
Red Hat Certificate System 10

Planning, Installation, and Deployment Guide

Updated for Red Hat Certificate System 10.4

Last Updated: 2023-09-08

Red Hat Certificate System 10 Planning, Installation, and Deployment
Guide

Updated for Red Hat Certificate System 10.4

Florian Delehaye
Red Hat Customer Content Services
fdelehay@redhat.com

Marc Muehlfeld
Red Hat Customer Content Services

Petr Bokoč
Red Hat Customer Content Services

Filip Hanzelka
Red Hat Customer Content Services

Tomáš Čapek
Red Hat Customer Content Services

Aneta Petrová
Red Hat Customer Content Services

Ella Deon Ballard
Red Hat Customer Content Services

Legal Notice

Copyright © 2022 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide covers the major PKI (Public Key Infrastructure) concepts and decision areas for
planning a PKI infrastructure.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. PLANNING HOW TO DEPLOY RED HAT CERTIFICATE SYSTEM

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY
1.1. ENCRYPTION AND DECRYPTION
1.2. DIGITAL SIGNATURES
1.3. CERTIFICATES AND AUTHENTICATION
1.4. CERTIFICATE LIFE CYCLE
1.5. KEY MANAGEMENT

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM
2.1. A REVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS
2.2. OVERVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS
2.3. CERTIFICATE SYSTEM ARCHITECTURE OVERVIEW
2.4. PKI WITH CERTIFICATE SYSTEM
2.5. SMART CARD TOKEN MANAGEMENT WITH CERTIFICATE SYSTEM
2.6. RED HAT CERTIFICATE SYSTEM SERVICES
2.7. CLONING

CHAPTER 3. SUPPORTED STANDARDS AND PROTOCOLS
3.1. TLS, ECC, AND RSA
3.2. ALLOWED KEY ALGORITHMS AND THEIR SIZES
3.3. ALLOWED HASH FUNCTIONS
3.4. IPV4 AND IPV6 ADDRESSES
3.5. SUPPORTED PKIX FORMATS AND PROTOCOLS

CHAPTER 4. SUPPORTED PLATFORMS
4.1. GENERAL REQUIREMENTS
4.2. SERVER SUPPORT
4.3. SUPPORTED WEB BROWSERS
4.4. SUPPORTED HARDWARE SECURITY MODULES

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM
5.1. DECIDING ON THE REQUIRED SUBSYSTEMS
5.2. DEFINING THE CERTIFICATE AUTHORITY HIERARCHY
5.3. PLANNING SECURITY DOMAINS
5.4. DETERMINING THE REQUIREMENTS FOR SUBSYSTEM CERTIFICATES
5.5. PLANNING FOR NETWORK AND PHYSICAL SECURITY
5.6. TOKENS FOR STORING CERTIFICATE SYSTEM SUBSYSTEM KEYS AND CERTIFICATES
5.7. A CHECKLIST FOR PLANNING THE PKI
5.8. OPTIONAL THIRD-PARTY SERVICES

PART II. INSTALLING RED HAT CERTIFICATE SYSTEM

CHAPTER 6. PREREQUISITES AND PREPARATION FOR INSTALLATION
6.1. INSTALLING RED HAT ENTERPRISE LINUX
6.2. SECURING THE SYSTEM USING SELINUX
6.3. FIREWALL CONFIGURATION
6.4. HARDWARE SECURITY MODULE
6.5. INSTALLING RED HAT DIRECTORY SERVER
6.6. REPLACING A TEMPORARY SELF-SIGNED CERTIFICATE IN DIRECTORY SERVER (CA)
6.7. ENABLING TLS CLIENT AUTHENTICATION FOR THE INTERNAL LDAP SERVER
6.8. ATTACHING A RED HAT SUBSCRIPTION AND ENABLING THE CERTIFICATE SYSTEM PACKAGE
REPOSITORY

6

7
8

10
11

27
28

30
30
31
41
61

79
91

93

101
101
102
103
103
104

106
106
106
106
106

108
108
112
115
116

126
127
129
132

133

134
134
134
134
135
139
141
141

141

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

6.9. CERTIFICATE SYSTEM OPERATING SYSTEM USERS AND GROUPS

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM
7.1. SUBSYSTEM CONFIGURATION ORDER
7.2. CERTIFICATE SYSTEM PACKAGES
7.3. UNDERSTANDING THE PKISPAWN UTILITY
7.4. SETTING UP A ROOT CERTIFICATE AUTHORITY
7.5. POST-INSTALLATION
7.6. SETTING UP ADDITIONAL SUBSYSTEMS
7.7. TWO-STEP INSTALLATION
7.8. SETTING UP SUBSYSTEMS WITH AN EXTERNAL CA
7.9. SETTING UP A STANDALONE KRA OR OCSP
7.10. POST-INSTALLATION TASKS

CHAPTER 8. USING HARDWARE SECURITY MODULES FOR SUBSYSTEM SECURITY DATABASES
8.1. INSTALLING CERTIFICATE SYSTEM WITH AN HSM
8.2. USING HARDWARE SECURITY MODULES WITH SUBSYSTEMS
8.3. BACKING UP KEYS ON HARDWARE SECURITY MODULES
8.4. INSTALLING A CLONE SUBSYSTEM USING AN HSM
8.5. VIEWING TOKENS
8.6. DETECTING TOKENS

CHAPTER 9. INSTALLING AN INSTANCE WITH ECC SYSTEM CERTIFICATES
9.1. LOADING A THIRD-PARTY ECC MODULE
9.2. USING ECC WITH AN HSM

CHAPTER 10. CLONING SUBSYSTEMS
10.1. BACKING UP SUBSYSTEM KEYS FROM A SOFTWARE DATABASE
10.2. CLONING A CA
10.3. UPDATING CA-KRA CONNECTOR INFORMATION AFTER CLONING
10.4. CLONING OCSP SUBSYSTEMS
10.5. CLONING KRA SUBSYSTEMS
10.6. CLONING TKS SUBSYSTEMS
10.7. CONVERTING MASTERS AND CLONES
10.8. CLONING A CA THAT HAS BEEN RE-KEYED

CHAPTER 11. SETTING UP PKI ACME RESPONDER
11.1. INSTALLING PKI ACME RESPONDER
11.2. CONFIGURING AN ACME DATABASE
11.3. CONFIGURING ACME ISSUER
11.4. CONFIGURING ACME REALM
11.5. DEPLOYING ACME RESPONDER

CHAPTER 12. ADDITIONAL INSTALLATION OPTIONS
12.1. LIGHTWEIGHT SUB-CAS
12.2. ENABLING IPV6 FOR A SUBSYSTEM
12.3. ENABLING LDAP-BASED ENROLLMENT PROFILES
12.4. CUSTOMIZING TLS CIPHERS

CHAPTER 13. TROUBLESHOOTING INSTALLATION AND CLONING
13.1. Installation
13.2. Java Console

PART III. CONFIGURING CERTIFICATE SYSTEM

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

142

143
143
143
146
146
147
147
148
154
157
159

164
164
164
172
172
173
173

174
174
174

175
175
175
176
177
178
179
179
181

184
184
184
186
187
189

190
190
191
191

192

193
193
196

198

199

Planning, Installation, and Deployment Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

14.1. FILE AND DIRECTORY LOCATIONS FOR CERTIFICATE SYSTEM SUBSYSTEMS
14.2. CS.CFG FILES
14.3. MANAGING SYSTEM PASSWORDS
14.4. CONFIGURATION FILES FOR THE TOMCAT ENGINE AND WEB SERVICES
14.5. WEB.XML
14.6. CUSTOMIZING WEB SERVICES
14.7. USING AN ACCESS BANNER
14.8. CONFIGURATION FOR CMC
14.9. CONFIGURATION FOR SERVER-SIDE KEY GENERATION FOR CERTIFICATE ENROLLMENT USING THE
CA EE PORTAL
14.10. CONFIGURING CERTIFICATE TRANSPARENCY

CHAPTER 15. MANAGING CERTIFICATE/KEY CRYPTO TOKEN
About Crypto Tokens
15.1. ABOUT CERTUTIL AND PKICERTIMPORT
15.2. IMPORTING A ROOT CERTIFICATE
15.3. IMPORTING AN INTERMEDIATE CERTIFICATE CHAIN
15.4. IMPORTING A CERTIFICATE INTO AN HSM
15.5. IMPORTING A CERTIFICATE INTO AN NSS DATABASE

CHAPTER 16. CERTIFICATE PROFILES CONFIGURATION
16.1. CREATING AND EDITING CERTIFICATE PROFILES DIRECTLY ON THE FILE SYSTEM

CHAPTER 17. CONFIGURING THE KEY RECOVERY AUTHORITY
17.1. MANUALLY SETTING UP KEY ARCHIVAL
17.2. ENCRYPTION OF KRA OPERATIONS
17.3. SETTING UP AGENT-APPROVED KEY RECOVERY SCHEMES

CHAPTER 18. CONFIGURING LOGS
18.1. CERTIFICATE SYSTEM LOG SETTINGS
18.2. OPERATING SYSTEM (EXTERNAL TO RHCS) LOG SETTINGS
18.3. CONFIGURING LOGS IN THE CS.CFG FILE
18.4. AUDIT RETENTION

CHAPTER 19. CREATING A ROLE USER
19.1. CREATING A PKI ADMINISTRATIVE USER ON THE OPERATING SYSTEM
19.2. CREATING A PKI ROLE USER IN CERTIFICATE SYSTEM

CHAPTER 20. DELETING THE BOOTSTRAP USER
20.1. DISABLING MULTI-ROLES SUPPORT

PART IV. UPGRADING TO CERTIFICATE SYSTEM 10.X

CHAPTER 21. UPGRADING FROM CERTIFICATE SYSTEM 9 TO CERTIFICATE SYSTEM 10
21.1. MIGRATING A CA
21.2. MIGRATING A KRA

CHAPTER 22. UPGRADING CERTIFICATE SYSTEM 10 TO THE LATEST MINOR VERSION

PART V. UNINSTALLING CERTIFICATE SYSTEM SUBSYSTEMS

CHAPTER 23. REMOVING A SUBSYSTEM

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

GLOSSARY

199
206
223
229
238
240
242
243

246
249

251
251
251

254
255
256
257

259
259

271
271

272
276

282
282
285
288
295

298
298
300

301
301

303

304
304
308

314

315

316

317

317

Table of Contents

3

. .

. .

INDEX

APPENDIX A. REVISION HISTORY

334

341

Planning, Installation, and Deployment Guide

4

Table of Contents

5

PART I. PLANNING HOW TO DEPLOY RED HAT
CERTIFICATE SYSTEM

This section provides an overview of Certificate System, including general PKI principles and specific
features of Certificate System and its subsystems. Planning a deployment is vital to designing a PKI
infrastructure that adequately meets the needs of your organization.

Planning, Installation, and Deployment Guide

6

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY
CRYPTOGRAPHY
Public-key cryptography and related standards underlie the security features of many products such as
signed and encrypted email, single sign-on, and Transport Layer Security/Secure Sockets Layer
(SSL/TLS) communications. This chapter covers the basic concepts of public-key cryptography.

Internet traffic, which passes information through intermediate computers, can be intercepted by a third
party:

Eavesdropping

Information remains intact, but its privacy is compromised. For example, someone could gather credit
card numbers, record a sensitive conversation, or intercept classified information.

Tampering

Information in transit is changed or replaced and then sent to the recipient. For example, someone
could alter an order for goods or change a person's resume.

Impersonation

Information passes to a person who poses as the intended recipient. Impersonation can take two
forms:

Spoofing. A person can pretend to be someone else. For example, a person can pretend to
have the email address jdoe@example.net or a computer can falsely identify itself as a site
called www.example.net.

Misrepresentation. A person or organization can misrepresent itself. For example, a site called
www.example.net can purport to be an on-line furniture store when it really receives credit-
card payments but never sends any goods.

Public-key cryptography provides protection against Internet-based attacks through:

Encryption and decryption

Encryption and decryption allow two communicating parties to disguise information they send to
each other. The sender encrypts, or scrambles, information before sending it. The receiver decrypts,
or unscrambles, the information after receiving it. While in transit, the encrypted information is
unintelligible to an intruder.

Tamper detection

Tamper detection allows the recipient of information to verify that it has not been modified in transit.
Any attempts to modify or substitute data are detected.

Authentication

Authentication allows the recipient of information to determine its origin by confirming the sender's
identity.

Nonrepudiation

Nonrepudiation prevents the sender of information from claiming at a later date that the information
was never sent.

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

7

1.1. ENCRYPTION AND DECRYPTION

Encryption is the process of transforming information so it is unintelligible to anyone but the intended
recipient. Decryption is the process of decoding encrypted information. A cryptographic algorithm, also
called a cipher, is a mathematical function used for encryption or decryption. Usually, two related
functions are used, one for encryption and the other for decryption.

With most modern cryptography, the ability to keep encrypted information secret is based not on the
cryptographic algorithm, which is widely known, but on a number called a key that must be used with the
algorithm to produce an encrypted result or to decrypt previously encrypted information. Decryption
with the correct key is simple. Decryption without the correct key is very difficult, if not impossible.

1.1.1. Symmetric-Key Encryption

With symmetric-key encryption, the encryption key can be calculated from the decryption key and vice
versa. With most symmetric algorithms, the same key is used for both encryption and decryption, as
shown in Figure 1.1, “Symmetric-Key Encryption”.

Figure 1.1. Symmetric-Key Encryption

Implementations of symmetric-key encryption can be highly efficient, so that users do not experience
any significant time delay as a result of the encryption and decryption.

Symmetric-key encryption is effective only if the symmetric key is kept secret by the two parties
involved. If anyone else discovers the key, it affects both confidentiality and authentication. A person
with an unauthorized symmetric key not only can decrypt messages sent with that key, but can encrypt
new messages and send them as if they came from one of the legitimate parties using the key.

Symmetric-key encryption plays an important role in SSL/TLS communication, which is widely used for
authentication, tamper detection, and encryption over TCP/IP networks. SSL/TLS also uses techniques
of public-key encryption, which is described in the next section.

1.1.2. Public-Key Encryption

Public-key encryption (also called asymmetric encryption) involves a pair of keys, a public key and a
private key, associated with an entity. Each public key is published, and the corresponding private key is
kept secret. (For more information about the way public keys are published, see Section 1.3, “Certificates
and Authentication”.) Data encrypted with a public key can be decrypted only with the corresponding
private key. Figure 1.2, “Public-Key Encryption” shows a simplified view of the way public-key encryption
works.

Planning, Installation, and Deployment Guide

8

Figure 1.2. Public-Key Encryption

The scheme shown in Figure 1.2, “Public-Key Encryption” allows public keys to be freely distributed, while
only authorized people are able to read data encrypted using this key. In general, to send encrypted
data, the data is encrypted with that person's public key, and the person receiving the encrypted data
decrypts it with the corresponding private key.

Compared with symmetric-key encryption, public-key encryption requires more processing and may not
be feasible for encrypting and decrypting large amounts of data. However, it is possible to use public-
key encryption to send a symmetric key, which can then be used to encrypt additional data. This is the
approach used by the SSL/TLS protocols.

The reverse of the scheme shown in Figure 1.2, “Public-Key Encryption” also works: data encrypted with
a private key can be decrypted only with the corresponding public key. This is not a recommended
practice to encrypt sensitive data, however, because it means that anyone with the public key, which is
by definition published, could decrypt the data. Nevertheless, private-key encryption is useful because it
means the private key can be used to sign data with a digital signature, an important requirement for
electronic commerce and other commercial applications of cryptography. Client software such as
Mozilla Firefox can then use the public key to confirm that the message was signed with the appropriate
private key and that it has not been tampered with since being signed. Section 1.2, “Digital Signatures”
illustrates how this confirmation process works.

1.1.3. Key Length and Encryption Strength

Breaking an encryption algorithm is finding the key to the access the encrypted data in plain text. For
symmetric algorithms, breaking the algorithm usually means trying to determine the key used to encrypt
the text. For a public key algorithm, breaking the algorithm usually means acquiring the shared secret
information between two recipients.

One method of breaking a symmetric algorithm is to simply try every key within the full algorithm until
the right key is found. For public key algorithms, since half of the key pair is publicly known, the other
half (private key) can be derived using published, though complex, mathematical calculations. Manually
finding the key to break an algorithm is called a brute force attack.

Breaking an algorithm introduces the risk of intercepting, or even impersonating and fraudulently
verifying, private information.

The key strength of an algorithm is determined by finding the fastest method to break the algorithm and
comparing it to a brute force attack.

For symmetric keys, encryption strength is often described in terms of the size or length of the keys
used to perform the encryption: longer keys generally provide stronger encryption. Key length is
measured in bits.

An encryption key is considered full strength if the best known attack to break the key is no faster than a
brute force attempt to test every key possibility.

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

9

Different types of algorithms — particularly public key algorithms — may require different key lengths to
achieve the same level of encryption strength as a symmetric-key cipher. The RSA cipher can use only a
subset of all possible values for a key of a given length, due to the nature of the mathematical problem
on which it is based. Other ciphers, such as those used for symmetric-key encryption, can use all possible
values for a key of a given length. More possible matching options means more security.

Because it is relatively trivial to break an RSA key, an RSA public-key encryption cipher must have a very
long key — at least 2048 bits — to be considered cryptographically strong. On the other hand,
symmetric-key ciphers are reckoned to be equivalently strong using a much shorter key length, as little
as 80 bits for most algorithms. Similarly, public-key ciphers based on the elliptic curve cryptography
(ECC), such as the Elliptic Curve Digital Signature Algorithm (ECDSA) ciphers, also require less bits than
RSA ciphers.

1.2. DIGITAL SIGNATURES

Tamper detection relies on a mathematical function called a one-way hash (also called a message
digest). A one-way hash is a number of fixed length with the following characteristics:

The value of the hash is unique for the hashed data. Any change in the data, even deleting or
altering a single character, results in a different value.

The content of the hashed data cannot be deduced from the hash.

As mentioned in Section 1.1.2, “Public-Key Encryption”, it is possible to use a private key for encryption
and the corresponding public key for decryption. Although not recommended when encrypting sensitive
information, it is a crucial part of digitally signing any data. Instead of encrypting the data itself, the
signing software creates a one-way hash of the data, then uses the private key to encrypt the hash. The
encrypted hash, along with other information such as the hashing algorithm, is known as a digital
signature.

Figure 1.3, “Using a Digital Signature to Validate Data Integrity” illustrates the way a digital signature can
be used to validate the integrity of signed data.

Figure 1.3. Using a Digital Signature to Validate Data Integrity

Figure 1.3, “Using a Digital Signature to Validate Data Integrity” shows two items transferred to the
recipient of some signed data: the original data and the digital signature, which is a one-way hash of the
original data encrypted with the signer's private key. To validate the integrity of the data, the receiving
software first uses the public key to decrypt the hash. It then uses the same hashing algorithm that
generated the original hash to generate a new one-way hash of the same data. (Information about the
hashing algorithm used is sent with the digital signature.) Finally, the receiving software compares the
new hash against the original hash. If the two hashes match, the data has not changed since it was

Planning, Installation, and Deployment Guide

10

signed. If they do not match, the data may have been tampered with since it was signed, or the signature
may have been created with a private key that does not correspond to the public key presented by the
signer.

If the two hashes match, the recipient can be certain that the public key used to decrypt the digital
signature corresponds to the private key used to create the digital signature. Confirming the identity of
the signer also requires some way of confirming that the public key belongs to a particular entity. For
more information on authenticating users, see Section 1.3, “Certificates and Authentication” .

A digital signature is similar to a handwritten signature. Once data have been signed, it is difficult to deny
doing so later, assuming the private key has not been compromised. This quality of digital signatures
provides a high degree of nonrepudiation; digital signatures make it difficult for the signer to deny
having signed the data. In some situations, a digital signature is as legally binding as a handwritten
signature.

1.3. CERTIFICATES AND AUTHENTICATION

1.3.1. A Certificate Identifies Someone or Something

A certificate is an electronic document used to identify an individual, a server, a company, or other entity
and to associate that identity with a public key. Like a driver's license or passport, a certificate provides
generally recognized proof of a person's identity. Public-key cryptography uses certificates to address
the problem of impersonation.

To get personal ID such as a driver's license, a person has to present some other form of identification
which confirms that the person is who he claims to be. Certificates work much the same way. Certificate
authorities (CAs) validate identities and issue certificates. CAs can be either independent third parties or
organizations running their own certificate-issuing server software, such as Certificate System. The
methods used to validate an identity vary depending on the policies of a given CA for the type of
certificate being requested. Before issuing a certificate, a CA must confirm the user's identity with its
standard verification procedures.

The certificate issued by the CA binds a particular public key to the name of the entity the certificate
identifies, such as the name of an employee or a server. Certificates help prevent the use of fake public
keys for impersonation. Only the public key certified by the certificate will work with the corresponding
private key possessed by the entity identified by the certificate.

In addition to a public key, a certificate always includes the name of the entity it identifies, an expiration
date, the name of the CA that issued the certificate, and a serial number. Most importantly, a certificate
always includes the digital signature of the issuing CA. The CA's digital signature allows the certificate to
serve as a valid credential for users who know and trust the CA but do not know the entity identified by
the certificate.

For more information about the role of CAs, see Section 1.3.6, “How CA Certificates Establish Trust” .

1.3.2. Authentication Confirms an Identity

Authentication is the process of confirming an identity. For network interactions, authentication involves
the identification of one party by another party. There are many ways to use authentication over
networks. Certificates are one of those way.

Network interactions typically take place between a client, such as a web browser, and a server. Client
authentication refers to the identification of a client (the person assumed to be using the software) by a
server. Server authentication refers to the identification of a server (the organization assumed to be
running the server at the network address) by a client.

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

11

Client and server authentication are not the only forms of authentication that certificates support. For
example, the digital signature on an email message, combined with the certificate that identifies the
sender, can authenticate the sender of the message. Similarly, a digital signature on an HTML form,
combined with a certificate that identifies the signer, can provide evidence that the person identified by
that certificate agreed to the contents of the form. In addition to authentication, the digital signature in
both cases ensures a degree of nonrepudiation; a digital signature makes it difficult for the signer to
claim later not to have sent the email or the form.

Client authentication is an essential element of network security within most intranets or extranets.
There are two main forms of client authentication:

Password-based authentication

Almost all server software permits client authentication by requiring a recognized name and
password before granting access to the server.

Certificate-based authentication

Client authentication based on certificates is part of the SSL/TLS protocol. The client digitally signs
a randomly generated piece of data and sends both the certificate and the signed data across the
network. The server validates the signature and confirms the validity of the certificate.

1.3.2.1. Password-Based Authentication

Figure 1.4, “Using a Password to Authenticate a Client to a Server” shows the process of authenticating a
user using a user name and password. This example assumes the following:

The user has already trusted the server, either without authentication or on the basis of server
authentication over SSL/TLS.

The user has requested a resource controlled by the server.

The server requires client authentication before permitting access to the requested resource.

Figure 1.4. Using a Password to Authenticate a Client to a Server

These are the steps in this authentication process:

1. When the server requests authentication from the client, the client displays a dialog box
requesting the user name and password for that server.

2. The client sends the name and password across the network, either in plain text or over an

Planning, Installation, and Deployment Guide

12

2. The client sends the name and password across the network, either in plain text or over an
encrypted SSL/TLS connection.

3. The server looks up the name and password in its local password database and, if they match,
accepts them as evidence authenticating the user's identity.

4. The server determines whether the identified user is permitted to access the requested
resource and, if so, allows the client to access it.

With this arrangement, the user must supply a new password for each server accessed, and the
administrator must keep track of the name and password for each user.

1.3.2.2. Certificate-Based Authentication

One of the advantages of certificate-based authentication is that it can be used to replace the first
three steps in authentication with a mechanism that allows the user to supply one password, which is not
sent across the network, and allows the administrator to control user authentication centrally. This is
called single sign-on.

Figure 1.5, “Using a Certificate to Authenticate a Client to a Server” shows how client authentication
works using certificates and SSL/TLS. To authenticate a user to a server, a client digitally signs a
randomly generated piece of data and sends both the certificate and the signed data across the
network. The server authenticates the user's identity based on the data in the certificate and signed
data.

Like Figure 1.4, “Using a Password to Authenticate a Client to a Server” , Figure 1.5, “Using a Certificate to
Authenticate a Client to a Server” assumes that the user has already trusted the server and requested a
resource and that the server has requested client authentication before granting access to the
requested resource.

Figure 1.5. Using a Certificate to Authenticate a Client to a Server

Unlike the authentication process in Figure 1.4, “Using a Password to Authenticate a Client to a Server” ,
the authentication process in Figure 1.5, “Using a Certificate to Authenticate a Client to a Server”
requires SSL/TLS. Figure 1.5, “Using a Certificate to Authenticate a Client to a Server” also assumes
that the client has a valid certificate that can be used to identify the client to the server. Certificate-
based authentication is preferred to password-based authentication because it is based on the user
both possessing the private key and knowing the password. However, these two assumptions are true

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

13

only if unauthorized personnel have not gained access to the user's machine or password, the password
for the client software's private key database has been set, and the software is set up to request the
password at reasonably frequent intervals.

NOTE

Neither password-based authentication nor certificate-based authentication address
security issues related to physical access to individual machines or passwords. Public-key
cryptography can only verify that a private key used to sign some data corresponds to
the public key in a certificate. It is the user's responsibility to protect a machine's physical
security and to keep the private-key password secret.

These are the authentication steps shown in Figure 1.5, “Using a Certificate to Authenticate a Client to a
Server”:

1. The client software maintains a database of the private keys that correspond to the public keys
published in any certificates issued for that client. The client asks for the password to this
database the first time the client needs to access it during a given session, such as the first time
the user attempts to access an SSL/TLS-enabled server that requires certificate-based client
authentication.

After entering this password once, the user does not need to enter it again for the rest of the
session, even when accessing other SSL/TLS-enabled servers.

2. The client unlocks the private-key database, retrieves the private key for the user's certificate,
and uses that private key to sign data randomly-generated from input from both the client and
the server. This data and the digital signature are evidence of the private key's validity. The
digital signature can be created only with that private key and can be validated with the
corresponding public key against the signed data, which is unique to the SSL/TLS session.

3. The client sends both the user's certificate and the randomly-generated data across the
network.

4. The server uses the certificate and the signed data to authenticate the user's identity.

5. The server may perform other authentication tasks, such as checking that the certificate
presented by the client is stored in the user's entry in an LDAP directory. The server then
evaluates whether the identified user is permitted to access the requested resource. This
evaluation process can employ a variety of standard authorization mechanisms, potentially using
additional information in an LDAP directory or company databases. If the result of the
evaluation is positive, the server allows the client to access the requested resource.

Certificates replace the authentication portion of the interaction between the client and the server.
Instead of requiring a user to send passwords across the network continually, single sign-on requires the
user to enter the private-key database password once, without sending it across the network. For the
rest of the session, the client presents the user's certificate to authenticate the user to each new server
it encounters. Existing authorization mechanisms based on the authenticated user identity are not
affected.

1.3.3. Uses for Certificates

The purpose of certificates is to establish trust. Their usage varies depending on the kind of trust they
are used to ensure. Some kinds of certificates are used to verify the identity of the presenter; others are
used to verify that an object or item has not been tampered with.

Planning, Installation, and Deployment Guide

14

1.3.3.1. SSL/TLS

The Transport Layer Security/Secure Sockets Layer (SSL/TLS) protocol governs server authentication,
client authentication, and encrypted communication between servers and clients. SSL/TLS is widely
used on the Internet, especially for interactions that involve exchanging confidential information such as
credit card numbers.

SSL/TLS requires an SSL/TLS server certificate. As part of the initial SSL/TLS handshake, the server
presents its certificate to the client to authenticate the server's identity. The authentication uses public-
key encryption and digital signatures to confirm that the server is the server it claims to be. Once the
server has been authenticated, the client and server use symmetric-key encryption, which is very fast, to
encrypt all the information exchanged for the remainder of the session and to detect any tampering.

Servers may be configured to require client authentication as well as server authentication. In this case,
after server authentication is successfully completed, the client must also present its certificate to the
server to authenticate the client's identity before the encrypted SSL/TLS session can be established.

For an overview of client authentication over SSL/TLS and how it differs from password-based
authentication, see Section 1.3.2, “Authentication Confirms an Identity” .

1.3.3.2. Signed and Encrypted Email

Some email programs support digitally signed and encrypted email using a widely accepted protocol
known as Secure Multipurpose Internet Mail Extension (S/MIME). Using S/MIME to sign or encrypt email
messages requires the sender of the message to have an S/MIME certificate.

An email message that includes a digital signature provides some assurance that it was sent by the
person whose name appears in the message header, thus authenticating the sender. If the digital
signature cannot be validated by the email software, the user is alerted.

The digital signature is unique to the message it accompanies. If the message received differs in any way
from the message that was sent, even by adding or deleting a single character, the digital signature
cannot be validated. Therefore, signed email also provides assurance that the email has not been
tampered with. This kind of assurance is known as nonrepudiation, which makes it difficult for the sender
to deny having sent the message. This is important for business communication. For information about
the way digital signatures work, see Section 1.2, “Digital Signatures”.

S/MIME also makes it possible to encrypt email messages, which is important for some business users.
However, using encryption for email requires careful planning. If the recipient of encrypted email
messages loses the private key and does not have access to a backup copy of the key, the encrypted
messages can never be decrypted.

1.3.3.3. Single Sign-on

Network users are frequently required to remember multiple passwords for the various services they
use. For example, a user might have to type a different password to log into the network, collect email,
use directory services, use the corporate calendar program, and access various servers. Multiple
passwords are an ongoing headache for both users and system administrators. Users have difficulty
keeping track of different passwords, tend to choose poor ones, and tend to write them down in obvious
places. Administrators must keep track of a separate password database on each server and deal with
potential security problems related to the fact that passwords are sent over the network routinely and
frequently.

Solving this problem requires some way for a user to log in once, using a single password, and get
authenticated access to all network resources that user is authorized to use-without sending any
passwords over the network. This capability is known as single sign-on.

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

15

Both client SSL/TLS certificates and S/MIME certificates can play a significant role in a comprehensive
single sign-on solution. For example, one form of single sign-on supported by Red Hat products relies on
SSL/TLS client authentication. A user can log in once, using a single password to the local client's
private-key database, and get authenticated access to all SSL/TLS-enabled servers that user is
authorized to use-without sending any passwords over the network. This approach simplifies access for
users, because they do not need to enter passwords for each new server. It also simplifies network
management, since administrators can control access by controlling lists of certificate authorities (CAs)
rather than much longer lists of users and passwords.

In addition to using certificates, a complete single-sign on solution must address the need to
interoperate with enterprise systems, such as the underlying operating system, that rely on passwords or
other forms of authentication.

1.3.3.4. Object Signing

Many software technologies support a set of tools called object signing. Object signing uses standard
techniques of public-key cryptography to let users get reliable information about code they download in
much the same way they can get reliable information about shrink-wrapped software.

Most important, object signing helps users and network administrators implement decisions about
software distributed over intranets or the Internet-for example, whether to allow Java applets signed by
a given entity to use specific computer capabilities on specific users' machines.

The objects signed with object signing technology can be applets or other Java code, JavaScript scripts,
plug-ins, or any kind of file. The signature is a digital signature. Signed objects and their signatures are
typically stored in a special file called a JAR file.

Software developers and others who wish to sign files using object-signing technology must first obtain
an object-signing certificate.

1.3.4. Types of Certificates

The Certificate System is capable of generating different types of certificates for different uses and in
different formats. Planning which certificates are required and planning how to manage them, including
determining what formats are needed and how to plan for renewal, are important to manage both the
PKI and the Certificate System instances.

This list is not exhaustive; there are certificate enrollment forms for dual-use certificates for LDAP
directories, file-signing certificates, and other subsystem certificates. These forms are available through
the Certificate Manager's end-entities page, at https://server.example.com:8443/ca/ee/ca.

When the different Certificate System subsystems are installed, the basic required certificates and keys
are generated; for example, configuring the Certificate Manager generates the CA signing certificate for
the self-signed root CA and the internal OCSP signing, audit signing, SSL/TLS server, and agent user
certificates. During the KRA configuration, the Certificate Manager generates the storage, transport,
audit signing, and agent certificates. Additional certificates can be created and installed separately.

Table 1.1. Common Certificates

Certificate Type Use Example

Planning, Installation, and Deployment Guide

16

Client SSL/TLS
certificates

Used for client authentication to servers
over SSL/TLS. Typically, the identity of
the client is assumed to be the same as
the identity of a person, such as an
employee. See Section 1.3.2.2,
“Certificate-Based Authentication” for a
description of the way SSL/TLS client
certificates are used for client
authentication. Client SSL/TLS
certificates can also be used as part of
single sign-on.

A bank gives a customer an SSL/TLS
client certificate that allows the bank's
servers to identify that customer and
authorize access to the customer's
accounts.

A company gives a new employee an
SSL/TLS client certificate that allows the
company's servers to identify that
employee and authorize access to the
company's servers.

Server SSL/TLS
certificates

Used for server authentication to clients
over SSL/TLS. Server authentication may
be used without client authentication.
Server authentication is required for an
encrypted SSL/TLS session. For more
information, see Section 1.3.3.1,
“SSL/TLS”.

Internet sites that engage in electronic
commerce usually support certificate-
based server authentication to establish
an encrypted SSL/TLS session and to
assure customers that they are dealing
with the web site identified with the
company. The encrypted SSL/TLS
session ensures that personal information
sent over the network, such as credit card
numbers, cannot easily be intercepted.

S/MIME
certificates

Used for signed and encrypted email. As
with SSL/TLS client certificates, the
identity of the client is assumed to be the
same as the identity of a person, such as
an employee. A single certificate may be
used as both an S/MIME certificate and
an SSL/TLS certificate; see
Section 1.3.3.2, “Signed and Encrypted
Email”. S/MIME certificates can also be
used as part of single sign-on.

A company deploys combined S/MIME
and SSL/TLS certificates solely to
authenticate employee identities, thus
permitting signed email and SSL/TLS
client authentication but not encrypted
email. Another company issues S/MIME
certificates solely to sign and encrypt
email that deals with sensitive financial or
legal matters.

CA certificates Used to identify CAs. Client and server
software use CA certificates to determine
what other certificates can be trusted.
For more information, see Section 1.3.6,
“How CA Certificates Establish Trust”.

The CA certificates stored in Mozilla
Firefox determine what other certificates
can be authenticated. An administrator
can implement corporate security policies
by controlling the CA certificates stored
in each user's copy of Firefox.

Object-signing
certificates

Used to identify signers of Java code,
JavaScript scripts, or other signed files.

Software companies frequently sign
software distributed over the Internet to
provide users with some assurance that
the software is a legitimate product of
that company. Using certificates and
digital signatures can also make it
possible for users to identify and control
the kind of access downloaded software
has to their computers.

Certificate Type Use Example

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

17

1.3.4.1. CA Signing Certificates

Every Certificate Manager has a CA signing certificate with a public/private key pair it uses to sign the
certificates and certificate revocation lists (CRLs) it issues. This certificate is created and installed when
the Certificate Manager is installed.

NOTE

For more information about CRLs, see Section 2.4.4, “Revoking Certificates and
Checking Status”.

The Certificate Manager's status as a root or subordinate CA is determined by whether its CA signing
certificate is self-signed or is signed by another CA. Self-signed root CAs set the policies they use to
issue certificates, such as the subject names, types of certificates that can be issued, and to whom
certificates can be issued. A subordinate CA has a CA signing certificate signed by another CA, usually
the one that is a level above in the CA hierarchy (which may or may not be a root CA). If the Certificate
Manager is a subordinate CA in a CA hierarchy, the root CA's signing certificate must be imported into
individual clients and servers before the Certificate Manager can be used to issue certificates to them.

The CA certificate must be installed in a client if a server or user certificate issued by that CA is installed
on that client. The CA certificate confirms that the server certificate can be trusted. Ideally, the
certificate chain is installed.

1.3.4.2. Other Signing Certificates

Other services, such as the Online Certificate Status Protocol (OCSP) responder service and CRL
publishing, can use signing certificates other than the CA certificate. For example, a separate CRL
signing certificate can be used to sign the revocation lists that are published by a CA instead of using the
CA signing certificate.

NOTE

For more information about OCSP, see Section 2.4.4, “Revoking Certificates and
Checking Status”.

1.3.4.3. SSL/TLS Server and Client Certificates

Server certificates are used for secure communications, such as SSL/TLS, and other secure functions.
Server certificates are used to authenticate themselves during operations and to encrypt data; client
certificates authenticate the client to the server.

NOTE

CAs which have a signing certificate issued by a third-party may not be able to issue
server certificates. The third-party CA may have rules in place which prohibit its
subordinates from issuing server certificates.

1.3.4.4. User Certificates

End user certificates are a subset of client certificates that are used to identify users to a server or
system. Users can be assigned certificates to use for secure communications, such as SSL/TLS, and
other functions such as encrypting email or for single sign-on. Special users, such as Certificate System
agents, can be given client certificates to access special services.

Planning, Installation, and Deployment Guide

18

1.3.4.5. Dual-Key Pairs

Dual-key pairs are a set of two private and public keys, where one set is used for signing and one for
encryption. These dual keys are used to create dual certificates. The dual certificate enrollment form is
one of the standard forms listed in the end-entities page of the Certificate Manager.

When generating dual-key pairs, set the certificate profiles to work correctly when generating separate
certificates for signing and encryption.

1.3.4.6. Cross-Pair Certificates

The Certificate System can issue, import, and publish cross-pair CA certificates. With cross-pair
certificates, one CA signs and issues a cross-pair certificate to a second CA, and the second CA signs
and issues a cross-pair certificate to the first CA. Both CAs then store or publish both certificates as a
crossCertificatePair entry.

Bridging certificates can be done to honor certificates issued by a CA that is not chained to the root CA.
By establishing a trust between the Certificate System CA and another CA through a cross-pair CA
certificate, the cross-pair certificate can be downloaded and used to trust the certificates issued by the
other CA.

1.3.5. Contents of a Certificate

The contents of certificates are organized according to the X.509 v3 certificate specification, which has
been recommended by the International Telecommunications Union (ITU), an international standards
body.

Users do not usually need to be concerned about the exact contents of a certificate. However, system
administrators working with certificates may need some familiarity with the information contained in
them.

1.3.5.1. Certificate Data Formats

Certificate requests and certificates can be created, stored, and installed in several different formats. All
of these formats conform to X.509 standards.

1.3.5.1.1. Binary

The following binary formats are recognized:

DER-encoded certificate. This is a single binary DER-encoded certificate.

PKCS #7 certificate chain. This is a PKCS #7 SignedData object. The only significant field in the
SignedData object is the certificates; the signature and the contents, for example, are ignored.
The PKCS #7 format allows multiple certificates to be downloaded at a single time.

Netscape Certificate Sequence . This is a simpler format for downloading certificate chains in a
PKCS #7 ContentInfo structure, wrapping a sequence of certificates. The value of the
contentType field should be netscape-cert-sequence, while the content field has the following
structure:

 CertificateSequence ::= SEQUENCE OF Certificate

This format allows multiple certificates to be downloaded at the same time.

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

19

1.3.5.1.2. Text

Any of the binary formats can be imported in text form. The text form begins with the following line:

-----BEGIN CERTIFICATE-----

Following this line is the certificate data, which can be in any of the binary formats described. This data
should be base-64 encoded, as described by RFC 1113. The certificate information is followed by this line:

-----END CERTIFICATE-----

1.3.5.2. Distinguished Names

An X.509 v3 certificate binds a distinguished name (DN) to a public key. A DN is a series of name-value
pairs, such as uid=doe, that uniquely identify an entity. This is also called the certificate subject name .

This is an example DN of an employee for Example Corp.:

uid=doe, cn=John Doe,o=Example Corp.,c=US

In this DN, uid is the user name, cn is the user's common name, o is the organization or company name,
and c is the country.

DNs may include a variety of other name-value pairs. They are used to identify both certificate subjects
and entries in directories that support the Lightweight Directory Access Protocol (LDAP).

The rules governing the construction of DNs can be complex; for comprehensive information about
DNs, see A String Representation of Distinguished Names at http://www.ietf.org/rfc/rfc4514.txt.

1.3.5.3. A Typical Certificate

Every X.509 certificate consists of two sections:

The data section

This section includes the following information:

The version number of the X.509 standard supported by the certificate.

The certificate's serial number. Every certificate issued by a CA has a serial number that is
unique among the certificates issued by that CA.

Information about the user's public key, including the algorithm used and a representation of
the key itself.

The DN of the CA that issued the certificate.

The period during which the certificate is valid; for example, between 1:00 p.m. on November
15, 2004, and 1:00 p.m. November 15, 2022.

The DN of the certificate subject, which is also called the subject name; for example, in an
SSL/TLS client certificate, this is the user's DN.

Optional certificate extensions, which may provide additional data used by the client or
server. For example:

Planning, Installation, and Deployment Guide

20

http://www.ietf.org/rfc/rfc4514.txt

the Netscape Certificate Type extension indicates the type of certificate, such as an
SSL/TLS client certificate, an SSL/TLS server certificate, or a certificate for signing
email

the Subject Alternative Name (SAN) extension links a certificate to one or more host
names

Certificate extensions can also be used for other purposes.

The signature section

This section includes the following information:

The cryptographic algorithm, or cipher, used by the issuing CA to create its own digital
signature.

The CA's digital signature, obtained by hashing all of the data in the certificate together and
encrypting it with the CA's private key.

Here are the data and signature sections of a certificate shown in the readable pretty-print format:

Certificate:
Data:
 Version: v3 (0x2)
 Serial Number: 3 (0x3)
 Signature Algorithm: PKCS #1 MD5 With RSA Encryption
 Issuer: OU=Example Certificate Authority, O=Example Corp, C=US
 Validity:
 Not Before: Fri Oct 17 18:36:25 1997
 Not After: Sun Oct 17 18:36:25 1999
 Subject: CN=Jane Doe, OU=Finance, O=Example Corp, C=US
 Subject Public Key Info:
 Algorithm: PKCS #1 RSA Encryption
 Public Key:
 Modulus:
 00:ca:fa:79:98:8f:19:f8:d7:de:e4:49:80:48:e6:2a:2a:86:
 ed:27:40:4d:86:b3:05:c0:01:bb:50:15:c9:de:dc:85:19:22:
 43:7d:45:6d:71:4e:17:3d:f0:36:4b:5b:7f:a8:51:a3:a1:00:
 98:ce:7f:47:50:2c:93:36:7c:01:6e:cb:89:06:41:72:b5:e9:
 73:49:38:76:ef:b6:8f:ac:49:bb:63:0f:9b:ff:16:2a:e3:0e:
 9d:3b:af:ce:9a:3e:48:65:de:96:61:d5:0a:11:2a:a2:80:b0:
 7d:d8:99:cb:0c:99:34:c9:ab:25:06:a8:31:ad:8c:4b:aa:54:
 91:f4:15
 Public Exponent: 65537 (0x10001)
 Extensions:
 Identifier: Certificate Type
 Critical: no
 Certified Usage:
 TLS Client
 Identifier: Authority Key Identifier
 Critical: no
 Key Identifier:
 f2:f2:06:59:90:18:47:51:f5:89:33:5a:31:7a:e6:5c:fb:36:
 26:c9
 Signature:
 Algorithm: PKCS #1 MD5 With RSA Encryption

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

21

 Signature:
 6d:23:af:f3:d3:b6:7a:df:90:df:cd:7e:18:6c:01:69:8e:54:65:fc:06:
 30:43:34:d1:63:1f:06:7d:c3:40:a8:2a:82:c1:a4:83:2a:fb:2e:8f:fb:
 f0:6d:ff:75:a3:78:f7:52:47:46:62:97:1d:d9:c6:11:0a:02:a2:e0:cc:
 2a:75:6c:8b:b6:9b:87:00:7d:7c:84:76:79:ba:f8:b4:d2:62:58:c3:c5:
 b6:c1:43:ac:63:44:42:fd:af:c8:0f:2f:38:85:6d:d6:59:e8:41:42:a5:
 4a:e5:26:38:ff:32:78:a1:38:f1:ed:dc:0d:31:d1:b0:6d:67:e9:46:a8:
 d:c4

Here is the same certificate in the base-64 encoded format:

-----BEGIN CERTIFICATE-----
MIICKzCCAZSgAwIBAgIBAzANBgkqhkiG9w0BAQQFADA3MQswCQYDVQQGEwJVUzER
MA8GA1UEChMITmV0c2NhcGUxFTATBgNVBAsTDFN1cHJpeWEncyBDQTAeFw05NzEw
MTgwMTM2MjVaFw05OTEwMTgwMTM2MjVaMEgxCzAJBgNVBAYTAlVTMREwDwYDVQQK
EwhOZXRzY2FwZTENMAsGA1UECxMEUHViczEXMBUGA1UEAxMOU3Vwcml5YSBTaGV0
dHkwgZ8wDQYJKoZIhvcNAQEFBQADgY0AMIGJAoGBAMr6eZiPGfjX3uRJgEjmKiqG
7SdATYazBcABu1AVyd7chRkiQ31FbXFOGD3wNktbf6hRo6EAmM5/R1AskzZ8AW7L
iQZBcrXpc0k4du+2Q6xJu2MPm/8WKuMOnTuvzpo+SGXelmHVChEqooCwfdiZywyZ
NMmrJgaoMa2MS6pUkfQVAgMBAAGjNjA0MBEGCWCGSAGG+EIBAQQEAwIAgDAfBgNV
HSMEGDAWgBTy8gZZkBhHUfWJM1oxeuZc+zYmyTANBgkqhkiG9w0BAQQFAAOBgQBt
I6/z07Z635DfzX4XbAFpjlRl/AYwQzTSYx8GfcNAqCqCwaSDKvsuj/vwbf91o3j3
UkdGYpcd2cYRCgKi4MwqdWyLtpuHAH18hHZ5uvi00mJYw8W2wUOsY0RC/a/IDy84
hW3WWehBUqVK5SY4/zJ4oTjx7dwNMdGwbWfpRqjd1A==
-----END CERTIFICATE-----

1.3.6. How CA Certificates Establish Trust

CAs validate identities and issue certificates. They can be either independent third parties or
organizations running their own certificate-issuing server software, such as the Certificate System.

Any client or server software that supports certificates maintains a collection of trusted CA certificates.
These CA certificates determine which issuers of certificates the software can trust, or validate. In the
simplest case, the software can validate only certificates issued by one of the CAs for which it has a
certificate. It is also possible for a trusted CA certificate to be part of a chain of CA certificates, each
issued by the CA above it in a certificate hierarchy.

The sections that follow explains how certificate hierarchies and certificate chains determine what
certificates software can trust.

1.3.6.1. CA Hierarchies

In large organizations, responsibility for issuing certificates can be delegated to several different CAs.
For example, the number of certificates required may be too large for a single CA to maintain; different
organizational units may have different policy requirements; or a CA may need to be physically located in
the same geographic area as the people to whom it is issuing certificates.

These certificate-issuing responsibilities can be divided among subordinate CAs. The X.509 standard
includes a model for setting up a hierarchy of CAs, shown in Figure 1.6, “Example of a Hierarchy of
Certificate Authorities”.

Planning, Installation, and Deployment Guide

22

Figure 1.6. Example of a Hierarchy of Certificate Authorities

The root CA is at the top of the hierarchy. The root CA's certificate is a self-signed certificate; that is,
the certificate is digitally signed by the same entity that the certificate identifies. The CAs that are
directly subordinate to the root CA have CA certificates signed by the root CA. CAs under the
subordinate CAs in the hierarchy have their CA certificates signed by the higher-level subordinate CAs.

Organizations have a great deal of flexibility in how CA hierarchies are set up; Figure 1.6, “Example of a
Hierarchy of Certificate Authorities” shows just one example.

1.3.6.2. Certificate Chains

CA hierarchies are reflected in certificate chains. A certificate chain is series of certificates issued by
successive CAs. Figure 1.7, “Example of a Certificate Chain” shows a certificate chain leading from a
certificate that identifies an entity through two subordinate CA certificates to the CA certificate for the
root CA, based on the CA hierarchy shown in Figure 1.6, “Example of a Hierarchy of Certificate
Authorities”.

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

23

Figure 1.7. Example of a Certificate Chain

A certificate chain traces a path of certificates from a branch in the hierarchy to the root of the
hierarchy. In a certificate chain, the following occur:

Each certificate is followed by the certificate of its issuer.

Each certificate contains the name (DN) of that certificate's issuer, which is the same as the
subject name of the next certificate in the chain.

In Figure 1.7, “Example of a Certificate Chain” , the Engineering CA certificate contains the DN
of the CA, USA CA, that issued that certificate. USA CA's DN is also the subject name of the
next certificate in the chain.

Each certificate is signed with the private key of its issuer. The signature can be verified with the
public key in the issuer's certificate, which is the next certificate in the chain.

In Figure 1.7, “Example of a Certificate Chain” , the public key in the certificate for the USA CA
can be used to verify the USA CA's digital signature on the certificate for the Engineering CA.

1.3.6.3. Verifying a Certificate Chain

Certificate chain verification makes sure a given certificate chain is well-formed, valid, properly signed,

Planning, Installation, and Deployment Guide

24

Certificate chain verification makes sure a given certificate chain is well-formed, valid, properly signed,
and trustworthy. The following description of the process covers the most important steps of forming
and verifying a certificate chain, starting with the certificate being presented for authentication:

1. The certificate validity period is checked against the current time provided by the verifier's
system clock.

2. The issuer's certificate is located. The source can be either the verifier's local certificate
database on that client or server or the certificate chain provided by the subject, as with an
SSL/TLS connection.

3. The certificate signature is verified using the public key in the issuer's certificate.

4. The host name of the service is compared against the Subject Alternative Name (SAN)
extension. If the certificate has no such extension, the host name is compared against the
subject's CN.

5. The system verifies the Basic Constraint requirements for the certificate, that is, whether the
certificate is a CA and how many subsidiaries it is allowed to sign.

6. If the issuer's certificate is trusted by the verifier in the verifier's certificate database, verification
stops successfully here. Otherwise, the issuer's certificate is checked to make sure it contains
the appropriate subordinate CA indication in the certificate type extension, and chain
verification starts over with this new certificate. Figure 1.8, “Verifying a Certificate Chain to the
Root CA” presents an example of this process.

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

25

Figure 1.8. Verifying a Certificate Chain to the Root CA

Figure 1.8, “Verifying a Certificate Chain to the Root CA” illustrates what happens when only the root CA
is included in the verifier's local database. If a certificate for one of the intermediate CAs, such as
Engineering CA, is found in the verifier's local database, verification stops with that certificate, as
shown in Figure 1.9, “Verifying a Certificate Chain to an Intermediate CA” .

Figure 1.9. Verifying a Certificate Chain to an Intermediate CA

Planning, Installation, and Deployment Guide

26

Expired validity dates, an invalid signature, or the absence of a certificate for the issuing CA at any point
in the certificate chain causes authentication to fail. Figure 1.10, “A Certificate Chain That Cannot Be
Verified” shows how verification fails if neither the root CA certificate nor any of the intermediate CA
certificates are included in the verifier's local database.

Figure 1.10. A Certificate Chain That Cannot Be Verified

1.3.7. Certificate Status

For more information on Certificate Revocation List (CRL), see Section 2.4.4.2.1, “CRLs”

For more information on Online Certificate Status Protocol (OCSP), see Section 2.4.4.2.2, “OCSP
Services”

1.4. CERTIFICATE LIFE CYCLE

Certificates are used in many applications, from encrypting email to accessing websites. There are two
major stages in the lifecycle of the certificate: the point when it is issued (issuance and enrollment) and
the period when the certificates are no longer valid (renewal or revocation). There are also ways to
manage the certificate during its cycle. Making information about the certificate available to other
applications is publishing the certificate and then backing up the key pairs so that the certificate can be
recovered if it is lost.

1.4.1. Certificate Issuance

The process for issuing a certificate depends on the CA that issues it and the purpose for which it will be

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

27

The process for issuing a certificate depends on the CA that issues it and the purpose for which it will be
used. Issuing non-digital forms of identification varies in similar ways. The requirements to get a library
card are different than the ones to get a driver's license. Similarly, different CAs have different
procedures for issuing different kinds of certificates. Requirements for receiving a certificate can be as
simple as an email address or user name and password to notarized documents, a background check,
and a personal interview.

Depending on an organization's policies, the process of issuing certificates can range from being
completely transparent for the user to requiring significant user participation and complex procedures.
In general, processes for issuing certificates should be flexible, so organizations can tailor them to their
changing needs.

1.4.2. Certificate Expiration and Renewal

Like a driver's license, a certificate specifies a period of time during which it is valid. Attempts to use a
certificate for authentication before or after its validity period will fail. Managing certificate expirations
and renewals are an essential part of the certificate management strategy. For example, an
administrator may wish to be notified automatically when a certificate is about to expire so that an
appropriate renewal process can be completed without disrupting the system operation. The renewal
process may involve reusing the same public-private key pair or issuing a new one.

Additionally, it may be necessary to revoke a certificate before it has expired, such as when an employee
leaves a company or moves to a new job in a different unit within the company.

Certificate revocation can be handled in several different ways:

Verify if the certificate is present in the directory

Servers can be configured so that the authentication process checks the directory for the presence
of the certificate being presented. When an administrator revokes a certificate, the certificate can be
automatically removed from the directory, and subsequent authentication attempts with that
certificate will fail, even though the certificate remains valid in every other respect.

Certificate revocation list (CRL)

A list of revoked certificates, a CRL, can be published to the directory at regular intervals. The CRL
can be checked as part of the authentication process.

Real-time status checking

The issuing CA can also be checked directly each time a certificate is presented for authentication.
This procedure is sometimes called real-time status checking.

Online Certificate Status Protocol

The Online Certificate Status Protocol (OCSP) service can be configured to determine the status of
certificates.

For more information about renewing certificates, see Section 2.4.2, “Renewing Certificates”. For more
information about revoking certificates, including CRLs and OCSP, see Section 2.4.4, “Revoking
Certificates and Checking Status”.

1.5. KEY MANAGEMENT

Before a certificate can be issued, the public key it contains and the corresponding private key must be
generated. Sometimes it may be useful to issue a single person one certificate and key pair for signing

Planning, Installation, and Deployment Guide

28

operations and another certificate and key pair for encryption operations. Separate signing and
encryption certificates keep the private signing key only on the local machine, providing maximum
nonrepudiation. This also aids in backing up the private encryption key in some central location where it
can be retrieved in case the user loses the original key or leaves the company.

Keys can be generated by client software or generated centrally by the CA and distributed to users
through an LDAP directory. There are costs associated with either method. Local key generation
provides maximum nonrepudiation but may involve more participation by the user in the issuing process.
Flexible key management capabilities are essential for most organizations.

Key recovery , or the ability to retrieve backups of encryption keys under carefully defined conditions,
can be a crucial part of certificate management, depending on how an organization uses certificates. In
some PKI setups, several authorized personnel must agree before an encryption key can be recovered
to ensure that the key is only recovered to the legitimate owner in authorized circumstance. It can be
necessary to recover a key when information is encrypted and can only be decrypted by the lost key.

CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY

29

CHAPTER 2. INTRODUCTION TO RED HAT
CERTIFICATE SYSTEM
Every common PKI operation, such as issuing, renewing, and revoking certificates; archiving and
recovering keys; publishing CRLs and verifying certificate status, is carried out by interoperating
subsystems within Red Hat Certificate System. The functions of each individual subsystem and the way
that they work together to establish a robust and local PKI is described in this chapter.

2.1. A REVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS

Red Hat Certificate System provides five different subsystems, each focusing on different aspects of a
PKI deployment:

A certificate authority called Certificate Manager . The CA is the core of the PKI; it issues and
revokes all certificates. The Certificate Manager is also the core of the Certificate System. By
establishing a security domain of trusted subsystems, it establishes and manages relationships
between the other subsystems.

A key recovery authority (KRA). Certificates are created based on a specific and unique key pair.
If a private key is ever lost, then the data which that key was used to access (such as encrypted
emails) is also lost because it is inaccessible. The KRA stores key pairs, so that a new, identical
certificate can be generated based on recovered keys, and all of the encrypted data can be
accessed even after a private key is lost or damaged.

NOTE

In previous versions of Certificate System, KRA was also referred to as the data
recovery manager (DRM). Some code, configuration file entries, web panels, and
other resources might still use the term DRM instead of KRA.

An online certificate status protocol (OCSP) responder. The OCSP verifies whether a certificate
is valid and not expired. This function can also be done by the CA, which has an internal OCSP
service, but using an external OCSP responder lowers the load of the issuing CA.

A token key service (TKS). The TKS derives keys based on the token CCID, private information,
and a defined algorithm. These derived keys are used by the TPS to format tokens and enroll
certificates on the token.

A token processing system (TPS). The TPS interacts directly with external tokens, like smart
cards, and manages the keys and certificates on those tokens through a local client, the
Enterprise Security Client (ESC). The ESC contacts the TPS when there is a token operation,
and the TPS interacts with the CA, KRA, or TKS, as required, then send the information back to
the token by way of the Enterprise Security Client.

Even with all possible subsystems installed, the core of the Certificate System is still the CA (or CAs),
since they ultimately process all certificate-related requests. The other subsystems connect to the CA
or CAs likes spokes in a wheel. These subsystems work together, in tandem, to create a public key
infrastructure (PKI). Depending on what subsystems are installed, a PKI can function in one (or both) of
two ways:

A token management system or TMS environment, which manages smart cards. This requires a
CA, TKS, and TPS, with an optional KRA for server-side key generation.

A traditional non token management system or non-TMS environment, which manages

Planning, Installation, and Deployment Guide

30

certificates used in an environment other than smart cards, usually in software databases. At a
minimum, a non-TMS requires only a CA, but a non-TMS environment can use OCSP responders
and KRA instances as well.

2.2. OVERVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS

2.2.1. Separate versus Shared Instances

Red Hat Certificate System supports deployment of separate PKI instances for all subsystems:

Separate PKI instances run as a single Java-based Apache Tomcat instance.

Separate PKI instances contain a single PKI subsystem (CA, KRA, OCSP, TKS, or TPS).

Separate PKI instances must utilize unique ports if co-located on the same physical machine or
virtual machine (VM).

Alternatively, Certificate System supports deployment of a shared PKI instance:

Shared PKI instances also run as a single Java-based Apache Tomcat instance.

Shared PKI instances that contain a single PKI subsystem are identical to a separate PKI
instance.

Shared PKI instances may contain any combination of up to one of each type of PKI subsystem:

CA only

TKS only

CA and KRA

CA and OCSP

TKS and TPS

CA, KRA, TKS, and TPS

CA, KRA, OCSP, TKS, and TPS

etc.

Shared PKI instances allow all of their subsystems contained within that instance to share the
same ports.

Shared PKI instances must utilize unique ports if more than one is co-located on the same
physical machine or VM.

2.2.2. Instance Installation Prerequisites

2.2.2.1. Directory Server Instance Availability

Prior to installation of a Certificate System instance, a local or remote Red Hat Directory Server LDAP
instance must be available. For instructions on installing Red Hat Directory Server, see the Red Hat
Directory Server Installation Guide.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

31

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/index

2.2.2.2. PKI Packages

Red Hat Certificate System is composed of packages listed below:

The following base packages form the core of Certificate System, and are available in base
Red Hat Enterprise Linux repositories:

pki-core

pki-base

pki-base-java

pki-ca

pki-javadoc

pki-kra

pki-server

pki-symkey

pki-tools

The packages listed below are not available in the base Red Hat Enterprise Linux subscription
channel. To install these packages, you must attach a Red Hat Certificate System subscription
pool and enable the RHCS repository. For more information, see Section 6.8, “Attaching a
Red Hat Subscription and Enabling the Certificate System Package Repository”.

pki-core

pki-console

pki-ocsp

pki-tks

pki-tps

redhat-pki

redhat-pki: contains all the packages of the pki-core module. If you wish to pick redhat-
pki packages individually, it is advised to disable the pki-core module.

redhat-pki-console-theme

redhat-pki-server-theme

Use a Red Hat Enterprise Linux 8 system (optionally, use one that has been configured with a supported
Hardware Security Module listed in Chapter 4, Supported Platforms), and make sure that all packages
are up to date before installing Red Hat Certificate System.

To install all Certificate System packages (with the exception of pki-javadoc), use dnf to install the
redhat-pki metapackage:

dnf install redhat-pki

Planning, Installation, and Deployment Guide

32

Alternatively, you can install one or more of the top level PKI subsystem packages as required; see the
list above for exact package names. If you use this approach, make sure to also install the redhat-pki-
server-theme package, and optionally redhat-pki-console-theme and pki-console to use the PKI
Console.

Finally, developers and administrators may also want to install the JSS and PKI javadocs (the jss-javadoc
and pki-javadoc).

NOTE

The jss-javadoc package requires you to enable the Server-Optional repository in
Subscription Manager.

2.2.2.3. Instance Installation and Configuration

The pkispawn command line tool is used to install and configure a new PKI instance. It eliminates the
need for separate installation and configuration steps, and may be run either interactively, as a batch
process, or a combination of both (batch process with prompts for passwords). The utility does not
provide a way to install or configure the browser-based graphical interface.

For usage information, use the pkispawn --help command.

The pkispawn command:

1. Reads in its default name=value pairs from a plain text configuration file (/etc/pki/default.cfg).

2. Interactively or automatically overrides any pairs as specified and stores the final result as a
Python dictionary.

3. Executes an ordered series of scriptlets to perform subsystem and instance installation.

4. The configuration scriptlet packages the Python dictionary as a JavaScript Object Notation
(JSON) data object, which is then passed to the Java-based configuration servlet.

5. The configuration servlet utilizes this data to configure a new PKI subsystem, and then passes
control back to the pkispawn executable, which finalizes the PKI setup. A copy of the final
deployment file is stored in
/var/lib/pki/instance_name/<subsystem>/registry/<subsystem>/deployment.cfg

See the pkispawn man page for additional information.

The default configuration file, /etc/pki/default.cfg, is a plain text file containing the default installation
and configuration values which are read at the beginning of the process described above. It consists of
name=value pairs divided into [DEFAULT], [Tomcat], [CA], [KRA], [OCSP], [TKS], and [TPS] sections.

If you use the -s option with pkispawn and specify a subsystem name, then only the section for that
subsystem will be read.

The sections have a hierarchy: a name=value pair specified in a subsystem section will override the pair
in the [Tomcat] section, which in turn override the pair in the [DEFAULT] section. Default pairs can
further be overriden by interactive input, or by pairs in a specified PKI instance configuration file.

NOTE

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

33

NOTE

Whenever non-interactive files are used to override default name=value pairs, they may
be stored in any location and specified at any time. These files are referred to as
myconfig.txt in the pkispawn man pages, but they are also often referred to as .ini files,
or more generally as PKI instance configuration override files.

See the pki_default.cfg man page for more information.

The Configuration Servlet consists of Java bytecode stored in /usr/share/java/pki/pki-certsrv.jar as
com/netscape/certsrv/system/ConfigurationRequest.class. The servlet processes data passed in as a
JSON object from the configuration scriptlet using pkispawn, and then returns to pkispawn using Java
bytecode served in the same file as com/netscape/certsrv/system/ConfigurationResponse.class.

An example of an interactive installation only involves running the pkispawn command on a command
line as root:

pkispawn

IMPORTANT

Interactive installation currently only exists for very basic deployments. For example,
deployments intent upon using advanced features such as cloning, Elliptic Curve
Cryptography (ECC), external CA, Hardware Security Module (HSM), subordinate CA,
and others, must provide the necessary override parameters in a separate configuration
file.

A non-interactive installation requires a PKI instance configuration override file, and the process may
look similar to the following example:

1. # mkdir -p /root/pki

2. Use a text editor such as vim to create a configuration file named /root/pki/ca.cfg with the
following contents:

[DEFAULT]
pki_admin_password=<password>
pki_client_pkcs12_password=<password>
pki_ds_password=<password>

3. # pkispawn -s CA -f /root/pki/ca.cfg

See the pkispawn man page for various configuration examples.

2.2.2.4. Instance Removal

To remove an existing PKI instance, use the pkidestroy command. It can be run interactively or as a
batch process. Use pkidestroy -h to display detailed usage inforamtion on the command line.

The pkidestroy command reads in a PKI subsystem deployment configuration file which was stored
when the subsystem was created
(/var/lib/pki/instance_name/<subsystem>/registry/<subsystem>/deployment.cfg), uses the read-in

Planning, Installation, and Deployment Guide

34

file in order to remove the PKI subsystem, and then removes the PKI instance if it contains no additional
subsystems. See the pkidestroy man page for more information.

An interactive removal procedure using pkidestroy may look similar to the following:

pkidestroy
Subsystem (CA/KRA/OCSP/TKS/TPS) [CA]:
Instance [pki-tomcat]:

Begin uninstallation (Yes/No/Quit)? Yes

Log file: /var/log/pki/pki-ca-destroy.20150928183547.log
Loading deployment configuration from /var/lib/pki/pki-tomcat/ca/registry/ca/deployment.cfg.
Uninstalling CA from /var/lib/pki/pki-tomcat.
rm '/etc/systemd/system/multi-user.target.wants/pki-tomcatd.target'

Uninstallation complete.

A non-interactive removal procedure may look similar to the following example:

pkidestroy -s CA -i pki-tomcat
Log file: /var/log/pki/pki-ca-destroy.20150928183159.log
Loading deployment configuration from /var/lib/pki/pki-tomcat/ca/registry/ca/deployment.cfg.
Uninstalling CA from /var/lib/pki/pki-tomcat.
rm '/etc/systemd/system/multi-user.target.wants/pki-tomcatd.target'

Uninstallation complete.

2.2.3. Execution Management (systemctl)

2.2.3.1. Starting, Stopping, Restarting, and Obtaining Status

Red Hat Certificate System subsystem instances can be stopped and started using the systemctl
execution management system tool on Red Hat Enterprise Linux 8:

systemctl start <unit-file>@instance_name.service

systemctl status <unit-file>@instance_name.service

systemctl stop <unit-file>@instance_name.service

systemctl restart <unit-file>@instance_name.service

<unit-file> has one of the following values:

pki-tomcatd With watchdog disabled
pki-tomcatd-nuxwdog With watchdog enabled

For more details on the watchdog service, refer to the Section 2.3.10, “Passwords and Watchdog
(nuxwdog)” and Section 14.3.2, “Using the Certificate System Watchdog Service” .

NOTE

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

35

NOTE

In RHCS 10, these systemctl actions support the pki-serveralias: pki-server
<command> subsystem_instance_name is the alias for systemctl <command> pki-
tomcatd@<instance>.service.

2.2.3.2. Starting the Instance Automatically

The systemctl utility in Red Hat Enterprise Linux manages the automatic startup and shutdown
settings for each process on the server. This means that when a system reboots, some services can be
automatically restarted. System unit files control service startup to ensure that services are started in
the correct order. The systemd service and systemctl utility are described in the Configuring basic
system settings guide for Red Hat Enterprise Linux 8.

Certificate System instances can be managed by systemctl, so this utility can set whether to restart
instances automatically. After a Certificate System instance is created, it is enabled on boot. This can be
changed by using systemctl:

systemctl disable pki-tomcatd@instance_name.service

To re-enable the instance:

systemctl enable pki-tomcatd@instance_name.service

NOTE

The systemctl enable and systemctl disable commands do not immediately start or
stop Certificate System.

2.2.4. Process Management (pki-server and pkidaemon)

2.2.4.1. The pki-server Command Line Tool

The primary process management tool for Red Hat Certificate System is pki-server. Use the pki-server
--help command and see the pki-server man page for usage information.

The pki-server command-line interface (CLI) manages local server instances (for example server
configuration or system certificates). Invoke the CLI as follows:

$ pki-server [CLI options] <command> [command parameters]

The CLI uses the configuration files and NSS database of the server instance, therefore the CLI does
not require any prior initialization. Since the CLI accesses the files directly, it can only be executed by
the root user, and it does not require client certificate. Also, the CLI can run regardless of the status of
the server; it does not require a running server.

The CLI supports a number of commands organized in a hierarchical structure. To list the top-level
commands, execute the CLI without any additional commands or parameters:

$ pki-server

Some commands have subcommands. To list them, execute the CLI with the command name and no
additional options. For example:

Planning, Installation, and Deployment Guide

36

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/managing-system-services-with-systemctl_configuring-basic-system-settings#service-unit-management-with-systemctl_managing-system-services-with-systemctl

$ pki-server ca
$ pki-server ca-audit

To view command usage information, use the --help option:

$ pki-server --help
$ pki-server ca-audit-event-find --help

2.2.4.2. Enabling and Disabling an Installed Subsystem Using pki-server

To enable or disable an installed subsystem, use the pki-server utility.

pki-server subsystem-disable -i instance_id subsystem_id

pki-server subsystem-enable -i instance_id subsystem_id

Replace subsystem_id with a valid subsystem identifier: ca, kra, tks, ocsp, or tps.

NOTE

One instance can have only one of each type of subsystem.

For example, to disable the OCSP subsystem on an instance named pki-tomcat:

pki-server subsystem-disable -i pki-tomcat ocsp

To list the installed subsystems for an instance:

pki-server subsystem-find -i instance_id

To show the status of a particular subsystem:

pki-server subsystem-find -i instance_id subsystem_id

2.2.4.3. The pkidaemon Command Line Tool

Another process management tool for Red Hat Certificate System is the pkidaemon tool:

pkidaemon {start|status} instance-type [instance_name]

pkidaemon status tomcat - Provides status information such as on/off, ports, URLs of each
PKI subsystem of all PKI instances on the system.

pkidaemon status tomcat instance_name - Provides status information such as on/off, ports,
URLs of each PKI subsystem of a specific instance.

pkidaemon start tomcat instance_name.service - Used internally using systemctl.

See the pkidaemon man page for additional information.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

37

2.2.4.4. Finding the Subsystem Web Services URLs

The CA, KRA, OCSP, TKS, and TPS subsystems have web services pages for agents, as well as regular
users and administrators, when appropriate. These web services can be accessed by opening the URL to
the subsystem host over the subsystem's secure end user's port. For example, for the CA:

https://server.example.com:8443/ca/services

NOTE

To get a complete list of all of the interfaces, URLs, and ports for an instance, check the
status of the service. For example:

pkidaemon status instance_name

The main web services page for each subsystem has a list of available services pages; these are
summarized in Table 2.1, “Default Web Services Pages” . To access any service specifically, access the
appropriate port and append the appropriate directory to the URL. For example, to access the CA's end
entities (regular users) web services:

https://server.example.com:8443/ca/ee/ca

If DNS is not configured, then an IPv4 or IPv6 address can be used to connect to the services pages. For
example:

https://192.0.2.1:8443/ca/services
https://[2001:DB8::1111]:8443/ca/services

NOTE

Anyone can access the end user pages for a subsystem. However, accessing agent or
admin web services pages requires that an agent or administrator certificate be issued
and installed in the web browser. Otherwise, authentication to the web services fails.

Table 2.1. Default Web Services Pages

Port Used for SSL/TLS Used for Client
Authentication[a]

Web Services Web Service
Location

Certificate
Manager

8080 No End Entities ca/ee/ca

8443 Yes No End Entities ca/ee/ca

8443 Yes Yes Agents ca/agent/ca

8443 Yes No Services ca/services

Planning, Installation, and Deployment Guide

38

8443 Yes No Console pkiconsole
https://host:port/c
a

Key Recovery
Authority

8080 No End Entities[b] kra/ee/kra

8443 Yes No End Entities[b] kra/ee/kra

8443 Yes Yes Agents kra/agent/kra

8443 Yes No Services kra/services

8443 Yes No Console pkiconsole
https://host:port/k
ra

Online Certificate
Status Manager

8080 No End Entities[c] ocsp/ee/ocsp

8443 Yes No End Entities[c] ocsp/ee/ocsp

8443 Yes Yes Agents ocsp/agent/ocsp

8443 Yes No Services ocsp/services

8443 Yes No Console pkiconsole
https://host:port/o
csp

Token Key
Service

8080 No End Entities[b] tks/ee/tks

8443 Yes No End Entities[b] tks/ee/tks

8443 Yes Yes Agents tks/agent/tks

8443 Yes No Services tks/services

Port Used for SSL/TLS Used for Client
Authentication[a]

Web Services Web Service
Location

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

39

8443 Yes No Console pkiconsole
https://host:port/t
ks

Token Processing
System

8080 No Unsecure Services tps/tps

8443 Yes Secure Services tps/tps

8080 No Enterprise Security
Client Phone
Home

tps/phoneHome

8443 Yes Enterprise Security
Client Phone
Home

tps/phoneHome

8443 Yes Yes Admin, Agent, and
Operator Services
[d]

tps/ui

[a] Services with a client authentication value of No can be reconfigured to require client authentication. Services which
do not have either a Yes or No value cannot be configured to use client authentication.

[b] Although this subsystem type does have end entities ports and interfaces, these end-entity services are not accessible
through a web browser, as other end-entity services are.

[c] Although the OCSP does have end entities ports and interfaces, these end-entity services are not accessible through a
web browser, as other end-entity services are. End user OCSP services are accessed by a client sending an OCSP request.

[d] The agent, admin, and operator services are all accessed through the same web services page. Each role can only access
specific sections which are only visible to the members of that role.

Port Used for SSL/TLS Used for Client
Authentication[a]

Web Services Web Service
Location

2.2.4.5. Starting the Certificate System Console

IMPORTANT

This console is being deprecated.

The CA, KRA, OCSP, and TKS subsystems have a Java interface which can be accessed to perform
administrative functions. For the KRA, OCSP, and TKS, this includes very basic tasks like configuring
logging and managing users and groups. For the CA, this includes other configuration settings such as
creating certificate profiles and configuring publishing.

The Console is opened by connecting to the subsystem instance over its SSL/TLS port using the
pkiconsole utility. This utility uses the format:

Planning, Installation, and Deployment Guide

40

pkiconsole https://server.example.com:admin_port/subsystem_type

The subsystem_type can be ca, kra, ocsp, or tks. For example, this opens the KRA console:

pkiconsole https://server.example.com:8443/kra

If DNS is not configured, then an IPv4 or IPv6 address can be used to connect to the console. For
example:

https://192.0.2.1:8443/ca
https://[2001:DB8::1111]:8443/ca

2.3. CERTIFICATE SYSTEM ARCHITECTURE OVERVIEW

Although each provides a different service, all RHCS subsystems (CA, KRA, OCSP, TKS, TPS) share a
common architecture. The following architectural diagram shows the common architecture shared by all
of these subsystems.

2.3.1. Java Application Server

Java application server is a Java framework to run server applications. The Certificate System is
designed to run within a Java application server. Currently the only Java application server supported is
Tomcat 8. Support for other application servers may be added in the future. More information can be
found at http://tomcat.apache.org/.

Each Certificate System instance is a Tomcat server instance. The Tomcat configuration is stored in
server.xml. The following link provides more information about Tomcat configuration:
https://tomcat.apache.org/tomcat-8.0-doc/config/.

Each Certificate System subsystem (such as CA or KRA) is deployed as a web application in Tomcat.
The web application configuration is stored in a web.xml file, which is defined in Java Servlet 3.1
specification. See https://www.jcp.org/en/jsr/detail?id=340 for details.

The Certificate System configuration itself is stored in CS.cfg.

See Section 2.3.15, “Instance Layout” for the actual locations of these files.

2.3.2. Java Security Manager

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

41

http://tomcat.apache.org/
https://tomcat.apache.org/tomcat-8.0-doc/config/
https://www.jcp.org/en/jsr/detail?id=340

Java services have the option of having a Security Manager which defines unsafe and safe operations
for applications to perform. When the subsystems are installed, they have the Security Manager enabled
automatically, meaning each Tomcat instance starts with the Security Manager running.

The Security Manager is disabled if the instance is created by running pkispawn and using an override
configuration file which specifies the pki_security_manager=false option under its own Tomcat
section.

The Security Manager can be disabled from an installed instance using the following procedure:

1. # pki-server stop instance_name

or (if using the nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

2. Open the /etc/sysconfig/instance_name file, and set SECURITY_MANAGER="false"

3. # pki-server start instance_name

or (if using the nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@instance_name.service

When an instance is started or restarted, a Java security policy is constructed or reconstructed by
pkidaemon from the following files:

/usr/share/pki/server/conf/catalina.policy
/usr/share/tomcat/conf/catalina.policy
/var/lib/pki/$PKI_INSTANCE_NAME/conf/pki.policy
/var/lib/pki/$PKI_INSTANCE_NAME/conf/custom.policy

Then, it is saved into /var/lib/pki/instance_name/conf/catalina.policy.

2.3.3. Interfaces

Planning, Installation, and Deployment Guide

42

2.3.3.1. Servlet Interface

Each subsystem contains interfaces allowing interaction with various portions of the subsystem. All
subsystems share a common administrative interface and have an agent interface that allows for agents
to perform the tasks assigned to them. A CA Subsystem has an end-entity interface that allows end-
entities to enroll in the PKI. An OCSP Responder subsystem has an end-entity interface allowing end-
entities and applications to check for current certificate revocation status. Finally, a TPS has an operator
interface.

While the application server provides the connection entry points, Certificate System completes the
interfaces by providing the servlets specific to each interface.

The servlets for each subsystem are defined in the corresponding web.xml file. The same file also
defines the URL of each servlet and the security requirements to access the servlets. See Section 2.3.1,
“Java Application Server” for more information.

2.3.3.2. Administrative Interface

The agent interface provides Java servlets to process HTML form submissions coming from the agent
entry point. Based on the information given in each form submission, the agent servlets allow agents to
perform agent tasks, such as editing and approving requests for certificate approval, certificate renewal,
and certificate revocation, approving certificate profiles. The agent interfaces for a KRA subsystem, or a
TKS subsystem, or an OCSP Responder are specific to the subsystems.

In the non-TMS setup, the agent interface is also used for inter-CIMC boundary communication for the
CA-to-KRA trusted connection. This connection is protected by SSL client-authentication and
differentiated by separate trusted roles called Trusted Managers. Like the agent role, the Trusted
Managers (pseudo-users created for inter-CIMC boundary connection only) are required to be SSL
client-authenticated. However, unlike the agent role, they are not offered any agent capability.

In the TMS setup, inter-CIMC boundary communication goes from TPS-to-CA, TPS-to-KRA, and TPS-
to-TKS.

2.3.3.3. End-Entity Interface

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

43

For the CA subsystem, the end-entity interface provides Java servlets to process HTML form
submissions coming from the end-entity entry point. Based on the information received from the form
submissions, the end-entity servlets allow end-entities to enroll, renew certificates, revoke their own
certificates, and pick up issued certificates. The OCSP Responder subsystem's End-Entity interface
provides Java servlets to accept and process OCSP requests. The KRA, TKS, and TPS subsystems do
not offer any End-Entity services.

2.3.3.4. Operator Interface

The operator interface is only found in the TPS subsystem.

2.3.4. REST Interface

Representational state transfer (REST) is a way to use HTTP to define and organize web services which
will simplify interoperability with other applications. Red Hat Certificate System provides a REST
interface to access various services on the server.

The REST services in Red Hat Certificate System are implemented using the RESTEasy framework.
RESTEasy is actually running as a servlet in the web application, so the RESTEasy configuration can also

Planning, Installation, and Deployment Guide

44

be found in the web.xml of the corresponding subsystem. More information about RESTEasy can be
found at http://resteasy.jboss.org/.

Each REST service is defined as a separate URL. For example:

CA certificate service: http://<host_name>:<port>/ca/rest/certs/

KRA key service: http://<host_name>:<port>/kra/rest/agent/keys/

TKS user service: http://<host_name>:<port>/tks/rest/admin/users/

TPS group service: http://<host_name>:<port>/tps/rest/admin/groups/

Some services can be accessed using plain HTTP connection, but some others may require HTTPS
connection for security.

The REST operation is specified as HTTP method (for example, GET, PUT, POST, DELETE). For
example, to get the CA users the client will send a GET /ca/rest/users request.

The REST request and response messages can be sent in XML or JSON format. For example:

{
 "id":"admin",
 "UserID":"admin",
 "FullName":"Administrator",
 "Email":"admin@example.com",
 ...
}

The REST interface can be accessed using tools such as CLI, Web UI, or generic REST client.
Certificate System also provides Java, Python, and JavaScript libraries to access the services
programmatically.

The REST interface supports two types of authentication methods:

user name and password

client certificate

The authentication method required by each service is defined in /usr/share/pki/ca/conf/auth-
method.properties.

