the test is successful. If the expected results
do not match the actual results, then the test fails.

Red Hat Decision Manager currently supports both the new Test Scenarios designer and the former
Test Scenarios (Legacy) designer. The default designer is the new test scenarios designer, which
supports testing of both rules and DMN models and provides an enhanced overall user experience with
test scenarios. If required, you can continue to use the legacy test scenarios designer, which supports
rule-based test scenarios only.

You can run the defined test scenarios in a number of ways, for example, you can run available test
scenarios at the project level or inside a specific test scenario asset. Test scenarios are independent and
cannot affect or modify other test scenarios. You can run test scenarios at any time during project
development in Business Central. You do not have to compile or deploy your decision service to run test
scenarios.

You can import data objects from different packages to the same project package as the test scenario.
Assets in the same package are imported by default. After you create the necessary data objects and
the test scenario, you can use the Data Objects tab of the test scenarios designer to verify that all
required data objects are listed or to import other existing data objects by adding a New item.

IMPORTANT

Throughout the test scenarios documentation, all references to test scenarios and the
test scenarios designer are for the new version, unless explicitly noted as the legacy
version.

CHAPTER 62. TEST SCENARIOS

517

CHAPTER 63. DATA OBJECTS
Data objects are the building blocks for the rule assets that you create. Data objects are custom data
types implemented as Java objects in specified packages of your project. For example, you might create
a Person object with data fields Name, Address, and DateOfBirth to specify personal details for loan
application rules. These custom data types determine what data your assets and your decision services
are based on.

63.1. CREATING DATA OBJECTS

The following procedure is a generic overview of creating data objects. It is not specific to a particular
business asset.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Data Object.

3. Enter a unique Data Object name and select the Package where you want the data object to be
available for other rule assets. Data objects with the same name cannot exist in the same
package. In the specified DRL file, you can import a data object from any package.

IMPORTING DATA OBJECTS FROM OTHER PACKAGES

You can import an existing data object from another package directly into the
asset designers like guided rules or guided decision table designers. Select the
relevant rule asset within the project and in the asset designer, go to Data
Objects → New item to select the object to be imported.

4. To make your data object persistable, select the Persistable checkbox. Persistable data objects
are able to be stored in a database according to the JPA specification. The default JPA is
Hibernate.

5. Click Ok.

6. In the data object designer, click add field to add a field to the object with the attributes Id,
Label, and Type. Required attributes are marked with an asterisk (*).

Id: Enter the unique ID of the field.

Label: (Optional) Enter a label for the field.

Type: Enter the data type of the field.

List: (Optional) Select this check box to enable the field to hold multiple items for the
specified type.

Figure 63.1. Add data fields to a data object

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

518

Figure 63.1. Add data fields to a data object

7. Click Create to add the new field, or click Create and continue to add the new field and
continue adding other fields.

NOTE

To edit a field, select the field row and use the general properties on the right
side of the screen.

CHAPTER 63. DATA OBJECTS

519

CHAPTER 64. TEST SCENARIOS DESIGNER IN BUSINESS
CENTRAL

The test scenarios designer provides a tabular layout that helps you in defining a scenario template and
all the associated test cases. The designer layout consists of a table which has a header and the
individual rows. The header consists of three parts, the GIVEN and EXPECT row, a row with instances,
and a row with corresponding fields. The header is also known as test scenario template and the
individual rows are called test scenarios definitions.

The test scenario template or header has the following two parts:

GIVEN data objects and their fields - represents the input information

EXPECT data objects and their fields - represents the objects and their fields whose exact
values are checked based on the given information and which also constitutes the expected
result.

The test scenarios definitions represent the separate test cases of a template.

You can access the Project Explorer from the left panel of the designer whereas from the right panel
you can access the Settings, Test Tools, Scenario Cheatsheet, Test Report and the Coverage Report
tabs. You can access the Settings tab to view and edit the global settings of rule-based and DMN-
based test scenarios. You can use the Test Tools to configure the data object mappings. Scenario
Cheatsheet tab contains notes and the cheat sheet which you can use as reference. The Test Report
tab displays the overview of the tests and the scenario status. To view the test coverage statistics, you
can use the Coverage Report tab from the right side of the test scenario designer.

64.1. IMPORTING DATA OBJECTS

The test scenarios designer loads all data objects that are located in the same package as the test
scenario. You can view all the data objects from the Data Objects tab in the designer. The loaded data
objects are also displayed in the Test Tools panel.

You need to close and reopen the designer in case the data objects change (for example, when a new
data object is created or when an existing one is deleted). Select a data object from the list to display its
fields and the field types.

In case you want to use a data object located in a different package than the test scenario, you need to
import the data object first. Follow the procedure below to import a data object for rules-based test
scenarios.

NOTE

You cannot import any data objects while creating DMN-based test scenarios. DMN-
based test scenarios do not use any data objects from the project but uses the custom
data types defined in the DMN file.

Procedure

1. Go to Project Explorer panel in the test scenarios designer.

2. From Test Scenario, select a test scenario.

3. Select Data Objects tab and click New Item.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

520

4. In the Add import window, choose the data object from the drop-down list.

5. Click Ok and then Save.

6. Close and reopen the test scenarios designer to view the new data object from the data objects
list.

64.2. IMPORTING A TEST SCENARIO

You can import an existing test scenario using the Import Asset button in the Asset tab from the
project view.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. From the project’s Asset tab, click Import Asset.

3. In the Create new Import Asset window,

Enter the name of the import asset.

Select the package from the Package drop-down list.

From Please select a file to upload, click Choose File… to browse to test scenario file.

4. Select the file and click Open.

5. Click Ok and the test scenario opens in the test scenario designer.

64.3. SAVING A TEST SCENARIO

You can save a test scenario at any time while creating a test scenario template or defining the test
scenarios.

Procedure

1. From the test scenarios designer toolbar on the upper-right, click Save.

2. On the Confirm Save window,

a. If you wish to add a comment regarding the test scenario, click add a comment.

b. Click Save again.

A message stating that the test scenario was saved successfully appears on the screen.

64.4. COPYING A TEST SCENARIO

You can copy an existing test scenario to the same package or to some other package by using the
Copy button from the upper-right toolbar.

Procedure

1. From the test scenarios designer toolbar on the upper-right, click Copy.

CHAPTER 64. TEST SCENARIOS DESIGNER IN BUSINESS CENTRAL

521

2. In the Make a Copy window,

a. Enter a name in the New Name field.

b. Select the package you want to copy the test scenario to.

c. Optional: To add a comment, click add a comment.

d. Click Make a Copy.

A message stating that the test scenario was copied successfully appears on the screen.

64.5. DOWNLOADING A TEST SCENARIO

You can download a copy of the test scenario to your local machine for future reference or as backup.

Procedure

In the test scenarios designer toolbar on the upper-right, click the Download icon.

The .scesim file is downloaded to your local machine.

64.6. SWITCHING BETWEEN VERSIONS OF A TEST SCENARIO

Business Central provides you the ability to switch between the various versions of a test scenario. Every
time you save the scenario, a new version of the scenario is listed under Latest Versions. To use this
feature, you must save the test scenario file at least once.

Procedure

1. From the test scenarios designer toolbar on the upper-right, click Latest Version. All the
versions of the file are listed under Latest Version, if they exist.

2. Click the version you want to work on.
The selected version of the test scenario opens in the test scenarios designer.

3. From the designer toolbar, click Restore.

4. In the Confirm Restore,

a. To add a comment, click add a comment.

b. Click Restore to confirm.

A message stating that the selected version has been reloaded successfully in the designer appears on
the screen.

64.7. VIEW OR HIDE THE ALERTS PANEL

The Alerts panel appears at the bottom of the test scenarios designer or the project view. It contains
the build information and error messages in case the executed tests are failed.

Procedure

From the designer toolbar on the upper-right, click Hide Alerts/View Alerts to enable or disable the
reporting panel.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

522

64.8. CONTEXTUAL MENU OPTIONS

The test scenarios designer provides contextual menu options, which enables you to perform basic
operations on the table such as adding, deleting, and, duplicating rows and columns. To use the
contextual menus, you need to right-click a table element. Menu options differ based on the table
element you select.

Table 64.1. Contextual menu options

Table element Cell label Available context menu options

Header #, Scenario description Insert row below

GIVEN, EXPECT Insert leftmost column, Insert rightmost column,
Insert row below

INSTANCE 1, INSTANCE 2,
PROPERTY 1, PROPERTY 2

Insert column left, Insert column right, Delete column,
Duplicate Instance, Insert row below

Rows All the cells with row numbers,
test scenarios description or
test scenarios definition

Insert row above, Insert row below, Duplicate row,
Delete row, Run scenario

Table 64.2. Description of table interactions

Table interaction Description

Insert leftmost column Inserts a new leftmost column (in either the GIVEN or EXPECT section of the
table based on user selection).

Insert rightmost column Inserts a new rightmost column (in either the GIVEN or EXPECT section of the
table based on user selection).

Insert column left Inserts a new column to the left of the selected column. The new column is of the
same type as the selected column (in either the GIVEN or EXPECT section of the
table based on user selection).

Insert column right Inserts a new column to the right of the selected column. The new column is of the
same type as the selected column (in either the GIVEN or EXPECT section of the
table based on user selection).

Delete column Deletes the selected column.

Insert row above Inserts a new row above the selected row.

Insert row below Inserts a new row below the selected row. If invoked from a header cell, inserts a
new row with index 1.

Duplicate row Duplicates the selected row.

CHAPTER 64. TEST SCENARIOS DESIGNER IN BUSINESS CENTRAL

523

Duplicate Instance Duplicates the selected instance.

Delete row Deletes the selected row.

Run scenario Runs a single test scenario.

Table interaction Description

The Insert column right or Insert column left context menu options behave differently.

If the selected column does not have a type defined, a new column without a type is added.

If the selected column has a type defined, either a new empty column or a column with the
parent instance type is created.

If the action is performed from an instance header, a new column without a type is created.

If the action is performed from a property header, a new column with the parent instance
type is created.

64.9. GLOBAL SETTINGS FOR TEST SCENARIOS

You can use the global Settings tab on the right side of the test scenarios designer to set and modify
the additional properties of assets.

64.9.1. Configuring global settings for rule-based test scenarios

Follow the procedure below to view and edit the global settings of rule-based test scenarios.

Procedure

1. Click Settings tab on the right side of the test scenario designer to display the attributes.

2. Configure the following attributes in the Settings panel:

Name: You can change the name of the existing test scenarios by using the Rename option
from the upper-right toolbar in the designer.

Type: This attribute specifies it is a rule-based test scenario and it is read-only.

Stateless Session: Select or clear this check box to specify if the KieSession is stateless or
not.

NOTE

If the current KieSession is stateless and the check box is not selected, the
tests will fail.

KieSession: (Optional) Enter the KieSession for the test scenario.

RuleFlowGroup/AgendaGroup: (Optional) Enter the RuleFlowGroup or AgendaGroup for
the test scenario.

3. Optional: To skip the entire simulation from project level after test execution, select the check

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

524

3. Optional: To skip the entire simulation from project level after test execution, select the check
box.

4. Click Save.

64.9.2. Configuring global settings for DMN-based test scenarios

Follow the procedure below to view and edit the global settings of DMN-based test scenarios.

Procedure

1. Click Settings tab on the right side of the test scenario designer to display the attributes.

2. Configure the following attributes in the Settings panel:

Name: You can change the name of the existing test scenarios by using the Rename option
from the upper-right toolbar in the designer.

Type: This attribute specifies it is a DMN-based test scenario and it is read-only.

DMN model: (Optional) Enter the DMN model for the test scenario.

DMN name: This is the name of the DMN model and it is read-only.

DMN namespace: This is the default namespace for DMN model and it is read-only.

3. Optional: To skip the entire simulation from project level after test execution, select the check
box.

4. Click Save.

CHAPTER 64. TEST SCENARIOS DESIGNER IN BUSINESS CENTRAL

525

CHAPTER 65. TEST SCENARIO TEMPLATE
Before specifying test scenario definitions, you need to create a test scenario template. The header of
the test scenario table defines the template for each scenario. You need to set the types of the instance
and property headers for both the GIVEN and EXPECT sections. Instance headers map to a particular
data object (a fact), whereas the property headers map to a particular field of the corresponding data
object.

Using the test scenarios designer, you can create test scenario templates for both rule-based and
DMN-based test scenarios.

65.1. CREATING A TEST SCENARIO TEMPLATE FOR RULE-BASED
TEST SCENARIOS

Create a test scenario template for rule-based test scenarios by following the procedure below to
validate your rules and data.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project for which you want
to create the test scenario.

2. Click Add Asset → Test Scenario.

3. Enter a Test Scenario name and select the appropriate Package. The package you select must
contain all the required data objects and rule assets have been assigned or will be assigned.

4. Select RULE as the Source type.

5. Click Ok to create and open the test scenario in the test scenarios designer.

6. To map the GIVEN column header to a data object:

Figure 65.1. Test scenario GIVEN header cells

a. Select an instance header cell in the GIVEN section.

b. Select the data object from the Test Tools tab.

c. Click Insert Data Object.

7. To map the EXPECT column header to a data object:

Figure 65.2. Test scenario EXPECT header cells

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

526

Figure 65.2. Test scenario EXPECT header cells

a. Select an instance header cell in the EXPECT section.

b. Select the data object from the Test Tools tab.

c. Click Insert Data Object.

8. To map a data object field to a property cell:

a. Select an instance header cell or property header cell.

b. Select the data object field from the Test Tools tab.

c. Click Insert Data Object.

9. To insert more properties of the data object, right-click the property header and select Insert
column right or Insert column left as required.

10. To define a java method to a property cell during test scenarios execution:

a. Select an instance header cell or property header cell.

b. Select the data object field from the Test Tools tab.

c. Click Insert Data Object.

d. Use the MVEL expression with the prefix # to define a java method for test scenario
execution.

e. To insert more properties of the data object, right-click the property header cell and select
Insert column right or Insert column left as required.

11. Use the contextual menu to add or remove columns and rows as needed.

For more details about the expression syntax in rule-based scenarios, see Section 70.1, “Expression
syntax in rule-based test scenarios”.

65.2. USING ALIASES IN RULE-BASED TEST SCENARIOS

In the test scenarios designer, once you map a header cell with a data object, the data object is removed
from the Test Tools tab. You can re-map a data object to another header cell by using an alias. Aliases
enable you to specify multiple instances of the same data object in a test scenario. You can also create
property aliases to rename the used properties directly in the table.

Procedure

In the test scenarios designer in Business Central, double-click a header cell and manually change the
name. Ensure that the aliases are uniquely named.

The instance now appears in the list of data objects in the Test Tools tab.

CHAPTER 65. TEST SCENARIO TEMPLATE

527

CHAPTER 66. TEST TEMPLATE FOR DMN-BASED TEST
SCENARIOS

Business Central automatically generates the template for every DMN-based test scenario asset and it
contains all the specified inputs and decisions of the related DMN model. For each input node in the
DMN model, a GIVEN column is added, whereas each decision node is represented by an EXPECT
column. You can modify the default template at any time as per your needs. Also, to test only a specific
part of the whole DMN model, its possible to remove the generated columns as well as move decision
nodes from the EXPECT to the GIVEN section.

66.1. CREATING A TEST SCENARIO TEMPLATE FOR DMN-BASED
TEST SCENARIOS

Create a test scenario template for DMN-based scenarios by following the procedure below to validate
your DMN models.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project that you want to
create the test scenario for.

2. Click Add Asset → Test Scenario.

3. Enter a Test Scenario name and select the appropriate Package.

4. Select DMN as the Source type.

5. Select an existing DMN asset using the Choose DMN asset option.

6. Click Ok to create and open the test scenario in the test scenarios designer.
The template is automatically generated and you can modify it as per your needs.

7. To define a java method to a property cell during test scenario execution:

a. Click an instance header cell or property header cell.

b. Select the data object field from the Test Tools tab.

c. Click Insert Data Object.

d. Use an expression to define a java method for test scenario execution.

e. To add more properties to the data object, right-click the property header cell and select
Insert column right or Insert column left as required.

8. Use the contextual menu to add or remove columns and rows as needed.

For more details about the expression syntax in DMN-based scenarios, see Section 70.2, “Expression
syntax in DMN-based scenarios”.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

528

CHAPTER 67. DEFINING A TEST SCENARIO
After creating a test scenario template you have to define the test scenario next. The rows of the test
scenario table define the individual test scenarios. A test scenario has a unique index number,
description, set of input values (the Given values), and a set of output values (the Expect values).

Prerequisites

The test scenario template has been created for the selected test scenario.

Procedure

1. Open the test scenario in the test scenarios designer.

2. Enter a description of the test scenario and fill in required values in each cell of the row.

3. Use the contextual menu to add or remove rows as required.
Double click a cell to start inline editing. To skip a particular cell from test evaluation, leave it
empty.

After defining the test scenario, you can run the test next.

CHAPTER 67. DEFINING A TEST SCENARIO

529

CHAPTER 68. BACKGROUND INSTANCE IN TEST SCENARIOS
In test scenario designer, you can use the Background tab to add and set background data for rules-
based and DMN-based test scenarios. You can add and define the GIVEN data which is common for the
entire test scenario simulation, based on the available data objects. Background tab has the ability to
add and share the data among every test scenario. Data added using the Background tab can not be
overridden by Model tab data.

For example, if the test scenario example requires the same value for the person Age in all test
scenarios, you can define the Age value in the Background page and exclude that column from the test
scenario table template. In this case, the Age is set to 25 for all test scenarios.

Figure 68.1. Example test scenarios with repeated value for Age

Figure 68.2. Example background definition of repeated value for Age

Figure 68.3. Modified test scenario template with excluded Age column

NOTE

The GIVEN data which is defined in the Background tab can only be shared between the
test scenarios of the same *.scesim file and will not be shared among different test
scenarios.

68.1. ADDING A BACKGROUND DATA IN RULE-BASED TEST
SCENARIOS

Follow the procedure below to add and set a background data in rule-based test scenarios.

Prerequisites

The rule-based test scenario template are created for the selected test scenario. For more
information about creating rule-based test scenarios, see Section 65.1, “Creating a test scenario
template for rule-based test scenarios”.

The individual test scenarios are defined. For more information about defining a test scenario,

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

530

The individual test scenarios are defined. For more information about defining a test scenario,
see Chapter 67, Defining a test scenario .

Procedure

1. Open the rule-based test scenarios in the test scenario designer.

2. Click the Background tab of the test scenarios designer.

3. Select an instance header cell in the GIVEN section to add a background data object field.

4. From the Test Tools panel, select the data object.

5. Click Insert Data Object.

6. Select a property header cell to add a background data object field.

7. From the Test Tools panel, select the data object.

8. Click Insert Data Object.

9. To add more properties to the data object, right-click the property header cell and select Insert
column right or Insert column left as required.

10. Use the contextual menu to add or remove columns and rows as needed.

11. Run the defined test scenarios.

68.2. ADDING A BACKGROUND DATA IN DMN-BASED TEST
SCENARIOS

Follow the procedure below to add and set a background data in DMN-based test scenarios.

Prerequisites

The DMN-based test scenario template is created for the selected test scenario. For more
information about creating DMN-based test scenarios, see Section 66.1, “Creating a test
scenario template for DMN-based test scenarios”.

The individual test scenarios are defined. For more information about defining a test scenario,
see Chapter 67, Defining a test scenario .

Procedure

1. Open the DMN-based test scenarios in the test scenario designer.

2. Click the Background tab of the test scenarios designer.

3. Select an instance header cell in the GIVEN section to add a background data object field.

4. From the Test Tools panel, select the data object.

5. Click Insert Data Object.

6. Select a property header cell to add a background data object field.

CHAPTER 68. BACKGROUND INSTANCE IN TEST SCENARIOS

531

7. From the Test Tools panel, select the data object.

8. Click Insert Data Object.

9. To add more properties to the data object, right-click the property header cell and select Insert
column right or Insert column left as required.

10. Use the contextual menu to add or remove columns and rows as needed.

11. Run the defined test scenarios.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

532

CHAPTER 69. USING LIST AND MAP COLLECTIONS IN TEST
SCENARIOS

The test scenarios designer supports list and map collections for both DMN-based as well as rules-
based test scenarios. You can create and define a collection like a list or a map as the value of a
particular cell in both GIVEN and EXPECT columns.

NOTE

For map entries, an entry key must be a String data type.

To pass the parameter in the EXPECT column of Rule-based collection editor use the actualValue
keyword whereas use the ? keyword in DMN-based test scenario.

Procedure

1. Set the column type first (use a field whose type is a list or a map).

2. Double click a cell in the column to input a value.

3. To create the list values for the data objects in the collection editor popup:

a. Select Create List.

b. Click Add new item.

c. Enter the required value and click the check icon to save each collection item that you
add.

d. Click Save.

e. To edit an item from the collection, click the pencil icon in the collection popup editor.

f. Click Save changes.

g. To delete an item from the collection, click the bin icon in the collection popup editor.

4. To define the list values for the data objects in the collection editor popup:

a. Select Define List.

b. Use the MVEL or FEEL expression to define a list value in the text field.
Rule-based test scenario uses MVEL expression language and DMN-based test scenario
uses FEEL expression language.

c. Click Save.

5. To create the map values for the data objects in the collection editor popup:

a. Select Create Map.

b. Click Add new item.

CHAPTER 69. USING LIST AND MAP COLLECTIONS IN TEST SCENARIOS

533

c. Enter the required value and click the check icon to save each collection item that you
add.

d. Click Save.

e. To edit an item from the collection, click the pencil icon in the collection popup editor.

f. Click Save changes.

g. To delete an item from the collection, click the bin icon in the collection popup editor.

6. To define the map values for the data objects in the collection editor popup:

a. Select Define Map.

b. Use the MVEL or FEEL expression to define a map value in the text field.
Rule-based test scenario uses MVEL expression language and DMN-based test scenario
uses FEEL expression language.

c. Click Save.

NOTE

To define the map values for DMN-based test scenario, you can add a fact
and use the FEEL expression, instead of using the collection editor.

7. Click Remove to delete the entire collection.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

534

CHAPTER 70. EXPRESSION SYNTAX IN TEST SCENARIOS
The test scenarios designer supports different expression languages for both rule-based and DMN-
based test scenarios. While rule-based test scenarios support the MVFLEX Expression Language
(MVEL) and DMN-based test scenarios support the Friendly Enough Expression Language (FEEL).

70.1. EXPRESSION SYNTAX IN RULE-BASED TEST SCENARIOS

Rule-based test scenario supports the following built-in data types:

String

Boolean

Integer

Long

Double

Float

Character

Byte

Short

LocalDate

NOTE

For any other data types, use the MVEL expression with the prefix #.

Follow the BigDecimal example in the test scenario designer to use the # prefix to set the java
expression:

Enter # java.math.BigDecimal.valueOf(10) for the GIVEN column value.

Enter # actualValue.intValue() == 10 for the EXPECT column value.

You can refer to the actual value of the EXPECT column in the java expression to execute a condition.

The following rule-based test scenario definition expressions are supported by the test scenarios
designer:

Table 70.1. Description of expressions syntax

Operator Description

= Specifies equal to a value. This is default for all columns and is the only
operator supported by the GIVEN column.

CHAPTER 70. EXPRESSION SYNTAX IN TEST SCENARIOS

535

=, =!, <> Specifies inequality of a value. This operator can be combined with other
operators.

<, >, <=, >= Specifies a comparison: less than, greater than, less or equals than, and
greater or equals than.

This operator is used to set the java expression value to a property
header cell which can be executed as a java method.

[value1, value2, value3] Specifies a list of values. If one or more values are valid, the scenario
definition is evaluated as true.

expression1; expression2;
expression3

Specifies a list of expressions. If all expressions are valid, the scenario
definition is evaluated as true.

Operator Description

NOTE

An empty cell is skipped from evaluation. To define an empty string, use =,[], or ;. To
define a null value, use null.

Table 70.2. Example expressions

Expression Description

-1 The actual value is equal to -1.

< 0 The actual value is less than 0.

! > 0 The actual value is not greater than 0.

[-1, 0, 1] The actual value is equal to either -1 or 0 or 1.

<> [1, -1] The actual value is neither equal to 1 nor -1.

! 100; 0 The actual value is not equal to 100 but is equal to 0.

!= < 0; <> > 1 The actual value is neither less than 0 nor greater than 1.

<> <= 0; >= 1 The actual value is neither less than 0 nor equal to 0 but is greater than or equal to 1.

NOTE

You can refer to the supported commands and syntax in the Scenario Cheatsheet tab on
the right of the rule-based test scenarios designer.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

536

70.2. EXPRESSION SYNTAX IN DMN-BASED SCENARIOS

The following data types are supported by the DMN-based test scenarios in the test scenarios designer:

Table 70.3. Data types supported by DMN-based scenarios

Supported data types Description

numbers & strings Strings must be delimited by quotation marks, for example, "John
Doe", "Brno" or "".

boolean values true, false, and null.

dates and time For example, date("2019-05-13") or time("14:10:00+02:00").

functions Supports built-in math functions, for example, avg, max.

contexts For example, {x : 5, y : 3}.

ranges and lists For example, [1 .. 10] or [2, 3, 4, 5].

NOTE

You can refer to the supported commands and syntax in the Scenario Cheatsheet tab on
the right of the DMN-based test scenarios designer.

CHAPTER 70. EXPRESSION SYNTAX IN TEST SCENARIOS

537

CHAPTER 71. RUNNING THE TEST SCENARIOS
After creating a test scenario template and defining the test scenarios, you can run the tests to validate
your business rules and data.

Procedure

1. To run defined test scenarios, do any of the following tasks:

To execute all the available test scenarios in your project inside multiple assets, in the
upper-right corner of your project page, click Test.

Figure 71.1. Run all the test scenarios from the project view

To execute all available test scenarios defined in a .scesim file, at the top of the Test

Scenario designer, click the Run Test icon.

To run a single test scenario defined in a single .scesim file, right-click the row of the test
scenario you want to run and select Run scenario.

2. The Test Report panel displays the overview of the tests and the scenario status.
After the tests execute, if the values entered in the test scenario table do not match with the
expected values, then the corresponding cells are highlighted.

3. If tests fail, you can do the following tasks to troubleshoot the failure:

To review the error message in the pop-up window, hover your mouse cursor over the
highlighted cell.

To open the Alerts panel at the bottom of the designer or the project view for the error
messages, click View Alerts.

Make the necessary changes and run the test again until the scenario passes.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

538

CHAPTER 72. RUNNING A TEST SCENARIO LOCALLY
In Red Hat Decision Manager, you can either run the test scenarios directly in Business Central or locally
using the command line.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. On the Project’s home page, select the Settings tab.

3. Select git URL and click the Clipboard to copy the git url.

4. Open a command terminal and navigate to the directory where you want to clone the git
project.

5. Run the following command:

git clone your_git_project_url

Replace your_git_project_url with relevant data like
git://localhost:9418/MySpace/ProjectTestScenarios.

6. Once the project is successfully cloned, navigate to the git project directory and execute the
following command:

mvn clean test

Your project’s build information and the test results (such as, the number of tests run and
whether the test run was a success or not) are displayed in the command terminal. In case of
failures, make the necessary changes in Business Central, pull the changes and run the
command again.

CHAPTER 72. RUNNING A TEST SCENARIO LOCALLY

539

CHAPTER 73. EXPORTING AND IMPORTING TEST SCENARIO
SPREADSHEETS

These sections show how to export and import test scenario spreadsheets in the test scenario designer.
You can analyze and manage test scenario spreadsheets with software such as Microsoft Excel or
LibreOffice Calc. Test scenario designer supports the .CSV file format. For more information about the
RFC specification for the Comma-Separated Values (CSV) format, see Common Format and MIME
Type for Comma-Separated Values (CSV) Files.

73.1. EXPORTING A TEST SCENARIO SPREADSHEET

Follow the procedure below to export a test scenario spreadsheet using the Test Scenario designer.

Procedure

1. In the Test Scenario designer toolbar on the upper-right, click Export button.

2. Select a destination in your local file directory and confirm to save the .CSV file.

The .CSV file is exported to your local machine.

73.2. IMPORTING A TEST SCENARIO SPREADSHEET

Follow the procedure below to import a test scenario spreadsheet using the Test Scenario designer.

Procedure

1. In the Test Scenario designer toolbar on the upper-right, click Import button.

2. In the Select file to Import prompt, click Choose File… and select the .CSV file you would like
to import from your local file directory.

3. Click Import.

The .CSV file is imported to the Test Scenario designer.

WARNING

You must not modify the headers in the selected .CSV file. Otherwise, the
spreadsheet may not be successfully imported.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

540

https://tools.ietf.org/html/rfc4180

CHAPTER 74. COVERAGE REPORTS FOR TEST SCENARIOS
The test scenario designer provides a clear and coherent way of displaying the test coverage statistics
using the Coverage Report tab on the right side of the test scenario designer. You can also download
the coverage report to view and analyze the test coverage statistics. Downloaded test scenario
coverage report supports the .CSV file format. For more information about the RFC specification for
the Comma-Separated Values (CSV) format, see Common Format and MIME Type for Comma-
Separated Values (CSV) Files.

You can view the coverage report for rule-based and DMN-based test scenarios.

74.1. GENERATING COVERAGE REPORTS FOR RULE-BASED TEST
SCENARIOS

In rule-based test scenarios, the Coverage Report tab contains the detailed information about the
following:

Number of available rules

Number of fired rules

Percentage of fired rules

Percentage of executed rules represented as a pie chart

Number of times each rule has executed

The rules that are executed for each defined test scenario

Follow the procedure to generate a coverage report for rule-based test scenarios:

Prerequisites

The rule-based test scenario template are created for the selected test scenario. For more
information about creating rule-based test scenarios, see Section 65.1, “Creating a test scenario
template for rule-based test scenarios”.

The individual test scenarios are defined. For more information about defining a test scenario,
see Chapter 67, Defining a test scenario .

NOTE

To generate the coverage report for rule-based test scenario, you must create at
least one rule.

Procedure

1. Open the rule-based test scenarios in the test scenario designer.

2. Run the defined test scenarios.

3. Click Coverage Report on the right of the test scenario designer to display the test coverage
statistics.

4. Optional: To download the test scenario coverage report, Click Download report.

CHAPTER 74. COVERAGE REPORTS FOR TEST SCENARIOS

541

https://tools.ietf.org/html/rfc4180

74.2. GENERATING COVERAGE REPORTS FOR DMN-BASED TEST
SCENARIOS

In DMN-based test scenarios, the Coverage Report tab contains the detailed information about the
following:

Number of available decisions

Number of executed decisions

Percentage of executed decisions

Percentage of executed decisions represented as a pie chart

Number of times each decision has executed

Decisions that are executed for each defined test scenario

Follow the procedure to generate a coverage report for DMN-based test scenarios:

Prerequisites

The DMN-based test scenario template is created for the selected test scenario. For more
information about creating DMN-based test scenarios, see Section 66.1, “Creating a test
scenario template for DMN-based test scenarios”.

The individual test scenarios are defined. For more information about defining a test scenario,
see Chapter 67, Defining a test scenario .

Procedure

1. Open the DMN-based test scenarios in the test scenario designer.

2. Run the defined test scenarios.

3. Click Coverage Report on the right of the test scenario designer to display the test coverage
statistics.

4. Optional: To download the test scenario coverage report, Click Download report.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

542

CHAPTER 75. EXECUTING A TEST SCENARIO USING THE KIE
SERVER REST API

Directly interacting with the REST endpoints of KIE Server provides the most separation between the
calling code and the decision logic definition. You can use the KIE Server REST API to execute the test
scenarios externally. It executes the test scenarios against the deployed project.

NOTE

This functionality is disabled by default, use
org.kie.scenariosimulation.server.ext.disabled system property to enable it.

For more information about the KIE Server REST API, see Interacting with Red Hat Decision Manager
using KIE APIs.

Prerequisites

KIE Server is installed and configured, including a known user name and credentials for a user
with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

You have built the project as a KJAR artifact and deployed it to KIE Server.

You have the ID of the KIE container.

Procedure

1. Determine the base URL for accessing the KIE Server REST API endpoints. This requires
knowing the following values (with the default local deployment values as an example):

Host (localhost)

Port (8080)

Root context (kie-server)

Base REST path (services/rest/)

Example base URL in local deployment for the traffic violations project:

http://localhost:8080/kie-server/services/rest/server/containers/traffic_1.0.0-SNAPSHOT

2. Determine user authentication requirements.
When users are defined directly in the KIE Server configuration, HTTP Basic authentication is
used and requires the user name and password. Successful requests require that the user have
the kie-server role.

The following example demonstrates how to add credentials to a curl request:

curl -u username:password <request>

If KIE Server is configured with Red Hat Single Sign-On, the request must include a bearer
token:

CHAPTER 75. EXECUTING A TEST SCENARIO USING THE KIE SERVER REST API

543

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

3. Specify the format of the request and response. The REST API endpoints work with XML
format and are set using request headers:

XML

curl -H "accept: application/xml" -H "content-type: application/xml"

4. Execute the test scenario:
[POST] server/containers/{containerId}/scesim

Example curl request:

curl -X POST "http://localhost:8080/kie-server/services/rest/server/containers/traffic_1.0.0-
SNAPSHOT/scesim"\ -u 'wbadmin:wbadmin;' \ -H "accept: application/xml" -H "content-type:
application/xml"\ -d @Violation.scesim

Example XML request:

curl -H "Authorization: bearer $TOKEN" <request>

<ScenarioSimulationModel version="1.8">
 <simulation>
 <scesimModelDescriptor>
 <factMappings>
 <FactMapping>
 <expressionElements/>
 <expressionIdentifier>
 <name>Index</name>
 <type>OTHER</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>#</name>
 <className>java.lang.Integer</className>
 </factIdentifier>
 <className>java.lang.Integer</className>
 <factAlias>#</factAlias>
 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>70.0</columnWidth>
 </FactMapping>
 <FactMapping>
 <expressionElements/>
 <expressionIdentifier>
 <name>Description</name>
 <type>OTHER</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>Scenario description</name>
 <className>java.lang.String</className>
 </factIdentifier>
 <className>java.lang.String</className>
 <factAlias>Scenario description</factAlias>
 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>300.0</columnWidth>
 </FactMapping>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

544

 <FactMapping>
 <expressionElements>
 <ExpressionElement>
 <step>Driver</step>
 </ExpressionElement>
 <ExpressionElement>
 <step>Points</step>
 </ExpressionElement>
 </expressionElements>
 <expressionIdentifier>
 <name>0|1</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>Driver</name>
 <className>Driver</className>
 </factIdentifier>
 <className>number</className>
 <factAlias>Driver</factAlias>
 <expressionAlias>Points</expressionAlias>
 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>114.0</columnWidth>
 </FactMapping>
 <FactMapping>
 <expressionElements>
 <ExpressionElement>
 <step>Violation</step>
 </ExpressionElement>
 <ExpressionElement>
 <step>Type</step>
 </ExpressionElement>
 </expressionElements>
 <expressionIdentifier>
 <name>0|6</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>Violation</name>
 <className>Violation</className>
 </factIdentifier>
 <className>Type</className>
 <factAlias>Violation</factAlias>
 <expressionAlias>Type</expressionAlias>
 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>114.0</columnWidth>
 </FactMapping>
 <FactMapping>
 <expressionElements>
 <ExpressionElement>
 <step>Violation</step>
 </ExpressionElement>
 <ExpressionElement>
 <step>Speed Limit</step>
 </ExpressionElement>
 </expressionElements>
 <expressionIdentifier>

CHAPTER 75. EXECUTING A TEST SCENARIO USING THE KIE SERVER REST API

545

 <name>0|7</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>Violation</name>
 <className>Violation</className>
 </factIdentifier>
 <className>number</className>
 <factAlias>Violation</factAlias>
 <expressionAlias>Speed Limit</expressionAlias>
 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>114.0</columnWidth>
 </FactMapping>
 <FactMapping>
 <expressionElements>
 <ExpressionElement>
 <step>Violation</step>
 </ExpressionElement>
 <ExpressionElement>
 <step>Actual Speed</step>
 </ExpressionElement>
 </expressionElements>
 <expressionIdentifier>
 <name>0|8</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>Violation</name>
 <className>Violation</className>
 </factIdentifier>
 <className>number</className>
 <factAlias>Violation</factAlias>
 <expressionAlias>Actual Speed</expressionAlias>
 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>114.0</columnWidth>
 </FactMapping>
 <FactMapping>
 <expressionElements>
 <ExpressionElement>
 <step>Fine</step>
 </ExpressionElement>
 <ExpressionElement>
 <step>Points</step>
 </ExpressionElement>
 </expressionElements>
 <expressionIdentifier>
 <name>0|11</name>
 <type>EXPECT</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>Fine</name>
 <className>Fine</className>
 </factIdentifier>
 <className>number</className>
 <factAlias>Fine</factAlias>
 <expressionAlias>Points</expressionAlias>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

546

 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>114.0</columnWidth>
 </FactMapping>
 <FactMapping>
 <expressionElements>
 <ExpressionElement>
 <step>Fine</step>
 </ExpressionElement>
 <ExpressionElement>
 <step>Amount</step>
 </ExpressionElement>
 </expressionElements>
 <expressionIdentifier>
 <name>0|12</name>
 <type>EXPECT</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>Fine</name>
 <className>Fine</className>
 </factIdentifier>
 <className>number</className>
 <factAlias>Fine</factAlias>
 <expressionAlias>Amount</expressionAlias>
 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>114.0</columnWidth>
 </FactMapping>
 <FactMapping>
 <expressionElements>
 <ExpressionElement>
 <step>Should the driver be suspended?</step>
 </ExpressionElement>
 </expressionElements>
 <expressionIdentifier>
 <name>0|13</name>
 <type>EXPECT</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>Should the driver be suspended?</name>
 <className>Should the driver be suspended?</className>
 </factIdentifier>
 <className>string</className>
 <factAlias>Should the driver be suspended?</factAlias>
 <expressionAlias>value</expressionAlias>
 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>114.0</columnWidth>
 </FactMapping>
 </factMappings>
 </scesimModelDescriptor>
 <scesimData>
 <Scenario>
 <factMappingValues>
 <FactMappingValue>
 <factIdentifier>
 <name>Scenario description</name>
 <className>java.lang.String</className>
 </factIdentifier>

CHAPTER 75. EXECUTING A TEST SCENARIO USING THE KIE SERVER REST API

547

 <expressionIdentifier>
 <name>Description</name>
 <type>OTHER</type>
 </expressionIdentifier>
 <rawValue class="string">Above speed limit: 10km/h and 30 km/h</rawValue>
 </FactMappingValue>
 <FactMappingValue>
 <factIdentifier>
 <name>Driver</name>
 <className>Driver</className>
 </factIdentifier>
 <expressionIdentifier>
 <name>0|1</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 <rawValue class="string">10</rawValue>
 </FactMappingValue>
 <FactMappingValue>
 <factIdentifier>
 <name>Violation</name>
 <className>Violation</className>
 </factIdentifier>
 <expressionIdentifier>
 <name>0|6</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 <rawValue class="string">"speed"</rawValue>
 </FactMappingValue>
 <FactMappingValue>
 <factIdentifier>
 <name>Violation</name>
 <className>Violation</className>
 </factIdentifier>
 <expressionIdentifier>
 <name>0|7</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 <rawValue class="string">100</rawValue>
 </FactMappingValue>
 <FactMappingValue>
 <factIdentifier>
 <name>Violation</name>
 <className>Violation</className>
 </factIdentifier>
 <expressionIdentifier>
 <name>0|8</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 <rawValue class="string">120</rawValue>
 </FactMappingValue>
 <FactMappingValue>
 <factIdentifier>
 <name>Fine</name>
 <className>Fine</className>
 </factIdentifier>
 <expressionIdentifier>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

548

 <name>0|11</name>
 <type>EXPECT</type>
 </expressionIdentifier>
 <rawValue class="string">3</rawValue>
 </FactMappingValue>
 <FactMappingValue>
 <factIdentifier>
 <name>Fine</name>
 <className>Fine</className>
 </factIdentifier>
 <expressionIdentifier>
 <name>0|12</name>
 <type>EXPECT</type>
 </expressionIdentifier>
 <rawValue class="string">500</rawValue>
 </FactMappingValue>
 <FactMappingValue>
 <factIdentifier>
 <name>Should the driver be suspended?</name>
 <className>Should the driver be suspended?</className>
 </factIdentifier>
 <expressionIdentifier>
 <name>0|13</name>
 <type>EXPECT</type>
 </expressionIdentifier>
 <rawValue class="string">"No"</rawValue>
 </FactMappingValue>
 <FactMappingValue>
 <factIdentifier>
 <name>#</name>
 <className>java.lang.Integer</className>
 </factIdentifier>
 <expressionIdentifier>
 <name>Index</name>
 <type>OTHER</type>
 </expressionIdentifier>
 <rawValue class="string">1</rawValue>
 </FactMappingValue>
 </factMappingValues>
 </Scenario>
 </scesimData>
 </simulation>
 <background>
 <scesimModelDescriptor>
 <factMappings>
 <FactMapping>
 <expressionElements/>
 <expressionIdentifier>
 <name>1|1</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 <factIdentifier>
 <name>Empty</name>
 <className>java.lang.Void</className>
 </factIdentifier>
 <className>java.lang.Void</className>

CHAPTER 75. EXECUTING A TEST SCENARIO USING THE KIE SERVER REST API

549

Example XML response:

 <factAlias>Instance 1</factAlias>
 <expressionAlias>PROPERTY 1</expressionAlias>
 <factMappingValueType>NOT_EXPRESSION</factMappingValueType>
 <columnWidth>114.0</columnWidth>
 </FactMapping>
 </factMappings>
 </scesimModelDescriptor>
 <scesimData>
 <BackgroundData>
 <factMappingValues>
 <FactMappingValue>
 <factIdentifier>
 <name>Empty</name>
 <className>java.lang.Void</className>
 </factIdentifier>
 <expressionIdentifier>
 <name>1|1</name>
 <type>GIVEN</type>
 </expressionIdentifier>
 </FactMappingValue>
 </factMappingValues>
 </BackgroundData>
 </scesimData>
 </background>
 <settings>
 <dmnFilePath>src/main/resources/org/kie/example/traffic/traffic_violation/Traffic
Violation.dmn</dmnFilePath>
 <type>DMN</type>
 <fileName></fileName>
 <dmnNamespace>https://github.com/kiegroup/drools/kie-dmn/_A4BCA8B8-CF08-433F-
93B2-A2598F19ECFF</dmnNamespace>
 <dmnName>Traffic Violation</dmnName>
 <skipFromBuild>false</skipFromBuild>
 <stateless>false</stateless>
 </settings>
 <imports>
 <imports/>
 </imports>
</ScenarioSimulationModel>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="Test Scenario successfully executed">
 <scenario-simulation-result>
 <run-count>5</run-count>
 <ignore-count>0</ignore-count>
 <run-time>31</run-time>
 </scenario-simulation-result>
</response>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

550

CHAPTER 76. CREATING TEST SCENARIO USING THE
SAMPLE MORTGAGES PROJECT

This chapter illustrates creating and executing a test scenario from the sample Mortgages project
shipped with Business Central using the test scenario designer. The test scenario example in this
chapter is based on the Pricing loans guided decision table from the Mortgages project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click Mortgages.