The REST interface may require certain permissions to access the service. The permissions are defined
in the ACL resources in LDAP. The REST interface are mapped to the ACL resources in the
/usr/share/pki/<subsystem>/conf/acl.properties.

For more information about the REST interface, see http://www.dogtagpki.org/wiki/REST.

2.3.5. JSS

Java Security Services (JSS) provides a Java interface for cryptographic operations performed by NSS.
JSS and higher levels of the Certificate System architecture are built with Java Native Interface (JNI),
which provides access to native system libraries from within the Java Virtual Machine (JVM). This
design allows us to use FIPS approved cryptographic providers such as NSS which are distributed as part
of the system. JSS supports most of the security standards and encryption technologies supported by
NSS. JSS also provides a pure Java interface for ASN.1 types and BER-DER encoding.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

45

http://resteasy.jboss.org/
http://www.dogtagpki.org/wiki/REST

2.3.6. Tomcatjss

Java-based subsystems in Red Hat Certificate System use a single JAR file called tomcatjss as a bridge
between the Tomcat Server HTTP engine and JSS, the Java interface for security operations
performed by NSS. Tomcatjss is a Java Secure Socket Extension (JSSE) implementation using Java
Security Services (JSS) for Tomcat.

Tomcatjss implements the interfaces needed to use TLS and to create TLS sockets. The socket factory,
which tomcatjss implements, makes use of the various properties listed below to create a TLS server
listening socket and return it to tomcat. Tomcatjss itself, makes use of our java JSS system to ultimately
communicate with the native NSS cryptographic services on the machine.

Tomcatjss is loaded when the Tomcat server and the Certificate System classes are loaded. The load
process is described below:

1. The server is started.

2. Tomcat gets to the point where it needs to create the listening sockets for the
Certificate System installation.

3. The server.xml file is processed. Configuration in this file tells the system to use a socket
factory implemented by Tomcatjss.

4. For each requested socket, Tomcajss reads and processes the included attributes when it
creates the socket. The resulting socket will behave as it has been asked to by those
parameters.

5. Once the server is running, we have the required set of listening sockets waiting for incoming
connections to the Tomcat-based Certificate System.

Note that when the sockets are created at startup, Tomcatjss is the first entity in Certificate System
that actually deals with the underlying JSS security services. Once the first listening socket is processed,
an instance of JSS is created for use going forward.

For further details about the server.xml file, see Section 14.4, “Configuration Files for the Tomcat
Engine and Web Services”.

2.3.7. PKCS #11

Public-Key Cryptography Standard (PKCS) #11 specifies an API used to communicate with devices that
hold cryptographic information and perform cryptographic operations. Because it supports PKCS #11,
Certificate System is compatible with a wide range of hardware and software devices.

At least one PKCS #11 module must be available to any Certificate System subsystem instance. A PKCS
#11 module (also called a cryptographic module or cryptographic service provider) manages
cryptographic services such as encryption and decryption. PKCS #11 modules are analogous to drivers
for cryptographic devices that can be implemented in either hardware or software. Certificate System
contains a built-in PKCS #11 module and can support third-party modules.

A PKCS #11 module always has one or more slots which can be implemented as physical hardware slots in
a physical reader such as smart cards or as conceptual slots in software. Each slot for a PKCS #11 module
can in turn contain a token, which is a hardware or software device that actually provides cryptographic
services and optionally stores certificates and keys.

Planning, Installation, and Deployment Guide

46

The Certificate System defines two types of tokens, the internal and the external. The internal token is
used for storing certificate trust anchors. The external token is used for storing key pairs and
certificates that belong to the Certificate System subsystems.

2.3.7.1. NSS Soft Token (internal token)

NOTE

Certificate System uses an NSS soft token for storing certificate trust anchors.

NSS Soft Token is also called an internal token or a software token. The software token consists of two
files, which are usually called the certificate database (cert9.db) and key database (key4.db). The files
are created during the Certificate System subsystem configuration. These security databases are
located in the /var/lib/pki/instance_name/alias directory.

Two cryptographic modules provided by the NSS soft token are included in the Certificate System:

The default internal PKCS #11 module, which comes with two tokens:

The internal crypto services token, which performs all cryptographic operations such as
encryption, decryption, and hashing.

The internal key storage token ("Certificate DB token"), which handles all communication
with the certificate and key database files that store certificates and keys.

The FIPS 140 module. This module complies with the FIPS 140 government standard for
cryptographic module implementations. The FIPS 140 module includes a single, built-in FIPS 140
certificate database token, which handles both cryptographic operations and communication

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

47

with the certificate and key database files.

Specific instructions on how to import certificates onto the NSS soft token are in Chapter 15, Managing
Certificate/Key Crypto Token.

For more information on the Network Security Services (NSS), see Mozilla Developer web pages of the
same name.

2.3.7.2. Hardware Security Module (HSM, external token)

NOTE

Certificate System uses an HSM for storing key pairs and certificates that belong to the
Certificate System subsystems.

Any PKCS #11 module can be used with the Certificate System. To use an external hardware token with a
subsystem, load its PKCS #11 module before the subsystem is configured, and the new token is available
to the subsystem.

Available PKCS #11 modules are tracked in the pkcs11.txt database for the subsystem. The modutil
utility is used to modify this file when there are changes to the system, such as installing a hardware
accelerator to use for signing operations. For more information on modutil, see Network Security
Services (NSS) at Mozilla Developer webpage.

PKCS #11 hardware devices also provide key backup and recovery features for the information stored on
hardware tokens. Refer to the PKCS #11 vendor documentation for information on retrieving keys from
the tokens.

Specific instructions on how to import certificates and to manage the HSM are in Chapter 15, Managing
Certificate/Key Crypto Token.

Supported Hardware Security Modules are located in Section 4.4, “Supported Hardware Security
Modules”.

2.3.8. Certificate System Serial Number Management

2.3.8.1. Serial Number Ranges

Certificate request and serial numbers are represented by Java’s big integers

By default, due to their efficiency, certificate request numbers, certificate serial numbers, and replica IDs
are assigned sequentially for CA subsystems.

Serial number ranges are specifiable for requests, certificates, and replica IDs:

Current serial number management is based on assigning ranges of sequential serial numbers.

Instances request new ranges when crossing below a defined threshold.

Instances store information about a newly acquired range once it is assigned to the instance.

Instances continue using old ranges until all numbers are exhausted from it, and then it moves to
the new range.

Cloned subsystems synchronize their range assignment through replication conflicts.

Planning, Installation, and Deployment Guide

48

http://docs.oracle.com/javase/8/docs/api/index.html?java/math/BigInteger.html

For new clones:

Part of the current range of the master is transferred to a new clone in the process of cloning.

New clones may request a new range if the transferred range is below the defined threshold.

All ranges are configurable at CA instance installation time by adding a [CA] section to the PKI instance
override configuration file, and adding the following name=value pairs under that section as needed.
Default values which already exist in /etc/pki/default.cfg are shown in the following example:

[CA]
pki_serial_number_range_start=1
pki_serial_number_range_end=10000000
pki_request_number_range_start=1
pki_request_number_range_end=10000000
pki_replica_number_range_start=1
pki_replica_number_range_end=100

2.3.8.2. Random Serial Number Management

In addition to sequential serial number management, Red Hat Certificate System provides optional
random serial number management. Using random serial numbers is selectable at CA instance
installation time by adding a [CA] section to the PKI instance override file and adding the following
name=value pair under that section:

[CA]
pki_random_serial_numbers_enable=True

If selected, certificate request numbers and certificate serial numbers will be selected randomly within
the specified ranges.

2.3.9. Security Domain

A security domain is a registry of PKI services. Services such as CAs register information about
themselves in these domains so users of PKI services can find other services by inspecting the registry.
The security domain service in RHCS manages both the registration of PKI services for
Certificate System subsystems and a set of shared trust policies.

See Section 5.3, “Planning Security Domains” for further details.

2.3.10. Passwords and Watchdog (nuxwdog)

In the default setup, an RHCS subsystem instance needs to act as a client and authenticate to some
other services, such as an LDAP internal database (unless TLS client authentication is set up, where a
certificate will be used for authentication instead), the NSS token database, or sometimes an HSM with
a password. The administrator is prompted to set up this password at the time of installation
configuration. This password is then written to the file <instance_dir>/conf/password.conf. At the
same time, an identifying string is stored in the main configuration file CS.cfg as part of the parameter
cms.passwordlist.

The configuration file, CS.cfg, is protected by Red Hat Enterprise Linux, and only accessible by the PKI
administrators. No passwords are stored in CS.cfg.

During installation, the installer will select and log into either the internal software token or a hardware

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

49

During installation, the installer will select and log into either the internal software token or a hardware
cryptographic token. The login passphrase to these tokens is also written to password.conf.

Configuration at a later time can also place passwords into password.conf. LDAP publishing is one
example where the newly configured Directory Manager password for the publishing directory is entered
into password.conf.

Nuxwdog (watchdog) is a lightweight auxiliary daemon process that is used to start, stop, monitor the
status of, and reconfigure server programs. It is most useful when users need to be prompted for
passwords to start a server, because it caches these passwords securely in the kernel keyring, so that
restarts can be done automatically in the case of a server crash.

NOTE

Nuxwdog is the only allowed watchdog service.

Once installation is complete, it is possible to remove the password.conf file altogether. On restart, the
nuxwdog watchdog program will prompt the administrator for the required passwords, using the
parameter cms.passwordlist (and cms.tokenList if an HSM is used) as a list of passwords for which to
prompt. The passwords are then cached by nuxwdog in the kernel keyring to allow automated recovery
from a server crash. This automated recovery (automatic subsystem restart) happens in case of
uncontrolled shutdown (crash). In case of a controlled shutdown by the administrator, administrators are
prompted for passwords again.

When using the watchdog service, starting and stopping an RHCS instance are done differently. For
details, see Section 14.3.2, “Using the Certificate System Watchdog Service” .

For further information, see Section 14.3, “Managing System Passwords” .

2.3.11. Internal LDAP Database

Red Hat Certificate System employs Red Hat Directory Server (RHDS) as its internal database for
storing information such as certificates, requests, users, roles, ACLs, as well as other miscellaneous
internal information. Certificate System communicates with the internal LDAP database either with a
password, or securely by means of SSL authentication.

If certificate-based authentication is required between a Certificate System instance and Directory
Server, it is important to follow instruction to set up trust between these two entities. Proper pkispawn
options will also be needed for installing such Certificate System instance.

For details, see Section 6.5, “Installing Red Hat Directory Server” .

2.3.12. Security-Enhanced Linux (SELinux)

SELinux is a collection of mandatory access control rules which are enforced across a system to restrict
unauthorized access and tampering. SELinux is described in more detail in Using SELinux guide for
Red Hat Enterprise Linux 8.

Basically, SELinux identifies objects on a system, which can be files, directories, users, processes,
sockets, or any other resource on a Linux host. These objects correspond to the Linux API objects. Each
object is then mapped to a security context, which defines the type of object and how it is allowed to
function on the Linux server.

Objects can be grouped into domains, and then each domain is assigned the proper rules. Each security

Planning, Installation, and Deployment Guide

50

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/using_selinux/index

Objects can be grouped into domains, and then each domain is assigned the proper rules. Each security
context has rules which set restrictions on what operations it can perform, what resources it can access,
and what permissions it has.

SELinux policies for the Certificate System are incorporated into the standard system SELinux policies.
These SELinux policies apply to every subsystem and service used by Certificate System. By running
Certificate System with SELinux in enforcing mode, the security of the information created and
maintained by Certificate System is enhanced.

Figure 2.1. CA SELinux Port Policy

The Certificate System SELinux policies define the SELinux configuration for every subsystem instance:

Files and directories for each subsystem instance are labeled with a specific SELinux context.

The ports for each subsystem instance are labeled with a specific SELinux context.

All Certificate System processes are constrained within a subsystem-specific domain.

Each domain has specific rules that define what actions that are authorized for the domain.

Any access not specified in the SELinux policy is denied to the Certificate System instance.

For Certificate System, each subsystem is treated as an SELinux object, and each subsystem has unique
rules assigned to it. The defined SELinux policies allow Certificate System objects run with SELinux set
in enforcing mode.

Every time pkispawn is run to configure a Certificate System subsystem, files and ports associated with
that subsystem are labeled with the required SELinux contexts. These contexts are removed when the
particular subsystems are removed using pkidestroy.

The central definition in an SELinux policy is the pki_tomcat_t domain. Certificate System instances are
Tomcat servers, and the pki_tomcat_t domain extends the policies for a standard tomcat_t Tomcat
domain. All Certificate System instances on a server share the same domain.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

51

When each Certificate System process is started, it initially runs in an unconfined domain
(unconfined_t) and then transitions into the pki_tomcat_t domain. This process then has certain
access permissions, such as write access to log files labeled pki_tomcat_log_t, read and write access to
configuration files labeled pki_tomcat_etc_rw_t, or the ability to open and write to http_port_t ports.

The SELinux mode can be changed from enforcing to permissive, or even off, though this is not
recommended.

2.3.13. Self-tests

Red Hat Certificate System provides a Self-Test framework which allows the PKI system integrity to be
checked during startup or on demand or both. In the event of a non-critical self test failure, the message
will be stored in the log file, while in the event of a critical self test failure, the message will be stored in
the log file, while the Certificate System subsystem will properly shut down. The administrator is
expected to watch the self-test log during the startup of the subsystem if they wish to see the self-test
report during startup. They can also view the log after startup.

When a subsystem is shut down due to a self-test failure, it will also be automatically disabled. This is
done to ensure that the subsystem does not partially run and produce misleading responses. Once the
issue is resolved, the subsystem can be re-enabled by running the following command on the server:

pki-server subsystem-enable <subsystem>

For details on how to configure self-tests, see Section 18.3.2, “Configuring Self-Tests”.

2.3.14. Logs

The Certificate System subsystems create log files that record events related to activities, such as
administration, communications using any of the protocols the server supports, and various other
processes employed by the subsystems. While a subsystem instance is running, it keeps a log of
information and error messages on all the components it manages. Additionally, the Apache and Tomcat
web servers generate error and access logs.

Each subsystem instance maintains its own log files for installation, audit, and other logged functions.

Log plug-in modules are listeners which are implemented as Java™ classes and are registered in the
configuration framework.

All the log files and rotated log files, except for audit logs, are located in whatever directory was
specified in pki_subsystem_log_path when the instance was created with pkispawn. Regular audit
logs are located in the log directory with other types of logs, while signed audit logs are written to
/var/log/pki/instance_name/subsystem_name/signedAudit. The default location for logs can be
changed by modifying the configuration.

For details about log configuration during the installation and additional information, see Chapter 18,
Configuring Logs.

For details about log administration after the installation, see the Configuring Subsystem Logs section in
the Red Hat Certificate System Administration Guide.

2.3.14.1. Audit Log

The audit log contains records for selectable events that have been set up as recordable events. You
can configure audit logs also to be signed for integrity-checking purposes.

NOTE

Planning, Installation, and Deployment Guide

52

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/logs

NOTE

Audit records should be kept according to the audit retention rules specified in
-Section 18.4, “Audit Retention”.

2.3.14.2. Debug Logs

Debug logs, which are enabled by default, are maintained for all subsystems, with varying degrees and
types of information.

Debug logs for each subsystem record detailed information, containing very specific information for
every operation performed by the subsystem, including plug-ins and servlets which are run, connection
information, and server request and response messages.

Services which are recorded to the debug log include authorization requests, processing certificate
requests, certificate status checks, and archiving and recovering keys, and access to web services.

The debug logs record detailed information about the processes for the subsystem. Each log entry has
the following format:

[date:time] [processor]: servlet: message

The message can be a return message from the subsystem or contain values submitted to the
subsystem.

For example, the TKS records this message for connecting to an LDAP server:

[10/Jun/2022:05:14:51][main]: Established LDAP connection using basic authentication to host
localhost port 389 as cn=Directory Manager

The processor is main, and the message is the message from the server about the LDAP connection,
and there is no servlet.

The CA, on the other hand, records information about certificate operations as well as subsystem
connections:

[06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.requestowner$
value=KRA-server.example.com-8443

In this case, the processor is the HTTP protocol over the CA's agent port, while it specifies the servlet for
handling profiles and contains a message giving a profile parameter (the subsystem owner of a request)
and its value (that the KRA initiated the request).

Example 2.1. CA Certificate Request Log Messages

[06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.profileapprovedby$ value=admin
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.cert_request$
value=MIIBozCCAZ8wggEFAgQqTfoHMIHHgAECpQ4wDDEKMAgGA1UEAxMBeKaBnzANBgkqhki
G9w0BAQEFAAOB...
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.profile$
value=true
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

53

key=$request.cert_request_type$ value=crmf
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.requestversion$ value=1.0.0
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.req_locale$ value=en
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.requestowner$ value=KRA-server.example.com-8443
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.dbstatus$
value=NOT_UPDATED
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.subject$
value=uid=jsmith, e=jsmith@example.com
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.requeststatus$ value=begin
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.user$ value=uid=KRA-server.example.com-
8443,ou=People,dc=example,dc=com
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.req_key$
value=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDreuEsBWq9WuZ2MaBwtNYxvkLP^
M
 HcN0cusY7gxLzB+XwQ/VsWEoObGldg6WwJPOcBdvLiKKfC605wFdynbEgKs0fChV^M
 k9HYDhmJ8hX6+PaquiHJSVNhsv5tOshZkCfMBbyxwrKd8yZ5G5I+2gE9PUznxJaM^M
 HTmlOqm4HwFxzy0RRQIDAQAB
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.authmgrinstname$ value=raCertAuth
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.uid$ value=KRA-server.example.com-8443
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.userid$ value=KRA-server.example.com-8443
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.requestor_name$ value=
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet: key=$request.profileid$
value=caUserCert
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.userdn$ value=uid=KRA-server.example.com-
4747,ou=People,dc=example,dc=com
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.requestid$ value=20
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.auth_token.authtime$ value=1212782378071
 [06/Jun/2022:14:59:38][http-8443;-Processor24]: ProfileSubmitServlet:
key=$request.req_x509info$
value=MIICIKADAgECAgEAMA0GCSqGSIb3DQEBBQUAMEAxHjAcBgNVBAoTFVJlZGJ1ZGNv^M

 bXB1dGVyIERvbWFpbjEeMBwGA1UEAxMVQ2VydGlmaWNhdGUgQXV0aG9yaXR5MB4X^M
 DTA4MDYwNjE5NTkzOFoXDTA4MTIwMzE5NTkzOFowOzEhMB8GCSqGSIb3DQEJARYS^M
 anNtaXRoQGV4YW1wbGUuY29tMRYwFAYKCZImiZPyLGQBARMGanNtaXRoMIGfMA0G^M
 CSqGSIb3DQEBAQUAA4GNADCBiQKBgQDreuEsBWq9WuZ2MaBwtNYxvkLPHcN0cusY^M
 7gxLzB+XwQ/VsWEoObGldg6WwJPOcBdvLiKKfC605wFdynbEgKs0fChVk9HYDhmJ^M
 8hX6+PaquiHJSVNhsv5tOshZkCfMBbyxwrKd8yZ5G5I+2gE9PUznxJaMHTmlOqm4^M
 HwFxzy0RRQIDAQABo4HFMIHCMB8GA1UdIwQYMBaAFG8gWeOJIMt+aO8VuQTMzPBU^M
 78k8MEoGCCsGAQUFBwEBBD4wPDA6BggrBgEFBQcwAYYuaHR0cDovL3Rlc3Q0LnJl^M
 ZGJ1ZGNvbXB1dGVyLmxvY2FsOjkwODAvY2Evb2NzcDAOBgNVHQ8BAf8EBAMCBeAw^M

HQYDVR0lBBYwFAYIKwYBBQUHAwIGCCsGAQUFBwMEMCQGA1UdEQQdMBuBGSRyZXF1^
M
 ZXN0LnJlcXVlc3Rvcl9lbWFpbCQ=

Planning, Installation, and Deployment Guide

54

Likewise, the OCSP shows OCSP request information:

[07/Jul/2022:06:25:40][http-11180-Processor25]: OCSPServlet: OCSP Request:
 [07/Jul/2022:06:25:40][http-11180-Processor25]: OCSPServlet:
 MEUwQwIBADA+MDwwOjAJBgUrDgMCGgUABBSEWjCarLE6/BiSiENSsV9kHjqB3QQU

2.3.14.3. Installation Logs

All subsystems keep an install log.

Every time a subsystem is created either through the initial installation or creating additional instances
with pkispawn, an installation file with the complete debug output from the installation, including any
errors and, if the installation is successful, the URL and PIN to the configuration interface for the
instance. The file is created in the /var/log/pki/ directory for the instance with a name in the form
pki-subsystem_name-spawn.timestamp.log.

Each line in the install log follows a step in the installation process.

Example 2.2. CA Install Log

==
 INSTALLATION SUMMARY

==

 Administrator's username: caadmin
 Administrator's PKCS #12 file:
 /root/.dogtag/pki-tomcat/ca_admin_cert.p12

 Administrator's certificate nickname:
 caadmin
 Administrator's certificate database:
 /root/.dogtag/pki-tomcat/ca/alias

 To check the status of the subsystem:
 systemctl status pki-tomcatd@pki-tomcat.service

 To restart the subsystem:
 systemctl restart pki-tomcatd@pki-tomcat.service

 The URL for the subsystem is:
 https://localhost.localdomain:8443/ca

 PKI instances will be enabled upon system boot

==

2.3.14.4. Tomcat Error and Access Logs

The CA, KRA, OCSP, TKS, and TPS subsystems use a Tomcat web server instance for their agent and

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

55

The CA, KRA, OCSP, TKS, and TPS subsystems use a Tomcat web server instance for their agent and
end-entities' interfaces.

Error and access logs are created by the Tomcat web server, which are installed with the
Certificate System and provide HTTP services. The error log contains the HTTP error messages the
server has encountered. The access log lists access activity through the HTTP interface.

Logs created by Tomcat:

admin.timestamp

catalina.timestamp

catalina.out

host-manager.timestamp

localhost.timestamp

localhost_access_log.timestamp

manager.timestamp

These logs are not available or configurable within the Certificate System; they are only configurable
within Apache or Tomcat. See the Apache documentation for information about configuring these logs.

2.3.14.5. Self-Tests Log

The self-tests log records information obtained during the self-tests run when the server starts or when
the self-tests are manually run. The tests can be viewed by opening this log. This log is not configurable
through the Console. This log can only be configured by changing settings in the CS.cfg file. The
information about logs in this section does not pertain to this log. See Section 2.6.5, “Self-Tests” for
more information about self-tests.

2.3.14.6. journalctl Logs

When starting a Certificate System instance, there is a short period of time before the logging
subsystem is set up and enabled. During this time, log contents are written to standard out, which is
captured by systemd and exposed via the journalctl utility.

To view these logs, run the following command:

journalctl -u pki-tomcatd@instance_name.service

If using the nuxwdog service:

journalctl -u pki-tomcatd-nuxwdog@instance_name.service

Often it is helpful to watch these logs as the instance is starting (for example, in the event of a self-test
failure on startup). To do this, run these commands in a separate console prior to starting the instance:

journalctl -f -u pki-tomcatd@instance_name.service

If using the nuxwdog service:

Planning, Installation, and Deployment Guide

56

journalctl -f -u pki-tomcatd-nuxwdog@instance_name.service

2.3.15. Instance Layout

Each Certificate System instance depends on a number of files. Some of them are located in instance-
specific folders, while some others are located in a common folder which is shared with other server
instances.

For example, the server configuration files are stored in /etc/pki/instance_name/server.xml, which is
instance-specific, but the CA servlets are defined in /usr/share/pki/ca/webapps/ca/WEB-INF/web.xml,
which is shared by all server instances on the system.

2.3.15.1. File and Directory Locations for Certificate System

Certificate System servers are Tomcat instances which consist of one or more Certificate System
subsystems. Certificate System subsystems are web applications that provide specific type of PKI
functions. General, shared subsystem information is contained in non-relocatable, RPM-defined shared
libraries, Java archive files, binaries, and templates. These are stored in a fixed location.

The directories are instance specific, tied to the instance name. In these examples, the instance name is
pki-tomcat; the true value is whatever is specified at the time the subsystem is created with pkispawn.

The directories contain customized configuration files and templates, profiles, certificate databases, and
other files for the subsystem.

Table 2.2. Tomcat Instance Information

Setting Value

Main Directory /var/lib/pki/pki-tomcat

Configuration Directory /etc/pki/pki-tomcat

Configuration File /etc/pki/pki-tomcat/server.xml

/etc/pki/pki-tomcat/password.conf

Security Databases /var/lib/pki/pki-tomcat/alias

Subsystem Certificates SSL server certificate

Subsystem certificate [a]

Log Files /var/log/pki/pki-tomcat

Web Services Files /usr/share/pki/server/webapps/ROOT - Main page

/usr/share/pki/server/webapps/pki/admin - Admin templates

/usr/share/pki/server/webapps/pki/js - JavaScript libraries

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

57

[a] The subsystem certificate is always issued by the security domain so that domain-level operations that require client
authentication are based on this subsystem certificate.

Setting Value

NOTE

The /var/lib/pki/instance_name/conf/ directory is a symbolic link to the
/etc/pki/instance_name/ directory.

2.3.15.2. CA Subsystem Information

The directories are instance specific, tied to the instance name. In these examples, the instance name is
pki-tomcat; the true value is whatever is specified at the time the subsystem is created with pkispawn.

Table 2.3. CA Subsystem Information

Setting Value

Main Directory /var/lib/pki/pki-tomcat/ca

Configuration Directory /etc/pki/pki-tomcat/ca

Configuration File /etc/pki/pki-tomcat/ca/CS.cfg

Subsystem Certificates CA signing certificate

OCSP signing certificate (for the CA's internal OCSP service)

Audit log signing certificate

Log Files /var/log/pki/pki-tomcat/ca

Install Logs /var/log/pki/pki-ca-spawn.YYYYMMDDhhmmss.log

Profile Files /var/lib/pki/pki-tomcat/ca/profiles/ca

Email Notification Templates /var/lib/pki/pki-tomcat/ca/emails

Web Services Files /usr/share/pki/ca/webapps/ca/agent - Agent services

/usr/share/pki/ca/webapps/ca/admin - Admin services

/usr/share/pki/ca/webapps/ca/ee - End user services

2.3.15.3. KRA Subsystem Information

The directories are instance specific, tied to the instance name. In these examples, the instance name is
pki-tomcat; the true value is whatever is specified at the time the subsystem is created with pkispawn.

Planning, Installation, and Deployment Guide

58

Table 2.4. KRA Subsystem Information

Setting Value

Main Directory /var/lib/pki/pki-tomcat/kra

Configuration Directory /etc/pki/pki-tomcat/kra

Configuration File /etc/pki/pki-tomcat/kra/CS.cfg

Subsystem Certificates Transport certificate

Storage certificate

Audit log signing certificate

Log Files /var/log/pki/pki-tomcat/kra

Install Logs /var/log/pki/pki-kra-spawn.YYYYMMDDhhmmss.log

Web Services Files /usr/share/pki/kra/webapps/kra/agent - Agent services

/usr/share/pki/kra/webapps/kra/admin - Admin services

2.3.15.4. OCSP Subsystem Information

The directories are instance specific, tied to the instance name. In these examples, the instance name is
pki-tomcat; the true value is whatever is specified at the time the subsystem is created with pkispawn.

Table 2.5. OCSP Subsystem Information

Setting Value

Main Directory /var/lib/pki/pki-tomcat/ocsp

Configuration Directory /etc/pki/pki-tomcat/ocsp

Configuration File /etc/pki/pki-tomcat/ocsp/CS.cfg

Subsystem Certificates OCSP signing certificate

Audit log signing certificate

Log Files /var/log/pki/pki-tomcat/ocsp

Install Logs /var/log/pki/pki-ocsp-spawn.YYYYMMDDhhmmss.log

Web Services Files /usr/share/pki/ocsp/webapps/ocsp/agent - Agent services

/usr/share/pki/ocsp/webapps/ocsp/admin - Admin services

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

59

2.3.15.5. TKS Subsystem Information

The directories are instance specific, tied to the instance name. In these examples, the instance name is
pki-tomcat; the true value is whatever is specified at the time the subsystem is created with pkispawn.

Table 2.6. TKS Subsystem Information

Setting Value

Main Directory /var/lib/pki/pki-tomcat/tks

Configuration Directory /etc/pki/pki-tomcat/tks

Configuration File /etc/pki/pki-tomcat/tks/CS.cfg

Subsystem Certificates Audit log signing certificate

Log Files /var/log/pki/pki-tomcat/tks

Install Logs /var/log/pki/pki-tomcat/pki-tks-spawn.YYYYMMDDhhmmss.log

2.3.15.6. TPS Subsystem Information

The directories are instance specific, tied to the instance name. In these examples, the instance name is
pki-tomcat; the true value is whatever is specified at the time the subsystem is created with pkispawn.

Table 2.7. TPS Subsystem Information

Setting Value

Main Directory /var/lib/pki/pki-tomcat/tps

Configuration Directory /etc/pki/pki-tomcat/tps

Configuration File /etc/pki/pki-tomcat/tps/CS.cfg

Subsystem Certificates Audit log signing certificate

Log Files /var/log/pki/pki-tomcat/tps

Install Logs /var/log/pki/pki-tps-spawn.YYYYMMDDhhhmmss.log

Web Services Files /usr/share/pki/tps/webapps/tps - TPS services

2.3.15.7. Shared Certificate System Subsystem File Locations

There are some directories used by or common to all Certificate System subsystem instances for
general server operations, listed in Table 2.8, “Subsystem File Locations” .

Planning, Installation, and Deployment Guide

60

Table 2.8. Subsystem File Locations

Directory Location Contents

/usr/share/pki Contains common files and templates used to create Certificate System
instances. Along with shared files for all subsystems, there are subsystem-
specific files in subfolders:

pki/ca (CA)

pki/kra (KRA)

pki/ocsp (OCSP)

pki/tks (TKS)

pki/tps (TPS)

/usr/bin Contains the pkispawn and pkidestroy instance configuration scripts and
tools (Java, native, and security) shared by the Certificate System
subsystems.

/usr/share/java/pki Contains Java archive files shared by local Tomcat web applications and
shared by the Certificate System subsystems.

2.4. PKI WITH CERTIFICATE SYSTEM

The Certificate System is comprised of subsystems which each contribute different functions of a public
key infrastructure. A PKI environment can be customized to fit individual needs by implementing
different features and functions for the subsystems.

NOTE

A conventional PKI environment provides the basic framework to manage certificates
stored in software databases. This is a non-TMS environment, since it does not manage
certificates on smart cards. A TMS environment manages the certificates on smart cards.

At a minimum, a non-TMS requires only a CA, but a non-TMS environment can use OCSP
responders and KRA instances as well.

2.4.1. Issuing Certificates

As stated, the Certificate Manager is the heart of the Certificate System. It manages certificates at
every stage, from requests through enrollment (issuing), renewal, and revocation.

The Certificate System supports enrolling and issuing certificates and processing certificate requests
from a variety of end entities, such as web browsers, servers, and virtual private network (VPN) clients.
Issued certificates conform to X.509 version 3 standards.

For more information, see the About Enrolling and Renewing Certificates section in the Red Hat
Certificate System Administration Guide.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

61

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/managing_certificates#Requesting_and_Receiving_Certificates

2.4.1.1. The Enrollment Process

An end entity enrolls in the PKI environment by submitting an enrollment request through the end-entity
interface. There can be many kinds of enrollment that use different enrollment methods or require
different authentication methods. Different interfaces can also accept different types of Certificate
Signing Requests (CSR).

The Certificate Manager supports different ways to submit CSRs, such as using the graphical interface
and command-line tools.

2.4.1.1.1. Enrollment Using the User Interface

For each enrollment through the user interface, there is a separate enrollment page created that is
specific to the type of enrollment, type of authentication, and the certificate profiles associated with the
type of certificate. The forms associated with enrollment can be customized for both appearance and
content. Alternatively, the enrollment process can be customized by creating certificate profiles for
each enrollment type. Certificate profiles dynamically-generate forms which are customized by
configuring the inputs associated with the certificate profile. Different interfaces can also accept
different types of Certificate Signing Requests (CSR).

When an end entity enrolls in a PKI by requesting a certificate, the following events can occur, depending
on the configuration of the PKI and the subsystems installed:

1. The end entity provides the information in one of the enrollment forms and submits a request.

The information gathered from the end entity is customizable in the form depending on the
information collected to store in the certificate or to authenticate against the authentication
method associated with the form. The form creates a request that is then submitted to the
Certificate Manager.

2. The enrollment form triggers the creation of the public and private keys or for dual-key pairs for
the request.

3. The end entity provides authentication credentials before submitting the request, depending
on the authentication type. This can be LDAP authentication, PIN-based authentication, or
certificate-based authentication.

4. The request is submitted either to an agent-approved enrollment process or an automated
process.

The agent-approved process, which involves no end-entity authentication, sends the
request to the request queue in the agent services interface, where an agent must
processes the request. An agent can then modify parts of the request, change the status of
the request, reject the request, or approve the request.

Automatic notification can be set up so an email is sent to an agent any time a request
appears in the queue. Also, an automated job can be set to send a list of the contents of the
queue to agents on a pre configured schedule.

The automated process, which involves end-entity authentication, processes the certificate
request as soon as the end entity successfully authenticates.

5. The form collects information about the end entity from an LDAP directory when the form is
submitted. For certificate profile-based enrollment, the defaults for the form can be used to
collect the user LDAP ID and password.

6. The certificate profile associated with the form determine aspects of the certificate that is

Planning, Installation, and Deployment Guide

62

issued. Depending on the certificate profile, the request is evaluated to determine if the request
meets the constraints set, if the required information is provided, and the contents of the new
certificate.

7. The form can also request that the user export the private encryption key. If the KRA subsystem
is set up with this CA, the end entity's key is requested, and an archival request is sent to the
KRA. This process generally requires no interaction from the end entity.

8. The certificate request is either rejected because it did not meet the certificate profile or
authentication requirements, or a certificate is issued.

9. The certificate is delivered to the end entity.

In automated enrollment, the certificate is delivered to the user immediately. Since the
enrollment is normally through an HTML page, the certificate is returned as a response on
another HTML page.

In agent-approved enrollment, the certificate can be retrieved by serial number or request
Id in the end-entity interface.

If the notification feature is set up, the link where the certificate can be obtained is sent to
the end user.

10. An automatic notice can be sent to the end entity when the certificate is issued or rejected.

11. The new certificate is stored in the Certificate Manager's internal database.

12. If publishing is set up for the Certificate Manager, the certificate is published to a file or an
LDAP directory.

13. The internal OCSP service checks the status of certificates in the internal database when a
certificate status request is received.

The end-entity interface has a search form for certificates that have been issued and for the CA
certificate chain.

By default, the user interface supports CSR in the PKCS #10 and Certificate Request Message Format
(CRMF).

2.4.1.1.2. Enrollment Using the Command Line

This section describes the general workflows when enrolling certificates using the command line.

2.4.1.1.2.1. Enrolling Using the pki Utility

For details, see:

The pki-cert(1) man page

The Command-Line Interfaces section in the Red Hat Certificate System Administration Guide.

2.4.1.1.2.2. Enrolling with CMC

To enroll a certificate with CMC, proceed as follows:

1. Generate a PKCS #10 or CRMF certificate signing request (CSR) using a utility, such as
PKCS10Client or CRMFPopClient.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

63

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/sect-interfaces-command-line

NOTE

If key archival is enabled in the Key Recovery Agent (KRA), use the
CRMFPopClient utility with the KRA's transport certificate in Privacy Enhanced
Mail (PEM) format set in the kra.transport file.

2. Use the CMCRequest utility to convert the CSR into a CMC request. The CMCRequest utility
uses a configuration file as input. This file contains, for example, the path to the CSR and the
CSR's format.

For further details and examples, see the CMCRequest(1) man page.

3. Use the HttpClient utility to send the CMC request to the CA. HttpClient uses a configuration
file with settings, such as the path to the CMC request file and the servlet.

If the HttpClient command succeeds, the utility receives a PKCS #7 chain with CMC status
controls from the CA.

For details about what parameters the utility provides, enter the HttpClient command without
any parameters.

4. Use the CMCResponse utility to check the issuance result of the PKCS #7 file generated by
HttpClient. If the request is successful, CMCResponse displays the certificate chain in a
readable format.

For further details, see the CMCResponse(1) man page.

5. Import the new certificate into the application. For details, follow the instructions of the
application to which you want to import the certificate.

NOTE

The certificate retrieved by HttpClient is in PKCS #7 format. If the application
supports only Base64-encoded certificates, use the BtoA utility to convert the
certificate.

Additionally, certain applications require a header and footer for certificates in
Privacy Enhanced Mail (PEM) format. If these are required, add them manually to
the PEM file after you converted the certificate.

2.4.1.1.2.2.1. CMC Enrollment without POP

In situations when Proof Of Possession (POP) is missing, the HttpClient utility receives an
EncryptedPOP CMC status, which is displayed by the CMCResponse command. In this case, enter the
CMCRequest command again with different parameters in the configuration file.

For details, see the The CMC Enrollment Process section in the Red Hat Certificate System
Administration Guide.

2.4.1.1.2.2.2. Signed CMC Requests

CMC requests can either be signed by a user or a CA agent:

If an agent signs the request, set the authentication method in the profile to CMCAuth.

If a user signs the request, set the authentication method in the profile to

Planning, Installation, and Deployment Guide

64

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/issuing_certificates_using_cmc#the_cmc_enrollment_process

If a user signs the request, set the authentication method in the profile to
CMCUserSignedAuth.

For details, see the CMC Authentication Plug-ins section in the Red Hat Certificate System
Administration Guide.

2.4.1.1.2.2.3. Unsigned CMC Requests

When the CMCUserSignedAuth authentication plug-in is configured in the profile, you must use an
unsigned CMC request in combination with the Shared Secret authentication mechanism.

NOTE

Unsigned CMC requests are also called self-signed CMC requests.

For details, see the CMC Authentication Plug-ins section in the Red Hat Certificate System
Administration Guide, and Section 14.8.3, “Enabling the CMC Shared Secret Feature” .

2.4.1.1.2.2.4. The Shared Secret Workflow

Certificate System provides the Shared Secret authentication mechanism for CMC requests according
to RFC 5272. In order to protect the passphrase, an issuance protection certificate must be provided
when using the CMCSharedToken command. The issuance protection certificate works similar to the
KRA transport certificate. For further details, see the CMCSharedToken(1) man page and Section 14.8.3,
“Enabling the CMC Shared Secret Feature”.

Shared Secret Created by the End Entity User (Preferred)
The following describes the workflow, if the user generates the shared secret:

1. The end entity user obtains the issuance protection certificate from the CA administrator.

2. The end entity user uses the CMCSharedToken utility to generate a shared secret token.

NOTE

The -p option sets the passphrase that is shared between the CA and the user,
not the password of the token.

3. The end entity user sends the encrypted shared token generated by the CMCSharedToken
utility to the administrator.

4. The administrator adds the shared token into the shrTok attribute in the user's LDAP entry.

5. The end entity user uses the passphrase to set the witness.sharedSecret parameter in the
configuration file passed to the CMCRequest utility.

Shared Secret Created by the CA Administrator
The following describes the workflow, if the CA administrator generates the shared secret for a user:

1. The administrator uses the CMCSharedToken utility to generate a shared secret token for the
user.

NOTE

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

65

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/cmc_authentication_plug-ins
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/cmc_authentication_plug-ins
https://tools.ietf.org/html/rfc5272

NOTE

The -p option sets the passphrase that is shared between the CA and the user,
not the password of the token.

2. The administrator adds the shared token into the shrTok attribute in the user's LDAP entry.

3. The administrator shares the passphrase with the user.

4. The end entity user uses the passphrase to set the witness.sharedSecret parameter in the
configuration file passed to the CMCRequest utility.

2.4.1.1.2.2.5. Simple CMC Requests

Certificate System allows simple CMC requests. However, this process does not support the same level
of security requirements as full CMC requests and, therefore, must only be used in a secure
environment.

When using simple CMC requests, set the following in the HttpClient utility's configuration file:

servlet=/ca/ee/ca/profileSubmitCMCSimple?profileId=caECSimpleCMCUserCert

2.4.1.2. Certificate Profiles

The Certificate System uses certificate profiles to configure the content of the certificate, the
constraints for issuing the certificate, the enrollment method used, and the input and output forms for
that enrollment. A single certificate profile is associated with issuing a particular type of certificate.

A set of certificate profiles is included for the most common certificate types; the profile settings can be
modified. Certificate profiles are configured by an administrator, and then sent to the agent services
page for agent approval. Once a certificate profile is approved, it is enabled for use. In case of a UI-
enrollment, a dynamically-generated HTML form for the certificate profile is used in the end-entities
page for certificate enrollment, which calls on the certificate profile. In case of a command line-based
enrollment, the certificate profile is called upon to perform the same processing, such as authentication,
authorization, input, output, defaults, and constraints. The server verifies that the defaults and
constraints set in the certificate profile are met before acting on the request and uses the certificate
profile to determine the content of the issued certificate.

The Certificate Manager can issue certificates with any of the following characteristics, depending on
the configuration in the profiles and the submitted certificate request:

Certificates that are X.509 version 3-compliant

Unicode support for the certificate subject name and issuer name

Support for empty certificate subject names

Support for customized subject name components

Support for customized extensions

By default, the certificate enrollment profiles are stored in <instance directory>/ca/profiles/ca with
names in the format of <profile id>.cfg. LDAP-based profiles are possible with proper pkispawn
configuration parameters.

Planning, Installation, and Deployment Guide

66

2.4.1.3. Authentication for Certificate Enrollment

Certificate System provides authentication options for certificate enrollment. These include agent-
approved enrollment, in which an agent processes the request, and automated enrollment, in which an
authentication method is used to authenticate the end entity and then the CA automatically issues a
certificate. CMC enrollment is also supported, which automatically processes a request approved by an
agent.

2.4.1.4. Cross-Pair Certificates

It is possible to create a trusted relationship between two separate CAs by issuing and storing cross-
signed certificates between these two CAs. By using cross-signed certificate pairs, certificates issued
outside the organization's PKI can be trusted within the system.

2.4.2. Renewing Certificates

When certificates reach their expiration date, they can either be allowed to lapse, or they can be
renewed.

Renewal regenerates a certificate request using the existing key pairs for that certificate, and then
resubmits the request to Certificate Manager. The renewed certificate is identical to the original (since it
was created from the same profile using the same key material) with one exception — it has a different,
later expiration date.

Renewal can make managing certificates and relationships between users and servers much smoother,
because the renewed certificate functions precisely as the old one. For user certificates, renewal allows
encrypted data to be accessed without any loss.

2.4.3. Publishing Certificates and CRLs

Certificates can be published to files and an LDAP directory, and CRLs to files, an LDAP directory, and
an OCSP responder. The publishing framework provides a robust set of tools to publish to all three
places and to set rules to define with more detail which types of certificates or CRLs are published
where.

2.4.4. Revoking Certificates and Checking Status

End entities can request that their own certificates be revoked. When an end entity makes the request,
the certificate has to be presented to the CA. If the certificate and the keys are available, the request is
processed and sent to the Certificate Manager, and the certificate is revoked. The Certificate Manager
marks the certificate as revoked in its database and adds it to any applicable CRLs.

An agent can revoke any certificate issued by the Certificate Manager by searching for the certificate in
the agent services interface and then marking it revoked. Once a certificate is revoked, it is marked
revoked in the database and in the publishing directory, if the Certificate is set up for publishing.

If the internal OCSP service has been configured, the service determines the status of certificates by
looking them up in the internal database.

Automated notifications can be set to send email messages to end entities when their certificates are
revoked by enabling and configuring the certificate revoked notification message.

2.4.4.1. Revoking Certificates

Users can revoke their certificates using:

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

67

The end-entity pages. For details, see the Certificate Revocation Pages section in the Red Hat
Certificate System Administration Guide.

The CMCRequest utility on the command line. For details, see the Performing a CMC
Revocation section in the Red Hat Certificate System Administration Guide.

The pki utility on the command line. For details, see pki-cert(1) man page.

2.4.4.2. Certificate Status

2.4.4.2.1. CRLs

The Certificate System can create certificate revocation lists (CRLs) from a configurable framework
which allows user-defined issuing points so a CRL can be created for each issuing point. Delta CRLs can
also be created for any issuing point that is defined. CRLs can be issued for each type of certificate, for
a specific subset of a type of certificate, or for certificates generated according to a profile or list of
profiles. The extensions used and the frequency and intervals when CRLs are published can all be
configured.

The Certificate Manager issues X.509-standard CRLs. A CRL can be automatically updated whenever a
certificate is revoked or at specified intervals.

2.4.4.2.2. OCSP Services

The Certificate System CA supports the Online Certificate Status Protocol (OCSP) as defined in PKIX
standard RFC 2560. The OCSP protocol enables OCSP-compliant applications to determine the state
of a certificate, including the revocation status, without having to directly check a CRL published by a CA
to the validation authority. The validation authority, which is also called an OCSP responder, checks for
the application.

1. A CA is set up to issue certificates that include the Authority Information Access extension,
which identifies an OCSP responder that can be queried for the status of the certificate.

2. The CA periodically publishes CRLs to an OCSP responder.

3. The OCSP responder maintains the CRL it receives from the CA.

4. An OCSP-compliant client sends requests containing all the information required to identify the
certificate to the OCSP responder for verification. The applications determine the location of
the OCSP responder from the value of the Authority Information Access extension in the
certificate being validated.

5. The OCSP responder determines if the request contains all the information required to process
it. If it does not or if it is not enabled for the requested service, a rejection notice is sent. If it
does have enough information, it processes the request and sends back a report stating the
status of the certificate.

2.4.4.2.2.1. OCSP Response Signing

Every response that the client receives, including a rejection notification, is digitally signed by the
responder; the client is expected to verify the signature to ensure that the response came from the
responder to which it submitted the request. The key the responder uses to sign the message depends
on how the OCSP responder is deployed in a PKI setup. RFC 2560 recommends that the key used to
sign the response belong to one of the following:

The CA that issued the certificate whose status is being checked.

Planning, Installation, and Deployment Guide

68

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/revocation_and_crls#Certificate_Revocation_Forms
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/cmc_revocation#CMC_Revocation
http://www.ietf.org/rfc/rfc2560.txt

A responder with a public key trusted by the client. Such a responder is called a trusted
responder.

A responder that holds a specially marked certificate issued to it directly by the CA that revokes
the certificates and publishes the CRL. Possession of this certificate by a responder indicates
that the CA has authorized the responder to issue OCSP responses for certificates revoked by
the CA. Such a responder is called a CA-designated responder or a CA-authorized responder.

The end-entities page of a Certificate Manager includes a form for manually requesting a certificate for
the OCSP responder. The default enrollment form includes all the attributes that identify the certificate
as an OCSP responder certificate. The required certificate extensions, such as OCSPNoCheck and
Extended Key Usage, can be added to the certificate when the certificate request is submitted.

2.4.4.2.2.2. OCSP Responses

The OCSP response that the client receives indicates the current status of the certificate as determined
by the OCSP responder. The response could be any of the following:

Good or Verified . Specifies a positive response to the status inquiry, meaning the certificate has
not been revoked. It does not necessarily mean that the certificate was issued or that it is within
the certificate's validity interval. Response extensions may be used to convey additional
information on assertions made by the responder regarding the status of the certificate.

Revoked . Specifies that the certificate has been revoked, either permanently or temporarily.

Based on the status, the client decides whether to validate the certificate.

NOTE

The OCSP responder will never return a response of Unknown. The response will always
be either Good or Revoked.

2.4.4.2.2.3. OCSP Services

There are two ways to set up OCSP services:

The OCSP built into the Certificate Manager

The Online Certificate Status Manager subsystem

In addition to the built-in OCSP service, the Certificate Manager can publish CRLs to an OCSP-
compliant validation authority. CAs can be configured to publish CRLs to the Certificate System Online
Certificate Status Manager. The Online Certificate Status Manager stores each Certificate Manager's
CRL in its internal database and uses the appropriate CRL to verify the revocation status of a certificate
when queried by an OCSP-compliant client.

The Certificate Manager can generate and publish CRLs whenever a certificate is revoked and at
specified intervals. Because the purpose of an OCSP responder is to facilitate immediate verification of
certificates, the Certificate Manager should publish the CRL to the Online Certificate Status Manager
every time a certificate is revoked. Publishing only at intervals means that the OCSP service is checking
an outdated CRL.

NOTE

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

69

NOTE

If the CRL is large, the Certificate Manager can take a considerable amount of time to
publish the CRL.

The Online Certificate Status Manager stores each Certificate Manager's CRL in its internal database
and uses it as the CRL to verify certificates. The Online Certificate Status Manager can also use the CRL
published to an LDAP directory, meaning the Certificate Manager does not have to update the CRLs
directly to the Online Certificate Status Manager.

2.4.5. Archiving, Recovering, and Rotating Keys

In the world of PKI, private key archival allows parties the possibility to recover the encrypted data in
case the private key is lost. Private keys can be lost due to various reasons such as hardware failure,
forgotten passwords, lost smartcards, incapacitated password holder, et caetera. Such archival and
recovery feature is offered by the Key Recovery Authority (KRA) subsystem of RHCS.

Only keys that are used exclusively for encrypting data should be archived; signing keys in particular
should never be archived. Having two copies of a signing key makes it impossible to identify with
certainty who used the key; a second archived copy could be used to impersonate the digital identity of
the original key owner.

2.4.5.1. Archiving Keys

There are two types of key archival mechanisms provided by KRA:

Client-side key generation : With this mechanism, clients are to generate CSRs in CRMF format,
and submit the requests to the CA (with proper KRA setup) for enrollment and key archival. See
the Creating a CSR Using CRMFPopClient section in the Red Hat Certificate System
Administration Guide.

Server-side key generation : With this mechanism, the properly equipped certificate enrollment
profiles would trigger the PKI keys to be generated on KRA and thereby optionally archived
along with newly issued certificates. See the Generating CSRs Using Server-Side Key Generation
section in the Red Hat Certificate System Administration Guide.

The KRA automatically archives private encryption keys if archiving is configured.

The KRA stores private encryption keys in a secure key repository; each key is encrypted and stored as a
key record and is given a unique key identifier.

The archived copy of the key remains wrapped with the KRA's storage key. It can be decrypted, or
unwrapped, only by using the corresponding private key pair of the storage certificate. A combination of
one or more key recovery (or KRA) agents' certificates authorizes the KRA to complete the key recovery
to retrieve its private storage key and use it to decrypt/recover an archived private key. See
Section 17.3.1, “Configuring Agent-Approved Key Recovery in the Command Line” .

The KRA indexes stored keys by key number, owner name, and a hash of the public key, allowing for
highly efficient searching. The key recovery agents have the privilege to insert, delete, and search for
key records.

When the key recovery agents search by the key ID, only the key that corresponds to that ID is
returned.

When the agents search by username, all stored keys belonging to that owner are returned.

When the agents search by the public key in a certificate, only the corresponding private key is

Planning, Installation, and Deployment Guide

70

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/creating_certificate_signing_requests#creating_a_csr_using_crmfpopclient
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/creating_certificate_signing_requests#generating-csrs-using-server-side_key_generation

When the agents search by the public key in a certificate, only the corresponding private key is
returned.

When a Certificate Manager receives a certificate request that contains the key archival option, it
automatically forwards the request to the KRA to archive the encryption key. The private key is
encrypted by the transport key, and the KRA receives the encrypted copy and stores the key in its key
repository. To archive the key, the KRA uses two special key pairs:

A transport key pair and corresponding certificate.

A storage key pair.

Figure 2.2, “How the Key Archival Process Works in Client-Side Key Generation” illustrates how the key
archival process occurs when an end entity requests a certificate in the case of client-side key
generation.

Figure 2.2. How the Key Archival Process Works in Client-Side Key Generation

1. The client generates a CRMF request and submits it through the CA’s enrollment portal.

1. The client’s private key is wrapped within the CRMF request and can only be unwrapped by
the KRA.

2. Detecting that it’s a CRMF request with key archival option, CA forwards the request to KRA for
private key archival.

3. The KRA decrypts / unwraps the user private key, and after confirming that the private key
corresponds to the public key, the KRA encrypts / wraps it again before storing it in its internal
LDAP database.

4. Once the private encryption key has been successfully stored, the KRA responds to CA
confirming that the key has been successfully archived.

5. The CA sends the request down its Enrollment Profile Framework for certificate information
content creation as well as validation. When everything passes, it then issues the certificate and
sends it back to the end entity in its response.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

71

2.4.5.2. Recovering Keys

The KRA supports agent-initiated key recovery . Agent-initiated recovery is when designated recovery
agents use the key recovery form on the KRA agent services portal to process and approve key recovery
requests. With the approval of a specified number of agents, an organization can recover keys when the
key's owner is unavailable or when keys have been lost.

Through the KRA agent services portal, key recovery agents can collectively authorize and retrieve
private encryption keys and associated certificates into a PKCS #12 package, which can then be
imported into the client.

In key recovery authorization, one of the key recovery agents informs all required recovery agents about
an impending key recovery. All recovery agents access the KRA key recovery portal. One of the agents
initiates the key recovery process. The KRA returns a notification to the agent includes a recovery
authorization reference number identifying the particular key recovery request that the agent is
required to authorize. Each agent uses the reference number and authorizes key recovery separately.

KRA supports Asynchronous recovery, meaning that each step of the recovery process — the initial
request and each subsequent approval or rejection — is stored in the KRA's internal LDAP database,
under the key entry. The status data for the recovery process can be retrieved even if the original
browser session is closed or the KRA is shut down. Agents can search for the key to recover, without
using a reference number.

This asynchronous recovery option is illustrated in Figure 2.3, “Asynchronous Recovery”.

Planning, Installation, and Deployment Guide

72

Figure 2.3. Asynchronous Recovery

The KRA informs the agent who initiated the key recovery process of the status of the authorizations.

When all of the authorizations are entered, the KRA checks the information. If the information presented
is correct, it retrieves the requested key and returns it along with the corresponding certificate in the
form of a PKCS #12 package to the agent who initiated the key recovery process.

WARNING

The PKCS #12 package contains the encrypted private key. To minimize the risk of
key compromise, the recovery agent must use a secure method to deliver the PKCS
#12 package and password to the key recipient. The agent should use a good
password to encrypt the PKCS #12 package and set up an appropriate delivery
mechanism.

The key recovery agent scheme configures the KRA to recognize to which group the key recovery



CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

73

The key recovery agent scheme configures the KRA to recognize to which group the key recovery
agents belong and specifies how many of these recovery agents are required to authorize a key recovery
request before the archived key is restored.

IMPORTANT

The above information refers to using a web browser, such as Firefox. However,
functionality critical to KRA usage is no longer included in Firefox version 31.6 that was
released on Red Hat Enterprise Linux 7 platforms. In such cases, it is necessary to use the
pki utility to replicate this behavior. For more information, see the pki(1) and pki-key(1)
man pages or run CRMFPopClient --help and man CMCRequest.

Apart from storing asymmetric keys, KRA can also store symmetric keys or secrets similar to symmetric
keys, such as volume encryption secrets, or even passwords and passphrases. The pki utility supports
options that enable storing and retrieving these other types of secrets.

2.4.5.3. KRA Transport Key Rotation

KRA transport rotation allows for seamless transition between CA and KRA subsystem instances using a
current and a new transport key. This allows KRA transport keys to be periodically rotated for enhanced
security by allowing both old and new transport keys to operate during the time of the transition;
individual subsystem instances take turns being configured while other clones continue to serve with no
downtime.

In the KRA transport key rotation process, a new transport key pair is generated, a certificate request is
submitted, and a new transport certificate is retrieved. The new transport key pair and certificate have
to be included in the KRA configuration to provide support for the second transport key. Once KRA
supports two transport keys, administrators can start transitioning CAs to the new transport key. KRA
support for the old transport key can be removed once all CAs are moved to the new transport key.

To configure KRA transport key rotation:

1. Generate a new KRA transport key and certificate

2. Transfer the new transport key and certificate to KRA clones

3. Update the CA configuration with the new KRA transport certificate

4. Update the KRA configuration to use only the new transport key and certificate

After this, the rotation of KRA transport certificates is complete, and all the affected CAs and KRAs use
the new KRA certificate only. For more information on how to perform the above steps, see the
procedures below.

Generating the new KRA transport key and certificate

1. Request the KRA transport certificate.

a. Stop the KRA:

pki-server stop pki-kra

OR (if using the nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@pki-kra.service

Planning, Installation, and Deployment Guide

74

b. Go to the KRA NSS database directory:

cd /etc/pki/pki-kra/alias

c. Create a subdirectory and save all the NSS database files into it. For example:

mkdir nss_db_backup
cp *.db nss_db_backup

d. Create a new request by using the PKCS10Client utility. For example:

PKCS10Client -p password -d '.' -o 'req.txt' -n 'CN=KRA Transport 2
Certificate,O=example.com Security Domain'

Alternatively, use the certutil utility. For example:

certutil -d . -R -k rsa -g 2048 -s 'CN=KRA Transport 2 Certificate,O=example.com
Security Domain' -f password-file -a -o transport-certificate-request-file

e. Submit the transport certificate request on the Manual Data Recovery Manager
Transport Certificate Enrollment page of the CA End-Entity page.

f. Wait for the agent approval of the submitted request to retrieve the certificate by
checking the request status on the End-Entity retrieval page.

2. Approve the KRA transport certificate through the CA Agent Services interface.

3. Retrieve the KRA transport certificate.

a. Go to the KRA NSS database directory:

cd /etc/pki/pki-kra/alias

b. Wait for the agent approval of the submitted request to retrieve the certificate by
checking the request status on the End-Entity retrieval page.

c. Once the new KRA transport certificate is available, paste its Base64-encoded value into
a text file, for example a file named cert-serial_number.txt. Do not include the header (-
----BEGIN CERTIFICATE-----) or the footer (-----END CERTIFICATE-----).

4. Import the KRA transport certificate.

a. Go to the KRA NSS database directory:

cd /etc/pki/pki-kra/alias

b. Import the transport certificate into the KRA NSS database:

certutil -d . -A -n 'transportCert-serial_number cert-pki-kra KRA' -t 'u,u,u' -a -i cert-
serial_number.txt

5. Update the KRA transport certificate configuration.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

75

a. Go to the KRA NSS database directory:

cd /etc/pki/pki-kra/alias

b. Verify that the new KRA transport certificate is imported:

certutil -d . -L
certutil -d . -L -n 'transportCert-serial_number cert-pki-kra KRA'

c. Open the /var/lib/pki/pki-kra/kra/conf/CS.cfg file and add the following line:

kra.transportUnit.newNickName=transportCert-serial_number cert-pki-kra KRA

Propagating the new transport key and certificate to KRA clones

1. Start the KRA:

pki-server start pki-kra

or (if using the nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@pki-kra.service

2. Extract the new transport key and certificate for propagation to clones.

a. Go to the KRA NSS database directory:

cd /etc/pki/pki-kra/alias

b. Stop the KRA:

pki-server stop pki-kra

or (if using the nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@pki-kra.service

c. Verify that the new KRA transport certificate is present:

certutil -d . -L
certutil -d . -L -n 'transportCert-serial_number cert-pki-kra KRA'

d. Export the KRA new transport key and certificate:

pk12util -o transport.p12 -d . -n 'transportCert-serial_number cert-pki-kra KRA'

e. Verify the exported KRA transport key and certificate:

pk12util -l transport.p12

Planning, Installation, and Deployment Guide

76

3. Perform these steps on each KRA clone:

a. Copy the transport.p12 file, including the transport key and certificate, to the KRA clone
location.

b. Go to the clone NSS database directory:

cd /etc/pki/pki-kra/alias

c. Stop the KRA clone:

pki-server stop pki-kra

or (if using the nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@pki-kra.service

d. Check the content of the clone NSS database:

certutil -d . -L

e. Import the new transport key and certificate of the clone:

pk12util -i transport.p12 -d .

f. Add the following line to the /var/lib/pki/pki-kra/kra/conf/CS.cfg file on the clone:

kra.transportUnit.newNickName=transportCert-serial_number cert-pki-kra KRA

g. Start the KRA clone:

pki-server start pki-kra

or (if using the nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@pki-kra.service

Updating the CA configuration with the new KRA transport certificate

1. Format the new KRA transport certificate for inclusion in the CA.

a. Obtain the cert-serial_number.txt KRA transport certificate file created when retrieving
the KRA transport certificate in the previous procedure.

b. Convert the Base64-encoded certificate included in cert-serial_number.txt to a single-
line file:

tr -d '\n' < cert-serial_number.txt > cert-one-line-serial_number.txt

2. Do the following for the CA and all its clones corresponding to the KRA above:

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

77

a. Stop the CA:

pki-server stop pki-ca

or (if using the nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@pki-ca.service

b. In the /var/lib/pki/pki-ca/ca/conf/CS.cfg file, locate the certificate included in the
following line:

ca.connector.KRA.transportCert=certificate

Replace that certificate with the one contained in cert-one-line-serial_number.txt.

c. Start the CA:

pki-server start pki-ca

or (if using the nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@pki-ca.service

NOTE

While the CA and all its clones are being updated with the new KRA transport
certificate, the CA instances that have completed the transition use the new KRA
transport certificate, and the CA instances that have not yet been updated continue
to use the old KRA transport certificate. Because the corresponding KRA and its
clones have already been updated to use both transport certificates, no downtime
occurs.

Updating the KRA configuration to use only the new transport key and certificate

For the KRA and each of its clones, do the following:

1. Go to the KRA NSS database directory:

cd /etc/pki/pki-kra/alias

2. Stop the KRA:

pki-server stop pki-kra

or (if using the nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@pki-kra.service

3. Verify that the new KRA transport certificate is imported:

Planning, Installation, and Deployment Guide

78

certutil -d . -L
certutil -d . -L -n 'transportCert-serial_number cert-pki-kra KRA'

4. Open the /var/lib/pki/pki-kra/kra/conf/CS.cfg file, and look for the nickName value
included in the following line:

kra.transportUnit.nickName=transportCert cert-pki-kra KRA

Replace the nickName value with the newNickName value included in the following line:

kra.transportUnit.newNickName=transportCert-serial_number cert-pki-kra KRA

As a result, the CS.cfg file includes this line:

kra.transportUnit.nickName=transportCert-serial_number cert-pki-kra KRA

5. Remove the following line from /var/lib/pki/pki-kra/kra/conf/CS.cfg:

kra.transportUnit.newNickName=transportCert-serial_number cert-pki-kra KRA

6. Start the KRA:

pki-server start pki-kra

or (if using the nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@pki-kra.service

2.5. SMART CARD TOKEN MANAGEMENT WITH CERTIFICATE SYSTEM

A smart card is a hardware cryptographic device containing cryptographic certificates and keys. It can be
employed by the user to participate in operations such as secure website access and secure mail. It can
also serve as an authentication device to log in to various operating systems such as Red Hat
Enterprise Linux. The management of these cards or tokens throughout their entire lifetime in service is
accomplished by the Token Management System (TMS).

A TMS environment requires a Certificate Authority (CA), Token Key Service (TKS), and Token
Processing System (TPS), with an optional Key Recovery Authority (KRA) for server-side key generation
and key archival and recovery. Online Certificate Status Protocol (OCSP) can also be used to work with
the CA to serve online certificate status requests. This chapter provides an overview of the TKS and
TPS systems, which provide the smart card management functions of Red Hat Certificate System, as
well as Enterprise Security Client (ESC), that works with TMS from the user end.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

79

Figure 2.4. How the TMS Manages Smart Cards

2.5.1. Token Key Service (TKS)

The Token Key Service (TKS) is responsible for managing one or more master keys. It maintains the
master keys and is the only entity within the TMS that has access to the key materials. In an operational
environment, each valid smart card token contains a set of symmetric keys that are derived from both
the master key and the ID that is unique to the card (CUID).

Initially, a default (unique only per manufacturer master key) set of symmetric keys is initialized on each
smart card by the manufacturer. This default set should be changed at the deployment site by going
through a Key Changeover operation to generate the new master key on TKS. As the sole owner to the
master key, when given the CUID of a smart card, TKS is capable of deriving the set of symmetric keys
residing on that particular smart card, which would then allow TKS to establish a session-based Secure
Channel for secure communication between TMS and each individual smart card.

NOTE

Because of the sensitivity of the data that the TKS manages, the TKS should be set
behind the firewall with restricted access.

2.5.1.1. Master Keys and Key Sets

The TKS supports multiple smart card key sets. Each smart card vendor creates different default
(developer) static key sets for their smart card token stocks, and the TKS is equipped with the static key
set (per manufacturer) to kickstart the format process of a blank token.

During the format process of a blank smart card token, a Java applet and the uniquely derived
symmetric key set are injected into the token. Each master key (in some cases referred to as keySet)

Planning, Installation, and Deployment Guide

80

that the TKS supports is to have a set of entries in the TKS configuration file (CS.cfg). Each TPS profile
contains a configuration to direct its enrollment to the proper TKS keySet for the matching key
derivation process that would essentially be responsible for establishing the Secure Channel secured by
a set of session-specific keys between TMS and the smart card token.

On TKS, master keys are defined by named keySets for references by TPS. On TPS, depending on the
enrollment type (internal or external registration), The keySet is either specified in the TPS profile, or
determined by the keySet Mapping Resolver.

2.5.1.2. Key Ceremony (Shared Key Transport)

A Key Ceremony is a process for transporting highly sensitive keys in a secure way from one location to
another. In one scenario, in a highly secure deployment environment, the master key can be generated in
a secure vault with no network to the outside. Alternatively, an organization might want to have TKS and
TPS instances on different physical machines. In either case, under the assumption that no one single
person is to be trusted with the key, Red Hat Certificate System TMS provides a utility called tkstool to
manage the secure key transportation.

2.5.1.3. Key Update (Key Changeover)

When Global Platform-compliant smart cards are created at the factory, the manufacturer will burn a
set of default symmetric keys onto the token. The TKS is initially configured to use these symmetric
keys (one KeySet entry per vendor in the TKS configuration). However, since these symmetric keys are
not unique to the smart cards from the same stock, and because these are well-known keys, it is strongly
encouraged to replace these symmetric keys with a set that is unique per token, not shared by the
manufacturer, to restrict the set of entities that can manipulate the token.

The changing over of the keys takes place with the assistance of the Token Key Service subsystem. One
of the functions of the TKS is to oversee the Master Keys from which the previously discussed smart
card token keys are derived. There can be more than one master key residing under the control of the
TKS.

IMPORTANT

When this key changeover process is done on a token, the token may become unusable in
the future since it no longer has the default key set enabled. The key is essentially only as
good as long as the TPS and TKS system that provisioned the token is valid. Because of
this, it is essential to keep all the master keys, even if any of them are outdated.

You can disable the old master keys in TKS for better control, but do not delete them
unless disabled tokens are part of your plan. There is support to revert the token keys
back to the original key set, which is viable if the token is to be reused again in some sort
of a testing scenario.

2.5.1.4. APDUs and Secure Channels

The Red Hat Certificate System Token Management System (TMS) supports the GlobalPlatform smart
card specification, in which the Secure Channel implementation is done with the Token Key System
(TKS) managing the master key and the Token Processing System (TPS) communicating with the smart
card (tokens) with Application Protocol Data Units (APDUs).

There are two types of APDUs:

Command APDUs, sent by the TPS to smart cards

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

81

Response APDUs, sent by smart cards to the TPS as response to command APDUs

The initiation of the APDU commands may be triggered when clients take action and connect to the
Certificate System server for requests. A secure channel begins with an InitializeUpdate APDU sent
from TPS to the smart card token, and is fully established with the ExternalAuthenticate APDU. Then,
both the token and TMS would have established a set of shared secrets, called session keys, which are
used to encrypt and authenticate the communication. This authenticated and encrypted communication
channel is called Secure Channel.

Because TKS is the only entity that has access to the master key which is capable of deriving the set of
unique symmetric on-token smart card keys, the Secure Channel provides the adequately safeguarded
communication between TMS and each individual token. Any disconnection of the channel will require
reestablishment of new session keys for a new channel.

2.5.2. Token Processing System (TPS)

The Token Processing System (TPS) is a registration authority for smart card certificate enrollment. It
acts as a conduit between the user-centered Enterprise Security Client (ESC), which interacts with
client side smart card tokens, and the Certificate System back end subsystems, such as the Certificate
Authority (CA) and the Key Recovery Authority (KRA).

In TMS, the TPS is required in order to manage smart cards, as it is the only TMS entity that understands
the APDU commands and responses. TPS sends commands to the smart cards to help them generate
and store keys and certificates for a specific entity, such as a user or device. Smart card operations go
through the TPS and are forwarded to the appropriate subsystem for action, such as the CA to generate
certificates or the KRA to generate, archive, or recover keys.

2.5.2.1. Coolkey Applet

Red Hat Certificate System includes the Coolkey Java applet, written specifically to run on TMS-
supported smart card tokens. The Coolkey applet connects to a PKCS#11 module that handles the
certificate and key related operations. During a token format operation, this applet is injected onto the
smart card token using the Secure Channel protocol, and can be updated per configuration.

2.5.2.2. Token Operations

The TPS in Red Hat Certificate System is available to provision smart cards on the behalf of end users of
the smart cards. The Token Processing System provides support for the following major token
operations:

Token Format - The format operation is responsible for installing the proper Coolkey applet
onto the token. The applet provides a platform where subsequent cryptographic keys and
certificates can be later placed.

Token Enrollment - The enrollment operation results in a smart card populated with required
cryptographic keys and cryptographic certificates. This material allows the user of the smart
card to participate in operations such as secure web site access and secure mail. Two types of
enrollments are supported, which is configured globally:

Internal Registration - Enrollment by TPS profiles determined by the profile Mapping
Resolver.

External Registration - Enrollment by TPS profiles determined by the entries in the user’s
LDAP record.

Token PIN Reset - The token PIN reset operation allows the user of the token to specify a new

Planning, Installation, and Deployment Guide

82

Token PIN Reset - The token PIN reset operation allows the user of the token to specify a new
PIN that is used to log into the token, making it available for performing cryptographic
operations.

The following other operations can be considered supplementary or inherent operations to the main
ones listed above. They can be triggered per relevant configuration or by the state of the token.

Key Generation - Each PKI certificate is comprised of a public/private key pair. In Red Hat
Certificate System, the generation of the keys can be done in two ways, depending on the TPS
profile configuration:

Token Side Key Generation - The PKI key pairs are generated on the smart card token.
Generating the key pairs on the token side does not allow for key archival.

Server Side Key Generation - The PKI key pairs are generated on the TMS server side. The
key pairs are then sent back to the token using Secure Channel. Generating the key pairs on
the server side allows for key archival.

Certificate Renewal - This operation allows a previously enrolled token to have the certificates
currently on the token reissued while reusing the same keys. This is useful in situations where
the old certificates are due to expire and you want to create new ones but maintain the original
key material.

Certificate Revocation - Certificate revocation can be triggered based on TPS profile
configuration or based on token state.

Normally, only the CA which issued a certificate can revoke it, which could mean that retiring a
CA would make it impossible to revoke certain certificates. However, it is possible to route
revocation requests for tokens to the retired CA while still routing all other requests such as
enrollment to a new, active CA. This mechanism is called Revocation Routing.

Token Key Changeover - The key changeover operation, triggered by a format operation,
results in the ability to change the internal keys of the token from the default developer key set
to a new key set controlled by the deployer of the Token Processing System. This is usually
done in any real deployment scenario since the developer key set is better suited to testing
situations.

Applet Update - During the course of a TMS deployment, the Coolkey smart card applet can
be updated or downgraded if required.

2.5.2.3. TPS Profiles

The Certificate System Token Processing System subsystem facilitates the management of smart card
tokens. Tokens are provisioned by the TPS such that they are taken from a blank state to either a
Formatted or Enrolled condition. A Formatted token is one that contains the CoolKey applet supported
by TPS, while an Enrolled token is personalized (a process called binding) to an individual with the
requisite certificates and cryptographic keys. This fully provisioned token is ready to use for
crytptographic operations.

The TPS can also manage Profiles. The notion of a token Profile is related to:

The steps taken to Format or Enroll a token.

The attributes contained within the finished token after the operation has been successfully
completed.

The following list contains some of the quantities that make up a unique token profile:

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

83

How does the TPS connect to the user's authentication LDAP database?

Will user authentication be required for this token operation? If so, what authentication manager
will be used?

How does the TPS connect to a Certificate System CA from which it will obtain certificates?

How are the private and public keys generated on this token? Are they generated on the token
side or on the server side?

What key size (in bits) is to be used when generating private and public keys?

Which certificate enrollment profile (provisioned by the CA) is to be used to generate the
certificates on this token?

NOTE

This setting will determine the final structure of the certificates to be written to
the token. Different certificates can be created for different uses, based on
extensions included in the certificate. For example, one certificate can specialize
in data encryption, and another one can be used for signature operations.

What version of the Coolkey applet will be required on the token?

How many certificates will be placed on this token for an enrollment operation?

These above and many others can be configured for each token type or profile. A full list of available
configuration options is available in the Red Hat Certificate System Administration Guide.

Another question to consider is how a given token being provisioned by a user will be mapped to an
individual token profile. There are two types of registration:

Internal Registration - In this case, the TPS profile (tokenType) is determined by the profile
Mapping Resolver . This filter-based resolver can be configured to take any of the data provided
by the token into account and determine the target profile.

External Registration - When using external registration, the profile (in name only - actual
profiles are still defined in the TPS in the same fashion as those used by the internal registration)
is specified in each user's LDAP record, which is obtained during authentication. This allows the
TPS to obtain key enrollment and recovery information from an external registration Directory
Server where user information is stored. This gives you the control to override the enrollment,
revocation, and recovery policies that are inherent to the TPS internal registration mechanism.
The user LDAP record attribute names relevant to external registration are configurable.

External registration can be useful when the concept of a "group certificate" is required. In that
case, all users within a group can have a special record configured in their LDAP profiles for
downloading a shared certificate and keys.

The registration to be used is configured globally per TPS instance.

2.5.2.4. Token Database

The Token Processing System makes use of the LDAP token database store, which is used to keep a list
of active tokens and their respective certificates, and to keep track of the current state of each token. A
brand new token is considered Uninitialized, while a fully enrolled token is Enrolled. This data store is
constantly updated and consulted by the TPS when processing tokens.

Planning, Installation, and Deployment Guide

84

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Administration_Guide/index.html

2.5.2.4.1. Token States and Transitions

The Token Processing System stores states in its internal database in order to determine the current
token status as well as actions which can be performed on the token.

2.5.2.4.1.1. Token States

The following table lists all possible token states:

Table 2.9. Possible Token States

Name Code Label

FORMATTED 0 Formatted (uninitialized)

DAMAGED 1 Physically damaged

PERM_LOST 2 Permanently lost

SUSPENDED 3 Suspended (temporarily lost)

ACTIVE 4 Active

TERMINATED 6 Terminated

UNFORMATTED 7 Unformatted

The command line interface displays token states using the Name listed above. The graphical interface
uses the Label instead.

NOTE

The above table contains no state with code 5, which previously belonged to a state that
was removed.

2.5.2.4.1.2. Token State Transitions Done Using the Graphical or Command Line Interface

Each token state has a limited amount of next states it can transition into. For example, a token can
change state from FORMATTED to ACTIVE or DAMAGED, but it can never transition from
FORMATTED to UNFORMATTED.

Furthermore, the list of states a token can transition into is different depending on whether the
transition is triggered manually using a command line or the graphical interface, or automatically using a
token operation. The list of allowed manual transitions is stored in the tokendb.allowedTransitions
property, and the tps.operations.allowedTransitions property controls allowed transitions triggered by
token operations.

The default configurations for both manual and token operation-based transitions are stored in the
/usr/share/pki/tps/conf/CS.cfg configuration file.

2.5.2.4.1.2.1. Token State Transitions Using the Command Line or Graphical Interface

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

85

All possible transitions allowed in the command line or graphical interface are described in the TPS
configuration file using the tokendb.allowedTransitions property:

tokendb.allowedTransitions=0:1,0:2,0:3,0:6,3:2,3:6,4:1,4:2,4:3,4:6,6:7

The property contains a comma-separated list of transitions. Each transition is written in the format of
<current code>:<new code>. The codes are described in Table 2.9, “Possible Token States” . The
default configuration is preserved in /usr/share/pki/tps/conf/CS.cfg.

The following table describes each possible transition in more detail:

Table 2.10. Possible Manual Token State Transitions

Transition Current State Next State Description

0:1 FORMATTED DAMAGED This token has been
physically damaged.

0:2 FORMATTED PERM_LOST This token has been
permanently lost.

0:3 FORMATTED SUSPENDED This token has been
suspended (temporarily
lost).

0:6 FORMATTED TERMINATED This token has been
terminated.

3:2 SUSPENDED PERM_LOST This suspended token
has been permanently
lost.

3:6 SUSPENDED TERMINATED This suspended token
has been terminated.

4:1 ACTIVE DAMAGED This token has been
physically damaged.

4:2 ACTIVE PERM_LOST This token has been
permanently lost.

4:3 ACTIVE SUSPENDED This token has been
suspended (temporarily
lost).

4:6 ACTIVE TERMINATED This token has been
terminated.

6:7 TERMINATED UNFORMATTED Reuse this token.

The following transitions are generated automatically depending on the token's original state. If a token

Planning, Installation, and Deployment Guide

86

was originally FORMATTED and then became SUSPENDED, it can only return to the FORMATTED
state. If a token was originally ACTIVE and then became SUSPENDED, it can only return to the ACTIVE
state.

Table 2.11. Token State Transitions Triggered Automatically

Transition Current State Next State Description

3:0 SUSPENDED FORMATTED This suspended
(temporarily lost) token
has been found.

3:4 SUSPENDED ACTIVE This suspended
(temporarily lost) token
has been found.

2.5.2.4.1.3. Token State Transitions using Token Operations

All possible transitions that can be done using token operations are described in the TPS configuration
file using the tokendb.allowedTransitions property:

tps.operations.allowedTransitions=0:0,0:4,4:4,4:0,7:0

The property contains a comma-separated list of transitions. Each transition is written in the format of
<current code>:<new code>. The codes are described in Table 2.9, “Possible Token States” . The
default configuration is preserved in /usr/share/pki/tps/conf/CS.cfg.

The following table describes each possible transition in more detail:

Table 2.12. Possible Token State Transitions using Token Operations

Transition Current State Next State Description

0:0 FORMATTED FORMATTED This allows reformatting
a token or upgrading
applet/key in a token.

0:4 FORMATTED ACTIVE This allows enrolling a
token.

4:4 ACTIVE ACTIVE This allows re-enrolling
an active token. May be
useful for external
registration.

4:0 ACTIVE FORMATTED This allows formatting an
active token.

7:0 UNFORMATTED FORMATTED This allows formatting a
blank or previously used
token.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

87

2.5.2.4.1.4. Token State and Transition Labels

The default labels for token states and transitions are stored in the /usr/share/pki/tps/conf/token-
states.properties configuration file. By default, the file has the following contents:

Token states
UNFORMATTED = Unformatted
FORMATTED = Formatted (uninitialized)
ACTIVE = Active
SUSPENDED = Suspended (temporarily lost)
PERM_LOST = Permanently lost
DAMAGED = Physically damaged
TEMP_LOST_PERM_LOST = Temporarily lost then permanently lost
TERMINATED = Terminated

Token state transitions
FORMATTED.DAMAGED = This token has been physically damaged.
FORMATTED.PERM_LOST = This token has been permanently lost.
FORMATTED.SUSPENDED = This token has been suspended (temporarily lost).
FORMATTED.TERMINATED = This token has been terminated.
SUSPENDED.ACTIVE = This suspended (temporarily lost) token has been found.
SUSPENDED.PERM_LOST = This suspended (temporarily lost) token has become permanently
lost.
SUSPENDED.TERMINATED = This suspended (temporarily lost) token has been terminated.
SUSPENDED.FORMATTED = This suspended (temporarily lost) token has been found.
ACTIVE.DAMAGED = This token has been physically damaged.
ACTIVE.PERM_LOST = This token has been permanently lost.
ACTIVE.SUSPENDED = This token has been suspended (temporarily lost).
ACTIVE.TERMINATED = This token has been terminated.
TERMINATED.UNFORMATTED = Reuse this token.

2.5.2.4.1.5. Customizing Allowed Token State Transitions

To customize the list of token state transition, edit the following properties in
/var/lib/pki/instance_name/tps/conf/CS.cfg:

tokendb.allowedTransitions to customize the list of allowed transitions performed using the
command line or graphical interface

tps.operations.allowedTransitions to customize the list of allowed transitions using token
operations

Transitions can be removed from the default list if necessary, but new transitions cannot be added
unless they were in the default list. The defaults are stored in /usr/share/pki/tps/conf/CS.cfg.