2. If the project is not listed under Projects, from MySpace, click Try Samples → Mortgages →
OK.
The Assets window appears.

3. Click Add Asset → Test Scenario.

4. Enter scenario_pricing_loans as the Test Scenario name and select the default
mortgages.mortgages package from the Package drop-down list.
The package you select must contain all the required rule assets.

5. Select RULE as the Source type.

6. Click Ok to create and open the test scenario in the test scenario designer.

7. Expand Project Explorer and verify the following:

Applicant, Bankruptcy, IncomeSource, and LoanApplication data objects exist.

Pricing loans guided decision table exists.

Verify that the new test scenario is listed under Test Scenario

8. After verifying that everything is in place, return to the Model tab of the test scenario designer
and define the GIVEN and EXPECT data for the scenario, based on the available data objects.

Figure 76.1. A blank test scenario designer

9. Define the GIVEN column details:

a. Click the cell named INSTANCE 1 under the GIVEN column header.

CHAPTER 76. CREATING TEST SCENARIO USING THE SAMPLE MORTGAGES PROJECT

551

a. Click the cell named INSTANCE 1 under the GIVEN column header.

b. From the Test Tools panel, select the LoanApplication data object.

c. Click Insert Data Object.

10. To create properties for the data object, right-click the property header cell and select Insert
column right or Insert column left as required. For this example, you need to create two more
property cells under the GIVEN column.

11. Select the first property header cell:

a. From the Test Tools panel, select and expand the LoanApplication data object.

b. Click amount.

c. Click Insert Data Object to map the data object field to the property header cell.

12. Select the second property header cell:

a. From the Test Tools panel, select and expand the LoanApplication data object.

b. Click deposit.

c. Click Insert Data Object.

13. Select the third property header cell:

a. From the Test Tools panel, select and expand the LoanApplication data object.

b. Click lengthYears

c. Click Insert Data Object.

14. Right-click the LoanApplication header cell and select Insert column right. A new GIVEN
column to the right is created.

15. Select the new header cell:

a. From the Test Tools panel, select the IncomeSource data object.

b. Click Insert Data Object to map the data object to the header cell.

16. Select the property header cell below IncomeSource:

a. From the Test Tools panel, select and expand the IncomeSource data object.

b. Click type.

c. Click Insert Data Object to map the data object field to the property header cell.
You have now defined all the GIVEN column cells.

17. Next, define the EXPECT column details:

a. Click the cell named INSTANCE 2 under the EXPECT column header.

b. From the Test Tools panel, select LoanApplication data object.

c. Click Insert Data Object.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

552

18. To create properties for the data object, right-click the property header cell and select Insert
column right or Insert column left as required. Create two more property cells under the
EXPECT column.

19. Select the first property header cell:

a. From the Test Tools panel, select and expand the LoanApplication data object.

b. Click approved.

c. Click Insert Data Object to map the data object field to the property header cell.

20. Select the second property header cell:

a. From the Test Tools panel, select and expand the LoanApplication data object.

b. Click insuranceCost.

c. Click Insert Data Object to map the data object field to the property header cell.

21. Select the third property header cell:

a. From the Test Tools panel, select and expand the LoanApplication data object.

b. Click approvedRate.

c. Click Insert Data Object to map the data object field to the property header cell.

22. To define the test scenario, enter the following data in the first row:

Enter Row 1 test scenario as the Scenario Description, 150000 as the amount, 19000 as
the deposit, 30 as the lengthYears, and Asset as the type for the GIVEN column values.

Enter true as approved, 0 as the insuranceCost and 2 as the approvedRate for the
EXPECT column values.

23. Next enter the following data in the second row:

Enter Row 2 test scenario as the Scenario Description, 100002 as the amount, 2999 as
the deposit, 20 as the lengthYears, and Job as the type for the GIVEN column values.

Enter true as approved, 10 as the insuranceCost and 6 as the approvedRate for the
EXPECT column values.

24. After you have defined all GIVEN, EXPECT, and other data for the scenario, click Save in the
test scenario designer to save your work.

25. Click Run Test in the upper-right corner to run the .scesim file.
The test result is displayed in the Test Report panel. Click View Alerts to display messages from
the Alerts section. If a test fails, refer to the messages in the Alerts section at the bottom of
the window, review and correct all components in the scenario, and try again to validate the
scenario until the scenario passes.

26. Click Save in the test scenario designer to save your work after you have made all necessary
changes.

CHAPTER 76. CREATING TEST SCENARIO USING THE SAMPLE MORTGAGES PROJECT

553

CHAPTER 77. TEST SCENARIOS (LEGACY) DESIGNER IN
BUSINESS CENTRAL

Red Hat Decision Manager currently supports both the new Test Scenarios designer and the former
Test Scenarios (Legacy) designer. The default designer is the new test scenarios designer, which
supports testing of both rules and DMN models and provides an enhanced overall user experience with
test scenarios. If required, you can continue to use the legacy test scenarios designer, which supports
rule-based test scenarios only.

77.1. CREATING AND RUNNING A TEST SCENARIO (LEGACY)

You can create test scenarios in Business Central to test the functionality of business rule data before
deployment. A basic test scenario must have at least the following data:

Related data objects

GIVEN facts

EXPECT results

NOTE

The legacy test scenarios designer supports the LocalDate java built-in data type. You
can use the LocalDate java built-in data type in the dd-mmm-yyyy date format. For
example, you can set this in the 17-Oct-2020 date format.

With this data, the test scenario can validate the expected and actual results for that rule instance based
on the defined facts. You can also add a CALL METHOD and any available globals to a test scenario,
but these scenario settings are optional.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Test Scenarios (Legacy).

3. Enter an informative Test Scenario name and select the appropriate Package. The package
that you specify must be the same package where the required rule assets have been assigned
or will be assigned. You can import data objects from any package into the asset’s designer.

4. Click Ok to create the test scenario.
The new test scenario is now listed in the Test Scenarios panel of the Project Explorer,

5. Click the Data Objects tab to verify that all data objects required for the rules that you want to
test are listed. If not, click New item to import the needed data objects from other packages, or
create data objects within your package.

6. After all data objects are in place, return to the Model tab of the test scenarios designer and
define the GIVEN and EXPECT data for the scenario, based on the available data objects.

Figure 77.1. The test scenarios designer

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

554

Figure 77.1. The test scenarios designer

The GIVEN section defines the input facts for the test. For example, if an Underage rule in the
project declines loan applications for applicants under the age of 21, then the GIVEN facts in the
test scenario could be Applicant with age set to some integer less than 21.

The EXPECT section defines the expected results based on the GIVEN input facts. That is,
GIVEN the input facts, EXPECT these other facts to be valid or entire rules to be activated. For
example, with the given facts of an applicant under the age of 21 in the scenario, the EXPECT
results could be LoanApplication with approved set to false (as a result of the underage
applicant), or could be the activation of the Underage rule as a whole.

7. Optional: Add a CALL METHOD and any globals to the test scenario:

CALL METHOD: Use this to invoke a method from another fact when the rule execution is
initiated. Click CALL METHOD, select a fact, and click to select the method to invoke.
You can invoke any Java class methods (such as methods from an ArrayList) from the Java
library or from a JAR that was imported for the project (if applicable).

globals: Use this to add any global variables in the project that you want to validate in the
test scenario. Click globals to select the variable to be validated, and then in the test
scenarios designer, click the global name and define field values to be applied to the global
variable. If no global variables are available, then they must be created as new assets in
Business Central. Global variables are named objects that are visible to the decision engine
but are different from the objects for facts. Changes in the object of a global do not trigger
the re-evaluation of rules.

CHAPTER 77. TEST SCENARIOS (LEGACY) DESIGNER IN BUSINESS CENTRAL

555

8. Click More at the bottom of the test scenarios designer to add other data blocks to the same
scenario file as needed.

9. After you have defined all GIVEN, EXPECT, and other data for the scenario, click Save in the
test scenarios designer to save your work.

10. Click Run scenario in the upper-right corner to run this .scenario file, or click Run all scenarios
to run all saved .scenario files in the project package (if there are multiple). Although the Run
scenario option does not require the individual .scenario file to be saved, the Run all scenarios
option does require all .scenario files to be saved.
If the test fails, address any problems described in the Alerts message at the bottom of the
window, review all components in the scenario, and try again to validate the scenario until the
scenario passes.

11. Click Save in the test scenarios designer to save your work after all changes are complete.

77.1.1. Adding GIVEN facts in test scenarios (legacy)

The GIVEN section defines input facts for the test. For example, if an Underage rule in the project
declines loan applications for applicants under the age of 21, then the GIVEN facts in the test scenario
could be Applicant with age set to some integer less than 21.

Prerequisites

All data objects required for your test scenario have been created or imported and are listed in
the Data Objects tab of the Test Scenarios (Legacy) designer.

Procedure

1. In the Test Scenarios (Legacy) designer, click GIVEN to open the New input window with the
available facts.

Figure 77.2. Add GIVEN input to the test scenario

The list includes the following options, depending on the data objects available in the Data
Objects tab of the test scenarios designer:

Insert a new fact: Use this to add a fact and modify its field values. Enter a variable for the
fact as the Fact name.

Modify an existing fact: (Appears only after another fact has been added.) Use this to

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

556

Modify an existing fact: (Appears only after another fact has been added.) Use this to
specify a previously inserted fact to be modified in the decision engine between executions
of the scenario.

Delete an existing fact: (Appears only after another fact has been added.) Use this to
specify a previously inserted fact to be deleted from the decision engine between
executions of the scenario.

Activate rule flow group: Use this to specify a rule flow group to be activated so that all
rules within that group can be tested.

2. Choose a fact for the desired input option and click Add. For example, set Insert a new fact: to
Applicant and enter a or app or any other variable for the Fact name.

3. Click the fact in the test scenarios designer and select the field to be modified.

Figure 77.3. Modify a fact field

4. Click the edit icon () and select from the following field values:

Literal value: Creates an open field in which you enter a specific literal value.

Bound variable: Sets the value of the field to the fact bound to a selected variable. The
field type must match the bound variable type.

Create new fact: Enables you to create a new fact and assign it as a field value of the parent
fact. Then you can click the child fact in the test scenarios designer and likewise assign field
values or nest other facts similarly.

5. Continue adding any other GIVEN input data for the scenario and click Save in the test
scenarios designer to save your work.

77.1.2. Adding EXPECT results in test scenarios (legacy)

The EXPECT section defines the expected results based on the GIVEN input facts. That is, GIVEN the
input facts, EXPECT other specified facts to be valid or entire rules to be activated. For example, with
the given facts of an applicant under the age of 21 in the scenario, the EXPECT results could be
LoanApplication with approved set to false (as a result of the underage applicant), or could be the
activation of the Underage rule as a whole.

Prerequisites

All data objects required for your test scenario have been created or imported and are listed in
the Data Objects tab of the Test Scenarios (Legacy) designer.

CHAPTER 77. TEST SCENARIOS (LEGACY) DESIGNER IN BUSINESS CENTRAL

557

Procedure

1. In the Test Scenarios (Legacy) designer, click EXPECT to open the New expectation window
with the available facts.

Figure 77.4. Add EXPECT results to the test scenario

The list includes the following options, depending on the data in the GIVEN section and the
data objects available in the Data Objects tab of the test scenarios designer:

Rule: Use this to specify a particular rule in the project that is expected to be activated as a
result of the GIVEN input. Type the name of a rule that is expected to be activated or select
it from the list of rules, and then in the test scenarios designer, specify the number of times
the rule should be activated.

Fact value: Use this to select a fact and define values for it that are expected to be valid as
a result of the facts defined in the GIVEN section. The facts are listed by the Fact name
previously defined for the GIVEN input.

Any fact that matches: Use this to validate that at least one fact with the specified values
exists as a result of the GIVEN input.

2. Choose a fact for the desired expectation (such as Fact value: application) and click Add or
OK.

3. Click the fact in the test scenarios designer and select the field to be added and modified.

Figure 77.5. Modify a fact field

4. Set the field values to what is expected to be valid as a result of the GIVEN input (such as
approved | equals | false).

NOTE

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

558

NOTE

In the legacy test scenarios designer, you can use ["value1", "value2"] string
format in the EXPECT field to validate the list of strings.

5. Continue adding any other EXPECT input data for the scenario and click Save in the test
scenarios designer to save your work.

6. After you have defined and saved all GIVEN, EXPECT, and other data for the scenario, click Run
scenario in the upper-right corner to run this .scenario file, or click Run all scenarios to run all
saved .scenario files in the project package (if there are multiple). Although the Run scenario
option does not require the individual .scenario file to be saved, the Run all scenarios option
does require all .scenario files to be saved.
If the test fails, address any problems described in the Alerts message at the bottom of the
window, review all components in the scenario, and try again to validate the scenario until the
scenario passes.

7. Click Save in the test scenarios designer to save your work after all changes are complete.

CHAPTER 77. TEST SCENARIOS (LEGACY) DESIGNER IN BUSINESS CENTRAL

559

CHAPTER 78. FEATURE COMPARISON OF LEGACY AND NEW
TEST SCENARIO DESIGNER

Red Hat Decision Manager supports both the new test scenario designer and the former test scenario
(Legacy) designer.

The default designer is the new test scenario designer, which supports testing of both rules and DMN
models, and provides an enhanced overall user experience with test scenarios. You can continue to use
the legacy test scenario designer, which only supports rule-based test scenarios.

IMPORTANT

The new test scenario designer has an improved layout and feature set and continues to
be developed. However, the legacy test scenario designer is deprecated with Red Hat
Decision Manager 7.3.0 and will be removed in a future Red Hat Decision Manager
release.

The following table highlights the main features of legacy and new test scenario designer, which are
supported in Red Hat Decision Manager to help you decide a suitable test scenario designer in your
project.

+ indicates that the feature is present in the test scenario designer.

- indicates that the feature is not present in the test scenario designer.

Table 78.1. Main features of legacy and new test scenario designer

Feature & highlights New designer Legacy
designer

Documentation

Creating and running a test
scenario

You can create test
scenarios in Business
Central to test the
functionality of business
rule data before
deployment.

A basic test scenario
must have at least a
related data objects,
GIVEN facts, and
EXPECT results.

You can run the tests to
validate your business
rules and data.

+ +
For more information
about creating rule and
DMN-based test
scenarios, see
Chapter 65, Test
scenario template.

For more information
about running the test
scenarios, see
Chapter 71, Running the
test scenarios.

For more information
about creating and
running test scenarios
(legacy), see
Section 77.1, “Creating
and running a test
scenario (legacy)”.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

560

Adding GIVEN facts in test
scenarios

You can insert and verify
the GIVEN facts for the
test.

+ +
For more information
about adding GIVEN
facts in new test
scenario designer, see
Chapter 65, Test
scenario template.

For more information
about adding GIVEN
facts in test scenarios
(legacy), see
Section 77.1.1, “Adding
GIVEN facts in test
scenarios (legacy)”.

Adding EXPECT results in test
scenarios

The EXPECT section
defines the expected
results based on the
GIVEN input facts.

It represents the objects
and their fields whose
exact values are
checked based on the
provided information.

+ +
For more information
about adding EXPECT
results in new test
scenario designer, see
Chapter 65, Test
scenario template.

For more information
about adding EXPECT
results in test scenarios
(legacy), see
Section 77.1.2, “Adding
EXPECT results in test
scenarios (legacy)”.

KIE session

You can set KIE session
on test scenario level
settings.

+ + NA

KIE base on test scenario level

You can set KIE base on
test scenario level
settings.

- + NA

KIE base on project level

You can set KIE base on
project level settings.

+ + NA

Feature & highlights New designer Legacy
designer

Documentation

CHAPTER 78. FEATURE COMPARISON OF LEGACY AND NEW TEST SCENARIO DESIGNER

561

Simulated date and time

You can set a simulated
date and time for the
legacy test scenario
designer.

- + NA

Rule flow group

You can specify a rule
flow group to be
activated to test all the
rules within that group.

+ +
For more information
about setting rule flow
group in new test
scenarios, see
Section 64.9.1,
“Configuring global
settings for rule-based
test scenarios”.

For more information
about setting rule flow
group in test scenarios
(legacy), Section 77.1.1,
“Adding GIVEN facts in
test scenarios (legacy)”.

Global variables

Global variables are
named objects that are
visible to the decision
engine but are different
from the objects for
facts.

Setting global variables
for new test scenario is
deprecated .

In case you want to
reuse data sets for
different scenarios, you
can use the Background
instance.

- +
For more information
about Background
instance in new test
scenarios, see
Chapter 68, Background
instance in test
scenarios.

For more information
about global variables in
test scenarios (legacy),
see Section 77.1,
“Creating and running a
test scenario (legacy)”.

Feature & highlights New designer Legacy
designer

Documentation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

562

Call method

You can use this to
invoke a method from
another fact when the
rule execution is
initiated.

You can invoke any Java
class methods from the
Java library or from a
JAR that was imported
for the project.

+ +
For more information
about calling a method
in new test scenarios,
see Chapter 70,
Expression syntax in test
scenarios.

For more information
about calling a method
in test scenarios
(legacy), see
Section 77.1, “Creating
and running a test
scenario (legacy)”.

Modify an existing fact

You can modify a
previously inserted fact
in the decision engine
between executions of
the scenario.

- + For more information about
modifying an existing fact in test
scenarios (legacy), see
Section 77.1.1, “Adding GIVEN
facts in test scenarios (legacy)”.

Bound variable

You can set the value of
a field to the fact bound
to a selected variable.

In the new test scenario
designer, you can not
define a variable inside a
test scenario grid and
reuse it inside GIVEN or
EXPECTED cells.

- + For more information about how
to set bound variables in test
scenarios (legacy), see
Section 77.1.1, “Adding GIVEN
facts in test scenarios (legacy)”.

Feature & highlights New designer Legacy
designer

Documentation

CHAPTER 78. FEATURE COMPARISON OF LEGACY AND NEW TEST SCENARIO DESIGNER

563

CHAPTER 79. NEXT STEPS
Packaging and deploying a Red Hat Decision Manager project

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

564

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

PART IX. DECISION ENGINE IN RED HAT DECISION MANAGER
As a business rules developer, your understanding of the decision engine in Red Hat Decision Manager
can help you design more effective business assets and a more scalable decision management
architecture. The decision engine is the Red Hat Decision Manager component that stores, processes,
and evaluates data to execute business rules and to reach the decisions that you define. This document
describes basic concepts and functions of the decision engine to consider as you create your business
rule system and decision services in Red Hat Decision Manager.

PART IX. DECISION ENGINE IN RED HAT DECISION MANAGER

565

CHAPTER 80. DECISION ENGINE IN RED HAT DECISION
MANAGER

The decision engine is the rules engine in Red Hat Decision Manager. The decision engine stores,
processes, and evaluates data to execute the business rules or decision models that you define. The
basic function of the decision engine is to match incoming data, or facts, to the conditions of rules and
determine whether and how to execute the rules.

The decision engine operates using the following basic components:

Rules: Business rules or DMN decisions that you define. All rules must contain at a minimum the
conditions that trigger the rule and the actions that the rule dictates.

Facts: Data that enters or changes in the decision engine that the decision engine matches to
rule conditions to execute applicable rules.

Production memory: Location where rules are stored in the decision engine.

Working memory: Location where facts are stored in the decision engine.

Agenda: Location where activated rules are registered and sorted (if applicable) in preparation
for execution.

When a business user or an automated system adds or updates rule-related information in Red Hat
Decision Manager, that information is inserted into the working memory of the decision engine in the
form of one or more facts. The decision engine matches those facts to the conditions of the rules that
are stored in the production memory to determine eligible rule executions. (This process of matching
facts to rules is often referred to as pattern matching .) When rule conditions are met, the decision
engine activates and registers rules in the agenda, where the decision engine then sorts prioritized or
conflicting rules in preparation for execution.

The following diagram illustrates these basic components of the decision engine:

Figure 80.1. Overview of basic decision engine components

For more details and examples of rule and fact behavior in the decision engine, see Chapter 82,
Inference and truth maintenance in the decision engine .

These core concepts can help you to better understand other more advanced components, processes,
and sub-processes of the decision engine, and as a result, to design more effective business assets in
Red Hat Decision Manager.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

566

CHAPTER 81. KIE SESSIONS
In Red Hat Decision Manager, a KIE session stores and executes runtime data. The KIE session is created
from a KIE base or directly from a KIE container if you have defined the KIE session in the KIE module
descriptor file (kmodule.xml) for your project.

Example KIE session configuration in a kmodule.xml file

A KIE base is a repository that you define in the KIE module descriptor file (kmodule.xml) for your
project and contains all rules and other business assets in Red Hat Decision Manager, but does not
contain any runtime data.

Example KIE base configuration in a kmodule.xml file

A KIE session can be stateless or stateful. In a stateless KIE session, data from a previous invocation of
the KIE session (the previous session state) is discarded between session invocations. In a stateful KIE
session, that data is retained. The type of KIE session you use depends on your project requirements
and how you want data from different asset invocations to be persisted.

81.1. STATELESS KIE SESSIONS

A stateless KIE session is a session that does not use inference to make iterative changes to facts over
time. In a stateless KIE session, data from a previous invocation of the KIE session (the previous session
state) is discarded between session invocations, whereas in a stateful KIE session, that data is retained.
A stateless KIE session behaves similarly to a function in that the results that it produces are determined
by the contents of the KIE base and by the data that is passed into the KIE session for execution at a
specific point in time. The KIE session has no memory of any data that was passed into the KIE session
previously.

Stateless KIE sessions are commonly used for the following use cases:

Validation, such as validating that a person is eligible for a mortgage

Calculation, such as computing a mortgage premium

Routing and filtering, such as sorting incoming emails into folders or sending incoming emails

<kmodule>
 ...
 <kbase>
 ...
 <ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
 ...
 </kbase>
 ...
</kmodule>

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="stream" equalsBehavior="equality"
declarativeAgenda="enabled" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

CHAPTER 81. KIE SESSIONS

567

Routing and filtering, such as sorting incoming emails into folders or sending incoming emails
to a destination

For example, consider the following driver’s license data model and sample DRL rule:

Data model for driver’s license application

Sample DRL rule for driver’s license application

package com.company.license

rule "Is of valid age"
when
 $a : Applicant(age < 18)
then
 $a.setValid(false);
end

The Is of valid age rule disqualifies any applicant younger than 18 years old. When the Applicant object
is inserted into the decision engine, the decision engine evaluates the constraints for each rule and
searches for a match. The "objectType" constraint is always implied, after which any number of explicit
field constraints are evaluated. The variable $a is a binding variable that references the matched object
in the rule consequence.

NOTE

The dollar sign ($) is optional and helps to differentiate between variable names and field
names.

In this example, the sample rule and all other files in the ~/resources folder of the Red Hat Decision
Manager project are built with the following code:

Create the KIE container

This code compiles all the rule files found on the class path and adds the result of this compilation, a
KieModule object, in the KieContainer.

Finally, the StatelessKieSession object is instantiated from the KieContainer and is executed against
specified data:

Instantiate the stateless KIE session and enter data

public class Applicant {
 private String name;
 private int age;
 private boolean valid;
 // Getter and setter methods
}

KieServices kieServices = KieServices.Factory.get();

KieContainer kContainer = kieServices.getKieClasspathContainer();

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

568

In a stateless KIE session configuration, the execute() call acts as a combination method that
instantiates the KieSession object, adds all the user data and executes user commands, calls
fireAllRules(), and then calls dispose(). Therefore, with a stateless KIE session, you do not need to call
fireAllRules() or call dispose() after session invocation as you do with a stateful KIE session.

In this case, the specified applicant is under the age of 18, so the application is declined.

For a more complex use case, see the following example. This example uses a stateless KIE session and
executes rules against an iterable list of objects, such as a collection.

Expanded data model for driver’s license application

Expanded DRL rule set for driver’s license application

package com.company.license

rule "Is of valid age"
when
 Applicant(age < 18)
 $a : Application()
then
 $a.setValid(false);
end

rule "Application was made this year"
when
 $a : Application(dateApplied > "01-jan-2009")
then
 $a.setValid(false);
end

Expanded Java source with iterable execution in a stateless KIE session

StatelessKieSession kSession = kContainer.newStatelessKieSession();

Applicant applicant = new Applicant("Mr John Smith", 16);

assertTrue(applicant.isValid());

ksession.execute(applicant);

assertFalse(applicant.isValid());

public class Applicant {
 private String name;
 private int age;
 // Getter and setter methods
}

public class Application {
 private Date dateApplied;
 private boolean valid;
 // Getter and setter methods
}

CHAPTER 81. KIE SESSIONS

569

1

2

3

Method for executing rules against an iterable collection of objects produced by the
Arrays.asList() method. Every collection element is inserted before any matched rules are
executed. The execute(Object object) and execute(Iterable objects) methods are wrappers
around the execute(Command command) method that comes from the BatchExecutor
interface.

Execution of the iterable collection of objects using the CommandFactory interface.

BatchExecutor and CommandFactory configurations for working with many different commands
or result output identifiers. The CommandFactory interface supports other commands that you
can use in the BatchExecutor, such as StartProcess, Query, and SetGlobal.

81.1.1. Global variables in stateless KIE sessions

The StatelessKieSession object supports global variables (globals) that you can configure to be
resolved as session-scoped globals, delegate globals, or execution-scoped globals.

Session-scoped globals: For session-scoped globals, you can use the method getGlobals() to
return a Globals instance that provides access to the KIE session globals. These globals are
used for all execution calls. Use caution with mutable globals because execution calls can be
executing simultaneously in different threads.

Session-scoped global

Delegate globals: For delegate globals, you can assign a value to a global (with

StatelessKieSession ksession = kbase.newStatelessKnowledgeSession();
Applicant applicant = new Applicant("Mr John Smith", 16);
Application application = new Application();

assertTrue(application.isValid());
ksession.execute(Arrays.asList(new Object[] { application, applicant })); 1
assertFalse(application.isValid());

ksession.execute
 (CommandFactory.newInsertIterable(new Object[] { application, applicant })); 2

List<Command> cmds = new ArrayList<Command>(); 3
cmds.add(CommandFactory.newInsert(new Person("Mr John Smith"), "mrSmith"));
cmds.add(CommandFactory.newInsert(new Person("Mr John Doe"), "mrDoe"));

BatchExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(cmds));
assertEquals(new Person("Mr John Smith"), results.getValue("mrSmith"));

import org.kie.api.runtime.StatelessKieSession;

StatelessKieSession ksession = kbase.newStatelessKieSession();

// Set a global `myGlobal` that can be used in the rules.
ksession.setGlobal("myGlobal", "I am a global");

// Execute while resolving the `myGlobal` identifier.
ksession.execute(collection);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

570

setGlobal(String, Object)) so that the value is stored in an internal collection that maps
identifiers to values. Identifiers in this internal collection have priority over any supplied
delegate. If an identifier cannot be found in this internal collection, the delegate global (if any) is
used.

Execution-scoped globals: For execution-scoped globals, you can use the Command object
to set a global that is passed to the CommandExecutor interface for execution-specific global
resolution.

The CommandExecutor interface also enables you to export data using out identifiers for globals,
inserted facts, and query results:

Out identifiers for globals, inserted facts, and query results

81.2. STATEFUL KIE SESSIONS

A stateful KIE session is a session that uses inference to make iterative changes to facts over time. In a
stateful KIE session, data from a previous invocation of the KIE session (the previous session state) is
retained between session invocations, whereas in a stateless KIE session, that data is discarded.

WARNING

Ensure that you call the dispose() method after running a stateful KIE session so
that no memory leaks occur between session invocations.

Stateful KIE sessions are commonly used for the following use cases:

Monitoring, such as monitoring a stock market and automating the buying process

Diagnostics, such as running fault-finding processes or medical diagnostic processes

Logistics, such as parcel tracking and delivery provisioning

import org.kie.api.runtime.ExecutionResults;

// Set up a list of commands.
List cmds = new ArrayList();
cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true));
cmds.add(CommandFactory.newInsert(new Person("jon", 102), "person"));
cmds.add(CommandFactory.newQuery("Get People" "getPeople"));

// Execute the list.
ExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(cmds));

// Retrieve the `ArrayList`.
results.getValue("list1");
// Retrieve the inserted `Person` fact.
results.getValue("person");
// Retrieve the query as a `QueryResults` instance.
results.getValue("Get People");

CHAPTER 81. KIE SESSIONS

571

Ensuring compliance, such as verifying the legality of market trades

For example, consider the following fire alarm data model and sample DRL rules:

Data model for sprinklers and fire alarm

Sample DRL rule set for activating sprinklers and alarm

rule "When there is a fire turn on the sprinkler"
when
 Fire($room : room)
 $sprinkler : Sprinkler(room == $room, on == false)
then
 modify($sprinkler) { setOn(true) };
 System.out.println("Turn on the sprinkler for room "+$room.getName());
end

rule "Raise the alarm when we have one or more fires"
when
 exists Fire()
then
 insert(new Alarm());
 System.out.println("Raise the alarm");
end

rule "Cancel the alarm when all the fires have gone"
when
 not Fire()
 $alarm : Alarm()
then
 delete($alarm);
 System.out.println("Cancel the alarm");
end

rule "Status output when things are ok"
when

public class Room {
 private String name;
 // Getter and setter methods
}

public class Sprinkler {
 private Room room;
 private boolean on;
 // Getter and setter methods
}

public class Fire {
 private Room room;
 // Getter and setter methods
}

public class Alarm { }

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

572

 not Alarm()
 not Sprinkler(on == true)
then
 System.out.println("Everything is ok");
end

For the When there is a fire turn on the sprinkler rule, when a fire occurs, the instances of the Fire
class are created for that room and inserted into the KIE session. The rule adds a constraint for the
specific room matched in the Fire instance so that only the sprinkler for that room is checked. When this
rule is executed, the sprinkler activates. The other sample rules determine when the alarm is activated or
deactivated accordingly.

Whereas a stateless KIE session relies on standard Java syntax to modify a field, a stateful KIE session
relies on the modify statement in rules to notify the decision engine of changes. The decision engine
then reasons over the changes and assesses impact on subsequent rule executions. This process is part
of the decision engine ability to use inference and truth maintenance and is essential in stateful KIE
sessions.

In this example, the sample rules and all other files in the ~/resources folder of the Red Hat Decision
Manager project are built with the following code:

Create the KIE container

This code compiles all the rule files found on the class path and adds the result of this compilation, a
KieModule object, in the KieContainer.

Finally, the KieSession object is instantiated from the KieContainer and is executed against specified
data:

Instantiate the stateful KIE session and enter data

Console output

> Everything is ok

With the data added, the decision engine completes all pattern matching but no rules have been
executed, so the configured verification message appears. As new data triggers rule conditions, the

KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();

KieSession ksession = kContainer.newKieSession();

String[] names = new String[]{"kitchen", "bedroom", "office", "livingroom"};
Map<String,Room> name2room = new HashMap<String,Room>();
for(String name: names){
 Room room = new Room(name);
 name2room.put(name, room);
 ksession.insert(room);
 Sprinkler sprinkler = new Sprinkler(room);
 ksession.insert(sprinkler);
}

ksession.fireAllRules();

CHAPTER 81. KIE SESSIONS

573

decision engine executes rules to activate the alarm and later to cancel the alarm that has been
activated:

Enter new data to trigger rules

Console output

> Raise the alarm
> Turn on the sprinkler for room kitchen
> Turn on the sprinkler for room office

Console output

> Cancel the alarm
> Turn off the sprinkler for room office
> Turn off the sprinkler for room kitchen
> Everything is ok

In this case, a reference is kept for the returned FactHandle object. A fact handle is an internal engine
reference to the inserted instance and enables instances to be retracted or modified later.

As this example illustrates, the data and results from previous stateful KIE sessions (the activated alarm)
affect the invocation of subsequent sessions (alarm cancellation).

81.3. KIE SESSION POOLS

In use cases with large amounts of KIE runtime data and high system activity, KIE sessions might be
created and disposed very frequently. A high turnover of KIE sessions is not always time consuming, but
when the turnover is repeated millions of times, the process can become a bottleneck and require
substantial clean-up effort.

For these high-volume cases, you can use KIE session pools instead of many individual KIE sessions. To
use a KIE session pool, you obtain a KIE session pool from a KIE container, define the initial number of KIE
sessions in the pool, and create the KIE sessions from that pool as usual:

Example KIE session pool

Fire kitchenFire = new Fire(name2room.get("kitchen"));
Fire officeFire = new Fire(name2room.get("office"));

FactHandle kitchenFireHandle = ksession.insert(kitchenFire);
FactHandle officeFireHandle = ksession.insert(officeFire);

ksession.fireAllRules();

ksession.delete(kitchenFireHandle);
ksession.delete(officeFireHandle);

ksession.fireAllRules();

// Obtain a KIE session pool from the KIE container
KieContainerSessionsPool pool = kContainer.newKieSessionsPool(10);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

574

In this example, the KIE session pool starts with 10 KIE sessions in it, but you can specify the number of
KIE sessions that you need. This integer value is the number of KIE sessions that are only initially created
in the pool. If required by the running application, the number of KIE sessions in the pool can dynamically
grow beyond that value.

After you define a KIE session pool, the next time you use the KIE session as usual and call dispose() on
it, the KIE session is reset and pushed back into the pool instead of being destroyed.

KIE session pools typically apply to stateful KIE sessions, but KIE session pools can also affect stateless
KIE sessions that you reuse with multiple execute() calls. When you create a stateless KIE session directly
from a KIE container, the KIE session continues to internally create a new KIE session for each execute()
invocation. Conversely, when you create a stateless KIE session from a KIE session pool, the KIE session
internally uses only the specific KIE sessions provided by the pool.

When you finish using a KIE session pool, you can call the shutdown() method on it to avoid memory
leaks. Alternatively, you can call dispose() on the KIE container to shut down all the pools created from
the KIE container.

// Create KIE sessions from the KIE session pool
KieSession kSession = pool.newKieSession();

CHAPTER 81. KIE SESSIONS

575

CHAPTER 82. INFERENCE AND TRUTH MAINTENANCE IN THE
DECISION ENGINE

The basic function of the decision engine is to match data to business rules and determine whether and
how to execute rules. To ensure that relevant data is applied to the appropriate rules, the decision
engine makes inferences based on existing knowledge and performs the actions based on the inferred
information.

For example, the following DRL rule determines the age requirements for adults, such as in a bus pass
policy:

Rule to define age requirement

rule "Infer Adult"
when
 $p : Person(age >= 18)
then
 insert(new IsAdult($p))
end

Based on this rule, the decision engine infers whether a person is an adult or a child and performs the
specified action (the then consequence). Every person who is 18 years old or older has an instance of
IsAdult inserted for them in the working memory. This inferred relation of age and bus pass can then be
invoked in any rule, such as in the following rule segment:

$p : Person()
IsAdult(person == $p)

In many cases, new data in a rule system is the result of other rule executions, and this new data can
affect the execution of other rules. If the decision engine asserts data as a result of executing a rule, the
decision engine uses truth maintenance to justify the assertion and enforce truthfulness when applying
inferred information to other rules. Truth maintenance also helps to identify inconsistencies and to
handle contradictions. For example, if two rules are executed and result in a contradictory action, the
decision engine chooses the action based on assumptions from previously calculated conclusions.

The decision engine inserts facts using either stated or logical insertions:

Stated insertions: Defined with insert(). After stated insertions, facts are generally retracted
explicitly. (The term insertion, when used generically, refers to stated insertion .)

Logical insertions: Defined with insertLogical(). After logical insertions, the facts that were
inserted are automatically retracted when the conditions in the rules that inserted the facts are
no longer true. The facts are retracted when no condition supports the logical insertion. A fact
that is logically inserted is considered to be justified by the decision engine.

For example, the following sample DRL rules use stated fact insertion to determine the age
requirements for issuing a child bus pass or an adult bus pass:

Rules to issue bus pass, stated insertion

rule "Issue Child Bus Pass"
when
 $p : Person(age < 18)
then

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

576

 insert(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass"
when
 $p : Person(age >= 18)
then
 insert(new AdultBusPass($p));
end

These rules are not easily maintained in the decision engine as bus riders increase in age and move from
child to adult bus pass. As an alternative, these rules can be separated into rules for bus rider age and
rules for bus pass type using logical fact insertion. The logical insertion of the fact makes the fact
dependent on the truth of the when clause.

The following DRL rules use logical insertion to determine the age requirements for children and adults:

Children and adult age requirements, logical insertion

rule "Infer Child"
when
 $p : Person(age < 18)
then
 insertLogical(new IsChild($p))
end

rule "Infer Adult"
when
 $p : Person(age >= 18)
then
 insertLogical(new IsAdult($p))
end

IMPORTANT

For logical insertions, your fact objects must override the equals and hashCode
methods from the java.lang.Object object according to the Java standard. Two objects
are equal if their equals methods return true for each other and if their hashCode
methods return the same values. For more information, see the Java API documentation
for your Java version.

When the condition in the rule is false, the fact is automatically retracted. This behavior is helpful in this
example because the two rules are mutually exclusive. In this example, if the person is younger than 18
years old, the rule logically inserts an IsChild fact. After the person is 18 years old or older, the IsChild
fact is automatically retracted and the IsAdult fact is inserted.

The following DRL rules then determine whether to issue a child bus pass or an adult bus pass and
logically insert the ChildBusPass and AdultBusPass facts. This rule configuration is possible because
the truth maintenance system in the decision engine supports chaining of logical insertions for a
cascading set of retracts.

Rules to issue bus pass, logical insertion

rule "Issue Child Bus Pass"

CHAPTER 82. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE

577

when
 $p : Person()
 IsChild(person == $p)
then
 insertLogical(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass"
when
 $p : Person()
 IsAdult(person =$p)
then
 insertLogical(new AdultBusPass($p));
end

When a person turns 18 years old, the IsChild fact and the person’s ChildBusPass fact is retracted. To
these set of conditions, you can relate another rule that states that a person must return the child pass
after turning 18 years old. When the decision engine automatically retracts the ChildBusPass object,
the following rule is executed to send a request to the person:

Rule to notify bus pass holder of new pass

rule "Return ChildBusPass Request"
when
 $p : Person()
 not(ChildBusPass(person == $p))
then
 requestChildBusPass($p);
end

The following flowcharts illustrate the life cycle of stated and logical insertions:

Figure 82.1. Stated insertion

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

578

Figure 82.1. Stated insertion

Figure 82.2. Logical insertion

CHAPTER 82. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE

579

Figure 82.2. Logical insertion

When the decision engine logically inserts an object during a rule execution, the decision engine justifies
the object by executing the rule. For each logical insertion, only one equal object can exist, and each
subsequent equal logical insertion increases the justification counter for that logical insertion. A
justification is removed when the conditions of the rule become untrue. When no more justifications
exist, the logical object is automatically retracted.

82.1. FACT EQUALITY MODES IN THE DECISION ENGINE

The decision engine supports the following fact equality modes that determine how the decision engine
stores and compares inserted facts:

identity: (Default) The decision engine uses an IdentityHashMap to store all inserted facts. For
every new fact insertion, the decision engine returns a new FactHandle object. If a fact is
inserted again, the decision engine returns the original FactHandle object, ignoring repeated
insertions for the same fact. In this mode, two facts are the same for the decision engine only if
they are the very same object with the same identity.

equality: The decision engine uses a HashMap to store all inserted facts. The decision engine
returns a new FactHandle object only if the inserted fact is not equal to an existing fact,
according to the equals() method of the inserted fact. In this mode, two facts are the same for
the decision engine if they are composed the same way, regardless of identity. Use this mode
when you want objects to be assessed based on feature equality instead of explicit identity.

As an illustration of fact equality modes, consider the following example facts:

Example facts

Person p1 = new Person("John", 45);
Person p2 = new Person("John", 45);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

580

In identity mode, facts p1 and p2 are different instances of a Person class and are treated as separate
objects because they have separate identities. In equality mode, facts p1 and p2 are treated as the
same object because they are composed the same way. This difference in behavior affects how you can
interact with fact handles.

For example, assume that you insert facts p1 and p2 into the decision engine and later you want to
retrieve the fact handle for p1. In identity mode, you must specify p1 to return the fact handle for that
exact object, whereas in equality mode, you can specify p1, p2, or new Person("John", 45) to return
the fact handle.

Example code to insert a fact and return the fact handle in identity mode

ksession.insert(p1);

ksession.getFactHandle(p1);

Example code to insert a fact and return the fact handle in equality mode

ksession.insert(p1);

ksession.getFactHandle(p1);

// Alternate option:
ksession.getFactHandle(new Person("John", 45));

To set the fact equality mode, use one of the following options:

Set the system property drools.equalityBehavior to identity (default) or equality.

Set the equality mode while creating the KIE base programmatically:

Set the equality mode in the KIE module descriptor file (kmodule.xml) for a specific Red Hat
Decision Manager project:

KieServices ks = KieServices.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(EqualityBehaviorOption.EQUALITY);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

<kmodule>
 ...
 <kbase name="KBase2" default="false" equalsBehavior="equality"
packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

CHAPTER 82. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE

581

CHAPTER 83. EXECUTION CONTROL IN THE DECISION
ENGINE

When new rule data enters the working memory of the decision engine, rules may become fully matched
and eligible for execution. A single working memory action can result in multiple eligible rule executions.
When a rule is fully matched, the decision engine creates an activation instance, referencing the rule and
the matched facts, and adds the activation onto the decision engine agenda. The agenda controls the
execution order of these rule activations using a conflict resolution strategy.

After the first call of fireAllRules() in the Java application, the decision engine cycles repeatedly
through two phases:

Agenda evaluation. In this phase, the decision engine selects all rules that can be executed. If
no executable rules exist, the execution cycle ends. If an executable rule is found, the decision
engine registers the activation in the agenda and then moves on to the working memory actions
phase to perform rule consequence actions.

Working memory actions. In this phase, the decision engine performs the rule consequence
actions (the then portion of each rule) for all activated rules previously registered in the agenda.
After all the consequence actions are complete or the main Java application process calls
fireAllRules() again, the decision engine returns to the agenda evaluation phase to reassess
rules.

Figure 83.1. Two-phase execution process in the decision engine

When multiple rules exist on the agenda, the execution of one rule may cause another rule to be
removed from the agenda. To avoid this, you can define how and when rules are executed in the
decision engine. Some common methods for defining rule execution order are by using rule salience,
agenda groups, activation groups, or rule units for DRL rule sets.

83.1. SALIENCE FOR RULES

Each rule has an integer salience attribute that determines the order of execution. Rules with a higher
salience value are given higher priority when ordered in the activation queue. The default salience value
for rules is zero, but the salience can be negative or positive.

For example, the following sample DRL rules are listed in the decision engine stack in the order shown:

rule "RuleA"
salience 95
when

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

582

 $fact : MyFact(field1 == true)
then
 System.out.println("Rule2 : " + $fact);
 update($fact);
end

rule "RuleB"
salience 100
when
 $fact : MyFact(field1 == false)
then
 System.out.println("Rule1 : " + $fact);
 $fact.setField1(true);
 update($fact);
end

The RuleB rule is listed second, but it has a higher salience value than the RuleA rule and is therefore
executed first.

83.2. AGENDA GROUPS FOR RULES

An agenda group is a set of rules bound together by the same agenda-group rule attribute. Agenda
groups partition rules on the decision engine agenda. At any one time, only one group has a focus that
gives that group of rules priority for execution before rules in other agenda groups. You determine the
focus with a setFocus() call for the agenda group. You can also define rules with an auto-focus
attribute so that the next time the rule is activated, the focus is automatically given to the entire agenda
group to which the rule is assigned.

Each time the setFocus() call is made in a Java application, the decision engine adds the specified
agenda group to the top of the rule stack. The default agenda group "MAIN" contains all rules that do
not belong to a specified agenda group and is executed first in the stack unless another group has the
focus.

For example, the following sample DRL rules belong to specified agenda groups and are listed in the
decision engine stack in the order shown:

Sample DRL rules for banking application

rule "Increase balance for credits"
 agenda-group "calculation"
when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)
 CashFlow(type == CREDIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $amount : amount)
then
 acc.balance += $amount;
end

rule "Print balance for AccountPeriod"
 agenda-group "report"
when
 ap : AccountPeriod()

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE

583

 acc : Account()
then
 System.out.println(acc.accountNo +
 " : " + acc.balance);
end

For this example, the rules in the "report" agenda group must always be executed first and the rules in
the "calculation" agenda group must always be executed second. Any remaining rules in other agenda
groups can then be executed. Therefore, the "report" and "calculation" groups must receive the focus
to be executed in that order, before other rules can be executed:

Set the focus for the order of agenda group execution

You can also use the clear() method to cancel all the activations generated by the rules belonging to a
given agenda group before each has had a chance to be executed:

Cancel all other rule activations

83.3. ACTIVATION GROUPS FOR RULES

An activation group is a set of rules bound together by the same activation-group rule attribute. In this
group, only one rule can be executed. After conditions are met for a rule in that group to be executed, all
other pending rule executions from that activation group are removed from the agenda.

For example, the following sample DRL rules belong to the specified activation group and are listed in
the decision engine stack in the order shown:

Sample DRL rules for banking

rule "Print balance for AccountPeriod1"
 activation-group "report"
when
 ap : AccountPeriod1()
 acc : Account()
then
 System.out.println(acc.accountNo +
 " : " + acc.balance);
end

rule "Print balance for AccountPeriod2"
 activation-group "report"
when
 ap : AccountPeriod2()
 acc : Account()
then

Agenda agenda = ksession.getAgenda();
agenda.getAgendaGroup("report").setFocus();
agenda.getAgendaGroup("calculation").setFocus();
ksession.fireAllRules();

ksession.getAgenda().getAgendaGroup("Group A").clear();

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

584

 System.out.println(acc.accountNo +
 " : " + acc.balance);
end

For this example, if the first rule in the "report" activation group is executed, the second rule in the
group and all other executable rules on the agenda are removed from the agenda.

83.4. RULE EXECUTION MODES AND THREAD SAFETY IN THE
DECISION ENGINE

The decision engine supports the following rule execution modes that determine how and when the
decision engine executes rules:

Passive mode: (Default) The decision engine evaluates rules when a user or an application
explicitly calls fireAllRules(). Passive mode in the decision engine is best for applications that
require direct control over rule evaluation and execution, or for complex event processing (CEP)
applications that use the pseudo clock implementation in the decision engine.

Example CEP application code with the decision engine in passive mode

Active mode: If a user or application calls fireUntilHalt(), the decision engine starts in active
mode and evaluates rules continually until the user or application explicitly calls halt(). Active
mode in the decision engine is best for applications that delegate control of rule evaluation and
execution to the decision engine, or for complex event processing (CEP) applications that use
the real-time clock implementation in the decision engine. Active mode is also optimal for CEP
applications that use active queries.

Example CEP application code with the decision engine in active mode

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();
config.setOption(ClockTypeOption.get("pseudo"));
KieSession session = kbase.newKieSession(conf, null);
SessionPseudoClock clock = session.getSessionClock();

session.insert(tick1);
session.fireAllRules();

clock.advanceTime(1, TimeUnit.SECONDS);
session.insert(tick2);
session.fireAllRules();

clock.advanceTime(1, TimeUnit.SECONDS);
session.insert(tick3);
session.fireAllRules();

session.dispose();

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();
config.setOption(ClockTypeOption.get("realtime"));
KieSession session = kbase.newKieSession(conf, null);

new Thread(new Runnable() {
 @Override
 public void run() {

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE

585

This example calls fireUntilHalt() from a dedicated execution thread to prevent the current
thread from being blocked indefinitely while the decision engine continues evaluating rules. The
dedicated thread also enables you to call halt() at a later stage in the application code.

Although you should avoid using both fireAllRules() and fireUntilHalt() calls, especially from different
threads, the decision engine can handle such situations safely using thread-safety logic and an internal
state machine. If a fireAllRules() call is in progress and you call fireUntilHalt(), the decision engine
continues to run in passive mode until the fireAllRules() operation is complete and then starts in active
mode in response to the fireUntilHalt() call. However, if the decision engine is running in active mode
following a fireUntilHalt() call and you call fireAllRules(), the fireAllRules() call is ignored and the
decision engine continues to run in active mode until you call halt().

For added thread safety in active mode, the decision engine supports a submit() method that you can
use to group and perform operations on a KIE session in a thread-safe, atomic action:

Example application code with submit() method to perform atomic operations in active
mode

 session.fireUntilHalt();
 }
}).start();

session.insert(tick1);

... Thread.sleep(1000L); ...

session.insert(tick2);

... Thread.sleep(1000L); ...

session.insert(tick3);

session.halt();
session.dispose();

KieSession session = ...;

new Thread(new Runnable() {
 @Override
 public void run() {
 session.fireUntilHalt();
 }
}).start();

final FactHandle fh = session.insert(fact_a);

... Thread.sleep(1000L); ...

session.submit(new KieSession.AtomicAction() {
 @Override
 public void execute(KieSession kieSession) {
 fact_a.setField("value");
 kieSession.update(fh, fact_a);
 kieSession.insert(fact_1);
 kieSession.insert(fact_2);
 kieSession.insert(fact_3);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

586

Thread safety and atomic operations are also helpful from a client-side perspective. For example, you
might need to insert more than one fact at a given time, but require the decision engine to consider the
insertions as an atomic operation and to wait until all the insertions are complete before evaluating the
rules again.

83.5. FACT PROPAGATION MODES IN THE DECISION ENGINE

The decision engine supports the following fact propagation modes that determine how the decision
engine progresses inserted facts through the engine network in preparation for rule execution:

Lazy: (Default) Facts are propagated in batch collections at rule execution, not in real time as
the facts are individually inserted by a user or application. As a result, the order in which the facts
are ultimately propagated through the decision engine may be different from the order in which
the facts were individually inserted.

Immediate: Facts are propagated immediately in the order that they are inserted by a user or
application.

Eager: Facts are propagated lazily (in batch collections), but before rule execution. The decision
engine uses this propagation behavior for rules that have the no-loop or lock-on-active
attribute.

By default, the Phreak rule algorithm in the decision engine uses lazy fact propagation for improved rule
evaluation overall. However, in few cases, this lazy propagation behavior can alter the expected result of
certain rule executions that may require immediate or eager propagation.

For example, the following rule uses a specified query with a ? prefix to invoke the query in pull-only or
passive fashion:

Example rule with a passive query

query Q (Integer i)
 String(this == i.toString())
end

rule "Rule"
 when
 $i : Integer()
 ?Q($i;)
 then
 System.out.println($i);
end

For this example, the rule should be executed only when a String that satisfies the query is inserted
before the Integer, such as in the following example commands:

 }
});

... Thread.sleep(1000L); ...

session.insert(fact_z);

session.halt();
session.dispose();

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE

587

Example commands that should trigger the rule execution

However, due to the default lazy propagation behavior in Phreak, the decision engine does not detect
the insertion sequence of the two facts in this case, so this rule is executed regardless of String and
Integer insertion order. For this example, immediate propagation is required for the expected rule
evaluation.

To alter the decision engine propagation mode to achieve the expected rule evaluation in this case, you
can add the @Propagation(<type>) tag to your rule and set <type> to LAZY, IMMEDIATE, or EAGER.

In the same example rule, the immediate propagation annotation enables the rule to be evaluated only
when a String that satisfies the query is inserted before the Integer, as expected:

Example rule with a passive query and specified propagation mode

query Q (Integer i)
 String(this == i.toString())
end

rule "Rule" @Propagation(IMMEDIATE)
 when
 $i : Integer()
 ?Q($i;)
 then
 System.out.println($i);
end

83.6. AGENDA EVALUATION FILTERS

The decision engine supports an AgendaFilter object in the filter interface that you can use to allow or
deny the evaluation of specified rules during agenda evaluation. You can specify an agenda filter as part
of a fireAllRules() call.

The following example code permits only rules ending with the string "Test" to be evaluated and
executed. All other rules are filtered out of the decision engine agenda.

Example agenda filter definition

83.7. RULE UNITS IN DRL RULE SETS

Rule units are groups of data sources, global variables, and DRL rules that function together for a
specific purpose. You can use rule units to partition a rule set into smaller units, bind different data
sources to those units, and then execute the individual unit. Rule units are an enhanced alternative to
rule-grouping DRL attributes such as rule agenda groups or activation groups for execution control.

Rule units are helpful when you want to coordinate rule execution so that the complete execution of one

KieSession ksession = ...
ksession.insert("1");
ksession.insert(1);
ksession.fireAllRules();

ksession.fireAllRules(new RuleNameEndsWithAgendaFilter("Test"));

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

588

rule unit triggers the start of another rule unit and so on. For example, assume that you have a set of
rules for data enrichment, another set of rules that processes that data, and another set of rules that
extract the output from the processed data. If you add these rule sets into three distinct rule units, you
can coordinate those rule units so that complete execution of the first unit triggers the start of the
second unit and the complete execution of the second unit triggers the start of third unit.

To define a rule unit, implement the RuleUnit interface as shown in the following example:

Example rule unit class

In this example, persons is a source of facts of type Person. A rule unit data source is a source of the
data processed by a given rule unit and represents the entry point that the decision engine uses to
evaluate the rule unit. The adultAge global variable is accessible from all the rules belonging to this rule
unit. The last two methods are part of the rule unit life cycle and are invoked by the decision engine.

The decision engine supports the following optional life-cycle methods for rule units:

Table 83.1. Rule unit life-cycle methods

package org.mypackage.myunit;

public static class AdultUnit implements RuleUnit {
 private int adultAge;
 private DataSource<Person> persons;

 public AdultUnit() { }

 public AdultUnit(DataSource<Person> persons, int age) {
 this.persons = persons;
 this.age = age;
 }

 // A data source of `Persons` in this rule unit:
 public DataSource<Person> getPersons() {
 return persons;
 }

 // A global variable in this rule unit:
 public int getAdultAge() {
 return adultAge;
 }

 // Life-cycle methods:
 @Override
 public void onStart() {
 System.out.println("AdultUnit started.");
 }

 @Override
 public void onEnd() {
 System.out.println("AdultUnit ended.");
 }
}

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE

589

Method Invoked when

onStart() Rule unit execution starts

onEnd() Rule unit execution ends

onSuspend() Rule unit execution is suspended (used only with
runUntilHalt())

onResume() Rule unit execution is resumed (used only with
runUntilHalt())

onYield(RuleUnit other) The consequence of a rule in the rule unit triggers the
execution of a different rule unit

You can add one or more rules to a rule unit. By default, all the rules in a DRL file are automatically
associated with a rule unit that follows the naming convention of the DRL file name. If the DRL file is in
the same package and has the same name as a class that implements the RuleUnit interface, then all of
the rules in that DRL file implicitly belong to that rule unit. For example, all the rules in the AdultUnit.drl
file in the org.mypackage.myunit package are automatically part of the rule unit
org.mypackage.myunit.AdultUnit.

To override this naming convention and explicitly declare the rule unit that the rules in a DRL file belong
to, use the unit keyword in the DRL file. The unit declaration must immediately follow the package
declaration and contain the name of the class in that package that the rules in the DRL file are part of.

Example rule unit declaration in a DRL file

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 $p : Person(age >= adultAge) from persons
 then
 System.out.println($p.getName() + " is adult and greater than " + adultAge);
end

WARNING

Do not mix rules with and without a rule unit in the same KIE base. Mixing two rule
paradigms in a KIE base results in a compilation error.

You can also rewrite the same pattern in a more convenient way using OOPath notation, as shown in the
following example:

Example rule unit declaration in a DRL file that uses OOPath notation

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

590

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 $p : /persons[age >= adultAge]
 then
 System.out.println($p.getName() + " is adult and greater than " + adultAge);
end

NOTE

OOPath is an object-oriented syntax extension of XPath that is designed for browsing
graphs of objects in DRL rule condition constraints. OOPath uses the compact notation
from XPath for navigating through related elements while handling collections and
filtering constraints, and is specifically useful for graphs of objects.

In this example, any matching facts in the rule conditions are retrieved from the persons data source
defined in the DataSource definition in the rule unit class. The rule condition and action use the
adultAge variable in the same way that a global variable is defined at the DRL file level.

To execute one or more rule units defined in a KIE base, create a new RuleUnitExecutor class bound to
the KIE base, create the rule unit from the relevant data source, and run the rule unit executer:

Example rule unit execution

Rules are executed by the RuleUnitExecutor class. The RuleUnitExecutor class creates KIE sessions
and adds the required DataSource objects to those sessions, and then executes the rules based on the
RuleUnit that is passed as a parameter to the run() method.

The example execution code produces the following output when the relevant Person facts are inserted
in the persons data source:

Example rule unit execution output

org.mypackage.myunit.AdultUnit started.
Jane is adult and greater than 18
John is adult and greater than 18
org.mypackage.myunit.AdultUnit ended.

Instead of explicitly creating the rule unit instance, you can register the rule unit variables in the executor
and pass to the executor the rule unit class that you want to run, and then the executor creates an
instance of the rule unit. You can then set the DataSource definition and other variables as needed
before running the rule unit.

Alternate rule unit execution option with registered variables

// Create a `RuleUnitExecutor` class and bind it to the KIE base:
KieBase kbase = kieContainer.getKieBase();
RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

// Create the `AdultUnit` rule unit using the `persons` data source and run the executor:
RuleUnit adultUnit = new AdultUnit(persons, 18);
executor.run(adultUnit);

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE

591

The name that you pass to the RuleUnitExecutor.bindVariable() method is used at run time to bind
the variable to the field of the rule unit class with the same name. In the previous example, the
RuleUnitExecutor inserts into the new rule unit the data source bound to the "persons" name and
inserts the value 18 bound to the String "adultAge" into the fields with the corresponding names inside
the AdultUnit class.

To override this default variable-binding behavior, use the @UnitVar annotation to explicitly define a
logical binding name for each field of the rule unit class. For example, the field bindings in the following
class are redefined with alternative names:

Example code to modify variable binding names with @UnitVar

You can then bind the variables to the executor using those alternative names and run the rule unit:

Example rule unit execution with modified variable names

You can execute a rule unit in passive mode by using the run() method (equivalent to invoking
fireAllRules() on a KIE session) or in active mode using the runUntilHalt() method (equivalent to
invoking fireUntilHalt() on a KIE session). By default, the decision engine runs in passive mode and
evaluates rule units only when a user or an application explicitly calls run() (or fireAllRules() for standard
rules). If a user or application calls runUntilHalt() for rule units (or fireUntilHalt() for standard rules), the
decision engine starts in active mode and evaluates rule units continually until the user or application
explicitly calls halt().

If you use the runUntilHalt() method, invoke the method on a separate execution thread to avoid
blocking the main thread:

Example rule unit execution with runUntilHalt() on a separate thread

83.7.1. Data sources for rule units

A rule unit data source is a source of the data processed by a given rule unit and represents the entry
point that the decision engine uses to evaluate the rule unit. A rule unit can have zero or more data

executor.bindVariable("persons", persons);
 .bindVariable("adultAge", 18);
executor.run(AdultUnit.class);

package org.mypackage.myunit;

public static class AdultUnit implements RuleUnit {
 @UnitVar("minAge")
 private int adultAge = 18;

 @UnitVar("data")
 private DataSource<Person> persons;
}

executor.bindVariable("data", persons);
 .bindVariable("minAge", 18);
executor.run(AdultUnit.class);

new Thread(() -> executor.runUntilHalt(adultUnit)).start();

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

592

sources and each DataSource definition declared inside a rule unit can correspond to a different entry
point into the rule unit executor. Multiple rule units can share a single data source, but each rule unit
must use different entry points through which the same objects are inserted.

You can create a DataSource definition with a fixed set of data in a rule unit class, as shown in the
following example:

Example data source definition

Because a data source represents the entry point of the rule unit, you can insert, update, or delete facts
in a rule unit:

Example code to insert, modify, and delete a fact in a rule unit

83.7.2. Rule unit execution control

Rule units are helpful when you want to coordinate rule execution so that the execution of one rule unit
triggers the start of another rule unit and so on.

To facilitate rule unit execution control, the decision engine supports the following rule unit methods
that you can use in DRL rule actions to coordinate the execution of rule units:

drools.run(): Triggers the execution of a specified rule unit class. This method imperatively
interrupts the execution of the rule unit and activates the other specified rule unit.

drools.guard(): Prevents (guards) a specified rule unit class from being executed until the
associated rule condition is met. This method declaratively schedules the execution of the other
specified rule unit. When the decision engine produces at least one match for the condition in
the guarding rule, the guarded rule unit is considered active. A rule unit can contain multiple
guarding rules.

As an example of the drools.run() method, consider the following DRL rules that each belong to a
specified rule unit. The NotAdult rule uses the drools.run(AdultUnit.class) method to trigger the
execution of the AdultUnit rule unit:

Example DRL rules with controlled execution using drools.run()

package org.mypackage.myunit
unit AdultUnit

DataSource<Person> persons = DataSource.create(new Person("John", 42),
 new Person("Jane", 44),
 new Person("Sally", 4));

// Insert a fact:
Person john = new Person("John", 42);
FactHandle johnFh = persons.insert(john);

// Modify the fact and optionally specify modified properties (for property reactivity):
john.setAge(43);
persons.update(johnFh, john, "age");

// Delete the fact:
persons.delete(johnFh);

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE

593

rule Adult
 when
 Person(age >= 18, $name : name) from persons
 then
 System.out.println($name + " is adult");
end

package org.mypackage.myunit
unit NotAdultUnit

rule NotAdult
 when
 $p : Person(age < 18, $name : name) from persons
 then
 System.out.println($name + " is NOT adult");
 modify($p) { setAge(18); }
 drools.run(AdultUnit.class);
end

The example also uses a RuleUnitExecutor class created from the KIE base that was built from these
rules and a DataSource definition of persons bound to it:

Example rule executor and data source definitions

In this case, the example creates the DataSource definition directly from the RuleUnitExecutor class
and binds it to the "persons" variable in a single statement.

The example execution code produces the following output when the relevant Person facts are inserted
in the persons data source:

Example rule unit execution output

Sally is NOT adult
John is adult
Jane is adult
Sally is adult

The NotAdult rule detects a match when evaluating the person "Sally", who is under 18 years old. The
rule then modifies her age to 18 and uses the drools.run(AdultUnit.class) method to trigger the
execution of the AdultUnit rule unit. The AdultUnit rule unit contains a rule that can now be executed
for all of the 3 persons in the DataSource definition.

As an example of the drools.guard() method, consider the following BoxOffice class and
BoxOfficeUnit rule unit class:

Example BoxOffice class

RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
DataSource<Person> persons = executor.newDataSource("persons",
 new Person("John", 42),
 new Person("Jane", 44),
 new Person("Sally", 4));

public class BoxOffice {

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

594

Example BoxOfficeUnit rule unit class

The example also uses the following TicketIssuerUnit rule unit class to keep selling box office tickets for
the event as long as at least one box office is open. This rule unit uses DataSource definitions of
persons and tickets:

Example TicketIssuerUnit rule unit class

 private boolean open;

 public BoxOffice(boolean open) {
 this.open = open;
 }

 public boolean isOpen() {
 return open;
 }

 public void setOpen(boolean open) {
 this.open = open;
 }
}

public class BoxOfficeUnit implements RuleUnit {
 private DataSource<BoxOffice> boxOffices;

 public DataSource<BoxOffice> getBoxOffices() {
 return boxOffices;
 }
}

public class TicketIssuerUnit implements RuleUnit {
 private DataSource<Person> persons;
 private DataSource<AdultTicket> tickets;

 private List<String> results;

 public TicketIssuerUnit() { }

 public TicketIssuerUnit(DataSource<Person> persons, DataSource<AdultTicket> tickets) {
 this.persons = persons;
 this.tickets = tickets;
 }

 public DataSource<Person> getPersons() {
 return persons;
 }

 public DataSource<AdultTicket> getTickets() {
 return tickets;
 }

 public List<String> getResults() {

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE

595

The BoxOfficeUnit rule unit contains a BoxOfficeIsOpen DRL rule that uses the drools.guard(
TicketIssuerUnit.class) method to guard the execution of the TicketIssuerUnit rule unit that
distributes the event tickets, as shown in the following DRL rule examples:

Example DRL rules with controlled execution using drools.guard()

package org.mypackage.myunit;
unit TicketIssuerUnit;

rule IssueAdultTicket when
 $p: /persons[age >= 18]
then
 tickets.insert(new AdultTicket($p));
end
rule RegisterAdultTicket when
 $t: /tickets
then
 results.add($t.getPerson().getName());
end

package org.mypackage.myunit;
unit BoxOfficeUnit;

rule BoxOfficeIsOpen
 when
 $box: /boxOffices[open]
 then
 drools.guard(TicketIssuerUnit.class);
end

In this example, so long as at least one box office is open, the guarded TicketIssuerUnit rule unit is
active and distributes event tickets. When no more box offices are in open state, the guarded
TicketIssuerUnit rule unit is prevented from being executed.

The following example class illustrates a more complete box office scenario:

Example class for the box office scenario

 return results;
 }
}

DataSource<Person> persons = executor.newDataSource("persons");
DataSource<BoxOffice> boxOffices = executor.newDataSource("boxOffices");
DataSource<AdultTicket> tickets = executor.newDataSource("tickets");

List<String> list = new ArrayList<>();
executor.bindVariable("results", list);

// Two box offices are open:
BoxOffice office1 = new BoxOffice(true);
FactHandle officeFH1 = boxOffices.insert(office1);
BoxOffice office2 = new BoxOffice(true);
FactHandle officeFH2 = boxOffices.insert(office2);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

596

83.7.3. Rule unit identity conflicts

In rule unit execution scenarios with guarded rule units, a rule can guard multiple rule units and at the
same time a rule unit can be guarded and then activated by multiple rules. For these two-way guarding
scenarios, rule units must have a clearly defined identity to avoid identity conflicts.

By default, the identity of a rule unit is the rule unit class name and is treated as a singleton class by the
RuleUnitExecutor. This identification behavior is encoded in the getUnitIdentity() default method of
the RuleUnit interface:

Default identity method in the RuleUnit interface

In some cases, you may need to override this default identification behavior to avoid conflicting
identities between rule units.

persons.insert(new Person("John", 40));

// Execute `BoxOfficeIsOpen` rule, run `TicketIssuerUnit` rule unit, and execute `RegisterAdultTicket`
rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("John", list.get(0));
list.clear();

persons.insert(new Person("Matteo", 30));

// Execute `RegisterAdultTicket` rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Matteo", list.get(0));
list.clear();

// One box office is closed, the other is open:
office1.setOpen(false);
boxOffices.update(officeFH1, office1);
persons.insert(new Person("Mark", 35));
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Mark", list.get(0));
list.clear();

// All box offices are closed:
office2.setOpen(false);
boxOffices.update(officeFH2, office2); // Guarding rule is no longer true.
persons.insert(new Person("Edson", 35));
executor.run(BoxOfficeUnit.class); // No execution

assertEquals(0, list.size());

default Identity getUnitIdentity() {
 return new Identity(getClass());
}

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE

597

For example, the following RuleUnit class contains a DataSource definition that accepts any kind of
object:

Example Unit0 rule unit class

This rule unit contains the following DRL rule that guards another rule unit based on two conditions (in
OOPath notation):

Example GuardAgeCheck DRL rule in the rule unit

package org.mypackage.myunit
unit Unit0

rule GuardAgeCheck
 when
 $i: /input#Integer
 $s: /input#String
 then
 drools.guard(new AgeCheckUnit($i));
 drools.guard(new AgeCheckUnit($s.length()));
end

The guarded AgeCheckUnit rule unit verifies the age of a set of persons. The AgeCheckUnit contains
a DataSource definition of the persons to check, a minAge variable that it verifies against, and a List
for gathering the results:

Example AgeCheckUnit rule unit

public class Unit0 implements RuleUnit {
 private DataSource<Object> input;

 public DataSource<Object> getInput() {
 return input;
 }
}

public class AgeCheckUnit implements RuleUnit {
 private final int minAge;
 private DataSource<Person> persons;
 private List<String> results;

 public AgeCheckUnit(int minAge) {
 this.minAge = minAge;
 }

 public DataSource<Person> getPersons() {
 return persons;
 }

 public int getMinAge() {
 return minAge;
 }

 public List<String> getResults() {

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

598

The AgeCheckUnit rule unit contains the following DRL rule that performs the verification of the
persons in the data source:

Example CheckAge DRL rule in the rule unit

package org.mypackage.myunit
unit AgeCheckUnit

rule CheckAge
 when
 $p : /persons{ age > minAge }
 then
 results.add($p.getName() + ">" + minAge);
end

This example creates a RuleUnitExecutor class, binds the class to the KIE base that contains these two
rule units, and creates the two DataSource definitions for the same rule units:

Example executor and data source definitions

You can now insert some objects into the input data source and execute the Unit0 rule unit:

Example rule unit execution with inserted objects

Example results list from the execution

In this example, the rule unit named AgeCheckUnit is considered a singleton class and then executed
only once, with the minAge variable set to 3. Both the String "test" and the Integer 4 inserted into the
input data source can also trigger a second execution with the minAge variable set to 4. However, the
second execution does not occur because another rule unit with the same identity has already been
evaluated.

To resolve this rule unit identity conflict, override the getUnitIdentity() method in the AgeCheckUnit

 return results;
 }
}

RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

DataSource<Object> input = executor.newDataSource("input");
DataSource<Person> persons = executor.newDataSource("persons",
 new Person("John", 42),
 new Person("Sally", 4));

List<String> results = new ArrayList<>();
executor.bindVariable("results", results);

ds.insert("test");
ds.insert(3);
ds.insert(4);
executor.run(Unit0.class);

[Sally>3, John>3]

CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE

599

To resolve this rule unit identity conflict, override the getUnitIdentity() method in the AgeCheckUnit
class to include also the minAge variable in the rule unit identity:

Modified AgeCheckUnit rule unit to override the getUnitIdentity() method

With this override in place, the previous example rule unit execution produces the following output:

Example results list from executing the modified rule unit

The rule units with minAge set to 3 and 4 are now considered two different rule units and both are
executed.

public class AgeCheckUnit implements RuleUnit {

 ...

 @Override
 public Identity getUnitIdentity() {
 return new Identity(getClass(), minAge);
 }
}

[John>4, Sally>3, John>3]

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

600

CHAPTER 84. PHREAK RULE ALGORITHM IN THE DECISION
ENGINE

The decision engine in Red Hat Decision Manager uses the Phreak algorithm for rule evaluation. Phreak
evolved from the Rete algorithm, including the enhanced Rete algorithm ReteOO that was introduced in
previous versions of Red Hat Decision Manager for object-oriented systems. Overall, Phreak is more
scalable than Rete and ReteOO, and is faster in large systems.

While Rete is considered eager (immediate rule evaluation) and data oriented, Phreak is considered lazy
(delayed rule evaluation) and goal oriented. The Rete algorithm performs many actions during the
insert, update, and delete actions in order to find partial matches for all rules. This eagerness of the Rete
algorithm during rule matching requires a lot of time before eventually executing rules, especially in
large systems. With Phreak, this partial matching of rules is delayed deliberately to handle large amounts
of data more efficiently.