2.5.2.4.1.6. Customizing Token State and Transition Labels

To customize token state and transition labels, copy the default /usr/share/pki/tps/conf/token-
states.properties into your instance folder (/var/lib/pki/instance_name/tps/conf/CS.cfg), and change
the labels listed inside as needed.

Changes will be effective immediately, the server does not need to be restarted. The TPS user interface
may require a reload.

To revert to default state and label names, delete the edited token-states.properties file from your
instance folder.

Planning, Installation, and Deployment Guide

88

2.5.2.4.1.7. Token Activity Log

Certain TPS activities are logged. Possible events in the log file are listed in the table below.

Table 2.13. TPS Activity Log Events

Activity Description

add A token was added.

format A token was formatted.

enrollment A token was enrolled.

recovery A token was recovered.

renewal A token was renewed.

pin_reset A token PIN was reset.

token_status_change A token status was changed using the command line
or graphical interface.

token_modify A token was modified.

delete A token was deleted.

cert_revocation A token certificate was revoked.

cert_unrevocation A token certificate was unrevoked.

2.5.2.4.2. Token Policies

In case of internal registration, each token can be governed by a set of token policies. The default
policies are:

RE_ENROLL=YES;RENEW=NO;FORCE_FORMAT=NO;PIN_RESET=NO;RESET_PIN_RESET_TO
_NO=NO;RENEW_KEEP_OLD_ENC_CERTS=YES

All TPS operations under internal registration are subject to the policies specified in the token's record. If
no policies are specified for a token, the TPS uses the default set of policies.

2.5.2.5. Mapping Resolver

The Mapping Resolver is an extensible mechanism used by the TPS to determine which token profile to
assign to a specific token based on configurable criteria. Each mapping resolver instance can be
uniquely defined in the configuration, and each operation can point to various defined mapping resolver
instance.

NOTE

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

89

NOTE

The mapping resolver framework provides a platform for writing custom plug-ins.
However instructions on how to write a plug-in is outside the scope of this document.

FilterMappingResolver is the only mapping resolver implementation provided with the TPS by default.
It allows you to define a set of mappings and a target result for each mapping. Each mapping contains a
set of filters, where:

If the input filter parameters pass all filters within a mapping, the target value is assigned.

If the input parameters fail a filter, that mapping is skipped and the next one in order is tried.

If a filter has no specified value, it always passes.

If a filter does have a specified value, then the input parameters must match exactly.

The order in which mappings are defined is important. The first mapping which passes is
considered resolved and is returned to the caller.

The input filter parameters are information received from the smart card token with or without
extensions. They are run against the FilterMappingResolver according to the above rules. The
following input filter parameters are supported by FilterMappingResolver:

appletMajorVersion - The major version of the Coolkey applet on the token.

appletMinorVersion - The minor version of the Coolkey applet on the token.

keySet or tokenType

keySet - can be set as an extension in the client request. Must match the value in the filter if
the extension is specified. The keySet mapping resolver is meant for determining keySet
value when using external registration. The Key Set Mapping Resolver is necessary in the
external registration environment when multiple key sets are supported (for example,
different smart card token vendors). The keySet value is needed for identifying the master
key on TKS, which is crucial for establishing Secure Channel. When a user's LDAP record is
populated with a set tokenType (TPS profile), it does not know which card will end up doing
the enrollment, and therefore keySet cannot be predetermined. The
keySetMappingResolver helps solve the issue by allowing the keySet to be resolved
before authentication.

tokenType - okenType can be set as an extension in the client request. It must match the
value in the filter if the extension is specified. tokenType (also referred to as TPS Profile) is
determined at this time for the internal registration environment.

tokenATR - The token's Answer to Reset (ATR).

tokenCUID - "start" and "end" define the range the Card Unique IDs (CUID) of the token must
fall in to pass this filter.

2.5.2.6. TPS Roles

The TPS supports the following roles by default:

TPS Administrator - this role is allowed to:

Planning, Installation, and Deployment Guide

90

Manage TPS tokens

View TPS certificates and activities

Manage TPS users and groups

Change general TPS configuration

Manage TPS authenticators and connectors

Configure TPS profiles and profile mappings

Configure TPS audit logging

TPS Agent - this role is allowed to:

Configure TPS tokens

View TPS certificates and activities

Change the status of TPS profiles

TPS Operator - this role is allowed to:

View TPS tokens, certificates, and activities

2.5.3. TKS/TPS Shared Secret

During TMS installation, a shared symmetric key is established between the Token Key Service and the
Token Processing System. The purpose of this key is to wrap and unwrap session keys which are
essential to Secure Channels.

NOTE

The shared secret key is currently only kept in a software cryptographical database.
There are plans to support keeping the key on a Hardware Security Module (HSM)
devices in a future release of Red Hat Certificate System. Once this functionality is
implemented, you will be instructed to run a Key Ceremony using tkstool to transfer the
key to the HSM.

2.5.4. Enterprise Security Client (ESC)

The Enterprise Security Client is an HTTP client application, similar to a web browser, that communicates
with the TPS and handles smart card tokens from the client side. While an HTTPS connection is
established between the ESC and the TPS, an underlying Secure Channel is also established between
the token and the TMS within each TLS session.

2.6. RED HAT CERTIFICATE SYSTEM SERVICES

Certificate System has a number of different features for administrators to use which makes it easier to
maintain the individual subsystems and the PKI as a whole.

2.6.1. Notifications

When a particular event occurs, such as when a certificate is issued or revoked, then a notification can be

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

91

When a particular event occurs, such as when a certificate is issued or revoked, then a notification can be
sent directly to a specified email address. The notification framework comes with default modules that
can be enabled and configured.

2.6.2. Jobs

Automated jobs run at defined intervals.

2.6.3. Logging

The Certificate System and each subsystem produce extensive system and error logs that record
system events so that the systems can be monitored and debugged. All log records are stored in the
local file system for quick retrieval. Logs are configurable, so logs can be created for specific types of
events and at the required logging level.

Certificate System allows logs to be signed digitally before archiving them or distributing them for
auditing. This feature enables log files to be checked for tampering after being signed.

2.6.4. Auditing

The Certificate System maintains audit logs for all events, such as requesting, issuing and revoking
certificates and publishing CRLs. These logs are then signed. This allows authorized access or activity to
be detected. An outside auditor can then audit the system if required. The assigned auditor user
account is the only account which can view the signed audit logs. This user's certificate is used to sign
and encrypt the logs. Audit logging is configured to specify the events that are logged.

2.6.5. Self-Tests

The Certificate System provides the framework for system self-tests that are automatically run at
startup and can be run on demand. A set of configurable self-tests are already included with the
Certificate System.

2.6.6. Users, Authorization, and Access Controls

Certificate System users can be assigned to groups, which are also known as roles, and they then have
the privileges of whichever group they are members. A user only has privileges for the instance of the
subsystem in which the user is created and the privileges of the group to which the user is a member.

Authentication is the means that Certificate System subsystems use to verify the identity of clients,
whether they are authenticating to a certificate profile or to one of the services interfaces. There are a
number of different ways for a client to perform authentication, including simple user name/password,
SSL/TLS client authentication, LDAP authentication, NIS authentication, or CMC. Authentication can be
performed for any access to the subsystem; for certificate enrollments, for example, the profile defines
how the requestor authenticates to the CA.

Once the client is identified and authenticated, then the subsystems perform an authorization check to
determine what level of access to the subsystem that particular user is allowed.

Authorization is tied to group, or role, permissions, rather than directly to individual users. The
Certificate System provides an authorization framework for creating groups and assigning access
control to those groups. The default access control on preexisting groups can be modified, and access
control can be assigned to individual users and IP addresses. Access points for authorization have been
created for the major portions of the system, and access control rules can be set for each point.

Planning, Installation, and Deployment Guide

92

2.6.6.1. Default Administrative Roles

NOTE

Red Hat Certificate System uses the words roles and groups interchangeably in the
context of the permissions given to users.

The Certificate System is configured by default with three user types with different access levels to the
system:

Administrators, who can perform any administrative or configuration task for a subsystem.

Agents, who perform PKI management tasks, like approving certificate requests, managing
token enrollments, or recovering keys.

Auditors, who can view and configure audit logs.

NOTE

By default, for bootstrapping purposes, an administrative user processing both
Administrator and Agent privileges is created during the Red Hat Certificate System
instance creation, when running the pkispawn utility. This bootstrap administrator uses
the caadmin user name by default but can be overridden by the pki_admin_uid
parameter in the configuration file passed to the pkispawn command. The purpose of
the bootstrap administrator is to create the first administrator and agent user. This
operation requires the administrator privilege to mange user and groups, and the agent
privilege to issue certificates.

2.6.6.2. Built-in Subsystem Trust Roles

Additionally, when a security domain is created, the CA subsystem which hosts the domain is
automatically granted the special role of Security Domain Administrator , which gives the subsystem the
ability to manage the security domain and the subsystem instances within it. Other security domain
administrator roles can be created for the different subsystem instances. These special roles should not
have actual users as members.

2.7. CLONING

2.7.1. About Cloning

Planning for high availability reduces unplanned outages and other problems by making one or more
subsystem clones available. When a host machine goes down, the cloned subsystems can handle
requests and perform services, taking over from the master (original) subsystem seamlessly and
keeping uninterrupted service.

Using cloned subsystems also allows systems to be taken offline for repair, troubleshooting, or other
administrative tasks without interrupting the services of the overall PKI system.

NOTE

All of the subsystems except the TPS can be cloned.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

93

Cloning is one method of providing scalability to the PKI by assigning the same task, such as handling
certificate requests, to separate instances on different machines. The internal databases for the master
and its clones are replicated between each other, so the information about certificate requests or
archived keys on one subsystem is available on all the others.

Typically, master and cloned instances are installed on different machines, and those machines are
placed behind a load balancer. The load balancer accepts HTTP and HTTPS requests made to the
Certificate System subsystems and directs those requests appropriately between the master and
cloned instances. In the event that one machine fails, the load balancer transparently redirects all
requests to the machine that is still running until the other machine is brought back online.

Figure 2.5. Cloning Example

The load balancer in front of a Certificate System subsystem is what provides the actual failover support
in a high availability system. A load balancer can also provide the following advantages as part of a
Certificate System subsystem:

DNS round-robin, a feature for managing network congestion that distributes load across
several different servers.

Sticky SSL/TLS, which makes it possible for a user returning to the system to be routed the
same host used previously.

Normally, when a system is cloned, the configuration servlet sets up the replication agreements between
the internal LDAP databases. However, some users may want to establish and manage their own
replication agreements. The pkispawn executable has been modified to allow this by adding a [Tomcat]

Planning, Installation, and Deployment Guide

94

section to the PKI instance override configuration file and adding the following two name=value pairs
under that section:

[Tomcat]
pki_clone_setup_replication=False
pki_clone_reindex_data=False

IMPORTANT

Data must be replicated before pkispawn is invoked when specifying this kind of
installation.

2.7.2. Preparing Clones

You need to export certificates to a p12 file which can then be used while installing a clone subsystem.
This command does not install or setup a clone subsystem, but prepares it for installation. Here is an
example how to export subsystem certificates using the pki-server SUBSYSTEM-clone-prepare
command.

Example 2.3. Exporting Subsystem Certificates

You can verify that the exported p12 file contains the certificates. In the following example, the output
of the pki pkcs12-cert-find returns four certificates:

[root@pki1 ~]$ pki-server ca-clone-prepare --i topology-02-CA --pkcs12-file
/tmp/caclone.p12 --pkcs12-password SECret.123

Added certificate "subsystemCert cert-topology-02-CA"

--
Added certificate "caSigningCert cert-topology-02-CA CA"
--
--
Added certificate "ocspSigningCert cert-topology-02-CA CA"
--

Added certificate "auditSigningCert cert-topology-02-CA CA"

[root@pki1 ~]$ pki pkcs12-cert-find --pkcs12-file /tmp/caclone.p12 --pkcs12-password
SECret.123

4 entries found

Certificate ID: 4649cef11b90c78d126874b91654de98ded54073
Serial Number: 0x4
Nickname: subsystemCert cert-topology-02-CA
Subject DN: CN=Subsystem Certificate,OU=topology-02-CA,O=topology-02_Foobarmaster.org
Issuer DN: CN=CA Signing Certificate,OU=topology-02-CA,O=topology-02_Foobarmaster.org
Trust Flags: u,u,u
Has Key: true

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

95

With the exported p12 file, you can now set up a clone subsystem.

2.7.3. Cloning for CAs

Cloned instances have the exact same private keys as the master, so their certificates are identical. For
CAs, that means that the CA signing certificates are identical for the original master CA and its cloned
CAs. From the perspectives of clients, these look like a single CA.

Every CA, both cloned and master, can issue certificates and process revocation requests.

The main issue with managing replicated CAs is how to assign serial numbers to the certificates they
issue. Different replicated CAs can have different levels of traffic, using serial numbers at different rates,
and it is imperative that no two replicated CAs issue certificates with the same serial number. These
serial number ranges are assigned and managed dynamically by using a shared, replicated entry that
defines the ranges for each CA and the next available range to reassign when one CA range runs low.

The serial number ranges with cloned CAs are fluid. All replicated CAs share a common configuration
entry which defines the next available range. When one CA starts running low on available numbers, it
checks this configuration entry and claims the next range. The entry is automatically updated, so that
the next CA gets a new range.

The ranges are defined in begin*Number and end*Number attributes, with separate ranges defined for
requests and certificate serial numbers. For example:

 dbs.beginRequestNumber=1
 dbs.beginSerialNumber=1
 dbs.enableSerialManagement=true
 dbs.endRequestNumber=9980000
 dbs.endSerialNumber=ffe0000
 dbs.replicaCloneTransferNumber=5

Certificate ID: a304cf107abd79fbda06d887cd279fb02cefe438
Serial Number: 0x1
Nickname: caSigningCert cert-topology-02-CA CA
Subject DN: CN=CA Signing Certificate,OU=topology-02-CA,O=topology-02_Foobarmaster.org
Issuer DN: CN=CA Signing Certificate,OU=topology-02-CA,O=topology-02_Foobarmaster.org
Trust Flags: CTu,Cu,Cu
Has Key: true

Certificate ID: 4a09e057c1edfee40f412551db1959831abe117d
Serial Number: 0x2
Nickname: ocspSigningCert cert-topology-02-CA CA
Subject DN: CN=CA OCSP Signing Certificate,OU=topology-02-CA,O=topology-
02_Foobarmaster.org
Issuer DN: CN=CA Signing Certificate,OU=topology-02-CA,O=topology-02_Foobarmaster.org
Trust Flags: u,u,u
Has Key: true

Certificate ID: 3f42f88026267f90f59631d38805cc60ee4c711a
Serial Number: 0x5
Nickname: auditSigningCert cert-topology-02-CA CA
Subject DN: CN=CA Audit Signing Certificate,OU=topology-02-CA,O=topology-02_Foobarmaster.org
Issuer DN: CN=CA Signing Certificate,OU=topology-02-CA,O=topology-02_Foobarmaster.org
Trust Flags: u,u,Pu
Has Key: true

Planning, Installation, and Deployment Guide

96

Only one replicated CA can generate, cache, and publish CRLs; this is the CRL CA. CRL requests
submitted to other replicated CAs are immediately redirected to the CRL CA. While other replicated
CAs can revoke, display, import, and download CRLs previously generated by the CRL CA,
synchronization problems might occur if they generate new CRLs. For instructions on how to move CRL
generation to a different replicated CA, see Section 10.7.1, “Converting CA Clones and Masters” .

Master CAs also manage the relationships and information sharing between the cloned CAs by
monitoring replication changes to the internal databases.

NOTE

If a CA which is a security domain master is cloned, then that cloned CA is also a security
domain master. In that case, both the original CA and its clone share the same security
domain configuration.

IMPORTANT

As covered in Section 2.7.9, “Custom Configuration and Clones”, the data within the
LDAP database is replicated among a master and clones, but the configuration files for
the different instances are not replicated. This means that any changes which affect the
CS.cfg file — such as adding a KRA connection or creating a custom profile — are not
copied into a clone's configuration if the change occurs after the clone is created.

Any changes to the CA configuration should either be made to the master before any
clones are created (so the custom changes are included in the cloning process) or any
configuration changes must be copied over manually to the clone instances after they are
created.

2.7.4. Cloning for KRAs

With KRAs, all keys archived in one KRA are replicated to the internal databases of the other KRAs. This
allows a key recovery to be initiated on any clone KRA, regardless of which KRA the key was originally
archived on.

After a key recovery is processed, the record of the recovery is stored in the internal database of all of
the cloned KRAs.

With synchronous key recovery, although the recovery process can be initiated on any clone, it must be
completed on the same single KRA on which it was initiated. This is because a recovery operation is
recorded in the replicated database only after the appropriate number of approvals have been obtained
from the KRA agents. Until then, the KRA on which the recovery is initiated is the only one which knows
about the recovery operation.

IMPORTANT

There exists a synchronous key recovery mechanism that has been deprecated in
Red Hat Certificate System 9 and is not discussed in this documentation. Red Hat
recommends the use of asynchronous key recovery instead.

2.7.5. Cloning for Other Subsystems

There is no real operational difference between replicated TKSs; the information created or maintained
on one is replicated along the other servers.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

97

For OCSPs, only one replicated OCSP receives CRL updates, and then the published CRLs are
replicated to the clones.

2.7.6. Cloning and Key Stores

Cloning a subsystem creates two server processes performing the same functions: another new instance
of the subsystem is created and configured to use the same keys and certificates to perform its
operations. Depending on where the keys are stored for the master clone, the method for the clone to
access the keys is very different.

If the keys and certificates are stored in the internal software token, then they must be exported from
the master subsystem when it is first configured. When configuring the master instance, it is possible to
backup the system keys and certificates to a PKCS #12 file by specifying the pki_backup_keys and
pki_backup_password parameters in the pkispawn configuration file. See the BACKUP
PARAMETERS section in the pki_default.cfg(5) man page for more details.

If the keys were not backed up during the initial configuration, you can extract them to a PKCS #12 file
using the PKCS12Export utility, as described in Section 10.1, “Backing up Subsystem Keys from a
Software Database”.

Then copy the PKCS #12 file over to the clone subsystem, and define its location and password in the
pkispawn configuration file using the pki_clone_pkcs12_password and pki_clone_pkcs12_path
parameters For more information, see the Installing a Clone section in the pkispawn(8) man page. In
particular, make sure that the PKCS#12 file is accessible by the pkiuser user and that it has the correct
SELinux label.

If the keys and certificates are stored on a hardware token, then the keys and certificates must be
copied using hardware token specific utilities or referenced directly in the token:

Duplicate all the required keys and certificates, except the SSL/TLS server key and certificate
to the clone instance. Keep the nicknames for those certificates the same. Additionally, copy all
the necessary trusted root certificates from the master instance to the clone instance, such as
chains or cross-pair certificates.

If the token is network-based, then the keys and certificates simply need to be available to the
token; the keys and certificates do not need to be copied.

When using a network-based hardware token, make sure the high-availability feature is enabled
on the hardware token to avoid single point of failure.

2.7.7. LDAP and Port Considerations

As mentioned in Section 2.7.1, “About Cloning”, part of the behavior of cloning is to replicate information
between replicated subsystems, so that they work from an identical set of data and records. This means
that the LDAP servers for the replicated subsystems need to be able to communicate.

If the Directory Server instances are on different hosts, then make sure that there is appropriate firewall
access to allow the Directory Server instances to connect with each other.

NOTE

Cloned subsystems and their masters must use separate LDAP servers while they
replicate data between common suffixes.

A subsystem can connect to its internal database using either SSL/TLS over an LDAPS port or over a

Planning, Installation, and Deployment Guide

98

standard connection over an LDAP port. When a subsystem is cloned, the clone instance uses the same
connection method (SSL/TLS or standard) as its master to connect to the database. With cloning, there
is an additional database connection though: the master Directory Server database to the clone
Directory Server database. For that connection, there are three connection options:

If the master uses SSL/TLS to connect to its database, then the clone uses SSL/TLS, and the
master/clone Directory Server databases use SSL/TLS connections for replication.

If the master uses a standard connection to its database, then the clone must use a standard
connection, and the Directory Server databases can use unencrypted connections for
replication.

If the master uses a standard connection to its database, then the clone must use a standard
connection, but there is an option to use Start TLS for the master/clone Directory Server
databases for replication. Start TLS opens a secure connection over a standard port.

NOTE

To use Start TLS, the Directory Server must still be configured to accept
SSL/TLS connections. This means that prior to configuring the clone, a server
certificate and a CA certificate must be installed on the Directory Server, and
SSL/TLS must be enabled.

Whatever connection method (secure or standard) used by the master must be used by the clone and
must be properly configured for the Directory Server databases prior to configuring the clone.

IMPORTANT

Even if the clone connects to the master over a secure connection, the standard LDAP
port (389 by default) must still be open and enabled on the LDAP server while cloning is
configured.

For secure environments, the standard LDAP port can be disabled on the master's
Directory Server instance once the clone is configured.

2.7.8. Replica ID Numbers

Cloning is based on setting up a replication agreement between the Directory Server for the master
instance and the Directory Server for the cloned instance.

Servers involved together with replication are in the same replication topology. Every time a subsystem
instance is cloned, it is added to the overall topology. Directory Server discerns between different
servers in the topology based on their replica ID number . This replica ID must be unique among all of the
servers in the topology.

As with the serial number ranges used for requests and certificates (covered in Section 2.7.3, “Cloning
for CAs”), every subsystem is assigned a range of allowed replica IDs. When the subsystem is cloned, it
assigns one of the replica IDs from its range to the new clone instance.

dbs.beginReplicaNumber=1
dbs.endReplicaNumber=95

The replica ID range can be refreshed with new numbers if an instance begins to exhaust its current
range.

CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM

99

2.7.9. Custom Configuration and Clones

After a clone is created, configuration changes are not replicated between clones or between a master
and a clone. The instance configuration is in the CS.cfg file — outside the replicated database.

For example, there are two CAs, a master and a clone. A new KRA is installed which is associated, at its
configuration, with the master CA. The CA-KRA connector information is stored in the master CA's
CS.cfg file, but this connector information is not added to the clone CA configuration. If a certificate
request that includes a key archival is submitted to the master CA, then the key archival is forwarded to
the KRA using the CA-KRA connector information. If the request is submitted to the clone CA, no KRA is
recognized, and the key archival request is disallowed.

Changes made to the configuration of a master server or to a clone server are not replicated to
other cloned instances. Any critical settings must be added manually to clones.

NOTE

You can set all required, custom configuration for a master server before configuring any
clones. For example, install all KRAs so that all the connector information is in the master
CA configuration file, create any custom profiles, or configure all publishing points for a
master OCSP responder. Note that if the LDAP profiles are stored in the Directory
Server, they are replicated and kept in sync across servers.

Any custom settings in the master instance will be included in the cloned instances at the
time they are cloned (but not after).

Planning, Installation, and Deployment Guide

100

CHAPTER 3. SUPPORTED STANDARDS AND PROTOCOLS
Red Hat Certificate System is based on many public and standard protocols and RFCs, to ensure the
best possible performance and interoperability. The major standards and protocols used or supported
by Certificate System 10 are outlined in this chapter, to help administrators plan their client services
effectively.

3.1. TLS, ECC, AND RSA

The Transport Layer Security (TLS) protocol is an universally accepted standard for authenticated and
encrypted communication between clients and servers. Both client and server authentication occur over
TLS.

TLS uses a combination of public-key and symmetric-key encryption. Symmetric-key encryption is
much faster than public-key encryption, but public-key encryption provides better authentication
techniques. An TLS session always begins with an exchange of messages called handshake, initial
communication between the server and client. The handshake allows the server to authenticate itself to
the client using public-key techniques, optionally allows the client to authenticate to the server, then
allows the client and the server to cooperate in the creation of symmetric keys used for rapid
encryption, decryption, and integrity verification during the session that follows.

TLS supports a variety of different cryptographic algorithms, or ciphers, for operations such as
authenticating the server and client, transmitting certificates, and establishing session keys. Clients and
servers may support different cipher suites, or sets of ciphers. Among other functions, the handshake
determines how the server and client negotiate which cipher suite is used to authenticate each other, to
transmit certificates, and to establish session keys.

Key-exchange algorithms like RSA and Elliptic Curve Diffie-Hellman (ECDH) govern the way the server
and client determine the symmetric keys to use during an TLS session. TLS supports ECC (Elliptic Curve
Cryptography) cipher suites, as well as RSA. The Certificate System supports both RSA and ECC public-
key cryptographic systems natively.

In more recent practise, key-exchange algorithms are being superseded by key-agreement protocols
where each of the two or more parties can influence the outcome when establishing a common key for
secure communication. Key agreement is preferrable to key exchange because it allows for Perfect
Forward Secrecy (PFS) to be implemented. When PFS is used, random public keys (also called
temporary cipher parameters or ephemeral keys) are generated for each session by a non-deterministic
algorithm for the purposes of key agreement. As a result, there is no single secret value which could lead
to the compromise of multiple messages, protecting past and future communication alike.

NOTE

Longer RSA keys are required to provide security as computing capabilities increase. The
recommended RSA key-length is 2048 bits. Though many servers continue to use 1024-
bit keys, servers should migrate to at least 2048 bits. For 64-bit machines, consider using
stronger keys. All CAs should use at least 2048-bit keys, and stronger keys (such as 3072
or 4096 bits) if possible.

3.1.1. Supported Cipher Suites

Cipher and hashing algorithms are in a constant flux with regard to various vulnerabilities and security
strength. As a general rule, Red Hat Certificate System follows the NIST guideline and supports TLS 1.1
and TLS 1.2 cipher suites pertaining to the server keys.

CHAPTER 3. SUPPORTED STANDARDS AND PROTOCOLS

101

http://www.nist.gov/itl/csd/tls-043014.cfm

3.1.1.1. Recommended TLS Cipher Suites

The Transport Layer Security (TLS) protocol is a universally accepted standard for authenticated and
encrypted communication between clients and servers. Red Hat Certificate System supports TLS 1.1 and
1.2.

Red Hat Certificate System supports the following cipher suites when the server is acting either as a
server or as a client:

ECC

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

RSA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

3.2. ALLOWED KEY ALGORITHMS AND THEIR SIZES

Red Hat Certificate System supports the following key algorithms and sizes if they are provided by the
underlying PKCS #11 module.

Allowed RSA key sizes:

2048 bits or greater

Planning, Installation, and Deployment Guide

102

Allowed EC curves or equivalent as defined in the FIPS PUB 186-4 standard:

nistp256

nistp384

nistp521

3.3. ALLOWED HASH FUNCTIONS

The following keyed hash messages authentication (HMAC) are allowed:

SHA-256

SHA-384

SHA-512

The following cryptographic hashing functions are allowed:

SHA-256

SHA-384

SHA-512

3.4. IPV4 AND IPV6 ADDRESSES

Certificate System supports both IPv4 addresses and IPv6 addresses. In a very wide variety of
circumstances, Certificate System subsystems or operations reference a host name or IP address;
supporting both IPv4- and IPv6-style addresses ensures forward compatibility with network protocols.
The operations that support IPv6 connections include the following:

Communications between subsystems, including between the TPS, TKS, and CA and for joining
security domains

Token operations between the TPS and the Enterprise Security Client

Subsystem logging

Access control instructions

Operations performed with Certificate System tools, including the pki utility, the Subject Alt
Name Extension tool, HttpClient, and the Bulk Issuance Tool

Client communications, including both the pkiconsole utility and IPv6-enabled browsers for
web services

Certificate request names and certificate subject names, including user, server, and router
certificates

Publishing

Connecting to LDAP databases for internal databases and authentication directories

Any time a host name or URL is referenced, an IP address can be used:

CHAPTER 3. SUPPORTED STANDARDS AND PROTOCOLS

103

https://csrc.nist.gov/publications/detail/fips/186/4/final

An IPv4 address must be in the format n.n.n.n or n.n.n.n,m.m.m.m. For example, 128.21.39.40
or 128.21.39.40,255.255.255.00.

An IPv6 address uses a 128-bit namespace, with the IPv6 address separated by colons and the
netmask separated by periods. For example, 0:0:0:0:0:0:13.1.68.3, FF01::43, or
0:0:0:0:0:0:13.1.68.3,FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:255.255.255.0.

If DNS is properly configured, then an IPv4 or IPv6 address can be used to connect to the web services
pages and to the subsystem Java consoles. The most common method is to use fully-qualified domain
names:

https://ipv6host.example.com:8443/ca/services
pkiconsole https://ipv6host.example.com:8443/ca

To use IPv6 numeric addresses, replace the fully-qualified domain name in the URL with the IPv6
address, enclosed in brackets ([]). For example:

https://[00:00:00:00:123:456:789:00:]:8443/ca/services
pkiconsole https://[00:00:00:00:123:456:789:00:]:8443/ca

3.5. SUPPORTED PKIX FORMATS AND PROTOCOLS

The Certificate System supports many of the protocols and formats defined in Public-Key Infrastructure
(X.509) by the IETF. In addition to the PKIX standards listed here, other PKIX-listed standards are
available at the IETF Datatracker website.

Table 3.1. PKIX Standards Supported in Certificate System 10

Format or Protocol RFC or Draft Description

X.509 version 1 and version 3 Digital certificate formats
recommended by the
International Telecommunications
Union (ITU).

Certificate Request Message
Format (CRMF)

RFC 4211 A message format to send a
certificate request to a CA.

Certificate Management Message
Formats (CMMF)

Message formats to send
certificate requests and
revocation requests from end
entities to a CA and to return
information to end entities.
CMMF has been subsumed by
another standard, CMC.

Planning, Installation, and Deployment Guide

104

http://datatracker.ietf.org/

Certificate Management
Messages over CS (CMC)

RFC 5274 A general interface to public-key
certification products based on
CS and PKCS #10, including a
certificate enrollment protocol for
RSA-signed certificates with
Diffie-Hellman public-keys. CMC
incorporates CRMF and CMMF.

Cryptographic Message Syntax
(CMS)

RFC 2630 A superset of PKCS #7 syntax
used for digital signatures and
encryption.

PKIX Certificate and CRL Profile RFC 5280 A standard developed by the IETF
for a public-key infrastructure for
the Internet. It specifies profiles
for certificates and CRLs.

Online Certificate Status Protocol
(OCSP)

RFC 6960 A protocol useful in determining
the current status of a digital
certificate without requiring CRLs.

Format or Protocol RFC or Draft Description

CHAPTER 3. SUPPORTED STANDARDS AND PROTOCOLS

105

CHAPTER 4. SUPPORTED PLATFORMS
This section describes the different server platforms, hardware, tokens, and software supported by
Red Hat Certificate System 10.

4.1. GENERAL REQUIREMENTS

For details, see the corresponding section in the Red Hat Certificate System 10 Release Notes .

4.2. SERVER SUPPORT

Running the Certificate Authority (CA), Key Recovery Authority (KRA), Online Certificate Status
Protocol (OCSP), Token Key Service (TKS), and Token Processing System (TPS) subsystems of
Certificate System 10.4 is supported on Red Hat Enterprise Linux 8.6 and later. The supported
Directory Server version is 11.1 and later.

NOTE

Certificate System 10.4 is supported running on a Red Hat Enterprise Linux 8.6 virtual
guest on a certified hypervisor. For details, see the Which hypervisors are certified to run
Red Hat Enterprise Linux? solution article.

4.3. SUPPORTED WEB BROWSERS

Certificate System 10.0 supports the following browsers:

Table 4.1. Supported Web Browsers by Platform

Platform Agent Services End User Pages

Red Hat Enterprise Linux Firefox 60 and later [a] Firefox 60 and later [a]

[a] This Firefox version no longer supports the crypto web object used to generate and archive keys from the browser. As
a result, expect limited functionality in this area.

NOTE

The only fully-supported browser for the HTML-based instance configuration is Mozilla
Firefox.

4.4. SUPPORTED HARDWARE SECURITY MODULES

The following table lists Hardware Security Modules (HSM) supported by Red Hat Certificate System:

HSM Firmware Appliance
Software

Client Software

Planning, Installation, and Deployment Guide

106

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/release_notes/index
https://access.redhat.com/node/427723/

nCipher nShield Connect XC
(High)

nShield_HSM_Firmware-
12.72.1

12.71.0 SecWorld_Lin64-12.71.0

Thales TCT Luna Network
HSM Luna-T7

lunafw_update-7.11.1-4 7.11.0-25 610-500244-
001_LunaClient-7.11.1-5

HSM Firmware Appliance
Software

Client Software

CHAPTER 4. SUPPORTED PLATFORMS

107

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM
Each Red Hat Certificate System subsystem can be installed on the same server machine, installed on
separate servers, or have multiple instances installed across an organization. Before installing any
subsystem, it is important to plan the deployment out: what kind of PKI services do you need? What are
the network requirements? What people need to access the Certificate System, what are their roles, and
what are their physical locations? What kinds of certificates do you want to issue and what constraints or
rules need to be set for them?

This chapter covers some basic questions for planning a Certificate System deployment. Many of these
decisions are interrelated; one choice impacts another, like deciding whether to use smart cards
determines whether to install the TPS and TKS subsystems.

5.1. DECIDING ON THE REQUIRED SUBSYSTEMS

The Certificate System subsystems cover different aspects of managing certificates. Planning which
subsystems to install is one way of defining what PKI operations the deployment needs to perform.

Certificates, like software or equipment, have a lifecycle with defined stages. At its most basic, there are
three steps:

It is requested and issued.

It is valid.

It expires.

However, this simplified scenario does not cover a lot of common issues with certificates:

What if an employee leaves the company before the certificate expires?

When a CA signing certificate expires, all of the certificates issued and signed using that
certificate also expire. So will the CA signing certificate be renewed, allowing its issued
certificates to remain valid, or will it be reissued?

What if an employee loses a smart card or leaves it at home. Will a replacement certificate be
issued using the original certificates keys? Will the other certificates be suspended or revoked?
Are temporary certificates allowed?

When a certificate expires, will a new certificate be issued or will the original certificate be
renewed?

This introduces three other considerations for managing certificates: revocation, renewal, and
replacements.

Other considerations are the loads on the certificate authority. Are there a lot of issuance or renewal
requests? Is there a lot of traffic from clients trying to validate whether certificates are valid? How are
people requesting certificates supposed to authenticate their identity, and does that process slow down
the issuance process?

5.1.1. Using a Single Certificate Manager

The core of the Certificate System PKI is the Certificate Manager, a certificate authority. The CA
receives certificate requests and issues all certificates.

Planning, Installation, and Deployment Guide

108

Figure 5.1. CA Only Certificate System

All of the basic processing for requests and issuing certificates can be handled by the Certificate
Manager, and it is the only required subsystem. There can be a single Certificate Manager or many
Certificate Managers, arranged in many different relationships, depending on the demands of the
organization.

Along with issuing certificates, a Certificate Manager can also revoke certificates. One question for
administrators is how to handle certificates if they are lost, compromised, or if the person or equipment
for which they are issued leaves the company. Revoking a certificate invalidates it before its expiration
date, and a list of revoked certificates is compiled and published by the issuing CA so that clients can
verify the certificate status.

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

109

5.1.2. Planning for Lost Keys: Key Archival and Recovery

One operation the CA cannot perform, though, is key archival and recovery. A very real scenario is that a
user is going to lose his private key — for instance, the keys could be deleted from a browser database or
a smart card could be left at home. Many common business operations use encrypted data, like
encrypted email, and losing the keys which unlock that data means the data itself is lost. Depending on
the policies in the company, there probably has to be a way to recover the keys in order to regenerate or
reimport a replacement certificate, and both operations require the private key.

That requires a KRA, the subsystem which specially archives and retrieves keys.

Planning, Installation, and Deployment Guide

110

Figure 5.2. CA and KRA

The Key Recovery Authority stores encryption keys (key archival) and can retrieve those keys so that
the CA can reissue a certificate (key recovery). A KRA can store keys for any certificate generated by
Certificate System, whether it is done for a regular certificate or when enrolling a smart card.

The key archival and recovery process is explained in more detail in Section 2.4.5, “Archiving,
Recovering, and Rotating Keys”.

NOTE

The KRA is intended for archival and recovery of private encryption keys only. Therefore,
end users must use a browser that supports dual-key generation to store their public-
private key pairs.

5.1.3. Balancing Certificate Request Processing

Another aspect of how the subsystems work together is load balancing. If a site has high traffic, then it is
possible to simply install a lot of CAs, as clones of each other or in a flat hierarchy (where each CA is
independent) or in a tree hierarchy (where some CAs are subordinate to other CAs); this is covered
more in Section 5.2, “Defining the Certificate Authority Hierarchy” .

5.1.4. Balancing Client OCSP Requests

If a certificate is within its validity period but needs be invalidated, it can be revoked. A Certificate
Manager can publish lists of revoked certificates, so that when a client needs to verify that a certificate is
still valid, it can check the list. These requests are online certificate status protocol requests , meaning
that they have a specific request and response format. The Certificate Manager has a built-in OCSP
responder so that it can verify OCSP requests by itself.

However, as with certificate request traffic, a site may have a significant number of client requests to
verify certificate status. Example Corp. has a large web store, and each customer's browser tries to verify
the validity of their SSL/TLS certificates. Again, the CA can handle issuing the number of certificates,

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

111

but the high request traffic affects its performance. In this case, Example Corp. uses the external OCSP
Manager subsystem to verify certificate statuses, and the Certificate Manager only has to publish
updated CRLs every so often.

Figure 5.3. CA and OCSP

5.1.5. Using Smart Cards

Smart cards usually require in-person enrollment and approval processes, since they use a physical
medium to store key and certificate data. That means that multiple agents need to have access to the
TPS and, possibly, multiple TPS subsystems in different offices or geographic locations.

The token management system is very scalable. Multiple TPSs can be configured to work with a single
CA, TKS, or KRA instance, while multiple Enterprise Security Clients can communicate with a single TPS.
As additional clients are installed, they can point back to the TPS instance without having to reconfigure
the TPS; likewise, as TPSs are added, they can point to the same CA, TKS, and KRA instances without
having to reconfigure those subsystems.

After installation, the TPS configuration can be edited to use additional CA, KRA, and TKS instances for
failover support, so if the primary subsystem is unavailable, the TPS can switch to the next available
system without interrupting its token services.

5.2. DEFINING THE CERTIFICATE AUTHORITY HIERARCHY

The CA is the center of the PKI, so the relationship of CA systems, both to each other (CA hierarchy)

Planning, Installation, and Deployment Guide

112

The CA is the center of the PKI, so the relationship of CA systems, both to each other (CA hierarchy)
and to other subsystems (security domain) is vital to planning a Certificate System PKI.

When there are multiple CAs in a PKI, the CAs are structured in a hierarchy or chain. The CA above
another CA in a chain is called an root CA; a CA below another CA in the chain is called a subordinate CA.
A CA can also be subordinate to a root outside of the Certificate System deployment; for example, a CA
which functions as a root CA within the Certificate System deployment can be subordinate to a third-
party CA.

A Certificate Manager (or CA) is subordinate to another CA because its CA signing certificate, the
certificate that allows it to issue certificates, is issued by another CA. The CA that issued the
subordinate CA signing certificate controls the CA through the contents of the CA signing certificate.
The CA can constrain the subordinate CA through the kinds of certificates that it can issue, the
extensions that it is allowed to include in certificates, the number of levels of subordinate CAs the
subordinate CA can create, and the validity period of certificates it can issue, as well as the validity
period of the subordinate CAs signing certificate.

NOTE

Although a subordinate CA can create certificates that violate these constraints, a client
authenticating a certificate that violates those constraints will not accept that certificate.

A self-signed root CA signs its own CA signing certificate and sets its own constraints as well as setting
constraints on the subordinate CA signing certificates it issues.

A Certificate Manager can be configured as either a root CA or a subordinate CA. It is easiest to make
the first CA installed a self-signed root, so that it is not necessary to apply to a third party and wait for
the certificate to be issued. Before deploying the full PKI, however, consider whether to have a root CA,
how many to have, and where both root and subordinate CAs will be located.

5.2.1. Subordination to a Public CA

Chaining the Certificate System CA to a third-party public CA introduces the restrictions that public
CAs place on the kinds of certificates the subordinate CA can issue and the nature of the certificate
chain. For example, a CA that chains to a third-party CA might be restricted to issuing only Secure
Multipurpose Internet Mail Extensions (S/MIME) and SSL/TLS client authentication certificates, but not
SSL/TLS server certificates. There are other possible restrictions with using a public CA. This may not
be acceptable for some PKI deployments.

One benefit of chaining to a public CA is that the third party is responsible for submitting the root CA
certificate to a web browser or other client software. This can be a major advantage for an extranet with
certificates that are accessed by different companies with browsers that cannot be controlled by the
administrator. Creating a root CA in the CA hierarchy means that the local organization must get the
root certificate into all the browsers which will use the certificates issued by the Certificate System.
There are tools to do this within an intranet, but it can be difficult to accomplish with an extranet.

5.2.2. Subordination to a Certificate System CA

The Certificate System CA can function as a root CA, meaning that the server signs its own CA signing
certificate as well as other CA signing certificates, creating an organization-specific CA hierarchy. The
server can alternatively be configured as a subordinate CA, meaning the server's CA signing key is signed
by another CA in an existing CA hierarchy.

Setting up a Certificate System CA as the root CA means that the Certificate System administrator has
control over all subordinate CAs by setting policies that control the contents of the CA signing

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

113

certificates issued. A subordinate CA issues certificates by evaluating its own authentication and
certificate profile configuration, without regard for the root CA's configuration.

5.2.3. Linked CA

The Certificate System Certificate Manager can function as a linked CA, chaining up to many third-party
or public CAs for validation; this provides cross-company trust, so applications can verify certificate
chains outside the company certificate hierarchy. A Certificate Manager is chained to a third-party CA
by requesting the Certificate Manager's CA signing certificate from the third-party CA.

Related to this, the Certificate Manager also can issue cross-pair or cross-signed certificates. Cross-pair
certificates create a trusted relationship between two separate CAs by issuing and storing cross-signed
certificates between these two CAs. By using cross-signed certificate pairs, certificates issued outside
the organization's PKI can be trusted within the system.

These are also called bridge certificates, related to the Federal Bridge Certification Authority (FBCA)
definition.

5.2.4. CA Cloning

Instead of creating a hierarchy of root and subordinate CAs, it is possible to create multiple clones of a
Certificate Manager and configure each clone to issue certificates within a range of serial numbers.

A cloned Certificate Manager uses the same CA signing key and certificate as another Certificate
Manager, the master Certificate Manager.

NOTE

If there is a chance that a subsystem will be cloned, then it is easiest to export its key
pairs during the configuration process and save them to a secure location. The key pairs
for the original Certificate Manager have to be available when the clone instance is
configured, so that the clone can generate its certificates from the original Certificate
Manager's keys.

It is also possible to export the keys from the security databases at a later time, using the
pk12util or the PKCS12Export commands.

Because clone CAs and original CAs use the same CA signing key and certificate to sign the certificates
they issue, the issuer name in all the certificates is the same. Clone CAs and the original Certificate
Managers issue certificates as if they are a single CA. These servers can be placed on different hosts for
high availability failover support.

The advantage of cloning is that it distributes the Certificate Manager's load across several processes or
even several physical machines. For a CA with a high enrollment demand, the distribution gained from
cloning allows more certificates to be signed and issued in a given time interval.

A cloned Certificate Manager has the same features, such as agent and end-entity gateway functions, of
a regular Certificate Manager.

The serial numbers for certificates issued by clones are distributed dynamically. The databases for each
clone and master are replicated, so all of the certificate requests and issued certificates, both, are also
replicated. This ensures that there are no serial number conflicts while serial number ranges do not have
to be manually assigned to the cloned Certificate Managers.

Planning, Installation, and Deployment Guide

114

5.3. PLANNING SECURITY DOMAINS

A security domain is a registry of PKI services. PKI services, such as CAs, register information about
themselves in these domains so users of PKI services can find other services by inspecting the registry.
The security domain service in Certificate System manages both the registration of PKI services for
Certificate System subsystems and a set of shared trust policies.

The registry provides a complete view of all PKI services provided by the subsystems within that domain.
Each Certificate System subsystem must be either a host or a member of a security domain.

A CA subsystem is the only subsystem which can host a security domain. The security domain shares the
CA internal database for privileged user and group information to determine which users can update the
security domain, register new PKI services, and issue certificates.

A security domain is created during CA configuration, which automatically creates an entry in the
security domain CA's LDAP directory. Each entry contains all the important information about the
domain. Every subsystem within the domain, including the CA registering the security domain, is
recorded under the security domain container entry.

The URL to the CA uniquely identifies the security domain. The security domain is also given a friendly
name, such as Example Corp Intranet PKI. All other subsystems — KRA, TPS, TKS, OCSP, and other
CAs — must become members of the security domain by supplying the security domain URL when
configuring the subsystem.

Each subsystem within the security domain shares the same trust policies and trusted roots which can be
retrieved from different servers and browsers. The information available in the security domain is used
during configuration of a new subsystem, which makes the configuration process streamlined and
automated. For example, when a TPS needs to connect to a CA, it can consult the security domain to get
a list of available CAs.

Each CA has its own LDAP entry. The security domain is an organizational group underneath that CA
entry:

ou=Security Domain,dc=server.example.com-pki-ca

Then there is a list of each subsystem type beneath the security domain organizational group, with a
special object class (pkiSecurityGroup) to identify the group type:

cn=KRAList,ou=Security Domain,o=pki-tomcat-CA
objectClass: top
objectClass: pkiSecurityGroup
cn: KRAList

Each subsystem instance is then stored as a member of that group, with a special pkiSubsystem object
class to identify the entry type:

dn: cn=kra.example.com:8443,cn=KRAList,ou=Security Domain,o=pki-tomcat-CA
objectClass: top
objectClass: pkiSubsystem
cn: kra.example.com:8443
host: server.example.com
UnSecurePort: 8080
SecurePort: 8443
SecureAdminPort: 8443
SecureAgentPort: 8443

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

115

SecureEEClientAuthPort: 8443
DomainManager: false
Clone: false
SubsystemName: KRA kra.example.com 8443

If a subsystem needs to contact another subsystem to perform an operation, it contacts the CA which
hosts the security domain (by invoking a servlet which connects over the administrative port of the CA).
The security domain CA then retrieves the information about the subsystem from its LDAP database,
and returns that information to the requesting subsystem.

The subsystem authenticates to the security domain using a subsystem certificate.

Consider the following when planning the security domain:

The CA hosting the security domain can be signed by an external authority.

Multiple security domains can be set up within an organization. However, each subsystem can
belong to only one security domain.

Subsystems within a domain can be cloned. Cloning subsystem instances distributes the system
load and provides failover points.

The security domain streamlines configuration between the CA and KRA; the KRA can push its
KRA connector information and transport certificates automatically to the CA instead of
administrators having to manually copy the certificates over to the CA.

The Certificate System security domain allows an offline CA to be set up. In this scenario, the
offline root has its own security domain. All online subordinate CAs belong to a different security
domain.

The security domain streamlines configuration between the CA and OCSP. The OCSP can push
its information to the CA for the CA to set up OCSP publishing and also retrieve the CA
certificate chain from the CA and store it in the internal database.

5.4. DETERMINING THE REQUIREMENTS FOR SUBSYSTEM
CERTIFICATES

The CA configuration determines many of the characteristics of the certificates which it issues,
regardless of the actual type of certificate being issued. Constraints on the CA's own validity period,
distinguished name, and allowed encryption algorithms impact the same characteristics in their issued
certificates. Additionally, the Certificate Managers have predefined profiles that set rules for different
kinds of certificates that they issue, and additional profiles can be added or modified. These profile
configurations also impact issued certificates.

5.4.1. Determining Which Certificates to Install

When a Certificate System subsystem is first installed and configured, the certificates necessary to
access and administer it are automatically created. These include an agent's certificate, server
certificate, and subsystem-specific certificates. These initial certificates are shown in Table 5.1, “Initial
Subsystem Certificates”.

Table 5.1. Initial Subsystem Certificates

Planning, Installation, and Deployment Guide

116

Subsystem Certificates

Certificate Manager
CA signing certificate

OCSP signing certificate

SSL/TLS server certificate

Subsystem certificate

User's (agent/administrator) certificate

Audit log signing certificate

OCSP
OCSP signing certificate

SSL/TLS server certificate

Subsystem certificate

User's (agent/administrator) certificate

Audit log signing certificate

KRA
Transport certificate

Storage certificate

SSL/TLS server certificate

Subsystem certificate

User's (agent/administrator) certificate

Audit log signing certificate

TKS
SSL/TLS server certificate

User's (agent/administrator) certificate

Audit log signing certificate

TPS
SSL/TLS server certificate

User's (agent/administrator) certificate

Audit log signing certificate

There are some cautionary considerations about replacing existing subsystem certificates.

Generating new key pairs when creating a new self-signed CA certificate for a root CA will

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

117

Generating new key pairs when creating a new self-signed CA certificate for a root CA will
invalidate all certificates issued under the previous CA certificate.

This means none of the certificates issued or signed by the CA using its old key will work;
subordinate Certificate Managers, KRAs, OCSPs, TKSs, and TPSs will no longer function, and
agents can no longer to access agent interfaces.

This same situation occurs if a subordinate CA's CA certificate is replaced by one with a new key
pair; all certificates issued by that CA are invalidated and will no longer work.

Instead of creating new certificates from new key pairs, consider renewing the existing CA
signing certificate.

If the CA is configured to publish to the OCSP and it has a new CA signing certificate or a new
CRL signing certificate, the CA must be identified again to the OCSP.

If a new transport certificate is created for the KRA, the KRA information must be updated in the
CA's configuration file, CS.cfg. The existing transport certificate must be replaced with the new
one in the ca.connector.KRA.transportCert parameter.

If a CA is cloned, then when creating a new SSL/TLS server certificate for the master Certificate
Manager, the clone CAs' certificate databases all need updated with the new SSL/TLS server
certificate.

If the Certificate Manager is configured to publish certificates and CRLs to an LDAP directory
and uses the SSL/TLS server certificate for SSL/TLS client authentication, then the new
SSL/TLS server certificate must be requested with the appropriate extensions. After installing
the certificate, the publishing directory must be configured to use the new server certificate.

Any number of SSL/TLS server certificates can be issued for a subsystem instance, but it really
only needs one SSL/TLS certificate. This certificate can be renewed or replaced as many times
as necessary.

5.4.2. Planning the CA Distinguished Name

The core elements of a CA are a signing unit and the Certificate Manager identity. The signing unit
digitally signs certificates requested by end entities. A Certificate Manager must have its own
distinguished name (DN), which is listed in every certificate it issues.

Like any other certificate, a CA certificate binds a DN to a public key. A DN is a series of name-value
pairs that in combination uniquely identify an entity. For example, the following DN identifies a
Certificate Manager for the Engineering department of a corporation named Example Corporation:

cn=demoCA, o=Example Corporation, ou=Engineering, c=US

Many combinations of name-value pairs are possible for the Certificate Manager's DN. The DN must be
unique and readily identifiable, since any end entity can examine it.

5.4.3. Setting the CA Signing Certificate Validity Period

Every certificate, including a Certificate Manager signing certificate, must have a validity period. The
Certificate System does not restrict the validity period that can be specified. Set as long a validity period
as possible, depending on the requirements for certificate renewal, the place of the CA in the certificate
hierarchy, and the requirements of any public CAs that are included in the PKI.

A Certificate Manager cannot issue a certificate that has a validity period longer than the validity period

Planning, Installation, and Deployment Guide

118

A Certificate Manager cannot issue a certificate that has a validity period longer than the validity period
of its CA signing certificate. If a request is made for a period longer than the CA certificate's validity
period, the requested validity date is ignored and the CA signing certificate validity period is used.

5.4.4. Choosing the Signing Key Type and Length

A signing key is used by a subsystem to verify and "seal" something. CAs use a CA signing certificate to
sign certificates or CRLs that it issues; OCSPs use signing certificates to verify their responses to
certificate status requests; all subsystems use log file signing certificates to sign their audit logs.

The signing key must be cryptographically strong to provide protection and security for its signing
operations. The following signing algorithms are considered secure:

SHA256withRSA

SHA512withRSA

SHA256withEC

SHA512withEC

NOTE

Certificate System includes native ECC support. It is also possible to load and use a third-
party PKCS #11 module with ECC-enabled. This is covered in Chapter 9, Installing an
Instance with ECC System Certificates.

Along with a key type, each key has a specific bit length . Longer keys are considered cryptographically
stronger than shorter keys. However, longer keys require more time for signing operations.

The default RSA key length in the configuration wizard is 2048 bits; for certificates that provide access
to highly sensitive data or services, consider increasing the length to 4096 bits. ECC keys are much
stronger than RSA keys, so the recommended length for ECC keys is 256 bits, which is equivalent in
strength to a 2048-bit RSA key.

5.4.5. Using Certificate Extensions

An X.509 v3 certificate contains an extension field that permits any number of additional fields to be
added to the certificate. Certificate extensions provide a way of adding information such as alternative
subject names and usage restrictions to certificates. Older Netscape servers, such as Red Hat Directory
Server and Red Hat Certificate System, require Netscape-specific extensions because they were
developed before PKIX part 1 standards were defined.

The X.509 v1 certificate specification was originally designed to bind public keys to names in an X.500
directory. As certificates began to be used on the Internet and extranets and directory lookups could
not always be performed, problem areas emerged that were not covered by the original specification.

Trust. The X.500 specification establishes trust by means of a strict directory hierarchy. By
contrast, Internet and extranet deployments frequently involve distributed trust models that do
not conform to the hierarchical X.500 approach.

Certificate use . Some organizations restrict how certificates are used. For example, some
certificates may be restricted to client authentication only.

Multiple certificates. It is not uncommon for certificate users to possess multiple certificates

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

119

Multiple certificates. It is not uncommon for certificate users to possess multiple certificates
with identical subject names but different key material. In this case, it is necessary to identify
which key and certificate should be used for what purpose.

Alternate names . For some purposes, it is useful to have alternative subject names that are also
bound to the public key in the certificate.

Additional attributes. Some organizations store additional information in certificates, such as
when it is not possible to look up information in a directory.

Relationship with CA . When certificate chaining involves intermediate CAs, it is useful to have
information about the relationships among CAs embedded in their certificates.

CRL checking. Since it is not always possible to check a certificate's revocation status against a
directory or with the original certificate authority, it is useful for certificates to include
information about where to check CRLs.

The X.509 v3 specification addressed these issues by altering the certificate format to include
additional information within a certificate by defining a general format for certificate extensions and
specifying extensions that can be included in the certificate. The extensions defined for X.509 v3
certificates enable additional attributes to be associated with users or public keys and manage the
certification hierarchy. The Internet X.509 Public Key Infrastructure Certificate and CRL Profile
recommends a set of extensions to use for Internet certificates and standard locations for certificate or
CA information. These extensions are called standard extensions .

NOTE

For more information on standard extensions, see RFC 2459, RFC 3280, and RFC 3279.

The X.509 v3 standard for certificates allows organizations to define custom extensions and include
them in certificates. These extensions are called private, proprietary, or custom extensions, and they
carry information unique to an organization or business. Applications may not able to validate
certificates that contain private critical extensions, so it not recommended that these be used in wide-
spread situations.

The X.500 and X.509 specifications are controlled by the International Telecommunication Union (ITU),
an international organization that primarily serves large telecommunication companies, government
organizations, and other entities concerned with the international telecommunications network. The
Internet Engineering Task Force (IETF), which controls many of the standards that underlie the Internet,
is currently developing public-key infrastructure X.509 (PKIX) standards. These proposed standards
further refine the X.509 v3 approach to extensions for use on the Internet. The recommendations for
certificates and CRLs have reached proposed standard status and are in a document referred to as PKIX
Part 1.

Two other standards, Abstract Syntax Notation One (ASN.1) and Distinguished Encoding Rules (DER),
are used with Certificate System and certificates in general. These are specified in the CCITT
Recommendations X.208 and X.209. For a quick summary of ASN.1 and DER, see A Layman's Guide to a
Subset of ASN.1, BER, and DER, which is available at RSA Laboratories' web site, http://www.rsa.com.

5.4.5.1. Structure of Certificate Extensions

In RFC 3280, an X.509 certificate extension is defined as follows:

Extension ::= SEQUENCE {

Planning, Installation, and Deployment Guide

120

http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3279.txt
http://www.rsa.com

extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }

The means a certificate extension consists of the following:

The object identifier (OID) for the extension. This identifier uniquely identifies the extension. It
also determines the ASN.1 type of value in the value field and how the value is interpreted. When
an extension appears in a certificate, the OID appears as the extension ID field (extnID) and the
corresponding ASN.1 encoded structure appears as the value of the octet string (extnValue).

A flag or Boolean field called critical.

The value, which can be either true or false, assigned to this field indicates whether the
extension is critical or noncritical to the certificate.

If the extension is critical and the certificate is sent to an application that does not
understand the extension based on the extension's ID, the application must reject the
certificate.

If the extension is not critical and the certificate is sent to an application that does not
understand the extension based on the extension's ID, the application can ignore the
extension and accept the certificate.

An octet string containing the DER encoding of the value of the extension.

Typically, the application receiving the certificate checks the extension ID to determine if it can
recognize the ID. If it can, it uses the extension ID to determine the type of value used.

Some of the standard extensions defined in the X.509 v3 standard include the following:

Authority Key Identifier extension, which identifies the CA's public key, the key used to sign the
certificate.

Subject Key Identifier extension, which identifies the subject's public key, the key being
certified.

NOTE

Not all applications support certificates with version 3 extensions. Applications that do
support these extensions may not be able to interpret some or all of these specific
extensions.

5.4.6. Using and Customizing Certificate Profiles

Certificates have different types and different applications. They can be used to establish a single sign-
on environment for a corporate network, to set up VPNs, to encrypt email, or to authenticate to a
website. The requirements for all of these certificates can be different, just as there may also be
different requirements for the same type of certificate for different kinds of users. These certificate
characteristics are set in certificate profiles. The Certificate Manager defines a set of certificate profiles
that it uses as enrollment forms when users or machines request certificates.

Certificate Profiles
A certificate profile defines everything associated with issuing a particular type of certificate, including
the authentication method, the certificate content (defaults), constraints for the values of the content,
and the contents of the input and output for the certificate profile. Enrollment requests are submitted

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

121

to a certificate profile and are then subject to the defaults and constraints set in that certificate profile.
These constraints are in place whether the request is submitted through the input form associated with
the certificate profile or through other means. The certificate that is issued from a certificate profile
request contains the content required by the defaults with the information required by the default
parameters. The constraints provide rules for what content is allowed in the certificate.

For example, a certificate profile for user certificates defines all aspects of that certificate, including the
validity period of the certificate. The default validity period can be set to two years, and a constraint can
be set on the profile that the validity period for certificates requested through this certificate profile
cannot exceed two years. When a user requests a certificate using the input form associated with this
certificate profile, the issued certificate contains the information specified in the defaults and will be
valid for two years. If the user submits a pre-formatted request for a certificate with a validity period of
four years, the request is rejected since the constraints allow a maximum of two years validity period for
this type of certificate.

A set of certificate profiles have been predefined for the most common certificates issued. These
certificate profiles define defaults and constraints, associate the authentication method, and define the
needed inputs and outputs for the certificate profile.

Modifying the Certificate Profile Parameters
The parameters of the default certificate profiles can be modified; this includes the authentication
method, the defaults, the constraints used in each profile, the values assigned to any of the parameters
in a profile, the input, and the output. It is also possible to create new certificate profiles for other types
of certificates or for creating more than one certificate profile for a certificate type. There can be
multiple certificate profiles for a particular type of certificate to issue the same type of certificate with a
different authentication method or different definitions for the defaults and constraints. For example,
there can be two certificate profiles for enrollment of SSL/TLS server certificates where one certificate
profile issues certificates with a validity period of six months and another certificate profile issues
certificates with a validity period of two years.

An input sets a text field in the enrollment form and what kind of information needs gathered from the
end entity; this includes setting the text area for a certificate request to be pasted, which allows a
request to be created outside the input form with any of the request information required. The input
values are set as values in the certificate. The default inputs are not configurable in the
Certificate System.

An output specifies how the response page to a successful enrollment is presented. It usually displays
the certificate in a user-readable format. The default output shows a printable version of the resultant
certificate; other outputs set the type of information generated at the end of the enrollment, such as
PKCS #7.

Policy sets are sets of constraints and default extensions attached to every certificate processed
through the profile. The extensions define certificate content such as validity periods and subject name
requirements. A profile handles one certificate request, but a single request can contain information for
multiple certificates. A PKCS#10 request contains a single public key. One CRMF request can contain
multiple public keys, meaning multiple certificate requests. A profile may contain multiple sets of
policies, with each set specifying how to handle one certificate request within a CRMF request.

Certificate Profile Administration
An administrator sets up a certificate profile by associating an existing authentication plug-in, or
method, with the certificate profile; enabling and configuring defaults and constraints; and defining
inputs and outputs. The administrator can use the existing certificate profiles, modify the existing
certificate profiles, create new certificate profiles, and delete any certificate profile that will not be used
in this PKI.

Once a certificate profile is set up, it appears on the Manage Certificate Profiles page of the agent
services page where an agent can approve, and thus enable, a certificate profile. Once the certificate

Planning, Installation, and Deployment Guide

122

profile is enabled, it appears on the Certificate Profile tab of the end-entities page where end entities
can enroll for a certificate using the certificate profile.

The certificate profile enrollment page in the end-entities interface contains links to each certificate
profile that has been enabled by the agents. When an end entity selects one of those links, an enrollment
page appears containing an enrollment form specific to that certificate profile. The enrollment page is
dynamically generated from the inputs defined for the profile. If an authentication plug-in is configured,
additional fields may be added to authenticate the user.

When an end entity submits a certificate profile request that is associated with an agent-approved
(manual) enrollment, an enrollment where no authentication plug-in is configured, the certificate
request is queued in the agent services interface. The agent can change some aspects of the
enrollment, request, validate it, cancel it, reject it, update it, or approve it. The agent is able to update
the request without submitting it or validate that the request adheres to the profile's defaults and
constraints. This validation procedure is only for verification and does not result in the request being
submitted. The agent is bound by the constraints set; they cannot change the request in such a way that
a constraint is violated. The signed approval is immediately processed, and a certificate is issued.

When a certificate profile is associated with an authentication method, the request is approved
immediately and generates a certificate automatically if the user successfully authenticates, all the
information required is provided, and the request does not violate any of the constraints set up for the
certificate profile. There are profile policies which allow user-supplied settings like subject names or
validity periods. The certificate profile framework can also preserve user-defined content set in the
original certificate request in the issued certificate.

The issued certificate contains the content defined in the defaults for this certificate profile, such as the
extensions and validity period for the certificate. The content of the certificate is constrained by the
constraints set for each default. Multiple policies (defaults and constraints) can be set for one profile,
distinguishing each set by using the same value in the policy set ID. This is particularly useful for dealing
with dual keys enrollment where encryption keys and signing keys are submitted to the same profile.
The server evaluates each set with each request it receives. When a single certificate is issued, one set is
evaluated, and any other sets are ignored. When dual-key pairs are issued, the first set is evaluated with
the first certificate request, and the second set is evaluated with the second certificate request. There is
no need for more than one set for issuing a single certificate or more than two sets for issuing dual-key
pairs.

Guidelines for Customizing Certificate Profiles
Tailor the profiles for the organization to the real needs and anticipated certificate types used by the
organization:

Decide which certificate profiles are needed in the PKI. There should be at least one profile for
each type of certificate issued. There can be more than one certificate profile for each type of
certificate to set different authentication methods or different defaults and constraints for a
particular type of certificate type. Any certificate profile available in the administrative interface
can be approved by an agent and then used by an end entity to enroll.

Delete any certificate profiles that will not be used.

Modify the existing certificate profiles for specific characteristics for the company's certificates.

Change the defaults set up in the certificate profile, the values of the parameters set in the
defaults, or the constraints that control the certificate content.

Change the constraints set up by changing the value of the parameters.

Change the authentication method.

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

123

Change the inputs by adding or deleting inputs in the certificate profile, which control the
fields on the input page.

Add or delete the output.

5.4.6.1. Adding SAN Extensions to the SSL Server Certificate

Certificate System enables adding Subject Alternative Name (SAN) extensions to the SSL server
certificate during the installation of non-root CA or other Certificate System instances. To do so, follow
the instructions in the /usr/share/pki/ca/profiles/ca/caInternalAuthServerCert.cfg file and add the
following parameters to the configuration file supplied to the pkispawn utility:

pki_san_inject

Set the value of this parameter to True.

pki_san_for_server_cert

Provide a list of the required SAN extensions separated by commas (,).

For example:

pki_san_inject=True
pki_san_for_server_cert=intca01.example.com,intca02.example.com,intca.example.com

5.4.7. Planning Authentication Methods

As implied in Section 5.4.6, “Using and Customizing Certificate Profiles” , authentication for the
certificate process means the way that a user or entity requesting a certificate proves that they are who
they say they are. There are three ways that the Certificate System can authenticate an entity:

In agent-approved enrollment, end-entity requests are sent to an agent for approval. The agent
approves the certificate request.

In automatic enrollment, end-entity requests are authenticated using a plug-in, and then the
certificate request is processed; an agent is not involved in the enrollment process.

In CMC enrollment, a third party application can create a request that is signed by an agent and
then automatically processed.

A Certificate Manager is initially configured for agent-approved enrollment and for CMC authentication.
Automated enrollment is enabled by configuring one of the authentication plug-in modules. More than
one authentication method can be configured in a single instance of a subsystem. The HTML
registration pages contain hidden values specifying the method used. With certificate profiles, the end-
entity enrollment pages are dynamically-generated for each enabled profile. The authentication method
associated with this certificate profile is specified in the dynamically-generated enrollment page.

The authentication process is simple.

1. An end entity submits a request for enrollment. The form used to submit the request identifies
the method of authentication and enrollment. All HTML forms are dynamically-generated by
the profiles, which automatically associate the appropriate authentication method with the
form.

2. If the authentication method is an agent-approved enrollment, the request is sent to the
request queue of the CA agent. If the automated notification for a request in queue is set, an

Planning, Installation, and Deployment Guide

124

email is sent to the appropriate agent that a new request has been received. The agent can
modify the request as allowed for that form and the profile constraints. Once approved, the
request must pass the certificate profiles set for the Certificate Manager, and then the
certificate is issued. When the certificate is issued, it is stored in the internal database and can
be retrieved by the end entity from the end-entities page by serial number or by request ID.

3. If the authentication method is automated, the end entity submits the request along with
required information to authenticate the user, such as an LDAP user name and password. When
the user is successfully authenticated, the request is processed without being sent to an agent's
queue. If the request passes the certificate profile configuration of the Certificate Manager, the
certificate is issued and stored in the internal database. It is delivered to the end entity
immediately through the HTML forms.

The requirements for how a certificate request is authenticated can have a direct impact on the
necessary subsystems and profile settings. For example, if an agent-approved enrollment requires that
an agent meet the requester in person and verify their identity through supported documentation, the
authentication process can be time-intensive, as well as constrained by the physical availability of both
the agent and the requester.

5.4.8. Publishing Certificates and CRLs

A CA can publish both certificates and CRLs. Certificates can be published to a plain file or to an LDAP
directory; CRLs can be published to file or an LDAP directory, as well, and can also be published to an
OCSP responder to handle certificate verification.

Configuring publishing is fairly straightforward and is easily adjusted. For continuity and accessibility,
though, it is good to plan out where certificates and CRLs need to be published and what clients need to
be able to access them.

Publishing to an LDAP directory requires special configuration in the directory for publishing to work:

If certificates are published to the directory, than every user or server to which a certificate is
issued must have a corresponding entry in the LDAP directory.

If CRLs are published to the directory, than they must be published to an entry for the CA which
issued them.

For SSL/TLS, the directory service has to be configured in SSL/TLS and, optionally, be
configured to allow the Certificate Manager to use certificate-based authentication.

The directory administrator should configure appropriate access control rules to control DN
(entry name) and password based authentication to the LDAP directory.

5.4.9. Renewing or Reissuing CA Signing Certificates

When a CA signing certificate expires, all certificates signed with the CA's corresponding signing key
become invalid. End entities use information in the CA certificate to verify the certificate's authenticity.
If the CA certificate itself has expired, applications cannot chain the certificate to a trusted CA.

There are two ways of resolving CA certificate expiration:

Renewing a CA certificate involves issuing a new CA certificate with the same subject name and
public and private key material as the old CA certificate, but with an extended validity period. As
long as the new CA certificate is distributed to all users before the old CA certificate expires,
renewing the certificate allows certificates issued under the old CA certificate to continue
working for the full duration of their validity periods.

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

125

Reissuing a CA certificate involves issuing a new CA certificate with a new name, public and
private key material, and validity period. This avoids some problems associated with renewing a
CA certificate, but it requires more work for both administrators and users to implement. All
certificates issued by the old CA, including those that have not yet expired, must be renewed by
the new CA.

There are problems and advantages with either renewing or reissuing a CA certificate. Begin planning
the CA certificate renewal or re-issuance before installing any Certificate Managers, and consider the
ramifications the planned procedures may have for extensions, policies, and other aspects of the PKI
deployment.

NOTE

Correct use of extensions, for example the authorityKeyIdentifier extension, can affect
the transition from an old CA certificate to a new one.

5.5. PLANNING FOR NETWORK AND PHYSICAL SECURITY

When deploying any Certificate System subsystem, the physical and network security of the subsystem
instance has to be considered because of the sensitivity of the data generated and stored by the
subsystems.

5.5.1. Considering Firewalls

There are two considerations about using firewalls with Certificate System subsystems:

Protecting sensitive subsystems from unauthorized access

Allowing appropriate access to other subsystems and clients outside of the firewall

The CA, KRA, and TKS are always placed inside a firewall because they contain critical information that
can cause devastating security consequences if they are compromised.

The TPS and OCSP can be placed outside the firewall. Likewise, other services and clients used by the
Certificate System can be on a different machine outside the firewall. In that case, the local networks
have to be configured to allow access between the subsystems behind the firewall and the services
outside it.

The LDAP database can be on a different server, even on a different network, than the subsystem which
uses it. In this case, all LDAP ports (389 for LDAP and 636 for LDAPS, by default) need to be open in the
firewall to allow traffic to the directory service. Without access to the LDAP database, all subsystem
operations can fail.

As part of configuring the firewalls, if iptables is enabled, then it must have configured policies to allow
communication over the appropriate Certificate System ports. Configuring iptables is described in the
Using and configuring firewalld guide.

5.5.2. Considering Physical Security and Location

Because of the sensitive data they hold, consider keeping the CA, KRA, and TKS in a secure facility with
adequate physical access restrictions. Just as network access to the systems needs to be restricted, the
physical access also needs to be restricted.

Along with finding a secure location, consider the proximity to the subsystem agents and administrators.
Key recovery, for example, can require multiple agents to give approval; if these agents are spread out

Planning, Installation, and Deployment Guide

126

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/using-and-configuring-firewalld_configuring-and-managing-networking

over a large geographical area, then the time differences may negatively impact the ability to retrieve
keys. Plan the physical locations of the subsystems, then according to the locations of the agents and
administrators who will manage the subsystem.

5.5.3. Planning Ports

Each Certificate System server uses up to four ports:

A non-secure HTTP port for end entity services that do not require authentication

A secure HTTP port for end entity services, agent services, administrative console, and admin
services that require authentication

A Tomcat Server Management port

A Tomcat AJP Connector Port

All of the service pages and interfaces described in the Red Hat Certificate System User Interfaces
chapter in the Red Hat Certificate System Administration Guide are connected to using the instance's
URL and the corresponding port number. For example:

https://server.example.com:8443/ca/ee/ca

To access the admin console, the URL specifies the admin port:

pkiconsole https://server.example.com:8443/ca

All agent and admin functions require SSL/TLS client authentication. For requests from end entities, the
Certificate System listens on both the SSL/TLS (encrypted) port and non-SSL/TLS ports.

The ports are defined in the server.xml file. If a port is not used, it can be disabled in that file. For
example:

<Service name="Catalina">
 <!--Connector port="8080" ... /--> unused standard port
 <Connector port="8443" ... />

Whenever a new instance in installed, make sure that the new ports are unique on the host system.

To verify that a port is available for use, check the appropriate file for the operating system. Port
numbers for network-accessible services are usually maintained in a file named services. On Red Hat
Enterprise Linux, it is also helpful to confirm that a port is not assigned by SELinux, by running the
command semanage port -l to list all ports which currently have an SELinux context.

When a new subsystem instance is created, any number between 1 and 65535 can be specified as the
secure port number.

5.6. TOKENS FOR STORING CERTIFICATE SYSTEM SUBSYSTEM KEYS
AND CERTIFICATES

A token is a hardware or software device that performs cryptographic functions and stores public-key
certificates, cryptographic keys, and other data. The Certificate System defines two types of tokens,
internal and external, for storing key pairs and certificates that belong to the Certificate System
subsystems.

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

127

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/admin_console

An internal (software) token is a pair of files, usually called the certificate database (cert9.db) and key
database (key4.db), that the Certificate System uses to generate and store its key pairs and
certificates. The Certificate System automatically generates these files in the filesystem of its host
machine when first using the internal token. These files are created during the Certificate System
subsystem configuration if the internal token was selected for key-pair generation.

These security databases are located in the /var/lib/pki/instance_name/alias directory.

An external token refers to an external hardware device, such as a smart card or hardware security
module (HSM), that the Certificate System uses to generate and store its key pairs and certificates. The
Certificate System supports any hardware tokens that are compliant with PKCS #11.

PKCS #11 is a standard set of APIs and shared libraries which isolate an application from the details of
the cryptographic device. This enables the application to provide a unified interface for PKCS #11-
compliant cryptographic devices.

The PKCS #11 module implemented in the Certificate System supports cryptographic devices supplied
by many different manufacturers. This module allows the Certificate System to plug in shared libraries
supplied by manufacturers of external encryption devices and use them for generating and storing keys
and certificates for the Certificate System managers.

Consider using external tokens for generating and storing the key pairs and certificates used by
Certificate System. These devices are another security measure to safeguard private keys because
hardware tokens are sometimes considered more secure than software tokens.

Before using external tokens, plan how the external token is going to be used with the subsystem:

All system keys for a subsystem must be generated on the same token.

The subsystem must be installed in an empty HSM slot. If the HSM slot has previously been used
to store other keys, then use the HSM vendor's utilities to delete the contents of the slot. The
Certificate System has to be able to create certificates and keys on the slot with default
nicknames. If not properly cleaned up, the names of these objects may collide with previous
instances.

The Certificate System can also use hardware cryptographic accelerators with external tokens. Many of
the accelerators provide the following security features:

Fast SSL/TLS connections. Speed is important to accommodate a high number of simultaneous
enrollment or service requests.

Hardware protection of private keys. These devices behave like smart cards by not allowing
private keys to be copied or removed from the hardware token. This is important as a precaution
against key theft from an active attack of an online Certificate Manager.

The Certificate System supports the nCipher nShield Connect XC hardware security module (HSM), by
default. Certificate System-supported HSMs are automatically added to the pkcs11.txt database with
modutil during the pre-configuration stage of the installation, if the PKCS #11 library modules are in the
default installation paths.

During configuration, the Security Modules panel displays the supported modules, along with the NSS
internal software PKCS #11 module. All supported modules that are detected show a status of Found
and is individually marked as either Logged in or Not logged in. If a token is found but not logged in, it is
possible to log in using the Login under Operations. If the administrator can log into a token
successfully, the password is stored in a configuration file. At the next start or restart of the
Certificate System instance, the passwords in the password store are used to attempt a login for each
corresponding token.

Planning, Installation, and Deployment Guide

128

Q:

A:

Q:

A:

Q:

A:

Q:

A:

Q:

A:

Administrators are allowed to select any of the tokens that are logged in as the default token, which is
used to generate system keys.

5.7. A CHECKLIST FOR PLANNING THE PKI

How many security domains will be created, and what subsystem instances will be placed in
each domain?

A subsystem can only communicate with another subsystem if they have a trusted relationship.
Because the subsystems within a security domain have automatic trusted relationships with each
other, it is important what domain a subsystem joins. Security domains can have different
certificate issuing policies, different kinds of subsystems within them, or a different Directory
Server database. Map out where (both on the physical machine and in relation to each other) each
subsystem belongs, and assign it to the security domain accordingly.

What ports should be assigned for each subsystem? Is it necessary to have a single SSL/TLS
port, or is it better to have port separation for extra security?

The most secure solution is to use separate ports for each SSL/TLS interface. However, the
feasibility of implementing multiple ports may depends on your network setup, firewall rules, and
other network conditions.

What subsystems should be placed behind firewalls? What clients or other subsystems need
to access those firewall-protected subsystems and how will access be granted? Is firewall
access allowed for the LDAP database?

The location to install a subsystem depends on the network design. The OCSP subsystem is
specifically designed to operate outside a firewall for user convenience, while the CA, KRA, and
TPS should all be secured behind a firewall for increased security.

When deciding the location of the subsystems, it is critical to plan what other subsystems or
services that server needs to access (including the internal database, a CA, or external users) and
look at firewall, subnet, and VPN configuration.

What subsystems need to be physically secured? How will access be granted, and who will be
granted access?

The CA, TKS, and KRA all store extremely sensitive key and certificate information. For some
deployments, it may be necessary to limit physical access to the machines these subsystems run
on. In that case, both the subsystems and their host machines must be included in the larger
infrastructure inventory and security design.

What is the physical location of all agents and administrators? What is the physical location of
the subsystems? How will administrators or agents access the subsystem services in a timely-
manner? Is it necessary to have subsystems in each geographical location or time zone?

The physical location of Certificate System users may impact things like request approval and
token enrollment, as well as system performance because of network lag time. The importance of
response time for processing certificate operations should be taken into account when deciding
where and how many subsystems to install.

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

129

A:

Q:

Q:

A:

Q:

A:

Q:

A:

How many subsystems do you need to install?

The primary consideration is the expected load for each subsystem and then, secondarily,
geographical or departmental divisions. Subsystems with fairly low loads (like the KRA or TKS)
may only require a single instance for the entire PKI. Systems with high load (the CA) or which may
benefit from local instances for local agents (like the TPS) may require multiple instances.

Subsystems can be cloned, meaning they essentially are clustered, operating as a single unit, which
is good for load balancing and high availability. Cloning is especially good for CAs and KRAs, where
the same key and certificate data may need to be accessed by larger numbers of users or to have
reliable failover.

When planning for multiple subsystem instances, keep in mind how the subsystems fit within the
established security domains. Security domains create trusted relationships between subsystems,
allowing them to work together to find available subsystems to respond to immediate needs.
Multiple security domains can be used in a single PKI, with multiple instances of any kind of
subsystem, or a single security domain can be used for all subsystems.

Will any subsystems need to be cloned and, if so, what are the methods for securely storing
their key materials?

Cloned subsystems work together, essentially as a single instance. This can be good for high
demand systems, failover, or load balancing, but it can become difficult to maintain. For example,
cloned CAs have serial number ranges for the certificates they issue, and a clone could hit the end
of its range.

Will the subsystem certificates and keys be stored on the internal software token in
Certificate System or on an external hardware token?

Certificate System supports two hardware security modules (HSM): nCipher nShield Connect XC
and Thales Luna HSM. Using a hardware token can require additional setup and configuration
before installing the subsystems, but it also adds another layer of security.

What are the requirements for the CA signing certificate? Does the Certificate System need
control over attributes like the validity period? How will the CA certificates be distributed?

The real question here is, will the CA bee a root CA which sets its own rules on issuing certificates
or will it be a subordinate CA where another CA (another CA in your PKI or even an external CA)
sets restrictions on what kind of certificates it can issue.

A Certificate Manager can be configured as either a root CA or a subordinate CA. The difference
between a root CA and a subordinate CA is who signs the CA signing certificate. A root CA signs its
own certificate. A subordinate CA has another CA (either internal or external) sign its certificate.

A self-signing root CA issues and signs its own CA signing certificate. This allows the CA to set its
own configuration rules, like validity periods and the number of allowed subordinate CAs.

A subordinate CA has its certificates issued by a public CA or another Certificate System root CA.
This CA is subordinate to the other CA's rules about its certificate settings and how the certificate
can be used, such as the kinds of certificates that it can issue, the extensions that it is allowed to
include in certificates, and the levels of subordinate CAs the subordinate CA can create.

One option is to have the Certificate manager subordinate to a public CA. This can be very
restrictive, since it introduces the restrictions that public CAs place on the kinds of certificates the

Planning, Installation, and Deployment Guide

130

Q:

A:

Q:

A:

Q:

A:

A:

Q:

subordinate CA can issue and the nature of the certificate chain. On the other hand, one benefit
of chaining to a public CA is that the third party is responsible for submitting the root CA
certificate to a web browser or other client software, which is a major advantage for certificates
that are accessed by different companies with browsers that cannot be controlled by the
administrator.

The other option is make the CA subordinate to a Certificate System CA. Setting up a
Certificate System CA as the root CA means that the Certificate System administrator has control
over all subordinate CAs by setting policies that control the contents of the CA signing certificates
issued.

It is easiest to make the first CA installed a self-signed root, so that it is not necessary to apply to a
third party and wait for the certificate to be issued. Make sure that you determine how many root
CAs to have and where both root and subordinate CAs will be located.

What kinds of certificates will be issued? What characteristics do they need to have, and what
profile settings are available for those characteristics? What restrictions need to be placed on
the certificates?

As touched on in Section 5.4.6, “Using and Customizing Certificate Profiles” , the profiles (the
forms which configure each type of certificate issued by a CA) can be customized. This means that
the subject DN, the validity period, the type of SSL/TLS client, and other elements can be defined
by an administrator for a specific purpose. For security, profiles should provide only the
functionality that is required by the PKI. Any unnecessary profiles should be disabled.

What are the requirements for approving a certificate request? How does the requester
authenticate himself, and what kind of process is required to approve the request?

The request approval process directly impacts the security of the certificate. Automated
processes are much faster but are less secure since the identity of the requester is only
superficially verified. Likewise, agent-approved enrollments are more secure (since, in the most
secure scenario they can require an in-person verification and supporting identification) but they
can also be the most time-consuming.

First determine how secure the identity verification process needs to be, then determine what
authentication (approval) mechanism is required to validate that identity.

Will many external clients need to validate certificate status? Can the internal OCSP in the
Certificate Manager handle the load?

Publishing CRLs and validating certificates is critical. Determine what kinds of clients will be
checking the certificate status (will it mainly be internal clients? external clients? will they be
validating user certificates or server certificates?) and also try to determine how many OCSP
checks will be run. The CA has an internal OCSP which can be used for internal checks or
infrequent checks, but a large number of OCSP checks could slow down the CA performance. For
a larger number of OCSP checks and especially for large CRLs, consider using a separate OCSP
Manager to take the load off the CA.

Will the PKI allow replacement keys? Will it require key archival and recovery?

If lost certificates or tokens are simply revoked and replaced, then there does not need to be a
mechanism to recover them. However, when certificates are used to sign or encrypt data such as
emails, files, or harddrives, then the key must always be available so that the data can be

CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM

131

Q:

A:

Q:

A:

recovered. In that case, use a KRA to archive the keys so the data can always be accessed.

Will the organization use smart cards? If so, will temporary smart cards be allowed if smart
cards are mislaid, requiring key archival and recovery?

If no smart cards are used, then it is never necessary to configure the TPS or TKS, since those
subsystems are only used for token management. However, if smart cards are used, then the TPS
and TKS are required. If tokens can be lost and replaced, then it is also necessary to have a KRA to
archive the keys so that the token's certificates can be regenerated.

Where will certificates and CRLs be published? What configuration needs to be done on the
receiving end for publishing to work? What kinds of certificates or CRLs need to be published
and how frequently?

The important thing to determine is what clients need to be able to access the certificate or CRL
information and how that access is allowed. From there, you cna define the publishing policy.

5.8. OPTIONAL THIRD-PARTY SERVICES

5.8.1. Load Balancers

5.8.2. Backup Hardware and Software

Planning, Installation, and Deployment Guide

132

PART II. INSTALLING RED HAT CERTIFICATE SYSTEM

This section describes the requirements and procedures for installing Red Hat Certificate System.

PART II. INSTALLING RED HAT CERTIFICATE SYSTEM

133

CHAPTER 6. PREREQUISITES AND PREPARATION FOR
INSTALLATION
The Red Hat Certificate System installation process requires some preparation of the environment. This
chapter describes the requirements, dependencies, and other prerequisites when installing
Certificate System subsystems.

6.1. INSTALLING RED HAT ENTERPRISE LINUX

Red Hat Certificate System 10.4 requires the Red Hat Enterprise Linux 8.6 version. For details about
installing Red Hat Enterprise Linux, see Performing a standard RHEL installation .

To enable the Federal Information Processing Standard (FIPS) on Red Hat Enterprise Linux, see the
Red Hat Security Hardening Guide .

IMPORTANT

FIPS mode must be enabled on the RHEL host before you install Certificate System. To
ensure FIPS mode is enabled:

sysctl crypto.fips_enabled

If the returned value is 1, FIPS mode is enabled.

6.2. SECURING THE SYSTEM USING SELINUX

Security-Enhanced Linux (SELinux) is an implementation of a mandatory access control mechanism in
the Linux kernel, checking for allowed operations after standard discretionary access controls are
checked. SELinux can enforce rules on files and processes in a Linux system, and on their actions, based
on defined policies.

In most cases, no actions are required to run Certificate System with SELinux in enforcing mode. If a
procedure in the Certificate System documentation requires to manually set SELinux-related settings,
such as when using a Hardware Security Module (HSM), it is mentioned in the corresponding section.

For further details about SELinux, see the Using SELinux Guide.

6.2.1. Verifying if SELinux is Running in Enforcing Mode

By default, after installing Red Hat Enterprise Linux, SELinux is enabled and running in enforcing mode
and no further actions are required.

To display the current SELinux mode, enter:

getenforce

6.3. FIREWALL CONFIGURATION

The following table lists the default ports used by Certificate System subsystems:

Table 6.1. Certificate System Default Ports

Planning, Installation, and Deployment Guide

134

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_a_standard_rhel_8_installation/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_selinux/index

Service Port Protocol

HTTP 8080 TCP

HTTPS 8443 TCP

Tomcat Management 8005 TCP

When you set up Certificate System using the pkispawn utility, you can customize the port numbers. If
you use different ports than the defaults listed above, open them correspondingly in the firewall as
described in Section 6.3.1, “Opening the Required Ports in the Firewall” . For further details about ports,
see Section 5.5.3, “Planning Ports” .

For ports required to access Directory Server, see the corresponding section in the Directory Server
Installation Guide.

6.3.1. Opening the Required Ports in the Firewall

To enable communication between the clients and Certificate System, open the required ports in your
firewall:

1. Make sure the firewalld service is running.

systemctl status firewalld

2. To start firewalld and configure it to start automatically when the system boots:

systemctl start firewalld
systemctl enable firewalld

3. Open the required ports using the firewall-cmd utility. For example, to open the
Certificate System default ports in the default firewall zone:

firewall-cmd --permanent --add-port={8080/tcp,8443/tcp,8009/tcp,8005/tcp}

For details on using firewall-cmd to open ports on a system, see the in the Securing Networks or
the firewall-cmd(1) man page.

4. Reload the firewall configuration to ensure that the change takes place immediately:

firewall-cmd --reload

6.4. HARDWARE SECURITY MODULE

To use a Hardware Security Module (HSM), a Federal Information Processing Standard (FIPS) 140-2
validated HSM is required. See your HSM documentation for installing, configuring, and how to set up
the HSM in FIPS mode.

6.4.1. Setting up SELinux for an HSM

CHAPTER 6. PREREQUISITES AND PREPARATION FOR INSTALLATION

135

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/index#proc_opening-required-ports-in-the-firewall_assembly_setting-up-a-new-instance-on-the-command-line-using-a-inf-file
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/index#using-and-configuring-firewalld_securing-networks

Certain HSMs require that you manually update SELinux settings before you can install
Certificate System.

The following section describes the required actions for supported HSMs:

nCipher nShield

After you installed the HSM and before you start installing Certificate System:

1. Reset the context of files in the /opt/nfast/ directory:

restorecon -R /opt/nfast/

2. Restart the nfast software.

/opt/nfast/sbin/init.d-ncipher restart

Thales Luna HSM

No SELinux-related actions are required before you start installing Certificate System.

For details about the supported HSMs, see Section 4.4, “Supported Hardware Security Modules” .

6.4.2. Enabling FIPS Mode on an HSM

To enable FIPS Mode on HSMs, please refer to your HSM vendor's documentation for specific
instructions.

IMPORTANT

nCipher HSM

On a nCipher HSM, the FIPS mode can only be enabled when generating the Security
World, this cannot be changed afterwards. While there is a variety of ways to generate
the Security World, the preferred method is always to use the new-world command.
For guidance on how to generate a FIPS-compliant Security World, please follow the
nCipher HSM vendor's documentation.

LunaSA HSM

Similarly, enabling the FIPS mode on a Luna HSM must be done during the initial
configuration, since changing this policy zeroizes the HSM as a security measure. For
details, please refer to the Luna HSM vendor's documentation.

6.4.3. Verifying if FIPS Mode is Enabled on an HSM

This section describes how to verify if FIPS mode is enabled for certain HSMs. For other HSMs, see the
hardware manufacturer's documentation.

6.4.3.1. Verifying if FIPS Mode is Enabled on an nCipher HSM

NOTE

Please refer to your HSM vendor’s documentation for the complete procedure.

Planning, Installation, and Deployment Guide

136

To verify if the FIPS mode is enabled on an nCipher HSM, enter:

/opt/nfast/bin/nfkminfo

With older versions of the software, if the StrictFIPS140 is listed in the state flag, the FIPS mode is
enabled. In newer vesions, it is however better to check the new mode line and look for fips1402level3.
In all cases, there should also be an hkfips key present in the nfkminfo output.

6.4.3.2. Verifying if FIPS Mode is Enabled on a Luna SA HSM

NOTE

Please refer to your HSM vendor’s documentation for the complete procedure.

To verify if the FIPS mode is enabled on a Luna SA HSM:

1. Open the lunash management console

2. Use the hsm show command and verify that the output contains the text The HSM is in FIPS
140-2 approved operation mode.:

lunash:> hsm show
...
 FIPS 140-2 Operation:
 =====================
 The HSM is in FIPS 140-2 approved operation mode.
...

6.4.4. Preparing for Installing Certificate System with an HSM

In Section 7.3, “Understanding the pkispawn Utility”, you are instructed to use the following parameters
in the configuration file you pass to the pkispawn utility when installing Certificate System with an HSM:

...
[DEFAULT]
##########################
Provide HSM parameters
##########################
pki_hsm_enable=True
pki_hsm_libfile=hsm_libfile
pki_hsm_modulename=hsm_modulename
pki_token_name=hsm_token_name
pki_token_password=pki_token_password

##
Provide PKI-specific HSM token names
##
pki_audit_signing_token=hsm_token_name
pki_ssl_server_token=hsm_token_name
pki_subsystem_token=hsm_token_name
...

The values of the pki_hsm_libfile and pki_token_name parameter depend on your specific

CHAPTER 6. PREREQUISITES AND PREPARATION FOR INSTALLATION

137

The values of the pki_hsm_libfile and pki_token_name parameter depend on your specific
HSM installation. These values allow the pkispawn utility to set up your HSM and enable
Certificate System to connect to it.

The value of the pki_token_password depends upon your particular HSM token's password.
The password gives the pkispawn utility read and write permissions to create new keys on the
HSM.

The value of the pki_hsm_modulename is a name used in later pkispawn operations to
identify the HSM. The string is an identifier you can set as whatever you like. It allows pkispawn
and Certificate System to refer to the HSM and configuration information by name in later
operations.

The following section provides settings for individual HSMs. If your HSM is not listed, consult your HSM
manufacturer's documentation.

6.4.4.1. nCipher HSM Parameters

For a nCipher HSM, set the following parameters:

pki_hsm_libfile=/opt/nfast/toolkits/pkcs11/libcknfast.so
pki_hsm_modulename=nfast

Note that you can set the value of pki_hsm_modulename to any value. The above is a suggested value.

Example 6.1. Identifying the Token Name

To identify the token name, run the following command as the root user:

[root@example911 ~]# /opt/nfast/bin/nfkminfo
World
 generation 2

...~snip~...

Cardset
 name "NHSM-CONN-XC"
 k-out-of-n 1/4
 flags NotPersistent PINRecoveryRequired(enabled) !RemoteEnabled
 timeout none

...~snip~...

The value of the name field in the Cardset section lists the token name.

Set the token name as follows:

pki_token_name=NHSM-CONN-XC

6.4.4.2. SafeNet / Luna SA HSM Parameters

For a SafeNet / Luna SA HSM, such as a SafeNet Luna Network HSM, specify the following parameters:

Planning, Installation, and Deployment Guide

138

pki_hsm_libfile=/usr/safenet/lunaclient/lib/libCryptoki2_64.so
pki_hsm_modulename=lunasa

Note that you can set the value of pki_hsm_modulename to any value. The above is a suggested value.

Example 6.2. Identifying the Token Name

To identify the token name, run the following command as the root user:

/usr/safenet/lunaclient/bin/vtl verify

The following Luna SA Slots/Partitions were found:

Slot Serial # Label
==== ================ =====
 0 1209461834772 lunasaQE

The value in the label column lists the token name.

Set the token name as follows:

pki_token_name=lunasaQE

6.4.5. Backing up Keys on Hardware Security Modules

It is not possible to export keys and certificates stored on an HSM to a .p12 file. If such an instance is to
be backed-up, contact the manufacturer of your HSM for support.

6.5. INSTALLING RED HAT DIRECTORY SERVER

Certificate System uses Red Hat Directory Server to store system certificates and user data. You can
install both Directory Server and Certificate System on the same or any other host in the network.

IMPORTANT

FIPS mode must be enabled on the RHEL host before you install Directory Server. To
ensure FIPS mode is enabled:

sysctl crypto.fips_enabled

If the returned value is 1, FIPS mode is enabled.

6.5.1. Preparing a Directory Server Instance for Certificate System

Perform the following steps to install Red Hat Directory Server:

1. Make sure you have attached a subscription that provides Directory Server to the host.

2. Enable the Directory Server repository:

subscription-manager repos --enable=dirsrv-11-for-rhel-8-x86_64-rpms

CHAPTER 6. PREREQUISITES AND PREPARATION FOR INSTALLATION

139

3. Install the Directory Server and the openldap-clients packages:

dnf module install redhat-ds

dnf install openldap-clients

4. Set up a Directory Server instance.

a. Generate a DS configuration file; for example, /tmp/ds-setup.inf:

$ dscreate create-template /tmp/ds-setup.inf

b. Customize the DS configuration file as follows:

$ sed -i \
-e "s/;instance_name = .*/instance_name = localhost/g" \
-e "s/;root_password = .*/root_password = Secret.123/g" \
-e "s/;suffix = .*/suffix = dc=example,dc=com/g" \
-e "s/;create_suffix_entry = .*/create_suffix_entry = True/g" \
-e "s/;self_sign_cert = .*/self_sign_cert = False/g" \
/tmp/ds-setup.inf

c. Create the instance using the dscreate command with the setup configuration file:

dscreate from-file /tmp/ds-setup.inf

For a detailed procedure, see the Red Hat Directory Server Installation Guide.

6.5.2. Preparing for Configuring Certificate System

In Section 7.3, “Understanding the pkispawn Utility”, if you chose to set up TLS between
Certificate System and Directory Server, use the following parameters in the configuration file you pass
to the pkispawn utility when installing Certificate System:

NOTE

We need to first create a basic TLS server authentication connection. At the end, during
post-installation, we will return and make the connection require a client authentication
certificate to be presented to Directory Server. At that time, once client authentication is
set up, the pki_ds_password would no longer be relevant.

pki_ds_database=back_end_database_name
pki_ds_hostname=host_name
pki_ds_secure_connection=True
pki_ds_secure_connection_ca_pem_file=path_to_CA_or_self-signed_certificate
pki_ds_password=password
pki_ds_ldaps_port=port
pki_ds_bind_dn=cn=Directory Manager

The value of the pki_ds_database parameter is a name used by the pkispawn utility to create the
corresponding subsystem database on the Directory Server instance.

Planning, Installation, and Deployment Guide

140

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/assembly_setting-up-a-new-directory-server-instance_installation-guide

The value of the pki_ds_hostname parameter depends on the install location of the Directory Server
instance. This depends on the values used in Section 6.5.1, “Preparing a Directory Server Instance for
Certificate System”.

When you set pki_ds_secure_connection=True, the following parameters must be set:

pki_ds_secure_connection_ca_pem_file: Sets the fully-qualified path including the file name
of the file which contains an exported copy of the Directory Server's CA certificate. This file
must exist prior to pkispawn being able to utilize it.

pki_ds_ldaps_port: Sets the value of the secure LDAPS port Directory Server is listening to.
The default is 636.

6.6. REPLACING A TEMPORARY SELF-SIGNED CERTIFICATE IN
DIRECTORY SERVER (CA)

If the internal LDAP server was initially created with a temporary self-signed server certificate, once you
complete the installation, refer to Section 7.10.2, “Replacing the Temporary Certificate” in the Post-
Installation section to replace the temporary certificate with a new one issued by the CA.

6.7. ENABLING TLS CLIENT AUTHENTICATION FOR THE INTERNAL
LDAP SERVER

Red Hat Certificate System can communicate with its internal LDAP server via TLS mutual
authentication. Once you complete the installation. see Section 7.10.3, “Enabling TLS Client
Authentication” in the Post-Installation section for further details on how to enable it.

6.8. ATTACHING A RED HAT SUBSCRIPTION AND ENABLING THE
CERTIFICATE SYSTEM PACKAGE REPOSITORY

Before you can install and update Certificate System, you must enable the corresponding repository:

1. Attach the Red Hat subscriptions to the system:

Skip this step, if your system is already registered or has a subscription that provides
Certificate Server attached.

a. Register the system to the Red Hat subscription management service.

You can use the --auto-attach option to automatically apply an available subscription for
the operating system.

subscription-manager register --auto-attach
Username: admin@example.com
Password:
The system has been registered with id: 566629db-a4ec-43e1-aa02-9cbaa6177c3f

Installed Product Current Status:
Product Name: Red Hat Enterprise Linux Server
Status: Subscribed

b. List the available subscriptions and note the pool ID providing the Red Hat
Certificate System. For example:

CHAPTER 6. PREREQUISITES AND PREPARATION FOR INSTALLATION

141

subscription-manager list --available --all
...
Subscription Name: Red Hat Enterprise Linux Developer Suite
Provides: ...
 Red Hat Certificate System
 ...
Pool ID: 7aba89677a6a38fc0bba7dac673f7993
Available: 1
...

In case you have a lot of subscriptions, the output of the command can be very long. You
can optionally redirect the output to a file:

subscription-manager list --available --all > /root/subscriptions.txt

c. Attach the Certificate System subscription to the system using the pool ID from the
previous step:

subscription-manager attach --pool=7aba89677a6a38fc0bba7dac673f7993
Successfully attached a subscription for: Red Hat Enterprise Linux Developer Suite

2. Enable the Certificate System repository:

subscription-manager repos --enable certsys-10.x-for-rhel-8-x86_64-rpms

Where x denotes the latest Certificate System version. For example, to enable the Certificate
System repository for RHCS 10.4, please use the below command:

subscription-manager repos --enable certsys-10.4-for-rhel-8-x86_64-rpms
Repository 'certsys-10.4-for-rhel-8-x86_64-rpms' is enabled for this system.

3. Enable the Certificate System module stream:

dnf module enable redhat-pki

Installing the required packages is described in the Chapter 7, Installing and Configuring
Certificate System chapter.

NOTE

For compliance, only enable Red Hat approved repositories. Only Red Hat approved
repositories can be enabled through subscription-manager utility.

6.9. CERTIFICATE SYSTEM OPERATING SYSTEM USERS AND GROUPS

When installing Certificate System, the pkiuser account and the corresponding pkiuser group are
automatically created. Certificate System uses this account and group to start services.

As part of a post-installation procedure, you will later be instructed to create an operating system user
for each Certificate System administrator who should be able to start and stop or directly configure the
instance on the operating system. For details, see the Section 7.10, “Post-installation Tasks” .

Planning, Installation, and Deployment Guide

142

CHAPTER 7. INSTALLING AND CONFIGURING
CERTIFICATE SYSTEM
Red Hat Certificate System provides different subsystems that can be installed individually. For
example, you can install multiple subsystem instances on a single server or you can run them
independently on different hosts. This enables you to adapt the installation to your environment to
provide a higher availability, scalability, and fail-over support. This chapter describes the package
installation and how to set up the individual subsystems.

The Certificate System includes the following subsystems:

Certificate Authority (CA)

Key Recovery Authority (KRA)

Online Certificate Status Protocol (OCSP) Responder

Token Key Service (TKS)

Token Processing System (TPS)

Each subsystem is installed and configured individually as a standalone Tomcat web server instance.
However, Red Hat Certificate System additionally supports running a single shared Tomcat web server
instance that can contain up to one of each subsystem.

7.1. SUBSYSTEM CONFIGURATION ORDER

The order in which the individual subsystems are set up is important because of relationships between
the different subsystems:

1. At least one CA running as a security domain is required before any of the other public key
infrastructure (PKI) subsystems can be installed.

2. Install the OCSP after the CA has been configured.

3. The KRA, and TKS subsystems can be installed in any order, after the CA and OCSP have been
configured.

4. The TPS subsystem depends on the CA and TKS, and optionally on the KRA and OCSP
subsystem.

NOTE

In certain situations, administrators want to install a standalone KRA or OCSP which do
not require a CA running as a security domain. For details, see Section 7.9, “Setting up a
Standalone KRA or OCSP”.

7.2. CERTIFICATE SYSTEM PACKAGES

When installing the Certificate System packages you can either install them for each subsystem
individually or all at once.

IMPORTANT

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

143

IMPORTANT

To install and update Certificate Server packages, you must enable the corresponding
repository. For details, see Section 6.8, “Attaching a Red Hat Subscription and Enabling
the Certificate System Package Repository”.

The following subsystem packages and components are available in Red Hat Certificate System:

pki-ca: Provides the Certificate Authority (CA) subsystem.

pki-kra: Provides the Key Recovery Authority (KRA) subsystem.

pki-ocsp: Provides the Online Certificate Status Protocol (OCSP) responder.

pki-tks: Provides the Token Key Service (TKS).

pki-tps: Provides the Token Processing Service (TPS).

pki-console and redhat-pki-console-theme: Provides the Java-based Red Hat PKI console.
Both packages must be installed.

pki-server and redhat-pki-server-theme: Provides the web-based Certificate System interface.
Both packages must be installed.

This package is installed as a dependency if you install one of the following packages: pki-ca, pki-
kra, pki-ocsp, pki-tks, pki-tps

7.2.1. Installing Certificate System Packages

With the redhat-pki module, you can install all Certificate System subsystem packages and
components at once on a RHEL 8 system. The redhat-pki module installs the five subsystems of
Red Hat Certificate System: in addition to the pki-core module (CA, KRA) which is part of Red
Hat Identity Management (IdM), includes the RHCS-specific subsystems (OCSP, TKS and TPS)
as well as the pki-deps module that takes care of the required dependencies.

yum install redhat-pki

Alternatively, you can install packages separately. For example, to install the CA subsystem and
the optional web interface:

yum install pki-ca redhat-pki-server-theme

For other subsystems, replace the pki-ca package name with the one of the subsystem you want
to install.

If you require the optional PKI console:

yum install pki-console redhat-pki-console-theme

NOTE

The pkiconsole tool will be deprecated.

Planning, Installation, and Deployment Guide

144

7.2.2. Updating Certificate System Packages

To update Certificate System and operating system packages, use the following procedure:

1. Follow instructions in Section 7.2.3, “Determining Certificate System Product Version” to check
the product version.

2. Execute # yum update

The command above updates the whole system including the RHCS packages.

NOTE

We suggest scheduling a maintenance window during which you can take the PKI
infrastructure offline to install the update.

IMPORTANT

Updating Certificate System requires the PKI infrastructure to be restarted.

3. Then check version again by following Section 7.2.3, “Determining Certificate System Product
Version”.

The version number should confirm that the update was successfully installed.

To optionally download updates without installing, use the --downloadonly option in the above
procedure:

yum update --downloadonly

The downloaded packages are stored in the /var/cache/yum/ directory. The yum update will later use
the packages if they are the latest versions.

7.2.3. Determining Certificate System Product Version

The Red Hat Certificate System product version is stored in the
/usr/share/pki/CS_SERVER_VERSION file. To display the version:

cat /usr/share/pki/CS_SERVER_VERSION
Red Hat Certificate System 10.0 (Batch Update 1)

To find the product version of a running server, access the following URLs from your browser:

http://host_name:port_number/ca/admin/ca/getStatus

http://host_name:port_number/kra/admin/kra/getStatus

http://host_name:port_number/ocsp/admin/ocsp/getStatus

http://host_name:port_number/tks/admin/tks/getStatus

http://host_name:port_number/tps/admin/tps/getStatus

NOTE

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

145

NOTE

Note that each component is a separate package and thus could have a separate version
number. The above will show the version number for each currently running component.

7.3. UNDERSTANDING THE PKISPAWN UTILITY

In Red Hat Certificate System, you set up the individual public key infrastructure (PKI) subsystems using
the pkispawn utility. During the setup, pkispawn:

1. Reads the default values from the /etc/pki/default.cfg file. For further details, see the
pki_default.cfg(5) man page.

IMPORTANT

Do not edit the /etc/pki/default.cfg file. Instead, create a configuration file and
that overrides the defaults, and pass it to the pkispawn utility. For details about
using a configuration file, see Section 7.7, “Two-step Installation” .

2. Uses the passwords and other deployment-specific information provided depending on the
setup mode:

Interactive mode: The user is asked for the individual settings during the setup. Use this
mode for simple deployments.

Batch mode: The values are read from a configuration file the user provides. Parameters not
set in the configuration file use the defaults.

3. Performs the installation of the requested PKI subsystem.

4. Passes the settings to a Java servlet that performs the configuration based on the settings.

Use the pkispawn utility to install:

A root CA. For details, see Section 7.4, “Setting Up a Root Certificate Authority” .

A subordinate CA or any other subsystem. For details, see Section 7.6, “Setting up Additional
Subsystems”.

NOTE

See Section 7.4, “Setting Up a Root Certificate Authority” on how to set up a root CA
using the pkispawn utility. For a setup of a subordinate CA or non-CA subsystems, see
Section 7.8, “Setting up Subsystems with an External CA” .

For further information about pkispawn and examples, see the pkispawn(8) man page.

7.4. SETTING UP A ROOT CERTIFICATE AUTHORITY

The Certificate Authority (CA) subsystem is the prerequisite for all other Certificate System
subsystems. Therefore, set up the CA before configuring other subsystems.

To set up a root CA in Certificate System, you have the following options:

Planning, Installation, and Deployment Guide

146

Configuration file-based installation:

Use this method for high-level customization. This installation method uses a configuration file
that overrides the default installation parameters.

You can install Certificate System using a configuration file in a single step or in two steps. For
details and examples, see:

The pkispawn(8) man page for the single-step installation.

Section 7.7, “Two-step Installation” for the two-step installation.

Interactive installation:

pkispawn -s CA

Use the interactive installer if you only want to set the minimum of required configuration
options.

7.5. POST-INSTALLATION

Follow the procedures below:

Section 7.7.5.2, “Enabling Signed Audit Logging”

Section 14.4.1.1, “TLS Cipher Configuration”

Section 14.4.1.3, “Enabling Certificate Revocation Checking for Subsystems”

Once you completed the procedures above, follow Section 7.10, “Post-installation Tasks” for additional
post-installation actions.

7.6. SETTING UP ADDITIONAL SUBSYSTEMS

After you have installed the root Certificate Authority (CA) as described in Section 7.4, “Setting Up a
Root Certificate Authority”, you can install additional Certificate System subsystems.

Prerequisites
All additional subsystems require a root Certificate Authority (CA). If you have not installed a root
Certificate System CA, see Section 7.4, “Setting Up a Root Certificate Authority” .

Installing the Subsystem
To set up an additional subsystem, you have the following options:

Configuration file-based installation:

Use this method for high-level customization. This installation method uses a configuration file
that overrides the default installation parameters.

You can install Certificate System using a configuration file in a single step or in two steps. For
details and examples, see:

The pkispawn(8) man page for the single-step installation.

Section 7.7, “Two-step Installation” for the two-step installation.

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

147

Interactive installation:

Use the interactive installer if you only want to set the minimum of required configuration
options.

For example:

pkispawn -s subsystem

Replace subsystem with one of the following subsystems: KRA, OCSP, TKS, or TPS.

The interactive installer does not support installing a subordinate CA. To install a subordinate
CA, use the two-step installation. See Section 7.7, “Two-step Installation” .

7.7. TWO-STEP INSTALLATION

To customize certain configuration parameters during installation, the installation process needs be
done in two steps, with the configuration between them. For this, the pkispawn utility enables you to
run the installation of a subsystem in two steps.

7.7.1. When to Use the Two-Step Installation

Use the two-step installation in scenarios such as:

Increasing security.

Customizing subsystem certificates.

Customizing the cipher list in the sslRangeCiphers parameter in the
/etc/pki/instance_name/server.xml file when installing a new Certificate System instance to be
connected to an existing Certificate System.

Installing CA clones, KRA, OCSP, TKS and TPS in FIPS mode.

Installing Certificate System with a Hardware Security Module (HSM) in FIPS mode.

7.7.2. The Two Major Parts of the Two-step Installation

The two-step installation consists of the following two major parts:

1. Installation

During this step, pkispawn copies configuration files from the /usr/share/pki/ directory to the
instance-specific /etc/pki/instance_name/ directory. Additionally, pkispawn sets the settings
based on values defined in the deployment configuration file.

This part of the installation contains the following substeps:

1. Section 7.7.3, “Creating the Configuration File for the First Step of the Installation”

2. Section 7.7.4, “Starting the Installation Step”

2. Configuration

During this step, pkispawn continues the installation based on the configuration files in the

Planning, Installation, and Deployment Guide

148

During this step, pkispawn continues the installation based on the configuration files in the
instance-specific /etc/pki/instance_name/ directory.

This part of the installation contains the following substeps:

1. Section 7.7.5, “Customizing the Configuration Between the Installation Steps”

2. Section 7.7.6, “Starting the Configuration Step”

7.7.3. Creating the Configuration File for the First Step of the Installation

Create a text file for the configuration settings, such as /root/config.txt, and fill it with the settings
described below.

IMPORTANT

This section describes a minimum configuration with Directory Server running on the
same host as Certificate System. Depending on your environment, additional parameters
may be necessary. For additional examples, see the EXAMPLES section in the
pkispawn(8) man page.

For descriptions about the parameters covered in this section, see the pki_default.cfg(5) man page.

Subsystem-independent Settings
Independently of the subsystem you install, the following settings are required in the configuration file:

1. Set the passwords of the Certificate System admin user, the PKCS #12 file, and
Directory Server:

[DEFAULT]
pki_admin_password=password
pki_client_pkcs12_password=password
pki_ds_password=password

2. To use an LDAPS connection to Directory Server running on the same host, add the following
parameters to the [DEFAULT] section in the configuration file:

pki_ds_secure_connection=True
pki_ds_secure_connection_ca_pem_file=path_to_CA_or_self-signed_certificate

NOTE

For security reasons, Red Hat recommends using an encrypted connection to
Directory Server.

If you use a self-signed certificate in Directory Server use the following command to export it
from the Directory Server's Network Security Services (NSS) database:

certutil -L -d /etc/dirsrv/slapd-instance_name/ \
 -n "server-cert" -a -o /root/ds.crt

IMPORTANT

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

149

IMPORTANT

By default, Certificate System removes the ~/.dogtag/instance_name/subsystem/alias
client database after the installation. For security reasons, Red Hat recommends not
enabling the pki_client_database_purge parameter in the configuration file. If you
manually set this parameter to True, Certificate System does not remove the client
database after the installation.

After you created the initial configuration file, add the subsystem-specific settings to it. See:

the section called “CA Settings”

the section called “Settings for Other Subsystems”

CA Settings
In addition to the section called “Subsystem-independent Settings”, you need the following settings to
install a CA:

1. To increase security, enable random serial numbers by adding the [CA] section with the
following setting to the configuration file:

[CA]
pki_random_serial_numbers_enable=true

2. Optionally, set the following parameters in the [CA] section to specify the data of the admin
user, which will be automatically created during the installation:

pki_admin_nickname=caadmin
pki_admin_name=CA administrator account
pki_admin_password=password
pki_admin_uid=caadmin
pki_admin_email=caadmin@example.com

Certificate System assigns administrator privileges to this account. Use this account after the
installation to manage Certificate System and to create further user accounts.

3. To enable Certificate System to generate unique nicknames, set the following parameters in
the [DEFAULT] section:

pki_instance_name=instance_name
pki_security_domain_name=example.com Security Domain
pki_host=server.example.com

IMPORTANT

If you install Certificate System with a network-shared Hardware Security Module
(HSM), you must use unique certificate nicknames.

4. Optionally, to use Elliptic Curve Cryptography (ECC) instead of RSA when generating
certificates:

a. Add the following parameters to the [DEFAULT] section:

Planning, Installation, and Deployment Guide

150

pki_admin_key_algorithm=SHA256withEC
pki_admin_key_size=nistp256
pki_admin_key_type=ecc
pki_sslserver_key_algorithm=SHA256withEC
pki_sslserver_key_size=nistp256
pki_sslserver_key_type=ecc
pki_subsystem_key_algorithm=SHA256withEC
pki_subsystem_key_size=nistp256
pki_subsystem_key_type=ecc

b. Add the following parameters to the [CA] section:

pki_ca_signing_key_algorithm=SHA256withEC
pki_ca_signing_key_size=nistp256
pki_ca_signing_key_type=ecc
pki_ca_signing_signing_algorithm=SHA256withEC
pki_ocsp_signing_key_algorithm=SHA256withEC
pki_ocsp_signing_key_size=nistp256
pki_ocsp_signing_key_type=ecc
pki_ocsp_signing_signing_algorithm=SHA256withEC

c. Add the following parameters to the [CA] section to override the RSA profiles with ECC
profiles:

pki_source_admincert_profile=/usr/share/pki/ca/conf/eccAdminCert.profile
pki_source_servercert_profile=/usr/share/pki/ca/conf/eccServerCert.profile
pki_source_subsystemcert_profile=/usr/share/pki/ca/conf/eccSubsystemCert.profile

Settings for Other Subsystems
In addition to the section called “Subsystem-independent Settings”, you need the following settings to
install a subordinate CA, KRA, OCSP, TKS, or TPS:

1. Add the following entry to [DEFAULT] section of your configuration file:

pki_client_database_password=password

2. If you are installing a TPS:

a. Add the following section with the following section:

[TPS]
pki_authdb_basedn=basedn_of_the_TPS_authentication_database

b. Optionally, to configure that the TPS use server-side key generation utilizing a KRA that has
already been installed in the shared CA instance, add the following entry to the [TPS]
section:

pki_enable_server_side_keygen=True

7.7.4. Starting the Installation Step

After you prepared the configuration file as described in Section 7.7.3, “Creating the Configuration File

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

151

After you prepared the configuration file as described in Section 7.7.3, “Creating the Configuration File
for the First Step of the Installation”, start the first step of the installation:

pkispawn -f /root/config.txt -s subsystem --skip-configuration

Replace subsystem with one of the following subsystems: CA, KRA, OCSP, TKS, or TPS.

7.7.5. Customizing the Configuration Between the Installation Steps

After the installation step described in Section 7.7.4, “Starting the Installation Step” has finished
successfully, you can manually update the instance-specific configuration files before the actual
configuration begins. This section provides certain examples of what you can customize between the
first and second step of the installation.

7.7.5.1. Configuring Certificate Profiles

In many cases, sites would want to customize certain certificate enrollment profiles (e.g. changing the
default validity time of certificates), or to add/delete some profiles. For a complete list of options, see
Chapter 16, Certificate Profiles Configuration .

7.7.5.2. Enabling Signed Audit Logging

The signed audit logging feature enables the detection of unauthorized log manipulation. For details,
see Section 18.3.1, “Enabling and Configuring Signed Audit Log” .

7.7.5.3. Updating the Ciphers List

In certain situations, administrators want to update the ciphers list. For example:

To secure the Certificate System instance

To install a Certificate System instance and to add it to an existing site that supports only
specific ciphers

For details on updating the cipher list, see Section 14.4.1.1, “TLS Cipher Configuration” .

Default FIPS Mode Enabled Ciphers for RSA Encryption
By default, Certificate System contains the following FIPS mode enabled ciphers for RSA encryption:

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

Planning, Installation, and Deployment Guide

152

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_128_CBC_SHA256

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA256

Default FIPS Mode Enabled Ciphers for ECC Encryption
By default, Certificate System contains the following FIPS mode enabled ciphers for Elliptic Curve
Cryptography (ECC) encryption:

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA256

Required RSA Ciphers When Running an HSM on System with FIPS Mode Enabled
If you install Certificate System with either LunaSA or Hardware Security Module (HSM) on systems
with FIPS mode enabled for RSA, disable the following ciphers, as they are unsupported on HSMs:

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

7.7.5.4. Configuring the PKI Console Timeout

For details on configuring the PKI console timeout, see the corresponding section in Section 14.4.2,
“Session Timeout”.

7.7.5.5. Setting the KRA into Encryption Mode

If you are using a Hardware Security Module (HSM), it is necessary in certain situations to set the Key
Recovery Authority (KRA) into encryption mode. For details, see the section called “Setting the KRA into
Encryption Mode”.

7.7.5.6. Enabling OCSP

For details about enabling the Online Certificate Status Protocol (OCSP) see Section 14.4.1.3, “Enabling
Certificate Revocation Checking for Subsystems”.

7.7.5.7. Configuring Ranges for Requests and Serial Numbers

For details about configuring ranges for requests and serial numbers, see Section 14.2.3.14, “Configuring
Ranges for Requests and Serial Numbers”.

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

153

7.7.6. Starting the Configuration Step

After you have customized the configuration files according to Section 7.7.5, “Customizing the
Configuration Between the Installation Steps”, start the second step of the installation:

pkispawn -f /root/config.txt -s subsystem --skip-installation

Replace subsystem with one of the following subsystems: CA, KRA, OCSP, TKS, or TPS.

If the configuration step succeeds, the pkispawn utility displays an installation summary. For example:

==
 INSTALLATION SUMMARY
==

 Administrator's username: caadmin
 Administrator's PKCS #12 file:
 /root/.dogtag/instance_name/ca_admin_cert.p12

 To check the status of the subsystem:
 systemctl status pki-tomcatd@instance_name.service

 To restart the subsystem:
 systemctl restart pki-tomcatd@instance_name.service

 The URL for the subsystem is:
 https://server.example.com:8443/ca/

 PKI instances will be enabled upon system boot

==

7.7.7. Post-Installation

Once you completed the procedures above, follow Section 7.10, “Post-installation Tasks” for additional
post-installation actions.

7.8. SETTING UP SUBSYSTEMS WITH AN EXTERNAL CA

7.8.1. The Difference Between an Internal and External CA

In Red Hat Certificate System, when the pkispawn utility sends subsystem Certificate Signing Requests
(CSR) to a previously installed Certificate System, and the resulting issued certificates are received and
used by pkispawn, the CA the CSRs were sent to is called an Internal CA.

An External CA, by contrast, can be one of the following:

A non-Red Hat Certificate System CA that issues the signing certificate for a
Certificate System subordinate CA.

A previously installed Red Hat Certificate System CA that does not allow direct submission of
CSRs. For example, this is the case if your environment requires CSRs from a subordinate CA,
KRA, OCSP, TKS, or TPS to be in other formats than PKCS #10.

Planning, Installation, and Deployment Guide

154

7.8.2. Installing a Subsystem with an External CA

This section describes how to set up a subordinate CA or other subsystems whose certificate will be
signed by an external CA.

Preparing the Configuration File for the External CA Installation
Prepare the configuration file depending on whether you want your subsystem to be integrated into
Certificate System or standalone:

If you install a subsystem which is integrated into an existing Certificate System installation but
which uses a certificate signed by an external CA:

1. Create the configuration file for the subsystem. See Section 7.7.3, “Creating the
Configuration File for the First Step of the Installation”.

2. Add the following settings to your configuration file in the respective [CA], [KRA], or
[OCSP] sections:

For a CA installation:

[CA]
pki_external=True
pki_external_step_two=False

pki_ca_signing_csr_path=path/to/ca_signing.csr
pki_ca_signing_cert_path=path/to/ca_signing.crt

For a KRA installation:

[KRA]
pki_external=True
pki_external_step_two=False

pki_storage_csr_path=/home/user_name/kra_storage.csr
pki_transport_csr_path=/home/user_name/kra_transport.csr
pki_subsystem_csr_path=/home/user_name/subsystem.csr
pki_sslserver_csr_path=/home/user_name/sslserver.csr
pki_audit_signing_csr_path=/home/user_name/kra_audit_signing.csr
pki_admin_csr_path=/home/user_name/kra_admin.csr

For an OCSP installation:

[OCSP]
pki_external=True
pki_external_step_two=False

pki_ocsp_signing_csr_path=/home/user_name/ocsp_signing.csr
pki_subsystem_csr_path=/home/user_name/subsystem.csr
pki_sslserver_csr_path=/home/user_name/sslserver.csr
pki_audit_signing_csr_path=/home/user_name/ocsp_audit_signing.csr
pki_admin_csr_path=/home/user_name/ocsp_admin.csr

If you install a standalone KRA or OCSP, which is not integrated into an existing
Certificate System installation, execute the steps described in Section 7.9, “Setting up a
Standalone KRA or OCSP”.

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

155

Starting the Installation of a Subsystem with an External CA
To start the installation with the configuration file:

1. Use the pkispawn utility to start the installation:

pkispawn -f /root/config.txt -s subsystem

Replace subsystem with the subsystem you want to install: CA, KRA, or OCSP.

During this step, the setup stores the CSRs in the files specified in the configuration.

2. Submit the CSRs to the external CA. Proceed after the CA has issued the corresponding
certificates.

In certain environments, if the external CA is also a Certificate System instance, the CSR in
PKCS#10 format needs to be converted into CMC format before being submitted to the CA.
See the Issuing Certificates Using CMC section in the Red Hat Certificate System Administration
Guide for details about issuing the certificates.

3. Optionally, customize the installation. For details, see Section 7.7.5, “Customizing the
Configuration Between the Installation Steps”.

4. After the external CA has issued the certificates, edit the deployment configuration file:

a. Set the pki_external_step_two to True:

pki_external_step_two=True

b. Add the following parameters, based on the subsystem you are installing:

For a CA, set the path to the certificate file. For example:

pki_ca_signing_cert_path=/home/user_name/ca_signing.crt

If the specified file does not contain the certificate including the certificate chain,
additionally specify the path to the certificate chain file and its nickname. For example:

pki_cert_chain_path=/home/user_name/cert_chain.p7b
pki_cert_chain_nickname=CA Signing Certificate

For a KRA, set the paths to the certificate files. For example:

pki_storage_cert_path=/home/user_name/kra_storage.crt
pki_transport_cert_path=/home/user_name/kra_transport.crt
pki_subsystem_cert_path=/home/user_name/subsystem.crt
pki_sslserver_cert_path=/home/user_namesslserver.crt
pki_audit_signing_cert_path=/home/user_name/kra_audit_signing.crt
pki_admin_cert_path=/home/user_name/kra_admin.crt

If the specified files do not contain the certificate including the certificate chain,
additionally specify the paths to the signing certificate file and the certificate chain file
together with their nicknames. For example:

pki_ca_signing_nickname=CA Signing Certificate

Planning, Installation, and Deployment Guide

156

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/issuing_certificates_using_cmc

pki_ca_signing_cert_path=/home/user_name/ca_signing.crt
pki_cert_chain_nickname=External Certificate Chain
pki_cert_chain_path=/home/user_name/cert_chain.p7b

For an OCSP, set the paths to the certificate files. For example:

pki_ocsp_signing_cert_path=/home/user_name/ocsp_signing.crt
pki_subsystem_cert_path=/home/user_name/subsystem.crt
pki_sslserver_cert_path=/home/user_name/sslserver.crt
pki_audit_signing_cert_path=/home/user_name/ocsp_audit_signing.crt
pki_admin_cert_path=/home/user_name/ocsp_admin.crt

If the specified files do not contain the certificate including the certificate chain,
additionally specify the paths to the signing certificate file and the certificate chain file
together with their nicknames. For example:

pki_ca_signing_nickname=CA Signing Certificate
pki_ca_signing_cert_path=/home/user_name/ca_signing.crt
pki_cert_chain_nickname=External Certificate Chain
pki_cert_chain_path=/home/user_name/cert_chain.p7b

5. Optionally, customize the configuration files. For examples, see Section 7.7.5, “Customizing the
Configuration Between the Installation Steps”.

6. Start the configuration step:

pkispawn -f /root/config.txt -s subsystem

Replace subsystem with the subsystem you want to install: CA, KRA, or OCSP.

7.8.3. Post-Installation

Once you completed the procedures above, follow Section 7.10, “Post-installation Tasks” for additional
post-installation actions.

7.9. SETTING UP A STANDALONE KRA OR OCSP

This section describes how to install a standalone KRA and OCSP. A standalone installation provides the
flexibility to use a non-Certificate System CA to issue the certificates, because the CSRs generated
during the installation are not automatically submitted to the CA and imported into the subsystem.
Additionally, a KRA or an OCSP installed in standalone mode is not part of the CA's security domain, and
the connector in the CA for key archival will not be configured.

To install a standalone KRA or OCSP:

1. Create a configuration file, such as /root/config.txt, with the following content:

[DEFAULT]
pki_admin_password=password
pki_client_database_password=password
pki_client_pkcs12_password=password
pki_ds_password=password
pki_token_password=password

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

157

pki_client_database_purge=False
pki_security_domain_name=EXAMPLE

pki_standalone=True
pki_external_step_two=False

2. For a standalone KRA, add the following section to the configuration file:

[KRA]
pki_admin_email=kraadmin@example.com
pki_ds_base_dn=dc=kra,dc=example,dc=com
pki_ds_database=kra

pki_admin_nickname=kraadmin
pki_audit_signing_nickname=kra_audit_signing
pki_sslserver_nickname=sslserver
pki_storage_nickname=kra_storage
pki_subsystem_nickname=subsystem
pki_transport_nickname=kra_transport

pki_standalone=True

3. For a standalone OCSP, add the following section to the configuration file:

[OCSP]
pki_admin_email=ocspadmin@example.com
pki_ds_base_dn=dc=ocsp,dc=example,dc=com
pki_ds_database=ocsp

pki_admin_nickname=ocspadmin
pki_audit_signing_nickname=ocsp_audit_signing
pki_ocsp_signing_nickname=ocsp_signing
pki_sslserver_nickname=sslserver
pki_subsystem_nickname=subsystem

pki_standalone=True

4. To use an LDAPS connection to Directory Server running on the same host, add the following
parameters to the DEFAULT section in the configuration file:

pki_ds_secure_connection=True
pki_ds_secure_connection_ca_pem_file=path_to_CA_or_self-signed_certificate

NOTE

For security reasons, Red Hat recommends using an encrypted connection to
Directory Server.

If you use a self-signed certificate in Directory Server, use the following command to export it
from the Directory Server's Network Security Services (NSS) database:

certutil -L -d /etc/dirsrv/slapd-instance_name/ \
 -n "server-cert" -a -o /root/ds.crt

Planning, Installation, and Deployment Guide

158

5. Proceed with the steps described in the section called “Starting the Installation of a Subsystem
with an External CA”.

7.10. POST-INSTALLATION TASKS

Once installation using the pkispawn utility is complete, further steps could be taken to customize the
configuration, depending on the site's preferences. These are described in Part III, “Configuring
Certificate System”.

This section provides a list of operations from Part III, “Configuring Certificate System” which are
suggested for improving the security for the deployment.

7.10.1. Setting Date/Time for RHCS

It is important to have the time set up correctly for running RHCS; see the Setting Time and Date
section in the Red Hat Certificate System Administration Guide.

7.10.2. Replacing the Temporary Certificate

NOTE

This section requires a root CA installed and running. These steps are to be performed
once the installation is complete.

The following procedure describes the process to replace the temporary self-signed Directory Server
certificate with a permanent Directory Server certificate issued by the newly-installed CA, or to replace
an old Directory Server certificate with a new one.

1. Obtain a new Directory Server server certificate. Submit the request for the new certificate
signed by the CA. To get a new Directory Server certificate using the CMC method, see the
Obtaining System and Server Certificates section in the Red Hat Certificate System
Administration Guide.

In the above section, follow the guidance to create a TLS server certificate. Once the certificate
is created, it must be imported back into the Directory Server's certificate database.

2. Stop the Directory Server instance before accessing the NSS database:

systemctl stop dirsrv@instance_name

3. Delete the old Directory Server certificate:

certutil -F -d /etc/dirsrv/slapd-instance_name -f
/etc/dirsrv/slapd-instance_name/password.txt -n "DS Certificate"

4. Import the CA certificate downloaded earlier:

PKICertImport -d /etc/dirsrv/slapd-instance_name -f
/etc/dirsrv/slapd-instance_name/password.txt -n "CA Certificate" -t "CT,C,C" -a -i ca.crt -u L

5. Import the new Directory Server certificate downloaded earlier:

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

159

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html-single/administration_guide/index#setting_time_and_date_in_rhel
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/issuing_certificates_using_cmc#obtaining_system_and_server_certificates

PKICertImport -d /etc/dirsrv/slapd-instance_name -f
/etc/dirsrv/slapd-instance_name/password.txt -n "DS Certificate" -t ",," -a -i ds.crt -u V

See also Section 15.4, “Importing a certificate into an HSM” .

6. Start the Directory Server instance:

systemctl start dirsrv@instance_name

7. Remove the old Directory Server Certificate from PKI CA:

a. Stop the Certificate System instance:

systemctl stop pki-tomcatd@instance_name.service

b. Remove the certificate:

certutil -D -d /var/lib/pki/instance_name/alias/ -n "DS Certificate"

c. Start the Certificate System instance:

systemctl start pki-tomcatd@instance_name.service

8. Verify that the new Directory Server certificate is signed by the CA installed in the NSS
database:

a. Display the Directory Server certificate

$ certutil -L -d /etc/dirsrv/slapd-instance_name -n "DS Certificate"

 Issuer: "CN=CA Signing Certificate,O=EXAMPLE"
 Subject: "CN=server.example.com"

b. Verify the old Directory Server certificate no longer exists in the PKI NSS database:

$ certutil -L -d /var/lib/pki/instance_name/alias

c. Verify Certificate System can connect to Directory Server using the new certificate:

$ pki cert-find

7.10.3. Enabling TLS Client Authentication

NOTE

This section requires a root CA installed and running. If you used a temporary LDAP server
certificate, replace it first by following Section 7.10.2, “Replacing the Temporary
Certificate”. These steps are to be performed once the installation is complete.

If you choose to enable TLS client authentication, once the basic TLS server authentication has been

Planning, Installation, and Deployment Guide

160

If you choose to enable TLS client authentication, once the basic TLS server authentication has been
configured and running when installing the CS subsystem, we can now double back and attempt to
enable client authentication from a given subsystem to the LDAP server.

There are two parts to setting up client authentication. The first part is configuring the LDAP directory
to require TLS mutual authentication. This procedure is detailed in Using Certificate-based Client
Authentication in the Red Hat Directory Server Administration Guide.

Note the following:

pkispawn already automatically created a pkidbuser on its internal directory server, where the
CS instance's "subsystem certificate" (for example subsystemCert cert-pki-ca) that is used for
outbound TLS client authentication is stored in the user entry. Therefore, there is no need to
create another LDAP user or another certificate for the TLS client-authentication.

When creating content for /etc/dirsrv/slapd-instance_name/certmap.conf, use the following
format:

certmap rhcs <certificate issuer DN>
 rhcs:CmapLdapAttr seeAlso
 rhcs:verifyCert on

For example

certmap rhcs CN=CA Signing Certificate,OU=pki-tomcat-ca,O=pki-tomcat-ca-SD
 rhcs:CmapLdapAttr seeAlso
 rhcs:verifyCert on

After configuring, restart the Directory Server.

The second part is adding configuration to the Red Hat Certificate System instance so that it knows
which port and certificate is to be used to communicate with its internal LDAP server using TLS mutual
authentication. This involves editing the RHCS instance's CS.cfg file located at <instance
directory>/<subsystem type>/conf/CS.cfg. For example /var/lib/pki/instance_name/ca/conf/CS.cfg

In the CS.cfg, please add the RHCS instance's subsystem certificate nickname to
internaldb.ldapauth.clientCertNickname, and remove the two unused entries:

internaldb.ldapauth.bindDN
 internaldb.ldapauth.bindPWPrompt

As shown below:

internaldb._000=##
 internaldb._001=## Internal Database
 internaldb._002=##
 internaldb.basedn=o=pki-tomcat-ca-SD
 internaldb.database=pki-tomcat-ca
 internaldb.maxConns=15
 internaldb.minConns=3
 internaldb.ldapauth.authtype=SslClientAuth
 internaldb.ldapauth.clientCertNickname=HSM-A:subsystemCert pki-tomcat-ca
 internaldb.ldapconn.host=example.com
 internaldb.ldapconn.port=11636
 internaldb.ldapconn.secureConn=true

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

161

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide/using-based_client_authentication

Restart the CS instance at the end of the Post-installation step.

NOTE

The internaldb.basedn and internaldb.database parameters must be configured to
match your specific LDAP instance.

For compliance, internaldb.ldapauth.authtype=SslClientAuth and
internaldb.ldapconn.secureConn=true must be set, and the value of the
internaldb.ldapauth.clientCertNickname must match the nickname of the TLS client
certificate to authenticate against LDAP with in the NSS DB.

All other values can be changed as desired to reflect your environment or availability
needs.

7.10.4. Configuring Session Timeout

Various timeout configurations exist on the system that could affect how long a TLS session is allowed
to remain idle before termination. For details, see Section 14.4.2, “Session Timeout”.

7.10.5. CRL or Certificate Publishing

CRL publishing is critical in providing OCSP service. Certificate publishing is optional but often desired
by sites. For details, see the Publishing Certificates and CRLs section in the Red Hat Certificate System
Administration Guide.

7.10.6. Configuring Certificate Enrollment Profiles (CA)

RHCS has a rich profile framework that allows for customization of the certificate enrollment profiles. It
is very common for a site to enable/disable default profiles that come with the system, or modify
existing profiles, or create their own profiles. For details, see Chapter 16, Certificate Profiles
Configuration.

7.10.7. Enabling Access Banner

To enable user interface banners, refer to Section 14.7.1, “Enabling an Access Banner” .

7.10.8. Enabling the Watchdog Service

The watchdog (nuxwdog) service provides secure system password management. For details, see
Section 14.3.2.1, “Enabling the Watchdog Service” .

7.10.9. Configuration for CMC Enrollment and Revocation (CA)

Certificate enrollments and revocation can be done via CMC.

For details about enabling the CMC Shared Token Feature, see Section 14.8.3, “Enabling the
CMC Shared Secret Feature”.

For details about enabling the PopLinkWittness feature, see Section 14.8.2, “Enabling the
PopLinkWittnessV2 Feature”.

For details about enabling CMCRevoke for the web user interface, see Section 14.8.4, “Enabling
CMCRevoke for the Web User Interface”.

Planning, Installation, and Deployment Guide

162

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html-single/administration_guide/index#index#Publishing

7.10.10. TLS client-authentication for the Java Console

To require Certificate System administrators to present a user TLS client certificate when logging into
the Java console, see Section 14.2.3.15, “Setting Requirement for pkiconsole to use TLS Client
Certificate Authentication”.

NOTE

pkiconsole is being deprecated.

7.10.11. Creating a Role User

Create real role users so that you can remove the bootstrap user.

To create users and assign them to different privileged roles to manage Certificate System, see
Chapter 19, Creating a Role User .

7.10.12. Removing the Bootstrap User

Once the real role users are created, the bootstrap user that was created automatically during the
installation is not needed anymore. To delete this account, see Chapter 20, Deleting the Bootstrap User
after making sure you created a new administrator account assigned to an individual person.

7.10.13. Disabling Multi-role Support

To disable the multi-role support once the bootstrap user is removed, see Section 20.1, “Disabling
Multi-roles Support”.

7.10.14. KRA Configurations

7.10.14.1. Adding Requirement for Multiple Agent Approval for Key Recovery Authority
(KRA)

To set up a requirement for multiple KRA agents to approve key recovery, see the Configuring Agent-
Approved Key Recovery in the Command Line section in the Red Hat Certificate System Administration
Guide.

7.10.14.2. Configuring KRA Encryption Settings

To configure key encryption/wrapping algorithms, see Section 17.2, “Encryption Of KRA Operations” .

7.10.15. Setting up Users to use User Interfaces

Before a user could use an approved user interface, initialization needs to be performed. Users
(administrative roles or otherwise) are required to setup their clients for accessing the user interface.
See the Client NSS Database Initialization section in the Red Hat Certificate System Administration
Guide.

CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM

163

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html-single/administration_guide/index#agent-recovery-cs.cfg
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/index#client_nss_database_initialization

CHAPTER 8. USING HARDWARE SECURITY MODULES FOR
SUBSYSTEM SECURITY DATABASES
A subsystem instance generates and stores its key information in a key store, called a security module or
a token. A subsystem instance can be configured for the keys to be generated and stored using the
internal NSS token or on a separate cryptographic device, a hardware token.

8.1. INSTALLING CERTIFICATE SYSTEM WITH AN HSM

Use the following parameters in the configuration file you pass to the pkispawn utility when installing
Certificate System with an HSM:

[DEFAULT]
##########################
Provide HSM parameters
##########################
pki_hsm_enable=True
pki_hsm_libfile=hsm_libfile
pki_hsm_modulename=hsm_modulename
pki_token_name=hsm_token_name
pki_token_password=pki_token_password

##
Provide PKI-specific HSM token names
##
pki_audit_signing_token=hsm_token_name
pki_ssl_server_token=hsm_token_name
pki_subsystem_token=hsm_token_name

8.2. USING HARDWARE SECURITY MODULES WITH SUBSYSTEMS

The Certificate System supports the nCipher nShield Connect XC hardware security module (HSM) and
Thales Luna HSM by default. Certificate System-supported HSMs are automatically added to the
pkcs11.txt database with the modutil command during the pre-configuration stage of the installation,
if the PKCS #11 library modules are in the specified installation paths.

IMPORTANT

Certain deployments require to setup their HSM to use FIPS mode.

8.2.1. Enabling the FIPS Mode on an HSM

To enable FIPS Mode on HSMs, please refer to your HSM vendor's documentation for specific
instructions.

IMPORTANT

Planning, Installation, and Deployment Guide

164

IMPORTANT

nCipher HSM

On a nCipher HSM, the FIPS mode can only be enabled when generating the Security
World, this cannot be changed afterwards. While there is a variety of ways to generate
the Security World, the preferred method is always to use the new-world command.
For guidance on how to generate a FIPS-compliant Security World, please follow the
nCipher HSM vendor's documentation.

LunaSA HSM

Similarly, enabling the FIPS mode on a Luna HSM must be done during the initial
configuration, since changing this policy zeroizes the HSM as a security measure. For
details, please refer to the Luna HSM vendor's documentation.

8.2.2. Verifying if FIPS Mode is Enabled on an HSM

This section describes how to verify if FIPS mode is enabled for certain HSMs. For other HSMs, see the
hardware manufacturer's documentation.

8.2.2.1. Verifying if FIPS Mode is Enabled on an nCipher HSM

NOTE

Please refer to your HSM vendor’s documentation for the complete procedure.

To verify if the FIPS mode is enabled on an nCipher HSM, enter:

/opt/nfast/bin/nfkminfo

With older versions of the software, if the StrictFIPS140 is listed in the state flag, the FIPS mode is
enabled. In newer vesions, it is however better to check the new mode line and look for fips1402level3.
In all cases, there should also be an hkfips key present in the nfkminfo output.

8.2.2.2. Verifying if FIPS Mode is Enabled on a Luna SA HSM

NOTE

Please refer to your HSM vendor’s documentation for the complete procedure.

To verify if the FIPS mode is enabled on a Luna SA HSM:

1. Open the lunash management console

2. Use the hsm show command and verify that the output contains the text The HSM is in FIPS
140-2 approved operation mode.:

lunash:> hsm show
...
 FIPS 140-2 Operation:
 =====================
 The HSM is in FIPS 140-2 approved operation mode.
...

CHAPTER 8. USING HARDWARE SECURITY MODULES FOR SUBSYSTEM SECURITY DATABASES

165

8.2.3. Adding or Managing the HSM Entry for a Subsystem

During installation, when an HSM is selected as the default token where appropriate HSM-specific
parameters are set in the configuration file passed to the pkispawn command, the following parameter
is added to the /var/lib/pki/instance_name/conf/password.conf file for the HSM password:

hardware-HSM_token_name=HSM_token_password

8.2.4. Setting up SELinux for an HSM

If you want to install Certificate System with an Hardware Security Modules (HSM) and SELinux is
running in enforcing mode, certain HSMs require that you manually update SELinux settings before you
can install Certificate System.

The following section describes the required actions for supported HSMs:

nCipher nShield Connect XC

After you installed the HSM and before you start installing Certificate System:

1. Reset the context of files in the /opt/nfast/ directory:

restorecon -R /opt/nfast/

2. Restart the nfast software.

/opt/nfast/sbin/init.d-ncipher restart

Thales Luna HSM

No SELinux-related actions are required before you start installing Certificate System.

8.2.5. Installing a Subsystem Using nCipher nShield Connect XC HSM

To install a subsystem instance that use nCipher nShield Connect XC HSM, follow this procedure:

1. Prepare an override file, which corresponds to your particular deployment. The following
default_hms.txt file is an example of such an override file:

NOTE

This file serves only as an example of an nCipher HSM override configuration file
-- numerous other values can be overridden including default hashing algorithms.
Also, only one of the [CA], [KRA], [OCSP], [TKS], or [TPS] sections will be utilized
depending upon the subsystem invocation specified on the pkispawn command-
line.

Example 8.1. An Override File Sample to Use with nCipher HSM

##
#######

Planning, Installation, and Deployment Guide

166

##
#######
##
#######
##
EXAMPLE: Configuration File used to override '/etc/pki/default.cfg'
when using an nCipher Hardware Security Module (HSM):
##
##
modutil -dbdir . -list
##
Listing of PKCS #11 Modules

1. NSS Internal PKCS #11 Module
slots: 2 slots attached
status: loaded
##
slot: NSS Internal Cryptographic Services
token: NSS Generic Crypto Services
##
slot: NSS User Private Key and Certificate Services
token: NSS Certificate DB
##
2. nfast
library name: /opt/nfast/toolkits/pkcs11/libcknfast.so
slots: 2 slots attached
status: loaded
##
slot: <serial_number> Rt1
token: accelerator
##
slot: <serial_number> Rt1 slot 0
token: <HSM_token_name>

##
##
Based on the example above, substitute all password values,
as well as the following values:
##
<hsm_libfile>=/opt/nfast/toolkits/pkcs11/libcknfast.so
<hsm_modulename>=nfast
<hsm_token_name>=NHSM-CONN-XC
##
##
#######
##
#######
##
#######

[DEFAULT]
##########################
Provide HSM parameters
##########################
pki_hsm_enable=True
pki_hsm_libfile=<hsm_libfile>

CHAPTER 8. USING HARDWARE SECURITY MODULES FOR SUBSYSTEM SECURITY DATABASES

167

pki_hsm_modulename=<hsm_modulename>
pki_token_name=<hsm_token_name>
pki_token_password=<pki_token_password>

##
Provide PKI-specific HSM token names
##
pki_audit_signing_token=<hsm_token_name>
pki_ssl_server_token=<hsm_token_name>
pki_subsystem_token=<hsm_token_name>

##################################
Provide PKI-specific passwords
##################################
pki_admin_password=<pki_admin_password>
pki_client_pkcs12_password=<pki_client_pkcs12_password>
pki_ds_password=<pki_ds_password>

#####################################
Provide non-CA-specific passwords
#####################################
pki_client_database_password=<pki_client_database_password>

###
ONLY required if specifying a non-default PKI instance name
###
#pki_instance_name=<pki_instance_name>

##
ONLY required if specifying non-default PKI instance ports
##
#pki_http_port=<pki_http_port>
#pki_https_port=<pki_https_port>

##
ONLY required if specifying non-default 389 Directory Server ports
##
#pki_ds_ldap_port=<pki_ds_ldap_port>
#pki_ds_ldaps_port=<pki_ds_ldaps_port>

##
ONLY required if PKI is using a Security Domain on a remote system
##
#pki_ca_hostname=<pki_ca_hostname>
#pki_issuing_ca_hostname=<pki_issuing_ca_hostname>
#pki_issuing_ca_https_port=<pki_issuing_ca_https_port>
#pki_security_domain_hostname=<pki_security_domain_hostname>
#pki_security_domain_https_port=<pki_security_domain_https_port>

###
ONLY required for PKI using an existing Security Domain
###
NOTE: pki_security_domain_password == pki_admin_password
of CA Security Domain Instance
#pki_security_domain_password=<pki_admin_password>

Planning, Installation, and Deployment Guide

168

[Tomcat]
##
ONLY required if specifying non-default PKI instance ports
##
#pki_ajp_port=<pki_ajp_port>
#pki_tomcat_server_port=<pki_tomcat_server_port>

[CA]
#######################################
Provide CA-specific HSM token names
#######################################
pki_ca_signing_token=<hsm_token_name>
pki_ocsp_signing_token=<hsm_token_name>

##
###
ONLY required if 389 Directory Server for CA resides on a remote system
##
###
#pki_ds_hostname=<389 hostname>

[KRA]
##
Provide KRA-specific HSM token names
##
pki_storage_token=<hsm_token_name>
pki_transport_token=<hsm_token_name>

##
####
ONLY required if 389 Directory Server for KRA resides on a remote system
##
####
#pki_ds_hostname=<389 hostname>

[OCSP]
###
Provide OCSP-specific HSM token names
###
pki_ocsp_signing_token=<hsm_token_name>

##
#####
ONLY required if 389 Directory Server for OCSP resides on a remote system
##
#####
#pki_ds_hostname=<389 hostname>

[TKS]
##
Provide TKS-specific HSM token names

CHAPTER 8. USING HARDWARE SECURITY MODULES FOR SUBSYSTEM SECURITY DATABASES

169

2. Use the configuration file as described in Section 7.7, “Two-step Installation” .

pkispawn -s CA -f ./default_hsm.txt -vvv

pkispawn -s KRA -f ./default_hsm.txt -vvv

##

##
####
ONLY required if 389 Directory Server for TKS resides on a remote system
##
####
#pki_ds_hostname=<389 hostname>

[TPS]
###################################
Provide TPS-specific parameters
###################################
pki_authdb_basedn=<dnsdomainname where hostname.b.c.d is dc=b,dc=c,dc=d>

##
Provide TPS-specific HSM token names
##

##
####
ONLY required if 389 Directory Server for TPS resides on a remote system
##
####
#pki_ds_hostname=<389 hostname>

##
ONLY required if TPS requires a CA on a remote machine
##
#pki_ca_uri=https://<pki_ca_hostname>:<pki_ca_https_port>

#######################################
ONLY required if TPS requires a KRA
#######################################
#pki_enable_server_side_keygen=True

###
ONLY required if TPS requires a KRA on a remote machine
###
#pki_kra_uri=https://<pki_kra_hostname>:<pki_kra_https_port>

###
ONLY required if TPS requires a TKS on a remote machine
###
#pki_tks_uri=https://<pki_tks_hostname>:<pki_tks_https_port>

Planning, Installation, and Deployment Guide

170

pkispawn -s OCSP -f ./default_hsm.txt -vvv

pkispawn -s TKS -f ./default_hsm.txt -vvv

pkispawn -s TPS -f ./default_hsm.txt -vvv

3. Verify that the HSM contains the following certificates:

$ certutil -L -d /etc/pki/pki-tomcat/alias -h token -f token.pwd

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

token:ca_signing CTu,Cu,Cu
token:ca_ocsp_signing u,u,u
token:subsystem u,u,u
token:ca_audit_signing u,u,Pu
token:sslserver/pki.example.com u,u,u

8.2.6. Installing a Subsystem Using Thales Luna HSM

To install a subsystem instance that use Thales Luna HSM, follow the procedure detailed in
Section 8.2.5, “Installing a Subsystem Using nCipher nShield Connect XC HSM” . The override file should
be similar to the sample provided in Example 8.1, “An Override File Sample to Use with nCipher HSM” ,
differing in values related to the particular deployment. The following example provides a sample
LunaSA header that is to be substituted for the header of the nCipher override file and to be used with
the [DEFAULT], [Tomcat], [CA], [KRA], [OCSP], [TKS], and [TPS] sections provided in the
aforementioned nCipher example.

Example 8.2. A Sample of the LunaSA Override File Header

###

###

###

##
EXAMPLE: Configuration File used to override '/etc/pki/default.cfg'
when using a LunaSA Hardware Security Module (HSM):
##
##
modutil -dbdir . -list
##
Listing of PKCS #11 Modules

1. NSS Internal PKCS #11 Module
slots: 2 slots attached
status: loaded
##
slot: NSS Internal Cryptographic Services
token: NSS Generic Crypto Services

CHAPTER 8. USING HARDWARE SECURITY MODULES FOR SUBSYSTEM SECURITY DATABASES

171

8.3. BACKING UP KEYS ON HARDWARE SECURITY MODULES

It is not possible to export keys and certificates stored on an HSM to a .p12 file. If such an instance is to
be backed-up, contact the manufacturer of your HSM for support.

8.4. INSTALLING A CLONE SUBSYSTEM USING AN HSM

Normally, clone subsystems are created using a PKCS #12 file containing the system keys of the master
subsystem. This file is generated during the installation of the master subsystem by setting the
pki_backup_keys to True in the configuration file you use for the installation along with the defined
value for the pki_backup_password option, or by exporting the keys using the PKCS12Export tool.

You cannot generate a PKCS #12 file using PKCS12Export when using an HSM because the keys
cannot be retrieved from the HSM. Instead, the clone subsystem should either be pointed to the HSM
used by the master subsystem, so that it can access the same keys. Alternatively, if using a separate
HSM, clone the keys to this HSM using the utilities provided by the HSM vendor. You must provide
access to the master subsystem's key before running the pkispawn utility.

##
slot: NSS User Private Key and Certificate Services
token: NSS Certificate DB
##
2. lunasa
library name: /usr/safenet/lunaclient/lib/libCryptoki2_64.so
slots: 4 slots attached
status: loaded
##
slot: LunaNet Slot
token: dev-intca
##
slot: Luna UHD Slot
token:
##
slot: Luna UHD Slot
token:
##
slot: Luna UHD Slot
token:

##
##
Based on the example above, substitute all password values,
as well as the following values:
##
<hsm_libfile>=/usr/safenet/lunaclient/lib/libCryptoki2_64.so
<hsm_modulename>=lunasa
<hsm_token_name>=dev-intca
##
###

###

###

Planning, Installation, and Deployment Guide

172

As Certificate System uses no PKCS #12 when installing with an HSM, you do not need to set the
parameters in the configuration file for the location of a PKCS #12 file and its password. The following
examples provide configuration parameters required for generating a CA clone and list options from the
[CA] section of the respective PKI configuration file:

For generating a non-HSM CA clone:

[CA]
pki_clone=True
pki_clone_pkcs12_password=Secret123
pki_clone_pkcs12_path=<path_to_pkcs12_file>
pki_clone_replicate_schema=True
pki_clone_uri=https://<master_ca_host_name>:<master_ca_https_port>

For generating a CA clone using an HSM:

[CA]
pki_clone=True
pki_clone_replicate_schema=True
pki_clone_uri=https://<master_ca_host_name>:<master_ca_https_port>

NOTE

In order for the master subsystem to share the same certificates and keys with its clones,
the HSM must be on a network that is in shared mode and accessible by all subsystems.

8.5. VIEWING TOKENS

To view a list of the tokens currently installed for a Certificate System instance, use the modutil utility.

1. Change to the instance alias directory. For example:

cd /var/lib/pki/pki-tomcat/alias

2. Show the information about the installed PKCS #11 modules installed as well as information on
the corresponding tokens using the modutil tool.

modutil -dbdir . -nocertdb -list

8.6. DETECTING TOKENS

To see if a token can be detected by Certificate System, use the TokenInfo utility, pointing to the alias
directory for the subsystem instance. This is a Certificate System tool which is available after the
Certificate System packages are installed.

For example:

TokenInfo /var/lib/pki/pki-tomcat/alias

This utility returns all tokens which can be detected by the Certificate System, not only tokens which are
installed in the Certificate System.

CHAPTER 8. USING HARDWARE SECURITY MODULES FOR SUBSYSTEM SECURITY DATABASES

173

CHAPTER 9. INSTALLING AN INSTANCE WITH ECC SYSTEM
CERTIFICATES
Elliptic curve cryptography (ECC) may be preferred over RSA-style encryption in some cases, as it allows
it to use much shorter key lengths and makes it faster to generate certificates. CAs which are ECC-
enabled can issue both RSA and ECC certificates, using their ECC signing certificate.

Certificate System includes native support for ECC features; the support is enabled by default starting
from NSS 3.16. It is also possible to load and use a third-party PKCS #11 module, such as a hardware
security module (HSM). To use the ECC module, it must be loaded before the subsystem instance is
configured.

IMPORTANT

Third-party ECC modules must have an SELinux policy configured for them, or SELinux
needs to be changed from enforcing mode to permissive mode to allow the module to
function. Otherwise, any subsystem operations which require the ECC module will fail.

9.1. LOADING A THIRD-PARTY ECC MODULE

Loading a third-party ECC module follows the same principles as loading HSMs supported by
Certificate System, which is described in Chapter 8, Using Hardware Security Modules for Subsystem
Security Databases. See this chapter for more information.

9.2. USING ECC WITH AN HSM

The HSMs supported by Certificate System support their own native ECC modules. To create an
instance with ECC system certificates:

1. Set up the HSM per manufacturer's instructions. If multiple hosts are sharing the HSM, make
sure they can all access the same partition if needed and if the site policies allow it.

2. Define the required parameters in the pkispawn utility configuration file and run pkispawn. For
example, to configure Certificate System to create an ECC CA, assuming the configuration file
is ecc.inf:

1. Edit ecc.inf to specify the appropriate settings. For an example of the configuration file,
see the pkispawn(8) man page.

2. Run pkispawn against ecc.inf:

$ script -c 'pkispawn -s CA -f /root/pki/ecc.inf -vvv'

Planning, Installation, and Deployment Guide

174

CHAPTER 10. CLONING SUBSYSTEMS
When a new subsystem instance is first configured, the Red Hat Certificate System allows subsystems to
be cloned, or duplicated, for high availability of the Certificate System. The cloned instances run on
different machines to avoid a single point of failure and their databases are synchronized through
replication.

The master CA and its clones are functionally identical, they only differ in serial number assignments and
CRL generation. Therefore, this chapter refers to master or any of its clones as replicated CAs.

10.1. BACKING UP SUBSYSTEM KEYS FROM A SOFTWARE DATABASE

Ideally, the keys for the master instance are backed up when the instance is first created. If the keys
were not backed up then or if the backup file is lost, then it is possible to extract the keys from the
internal software database for the subsystem instance using the PKCS12Export utility. For example:

PKCS12Export -debug -d /var/lib/pki/instance_name/alias -w p12pwd.txt -p internal.txt -o master.p12

Then copy the PKCS #12 file to the clone machine to be used in the clone instance configuration. For
more details, see Section 2.7.6, “Cloning and Key Stores” .

NOTE

Keys cannot be exported from an HSM. However, in a typical deployment, HSMs support
networked access, as long as the clone instance is installed using the same HSM as the
master. If both instances use the same key store, then the keys are naturally available to
the clone.

If backing up keys from the HSM is required, contact the HSM manufacturer for
assistance.

10.2. CLONING A CA

1. Configure the master CA, and back up the keys.

2. In the CS.cfg file for the master CA, enable the master CA to monitor replication database
changes by adding the ca.listenToCloneModifications parameter:

ca.listenToCloneModifications=true

3. Create the clone subsystem instance.

For examples of the configuration file required by pkispawn when cloning CA subsystems, see
the Installing a CA clone and Installing a CA clone on the same host sections of the
pkispawn(8) man page.

4. Restart the Directory Server instance used by the clone.

systemctl restart pki-tomcatd@kra-clone-ds-instance.service

NOTE

CHAPTER 10. CLONING SUBSYSTEMS

175

NOTE

Restarting the Directory Server reloads the updated schema, which is required
for proper performance.

5. Restart the clone instance.

pki-server restart instance_name

After configuring the clone, test to make sure that the master-clone relationship is functioning:

1. Request a certificate from the cloned CA.

2. Approve the request.

3. Download the certificate to the browser.

4. Revoke the certificate.

5. Check master CA's CRL for the revoked certificate. In the master Certificate Manager's agent
services page, click Update Certificate Revocation List. Find the CRL in the list.

The CRL should show the certificate revoked by the cloned Certificate Manager. If that
certificate is not listed, check logs to resolve the problem.

10.3. UPDATING CA-KRA CONNECTOR INFORMATION AFTER
CLONING

As covered in Section 2.7.9, “Custom Configuration and Clones”, configuration information is not
updated in clone instances if it is made after the clone is created. Likewise, changes made to a clone are
not copied back to the master instance.

If a new KRA is installed or cloned after a clone CA is created, then the clone CA does not have the new
KRA connector information in its configuration. This means that the clone CA is not able to send any
archival requests to the KRA.

Whenever a new KRA is created or cloned, copy its connector information into all of the cloned CAs in
the deployment. To do this, use the pki ca-kraconnector-add command.

If it is required to do this manually, follow these steps:

1. On the master clone machine, open the master CA's CS.cfg file, and copy all of the
ca.connector.KRA.* lines for the new KRA connector.

[root@master ~]# vim /var/lib/pki/instance_name/ca/conf/CS.cfg

2. Stop the clone CA instance. For example:

[root@clone-ca ~]# pki-server stop instance_name

3. Open the clone CA's CS.cfg file.

[root@clone-ca ~]# vim /var/lib/pki/instance_name/ca/conf/CS.cfg

Planning, Installation, and Deployment Guide

176

4. Copy in the connector information for the new KRA instance or clone.

ca.connector.KRA.enable=true ca.connector.KRA.host=server-kra.example.com
ca.connector.KRA.local=false ca.connector.KRA.nickName=subsystemCert cert-pki-ca
ca.connector.KRA.port=10444 ca.connector.KRA.timeout=30
ca.connector.KRA.transportCert=MIIDbD...ZR0Y2zA==
ca.connector.KRA.uri=/kra/agent/kra/connector

5. Start the clone CA.

[root@clone-ca ~]# pki-server start instance_name

10.4. CLONING OCSP SUBSYSTEMS

1. Configure the master OCSP, and back up the keys.

2. In the CS.cfg file for the master OCSP, set the
OCSP.Responder.store.defStore.refreshInSec parameter to any non-zero number other than
21600; 21600 is the setting for a clone.

vim /etc/instance_name/CS.cfg

OCSP.Responder.store.defStore.refreshInSec=15000

3. Create the clone subsystem instance using the pkispawn utility.

For examples of the configuration file required by pkispawn when cloning OCSP subsystems,
see the pkispawn(8) man page.

4. Restart the Directory Server instance used by the clone.

systemctl dirsrv@instance_name.service

NOTE

Restarting the Directory Server reloads the updated schema, which is required
for proper performance.

5. Restart the clone instance.

pki-server restart instance_name

After configuring the clone, test to make sure that the master-clone relationship is functioning:

1. Set up OCSP publishing in the master CA so that the CRL is published to the master OCSP.

2. Once the CRL is successfully published, check both the master and cloned OCSP's List
Certificate Authorities link in the agent pages. The list should be identical.

3. Use the OCSPClient tool to submit OCSP requests to the master and the cloned Online
Certificate Status Manager. The tool should receive identical OCSP responses from both
managers.