The Phreak algorithm adds the following set of enhancements to previous Rete algorithms:

Three layers of contextual memory: Node, segment, and rule memory types

Rule-based, segment-based, and node-based linking

Lazy (delayed) rule evaluation

Stack-based evaluations with pause and resume

Isolated rule evaluation

Set-oriented propagations

84.1. RULE EVALUATION IN PHREAK

When the decision engine starts, all rules are considered to be unlinked from pattern-matching data that
can trigger the rules. At this stage, the Phreak algorithm in the decision engine does not evaluate the
rules. The insert, update, and delete actions are queued, and Phreak uses a heuristic, based on the rule
most likely to result in execution, to calculate and select the next rule for evaluation. When all the
required input values are populated for a rule, the rule is considered to be linked to the relevant pattern-
matching data. Phreak then creates a goal that represents this rule and places the goal into a priority
queue that is ordered by rule salience. Only the rule for which the goal was created is evaluated, and
other potential rule evaluations are delayed. While individual rules are evaluated, node sharing is still
achieved through the process of segmentation.

Unlike the tuple-oriented Rete, the Phreak propagation is collection oriented. For the rule that is being
evaluated, the decision engine accesses the first node and processes all queued insert, update, and
delete actions. The results are added to a set, and the set is propagated to the child node. In the child
node, all queued insert, update, and delete actions are processed, adding the results to the same set.
The set is then propagated to the next child node and the same process repeats until it reaches the
terminal node. This cycle creates a batch process effect that can provide performance advantages for
certain rule constructs.

The linking and unlinking of rules happens through a layered bit-mask system, based on network
segmentation. When the rule network is built, segments are created for rule network nodes that are
shared by the same set of rules. A rule is composed of a path of segments. In case a rule does not share
any node with any other rule, it becomes a single segment.

A bit-mask offset is assigned to each node in the segment. Another bit mask is assigned to each

CHAPTER 84. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

601

A bit-mask offset is assigned to each node in the segment. Another bit mask is assigned to each
segment in the path of the rule according to these requirements:

If at least one input for a node exists, the node bit is set to the on state.

If each node in a segment has the bit set to the on state, the segment bit is also set to the on
state.

If any node bit is set to the off state, the segment is also set to the off state.

If each segment in the path of the rule is set to the on state, the rule is considered linked, and a
goal is created to schedule the rule for evaluation.

The same bit-mask technique is used to track modified nodes, segments, and rules. This tracking ability
enables an already linked rule to be unscheduled from evaluation if it has been modified since the
evaluation goal for it was created. As a result, no rules can ever evaluate partial matches.

This process of rule evaluation is possible in Phreak because, as opposed to a single unit of memory in
Rete, Phreak has three layers of contextual memory with node, segment, and rule memory types. This
layering enables much more contextual understanding during the evaluation of a rule.

Figure 84.1. Phreak three-layered memory system

The following examples illustrate how rules are organized and evaluated in this three-layered memory
system in Phreak.

Example 1: A single rule (R1) with three patterns: A, B and C. The rule forms a single segment, with bits 1,
2, and 4 for the nodes. The single segment has a bit offset of 1.

Figure 84.2. Example 1: Single rule

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

602

Figure 84.2. Example 1: Single rule

Example 2: Rule R2 is added and shares pattern A.

Figure 84.3. Example 2: Two rules with pattern sharing

Pattern A is placed in its own segment, resulting in two segments for each rule. Those two segments
form a path for their respective rules. The first segment is shared by both paths. When pattern A is
linked, the segment becomes linked. The segment then iterates over each path that the segment is
shared by, setting the bit 1 to on. If patterns B and C are later turned on, the second segment for path R1
is linked, and this causes bit 2 to be turned on for R1. With bit 1 and bit 2 turned on for R1, the rule is now
linked and a goal is created to schedule the rule for later evaluation and execution.

When a rule is evaluated, the segments enable the results of the matching to be shared. Each segment
has a staging memory to queue all inserts, updates, and deletes for that segment. When R1 is evaluated,
the rule processes pattern A, and this results in a set of tuples. The algorithm detects a segmentation
split, creates peered tuples for each insert, update, and delete in the set, and adds them to the R2
staging memory. Those tuples are then merged with any existing staged tuples and are executed when
R2 is eventually evaluated.

Example 3: Rules R3 and R4 are added and share patterns A and B.

Figure 84.4. Example 3: Three rules with pattern sharing

CHAPTER 84. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

603

Figure 84.4. Example 3: Three rules with pattern sharing

Rules R3 and R4 have three segments and R1 has two segments. Patterns A and B are shared by R1, R3,
and R4, while pattern D is shared by R3 and R4.

Example 4: A single rule (R1) with a subnetwork and no pattern sharing.

Figure 84.5. Example 4: Single rule with a subnetwork and no pattern sharing

Subnetworks are formed when a Not, Exists, or Accumulate node contains more than one element. In
this example, the element B not(C) forms the subnetwork. The element not(C) is a single element
that does not require a subnetwork and is therefore merged inside of the Not node. The subnetwork
uses a dedicated segment. Rule R1 still has a path of two segments and the subnetwork forms another
inner path. When the subnetwork is linked, it is also linked in the outer segment.

Example 5: Rule R1 with a subnetwork that is shared by rule R2.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

604

Figure 84.6. Example 5: Two rules, one with a subnetwork and pattern sharing

The subnetwork nodes in a rule can be shared by another rule that does not have a subnetwork. This
sharing causes the subnetwork segment to be split into two segments.

Constrained Not nodes and Accumulate nodes can never unlink a segment, and are always considered
to have their bits turned on.

The Phreak evaluation algorithm is stack based instead of method-recursion based. Rule evaluation can
be paused and resumed at any time when a StackEntry is used to represent the node currently being
evaluated.

When a rule evaluation reaches a subnetwork, a StackEntry object is created for the outer path
segment and the subnetwork segment. The subnetwork segment is evaluated first, and when the set
reaches the end of the subnetwork path, the segment is merged into a staging list for the outer node
that the segment feeds into. The previous StackEntry object is then resumed and can now process the
results of the subnetwork. This process has the added benefit, especially for Accumulate nodes, that all
work is completed in a batch, before propagating to the child node.

The same stack system is used for efficient backward chaining. When a rule evaluation reaches a query
node, the evaluation is paused and the query is added to the stack. The query is then evaluated to
produce a result set, which is saved in a memory location for the resumed StackEntry object to pick up
and propagate to the child node. If the query itself called other queries, the process repeats, while the
current query is paused and a new evaluation is set up for the current query node.

84.1.1. Rule evaluation with forward and backward chaining

The decision engine in Red Hat Decision Manager is a hybrid reasoning system that uses both forward
chaining and backward chaining to evaluate rules. A forward-chaining rule system is a data-driven
system that starts with a fact in the working memory of the decision engine and reacts to changes to
that fact. When objects are inserted into working memory, any rule conditions that become true as a
result of the change are scheduled for execution by the agenda.

In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion that
the decision engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion
or goal, it searches for subgoals, which are conclusions that complete part of the current goal. The
system continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

CHAPTER 84. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

605

Figure 84.7. Rule evaluation logic using forward and backward chaining

84.2. RULE BASE CONFIGURATION

Red Hat Decision Manager contains a RuleBaseConfiguration.java object that you can use to
configure exception handler settings, multithreaded execution, and sequential mode in the decision
engine.

For the rule base configuration options, download the Red Hat Decision Manager 7.11.0 Source
Distribution ZIP file from the Red Hat Customer Portal and navigate to ~/rhdm-7.11.0-
sources/src/drools-$VERSION/drools-
core/src/main/java/org/drools/core/RuleBaseConfiguration.java.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

606

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

The following rule base configuration options are available for the decision engine:

drools.consequenceExceptionHandler

When configured, this system property defines the class that manages the exceptions thrown by rule
consequences. You can use this property to specify a custom exception handler for rule evaluation in
the decision engine.
Default value: org.drools.core.runtime.rule.impl.DefaultConsequenceExceptionHandler

You can specify the custom exception handler using one of the following options:

Specify the exception handler in a system property:

drools.consequenceExceptionHandler=org.drools.core.runtime.rule.impl.MyCustomConsequ
enceExceptionHandler

Specify the exception handler while creating the KIE base programmatically:

drools.multithreadEvaluation

When enabled, this system property enables the decision engine to evaluate rules in parallel by
dividing the Phreak rule network into independent partitions. You can use this property to increase
the speed of rule evaluation for specific rule bases.
Default value: false

You can enable multithreaded evaluation using one of the following options:

Enable the multithreaded evaluation system property:

drools.multithreadEvaluation=true

Enable multithreaded evaluation while creating the KIE base programmatically:

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(ConsequenceExceptionHandlerOption.get(MyCustomConsequence
ExceptionHandler.class));
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(MultithreadEvaluationOption.YES);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

CHAPTER 84. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

607

WARNING

Rules that use queries, salience, or agenda groups are currently not supported
by the parallel decision engine. If these rule elements are present in the KIE base,
the compiler emits a warning and automatically switches back to single-threaded
evaluation. However, in some cases, the decision engine might not detect the
unsupported rule elements and rules might be evaluated incorrectly. For
example, the decision engine might not detect when rules rely on implicit
salience given by rule ordering inside the DRL file, resulting in incorrect
evaluation due to the unsupported salience attribute.

drools.sequential

When enabled, this system property enables sequential mode in the decision engine. In sequential
mode, the decision engine evaluates rules one time in the order that they are listed in the decision
engine agenda without regard to changes in the working memory. This means that the decision
engine ignores any insert, modify, or update statements in rules and executes rules in a single
sequence. As a result, rule execution may be faster in sequential mode, but important updates may
not be applied to your rules. You can use this property if you use stateless KIE sessions and you do
not want the execution of rules to influence subsequent rules in the agenda. Sequential mode
applies to stateless KIE sessions only.
Default value: false

You can enable sequential mode using one of the following options:

Enable the sequential mode system property:

drools.sequential=true

Enable sequential mode while creating the KIE base programmatically:

Enable sequential mode in the KIE module descriptor file (kmodule.xml) for a specific Red
Hat Decision Manager project:

84.3. SEQUENTIAL MODE IN PHREAK

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(SequentialOption.YES);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

<kmodule>
 ...
 <kbase name="KBase2" default="false" sequential="true" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

608

Sequential mode is an advanced rule base configuration in the decision engine, supported by Phreak,
that enables the decision engine to evaluate rules one time in the order that they are listed in the
decision engine agenda without regard to changes in the working memory. In sequential mode, the
decision engine ignores any insert, modify, or update statements in rules and executes rules in a single
sequence. As a result, rule execution may be faster in sequential mode, but important updates may not
be applied to your rules.

Sequential mode applies to only stateless KIE sessions because stateful KIE sessions inherently use data
from previously invoked KIE sessions. If you use a stateless KIE session and you want the execution of
rules to influence subsequent rules in the agenda, then do not enable sequential mode. Sequential mode
is disabled by default in the decision engine.

To enable sequential mode, use one of the following options:

Set the system property drools.sequential to true.

Enable sequential mode while creating the KIE base programmatically:

Enable sequential mode in the KIE module descriptor file (kmodule.xml) for a specific Red Hat
Decision Manager project:

To configure sequential mode to use a dynamic agenda, use one of the following options:

Set the system property drools.sequential.agenda to dynamic.

Set the sequential agenda option while creating the KIE base programmatically:

When you enable sequential mode, the decision engine evaluates rules in the following way:

1. Rules are ordered by salience and position in the rule set.

2. An element for each possible rule match is created. The element position indicates the
execution order.

3. Node memory is disabled, with the exception of the right-input object memory.

4. The left-input adapter node propagation is disconnected and the object with the node is

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(SequentialOption.YES);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

<kmodule>
 ...
 <kbase name="KBase2" default="false" sequential="true" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(SequentialAgendaOption.DYNAMIC);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

CHAPTER 84. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

609

4. The left-input adapter node propagation is disconnected and the object with the node is
referenced in a Command object. The Command object is added to a list in the working
memory for later execution.

5. All objects are asserted, and then the list of Command objects is checked and executed.

6. All matches that result from executing the list are added to elements based on the sequence
number of the rule.

7. The elements that contain matches are executed in a sequence. If you set a maximum number of
rule executions, the decision engine activates no more than that number of rules in the agenda
for execution.

In sequential mode, the LeftInputAdapterNode node creates a Command object and adds it to a list in
the working memory of the decision engine. This Command object contains references to the
LeftInputAdapterNode node and the propagated object. These references stop any left-input
propagations at insertion time so that the right-input propagation never needs to attempt to join the
left inputs. The references also avoid the need for the left-input memory.

All nodes have their memory turned off, including the left-input tuple memory, but excluding the right-
input object memory. After all the assertions are finished and the right-input memory of all the objects is
populated, the decision engine iterates over the list of LeftInputAdatperNode Command objects. The
objects propagate down the network, attempting to join the right-input objects, but they are not
retained in the left input.

The agenda with a priority queue to schedule the tuples is replaced by an element for each rule. The
sequence number of the RuleTerminalNode node indicates the element where to place the match.
After all Command objects have finished, the elements are checked and existing matches are executed.
To improve performance, the first and the last populated cell in the elements are retained.

When the network is constructed, each RuleTerminalNode node receives a sequence number based on
its salience number and the order in which it was added to the network.

The right-input node memories are typically hash maps for fast object deletion. Because object
deletions are not supported, Phreak uses an object list when the values of the object are not indexed.
For a large number of objects, indexed hash maps provide a performance increase. If an object has only a
few instances, Phreak uses an object list instead of an index.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

610

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)
In Red Hat Decision Manager, an event is a record of a significant change of state in the application
domain at a point in time. Depending on how the domain is modeled, the change of state may be
represented by a single event, multiple atomic events, or hierarchies of correlated events. From a
complex event processing (CEP) perspective, an event is a type of fact or object that occurs at a
specific point in time, and a business rule is a definition of how to react to the data from that fact or
object. For example, in a stock broker application, a change in security prices, a change in ownership
from seller to buyer, or a change in an account holder’s balance are all considered to be events because
a change has occurred in the state of the application domain at a given time.

The decision engine in Red Hat Decision Manager uses complex event processing (CEP) to detect and
process multiple events within a collection of events, to uncover relationships that exist between events,
and to infer new data from the events and their relationships.

CEP use cases share several requirements and goals with business rule use cases.

From a business perspective, business rule definitions are often defined based on the occurrence of
scenarios triggered by events. In the following examples, events form the basis of business rules:

In an algorithmic trading application, a rule performs an action if the security price increases by X
percent above the day opening price. The price increases are denoted by events on a stock
trading application.

In a monitoring application, a rule performs an action if the temperature in the server room
increases X degrees in Y minutes. The sensor readings are denoted by events.

From a technical perspective, business rule evaluation and CEP have the following key similarities:

Both business rule evaluation and CEP require seamless integration with the enterprise
infrastructure and applications. This is particularly important with life-cycle management,
auditing, and security.

Both business rule evaluation and CEP have functional requirements such as pattern matching,
and non-functional requirements such as response time limits and query-rule explanations.

CEP scenarios have the following key characteristics:

Scenarios usually process large numbers of events, but only a small percentage of the events
are relevant.

Events are usually immutable and represent a record of change in state.

Rules and queries run against events and must react to detected event patterns.

Related events usually have a strong temporal relationship.

Individual events are not prioritized. The CEP system prioritizes patterns of related events and
the relationships between them.

Events usually need to be composed and aggregated.

Given these common CEP scenario characteristics, the CEP system in Red Hat Decision Manager
supports the following features and functions to optimize event processing:

Event processing with proper semantics

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

611

Event detection, correlation, aggregation, and composition

Event stream processing

Temporal constraints to model the temporal relationships between events

Sliding windows of significant events

Session-scoped unified clock

Required volumes of events for CEP use cases

Reactive rules

Adapters for event input into the decision engine (pipeline)

85.1. EVENTS IN COMPLEX EVENT PROCESSING

In Red Hat Decision Manager, an event is a record of a significant change of state in the application
domain at a point in time. Depending on how the domain is modeled, the change of state may be
represented by a single event, multiple atomic events, or hierarchies of correlated events. From a
complex event processing (CEP) perspective, an event is a type of fact or object that occurs at a
specific point in time, and a business rule is a definition of how to react to the data from that fact or
object. For example, in a stock broker application, a change in security prices, a change in ownership
from seller to buyer, or a change in an account holder’s balance are all considered to be events because
a change has occurred in the state of the application domain at a given time.

Events have the following key characteristics:

Are immutable: An event is a record of change that has occurred at some time in the past and
cannot be changed.

NOTE

The decision engine does not enforce immutability on the Java objects that
represent events. This behavior makes event data enrichment possible. Your
application should be able to populate unpopulated event attributes, and these
attributes are used by the decision engine to enrich the event with inferred data.
However, you should not change event attributes that have already been
populated.

Have strong temporal constraints: Rules involving events usually require the correlation of
multiple events that occur at different points in time relative to each other.

Have managed life cycles: Because events are immutable and have temporal constraints, they
are usually only relevant for a specified period of time. This means that the decision engine can
automatically manage the life cycle of events.

Can use sliding windows: You can define sliding windows of time or length with events. A sliding
time window is a specified period of time during which events can be processed. A sliding length
window is a specified number of events that can be processed.

85.2. DECLARING FACTS AS EVENTS

You can declare facts as events in your Java class or DRL rule file so that the decision engine handles

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

612

the facts as events during complex event processing. You can declare the facts as interval-based events
or point-in-time events. Interval-based events have a duration time and persist in the working memory
of the decision engine until their duration time has lapsed. Point-in-time events have no duration and
are essentially interval-based events with a duration of zero.

Procedure

For the relevant fact type in your Java class or DRL rule file, enter the @role(event) metadata tag and
parameter. The @role metadata tag accepts the following two values:

fact: (Default) Declares the type as a regular fact

event: Declares the type as an event

For example, the following snippet declares that the StockPoint fact type in a stock broker application
must be handled as an event:

Declare fact type as an event

import some.package.StockPoint

declare StockPoint
 @role(event)
end

If StockPoint is a fact type declared in the DRL rule file instead of in a pre-existing class, you can
declare the event in-line in your application code:

Declare fact type in-line and assign it to event role

declare StockPoint
 @role(event)

 datetime : java.util.Date
 symbol : String
 price : double
end

85.3. METADATA TAGS FOR EVENTS

The decision engine uses the following metadata tags for events that are inserted into the working
memory of the decision engine. You can change the default metadata tag values in your Java class or
DRL rule file as needed.

NOTE

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

613

NOTE

The examples in this section that refer to the VoiceCall class assume that the sample
application domain model includes the following class details:

VoiceCall fact class in an example Telecom domain model

@role

This tag determines whether a given fact type is handled as a regular fact or an event in the decision
engine during complex event processing.
Default parameter: fact

Supported parameters: fact, event

@role(fact | event)

Example: Declare VoiceCall as event type

declare VoiceCall
 @role(event)
end

@timestamp

This tag is automatically assigned to every event in the decision engine. By default, the time is
provided by the session clock and assigned to the event when it is inserted into the working memory
of the decision engine. You can specify a custom time stamp attribute instead of the default time
stamp added by the session clock.
Default parameter: The time added by the decision engine session clock

Supported parameters: Session clock time or custom time stamp attribute

@timestamp(<attributeName>)

Example: Declare VoiceCall timestamp attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
end

@duration

This tag determines the duration time for events in the decision engine. Events can be interval-

public class VoiceCall {
 private String originNumber;
 private String destinationNumber;
 private Date callDateTime;
 private long callDuration; // in milliseconds

 // Constructors, getters, and setters
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

614

based events or point-in-time events. Interval-based events have a duration time and persist in the
working memory of the decision engine until their duration time has lapsed. Point-in-time events
have no duration and are essentially interval-based events with a duration of zero. By default, every
event in the decision engine has a duration of zero. You can specify a custom duration attribute
instead of the default.
Default parameter: Null (zero)

Supported parameters: Custom duration attribute

@duration(<attributeName>)

Example: Declare VoiceCall duration attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
end

@expires

This tag determines the time duration before an event expires in the working memory of the decision
engine. By default, an event expires when the event can no longer match and activate any of the
current rules. You can define an amount of time after which an event should expire. This tag
definition also overrides the implicit expiration offset calculated from temporal constraints and
sliding windows in the KIE base. This tag is available only when the decision engine is running in
stream mode.
Default parameter: Null (event expires after event can no longer match and activate rules)

Supported parameters: Custom timeOffset attribute in the format [#d][#h][#m][#s][[ms]]

@expires(<timeOffset>)

Example: Declare expiration offset for VoiceCall events

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
 @expires(1h35m)
end

85.4. EVENT PROCESSING MODES IN THE DECISION ENGINE

The decision engine runs in either cloud mode or stream mode. In cloud mode, the decision engine
processes facts as facts with no temporal constraints, independent of time, and in no particular order. In
stream mode, the decision engine processes facts as events with strong temporal constraints, in real
time or near real time. Stream mode uses synchronization to make event processing possible in Red Hat
Decision Manager.

Cloud mode

Cloud mode is the default operating mode of the decision engine. In cloud mode, the decision engine

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

615

treats events as an unordered cloud. Events still have time stamps, but the decision engine running in
cloud mode cannot draw relevance from the time stamp because cloud mode ignores the present
time. This mode uses the rule constraints to find the matching tuples to activate and execute rules.
Cloud mode does not impose any kind of additional requirements on facts. However, because the
decision engine in this mode has no concept of time, it cannot use temporal features such as sliding
windows or automatic life-cycle management. In cloud mode, events must be explicitly retracted
when they are no longer needed.

The following requirements are not imposed in cloud mode:

No clock synchronization because the decision engine has no notion of time

No ordering of events because the decision engine processes events as an unordered cloud,
against which the decision engine match rules

You can specify cloud mode either by setting the system property in the relevant configuration files
or by using the Java client API:

Set cloud mode using system property

drools.eventProcessingMode=cloud

Set cloud mode using Java client API

You can also specify cloud mode using the eventProcessingMode="<mode>" KIE base attribute in
the KIE module descriptor file (kmodule.xml) for a specific Red Hat Decision Manager project:

Set cloud mode using project kmodule.xml file

Stream mode

Stream mode enables the decision engine to process events chronologically and in real time as they
are inserted into the decision engine. In stream mode, the decision engine synchronizes streams of
events (so that events in different streams can be processed in chronological order), implements
sliding windows of time or length, and enables automatic life-cycle management.
The following requirements apply to stream mode:

Events in each stream must be ordered chronologically.

import org.kie.api.conf.EventProcessingOption;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieServices.Factory;

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.CLOUD);

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="cloud"
packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

616

A session clock must be present to synchronize event streams.

NOTE

Your application does not need to enforce ordering events between streams, but using
event streams that have not been synchronized may cause unexpected results.

You can specify stream mode either by setting the system property in the relevant configuration
files or by using the Java client API:

Set stream mode using system property

drools.eventProcessingMode=stream

Set stream mode using Java client API

You can also specify stream mode using the eventProcessingMode="<mode>" KIE base attribute
in the KIE module descriptor file (kmodule.xml) for a specific Red Hat Decision Manager project:

Set stream mode using project kmodule.xml file

85.4.1. Negative patterns in decision engine stream mode

A negative pattern is a pattern for conditions that are not met. For example, the following DRL rule
activates a fire alarm if a fire is detected and the sprinkler is not activated:

Fire alarm rule with a negative pattern

rule "Sound the alarm"
when
 $f : FireDetected()
 not(SprinklerActivated())
then
 // Sound the alarm.
end

import org.kie.api.conf.EventProcessingOption;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieServices.Factory;

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.STREAM);

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="stream"
packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

617

In cloud mode, the decision engine assumes all facts (regular facts and events) are known in advance
and evaluates negative patterns immediately. In stream mode, the decision engine can support temporal
constraints on facts to wait for a set time before activating a rule.

The same example rule in stream mode activates the fire alarm as usual, but applies a 10-second delay.

Fire alarm rule with a negative pattern and time delay (stream mode only)

rule "Sound the alarm"
when
 $f : FireDetected()
 not(SprinklerActivated(this after[0s,10s] $f))
then
 // Sound the alarm.
end

The following modified fire alarm rule expects one Heartbeat event to occur every 10 seconds. If the
expected event does not occur, the rule is executed. This rule uses the same type of object in both the
first pattern and in the negative pattern. The negative pattern has the temporal constraint to wait 0 to
10 seconds before executing and excludes the Heartbeat event bound to $h so that the rule can be
executed. The bound event $h must be explicitly excluded in order for the rule to be executed because
the temporal constraint [0s, …] does not inherently exclude that event from being matched again.

Fire alarm rule excluding a bound event in a negative pattern (stream mode only)

rule "Sound the alarm"
when
 $h: Heartbeat() from entry-point "MonitoringStream"
 not(Heartbeat(this != $h, this after[0s,10s] $h) from entry-point "MonitoringStream")
then
 // Sound the alarm.
end

85.5. PROPERTY-CHANGE SETTINGS AND LISTENERS FOR FACT
TYPES

By default, the decision engine does not re-evaluate all fact patterns for fact types each time a rule is
triggered, but instead reacts only to modified properties that are constrained or bound inside a given
pattern. For example, if a rule calls modify() as part of the rule actions but the action does not generate
new data in the KIE base, the decision engine does not automatically re-evaluate all fact patterns
because no data was modified. This property reactivity behavior prevents unwanted recursions in the
KIE base and results in more efficient rule evaluation. This behavior also means that you do not always
need to use the no-loop rule attribute to avoid infinite recursion.

You can modify or disable this property reactivity behavior with the following
KnowledgeBuilderConfiguration options, and then use a property-change setting in your Java class or
DRL files to fine-tune property reactivity as needed:

ALWAYS: (Default) All types are property reactive, but you can disable property reactivity for a
specific type by using the @classReactive property-change setting.

ALLOWED: No types are property reactive, but you can enable property reactivity for a specific
type by using the @propertyReactive property-change setting.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

618

DISABLED: No types are property reactive. All property-change listeners are ignored.

Example property reactivity setting in KnowledgeBuilderConfiguration

KnowledgeBuilderConfiguration config =
KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
config.setOption(PropertySpecificOption.ALLOWED);
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(config);

Alternatively, you can update the drools.propertySpecific system property in the standalone.xml file
of your Red Hat Decision Manager distribution:

Example property reactivity setting in system properties

The decision engine supports the following property-change settings and listeners for fact classes or
declared DRL fact types:

@classReactive

If property reactivity is set to ALWAYS in the decision engine (all types are property reactive), this
tag disables the default property reactivity behavior for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to re-evaluate all fact patterns for the
specified fact type each time the rule is triggered, instead of reacting only to modified properties
that are constrained or bound inside a given pattern.

Example: Disable default property reactivity in a DRL type declaration

declare Person
 @classReactive
 firstName : String
 lastName : String
end

Example: Disable default property reactivity in a Java class

@propertyReactive

If property reactivity is set to ALLOWED in the decision engine (no types are property reactive
unless specified), this tag enables property reactivity for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to react only to modified properties that
are constrained or bound inside a given pattern for the specified fact type, instead of re-evaluating
all fact patterns for the fact each time the rule is triggered.

<system-properties>
 ...
 <property name="drools.propertySpecific" value="ALLOWED"/>
 ...
</system-properties>

@classReactive
public static class Person {
 private String firstName;
 private String lastName;
}

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

619

Example: Enable property reactivity in a DRL type declaration (when reactivity is
disabled globally)

declare Person
 @propertyReactive
 firstName : String
 lastName : String
end

Example: Enable property reactivity in a Java class (when reactivity is disabled globally)

@watch

This tag enables property reactivity for additional properties that you specify in-line in fact patterns
in DRL rules. This tag is supported only if property reactivity is set to ALWAYS in the decision
engine, or if property reactivity is set to ALLOWED and the relevant fact type uses the
@propertyReactive tag. You can use this tag in DRL rules to add or exclude specific properties in
fact property reactivity logic.
Default parameter: None

Supported parameters: Property name, * (all), ! (not), !* (no properties)

<factPattern> @watch (<property>)

Example: Enable or disable property reactivity in fact patterns

// Listens for changes in both `firstName` (inferred) and `lastName`:
Person(firstName == $expectedFirstName) @watch(lastName)

// Listens for changes in all properties of the `Person` fact:
Person(firstName == $expectedFirstName) @watch(*)

// Listens for changes in `lastName` and explicitly excludes changes in `firstName`:
Person(firstName == $expectedFirstName) @watch(lastName, !firstName)

// Listens for changes in all properties of the `Person` fact except `age`:
Person(firstName == $expectedFirstName) @watch(*, !age)

// Excludes changes in all properties of the `Person` fact (equivalent to using `@classReactivity`
tag):
Person(firstName == $expectedFirstName) @watch(!*)

The decision engine generates a compilation error if you use the @watch tag for properties in a fact
type that uses the @classReactive tag (disables property reactivity) or when property reactivity is
set to ALLOWED in the decision engine and the relevant fact type does not use the
@propertyReactive tag. Compilation errors also arise if you duplicate properties in listener
annotations, such as @watch(firstName, ! firstName).

@propertyReactive
public static class Person {
 private String firstName;
 private String lastName;
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

620

@propertyChangeSupport

For facts that implement support for property changes as defined in the JavaBeans Specification,
this tag enables the decision engine to monitor changes in the fact properties.

Example: Declare property change support in JavaBeans object

declare Person
 @propertyChangeSupport
end

85.6. TEMPORAL OPERATORS FOR EVENTS

In stream mode, the decision engine supports the following temporal operators for events that are
inserted into the working memory of the decision engine. You can use these operators to define the
temporal reasoning behavior of the events that you declare in your Java class or DRL rule file. Temporal
operators are not supported when the decision engine is running in cloud mode.

after

before

coincides

during

includes

finishes

finished by

meets

met by

overlaps

overlapped by

starts

started by

after

This operator specifies if the current event occurs after the correlated event. This operator
can also define an amount of time after which the current event can follow the correlated
event, or a delimiting time range during which the current event can follow the correlated
event.
For example, the following pattern matches if $eventA starts between 3 minutes and 30
seconds and 4 minutes after $eventB finishes. If $eventA starts earlier than 3 minutes and
30 seconds after $eventB finishes, or later than 4 minutes after $eventB finishes, then the
pattern is not matched.

$eventA : EventA(this after[3m30s, 4m] $eventB)

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

621

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

You can also express this operator in the following way:

3m30s <= $eventA.startTimestamp - $eventB.endTimeStamp <= 4m

The after operator supports up to two parameter values:

If two values are defined, the interval starts on the first value (3 minutes and 30 seconds
in the example) and ends on the second value (4 minutes in the example).

If only one value is defined, the interval starts on the provided value and runs indefinitely
with no end time.

If no value is defined, the interval starts at 1 millisecond and runs indefinitely with no end
time.

The after operator also supports negative time ranges:

$eventA : EventA(this after[-3m30s, -2m] $eventB)

If the first value is greater than the second value, the decision engine automatically reverses
them. For example, the following two patterns are interpreted by the decision engine in the
same way:

$eventA : EventA(this after[-3m30s, -2m] $eventB)
$eventA : EventA(this after[-2m, -3m30s] $eventB)

before

This operator specifies if the current event occurs before the correlated event. This
operator can also define an amount of time before which the current event can precede the
correlated event, or a delimiting time range during which the current event can precede the
correlated event.
For example, the following pattern matches if $eventA finishes between 3 minutes and 30
seconds and 4 minutes before $eventB starts. If $eventA finishes earlier than 3 minutes and
30 seconds before $eventB starts, or later than 4 minutes before $eventB starts, then the
pattern is not matched.

$eventA : EventA(this before[3m30s, 4m] $eventB)

You can also express this operator in the following way:

3m30s <= $eventB.startTimestamp - $eventA.endTimeStamp <= 4m

The before operator supports up to two parameter values:

If two values are defined, the interval starts on the first value (3 minutes and 30 seconds
in the example) and ends on the second value (4 minutes in the example).

If only one value is defined, the interval starts on the provided value and runs indefinitely
with no end time.

If no value is defined, the interval starts at 1 millisecond and runs indefinitely with no end
time.

The before operator also supports negative time ranges:

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

622

$eventA : EventA(this before[-3m30s, -2m] $eventB)

If the first value is greater than the second value, the decision engine automatically reverses
them. For example, the following two patterns are interpreted by the decision engine in the
same way:

$eventA : EventA(this before[-3m30s, -2m] $eventB)
$eventA : EventA(this before[-2m, -3m30s] $eventB)

coincides

This operator specifies if the two events occur at the same time, with the same start and end
times.
For example, the following pattern matches if both the start and end time stamps of
$eventA and $eventB are identical:

$eventA : EventA(this coincides $eventB)

The coincides operator supports up to two parameter values for the distance between the
event start and end times, if they are not identical:

If only one parameter is given, the parameter is used to set the threshold for both the
start and end times of both events.

If two parameters are given, the first is used as a threshold for the start time and the
second is used as a threshold for the end time.

The following pattern uses start and end time thresholds:

$eventA : EventA(this coincides[15s, 10s] $eventB)

The pattern matches if the following conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 15s
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 10s

WARNING

The decision engine does not support negative intervals for the
coincides operator. If you use negative intervals, the decision engine
generates an error.

during

This operator specifies if the current event occurs within the time frame of when the
correlated event starts and ends. The current event must start after the correlated event
starts and must end before the correlated event ends. (With the coincides operator, the
start and end times are the same or nearly the same.)

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

623

For example, the following pattern matches if $eventA starts after $eventB starts and ends
before $eventB ends:

$eventA : EventA(this during $eventB)

You can also express this operator in the following way:

$eventB.startTimestamp < $eventA.startTimestamp <= $eventA.endTimestamp <
$eventB.endTimestamp

The during operator supports one, two, or four optional parameters:

If one value is defined, this value is the maximum distance between the start times of the
two events and the maximum distance between the end times of the two events.

If two values are defined, these values are a threshold between which the current event
start time and end time must occur in relation to the correlated event start and end
times.
For example, if the values are 5s and 10s, the current event must start between 5 and 10
seconds after the correlated event starts and must end between 5 and 10 seconds
before the correlated event ends.

If four values are defined, the first and second values are the minimum and maximum
distances between the start times of the events, and the third and fourth values are the
minimum and maximum distances between the end times of the two events.

includes

This operator specifies if the correlated event occurs within the time frame of when the
current event occurs. The correlated event must start after the current event starts and
must end before the current event ends. (The behavior of this operator is the reverse of the
during operator behavior.)
For example, the following pattern matches if $eventB starts after $eventA starts and ends
before $eventA ends:

$eventA : EventA(this includes $eventB)

You can also express this operator in the following way:

$eventA.startTimestamp < $eventB.startTimestamp <= $eventB.endTimestamp <
$eventA.endTimestamp

The includes operator supports one, two, or four optional parameters:

If one value is defined, this value is the maximum distance between the start times of the
two events and the maximum distance between the end times of the two events.

If two values are defined, these values are a threshold between which the correlated
event start time and end time must occur in relation to the current event start and end
times.
For example, if the values are 5s and 10s, the correlated event must start between 5 and
10 seconds after the current event starts and must end between 5 and 10 seconds
before the current event ends.

If four values are defined, the first and second values are the minimum and maximum

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

624

If four values are defined, the first and second values are the minimum and maximum
distances between the start times of the events, and the third and fourth values are the
minimum and maximum distances between the end times of the two events.

finishes

This operator specifies if the current event starts after the correlated event but both events
end at the same time.
For example, the following pattern matches if $eventA starts after $eventB starts and ends
at the same time when $eventB ends:

$eventA : EventA(this finishes $eventB)

You can also express this operator in the following way:

$eventB.startTimestamp < $eventA.startTimestamp
&&
$eventA.endTimestamp == $eventB.endTimestamp

The finishes operator supports one optional parameter that sets the maximum time
allowed between the end times of the two events:

$eventA : EventA(this finishes[5s] $eventB)

This pattern matches if these conditions are met:

$eventB.startTimestamp < $eventA.startTimestamp
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s

WARNING

The decision engine does not support negative intervals for the finishes
operator. If you use negative intervals, the decision engine generates an
error.

finished by

This operator specifies if the correlated event starts after the current event but both events
end at the same time. (The behavior of this operator is the reverse of the finishes operator
behavior.)
For example, the following pattern matches if $eventB starts after $eventA starts and ends
at the same time when $eventA ends:

$eventA : EventA(this finishedby $eventB)

You can also express this operator in the following way:

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

625

$eventA.startTimestamp < $eventB.startTimestamp
&&
$eventA.endTimestamp == $eventB.endTimestamp

The finished by operator supports one optional parameter that sets the maximum time
allowed between the end times of the two events:

$eventA : EventA(this finishedby[5s] $eventB)

This pattern matches if these conditions are met:

$eventA.startTimestamp < $eventB.startTimestamp
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s

WARNING

The decision engine does not support negative intervals for the finished
by operator. If you use negative intervals, the decision engine generates
an error.

meets

This operator specifies if the current event ends at the same time when the correlated event
starts.
For example, the following pattern matches if $eventA ends at the same time when
$eventB starts:

$eventA : EventA(this meets $eventB)

You can also express this operator in the following way:

abs($eventB.startTimestamp - $eventA.endTimestamp) == 0

The meets operator supports one optional parameter that sets the maximum time allowed
between the end time of the current event and the start time of the correlated event:

$eventA : EventA(this meets[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventB.startTimestamp - $eventA.endTimestamp) <= 5s

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

626

WARNING

The decision engine does not support negative intervals for the meets
operator. If you use negative intervals, the decision engine generates an
error.

met by

This operator specifies if the correlated event ends at the same time when the current event
starts. (The behavior of this operator is the reverse of the meets operator behavior.)
For example, the following pattern matches if $eventB ends at the same time when
$eventA starts:

$eventA : EventA(this metby $eventB)

You can also express this operator in the following way:

abs($eventA.startTimestamp - $eventB.endTimestamp) == 0

The met by operator supports one optional parameter that sets the maximum distance
between the end time of the correlated event and the start time of the current event:

$eventA : EventA(this metby[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.endTimestamp) <= 5s

WARNING

The decision engine does not support negative intervals for the met by
operator. If you use negative intervals, the decision engine generates an
error.

overlaps

This operator specifies if the current event starts before the correlated event starts and it
ends during the time frame that the correlated event occurs. The current event must end
between the start and end times of the correlated event.
For example, the following pattern matches if $eventA starts before $eventB starts and
then ends while $eventB occurs, before $eventB ends:

$eventA : EventA(this overlaps $eventB)

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

627

The overlaps operator supports up to two parameters:

If one parameter is defined, the value is the maximum distance between the start time of
the correlated event and the end time of the current event.

If two parameters are defined, the values are the minimum distance (first value) and the
maximum distance (second value) between the start time of the correlated event and
the end time of the current event.

overlapped by

This operator specifies if the correlated event starts before the current event starts and it
ends during the time frame that the current event occurs. The correlated event must end
between the start and end times of the current event. (The behavior of this operator is the
reverse of the overlaps operator behavior.)
For example, the following pattern matches if $eventB starts before $eventA starts and
then ends while $eventA occurs, before $eventA ends:

$eventA : EventA(this overlappedby $eventB)

The overlapped by operator supports up to two parameters:

If one parameter is defined, the value is the maximum distance between the start time of
the current event and the end time of the correlated event.

If two parameters are defined, the values are the minimum distance (first value) and the
maximum distance (second value) between the start time of the current event and the
end time of the correlated event.

starts

This operator specifies if the two events start at the same time but the current event ends
before the correlated event ends.
For example, the following pattern matches if $eventA and $eventB start at the same time,
and $eventA ends before $eventB ends:

$eventA : EventA(this starts $eventB)

You can also express this operator in the following way:

$eventA.startTimestamp == $eventB.startTimestamp
&&
$eventA.endTimestamp < $eventB.endTimestamp

The starts operator supports one optional parameter that sets the maximum distance
between the start times of the two events:

$eventA : EventA(this starts[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s
&&
$eventA.endTimestamp < $eventB.endTimestamp

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

628

WARNING

The decision engine does not support negative intervals for the starts
operator. If you use negative intervals, the decision engine generates an
error.

started by

This operator specifies if the two events start at the same time but the correlated event
ends before the current event ends. (The behavior of this operator is the reverse of the
starts operator behavior.)
For example, the following pattern matches if $eventA and $eventB start at the same time,
and $eventB ends before $eventA ends:

$eventA : EventA(this startedby $eventB)

You can also express this operator in the following way:

$eventA.startTimestamp == $eventB.startTimestamp
&&
$eventA.endTimestamp > $eventB.endTimestamp

The started by operator supports one optional parameter that sets the maximum distance
between the start times of the two events:

$eventA : EventA(this starts[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s
&&
$eventA.endTimestamp > $eventB.endTimestamp

WARNING

The decision engine does not support negative intervals for the started
by operator. If you use negative intervals, the decision engine generates
an error.

85.7. SESSION CLOCK IMPLEMENTATIONS IN THE DECISION ENGINE

During complex event processing, events in the decision engine may have temporal constraints and
therefore require a session clock that provides the current time. For example, if a rule needs to

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

629

determine the average price of a given stock over the last 60 minutes, the decision engine must be able
to compare the stock price event time stamp with the current time in the session clock.

The decision engine supports a real-time clock and a pseudo clock. You can use one or both clock types
depending on the scenario:

Rules testing: Testing requires a controlled environment, and when the tests include rules with
temporal constraints, you must be able to control the input rules and facts and the flow of time.

Regular execution: The decision engine reacts to events in real time and therefore requires a
real-time clock.

Special environments: Specific environments may have specific time control requirements. For
example, clustered environments may require clock synchronization or Java Enterprise Edition
(JEE) environments may require a clock provided by the application server.

Rules replay or simulation: In order to replay or simulate scenarios, the application must be able
to control the flow of time.

Consider your environment requirements as you decide whether to use a real-time clock or pseudo
clock in the decision engine.

Real-time clock

The real-time clock is the default clock implementation in the decision engine and uses the system
clock to determine the current time for time stamps. To configure the decision engine to use the
real-time clock, set the KIE session configuration parameter to realtime:

Configure real-time clock in KIE session

Pseudo clock

The pseudo clock implementation in the decision engine is helpful for testing temporal rules and it
can be controlled by the application. To configure the decision engine to use the pseudo clock, set
the KIE session configuration parameter to pseudo:

Configure pseudo clock in KIE session

You can also use additional configurations and fact handlers to control the pseudo clock:

import org.kie.api.KieServices.Factory;
import org.kie.api.runtime.conf.ClockTypeOption;
import org.kie.api.runtime.KieSessionConfiguration;

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("realtime"));

import org.kie.api.runtime.conf.ClockTypeOption;
import org.kie.api.runtime.KieSessionConfiguration;
import org.kie.api.KieServices.Factory;

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("pseudo"));

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

630

Control pseudo clock behavior in KIE session

85.8. EVENT STREAMS AND ENTRY POINTS

The decision engine can process high volumes of events in the form of event streams. In DRL rule
declarations, a stream is also known as an entry point. When you declare an entry point in a DRL rule or
Java application, the decision engine, at compile time, identifies and creates the proper internal
structures to use data from only that entry point to evaluate that rule.

Facts from one entry point, or stream, can join facts from any other entry point in addition to facts
already in the working memory of the decision engine. Facts always remain associated with the entry
point through which they entered the decision engine. Facts of the same type can enter the decision
engine through several entry points, but facts that enter the decision engine through entry point A can
never match a pattern from entry point B.

Event streams have the following characteristics:

Events in the stream are ordered by time stamp. The time stamps may have different semantics
for different streams, but they are always ordered internally.

Event streams usually have a high volume of events.

Atomic events in streams are usually not useful individually, only collectively in a stream.

Event streams can be homogeneous and contain a single type of event, or heterogeneous and
contain events of different types.

85.8.1. Declaring entry points for rule data

You can declare an entry point (event stream) for events so that the decision engine uses data from

import java.util.concurrent.TimeUnit;

import org.kie.api.runtime.KieSessionConfiguration;
import org.kie.api.KieServices.Factory;
import org.kie.api.runtime.KieSession;
import org.drools.core.time.SessionPseudoClock;
import org.kie.api.runtime.rule.FactHandle;
import org.kie.api.runtime.conf.ClockTypeOption;

KieSessionConfiguration conf = KieServices.Factory.get().newKieSessionConfiguration();

conf.setOption(ClockTypeOption.get("pseudo"));
KieSession session = kbase.newKieSession(conf, null);

SessionPseudoClock clock = session.getSessionClock();

// While inserting facts, advance the clock as necessary.
FactHandle handle1 = session.insert(tick1);
clock.advanceTime(10, TimeUnit.SECONDS);

FactHandle handle2 = session.insert(tick2);
clock.advanceTime(30, TimeUnit.SECONDS);

FactHandle handle3 = session.insert(tick3);

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

631

You can declare an entry point (event stream) for events so that the decision engine uses data from
only that entry point to evaluate the rules. You can declare an entry point either implicitly by referencing
it in DRL rules or explicitly in your Java application.

Procedure

Use one of the following methods to declare the entry point:

In the DRL rule file, specify from entry-point "<name>" for the inserted fact:

Authorize withdrawal rule with "ATM Stream" entry point

rule "Authorize withdrawal"
when
 WithdrawRequest($ai : accountId, $am : amount) from entry-point "ATM Stream"
 CheckingAccount(accountId == $ai, balance > $am)
then
 // Authorize withdrawal.
end

Apply fee rule with "Branch Stream" entry point

rule "Apply fee on withdraws on branches"
when
 WithdrawRequest($ai : accountId, processed == true) from entry-point "Branch Stream"
 CheckingAccount(accountId == $ai)
then
 // Apply a $2 fee on the account.
end

Both example DRL rules from a banking application insert the event WithdrawalRequest with
the fact CheckingAccount, but from different entry points. At run time, the decision engine
evaluates the Authorize withdrawal rule using data from only the "ATM Stream" entry point,
and evaluates the Apply fee rule using data from only the "Branch Stream" entry point. Any
events inserted into the "ATM Stream" can never match patterns for the "Apply fee" rule, and
any events inserted into the "Branch Stream" can never match patterns for the "Authorize
withdrawal rule".

In the Java application code, use the getEntryPoint() method to specify and obtain an
EntryPoint object and insert facts into that entry point accordingly:

Java application code with EntryPoint object and inserted facts

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.rule.EntryPoint;

// Create your KIE base and KIE session as usual.
KieSession session = ...

// Create a reference to the entry point.
EntryPoint atmStream = session.getEntryPoint("ATM Stream");

// Start inserting your facts into the entry point.
atmStream.insert(aWithdrawRequest);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

632

Any DRL rules that specify from entry-point "ATM Stream" are then evaluated based on the
data in this entry point only.

85.9. SLIDING WINDOWS OF TIME OR LENGTH

In stream mode, the decision engine can process events from a specified sliding window of time or
length. A sliding time window is a specified period of time during which events can be processed. A
sliding length window is a specified number of events that can be processed. When you declare a sliding
window in a DRL rule or Java application, the decision engine, at compile time, identifies and creates the
proper internal structures to use data from only that sliding window to evaluate that rule.

For example, the following DRL rule snippets instruct the decision engine to process only the stock
points from the last 2 minutes (sliding time window) or to process only the last 10 stock points (sliding
length window):

Process stock points from the last 2 minutes (sliding time window)

StockPoint() over window:time(2m)

Process the last 10 stock points (sliding length window)

StockPoint() over window:length(10)

85.9.1. Declaring sliding windows for rule data

You can declare a sliding window of time (flow of time) or length (number of occurrences) for events so
that the decision engine uses data from only that window to evaluate the rules.

Procedure

In the DRL rule file, specify over window:<time_or_length>(<value>) for the inserted fact.

For example, the following two DRL rules activate a fire alarm based on an average temperature.
However, the first rule uses a sliding time window to calculate the average over the last 10 minutes while
the second rule uses a sliding length window to calculate the average over the last one hundred
temperature readings.

Average temperature over sliding time window

rule "Sound the alarm if temperature rises above threshold"
when
 TemperatureThreshold($max : max)
 Number(doubleValue > $max) from accumulate(
 SensorReading($temp : temperature) over window:time(10m),
 average($temp))
then
 // Sound the alarm.
end

Average temperature over sliding length window

rule "Sound the alarm if temperature rises above threshold"
when
 TemperatureThreshold($max : max)

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

633

 Number(doubleValue > $max) from accumulate(
 SensorReading($temp : temperature) over window:length(100),
 average($temp))
then
 // Sound the alarm.
end

The decision engine discards any SensorReading events that are more than 10 minutes old or that are
not part of the last one hundred readings, and continues recalculating the average as the minutes or
readings "slide" forward in real time.

The decision engine does not automatically remove outdated events from the KIE session because
other rules without sliding window declarations might depend on those events. The decision engine
stores events in the KIE session until the events expire either by explicit rule declarations or by implicit
reasoning within the decision engine based on inferred data in the KIE base.

85.10. MEMORY MANAGEMENT FOR EVENTS

In stream mode, the decision engine uses automatic memory management to maintain events that are
stored in KIE sessions. The decision engine can retract from a KIE session any events that no longer
match any rule due to their temporal constraints and release any resources held by the retracted events.

The decision engine uses either explicit or inferred expiration to retract outdated events:

Explicit expiration: The decision engine removes events that are explicitly set to expire in rules
that declare the @expires tag:

DRL rule snippet with explicit expiration

declare StockPoint
 @expires(30m)
end

This example rule sets any StockPoint events to expire after 30 minutes and to be removed
from the KIE session if no other rules use the events.

Inferred expiration: The decision engine can calculate the expiration offset for a given event
implicitly by analyzing the temporal constraints in the rules:

DRL rule with temporal constraints

rule "Correlate orders"
when
 $bo : BuyOrder($id : id)
 $ae : AckOrder(id == $id, this after[0,10s] $bo)
then
 // Perform an action.
end

For this example rule, the decision engine automatically calculates that whenever a BuyOrder
event occurs, the decision engine needs to store the event for up to 10 seconds and wait for the
matching AckOrder event. After 10 seconds, the decision engine infers the expiration and

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

634

removes the event from the KIE session. An AckOrder event can only match an existing
BuyOrder event, so the decision engine infers the expiration if no match occurs and removes
the event immediately.

The decision engine analyzes the entire KIE base to find the offset for every event type and to
ensure that no other rules use the events that are pending removal. Whenever an implicit
expiration clashes with an explicit expiration value, the decision engine uses the greater time
frame of the two to store the event longer.

CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)

635

CHAPTER 86. DECISION ENGINE QUERIES AND LIVE QUERIES
You can use queries with the decision engine to retrieve fact sets based on fact patterns as they are
used in rules. The patterns might also use optional parameters.

To use queries with the decision engine, you add the query definitions in DRL files and then obtain the
matching results in your application code. While a query iterates over a result collection, you can use any
identifier that is bound to the query to access the corresponding fact or fact field by calling the get()
method with the binding variable name as the argument. If the binding refers to a fact object, you can
retrieve the fact handle by calling getFactHandle() with the variable name as the parameter.

Example query definition in a DRL file

query "people under the age of 21"
 $person : Person(age < 21)
end

Example application code to obtain and iterate over query results

Invoking queries and processing the results by iterating over the returned set can be difficult when you
are monitoring changes over time. To alleviate this difficulty with ongoing queries, Red Hat Decision
Manager provides live queries, which use an attached listener for change events instead of returning an
iterable result set. Live queries remain open by creating a view and publishing change events for the
contents of this view.

To activate a live query, start your query with parameters and monitor changes in the resulting view. You
can use the dispose() method to terminate the query and discontinue this reactive scenario.

Example query definition in a DRL file

query colors(String $color1, String $color2)
 TShirt(mainColor = $color1, secondColor = $color2, $price: manufactureCost)
end

Example application code with an event listener and a live query

QueryResults results = ksession.getQueryResults("people under the age of 21");
System.out.println("we have " + results.size() + " people under the age of 21");

System.out.println("These people are under the age of 21:");

for (QueryResultsRow row : results) {
 Person person = (Person) row.get("person");
 System.out.println(person.getName() + "\n");
}

final List updated = new ArrayList();
final List removed = new ArrayList();
final List added = new ArrayList();

ViewChangedEventListener listener = new ViewChangedEventListener() {
 public void rowUpdated(Row row) {
 updated.add(row.get("$price"));
 }

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

636

 public void rowRemoved(Row row) {
 removed.add(row.get("$price"));
 }

 public void rowAdded(Row row) {
 added.add(row.get("$price"));
 }
};

// Open the live query:
LiveQuery query = ksession.openLiveQuery("colors",
 new Object[] { "red", "blue" },
 listener);
...
...

// Terminate the live query:
query.dispose()

CHAPTER 86. DECISION ENGINE QUERIES AND LIVE QUERIES

637

CHAPTER 87. DECISION ENGINE EVENT LISTENERS AND
DEBUG LOGGING

In Red Hat Decision Manager, you can add or remove listeners for decision engine events, such as fact
insertions and rule executions. With decision engine event listeners, you can be notified of decision
engine activity and separate your logging and auditing work from the core of your application.

The decision engine supports the following default event listeners for the agenda and working memory:

AgendaEventListener

WorkingMemoryEventListener

For each event listener, the decision engine also supports the following specific events that you can
specify to be monitored:

MatchCreatedEvent

MatchCancelledEvent

BeforeMatchFiredEvent

AfterMatchFiredEvent

AgendaGroupPushedEvent

AgendaGroupPoppedEvent

ObjectInsertEvent

ObjectDeletedEvent

ObjectUpdatedEvent

ProcessCompletedEvent

ProcessNodeLeftEvent

ProcessNodeTriggeredEvent

ProcessStartEvent

For example, the following code uses a DefaultAgendaEventListener listener attached to a KIE session
and specifies the AfterMatchFiredEvent event to be monitored. The code prints pattern matches after
the rules are executed (fired):

Example code to monitor and print AfterMatchFiredEvent events in the agenda

The decision engine also supports the following agenda and working memory event listeners for debug

ksession.addEventListener(new DefaultAgendaEventListener() {
 public void afterMatchFired(AfterMatchFiredEvent event) {
 super.afterMatchFired(event);
 System.out.println(event);
 }
});

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

638

The decision engine also supports the following agenda and working memory event listeners for debug
logging:

DebugAgendaEventListener

DebugRuleRuntimeEventListener

These event listeners implement the same supported event-listener methods and include a debug print
statement by default. You can add a specific supported event to be monitored and documented, or
monitor all agenda or working memory activity.

For example, the following code uses the DebugRuleRuntimeEventListener event listener to monitor
and print all working memory events:

Example code to monitor and print all working memory events

87.1. CONFIGURING A LOGGING UTILITY IN THE DECISION ENGINE

The decision engine uses the Java logging API SLF4J for system logging. You can use one of the
following logging utilities with the decision engine to investigate decision engine activity, such as for
troubleshooting or data gathering:

Logback

Apache Commons Logging

Apache Log4j

java.util.logging package

Procedure

For the logging utility that you want to use, add the relevant dependency to your Maven project or save
the relevant XML configuration file in the org.drools package of your Red Hat Decision Manager
distribution:

Example Maven dependency for Logback

Example logback.xml configuration file in org.drools package

Example log4j.xml configuration file in org.drools package

ksession.addEventListener(new DebugRuleRuntimeEventListener());

<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
</dependency>

<configuration>
 <logger name="org.drools" level="debug"/>
 ...
<configuration>

CHAPTER 87. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING

639

NOTE

If you are developing for an ultra light environment, use the slf4j-nop or slf4j-simple
logger.

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">
 <category name="org.drools">
 <priority value="debug" />
 </category>
 ...
</log4j:configuration>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

640

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION
MANAGER FOR AN IDE

Red Hat Decision Manager provides example decisions distributed as Java classes that you can import
into your integrated development environment (IDE). You can use these examples to better understand
decision engine capabilities or use them as a reference for the decisions that you define in your own Red
Hat Decision Manager projects.

The following example decision sets are some of the examples available in Red Hat Decision Manager:

Hello World example: Demonstrates basic rule execution and use of debug output

State example: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

Fibonacci example: Demonstrates recursion and conflict resolution through rule salience

Banking example: Demonstrates pattern matching, basic sorting, and calculation

Pet Store example: Demonstrates rule agenda groups, global variables, callbacks, and GUI
integration

Sudoku example: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

House of Doom example: Demonstrates backward chaining and recursion

NOTE

For optimization examples provided with Red Hat build of OptaPlanner, see Getting
started with Red Hat build of OptaPlanner.

88.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER
EXAMPLE DECISIONS IN AN IDE

You can import Red Hat Decision Manager example decisions into your integrated development
environment (IDE) and execute them to explore how the rules and code function. You can use these
examples to better understand decision engine capabilities or use them as a reference for the decisions
that you define in your own Red Hat Decision Manager projects.

Prerequisites

Java 8 or later is installed.

Maven 3.5.x or later is installed.

An IDE is installed, such as Red Hat CodeReady Studio.

Procedure

1. Download and unzip the Red Hat Decision Manager 7.11.0 Source Distribution from the Red
Hat Customer Portal to a temporary directory, such as /rhdm-7.11.0-sources.

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

641

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#examples-con
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the
equivalent option for importing a Maven project.

3. Click Browse, navigate to ~/rhdm-7.11.0-sources/src/drools-$VERSION/drools-examples
(or, for the Conway’s Game of Life example, ~/rhdm-7.11.0-sources/src/droolsjbpm-
integration-$VERSION/droolsjbpm-integration-examples), and import the project.

4. Navigate to the example package that you want to run and find the Java class with the main
method.

5. Right-click the Java class and select Run As → Java Application to run the example.
To run all examples through a basic user interface, run the DroolsExamplesApp.java class (or,
for Conway’s Game of Life, the DroolsJbpmIntegrationExamplesApp.java class) in the
org.drools.examples main class.

Figure 88.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

642

Figure 88.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

Figure 88.2. Interface for all examples in droolsjbpm-integration-examples

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

643

1

2

3

Figure 88.2. Interface for all examples in droolsjbpm-integration-examples
(DroolsJbpmIntegrationExamplesApp.java)

88.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND
DEBUGGING)

The Hello World example decision set demonstrates how to insert objects into the decision engine
working memory, how to match the objects using rules, and how to configure logging to trace the
internal activity of the decision engine.

The following is an overview of the Hello World example:

Name: helloworld

Main class: org.drools.examples.helloworld.HelloWorldExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.helloworld.HelloWorld.drl (in src/main/resources)

Objective: Demonstrates basic rule execution and use of debug output

In the Hello World example, a KIE session is generated to enable rule execution. All rules require a KIE
session for execution.

KIE session for rule execution

Obtains the KieServices factory. This is the main interface that applications use to interact with
the decision engine.

Creates a KieContainer from the project class path. This detects a /META-INF/kmodule.xml file
from which it configures and instantiates a KieContainer with a KieModule.

Creates a KieSession based on the "HelloWorldKS" KIE session configuration defined in the
/META-INF/kmodule.xml file.

KieServices ks = KieServices.Factory.get(); 1
KieContainer kc = ks.getKieClasspathContainer(); 2
KieSession ksession = kc.newKieSession("HelloWorldKS"); 3

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

644

NOTE

For more information about Red Hat Decision Manager project packaging, see Packaging
and deploying a Red Hat Decision Manager project.

Red Hat Decision Manager has an event model that exposes internal engine activity. Two default debug
listeners, DebugAgendaEventListener and DebugRuleRuntimeEventListener, print debug event
information to the System.err output. The KieRuntimeLogger provides execution auditing, the result
of which you can view in a graphical viewer.

Debug listeners and audit loggers

The logger is a specialized implementation built on the Agenda and RuleRuntime listeners. When the
decision engine has finished executing, logger.close() is called.

The example creates a single Message object with the message "Hello World", inserts the status
HELLO into the KieSession, executes rules with fireAllRules().

Data insertion and execution

Rule execution uses a data model to pass data as inputs and outputs to the KieSession. The data
model in this example has two fields: the message, which is a String, and the status, which can be
HELLO or GOODBYE.

Data model class

// Set up listeners.
ksession.addEventListener(new DebugAgendaEventListener());
ksession.addEventListener(new DebugRuleRuntimeEventListener());

// Set up a file-based audit logger.
KieRuntimeLogger logger = KieServices.get().getLoggers().newFileLogger(ksession,
"./target/helloworld");

// Set up a ThreadedFileLogger so that the audit view reflects events while debugging.
KieRuntimeLogger logger = ks.getLoggers().newThreadedFileLogger(ksession, "./target/helloworld",
1000);

// Insert facts into the KIE session.
final Message message = new Message();
message.setMessage("Hello World");
message.setStatus(Message.HELLO);
ksession.insert(message);

// Fire the rules.
ksession.fireAllRules();

public static class Message {
 public static final int HELLO = 0;
 public static final int GOODBYE = 1;

 private String message;

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

645

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

The two rules are located in the file
src/main/resources/org/drools/examples/helloworld/HelloWorld.drl.

The when condition of the "Hello World" rule states that the rule is activated for each Message object
inserted into the KIE session that has the status Message.HELLO. Additionally, two variable bindings
are created: the variable message is bound to the message attribute and the variable m is bound to
the matched Message object itself.

The then action of the rule specifies to print the content of the bound variable message to System.out,
and then changes the values of the message and status attributes of the Message object bound to m.
The rule uses the modify statement to apply a block of assignments in one statement and to notify the
decision engine of the changes at the end of the block.

"Hello World" rule

rule "Hello World"
 when
 m : Message(status == Message.HELLO, message : message)
 then
 System.out.println(message);
 modify (m) { message = "Goodbye cruel world",
 status = Message.GOODBYE };
end

The "Good Bye" rule is similar to the "Hello World" rule except that it matches Message objects that
have the status Message.GOODBYE.

"Good Bye" rule

rule "Good Bye"
 when
 Message(status == Message.GOODBYE, message : message)
 then
 System.out.println(message);
end

To execute the example, run the org.drools.examples.helloworld.HelloWorldExample class as a Java
application in your IDE. The rule writes to System.out, the debug listener writes to System.err, and the
audit logger creates a log file in target/helloworld.log.

System.out output in the IDE console

Hello World
Goodbye cruel world

System.err output in the IDE console

==>[ActivationCreated(0): rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectInserted: handle=

 private int status;
 ...
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

646

[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[BeforeActivationFired: rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
==>[ActivationCreated(4): rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectUpdated: handle=
[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 old_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96;
 new_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[AfterActivationFired(0): rule=Hello World]
[BeforeActivationFired: rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[AfterActivationFired(4): rule=Good Bye]

To better understand the execution flow of this example, you can load the audit log file from
target/helloworld.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit view shows that the object is inserted, which creates an activation for the
"Hello World" rule. The activation is then executed, which updates the Message object and causes the
"Good Bye" rule to activate. Finally, the "Good Bye" rule is executed. When you select an event in the
Audit View, the origin event, which is the "Activation created" event in this example, is highlighted in
green.

Figure 88.3. Hello World example Audit View

88.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND
CONFLICT RESOLUTION)

The State example decision set demonstrates how the decision engine uses forward chaining and any
changes to facts in the working memory to resolve execution conflicts for rules in a sequence. The
example focuses on resolving conflicts through salience values or through agenda groups that you can
define in rules.

The following is an overview of the State example:

Name: state

Main classes: org.drools.examples.state.StateExampleUsingSalience,
org.drools.examples.state.StateExampleUsingAgendaGroup (in src/main/java)

Module: drools-examples

Type: Java application

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

647

Rule files: org.drools.examples.state.*.drl (in src/main/resources)

Objective: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

A forward-chaining rule system is a data-driven system that starts with a fact in the working memory of
the decision engine and reacts to changes to that fact. When objects are inserted into working memory,
any rule conditions that become true as a result of the change are scheduled for execution by the
agenda.

In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion that
the decision engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion
or goal, it searches for subgoals, which are conclusions that complete part of the current goal. The
system continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 88.4. Rule evaluation logic using forward and backward chaining

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

648

Figure 88.4. Rule evaluation logic using forward and backward chaining

In the State example, each State class has fields for its name and its current state (see the class
org.drools.examples.state.State). The following states are the two possible states for each object:

NOTRUN

FINISHED

State class

public class State {
 public static final int NOTRUN = 0;

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

649

The State example contains two versions of the same example to resolve rule execution conflicts:

A StateExampleUsingSalience version that resolves conflicts by using rule salience

A StateExampleUsingAgendaGroups version that resolves conflicts by using rule agenda
groups

Both versions of the state example involve four State objects: A, B, C, and D. Initially, their states are set
to NOTRUN, which is the default value for the constructor that the example uses.

State example using salience
The StateExampleUsingSalience version of the State example uses salience values in rules to resolve
rule execution conflicts. Rules with a higher salience value are given higher priority when ordered in the
activation queue.

The example inserts each State instance into the KIE session and then calls fireAllRules().

Salience State example execution

To execute the example, run the org.drools.examples.state.StateExampleUsingSalience class as a
Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Salience State example output in the IDE console

A finished
B finished
C finished

 public static final int FINISHED = 1;

 private final PropertyChangeSupport changes =
 new PropertyChangeSupport(this);

 private String name;
 private int state;

 ... setters and getters go here...
}

final State a = new State("A");
final State b = new State("B");
final State c = new State("C");
final State d = new State("D");

ksession.insert(a);
ksession.insert(b);
ksession.insert(c);
ksession.insert(d);

ksession.fireAllRules();

// Dispose KIE session if stateful (not required if stateless).
ksession.dispose();

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

650

D finished

Four rules are present.

First, the "Bootstrap" rule fires, setting A to state FINISHED, which then causes B to change its state
to FINISHED. Objects C and D are both dependent on B, causing a conflict that is resolved by the
salience values.

To better understand the execution flow of this example, you can load the audit log file from
target/state.log into your IDE debug view or Audit View, if available (for example, in Window → Show
View in some IDEs).

In this example, the Audit View shows that the assertion of the object A in the state NOTRUN activates
the "Bootstrap" rule, while the assertions of the other objects have no immediate effect.

Figure 88.5. Salience State example Audit View

Rule "Bootstrap" in salience State example

rule "Bootstrap"
 when
 a : State(name == "A", state == State.NOTRUN)
 then
 System.out.println(a.getName() + " finished");
 a.setState(State.FINISHED);
end

The execution of the "Bootstrap" rule changes the state of A to FINISHED, which activates rule "A to
B".

Rule "A to B" in salience State example

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

651

rule "A to B"
 when
 State(name == "A", state == State.FINISHED)
 b : State(name == "B", state == State.NOTRUN)
 then
 System.out.println(b.getName() + " finished");
 b.setState(State.FINISHED);
end

The execution of rule "A to B" changes the state of B to FINISHED, which activates both rules "B to C"
and "B to D", placing their activations onto the decision engine agenda.

Rules "B to C" and "B to D" in salience State example

rule "B to C"
 salience 10
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
end

rule "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

From this point on, both rules may fire and, therefore, the rules are in conflict. The conflict resolution
strategy enables the decision engine agenda to decide which rule to fire. Rule "B to C" has the higher
salience value (10 versus the default salience value of 0), so it fires first, modifying object C to state
FINISHED.

The Audit View in your IDE shows the modification of the State object in the rule "A to B", which results
in two activations being in conflict.

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda. In
this example, the Agenda View shows the breakpoint in the rule "A to B" and the state of the agenda
with the two conflicting rules. Rule "B to D" fires last, modifying object D to state FINISHED.

Figure 88.6. Salience State example Agenda View

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

652

Figure 88.6. Salience State example Agenda View

State example using agenda groups
The StateExampleUsingAgendaGroups version of the State example uses agenda groups in rules to
resolve rule execution conflicts. Agenda groups enable you to partition the decision engine agenda to
provide more execution control over groups of rules. By default, all rules are in the agenda group MAIN.
You can use the agenda-group attribute to specify a different agenda group for the rule.

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

653

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

In this example, the auto-focus attribute enables rule "B to C" to fire before "B to D".

Rule "B to C" in agenda group State example

rule "B to C"
 agenda-group "B to C"
 auto-focus true
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to D").setFocus();
end

The rule "B to C" calls setFocus() on the agenda group "B to D", enabling its active rules to fire, which
then enables the rule "B to D" to fire.

Rule "B to D" in agenda group State example

rule "B to D"
 agenda-group "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

To execute the example, run the org.drools.examples.state.StateExampleUsingAgendaGroups class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window (same as the salience
version of the State example):

Agenda group State example output in the IDE console

A finished
B finished
C finished
D finished

Dynamic facts in the State example
Another notable concept in this State example is the use of dynamic facts, based on objects that
implement a PropertyChangeListener object. In order for the decision engine to see and react to
changes of fact properties, the application must notify the decision engine that changes occurred. You

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

654

can configure this communication explicitly in the rules by using the modify statement, or implicitly by
specifying that the facts implement the PropertyChangeSupport interface as defined by the
JavaBeans specification.

This example demonstrates how to use the PropertyChangeSupport interface to avoid the need for
explicit modify statements in the rules. To make use of this interface, ensure that your facts implement
PropertyChangeSupport in the same way that the class org.drools.example.State implements it, and
then use the following code in the DRL rule file to configure the decision engine to listen for property
changes on those facts:

Declaring a dynamic fact

declare type State
 @propertyChangeSupport
end

When you use PropertyChangeListener objects, each setter must implement additional code for the
notification. For example, the following setter for state is in the class org.drools.examples:

Setter example with PropertyChangeSupport

88.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT
RESOLUTION)

The Fibonacci example decision set demonstrates how the decision engine uses recursion to resolve
execution conflicts for rules in a sequence. The example focuses on resolving conflicts through salience
values that you can define in rules.

The following is an overview of the Fibonacci example:

Name: fibonacci

Main class: org.drools.examples.fibonacci.FibonacciExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.fibonacci.Fibonacci.drl (in src/main/resources)

Objective: Demonstrates recursion and conflict resolution through rule salience

The Fibonacci Numbers form a sequence starting with 0 and 1. The next Fibonacci number is obtained by
adding the two preceding Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, and so on.

The Fibonacci example uses the single fact class Fibonacci with the following two fields:

public void setState(final int newState) {
 int oldState = this.state;
 this.state = newState;
 this.changes.firePropertyChange("state",
 oldState,
 newState);
}

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

655

sequence

value

The sequence field indicates the position of the object in the Fibonacci number sequence. The value
field shows the value of that Fibonacci object for that sequence position, where -1 indicates a value that
still needs to be computed.

Fibonacci class

To execute the example, run the org.drools.examples.fibonacci.FibonacciExample class as a Java
application in your IDE.

After the execution, the following output appears in the IDE console window:

Fibonacci example output in the IDE console

recurse for 50
recurse for 49
recurse for 48
recurse for 47
...
recurse for 5
recurse for 4
recurse for 3
recurse for 2
1 == 1
2 == 1
3 == 2
4 == 3
5 == 5
6 == 8
...
47 == 2971215073
48 == 4807526976
49 == 7778742049
50 == 12586269025

To achieve this behavior in Java, the example inserts a single Fibonacci object with a sequence field of
50. The example then uses a recursive rule to insert the other 49 Fibonacci objects.

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example

public static class Fibonacci {
 private int sequence;
 private long value;

 public Fibonacci(final int sequence) {
 this.sequence = sequence;
 this.value = -1;
 }

 ... setters and getters go here...
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

656

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example
uses the MVEL dialect modify keyword to enable a block setter action and notify the decision engine of
changes.

Fibonacci example execution

This example uses the following three rules:

"Recurse"

"Bootstrap"

"Calculate"

The rule "Recurse" matches each asserted Fibonacci object with a value of -1, creating and asserting a
new Fibonacci object with a sequence of one less than the currently matched object. Each time a
Fibonacci object is added while the one with a sequence field equal to 1 does not exist, the rule re-
matches and fires again. The not conditional element is used to stop the rule matching once you have all
50 Fibonacci objects in memory. The rule also has a salience value because you need to have all 50
Fibonacci objects asserted before you execute the "Bootstrap" rule.

Rule "Recurse"

rule "Recurse"
 salience 10
 when
 f : Fibonacci (value == -1)
 not (Fibonacci (sequence == 1))
 then
 insert(new Fibonacci(f.sequence - 1));
 System.out.println("recurse for " + f.sequence);
end

To better understand the execution flow of this example, you can load the audit log file from
target/fibonacci.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit View shows the original assertion of the Fibonacci object with a sequence
field of 50, done from Java code. From there on, the Audit View shows the continual recursion of the
rule, where each asserted Fibonacci object causes the "Recurse" rule to become activated and to fire
again.

Figure 88.7. Rule "Recurse" in Audit View

ksession.insert(new Fibonacci(50));
ksession.fireAllRules();

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

657

Figure 88.7. Rule "Recurse" in Audit View

When a Fibonacci object with a sequence field of 2 is asserted, the "Bootstrap" rule is matched and
activated along with the "Recurse" rule. Notice the multiple restrictions on field sequence that test for
equality with 1 or 2:

Rule "Bootstrap"

rule "Bootstrap"
 when
 f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-restriction
 then
 modify (f){ value = 1 };
 System.out.println(f.sequence + " == " + f.value);
end

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda.
The "Bootstrap" rule does not fire yet because the "Recurse" rule has a higher salience value.

Figure 88.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

658

Figure 88.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

When a Fibonacci object with a sequence of 1 is asserted, the "Bootstrap" rule is matched again,
causing two activations for this rule. The "Recurse" rule does not match and activate because the not
conditional element stops the rule matching as soon as a Fibonacci object with a sequence of 1 exists.

Figure 88.9. Rules "Recurse" and "Bootstrap" in Agenda View 2

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

659

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have
two Fibonacci objects with values not equal to -1, the "Calculate" rule is able to match.

At this point in the example, nearly 50 Fibonacci objects exist in the working memory. You need to
select a suitable triple to calculate each of their values in turn. If you use three Fibonacci patterns in a
rule without field constraints to confine the possible cross products, the result would be 50x49x48
possible combinations, leading to about 125,000 possible rule firings, most of them incorrect.

The "Calculate" rule uses field constraints to evaluate the three Fibonacci patterns in the correct order.
This technique is called cross-product matching.

The first pattern finds any Fibonacci object with a value != -1 and binds both the pattern and the field.
The second Fibonacci object does the same thing, but adds an additional field constraint to ensure that
its sequence is greater by one than the Fibonacci object bound to f1. When this rule fires for the first
time, you know that only sequences 1 and 2 have values of 1, and the two constraints ensure that f1
references sequence 1 and that f2 references sequence 2.

The final pattern finds the Fibonacci object with a value equal to -1 and with a sequence one greater
than f2.

At this point in the example, three Fibonacci objects are correctly selected from the available cross
products, and you can calculate the value for the third Fibonacci object that is bound to f3.

Rule "Calculate"

rule "Calculate"
 when
 // Bind f1 and s1.
 f1 : Fibonacci(s1 : sequence, value != -1)
 // Bind f2 and v2, refer to bound variable s1.
 f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1)
 // Bind f3 and s3, alternative reference of f2.sequence.
 f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)
 then
 // Note the various referencing techniques.
 modify (f3) { value = f1.value + v2 };
 System.out.println(s3 + " == " + f3.value);
end

The modify statement updates the value of the Fibonacci object bound to f3. This means that you now
have another new Fibonacci object with a value not equal to -1, which allows the "Calculate" rule to re-
match and calculate the next Fibonacci number.

The debug view or Audit View of your IDE shows how the firing of the last "Bootstrap" rule modifies
the Fibonacci object, enabling the "Calculate" rule to match, which then modifies another Fibonacci
object that enables the "Calculate" rule to match again. This process continues until the value is set for
all Fibonacci objects.

Figure 88.10. Rules in Audit View

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

660

Figure 88.10. Rules in Audit View

88.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

The Pricing example decision set demonstrates how to use a spreadsheet decision table for calculating
the retail cost of an insurance policy in tabular format instead of directly in a DRL file.

The following is an overview of the Pricing example:

Name: decisiontable

Main class: org.drools.examples.decisiontable.PricingRuleDTExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.decisiontable.ExamplePolicyPricing.xls (in
src/main/resources)

Objective: Demonstrates use of spreadsheet decision tables to define rules

Spreadsheet decision tables are XLS or XLSX spreadsheets that contain business rules defined in a
tabular format. You can include spreadsheet decision tables with standalone Red Hat Decision Manager
projects or upload them to projects in Business Central. Each row in a decision table is a rule, and each
column is a condition, an action, or another rule attribute. After you create and upload your decision
tables into your Red Hat Decision Manager project, the rules you defined are compiled into Drools Rule
Language (DRL) rules as with all other rule assets.