CHAPTER 10. CLONING SUBSYSTEMS

177

10.5. CLONING KRA SUBSYSTEMS

1. Configure the master subsystem and back up the keys.

2. Create the clone subsystem instance using the pkispawn utility:

$ pkispawn -s <subsystem> -f myconfig.txt

An example of the configuration file required by pkispawn when cloning KRA subsystems:

[DEFAULT]
pki_admin_password=<Secret.123>
pki_client_database_password=<Secret.123>
pki_client_pkcs12_password=<Secret.123>
pki_ds_password=<Secret.123>
pki_security_domain_password=<Secret.123>
pki_security_domain_hostname=<master_ca_hostname>
pki_security_domain_https_port=<master_ca_https_port>
pki_security_domain_user=caadmin

[KRA]
pki_clone=True
pki_clone_pkcs12_password=<Secret.123>
pki_clone_pkcs12_path=<path_to_pkcs12_file>
pki_clone_replicate_schema=True
pki_clone_uri=https://<master_subsystem_host:master_subsystem_https_port>
pki_issuing_ca=https://<ca_hostname:ca_https_port>

3. Restart the Directory Server instance used by the clone.

systemctl dirsrv@instance_name.service

NOTE

Restarting the Directory Server reloads the updated schema, which is required
for proper performance.

4. Restart the clone instance.

pki-server restart instance_name

For the KRA clone, test to make sure that the master-clone relationship is functioning:

1. Go to the KRA agent's page.

2. Click List Requests.

3. Select Show all requests for the request type and status.

4. Click Submit.

5. Compare the results from the cloned KRA and the master KRA. The results ought to be
identical.

Planning, Installation, and Deployment Guide

178

10.6. CLONING TKS SUBSYSTEMS

1. Configure the master subsystem and back up the keys.

2. Create the clone subsystem instance using the pkispawn utility.

$ pkispawn -s <subsystem> -f myconfig.txt

An example of the configuration file required by pkispawn when cloning TKS subsystems:

[DEFAULT]
pki_admin_password=<Secret.123>
pki_client_database_password=<Secret.123>
pki_client_pkcs12_password=<Secret.123>
pki_ds_password=<Secret.123>
pki_security_domain_password=<Secret.123>
pki_security_domain_hostname=<master_ca_hostname>
pki_security_domain_https_port=<master_ca_https_port>
pki_security_domain_user=caadmin

[TKS]
pki_clone=True
pki_clone_pkcs12_password=<Secret.123>
pki_clone_pkcs12_path=<path_to_pkcs12_file>
pki_clone_replicate_schema=True
pki_clone_uri=https://<master_subsystem_host:master_subsystem_https_port>
pki_issuing_ca=https://<ca_hostname:ca_https_port>

3. Restart the clone instance.

pki-server restart instance_name

For the TKS, enroll a smart card and then run an ldapsearch to make sure that the same key
information is contained in both databases.

10.7. CONVERTING MASTERS AND CLONES

Only one single active CA generating CRLs can exist within the same topology. Similarly, only one OCSP
receiving CRLs can exist within the same topology. As such, there can be any number of clones, but
there can only be a single configured master for CA and OCSP.

For KRAs and TKSs, there is no configuration difference between masters and clones, but CAs and
OCSPs do have some configuration differences. This means that when a master is taken offline —
because of a failure or for maintenance or to change the function of the subsystem in the PKI — then the
existing master must be reconfigured to be a clone, and one of the clones promoted to be the master.

10.7.1. Converting CA Clones and Masters

1. Stop the master CA if it is still running.

2. Open the existing master CA configuration directory:

cd /var/lib/pki/instance_name/ca/conf

CHAPTER 10. CLONING SUBSYSTEMS

179

3. Edit the CS.cfg file for the master, and change the CRL and maintenance thread settings so
that it is set as a clone:

Disable control of the database maintenance thread:

ca.certStatusUpdateInterval=0

Disable monitoring database replication changes:

ca.listenToCloneModifications=false

Disable maintenance of the CRL cache:

ca.crl.IssuingPointId.enableCRLCache=false

Disable CRL generation:

ca.crl.IssuingPointId.enableCRLUpdates=false

Set the CA to redirect CRL requests to the new master:

master.ca.agent.host=new_master_hostname
master.ca.agent.port=new_master_port

4. Stop the cloned CA server.

pki-server stop instance_name

5. Open the cloned CA's configuration directory.

cd /etc/instance_name

6. Edit the CS.cfg file to configure the clone as the new master.

1. Delete each line which begins with the ca.crl. prefix.

2. Copy each line beginning with the ca.crl. prefix from the former master CA CS.cfg file into
the cloned CA's CS.cfg file.

3. Enable control of the database maintenance thread; the default value for a master CA is
600.

ca.certStatusUpdateInterval=600

4. Enable monitoring database replication:

ca.listenToCloneModifications=true

5. Enable maintenance of the CRL cache:

ca.crl.IssuingPointId.enableCRLCache=true

Planning, Installation, and Deployment Guide

180

6. Enable CRL generation:

ca.crl.IssuingPointId.enableCRLUpdates=true

7. Disable the redirect settings for CRL generation requests:

master.ca.agent.host=hostname
master.ca.agent.port=port number

7. Start the new master CA server.

pki-server start instance_name

10.7.2. Converting OCSP Clones

1. Stop the OCSP master, if it is still running.

2. Open the existing master OCSP configuration directory.

cd /etc/instance_name

3. Edit the CS.cfg, and reset the OCSP.Responder.store.defStore.refreshInSec parameter to
21600:

OCSP.Responder.store.defStore.refreshInSec=21600

4. Stop the online cloned OCSP server.

pki-server stop instance_name

5. Open the cloned OCSP responder's configuration directory.

cd /etc/instance_name

6. Open the CS.cfg file, and delete the OCSP.Responder.store.defStore.refreshInSec
parameter or change its value to any non-zero number:

OCSP.Responder.store.defStore.refreshInSec=15000

7. Start the new master OCSP responder server.

pki-server start instance_name

10.8. CLONING A CA THAT HAS BEEN RE-KEYED

When a certificate expires, it has to be replaced. This can either be done by renewing the certificate,
which re-uses the original keypair to generate a new certificate, or it can be done by generating a new
keypair and certificate. The second method is called re-keying.

When a CA is re-keyed, new keypairs are stored in its certificate database, and these are the keys

CHAPTER 10. CLONING SUBSYSTEMS

181

references for normal operations. However, for cloning a subsystem, the cloning process checks for the
CA private key IDs as stored in its CS.cfg configuration file — and those key IDs are not updated when
the certificate database keys change.

If a CA has been re-keyed and then an administrator attempts to clone it, the cloned CA fails to
generate any certificates for the certificates which were re-keyed, and it shows up in the error logs with
this error:

CertUtil::createSelfSignedCert() - CA private key is null!

To clone a CA that has been re-keyed:

1. Find all of the private key IDs in the CS.cfg file.

grep privkey.id /var/lib/pki/instance_name/ca/conf/CS.cfg
cloning.signing.privkey.id =-4d798441aa7230910d4e1c39fa132ea228d5d1bc
cloning.ocsp_signing.privkey.id =-3e23e743e0ddd88f2a7c6f69fa9f9bcebef1a60
cloning.subsystem.privkey.id =-c3c1b3b4e8f5dd6d2bdefd07581c0b15529536
cloning.sslserver.privkey.id =3023d30245804a4fab42be209ebb0dc683423a8f
cloning.audit_signing.privkey.id=2fe35d9d46b373efabe9ef01b8436667a70df096

2. Print all of the current private key IDs stored in the NSS database and compare them to the
private key IDs stored in the CS.cfg file:

In this example, only the audit signing key is the same; the others have been changed.

3. Take the keys returned in step 2 and convert them from unsigned values (which is what certutil
returns) to signed Java BigIntegers (which is how the keys are stored in the Certificate System
database).

This can be done with a calculator or by using the script in Example 10.1, “Certutil to BigInteger
Conversion Program”.

4. Copy the new key values into the CS.cfg file.

vim /var/lib/pki/instance_name/ca/conf/CS.cfg
cloning.signing.privkey.id =-584f6bb4847c688d65b373650c563d4690b6390d
cloning.ocsp_signing.privkey.id =6006094af3e5d02aaa91426594ca66cb53e73ac0
cloning.subsystem.privkey.id =-297b25c640b0d8765c0362bddfba690ba8752d27
cloning.sslserver.privkey.id =-5712283d4a36b0ecebb3532669dba8751cf481bd
cloning.audit_signing.privkey.id=2fe35d9d46b373efabe9ef01b8436667a70df096

certutil -K -d alias
certutil: Checking token "NSS Certificate DB" in slot "NSS User Private Key and Certificate
Services"
Enter Password or Pin for "NSS Certificate DB":
< 0> rsa a7b0944b7b8397729a4c8c9af3a9c2b96f49c6f3 caSigningCert cert-ca4-test-
master
< 1> rsa 6006094af3e5d02aaa91426594ca66cb53e73ac0 ocspSigningCert cert-ca4-
test-master
< 2> rsa d684da39bf4f2789a3fc9d42204596f4578ad2d9 subsystemCert cert-ca4-test-
master
< 3> rsa a8edd7c2b5c94f13144cacd99624578ae30b7e43 sslserverCert cert-ca4-test1
< 4> rsa 2fe35d9d46b373efabe9ef01b8436667a70df096 auditSigningCert cert-ca4-test1

Planning, Installation, and Deployment Guide

182

5. Clone the CA as described in Section 10.2, “Cloning a CA” .

Example 10.1. Certutil to BigInteger Conversion Program

This Java program can convert the key output from certutil to the required BigInteger format.

Save this as a .java file, such as Test.java.

Then, compile the file:

import java.math.BigInteger;

public class Test
{

 public static byte[] hexStringToByteArray(String s) {
 int len = s.length();
 byte[] data = new byte[len / 2];
 for (int i = 0; i < len; i += 2) {
 data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
 + Character.digit(s.charAt(i+1), 16));
 }
 return data;
 }

 public static void main(String[] args)
 {
 byte[] bytes = hexStringToByteArray(args[0]);
 BigInteger big = new BigInteger (bytes);
 System.out.println("Result is ==> " + big.toString(16));
 }
}

javac Test.java

CHAPTER 10. CLONING SUBSYSTEMS

183

CHAPTER 11. SETTING UP PKI ACME RESPONDER
This chapter describes the installation and initial configuration on an ACME responder on a PKI server
that already has a CA subsystem.

NOTE

The following assumes you installed the CA with the default instance name (i.e. pki-
tomcat).

For information on how to manage PKI ACME Responder, see the Managing PKI ACME Responder
chapter in the Red Hat Certificate System Administration Guide.

11.1. INSTALLING PKI ACME RESPONDER

To install PKI ACME Responder on your PKI server,

1. First download and install the pki-acme RPM package:

$ dnf install pki-acme

2. Create an ACME responder in a PKI server instance using the following command:

$ pki-server acme-create

This creates the initial configuration files in the /etc/pki/pki-tomcat/acme directory.

For more information, see the pki-server-acme manpage.

11.2. CONFIGURING AN ACME DATABASE

This section describes how to configure a database for the ACME responder. The database
configuration is located at /etc/pki/pki-tomcat/acme/database.conf.

You can configure the database via command-line using the pki-server acme-database-mod
command. Invoking this command without any parameters launches an interactive mode, for
example:

$ pki-server acme-database-mod

The current value is displayed in the square brackets.
To keep the current value, simply press Enter.
To change the current value, enter the new value.
To remove the current value, enter a blank space.

Enter the type of the database. Available types: ds, in-memory, ldap, openldap, postgresql.
Database Type: ds

Enter the location of the LDAP server (e.g. ldap://localhost.localdomain:389).
Server URL [ldap://localhost.localdomain:389]:

Enter the authentication type. Available types: BasicAuth, SslClientAuth.

Planning, Installation, and Deployment Guide

184

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/managing_acme_responder

Authentication Type [BasicAuth]:

Enter the bind DN.
Bind DN [cn=Directory Manager]:

Enter the bind password.
Bind Password [********]:

Enter the base DN for the ACME subtree.
Base DN [dc=acme,dc=pki,dc=example,dc=com]:

Invoking the command with the --type parameter creates a new configuration based on the
specified type.

Invoking the command with other parameters updates the specified parameters.

Certain ACME configuration properties are stored in the database, enabling you to configure all ACME
responders in the cluster consistently. By default, the ACME responder directly accesses the database
when retrieving or updating the ACME configuration properties, which may increase the load on the
database. Some databases might provide an ACME configuration monitor to reduce this load.

11.2.1. Configuring a DS Database

You can configure the ACME responder to use a DS database. A sample DS database configuration is
available at /usr/share/pki/acme/database/ds/database.conf.

To configure a DS database:

1. First add the ACME DS schema by importing the
/usr/share/pki/acme/database/ds/schema.ldif file with the following command:

$ ldapmodify -h $HOSTNAME -x -D "cn=Directory Manager" -w Secret.123 \
 -f /usr/share/pki/acme/database/ds/schema.ldif

2. Next, prepare an LDIF file to create the ACME subtree. A sample LDIF file is available at
usr/share/pki/acme/database/ds/create.ldif. This example uses
dc=acme,dc=pki,dc=example,dc=com as the base DN.

3. Import the LDIF file using the ldapadd command:

$ ldapadd -h $HOSTNAME -x -D "cn=Directory Manager" -w Secret.123 \
 -f /usr/share/pki/acme/database/ds/create.ldif

4. Copy the sample database configuration file from
/usr/share/pki/acme/database/ds/database.conf into the /etc/pki/pki-tomcat/acme directory,
or execute the following command to customize some of the parameters:

$ pki-server acme-database-mod --type ds \
 -DbindPassword=Secret.123

5. Customize the configuration as needed:

In a standalone ACME deployment, the database.conf should look like the following:

CHAPTER 11. SETTING UP PKI ACME RESPONDER

185

class=org.example.acme.database.DSDatabase
url=ldap://<hostname>:389
authType=BasicAuth
bindDN=cn=Directory Manager
bindPassword=Secret.123
baseDN=dc=acme,dc=pki,dc=example,dc=com

In a shared CA and ACME deployment, the database.conf should look like the following:

class=org.example.acme.database.DSDatabase
 configFile=conf/ca/CS.cfg
 baseDN=dc=acme,dc=pki,dc=example,dc=com

The DS database provides an ACME configuration monitor using search persistence. You can enable it
by enabling setting the following parameter: monitor.enabled=true

11.3. CONFIGURING ACME ISSUER

This section describes how to configure an issuer for PKI ACME Responder. The configuration for ACME
Issuer is located at /etc/pki/pki-tomcat/acme/issuer.conf.

You can configure the issuer via command-line using the pki-server acme-issuer-mod command.

Invoking this command without any parameters launches an interactive mode, for example:

$ pki-server acme-issuer-mod
The current value is displayed in the square brackets.
To keep the current value, simply press Enter.
To change the current value, enter the new value.
To remove the current value, enter a blank space.

Enter the type of the certificate issuer. Available types: nss, pki.
Issuer Type: pki

Enter the location of the PKI server (e.g. https://localhost.localdomain:8443).
Server URL [https://localhost.localdomain:8443]:

Enter the certificate nickname for client authentication.
This might be the CA agent certificate.
Enter blank to use basic authentication.
Client Certificate:

Enter the username of the CA agent for basic authentication.
Enter blank if a CA agent certificate is used for client authentication.
Agent Username [caadmin]:

Enter the CA agent password for basic authentication.
Enter blank if the password is already stored in a separate property file
or if a CA agent certificate is used for client authentication.
Agent Password [********]:

Enter the certificate profile for issuing ACME certificates (e.g. acmeServerCert).
Certificate Profile [acmeServerCert]:

Invoking the command with the --type parameter creates a new configuration based on the

Planning, Installation, and Deployment Guide

186

Invoking the command with the --type parameter creates a new configuration based on the
specified type.

Invoking the command with other parameters updates the specified parameters.

11.3.1. Configuring PKI Issuer

You can configure PKI ACME Responder to issue certificates using PKI Issuer. A sample configuration is
available at /usr/share/pki/acme/issuer/pki/issuer.conf.

To configure a PKI issuer, copy this sample issuer.conf into the /etc/pki/pki-tomcat/acme
directory or execute the following command to customize some of the parameters:

$ pki-server acme-issuer-mod --type pki \
 -Dusername=caadmin \
 -Dpassword=Secret.123

Customize the configuration as needed. The issuer.conf file should look like the following:

class=org.example.acme.issuer.PKIIssuer
url=https://localhost.localdomain:8443
profile=acmeServerCert
username=caadmin
password=Secret.123

The url parameter specifies the PKI issuer location.

The profile parameter specifies the certificate profile to use.

To use client certificate authentication, specify the client certificate nickname in the nickname
parameter.

To use basic authentication, specify the username in the username parameter as well as the
password in the password parameter.

11.4. CONFIGURING ACME REALM

This section describes how to configure a realm for PKI ACME responder. The realm configuration is
located at /etc/pki/pki-tomcat/acme/realm.conf.

You can configure ACME Realm realm via command line using the pki-server acme-realm-mod
command.

Invoking this command without any parameters launches an interactive mode, for example:

$ pki-server acme-realm-mod
The current value is displayed in the square brackets.
To keep the current value, simply press Enter.
To change the current value, enter the new value.
To remove the current value, enter a blank space.

Enter the type of the realm. Available types: ds.
Database Type: ds

CHAPTER 11. SETTING UP PKI ACME RESPONDER

187

Enter the location of the LDAP server (e.g. ldap://localhost.localdomain:389).
Server URL [ldap://localhost.localdomain:389]:

Enter the authentication type. Available types: BasicAuth, SslClientAuth.
Authentication Type [BasicAuth]:

Enter the bind DN.
Bind DN [cn=Directory Manager]:

Enter the bind password.
Bind Password [********]:

Enter the base DN for the ACME users subtree.
Users DN [ou=people,dc=acme,dc=pki,dc=example,dc=com]:

Enter the base DN for the ACME groups subtree.
Groups DN [ou=groups,dc=acme,dc=pki,dc=example,dc=com]:

Invoking the command with the --type parameter creates a new configuration based on the
specified type.

Invoking the command with other parameters updates the specified parameters.

11.4.1. Configuring DS Realm

You can configure PKI ACME Responder to use a DS realm. A sample configuration for DS Realm is
available at /usr/share/pki/acme/realm/ds/realm.conf.

To configure a DS realm:

1. Prepare subtrees for ACME users and groups in DS. A sample LDIF file is available at
/usr/share/pki/acme/realm/ds/create.ldif]. This example uses
dc=acme,dc=pki,dc=example,dc=com as the base DN.

2. Import the LDIF file using the ldapadd command:

$ ldapadd -h $HOSTNAME -x -D "cn=Directory Manager" -w Secret.123 \
 -f /usr/share/pki/acme/realm/ds/create.ldif

3. Copy the sample configuration file from /usr/share/pki/acme/realm/ds/realm.conf into the
/etc/pki/pki-tomcat/acme directory, or run the following command to customize some of the
parameters:

$ pki-server acme-realm-mod --type ds \
 -DbindPassword=Secret.123

4. Customize the configuration as needed:

In a standalone ACME deployment, the realm.conf file should look like the following:

class=org.example.acme.realm.DSRealm
url=ldap://<hostname>:389
authType=BasicAuth
bindDN=cn=Directory Manager

Planning, Installation, and Deployment Guide

188

bindPassword=Secret.123
usersDN=ou=people,dc=acme,dc=pki,dc=example,dc=com
groupsDN=ou=groups,dc=acme,dc=pki,dc=example,dc=com

In a shared CA and ACME deployment, the realm.conf file should look like the following:

class=org.example.acme.realm.DSRealm
configFile=conf/ca/CS.cfg
usersDN=ou=people,dc=ca,dc=pki,dc=example,dc=com
groupsDN=ou=groups,dc=ca,dc=pki,dc=example,dc=com

11.5. DEPLOYING ACME RESPONDER

1. Once you have configured the ACME responder, deploy it using the following command:

$ pki-server acme-deploy

This creates a deployment descriptor at /etc/pki/pki-tomcat/Catalina/localhost/acme.xml.

The PKI server starts the ACME responder automatically after a few seconds, you do not need to
restart the server.

2. To verify that the ACME responder is running, use the following command:

$ curl -s -k https://$HOSTNAME:8443/acme/directory | python -m json.tool
{
"meta": {
"caaIdentities": [
"example.com"
],
"externalAccountRequired": false,
"termsOfService": "https://example.com/acme/tos.pdf",
"website": "https://www.example.com"
},
"newAccount": "https://<hostname>:8443/acme/new-account",
"newNonce": "https://<hostname>:8443/acme/new-nonce",
"newOrder": "https://<hostname>:8443/acme/new-order",
"revokeCert": "https://<hostname>:8443/acme/revoke-cert"
}

For more information, see the pki-server-acme manpage.

CHAPTER 11. SETTING UP PKI ACME RESPONDER

189

CHAPTER 12. ADDITIONAL INSTALLATION OPTIONS
All Red Hat Certificate System instances created with pkispawn make certain assumptions about the
instances being installed, such as the default signing algorithm to use for CA signing certificates and
whether to allow IPv6 addresses for hosts.

This chapter describes additional configuration options that impact the installation and configuration for
new instances, so many of these procedures occur before the instance is created.

12.1. LIGHTWEIGHT SUB-CAS

Using the default settings, you are able to create lightweight sub-CAs. They enable you to configure
services, like virtual private network (VPN) gateways, to accept only certificates issued by one sub-CA.
At the same time, you can configure other services to accept only certificates issued by a different sub-
CA or the root CA.

If you revoke the intermediate certificate of a sub-CA, all certificates issued by this sub-CA are
automatically invalid.

If you set up the CA subsystem in Certificate System, it is automatically the root CA. All sub-CAs you
create, are subordinated to this root CA.

12.1.1. Setting up a Lightweight Sub-CA

Depending on your environment, the installation of a sub-CA differs between Internal CAs and External
CAs. For more information, see Section 7.8, “Setting up Subsystems with an External CA” .

12.1.2. Disabling the Creation of Lightweight Sub-CAs

In certain situations, administrators want to disable lightweight sub-CAs. To prevent adding, modifying,
or removing sub-CAs, enter the following command on the Directory Server instance used by
Certificate System:

ldapmodify -D "cn=Directory Manager" -W -x -h server.example.com

dn: cn=aclResources,o=instance_name
changetype: modify
delete: resourceACLS
resourceACLS: certServer.ca.authorities:create,modify:allow (create,modify)
 group="Administrators":Administrators may create and modify lightweight authorities
delete: resourceACLS
resourceACLS: certServer.ca.authorities:delete:allow (delete)
 group="Administrators":Administrators may delete lightweight authorities

This command removes the default Access Control List (ACL) entries, which grant the permissions to
manage sub-CAs.

NOTE

If any ACLs related to lightweight sub-CA creation have been modified or added, remove
the relevant values.

12.1.3. Re-enabling the Creation of Lightweight Sub-CAs

Planning, Installation, and Deployment Guide

190

If you previously disabled the creation of lightweight sub-CAs, you can re-enable the feature by
entering the following command on the Directory Server instance used by Certificate System:

ldapmodify -D "cn=Directory Manager" -W -x -h server.example.com

dn: cn=aclResources,o=instance_name
changetype: modify
add: resourceACLS
resourceACLS: certServer.ca.authorities:create,modify:allow (create,modify)
 group="Administrators":Administrators may create and modify lightweight authorities
resourceACLS: certServer.ca.authorities:delete:allow (delete)
 group="Administrators":Administrators may delete lightweight authorities

This command adds the Access Control List (ACL) entries, which grant the permissions to manage sub-
CAs.

12.2. ENABLING IPV6 FOR A SUBSYSTEM

Certificate System automatically configures and manages connections between subsystems. Every
subsystem must interact with a CA as members of a security domain and to perform their PKI
operations.

For these connections, Certificate System subsystems can be recognized by their host's fully-qualified
domain name or an IP address. By default, Certificate System resolves IPv4 addresses and host names
automatically, but Certificate System can also use IPv6 for their connections. IPv6 is supported for all
server connections: to other subsystems, to the administrative console (pkiconsole), or through
command-line scripts such as tpsclient:

op=var_set name=ca_host value=IPv6 address

1. Install the Red Hat Certificate System packages.

2. Set the IPv4 and IPv6 addresses in the /etc/hosts file. For example:

 vim /etc/hosts

 192.0.0.0 server.example.com IPv4 address
 3ffe:1234:2222:2000:202:55ff:fe67:f527 server6.example.com IPv6 address

3. Then, export the environment variable to use the IPv6 address for the server. For example:

export PKI_HOSTNAME=server6.example.com

4. Run pkispawn to create the new instance. The values for the server host name in the CS.cfg
file will be set to the IPv6 address.

12.3. ENABLING LDAP-BASED ENROLLMENT PROFILES

To install with LDAP-based profiles set the pki_profile_in_ldap=True option in the [CA] section of the
pkispawn configuration file.

NOTE

CHAPTER 12. ADDITIONAL INSTALLATION OPTIONS

191

NOTE

In this case, profile files will still appear in /var/lib/pki/instance_name/ca/profiles/ca/, but
will be ignored.

To enable LDAP-based profiles on an existing instance, change the following in the instance's CS.cfg:

subsystem.1.class=com.netscape.cmscore.profile.LDAPProfileSubsystem

Then, import profiles manually into the database using either the pki command line utility or a custom
script.

12.4. CUSTOMIZING TLS CIPHERS

It is possible to enforce TLS ciphers during the installation. See the Configuring Ciphers section in the
Red Hat Certificate System Administration Guide.

Planning, Installation, and Deployment Guide

192

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Administration_Guide/index.html

A:

Q:

A:

Q:

CHAPTER 13. TROUBLESHOOTING INSTALLATION AND
CLONING
This chapter covers some of the more common installation and migration issues that are encountered
when installing Certificate System.

13.1. Installation

I cannot see any Certificate System packages or updates.

Verify that your system is correctly registered to the Red Hat subscription management service, a
valid subscription is assigned, and the Certificate System repository is enabled. For details, see
Section 6.8, “Attaching a Red Hat Subscription and Enabling the Certificate System Package
Repository”.

The init script returned an OK status, but my CA instance does not respond. Why?

This should not happen. Usually (but not always), this indicates a listener problem with the CA, but
it can have many different causes. To see what errors have occurred, examine the journal log by
running the following command:

journalctl -u pki-tomcatd@instance_name.service

Alternatively, examine the debug log files at
/var/log/pki/instance_name/subsystem_type/debug.

One situation is when there is a PID for the CA, indicating the process is running, but that no
listeners have been opened for the server. This would return Java invocation class errors in the
catalina.out file:

Oct 29, 2010 4:15:44 PM org.apache.coyote.http11.Http11Protocol init
INFO: Initializing Coyote HTTP/1.1 on http-9080
java.lang.reflect.InvocationTargetException
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:64)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:615)
 at org.apache.catalina.startup.Bootstrap.load(Bootstrap.java:243)
 at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:408)
Caused by: java.lang.UnsatisfiedLinkError: jss4

This could mean that you have the wrong version of JSS or NSS. The process requires libnss3.so
in the path. Check this with this command:

ldd /usr/lib64/libjss4.so

If libnss3.so is not found, set the correct classpath in the /etc/sysconfig/instance_name
configuration file. Then restart the CA using the systemctl restart pki-
tomcatd@instance_name.service command.

CHAPTER 13. TROUBLESHOOTING INSTALLATION AND CLONING

193

Q:

A:

Q:

A:

Q:

I want to customize the subject name for the CA signing certificate, but do not see a way to
do this using the pkispawn interactive install mode.

To do this, a configuration file representing delta links to the /etc/pki/default.cfg file is required.
See the pkispawn(8) and pki_default.cfg(5) man pages.

I want to set different certificate validity periods and extensions for my root certificate
authority — but I do not see a way to set it using pkispawn.

You cannot currently do this using pkispawn. However, there is a way to edit the certificate
profiles used by pkispawn to generate the root CA certificates.

IMPORTANT

You must do this before running pkispawn to create a new CA instance.

1. Back up the original CA certificate profile used by pkispawn.

cp -p /usr/share/pki/ca/conf/caCert.profile /usr/share/pki/ca/conf/caCert.profile.orig

2. Open the CA certificate profile used by the configuration wizard.

vim /usr/share/pki/ca/conf/caCert.profile

3. Reset the validity period in the Validity Default to whatever you want. For example, to
change the period to two years:

2.default.class=com.netscape.cms.profile.def.ValidityDefault
2.default.name=Validity Default
2.default.params.range=7200

4. Add any extensions by creating a new default entry in the profile and adding it to the list.
For example, to add the Basic Constraint Extension, add the default (which, in this
example, is default #9):

9.default.class=com.netscape.cms.profile.def.BasicConstraintsExtDefault
9.default.name=Basic Constraint Extension Constraint
9.default.params.basicConstraintsCritical=true
9.default.params.basicConstraintsIsCA=true
9.default.params.basicConstraintsPathLen=2

Then, add the default number to the list of defaults to use the new default:

list=2,4,5,6,7,8,9

5. Once the new profile is set up, then run pkispawn to create the new CA instance and go
through the configuration wizard.

I am seeing an HTTP 500 error code when I try to connect to the web services pages after
configuring my subsystem instance.

Planning, Installation, and Deployment Guide

194

A: This is an unexpected generic error which can have many different causes. Check in the journal,
system, and debug log files for the instance to see what errors have occurred. This lists a couple
of common errors, but there are many other possibilities.

Error #1: The LDAP database is not running.
If the Red Hat Directory Server instance use for the internal database is not running, then you
cannot connect to the instance. This will be apparent in exceptions in the journal file that the
instance is not ready:

java.io.IOException: CS server is not ready to serve.
 com.netscape.cms.servlet.base.CMSServlet.service(CMSServlet.java:409)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:688)

The Tomcat logs will specifically identify the problem with the LDAP connection:

5558.main - [29/Oct/2010:11:13:40 PDT] [8] [3] In Ldap (bound) connection pool
to host ca1 port 389, Cannot connect to LDAP server. Error:
netscape.ldap.LDAPException: failed to connect to server
ldap://ca1.example.com:389 (91)

As will the instance's debug log:

[29/Oct/2010:11:39:10][main]: CMS:Caught EBaseException
Internal Database Error encountered: Could not connect to LDAP server host
ca1 port 389 Error netscape.ldap.LDAPException: failed to connect to
server ldap://ca1:389 (91)
 at com.netscape.cmscore.dbs.DBSubsystem.init(DBSubsystem.java:262)

Error #2: A VPN is blocking access.
Another possibility is that you are connecting to the subsystem over a VPN. The VPN must have a
configuration option like Use this connection only for resources on its network enabled. If that
option is not enabled, then the journal log file for the instance's Tomcat service shows a series of
connection errors that result in the HTTP 500 error:

May 26, 2010 7:09:48 PM org.apache.catalina.core.StandardWrapperValve invoke
SEVERE: Servlet.service() for servlet services threw exception
java.io.IOException: CS server is not ready to serve.
 at com.netscape.cms.servlet.base.CMSServlet.service(CMSServlet.java:441)
 at javax.servlet.http.HttpServlet.service(HttpServlet.java:803)
 at
org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:269)

 at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188)
 at
org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:210)
 at
org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:172)
 at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127)
 at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:117)
 at org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:542)
 at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:108)
 at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:151)
 at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:870)
 at

CHAPTER 13. TROUBLESHOOTING INSTALLATION AND CLONING

195

A:

Q:

A:

Q:

org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.processConnection(Htt
p11BaseProtocol.java:665)
 at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:528)
 at
org.apache.tomcat.util.net.LeaderFollowerWorkerThread.runIt(LeaderFollowerWorkerThread.jav
a:81)
 at org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run(ThreadPool.java:685)
 at java.lang.Thread.run(Thread.java:636)

13.2. Java Console

IMPORTANT

pkiconsole is being deprecated.

I cannot open the pkiconsole and I am seeing Java exceptions in stdout.

This probably means that you have the wrong JRE installed or the wrong JRE set as the default.
Run alternatives --config java to see what JRE is selected. Red Hat Certificate System requires
OpenJDK 1.7.

I tried to run pkiconsole, and I got Socket exceptions in stdout. Why?

This means that there is a port problem. Either there are incorrect SSL/TLS settings for the
administrative port (meaning there is bad configuration in the server.xml) or the wrong port was
given to access the admin interface.

Port errors will look like the following:

NSS Cipher Supported '0xff04'
java.io.IOException: SocketException cannot read on socket
 at org.mozilla.jss.ssl.SSLSocket.read(SSLSocket.java:1006)
 at org.mozilla.jss.ssl.SSLInputStream.read(SSLInputStream.java:70)
 at
com.netscape.admin.certsrv.misc.HttpInputStream.fill(HttpInputStream.java:303)
 at
com.netscape.admin.certsrv.misc.HttpInputStream.readLine(HttpInputStream.java:224)
 at
com.netscape.admin.certsrv.connection.JSSConnection.readHeader(JSSConnection.java:439)
 at
com.netscape.admin.certsrv.connection.JSSConnection.initReadResponse(JSSConnection.java:4
30)
 at
com.netscape.admin.certsrv.connection.JSSConnection.sendRequest(JSSConnection.java:344)

 at
com.netscape.admin.certsrv.connection.AdminConnection.processRequest(AdminConnection.java
:714)
 at
com.netscape.admin.certsrv.connection.AdminConnection.sendRequest(AdminConnection.java:62
3)
 at
com.netscape.admin.certsrv.connection.AdminConnection.sendRequest(AdminConnection.java:59

Planning, Installation, and Deployment Guide

196

Q:

A:

0)
 at
com.netscape.admin.certsrv.connection.AdminConnection.authType(AdminConnection.java:323)

 at
com.netscape.admin.certsrv.CMSServerInfo.getAuthType(CMSServerInfo.java:113)
 at com.netscape.admin.certsrv.CMSAdmin.run(CMSAdmin.java:499)
 at com.netscape.admin.certsrv.CMSAdmin.run(CMSAdmin.java:548)
 at com.netscape.admin.certsrv.Console.main(Console.java:1655)

I attempt to start the console, and the system prompts me for my user name and password.
After I enter these credentials, the console fails to appear.

Make sure the user name and password you entered are valid. If so, enable the debug output and
examine it.

To enable the debug output, open the /usr/bin/pkiconsole file, and add the following lines:

==
${JAVA} ${JAVA_OPTIONS} -cp ${CP} -Djava.util.prefs.systemRoot=/tmp/.java -
Djava.util.prefs.userRoot=/tmp/java com.netscape.admin.certsrv.Console -s instanceID -D 9:all
-a $1

note: "-D 9:all" is for verbose output on the console.
==

CHAPTER 13. TROUBLESHOOTING INSTALLATION AND CLONING

197

PART III. CONFIGURING CERTIFICATE SYSTEM

Planning, Installation, and Deployment Guide

198

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION
FILES
The primary configuration file for every subsystem is its CS.cfg file. This chapter covers basic
information about and rules for editing the CS.cfg file. This chapter also describes some other useful
configuration files used by the subsystems, such as password and web services files.

14.1. FILE AND DIRECTORY LOCATIONS FOR CERTIFICATE SYSTEM
SUBSYSTEMS

Certificate System servers consist of an Apache Tomcat instance, which contains one or more
subsystems. Each subsystem consists of a web application, which handles requests for a specific type of
PKI function.

The available subsystems are: CA, KRA, OCSP, TKS, and TPS. Each instance can contain only one of
each type of a PKI subsystem.

A subsystem can be installed within a particular instance using the pkispawn command.

14.1.1. Instance-specific Information

For instance information for the default instance (pki-tomcat), see Table 2.2, “Tomcat Instance
Information”

Table 14.1. Certificate Server Port Assignments (Default)

Port Type Port
Number

Notes

Secure port 8443 Main port used to access PKI services by end-users, agents, and
admins over HTTPS.

Insecure port 8080 Used to access the server insecurely for some end-entity functions
over HTTP. Used for instance to provide CRLs, which are already
signed and therefore need not be encrypted.

AJP port 8009 Used to access the server from a front end Apache proxy server
through an AJP connection. Redirects to the HTTPS port.

Tomcat port 8005 Used by the web server.

14.1.2. CA Subsystem Information

This section contains details about the CA subsystem, which is one of the possible subsystems that can
be installed as a web application in a Certificate Server instance.

Table 14.2. CA Subsystem Information for the Default Instance (pki-tomcat)

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

199

Setting Value

Main directory /var/lib/pki/pki-tomcat/ca/

Configuration directory /var/lib/pki/pki-tomcat/ca/conf/[a]

Configuration file /var/lib/pki/pki-tomcat/ca/conf/CS.cfg

Subsystem certificates CA signing certificate

OCSP signing certificate (for the CA's internal OCSP service)

TLS server certificate

Audit log signing certificate

Subsystem certificate[b]

Security databases /var/lib/pki/pki-tomcat/alias/[c]

Log files /var/log/pki/pki-tomcat/ca/logs/[d]

Install log /var/log/pki/pki-ca-spawn.date.log

Uninstall log /var/log/pki/pki-ca-destroy.date.log

Audit logs /var/log/pki/pki-tomcat/ca/signedAudit/

Profile files /var/lib/pki/pki-tomcat/ca/profiles/ca/

Email notification templates /var/lib/pki/pki-tomcat/ca/emails/

Web services files Agent services: /var/lib/pki/pki-tomcat/ca/webapps/ca/agent/

Admin services: /var/lib/pki/pki-tomcat/ca/webapps/ca/admin/

End user services: /var/lib/pki/pki-tomcat/ca/webapps/ca/ee/

[a] Aliased to /etc/pki/pki-tomcat/ca/

[b] The subsystem certificate is always issued by the security domain so that domain-level operations that require client
authentication are based on this subsystem certificate.

[c] Note that all subsystem certificates are stored in the instance security database

[d] Aliased to /var/lib/pki/pki-tomcat/ca

Planning, Installation, and Deployment Guide

200

14.1.3. KRA Subsystem Information

This section contains details about the KRA subsystem, which is one of the possible subsystems that can
be installed as a web application in a Certificate Server instance.

Table 14.3. KRA Subsystem Information for the Default Instance (pki-tomcat)

Setting Value

Main directory /var/lib/pki/pki-tomcat/kra/

Configuration directory /var/lib/pki/pki-tomcat/kra/conf/[a]

Configuration file /var/lib/pki/pki-tomcat/kra/conf/CS.cfg

Subsystem certificates Transport certificate

Storage certificate

TLS server certificate

Audit log signing certificate

Subsystem certificate[b]

Security databases /var/lib/pki/pki-tomcat/alias/[c]

Log files /var/lib/pki/pki-tomcat/kra/logs/

Install log /var/log/pki/pki-kra-spawn-date.log

Uninstall log /var/log/pki/pki-kra-destroy-date.log

Audit logs /var/log/pki/pki-tomcat/kra/signedAudit/

Web services files Agent services: /var/lib/pki/pki-tomcat/kra/webapps/kra/agent/

Admin services: /var/lib/pki/pki-tomcat/kra/webapps/kra/admin/

[a] Linked to /etc/pki/pki-tomcat/kra/

[b] The subsystem certificate is always issued by the security domain so that domain-level operations that require client
authentication are based on this subsystem certificate.

[c] Note that all subsystem certificates are stored in the instance security database

14.1.4. OCSP Subsystem Information

This section contains details about the OCSP subsystem, which is one of the possible subsystems that

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

201

This section contains details about the OCSP subsystem, which is one of the possible subsystems that
can be installed as a web application in a Certificate Server instance.

Table 14.4. OCSP Subsystem Information for the Default Instance (pki-tomcat)

Setting Value

Main directory /var/lib/pki/pki-tomcat/ocsp/

Configuration directory /var/lib/pki/pki-tomcat/ocsp/conf/[a]

Configuration file /var/lib/pki/pki-tomcat/ocsp/conf/CS.cfg

Subsystem certificates Transport certificate

Storage certificate

TLS server certificate

Audit log signing certificate

Subsystem certificate[b]

Security databases /var/lib/pki/pki-tomcat/alias/[c]

Log files /var/lib/pki/pki-tomcat/ocsp/logs/

Install log /var/log/pki/pki-ocsp-spawn-date.log

Uninstall log /var/log/pki/pki-ocsp-destroy-date.log

Audit logs /var/log/pki/pki-tomcat/ocsp/signedAudit/

Web services files Agent services: /var/lib/pki/pki-tomcat/ocsp/webapps/ocsp/agent/

Admin services: /var/lib/pki/pki-tomcat/ocsp/webapps/ocsp/admin/

[a] Linked to /etc/pki/pki-tomcat/ocsp/

[b] The subsystem certificate is always issued by the security domain so that domain-level operations that require client
authentication are based on this subsystem certificate.

[c] Note that all subsystem certificates are stored in the instance security database

14.1.5. TKS Subsystem Information

This section contains details about the TKS subsystem, which is one of the possible subsystems that can
be installed as a web application in a Certificate Server instance.

Planning, Installation, and Deployment Guide

202

Table 14.5. Every time a subsystem is created either through the initial installation or creating
additional instances with (pki-tomcat)

Setting Value

Main directory /var/lib/pki/pki-tomcat/tks/

Configuration directory /var/lib/pki/pki-tomcat/tks/conf/[a]

Configuration file /var/lib/pki/pki-tomcat/tks/conf/CS.cfg

Subsystem certificates Transport certificate

Storage certificate

TLS server certificate

Audit log signing certificate

Subsystem certificate[b]

Security databases /var/lib/pki/pki-tomcat/alias/[c]

Log files /var/lib/pki/pki-tomcat/tks/logs/

Install log /var/log/pki/pki-tks-spawn-date.log

Uninstall log /var/log/pki/pki-tks-destroy-date.log

Audit logs /var/log/pki/pki-tomcat/tks/signedAudit/

Web services files Agent services: /var/lib/pki/pki-tomcat/tks/webapps/tks/agent/

Admin services: /var/lib/pki/pki-tomcat/tks/webapps/tks/admin/

[a] Linked to /etc/pki/pki-tomcat/tks/

[b] The subsystem certificate is always issued by the security domain so that domain-level operations that require client
authentication are based on this subsystem certificate.

[c] Note that all subsystem certificates are stored in the instance security database

14.1.6. TPS Subsystem Information

This section contains details about the TPS subsystem, which is one of the possible subsystems that can
be installed as a web application in a Certificate Server instance.

Table 14.6. TPS Subsystem Information for the Default Instance (pki-tomcat)

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

203

Setting Value

Main directory /var/lib/pki/pki-tomcat/tps

Configuration directory /var/lib/pki/pki-tomcat/tps/conf/[a]

Configuration file /var/lib/pki/pki-tomcat/tps/conf/CS.cfg

Subsystem certificates Transport certificate

Storage certificate

TLS server certificate

Audit log signing certificate

Subsystem certificate[b]

Security databases /var/lib/pki/pki-tomcat/alias/[c]

Log files /var/lib/pki/pki-tomcat/tps/logs/

Install log /var/log/pki/pki-tps-spawn-date.log

Uninstall log /var/log/pki/pki-tps-destroy-date.log

Audit logs /var/log/pki/pki-tomcat/tps/signedAudit/

Web services files Agent services: /var/lib/pki/pki-tomcat/tps/webapps/tps/agent/

Admin services: /var/lib/pki/pki-tomcat/tps/webapps/tps/admin/

[a] Linked to /etc/pki/pki-tomcat/tps/

[b] The subsystem certificate is always issued by the security domain so that domain-level operations that require client
authentication are based on this subsystem certificate.

[c] Note that all subsystem certificates are stored in the instance security database

14.1.7. Shared Certificate System Subsystem File Locations

There are some directories used by or common to all Certificate System subsystem instances for
general server operations, listed in Table 2.8, “Subsystem File Locations” .

Table 14.7. Subsystem File Locations

Planning, Installation, and Deployment Guide

204

Directory Location Contents

/var/lib/instance_name Contains the main instance directory, which is the
location for user-specific directory locations and
customized configuration files, profiles, certificate
databases, web files, and other files for the
subsystem instance.

/usr/share/java/pki Contains Java archive files shared by the
Certificate System subsystems. Along with shared
files for all subsystems, there are subsystem-specific
files in subfolders:

pki/ca/ (CA)

pki/kra/ (KRA)

pki/ocsp/ (OCSP)

pki/tks/ (TKS)

Not used by the TPS subsystem.

/usr/share/pki Contains common files and templates used to create
Certificate System instances. Along with shared files
for all subsystems, there are subsystem-specific files
in subfolders:

pki/ca/ (CA)

pki/kra/ (KRA)

pki/ocsp/ (OCSP)

pki/tks/ (TKS)

pki/tps (TPS)

/usr/bin Contains the pkispawn and pkidestroy instance
configuration scripts and tools (Java, native, and
security) shared by the Certificate System
subsystems.

/var/lib/tomcat5/common/lib Contains links to Java archive files shared by local
Tomcat web applications and shared by the
Certificate System subsystems. Not used by the TPS
subsystem.

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

205

/var/lib/tomcat5/server/lib Contains links to Java archive files used by the local
Tomcat web server and shared by the
Certificate System subsystems. Not used by the TPS
subsystem.

/usr/shared/pki Contains the Java archive files used by the Tomcat
server and applications used by the
Certificate System instances. Not used by the TPS
subsystem.

/usr/lib/httpd/modules

/usr/lib64/httpd/modules

Contains Apache modules used by the TPS
subsystem. Not used by the CA, KRA, OCSP, or TKS
subsystems.

/usr/lib/mozldap

/usr/lib64/mozldap

Mozilla LDAP SDK tools used by the TPS subsystem.
Not used by the CA, KRA, OCSP, or TKS subsystems.

Directory Location Contents

14.2. CS.CFG FILES

The runtime properties of a Certificate System subsystem are governed by a set of configuration
parameters. These parameters are stored in a file that is read by the server during startup, CS.cfg.

The CS.cfg, an ASCII file, is created and populated with the appropriate configuration parameters when
a subsystem is first installed. The way the instance functions are modified is by making changes through
the subsystem console, which is the recommended method. The changes made in the administrative
console are reflected in the configuration file.

It is also possible to edit the CS.cfg configuration file directly, and in some cases this is the easiest way
to manage the subsystem.

14.2.1. Locating the CS.cfg File

Each instance of a Certificate System subsystem has its own configuration file, CS.cfg. The contents of
the file for each subsystem instance is different depending on the way the subsystem was configured,
additional settings and configuration (like adding new profiles or enabling self-tests), and the type of
subsystem.

The CS.cfg file is located in the configuration directory for the instance.

/var/lib/pki/instance_name/subsystem_type/conf

For example:

/var/lib/pki/instance_name/ca/conf

Planning, Installation, and Deployment Guide

206

14.2.2. Editing the Configuration File

WARNING

Do not edit the configuration file directly without being familiar with the
configuration parameters or without being sure that the changes are acceptable to
the server. The Certificate System fails to start if the configuration file is modified
incorrectly. Incorrect configuration can also result in data loss.

To modify the CS.cfg file:

1. Stop the subsystem instance.

pki-server stop instance_name

OR (if using nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

The configuration file is stored in the cache when the instance is started. Any changes made to
the instance through the Console are changed in the cached version of the file. When the server
is stopped or restarted, the configuration file stored in the cache is written to disk. Stop the
server before editing the configuration file or the changes will be overwritten by the cached
version when the server is stopped.

2. Open the /var/lib/pki/instance_name/subsystem_type/conf directory.

3. Open the CS.cfg file in a text editor.

4. Edit the parameters in the file, and save the changes.

5. Start the subsystem instance.

pki-server start instance_name

OR (if using nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@instance_name.service

14.2.3. Overview of the CS.cfg Configuration File

Each subsystem instances has its own main configuration file, CS.cfg, which contains all of the settings
for the instance, such as plug-ins and Java classes for configuration. The parameters and specific
settings are different depending on the type of subsystem, but, in a general sense, the CS.cfg file
defines these parts of the subsystem instance:

Basic subsystem instance information, like its name, port assignments, instance directory, and
hostname



CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

207

Logging

Plug-ins and methods to authenticate to the instance's user directory (authorization)

The security domain to which the instance belongs

Subsystem certificates

Other subsystems used by the subsystem instance

Database types and instances used by the subsystem

Settings for PKI-related tasks, like the key profiles in the TKS, the certificate profiles in the CA,
and the required agents for key recovery in the KRA

Many of the configuration parameters (aside from the ones for PKI tasks) are very much the same
between the CA, OCSP, KRA, and TKS because they all use a Java-based console, so configuration
settings which can be managed in the console have similar parameters.

The CS.cfg file a basic parameter=value format.

#comment
parameter=value

In the CS.cfg file, many of the parameter blocks have descriptive comments, commented out with a
pound (#) character. Comments, blank lines, unknown parameters, or misspelled parameters are ignored
by the server.

NOTE

A bug in the TPS prevents it from ignoring lines which are commented out in the CS.cfg
file. Rather than commenting out lines in the TPS CS.cfg file, simply delete those lines.

Parameters that configure the same area of the instance tend to be grouped together into the same
block.

Some areas of functionality are implemented through plug-ins, such as self-tests, jobs, and
authorization to access the subsystem. For those parameters, the plug-in instance has a unique
identifier (since there can be multiple instances of even the same plug-in called for a subsystem), the
implementation plug-in name, and the Java class.

Example 14.1. Subsystem Authorization Settings

authz.impl._000=##
authz.impl._001=## authorization manager implementations
authz.impl._002=##
authz.impl.BasicAclAuthz.class=com.netscape.cms.authorization.BasicAclAuthz
authz.instance.BasicAclAuthz.pluginName=BasicAclAuthz

NOTE

Planning, Installation, and Deployment Guide

208

NOTE

The values for configuration parameters must be properly formatted, so they must obey
two rules:

The values that need to be localized must be in UTF8 characters.

The CS.cfg file supports forward slashes (/) in parameter values. If a back slash
(\) is required in a value, it must be escaped with a back slash, meaning that two
back slashes in a row must be used.

The following sections are snapshots of CS.cfg file settings and parameters. These are not exhaustive
references or examples of CS.cfg file parameters. Also, the parameters available and used in each
subsystem configuration file is very different, although there are similarities.

14.2.3.1. Basic Subsystem Settings

Basic settings are specific to the instance itself, without directly relating to the functionality or behavior
of the subsystem. This includes settings for the instance name, root directory, the user ID for the
process, and port numbers. Many of the settings assigned when the instance is first installed or
configured are prefaced with pkispawn.

Example 14.2. Basic Instance Parameters for the CA: pkispawn file ca.cfg

[DEFAULT]
pki_admin_password=Secret.123
pki_client_pkcs12_password=Secret.123
pki_ds_password=Secret.123
Optionally keep client databases
pki_client_database_purge=False
Separated CA instance name and ports
pki_instance_name=pki-ca
 pki_http_port=18080
pki_https_port=18443
This Separated CA instance will be its own security domain
pki_security_domain_https_port=18443

[Tomcat]
Separated CA Tomcat ports
pki_ajp_port=18009
pki_tomcat_server_port=18005

IMPORTANT

While information like the port settings is included in the CS.cfg file, it is not set in the
CS.cfg. The server configuration is set in the server.xml file.

The ports in CS.cfg and server.xml must match for a working RHCS instance.

14.2.3.2. Logging Settings

There are several different types of logs that can be configured, depending on the type of subsystem.
Each type of log has its own configuration entry in the CS.cfg file.

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

209

For more information about Logging Settings, see Section 18.1, “Certificate System Log Settings”.

14.2.3.3. Authentication and Authorization Settings

The CS.cfg file sets how users are identified to access a subsystem instance (authentication) and what
actions are approved (authorization) for each authenticated user.

A CS subsystem uses authentication plug-ins to define the method for logging into the subsystem.

The following example shows an authentication instance named SharedToken that instantiates a JAVA
plug-in named SharedSecret.

auths.impl.SharedToken.class=com.netscape.cms.authentication.SharedSecret
auths.instance.SharedToken.pluginName=SharedToken
auths.instance.SharedToken.dnpattern=
auths.instance.SharedToken.ldap.basedn=ou=People,dc=example,dc=org
auths.instance.SharedToken.ldap.ldapauth.authtype=BasicAuth
auths.instance.SharedToken.ldap.ldapauth.bindDN=cn=Directory Manager
auths.instance.SharedToken.ldap.ldapauth.bindPWPrompt=Rule SharedToken
auths.instance.SharedToken.ldap.ldapauth.clientCertNickname=
auths.instance.SharedToken.ldap.ldapconn.host=server.example.com
auths.instance.SharedToken.ldap.ldapconn.port=636
auths.instance.SharedToken.ldap.ldapconn.secureConn=true
auths.instance.SharedToken.ldap.ldapconn.version=3
auths.instance.SharedToken.ldap.maxConns=
auths.instance.SharedToken.ldap.minConns=
auths.instance.SharedToken.ldapByteAttributes=
auths.instance.SharedToken.ldapStringAttributes=
auths.instance.SharedToken.shrTokAttr=shrTok

For some authorization settings, it is possible to select an authorization method that uses an LDAP
database to store user entries, in which case the database settings are configured along with the plug-in
as shown below.

authz.impl.DirAclAuthz.class=com.netscape.cms.authorization.DirAclAuthz
authz.instance.DirAclAuthz.ldap=internaldb
authz.instance.DirAclAuthz.pluginName=DirAclAuthz
authz.instance.DirAclAuthz.ldap._000=##
authz.instance.DirAclAuthz.ldap._001=## Internal Database
authz.instance.DirAclAuthz.ldap._002=##
authz.instance.DirAclAuthz.ldap.basedn=dc=server.example.com-pki-ca
authz.instance.DirAclAuthz.ldap.database=server.example.com-pki-ca
authz.instance.DirAclAuthz.ldap.maxConns=15
authz.instance.DirAclAuthz.ldap.minConns=3
authz.instance.DirAclAuthz.ldap.ldapauth.authtype=SslClientAuth
authz.instance.DirAclAuthz.ldap.ldapauth.bindDN=cn=Directory Manager
authz.instance.DirAclAuthz.ldap.ldapauth.bindPWPrompt=Internal LDAP Database
authz.instance.DirAclAuthz.ldap.ldapauth.clientCertNickname=
authz.instance.DirAclAuthz.ldap.ldapconn.host=localhost
authz.instance.DirAclAuthz.ldap.ldapconn.port=11636
authz.instance.DirAclAuthz.ldap.ldapconn.secureConn=true
authz.instance.DirAclAuthz.ldap.multipleSuffix.enable=false

For more information on securely configuring LDAP and an explanation of parameters, refer to

Planning, Installation, and Deployment Guide

210

For more information on securely configuring LDAP and an explanation of parameters, refer to
Section 7.10.3, “Enabling TLS Client Authentication” . The parameters paths differ than what is shown
there, but the same names and values are allowed in both places.

The CA also has to have a mechanism for approving user requests. As with configuring authorization,
this is done by identifying the appropriate authentication plug-in and configuring an instance for it:

auths.impl.AgentCertAuth.class=com.netscape.cms.authentication.AgentCertAuthentication
auths.instance.AgentCertAuth.agentGroup=Certificate Manager Agents
auths.instance.AgentCertAuth.pluginName=AgentCertAuth

14.2.3.4. Subsystem Certificate Settings

Several of the subsystems have entries for each subsystem certificate in the configuration file.

ca.sslserver.cert=MIIDmDCCAoCgAwIBAgIBAzANBgkqhkiG9w0BAQUFADBAMR4wHAYDVQQKExVS
ZWR...
ca.sslserver.certreq=MIICizCCAXMCAQAwRjEeMBwGA1UEChMVUmVkYnVkY29tcHV0ZXIgRG9tYWl
uMSQwIgYDV...
ca.sslserver.nickname=Server-Cert cert-pki-ca
ca.sslserver.tokenname=Internal Key Storage Token

14.2.3.5. Settings for Required Subsystems

At a minimum, each subsystem depends on a CA, which means that the CA (and any other required
subsystem) has to be configured in the subsystem's settings. Any connection to another subsystem is
prefaced by conn. and then the subsystem type and number.

conn.ca1.clientNickname=subsystemCert cert-pki-tps
conn.ca1.hostadminport=server.example.com:8443
conn.ca1.hostagentport=server.example.com:8443
conn.ca1.hostport=server.example.com:9443
conn.ca1.keepAlive=true
conn.ca1.retryConnect=3
conn.ca1.servlet.enrollment=/ca/ee/ca/profileSubmitSSLClient
conn.ca1.servlet.renewal=/ca/ee/ca/profileSubmitSSLClient
conn.ca1.servlet.revoke=/ca/subsystem/ca/doRevoke
conn.ca1.servlet.unrevoke=/ca/subsystem/ca/doUnrevoke
conn.ca1.timeout=100

14.2.3.6. Database Settings

All of the subsystems use an LDAP directory to store their information. This internal database is
configured in the internaldb parameters, except for the TPS which configured it in the tokendb
parameters with a lot of other configuration settings.

internaldb._000=##
internaldb._000=##
internaldb._001=## Internal Database
internaldb._002=##
internaldb.basedn=o=pki-tomcat-ca-SD
internaldb.database=pki-tomcat-ca
internaldb.maxConns=15

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

211

internaldb.minConns=3
internaldb.ldapauth.authtype=SslClientAuth
internaldb.ldapauth.clientCertNickname=HSM-A:subsystemCert pki-tomcat-ca
internaldb.ldapconn.host=example.com
internaldb.ldapconn.port=11636
internaldb.ldapconn.secureConn=true
internaldb.multipleSuffix.enable=false

For further information on securely configuring LDAP and an explanation of parameters, refer to
Section 7.10.3, “Enabling TLS Client Authentication” . No additional configuration is necessary outside of
what is done as part Section 7.10.3, “Enabling TLS Client Authentication” .

14.2.3.7. Enabling and Configuring a Publishing Queue

Part of the enrollment process includes publishing the issued certificate to any directories or files. This,
essentially, closes out the initial certificate request. However, publishing a certificate to an external
network can significantly slow down the issuance process — which leaves the request open.

To avoid this situation, administrators can enable a publishing queue. The publishing queue separates
the publishing operation (which may involve an external LDAP directory) from the request and
enrollment operations, which uses a separate request queue. The request queue is updated immediately
to show that the enrollment process is complete, while the publishing queue sends the information at
the pace of the network traffic.

The publishing queue sets a defined, limited number of threads that publish generated certificates,
rather than opening a new thread for each approved certificate.

The publishing queue is disabled by default. It can be enabled in the CA Console, along with enabling
publishing.

NOTE

While the publishing queue is disabled by default, the queue is automatically enabled if
LDAP publishing is enabled in the Console . Otherwise, the queue can be enabled
manually.

Figure 14.1. Enabling the Publishing Queue

Planning, Installation, and Deployment Guide

212

14.2.3.7.1. Enabling and Configuring a Publishing Queue by editing the CS.cfg file

Enabling the publishing queue by editing the CS.cfg file allows administrators to set other options for
publishing, like the number of threads to use for publishing operations and the queue page size.

1. Stop the CA server, so that you can edit the configuration files.

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

2. Open the CA's CS.cfg file.

vim /var/lib/pki/instance_name/ca/conf/CS.cfg

3. Set the ca.publish.queue.enable to true. If the parameter is not present, then add a line with
the parameter.

ca.publish.queue.enable=true

4. Set other related publishing queue parameters:

ca.publish.queue.maxNumberOfThreads sets the maximum number of threads that can
be opened for publishing operations. The default is 3.

ca.publish.queue.priorityLevel sets the priority for publishing operations. The priority
value ranges from -2 (lowest priority) to 2 (highest priority). Zero (0) is normal priority and
is also the default.

ca.publish.queue.pageSize sets the maximum number of requests that can be stored in
the publishing queue page. The default is 40.

ca.publish.queue.saveStatus sets the interval to save its status every specified number of
publishing operations. This allows the publishing queue to be recovered if the CA is
restarted or crashes. The default is 200, but any non-zero number will recover the queue
when the CA restarts. Setting this parameter to 0 disables queue recovery.

ca.publish.queue.maxNumberOfThreads=1
ca.publish.queue.priorityLevel=0
ca.publish.queue.pageSize=100
ca.publish.queue.saveStatus=200

NOTE

Setting ca.publish.queue.enable to false and
ca.publish.queue.maxNumberOfThreads to 0 disables both the publishing
queue and using separate threads for publishing issued certificates.

5. Restart the CA server.

systemctl start pki-tomcatd-nuxwdog@instance_name.service

14.2.3.8. Settings for PKI Tasks

The CS.cfg file is used to configure the PKI tasks for every subsystem. The parameters are different for

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

213

The CS.cfg file is used to configure the PKI tasks for every subsystem. The parameters are different for
every single subsystem, without any overlap.

For example, the KRA has settings for a required number of agents to recover a key.

kra.noOfRequiredRecoveryAgents=1

Review the CS.cfg file for each subsystem to become familiar with its PKI task settings; the comments in
the file are a decent guide for learning what the different parameters are.

The CA configuration file lists all of the certificate profiles and policy settings, as well as rules for
generating CRLs.

The TPS configures different token operations.

The TKS lists profiles for deriving keys from different key types.

The OCSP sets key information for different key sets.

14.2.3.9. Changing DN Attributes in CA-Issued Certificates

In certificates issued by the Certificate System, DNs identify the entity that owns the certificate. In all
cases, if the Certificate System is connected with a Directory Server, the format of the DNs in the
certificates should match the format of the DNs in the directory. It is not necessary that the names
match exactly; certificate mapping allows the subject DN in a certificate to be different from the one in
the directory.

In the Certificate System, the DN is based on the components, or attributes, defined in the X.509
standard. Table 14.8, “Allowed Characters for Value Types” lists the attributes supported by default. The
set of attributes is extensible.

Table 14.8. Allowed Characters for Value Types

Attribute Value Type Object Identifier

cn DirectoryString 2.5.4.3

ou DirectoryString 2.5.4.11

o DirectoryString 2.5.4.10

c PrintableString , two-character 2.5.4.6

l DirectoryString 2.5.4.7

st DirectoryString 2.5.4.8

street DirectoryString 2.5.4.9

title DirectoryString 2.5.4.12

uid DirectoryString 0.9.2342.19200300.100.1.1

Planning, Installation, and Deployment Guide

214

mail IA5String 1.2.840.113549.1.9.1

dc IA5String 0.9.2342.19200300.100.1.2.25

serialnumber PrintableString 2.5.4.5

unstructuredname IA5String 1.2.840.113549.1.9.2

unstructuredaddress PrintableString 1.2.840.113549.1.9.8

Attribute Value Type Object Identifier

By default, the Certificate System supports the attributes identified in Table 14.8, “Allowed Characters
for Value Types”. This list of supported attributes can be extended by creating or adding new attributes.
The syntax for adding additional X.500Name attributes, or components, is as follows:

X500Name.NEW_ATTRNAME.oid=n.n.n.n
X500Name.NEW_ATTRNAME.class=string_to_DER_value_converter_class

The value converter class converts a string to an ASN.1 value; this class must implement the
netscape.security.x509.AVAValueConverter interface. The string-to-value converter class can be one
of the following:

netscape.security.x509.PrintableConverter converts a string to a PrintableString value. The
string must have only printable characters.

netscape.security.x509.IA5StringConverter converts a string to an IA5String value. The string
must have only IA5String characters.

netscape.security.x509.DirStrConverter converts a string to a DirectoryString. The string is
expected to be in DirectoryString format according to RFC 2253.

netscape.security.x509.GenericValueConverter converts a string character by character in
the following order, from the smallest characterset to the largest:

PrintableString

IA5String

BMPString

Universal String

An attribute entry looks like the following:

X500Name.MY_ATTR.oid=1.2.3.4.5.6
X500Name.MY_ATTR.class=netscape.security.x509.DirStrConverter

14.2.3.9.1. Adding New or Custom Attributes

To add a new or proprietary attribute to the Certificate System schema, do the following:

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

215

1. Stop the Certificate Manager.

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

2. Open the /var/lib/pki/cs_instance/conf/ directory.

3. Open the configuration file, CS.cfg.

4. Add the new attributes to the configuration file.

For example, to add three proprietary attributes, MYATTR1 that is a DirectoryString,
MYATTR2 that is an IA5String, and MYATTR3 that is a PrintableString, add the following lines
at the end of the configuration file:

X500Name.attr.MYATTR1.oid=1.2.3.4.5.6
X500Name.attr.MYATTR1.class=netscape.security.x509.DirStrConverter
X500Name.attr.MYATTR2.oid=11.22.33.44.55.66
X500Name.attr.MYATTR2.class=netscape.security.x509.IA5StringConverter
X500Name.attr.MYATTR3.oid=111.222.333.444.555.666
X500Name.attr.MYATTR3.class=netscape.security.x509.PrintableConverter

5. Save the changes, and close the file.

6. Restart the Certificate Manager.

systemctl start pki-tomcatd-nuxwdog@instance_name.service

7. Reload the enrollment page and verify the changes; the new attributes should show up in the
form.

8. To verify that the new attributes are in effect, request a certificate using the manual enrollment
form.

Enter values for the new attributes so that it can be verified that they appear in the certificate
subject names. For example, enter the following values for the new attributes and look for them
in the subject name:

MYATTR1: a_value
MYATTR2: a.Value
MYATTR3: aValue
cn: John Doe
o: Example Corporation

9. Open the agent services page, and approve the request.

10. When the certificate is issued, check the subject name. The certificate should show the new
attribute values in the subject name.

14.2.3.9.2. Changing the DER-Encoding Order

It is possible to change the DER-encoding order of a DirectoryString, so that the string is configurable
since different clients support different encodings.

The syntax for changing the DER-encoding order of a DirectoryString is as follows:

Planning, Installation, and Deployment Guide

216

X500Name.directoryStringEncodingOrder=encoding_list_separated_by_commas

The possible encoding values are as follows:

PrintableString

IA5String

UniversalString

BMPString

UTF8String

For example, the DER-encoding ordered can be listed as follows:

X500Name.directoryStringEncodingOrder=PrintableString,BMPString

To change the DirectoryString encoding, do the following:

1. Stop the Certificate Manager.

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

2. Open the /var/lib/pki/cs_instance/conf/ directory.

3. Open the CS.cfg configuration file.

4. Add the encoding order to the configuration file.

For example, to specify two encoding values, PrintableString and UniversalString, and the
encoding order is PrintableString first and UniversalString next, add the following line at the
end of the configuration file:

X500Name.directoryStringEncodingOrder=PrintableString,UniversalString

5. Save the changes, and close the file.

6. Start the Certificate Manager.

systemctl start pki-tomcatd-nuxwdog@instance_name.service

7. To verify that the encoding orders are in effect, enroll for a certificate using the manual
enrollment form. Use John_Doe for the cn.

8. Open the agent services page, and approve the request.

9. When the certificate is issued, use the dumpasn1 tool to examine the encoding of the
certificate.

The cn component of the subject name should be encoded as a UniversalString.

10. Create and submit a new request using John Smith for the cn.

The cn component of the subject name should be encoded as a PrintableString.

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

217

14.2.3.10. Setting a CA to Use a Different Certificate to Sign CRLs

A Certificate Manager uses the key pair corresponding to its OCSP signing certificate for signing
certificates and certificate revocation lists (CRLs). To use a different key pair to sign the CRLs that the
Certificate Manager generates, then a CRL signing certificate can be created. The Certificate Manager's
CRL signing certificate must be signed or issued by itself.

To enable a Certificate Manager to sign CRLs with a different key pair, do the following:

1. Request a CRL signing certificate for the Certificate Manager.

Alternatively, use a tool that is capable of generating keypairs, such as the certutil tool to
generate a key pair, request a certificate for the key pair, and install the certificate in the
Certificate Manager's certificate database. For more information about the certutil tool, see
http://www.mozilla.org/projects/security/pki/nss/tools/.

2. When the certificate request has been created, submit it through the Certificate Manager end-
entities page, selecting the right profile, such as the "Manual OCSP Manager Signing Certificate
Enrollment" profile. The page has a URL in the following format:

 https://hostname:port/ca/ee/ca

3. After the request is submitted, log into the agent services page.

4. Check the request for required extensions. The CRL signing certificate must contain the Key
Usage extension with the crlSigning bit set.

5. Approve the request.

6. After the CRL signing certificate is generated, install the certificate in the Certificate Manager's
database through System Keys and Certificates in the console.

7. Stop the Certificate Manager.

pki-server stop instance_name

8. Update the Certificate Manager's configuration to recognize the new key pair and certificate.

1. Change to the Certificate Manager instance configuration directory.

cd /var/lib/pki/instance-name/ca/conf/

2. Open the CS.cfg file and add the following lines:

ca.crl_signing.cacertnickname=nickname cert-instance_ID
ca.crl_signing.defaultSigningAlgorithm=signing_algorithm
ca.crl_signing.tokenname=token_name

nickname is the name assigned to the CRL signing certificate.

instance_ID is the name of the Certificate Manager instance.

If the installed CA is a RSA-based CA, signing_algorithm can be SHA256withRSA,
SHA384withRSA, or SHA512withRSA. If the installed CA is an EC-based CA,
signing_algorithm can be SHA256withEC, SHA384withEC, SHA512withEC.

Planning, Installation, and Deployment Guide

218

http://www.mozilla.org/projects/security/pki/nss/tools/

token_name is the name of the token used for generating the key pair and the certificate. If
the internal/software token is used, use Internal Key Storage Token as the value.

For example, the entries might look like this:

ca.crl_signing.cacertnickname=crlSigningCert cert-pki-ca
ca.crl_signing.defaultSigningAlgorithm=SHAMD512withRSA
ca.crl_signing.tokenname=Internal Key Storage Token

3. Save the changes, and close the file.

9. Restart the Certificate Manager.

pki-server restart instance_name

Now the Certificate Manager is ready to use the CRL signing certificate to sign the CRLs it
generates.

14.2.3.11. Configuring CRL Generation from Cache in CS.cfg

The CRL cache is a simple mechanism that allows cert revocation information to be taken from a
collection of revocation information maintained in memory. For best performance, it is recommended
that this feature be enabled, which already represents the default behavior. The following configuration
information (which is the default) is presented for information purposes or if changes are desired.

1. Stop the CA server.

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

2. Open the CA configuration directory.

cd /var/lib/instance_name/conf/

3. Edit the CS.cfg file, setting the enableCRLCache and enableCacheRecovery parameters to
true:

ca.crl.MasterCRL.enableCRLCache=true
ca.crl.MasterCRL.enableCacheRecovery=true

4. Start the CA server.

systemctl start pki-tomcatd-nuxwdog@instance_name.service

14.2.3.12. Configuring Update Intervals for CRLs in CS.cfg

The following describes how to configure the CRL system flexibly to reflect desired behavior. The goal
is to configure CRL updates according to some schedule of two types. One type allows for a list of
explicit times and the other consists of a length of time interval between updates. There is also a hybrid
scenario where both are enabled to account for drift. The Note entry just below actually represents the
default out of the box scenario.

The default scenario is listed as follows:

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

219

ca.crl.MasterCRL.updateSchema=3
ca.crl.MasterCRL.enableDailyUpdates=true
ca.crl.MasterCRL.enableUpdateInterval=true
ca.crl.MasterCRL.autoUpdateInterval=240
ca.crl.MasterCRL.dailyUpdates=1:00
ca.crl.MasterCRL.nextUpdateGracePeriod=0

Deviate from this only when a more detailed and specific update schedule is desired. The rest of the
section will talk about how that is accomplished.

Configuring the settings for full and delta CRLs in the CS.cfg file involves editing parameters.

Table 14.9. CRL Extended Interval Parameters

Parameter Description Accepted
Values

updateSchema Sets the ratio for how many delta CRLs are
generated per full CRL

An integer
value

enableDailyUpdates Enables and disables setting CRL updates based on
set times

true or false

enableUpdateInterval Enables and disables setting CRL updates based on
set intervals

true or false

dailyUpdates Sets the times the CRLs should be updated A comma-
delimited list of
times

autoUpdateInterval Sets the interval in minutes to update the CRLs An integer
value

autoUpdateInterval.effectiveAtSt
art

Allows the system to attempt to use the new value of
auto update immediately instead of waiting for the
currently scheduled nextUpdate time

true or false

nextUpdateGracePeriod Adds the time in minutes to the CRL validity period
to ensure that CRLs remain valid throughout the
publishing or replication period

An integer
value

refreshInSec Sets the periodicity in seconds of the thread on the
clone OCSP to check LDAP for any updates of the
CRL

An integer
value

IMPORTANT

The autoUpdateInterval.effectiveAtStart parameter requires a system restart in order for
a new value to apply. The default value of this parameter is false, it should only be
changed by users who are sure of what they are doing.

Planning, Installation, and Deployment Guide

220

Procedure 14.1. How to configure CRL update intervals in CS.cfg

1. Stop the CA server.

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

2. Change to the CA configuration directory.

cd /var/lib/instance_name/conf/

3. Edit the CS.cfg file, and add the following line to set the update interval:

ca.crl.MasterCRL.updateSchema=3

The default interval is 1, meaning a full CRL is generated every time a CRL is generated. The
updateSchema interval can be set to any integer.

4. Set the update frequency, either by specifying a cyclical interval or set times for the updates to
occur:

Specify set times by enabling the enableDailyUpdates parameter, and add the desired
times to the dailyUpdates parameter:

ca.crl.MasterCRL.enableDailyUpdates=true
ca.crl.MasterCRL.enableUpdateInterval=false
ca.crl.MasterCRL.dailyUpdates=0:50,04:55,06:55

This field sets a daily time when the CRL should be updated. To specify multiple times, enter
a comma-separated list of times, such as 01:50,04:55,06:55. To enter a schedule for
multiple days, enter a comma-separated list to set the times within the same day, and then
a semicolon separated list to identify times for different days. For example, set
01:50,04:55,06:55;02:00,05:00,17:00 to configure revocation on Day 1 of the cycle at
1:50am, 4:55am, and 6:55am and then Day 2 at 2am, 5am, and 5pm.

Specify intervals by enabling the enableUpdateInterval parameter, and add the required
interval in minutes to the autoUpdateInterval parameter:

ca.crl.MasterCRL.enableDailyUpdates=false
ca.crl.MasterCRL.enableUpdateInterval=true
ca.crl.MasterCRL.autoUpdateInterval=240

5. Set the following parameters depending on your environment:

If you run a CA without an OCSP subsystem, set:

ca.crl.MasterCRL.nextUpdateGracePeriod=0

If you run a CA with an OCSP subsystem, set:

ca.crl.MasterCRL.nextUpdateGracePeriod=time_in_minutes

The ca.crl.MasterCRL.nextUpdateGracePeriod parameter defines the time in minutes,

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

221

The ca.crl.MasterCRL.nextUpdateGracePeriod parameter defines the time in minutes,
and the value must be big enough to enable the CA to propagate the new CRL to the
OCSP. You must set the parameter to a non-zero value.

If you additionally have OCSP clones in your environment, also set:

ocsp.store.defStore.refreshInSec=time_in_seconds

The ocsp.store.defStore.refreshInSec parameter sets the frequency in seconds with
which the clone OCSP instances are informed of CRL updates through LDAP replication
updates from the master OCSP instance.

See Table 14.9, “CRL Extended Interval Parameters” for details on the parameters.

6. Restart the CA server.

systemctl start pki-tomcatd-nuxwdog@instance_name.service

NOTE

Schedule drift can occur when updating CRLs by interval. Typically, drift occurs as a result
of manual updates and CA restarts.

To prevent schedule drift, set both enableDailyUpdates and enableUpdateInterval
parameters to true, and add the required values to autoUpdateInterval and
dailyUpdates:

ca.crl.MasterCRL.enableDailyUpdates=true
ca.crl.MasterCRL.enableUpdateInterval=true
ca.crl.MasterCRL.autoUpdateInterval=240
ca.crl.MasterCRL.dailyUpdates=1:00

Only one dailyUpdates value will be accepted when updating CRLs by interval.

The interval updates will resynchronize with the dailyUpdates value every 24 hours
preventing schedule drift.

14.2.3.13. Changing the Access Control Settings for the Subsystem

By default, access control rules are applied by evaluating deny rules first and then by evaluating allow
rules. To change the order, change the authz.evaluateOrder parameter in the CS.cfg.

authz.evaluateOrder=deny,allow

Additionally, access control rules can be evaluated from the local web.xml file (basic ACLs) or more
complex ACLs can be accessed by checking the LDAP database. The authz.sourceType parameter
identifies what type of authorization to use.

authz.sourceType=web.xml

NOTE

Always restart the subsystem after editing the CS.cfg file to load the updated settings.

Planning, Installation, and Deployment Guide

222

14.2.3.14. Configuring Ranges for Requests and Serial Numbers

When random serial numbers are not used, in case of cloned systems, administrators could specify the
ranges Certificate System will use for requests and serial numbers in the
/etc/pki/instance_name/subsystem/CS.cfg file:

dbs.beginRequestNumber=1001001007001
 dbs.endRequestNumber=11001001007000
 dbs.requestIncrement=10000000000000
 dbs.requestLowWaterMark=2000000000000
 dbs.requestCloneTransferNumber=10000
 dbs.requestDN=ou=ca, ou=requests
 dbs.requestRangeDN=ou=requests, ou=ranges
 dbs.beginSerialNumber=1001001007001
 dbs.endSerialNumber=11001001007000
 dbs.serialIncrement=10000000000000
 dbs.serialLowWaterMark=2000000000000
 dbs.serialCloneTransferNumber=10000
 dbs.serialDN=ou=certificateRepository, ou=ca
 dbs.serialRangeDN=ou=certificateRepository, ou=ranges
 dbs.beginReplicaNumber=1
 dbs.endReplicaNumber=100
 dbs.replicaIncrement=100
 dbs.replicaLowWaterMark=20
 dbs.replicaCloneTransferNumber=5
 dbs.replicaDN=ou=replica
 dbs.replicaRangeDN=ou=replica, ou=ranges
 dbs.ldap=internaldb
 dbs.newSchemaEntryAdded=true

NOTE

Certificate System supports BigInteger values for the ranges.

14.2.3.15. Setting Requirement for pkiconsole to use TLS Client Certificate Authentication

NOTE

pkiconsole is being deprecated.

Edit the CS.cfg file of each subsystem, search for the authType parameter and set it as follows:

authType=sslclientauth

14.3. MANAGING SYSTEM PASSWORDS

As explained in Section 2.3.10, “Passwords and Watchdog (nuxwdog)”, Certificate System uses
passwords bind to servers or to unlock tokens when the server starts.

The password.conf file stores system passwords in plain text. However, some administrators prefer to
remove the password file entirely to allow nuxwdog to prompt for manual entry of each password
initially and store for auto-restart in case of an unplanned shutdown.

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

223

When a Certificate System instance starts, the subsystem automatically checks for the password.conf
file. If the file exists, then it uses those passwords to connect to other services, such as the internal
LDAP database. If that file does not exist, then the watchdog daemon prompts for all of the passwords
required by the PKI server to start.

NOTE

If the password.conf file is present, the subsystem assumes that all the required
passwords are present and properly formatted in clear text. If any passwords are missing
or wrongly formatted, then the system fails to start correctly.

The required passwords are listed in the cms.passwordlist parameter in the CS.cfg file:

cms.passwordlist=internaldb,replicationdb,CA LDAP Publishing
cms.password.ignore.publishing.failure=true

NOTE

The cms.password.ignore.publishing.failure parameter allows a CA subsystem to start
up successfully even if it has a failed connection to one of its LDAP publishing directories.

For the CA, KRA, OCSP, and TKS subsystems, the default expected passwords are:

internal for the NSS database

internaldb for the internal LDAP database

replicationdb for the replication password

Any passwords to access external LDAP databases for publishing (CA only)

NOTE

If a publisher is configured after the password.conf file is removed, nothing is
written to the password.conf file. Unless nuxwdog is configured, the server will
not have access to the prompts for the new publishing password the next time
that the instance restarts.

Any external hardware token passwords

For the TPS, this prompts for three passwords:

internal for the NSS database

tokendbpass for the internal LDAP database

Any external hardware token passwords

This section describes the two mechanisms provided for Certificate System to retrieve these passwords:

password.conf file (the default)

nuxwdog (watchdog)

Planning, Installation, and Deployment Guide

224

14.3.1. Configuring the password.conf File

NOTE

This section is here for reference only. Correct and secure operation must involve using
the nuxwdog watchdog. Please refer to Section 14.3.2, “Using the Certificate System
Watchdog Service” to enable nuxwdog, as it is required for full compliance.

By default, passwords are stored in a plain text file, password.conf, in the subsystem conf/ directory.
Therefore, it is possible to modify them simply through a text editor.

The list of passwords stored in this file includes the following:

The bind password used by the Certificate System instance to access and update the internal
database.

The password to the HSM

The bind password used by the Certificate System instance to access the authentication
directory, in case of CMC Shared Token.

The bind password used by the subsystem to access and update the LDAP publishing directory;
this is required only if the Certificate System instance is configured for publishing certificates
and CRLs to an LDAP-compliant directory.

the bind password used by the subsystem to access its replication database.

For a TPS instance, the bind password used to access and update the token database.

The password.conf file also contains the token passwords needed to open the private keys of the
subsystem.

The name and location password file to use for the subsystem is configured in the CS.cfg file:

passwordFile=/var/lib/pki/instance_name/conf/password.conf

The internal password store and replication database have randomly-generated PINs which were set
when the subsystem was installed and configured; the internal LDAP database password was defined by
the administrator when the instance was configured.

The password entries in the password.conf file are in the following format:

name=password

For example:

internal=413691159497

In cases where an HSM token is required, use the following format:

hardware-name=password

For example:

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

225

hardware-NHSM-CONN-XC=MyHSM$S8cret

Example content of a password.conf file:

internal=376577078151
internaldb=secret12
replicationdb=1535106826
hardware-NHSM-CONN-XC=MyHSM$S8cret

14.3.2. Using the Certificate System Watchdog Service

In Certificate System, the watchdog service is used to start services which require passwords to access
the security database in order to start. In case there is a requirement not to store the unencrypted
passwords on the system, the watchdog service:

prompts for the relevant passwords during server startup and caches them.

uses cached passwords in case of a failure when the server is automatically restarted due to a
crash.

14.3.2.1. Enabling the Watchdog Service

To enable the watchdog service:

1. If you also want to use the Shared Secret feature on this host, enable the Shared Secret feature
as described in Section 14.8.3, “Enabling the CMC Shared Secret Feature” .

2. Backup the server.xml and password.conf files from the /var/lib/pki/instance_name/conf/
directory. For example:

cp -p /var/lib/pki/instance_name/conf/server.xml /root/
cp -p /var/lib/pki/instance_name/conf/password.conf /root/

3. Stop and disable the Certificate System instance's service:

systemctl stop pki-tomcatd@instance_name.service
systemctl disable pki-tomcatd@instance_name.service

4. If you use a Hardware Security Module (HSM), enable the watchdog service to prompt for the
password of the hardware token:

a. Display the name of the hardware token:

egrep "^hardware-" /var/lib/pki/instance_name/conf/password.conf
hardware-HSM_token_name=password

The highlighted string in the previous example is the hardware token name.

b. Add the cms.tokenList parameter to the /var/lib/pki/instance_name/conf/ca/CS.cfg file
and set it to the name of the hardware token. For example:

cms.tokenList=HMS_token_name

Planning, Installation, and Deployment Guide

226

5. Enable the watchdog configuration for the instance:

pki-server instance-nuxwdog-enable instance_name

Alternatively, enable the watchdog for all instances:

pki-server nuxwdog-enable

For further details, see the pki-server-nuxwdog(8) man page.

6. By default, nuxwdog starts the server as the user configured in the TOMCAT_USER variable in
the /etc/sysconfig/pki-tomcat file. Optionally, to modify the user and group:

a. Copy the watchdog systemd unit file of the instance to the /etc/systemd/system/
directory:

cp -p /usr/lib/systemd/system/instance_name-nuxwdog@.service /etc/systemd/system/

NOTE

Unit files in the /etc/systemd/system/ directory have a higher priority and
are not replaced during updates.

b. Add the following entries to the [Service] section in the
/etc/pki/instance_name/nuxwdog.conf file:

User new_user_name

c. Reload the systemd configuration:

systemctl daemon-reload

7. Enable the Certificate System service that uses the watchdog:

systemctl enable pki-tomcatd-nuxwdog@instance_name.service

8. Optionally: See Section 14.3.2.3, “Verifying That the Certificate System Watchdog Service is
Enabled”.

9. To start the Certificate System instance, run the following command and enter the prompted
passwords:

systemctl start pki-tomcatd-nuxwdog@instance_name.service

14.3.2.2. Starting and Stopping Certificate System with the Watchdog Enabled

For information how to manage a Certificate System instance refer to Section 2.2.3, “Execution
Management (systemctl)”.

14.3.2.3. Verifying That the Certificate System Watchdog Service is Enabled

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

227

To verify that the watchdog service is enabled:

1. Verify that the pki-tomcatd-nuxwdog service is enabled:

systemctl is-enabled pki-tomcatd-nuxwdog@instance_name.service
enabled

2. Verify that the pki-tomcatd service is disabled:

systemctl is-disabled pki-tomcatd@instance_name.service
disabled

3. In the /etc/pki/instance_name/server.xml file:

a. verify that the passwordFile parameter refers to the CS.cfg file. For example:

passwordFile="/var/lib/pki/instance_name/ca/CS.cfg"

b. verify that the passwordClass parameter is set to
com.netscape.cms.tomcat.NuxwdogPasswordStore:

passwordClass="com.netscape.cms.tomcat.NuxwdogPasswordStore"

14.3.2.4. Disabling the Watchdog Service

To disable the watchdog service:

1. Stop and disable the Certificate System instance's service that uses the watchdog:

systemctl stop pki-tomcatd-nuxwdog@instance_name.service
systemctl disable pki-tomcatd-nuxwdog@instance_name.service

2. Enable the regular service without watch dog for the instance:

pki-server instance-nuxwdog-disable instance_name

3. Disable the watchdog configuration for the instance:

systemctl enable pki-tomcatd@instance_name.service

For further details, see the pki-server-nuxwdog(8) man page.

4. Restore the password.conf file to its original location. For example:

cp /root/password.conf.bak /var/lib/pki/instance_name/conf/password.conf

5. Start the Certificate System instance:

systemctl start pki-tomcatd@instance_name.service

14.4. CONFIGURATION FILES FOR THE TOMCAT ENGINE AND WEB

Planning, Installation, and Deployment Guide

228

14.4. CONFIGURATION FILES FOR THE TOMCAT ENGINE AND WEB
SERVICES

All of the user and administrative (administrators, agents, and auditors) services for the subsystems are
accessed over web protocols.

This section discusses the two major sets of configuration files that apply to all Red Hat
Certificate System subsystems (CA, KRA, OCSP, TKS, and TPS):

/var/lib/pki/instance_name/conf/server.xml provides the configuration for the Tomcat engine.

/usr/share/pki/subsystem_type/webapps/WEB-INF/web.xml provides the configuration for
the web services offered by this instance.

14.4.1. Tomcatjss

NOTE

The later subsections include important configuration information on required changes to
parameter values. Ensure they are followed for strict compliance.

The following configuration in the server.xml file found in the example pki-tomcat/conf directory can
be used to explain how Tomcatjss fits into the entire Certificate System ecosystem. Portions of the
Connector entry for the secret port are shown below.

<Connector name="Secure"

Info about the socket itself
port="8443"
protocol="org.apache.coyote.http11.Http11Protocol"
SSLEnabled="true"
sslProtocol="SSL"
scheme="https"
secure="true"
connectionTimeout="80000"
maxHttpHeaderSize="8192"
acceptCount="100" maxThreads="150" minSpareThreads="25"
enableLookups="false" disableUploadTimeout="true"
Points to our tomcat jss implementation
sslImplementationName="org.apache.tomcat.util.net.jss.JSSImplementation"

OCSP responder configuration can be enabled here
enableOCSP="true"
ocspCacheSize="1000"
ocspMinCacheEntryDuration="60"
ocspMaxCacheEntryDuration="120"
ocspTimeout="10"

A collection of cipher related settings that make sure connections are secure.
strictCiphers="true"
The "clientAuth" parameter configures the client authentication scheme
for this server socket. If you set "clientAuth" to "want", the client
authentication certificate is optional. Alternatively, set the
parameter to "required" to configure that the certificate is is mandatory.

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

229

clientAuth="want"
sslVersionRangeStream="tls1_1:tls1_2"
sslVersionRangeDatagram="tls1_1:tls1_2"
sslRangeCiphers="+TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,+TLS_ECDHE_RSA_WITH_AES
_256_CBC_SHA,+TLS_DHE_RSA_WITH_AES_128_CBC_SHA,+TLS_DHE_RSA_WITH_AES_256_
CBC_SHA,+TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,+TLS_DHE_RSA_WITH_AES_256_CB
C_SHA256,+TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,+TLS_ECDHE_RSA_WITH_AES_2
56_CBC_SHA384,+TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,+TLS_ECDHE_RSA_WITH_AE
S_128_GCM_SHA256,+TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,+TLS_ECDHE_RSA_WITH
_AES_256_GCM_SHA384
serverCertNickFile="/var/lib/pki/pki-tomcat/conf/serverCertNick.conf"
passwordFile="/var/lib/pki/pki-tomcat/conf/password.conf"
passwordClass="org.apache.tomcat.util.net.jss.PlainPasswordFile"
certdbDir="/var/lib/pki/pki-tomcat/alias"

/>

In the server.xml configuration file for the Tomcat engine, there is this Connector configuration
element that contains the pointer to the tomcatjss implementation, which can be plugged into the
sslImplementation property of this Connector object.

Each key parameter element is explained in the subsections below.

14.4.1.1. TLS Cipher Configuration

The TLS ciphers configured in the server.xml file provide system-wide defaults when Red Hat
Certificate system is acting as a client and as a server. This includes when acting as a server (for example,
when serving HTTPS connections from Tomcat) and as a client (for example, when communicating with
the LDAP server or when communicating with another Certificate System instance).

The configuration for server TLS ciphers is in the Red Hat Certificate System instance-specific
/var/lib/pki/instance_name/conf/server.xml file. The following parameters control the ciphers offered:

strictCiphers, when set to true, ensures that only ciphers with a + sign in the sslRangeCiphers
are enabled.

strictCiphers="true"

Do not change the default value (true).

sslVersionRangeStream and sslVersionRangeDatagram sets the TLS version the server
supports. The following are the defaults of the parameters:

sslVersionRangeStream="tls1_1:tls1_2"
sslVersionRangeDatagram="tls1_1:tls1_2"

Do not change the default value of the parameters.

sslRangeCiphers sets which ciphers are enabled and disabled. Ciphers with a + sign are
enabled, ciphers with a - sign disabled.

Set RSA ciphers as below:

sslRangeCiphers="+TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,+TLS_ECDHE_RSA_WI
TH_AES_256_CBC_SHA,+TLS_DHE_RSA_WITH_AES_128_CBC_SHA,+TLS_DHE_RSA_W

Planning, Installation, and Deployment Guide

230

ITH_AES_256_CBC_SHA,+TLS_DHE_RSA_WITH_AES_128_CBC_SHA256,+TLS_DHE_RS
A_WITH_AES_256_CBC_SHA256,+TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256,+TL
S_ECDHE_RSA_WITH_AES_256_CBC_SHA384,+TLS_DHE_RSA_WITH_AES_128_GCM_
SHA256,+TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,+TLS_DHE_RSA_WITH_AES
_256_GCM_SHA384,+TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

Set EC ciphers as below:

sslRangeCiphers="+TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,+TLS_ECDHE_ECD
SA_WITH_AES_128_CBC_SHA,+TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256,+T
LS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,+TLS_ECDHE_ECDSA_WITH_AES_1
28_GCM_SHA256,+TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,+TLS_ECDHE_E
CDSA_WITH_AES_256_GCM_SHA384

For a list of allowed ciphers, see Section 3.1, “TLS, ECC, and RSA” .

If you install Certificate System with either LunaSA or nCipher Hardware Security Module
(HSM) on systems with FIPS mode enabled for RSA, disable the following ciphers, as they are
unsupported on HSMs in FIPS mode:

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

14.4.1.1.1. Client TLS cipher Configuration

The Red Hat Certificate System also allows for cipher configuration on a system when it is acting as a
client to another CS system.

Ciphers in a list are separated by commas.

On CA (for the communication of the CA with the KRA):

ca.connector.KRA.clientCiphers=your selected cipher list

For example:

ca.connector.KRA.clientCiphers=TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_
CBC_SHA

On TPS (for communication with the CA, the KRA and the TKS):

tps.connector.ca id.clientCiphers=your selected cipher list
tps.connector.kra id.clientCiphers=your selected cipher list
tps.connector.tks id.clientCiphers=your selected cipher list

For example:

tps.connector.ca1.clientCiphers=TLS_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_
CBC_SHA

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

231

14.4.1.2. Enabling Automatic Revocation Checking on the CA

The CA can be configured to check the revocation status of any certificate (including agent,
administrator, and enrollment) the server receives during authentication of an SSL/TLS client. This
means that when the CA receives any client authentication request, it automatically checks an OCSP.
(For information about setting up an OCSP responder, see Using the Online Certificate Status Protocol
(OCSP) Responder in the Red Hat Certificate System Administration Guide.)

As part of revocation checking, the CA has the ability to cache client authentication so that it keeps a
list of verified certificates. This allows the CA to check its cached results before checking its internal
database or an OCSP, which improves the overall operation performance. Automatic revocation
checking is enabled in the revocationChecking.enabled parameter.

The revocation status results are only valid for a certain, specified period of time
(revocationChecking.validityInterval). If the CA has no way to re-verify a certificate status that is in
cache, then there is a grace interval (revocationChecking.unknownStateInterval) where the
previously-cached status is still considered valid, even if it is outside the validity interval.

NOTE

The cached certificates are kept in a buffer (revocationChecking.bufferSize). If the
buffer setting is missing or is set to zero, then no buffer is kept, which means that the
results of revocation checks are not cached. In that case, all revocation checks are
performed directly against the CA's internal database.

NOTE

The subsystem CS.cfg configuration file includes a parameter, jss.ocspcheck.enable,
which sets whether a Certificate Manager should use an OCSP to verify the revocation
status of the certificate it receives as a part of SSL/TLS client or server authentication.
Changing the value of this parameter to true means the Certificate Manager reads the
Authority Information Access extension in the certificate and verifies the revocation
status of the certificate from the OCSP responder specified in the extension.

1. Stop the subsystem instance.

pki-server stop instance_name

2. Open the CS.cfg file.

vim /var/lib/pki/instance-name/ca/conf/CS.cfg

3. Edit the revocation-related parameters.

auths.revocationChecking.bufferSize=50
auths.revocationChecking.ca=ca
auths.revocationChecking.enabled=true
auths.revocationChecking.unknownStateInterval=0
auths.revocationChecking.validityInterval=120

revocationChecking.ca. Sets which service is providing the OCSP respsonse, a CA or an
OCSP responder.

Planning, Installation, and Deployment Guide

232

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/index#Online_Certificate_Status_Protocol_Responder

revocationChecking.enabled. Sets revocation checking. true enables checking; false
disables checking. By default, the feature is enabled.

revocationChecking.bufferSize. Sets the total number of last-checked certificates the
server should maintain in its cache. For example, if the buffer size is 2, the server retains the
last two certificates checked in its cache. By default, the server caches the last 50
certificates.

revocationChecking.unknownStateInterval. Sets how frequently the server checks the
revocation status. The default interval is 0 seconds. unknownStateInterval is a grace period
in which cache result will be assumed to be true if CA has no means (no access to
information allowing) to verify certificate status

revocationChecking.validityInterval. Sets how long the cached certificates are considered
valid. Be judicious when choosing the interval. For example, if the validity period is 60
seconds, the server discards the certificates in its cache every minute and attempts to
retrieve them from their source. The Certificate Manager uses its internal database to
retrieve and verify the revocation status of the certificates. The default validity period is 120
seconds (2 minutes).

4. Start the Certificate System instance.

pki-server start instance_name

14.4.1.3. Enabling Certificate Revocation Checking for Subsystems

The Certificate System subsystems do not have OCSP checking enabled, by default, to validate
subsystem certificates. This means it is possible for someone to log into the administrative or agent
interfaces with a revoked certificate.

OCSP checking can be enabled for all subsystems by editing the server.xml file. The agent interface
and the admin interface are configured separately, so both sections in the configuration should be
edited.

NOTE

If the subsystem has been configured to use an SSL/TLS connection with its internal
database, then the SSL/TLS server certificate of the LDAP internal database must be
recognized by the OCSP responder. If the OCSP responder does not recognize the LDAP
server certificate, then the subsystem will not start properly. This configuration is covered
in the Red Hat Certificate System 10 Planning, Installation, and Deployment Guide , since
subsystem-LDAP SSL/TLS server connections are configured as part of the subsystem
setup.

1. Get the name of the OCSP signing certificate for the OCSP or CA which will be used to check
certificate status. For example:

certutil -L -d /etc/pki/instance-name/alias
Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI
Certificate Authority - Example Domain CT,c,
ocspSigningCert cert-pki-ocsp CTu,Cu,Cu

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

233

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/10/html/Planning_Installation_and_Deployment_Guide/index.html

subsystemCert cert-pki-ocsp u,u,u
Server-Cert cert-pki-ocsp u,u,u
auditSigningCert cert-pki-ocsp u,u,Pu

2. Open the server.xml file for the subsystem. For example:

vim /etc/pki/instance-name/server.xml

3. If the OCSP signing certificate is not present in the instance's security database, import it:

certutil -d /etc/pki/instance-name/alias -A -n "ocspSigningCert cert-pki-ca" -t "C,," -a -i
ocspCert.b64

4. There are three critical parameters to enable OCSP checking:

enableOCSP, which must be set to true to enable OCSP checking.

This is a global setting; if it is set for one interface, then it applies to every interface for the
instance. However, it must be set on the first interface listed in the server.xml file, which is
usually the agent interface. Any setting on another interface is ignored.

ocspResponderURL, which gives the URL of the OCSP responder to send the OCSP
requests.

For an OCSP Manager, this can be another OCSP service in another OCSP or in a CA. For
other subsystems, this always points to an external OCSP service in an OCSP or a CA.

ocspResponderCertNickname, which gives the signing certificate to use to sign the
response; for a CA OCSP service, this is the CA's OCSP signing certificate, and for an OCSP
responder, it is an OCSP signing certificate.

Other parameters can be used to define the OCSP communication. All of the OCSP checking
parameters are listed in Table 14.10, “OCSP Parameters for server.xml” .

There are two different sections in the file for the agent and administrator interfaces. The
OCSP parameters need to be added to both sections to enable and configure OCSP checking.
For example:

Example 14.3. OCSP Settings for an Agent Interface

<Connector name="Agent" port="8443" maxHttpHeaderSize="8192"
 maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
 enableLookups="false" disableUploadTimeout="true"
 acceptCount="100" scheme="https" secure="true"
 clientAuth="true" sslProtocol="SSL"
 sslOptions="ssl2=true,ssl3=true,tls=true"

 ssl3Ciphers="-SSL3_FORTEZZA_DMS_WITH_NULL_SHA, ..."

 tls3Ciphers="-SSL3_FORTEZZA_DMS_WITH_NULL_SHA, ..."
 SSLImplementation="org.apache.tomcat.util.net.jss.JSSImplementation"
 enableOCSP="true"
 ocspResponderURL="http://server.example.com:8443/ca/ocsp"
 ocspResponderCertNickname="ocspSigningCert cert-pki-ca 102409a"
 ocspCacheSize="1000"

Planning, Installation, and Deployment Guide

234

 ocspMinCacheEntryDuration="60"
 ocspMaxCacheEntryDuration="120"
 ocspTimeout="10"
 debug="true"
 serverCertNickFile="/etc/pki/instance-name/serverCertNick.conf"
 passwordFile="/etc/pki/instance-name/password.conf"
 passwordClass="org.apache.tomcat.util.net.jss.PlainPasswordFile"
 certdbDir="/etc/pki/instance-name/alias"/>

5. If the given OCSP service is not the CA, then the OCSP service's signing certificate must be
imported into the subsystem's NSS database. This can be done in the console or using certutil;
both options are covered in Installing Certificates in the Certificate System Database in the
Red Hat Certificate System Administration Guide.

6. Restart the subsystem.

pki-server restart instance_name

Table 14.10. OCSP Parameters for server.xml

Parameter Description

enableOCSP Enables (or disables) OCSP checking for the
subsystem.

ocspResponderURL Sets the URL where the OCSP requests are sent.
For an OCSP Manager, this can be another OCSP
service in another OCSP or in a CA. For a TKS or
KRA, this always points to an external OCSP service
in an OCSP or a CA.

ocspResponderCertNickname Sets the nickname of the signing certificate for the
responder, either the OCSP signing certificate or the
CA's OCSP signing certificate. The certificate must
be imported into the subsystem's NSS database and
have the appropriate trust settings set.

ocspCacheSize Sets the maximum number of cache entries.

ocspMinCacheEntryDuration Sets minimum seconds before another fetch attempt
can be made. For example, if this is set to 120, then
the validity of a certificate cannot be checked again
until at least 2 minutes after the last validity check.

ocspMaxCacheEntryDuration Sets the maximum number of seconds to wait before
making the next fetch attempt. This prevents having
too large a window between validity checks.

ocspTimeout Sets the timeout period, in seconds, for the OCSP
request.

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

235

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/index#Installing_Certificates_in_the_Certificate_System_Database

14.4.1.4. Adding an AIA Extension to an Enrollment Profile

To set the AIA URL in the profile when using an external OCSP, add the correct URL to the certificate
profile. For example:

policyset.cmcUserCertSet.5.default.params.authInfoAccessADLocation_0=http://example.com:8080/
ocsp/ee/ocsp

14.4.2. Session Timeout

When a user connects to PKI server through a client application, the server will create a session to keep
track of the user. As long as the user remains active, the user can execute multiple operations over the
same session without having to re-authenticate.

Session timeout determines how long the server will wait since the last operation before terminating the
session due to inactivity. Once the session is terminated, the user will be required to re-authenticate to
continue accessing the server, and the server will create a new session.

There are two types of timeouts:

TLS session timeout

HTTP session timeout

Due to differences in the way clients work, the clients will be affected differently by these timeouts.

NOTE

Certain clients have their own timeout configuration. For example, Firefox has a keep-
alive timeout setting. For details, see http://kb.mozillazine.org/Network.http.keep-
alive.timeout. If the value is different from the server's setting for TLS Session Timeout or
HTTP Session Timeout, different behavior can be observed.

14.4.2.1. TLS Session Timeout

A TLS session is a secure communication channel over a TLS connection established through TLS
handshake protocol.

PKI server generates audit events for TLS session activities. The server generates an
ACCESS_SESSION_ESTABLISH audit event with Outcome=Success when the connection is created.
If the connection fails to be created, the server will generate an ACCESS_SESSION_ESTABLISH audit
event with Outcome=Failure. When the connection is closed, the server will generate an
ACCESS_SESSION_TERMINATED audit event.

TLS session timeout (that is TLS connection timeout) is configured in the keepAliveTimeout parameter
in the Secure <Connector> element in the /etc/pki/<instance>/server.xml file:

...
<Server>
 <Service>
 <Connector name="Secure"
 ...
 keepAliveTimeout="300000"
 ...
 />

Planning, Installation, and Deployment Guide

236

http://kb.mozillazine.org/Network.http.keep-alive.timeout

 </Service>
</Server>
...

By default the timeout value is set to 300000 milliseconds (that is 5 minutes). To change this value, edit
the /etc/pki/<instance>/server.xml file and then restart the server.

NOTE

Note that this value will affect all TLS connections to the server. A large value may
improve the efficiency of the clients since they can reuse existing connections that have
not expired. However, it may also increase the number of connections that the server has
to support simultaneously since it takes longer for abandoned connections to expire.

14.4.2.2. HTTP Session Timeout

An HTTP session is a mechanism to track a user across multiple HTTP requests using HTTP cookies. PKI
server does not generate audit events for the HTTP sessions.

NOTE

For the purpose of auditing consistency, set the <session-timeout> value in this section
to match the keepAliveTimeout value in Section 14.4.2.1, “TLS Session Timeout”. For
example if keepAliveTimeout was set to 300000 (5 minutes), then set <session-
timeout> to 30.

The HTTP session timeout can be configured in the <session-timeout> element in the
/etc/pki/<instance>/web.xml file:

...
<web-app>
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>
</web-app>
...

By default the timeout value is set to 30 minutes. To change the value, edit the
/etc/pki/<instance>/web.xml file and then restart the server.

NOTE

Note that this value affects all sessions in all web applications on the server. A large value
may improve the experience of the users since they will not be required to re-
authenticate or view the access banner again so often. However, it may also increase the
security risk since it takes longer for abandoned HTTP sessions to expire.

14.4.2.3. Session Timeout for PKI Web UI

PKI Web UI is an interactive web-based client that runs in a browser. Currently it only supports client
certificate authentication.

When the Web UI is opened, the browser may create multiple TLS connections to a server. These

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

237

When the Web UI is opened, the browser may create multiple TLS connections to a server. These
connections are associated to a single HTTP session.

To configure a timeout for the Web UI, see Section 14.4.2.2, “HTTP Session Timeout” . The TLS session
timeout is normally irrelevant since the browser caches the client certificate so it can recreate the TLS
session automatically.

When the HTTP session expires, the Web UI does not provide any immediate indication. However, the
Web UI will display an access banner (if enabled) before a user executes an operation.

14.4.2.4. Session Timeout for PKI Console

PKI Console is an interactive standalone graphical UI client. It supports username/password and client
certificate authentication.

When the console is started, it will create a single TLS connection to the server. The console will display
an access banner (if enabled) before opening the graphical interface. Unlike the Web UI, the console
does not maintain an HTTP session with the server.

To configure a timeout for the console, see Section 14.4.2.1, “TLS Session Timeout”. The HTTP session
timeout is irrelevant since the console does not use HTTP session.

When the TLS session expires, the TLS connection will close, and the console will exit immediately to the
system. If the user wants to continue, the user will need to restart the console.

14.4.2.5. Session Timeout for PKI CLI

PKI CLI is a command-line client that executes a series of operations. It supports username/password
and client certificate authentication.

When the CLI is started, it will create a single TLS connection to the server and an HTTP session. The
CLI will display an access banner (if enabled) before executing operations.

Both timeouts are generally irrelevant to PKI CLI since the operations are executed in sequence without
delay and the CLI exits immediately upon completion. However, if the CLI waits for user inputs, is slow,
or becomes unresponsive, the TLS session or the HTTP session may expire and the remaining
operations fail. If such delay is expected, see Section 14.4.2.1, “TLS Session Timeout” and
Section 14.4.2.2, “HTTP Session Timeout” to accommodate the expected delay.

14.5. WEB.XML

14.5.1. Removing Unused Interfaces from web.xml (CA Only)

Several legacy interfaces (for features like bulk issuance or the policy framework) are still included in the
CA's web.xml file. However, since these features are deprecated and no longer in use, then they can be
removed from the CA configuration to increase security.

1. Stop the CA.

pki-server stop instance_name

OR (if using nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

Planning, Installation, and Deployment Guide

238

2. Open the web files directory for the CA. For example:

cd /var/lib/pki/instance_name/ca/webapps/ca/WEB-INF

3. Back up the current web.xml file.

cp web.xml web.xml.servlets

4. Edit the web.xml file and remove the entire <servlet> entries for each of the following
deprecated servlets:

caadminEnroll

cabulkissuance

cacertbasedenrollment

caenrollment

caProxyBulkIssuance

For example, remove the caadminEnroll servlet entry:

5. After removing the servlet entries, remove the corresponding <servlet-mapping> entries.

<servlet>
 <servlet-name> caadminEnroll </servlet-name>
 <servlet-class> com.netscape.cms.servlet.cert.EnrollServlet
</servlet-class>
 <init-param><param-name> GetClientCert </param-name>
 <param-value> false </param-value> </init-param>
 <init-param><param-name> successTemplate </param-name>
 <param-value> /admin/ca/EnrollSuccess.template
</param-value> </init-param>
 <init-param><param-name> AuthzMgr </param-name>
 <param-value> BasicAclAuthz </param-value>
</init-param>
 <init-param><param-name> authority </param-name>
 <param-value> ca </param-value> </init-param>
 <init-param><param-name> interface </param-name>
 <param-value> admin </param-value>
</init-param>
 <init-param><param-name> ID </param-name>
 <param-value> caadminEnroll </param-value>
</init-param>
 <init-param><param-name> resourceID </param-name>
 <param-value> certServer.admin.request.enrollment
</param-value> </init-param>
 <init-param><param-name> AuthMgr </param-name>
 <param-value> passwdUserDBAuthMgr </param-value>
</init-param>
 </servlet>

<servlet-mapping>
 <servlet-name> caadminEnroll </servlet-name>

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

239

6. Remove three <filter-mapping> entries for an end-entity request interface.

7. Start the CA again.

pki-server start instance_name

OR (if using nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@instance_name.service

14.6. CUSTOMIZING WEB SERVICES

All of the subsystems (with the exception of the TKS) have some kind of a web-based services page for
agents and some for other roles, like administrators or end entities. These web-based services pages
use basic HTML and JavaScript, which can be customized to use different colors, logos, and other
design elements to fit in with an existing site or intranet.

14.6.1. Customizing Subsystem Web Applications

Each PKI subsystem has a corresponding web application, which contains:

HTML pages containing texts, JavaScript codes, page layout, CSS formatting, and so on

A web.xml file, which defines servlets, paths, security constraints, and other

Links to PKI libraries.

The subsystem web applications are deployed using context files located in the /var/lib/pki/pki-
tomcat/conf/Catalina/localhost/ direcotry, for example, the ca.xml file:

<Context docBase="/usr/share/pki/ca/webapps/ca" crossContext="true" allowLinking="true">
 ...
</Context>

The docBase points to the location of the default web application directory, /usr/share/pki/.

 <url-pattern> /admin/ca/adminEnroll </url-pattern>
</servlet-mapping>

 <filter-mapping>
 <filter-name> EERequestFilter </filter-name>
 <url-pattern> /certbasedenrollment </url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name> EERequestFilter </filter-name>
 <url-pattern> /enrollment </url-pattern>
 </filter-mapping>

 <filter-mapping>
 <filter-name> EERequestFilter </filter-name>
 <url-pattern> /profileSubmit </url-pattern>
 </filter-mapping>

Planning, Installation, and Deployment Guide

240

To customize the web application, copy the web application directory into the instance's webapps
directory:

$ cp -r /usr/share/pki/ca/webapps/ca /var/lib/pki/pki-tomcat/webapps

Then change the docBase to point to the custom web application directory relative from the webapps
directory:

<Context docBase="ca" crossContext="true" allowLinking="true">
 ...
</Context>

The change will be effective immediately without the need to restart the server.

To remove the custom web application, simply revert the docBase and delete the custom web
application directory:

$ rm -rf /var/lib/pki/pki-tomcat/webapps/ca

14.6.2. Customizing the Web UI Theme

The subsystem web applications in the same instance share the same theme, which contains:

CSS files, which determine the global appearance

Image files including logo, icons, and other

Branding properties, which determine the page title, logo link, title color, and other.

The Web UI theme is deployed using the pki.xml context file in the /var/lib/pki/pki-
tomcat/conf/Catalina/localhost/ directory:

<Context docBase="/usr/share/pki/common-ui" crossContext="true" allowLinking="true">
 ...
</Context>

The docBase points to the location of the default theme directory, /usr/share/pki/.

To customize the theme, copy the default theme directory into the pki directory in the instance's
webapps directory:

$ cp -r /usr/share/pki/common-ui /var/lib/pki/pki-tomcat/webapps/pki

Then change the docBase to point to the custom theme directory relative from the webapps directory:

<Context docBase="pki" crossContext="true" allowLinking="true">
 ...
</Context>

The change will be effective immediately without the need to restart the server.

To remove the custom theme, simply revert the docBase and delete the custom theme directory:

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

241

$ rm -rf /var/lib/pki/pki-tomcat/webapps/pki

14.6.3. Customizing TPS Token State Labels

The default token state labels are stored in the /usr/share/pki/tps/conf/token-states.properties file
and described in Section 2.5.2.4.1.4, “Token State and Transition Labels” .

To customize the labels, copy the file into the instance directory:

$ cp /usr/share/pki/tps/conf/token-states.properties /var/lib/pki/pki-tomcat/tps/conf

The change will be effective immediately without the need to restart the server.

To remove the customized labels, simply delete the customized file:

$ rm /var/lib/pki/pki-tomcat/tps/conf/token-states.properties

14.7. USING AN ACCESS BANNER

In Certificate System, Administrators can configure a banner with customizable text. The banner will be
displayed in the following situations:

Application When the banner is displayed

PKI Console
Before the console is displayed.

After the session has expired. [a]

Web interface
When you connect to the web interface.

After the session expired.[a]

pki command-line utility
Before the actual operation proceeds.

[a] For details about changing the session timeout, see Section 14.4.2, “Session Timeout”.

You can use the banner to display important information to the users before they can use
Certificate System. The user must agree to the displayed text to continue.

Example 14.4. When the Access Banner is Displayed

The following example shows when the access banner is displayed if you are using the pki utility:

$ pki cert-show 0x1
WARNING! Access to this service is restricted to those individuals with specific permissions. If you
are not an authorized user, disconnect now. Any attempts to gain unauthorized access will be

Planning, Installation, and Deployment Guide

242

prosecuted to the fullest extent of the law. Do you want to proceed (y/N)? y

Certificate "0x1"

 Serial Number: 0x1
 Issuer: CN=CA Signing Certificate,OU=instance_name,O=EXAMPLE
 Subject: CN=CA Signing Certificate,OU=instance_name,O=EXAMPLE
 Status: VALID
 Not Before: Mon Feb 20 18:21:03 CET 2017
 Not After: Fri Feb 20 18:21:03 CET 2037

14.7.1. Enabling an Access Banner

To enable the access banner, create the /etc/pki/instance_name/banner.txt file and enter the text to
displayed.

IMPORTANT

The text in the /etc/pki/instance_name/banner.txt file must use the UTF-8 format. To
validate, see Section 14.7.4, “Validating the Banner”.

14.7.2. Disabling an Access Banner

To disable the access banner, either delete or rename the /etc/pki/instance_name/banner.txt file. For
example:

mv /etc/pki/instance_name/banner.txt /etc/pki/instance_name/banner.txt.UNUSED

14.7.3. Displaying the Banner

To display the currently configured banner:

pki-server banner-show -i instance_name

14.7.4. Validating the Banner

To validate that the banner does not contain invalid characters:

pki-server banner-validate -i instance_name

Banner is valid

14.8. CONFIGURATION FOR CMC

This section describes how to configure Certificate System for Certificate Management over CMS
(CMC).

14.8.1. Understanding How CMC Works

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

243

Before configuring CMC, read the following documentation to learn more about the subject:

Section 2.4.1.1.2.2, “Enrolling with CMC”

Issuing Certificates Using CMC in the Red Hat Certificate System Administration Guide.

Making Rules for Issuing Certificates (Certificate Profiles) in the Red Hat Certificate System
Administration Guide.

14.8.2. Enabling the PopLinkWittnessV2 Feature

For a high-level security on the Certificate Authority (CA), enable the following option in the
/var/lib/pki/instance_name/ca/conf/CS.cfg file:

cmc.popLinkWitnessRequired=true

14.8.3. Enabling the CMC Shared Secret Feature

To enable the shared token feature in a Certificate Authority (CA):

1. If the watchdog service is enabled on the host, temporarily disable it. See Section 14.3.2.4,
“Disabling the Watchdog Service”.

2. Add the shrTok attribute to Directory Server's schema:

ldapmodify -D "cn=Directory Manager" -H ldaps://server.example.com:636 -W -x

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (2.16.840.1.117370.3.1.123 NAME 'shrTok' DESC 'User
 Defined ObjectClass for SharedToken' SYNTAX 1.3.6.1.4.1.1466.115.121.1.40
 SINGLE-VALUE X-ORIGIN 'custom for sharedToken')

3. If the system keys are stored on a Hardware Security Module (HSM), set the cmc.token
parameter in the /var/lib/pki/instance_name/ca/conf/CS.cfg file. For example:

cmc.token=NHSM-CONN-XC

4. Enable the shared token authentication plug-in by using one of the following methods:

NOTE

pkiconsole is being deprecated.

To enable the plug-in using the pkiconsole utility:

1. Log into the system using the pkiconsole utility. For example:

pkiconsole https:host.example.com:8443/ca

2. On the Configuration tab, select Authentication.

Planning, Installation, and Deployment Guide

244

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/index#issuing_certificates_using_cmc
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/index#Certificate_Profiles

3. Click Add and select SharedToken.

4. Click Next.

5. Enter the following information:

Authentication InstanceID=SharedToken
shrTokAttr=shrTok
ldap.ldapconn.host=server.example.com
ldap.ldapconn.port=636
ldap.ldapconn.secureConn=true
ldap.ldapauth.bindDN=cn=Directory Manager
password=password
ldap.ldapauth.authtype=BasicAuth
ldap.basedn=ou=People,dc=example,dc=org

6. Click OK.

To manually enable the plug-in, add the following settings into the
/var/lib/pki/instance_name/ca/conf/CS.cfg file:

auths.impl.SharedToken.class=com.netscape.cms.authentication.SharedSecret
auths.instance.SharedToken.dnpattern=
auths.instance.SharedToken.ldap.basedn=ou=People,dc=example,dc=org
auths.instance.SharedToken.ldap.ldapauth.authtype=BasicAuth
auths.instance.SharedToken.ldap.ldapauth.bindDN=cn=Directory Manager
auths.instance.SharedToken.ldap.ldapauth.bindPWPrompt=Rule SharedToken
auths.instance.SharedToken.ldap.ldapauth.clientCertNickname=
auths.instance.SharedToken.ldap.ldapconn.host=server.example.com
auths.instance.SharedToken.ldap.ldapconn.port=636
auths.instance.SharedToken.ldap.ldapconn.secureConn=true
auths.instance.SharedToken.ldap.ldapconn.version=3
auths.instance.SharedToken.ldap.maxConns=
auths.instance.SharedToken.ldap.minConns=
auths.instance.SharedToken.ldapByteAttributes=
auths.instance.SharedToken.ldapStringAttributes=
auths.instance.SharedToken.pluginName=SharedToken
auths.instance.SharedToken.shrTokAttr=shrTok

5. Set the nickname of an RSA issuance protection certificate in the
ca.cert.issuance_protection.nickname parameter in the
/var/lib/pki/instance_name/ca/conf/CS.cfg file. For example:

ca.cert.issuance_protection.nickname=issuance_protection_certificate

This step is:

Optional if you use an RSA certificate in the ca.cert.subsystem.nickname parameter.

Required if you use an ECC certificate in the ca.cert.subsystem.nickname parameter.

IMPORTANT

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

245

IMPORTANT

If the ca.cert.issuance_protection.nickname parameter is not set,
Certificate System automatically uses the certificate of the subsystem specified
in the ca.cert.subsystem.nickname. However, the issuance protection
certificate must be an RSA certificate.

6. Restart Certificate System:

systemctl restart pki-tomcatd@instance_name.service

When the CA starts, Certificate System prompts for the LDAP password used by the Shared
Token plug-in.

7. If you temporarily disabled the watchdog service at the beginning of this procedure, re-enable
it. See Section 14.3.2.1, “Enabling the Watchdog Service” .

14.8.4. Enabling CMCRevoke for the Web User Interface

As described in the Performing a CMC Revocation section in the Red Hat Certificate System
Administration Guide, there are two ways to submit CMC revocation requests.

In cases when you use the CMCRevoke utility to create revocation requests to be submitted through
the web UI, add the following setting to the /var/lib/pki/instance_name/ca/conf/CS.cfg file:

cmc.bypassClientAuth=true

14.9. CONFIGURATION FOR SERVER-SIDE KEY GENERATION FOR
CERTIFICATE ENROLLMENT USING THE CA EE PORTAL

This section describes how to configure Server-Side Key Generation for Certificate Enrollment using the
CA EE Portal.

14.9.1. Installation Configuration

NOTE

A KRA instance is required in addition to the CA for setting up Server-Side Keygen.

NOTE

In case the CA and KRA are sharing a Tomcat instance, you do not need to execute the
below step to import the transport certificate.

After installing the CA and KRA instances, in case of stand-alone Tomcat web server instances, you
would need to add the KRA transport certificate to the nssdb of the CA.

1. First, stop the CA:

systemctl stop pki-tomcatd@ca_instance_name.service

Planning, Installation, and Deployment Guide

246

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/index#Certificate_Profiles

For example:

systemctl stop pki-tomcatd@pki-ca.service

2. Add the below line to the CA's CS.cfg:

ca.connector.KRA.transportCertNickname=KRA transport cert

For example:

ca.connector.KRA.transportCertNickname=transportCert cert-topology-02-KRA KRA

where topology-02-KRA is the name of the KRA's instance.

3. Find and export the KRA transport certificate into a file:

grep "kra.transport.cert=" /var/lib/pki/kra_instance_name/kra/conf/CS.cfg | sed
's/kra.transport.cert=//' > kra transport cert file

For example:

grep "kra.transport.cert=" /var/lib/pki/pki-kra/kra/conf/CS.cfg | sed 's/kra.transport.cert=//' >
/tmp/kraTransport.cert

4. Import the KRA transport certificate into the nssdb of the CA, using the nickname specified in
the CA's CS.cfg file:

1. List the transport certificate nickname:

grep "ca.connector.KRA.transportCertNickname"
/var/lib/pki/ca_instance_name/ca/conf/CS.cfg

For example:

grep "ca.connector.KRA.transportCertNickname" /var/lib/pki/pki-ca/ca/conf/CS.cfg
 ca.connector.KRA.transportCertNickname=KRA transport cert

Import the certificate using the nickname listed from the previous step:

certutil -d /var/lib/pki/ca_instance_name/alias -A -t “,,” -n transportNickName -i kra transport
cert file

For example:

certutil -d /var/lib/pki/pki-ca/alias -A -t “,,” -n "KRA transport cert" -i /tmp/kraTransport.cert

5. Start the CA:

systemctl start pki-tomcatd@ca_instance_name.service

For example:

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

247

systemctl start pki-tomcatd@pki-ca.service

14.9.2. Profile Configuration

Two default profiles, caServerKeygen_UserCert and caServerKeygen_DirUserCert, are provided by
default to allow for certificate enrollments where keys are generated on the server side. However, any
profile with the right input, output, and policy set could be turned into a server-side keygen profile.

A Server-Side Keygen profile must contain the following components.

Input

input.i1.class_id=serverKeygenInputImpl

Output

output.o1.class_id=pkcs12OutputImpl

Policyset
Key type and key size parameters can be configured as exemplified below:

policyset.userCertSet.3.constraint.class_id=keyConstraintImpl
policyset.userCertSet.3.constraint.name=Key Constraint
policyset.userCertSet.3.constraint.params.keyType=-
policyset.userCertSet.3.constraint.params.keyParameters=1024,2048,3072,4096,nistp256,nistp384,nist
p521
policyset.userCertSet.3.default.class_id=serverKeygenUserKeyDefaultImpl
policyset.userCertSet.3.default.name=Server-Side Keygen Default
policyset.userCertSet.3.default.params.keyType=RSA
policyset.userCertSet.3.default.params.keySize=2048
policyset.userCertSet.3.default.params.enableArchival=true

Authentication
The two default server-side keygen enrollment profiles differ in the authentication mechanism, where

caServerKeygen_UserCert.cfg

contains an empty value to "auth.class_id=", meaning that enrollment requests through this
profile will require approval from a CA agent.

caServerKeygen_DirUserCert.cfg

contains "auth.instance_id=UserDirEnrollment", meaning that the user is required to pass LDAP
uid/password authentication; such authentication mechanism is considered as an automatic
certificate issuance as it does not require per-request approval from a CA agent.

Automatic approval could be configured by setting the auth.instance_id directive to any
compatible authentication plugin class, as examplified in the caServerKeygen_DirUserCert.cfg
profile mentioned above. Here is an example of such a configuration in the CS.cfg file:

auths.instance.UserDirEnrollment.dnpattern=
auths.instance.UserDirEnrollment.ldap.basedn=ou=People,dc=example,dc=com
auths.instance.UserDirEnrollment.ldap.ldapconn.host=host.example.com
auths.instance.UserDirEnrollment.ldap.ldapconn.port=389

Planning, Installation, and Deployment Guide

248

auths.instance.UserDirEnrollment.ldap.ldapconn.secureConn=false
auths.instance.UserDirEnrollment.ldap.maxConns=
auths.instance.UserDirEnrollment.ldap.minConns=
auths.instance.UserDirEnrollment.ldapByteAttributes=
auths.instance.UserDirEnrollment.ldapStringAttributes=mail
auths.instance.UserDirEnrollment.pluginName=UidPwdDirAuth

14.10. CONFIGURING CERTIFICATE TRANSPARENCY

Certificate System provides a basic version of Certificate Transparency (CT) V1 support (rfc 6962). It
has the capability of issuing certificates with embedded Signed Certificate Time stamps (SCTs) from
any trusted log where each deployment site choses to have its root CA cert included. You can also
configure the system to support multiple CT logs. A minimum of one trusted CT log is required for this
feature to work.

IMPORTANT

It is the responsibility of the deployment site to establish its trust relationship with a
trusted CT log server.

To configure Certificate Transparency, edit the CA's CS.cfg file located in the /var/lib/pki/instance
name/ca/conf/CS.cfg directory.

For more information on how to test your Certificate Transparency setup, see the Testing Certificate
Transparency section in the Red Hat Certificate System Planning, Installation, and Deployment Guide .

14.10.1. ca.certTransparency.mode

The ca.certTransparency.mode specifies one of three Certificate Transparency modes:

disabled: issued certs will not carry the SCT extension

enabled: issued certs will carry the SCT extension

perProfile: certs enrolled through those profiles that contain the following policyset will carry the
SCT extension: SignedCertificateTimestampListExtDefaultImpl

The default value is disabled.

14.10.2. ca.certTransparency.log.num

ca.certTransparency.log.num specifies the total number of CT logs defined in the configuration.

NOTE

Not all CT log entries that are defined are considered active; see
ca.certTransparency.log.<id>.enable in Section 14.10.3, “ca.certTransparency.log.
<id>.*”.

14.10.3. ca.certTransparency.log.<id>.*

ca.certTransparency.log.<id>.* specifies information pertaining to the log <id>, where <id> is a unique
id you assign to the CT log server to differentiate it from other CT logs.

CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES

249

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/certificate_transparency#testing-certificate-transparency

The parameter names follow each ca.certTransparency.log.<id>. and belong to the <id>:

ca.certTransparency.log.<id>.enable specifies whether the <id> CT log is enabled (true) or
disabled (false).

ca.certTransparency.log.<id>.pubKey contains the base64 encoding of the CT log's public key.

ca.certTransparency.log.<id>.url contains the base64 encoding of the CT log url.

ca.certTransparency.log.<id>.version specifies the CT version number that the CT supports (as
well as the CT log server); it currently only supports version 1.

Planning, Installation, and Deployment Guide

250

CHAPTER 15. MANAGING CERTIFICATE/KEY CRYPTO TOKEN
This chapter contains instructions on how to manage certificate/key token database on the crypto
tokens, specifically on how to import and verify certificates for various scenarios.

About Crypto Tokens
For information about NSS soft token, please see Section 2.3.7.1, “NSS Soft Token (internal token)” .

For information about HSM, please see Section 2.3.7.2, “Hardware Security Module (HSM, external
token)”.

15.1. ABOUT CERTUTIL AND PKICERTIMPORT

The certutil command is provided by Network Security Services (NSS). certutil is used for validating
and importing certificates. A basic overview of how we use certutil is presented below, however,
PKICertImport is our wrapper script of choice for safely validating and importing certificates. Using
certutil to do so requires multiple command invocations and correct usage is outside the scope of this
documentation.

15.1.1. certutil Basic Usage

certutil [command] [options]

Each certutil invocation takes a command flag, usually denoted by a capital letter, and a series of
options which control what the command does. If an option takes a value, that value is named between "
<" and ">" symbols.

15.1.2. PKICertImport Basic Usage

PKICertImport [options]

Each PKICertImport invocation takes a series of options to validate and import a specified certificate.
Unlike the broad use cases of certutil, PKICertImport is only focused on safely importing and validating
certificates. See Section 15.1.4, “Common certutil and PKICertImport Options” for more information
about available options.

NOTE

PKICertImport prompts for the NSS DB and/or HSM passwords multiple times
throughout the course of its execution. This is expected as PKICertImport has to interact
with the NSS DB multiple times. To avoid having to input the NSS DB password
repetitively, specify a password file via -f <filename>. When done, be sure to delete the
password file.

15.1.3. certutil Common Commands

The following commands are specific to certutil and provide a brief overview of several common
commands. PKICertImport is not compatible with nor require these command flags.

certutil -A
The -A command denotes "adding" a certificate. It requires a certificate to import (-i), a nickname (-n)
for that certificate, and a series of trust flags (-t) for the certificate.

CHAPTER 15. MANAGING CERTIFICATE/KEY CRYPTO TOKEN

251

certutil -V
The -V command denotes "verifying" a certificate. It requires a certificate nickname to validate (-n) and a
type of verification (-u) to perform.

certutil -D
The -D command denotes "deleting" a certificate. It requires a certificate nickname (-n) to remove.

Note that it ONLY removes the PUBLIC KEY portion of the certificate, and WILL NOT remove any
private keys, if present.

certutil -M
The -M command denotes "modifying" a certificate. It requires a certificate nickname (-n) to modify, and
a series of trust flags (-t) to give the certificate.

certutil -L
The -L command denotes "listing" a certificate or all certificates. If given the nickname option (-n), it will
list detailed information about that certificate, else if omitted, it will list general information about all
certificates present.

The result of certutil -L would show each certificate by its nickname along with its trust info. For
example:

Table 15.1. Certificate nickname and trust info

Certificate Nickname Trust Attributes
SSL, S/MIME, JAR/XPI

caSigningCert pki-ca1 CT, C, C

NOTE

The trust attributes displayed by certutil -L correspond to what is specified with the -t
option.

The certutil -L does not modify the database, and can thus be executed safely as many
times as desired.

15.1.4. Common certutil and PKICertImport Options

When following the steps below, ensure the values are relevant and correct for your specific deployment
scenario. Many of these options are available to PKICertImport as well.

-n <nickname>
The -n <nickname> option specifies the nickname for a certificate. This can be any text and is only used
as a reference to the certificate. It MUST be unique.

Update this value as appropriate for your configuration.

-d <directory>
The -d <directory> option specifies the path to the NSS DB directory in use. We usually assume you are
already in this directory and use "." to refer to the current directory.

Update this value as appropriate for your configuration.

Planning, Installation, and Deployment Guide

252

-t <trust>
The -t <trust> option specifies the trust level for the certificate.

There are three main categories of trust:

trust for TLS

trust for email

trust for object signing

Each trust position can have one or more trust letters which specify the desired level of trust. The trust
letters we use below are c, C, and T.

c states that this certificate should be a Certificate Authority (CA).

C states that this is a trusted certificate authority for signing server certificates (C implies
lowercase c, hence you do not need to specify both).

T states that this certificate is a trusted authority for signing client certificates (T implies
lowercase c, hence you do not need to specify both T and c).

To specify the trust flags for each position, join the letters with commas. For example, the option -t
CT,C,c means that the certificate is trusted for signing client and server TLS certificates, signing server
email certificates (S/MIME), and is a valid CA for object signing (though untrusted).

This ensures that, if this certificate signs another certificate, which in turn is used for object
signing, it will be deemed invalid.

No trust (or the lack of trust) can be specified by using -t ,,.

To see the trust levels of all certificates in the database, run:

certutil -L -d

Each certificate's nickname will be listed and the trust flags will be specified at the end of the
line.

See the notes about HSMs in the -h option.

Note that more trust levels are specified in the certutil manpage. To reference this documentation,
please run the man certutil command on a system with certutil properly installed.

-h <HSM>
The -h <HSM> option specifies the name of the HSM to perform operations on.

-h option is incompatible with the -t option, as HSMs cannot store trust. Only an NSS DB can store trust,
so using the certutil -A command or the certutil -M command in conjunction with -h <HSM> will fail.
Instead, specify the desired trust level on a separate certutil -M command without the -h option.

Update this value as appropriate for your configuration.

-e
The -e option specifies that the validity of the signature is checked as well, when used in conjunction
with the certutil -V command. PKICertImport always performs the certificate signature validation and
does not understand the -e option.

CHAPTER 15. MANAGING CERTIFICATE/KEY CRYPTO TOKEN

253

-a
The -a option specifies that the key in question is in PEM (ASCII) format.

-i <certificate>
The -i <certificate> option specifies the path to the certificate. This is only used in the certutil -A
command to specify the path to the certificate to import.

Update this value as appropriate for your configuration.

-u <usage>
The -u <usage> option specifies that usage of the certificate to verify when used in conjunction with
the certutil -V command.

There are several usage letters referenced in the following sections.

-u C stands for verify a client TLS certificate. Note that this mostly accepts any certificate, but
will check expiration date and signature.

-u V stands for verify a server TLS certificate. Note that this will reject CA certificates and will
check expiration date and signature.

-u L stands for verify a CA TLS certificate. Note that this will validate trust flags (to see if c is
present) and will check key usage to ensure that the key is a CA key. This also checks expiration
and signatures.

-u O stands for verify a OCSP status responder certificate. Note that this checks expiry and
signatures.

-u J stands for verify an object signing certificate. Note that this checks expiry and signatures.

If the wrong usage option is specified or the trust flags on the certificate are wrong (such as a missing c
flag for an CA TLS certificate), certutil -V will give incorrect results.

NOTE

More usage options are specified in the certutil manpage. To reference this
documentation, run the man certutil command on a system with certutil properly
installed.

15.2. IMPORTING A ROOT CERTIFICATE

First, change directories into the NSS DB:

cd /path/to/nssdb

Ensure that your web service is taken offline (stopped, disabled, etc.) while performing these steps and
ensure no concurrent access to the NSS DB by other processes (such as a browser). Doing so may
corrupt the NSS DB or result in improper usage of these certificates.

When needing to import a new root certificate, ensure you acquire this certificate in a secure manner as
it will be able to sign a number of certificates. We assume you already have it in a file named ca_root.crt.
Please substitute the correct name and path to this file as appropriate for your scenario.

For more information about the certutil and PKICertImport options used below, see Section 15.1, “About
certutil and PKICertImport”.

Planning, Installation, and Deployment Guide

254

To import the root certificate:

Execute PKICertImport -d . -n "CA Root" -t "CT,C,C" -a -i ca_root.crt -u L command.

This command validates and imports the root certificate into your NSS DB. The validation
succeeds when no error message is printed and the return code is 0. To check the return code,
execute echo $? immediately after executing the previous command above. In most cases, a
visual error message is printed. The certificate usually fails to validate because it is expired or
because it is not a CA certificate. Therefore, make sure your certificate file is correct and up-to-
date. Contact the issuer and ensure that all intermediate and root certificates are present on
your system.

15.3. IMPORTING AN INTERMEDIATE CERTIFICATE CHAIN

Before beginning, please change directories into the NSS DB:

cd /path/to/nssdb

Ensure that your web service is offline (stopped, disabled, etc.) while performing these steps and ensure
no concurrent access to the NSS DB by other processes (such as a browser). Doing so may corrupt the
NSS DB or result in improper usage of these certificates.

If you have not imported and trusted the root certificate, see Section 15.2, “Importing a Root
Certificate”.

When given a series of intermediate certificates between your root and end server or client certificates,
we need to import and validate the signed certificate chain in order from closest to furthest from the
root CA certificate. We assume the Intermediate CAs are in files named ca_sub_<num>.crt (for
example ca_sub_1.crt, ca_sub_2.crt, and so on). Substitute names and paths for your certificates as
appropriate to your deployment.

NOTE

In the unlikely scenario that you are instead given a single file named fullchain.crt,
fullchain.pem, or similar and it contains multiple certificates, split it into the above
format by copying each block (between and including the ----BEGIN CERTIFICATE-----
and an -----END CERTIFICATE----- markers) to its own file. The first ones should be
named ca_sub_<num>.crt and the last will be your server cert named service.crt. Server
certificates are discussed in later sections.

First, we will import and validate any intermediate CAs in order of closest to furthest from the root CA
certificate. If you don't have any, you can skip to the next section.

For more information about the certutil and PKICertImport options used below, see Section 15.1, “About
certutil and PKICertImport”.

For every intermediate certificate in the chain:

Execute PKICertImport -d . -n "CA Sub $num" -t "CT,C,C" -a -i ca_sub_$num.crt -u L

This command validates and imports the Intermediate CA certificate into your NSS DB. The
validation succeeds when no error message is printed and the return code is 0. To check the
return code, execute echo $? immediately after executing the previous command above. In
most cases, a visual error message is printed. If the validation does not succeed, contact the
issuer and ensure that all intermediate and root certificates are present on your system.

CHAPTER 15. MANAGING CERTIFICATE/KEY CRYPTO TOKEN

255

15.4. IMPORTING A CERTIFICATE INTO AN HSM

This procedure describes how to import a certificate into an HSM after gaining a newly issued certificate
(such as when a system certificate is renewed) whose keys were generated on the same HSM token as
the process of creating a CSR.

Before beginning, please change directories into the NSS DB:

cd /path/to/nssdb for example cd /var/lib/pki/pki-ca/alias

Ensure that your web service is taken offline (stopped, disabled, etc.) while performing these steps and
ensure no concurrent access to the NSS DB by other processes (such as a browser). Doing so may
corrupt the NSS DB or result in improper usage of these certificates.

If you have not imported and trusted the root certificate, see Section 15.2, “Importing a Root
Certificate”. If you have not imported and validated the intermediate certificates, see Section 15.3,
“Importing an Intermediate Certificate Chain”.

Note that which set of instructions you follow will depend on the usage for the certificate in question.

For TLS server certs for all PKI substems, follow the server certificate steps .

For any subsystem's audit signing cert, follow the steps below for validating an object Signing
certificate.

For the CA subsystem's signing cert, follow the steps above for importing and validating an
intermediate certificate chain, but do so only with the caSigningCert.

For the CA subsystem's OCSP signing cert, follow the steps below for validating an OCSP
certificate.

For all other system certs of the PKI subsystems, follow the Client Certificate steps .

For more information about the certutil and PKICertImport options used below, see Section 15.1, “About
certutil and PKICertImport”.

To import a server certificate on the HSM:

Execute PKICertImport -d . -h HSM -n "host.name.example.com" -t ",," -a -i service.crt -u V

This command validates and imports the server certificate onto the HSM. The validation
succeeds when no error message is printed and the return code is 0. To check the return code,
execute echo $? immediately after executing the previous command above. In most cases, a
visual error message is printed. The certificate usually fails to validate due to expiry of a parent
certificate or a missing CA trust chain (such as a missing intermediate certificate or a missing
CA Root). If the validation does not succeed, contact the issuer and ensure that all intermediate
and root certificates are present on your system.

To import a client certificate on the HSM:

Execute PKICertImport -d . -h HSM -n "client name" -t ",," -a -i client.crt -u C

This command validates and imports the client certificate onto the HSM. The validation
succeeds when no error message is printed and the return code is 0. To check the return code,
execute echo $? immediately after executing the previous command above. In most cases, a
visual error message is printed. If the validation does not succeed, contact the issuer and ensure
that all intermediate and root certificates are present on your system.

Planning, Installation, and Deployment Guide

256

To import an object signing certificate on the HSM:

Execute PKICertImport -d . -h HSM -n "certificate name" -t ",,P" -a -i objectsigning.crt -u J

This command validates and imports the object signing certificate onto the HSM. The validation
succeeds when no error message is printed and the return code is 0. To check the return code,
execute echo $? immediately after executing the previous command above. In most cases, a
visual error message is printed. If the validation does not succeed, contact the issuer and ensure
that all intermediate and root certificates are present on your system.

To import an OCSP response signing certificate on the HSM:

Execute PKICertImport -d . -h HSM -n "certificate name" -t ",," -a -i ocsp.crt -u O

This command validates and imports the OCSP responder certificate onto the HSM. The
validation succeeds when no error message is printed and the return code is 0. To check the
return code, execute echo $? immediately after executing the previous command above. In
most cases, a visual error message is printed. If the validation does not succeed, contact the
issuer and ensure that all intermediate and root certificates are present on your system.

15.5. IMPORTING A CERTIFICATE INTO AN NSS DATABASE

Ensure that your web service is taken offline (stopped, disabled, etc.) while performing these steps and
ensure no concurrent access to the NSS database by other processes (such as a browser). Doing so may
corrupt the NSS database or result in improper usage of these certificates.

Note that which set of instructions you follow will depend on the usage for the certificate in question.

For any subsystem's auditSigningCert, please follow the steps below for validating an object
Signing certificate.

For the CA subsystem's caSigningCert, please follow the steps above for importing and
validating an intermediate certificate chain, but do so only with the caSigningCert.

For the CA subsystem's ocspSigningCert, please follow the steps below for validating an OCSP
certificate.

For user's client or S/MIME certificate, follow the Client Certificate steps .

For more information about the certutil and PKICertImport options used below, see Section 15.1, “About
certutil and PKICertImport”.

Importing a Client Certificate Into the NSS Database
To import a client certificate into the NSS database:

1. Change into the NSS database directory. For example:

cd /path/to/nssdb/

2. Import and trust the root certificate, if it is not already imported and trusted. For details, see
Section 15.2, “Importing a Root Certificate” .

3. Import and validate the intermediate certificates, if not already imported and validated. For
details, see Section 15.3, “Importing an Intermediate Certificate Chain” .

4. Validate and import the client certificate:

CHAPTER 15. MANAGING CERTIFICATE/KEY CRYPTO TOKEN

257

PKICertImport -d . -n "client name" -t ",," -a -i client.crt -u C

The validation succeeds when no error message is printed and the return code is 0. To check the
return code, execute echo $? immediately after executing the previous command above. In
most cases, a visual error message is printed. If the validation does not succeed, contact the
issuer and ensure that all intermediate and root certificates are present on your system.

Importing an Object Signing Certificate
To import an object signing certificate:

1. Change into the NSS database directory. For example:

cd /path/to/nssdb/

2. Import and trust the root certificate, if it is not already imported and trusted. For details, see
Section 15.2, “Importing a Root Certificate” .

3. Import and validate the intermediate certificates, if not already imported and validated. For
details, see Section 15.3, “Importing an Intermediate Certificate Chain” .

4. Validate and import the object signing certificate:

PKICertImport -d . -n "certificate name" -t ",,P" -a -i objectsigning.crt -u J

The validation succeeds when no error message is printed and the return code is 0. To check the
return code, execute echo $? immediately after executing the previous command above. In
most cases, a visual error message is printed. If the validation does not succeed, contact the
issuer and ensure that all intermediate and root certificates are present on your system.

Importing an OCSP Responder
To import an OCSP responder:

1. Change into the NSS database directory. For example:

cd /path/to/nssdb/

2. Import and trust the root certificate, if it is not already imported and trusted. For details, see
Section 15.2, “Importing a Root Certificate” .

3. Import and validate the intermediate certificates, if not already imported and validated. For
details, see Section 15.3, “Importing an Intermediate Certificate Chain” .

4. Validate and import the OCSP responder certificate:

PKICertImport -d . -n "certificate name" -t ",," -a -i ocsp.crt -u O

The validation succeeds when no error message is printed and the return code is 0. To check the
return code, execute echo $? immediately after executing the previous command above. In
most cases, a visual error message is printed. If the validation does not succeed, contact the
issuer and ensure that all intermediate and root certificates are present on your system.

Planning, Installation, and Deployment Guide

258

CHAPTER 16. CERTIFICATE PROFILES CONFIGURATION

16.1. CREATING AND EDITING CERTIFICATE PROFILES DIRECTLY ON
THE FILE SYSTEM

As part of the installation process of a CA, the certificate enrollment profiles can be modified directly on
the file system by modifying the profiles' configuration files. Default files exist for the default profiles at
installation; when new profiles are needed, new profile configuration files are to be created. The
configuration files are stored in the CA profile directory, instance_directory/ca/profiles/ca/, such as
/var/lib/pki/pki-ca/ca/profiles/ca/. The file is named profile_name.cfg. All of the parameters for profile
rules can be set or modified in those profile configuration files. Profile rules can be inputs, outputs,
authentication, authorization, defaults, and constraints.

The enrollment profiles for the CA certificates are located in the /var/lib/pki/instance_name/ca/conf
directory with the name *.profile.

NOTE

For audit reasons, use this method only during the CA installation prior to deployment.

Restart the server after editing the profile configuration file for the changes to take
effect.

Section 16.1.1.1, “Profile Configuration Parameters”

Section 16.1.1.2, “Modifying Certificate Extensions Directly on the File System”

Section 16.1.1.3, “Adding Profile Inputs Directly on the File System”

16.1.1. Configuring non-CA System Certificate Profiles

16.1.1.1. Profile Configuration Parameters

All of the parameters for a profile rule - defaults, inputs, outputs, and constraints - are configured within
a single policy set. A policy set for a profile has the name policyset.policyName.policyNumber. For
example:

policyset.cmcUserCertSet.6.constraint.class_id=noConstraintImpl
policyset.cmcUserCertSet.6.constraint.name=No Constraint
policyset.cmcUserCertSet.6.default.class_id=userExtensionDefaultImpl
policyset.cmcUserCertSet.6.default.name=User Supplied Key Default
policyset.cmcUserCertSet.6.default.params.userExtOID=2.5.29.15

The common profile configuration parameters are described in Table 16.1, “Profile Configuration File
Parameters”.

Table 16.1. Profile Configuration File Parameters

Parameter Description

CHAPTER 16. CERTIFICATE PROFILES CONFIGURATION

259

desc Gives a free text description of the certificate profile,
which is shown on the end-entities page. For
example, desc=This certificate profile is for enrolling
server certificates with agent authentication.

enable Sets whether the profile is enabled, and therefore
accessible through the end-entities page. For
example, enable=true.

auth.instance_id Sets which authentication manager plug-in to use to
authenticate the certificate request submitted
through the profile. For automatic enrollment, the CA
issues a certificate immediately if the authentication
is successful. If authentication fails or there is no
authentication plug-in specified, the request is
queued to be manually approved by an agent. For
example, auth.instance_id=CMCAuth. The
authentication method must be one of the registered
authentication instances from CS.cfg.

authz.acl Specifies the authorization constraint. Most
commonly, this us used to set the group evaluation
ACL. For example, this caCMCUserCert parameter
requires that the signer of the CMC request belong
to the Certificate Manager Agents group:

authz.acl=group="Certificate Manager Agents"

In directory-based user certificate renewal, this
option is used to ensure that the original requester
and the currently-authenticated user are the same.

An entity must authenticate (bind or, essentially, log
into the system) before authorization can be
evaluated. The authorization method specified must
be one of the registered authorization instances from
CS.cfg.

name Gives the name of the profile. For example,
name=Agent-Authenticated Server Certificate
Enrollment. This name is displayed in the end users
enrollment or renewal page.

input.list Lists the allowed inputs for the profile by name. For
example, input.list=i1,i2.

input.input_id.class_id Gives the java class name for the input by input ID
(the name of the input listed in input.list). For
example, input.i1.class_id=cmcCertReqInputImpl.

output.list Lists the possible output formats for the profile by
name. For example, output.list=o1.

Parameter Description

Planning, Installation, and Deployment Guide

260

output.output_id.class_id Gives the java class name for the output format
named in output.list. For example,
output.o1.class_id=certOutputImpl.

policyset.list Lists the configured profile rules. For dual
certificates, one set of rules applies to the signing
key and the other to the encryption key. Single
certificates use only one set of profile rules. For
example, policyset.list=serverCertSet.

policyset.policyset_id.list Lists the policies within the policy set configured for
the profile by policy ID number in the order in which
they should be evaluated. For example,
policyset.serverCertSet.list=1,2,3,4,5,6,7,8.

policyset.policyset_id.policy_number.constraint.class_i
d

Gives the java class name of the constraint plug-in
set for the default configured in the profile rule. For
example,
policyset.serverCertSet.1.constraint.class_id=subjectNa
meConstraintImpl.

policyset.policyset_id.policy_number.constraint.name Gives the user-defined name of the constraint. For
example,
policyset.serverCertSet.1.constraint.name=Subject
Name Constraint.

policyset.policyset_id.policy_number.constraint.param
s.attribute

Specifies a value for an allowed attribute for the
constraint. The possible attributes vary depending on
the type of constraint. For example,
policyset.serverCertSet.1.constraint.params.pattern=CN
=.*.

policyset.policyset_id.policy_number.default.class_id Gives the java class name for the default set in the
profile rule. For example,
policyset.serverCertSet.1.default.class_id=userSubjectN
ameDefaultImpl

policyset.policyset_id.policy_number.default.name Gives the user-defined name of the default. For
example,
policyset.serverCertSet.1.default.name=Subject Name
Default

policyset.policyset_id.policy_number.default.params.a
ttribute

Specifies a value for an allowed attribute for the
default. The possible attributes vary depending on
the type of default. For example,
policyset.serverCertSet.1.default.params.name=CN=
(Name)$request.requestor_name$.

Parameter Description

16.1.1.2. Modifying Certificate Extensions Directly on the File System

CHAPTER 16. CERTIFICATE PROFILES CONFIGURATION

261

Changing constraints changes the restrictions on the type of information which can be supplied.
Changing the defaults and constraints can also add, delete, or modify the extensions which are
accepted or required from a certificate request.

For example, the default caFullCMCUserCert profile is set to create a Key Usage extension from
information in the request.

 policyset.cmcUserCertSet.6.constraint.class_id=keyUsageExtConstraintImpl
policyset.cmcUserCertSet.6.constraint.name=Key Usage Extension Constraint
policyset.cmcUserCertSet.6.constraint.params.keyUsageCritical=true
policyset.cmcUserCertSet.6.constraint.params.keyUsageCrlSign=false
policyset.cmcUserCertSet.6.constraint.params.keyUsageDataEncipherment=false
policyset.cmcUserCertSet.6.constraint.params.keyUsageDecipherOnly=false
policyset.cmcUserCertSet.6.constraint.params.keyUsageDigitalSignature=true
policyset.cmcUserCertSet.6.constraint.params.keyUsageEncipherOnly=false
policyset.cmcUserCertSet.6.constraint.params.keyUsageKeyAgreement=false
policyset.cmcUserCertSet.6.constraint.params.keyUsageKeyCertSign=false
policyset.cmcUserCertSet.6.constraint.params.keyUsageKeyEncipherment=true
policyset.cmcUserCertSet.6.constraint.params.keyUsageNonRepudiation=true
policyset.cmcUserCertSet.6.default.class_id=keyUsageExtDefaultImpl
policyset.cmcUserCertSet.6.default.name=Key Usage Default
policyset.cmcUserCertSet.6.default.params.keyUsageCritical=true
policyset.cmcUserCertSet.6.default.params.keyUsageCrlSign=false
policyset.cmcUserCertSet.6.default.params.keyUsageDataEncipherment=false
policyset.cmcUserCertSet.6.default.params.keyUsageDecipherOnly=false
policyset.cmcUserCertSet.6.default.params.keyUsageDigitalSignature=true
policyset.cmcUserCertSet.6.default.params.keyUsageEncipherOnly=false
policyset.cmcUserCertSet.6.default.params.keyUsageKeyAgreement=false
policyset.cmcUserCertSet.6.default.params.keyUsageKeyCertSign=false
policyset.cmcUserCertSet.6.default.params.keyUsageKeyEncipherment=true
policyset.cmcUserCertSet.6.default.params.keyUsageNonRepudiation=true

The default is updated to allow user-supplied key extensions:

policyset.cmcUserCertSet.6.default.class_id=userExtensionDefaultImpl
policyset.cmcUserCertSet.6.default.name=User Supplied Key Default
policyset.cmcUserCertSet.6.default.params.userExtOID=2.5.29.15

This sets the server to accept the extension OID 2.5.29.15 in the certificate request.

Other constraints and defaults can be changed similarly. Make sure that any required constraints are
included with appropriate defaults, that defaults are changed when a different constraint is required,
and that only allowed constraints are used with the default. For more information, see the Defaults
Reference section and the Constraints Reference section in the Red Hat Certificate System
Administration Guide.

16.1.1.2.1. Key Usage and Extended Key Usage Consistency

Red Hat Certificate System provides a flexible infrastructure for administrators to create customized
enrollment profiles to meet the requirements of their environment. However, it is important that profiles
do not allow issuing certificates that violate the requirements defined in RFC 5280. When creating an
enrollment profile where both Key Usage (KU) and Extended Key Usage (EKU) extensions are present,
it is important to make sure that the consistency between the two extensions is maintained as per
section 4.2.1.12. Extended Key Usage of RFC 5280.

Planning, Installation, and Deployment Guide

262

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html-single/administration_guide/index#Defaults_Reference
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/Constraints_Reference

For details about the KU extension, see:

The following table provides the guidelines that maps consistent Key Usage bits to the Extended Key
Usage Extension for each purpose:

Purpose / Extended Key Usages Key Usages

TLS Server Authentication command

id-kp-serverAuth

digitalSignature, keyEncipherment, or
KeyAgreement

TLS Client (Mutual) Authentication

id-kp-clientAuth

digitalSignature, keyEncipherment, and/or
KeyAgreement

Code Signing

id-kp-codeSigning

digitalSignature

Email Protection

id-kp-emailProtection

digitalSignature, nonRepudiation, and/or
(keyEncipherment or keyAgreement)

OCSP Response Signing

id-kp-OCSPSigning

KeyAgreement and/or nonRepudiation

The following shows two examples of inconsistent EKU/KU:

An enrollment profile that is intended for purpose of OCSP response signing contains Extended
key usage id-kp-OCSPSigning but with keyEncipherment key usage bit:

policyset.ocspCertSet.6.default.class_id=keyUsageExtDefaultImpl
policyset.ocspCertSet..6.default.name=Key Usage Default
policyset.ocspCertSet..6.default.params.keyUsageCritical=true
policyset.ocspCertSet..6.default.params.keyUsageCrlSign=false
policyset.ocspCertSet..6.default.params.keyUsageDataEncipherment=false
policyset.ocspCertSet..6.default.params.keyUsageDecipherOnly=false
policyset.ocspCertSet..6.default.params.keyUsageDigitalSignature=true
policyset.ocspCertSet..6.default.params.keyUsageEncipherOnly=false
policyset.ocspCertSet..6.default.params.keyUsageKeyAgreement=false
policyset.ocspCertSet..6.default.params.keyUsageKeyCertSign=false
policyset.ocspCertSet..6.default.params.keyUsageKeyEncipherment=true
policyset.ocspCertSet..6.default.params.keyUsageNonRepudiation=true
policyset.ocspCertSet.7.constraint.params.exKeyUsageOIDs=1.3.6.1.5.5.7.3.9
policyset.ocspCertSet.7.default.class_id=extendedKeyUsageExtDefaultImpl
policyset.ocspCertSet.7.default.name=Extended Key Usage Default
policyset.ocspCertSet.7.default.params.exKeyUsageCritical=false
policyset.ocspCertSet.7.default.params.exKeyUsageOIDs=1.3.6.1.5.5.7.3.9

An enrollment profile that is intended for the purpose of TLS server authentication contains
Extended key usage id-kp-serverAuth but with CRL signing key usage bit:

policyset.serverCertSet.6.default.name=Key Usage Default

CHAPTER 16. CERTIFICATE PROFILES CONFIGURATION

263

policyset.serverCertSet.6.default.params.keyUsageCritical=true
policyset.serverCertSet.6.default.params.keyUsageDigitalSignature=true
policyset.serverCertSet.6.default.params.keyUsageNonRepudiation=false
policyset.serverCertSet.6.default.params.keyUsageDataEncipherment=true
policyset.serverCertSet.6.default.params.keyUsageKeyEncipherment=false
policyset.serverCertSet.6.default.params.keyUsageKeyAgreement=true
policyset.serverCertSet.6.default.params.keyUsageKeyCertSign=false
policyset.serverCertSet.6.default.params.keyUsageCrlSign=true
policyset.serverCertSet.6.default.params.keyUsageEncipherOnly=false
policyset.serverCertSet.6.default.params.keyUsageDecipherOnly=false
policyset.cmcUserCertSet.7.default.class_id=extendedKeyUsageExtDefaultImpl
policyset.cmcUserCertSet.7.default.name=Extended Key Usage Extension Default
policyset.cmcUserCertSet.7.default.params.exKeyUsageCritical=false
policyset.serverCertSet.7.default.params.exKeyUsageOIDs=1.3.6.1.5.5.7.3.1

The Extended Key Usage Extension Constraint section in the Red Hat Certificate System
Administration Guide.

The keyUsage section in the Red Hat Certificate System Administration Guide.

For details about the EKU extension, see:

The Extended Key Usage Extension Constraint section in the Red Hat Certificate System
Administration Guide.

The extKeyUsage section in the Red Hat Certificate System Administration Guide.

16.1.1.2.2. Configuring Cross-Pair Profiles

Cross-pair certificates are distinct CA signing certificates that establish a trust partner relationship
whereby entities from these two distinct PKIs will trust each other. Both partner CAs store the other CA
signing certificate in its database, so all of the certificates issued within the other PKI are trusted and
recognized.

Two extensions supported by the Certificate System can be used to establish such a trust partner
relationship (cross-certification):

The Certificate Policies Extension (CertificatePoliciesExtension) specifies the terms that the
certificate fall under, which is often unique for each PKI.

The Policy Mapping Extension (PolicyMappingExtension) seals the trust between two PKI’s by
mapping the certificate profiles of the two environments.

Issuing cross-pair certificates requires the Certificate Policies Extension, explained in
certificatePoliciesExt annex in the Red Hat Certificate System Administration Guide.

To ensure that the issued certificate contains the CertificatePoliciesExtension, the enrollment profile
needs to include an appropriate policy rule, for example:

policyset.userCertSet.p7.constraint.class_id=noConstraintImpl
policyset.userCertSet.p7.constraint.name=No Constraint
policyset.userCertSet.p7.default.class_id=certificatePoliciesExtDefaultImpl
policyset.userCertSet.p7.default.name=Certificate Policies Extension Default
policyset.userCertSet.p7.default.params.Critical=false
policyset.userCertSet.p7.default.params.PoliciesExt.num=1
policyset.userCertSet.p7.default.params.PoliciesExt.certPolicy0.enable=true

Planning, Installation, and Deployment Guide

264

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/constraints_reference#Extended_Key_Usage_Extension_Constraint
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/standard_x.509_v3_certificate_extensions#Standard_X.509_v3_Certificate_Extensions-keyUsage
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/constraints_reference#Extended_Key_Usage_Extension_Constraint
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/standard_x.509_v3_certificate_extensions#Standard_X.509_v3_Certificate_Extensions-extKeyUsage
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/standard_x.509_v3_certificate_extensions#Standard_X.509_v3_Certificate_Extensions-certificatePolicies

policyset.userCertSet.p7.default.params.PoliciesExt.certPolicy0.policyId=1.1.1.1
policyset.userCertSet.p7.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.CPSURI.enable=false

policyset.userCertSet.p7.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.CPSURI.value=
policyset.userCertSet.p7.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.usernotice.enable=false

policyset.userCertSet.p7.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.usernotice.explicitText.v
alue=
policyset.userCertSet.p7.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.usernotice.noticeRefer
ence.noticeNumbers=
policyset.userCertSet.p7.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.usernotice.noticeRefer
ence.organization=

Certificates issued with the enrollment profile in this example would contain the following information:

Identifier: Certificate Policies: - 2.5.29.32
Critical: no
Certificate Policies:
Policy Identifier: 1.1.1.1

For more information on using cross-pair certificates, see the Using Cross-Pair Certificates section in the
Red Hat Certificate System Administration Guide.

For more information on publishing cross-pair certificates, see the see the Publishing Cross-Pair
Certificates section in the Red Hat Certificate System Administration Guide.

16.1.1.3. Adding Profile Inputs Directly on the File System

The certificate profile configuration file in the CA's profiles/ca directory contains the input information
for that particular certificate profile form. Inputs are the fields in the end-entities page enrollment
forms. There is a parameter, input.list, which lists the inputs included in that profile. Other parameters
define the inputs; these are identified by the format input.ID. For example, this adds a generic input to a
profile:

input.list=i1,i2,i3,i4
...
input.i4.class_id=genericInputImpl
input.i4.params.gi_display_name0=Name0
input.i4.params.gi_display_name1=Name1
input.i4.params.gi_display_name2=Name2
input.i4.params.gi_display_name3=Name3
input.i4.params.gi_param_enable0=true
input.i4.params.gi_param_enable1=true
input.i4.params.gi_param_enable2=true
input.i4.params.gi_param_enable3=true
input.i4.params.gi_param_name0=gname0
input.i4.params.gi_param_name1=gname1
input.i4.params.gi_param_name2=gname2
input.i4.params.gi_param_name3=gname3
input.i4.params.gi_num=4

For more information on what inputs, or form fields, are available, see the Input Reference section in the
Red Hat Certificate System Administration Guide.