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

661

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a
discount for a car driver applying for a specific type of insurance policy. The driver’s age and history and
the policy type all contribute to calculate the basic premium, and additional rules calculate potential
discounts for which the driver might be eligible.

To execute the example, run the org.drools.examples.decisiontable.PricingRuleDTExample class as
a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Cheapest possible
BASE PRICE IS: 120
DISCOUNT IS: 20

The code to execute the example follows the typical execution pattern: the rules are loaded, the facts
are inserted, and a stateless KIE session is created. The difference in this example is that the rules are
defined in an ExamplePolicyPricing.xls file instead of a DRL file or other source. The spreadsheet file
is loaded into the decision engine using templates and DRL rules.

Spreadsheet decision table setup
The ExamplePolicyPricing.xls spreadsheet contains two decision tables in the first tab:

Base pricing rules

Promotional discount rules

As the example spreadsheet demonstrates, you can use only the first tab of a spreadsheet to create
decision tables, but multiple tables can be within a single tab. Decision tables do not necessarily follow
top-down logic, but are more of a means to capture data resulting in rules. The evaluation of the rules is
not necessarily in the given order, because all of the normal mechanics of the decision engine still apply.
This is why you can have multiple decision tables in the same tab of a spreadsheet.

The decision tables are executed through the corresponding rule template files BasePricing.drt and
PromotionalPricing.drt. These template files reference the decision tables through their template
parameter and directly reference the various headers for the conditions and actions in the decision
tables.

BasePricing.drt rule template file

template header
age[]
profile
priorClaims
policyType
base
reason

package org.drools.examples.decisiontable;

template "Pricing bracket"
age
policyType
base

rule "Pricing bracket_@{row.rowNumber}"
 when

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

662

 Driver(age >= @{age0}, age <= @{age1}
 , priorClaims == "@{priorClaims}"
 , locationRiskProfile == "@{profile}"
)
 policy: Policy(type == "@{policyType}")
 then
 policy.setBasePrice(@{base});
 System.out.println("@{reason}");
end
end template

PromotionalPricing.drt rule template file

template header
age[]
priorClaims
policyType
discount

package org.drools.examples.decisiontable;

template "discounts"
age
priorClaims
policyType
discount

rule "Discounts_@{row.rowNumber}"
 when
 Driver(age >= @{age0}, age <= @{age1}, priorClaims == "@{priorClaims}")
 policy: Policy(type == "@{policyType}")
 then
 policy.applyDiscount(@{discount});
end
end template

The rules are executed through the kmodule.xml reference of the KIE Session
DTableWithTemplateKB, which specifically mentions the ExamplePolicyPricing.xls spreadsheet and
is required for successful execution of the rules. This execution method enables you to execute the rules
as a standalone unit (as in this example) or to include the rules in a packaged knowledge JAR (KJAR)
file, so that the spreadsheet is packaged along with the rules for execution.

The following section of the kmodule.xml file is required for the execution of the rules and spreadsheet
to work successfully:

 <kbase name="DecisionTableKB" packages="org.drools.examples.decisiontable">
 <ksession name="DecisionTableKS" type="stateless"/>
 </kbase>

 <kbase name="DTableWithTemplateKB" packages="org.drools.examples.decisiontable-template">
 <ruleTemplate dtable="org/drools/examples/decisiontable-
template/ExamplePolicyPricingTemplateData.xls"
 template="org/drools/examples/decisiontable-template/BasePricing.drt"
 row="3" col="3"/>
 <ruleTemplate dtable="org/drools/examples/decisiontable-

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

663

As an alternative to executing the decision tables using rule template files, you can use the
DecisionTableConfiguration object and specify an input spreadsheet as the input type, such as
DecisionTableInputType.xls:

The Pricing example uses two fact types:

Driver

Policy.

The example sets the default values for both facts in their respective Java classes Driver.java and
Policy.java. The Driver is 30 years old, has had no prior claims, and currently has a risk profile of LOW.
The Policy that the driver is applying for is COMPREHENSIVE.

In any decision table, each row is considered a different rule and each column is a condition or an action.
Each row is evaluated in a decision table unless the agenda is cleared upon execution.

Decision table spreadsheets (XLS or XLSX) require two key areas that define rule data:

A RuleSet area

A RuleTable area

The RuleSet area of the spreadsheet defines elements that you want to apply globally to all rules in the
same package (not only the spreadsheet), such as a rule set name or universal rule attributes. The
RuleTable area defines the actual rules (rows) and the conditions, actions, and other rule attributes
(columns) that constitute that rule table within the specified rule set. A decision table spreadsheet can
contain multiple RuleTable areas, but only one RuleSet area.

Figure 88.11. Decision table configuration

template/ExamplePolicyPricingTemplateData.xls"
 template="org/drools/examples/decisiontable-template/PromotionalPricing.drt"
 row="18" col="3"/>
 <ksession name="DTableWithTemplateKS"/>
 </kbase>

DecisionTableConfiguration dtableconfiguration =
 KnowledgeBuilderFactory.newDecisionTableConfiguration();
 dtableconfiguration.setInputType(DecisionTableInputType.XLS);

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 Resource xlsRes = ResourceFactory.newClassPathResource("ExamplePolicyPricing.xls",
 getClass());
 kbuilder.add(xlsRes,
 ResourceType.DTABLE,
 dtableconfiguration);

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

664

Figure 88.11. Decision table configuration

The RuleTable area also defines the objects to which the rule attributes apply, in this case Driver and
Policy, followed by constraints on the objects. For example, the Driver object constraint that defines
the Age Bracket column is age >= $1, age <= $2, where the comma-separated range is defined in the
table column values, such as 18,24.

Base pricing rules
The Base pricing rules decision table in the Pricing example evaluates the age, risk profile, number of
claims, and policy type of the driver and produces the base price of the policy based on these
conditions.

Figure 88.12. Base price calculation

The Driver attributes are defined in the following table columns:

Age Bracket: The age bracket has a definition for the condition age >=$1, age <=$2, which
defines the condition boundaries for the driver’s age. This condition column highlights the use of
$1 and $2, which is comma delimited in the spreadsheet. You can write these values as 18,24 or
18, 24 and both formats work in the execution of the business rules.

Location risk profile: The risk profile is a string that the example program passes always as

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

665

Location risk profile: The risk profile is a string that the example program passes always as
LOW but can be changed to reflect MED or HIGH.

Number of prior claims: The number of claims is defined as an integer that the condition
column must exactly equal to trigger the action. The value is not a range, only exact matches.

The Policy of the decision table is used in both the conditions and the actions of the rule and has
attributes defined in the following table columns:

Policy type applying for: The policy type is a condition that is passed as a string that defines
the type of coverage: COMPREHENSIVE, FIRE_THEFT, or THIRD_PARTY.

Base $ AUD: The basePrice is defined as an ACTION that sets the price through the constraint
policy.setBasePrice($param); based on the spreadsheet cells corresponding to this value.
When you execute the corresponding DRL rule for this decision table, the then portion of the
rule executes this action statement on the true conditions matching the facts and sets the base
price to the corresponding value.

Record Reason: When the rule successfully executes, this action generates an output message
to the System.out console reflecting which rule fired. This is later captured in the application
and printed.

The example also uses the first column on the left to categorize rules. This column is for annotation only
and has no affect on rule execution.

Promotional discount rules
The Promotional discount rules decision table in the Pricing example evaluates the age, number of
prior claims, and policy type of the driver to generate a potential discount on the price of the insurance
policy.

Figure 88.13. Discount calculation

This decision table contains the conditions for the discount for which the driver might be eligible. Similar
to the base price calculation, this table evaluates the Age, Number of prior claims of the driver, and
the Policy type applying for to determine a Discount % rate to be applied. For example, if the driver is
30 years old, has no prior claims, and is applying for a COMPREHENSIVE policy, the driver is given a
discount of 20 percent.

88.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL
VARIABLES, CALLBACKS, AND GUI INTEGRATION)

The Pet Store example decision set demonstrates how to use agenda groups and global variables in
rules and how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in this
case a Swing-based desktop application. The example also demonstrates how to use callbacks to
interact with a running decision engine to update the GUI based on changes in the working memory at
run time.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

666

The following is an overview of the Pet Store example:

Name: petstore

Main class: org.drools.examples.petstore.PetStoreExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.petstore.PetStore.drl (in src/main/resources)

Objective: Demonstrates rule agenda groups, global variables, callbacks, and GUI integration

In the Pet Store example, the sample PetStoreExample.java class defines the following principal
classes (in addition to several classes to handle Swing events):

Petstore contains the main() method.

PetStoreUI is responsible for creating and displaying the Swing-based GUI. This class contains
several smaller classes, mainly for responding to various GUI events, such as user mouse clicks.

TableModel holds the table data. This class is essentially a JavaBean that extends the Swing
class AbstractTableModel.

CheckoutCallback enables the GUI to interact with the rules.

Ordershow keeps the items that you want to buy.

Purchase stores details of the order and the products that you are buying.

Product is a JavaBean containing details of the product available for purchase and its price.

Much of the Java code in this example is either plain JavaBean or Swing based. For more information
about Swing components, see the Java tutorial on Creating a GUI with JFC/Swing .

Rule execution behavior in the Pet Store example
Unlike other example decision sets where the facts are asserted and fired immediately, the Pet Store
example does not execute the rules until more facts are gathered based on user interaction. The
example executes rules through a PetStoreUI object, created by a constructor, that accepts the Vector
object stock for collecting the products. The example then uses an instance of the CheckoutCallback
class containing the rule base that was previously loaded.

Pet Store KIE container and fact execution setup

// KieServices is the factory for all KIE services.
KieServices ks = KieServices.Factory.get();

// Create a KIE container on the class path.
KieContainer kc = ks.getKieClasspathContainer();

// Create the stock.
Vector<Product> stock = new Vector<Product>();
stock.add(new Product("Gold Fish", 5));
stock.add(new Product("Fish Tank", 25));
stock.add(new Product("Fish Food", 2));

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

667

https://docs.oracle.com/javase/tutorial/uiswing/

The Java code that fires the rules is in the CheckoutCallBack.checkout() method. This method is
triggered when the user clicks Checkout in the UI.

Rule execution from CheckoutCallBack.checkout()

The example code passes two elements into the CheckoutCallBack.checkout() method. One element
is the handle for the JFrame Swing component surrounding the output text frame, found at the bottom
of the GUI. The second element is a list of order items, which comes from the TableModel that stores
the information from the Table area at the upper-right section of the GUI.

The for loop transforms the list of order items coming from the GUI into the Order JavaBean, also
contained in the file PetStoreExample.java.

In this case, the rule is firing in a stateless KIE session because all of the data is stored in Swing
components and is not executed until the user clicks Checkout in the UI. Each time the user clicks
Checkout, the content of the list is moved from the Swing TableModel into the KIE session working
memory and is then executed with the ksession.fireAllRules() method.

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from

// A callback is responsible for populating the working memory and for firing all rules.
PetStoreUI ui = new PetStoreUI(stock,
 new CheckoutCallback(kc));
ui.createAndShowGUI();

public String checkout(JFrame frame, List<Product> items) {
 Order order = new Order();

 // Iterate through list and add to cart.
 for (Product p: items) {
 order.addItem(new Purchase(order, p));
 }

 // Add the JFrame to the ApplicationData to allow for user interaction.

 // From the KIE container, a KIE session is created based on
 // its definition and configuration in the META-INF/kmodule.xml file.
 KieSession ksession = kcontainer.newKieSession("PetStoreKS");

 ksession.setGlobal("frame", frame);
 ksession.setGlobal("textArea", this.output);

 ksession.insert(new Product("Gold Fish", 5));
 ksession.insert(new Product("Fish Tank", 25));
 ksession.insert(new Product("Fish Food", 2));

 ksession.insert(new Product("Fish Food Sample", 0));

 ksession.insert(order);

 // Execute rules.
 ksession.fireAllRules();

 // Return the state of the cart
 return order.toString();
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

668

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from
the KieContainer (the example passed in this KieContainer from the CheckoutCallBack class in the
main() method). The next two calls pass in the two objects that hold the global variables in the rules: the
Swing text area and the Swing frame used for writing messages. More inserts put information on
products into the KieSession, as well as the order list. The final call is the standard fireAllRules().

Pet Store rule file imports, global variables, and Java functions
The PetStore.drl file contains the standard package and import statements to make various Java
classes available to the rules. The rule file also includes global variables to be used within the rules,
defined as frame and textArea. The global variables hold references to the Swing components JFrame
and JTextArea components that were previously passed on by the Java code that called the
setGlobal() method. Unlike standard variables in rules, which expire as soon as the rule has fired, global
variables retain their value for the lifetime of the KIE session. This means the contents of these global
variables are available for evaluation on all subsequent rules.

PetStore.drl package, imports, and global variables

The PetStore.drl file also contains two functions that the rules in the file use:

PetStore.drl Java functions

package org.drools.examples;

import org.kie.api.runtime.KieRuntime;
import org.drools.examples.petstore.PetStoreExample.Order;
import org.drools.examples.petstore.PetStoreExample.Purchase;
import org.drools.examples.petstore.PetStoreExample.Product;
import java.util.ArrayList;
import javax.swing.JOptionPane;

import javax.swing.JFrame;

global JFrame frame
global javax.swing.JTextArea textArea

function void doCheckout(JFrame frame, KieRuntime krt) {
 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to checkout?",
 "",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

 if (n == 0) {
 krt.getAgenda().getAgendaGroup("checkout").setFocus();
 }
}

function boolean requireTank(JFrame frame, KieRuntime krt, Order order, Product fishTank, int total)
{

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

669

The two functions perform the following actions:

doCheckout() displays a dialog that asks the user if she or he wants to check out. If the user
does, the focus is set to the checkout agenda group, enabling rules in that group to
(potentially) fire.

requireTank() displays a dialog that asks the user if she or he wants to buy a fish tank. If the user
does, a new fish tank Product is added to the order list in the working memory.

NOTE

For this example, all rules and functions are within the same rule file for efficiency. In a
production environment, you typically separate the rules and functions in different files or
build a static Java method and import the files using the import function, such as import
function my.package.name.hello.

Pet Store rules with agenda groups
Most of the rules in the Pet Store example use agenda groups to control rule execution. Agenda groups
allow you to partition the decision engine agenda to provide more execution control over groups of
rules. By default, all rules are in the agenda group MAIN. You can use the agenda-group attribute to
specify a different agenda group for the rule.

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

The Pet Store example uses the following agenda groups for rules:

 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to buy a tank for your " + total + " fish?",
 "Purchase Suggestion",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

 System.out.print("SUGGESTION: Would you like to buy a tank for your "
 + total + " fish? - ");

 if (n == 0) {
 Purchase purchase = new Purchase(order, fishTank);
 krt.insert(purchase);
 order.addItem(purchase);
 System.out.println("Yes");
 } else {
 System.out.println("No");
 }
 return true;
}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

670

"init"

"evaluate"

"show items"

"checkout"

For example, the sample rule "Explode Cart" uses the "init" agenda group to ensure that it has the
option to fire and insert shopping cart items into the KIE session working memory:

Rule "Explode Cart"

// Insert each item in the shopping cart into the working memory.
rule "Explode Cart"
 agenda-group "init"
 auto-focus true
 salience 10
 when
 $order : Order(grossTotal == -1)
 $item : Purchase() from $order.items
 then
 insert($item);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show items").setFocus();
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate").setFocus();
end

This rule matches against all orders that do not yet have their grossTotal calculated. The execution
loops for each purchase item in that order.

The rule uses the following features related to its agenda group:

agenda-group "init" defines the name of the agenda group. In this case, only one rule is in the
group. However, neither the Java code nor a rule consequence sets the focus to this group, and
therefore it relies on the auto-focus attribute for its chance to fire.

auto-focus true ensures that this rule, while being the only rule in the agenda group, gets a
chance to fire when fireAllRules() is called from the Java code.

kcontext… .setFocus() sets the focus to the "show items" and "evaluate" agenda groups,
enabling their rules to fire. In practice, you loop through all items in the order, insert them into
memory, and then fire the other rules after each insertion.

The "show items" agenda group contains only one rule, "Show Items". For each purchase in the order
currently in the KIE session working memory, the rule logs details to the text area at the bottom of the
GUI, based on the textArea variable defined in the rule file.

Rule "Show Items"

rule "Show Items"
 agenda-group "show items"
 when
 $order : Order()
 $p : Purchase(order == $order)

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

671

1

2

3

4

 then
 textArea.append($p.product + "\n");
end

The "evaluate" agenda group also gains focus from the "Explode Cart" rule. This agenda group
contains two rules, "Free Fish Food Sample" and "Suggest Tank", which are executed in that order.

Rule "Free Fish Food Sample"

// Free fish food sample when users buy a goldfish if they did not already buy
// fish food and do not already have a fish food sample.
rule "Free Fish Food Sample"
 agenda-group "evaluate" 1
 when
 $order : Order()
 not ($p : Product(name == "Fish Food") && Purchase(product == $p)) 2
 not ($p : Product(name == "Fish Food Sample") && Purchase(product == $p)) 3
 exists ($p : Product(name == "Gold Fish") && Purchase(product == $p)) 4
 $fishFoodSample : Product(name == "Fish Food Sample");
 then
 System.out.println("Adding free Fish Food Sample to cart");
 purchase = new Purchase($order, $fishFoodSample);
 insert(purchase);
 $order.addItem(purchase);
end

The rule "Free Fish Food Sample" fires only if all of the following conditions are true:

The agenda group "evaluate" is being evaluated in the rules execution.

User does not already have fish food.

User does not already have a free fish food sample.

User has a goldfish in the order.

If the order facts meet all of these requirements, then a new product is created (Fish Food Sample) and
is added to the order in working memory.

Rule "Suggest Tank"

// Suggest a fish tank if users buy more than five goldfish and
// do not already have a tank.
rule "Suggest Tank"
 agenda-group "evaluate"
 when
 $order : Order()
 not ($p : Product(name == "Fish Tank") && Purchase(product == $p)) 1
 ArrayList($total : size > 5) from collect(Purchase(product.name == "Gold Fish")) 2
 $fishTank : Product(name == "Fish Tank")
 then
 requireTank(frame, kcontext.getKieRuntime(), $order, $fishTank, $total);
end

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

672

1

2

The rule "Suggest Tank" fires only if the following conditions are true:

User does not have a fish tank in the order.

User has more than five fish in the order.

When the rule fires, it calls the requireTank() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to buy a fish tank. If the user does, a new fish tank Product is
added to the order list in the working memory. When the rule calls the requireTank() function, the rule
passes the frame global variable so that the function has a handle for the Swing GUI.

The "do checkout" rule in the Pet Store example has no agenda group and no when conditions, so the
rule is always executed and considered part of the default MAIN agenda group.

Rule "do checkout"

rule "do checkout"
 when
 then
 doCheckout(frame, kcontext.getKieRuntime());
end

When the rule fires, it calls the doCheckout() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to check out. If the user does, the focus is set to the
checkout agenda group, enabling rules in that group to (potentially) fire. When the rule calls the
doCheckout() function, the rule passes the frame global variable so that the function has a handle for
the Swing GUI.

NOTE

This example also demonstrates a troubleshooting technique if results are not executing
as you expect: You can remove the conditions from the when statement of a rule and
test the action in the then statement to verify that the action is performed correctly.

The "checkout" agenda group contains three rules for processing the order checkout and applying any
discounts: "Gross Total", "Apply 5% Discount", and "Apply 10% Discount".

Rules "Gross Total", "Apply 5% Discount", and "Apply 10% Discount"

rule "Gross Total"
 agenda-group "checkout"
 when
 $order : Order(grossTotal == -1)
 Number(total : doubleValue) from accumulate(Purchase($price : product.price),
 sum($price))
 then
 modify($order) { grossTotal = total }
 textArea.append("\ngross total=" + total + "\n");
end

rule "Apply 5% Discount"
 agenda-group "checkout"
 when
 $order : Order(grossTotal >= 10 && < 20)

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

673

 then
 $order.discountedTotal = $order.grossTotal * 0.95;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

rule "Apply 10% Discount"
 agenda-group "checkout"
 when
 $order : Order(grossTotal >= 20)
 then
 $order.discountedTotal = $order.grossTotal * 0.90;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

If the user has not already calculated the gross total, the Gross Total accumulates the product prices
into a total, puts this total into the KIE session, and displays it through the Swing JTextArea using the
textArea global variable.

If the gross total is between 10 and 20 (currency units), the "Apply 5% Discount" rule calculates the
discounted total, adds it to the KIE session, and displays it in the text area.

If the gross total is not less than 20, the "Apply 10% Discount" rule calculates the discounted total,
adds it to the KIE session, and displays it in the text area.

Pet Store example execution
Similar to other Red Hat Decision Manager decision examples, you execute the Pet Store example by
running the org.drools.examples.petstore.PetStoreExample class as a Java application in your IDE.

When you execute the Pet Store example, the Pet Store Demo GUI window appears. This window
displays a list of available products (upper left), an empty list of selected products (upper right),
Checkout and Reset buttons (middle), and an empty system messages area (bottom).

Figure 88.14. Pet Store example GUI after launch

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

674

Figure 88.14. Pet Store example GUI after launch

The following events occurred in this example to establish this execution behavior:

1. The main() method has run and loaded the rule base but has not yet fired the rules. So far, this is
the only code in connection with rules that has been run.

2. A new PetStoreUI object has been created and given a handle for the rule base, for later use.

3. Various Swing components have performed their functions, and the initial UI screen is displayed
and waits for user input.

You can click various products from the list to explore the UI setup:

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

675

Figure 88.15. Explore the Pet Store example GUI

No rules code has been fired yet. The UI uses Swing code to detect user mouse clicks and add selected
products to the TableModel object for display in the upper-right corner of the UI. This example
illustrates the Model-View-Controller design pattern.

When you click Checkout, the rules are then fired in the following way:

1. Method CheckOutCallBack.checkout() is called (eventually) by the Swing class waiting for a
user to click Checkout. This inserts the data from the TableModel object (upper-right corner of
the UI) into the KIE session working memory. The method then fires the rules.

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

676

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule
loops through all of the products in the cart, ensures that the products are in the working
memory, and then gives the "show Items" and "evaluate" agenda groups the option to fire.
The rules in these groups add the contents of the cart to the text area (bottom of the UI),
evaluate if you are eligible for free fish food, and determine whether to ask if you want to buy a
fish tank.

Figure 88.16. Fish tank qualification

3. The "do checkout" rule is the next to fire because no other agenda group currently has focus
and because it is part of the default MAIN agenda group. This rule always calls the
doCheckout() function, which asks you if you want to check out.

4. The doCheckout() function sets the focus to the "checkout" agenda group, giving the rules in
that group the option to fire.

5. The rules in the "checkout" agenda group display the contents of the cart and apply the
appropriate discount.

6. Swing then waits for user input to either select more products (and cause the rules to fire again)
or to close the UI.

Figure 88.17. Pet Store example GUI after all rules have fired

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

677

Figure 88.17. Pet Store example GUI after all rules have fired

You can add more System.out calls to demonstrate this flow of events in your IDE console:

System.out output in the IDE console

Adding free Fish Food Sample to cart
SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

88.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH
MAINTENANCE AND SALIENCE)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

678

The Honest Politician example decision set demonstrates the concept of truth maintenance with logical
insertions and the use of salience in rules.

The following is an overview of the Honest Politician example:

Name: honestpolitician

Main class: org.drools.examples.honestpolitician.HonestPoliticianExample (in
src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.honestpolitician.HonestPolitician.drl (in
src/main/resources)

Objective: Demonstrates the concept of truth maintenance based on the logical insertion of
facts and the use of salience in rules

The basic premise of the Honest Politician example is that an object can only exist while a statement is
true. A rule consequence can logically insert an object with the insertLogical() method. This means the
object remains in the KIE session working memory as long as the rule that logically inserted it remains
true. When the rule is no longer true, the object is automatically retracted.

In this example, rule execution causes a group of politicians to change from being honest to being
dishonest as a result of a corrupt corporation. As each politician is evaluated, they start out with their
honesty attribute being set to true, but a rule fires that makes the politicians no longer honest. As they
switch their state from being honest to dishonest, they are then removed from the working memory. The
rule salience notifies the decision engine how to prioritize any rules that have a salience defined for
them, otherwise utilizing the default salience value of 0. Rules with a higher salience value are given
higher priority when ordered in the activation queue.

Politician and Hope classes
The sample class Politician in the example is configured for an honest politician. The Politician class is
made up of a String item name and a Boolean item honest:

Politician class

The Hope class determines if a Hope object exists. This class has no meaningful members, but is present
in the working memory as long as society has hope.

Hope class

public class Politician {
 private String name;
 private boolean honest;
 ...
}

public class Hope {

 public Hope() {

 }
 }

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

679

Rule definitions for politician honesty
In the Honest Politician example, when at least one honest politician exists in the working memory, the
"We have an honest Politician" rule logically inserts a new Hope object. As soon as all politicians
become dishonest, the Hope object is automatically retracted. This rule has a salience attribute with a
value of 10 to ensure that it fires before any other rule, because at that stage the "Hope is Dead" rule
is true.

Rule "We have an honest politician"

rule "We have an honest Politician"
 salience 10
 when
 exists(Politician(honest == true))
 then
 insertLogical(new Hope());
end

As soon as a Hope object exists, the "Hope Lives" rule matches and fires. This rule also has a salience
value of 10 so that it takes priority over the "Corrupt the Honest" rule.

Rule "Hope Lives"

rule "Hope Lives"
 salience 10
 when
 exists(Hope())
 then
 System.out.println("Hurrah!!! Democracy Lives");
end

Initially, four honest politicians exist so this rule has four activations, all in conflict. Each rule fires in turn,
corrupting each politician so that they are no longer honest. When all four politicians have been
corrupted, no politicians have the property honest == true. The rule "We have an honest Politician" is
no longer true and the object it logically inserted (due to the last execution of new Hope()) is
automatically retracted.

Rule "Corrupt the Honest"

rule "Corrupt the Honest"
 when
 politician : Politician(honest == true)
 exists(Hope())
 then
 System.out.println("I'm an evil corporation and I have corrupted " + politician.getName());
 modify (politician) { honest = false };
end

With the Hope object automatically retracted through the truth maintenance system, the conditional
element not applied to Hope is no longer true so that the "Hope is Dead" rule matches and fires.

Rule "Hope is Dead"

rule "Hope is Dead"
 when

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

680

 not(Hope())
 then
 System.out.println("We are all Doomed!!! Democracy is Dead");
end

Example execution and audit trail
In the HonestPoliticianExample.java class, the four politicians with the honest state set to true are
inserted for evaluation against the defined business rules:

HonestPoliticianExample.java class execution

To execute the example, run the org.drools.examples.honestpolitician.HonestPoliticianExample
class as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

Hurrah!!! Democracy Lives
I'm an evil corporation and I have corrupted President of Umpa Lumpa
I'm an evil corporation and I have corrupted Prime Minster of Cheeseland
I'm an evil corporation and I have corrupted Tsar of Pringapopaloo
I'm an evil corporation and I have corrupted Omnipotence Om
We are all Doomed!!! Democracy is Dead

The output shows that, while there is at least one honest politician, democracy lives. However, as each
politician is corrupted by some corporation, all politicians become dishonest, and democracy is dead.

To better understand the execution flow of this example, you can modify the
HonestPoliticianExample.java class to include a DebugRuleRuntimeEventListener listener and an
audit logger to view execution details:

HonestPoliticianExample.java class with an audit logger

public static void execute(KieContainer kc) {
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 ksession.fireAllRules();

 ksession.dispose();
 }

package org.drools.examples.honestpolitician;

import org.kie.api.KieServices;

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

681

1

2

3

4

Adds to your imports the packages that handle the DebugAgendaEventListener and
DebugRuleRuntimeEventListener

Creates a KieServices Factory and a ks element to produce the logs because this audit log is not
available at the KieContainer level

Modifies the execute method to use both KieServices and KieContainer

Modifies the execute method to pass in KieServices in addition to the KieContainer

import org.kie.api.event.rule.DebugAgendaEventListener; 1
import org.kie.api.event.rule.DebugRuleRuntimeEventListener;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class HonestPoliticianExample {

 /**
 * @param args
 */
 public static void main(final String[] args) {
 KieServices ks = KieServices.Factory.get(); 2
 //ks = KieServices.Factory.get();
 KieContainer kc = KieServices.Factory.get().getKieClasspathContainer();
 System.out.println(kc.verify().getMessages().toString());
 //execute(kc);
 execute(ks, kc); 3
 }

 public static void execute(KieServices ks, KieContainer kc) { 4
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 // The application can also setup listeners 5
 ksession.addEventListener(new DebugAgendaEventListener());
 ksession.addEventListener(new DebugRuleRuntimeEventListener());

 // Set up a file-based audit logger.
 ks.getLoggers().newFileLogger(ksession, "./target/honestpolitician"); 6

 ksession.fireAllRules();

 ksession.dispose();
 }

}

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

682

5

6

Creates the listeners

Builds the log that can be passed into the debug view or Audit View or your IDE after executing of
the rules

When you run the Honest Politician with this modified logging capability, you can load the audit log file
from target/honestpolitician.log into your IDE debug view or Audit View, if available (for example, in
Window → Show View in some IDEs).

In this example, the Audit View shows the flow of executions, insertions, and retractions as defined in
the example classes and rules:

Figure 88.18. Honest Politician example Audit View

When the first politician is inserted, two activations occur. The rule "We have an honest Politician" is
activated only one time for the first inserted politician because it uses an exists conditional element,
which matches when at least one politician is inserted. The rule "Hope is Dead" is also activated at this
stage because the Hope object is not yet inserted. The rule "We have an honest Politician" fires first
because it has a higher salience value than the rule "Hope is Dead", and inserts the Hope object
(highlighted in green). The insertion of the Hope object activates the rule "Hope Lives" and
deactivates the rule "Hope is Dead". The insertion also activates the rule "Corrupt the Honest" for
each inserted honest politician. The rule "Hope Lives" is executed and prints "Hurrah!!! Democracy
Lives".

Next, for each politician, the rule "Corrupt the Honest" fires, printing "I’m an evil corporation and I
have corrupted X", where X is the name of the politician, and modifies the politician honesty value to
false. When the last honest politician is corrupted, Hope is automatically retracted by the truth
maintenance system (highlighted in blue). The green highlighted area shows the origin of the currently
selected blue highlighted area. After the Hope fact is retracted, the rule "Hope is dead" fires, printing
"We are all Doomed!!! Democracy is Dead".

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

683

88.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN
MATCHING, CALLBACKS, AND GUI INTEGRATION)

The Sudoku example decision set, based on the popular number puzzle Sudoku, demonstrates how to
use rules in Red Hat Decision Manager to find a solution in a large potential solution space based on
various constraints. This example also shows how to integrate Red Hat Decision Manager rules into a
graphical user interface (GUI), in this case a Swing-based desktop application, and how to use callbacks
to interact with a running decision engine to update the GUI based on changes in the working memory
at run time.

The following is an overview of the Sudoku example:

Name: sudoku

Main class: org.drools.examples.sudoku.SudokuExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule files: org.drools.examples.sudoku.*.drl (in src/main/resources)

Objective: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each
column, each row, and each of the nine 3x3 zones contains the digits from 1 to 9 only one time. The
puzzle setter provides a partially completed grid and the puzzle solver’s task is to complete the grid with
these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number, it must be
unique in its particular 3x3 zone, row, and column. This Sudoku example decision set uses Red Hat
Decision Manager rules to solve Sudoku puzzles from a range of difficulty levels, and to attempt to
resolve flawed puzzles that contain invalid entries.

Sudoku example execution and interaction
Similar to other Red Hat Decision Manager decision examples, you execute the Sudoku example by
running the org.drools.examples.sudoku.SudokuExample class as a Java application in your IDE.

When you execute the Sudoku example, the Drools Sudoku Example GUI window appears. This
window contains an empty grid, but the program comes with various grids stored internally that you can
load and solve.

Click File → Samples → Simple to load one of the examples. Notice that all buttons are disabled until a
grid is loaded.

Figure 88.19. Sudoku example GUI after launch

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

684

Figure 88.19. Sudoku example GUI after launch

When you load the Simple example, the grid is filled according to the puzzle’s initial state.

Figure 88.20. Sudoku example GUI after loading Simple sample

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

685

Figure 88.20. Sudoku example GUI after loading Simple sample

Choose from the following options:

Click Solve to fire the rules defined in the Sudoku example that fill out the remaining values and
that make the buttons inactive again.

Figure 88.21. Simple sample solved

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

686

Figure 88.21. Simple sample solved

Click Step to see the next digit found by the rule set. The console window in your IDE displays
detailed information about the rules that are executing to solve the step.

Step execution output in the IDE console

single 8 at [0,1]
column elimination due to [1,2]: remove 9 from [4,2]
hidden single 9 at [1,2]
row elimination due to [2,8]: remove 7 from [2,4]
remove 6 from [3,8] due to naked pair at [3,2] and [3,7]
hidden pair in row at [4,6] and [4,4]

Click Dump to see the state of the grid, with cells showing either the established value or the
remaining possibilities.

Dump execution output in the IDE console

 Col: 0 Col: 1 Col: 2 Col: 3 Col: 4 Col: 5 Col: 6 Col: 7 Col: 8
Row 0: 123456789 --- 5 --- --- 6 --- --- 8 --- 123456789 --- 1 --- --- 9 --- --- 4 ---
123456789
Row 1: --- 9 --- 123456789 123456789 --- 6 --- 123456789 --- 5 --- 123456789
123456789 --- 3 ---
Row 2: --- 7 --- 123456789 123456789 --- 4 --- --- 9 --- --- 3 --- 123456789 123456789
--- 8 ---

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

687

Row 3: --- 8 --- --- 9 --- --- 7 --- 123456789 --- 4 --- 123456789 --- 6 --- --- 3 --- --- 5 ---
Row 4: 123456789 123456789 --- 3 --- --- 9 --- 123456789 --- 6 --- --- 8 --- 123456789
123456789
Row 5: --- 4 --- --- 6 --- --- 5 --- 123456789 --- 8 --- 123456789 --- 2 --- --- 9 --- --- 1 ---
Row 6: --- 5 --- 123456789 123456789 --- 2 --- --- 6 --- --- 9 --- 123456789 123456789
--- 7 ---
Row 7: --- 6 --- 123456789 123456789 --- 5 --- 123456789 --- 4 --- 123456789
123456789 --- 9 ---
Row 8: 123456789 --- 4 --- --- 9 --- --- 7 --- 123456789 --- 8 --- --- 3 --- --- 5 ---
123456789

The Sudoku example includes a deliberately broken sample file that the rules defined in the example can
resolve.

Click File → Samples → !DELIBERATELY BROKEN! to load the broken sample. The grid starts with
some issues, for example, the value 5 appears two times in the first row, which is not allowed.

Figure 88.22. Broken Sudoku example initial state

Click Solve to apply the solving rules to this invalid grid. The associated solving rules in the Sudoku
example detect the issues in the sample and attempts to solve the puzzle as far as possible. This
process does not complete and leaves some cells empty.

The solving rule activity is displayed in the IDE console window:

Detected issues in the broken sample

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

688

cell [0,8]: 5 has a duplicate in row 0
cell [0,0]: 5 has a duplicate in row 0
cell [6,0]: 8 has a duplicate in col 0
cell [4,0]: 8 has a duplicate in col 0
Validation complete.

Figure 88.23. Broken sample solution attempt

The sample Sudoku files labeled Hard are more complex and the solving rules might not be able to solve
them. The unsuccessful solution attempt is displayed in the IDE console window:

Hard sample unresolved

Validation complete.
...
Sorry - can't solve this grid.

The rules that work to solve the broken sample implement standard solving techniques based on the
sets of values that are still candidates for a cell. For example, if a set contains a single value, then this is
the value for the cell. For a single occurrence of a value in one of the groups of nine cells, the rules insert
a fact of type Setting with the solution value for some specific cell. This fact causes the elimination of
this value from all other cells in any of the groups the cell belongs to and the value is retracted.

Other rules in the example reduce the permissible values for some cells. The rules "naked pair",
"hidden pair in row", "hidden pair in column", and "hidden pair in square" eliminate possibilities but
do not establish solutions. The rules "X-wings in rows", "`X-wings in columns"`, "intersection removal

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

689

row", and "intersection removal column" perform more sophisticated eliminations.

Sudoku example classes
The package org.drools.examples.sudoku.swing contains the following core set of classes that
implement a framework for Sudoku puzzles:

The SudokuGridModel class defines an interface that is implemented to store a Sudoku puzzle
as a 9x9 grid of Cell objects.

The SudokuGridView class is a Swing component that can visualize any implementation of the
SudokuGridModel class.

The SudokuGridEvent and SudokuGridListener classes communicate state changes between
the model and the view. Events are fired when a cell value is resolved or changed.

The SudokuGridSamples class provides partially filled Sudoku puzzles for demonstration
purposes.

NOTE

This package does not have any dependencies on Red Hat Decision Manager libraries.

The package org.drools.examples.sudoku contains the following core set of classes that implement
the elementary Cell object and its various aggregations:

The CellFile class, with subtypes CellRow, CellCol, and CellSqr, all of which are subtypes of the
CellGroup class.

The Cell and CellGroup subclasses of SetOfNine, which provides a property free with the type
Set<Integer>. For a Cell class, the set represents the individual candidate set. For a CellGroup
class, the set is the union of all candidate sets of its cells (the set of digits that still need to be
allocated).
In the Sudoku example are 81 Cell and 27 CellGroup objects and a linkage provided by the Cell
properties cellRow, cellCol, and cellSqr, and by the CellGroup property cells (a list of Cell
objects). With these components, you can write rules that detect the specific situations that
permit the allocation of a value to a cell or the elimination of a value from some candidate set.

The Setting class is used to trigger the operations that accompany the allocation of a value. The
presence of a Setting fact is used in all rules that detect a new situation in order to avoid
reactions to inconsistent intermediary states.

The Stepping class is used in a low priority rule to execute an emergency halt when a "Step"
does not terminate regularly. This behavior indicates that the program cannot solve the puzzle.

The main class org.drools.examples.sudoku.SudokuExample implements a Java application
combining all of these components.

Sudoku validation rules (validate.drl)
The validate.drl file in the Sudoku example contains validation rules that detect duplicate numbers in
cell groups. They are combined in a "validate" agenda group that enables the rules to be explicitly
activated after a user loads the puzzle.

The when conditions of the three rules "duplicate in cell … " all function in the following ways:

The first condition in the rule locates a cell with an allocated value.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

690

The second condition in the rule pulls in any of the three cell groups to which the cell belongs.

The final condition finds a cell (other than the first one) with the same value as the first cell and
in the same row, column, or square, depending on the rule.

Rules "duplicate in cell …"

rule "duplicate in cell row"
 when
 $c: Cell($v: value != null)
 $cr: CellRow(cells contains $c)
 exists Cell(this != $c, value == $v, cellRow == $cr)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in row " + $cr.getNumber());
end

rule "duplicate in cell col"
 when
 $c: Cell($v: value != null)
 $cc: CellCol(cells contains $c)
 exists Cell(this != $c, value == $v, cellCol == $cc)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in col " + $cc.getNumber());
end

rule "duplicate in cell sqr"
 when
 $c: Cell($v: value != null)
 $cs: CellSqr(cells contains $c)
 exists Cell(this != $c, value == $v, cellSqr == $cs)
 then
 System.out.println("cell " + $c.toString() + " has duplicate in its square of nine.");
end

The rule "terminate group" is the last to fire. This rule prints a message and stops the sequence.

Rule "terminate group"

rule "terminate group"
 salience -100
 when
 then
 System.out.println("Validation complete.");
 drools.halt();
end

Sudoku solving rules (sudoku.drl)
The sudoku.drl file in the Sudoku example contains three types of rules: one group handles the
allocation of a number to a cell, another group detects feasible allocations, and the third group
eliminates values from candidate sets.

The rules "set a value", "eliminate a value from Cell", and "retract setting" depend on the presence
of a Setting object. The first rule handles the assignment to the cell and the operations for removing the
value from the free sets of the three groups of the cell. This group also reduces a counter that, when
zero, returns control to the Java application that has called fireUntilHalt().

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

691

The purpose of the rule "eliminate a value from Cell" is to reduce the candidate lists of all cells that are
related to the newly assigned cell. Finally, when all eliminations have been made, the rule "retract
setting" retracts the triggering Setting fact.

Rules "set a value", "eliminate a value from a Cell", and "retract setting"

// A Setting object is inserted to define the value of a Cell.
// Rule for updating the cell and all cell groups that contain it
rule "set a value"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // A matching Cell, with no value set
 $c: Cell(rowNo == $rn, colNo == $cn, value == null,
 $cr: cellRow, $cc: cellCol, $cs: cellSqr)

 // Count down
 $ctr: Counter($count: count)
 then
 // Modify the Cell by setting its value.
 modify($c){ setValue($v) }
 // System.out.println("set cell " + $c.toString());
 modify($cr){ blockValue($v) }
 modify($cc){ blockValue($v) }
 modify($cs){ blockValue($v) }
 modify($ctr){ setCount($count - 1) }
end

// Rule for removing a value from all cells that are siblings
// in one of the three cell groups
rule "eliminate a value from Cell"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 Cell(rowNo == $rn, colNo == $cn, value == $v, $exCells: exCells)

 // For all Cells that are associated with the updated cell
 $c: Cell(free contains $v) from $exCells
 then
 // System.out.println("clear " + $v + " from cell " + $c.posAsString());
 // Modify a related Cell by blocking the assigned value.
 modify($c){ blockValue($v) }
end

// Rule for eliminating the Setting fact
rule "retract setting"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 $c: Cell(rowNo == $rn, colNo == $cn, value == $v)

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

692

 // This is the negation of the last pattern in the previous rule.
 // Now the Setting fact can be safely retracted.
 not($x: Cell(free contains $v)
 and
 Cell(this == $c, exCells contains $x))
 then
 // System.out.println("done setting cell " + $c.toString());
 // Discard the Setter fact.
 delete($s);
 // Sudoku.sudoku.consistencyCheck();
end

Two solving rules detect a situation where an allocation of a number to a cell is possible. The rule
"single" fires for a Cell with a candidate set containing a single number. The rule "hidden single" fires
when no cell exists with a single candidate, but when a cell exists containing a candidate, this candidate is
absent from all other cells in one of the three groups to which the cell belongs. Both rules create and
insert a Setting fact.

Rules "single" and "hidden single"

// Detect a set of candidate values with cardinality 1 for some Cell.
// This is the value to be set.
rule "single"
 when
 // Currently no setting underway
 not Setting()

 // One element in the "free" set
 $c: Cell($rn: rowNo, $cn: colNo, freeCount == 1)
 then
 Integer i = $c.getFreeValue();
 if (explain) System.out.println("single " + i + " at " + $c.posAsString());
 // Insert another Setter fact.
 insert(new Setting($rn, $cn, i));
end

// Detect a set of candidate values with a value that is the only one
// in one of its groups. This is the value to be set.
rule "hidden single"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Some integer
 $i: Integer()

 // The "free" set contains this number
 $c: Cell($rn: rowNo, $cn: colNo, freeCount > 1, free contains $i)

 // A cell group contains this cell $c.
 $cg: CellGroup(cells contains $c)
 // No other cell from that group contains $i.
 not (Cell(this != $c, free contains $i) from $cg.getCells())
 then
 if (explain) System.out.println("hidden single " + $i + " at " + $c.posAsString());

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

693

 // Insert another Setter fact.
 insert(new Setting($rn, $cn, $i));
end

Rules from the largest group, either individually or in groups of two or three, implement various solving
techniques used for solving Sudoku puzzles manually.

The rule "naked pair" detects identical candidate sets of size 2 in two cells of a group. These two values
may be removed from all other candidate sets of that group.

Rule "naked pair"

// A "naked pair" is two cells in some cell group with their sets of
// permissible values being equal with cardinality 2. These two values
// can be removed from all other candidate lists in the group.
rule "naked pair"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // One cell with two candidates
 $c1: Cell(freeCount == 2, $f1: free, $r1: cellRow, $rn1: rowNo, $cn1: colNo, $b1: cellSqr)

 // The containing cell group
 $cg: CellGroup(freeCount > 2, cells contains $c1)

 // Another cell with two candidates, not the one we already have
 $c2: Cell(this != $c1, free == $f1 /*** , rowNo >= $rn1, colNo >= $cn1 ***/) from $cg.cells

 // Get one of the "naked pair".
 Integer($v: intValue) from $c1.getFree()

 // Get some other cell with a candidate equal to one from the pair.
 $c3: Cell(this != $c1 && != $c2, freeCount > 1, free contains $v) from $cg.cells
 then
 if (explain) System.out.println("remove " + $v + " from " + $c3.posAsString() + " due to naked pair
at " + $c1.posAsString() + " and " + $c2.posAsString());
 // Remove the value.
 modify($c3){ blockValue($v) }
end

The three rules "hidden pair in … " functions similarly to the rule "naked pair". These rules detect a
subset of two numbers in exactly two cells of a group, with neither value occurring in any of the other
cells of the group. This means that all other candidates can be eliminated from the two cells harboring
the hidden pair.

Rules "hidden pair in …"

// If two cells within the same cell group contain candidate sets with more than
// two values, with two values being in both of them but in none of the other
// cells, then we have a "hidden pair". We can remove all other candidates from
// these two cells.
rule "hidden pair in row"
 when

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

694

 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Establish a pair of Integer facts.
 $i1: Integer()
 $i2: Integer(this > $i1)

 // Look for a Cell with these two among its candidates. (The upper bound on
 // the number of candidates avoids a lot of useless work during startup.)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellRow: cellRow)

 // Get another one from the same row, with the same pair among its candidates.
 $c2: Cell(this != $c1, cellRow == $cellRow, freeCount > 2, free contains $i1 && contains $i2)

 // Ascertain that no other cell in the group has one of these two values.
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellRow.getCells())
 then
 if(explain) System.out.println("hidden pair in row at " + $c1.posAsString() + " and " +
$c2.posAsString());
 // Set the candidate lists of these two Cells to the "hidden pair".
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellCol: cellCol)
 $c2: Cell(this != $c1, cellCol == $cellCol, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellCol.getCells())
 then
 if (explain) System.out.println("hidden pair in column at " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in square"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
 $cellSqr: cellSqr)
 $c2: Cell(this != $c1, cellSqr == $cellSqr, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellSqr.getCells())
 then

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

695

 if (explain) System.out.println("hidden pair in square " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

Two rules deal with "X-wings" in rows and columns. When only two possible cells for a value exist in each
of two different rows (or columns) and these candidates lie also in the same columns (or rows), then all
other candidates for this value in the columns (or rows) can be eliminated. When you follow the pattern
sequence in one of these rules, notice how the conditions that are conveniently expressed by words such
as same or only result in patterns with suitable constraints or that are prefixed with not.

Rules "X-wings in …"

rule "X-wings in rows"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $ra: cellRow, $rano: rowNo, $c1: cellCol, $c1no: colNo)
 $cb1: Cell(freeCount > 1, free contains $i,
 $rb: cellRow, $rbno: rowNo > $rano, cellCol == $c1)
 not(Cell(this != $ca1 && != $cb1, free contains $i) from $c1.getCells())

 $ca2: Cell(freeCount > 1, free contains $i,
 cellRow == $ra, $c2: cellCol, $c2no: colNo > $c1no)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellRow == $rb, cellCol == $c2)
 not(Cell(this != $ca2 && != $cb2, free contains $i) from $c2.getCells())

 $cx: Cell(rowNo == $rano || == $rbno, colNo != $c1no && != $c2no,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in rows " +
 $ca1.posAsString() + " - " + $cb1.posAsString() +
 $ca2.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "X-wings in columns"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $c1: cellCol, $c1no: colNo, $ra: cellRow, $rano: rowNo)
 $ca2: Cell(freeCount > 1, free contains $i,
 $c2: cellCol, $c2no: colNo > $c1no, cellRow == $ra)
 not(Cell(this != $ca1 && != $ca2, free contains $i) from $ra.getCells())

 $cb1: Cell(freeCount > 1, free contains $i,

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

696

 cellCol == $c1, $rb: cellRow, $rbno: rowNo > $rano)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellCol == $c2, cellRow == $rb)
 not(Cell(this != $cb1 && != $cb2, free contains $i) from $rb.getCells())

 $cx: Cell(colNo == $c1no || == $c2no, rowNo != $rano && != $rbno,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in columns " +
 $ca1.posAsString() + " - " + $ca2.posAsString() +
 $cb1.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

The two rules "intersection removal … " are based on the restricted occurrence of some number within
one square, either in a single row or in a single column. This means that this number must be in one of
those two or three cells of the row or column and can be removed from the candidate sets of all other
cells of the group. The pattern establishes the restricted occurrence and then fires for each cell outside
of the square and within the same cell file.

Rules "intersection removal …"

rule "intersection removal column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cc: cellCol)
 // Does not occur in another cell of the same square and a different column
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellCol != $cc)

 // A cell exists in the same column and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellCol == $cc, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("column elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "intersection removal row"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cr: cellRow)
 // Does not occur in another cell of the same square and a different row.
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellRow != $cr)

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

697

 // A cell exists in the same row and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellRow == $cr, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("row elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

These rules are sufficient for many but not all Sudoku puzzles. To solve very difficult grids, the rule set
requires more complex rules. (Ultimately, some puzzles can be solved only by trial and error.)

88.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW
GROUPS AND GUI INTEGRATION)

The Conway’s Game of Life example decision set, based on the famous cellular automaton by John
Conway, demonstrates how to use ruleflow groups in rules to control rule execution. The example also
demonstrates how to integrate Red Hat Decision Manager rules with a graphical user interface (GUI), in
this case a Swing-based implementation of Conway’s Game of Life.

The following is an overview of the Conway’s Game of Life (Conway) example:

Name: conway

Main classes: org.drools.examples.conway.ConwayRuleFlowGroupRun,
org.drools.examples.conway.ConwayAgendaGroupRun (in src/main/java)

Module: droolsjbpm-integration-examples

Type: Java application

Rule files: org.drools.examples.conway.*.drl (in src/main/resources)

Objective: Demonstrates ruleflow groups and GUI integration

NOTE

The Conway’s Game of Life example is separate from most of the other example decision
sets in Red Hat Decision Manager and is located in ~/rhdm-7.11.0-
sources/src/droolsjbpm-integration-$VERSION/droolsjbpm-integration-examples of
the Red Hat Decision Manager 7.11.0 Source Distribution from the Red Hat Customer
Portal.

In Conway’s Game of Life, a user interacts with the game by creating an initial configuration or an
advanced pattern with defined properties and then observing how the initial state evolves. The
objective of the game is to show the development of a population, generation by generation. Each
generation results from the preceding one, based on the simultaneous evaluation of all cells.

The following basic rules govern what the next generation looks like:

If a live cell has fewer than two live neighbors, it dies of loneliness.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

698

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

If a live cell has more than three live neighbors, it dies from overcrowding.

If a dead cell has exactly three live neighbors, it comes to life.

Any cell that does not meet any of those criteria is left as is for the next generation.

The Conway’s Game of Life example uses Red Hat Decision Manager rules with ruleflow-group
attributes to define the pattern implemented in the game. The example also contains a version of the
decision set that achieves the same behavior using agenda groups. Agenda groups enable you to
partition the decision engine agenda to provide execution control over groups of rules. By default, all
rules are in the agenda group MAIN. You can use the agenda-group attribute to specify a different
agenda group for the rule.

This overview does not explore the version of the Conway example using agenda groups. For more
information about agenda groups, see the Red Hat Decision Manager example decision sets that
specifically address agenda groups.

Conway example execution and interaction
Similar to other Red Hat Decision Manager decision examples, you execute the Conway ruleflow
example by running the org.drools.examples.conway.ConwayRuleFlowGroupRun class as a Java
application in your IDE.

When you execute the Conway example, the Conway’s Game of Life GUI window appears. This window
contains an empty grid, or "arena" where the life simulation takes place. Initially the grid is empty
because no live cells are in the system yet.

Figure 88.24. Conway example GUI after launch

Select a predefined pattern from the Pattern drop-down menu and click Next Generation to click
through each population generation. Each cell is either alive or dead, where live cells contain a green ball.
As the population evolves from the initial pattern, cells live or die relative to neighboring cells, according
to the rules of the game.

Figure 88.25. Generation evolution in Conway example

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

699

Figure 88.25. Generation evolution in Conway example

Neighbors include not only cells to the left, right, top, and bottom but also cells that are connected
diagonally, so that each cell has a total of eight neighbors. Exceptions are the corner cells, which have
only three neighbors, and the cells along the four borders, with five neighbors each.

You can manually intervene to create or kill cells by clicking the cell.

To run through an evolution automatically from the initial pattern, click Start.

Conway example rules with ruleflow groups
The rules in the ConwayRuleFlowGroupRun example use ruleflow groups to control rule execution. A
ruleflow group is a group of rules associated by the ruleflow-group rule attribute. These rules can only
fire when the group is activated. The group itself can only become active when the elaboration of the
ruleflow diagram reaches the node representing the group.

The Conway example uses the following ruleflow groups for rules:

"register neighbor"

"evaluate"

"calculate"

"reset calculate"

"birth"

"kill"

"kill all"

All of the Cell objects are inserted into the KIE session and the "register … " rules in the ruleflow group
"register neighbor" are allowed to execute by the ruleflow process. This group of four rules creates
Neighbor relations between some cell and its northeastern, northern, northwestern, and western
neighbors.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

700

This relation is bidirectional and handles the other four directions. Border cells do not require any special
treatment. These cells are not paired with neighboring cells where there is not any.

By the time all activations have fired for these rules, all cells are related to all their neighboring cells.

Rules "register …"

rule "register north east"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northEast : Cell(row == ($row - 1), col == ($col + 1))
 then
 insert(new Neighbor($cell, $northEast));
 insert(new Neighbor($northEast, $cell));
end

rule "register north"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $north : Cell(row == ($row - 1), col == $col)
 then
 insert(new Neighbor($cell, $north));
 insert(new Neighbor($north, $cell));
end

rule "register north west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northWest : Cell(row == ($row - 1), col == ($col - 1))
 then
 insert(new Neighbor($cell, $northWest));
 insert(new Neighbor($northWest, $cell));
end

rule "register west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $west : Cell(row == $row, col == ($col - 1))
 then
 insert(new Neighbor($cell, $west));
 insert(new Neighbor($west, $cell));
end

After all the cells are inserted, some Java code applies the pattern to the grid, setting certain cells to
Live. Then, when the user clicks Start or Next Generation, the example executes the Generation
ruleflow. This ruleflow manages all changes of cells in each generation cycle.

Figure 88.26. Generation ruleflow

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

701

Figure 88.26. Generation ruleflow

The ruleflow process enters the "evaluate" ruleflow group and any active rules in the group can fire.
The rules "Kill the … " and "Give Birth" in this group apply the game rules to birth or kill cells. The
example uses the phase attribute to drive the reasoning of the Cell object by specific groups of rules.
Typically, the phase is tied to a ruleflow group in the ruleflow process definition.

Notice that the example does not change the state of any Cell objects at this point because it must
complete the full evaluation before those changes can be applied. The example sets the cell to a phase
that is either Phase.KILL or Phase.BIRTH, which is used later to control actions applied to the Cell
object.

Rules "Kill the …" and "Give Birth"

rule "Kill The Lonely"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has fewer than 2 live neighbors.
 theCell: Cell(liveNeighbors < 2, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Kill The Overcrowded"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has more than 3 live neighbors.
 theCell: Cell(liveNeighbors > 3, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

702

 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Give Birth"
 ruleflow-group "evaluate"
 no-loop
 when
 // A dead cell has 3 live neighbors.
 theCell: Cell(liveNeighbors == 3, cellState == CellState.DEAD,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 theCell.setPhase(Phase.BIRTH);
 }
end

After all Cell objects in the grid have been evaluated, the example uses the "reset calculate" rule to
clear any activations in the "calculate" ruleflow group. The example then enters a split in the ruleflow
that enables the rules "kill" and "birth" to fire, if the ruleflow group is activated. These rules apply the
state change.

Rules "reset calculate", "kill", and "birth"

rule "reset calculate"
 ruleflow-group "reset calculate"
 when
 then
 WorkingMemory wm = drools.getWorkingMemory();
 wm.clearRuleFlowGroup("calculate");
end

rule "kill"
 ruleflow-group "kill"
 no-loop
 when
 theCell: Cell(phase == Phase.KILL)
 then
 modify(theCell){
 setCellState(CellState.DEAD),
 setPhase(Phase.DONE);
 }
end

rule "birth"
 ruleflow-group "birth"
 no-loop
 when
 theCell: Cell(phase == Phase.BIRTH)
 then
 modify(theCell){
 setCellState(CellState.LIVE),
 setPhase(Phase.DONE);
 }
end

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

703

At this stage, several Cell objects have been modified with the state changed to either LIVE or DEAD.
When a cell becomes live or dead, the example uses the Neighbor relation in the rules "Calculate … " to
iterate over all surrounding cells, increasing or decreasing the liveNeighbor count. Any cell that has its
count changed is also set to the EVALUATE phase to make sure it is included in the reasoning during
the evaluation stage of the ruleflow process.

After the live count has been determined and set for all cells, the ruleflow process ends. If the user
initially clicked Start, the decision engine restarts the ruleflow at that point. If the user initially clicked
Next Generation, the user can request another generation.

Rules "Calculate …"

rule "Calculate Live"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.LIVE)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() + 1),
 setPhase(Phase.EVALUATE);
 }
end

rule "Calculate Dead"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.DEAD)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() - 1),
 setPhase(Phase.EVALUATE);
 }
end

88.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD
CHAINING AND RECURSION)

The House of Doom example decision set demonstrates how the decision engine uses backward
chaining and recursion to reach defined goals or subgoals in a hierarchical system.

The following is an overview of the House of Doom example:

Name: backwardchaining

Main class: org.drools.examples.backwardchaining.HouseOfDoomMain (in src/main/java)

Module: drools-examples

Type: Java application

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

704

Rule file: org.drools.examples.backwardchaining.BC-Example.drl (in src/main/resources)

Objective: Demonstrates backward chaining and recursion

A backward-chaining rule system is a goal-driven system that starts with a conclusion that the decision
engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion or goal, it
searches for subgoals, which are conclusions that complete part of the current goal. The system
continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

In contrast, a forward-chaining rule system is a data-driven system that starts with a fact in the working
memory of the decision engine and reacts to changes to that fact. When objects are inserted into
working memory, any rule conditions that become true as a result of the change are scheduled for
execution by the agenda.

The decision engine in Red Hat Decision Manager uses both forward and backward chaining to evaluate
rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 88.27. Rule evaluation logic using forward and backward chaining

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

705

Figure 88.27. Rule evaluation logic using forward and backward chaining

The House of Doom example uses rules with various types of queries to find the location of rooms and
items within the house. The sample class Location.java contains the item and location elements used
in the example. The sample class HouseOfDoomMain.java inserts the items or rooms in their respective
locations in the house and executes the rules.

Items and locations in HouseOfDoomMain.java class

ksession.insert(new Location("Office", "House"));
ksession.insert(new Location("Kitchen", "House"));
ksession.insert(new Location("Knife", "Kitchen"));
ksession.insert(new Location("Cheese", "Kitchen"));

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

706

The example rules rely on backward chaining and recursion to determine the location of all items and
rooms in the house structure.

The following diagram illustrates the structure of the House of Doom and the items and rooms within it:

Figure 88.28. House of Doom structure

To execute the example, run the org.drools.examples.backwardchaining.HouseOfDoomMain class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

go1
Office is in the House

go2
Drawer is in the House

go3

Key is in the Office

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

go5
Chair is in Office
Desk is in Office
Drawer is in Desk
Key is in Drawer

ksession.insert(new Location("Desk", "Office"));
ksession.insert(new Location("Chair", "Office"));
ksession.insert(new Location("Computer", "Desk"));
ksession.insert(new Location("Drawer", "Desk"));

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

707

Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

All rules in the example have fired to detect the location of all items in the house and to print the
location of each in the output.

Recursive query and related rules
A recursive query repeatedly searches through the hierarchy of a data structure for relationships
between elements.

In the House of Doom example, the BC-Example.drl file contains an isContainedIn query that most of
the rules in the example use to recursively evaluate the house data structure for data inserted into the
decision engine:

Recursive query in BC-Example.drl

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

The rule "go" prints every string inserted into the system to determine how items are implemented, and
the rule "go1" calls the query isContainedIn:

Rules "go" and "go1"

rule "go" salience 10
 when
 $s : String()
 then
 System.out.println($s);
end

rule "go1"
 when
 String(this == "go1")
 isContainedIn("Office", "House";)
 then
 System.out.println("Office is in the House");
end

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

708

The example inserts the "go1" string into the decision engine and activates the "go1" rule to detect
that item Office is in the location House:

Insert string and fire rules

ksession.insert("go1");
ksession.fireAllRules();

Rule "go1" output in the IDE console

go1
Office is in the House

Transitive closure rule
Transitive closure is a relationship between an element contained in a parent element that is multiple
levels higher in a hierarchical structure.

The rule "go2" identifies the transitive closure relationship of the Drawer and the House: The Drawer is
in the Desk in the Office in the House.

rule "go2"
 when
 String(this == "go2")
 isContainedIn("Drawer", "House";)
 then
 System.out.println("Drawer is in the House");
end

The example inserts the "go2" string into the decision engine and activates the "go2" rule to detect
that item Drawer is ultimately within the location House:

Insert string and fire rules

ksession.insert("go2");
ksession.fireAllRules();

Rule "go2" output in the IDE console

go2
Drawer is in the House

The decision engine determines this outcome based on the following logic:

1. The query recursively searches through several levels in the house to detect the transitive
closure between Drawer and House.

2. Instead of using Location(x, y;), the query uses the value of (z, y;) because Drawer is not
directly in House.

3. The z argument is currently unbound, which means it has no value and returns everything that is
in the argument.

4. The y argument is currently bound to House, so z returns Office and Kitchen.

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

709

5. The query gathers information from the Office and checks recursively if the Drawer is in the
Office. The query line isContainedIn(x, z;) is called for these parameters.

6. No instance of Drawer exists directly in Office, so no match is found.

7. With z unbound, the query returns data within the Office and determines that z == Desk.

isContainedIn(x==drawer, z==desk)

8. The isContainedIn query recursively searches three times, and on the third time, the query
detects an instance of Drawer in Desk.

Location(x==drawer, y==desk)

9. After this match on the first location, the query recursively searches back up the structure to
determine that the Drawer is in the Desk, the Desk is in the Office, and the Office is in the
House. Therefore, the Drawer is in the House and the rule is satisfied.

Reactive query rule
A reactive query searches through the hierarchy of a data structure for relationships between elements
and is dynamically updated when elements in the structure are modified.

The rule "go3" functions as a reactive query that detects if a new item Key ever becomes present in the
Office by transitive closure: A Key in the Drawer in the Office.

Rule "go3"

rule "go3"
 when
 String(this == "go3")
 isContainedIn("Key", "Office";)
 then
 System.out.println("Key is in the Office");
end

The example inserts the "go3" string into the decision engine and activates the "go3" rule. Initially, this
rule is not satisfied because no item Key exists in the house structure, so the rule produces no output.

Insert string and fire rules

ksession.insert("go3");
ksession.fireAllRules();

Rule "go3" output in the IDE console (unsatisfied)

go3

The example then inserts a new item Key in the location Drawer, which is in Office. This change satisfies
the transitive closure in the "go3" rule and the output is populated accordingly.

Insert new item location and fire rules

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

710

ksession.insert(new Location("Key", "Drawer"));
ksession.fireAllRules();

Rule "go3" output in the IDE console (satisfied)

Key is in the Office

This change also adds another level in the structure that the query includes in subsequent recursive
searches.

Queries with unbound arguments in rules
A query with one or more unbound arguments returns all undefined (unbound) items within a defined
(bound) argument of the query. If all arguments in a query are unbound, then the query returns all items
within the scope of the query.

The rule "go4" uses an unbound argument thing to search for all items within the bound argument
Office, instead of using a bound argument to search for a specific item in the Office:

Rule "go4"

rule "go4"
 when
 String(this == "go4")
 isContainedIn(thing, "Office";)
 then
 System.out.println(thing + "is in the Office");
end

The example inserts the "go4" string into the decision engine and activates the "go4" rule to return all
items in the Office:

Insert string and fire rules

ksession.insert("go4");
ksession.fireAllRules();

Rule "go4" output in the IDE console

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

The rule "go5" uses both unbound arguments thing and location to search for all items and their
locations in the entire House data structure:

Rule "go5"

rule "go5"
 when
 String(this == "go5")

CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE

711

 isContainedIn(thing, location;)
 then
 System.out.println(thing + " is in " + location);
end

The example inserts the "go5" string into the decision engine and activates the "go5" rule to return all
items and their locations in the House data structure:

Insert string and fire rules

ksession.insert("go5");
ksession.fireAllRules();

Rule "go5" output in the IDE console

go5
Chair is in Office
Desk is in Office
Drawer is in Desk
Key is in Drawer
Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

712

CHAPTER 89. PERFORMANCE TUNING CONSIDERATIONS
WITH THE DECISION ENGINE

The following key concepts or suggested practices can help you optimize decision engine performance.
These concepts are summarized in this section as a convenience and are explained in more detail in the
cross-referenced documentation, where applicable. This section will expand or change as needed with
new releases of Red Hat Decision Manager.

Use sequential mode for stateless KIE sessions that do not require important decision engine
updates

Sequential mode is an advanced rule base configuration in the decision engine that enables the
decision engine to evaluate rules one time in the order that they are listed in the decision engine
agenda without regard to changes in the working memory. As a result, rule execution may be faster
in sequential mode, but important updates may not be applied to your rules. Sequential mode applies
to stateless KIE sessions only.
To enable sequential mode, set the system property drools.sequential to true.

For more information about sequential mode or other options for enabling it, see Section 84.3,
“Sequential mode in Phreak”.

Use simple operations with event listeners

Limit the number of event listeners and the type of operations they perform. Use event listeners for
simple operations, such as debug logging and setting properties. Complicated operations, such as
network calls, in listeners can impede rule execution. After you finish working with a KIE session,
remove the attached event listeners so that the session can be cleaned, as shown in the following
example:

Example event listener removed after use

For information about built-in event listeners and debug logging in the decision engine, see
Chapter 87, Decision engine event listeners and debug logging .

Configure LambdaIntrospector cache size for an executable model build

You can configure the size of LambdaIntrospector.methodFingerprintsMap cache, which is used in
an executable model build. The default size of the cache is 32. When you configure smaller value for
the cache size, it reduces memory usage. For example, you can configure system property
drools.lambda.introspector.cache.size to 0 for minimum memory usage. Note that smaller cache
size also slows down the build performance.

Use lambda externalization for executable model

Listener listener = ...;
StatelessKnowledgeSession ksession = createSession();
try {
 ksession.insert(fact);
 ksession.fireAllRules();
 ...
} finally {
 if (session != null) {
 ksession.detachListener(listener);
 ksession.dispose();
 }
}

CHAPTER 89. PERFORMANCE TUNING CONSIDERATIONS WITH THE DECISION ENGINE

713

Enable lambda externalization to optimize the memory consumption during runtime. It rewrites
lambdas that are generated and used in the executable model. This enables you to reuse the same
lambda multiple times with all the patterns and the same constraint. When the rete or phreak is
instantiated, the executable model becomes garbage collectible.
To enable lambda externalization for the executable model, include the following property:

-Ddrools.externaliseCanonicalModelLambda=true

Configure alpha node range index threshold

Alpha node range index is used to evaluate the rule constraint. You can configure the threshold of
the alpha node range index using the drools.alphaNodeRangeIndexThreshold system property.
The default value of the threshold is 9, indicating that the alpha node range index is enabled when a
precedent node contains more than nine alpha nodes with inequality constraints. For example, when
you have nine rules similar to Person(age > 10), Person(age > 20), …, Person(age > 90), then you
can have similar nine alpha nodes.
The default value of the threshold is based on the related advantages and overhead. However, if you
configure a smaller value for the threshold, then the performance can be improved depending on
your rules. For example, you can configure the drools.alphaNodeRangeIndexThreshold value to 6,
enabling the alpha node range index when you have more than six alpha nodes for a precedent node.
You can set a suitable value for the threshold based on the performance test results of your rules.

Enable join node range index

The join node range index feature improves the performance only when there is a large number of
facts to be joined, for example, 256*16 combinations. When your application inserts a large number of
facts, you can enable the join node range index and evaluate the performance improvement. By
default, the join node range index is disabled.

Example kmodule.xml file

System property for BetaRangeIndexOption

<kbase name="KBase1" betaRangeIndex="enabled">

drools.betaNodeRangeIndexEnabled=true

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

714

CHAPTER 90. ADDITIONAL RESOURCES
Designing your decision management architecture for Red Hat Decision Manager

Getting started with decision services

Designing a decision service using DRL rules

Packaging and deploying a Red Hat Decision Manager project

CHAPTER 90. ADDITIONAL RESOURCES

715

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/designing_your_decision_management_architecture_for_red_hat_decision_manager
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

PART X. INTEGRATING MACHINE LEARNING WITH RED HAT
DECISION MANAGER

As a business analyst or business rules developer, you can integrate machine learning with Red Hat
Decision Manager by using PMML files with Decision Model and Notation (DMN) models.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

716

CHAPTER 91. PRAGMATIC AI
When you think about artificial intelligence (AI), machine learning and big data might come to mind. But
machine learning is only part of the picture. Artificial intelligence includes the following technologies:

Robotics: The integration of technology, science, and engineering that produces machines that
can perform physical tasks that are performed by humans

Machine learning: The ability of a collection of algorithms to learn or improve when exposed to
data without being explicitly programmed to do so

Natural language processing: A subset of machine learning that processes human speech

Mathematical optimization: The use of conditions and constraints to find the optimal solution to
a problem

Digital decisioning: The use of defined criteria, conditions, and a series of machine and human
tasks to make decisions

While science fiction is filled with what is referred to as artificial general intelligence (AGI), machines that
perform better than people and cannot be distinguished from them and learn and evolve without human
intervention or control, AGI is decades away. Meanwhile, we have pragmatic AI which is much less
frightening and much more useful to us today. Pragmatic AI is a collection of AI technologies that, when
combined, provide solutions to problems such as predicting customer behavior, providing automated
customer service, and helping customers make purchasing decisions.

Leading industry analysts report that previously organizations have struggled with AI technologies
because they invested in the potential of AI rather than the reality of what AI can deliver today. AI
projects were not productive and as a result investment in AI slowed and budgets for AI projects were
reduced. This disillusionment with AI is often referred to as an AI winter. AI has experienced several
cycles of AI winters followed by AI springs and we are now decidedly in an AI spring. Organizations are
seeing the practical reality of what AI can deliver. Being pragmatic means being practical and realistic. A
pragmatic approach to AI considers AI technologies that are available today, combines them where
useful, and adds human intervention when needed to create solutions to real-world problems.

Pragmatic AI solution example

One application of pragmatic AI is in customer support. A customer files a support ticket that reports a
problem, for example, a login error. A machine learning algorithm is applied to the ticket to match the
ticket content with existing solutions, based on keywords or natural language processing (NLP). The
keywords might appear in many solutions, some relevant and some not as relevant. You can use digital
decisioning to determine which solutions to present to the customer. However, sometimes none of the
solutions proposed by the algorithm are appropriate to propose to the customer. This can be because all
solutions have a low confidence score or multiple solutions have a high confidence score. In cases where

CHAPTER 91. PRAGMATIC AI

717

an appropriate solution cannot be found, the digital decisioning can involve the human support team. To
find the best support person based on availability and expertise, mathematical optimization selects the
best assignee for the support ticket by considering employee rostering constraints.

As this example shows, you can combine machine learning to extract information from data analysis and
digital decisioning to model human knowledge and experience. You can then apply mathematical
optimization to schedule human assistance. This is a pattern that you can apply to other situations, for
example, a credit card dispute and credit card fraud detection.

Neural network,
clustering, classification

= Machine
LearningAI

 These technologies use four industry
standards:

Case Management Model and Notation (CMMN)
CMMN is used to model work methods that include various activities that might be performed in
an unpredictable order depending on circumstances. CMMN models are event centered. CMMN
overcomes limitations of what can be modeled with BPMN2 by supporting less structured work
tasks and tasks driven by humans. By combining BPMN and CMMN you can create much more
powerful models.

Business Process Model and Notation (BPMN2)
The BPMN2 specification is an Object Management Group (OMG) specification that defines
standards for graphically representing a business process, defines execution semantics for the
elements, and provides process definitions in XML format. BPMN2 can model computer and
human tasks.

Decision Model and Notation (DMN)
Decision Model and Notation (DMN) is a standard established by the OMG for describing and
modeling operational decisions. DMN defines an XML schema that enables DMN models to be
shared between DMN-compliant platforms and across organizations so that business analysts
and business rules developers can collaborate in designing and implementing DMN decision
services. The DMN standard is similar to and can be used together with the Business Process
Model and Notation (BPMN) standard for designing and modeling business processes.

Predictive Model Markup Language (PMML)
PMML is the language used to represent predictive models, mathematical models that use
statistical techniques to uncover, or learn, patterns in large volumes of data. Predictive models
use the patterns that they learn to predict the existence of patterns in new data. With PMML,
you can share predictive models between applications. This data is exported as a PMML file that
can be consumed by a DMN model. As a machine learning framework continues to train the
model, the updated data can be saved to the existing PMML file. This means that you can use
predictive models created by any application that can save the model as a PMML file. Therefore,
DMN and PMML integrate well.

Putting it all together

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

718

Documents
data images Machine Learning

This illustration shows how predictive decision automation works.

1. Business data enters the system, for example, data from a loan application.

2. A decision model that is integrated with a predictive model decides whether or not to approve
the loan or whether additional tasks are required.

3. A business action results, for example, a rejection letter or loan offer is sent to the customer.

The next section demonstrates how predictive decision automation works with Red Hat Decision
Manager.

CHAPTER 91. PRAGMATIC AI

719

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE
The financial industry uses pragmatic AI for decisioning in several areas. One area is credit card charge
disputes. When a customer identifies an incorrect or unrecognized charge on a credit card bill, the
customer can dispute the charge. Human intervention in credit card fraud detection is required in some
cases but the majority of reported credit card fraud can be completely or partially resolved with
pragmatic AI.

Machine learning models such as Tensorflow™ and R™ produce predictive models. You can save these
predictive models in an open standard such as PMML so that you can use the model with Red Hat
Decision Manager or other products that support the PMML standard.

92.1. USING A PMML MODEL WITH A DMN MODEL TO RESOLVE
CREDIT CARD TRANSACTION DISPUTES

This example shows you how to use Red Hat Decision Manager to create a DMN model that uses a
PMML model to resolve credit card transaction disputes. When a customer disputes a credit card
transaction, the system decides whether or not to process the transaction automatically.

Prerequisites

Red Hat Decision Manager is available and the following JAR file has been added to the ~/kie-
server.war/WEB-INF/lib and ~/business-central.war/WEB-INF/lib directories in your Red Hat
Decision Manager installation:

kie-dmn-jpmml-7.52.0.Final-redhat-00007.jar
This file is available in the Red Hat Decision Manager 7.11 Maven Repository distribution
available from the Software Downloads page in the Red Hat Customer Portal (login
required). The group ID, artifact ID, and version (GAV) identifier of this file is org.kie:kie-
dmn-jpmml:7.52.0.Final-redhat-00007. For more information, see the "Including PMML
models within a DMN file in Business Central" section of Designing a decision service using
DMN models.

JPMML Evaluator 1.5.1 JAR file

JPMML Evaluator Extensions 1.5.1 JAR file
These files are required to enable JPMML evaluation in KIE Server and Business Central.

IMPORTANT

Red Hat supports integration with the Java Evaluator API for PMML
(JPMML) for PMML execution in Red Hat Decision Manager. However, Red
Hat does not support the JPMML libraries directly. If you include JPMML
libraries in your Red Hat Decision Manager distribution, see the
Openscoring.io licensing terms for JPMML.