CHAPTER 16. CERTIFICATE PROFILES CONFIGURATION

265

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/Using_Cross_Pair_Certificates
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/Enabling_Publishing_Cross_Pair_Certificates
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/certprofilereference#Input_Reference

16.1.2. Changing the Default Validity Time of Certificates

In each profile on a Certificate Authority (CA), you can set how long certificates issued using a profile are
valid. You can change this value for security reasons.

For example, to set the validity of the generated Certificate Authority (CA) signing certificate to 825
days (approximately 27 months), open the /var/lib/pki/instance_name/ca/profiles/ca/caCACert.cfg
file in an editor and set:

policyset.caCertSet.2.default.params.range=825

16.1.3. Configuring CA System Certificate Profiles

Unlike the non-CA subsystems, the enrollment profiles for CA's own system certificates are kept in the
/var/lib/pki/[instance name]/ca/conf file. Those profiles are:

caAuditSigningCert.profile

eccAdminCert.profile

rsaAdminCert.profile

caCert.profile

eccServerCert.profile

saServerCert.profile

caOCSPCert.profile

eccSubsystemCert.profile

rsaSubsystemCert.profile

If you wish to change the default values in the profiles above, make changes to the profiles before
Section 7.7.6, “Starting the Configuration Step” procedure is performed. The following is an example
that demonstrates:

How to change validity to CA signing certificate.

How to add extensions (e.g. Certificate policies extension).

1. Back up the original CA certificate profile used by pkispawn.

cp -p /usr/share/pki/ca/conf/caCert.profile /usr/share/pki/ca/conf/caCert.profile.orig

2. Open the CA certificate profile used by the configuration wizard.

vim /usr/share/pki/ca/conf/caCert.profile

3. Reset the validity period in the Validity Default to whatever you want. For example, to change
the period to two years:

Planning, Installation, and Deployment Guide

266

2.default.class=com.netscape.cms.profile.def.ValidityDefault
2.default.name=Validity Default
2.default.params.range=7200

4. Add any extensions by creating a new default entry in the profile and adding it to the list. For
example, to add the Certificate Policies Extension, add the default (which, in this example, is
default #9):

9.default.class_id=certificatePoliciesExtDefaultImpl
9.default.name=Certificate Policies Extension Default
9.default.params.Critical=false
9.default.params.PoliciesExt.certPolicy0.enable=false
9.default.params.PoliciesExt.certPolicy0.policyId=
9.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.CPSURI.enable=true
9.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.CPSURI.value=CertificatePolicies.exa
mple.com
9.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.usernotice.enable=false
9.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.usernotice.explicitText.value=
9.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.usernotice.noticeReference.noticeNu
mbers=
9.default.params.PoliciesExt.certPolicy0.PolicyQualifiers0.usernotice.noticeReference.organizati
on=

Then, add the default number to the list of defaults to use the new default:

list=2,4,5,6,7,8,9

16.1.4. Managing Smart Card CA Profiles

NOTE

Features in this section on TMS are not tested in the evaluation. This section is for
reference only.

The TPS does not generate or approve certificate requests; it sends any requests approved through the
Enterprise Security Client to the configured CA to issue the certificate. This means that the CA actually
contains the profiles to use for tokens and smart cards. The profiles to use can be automatically
assigned, based on the card type.

The profile configuration files are in the /var/lib/pki/instance_name/profiles/ca/ directory with the
other CA profiles. The default profiles are listed in Table 16.2, “Default Token Certificate Profiles” .

Table 16.2. Default Token Certificate Profiles

Profile Name Configuration File Description

Regular Enrollment Profiles

Token Device Key Enrollment caTokenDeviceKeyEnrollment.cfg For enrolling tokens used for
devices or servers.

CHAPTER 16. CERTIFICATE PROFILES CONFIGURATION

267

Token User Encryption Certificate
Enrollment

caTokenUserEncryptionKeyEnroll
ment.cfg

For enrolling encryption
certificates on the token for a
user.

Token User Signing Certificate
Enrollment

caTokenUserSigningKeyEnrollme
nt.cfg

For enrolling signing certificates
on the token for a user.

Token User MS Login Certificate
Enrollment

caTokenMSLoginEnrollment.cfg For enrolling user certificates to
use for single sign-on to a
Windows domain or PC.

Temporary Token Profiles

Temporary Device Certificate
Enrollment

caTempTokenDeviceKeyEnrollme
nt.cfg

For enrolling certificates for a
device on a temporary token.

Temporary Token User
Encryption Certificate Enrollment

caTempTokenUserEncryptionKey
Enrollment.cfg

For enrolling an encryption
certificate on a temporary token
for a user.

Temporary Token User Signing
Certificate Enrollment

caTempTokenUserSigningKeyEnr
ollment.cfg

For enrolling a signing certificates
on a temporary token for a user.

Renewal Profiles[a]

Token User Encryption Certificate
Enrollment (Renewal)

caTokenUserEncryptionKeyRene
wal.cfg

For renewing encryption
certificates on the token for a
user, if renewal is allowed.

Token User Signing Certificate
Enrollment (Renewal)

caTokenUserSigningKeyRenewal.
cfg

For renewing signing certificates
on the token for a user, if renewal
is allowed.

[a] Renewal profiles can only be used in conjunction with the profile that issued the original certificate. There are two
settings that are beneficial:

It is important the original enrollment profile name does not change.

The Renew Grace Period Constraint should be set in the original enrollment profile. This defines the amount of
time before and after the certificate's expiration date when the user is allowed to renew the certificate. There are
only a few examples of these in the default profiles, and they are mostly not enabled by default.

Profile Name Configuration File Description

16.1.4.1. Editing Enrollment Profiles for the TPS

Administrators have the ability to customize the default smart card enrollment profiles, used with the
TPS. For instance, a profile could be edited to include the user's email address in the Subject Alternative
Name extension. The email address for the user is retrieved from the authentication directory. To
configure the CA for LDAP access, change the following parameters in the profile files, with the
appropriate directory information:

Planning, Installation, and Deployment Guide

268

policyset.set1.p1.default.params.dnpattern=UID=$request.uid$, O=Token Key User
 policyset.set1.p1.default.params.ldap.enable=true
 policyset.set1.p1.default.params.ldap.basedn=ou=people,dc=host,dc=example,dc=com
 policyset.set1.p1.default.params.ldapStringAttributes=uid,mail
 policyset.set1.p1.default.params.ldap.ldapconn.host=localhost.example.com
 policyset.set1.p1.default.params.ldap.ldapconn.port=389

These CA profiles come with LDAP lookup disabled by default. The ldapStringAttributes parameter
tells the CA which LDAP attributes to retrieve from the company directory. For example, if the directory
contains uid as an LDAP attribute name, and this will be used in the subject name of the certificate, then
uid must be listed in the ldapStringAttributes parameter, and request.uid listed as one of the
components in the dnpattern.

Editing certificate profiles is covered in the Setting up Certificate Profiles section in the Red Hat
Certificate System Administration Guide.

The format for the dnpattern parameter is covered in the Subject Name Constraint section and the
Subject Name Default section in the Red Hat Certificate System Administration Guide.

16.1.4.2. Creating Custom TPS Profiles

Certificate profiles are created as normal in the CA, but they also have to be configured in the TPS for it
to be available for token enrollments.

NOTE

New profiles are added with new releases of Red Hat Certificate System. If an instance is
migrated to Certificate System 10.0, then the new profiles need to be added to the
migrated instance as if they are custom profiles.

1. Create a new token profile for the issuing CA. Setting up profiles is covered in the Setting up
Certificate Profiles section in the Red Hat Certificate System Administration Guide.

2. Copy the profile into the CA's profiles directory, /var/lib/instance_name/ca/profiles/ca/.

3. Edit the CA's CS.cfg file, and add the new profile references and the profile name to the CA's
list of profiles. For example:

vim etc/pki/instance_name/ca/CS.cfg

 profile.list=caUserCert,...,caManualRenewal,tpsExampleEnrollProfile
 ...
 profile.caTokenMSLoginEnrollment.class_id=caUserCertEnrollImpl

profile.caTokenMSLoginEnrollment.config=/var/lib/pki/instance_name/profiles/ca/tpsExampleE
nrollProfile.cfg

4. Edit the TPS CS.cfg file, and add a line to point to the new CA enrollment profile. For example:

vim /etc/pki/instance_name/tps/CS.cfg

 op.enroll.userKey.keyGen.signing.ca.profileId=tpsExampleEnrollProfile

5. Restart the instance after editing the smart card profiles:

CHAPTER 16. CERTIFICATE PROFILES CONFIGURATION

269

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/Setting_up_Certificate_Profiles
https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html-single/administration_guide/index#Subject_Name_Default
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/Subject_Name_Default
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/Setting_up_Certificate_Profiles

systemctl restart pki-tomcatd-nuxwdog@instance_name.service

If the CA and TPS are in separate instances, restart both instances.

NOTE

Enrollment profiles for the External Registration (externalReg) setting are configured in
the user LDAP entry.

16.1.4.3. Using the Windows Smart Card Logon Profile

The TPS uses a profile to generate certificates to use for single sign-on to a Windows domain or PC; this
is the Token User MS Login Certificate Enrollment profile (caTokenMSLoginEnrollment.cfg).

However, there are some special considerations that administrators must account for when configuring
Windows smart card login.

Issue a certificate to the domain controller, if it is not already configured for TLS.

Configure the smart card login per user, rather than as a global policy, to prevent locking out the
domain administrator.

Enable CRL publishing to the Active Directory server because the domain controller checks the
CRL at every login.

16.1.5. Disabling Certificate Enrolment Profiles

This section provides instructions on how to disable selected profiles.

To disable a certificate profile, edit the corresponding *.cfg file in the
/var/lib/pki/instance_name/ca/profiles/ca/ directory and set the visible and enable parameters to
false.

For example, to disable all non-CMC profiles:

1. List all non-CMC profiles:

ls -l /var/lib/pki/instance_name/ca/profiles/ca/ | grep -v "CMC"

2. In each of the displayed files, set the following parameters to false:

visible=false
enable=false

Additionally, set visible=false in all CMC profiles to make them invisible on the end entity page:

1. List all CMC profiles:

ls -l /var/lib/pki/instance_name/ca/profiles/ca/*CMC*

2. In each of the displayed files, set:

visible=false

Planning, Installation, and Deployment Guide

270

CHAPTER 17. CONFIGURING THE KEY RECOVERY
AUTHORITY

17.1. MANUALLY SETTING UP KEY ARCHIVAL

IMPORTANT

This procedure is unnecessary if the CA and KRA are in the same security domain. This
procedure is only required for CAs outside the security domain.

Configuring key archival manually demands two things:

Having a trusted relationship between a CA and a KRA.

Having the enrollment form enabled for key archival, meaning it has key archival configured and
the KRA transport certificate stored in the form.

In the same security domain, both of these configuration steps are done automatically when the KRA is
configured because it is configured to have a trusted relationship with any CA in its security domain. It is
possible to create that trusted relationship with Certificate Managers outside its security domain by
manually configuring the trust relationships and profile enrollment forms.

1. If necessary, create a trusted manager to establish a relationship between the Certificate
Manager and the KRA.

For the CA to be able to request key archival of the KRA, the two subsystems must be
configured to recognize, trust, and communicate with each other. Verify that the Certificate
Manager has been set up as a privileged user, with an appropriate TLS client authentication
certificate, in the internal database of the KRA. By default, the Certificate Manager uses its
subsystem certificate for TLS client authentication to the KRA.

2. Copy the base-64 encoded transport certificate for the KRA.

The transport certificate is stored in the KRA's certificate database, which can be retrieved using
the certutil utility. If the transport certificate is signed by a Certificate Manager, then a copy of
the certificate is available through the Certificate Manager end-entities page in the Retrieval
tab.

Alternatively, download the transport certificate using the pki ultility:

pki cert-find --name "KRA Transport certificate's subject common name"
pki cert-show serial_number --output transport.pem

3. Add the transport certificate to the CA's CS.cfg file.

ca.connector.KRA.enable=true
ca.connector.KRA.host=server.example.com
ca.connector.KRA.local=false
ca.connector.KRA.nickName=subsystemCert cert-pki-ca
ca.connector.KRA.port=8443
ca.connector.KRA.timeout=30
ca.connector.KRA.transportCert=MIIDbDCCAlSgAwIBAgIBDDANBgkqhkiG9w0BAQUFADA6
MRgwFgYDVQQKEw9Eb21haW4gc28gbmFtZWQxHjAcBgNVBAMTFUNlcnRpZmljYXRlIEF1d

CHAPTER 17. CONFIGURING THE KEY RECOVERY AUTHORITY

271

Ghvcml0eTAeFw0wNjExMTQxODI2NDdaFw0wODEwMTQxNzQwNThaMD4xGDAWBgNVB
AoTD0RvbWFpbiBzbyBuYW1lZDEiMCAGA1UEAxMZRFJNIFRyYW5zcG9ydCBDZXJ0aWZpY
2F0ZTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAKnMGB3WkznueouwZjr
WLFZBLpKt6TimNKV9iz5s0zrGUlpdt81/BTsU5A2sRUwNfoZSMs/d5KLuXOHPyGtmC6yVvaY
719hr9EGYuv0Sw6jb3WnEKHpjbUO/vhFwTufJHWKXFN3V4pMbHTkqW/x5fu/3QyyUre/5IhG0
fcEmfvYxIyvZUJx+aQBW437ATD99Kuh+I+FuYdW+SqYHznHY8BqOdJwJ1JiJMNceXYAuAdk+
9t70RztfAhBmkK0OOP0vH5BZ7RCwE3Y/6ycUdSyPZGGc76a0HrKOz+lwVFulFStiuZIaG1pv0
NNivzcj0hEYq6AfJ3hgxcC1h87LmCxgRWUCAwEAAaN5MHcwHwYDVR0jBBgwFoAURShCYt
Sg+Oh4rrgmLFB/Fg7X3qcwRAYIKwYBBQUHAQEEODA2MDQGCCsGAQUFBzABhihodHR
wOi8vY2x5ZGUucmR1LnJlZGhhdC5jb206OTE4MC9jYS9vY3NwMA4GA1UdDwEB/wQEAwIE
8DANBgkqhkiG9w0BAQUFAAOCAQEAFYz5ibujdIXgnJCbHSPWdKG0T+FmR67YqiOtoNlGyI
gJ42fi5lsDPfCbIAe3YFqmF3wU472h8LDLGyBjy9RJxBj+aCizwHkuoH26KmPGntIayqWDH/UG
sIL0mvTSOeLqI3KM0IuH7bxGXjlION83xWbxumW/kVLbT9RCbL4216tqq5jsjfOHNNvUdFhWy
YdfEOjpp/UQZOhOM1d8GFiw8N8ClWBGc3mdlADQp6tviodXueluZ7UxJLNx3HXKFYLleewwI
FhC82zqeQ1PbxQDL8QLjzca+IUzq6Cd/t7OAgvv3YmpXgNR0/xoWQGdM1/YwHxtcAcVlskXJw
5ZR0Y2zA==
ca.connector.KRA.uri=/kra/agent/kra/connector

4. Then edit the enrollment form and add or replace the transport certificate value in the
keyTransportCert method.

vim /var/lib/pki/pki-tomcat/ca/webapps/ca/ee/ca/ProfileSelect.template

var keyTransportCert =
MIIDbDCCAlSgAwIBAgIBDDANBgkqhkiG9w0BAQUFADA6MRgwFgYDVQQKEw9Eb21haW4
gc28gbmFtZWQxHjAcBgNVBAMTFUNlcnRpZmljYXRlIEF1dGhvcml0eTAeFw0wNjExMTQxO
DI2NDdaFw0wODEwMTQxNzQwNThaMD4xGDAWBgNVBAoTD0RvbWFpbiBzbyBuYW1lZD
EiMCAGA1UEAxMZRFJNIFRyYW5zcG9ydCBDZXJ0aWZpY2F0ZTCCASIwDQYJKoZIhvcNA
QEBBQADggEPADCCAQoCggEBAKnMGB3WkznueouwZjrWLFZBLpKt6TimNKV9iz5s0zrGUl
pdt81/BTsU5A2sRUwNfoZSMs/d5KLuXOHPyGtmC6yVvaY719hr9EGYuv0Sw6jb3WnEKHpjb
UO/vhFwTufJHWKXFN3V4pMbHTkqW/x5fu/3QyyUre/5IhG0fcEmfvYxIyvZUJx+aQBW437ATD
99Kuh+I+FuYdW+SqYHznHY8BqOdJwJ1JiJMNceXYAuAdk+9t70RztfAhBmkK0OOP0vH5BZ7
RCwE3Y/6ycUdSyPZGGc76a0HrKOz+lwVFulFStiuZIaG1pv0NNivzcj0hEYq6AfJ3hgxcC1h87L
mCxgRWUCAwEAAaN5MHcwHwYDVR0jBBgwFoAURShCYtSg+Oh4rrgmLFB/Fg7X3qcwRA
YIKwYBBQUHAQEEODA2MDQGCCsGAQUFBzABhihodHRwOi8vY2x5ZGUucmR1LnJlZGh
hdC5jb206OTE4MC9jYS9vY3NwMA4GA1UdDwEB/wQEAwIE8DANBgkqhkiG9w0BAQUFAA
OCAQEAFYz5ibujdIXgnJCbHSPWdKG0T+FmR67YqiOtoNlGyIgJ42fi5lsDPfCbIAe3YFqmF3w
U472h8LDLGyBjy9RJxBj+aCizwHkuoH26KmPGntIayqWDH/UGsIL0mvTSOeLqI3KM0IuH7bx
GXjlION83xWbxumW/kVLbT9RCbL4216tqq5jsjfOHNNvUdFhWyYdfEOjpp/UQZOhOM1d8GFi
w8N8ClWBGc3mdlADQp6tviodXueluZ7UxJLNx3HXKFYLleewwIFhC82zqeQ1PbxQDL8QLjzca
+IUzq6Cd/t7OAgvv3YmpXgNR0/xoWQGdM1/YwHxtcAcVlskXJw5ZR0Y2zA==;

17.2. ENCRYPTION OF KRA OPERATIONS

Certificate System encrypts the following key operations in the Key Recovery Authority (KRA):

Archival:

Encryption of keys to archive in a Certificate Request Message Format (CRMF) package for
transport to the KRA.

Encryption of the key for storage in the KRA LDAP database.

Recovery:

Planning, Installation, and Deployment Guide

272

Encryption of a user-provided session key for transport to the key.

Decryption of the secret and re-encryption using the user provided session key or creation
of a PKCS#12 package.

Generation:

Encryption of a generated key for storage.

17.2.1. How Clients Manage Key Operation Encryption

The Certificate System client automatically uses the encryption algorithm set in the KRA's configuration
and no further actions are required.

17.2.2. Configuring the Encryption Algorithm in the KRA

NOTE

Only AES CBC (in case when kra.allowEncDecrypt.archive=true and
kra.allowEncDecrypt.recovery=true) and AES Key Wrap (in case when
kra.allowEncDecrypt.archive=false and kra.allowEncDecrypt.recovery=false) are
allowed in the following configuration. Any FIPS140-2 validated HSM that supports either
algorithm is allowed for the key archival and recovery feature provided by KRA.

Certificate System defines groups of configuration parameters related to key operation encryption in
the /var/lib/pki/pki-instance_name/conf/kra/CS.cfg file. We recommend the following set of
parameters (see note above for other option):

kra.allowEncDecrypt.archive=false
kra.allowEncDecrypt.recovery=false
kra.storageUnit.wrapping.1.sessionKeyLength=256
kra.storageUnit.wrapping.1.sessionKeyWrapAlgorithm=RSA
kra.storageUnit.wrapping.1.payloadEncryptionPadding=PKCS5Padding
kra.storageUnit.wrapping.1.sessionKeyKeyGenAlgorithm=AES
kra.storageUnit.wrapping.1.payloadEncryptionAlgorithm=AES
kra.storageUnit.wrapping.1.payloadEncryptionMode=CBC
kra.storageUnit.wrapping.1.payloadWrapAlgorithm=AES KeyWrap
kra.storageUnit.wrapping.1.sessionKeyType=AES
kra.storageUnit.wrapping.1.payloadWrapIVLen=16
kra.storageUnit.wrapping.choice=1

Each group (kra.storageUnit.wrapping.0.* vs kra.storageUnit.wrapping.1.*) has individual settings,
and the number defines which settings belong to the same configuration group. The current
configuration group is set in the kra.storageUnit.wrapping.choice parameter in the
/var/lib/pki/pki-instance_name/conf/kra/CS.cfg file.

Ensure that kra.storageUnit.wrapping.choice=1 is set in the configuration file before continuing.

NOTE

CHAPTER 17. CONFIGURING THE KEY RECOVERY AUTHORITY

273

NOTE

Certificate System adds the information required to decrypt the data to the record in the
KRA database. Therefore, even after changing the encryption algorithm,
Certificate System is still able to decrypt data previously stored in the KRA using a
different encryption algorithm.

17.2.2.1. Explanation of Parameters and their Values

Each secret (a "payload") is encrypted with a session key. Parameters controlling this encryption are
prefixed with payload. The set of parameters to be used depends on the value of
kra.allowEncDecrypt.archive and kra.allowEncDecrypt.recovery. By default, both of these are false.
See Section 17.2.2.2, “Solving Limitations of HSMs When Using AES Encryption in KRAs” for the effect
of these two parameters on HSMs.

When kra.allowEncDecrypt.archive and kra.allowEncDecrypt.recovery are both false:

payloadWrapAlgorithm determines the wrapping algorithm used. The only one valid choice is
AES KeyWrap.

When payloadWrapAlgorithm=AES/CBC/PKCS5Padding, then payloadWrapIVLength=16
has to be specified to tell PKI that we need to generate an IV (as CBC requires one).

When kra.allowEncDecrypt.archive and kra.allowEncDecrypt.recovery are both true:

payloadEncryptionAlgorithm determines the encryption algorithm used. The only valid choice
is AES.

payloadEncryptionMode determines the block chaining mode. The only valid choice is CBC.

payloadEncryptionPadding determines the padding scheme. The only valid choice is
PKCS5Padding.

The session key is then wrapped with the KRA Storage Certificate, an RSA token. Parameters controlling
the session key and its encryption are prefixed with sessionKey.

sessionKeyType is the type of key to generate. The only valid choice is AES.

sessionKeyLength is the length of the generated session key. Valid choices are 128 and 256, to
encrypt the payload with 128-bit AES or 256-bit AES respectively.

sessionKeyWrapAlgorithm is the type of key the KRA Storage Certificate is. The only valid
choice in this guide is RSA.

17.2.2.2. Solving Limitations of HSMs When Using AES Encryption in KRAs

If you run Certificate System with AES enabled in the KRA, but the Hardware Security Module (HSM)
does not support the AES key wrapping feature, key archival fails. To solve the problem, the following
solutions are supported:

the section called “Selecting a Different Algorithm for the Key Wrapping”

Section 7.7.5.5, “Setting the KRA into Encryption Mode”

Selecting a Different Algorithm for the Key Wrapping

Sometimes the KRA does not support the default key wrapping algorithm, but it supports other

Planning, Installation, and Deployment Guide

274

Sometimes the KRA does not support the default key wrapping algorithm, but it supports other
algorithms. For example, to use AES-128-CBC as the key wrapping algorithm:

1. Set the following parameters in the /var/lib/pki/pki-instance_name/conf/kra/CS.cfg file:

kra.storageUnit.wrapping.1.payloadWrapAlgorithm=AES KeyWrap
kra.storageUnit.wrapping.1.payloadWrapIVLen=16
kra.storageUnit.wrapping.1.sessionKeyLength=128

2. Restart the instance:

systemctl restart pki-tomcatd@instance_name.service

OR (if using nuxwdog watchdog)

systemctl restart pki-tomcatd-nuxwdog@instance_name.service

If the KRA runs in a difference instance then the CA, you need to restart both instances.

Selecting a different algorithm for the key wrapping has the benefit that if the HSM later adds support
for AES key wrapping, you can revert the settings because the key records have the relevant
information set.

This configuration uses the kra.storageUnit.wrapping.1.payloadWrap{Algorithm,IVLen} and
kra.storageUnit.wrapping.1.payloadEncryption{Algorithm,Mode,Padding} parameters.

Setting the KRA into Encryption Mode
If the HSM does not support any KeyWrap algorithms, on some occassions it is necessary to place the
KRA into Encryption Mode. When setting the KRA into encryption mode, all keys will be stored using
encryption algorithms rather than key wrapping algorithms.

To set the KRA into encryption mode:

1. Set the following parameters in the /var/lib/pki/pki-instance_name/conf/kra/CS.cfg file to
true:

kra.allowEncDecrypt.archive=true
kra.allowEncDecrypt.recovery=true

2. Restart the service:

systemctl restart pki-tomcatd@instance_name.service

OR (if using nuxwdog watchdog)

systemctl restart pki-tomcatd-nuxwdog@instance_name.service

If the KRA runs in a difference instance than the CA, you need to restart both instances.

This configuration uses kra.storageUnit.wrapping.1.payloadEncryption{Algorithm,Mode,Padding}
and kra.storageUnit.wrapping.1.payloadWrap{Algorithm,IVLen} parameters.

NOTE

CHAPTER 17. CONFIGURING THE KEY RECOVERY AUTHORITY

275

NOTE

If you later switch to a different algorithm for the key wrapping according to the section
called “Selecting a Different Algorithm for the Key Wrapping”, you must manually add the
appropriate meta data to records created before you set the KRA into encryption mode.

17.3. SETTING UP AGENT-APPROVED KEY RECOVERY SCHEMES

Key recovery agents collectively authorize and retrieve private encryption keys and associated
certificates in a PKCS #12 package. To authorize key recovery, the required number of recovery agents
access the KRA agent services page and use the Authorize Recovery area to enter each authorization
separately.

One of the agents initiates the key recovery process. For a synchronous recovery, each approving agent
uses the reference number (which was returned with the initial request) to open the request and then
authorizes key recovery separately. For an asynchronous recovery, the approving agents all search for
the key recovery request and then authorize the key recovery. Either way, when all of the authorizations
are entered, the KRA checks the information. If the information presented is correct, it retrieves the
requested key and returns it along with the corresponding certificate in the form of a PKCS #12 package
to the agent who initiated the key recovery process.

The key recovery agent scheme configures the KRA to recognize to which group the key recovery
agents belong and specifies how many of these agents are required to authorize a key recovery request
before the archived key is restored.

17.3.1. Configuring Agent-Approved Key Recovery in the Command Line

To set up agent-initiated key recovery, edit two parameters in the KRA configuration:

Set the number of recovery managers to require to approve a recovery.

Set the group to which these users must belong.

These parameters are set in the KRA's CS.cfg configuration file.

1. Stop the server before editing the configuration file.

systemctl stop pki-tomcatd@instance_name.service

OR (if using nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

2. Open the KRA's CS.cfg file.

vim /var/lib/pki/pki-tomcat/kra/conf/CS.cfg

3. Edit the two recovery scheme parameters.

kra.noOfRequiredRecoveryAgents=3
kra.recoveryAgentGroup=Key Recovery Authority Agents

4. Restart the server.

Planning, Installation, and Deployment Guide

276

systemctl start pki-tomcatd@instance_name.service

OR

systemctl start pki-tomcatd-nuxwdog@instance_name.service

NOTE

For more information on how to configure agent-approved key recovery in the console,
see the see the Configuring Agent-Approved Key Recovery in the Console section in the
Red Hat Certificate System Administration Guide.

17.3.2. Customizing the Key Recovery Form

The default key agent scheme requires a single agent from the Key Recovery Authority Agents group to
be in charge of authorizing key recovery.

It is also possible to customize the appearance of the key recovery form. Key recovery agents need an
appropriate page to initiate the key recovery process. By default, the KRA's agent services page includes
the appropriate HTML form to allow key recovery agents to initiate key recovery, authorize key recovery
requests, and retrieve the encryption keys. This form is located in the /var/lib/pki/pki-
tomcat/kra/webapps/kra/agent/kra/ directory, called confirmRecover.html.

IMPORTANT

If the key recovery confirmation form is customized, do not to delete any of the
information for generating the response. This is vital to the functioning of the form.
Restrict any changes to the content in and appearance of the form.

17.3.3. Rewrapping Keys in a New Private Storage Key

Some private keys (mainly in older deployments) were wrapped in SHA-1, 1024-bit storage keys when
they were archived in the KRA. These algorithms have become less secure as processor speeds improve
and algorithms have been broken. As a security measure, it is possible to rewrap the private keys in a
new, stronger storage key (SHA-256, 2048-bit keys).

17.3.3.1. About KRATool

Rewrapping and moving keys and key enrollment and recovery requests is done using the KRATool
utility (known in previous versions of Red Hat Certificate System as DRMTool).

The KRATool performs two operations: it can rewrap keys with a new private key, and it can renumber
attributes in the LDIF file entries for key records, including enrollment and recovery requests. At least
one operation (rewrap or renumber) must be performed and both can be performed in a single
invocation.

For rewrapping keys, the tool accesses the key entries in an exported LDIF file for the original KRA,
unwraps the keys using the original KRA storage key, and then rewraps the keys in the new KRA's
stronger storage key.

Example 17.1. Rewrapping Keys

KRATool -kratool_config_file "/usr/share/pki/java-tools/KRATool.cfg" -source_ldif_file

CHAPTER 17. CONFIGURING THE KEY RECOVERY AUTHORITY

277

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/key_recovery_authority#agent-recovery-console

"/tmp/files/originalKRA.ldif" -target_ldif_file "/tmp/files/newKRA.ldif" -log_file "/tmp/kratool.log" -
source_pki_security_database_path "/tmp/files/" -source_storage_token_name "Internal Key
Storage Token" -source_storage_certificate_nickname "storageCert cert-pki-tomcat KRA" -
target_storage_certificate_file "/tmp/files/omega.cert"

When multiple KRA instances are being merged into a single instance, it is important to make sure that
no key or request records have conflicting CNs, DNs, serial numbers, or request ID numbers. These
values can be processed to append a new, larger number to the existing values.

Example 17.2. Renumbering Keys

KRATool -kratool_config_file "/usr/share/pki/java-tools/KRATool.cfg" -source_ldif_file
"/tmp/files/originalKRA.ldif" -target_ldif_file "/tmp/files/newKRA.ldif" -log_file "/tmp/kratool.log" -
append_id_offset 100000000000 -source_kra_naming_context "pki-tomcat-KRA" -
target_kra_naming_context "pki-tomcat-2-KRA" -process_requests_and_key_records_only

The KRATool options and its configuration file are discussed in more detail in the KRATool(1) man
page.

17.3.3.2. Rewrapping and Merging Keys from One or More KRAs into a Single KRA

This procedure rewraps the keys stored in one or more Certificate System KRA (for example, pki-
tomcat on sourcekra.example.com) and stores them into another Certificate System KRA (for example,
pki-tomcat-2 on targetkra.example.com). This is not the only use case; the tool can be run on the same
instance as both the source and target, to rewrap existing keys, or it can be used simply to copy keys
from multiple KRA instances into a single instance without rewrapping the keys at all.

IMPORTANT

The storage key size and type in the pki-tomcat-2 KRA must be set to 2048-bit and RSA.

1. Log in to targetkra.example.com.

2. Stop the pki-tomcat-2 KRA.

[root@targetkra ~]# systemctl stop pki-tomcatd@pki-tomcat-2.service

3. Create a data directory to store the key data that will be imported from the pki-tomcat KRA
instance residing on sourcekra.example.com.

[root@targetkra ~]# mkdir -p /export/pki

4. Export the public storage certificate for the pki-tomcat-2 KRA to a flat file in the new data
directory.

[root@targetkra ~]# certutil -L -d /var/lib/pki/pki-tomcat-2/alias -n "storageCert cert-pki-
tomcat-2 KRA" -a > /export/pki/targetKRA.cert

5. Stop the Directory Server instance for the pki-tomcat-2 KRA, if it is on the same machine.

Planning, Installation, and Deployment Guide

278

[root@newkra ~]# systemctl stop dirsrv.target

6. Export the configuration information for the pki-tomcat-2 KRA.

root@targetkra ~]# grep nsslapd-localuser /etc/dirsrv/slapd-instanceName/dse.ldif
 nsslapd-localuser: dirsrv

[root@targetkra ~]# chown dirsrv:dirsrv /export/pki

[root@targetkra ~]# /usr/lib64/dirsrv/slapd-instanceName/db2ldif -n pki-tomcat-2-KRA -a
/export/pki/pki-tomcat-2.ldif

IMPORTANT

Make sure that the LDIF file contains a single blank line at the end.

7. Log in to sourcekra.example.com.

8. Stop the pki-tomcat KRA.

[root@sourcekra ~]# systemctl stop pki-tomcatd@pki-tomcat.service

9. Create a data directory to store the key data that will be exported to the pki-tomcat-2 KRA
instance residing on targetkra.example.com.

[root@sourcekra ~]# mkdir -p /export/pki

10. Stop the Directory Server instance for the pki-tomcat KRA, if it is on the same machine.

[root@sourcekra ~]# systemctl stop dirsrv.target

11. Export the configuration information for the pki-tomcat KRA.

[root@sourcekra ~]# grep nsslapd-localuser /etc/dirsrv/slapd-instanceName/dse.ldif
 nsslapd-localuser: dirsrv

[root@sourcekra ~]# chown dirsrv:dirsrv /export/pki

[root@sourcekra ~]# /usr/lib64/dirsrv/slapd-instanceName/db2ldif -n pki-tomcat-KRA -a
/export/pki/pki-tomcat.ldif

IMPORTANT

Make sure that the LDIF file contains a single blank line at the end.

12. Copy the pki-tomcat KRA NSS security databases to this directory.

[root@sourcekra ~]# cp -p /var/lib/pki/pki-tomcat/alias/cert9.db /export/pki

[root@sourcekra ~]# cp -p /var/lib/pki/pki-tomcat/alias/key4.db /export/pki

CHAPTER 17. CONFIGURING THE KEY RECOVERY AUTHORITY

279

[root@sourcekra ~]# cp -p /var/lib/pki/pki-tomcat/alias/pkcs11.txt /export/pki

13. Copy the file with the public storage key from the pki-tomcat-2 KRA machine to this machine.
For example:

[root@sourcekra ~]# cd /export/pki

[root@sourcekra ~]# sftp root@targetkra.example.com
 sftp> cd /export/pki
 sftp> get targetKRA.cert
 sftp> quit

14. If necessary, edit the default KRATool.cfg file to use with the tool. The default file can also be
used without changes.

15. Run the KRATool; all of these parameters should be on a single line:

[root@sourcekra ~]# KRATool -kratool_config_file "/usr/share/pki/java-tools/KRATool.cfg"
 -source_ldif_file /export/pki/pki-tomcat.ldif \
 -target_ldif_file /export/pki/source2targetKRA.ldif \
 -log_file /export/pki/kratool.log \
 -source_pki_security_database_path /export/pki \
 -source_storage_token_name 'Internal Key Storage Token' \
 -source_storage_certificate_nickname 'storageCert cert-pki-tomcat KRA' \
 -target_storage_certificate_file /export/pki/targetKRA.cert
 -append_id_offset 100000000000 \
 -source_kra_naming_context "pki-tomcat-KRA" \
 -target_kra_naming_context "pki-tomcat-2-KRA" \
 -process_requests_and_key_records_only

NOTE

The command may prompt for the password to the token stored in the pki-
tomcat KRA NSS security databases.

When it is done, the command creates the file specified in the -target_ldif_file parameter,
source2targetKRA.ldif.

16. Copy this LDIF file over to the pki-tomcat-2 KRA machine. For example:

[root@sourcekra ~]# scp /export/pki/source2targetKRA.ldif
root@targetkra.example.com:/export/pki

IMPORTANT

Make sure that the LDIF file contains a single blank line at the end.

17. If multiple KRA instances are being merged, their data can be merged into a single import
operation. Simply perform the same procedure for every KRA, which will be merged.

IMPORTANT

Planning, Installation, and Deployment Guide

280

IMPORTANT

Make sure to specify unique values for the -target_ldif_file parameter to create
separate LDIF files, and to specify unique -append_id_offset values so that
there are no conflicts when the LDIF files are concatenated.

18. On the pki-tomcat-2 KRA machine, import the LDIF file(s) with the other key data by
concatenating the pki-tomcat-2 KRA configuration LDIF file and every exported LDIF file for
the other KRA instances. For example:

[root@targetkra ~]# cd /export/pki
[root@targetkra ~]# cat pki-tomcat-2.ldif source2targetKRA.ldif > combined.ldif

19. Import this combined LDIF file into the Directory Server database for the pki-tomcat-2 KRA
instance.

[root@targetkra ~]# /usr/lib64/dirsrv/slapd-instanceName/ldif2db -n pki-tomcat-2-KRA -i
/export/pki/combined.ldif

20. Start the Directory Server instance for the pki-tomcat-2 KRA.

[root@targetkra ~]# systemctl start dirsrv.target

21. Start the pki-tomcat-2 KRA.

[root@targetkra ~]# systemctl start pki-tomcatd@pki-tomcat-2.service

17.3.4. Updating CA-KRA Connector Information After Cloning

For more information on updating CA-KRA information after cloning, see Section 17.3.4, “Updating CA-
KRA Connector Information After Cloning”.

CHAPTER 17. CONFIGURING THE KEY RECOVERY AUTHORITY

281

CHAPTER 18. CONFIGURING LOGS
The Certificate System subsystem log files record events related to operations within that specific
subsystem instance. For each subsystem, different logs are kept for issues such as installation, access,
and web servers.

All subsystems have similar log configuration, options, and administrative paths.

For details about log administration after the installation, see the Configuring Subsystem Logs section in
the Red Hat Certificate System Administration Guide.

For an overview on logs, see Section 2.3.14, “Logs”.

18.1. CERTIFICATE SYSTEM LOG SETTINGS

The way that logs are configured can affect Certificate System performance. For example, log file
rotation keeps logs from becoming too large, which slows down subsystem performance. This section
explains the different kinds of logs recorded by Certificate System subsystems and covers important
concepts such as log file rotation, buffered logging, and available log levels.

18.1.1. Services That Are Logged

All major components and protocols of Certificate System log messages to log files. Table 18.1, “Services
Logged” lists services that are logged by default. To view messages logged by a specific service,
customize log settings accordingly.

Table 18.1. Services Logged

Service Description

ACLs Logs events related to access control lists.

Administration Logs events related to administration activities, such as HTTPS
communication between the Console and the instance.

All Logs events related to all the services.

Authentication Logs events related to activity with the authentication module.

Certificate Authority Logs events related to the Certificate Manager.

Database Logs events related to activity with the internal database.

HTTP Logs events related to the HTTP activity of the server. Note that HTTP
events are actually logged to the errors log belonging to the Apache
server incorporated with the Certificate System to provide HTTP
services.

Key Recovery Authority Logs events related to the KRA.

LDAP Logs events related to activity with the LDAP directory, which is used for
publishing certificates and CRLs.

Planning, Installation, and Deployment Guide

282

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/logs

OCSP Logs events related to OCSP, such as OCSP status GET requests.

Others Logs events related to other activities, such as command-line utilities
and other processes.

Request Queue Logs events related to the request queue activity.

User and Group Logs events related to users and groups of the instance.

Service Description

18.1.2. Log Levels (Message Categories)

The different events logged by Certificate System services are determined by the log levels, which
makes identifying and filtering events simpler. The different Certificate System log levels are listed in
Table 18.2, “Log Levels and Corresponding Log Messages” .

Log levels are represented by numbers 0 to 10, each number indicating the level of logging to be
performed by the server. The level sets how detailed the logging should be.

A higher priority level means less detail because only events of high priority are logged.

NOTE

The default log level is 1 and this value should not be changed. To enable debug logging,
see Section 18.3.3, “Additional Configuration for Debug Log” .

Table 18.2, “Log Levels and Corresponding Log Messages” is provided for reference to
better understand log messages.

Table 18.2. Log Levels and Corresponding Log Messages

Log
level

Message category Description

0 Debugging These messages contain debugging information. This level is not
recommended for regular use because it generates too much
information.

1 Informational (default
selection for audit log)

These messages provide general information about the state of
the Certificate System, including status messages such as
Certificate System initialization complete and Request for
operation succeeded.

2 Warning These messages are warnings only and do not indicate any
failure in the normal operation of the server.

CHAPTER 18. CONFIGURING LOGS

283

3 Failure; the default selection
for system and error logs

These messages indicate errors and failures that prevent the
server from operating normally, including failures to perform a
certificate service operation (User authentication failed or
Certificate revoked) and unexpected situations that can cause
irrevocable errors (The server cannot send back the request it
processed for a client through the same channel the request
came from the client).

4 Misconfiguration These messages indicate that a misconfiguration in the server is
causing an error.

5 Catastrophic failure These messages indicate that, because of an error, the service
cannot continue running.

6 Security-related events These messages identify occurrences that affect the security of
the server. For example, Privileged access attempted by
user with revoked or unlisted certificate.

7 PDU-related events
(debugging)

These messages contain debugging information for PDU events.
This level is not recommended for regular use because it
generates more information than is normally useful.

8 PDU-related events These messages relate transactions and rules processed on a
PDU, such as creating MAC tokens.

9 PDU-related events This log levels provides verbose log messages for events
processed on a PDU, such as creating MAC tokens.

10 All logging levels This log level enables all logging levels.

Log
level

Message category Description

Log levels can be used to filter log entries based on the severity of an event. By default, log level 3
(Failure) is set for all services.

The log level is successive; specifying a value of 3 causes levels 4, 5, and 6 to be logged. Log data can be
extensive, especially at lower (more verbose) logging levels. Make sure that the host machine has
sufficient disk space for all the log files. It is also important to define the logging level, log rotation, and
server-backup policies appropriately so that all the log files are backed up and the host system does not
get overloaded; otherwise, information can be lost.

18.1.3. Buffered and Unbuffered Logging

The Java subsystems support buffered logging for all types of logs. The server can be configured for
either buffered or unbuffered logging.

If buffered logging is configured, the server creates buffers for the corresponding logs and holds the
messages in the buffers for as long as possible. The server flushes out the messages to the log files only
when one of the following conditions occurs:

The buffer gets full. The buffer is full when the buffer size is equal to or greater than the value

Planning, Installation, and Deployment Guide

284

The buffer gets full. The buffer is full when the buffer size is equal to or greater than the value
specified by the bufferSize configuration parameter. The default value for this parameter is 512
KB.

The flush interval for the buffer is reached. The flush interval is reached when the time interval
since the last buffer flush is equal to or greater than the value specified by the flushInterval
configuration parameter. The default value for this parameter is 5 seconds.

When current logs are read from Console. The server retrieves the latest log when it is queried
for current logs.

If the server is configured for unbuffered logging, the server flushes out messages as they are generated
to the log files. Because the server performs an I/O operation (writing to the log file) each time a
message is generated, configuring the server for unbuffered logging decreases performance.

Setting log parameters is described in the Configuring Logs in the Console section in the Red Hat
Certificate System Administration Guide.

18.1.4. Log File Rotation

The subsystem logs have an optional log setting that allows them to be rotated and start a new log file
instead of letting log files grow indefinitely. Log files are rotated when either of the following occur:

The size limit for the corresponding file is reached. The size of the corresponding log file is
equal to or greater than the value specified by the maxFileSize configuration parameter. The
default value for this parameter is 100 KB.

The age limit for the corresponding file is reached. The corresponding log file is equal to or
older than the interval specified by the rolloverInterval configuration parameter. The default
value for this parameter is 2592000 seconds (every thirty days).

When a log file is rotated, the old file is named using the name of the file with an appended time stamp.
The appended time stamp is an integer that indicates the date and time the corresponding active log
file was rotated. The date and time have the forms YYYYMMDD (year, month, day) and HHMMSS
(hour, minute, second).

Log files, especially the audit log file, contain critical information. These files should be periodically
archived to some backup medium by copying the entire log directory to an archive medium.

NOTE

The Certificate System does not provide any tool or utility for archiving log files.

The Certificate System provides a command-line utility, signtool, that signs log files before archiving
them as a means of tamper detection.

Signing log files is an alternative to the signed audit logs feature. Signed audit logs create audit logs that
are automatically signed with a subsystem signing certificate.

Rotated log files are not deleted.

18.2. OPERATING SYSTEM (EXTERNAL TO RHCS) LOG SETTINGS

18.2.1. Enabling OS-level Audit Logs

CHAPTER 18. CONFIGURING LOGS

285

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/java-logs#Configuring_Logs

WARNING

All operations in the following sections have to be performed as root or a privileged
user via sudo.

The auditd logging framework provides many additional audit capabilities. These OS-level audit logs
complement functionality provided by Certificate System directly. Before performing any of the
following steps in this section, make sure the audit package is installed:

sudo yum install audit

Auditing of system package updates (using yum and rpm and including Certificate System) is
automatically performed and requires no additional configuration.

NOTE

After adding each audit rule and restarting the auditd service, validate the new rules were
added by running:

auditctl -l

The contents of the new rules should be visible in the output.

For instructions on viewing the resulting audit logs, see the Displaying Operating System-level Audit
Logs section in the Red Hat Certificate System Administration Guide.

18.2.1.1. Auditing Certificate System Audit Log Deletion

To receive audit events for when audit logs are deleted, you need to audit system calls whose targets are
Certificate System logs.

Create the file /etc/audit/rules.d/rhcs-audit-log-deletion.rules with the following contents:

-a always,exit -F arch=b32 -S unlink -F dir=/var/log/pki -F key=rhcs_audit_deletion
-a always,exit -F arch=b32 -S rename -F dir=/var/log/pki -F key=rhcs_audit_deletion
-a always,exit -F arch=b32 -S rmdir -F dir=/var/log/pki -F key=rhcs_audit_deletion
-a always,exit -F arch=b32 -S unlinkat -F dir=/var/log/pki -F key=rhcs_audit_deletion
-a always,exit -F arch=b32 -S renameat -F dir=/var/log/pki -F key=rhcs_audit_deletion
-a always,exit -F arch=b64 -S unlink -F dir=/var/log/pki -F key=rhcs_audit_deletion
-a always,exit -F arch=b64 -S rename -F dir=/var/log/pki -F key=rhcs_audit_deletion
-a always,exit -F arch=b64 -S rmdir -F dir=/var/log/pki -F key=rhcs_audit_deletion
-a always,exit -F arch=b64 -S unlinkat -F dir=/var/log/pki -F key=rhcs_audit_deletion
-a always,exit -F arch=b64 -S renameat -F dir=/var/log/pki -F key=rhcs_audit_deletion

Then restart auditd:

service auditd restart



Planning, Installation, and Deployment Guide

286

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/using_logs#displaying_operating_system-level_audit_logs

18.2.1.2. Auditing Unauthorized Certificate System Use of Secret Keys

To receive audit events for all access to Certificate System Secret or Private keys, you need to audit the
file system access to the NSS DB.

Create the /etc/audit/rules.d/rhcs-audit-nssdb-access.rules file with the following contents:

-w /etc/pki/<instance name>/alias -p warx -k rhcs_audit_nssdb

<instance name> is the name of the current instance. For each file (`<file>`) in /etc/pki/<instance
name>/alias, add to /etc/audit/rules.d/rhcs-audit-nssdb-access.rules the following line :

-w /etc/pki/<instance name>/alias/<file> -p warx -k rhcs_audit_nssdb

For example, if the instance name is pki-ca121318ec and cert9.db, key4.db, NHSM-CONN-XCcert9.db,
NHSM-CONN-XCkey4.db, and pkcs11.txt are files, then the configuration file would contain:

-w /etc/pki/pki-ca121318ec/alias -p warx -k rhcs_audit_nssdb
-w /etc/pki/pki-ca121318ec/alias/cert9.db -p warx -k rhcs_audit_nssdb
-w /etc/pki/pki-ca121318ec/alias/key4.db -p warx -k rhcs_audit_nssdb
-w /etc/pki/pki-ca121318ec/alias/NHSM-CONN-XCcert9.db -p warx -k rhcs_audit_nssdb
-w /etc/pki/pki-ca121318ec/alias/NHSM-CONN-XCkey4.db -p warx -k rhcs_audit_nssdb
-w /etc/pki/pki-ca121318ec/alias/pkcs11.txt -p warx -k rhcs_audit_nssdb

Then restart auditd:

service auditd restart

18.2.1.3. Auditing Time Change Events

To receive audit events for time changes, you need to audit a system call access which could modify the
system time.

Create the /etc/audit/rules.d/rhcs-audit-rhcs_audit_time_change.rules file with the following
contents:

-a always,exit -F arch=b32 -S adjtimex,settimeofday,stime -F key=rhcs_audit_time_change
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=rhcs_audit_time_change
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=rhcs_audit_time_change
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=rhcs_audit_time_change
-a always,exit -F arch=b32 -S clock_adjtime -F key=rhcs_audit_time_change
-a always,exit -F arch=b64 -S clock_adjtime -F key=rhcs_audit_time_change
-w /etc/localtime -p wa -k rhcs_audit_time_change

Then restart auditd:

service auditd restart

For instructions on how to set time, see Setting Time and Date in Red Hat Enterprise Linux 7 in the
Red Hat Certificate System Administration Guide.

18.2.1.4. Auditing Access to Certificate System Configuration

To receive audit events for all modifications to the Certificate System instance configuration files, audit

CHAPTER 18. CONFIGURING LOGS

287

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/setting_time_and_date_in_rhel

To receive audit events for all modifications to the Certificate System instance configuration files, audit
the file system access for these files.

Create the /etc/audit/rules.d/rhcs-audit-config-access.rules file with the following contents:

-w /etc/pki/instance_name/server.xml -p wax -k rhcs_audit_config

Additionally, add for each subsystem in the /etc/pki/instance_name/ directory the following contents:

-w /etc/pki/instance_name/subsystem/CS.cfg -p wax -k rhcs_audit_config

Example 18.1. rhcs-audit-config-access.rules Configuration File

For example, if the instance name is pki-ca121318ec and only a CA is installed, the
/etc/audit/rules.d/rhcs-audit-config-access.rules file would contain:

-w /etc/pki/pki-ca121318ec/server.xml -p wax -k rhcs_audit_config
-w /etc/pki/pki-ca121318ec/ca/CS.cfg -p wax -k rhcs_audit_config

Note that access to the PKI NSS database is already audited under rhcs_audit_nssdb.

18.3. CONFIGURING LOGS IN THE CS.CFG FILE

During the installation configuration, logging can be configured by directly editing the CS.cfg for the
instance.

1. Stop the subsystem instance.

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

2. Open the CS.cfg file in the /var/lib/pki/instance_name/subsystem_type/conf directory.

3. Create a new log.

4. To configure a log instance, modify the parameters associated with that log. These parameters
begin with log.instance.

Table 18.3. Log Entry Parameters

Parameter Description

type The type of log file. system creates error and system logs; transaction
records audit logs.

enable Sets whether the log is active. Only enabled logs actually record events.

level Sets the log level in the text field. The level must be manually entered in
the field; there is no selection menu. The log level setting is a numeric
value, as listed in Section 18.1.2, “Log Levels (Message Categories)”.

Planning, Installation, and Deployment Guide

288

fileName The full path, including the file name, to the log file. The subsystem user
should have read/write permission to the file.

bufferSize The buffer size in kilobytes (KB) for the log. Once the buffer reaches this
size, the contents of the buffer are flushed out and copied to the log file.
The default size is 512 KB. For more information on buffered logging, see
Section 18.1.3, “Buffered and Unbuffered Logging”.

flushInterval The amount of time, in seconds, before the contents of the buffer are
flushed out and added to the log file. The default interval is 5 seconds.

maxFileSize The size, kilobytes (KB), a log file can become before it is rotated. Once it
reaches this size, the file is copied to a rotated file, and the log file is
started new. For more information on log file rotation, see Section 18.1.4,
“Log File Rotation”. The default size is 2000 KB.

rolloverInterval The frequency which the server rotates the active log file. The available
choices are hourly, daily, weekly, monthly, and yearly. The default selection
is monthly. For more information, see Section 18.1.4, “Log File Rotation”.

logSigning[a] Enables signed logging. When this parameter is enabled, provide a value for
the signedAuditCertNickname parameter. This option means the log
can only be viewed by an auditor. The value is either true or false.

signedAuditCertNickn
ame[a]

The nickname of the certificate used to sign audit logs. The private key for
this certificate must be accessible to the subsystem in order for it to sign
the log.

events[a] Specifies which events are logged to the audit log. Log events are
separated by commas with no spaces.

[a] This is for audit logs only.

Parameter Description

5. Save the file.

6. Start the subsystem instance.

systemctl start pki-tomcatd@instance_name.service

OR (if using nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@instance_name.service

18.3.1. Enabling and Configuring Signed Audit Log

18.3.1.1. Enabling Signed Audit Logging

By default, audit logging is enabled upon installation. However, log signing needs to be enabled manually

CHAPTER 18. CONFIGURING LOGS

289

By default, audit logging is enabled upon installation. However, log signing needs to be enabled manually
after installation.

To display the current audit logging configuration:

pki-server subsystem-audit-config-show
 Enabled: True
 Log File: audit_signing_log_file
 Buffer Size (bytes): 512
 Flush Interval (seconds): 5
 Max File Size (bytes): 2000
 Rollover Interval (seconds): 2592000
 Expiration Time (seconds): 0
 Log Signing: False
 Signing Certificate: audit_signing_certificate

To enable signed audit logging:

1. Use the pki-server utility to set the --logSigning option to true:

pki-server subsystem-audit-config-mod --logSigning True
 ...
 Log Signing: True
 ...

2. Restart the instance:

systemctl restart pki-tomcatd@instance_name.service

OR (if using nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@instance_name.service

18.3.1.2. Configuring Audit Events

18.3.1.2.1. Enabling and Disabling Audit Events

For details about enabling and disabling audit events, see the Configuring a Signed Audit Log in the
Console section in the Red Hat Certificate System Administration Guide.

In addition, audit event filters can be set to finer grained selection. See Section 18.3.1.2.2, “Filtering Audit
Events”.

For a complete list of auditable events in Certificate System, see the Audit events appendix in the
Red Hat Certificate System Administration Guide.

18.3.1.2.2. Filtering Audit Events

In Certificate System administrators can set filters to configure which audit events will be logged in the
audit file based on the event attributes.

The format of the filters is the same as for LDAP filters. However, Certificate System only supports the
following filters:

Planning, Installation, and Deployment Guide

290

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/java-logs#Signed_Audit_Log
https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/audit_events

Table 18.4. Supported Audit Event Filters

Type Format Example

Presence (attribute=*) (ReqID=*)

Equality (attribute=value) (Outcome=Failure)

Substring (attribute=initial*any*...*any*final) (SubjectID=*admin*)

AND operation (&(filter_1)(filter_2)...(filter_n)) (&(SubjectID=admin)(Outcome=Failure))

OR operation (|(filter_1)(filter_2)...(filter_n)) (|(SubjectID=admin)(Outcome=Failure))

NOT operation (!(filter)) (!(SubjectID=admin))

For further details on LDAP filters, see the Using Compound Search Filters section in the Red Hat
Directory Server Administration Guide.

Example 18.2. Filtering Audit Events

To display the current settings for profile certificate requests and processed certificates:

$ pki-server ca-audit-event-show PROFILE_CERT_REQUEST
 Event Name: PROFILE_CERT_REQUEST
 Enabled: True
 Filter: None

$ pki-server ca-audit-event-show CERT_REQUEST_PROCESSED
 Event Name: CERT_REQUEST_PROCESSED
 Enabled: True
 Filter: None

To log only failed events for profile certificate requests and events for processed certificate
requests that have the InfoName field set to rejectReason or cancelReason:

1. Execute the following commands:

$ pki-server ca-audit-event-update PROFILE_CERT_REQUEST --filter "
(Outcome=Failure)"
 ...
 Filter: (Outcome=Failure)

$ pki-server ca-audit-event-update CERT_REQUEST_PROCESSED --filter "(|
(InfoName=rejectReason)(InfoName=cancelReason))"
 ...
 Filter: (|(InfoName=rejectReason)(InfoName=cancelReason))

2. Restart Certificate System:

systemctl restart pki-tomcatd@instance_name.service

CHAPTER 18. CONFIGURING LOGS

291

OR (if using nuxwdog watchdog)

systemctl start pki-tomcatd-nuxwdog@instance_name.service

18.3.2. Configuring Self-Tests

The self-tests feature and individual self-tests are registered and configured in the CS.cfg file. If a self-
test is enabled, that self-test is listed for either on-demand or start up and is either empty or set as
critical.

Critical self-tests have a colon and the word critical after the name of the self-test. Otherwise, nothing
is in this place. The server shuts down when a critical self-test fails during on demand self-tests; the
server will not start when a critical self-test fails during start up.

The implemented self-tests are automatically registered and configured when the instance was installed.
The self-tests that are registered and configured are those associated with the subsystem type.

A self-test's criticality is changed by changing the respective settings in the CS.cfg file.

18.3.2.1. Default Self-Tests at Startup

The following self-tests are enabled by default at startup.

For the CA subsystem, the following self-tests are enabled by default at startup:

CAPresence - used to verify the presence of the CA subsystem.

CAValidity - used to determine that the CA subsystem is currently valid and has not expired.
This involves checking the expiration of the CA certificate.

SystemCertsVerification - used to determine that the system certificates are currently valid
and have not expired or been revoked. For the CA subsystem, only validity tests for each
certificate are done, leaving out certificate verification tests which could result in an OCSP
request. This behavior can be overridden with the following config parameter:

selftests.plugin.SystemCertsVerification.FullCAandOCSPVerify=true

By default, this config parameter is considered false if not present at all.

For the KRA subsystem, the following-self-tests are enabled:

KRAPresence - used to verify the presence of the KRA subsystem.

KRAValidity - used to determine that the KRA subsystem is currently valid and has not expired.
This involves checking the expiration of the KRA certificate.

SystemCertsVerification - used to determine that the system certificates are currently valid
and have not expired or been revoked.

For the OCSP subsystem, the following self-tests are enabled:

OCSPPresence - used to verify the presence of the OCSP subsystem.

OCSPValidity - used to determine that the OCSP subsystem is currently valid and has not

Planning, Installation, and Deployment Guide

292

OCSPValidity - used to determine that the OCSP subsystem is currently valid and has not
expired. This involves checking the expiration of the OCSP certificate.

SystemCertsVerification - used to determine that the system certificates are currently valid
and have not expired or been revoked. For the OCSP subsystem, only validity tests for each
certificate are done, leaving out certificate verification tests which could result in an OCSP
request. This behavior can be overridden with the following config parameter:

selftests.plugin.SystemCertsVerification.FullCAandOCSPVerify=true

By default, this config parameter is considered false if not present at all.

For the TKS subsystem, the following-self-tests are enabled:

TKSKnownSessionKey - used to verify the known session key of a TKS subsystem. This
verifies the TKS is able to properly assist in creating keys on behalf of the TPS and supported
smart cards.

SystemCertsVerification - used to determine that the system certificates are currently valid
and have not expired or been revoked.

For the TPS subsystem, the following-self-tests are enabled:

TPSPresence - used to verify the presence of the TPS subsystem.

TPSValidity - used to determine that the TPS subsystem is currently valid and has not expired.
This involves checking the expiration of the TPS certificate.

SystemCertsVerification - used to determine that the system certificates are currently valid
and have not expired or been revoked.

18.3.2.2. Modifying Self-Test Configuration

By default, the self-test configuration is compliant. However, some settings can change the visibility of
self-test logging or improve performance. To modify the configuration settings for self-tests:

1. Stop the subsystem instance.

2. Open the CS.cfg file located in the instance's conf/ directory.

3. To edit the settings for the self-test log, edit the entries that begin with
selftests.container.logger. Unless otherwise specified, these parameters do not affect
compliance. These include the following parameters:

bufferSize — Specify the buffer size in kilobytes (KB) for the log. The default size is 512 KB.
Once the buffer reaches this size, the contents of the buffer are flushed out and copied to
the log file.

enable — Specify true to enable. Only enabled logs actually record events. This value must
be enabled for compliance.

fileName — Specify the full path, including the filename, to the file to write messages. The
server must have read/write permission to the file. By default, the self-test log file is
/var/log/pki-name/logs/selftest.log

flushInterval — Specify the interval, in seconds, to flush the buffer to the file. The default

CHAPTER 18. CONFIGURING LOGS

293

flushInterval — Specify the interval, in seconds, to flush the buffer to the file. The default
interval is 5 seconds. The flushInterval is the amount of time before the contents of the
buffer are flushed out and added to the log file.

level — The default selection is 1; this log is not set up for any level beside 1.

maxFileSize — Specify the file size in kilobytes (KB) for the error log. The default size is 100
KB. The maxFileSize determines how large a log file can become before it is rotated. Once
it reaches this size, the file is copied to a rotated file, and a new log file is started.

rolloverInterval — Specify the frequency at which the server rotates the active error log file.
The choices are hourly, daily, weekly, monthly, and yearly. The default selection is monthly.

type — Set to transaction; do not change this.

4. To edit the order in which the self-test are run, specify the order by listing any of the self-test as
the value of the following parameters separated by a comma and a space.

To mark a self-test critical, add a colon and the word critical to the name of the self-test in the
list.

To disable a self-test, remove it as the value of either the selftests.container.order.onDemand
or selftests.container.order.startup parameters.

5. Save the file.

6. Start the subsystem.

18.3.3. Additional Configuration for Debug Log

18.3.3.1. Enabling and Disabling Debug Logging

By default, debug logging is enabled in Certificate System. However, in certain situations,
Administrators want to disable or re-enable this feature:

1. Edit the /var/lib/pki/instance_name/subsystem_type/conf/CS.cfg file and set the
debug.enabled parameter:

To disable debug logging, set:

debug.enabled=false

NOTE

Debug logs are not part of audit logging. Debug logs are helpful when trying
to debug specific failures in Certificate System or a failing installation.

By default, debug logs are enabled. If it is not desired, the administrator can
safely disable debug logging to turn down verbosity.

To enable debug logging, set:

debug.enabled=true

Planning, Installation, and Deployment Guide

294

2. Restart the Certificate System instance:

systemctl restart pki-tomcatd@instance-name.service

OR (if using nuxwdog watchdog)

systemctl restart pki-tomcatd-nuxwdog@instance-name.service

18.3.3.2. Setting up Rotation of Debug Log Files

Certificate System is not able to rotate debug logs. Debug logging is enabled by default and these logs
grow until the file system is full. Use an external utility, such as logrotate, to rotate the logs.

Example 18.3. Using logrotate to Rotate Debug Logs

Create a configuration file, such as /etc/logrotate.d/rhcs_debug with the following content:

/var/log/pki/instance_name/subsystem/debug {
 copytruncate
 weekly
 rotate 5
 notifempty
 missingok
}

To rotate debug logs for multiple subsystems in one configuration file, list the paths to the logs, each
separated by white space, before the opening curly bracket. For example:

/var/log/pki/instance_name/ca/debug /var/log/pki/instance_name/kra/debug {
 ...
}

For further details about logrotate and the parameters used in the example, see the logrotate(8)
man page.

18.4. AUDIT RETENTION

Audit data are required to be retained in a way according to their retention categories:

Extended Audit Retention: Audit data that is retained for necessary maintenance for a
certificate's lifetime (from issuance to its expiration or revocation date). In Certificate System,
they appear in the following areas:

Signed audit logs: All events defined in Appendix E. Audit Events of Red Hat Certificate
System's Administration Guide.

In the CA's internal LDAP server, certificate request records received by the CA and the
certificate records as the requests are approved.

Normal Audit Retention: Audit data that is typically retained only to support normal operation.
This includes all events that do not fall under the extended audit retention category.

NOTE

CHAPTER 18. CONFIGURING LOGS

295

NOTE

Certificate System does not provide any interface to modify or delete audit data.

18.4.1. Location of Audit Data

This section explains where Certificate System stores audit data and where to find the expiration date
which plays a crucial role to determine the retention category.

18.4.1.1. Location of Audit Logs

Certificate System stores audit logs in the /var/log/pki-name/logs/signedAudit/ directory. For example,
the audit logs of a CA are stored in the /var/lib/pki/instance_name/ca/logs/signedAudit/ directory.
Normal users cannot access files in this directory. See

For a list of audit log events that need to follow the extended audit retention period, see the Audit
events appendix in the Red Hat Certificate System Administration Guide.

IMPORTANT

Do not delete any audit logs that contain any events listed in the "Extended Audit Events"
appendix for certificate requests or certificates that have not yet expired.

These audit logs will consume storage space potentially up to all space available in the
disk partition.

18.4.1.2. Location of Certificate Requests and Certificate Records

When certificate signing requests (CSR) are submitted, the CA stores the CSRs in the request
repository provided by the CA's internal directory server. When these requests are approved, each
certificate issued successfully, will result in an LDAP record being created in the certificate repository by
the same internal directory server.

The CA's internal directory server was specified in the following parameters when the CA was created
using the pkispawn utility:

pki_ds_hostname

pki_ds_ldap_port

pki_ds_database

pki_ds_base_dn

If a certificate request has been approved successfully, the validity of the certificate can be viewed by
accessing the CA EE portal either by request ID or by serial number.

To display the validity for a certificate request record:

1. Log into the CA EE portal under https://host_name:port/ca/ee/ca/.

2. Click Check Request Status.

3. Enter the Request Identifier.

Planning, Installation, and Deployment Guide

296

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/audit_events

4. Click Issued Certificate.

5. Search for Validity.

To display the validity from a certificate record:

1. Log into the CA EE portal under https://host_name:port/ca/ee/ca/.

2. Enter the serial number range. If you search for one specific record, enter the record's serial
number in both the lowest and highest serial number field.

3. Click on the search result.

4. Search for Validity.

IMPORTANT

Do not delete the request of the certificate records of the certificates that have not yet
expired.

CHAPTER 18. CONFIGURING LOGS

297

CHAPTER 19. CREATING A ROLE USER
As explained in Section 2.6.6.1, “Default Administrative Roles” , a bootstrap user was created during the
installation. After the installation, create real users and assign them proper system privileges. For
compliance, each user must be a member of only one role (group).

This chapter instruct you how to:

Create a Certificate System administrative user on the operating system

Create a PKI role in Certificate System

19.1. CREATING A PKI ADMINISTRATIVE USER ON THE OPERATING
SYSTEM

This section is for administrative role users. Agent and Auditor role users, see Section 19.2, “Creating a
PKI Role User in Certificate System”.

In general, administrators, agents, and auditors in Certificate System can manage the
Certificate System instance remotely using client applications, such as command-line utilities, the Java
Console, and browsers. For the majority of CS management tasks, a Certificate System role user does
not need to log on to the host machine where the instance runs. For example, an auditor role user is
allowed to retrieve signed audit logs remotely for verification, and an agent role user can use the agent
interface to approve a certificate issuance, while an administrator role user can use command-line
utilities to configure a profile.

In certain cases, however, a Certificate System administrator requires to log in to the host system to
modify configuration files directly, or to start or stop a Certificate System instance. Therefore, on the
operating system, the administrator role user should be someone who is allowed to make changes to the
configuration files and read various logs associated with Red Hat Certificate System.

NOTE

Do not allow the Certificate System administrators or anyone other than the auditors to
access the audit log files.

1. Create the pkiadmin group on the operating system.

groupadd -r pkiadmin

2. Add the pkiuser to the pkiadmin group:

usermod -a -G pkiadmin pkiuser

3. Create a user on the operating system. For example, to create the jsmith account:

useradd -g pkiadmin -d /home/jsmith -s /bin/bash -c "Red Hat Certificate System
Administrator John Smith" -m jsmith

For details, see the useradd(8) man page.

4. Add the user jsmith to the pkiadmin group:

Planning, Installation, and Deployment Guide

298

usermod -a -G pkiadmin jsmith

For details, see the usermod(8) man page.

If you are using a nCipher hardware security module (HSM), add the user who manages the HSM
device to the nfast group:

usermod -a -G nfast pkiuser
usermod -a -G nfast jsmith

5. Add proper sudo rules to allow the pkiadmin group to Certificate System and other system
services.

For both simplicity of administration and security, the Certificate System and Directory Server
processes can be configured so that PKI administrators (instead of only root) can start and stop
the services.

A recommended option when setting up subsystems is to use a pkiadmin system group.
(Details are Section 6.9, “Certificate System Operating System Users and Groups”). All of the
operating system users which will be Certificate System administrators are then added to this
group. If this pkiadmin system group exists, then it can be granted sudo access to perform
certain tasks.

1. Edit the /etc/sudoers file; on Red Hat Enterprise Linux, this can be done using the visudo
command:

2. Depending on what is installed on the machine, add a line for the Directory Server, the
Administration Server, PKI management tools, and each PKI subsystem instance, granting
sudo rights to the pkiadmin group:

IMPORTANT

Make sure to set sudo permissions for every Certificate System, Directory Server,
and Administration Server on the machine — and only for those instances on the
machine. There could be multiple instances of the same subsystem type on a
machine or no instance of a subsystem type. It depends on the deployment.

6. Set the group on the following files to pkiadmin:

chgrp pkiadmin /etc/pki/instance_name/server.xml

visudo

For Directory Server services
%pkiadmin ALL = PASSWD: /usr/bin/systemctl * dirsrv.target
%pkiadmin ALL = PASSWD: /usr/bin/systemctl * dirsrv-admin.service

For PKI instance management
%pkiadmin ALL = PASSWD: /usr/sbin/pkispawn *
%pkiadmin ALL = PASSWD: /usr/sbin/pkidestroy *

For PKI instance services
%pkiadmin ALL = PASSWD: /usr/bin/systemctl * pki-tomcatd@instance_name.service

CHAPTER 19. CREATING A ROLE USER

299

chgrp -R pkiadmin /etc/pki/instance_name/alias
chgrp pkiadmin /etc/pki/instance_name/subsystem/CS.cfg
chgrp pkiadmin /var/log/pki/instance_name/subsystem/debug

After creating the administrative user on the operating system, follow Section 19.2, “Creating a PKI Role
User in Certificate System”.

19.2. CREATING A PKI ROLE USER IN CERTIFICATE SYSTEM

To create a PKI role user, see the Managing Certificate System Users and Groups section in the Red Hat
Certificate System Administration Guide.

Planning, Installation, and Deployment Guide

300

https://access.redhat.com/documentation/en-us/Red_Hat_Certificate_System/10/html/administration_guide/User_and_Group_Authorization

CHAPTER 20. DELETING THE BOOTSTRAP USER

IMPORTANT

Before you delete the bootstrap user, create a real PKI administrative user as described in
Chapter 19, Creating a Role User .

To delete the bootstrap user, follow the procedure described in the Deleting a Certificate System User
section in the Red Hat Certificate System Administration Guide.

20.1. DISABLING MULTI-ROLES SUPPORT

By default, users can belong to more than one subsystem group at once, allowing the user to act as
more than one role. For example, John Smith could belong to both an agent and an administrator group.
However, for highly secure environments, the subsystem roles should be restricted so that a user can
only belong to one role. This can be done by disabling the multirole attribute in the instance's
configuration.

For all subsystems:

1. Stop the server:

systemctl stop pki-tomcatd@instance_name.service

OR (if using nuxwdog watchdog)

systemctl stop pki-tomcatd-nuxwdog@instance_name.service

2. Open the CS.cfg file:

vim /var/lib/pki/instance_name/ca/conf/CS.cfg

3. Change the multiroles.enable parameter value from true to false.

4. Add or edit the list of default roles in Certificate System that are affected by the multi-roles
setting. If multi-roles is disabled and a user belongs to one of the roles listed in the
multiroles.false.groupEnforceList parameter, then the user cannot be added to any group for
any of the other roles in the list.

multiroles.false.groupEnforceList=Administrators,Auditors,Trusted Managers,Certificate
Manager Agents,Registration Manager Agents,Key Recovery Authority Agents,Online
Certificate Status Manager Agents,Token Key Service Manager Agents,Enterprise CA
Administrators,Enterprise KRA Adminstrators,Enterprise OCSP Administrators,Enterprise
TKS Administrators,Enterprise TPS Administrators,Security Domain
Administrators,Subsystem Group

5. Restart the server:

systemctl start pki-tomcatd@instance_name.service

OR (if using nuxwdog watchdog)

CHAPTER 20. DELETING THE BOOTSTRAP USER

301

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html/administration_guide/creating_a_new_group#Deleting_a_CRTS_User

systemctl start pki-tomcatd-nuxwdog@instance_name.service

Planning, Installation, and Deployment Guide

302

PART IV. UPGRADING TO CERTIFICATE SYSTEM 10.X

PART IV. UPGRADING TO CERTIFICATE SYSTEM 10.X

303

CHAPTER 21. UPGRADING FROM CERTIFICATE SYSTEM 9 TO
CERTIFICATE SYSTEM 10
Users are recommended to upgrade to the most recent version of Red Hat Certificate System to get
security and bug fixes through the Errata-Support channel. Currently, the most recent versions are
RHCS 9.7 on RHEL 7.9 and RHCS 10.4 on RHEL 8.6.

21.1. MIGRATING A CA

A Certificate System migration using the existing certificate files requires the following steps:

1. Section 21.1.1, “Exporting Data from the Previous System”

2. Section 21.1.2, “Verifying the PKCS12 file”

3. Section 21.1.3, “Setting up the CA on the New Host”

4. Section 21.1.4, “Importing the Old Data into the New CA”

5. Section 21.1.5, “Reassigning Users to Default Groups”

21.1.1. Exporting Data from the Previous System

Before you set up the new Certificate System instance, export the data of the current certificate
authority (CA) using the steps below. In this example, the CA's instance name is <pki-rootCA> and is
located at /var/lib/pki/<instance_name>.

1. Export the CA signing certificate and key.

grep internal= /var/lib/pki/<instance_name>/conf/password.conf | awk -F= '{print $2;}' >
internal.txt
echo <Secret.123> > password.txt
PKCS12Export -d /var/lib/pki/<instance_name>/alias -p internal.txt -o ca.p12 -w
password.txt

2. Export the Certificate Signing Requests (CSR).

echo "-----BEGIN NEW CERTIFICATE REQUEST-----" > ca_signing.csr
sed -n "/^ca.signing.certreq=/ s/^[^=]*=// p" < /var/lib/pki/<instance_name>/ca/conf/CS.cfg
>> ca_signing.csr
echo "-----END NEW CERTIFICATE REQUEST-----" >> ca_signing.csr

3. If the old CA is an intermediate CA (with a single root CA in the chain), extract the root CA from
the NSS database:

certutil -L -d /var/lib/pki/<instance_name>/alias/ -n root_CA_nickname -a >
ca_rootca_signing.crt

4. Back up the internal LDAP database.

Find the name of the CA database by checking the value of internaldb.database in the
CA's CS.cfg:

Planning, Installation, and Deployment Guide

304

grep internaldb.database /etc/pki/<instance_name>/ca/CS.cfg
internaldb.database=<CS_database_name>

Export this database to a .ldif file using the instance-specific script generated by setup-
ds.pl when the instance was created:

cd /usr/lib64/dirsrv/<instance_name>
./db2ldif -n "<CS_database_name>" -a /tmp/old_ca.ldif

The db2ldif command runs as the DB user, so it needs a destination folder with writing
permissions.

5. Transfer the old_ca.ldif, ca.p12, ca_signing.csr files to the new CA machine. If the CA being
migrated is also an intermediate CA, transfer the ca_rootca_signing.crt as well.

21.1.2. Verifying the PKCS12 file

On the new CA, a new database instance runs on the standard port (389). The PKCS12 file contains all
the system certificates for the old system. Verify that the file includes the CA signing certificate and the
key.

NOTE

In FIPS mode, you must run the pki pkcs12 commands with an NSS database. For more
information, see the pki-pkcs12 CLI.

1. Find the CA signing certificate and the key.

$ echo "<Secret.123>" > password.txt
$ pki pkcs12-cert-find --pkcs12-file ca.p12 --pkcs12-password-file password.txt
$ pki pkcs12-key-find --pkcs12-file ca.p12 --pkcs12-password-file password.txt

2. Verify the presence of the trust flags of the CA signing certificate. If the flags are not
"CTu,Cu,Cu" or they are missing, add them.

$ pki pkcs12-cert-mod "<caSigningCert cert-pki-rootCA>" \ --pkcs12-file ca.p12 --pkcs12-
password-file password.txt \ --trust-flags "CTu,Cu,Cu"

3. Remove other certificates and keys.

$ pki pkcs12-cert-del "<Server-Cert cert-pki-rootCA>" --pkcs12-file ca.p12 --pkcs12-
password-file password.txt
$ pki pkcs12-cert-del "<subsystemCert cert-pki-rootCA>" --pkcs12-file ca.p12 --pkcs12-
password-file password.txt
$ pki pkcs12-cert-del "<ocspSigningCert cert-pki-rootCA>" --pkcs12-file ca.p12 --pkcs12-
password-file password.txt
$ pki pkcs12-cert-del "<auditSigningCert cert-pki-rootCA>" --pkcs12-file ca.p12 --pkcs12-
password-file password.txt

4. If the CA being migrated is also an intermediate CA, remove the root CA certificate from the
PKCS#12 file.

CHAPTER 21. UPGRADING FROM CERTIFICATE SYSTEM 9 TO CERTIFICATE SYSTEM 10

305

$ pki pkcs12-cert-del "<Top-level Root CA Signing Certificate>" --pkcs12-file ca.p12 --
pkcs12-password-file password.txt

21.1.3. Setting up the CA on the New Host

After you have exported the data from the existing instance, create and set up the certificate authority
(CA) on the new host.

1. Create a configuration file for pkispawn, for example CA.cfg, using the parameters of the old
CA. This instance runs on the standard port (389).

[DEFAULT]
pki_instance_name=<new_instance_name>
pki_admin_password=<caadmin_password>
pki_client_pkcs12_password=<pkcs12_file_password>
pki_ds_password=<DS_password>
pki_ds_ldap_port=389
pki_existing=True

[CA]
pki_ca_signing_csr_path=<path/to/ca_signing.csr>
pki_ca_signing_cert_path=<path/to/ca_signing.crt>
pki_ca_signing_nickname=<caSigningCert cert-nickname>
pki_ds_base_dn=<o=pki-tomcat-CA>
pki_ds_database=<instance_name-CA>
pki_serial_number_range_start=<starting_number_for_cert_serial_numbers>
pki_request_number_range_start=<starting_number_for_request_IDs>
pki_master_crl_enable=False

If the old CA is an intermediate CA, add the following two lines to the configuration file. They
correspond to the path to the root CA certificate and the nickname to use when storing the
certificate in the NSS database.

pki_cert_chain_path=<rootca_signing.crt>
pki_cert_chain_nickname=<caSigningCert cert-pki-ca>

For details and parameter descriptions, see the pkispawn(8) man page.

2. Run pkispawn on the new host to create the new CA instance:

pkispawn -s CA -f ca.cfg -v

NOTE

For instructions on how to set up a new DS instance for the new CA, see Installing Red
Hat Directory Server.

21.1.4. Importing the Old Data into the New CA

After you have created the new CA instance, import the data into the new CA database:

1. Stop the CA service.

Planning, Installation, and Deployment Guide

306

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/10/html-single/planning_installation_and_deployment_guide/index#installing_RHDS

systemctl stop pki-tomcatd@<instance_name>.service

2. Optional: Back up the CA database on the new host.

dsctl -v idm-qe-01 db2bak

The backup is stored in the /var/lib/dirsrv/<instance_name>/bak/<host_name-time_stamp>/
directory.

3. Remove the certificate entry for the signing certificate from the new RHEL 8 internal database.

ldapdelete -x -w <password< -D 'cn=Directory Manager'
"cn=<serial_number<,ou=certificateRepository,ou=ca,o=pki-tomcat-CA"

The entry is now imported from the old data, so that the CRL attributes in that entry point to
the correct entries.

4. Import the data into the new database:

ldapmodify -x -W <password> -D 'cn=Directory Manager' -a -c -f <path/to/old_ca.ldif>

The ldapmodify utility only adds new entries and does not update existing entries, created when
you installed the CA.

5. Optional: Verify the output in the import.log file. You can search for failed actions, such as
ldap_add: Invalid syntax (21).

6. Remove the directory entry for the old security domain.

ldapmodify -W <password> -x -D "cn=Directory Manager"
dn: cn=<server.example.com:9445>,cn=CAList,ou=Security Domain,<o=pki-tomcat-CA>
changetype: delete

7. Enable the ca.crl.MasterCRL.enable parameter in the /etc/pki/<instance_name>/ca/CS.cfg
file, to have the CA act as the certificate revocation list (CRL) master:

ca.crl.MasterCRL.enable=true

8. Restart the CA service:

systemctl start pki-tomcatd@<instance_name>

21.1.5. Reassigning Users to Default Groups

Add members to the default groups manually, using the ldapmodify or pki utility.

1. Set up the client:

pki -c <password> client-init
Client initialized

pk12util -i ~/.dogtag/<instance_name>/ca_admin_cert.p12 -d ~/.dogtag/nssdb/

CHAPTER 21. UPGRADING FROM CERTIFICATE SYSTEM 9 TO CERTIFICATE SYSTEM 10

307

Enter Password or Pin for "NSS Certificate DB":
Enter password for PKCS12 file:
pk12util: PKCS12 IMPORT SUCCESSFUL
...

2. Add the user account to the Administrators and Security Domain Administrators groups:

pki -n "<PKI Administrator for example.com>" -c <password> \
user-membership-add <user_name> "Certificate Manager Agents"

The default (bootstrap) admin users in RHCS 9 and RHCS 10 have the same default roles, that
is the same group membership. However, if you have a non-default admin user or have
customized the admin roles in RHCS 9, those changes might not be migrated properly. In this
case, reconfigure the roles in RHCS 10:

pki -n "<PKI Administrator for example.com>" -c <password> \
user-membership-add <user> "Administrators"
pki -n "<PKI Administrator for example.com>" -c <password> \
user-membership-add <user> "Security Domain Administrators"

If you want to make sure the certificate has been migrated successfully, check its existence on the new
host by running the ca-cert-find command.

21.2. MIGRATING A KRA

Simple KRA migration requires the following steps:

1. Section 21.2.1, “Setting Up the KRA on the New Host”

2. Section 21.2.2, “Exporting Contents from the Previous System”

3. Section 21.2.3, “Importing the Data into the New KRA”

4. Section 21.2.4, “Validating the presence of migrated keys from the KRA Agent Page”

The KRA located on alpha.example.com contains the data, while the KRA located on omega.example.com
does not exist yet.

Hostname PKI KRA Version

alpha.example.com PKI KRA 10.5 on RHCS 9.7

omega.example.com PKI KRA 10.13 on RHCS 10.4

21.2.1. Setting Up the KRA on the New Host

On omega.example.com as the root user:

1. Install and configure a new PKI 10.13 KRA on omega.example.com.

2. Stop the KRA instance.

Planning, Installation, and Deployment Guide

308

systemctl stop pki-tomcatd@<pki-kra>

3. Create a directory to export all required files.

mkdir -p /export/pki

4. Export KRA storage certificates to a file. You will need the KRA storage certificate later to re-
encrypt the decrypted old data from the KRA on alpha. In the following example, the file is called
omega.crt:

cd /var/lib/pki/<pki-kra>/alias/
pki-server cert-export kra_storage -i <pki-kra> --cert-file <omega.crt>
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 8 (0x8)
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: O = example.com Security Domain, OU = topology-02-CA, CN = CA Signing
Certificate
 Validity
 Not Before: Dec 19 10:58:02 2019 GMT
 Not After : Dec 8 10:58:02 2021 GMT
 Subject: O = example.com Security Domain, OU = topology-02-KRA, CN = DRM
Storage Certificate
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public-Key: (2048 bit)
 Modulus:
 00:99:c1:f6:f4:0d:75:67:ff:58:3a:28:ee:34:f1:
 40:0a:e1:5b:f3:9d:f4:c2:5a:1e:d0:d5:0c:62:c1:

5. Move the omega.crt file to the /export/pki directory.

mv omega.crt /export/pki/

6. Stop the Directory Server.

systemctl stop dirsrv@omega

NOTE

If db2ldif is missing, install the 389-ds-base-legacy-tools package.

7. Extract the KRA LDAP database configurations. You will need the new KRA LDAP database
configurations for transforming the old data to the new.

/usr/lib64/dirsrv/slapd-omega/db2ldif -n <pki-kra-KRA> -a /tmp/omega.ldif

8. Move the /tmp/omega.ldif file to the /export/pki directory.

mv /tmp/omega.ldif /export/pki/

CHAPTER 21. UPGRADING FROM CERTIFICATE SYSTEM 9 TO CERTIFICATE SYSTEM 10

309

21.2.2. Exporting Contents from the Previous System

On alpha.example.com as the root user:

1. Create a common directory:

mkdir -p /export/pki

2. Stop the Directory Server. In this example, the server is named alpha:

systemctl stop dirsrv@alpha

3. Generate the LDIF from the KRA LDAP database:

/usr/lib64/dirsrv/slapd-alpha/db2ldif -n <pki-kra-KRA> -a /tmp/alpha.ldif

4. Move the /tmp/alpha.ldif file to /export/pki directory:

mv /tmp/alpha.ldif /export/pki/

5. Copy the KRA NSS security databases to the data area:

cp -p /var/lib/pki/<pki-kra>/alias/* /export/pki/

6. Go to the /export/pki directory:

cd /export/pki

7. Obtain the flat-file containing the new KRA’s storage certificate from omega.example.com:

sftp root@omega.example.com
sftp> cd /export/pki
sftp> get omega.crt
sftp> quit

8. Obtain the internal password:

cat /var/lib/<instance_name>/conf/password.conf

9. Run the KRATool on alpha.example.com:

KRATool \
 -kratool_config_file /usr/share/pki/java-tools/KRATool.cfg \
 -source_ldif_file /export/pki/alpha.ldif \
 -target_ldif_file /export/pki/alpha2omega.ldif \
 -log_file /tmp/KRATool_26_05_2023.log \
 -source_pki_security_database_path /export/pki/ \
 -source_storage_token_name "Internal Key Storage Token" \
 -source_storage_certificate_nickname "<storageCert cert-pki-tomcat KRA>" \
 -target_storage_certificate_file /export/pki/omega.crt \
 -source_kra_naming_context alpha.example.com \

Planning, Installation, and Deployment Guide

310

 -target_kra_naming_context omega.example.com \
 -unwrap_algorithm AES \
 -process_requests_and_key_records_only

PROCESSING KRATOOL CONFIG FILE: FINISHED.
SUCCESSFULLY processed kratool config file!
Initializing source PKI security databases in '/export/pki/'.
Retrieving token from CryptoManager.
Retrieving source storage token called 'Internal Key Storage Token'.
Retrieving source storage cert with nickname of 'storageCert cert-pki-tomcat KRA'.

BEGIN: Obtaining the private key from the source storage token . . .
Enter password for Internal Key Storage Token

FINISHED: Obtaining the private key from the source storage token.
BEGIN: Obtaining the public key from the target storage certificate . . .
FINISHED: Obtaining the public key from the target storage certificate.
PROCESSING: xxxxxxxxxxxxxxxxxxxxxxxxx......
SUCCESSFULLY converted source LDIF file --> target LDIF file!

FINISHED "KRATool -kratool_config_file /usr/share/pki/java-tools/KRATool.cfg -
source_ldif_file /export/pki/alpha.ldif -target_ldif_file /export/pki/alpha2omega.ldif -log_file
/tmp/DRMTool_20_05_2021.log -source_pki_security_database_path /export/pki/ -
source_storage_token_name 'Internal Key Storage Token' -
source_storage_certificate_nickname 'storageCert cert-pki-tomcat KRA' -
target_storage_certificate_file /export/pki/omega.crt -source_pki_security_database_pwdfile
'/export/pki/password.cfg' -source_kra_naming_context 'alpha.example.com' -
target_kra_naming_context 'omega.example.com' -
process_requests_and_key_records_only"

NOTE

Alternatively, you can create a plain-text file protected from unauthorized access
containing one and only password that will be automatically accessed by a
certificate or a certificate database. Add this file to KRATool with the -
source_pki_security_database_pwdfile <path_to_PKI_password_file>
command-line option.

10. Copy the alpha2omega.ldif file to omega.example.com:

sftp root@omega.example.com
sftp> cd /export/pki
sftp> put alpha2omega.ldif
sftp> quit

21.2.3. Importing the Data into the New KRA

On omega.example.com as the root user:

1. Go to /export/pki directory

cd /export/pki

CHAPTER 21. UPGRADING FROM CERTIFICATE SYSTEM 9 TO CERTIFICATE SYSTEM 10

311

2. Concatenate the ldif files:

cat omega.ldif alpha2omega.ldif > omega_alpha.ldif

3. Import the omega_alpha.ldif file into the LDAP database associated with the PKI KRA:

/usr/lib64/dirsrv/slapd-omega/ldif2db -n <pki-kra-KRA> -i /export/pki/omega_alpha.ldif

4. Start the Directory Server:

systemctl start dirsrv@omega

5. Start the KRA instance.

systemctl start pki-tomcatd@<pki-kra>

21.2.4. Validating the presence of migrated keys from the KRA Agent Page

The last step is to perform key recovery of migrated keys from the KRA Agent page.

[root@pki1 pki]# pki -d /root/nssdb/ -p 21080 -n '<PKI Administrator - example.com Security Domain>'
kra-key-find
Enter password for Internal Key Storage Token

3 key(s) matched

 Key ID: 0x1
 Algorithm: 1.2.840.113549.1.1.1
 Size: 1024
 Owner: UID=alpha1

 Key ID: 0x2
 Algorithm: 1.2.840.113549.1.1.1
 Size: 1024
 Owner: UID=alpha2

 Key ID: 0x3
 Algorithm: 1.2.840.113549.1.1.1
 Size: 1024
 Owner: UID=alpha3

Number of entries returned 3

21.2.5. Post-Upgrade Testing

Follow the key recovery operation for user key archived before upgrade.

Procedure 21.1. Key Recovery Test

1. Display the base64 user certificate created before upgrade.

Planning, Installation, and Deployment Guide

312

<pki -n 'PKI Administrator - example.com>' -c <Secret.123> ca-cert-export <0xd>
 Serial Number: 0xd
 Subject DN: UID=alpha
 Issuer DN: CN=CA Signing Certificate,OU=pki-tomcat,O=example.com Security Domain
 Status: VALID
 Not Valid Before: Wed Jun 07 01:49:07 EDT 2023
 Not Valid After: Mon Dec 04 01:49:07 EST 2023

----BEGIN CERTIFICATE----
MIIDODCCAiCgAwIBAgIBDTANBgkqhkiG9w0BAQsFADBtMTUwMwYDVQQKDCxpZG1xZS5
sYWIuZW5n
LmJvcy5yZWRoYXQuY29tIFNlY3VyaXR5IERvbWFpbjETMBEGA1UECwwKcGtpLXRvbWNhd
DEfMB0G
A1UEAwwWQ0EgU2lnbmluZyBDZXJ0aWZpY2F0ZTAeFw0yMzA2MDcwNTQ5MDdaFw0yMz
EyMDQwNjQ5

 [...output truncated...]

EJyoMFM+RaAcTh+C3S0JZEoKlAS3UlJOMxk3BFZdWpv7ia+1faV6LFPZSCZ/m8i2c3KZNxF
W2xv1
DTIIVc7a1uEDApVDHf5aFcm0nGpEVeK+yvP4r1eD
----END CERTIFICATE----

2. Use this certificate to generate a key recovery request through KRA Agent UI.

3. Approve the recovery request.

pki -c <Secret.123> -n '<PKI Administrator - example.com Security Domain>' -p 8443 -P
https kra-key-request-review <0x2> --action approve

Result

Request ID: 0x2
Type: recovery
Status: approved

4. Download the key from the KRA UI.

CHAPTER 21. UPGRADING FROM CERTIFICATE SYSTEM 9 TO CERTIFICATE SYSTEM 10

313

CHAPTER 22. UPGRADING CERTIFICATE SYSTEM 10 TO THE
LATEST MINOR VERSION
To upgrade Red Hat Certificate System 10.0 to the latest minor version, for example 10.1, you need to
update the packages and the configuration files.

1. Upgrade all packages on the server:

yum update

During the update, Certificate System configuration files, such as
/etc/pki/<instance_name>/subsystem/CS.cfg and /etc/pki/<instance_name>/server.xml, are
automatically modified to the new version.

Log files generated during the Certificate System upgrade are:

/var/log/pki/pki-server-upgrade-version.log

/var/log/pki/pki-upgrade-version.log

Note that the version number in the log file's name represent the pki* package version and not
the Certificate System version.

NOTE

If Directory Server is installed on a different host, additionally update all packages
on that host as well. For details about updating Directory Server, see:

the corresponding chapter in the Red Hat Directory Server Installation G e .

Red Hat Directory Server Release Notes for notable changes, bug fixes, and
known issues in Directory Server.

2. Restart the Certificate System instance:

systemctl restart pki-tomcatd@<instance_name>.service

NOTE

To migrate from a lower major version, such as 9.7, to Certificate System 10, see
Chapter 21, Upgrading from Certificate System 9 to Certificate System 10 .

Planning, Installation, and Deployment Guide

314

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/assembly_updating-directory-server_installation-guide
https://access.redhat.com/site/documentation/en-US/Red_Hat_Directory_Server/11/html/Release_Notes/index.html

PART V. UNINSTALLING CERTIFICATE SYSTEM SUBSYSTEMS

It is possible to remove individual subsystems or to uninstall all packages associated with an entire
subsystem. Subsystems are installed and uninstalled individually. For example, it is possible to uninstall a
KRA subsystem while leaving an installed and configured CA subsystem. It is also possible to remove a
single CA subsystem while leaving other CA subsystems on the machine.

PART V. UNINSTALLING CERTIFICATE SYSTEM SUBSYSTEMS

315

CHAPTER 23. REMOVING A SUBSYSTEM
Removing a subsystem requires specifying the subsystem type and the name of the server in which the
subsystem is running. This command removes all files associated with the subsystem (without removing
the subsystem packages).

pkidestroy -s subsystem_type -i instance_name

The -s option specifies the subsystem to be removed (such as CA, KRA, OCSP, TKS, or TPS). The -i
option specifies the instance name, such as pki-tomcat.

Example 23.1. Removing a CA Subsystem

$ pkidestroy -s CA -i pki-tomcat
Loading deployment configuration from /var/lib/pki/pki-tomcat/ca/registry/ca/deployment.cfg.
Uninstalling CA from /var/lib/pki/pki-tomcat.
Removed symlink /etc/systemd/system/multi-user.target.wants/pki-tomcatd.target.

Uninstallation complete.

The pkidestroy utility removes the subsystem and any related files, such as the certificate databases,
certificates, keys, and associated users. It does not uninstall the subsystem packages. If the subsystem is
the last subsystem on the server instance, the server instance is removed as well.

Planning, Installation, and Deployment Guide

316

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM
PACKAGES
A number of subsystem-related packages and dependencies are installed with Red Hat
Certificate System; these are listed in Section 7.2, “Certificate System Packages”. Removing a
subsystem removes only the files and directories associated with that specific subsystem. It does not
remove the actual installed packages that are used by that instance. Completely uninstalling Red Hat
Certificate System or one of its subsystems requires using package management tools, like yum, to
remove each package individually.

To uninstall an individual Certificate System subsystem packages:

1. Remove all the associated subsystems. For example:

pkidestroy -s CA -i pki-tomcat

2. Run the uninstall utility. For example:

yum remove pki-subsystem_type

The subsystem type can be ca, kra, ocsp, tks, or tps.

3. To remove other packages and dependencies, remove the packages specifically, using yum.
The complete list of installed packages is at Section 7.2, “Certificate System Packages”.

GLOSSARY

A

access control

The process of controlling what particular users are allowed to do. For example, access control to
servers is typically based on an identity, established by a password or a certificate, and on rules
regarding what that entity can do. See also access control list (ACL) .

access control instructions (ACI)

An access rule that specifies how subjects requesting access are to be identified or what rights are
allowed or denied for a particular subject. See access control list (ACL) .

access control list (ACL)

A collection of access control entries that define a hierarchy of access rules to be evaluated when a
server receives a request for access to a particular resource. See access control instructions (ACI) .

administrator

The person who installs and configures one or more Certificate System managers and sets up
privileged users, or agents, for them. See also agent.

Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES), like its predecessor Data Encryption Standard (DES), is a
FIPS-approved symmetric-key encryption standard. AES was adopted by the US government in
2002. It defines three block ciphers, AES-128, AES-192 and AES-256. The National Institute of

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

317

Standards and Technology (NIST) defined the AES standard in U.S. FIPS PUB 197. For more
information, see http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

agent

A user who belongs to a group authorized to manage agent services for a Certificate System
manager. See also Certificate Manager agent , Key Recovery Authority agent .

agent services

1. Services that can be administered by a Certificate System agent through HTML pages served by
the Certificate System subsystem for which the agent has been assigned the necessary privileges.

2. The HTML pages for administering such services.

agent-approved enrollment

An enrollment that requires an agent to approve the request before the certificate is issued.

APDU

Application protocol data unit. A communication unit (analogous to a byte) that is used in
communications between a smart card and a smart card reader.

attribute value assertion (AVA)

An assertion of the form attribute = value, where attribute is a tag, such as o (organization) or uid
(user ID), and value is a value such as "Red Hat, Inc." or a login name. AVAs are used to form the
distinguished name (DN) that identifies the subject of a certificate, called the subject name of the
certificate.

audit log

A log that records various system events. This log can be signed, providing proof that it was not
tampered with, and can only be read by an auditor user.

auditor

A privileged user who can view the signed audit logs.

authentication

Confident identification; assurance that a party to some computerized transaction is not an impostor.
Authentication typically involves the use of a password, certificate, PIN, or other information to
validate identity over a computer network. See also password-based authentication, certificate-
based authentication, client authentication, server authentication.

authentication module

A set of rules (implemented as a Java™ class) for authenticating an end entity, agent, administrator,
or any other entity that needs to interact with a Certificate System subsystem. In the case of typical
end-user enrollment, after the user has supplied the information requested by the enrollment form,
the enrollment servlet uses an authentication module associated with that form to validate the
information and authenticate the user's identity. See servlet.

authorization

Permission to access a resource controlled by a server. Authorization typically takes place after the
ACLs associated with a resource have been evaluated by a server. See access control list (ACL) .

Planning, Installation, and Deployment Guide

318

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

automated enrollment

A way of configuring a Certificate System subsystem that allows automatic authentication for end-
entity enrollment, without human intervention. With this form of authentication, a certificate request
that completes authentication module processing successfully is automatically approved for profile
processing and certificate issuance.

B

bind DN

A user ID, in the form of a distinguished name (DN), used with a password to authenticate to Red Hat
Directory Server.

C

CA certificate

A certificate that identifies a certificate authority. See also certificate authority (CA), subordinate
CA, root CA.

CA hierarchy

A hierarchy of CAs in which a root CA delegates the authority to issue certificates to subordinate
CAs. Subordinate CAs can also expand the hierarchy by delegating issuing status to other CAs. See
also certificate authority (CA), subordinate CA, root CA.

CA server key

The SSL server key of the server providing a CA service.

CA signing key

The private key that corresponds to the public key in the CA certificate. A CA uses its signing key to
sign certificates and CRLs.

certificate

Digital data, formatted according to the X.509 standard, that specifies the name of an individual,
company, or other entity (the subject name of the certificate) and certifies that a public key, which is
also included in the certificate, belongs to that entity. A certificate is issued and digitally signed by a
certificate authority (CA). A certificate's validity can be verified by checking the CA's digital signature
through public-key cryptography techniques. To be trusted within a public-key infrastructure (PKI), a
certificate must be issued and signed by a CA that is trusted by other entities enrolled in the PKI.

certificate authority (CA)

A trusted entity that issues a certificate after verifying the identity of the person or entity the
certificate is intended to identify. A CA also renews and revokes certificates and generates CRLs.
The entity named in the issuer field of a certificate is always a CA. Certificate authorities can be
independent third parties or a person or organization using certificate-issuing server software, such
as Red Hat Certificate System.

certificate chain

A hierarchical series of certificates signed by successive certificate authorities. A CA certificate
identifies a certificate authority (CA) and is used to sign certificates issued by that authority. A CA
certificate can in turn be signed by the CA certificate of a parent CA, and so on up to a root CA.
Certificate System allows any end entity to retrieve all the certificates in a certificate chain.

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

319

certificate extensions

An X.509 v3 certificate contains an extensions field that permits any number of additional fields to
be added to the certificate. Certificate extensions provide a way of adding information such as
alternative subject names and usage restrictions to certificates. A number of standard extensions
have been defined by the PKIX working group.

certificate fingerprint

A one-way hash associated with a certificate. The number is not part of the certificate itself, but is
produced by applying a hash function to the contents of the certificate. If the contents of the
certificate changes, even by a single character, the same function produces a different number.
Certificate fingerprints can therefore be used to verify that certificates have not been tampered
with.

Certificate Management Message Formats (CMMF)

Message formats used to convey certificate requests and revocation requests from end entities to a
Certificate Manager and to send a variety of information to end entities. A proposed standard from
the Internet Engineering Task Force (IETF) PKIX working group. CMMF is subsumed by another
proposed standard, Certificate Management Messages over Cryptographic Message Syntax (CMC) .
For detailed information, see https://tools.ietf.org/html/draft-ietf-pkix-cmmf-02.

Certificate Management Messages over Cryptographic Message Syntax (CMC)

Message format used to convey a request for a certificate to a Certificate Manager. A proposed
standard from the Internet Engineering Task Force (IETF) PKIX working group. For detailed
information, see https://tools.ietf.org/html/draft-ietf-pkix-cmc-02.

Certificate Manager

An independent Certificate System subsystem that acts as a certificate authority. A Certificate
Manager instance issues, renews, and revokes certificates, which it can publish along with CRLs to an
LDAP directory. It accepts requests from end entities. See certificate authority (CA).

Certificate Manager agent

A user who belongs to a group authorized to manage agent services for a Certificate Manager. These
services include the ability to access and modify (approve and reject) certificate requests and issue
certificates.

certificate profile

A set of configuration settings that defines a certain type of enrollment. The certificate profile sets
policies for a particular type of enrollment along with an authentication method in a certificate
profile.

Certificate Request Message Format (CRMF)

Format used for messages related to management of X.509 certificates. This format is a subset of
CMMF. See also Certificate Management Message Formats (CMMF) . For detailed information, see
http://www.ietf.org/rfc/rfc2511.txt.

certificate revocation list (CRL)

As defined by the X.509 standard, a list of revoked certificates by serial number, generated and
signed by a certificate authority (CA).

Certificate System

Planning, Installation, and Deployment Guide

320

https://tools.ietf.org/html/draft-ietf-pkix-cmmf-02
https://tools.ietf.org/html/draft-ietf-pkix-cmc-02
http://www.ietf.org/rfc/rfc2511.txt

See Red Hat Certificate System, Cryptographic Message Syntax (CS) .

Certificate System console

A console that can be opened for any single Certificate System instance. A Certificate System
console allows the Certificate System administrator to control configuration settings for the
corresponding Certificate System instance.

Certificate System subsystem

One of the five Certificate System managers: Certificate Manager, Online Certificate Status
Manager, Key Recovery Authority, Token Key Service, or Token Processing System.

certificate-based authentication

Authentication based on certificates and public-key cryptography. See also password-based
authentication.

chain of trust

See certificate chain.

chained CA

See linked CA.

cipher

See cryptographic algorithm.

client authentication

The process of identifying a client to a server, such as with a name and password or with a certificate
and some digitally signed data. See certificate-based authentication, password-based
authentication, server authentication.

client SSL certificate

A certificate used to identify a client to a server using the SSL protocol. See Secure Sockets Layer
(SSL).

CMC

See Certificate Management Messages over Cryptographic Message Syntax (CMC) .

CMC Enrollment

Features that allow either signed enrollment or signed revocation requests to be sent to a Certificate
Manager using an agent's signing certificate. These requests are then automatically processed by the
Certificate Manager.

CMMF

See Certificate Management Message Formats (CMMF) .

CRL

See certificate revocation list (CRL).

CRMF

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

321

See Certificate Request Message Format (CRMF) .

cross-certification

The exchange of certificates by two CAs in different certification hierarchies, or chains. Cross-
certification extends the chain of trust so that it encompasses both hierarchies. See also certificate
authority (CA).

cross-pair certificate

A certificate issued by one CA to another CA which is then stored by both CAs to form a circle of
trust. The two CAs issue certificates to each other, and then store both cross-pair certificates as a
certificate pair.

cryptographic algorithm

A set of rules or directions used to perform cryptographic operations such as encryption and
decryption.

Cryptographic Message Syntax (CS)

The syntax used to digitally sign, digest, authenticate, or encrypt arbitrary messages, such as CMMF.

cryptographic module

See PKCS #11 module .

cryptographic service provider (CSP)

A cryptographic module that performs cryptographic services, such as key generation, key storage,
and encryption, on behalf of software that uses a standard interface such as that defined by PKCS
#11 to request such services.

CSP

See cryptographic service provider (CSP) .

D

decryption

Unscrambling data that has been encrypted. See encryption.

delta CRL

A CRL containing a list of those certificates that have been revoked since the last full CRL was
issued.

digital ID

See certificate.

digital signature

To create a digital signature, the signing software first creates a one-way hash from the data to be
signed, such as a newly issued certificate. The one-way hash is then encrypted with the private key of
the signer. The resulting digital signature is unique for each piece of data signed. Even a single
comma added to a message changes the digital signature for that message. Successful decryption of

Planning, Installation, and Deployment Guide

322

the digital signature with the signer's public key and comparison with another hash of the same data
provides tamper detection. Verification of the certificate chain for the certificate containing the
public key provides authentication of the signer. See also nonrepudiation, encryption.

distinguished name (DN)

A series of AVAs that identify the subject of a certificate. See attribute value assertion (AVA) .

distribution points

Used for CRLs to define a set of certificates. Each distribution point is defined by a set of certificates
that are issued. A CRL can be created for a particular distribution point.

dual key pair

Two public-private key pairs, four keys altogether, corresponding to two separate certificates. The
private key of one pair is used for signing operations, and the public and private keys of the other
pair are used for encryption and decryption operations. Each pair corresponds to a separate
certificate. See also encryption key, public-key cryptography, signing key.

Key Recovery Authority

An optional, independent Certificate System subsystem that manages the long-term archival and
recovery of RSA encryption keys for end entities. A Certificate Manager can be configured to archive
end entities' encryption keys with a Key Recovery Authority before issuing new certificates. The Key
Recovery Authority is useful only if end entities are encrypting data, such as sensitive email, that the
organization may need to recover someday. It can be used only with end entities that support dual
key pairs: two separate key pairs, one for encryption and one for digital signatures.

Key Recovery Authority agent

A user who belongs to a group authorized to manage agent services for a Key Recovery Authority,
including managing the request queue and authorizing recovery operation using HTML-based
administration pages.

Key Recovery Authority recovery agent

One of the m of n people who own portions of the storage key for the Key Recovery Authority.

Key Recovery Authority storage key

Special key used by the Key Recovery Authority to encrypt the end entity's encryption key after it
has been decrypted with the Key Recovery Authority's private transport key. The storage key never
leaves the Key Recovery Authority.

Key Recovery Authority transport certificate

Certifies the public key used by an end entity to encrypt the entity's encryption key for transport to
the Key Recovery Authority. The Key Recovery Authority uses the private key corresponding to the
certified public key to decrypt the end entity's key before encrypting it with the storage key.

E

eavesdropping

Surreptitious interception of information sent over a network by an entity for which the information is
not intended.

Elliptic Curve Cryptography (ECC)

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

323

A cryptographic algorithm which uses elliptic curves to create additive logarithms for the
mathematical problems which are the basis of the cryptographic keys. ECC ciphers are more efficient
to use than RSA ciphers and, because of their intrinsic complexity, are stronger at smaller bits than
RSA ciphers.

encryption

Scrambling information in a way that disguises its meaning. See decryption.

encryption key

A private key used for encryption only. An encryption key and its equivalent public key, plus a signing
key and its equivalent public key, constitute a dual key pair.

end entity

In a public-key infrastructure (PKI), a person, router, server, or other entity that uses a certificate to
identify itself.

enrollment

The process of requesting and receiving an X.509 certificate for use in a public-key infrastructure
(PKI). Also known as registration.

extensions field

See certificate extensions.

F

Federal Bridge Certificate Authority (FBCA)

A configuration where two CAs form a circle of trust by issuing cross-pair certificates to each other
and storing the two cross-pair certificates as a single certificate pair.

fingerprint

See certificate fingerprint.

FIPS PUBS 140

Federal Information Standards Publications (FIPS PUBS) 140 is a US government standard for
implementations of cryptographic modules, hardware or software that encrypts and decrypts data or
performs other cryptographic operations, such as creating or verifying digital signatures. Many
products sold to the US government must comply with one or more of the FIPS standards.

firewall

A system or combination of systems that enforces a boundary between two or more networks.

H

Hypertext Transport Protocol (HTTP) and Hypertext Transport Protocol Secure (HTTPS)

Protocols used to communicate with web servers. HTTPS consists of communication over HTTP
(Hypertext Transfer Protocol) within a connection encrypted by Transport Layer Security (TLS). The
main purpose of HTTPS is authentication of the visited website and protection of privacy and
integrity of the exchanged data.

Planning, Installation, and Deployment Guide

324

I

impersonation

The act of posing as the intended recipient of information sent over a network. Impersonation can
take two forms: spoofing and misrepresentation.

input

In the context of the certificate profile feature, it defines the enrollment form for a particular
certificate profile. Each input is set, which then dynamically creates the enrollment form from all
inputs configured for this enrollment.

intermediate CA

A CA whose certificate is located between the root CA and the issued certificate in a certificate
chain.

IP spoofing

The forgery of client IP addresses.

IPv4 and IPv6

Certificate System supports both IPv4 and IPv6 address namespaces for communications and
operations with all subsystems and tools, as well as for clients, subsystem creation, and token and
certificate enrollment.

J

JAR file

A digital envelope for a compressed collection of files organized according to the Java™ archive
(JAR) format.

Java™ archive (JAR) format

A set of conventions for associating digital signatures, installer scripts, and other information with
files in a directory.

Java™ Cryptography Architecture (JCA)

The API specification and reference developed by Sun Microsystems for cryptographic services. See
http://java.sun.com/products/jdk/1.2/docs/guide/security/CryptoSpec.Introduction.

Java™ Development Kit (JDK)

Software development kit provided by Sun Microsystems for developing applications and applets
using the Java™ programming language.

Java™ Native Interface (JNI)

A standard programming interface that provides binary compatibility across different
implementations of the Java™ Virtual Machine (JVM) on a given platform, allowing existing code
written in a language such as C or C++ for a single platform to bind to Java™. See
http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html.

Java™ Security Services (JSS)

A Java™ interface for controlling security operations performed by Network Security Services (NSS).

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

325

http://java.sun.com/products/jdk/1.2/docs/guide/security/CryptoSpec.Introduction
http://java.sun.com/products/jdk/1.2/docs/guide/jni/index.html

K

KEA

See Key Exchange Algorithm (KEA).

key

A large number used by a cryptographic algorithm to encrypt or decrypt data. A person's public key,
for example, allows other people to encrypt messages intended for that person. The messages must
then be decrypted by using the corresponding private key.

key exchange

A procedure followed by a client and server to determine the symmetric keys they will both use
during an SSL session.

Key Exchange Algorithm (KEA)

An algorithm used for key exchange by the US Government.

KEYGEN tag

An HTML tag that generates a key pair for use with a certificate.

L

Lightweight Directory Access Protocol (LDAP)

A directory service protocol designed to run over TCP/IP and across multiple platforms. LDAP is a
simplified version of Directory Access Protocol (DAP), used to access X.500 directories. LDAP is
under IETF change control and has evolved to meet Internet requirements.

linked CA

An internally deployed certificate authority (CA) whose certificate is signed by a public, third-party
CA. The internal CA acts as the root CA for certificates it issues, and the third- party CA acts as the
root CA for certificates issued by other CAs that are linked to the same third-party root CA. Also
known as "chained CA" and by other terms used by different public CAs.

M

manual authentication

A way of configuring a Certificate System subsystem that requires human approval of each
certificate request. With this form of authentication, a servlet forwards a certificate request to a
request queue after successful authentication module processing. An agent with appropriate
privileges must then approve each request individually before profile processing and certificate
issuance can proceed.

MD5

A message digest algorithm that was developed by Ronald Rivest. See also one-way hash.

message digest

See one-way hash.

misrepresentation

Planning, Installation, and Deployment Guide

326

The presentation of an entity as a person or organization that it is not. For example, a website might
pretend to be a furniture store when it is really a site that takes credit-card payments but never sends
any goods. Misrepresentation is one form of impersonation. See also spoofing.

N

Network Security Services (NSS)

A set of libraries designed to support cross-platform development of security-enabled
communications applications. Applications built using the NSS libraries support the Secure Sockets
Layer (SSL) protocol for authentication, tamper detection, and encryption, and the PKCS #11
protocol for cryptographic token interfaces. NSS is also available separately as a software
development kit.

non-TMS

Non-token management system. Refers to a configuration of subsystems (the CA and, optionally,
KRA and OCSP) which do not handle smart cards directly.

See Also token management system (TMS) .

nonrepudiation

The inability by the sender of a message to deny having sent the message. A digital signature
provides one form of nonrepudiation.

O

object signing

A method of file signing that allows software developers to sign Java code, JavaScript scripts, or any
kind of file and allows users to identify the signers and control access by signed code to local system
resources.

object-signing certificate

A certificate that is associated private key is used to sign objects; related to object signing.

OCSP

Online Certificate Status Protocol.

one-way hash

1. A number of fixed-length generated from data of arbitrary length with the aid of a hashing
algorithm. The number, also called a message digest, is unique to the hashed data. Any change in the
data, even deleting or altering a single character, results in a different value.

2. The content of the hashed data cannot be deduced from the hash.

operation

The specific operation, such as read or write, that is being allowed or denied in an access control
instruction.

output

In the context of the certificate profile feature, it defines the resulting form from a successful

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

327

In the context of the certificate profile feature, it defines the resulting form from a successful
certificate enrollment for a particular certificate profile. Each output is set, which then dynamically
creates the form from all outputs configured for this enrollment.

P

password-based authentication

Confident identification by means of a name and password. See also authentication, certificate-
based authentication.

PKCS #10

The public-key cryptography standard that governs certificate requests.

PKCS #11

The public-key cryptography standard that governs cryptographic tokens such as smart cards.

PKCS #11 module

A driver for a cryptographic device that provides cryptographic services, such as encryption and
decryption, through the PKCS #11 interface. A PKCS #11 module, also called a cryptographic module
or cryptographic service provider , can be implemented in either hardware or software. A PKCS #11
module always has one or more slots, which may be implemented as physical hardware slots in some
form of physical reader, such as for smart cards, or as conceptual slots in software. Each slot for a
PKCS #11 module can in turn contain a token, which is the hardware or software device that actually
provides cryptographic services and optionally stores certificates and keys. Red Hat provides a built-
in PKCS #11 module with Certificate System.

PKCS #12

The public-key cryptography standard that governs key portability.

PKCS #7

The public-key cryptography standard that governs signing and encryption.

PKIX Certificate and CRL Profile

A standard developed by the IETF for a public-key infrastructure for the Internet. It specifies profiles
for certificates and CRLs.

private key

One of a pair of keys used in public-key cryptography. The private key is kept secret and is used to
decrypt data encrypted with the corresponding public key.

proof-of-archival (POA)

Data signed with the private Key Recovery Authority transport key that contains information about
an archived end-entity key, including key serial number, name of the Key Recovery Authority, subject
name of the corresponding certificate, and date of archival. The signed proof-of-archival data are
the response returned by the Key Recovery Authority to the Certificate Manager after a successful
key archival operation. See also Key Recovery Authority transport certificate .

public key

One of a pair of keys used in public-key cryptography. The public key is distributed freely and

Planning, Installation, and Deployment Guide

328

One of a pair of keys used in public-key cryptography. The public key is distributed freely and
published as part of a certificate. It is typically used to encrypt data sent to the public key's owner,
who then decrypts the data with the corresponding private key.

public-key cryptography

A set of well-established techniques and standards that allow an entity to verify its identity
electronically or to sign and encrypt electronic data. Two keys are involved, a public key and a private
key. A public key is published as part of a certificate, which associates that key with a particular
identity. The corresponding private key is kept secret. Data encrypted with the public key can be
decrypted only with the private key.

public-key infrastructure (PKI)

The standards and services that facilitate the use of public-key cryptography and X.509 v3
certificates in a networked environment.

R

RC2, RC4

Cryptographic algorithms developed for RSA Data Security by Rivest. See also cryptographic
algorithm.

Red Hat Certificate System

A highly configurable set of software components and tools for creating, deploying, and managing
certificates. Certificate System is comprised of five major subsystems that can be installed in
different Certificate System instances in different physical locations: Certificate Manager, Online
Certificate Status Manager, Key Recovery Authority, Token Key Service, and Token Processing
System.

registration

See enrollment.

root CA

The certificate authority (CA) with a self-signed certificate at the top of a certificate chain. See also
CA certificate, subordinate CA.

RSA algorithm

Short for Rivest-Shamir-Adleman, a public-key algorithm for both encryption and authentication. It
was developed by Ronald Rivest, Adi Shamir, and Leonard Adleman and introduced in 1978.

RSA key exchange

A key-exchange algorithm for SSL based on the RSA algorithm.

S

sandbox

A Java™ term for the carefully defined limits within which Java™ code must operate.

secure channel

A security association between the TPS and the smart card which allows encrypted communciation

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

329

A security association between the TPS and the smart card which allows encrypted communciation
based on a shared master key generated by the TKS and the smart card APDUs.

Secure Sockets Layer (SSL)

A protocol that allows mutual authentication between a client and server and the establishment of an
authenticated and encrypted connection. SSL runs above TCP/IP and below HTTP, LDAP, IMAP,
NNTP, and other high-level network protocols.

security domain

A centralized repository or inventory of PKI subsystems. Its primary purpose is to facilitate the
installation and configuration of new PKI services by automatically establishing trusted relationships
between subsystems.

Security-Enhanced Linux (SELinux)

Security-enhanced Linux (SELinux) is a set of security protocols enforcing mandatory access control
on Linux system kernels. SELinux was developed by the United States National Security Agency to
keep applications from accessing confidential or protected files through lenient or flawed access
controls.

self tests

A feature that tests a Certificate System instance both when the instance starts up and on-demand.

server authentication

The process of identifying a server to a client. See also client authentication.

server SSL certificate

A certificate used to identify a server to a client using the Secure Sockets Layer (SSL) protocol.

servlet

Java™ code that handles a particular kind of interaction with end entities on behalf of a
Certificate System subsystem. For example, certificate enrollment, revocation, and key recovery
requests are each handled by separate servlets.

SHA

Secure Hash Algorithm, a hash function used by the US government.

signature algorithm

A cryptographic algorithm used to create digital signatures. Certificate System supports the MD5
and SHA signing algorithms. See also cryptographic algorithm, digital signature.

signed audit log

See audit log.

signing certificate

A certificate that is public key corresponds to a private key used to create digital signatures. For
example, a Certificate Manager must have a signing certificate that is public key corresponds to the
private key it uses to sign the certificates it issues.

signing key

Planning, Installation, and Deployment Guide

330

A private key used for signing only. A signing key and its equivalent public key, plus an encryption key
and its equivalent public key, constitute a dual key pair.

Simple Certificate Enrollment Protocol (SCEP)

A protocol designed by Cisco to specify a way for a router to communicate with a CA for router
certificate enrollment. Certificate System supports SCEP's CA mode of operation, where the request
is encrypted with the CA signing certificate.

single sign-on

1. In Certificate System, a password that simplifies the way to sign on to Red Hat Certificate System
by storing the passwords for the internal database and tokens. Each time a user logs on, he is
required to enter this single password.

2. The ability for a user to log in once to a single computer and be authenticated automatically by a
variety of servers within a network. Partial single sign-on solutions can take many forms, including
mechanisms for automatically tracking passwords used with different servers. Certificates support
single sign-on within a public-key infrastructure (PKI). A user can log in once to a local client's
private-key database and, as long as the client software is running, rely on certificate-based
authentication to access each server within an organization that the user is allowed to access.

slot

The portion of a PKCS #11 module , implemented in either hardware or software, that contains a
token.

smart card

A small device that contains a microprocessor and stores cryptographic information, such as keys
and certificates, and performs cryptographic operations. Smart cards implement some or all of the
PKCS #11 interface.

spoofing

Pretending to be someone else. For example, a person can pretend to have the email address
jdoe@example.com, or a computer can identify itself as a site called www.redhat.com when it is
not. Spoofing is one form of impersonation. See also misrepresentation.

SSL

See Secure Sockets Layer (SSL) .

subject

The entity identified by a certificate. In particular, the subject field of a certificate contains a subject
name that uniquely describes the certified entity.

subject name

A distinguished name (DN) that uniquely describes the subject of a certificate.

subordinate CA

A certificate authority that is certificate is signed by another subordinate CA or by the root CA. See
CA certificate, root CA.

symmetric encryption

An encryption method that uses the same cryptographic key to encrypt and decrypt a given

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

331

An encryption method that uses the same cryptographic key to encrypt and decrypt a given
message.

T

tamper detection

A mechanism ensuring that data received in electronic form entirely corresponds with the original
version of the same data.

token

A hardware or software device that is associated with a slot in a PKCS #11 module . It provides
cryptographic services and optionally stores certificates and keys.

token key service (TKS)

A subsystem in the token management system which derives specific, separate keys for every smart
card based on the smart card APDUs and other shared information, like the token CUID.

token management system (TMS)

The interrelated subsystems — CA, TKS, TPS, and, optionally, the KRA — which are used to manage
certificates on smart cards (tokens).

token processing system (TPS)

A subsystem which interacts directly the Enterprise Security Client and smart cards to manage the
keys and certificates on those smart cards.

Transport Layer Security (TLS)

A set of rules governing server authentication, client authentication, and encrypted communication
between servers and clients.

tree hierarchy

The hierarchical structure of an LDAP directory.

trust

Confident reliance on a person or other entity. In a public-key infrastructure (PKI), trust refers to the
relationship between the user of a certificate and the certificate authority (CA) that issued the
certificate. If a CA is trusted, then valid certificates issued by that CA can be trusted.

U

UTF-8

The certificate enrollment pages support all UTF-8 characters for specific fields (common name,
organizational unit, requester name, and additional notes). The UTF-8 strings are searchable and
correctly display in the CA, OCSP, and KRA end user and agents services pages. However, the UTF-8
support does not extend to internationalized domain names, such as those used in email addresses.

V

virtual private network (VPN)

Planning, Installation, and Deployment Guide

332

A way of connecting geographically distant divisions of an enterprise. The VPN allows the divisions to
communicate over an encrypted channel, allowing authenticated, confidential transactions that
would normally be restricted to a private network.

X

X.509 version 1 and version 3

Digital certificate formats recommended by the International Telecommunications Union (ITU).

CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES

333

INDEX

A

accelerators, Tokens for Storing Certificate System Subsystem Keys and Certificates

active logs

default file location, Logs

message categories, Services That Are Logged

adding new directory attributes, Adding New or Custom Attributes

agent certificate, User Certificates

agents

authorizing key recovery, Recovering Keys

port used for operations, Planning Ports

algorithm

cryptographic, Encryption and Decryption

archiving

rotated log files, Log File Rotation

authentication

certificate-based, Certificate-Based Authentication

client and server, Authentication Confirms an Identity

password-based, Password-Based Authentication

See also client authentication, Certificate-Based Authentication

See also server authentication, Certificate-Based Authentication

automatic revocation checking, Enabling Automatic Revocation Checking on the CA

B

buffered logging, Buffered and Unbuffered Logging

C

CA

certificate, Types of Certificates

defined, A Certificate Identifies Someone or Something

hierarchies and root, CA Hierarchies

trusted, How CA Certificates Establish Trust

CA chaining, Linked CA

CA decisions for deployment

CA renewal, Renewing or Reissuing CA Signing Certificates

distinguished name, Planning the CA Distinguished Name

root versus subordinate, Defining the Certificate Authority Hierarchy

Planning, Installation, and Deployment Guide

334

signing certificate, Setting the CA Signing Certificate Validity Period

signing key, Choosing the Signing Key Type and Length

CA hierarchy, Subordination to a Certificate System CA

root CA, Subordination to a Certificate System CA

subordinate CA, Subordination to a Certificate System CA

CA scalability, CA Cloning

CA signing certificate, CA Signing Certificates, Setting the CA Signing Certificate Validity Period

Certificate Manager

as root CA, Subordination to a Certificate System CA

as subordinate CA, Subordination to a Certificate System CA

CA hierarchy, Subordination to a Certificate System CA

CA signing certificate, CA Signing Certificates

chaining to third-party CAs, Linked CA

cloning, CA Cloning

KRA and, Planning for Lost Keys: Key Archival and Recovery

certificate profiles

Windows smart card login, Using the Windows Smart Card Logon Profile

certificate-based authentication

defined, Authentication Confirms an Identity

certificates

authentication using, Certificate-Based Authentication

CA certificate, Types of Certificates

chains, Certificate Chains

contents of, Contents of a Certificate

issuing of, Certificate Issuance

renewing, Certificate Expiration and Renewal

revoking, Certificate Expiration and Renewal

S/MIME, Types of Certificates

self-signed, CA Hierarchies

verifying a certificate chain, Verifying a Certificate Chain

changing

DER-encoding order of DirectoryString, Changing the DER-Encoding Order

ciphers

defined, Encryption and Decryption

client authentication

SSL/TLS client certificates defined, Types of Certificates

INDEX

335

cloning, CA Cloning

configuration file, CS.cfg Files

CS.cfg, Overview of the CS.cfg Configuration File

format, Overview of the CS.cfg Configuration File

CRL signing certificate, Other Signing Certificates

CRLs

Certificate Manager support for, CRLs

publishing to online validation authority, OCSP Services

CS.cfg, CS.cfg Files

comments and TPS, Overview of the CS.cfg Configuration File

D

deployment planning

CA decisions

distinguished name, Planning the CA Distinguished Name

root versus subordinate, Defining the Certificate Authority Hierarchy

signing certificate, Setting the CA Signing Certificate Validity Period

signing key, Choosing the Signing Key Type and Length

token management, Smart Card Token Management with Certificate System

DER-encoding order of DirectoryString, Changing the DER-Encoding Order

digital signatures

defined, Digital Signatures

directory attributes

adding new, Adding New or Custom Attributes

supported in CS, Changing DN Attributes in CA-Issued Certificates

distinguished name (DN)

extending attribute support, Changing DN Attributes in CA-Issued Certificates

for CA, Planning the CA Distinguished Name

E

email, signed and encrypted, Signed and Encrypted Email

encryption

defined, Encryption and Decryption

public-key, Public-Key Encryption

symmetric-key, Symmetric-Key Encryption

Error log

Planning, Installation, and Deployment Guide

336

defined, Tomcat Error and Access Logs

extending directory-attribute support in CS, Changing DN Attributes in CA-Issued Certificates

extensions

structure of, Structure of Certificate Extensions

external tokens

defined, Tokens for Storing Certificate System Subsystem Keys and Certificates

F

flush interval for logs, Buffered and Unbuffered Logging

H

hardware accelerators, Tokens for Storing Certificate System Subsystem Keys and Certificates

hardware tokens, Tokens for Storing Certificate System Subsystem Keys and Certificates

See external tokens, Tokens for Storing Certificate System Subsystem Keys and Certificates

how to search for keys, Archiving Keys

I

installation, Installing and Configuring Certificate System

planning, A Checklist for Planning the PKI

internal tokens, Tokens for Storing Certificate System Subsystem Keys and Certificates

K

key archival, Archiving Keys

how it works, Archiving Keys

how keys are stored, Archiving Keys

how to set up, Manually Setting up Key Archival

where keys are stored, Archiving Keys

key length, Choosing the Signing Key Type and Length

key recovery, Recovering Keys

how to set up, Setting up Agent-Approved Key Recovery Schemes

Key Recovery Authority

setting up

key archival, Manually Setting up Key Archival

key recovery, Setting up Agent-Approved Key Recovery Schemes

keys

defined, Encryption and Decryption

management and recovery, Key Management

INDEX

337

KRA

Certificate Manager and, Planning for Lost Keys: Key Archival and Recovery

L

linked CA, Linked CA

location of

active log files, Logs

logging

buffered vs. unbuffered, Buffered and Unbuffered Logging

log files

archiving rotated files, Log File Rotation

default location, Logs

timing of rotation, Log File Rotation

log levels, Log Levels (Message Categories)

default selection, Log Levels (Message Categories)

how they relate to message categories, Log Levels (Message Categories)

significance of choosing the right level, Log Levels (Message Categories)

services that are logged, Services That Are Logged

types of logs, Logs

Error, Tomcat Error and Access Logs

O

OCSP responder, OCSP Services

OCSP server, OCSP Services

OCSP signing certificate, Other Signing Certificates

P

password

using for authentication, Authentication Confirms an Identity

password-based authentication, defined, Password-Based Authentication

password.conf

configuring contents, Configuring the password.conf File

configuring location, Configuring the password.conf File

contents, Configuring the password.conf File

passwords

configuring the password.conf file, Configuring the password.conf File

for subsystem instances, Managing System Passwords

Planning, Installation, and Deployment Guide

338

used by subsystem instances, Configuring the password.conf File

PKCS #11 support, Tokens for Storing Certificate System Subsystem Keys and Certificates

planning installation, A Checklist for Planning the PKI

ports

for agent operations, Planning Ports

how to choose numbers, Planning Ports

private key, defined, Public-Key Encryption

public key

defined, Public-Key Encryption

management, Key Management

publishing

of CRLs

to online validation authority, OCSP Services

queue, Enabling and Configuring a Publishing Queue

(see also publishing queue)

publishing queue, Enabling and Configuring a Publishing Queue

enabling, Enabling and Configuring a Publishing Queue

R

recovering users' private keys, Recovering Keys

root CA, Subordination to a Certificate System CA

root versus subordinate CA, Defining the Certificate Authority Hierarchy

rotating log files

archiving files, Log File Rotation

how to set the time, Log File Rotation

RSA, Choosing the Signing Key Type and Length

S

S/MIME certificate, Types of Certificates

self-signed certificate, CA Hierarchies

setting up

key archival, Manually Setting up Key Archival

key recovery, Setting up Agent-Approved Key Recovery Schemes

signing certificate

CA, Setting the CA Signing Certificate Validity Period

signing key, for CA, Choosing the Signing Key Type and Length

INDEX

339

smart cards

Windows login, Using the Windows Smart Card Logon Profile

SSL/TLS

client certificates, Types of Certificates

SSL/TLS client certificate, SSL/TLS Server and Client Certificates

SSL/TLS server certificate, SSL/TLS Server and Client Certificates

subordinate CA, Subordination to a Certificate System CA

subsystems

configuring password file, Configuring the password.conf File

T

timing log rotation, Log File Rotation

Token Key Service, Smart Card Token Management with Certificate System

Token Processing System and, Smart Card Token Management with Certificate System

Token Processing System, Smart Card Token Management with Certificate System

scalability, Using Smart Cards

Token Key Service and, Smart Card Token Management with Certificate System

tokens

defined, Tokens for Storing Certificate System Subsystem Keys and Certificates

external, Tokens for Storing Certificate System Subsystem Keys and Certificates

internal, Tokens for Storing Certificate System Subsystem Keys and Certificates

viewing which tokens are installed, Viewing Tokens

Windows login, Using the Windows Smart Card Logon Profile

topology decisions, for deployment, Smart Card Token Management with Certificate System

TPS

comments in the CS.cfg file, Overview of the CS.cfg Configuration File

Windows smart card login, Using the Windows Smart Card Logon Profile

trusted CA, defined, How CA Certificates Establish Trust

U

unbuffered logging, Buffered and Unbuffered Logging

user certificate, User Certificates

W

Windows smart card login, Using the Windows Smart Card Logon Profile

Planning, Installation, and Deployment Guide

340

APPENDIX A. REVISION HISTORY
Note that revision numbers relate to the edition of this manual, not to version numbers of Red Hat
Certificate System.

Revision 10.3-0 Tue Feb 22 2022 Florian Delehaye
Various fixes for 10.3.

Revision 10.2-0 Wed Jul 14 2021 Florian Delehaye
Various fixes for 10.2.

Revision 10.1-2 Fri Feb 27 2021 Florian Delehaye
Corrections for setting up HSMs in FIPS mode and various minor edits.

Revision 10.1-1 Mon Jan 25 2021 Florian Delehaye
Various fixes and improvements.

Revision 10.1-0 Wed Dec 3 2020 Florian Delehaye
Red Hat Certificate System 10.1 release of the guide.

Revision 10.0-1 Tues Nov 3 2020 Florian Delehaye
Added Upgrade and Migration procedures for RHCS 10.

Revision 10.0-0 Thur Sep 17 2020 Florian Delehaye
Red Hat Certificate System 10.0 release of the guide.

APPENDIX A. REVISION HISTORY

341

	Table of Contents
	PART I. PLANNING HOW TO DEPLOY RED HAT CERTIFICATE SYSTEM
	CHAPTER 1. INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY
	1.1. ENCRYPTION AND DECRYPTION
	1.1.1. Symmetric-Key Encryption
	1.1.2. Public-Key Encryption
	1.1.3. Key Length and Encryption Strength

	1.2. DIGITAL SIGNATURES
	1.3. CERTIFICATES AND AUTHENTICATION
	1.3.1. A Certificate Identifies Someone or Something
	1.3.2. Authentication Confirms an Identity
	1.3.2.1. Password-Based Authentication
	1.3.2.2. Certificate-Based Authentication

	1.3.3. Uses for Certificates
	1.3.3.1. SSL/TLS
	1.3.3.2. Signed and Encrypted Email
	1.3.3.3. Single Sign-on
	1.3.3.4. Object Signing

	1.3.4. Types of Certificates
	1.3.4.1. CA Signing Certificates
	1.3.4.2. Other Signing Certificates
	1.3.4.3. SSL/TLS Server and Client Certificates
	1.3.4.4. User Certificates
	1.3.4.5. Dual-Key Pairs
	1.3.4.6. Cross-Pair Certificates

	1.3.5. Contents of a Certificate
	1.3.5.1. Certificate Data Formats
	1.3.5.2. Distinguished Names
	1.3.5.3. A Typical Certificate

	1.3.6. How CA Certificates Establish Trust
	1.3.6.1. CA Hierarchies
	1.3.6.2. Certificate Chains
	1.3.6.3. Verifying a Certificate Chain

	1.3.7. Certificate Status

	1.4. CERTIFICATE LIFE CYCLE
	1.4.1. Certificate Issuance
	1.4.2. Certificate Expiration and Renewal

	1.5. KEY MANAGEMENT

	CHAPTER 2. INTRODUCTION TO RED HAT CERTIFICATE SYSTEM
	2.1. A REVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS
	2.2. OVERVIEW OF CERTIFICATE SYSTEM SUBSYSTEMS
	2.2.1. Separate versus Shared Instances
	2.2.2. Instance Installation Prerequisites
	2.2.2.1. Directory Server Instance Availability
	2.2.2.2. PKI Packages
	2.2.2.3. Instance Installation and Configuration
	2.2.2.4. Instance Removal

	2.2.3. Execution Management (systemctl)
	2.2.3.1. Starting, Stopping, Restarting, and Obtaining Status
	2.2.3.2. Starting the Instance Automatically

	2.2.4. Process Management (pki-server and pkidaemon)
	2.2.4.1. The pki-server Command Line Tool
	2.2.4.2. Enabling and Disabling an Installed Subsystem Using pki-server
	2.2.4.3. The pkidaemon Command Line Tool
	2.2.4.4. Finding the Subsystem Web Services URLs
	2.2.4.5. Starting the Certificate System Console

	2.3. CERTIFICATE SYSTEM ARCHITECTURE OVERVIEW
	2.3.1. Java Application Server
	2.3.2. Java Security Manager
	2.3.3. Interfaces
	2.3.3.1. Servlet Interface
	2.3.3.2. Administrative Interface
	2.3.3.3. End-Entity Interface
	2.3.3.4. Operator Interface

	2.3.4. REST Interface
	2.3.5. JSS
	2.3.6. Tomcatjss
	2.3.7. PKCS #11
	2.3.7.1. NSS Soft Token (internal token)
	2.3.7.2. Hardware Security Module (HSM, external token)

	2.3.8. Certificate System Serial Number Management
	2.3.8.1. Serial Number Ranges
	2.3.8.2. Random Serial Number Management

	2.3.9. Security Domain
	2.3.10. Passwords and Watchdog (nuxwdog)
	2.3.11. Internal LDAP Database
	2.3.12. Security-Enhanced Linux (SELinux)
	2.3.13. Self-tests
	2.3.14. Logs
	2.3.14.1. Audit Log
	2.3.14.2. Debug Logs
	2.3.14.3. Installation Logs
	2.3.14.4. Tomcat Error and Access Logs
	2.3.14.5. Self-Tests Log
	2.3.14.6. journalctl Logs

	2.3.15. Instance Layout
	2.3.15.1. File and Directory Locations for Certificate System
	2.3.15.2. CA Subsystem Information
	2.3.15.3. KRA Subsystem Information
	2.3.15.4. OCSP Subsystem Information
	2.3.15.5. TKS Subsystem Information
	2.3.15.6. TPS Subsystem Information
	2.3.15.7. Shared Certificate System Subsystem File Locations

	2.4. PKI WITH CERTIFICATE SYSTEM
	2.4.1. Issuing Certificates
	2.4.1.1. The Enrollment Process
	Shared Secret Created by the End Entity User (Preferred)
	Shared Secret Created by the CA Administrator
	2.4.1.2. Certificate Profiles
	2.4.1.3. Authentication for Certificate Enrollment
	2.4.1.4. Cross-Pair Certificates

	2.4.2. Renewing Certificates
	2.4.3. Publishing Certificates and CRLs
	2.4.4. Revoking Certificates and Checking Status
	2.4.4.1. Revoking Certificates
	2.4.4.2. Certificate Status

	2.4.5. Archiving, Recovering, and Rotating Keys
	2.4.5.1. Archiving Keys
	2.4.5.2. Recovering Keys
	2.4.5.3. KRA Transport Key Rotation

	2.5. SMART CARD TOKEN MANAGEMENT WITH CERTIFICATE SYSTEM
	2.5.1. Token Key Service (TKS)
	2.5.1.1. Master Keys and Key Sets
	2.5.1.2. Key Ceremony (Shared Key Transport)
	2.5.1.3. Key Update (Key Changeover)
	2.5.1.4. APDUs and Secure Channels

	2.5.2. Token Processing System (TPS)
	2.5.2.1. Coolkey Applet
	2.5.2.2. Token Operations
	2.5.2.3. TPS Profiles
	2.5.2.4. Token Database
	2.5.2.5. Mapping Resolver
	2.5.2.6. TPS Roles

	2.5.3. TKS/TPS Shared Secret
	2.5.4. Enterprise Security Client (ESC)

	2.6. RED HAT CERTIFICATE SYSTEM SERVICES
	2.6.1. Notifications
	2.6.2. Jobs
	2.6.3. Logging
	2.6.4. Auditing
	2.6.5. Self-Tests
	2.6.6. Users, Authorization, and Access Controls
	2.6.6.1. Default Administrative Roles
	2.6.6.2. Built-in Subsystem Trust Roles

	2.7. CLONING
	2.7.1. About Cloning
	2.7.2. Preparing Clones
	2.7.3. Cloning for CAs
	2.7.4. Cloning for KRAs
	2.7.5. Cloning for Other Subsystems
	2.7.6. Cloning and Key Stores
	2.7.7. LDAP and Port Considerations
	2.7.8. Replica ID Numbers
	2.7.9. Custom Configuration and Clones

	CHAPTER 3. SUPPORTED STANDARDS AND PROTOCOLS
	3.1. TLS, ECC, AND RSA
	3.1.1. Supported Cipher Suites
	3.1.1.1. Recommended TLS Cipher Suites

	3.2. ALLOWED KEY ALGORITHMS AND THEIR SIZES
	3.3. ALLOWED HASH FUNCTIONS
	3.4. IPV4 AND IPV6 ADDRESSES
	3.5. SUPPORTED PKIX FORMATS AND PROTOCOLS

	CHAPTER 4. SUPPORTED PLATFORMS
	4.1. GENERAL REQUIREMENTS
	4.2. SERVER SUPPORT
	4.3. SUPPORTED WEB BROWSERS
	4.4. SUPPORTED HARDWARE SECURITY MODULES

	CHAPTER 5. PLANNING THE CERTIFICATE SYSTEM
	5.1. DECIDING ON THE REQUIRED SUBSYSTEMS
	5.1.1. Using a Single Certificate Manager
	5.1.2. Planning for Lost Keys: Key Archival and Recovery
	5.1.3. Balancing Certificate Request Processing
	5.1.4. Balancing Client OCSP Requests
	5.1.5. Using Smart Cards

	5.2. DEFINING THE CERTIFICATE AUTHORITY HIERARCHY
	5.2.1. Subordination to a Public CA
	5.2.2. Subordination to a Certificate System CA
	5.2.3. Linked CA
	5.2.4. CA Cloning

	5.3. PLANNING SECURITY DOMAINS
	5.4. DETERMINING THE REQUIREMENTS FOR SUBSYSTEM CERTIFICATES
	5.4.1. Determining Which Certificates to Install
	5.4.2. Planning the CA Distinguished Name
	5.4.3. Setting the CA Signing Certificate Validity Period
	5.4.4. Choosing the Signing Key Type and Length
	5.4.5. Using Certificate Extensions
	5.4.5.1. Structure of Certificate Extensions

	5.4.6. Using and Customizing Certificate Profiles
	Certificate Profiles
	Modifying the Certificate Profile Parameters
	Certificate Profile Administration
	Guidelines for Customizing Certificate Profiles
	5.4.6.1. Adding SAN Extensions to the SSL Server Certificate

	5.4.7. Planning Authentication Methods
	5.4.8. Publishing Certificates and CRLs
	5.4.9. Renewing or Reissuing CA Signing Certificates

	5.5. PLANNING FOR NETWORK AND PHYSICAL SECURITY
	5.5.1. Considering Firewalls
	5.5.2. Considering Physical Security and Location
	5.5.3. Planning Ports

	5.6. TOKENS FOR STORING CERTIFICATE SYSTEM SUBSYSTEM KEYS AND CERTIFICATES
	5.7. A CHECKLIST FOR PLANNING THE PKI
	5.8. OPTIONAL THIRD-PARTY SERVICES
	5.8.1. Load Balancers
	5.8.2. Backup Hardware and Software

	PART II. INSTALLING RED HAT CERTIFICATE SYSTEM
	CHAPTER 6. PREREQUISITES AND PREPARATION FOR INSTALLATION
	6.1. INSTALLING RED HAT ENTERPRISE LINUX
	6.2. SECURING THE SYSTEM USING SELINUX
	6.2.1. Verifying if SELinux is Running in Enforcing Mode

	6.3. FIREWALL CONFIGURATION
	6.3.1. Opening the Required Ports in the Firewall

	6.4. HARDWARE SECURITY MODULE
	6.4.1. Setting up SELinux for an HSM
	6.4.2. Enabling FIPS Mode on an HSM
	6.4.3. Verifying if FIPS Mode is Enabled on an HSM
	6.4.3.1. Verifying if FIPS Mode is Enabled on an nCipher HSM
	6.4.3.2. Verifying if FIPS Mode is Enabled on a Luna SA HSM

	6.4.4. Preparing for Installing Certificate System with an HSM
	6.4.4.1. nCipher HSM Parameters
	6.4.4.2. SafeNet / Luna SA HSM Parameters

	6.4.5. Backing up Keys on Hardware Security Modules

	6.5. INSTALLING RED HAT DIRECTORY SERVER
	6.5.1. Preparing a Directory Server Instance for Certificate System
	6.5.2. Preparing for Configuring Certificate System

	6.6. REPLACING A TEMPORARY SELF-SIGNED CERTIFICATE IN DIRECTORY SERVER (CA)
	6.7. ENABLING TLS CLIENT AUTHENTICATION FOR THE INTERNAL LDAP SERVER
	6.8. ATTACHING A RED HAT SUBSCRIPTION AND ENABLING THE CERTIFICATE SYSTEM PACKAGE REPOSITORY
	6.9. CERTIFICATE SYSTEM OPERATING SYSTEM USERS AND GROUPS

	CHAPTER 7. INSTALLING AND CONFIGURING CERTIFICATE SYSTEM
	7.1. SUBSYSTEM CONFIGURATION ORDER
	7.2. CERTIFICATE SYSTEM PACKAGES
	7.2.1. Installing Certificate System Packages
	7.2.2. Updating Certificate System Packages
	7.2.3. Determining Certificate System Product Version

	7.3. UNDERSTANDING THE PKISPAWN UTILITY
	7.4. SETTING UP A ROOT CERTIFICATE AUTHORITY
	7.5. POST-INSTALLATION
	7.6. SETTING UP ADDITIONAL SUBSYSTEMS
	Prerequisites
	Installing the Subsystem

	7.7. TWO-STEP INSTALLATION
	7.7.1. When to Use the Two-Step Installation
	7.7.2. The Two Major Parts of the Two-step Installation
	7.7.3. Creating the Configuration File for the First Step of the Installation
	Subsystem-independent Settings
	CA Settings
	Settings for Other Subsystems

	7.7.4. Starting the Installation Step
	7.7.5. Customizing the Configuration Between the Installation Steps
	7.7.5.1. Configuring Certificate Profiles
	7.7.5.2. Enabling Signed Audit Logging
	7.7.5.3. Updating the Ciphers List
	Default FIPS Mode Enabled Ciphers for RSA Encryption
	Default FIPS Mode Enabled Ciphers for ECC Encryption
	Required RSA Ciphers When Running an HSM on System with FIPS Mode Enabled
	7.7.5.4. Configuring the PKI Console Timeout
	7.7.5.5. Setting the KRA into Encryption Mode
	7.7.5.6. Enabling OCSP
	7.7.5.7. Configuring Ranges for Requests and Serial Numbers

	7.7.6. Starting the Configuration Step
	7.7.7. Post-Installation

	7.8. SETTING UP SUBSYSTEMS WITH AN EXTERNAL CA
	7.8.1. The Difference Between an Internal and External CA
	7.8.2. Installing a Subsystem with an External CA
	Preparing the Configuration File for the External CA Installation
	Starting the Installation of a Subsystem with an External CA

	7.8.3. Post-Installation

	7.9. SETTING UP A STANDALONE KRA OR OCSP
	7.10. POST-INSTALLATION TASKS
	7.10.1. Setting Date/Time for RHCS
	7.10.2. Replacing the Temporary Certificate
	7.10.3. Enabling TLS Client Authentication
	7.10.4. Configuring Session Timeout
	7.10.5. CRL or Certificate Publishing
	7.10.6. Configuring Certificate Enrollment Profiles (CA)
	7.10.7. Enabling Access Banner
	7.10.8. Enabling the Watchdog Service
	7.10.9. Configuration for CMC Enrollment and Revocation (CA)
	7.10.10. TLS client-authentication for the Java Console
	7.10.11. Creating a Role User
	7.10.12. Removing the Bootstrap User
	7.10.13. Disabling Multi-role Support
	7.10.14. KRA Configurations
	7.10.14.1. Adding Requirement for Multiple Agent Approval for Key Recovery Authority (KRA)
	7.10.14.2. Configuring KRA Encryption Settings

	7.10.15. Setting up Users to use User Interfaces

	CHAPTER 8. USING HARDWARE SECURITY MODULES FOR SUBSYSTEM SECURITY DATABASES
	8.1. INSTALLING CERTIFICATE SYSTEM WITH AN HSM
	8.2. USING HARDWARE SECURITY MODULES WITH SUBSYSTEMS
	8.2.1. Enabling the FIPS Mode on an HSM
	8.2.2. Verifying if FIPS Mode is Enabled on an HSM
	8.2.2.1. Verifying if FIPS Mode is Enabled on an nCipher HSM
	8.2.2.2. Verifying if FIPS Mode is Enabled on a Luna SA HSM

	8.2.3. Adding or Managing the HSM Entry for a Subsystem
	8.2.4. Setting up SELinux for an HSM
	8.2.5. Installing a Subsystem Using nCipher nShield Connect XC HSM
	8.2.6. Installing a Subsystem Using Thales Luna HSM

	8.3. BACKING UP KEYS ON HARDWARE SECURITY MODULES
	8.4. INSTALLING A CLONE SUBSYSTEM USING AN HSM
	8.5. VIEWING TOKENS
	8.6. DETECTING TOKENS

	CHAPTER 9. INSTALLING AN INSTANCE WITH ECC SYSTEM CERTIFICATES
	9.1. LOADING A THIRD-PARTY ECC MODULE
	9.2. USING ECC WITH AN HSM

	CHAPTER 10. CLONING SUBSYSTEMS
	10.1. BACKING UP SUBSYSTEM KEYS FROM A SOFTWARE DATABASE
	10.2. CLONING A CA
	10.3. UPDATING CA-KRA CONNECTOR INFORMATION AFTER CLONING
	10.4. CLONING OCSP SUBSYSTEMS
	10.5. CLONING KRA SUBSYSTEMS
	10.6. CLONING TKS SUBSYSTEMS
	10.7. CONVERTING MASTERS AND CLONES
	10.7.1. Converting CA Clones and Masters
	10.7.2. Converting OCSP Clones

	10.8. CLONING A CA THAT HAS BEEN RE-KEYED

	CHAPTER 11. SETTING UP PKI ACME RESPONDER
	11.1. INSTALLING PKI ACME RESPONDER
	11.2. CONFIGURING AN ACME DATABASE
	11.2.1. Configuring a DS Database

	11.3. CONFIGURING ACME ISSUER
	11.3.1. Configuring PKI Issuer

	11.4. CONFIGURING ACME REALM
	11.4.1. Configuring DS Realm

	11.5. DEPLOYING ACME RESPONDER

	CHAPTER 12. ADDITIONAL INSTALLATION OPTIONS
	12.1. LIGHTWEIGHT SUB-CAS
	12.1.1. Setting up a Lightweight Sub-CA
	12.1.2. Disabling the Creation of Lightweight Sub-CAs
	12.1.3. Re-enabling the Creation of Lightweight Sub-CAs

	12.2. ENABLING IPV6 FOR A SUBSYSTEM
	12.3. ENABLING LDAP-BASED ENROLLMENT PROFILES
	12.4. CUSTOMIZING TLS CIPHERS

	CHAPTER 13. TROUBLESHOOTING INSTALLATION AND CLONING
	13.1. Installation
	Error #1: The LDAP database is not running.
	Error #2: A VPN is blocking access.

	13.2. Java Console

	PART III. CONFIGURING CERTIFICATE SYSTEM
	CHAPTER 14. THE CERTIFICATE SYSTEM CONFIGURATION FILES
	14.1. FILE AND DIRECTORY LOCATIONS FOR CERTIFICATE SYSTEM SUBSYSTEMS
	14.1.1. Instance-specific Information
	14.1.2. CA Subsystem Information
	14.1.3. KRA Subsystem Information
	14.1.4. OCSP Subsystem Information
	14.1.5. TKS Subsystem Information
	14.1.6. TPS Subsystem Information
	14.1.7. Shared Certificate System Subsystem File Locations

	14.2. CS.CFG FILES
	14.2.1. Locating the CS.cfg File
	14.2.2. Editing the Configuration File
	14.2.3. Overview of the CS.cfg Configuration File
	14.2.3.1. Basic Subsystem Settings
	14.2.3.2. Logging Settings
	14.2.3.3. Authentication and Authorization Settings
	14.2.3.4. Subsystem Certificate Settings
	14.2.3.5. Settings for Required Subsystems
	14.2.3.6. Database Settings
	14.2.3.7. Enabling and Configuring a Publishing Queue
	14.2.3.8. Settings for PKI Tasks
	14.2.3.9. Changing DN Attributes in CA-Issued Certificates
	14.2.3.10. Setting a CA to Use a Different Certificate to Sign CRLs
	14.2.3.11. Configuring CRL Generation from Cache in CS.cfg
	14.2.3.12. Configuring Update Intervals for CRLs in CS.cfg
	14.2.3.13. Changing the Access Control Settings for the Subsystem
	14.2.3.14. Configuring Ranges for Requests and Serial Numbers
	14.2.3.15. Setting Requirement for pkiconsole to use TLS Client Certificate Authentication

	14.3. MANAGING SYSTEM PASSWORDS
	14.3.1. Configuring the password.conf File
	14.3.2. Using the Certificate System Watchdog Service
	14.3.2.1. Enabling the Watchdog Service
	14.3.2.2. Starting and Stopping Certificate System with the Watchdog Enabled
	14.3.2.3. Verifying That the Certificate System Watchdog Service is Enabled
	14.3.2.4. Disabling the Watchdog Service

	14.4. CONFIGURATION FILES FOR THE TOMCAT ENGINE AND WEB SERVICES
	14.4.1. Tomcatjss
	14.4.1.1. TLS Cipher Configuration
	14.4.1.2. Enabling Automatic Revocation Checking on the CA
	14.4.1.3. Enabling Certificate Revocation Checking for Subsystems
	14.4.1.4. Adding an AIA Extension to an Enrollment Profile

	14.4.2. Session Timeout
	14.4.2.1. TLS Session Timeout
	14.4.2.2. HTTP Session Timeout
	14.4.2.3. Session Timeout for PKI Web UI
	14.4.2.4. Session Timeout for PKI Console
	14.4.2.5. Session Timeout for PKI CLI

	14.5. WEB.XML
	14.5.1. Removing Unused Interfaces from web.xml (CA Only)

	14.6. CUSTOMIZING WEB SERVICES
	14.6.1. Customizing Subsystem Web Applications
	14.6.2. Customizing the Web UI Theme
	14.6.3. Customizing TPS Token State Labels

	14.7. USING AN ACCESS BANNER
	14.7.1. Enabling an Access Banner
	14.7.2. Disabling an Access Banner
	14.7.3. Displaying the Banner
	14.7.4. Validating the Banner

	14.8. CONFIGURATION FOR CMC
	14.8.1. Understanding How CMC Works
	14.8.2. Enabling the PopLinkWittnessV2 Feature
	14.8.3. Enabling the CMC Shared Secret Feature
	14.8.4. Enabling CMCRevoke for the Web User Interface

	14.9. CONFIGURATION FOR SERVER-SIDE KEY GENERATION FOR CERTIFICATE ENROLLMENT USING THE CA EE PORTAL
	14.9.1. Installation Configuration
	14.9.2. Profile Configuration
	Input
	Output
	Policyset
	Authentication

	14.10. CONFIGURING CERTIFICATE TRANSPARENCY
	14.10.1. ca.certTransparency.mode
	14.10.2. ca.certTransparency.log.num
	14.10.3. ca.certTransparency.log.<id>.*

	CHAPTER 15. MANAGING CERTIFICATE/KEY CRYPTO TOKEN
	About Crypto Tokens
	15.1. ABOUT CERTUTIL AND PKICERTIMPORT
	15.1.1. certutil Basic Usage
	15.1.2. PKICertImport Basic Usage
	15.1.3. certutil Common Commands
	certutil -A
	certutil -V
	certutil -D
	certutil -M
	certutil -L

	15.1.4. Common certutil and PKICertImport Options
	-n <nickname>
	-d <directory>
	-t <trust>
	-h <HSM>
	-e
	-a
	-i <certificate>
	-u <usage>

	15.2. IMPORTING A ROOT CERTIFICATE
	To import the root certificate:

	15.3. IMPORTING AN INTERMEDIATE CERTIFICATE CHAIN
	For every intermediate certificate in the chain:

	15.4. IMPORTING A CERTIFICATE INTO AN HSM
	To import a server certificate on the HSM:
	To import a client certificate on the HSM:
	To import an object signing certificate on the HSM:
	To import an OCSP response signing certificate on the HSM:

	15.5. IMPORTING A CERTIFICATE INTO AN NSS DATABASE
	Importing a Client Certificate Into the NSS Database
	Importing an Object Signing Certificate
	Importing an OCSP Responder

	CHAPTER 16. CERTIFICATE PROFILES CONFIGURATION
	16.1. CREATING AND EDITING CERTIFICATE PROFILES DIRECTLY ON THE FILE SYSTEM
	16.1.1. Configuring non-CA System Certificate Profiles
	16.1.1.1. Profile Configuration Parameters
	16.1.1.2. Modifying Certificate Extensions Directly on the File System
	16.1.1.3. Adding Profile Inputs Directly on the File System

	16.1.2. Changing the Default Validity Time of Certificates
	16.1.3. Configuring CA System Certificate Profiles
	16.1.4. Managing Smart Card CA Profiles
	16.1.4.1. Editing Enrollment Profiles for the TPS
	16.1.4.2. Creating Custom TPS Profiles
	16.1.4.3. Using the Windows Smart Card Logon Profile

	16.1.5. Disabling Certificate Enrolment Profiles

	CHAPTER 17. CONFIGURING THE KEY RECOVERY AUTHORITY
	17.1. MANUALLY SETTING UP KEY ARCHIVAL
	17.2. ENCRYPTION OF KRA OPERATIONS
	17.2.1. How Clients Manage Key Operation Encryption
	17.2.2. Configuring the Encryption Algorithm in the KRA
	17.2.2.1. Explanation of Parameters and their Values
	17.2.2.2. Solving Limitations of HSMs When Using AES Encryption in KRAs
	Selecting a Different Algorithm for the Key Wrapping
	Setting the KRA into Encryption Mode

	17.3. SETTING UP AGENT-APPROVED KEY RECOVERY SCHEMES
	17.3.1. Configuring Agent-Approved Key Recovery in the Command Line
	17.3.2. Customizing the Key Recovery Form
	17.3.3. Rewrapping Keys in a New Private Storage Key
	17.3.3.1. About KRATool
	17.3.3.2. Rewrapping and Merging Keys from One or More KRAs into a Single KRA

	17.3.4. Updating CA-KRA Connector Information After Cloning

	CHAPTER 18. CONFIGURING LOGS
	18.1. CERTIFICATE SYSTEM LOG SETTINGS
	18.1.1. Services That Are Logged
	18.1.2. Log Levels (Message Categories)
	18.1.3. Buffered and Unbuffered Logging
	18.1.4. Log File Rotation

	18.2. OPERATING SYSTEM (EXTERNAL TO RHCS) LOG SETTINGS
	18.2.1. Enabling OS-level Audit Logs
	18.2.1.1. Auditing Certificate System Audit Log Deletion
	18.2.1.2. Auditing Unauthorized Certificate System Use of Secret Keys
	18.2.1.3. Auditing Time Change Events
	18.2.1.4. Auditing Access to Certificate System Configuration

	18.3. CONFIGURING LOGS IN THE CS.CFG FILE
	18.3.1. Enabling and Configuring Signed Audit Log
	18.3.1.1. Enabling Signed Audit Logging
	18.3.1.2. Configuring Audit Events

	18.3.2. Configuring Self-Tests
	18.3.2.1. Default Self-Tests at Startup
	18.3.2.2. Modifying Self-Test Configuration

	18.3.3. Additional Configuration for Debug Log
	18.3.3.1. Enabling and Disabling Debug Logging
	18.3.3.2. Setting up Rotation of Debug Log Files

	18.4. AUDIT RETENTION
	18.4.1. Location of Audit Data
	18.4.1.1. Location of Audit Logs
	18.4.1.2. Location of Certificate Requests and Certificate Records

	CHAPTER 19. CREATING A ROLE USER
	19.1. CREATING A PKI ADMINISTRATIVE USER ON THE OPERATING SYSTEM
	19.2. CREATING A PKI ROLE USER IN CERTIFICATE SYSTEM

	CHAPTER 20. DELETING THE BOOTSTRAP USER
	20.1. DISABLING MULTI-ROLES SUPPORT

	PART IV. UPGRADING TO CERTIFICATE SYSTEM 10.X
	CHAPTER 21. UPGRADING FROM CERTIFICATE SYSTEM 9 TO CERTIFICATE SYSTEM 10
	21.1. MIGRATING A CA
	21.1.1. Exporting Data from the Previous System
	21.1.2. Verifying the PKCS12 file
	21.1.3. Setting up the CA on the New Host
	21.1.4. Importing the Old Data into the New CA
	21.1.5. Reassigning Users to Default Groups

	21.2. MIGRATING A KRA
	21.2.1. Setting Up the KRA on the New Host
	21.2.2. Exporting Contents from the Previous System
	21.2.3. Importing the Data into the New KRA
	21.2.4. Validating the presence of migrated keys from the KRA Agent Page
	21.2.5. Post-Upgrade Testing

	CHAPTER 22. UPGRADING CERTIFICATE SYSTEM 10 TO THE LATEST MINOR VERSION
	PART V. UNINSTALLING CERTIFICATE SYSTEM SUBSYSTEMS
	CHAPTER 23. REMOVING A SUBSYSTEM
	CHAPTER 24. REMOVING CERTIFICATE SYSTEM SUBSYSTEM PACKAGES
	GLOSSARY
	INDEX
	APPENDIX A. REVISION HISTORY