Procedure

1. Create the dtree_risk_predictor.pmml file with the contents of the XML example in
Section 92.2, “Credit card transaction dispute exercise PMML file” .

2. In Business Central, create the Credit Card Dispute project:

a. Navigate to Menu → Design → Projects.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

720

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator/1.5.1
https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator-extension/1.5.1
https://openscoring.io/

b. Click Add Project.

c. In the Name box, enter Credit Card Dispute and click Add.

3. In the Assets window of the Credit Card Dispute project, import the
dtree_risk_predictor.pmml file into the com package:

a. Click Import Asset.

b. In the Create new Import Asset dialog, enter dtree_risk_predictor in the Name box, select
com from the Package menu, select the dtree_risk_predictor.pmml file, and click OK.
The content of the dtree_risk_predictor.pmml file appears in the Overview window.

4. Create the Dispute Transaction Check DMN model in com package:

a. To return to the project window, click Credit Card Dispute in the breadcrumb trail.

b. Click Add Asset.

c. Click DMN in the asset library.

d. In the Create new DMN dialog, enter Dispute Transaction Check in the Name box, select
com from the Package menu, and click OK.
The DMN editor opens with the Dispute Transaction Check DMN model.

5. Create the tTransaction custom data type:

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE

721

a. Click the Data Types tab.

b. Click Add a custom Data Type.

c. In the Name box, enter tTransaction.

d. Select Structure from the Type menu.

e. To create the data type, click the check mark.
The tTransaction custom data type appears with one variable row.

f. In the Name field of the variable row, enter transaction_amount, select Number from the
Type menu, and then click the check mark.

g. To add a new variable row, click the plus symbol on the transaction_amount row. A new row
appears.

h. In the Name field, enter cardholder_identifier, select Number from the Type menu, and
then click the check mark.

6. Add the Risk Predictor dtree_risk_predictor.pmml model:

a. In the Included Models window of the DMN editor, click Include Model.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

722

b. In the Include Model dialog, select dtree_risk_predictor.pmml from the Models menu.

c. Enter Risk Predictor in the Provide a unique name box and click OK.

7. Create the Risk Predictor Business Knowledge Model (BKM) node with the Risk Predictor and
DecisionTreeClassifier model:

a. In the Model window of the DMN editor, drag a BKM node to the DMN editor palette.

b. Rename the node Risk Predictor.

c. Click the edit icon located below the trash can icon on the left side of the node.

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE

723

d. Click F in the Risk Predictor box and select PMML from the Select Function Kind menu.
The F changes to P.

e. Double-click the First select PMML document box and select Risk Predictor.

f. Double-click the Second select PMML model box and select DecisionTreeClassifier.

g. To return to the DMN editor palette, click Back to Dispute Transaction Check.

8. Create the Transaction input data node with the data type tTransaction:

a. In the Model window of the DMN editor, drag an input data node to the DMN editor palette.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

724

b. Rename the node Transaction.

c. Select the node then click the properties pencil icon in the upper-right corner of the
window.

d. In the Properties panel, select Information Item → Data type → tTransaction then close
the panel.

9. Create the Transaction Dispute Risk decision node and add the Transaction node for data
input and the Risk Predictor node for the function:

a. In the Model window of the DMN editor, drag a decision data node to the DMN editor
palette.

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE

725

b. Rename the node Transaction Dispute Risk.

c. Select the Risk Predictor node and drag the arrow from the top right of the node to the
Transaction Dispute Risk node.

d. Select the Transaction node and drag the arrow from the bottom right of the node to the
Transaction Dispute Risk node.

10. In the Transaction Dispute Risk node, create the Risk predictor invocation function:

a. Select the Transaction Dispute Risk node and click the edit icon on the left side of the
node.

b. Click Select expression and select Invocation from the menu.

c. Enter Risk Predictor in the Enter function box.

d. Click P1.

e. In the Edit Parameter dialog, enter amount in the Name box, select number from the
Data Type menu, and press the Enter key.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

726

f. Click Select expression and select Literal expression from the menu.

g. Enter Transaction.transaction_amount in the box next to amount.

h. Right-click on 1 and select Insert below. The Edit Parameter dialog opens.

i. Enter holder_index in the Name box, select number from the Data Type menu, and press
the Enter key.

j. Click Select expression on row 2 and select Literal expression from the menu.

k. Enter Transaction.cardholder_identifier in the box next to amount.

11. Create the Risk Threshold input data node with the data type number:

a. In the Model window of the DMN editor, drag an input data node to the DMN editor palette.

b. Rename the node Risk Threshold.

c. Select the node then click the properties pencil icon in the upper-right corner of the
window.

d. In the Properties panel, select Information Item → Data type → number then close the
panel.

12. Create the Can be automatically processed? decision node that takes as inputs the
Transaction Dispute Risk and the Risk threshold nodes:

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE

727

a. Drag a decision node to the DMN editor palette and rename it Can be automatically
processed?.

b. Select the node, then click the edit icon on the upper-left side of the node.

c. Click Select expression and then select Literal expression from the menu.

d. Enter Transaction Dispute Risk.predicted_dispute_risk < Risk Threshold in the box.

e. Select the Transaction Dispute Risk node and drag the arrow in the top left of the node to
the Can be automatically processed? node.

f. Select the Risk Threshold node and drag the arrow from the bottom left of the node to the
Can be automatically processed? node.

13. Save the model and build the project:

a. In the DMN editor, click Save.

b. If necessary, correct any errors that appear.

c. To return to the project window, click Credit Card Dispute in the breadcrumb trail.

d. Click Build. The project should successfully build.

14. Add and run a test scenario:

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

728

14. Add and run a test scenario:

a. Click Add Asset.

b. Select Test Scenario.

c. In the Create new Test Scenario dialog, enter the name Test Dispute Transaction Check,
select com from the Package menu, and select DMN.

d. Select Dispute Transaction Check.dmn from the Choose a DMN asset menu and click OK.
The test template builds.

e. Enter the following values and click Save:

NOTE

Do not add a value to the Transaction Dispute Risk column. This value is
determined by the test scenario.

Table 92.1. Test scenario parameters

Description Risk
Threshol
d

cardholder_identifi
er

transaction_amoun
t

Can be
automatically
processed?

Risk threshold 5,
automatically
processed

5 1234 1000 true

Risk threshold
4, amount =
1000, not
processed

4 1234 1000 false

Risk threshold
4, amount = 180,
automatically
processed

4 1234 180 true

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE

729

Risk threshold 1,
amount = 1, not
processed

1 1234 1 false

Description Risk
Threshol
d

cardholder_identifi
er

transaction_amoun
t

Can be
automatically
processed?

f. To run the test, click the Play button, to the right of Validate. The results appear in the Test
Report panel on the right of the screen.

92.2. CREDIT CARD TRANSACTION DISPUTE EXERCISE PMML FILE

Use the following XML content to create the dtree_risk_predictor.pmml file in the Section 92.1, “Using
a PMML model with a DMN model to resolve credit card transaction disputes” exercise.

<?xml version="1.0" encoding="UTF-8"?>
<PMML xmlns="http://www.dmg.org/PMML-4_2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" version="4.2" xsi:schemaLocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-
2-1/pmml-4-2.xsd">
 <Header copyright="Copyright (c) 2018 Software AG" description="Default Description">
 <Application name="Nyoka" version="4.3.0" />
 <Timestamp>2020-10-09 14:27:26.622723</Timestamp>
 </Header>
 <DataDictionary numberOfFields="3">
 <DataField name="amount" optype="continuous" dataType="double" />
 <DataField name="holder_index" optype="continuous" dataType="double" />
 <DataField name="dispute_risk" optype="categorical" dataType="integer">
 <Value value="1" />
 <Value value="2" />
 <Value value="3" />
 <Value value="4" />
 <Value value="5" />
 </DataField>
 </DataDictionary>
 <TreeModel modelName="DecisionTreeClassifier" functionName="classification"
missingValuePenalty="1.0">
 <MiningSchema>
 <MiningField name="amount" usageType="active" optype="continuous" />
 <MiningField name="holder_index" usageType="active" optype="continuous" />
 <MiningField name="dispute_risk" usageType="target" optype="categorical" />
 </MiningSchema>
 <Output>
 <OutputField name="probability_1" optype="continuous" dataType="double" feature="probability"
value="1" />
 <OutputField name="probability_2" optype="continuous" dataType="double" feature="probability"
value="2" />
 <OutputField name="probability_3" optype="continuous" dataType="double" feature="probability"
value="3" />
 <OutputField name="probability_4" optype="continuous" dataType="double" feature="probability"
value="4" />
 <OutputField name="probability_5" optype="continuous" dataType="double" feature="probability"
value="5" />

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

730

 <OutputField name="predicted_dispute_risk" optype="categorical" dataType="integer"
feature="predictedValue" />
 </Output>
 <Node id="0" recordCount="600.0">
 <True />
 <Node id="1" recordCount="200.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="99.94000244140625" />
 <Node id="2" score="2" recordCount="55.0">
 <SimplePredicate field="holder_index" operator="lessOrEqual" value="0.5" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="55.0" confidence="1.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="3" score="1" recordCount="145.0">
 <SimplePredicate field="holder_index" operator="greaterThan" value="0.5" />
 <ScoreDistribution value="1" recordCount="145.0" confidence="1.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 <Node id="4" recordCount="400.0">
 <SimplePredicate field="amount" operator="greaterThan" value="99.94000244140625" />
 <Node id="5" recordCount="105.0">
 <SimplePredicate field="holder_index" operator="lessOrEqual" value="0.5" />
 <Node id="6" score="3" recordCount="54.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="150.4550018310547" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="54.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="7" recordCount="51.0">
 <SimplePredicate field="amount" operator="greaterThan" value="150.4550018310547" />
 <Node id="8" recordCount="40.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="200.00499725341797" />
 <Node id="9" recordCount="36.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="195.4949951171875" />
 <Node id="10" recordCount="2.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="152.2050018310547" />
 <Node id="11" score="4" recordCount="1.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="151.31500244140625"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="12" score="3" recordCount="1.0">
 <SimplePredicate field="amount" operator="greaterThan" value="151.31500244140625"
/>

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE

731

 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 <Node id="13" recordCount="34.0">
 <SimplePredicate field="amount" operator="greaterThan" value="152.2050018310547" />
 <Node id="14" recordCount="20.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="176.5050048828125"
/>
 <Node id="15" recordCount="19.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="176.06500244140625"
/>
 <Node id="16" score="4" recordCount="9.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="166.6449966430664"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="9.0" confidence="1.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="17" recordCount="10.0">
 <SimplePredicate field="amount" operator="greaterThan" value="166.6449966430664"
/>
 <Node id="18" score="3" recordCount="1.0">
 <SimplePredicate field="amount" operator="lessOrEqual"
value="167.97999572753906" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="19" score="4" recordCount="9.0">
 <SimplePredicate field="amount" operator="greaterThan"
value="167.97999572753906" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="9.0" confidence="1.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 </Node>
 <Node id="20" score="3" recordCount="1.0">
 <SimplePredicate field="amount" operator="greaterThan" value="176.06500244140625"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

732

 </Node>
 <Node id="21" score="4" recordCount="14.0">
 <SimplePredicate field="amount" operator="greaterThan" value="176.5050048828125"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="14.0" confidence="1.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 </Node>
 <Node id="22" recordCount="4.0">
 <SimplePredicate field="amount" operator="greaterThan" value="195.4949951171875" />
 <Node id="23" score="3" recordCount="1.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="195.76499938964844"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="24" recordCount="3.0">
 <SimplePredicate field="amount" operator="greaterThan" value="195.76499938964844"
/>
 <Node id="25" score="4" recordCount="1.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="196.74500274658203"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="26" recordCount="2.0">
 <SimplePredicate field="amount" operator="greaterThan" value="196.74500274658203"
/>
 <Node id="27" score="3" recordCount="1.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="197.5800018310547"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="28" score="4" recordCount="1.0">
 <SimplePredicate field="amount" operator="greaterThan" value="197.5800018310547"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE

733

 </Node>
 </Node>
 </Node>
 </Node>
 <Node id="29" score="5" recordCount="11.0">
 <SimplePredicate field="amount" operator="greaterThan" value="200.00499725341797" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="11.0" confidence="1.0" />
 </Node>
 </Node>
 </Node>
 <Node id="30" recordCount="295.0">
 <SimplePredicate field="holder_index" operator="greaterThan" value="0.5" />
 <Node id="31" score="2" recordCount="170.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="150.93499755859375" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="170.0" confidence="1.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="32" recordCount="125.0">
 <SimplePredicate field="amount" operator="greaterThan" value="150.93499755859375" />
 <Node id="33" recordCount="80.0">
 <SimplePredicate field="holder_index" operator="lessOrEqual" value="2.5" />
 <Node id="34" recordCount="66.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="199.13500213623047" />
 <Node id="35" score="3" recordCount="10.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="155.56999969482422"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="10.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="36" recordCount="56.0">
 <SimplePredicate field="amount" operator="greaterThan" value="155.56999969482422"
/>
 <Node id="37" score="2" recordCount="1.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="155.9000015258789"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="38" recordCount="55.0">
 <SimplePredicate field="amount" operator="greaterThan" value="155.9000015258789"
/>
 <Node id="39" recordCount="31.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="176.3699951171875"

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

734

/>
 <Node id="40" recordCount="30.0">
 <SimplePredicate field="amount" operator="lessOrEqual"
value="175.72000122070312" />
 <Node id="41" recordCount="19.0">
 <SimplePredicate field="amount" operator="lessOrEqual"
value="168.06999969482422" />
 <Node id="42" recordCount="6.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="158.125" />
 <Node id="43" score="3" recordCount="5.0">
 <SimplePredicate field="amount" operator="lessOrEqual"
value="157.85499572753906" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="5.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="44" score="2" recordCount="1.0">
 <SimplePredicate field="amount" operator="greaterThan"
value="157.85499572753906" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 <Node id="45" score="3" recordCount="13.0">
 <SimplePredicate field="amount" operator="greaterThan" value="158.125" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="13.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 <Node id="46" recordCount="11.0">
 <SimplePredicate field="amount" operator="greaterThan"
value="168.06999969482422" />
 <Node id="47" score="2" recordCount="1.0">
 <SimplePredicate field="amount" operator="lessOrEqual"
value="168.69499969482422" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="48" recordCount="10.0">
 <SimplePredicate field="amount" operator="greaterThan"
value="168.69499969482422" />
 <Node id="49" recordCount="4.0">
 <SimplePredicate field="holder_index" operator="lessOrEqual" value="1.5" />
 <Node id="50" score="2" recordCount="1.0">
 <SimplePredicate field="amount" operator="lessOrEqual"

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE

735

value="172.0250015258789" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="51" score="3" recordCount="3.0">
 <SimplePredicate field="amount" operator="greaterThan"
value="172.0250015258789" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="3.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 <Node id="52" score="3" recordCount="6.0">
 <SimplePredicate field="holder_index" operator="greaterThan" value="1.5" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="6.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 </Node>
 </Node>
 <Node id="53" score="2" recordCount="1.0">
 <SimplePredicate field="amount" operator="greaterThan"
value="175.72000122070312" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 <Node id="54" recordCount="24.0">
 <SimplePredicate field="amount" operator="greaterThan" value="176.3699951171875"
/>
 <Node id="55" score="3" recordCount="16.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="192.0999984741211"
/>
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="16.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="56" recordCount="8.0">
 <SimplePredicate field="amount" operator="greaterThan" value="192.0999984741211"
/>
 <Node id="57" score="2" recordCount="1.0">
 <SimplePredicate field="amount" operator="lessOrEqual"
value="192.75499725341797" />

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

736

 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="1.0" confidence="1.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="58" score="3" recordCount="7.0">
 <SimplePredicate field="amount" operator="greaterThan"
value="192.75499725341797" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="7.0" confidence="1.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 </Node>
 </Node>
 </Node>
 </Node>
 <Node id="59" recordCount="14.0">
 <SimplePredicate field="amount" operator="greaterThan" value="199.13500213623047" />
 <Node id="60" score="5" recordCount="10.0">
 <SimplePredicate field="holder_index" operator="lessOrEqual" value="1.5" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="10.0" confidence="1.0" />
 </Node>
 <Node id="61" score="4" recordCount="4.0">
 <SimplePredicate field="holder_index" operator="greaterThan" value="1.5" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="4.0" confidence="1.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 </Node>
 <Node id="62" recordCount="45.0">
 <SimplePredicate field="holder_index" operator="greaterThan" value="2.5" />
 <Node id="63" score="2" recordCount="37.0">
 <SimplePredicate field="amount" operator="lessOrEqual" value="199.13999938964844" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="37.0" confidence="1.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 <Node id="64" score="4" recordCount="8.0">
 <SimplePredicate field="amount" operator="greaterThan" value="199.13999938964844" />
 <ScoreDistribution value="1" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="2" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="3" recordCount="0.0" confidence="0.0" />
 <ScoreDistribution value="4" recordCount="8.0" confidence="1.0" />

CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE

737

 <ScoreDistribution value="5" recordCount="0.0" confidence="0.0" />
 </Node>
 </Node>
 </Node>
 </Node>
 </Node>
 </Node>
 </TreeModel>
</PMML>

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

738

CHAPTER 93. ADDITIONAL RESOURCES
Getting started with case management

Getting started with decision services

Designing a decision service using DMN models

Developing Solvers with Red Hat Decision Manager

Predictions 2019: Expect A Pragmatic Vision Of AI

CHAPTER 93. ADDITIONAL RESOURCES

739

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-case-management
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_solvers_with_red_hat_business_optimizer_in_red_hat_decision_manager
https://go.forrester.com/blogs/predictions-2019-ai-artificial-intelligence/

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Thursday, June 17, 2021.

Red Hat Decision Manager 7.11 Developing decision services in Red Hat Decision Manager

740

APPENDIX B. CONTACT INFORMATION
Red Hat Decision Manager documentation team: brms-docs@redhat.com

APPENDIX B. CONTACT INFORMATION

741

mailto:brms-docs@redhat.com

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PART I. DESIGNING A DECISION SERVICE USING DMN MODELS
	CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER
	CHAPTER 2. RED HAT DECISION MANAGER BPMN AND DMN MODELERS
	2.1. INSTALLING THE RED HAT DECISION MANAGER VSCODE EXTENSION BUNDLE
	2.2. CONFIGURING THE RED HAT DECISION MANAGER STANDALONE EDITORS

	CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN
	CHAPTER 4. DECISION MODEL AND NOTATION (DMN)
	4.1. DMN CONFORMANCE LEVELS
	4.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS
	4.3. RULE EXPRESSIONS IN FEEL
	4.3.1. Data types in FEEL
	4.3.2. Built-in functions in FEEL
	4.3.2.1. Conversion functions
	4.3.2.2. Boolean functions
	4.3.2.3. String functions
	4.3.2.4. List functions
	4.3.2.5. Numeric functions
	4.3.2.6. Date and time functions
	4.3.2.7. Range functions
	4.3.2.8. Temporal functions
	4.3.2.9. Sort functions
	4.3.2.10. Context functions

	4.3.3. Variable and function names in FEEL

	4.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS
	4.4.1. DMN decision tables
	4.4.1.1. Hit policies in DMN decision tables

	4.4.2. Boxed literal expressions
	4.4.3. Boxed context expressions
	4.4.4. Boxed relation expressions
	4.4.5. Boxed function expressions
	4.4.6. Boxed invocation expressions
	4.4.7. Boxed list expressions

	4.5. DMN MODEL EXAMPLE

	CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER
	5.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION MANAGER
	5.2. CONFIGURABLE DMN VALIDATION IN RED HAT DECISION MANAGER

	CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL
	6.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN BUSINESS CENTRAL
	6.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED EXPRESSIONS IN BUSINESS CENTRAL
	6.3. INCLUDED MODELS IN DMN FILES IN BUSINESS CENTRAL
	6.3.1. Including other DMN models within a DMN file in Business Central
	6.3.2. Including PMML models within a DMN file in Business Central

	6.4. CREATING DMN MODELS WITH MULTIPLE DIAGRAMS IN BUSINESS CENTRAL
	6.5. DMN MODEL DOCUMENTATION IN BUSINESS CENTRAL
	6.6. DMN DESIGNER NAVIGATION AND PROPERTIES IN BUSINESS CENTRAL

	CHAPTER 7. DMN MODEL EXECUTION
	7.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION
	7.2. EXECUTING A DMN SERVICE USING THE KIE SERVER JAVA CLIENT API
	7.3. EXECUTING A DMN SERVICE USING THE KIE SERVER REST API
	7.4. REST ENDPOINTS FOR SPECIFIC DMN MODELS

	CHAPTER 8. ADDITIONAL RESOURCES
	PART II. DESIGNING A DECISION SERVICE USING PMML MODELS
	CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER
	CHAPTER 10. PREDICTIVE MODEL MARKUP LANGUAGE (PMML)
	10.1. PMML CONFORMANCE LEVELS

	CHAPTER 11. PMML MODEL EXAMPLES
	CHAPTER 12. PMML SUPPORT IN RED HAT DECISION MANAGER
	12.1. PMML TRUSTY SUPPORT AND NAMING CONVENTIONS IN RED HAT DECISION MANAGER
	Known limitations of PMML trusty implementation

	12.2. PMML LEGACY SUPPORT AND NAMING CONVENTIONS IN RED HAT DECISION MANAGER
	12.2.1. PMML extensions in Red Hat Decision Manager

	CHAPTER 13. PMML MODEL EXECUTION
	13.1. EMBEDDING A PMML TRUSTY CALL DIRECTLY IN A JAVA APPLICATION
	13.2. EMBEDDING A PMML LEGACY CALL DIRECTLY IN A JAVA APPLICATION
	13.2.1. PMML execution helper class

	13.3. EXECUTING A PMML MODEL USING KIE SERVER

	CHAPTER 14. ADDITIONAL RESOURCES
	PART III. DESIGNING A DECISION SERVICE USING DRL RULES
	CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER
	CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES
	16.1. PACKAGES IN DRL
	16.2. IMPORT STATEMENTS IN DRL
	16.3. FUNCTIONS IN DRL
	16.4. QUERIES IN DRL
	16.5. TYPE DECLARATIONS AND METADATA IN DRL
	16.5.1. Type declarations without metadata in DRL
	16.5.2. Enumerative type declarations in DRL
	16.5.3. Extended type declarations in DRL
	16.5.4. Type declarations with metadata in DRL
	16.5.5. Metadata tags for fact type and attribute declarations in DRL
	16.5.6. Property-change settings and listeners for fact types
	16.5.7. Access to DRL declared types in application code

	16.6. GLOBAL VARIABLES IN DRL
	16.7. RULE ATTRIBUTES IN DRL
	16.7.1. Timer and calendar rule attributes in DRL

	16.8. RULE CONDITIONS IN DRL (WHEN)
	16.8.1. Patterns and constraints
	16.8.2. Bound variables in patterns and constraints
	16.8.3. Nested constraints and inline casts
	16.8.4. Date literal in constraints
	16.8.5. Supported operators in DRL pattern constraints
	16.8.6. Operator precedence in DRL pattern constraints
	16.8.7. Supported rule condition elements in DRL (keywords)
	16.8.8. OOPath syntax with graphs of objects in DRL rule conditions

	16.9. RULE ACTIONS IN DRL (THEN)
	16.9.1. Supported rule action methods in DRL
	16.9.2. Other rule action methods from drools and kcontext variables
	16.9.3. Advanced rule actions with conditional and named consequences

	16.10. COMMENTS IN DRL FILES
	16.11. ERROR MESSAGES FOR DRL TROUBLESHOOTING
	16.12. RULE UNITS IN DRL RULE SETS
	16.12.1. Data sources for rule units
	16.12.2. Rule unit execution control
	16.12.3. Rule unit identity conflicts

	CHAPTER 17. DATA OBJECTS
	17.1. CREATING DATA OBJECTS

	CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL
	18.1. ADDING WHEN CONDITIONS IN DRL RULES
	18.2. ADDING THEN ACTIONS IN DRL RULES

	CHAPTER 19. EXECUTING RULES
	CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRL RULES
	20.1. CREATING AND EXECUTING DRL RULES IN RED HAT CODEREADY STUDIO
	20.2. CREATING AND EXECUTING DRL RULES USING JAVA
	20.3. CREATING AND EXECUTING DRL RULES USING MAVEN

	CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE
	21.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE
	21.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
	21.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)
	State example using salience
	State example using agenda groups
	Dynamic facts in the State example

	21.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
	21.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)
	Spreadsheet decision table setup
	Base pricing rules
	Promotional discount rules

	21.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI INTEGRATION)
	Rule execution behavior in the Pet Store example
	Pet Store rule file imports, global variables, and Java functions
	Pet Store rules with agenda groups
	Pet Store example execution

	21.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
	Politician and Hope classes
	Rule definitions for politician honesty
	Example execution and audit trail

	21.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI INTEGRATION)
	Sudoku example execution and interaction
	Sudoku example classes
	Sudoku validation rules (validate.drl)
	Sudoku solving rules (sudoku.drl)

	21.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
	Conway example execution and interaction
	Conway example rules with ruleflow groups

	21.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
	Recursive query and related rules
	Transitive closure rule
	Reactive query rule
	Queries with unbound arguments in rules

	CHAPTER 22. PERFORMANCE TUNING CONSIDERATIONS WITH DRL
	CHAPTER 23. NEXT STEPS
	PART IV. DESIGNING A DECISION SERVICE USING GUIDED DECISION TABLES
	CHAPTER 24. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER
	CHAPTER 25. GUIDED DECISION TABLES
	CHAPTER 26. DATA OBJECTS
	26.1. CREATING DATA OBJECTS

	CHAPTER 27. CREATING GUIDED DECISION TABLES
	CHAPTER 28. HIT POLICIES FOR GUIDED DECISION TABLES
	28.1. HIT POLICY EXAMPLES: DECISION TABLE FOR DISCOUNTS ON MOVIE TICKETS
	28.1.1. Types of guided decision tables

	CHAPTER 29. ADDING COLUMNS TO GUIDED DECISION TABLES
	CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLES
	30.1. "ADD A CONDITION"
	30.1.1. Inserting an any other value in condition column cells

	30.2. "ADD A CONDITION BRL FRAGMENT"
	30.3. "ADD A METADATA COLUMN"
	30.4. "ADD AN ACTION BRL FRAGMENT"
	30.5. "ADD AN ATTRIBUTE COLUMN"
	30.6. "DELETE AN EXISTING FACT"
	30.7. "EXECUTE A WORK ITEM"
	30.8. "SET THE VALUE OF A FIELD"
	30.9. "SET THE VALUE OF A FIELD WITH A WORK ITEM RESULT"

	CHAPTER 31. VIEWING RULE NAME COLUMN IN GUIDED DECISION TABLES
	CHAPTER 32. SORTING COLUMN VALUES IN GUIDED DECISION TABLES
	CHAPTER 33. EDITING OR DELETING COLUMNS IN GUIDED DECISION TABLES
	CHAPTER 34. ADDING ROWS AND DEFINING RULES IN GUIDED DECISION TABLES
	CHAPTER 35. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS
	35.1. ADVANCED ENUMERATION OPTIONS FOR RULE ASSETS

	CHAPTER 36. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES
	36.1. TYPES OF PROBLEMS IN GUIDED DECISION TABLES
	36.2. TYPES OF NOTIFICATIONS
	36.3. DISABLING VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES

	CHAPTER 37. CONVERTING A GUIDED DECISION TABLE TO A SPREADSHEET DECISION TABLE
	CHAPTER 38. EXECUTING RULES
	CHAPTER 39. NEXT STEPS
	PART V. DESIGNING A DECISION SERVICE USING SPREADSHEET DECISION TABLES
	CHAPTER 40. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER
	CHAPTER 41. SPREADSHEET DECISION TABLES
	CHAPTER 42. DATA OBJECTS
	42.1. CREATING DATA OBJECTS

	CHAPTER 43. DECISION TABLE USE CASE
	CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES
	44.1. RULESET DEFINITIONS
	44.2. RULETABLE DEFINITIONS
	44.3. ADDITIONAL RULE ATTRIBUTES FOR RULESET OR RULETABLE DEFINITIONS

	CHAPTER 45. UPLOADING SPREADSHEET DECISION TABLES TO BUSINESS CENTRAL
	CHAPTER 46. CONVERTING AN UPLOADED SPREADSHEET DECISION TABLE TO A GUIDED DECISION TABLE IN BUSINESS CENTRAL
	CHAPTER 47. EXECUTING RULES
	CHAPTER 48. NEXT STEPS
	PART VI. DESIGNING A DECISION SERVICE USING GUIDED RULES
	CHAPTER 49. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER
	CHAPTER 50. GUIDED RULES
	CHAPTER 51. DATA OBJECTS
	51.1. CREATING DATA OBJECTS

	CHAPTER 52. CREATING GUIDED RULES
	52.1. ADDING WHEN CONDITIONS IN GUIDED RULES
	52.2. ADDING THEN ACTIONS IN GUIDED RULES
	52.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS
	52.3.1. Advanced enumeration options for rule assets

	52.4. ADDING OTHER RULE OPTIONS
	52.4.1. Rule attributes

	CHAPTER 53. EXECUTING RULES
	CHAPTER 54. NEXT STEPS
	PART VII. DESIGNING A DECISION SERVICE USING GUIDED RULE TEMPLATES
	CHAPTER 55. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER
	CHAPTER 56. GUIDED RULE TEMPLATES
	CHAPTER 57. DATA OBJECTS
	57.1. CREATING DATA OBJECTS

	CHAPTER 58. CREATING GUIDED RULE TEMPLATES
	58.1. ADDING WHEN CONDITIONS IN GUIDED RULE TEMPLATES
	58.2. ADDING THEN ACTIONS IN GUIDED RULE TEMPLATES
	58.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS
	58.3.1. Advanced enumeration options for rule assets

	58.4. ADDING OTHER RULE OPTIONS
	58.4.1. Rule attributes

	CHAPTER 59. DEFINING DATA TABLES FOR GUIDED RULE TEMPLATES
	CHAPTER 60. EXECUTING RULES
	CHAPTER 61. NEXT STEPS
	PART VIII. TESTING A DECISION SERVICE USING TEST SCENARIOS
	CHAPTER 62. TEST SCENARIOS
	CHAPTER 63. DATA OBJECTS
	63.1. CREATING DATA OBJECTS

	CHAPTER 64. TEST SCENARIOS DESIGNER IN BUSINESS CENTRAL
	64.1. IMPORTING DATA OBJECTS
	64.2. IMPORTING A TEST SCENARIO
	64.3. SAVING A TEST SCENARIO
	64.4. COPYING A TEST SCENARIO
	64.5. DOWNLOADING A TEST SCENARIO
	64.6. SWITCHING BETWEEN VERSIONS OF A TEST SCENARIO
	64.7. VIEW OR HIDE THE ALERTS PANEL
	64.8. CONTEXTUAL MENU OPTIONS
	64.9. GLOBAL SETTINGS FOR TEST SCENARIOS
	64.9.1. Configuring global settings for rule-based test scenarios
	64.9.2. Configuring global settings for DMN-based test scenarios

	CHAPTER 65. TEST SCENARIO TEMPLATE
	65.1. CREATING A TEST SCENARIO TEMPLATE FOR RULE-BASED TEST SCENARIOS
	65.2. USING ALIASES IN RULE-BASED TEST SCENARIOS

	CHAPTER 66. TEST TEMPLATE FOR DMN-BASED TEST SCENARIOS
	66.1. CREATING A TEST SCENARIO TEMPLATE FOR DMN-BASED TEST SCENARIOS

	CHAPTER 67. DEFINING A TEST SCENARIO
	CHAPTER 68. BACKGROUND INSTANCE IN TEST SCENARIOS
	68.1. ADDING A BACKGROUND DATA IN RULE-BASED TEST SCENARIOS
	68.2. ADDING A BACKGROUND DATA IN DMN-BASED TEST SCENARIOS

	CHAPTER 69. USING LIST AND MAP COLLECTIONS IN TEST SCENARIOS
	CHAPTER 70. EXPRESSION SYNTAX IN TEST SCENARIOS
	70.1. EXPRESSION SYNTAX IN RULE-BASED TEST SCENARIOS
	70.2. EXPRESSION SYNTAX IN DMN-BASED SCENARIOS

	CHAPTER 71. RUNNING THE TEST SCENARIOS
	CHAPTER 72. RUNNING A TEST SCENARIO LOCALLY
	CHAPTER 73. EXPORTING AND IMPORTING TEST SCENARIO SPREADSHEETS
	73.1. EXPORTING A TEST SCENARIO SPREADSHEET
	73.2. IMPORTING A TEST SCENARIO SPREADSHEET

	CHAPTER 74. COVERAGE REPORTS FOR TEST SCENARIOS
	74.1. GENERATING COVERAGE REPORTS FOR RULE-BASED TEST SCENARIOS
	74.2. GENERATING COVERAGE REPORTS FOR DMN-BASED TEST SCENARIOS

	CHAPTER 75. EXECUTING A TEST SCENARIO USING THE KIE SERVER REST API
	CHAPTER 76. CREATING TEST SCENARIO USING THE SAMPLE MORTGAGES PROJECT
	CHAPTER 77. TEST SCENARIOS (LEGACY) DESIGNER IN BUSINESS CENTRAL
	77.1. CREATING AND RUNNING A TEST SCENARIO (LEGACY)
	77.1.1. Adding GIVEN facts in test scenarios (legacy)
	77.1.2. Adding EXPECT results in test scenarios (legacy)

	CHAPTER 78. FEATURE COMPARISON OF LEGACY AND NEW TEST SCENARIO DESIGNER
	CHAPTER 79. NEXT STEPS
	PART IX. DECISION ENGINE IN RED HAT DECISION MANAGER
	CHAPTER 80. DECISION ENGINE IN RED HAT DECISION MANAGER
	CHAPTER 81. KIE SESSIONS
	81.1. STATELESS KIE SESSIONS
	81.1.1. Global variables in stateless KIE sessions

	81.2. STATEFUL KIE SESSIONS
	81.3. KIE SESSION POOLS

	CHAPTER 82. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE
	82.1. FACT EQUALITY MODES IN THE DECISION ENGINE

	CHAPTER 83. EXECUTION CONTROL IN THE DECISION ENGINE
	83.1. SALIENCE FOR RULES
	83.2. AGENDA GROUPS FOR RULES
	83.3. ACTIVATION GROUPS FOR RULES
	83.4. RULE EXECUTION MODES AND THREAD SAFETY IN THE DECISION ENGINE
	83.5. FACT PROPAGATION MODES IN THE DECISION ENGINE
	83.6. AGENDA EVALUATION FILTERS
	83.7. RULE UNITS IN DRL RULE SETS
	83.7.1. Data sources for rule units
	83.7.2. Rule unit execution control
	83.7.3. Rule unit identity conflicts

	CHAPTER 84. PHREAK RULE ALGORITHM IN THE DECISION ENGINE
	84.1. RULE EVALUATION IN PHREAK
	84.1.1. Rule evaluation with forward and backward chaining

	84.2. RULE BASE CONFIGURATION
	84.3. SEQUENTIAL MODE IN PHREAK

	CHAPTER 85. COMPLEX EVENT PROCESSING (CEP)
	85.1. EVENTS IN COMPLEX EVENT PROCESSING
	85.2. DECLARING FACTS AS EVENTS
	85.3. METADATA TAGS FOR EVENTS
	85.4. EVENT PROCESSING MODES IN THE DECISION ENGINE
	85.4.1. Negative patterns in decision engine stream mode

	85.5. PROPERTY-CHANGE SETTINGS AND LISTENERS FOR FACT TYPES
	85.6. TEMPORAL OPERATORS FOR EVENTS
	85.7. SESSION CLOCK IMPLEMENTATIONS IN THE DECISION ENGINE
	85.8. EVENT STREAMS AND ENTRY POINTS
	85.8.1. Declaring entry points for rule data

	85.9. SLIDING WINDOWS OF TIME OR LENGTH
	85.9.1. Declaring sliding windows for rule data

	85.10. MEMORY MANAGEMENT FOR EVENTS

	CHAPTER 86. DECISION ENGINE QUERIES AND LIVE QUERIES
	CHAPTER 87. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING
	87.1. CONFIGURING A LOGGING UTILITY IN THE DECISION ENGINE

	CHAPTER 88. EXAMPLE DECISIONS IN RED HAT DECISION MANAGER FOR AN IDE
	88.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE
	88.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
	88.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)
	State example using salience
	State example using agenda groups
	Dynamic facts in the State example

	88.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
	88.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)
	Spreadsheet decision table setup
	Base pricing rules
	Promotional discount rules

	88.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI INTEGRATION)
	Rule execution behavior in the Pet Store example
	Pet Store rule file imports, global variables, and Java functions
	Pet Store rules with agenda groups
	Pet Store example execution

	88.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
	Politician and Hope classes
	Rule definitions for politician honesty
	Example execution and audit trail

	88.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI INTEGRATION)
	Sudoku example execution and interaction
	Sudoku example classes
	Sudoku validation rules (validate.drl)
	Sudoku solving rules (sudoku.drl)

	88.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
	Conway example execution and interaction
	Conway example rules with ruleflow groups

	88.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
	Recursive query and related rules
	Transitive closure rule
	Reactive query rule
	Queries with unbound arguments in rules

	CHAPTER 89. PERFORMANCE TUNING CONSIDERATIONS WITH THE DECISION ENGINE
	CHAPTER 90. ADDITIONAL RESOURCES
	PART X. INTEGRATING MACHINE LEARNING WITH RED HAT DECISION MANAGER
	CHAPTER 91. PRAGMATIC AI
	CHAPTER 92. CREDIT CARD FRAUD DISPUTE USE CASE
	92.1. USING A PMML MODEL WITH A DMN MODEL TO RESOLVE CREDIT CARD TRANSACTION DISPUTES
	92.2. CREDIT CARD TRANSACTION DISPUTE EXERCISE PMML FILE

	CHAPTER 93. ADDITIONAL RESOURCES
	APPENDIX A. VERSIONING INFORMATION
	APPENDIX B. CONTACT INFORMATION

