& RedHat

Red Hat build of Quarkus 1.11

Getting started with Quarkus

Last Updated: 2021-06-22

Red Hat build of Quarkus 1.1 Getting started with Quarkus

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to create a simple Quarkus application with Apache Maven.

Table of Contents

Table of Contents

PREFACE ...\ttt ittt et ettt e 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION uuntnt ittt et et 4
MAKING OPEN SOURCE MORE INCLUSIVEttt ettt ettt et e et 5
CHAPTER 1. RED HAT BUILD OF QUARKUS ... 0.ttt ettt e e et 6
CHAPTER 2. APACHE MAVEN AND QUARKUSttt ettt 7

2.1. CONFIGURING THE MAVEN SETTINGS.XML FILE FOR THE ONLINE REPOSITORY 7

2.2. DOWNLOADING AND CONFIGURING THE QUARKUS MAVEN REPOSITORY 8
CHAPTER 3. CREATING THE GETTING STARTED PROJECTviutntni ittt et e, 1
CHAPTER 4. COMPILING AND STARTING THE QUARKUS GETTING STARTED PROJECT 14
CHAPTER 5. USING QUARKUS DEPENDENCY INJECTIONuuntetitit it 16
CHAPTER 6. TESTING YOUR QUARKUS APPLICATION WITH JUNIToutintiintiniiaeaeeaneannns 18
CHAPTER 7. PACKAGING AND RUNNING THE QUARKUS GETTING STARTED APPLICATION 21
CHAPTER 8. CREATING A QUARKUS MAVEN PROJECT USING CODE.QUARKUS.REDHAT.COM 22
CHAPTER 9. ADDITIONAL RESOURCES ututtntttiet ittt et et e et 26

Red Hat build of Quarkus 1.11 Getting started with Quarkus

PREFACE

PREFACE

As an application developer, you can use Red Hat build of Quarkus to create microservices-based
applications written in Java that run in OpenShift and serverless environments. Applications compiled to
native executables have small memory footprints and fast startup times.

This guide shows you how to use Apache Maven to create, test, package, and run a simple Quarkus
project that exposes a hello HTTP endpoint. To demonstrate dependency injection, this endpoint uses
a greeting bean.

Hello T GreetingResource e GreetingService

Prerequisites

® Have OpenJDK (JDK) 1l installed and the JAVA_HOME environment variable specifies the
location of the Java SDK.

©o Login to the Red Hat Customer Portal to download Red Hat build of Open JDK from the
Software Downloads page.

® Have Apache Maven 3.6.2 or later installed. Maven is available from the Apache Maven Project
website.

NOTE

For a completed example of the getting started exercise, download the Quarkus
quickstart archive or clone the Quarkus Quickstarts Git repository. The Getting Started
example is in the getting-started directory.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=core.service.openjdk&downloadType=distributions
https://maven.apache.org/
https://github.com/quarkusio/quarkus-quickstarts/archive/1.11.7.Final.zip

Red Hat build of Quarkus 1.11 Getting started with Quarkus

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our technical content and encourage you to tell us what you think. If
you'd like to add comments, provide insights, correct a typo, or even ask a question, you can do so
directly in the documentation.

NOTE

You must have a Red Hat account and be logged in to the customer portal.

To submit documentation feedback from the customer portal, do the following:

1.

2.

3.

4.

5.

Select the Multi-page HTML format.

Click the Feedback button at the top-right of the document.
Highlight the section of text where you want to provide feedback.
Click the Add Feedback dialog next to your highlighted text.

Enter your feedback in the text box on the right of the page and then click Submit.

We automatically create a tracking issue each time you submit feedback. Open the link that is displayed
after you click Submit and start watching the issue or add more comments.

Thank you for the valuable feedback.

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat build of Quarkus 1.11 Getting started with Quarkus

CHAPTER 1. RED HAT BUILD OF QUARKUS

Red Hat build of Quarkus is a Kubernetes-native Java stack that is optimized for use with containers and
Red Hat OpenShift Container Platform. Quarkus is designed to work with popular Java standards,
frameworks, and libraries such as Eclipse MicroProfile, Apache Kafka, RESTEasy (JAX-RS), Hibernate
ORM (JPA), Spring, Infinispan, and Apache Camel.

The Quarkus dependency injection solution is based on CDI (contexts and dependency injection) and
includes an extension framework to expand functionality and to configure, boot, and integrate a
framework into your application.

Quarkus provides a container-first approach to building Java applications. This approach makes it much
easier to build microservices-based applications written in Java as well as enabling those applications to
invoke functions running on serverless computing frameworks. For this reason, Quarkus applications
have small memory footprints and fast startup times.

CHAPTER 2. APACHE MAVEN AND QUARKUS

CHAPTER 2. APACHE MAVEN AND QUARKUS

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model (POM) files to define projects and manage the build process. POM files describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven repositories

A Maven repository stores Java libraries, plug-ins, and other build artifacts. The default public
repository is the Maven 2 Central Repository, but repositories can be private and internal within a
company to share common artifacts among development teams. Repositories are also available from
third-parties.

You can use the online Maven repository with your Quarkus projects or you can download the Red Hat
build of Quarkus Maven repository.
Maven plug-ins

Maven plug-ins are defined parts of a POM file that achieve one or more goals. Quarkus applications use
the following Maven plug-ins:

® Quarkus Maven plug-in (quarkus-maven-plugin): Enables Maven to create Quarkus projects,
supports the generation of uber-JAR files, and provides a development mode.

® Maven Surefire plug-in (maven-surefire-plugin): Used during the test phase of the build life
cycle to execute unit tests on your application. The plug-in generates text and XML files that
contain the test reports.

2.1. CONFIGURING THE MAVEN seTTINGS.XML FILE FOR THE ONLINE
REPOSITORY

You can use the online Quarkus repository with your Quarkus Maven project by configuring your user
settings.xml file. This is the recommended approach. Maven settings used with a repository manager or
repository on a shared server provide better control and manageability of projects.

NOTE

When you configure the repository by modifying the Maven settings.xml file, the
changes apply to all of your Maven projects.

Procedure

1. Open the Maven ~/.m2/settings.xml file in a text editor or integrated development
environment (IDE).

NOTE

If there is not a settings.xml file in the ~/.m2/ directory, copy the settings.xml
file from the SMAVEN_HOME/.m2/conf/ directory into the ~/.m2/ directory.

2. Add the following lines to the <profiles> element of the settings.xml file:

Red Hat build of Quarkus 1.11 Getting started with Quarkus

<!I-- Configure the Quarkus Maven repository -->
<profile>
<id>red-hat-enterprise-maven-repository</id>
<repositories>
<repository>
<id>red-hat-enterprise-maven-repository</id>
<url>https://maven.repository.redhat.com/ga/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>red-hat-enterprise-maven-repository</id>
<url>https://maven.repository.redhat.com/ga/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>

3. Add the following lines to the <activeProfiles> element of the settings.xml file and save the
file.

I <activeProfile>red-hat-enterprise-maven-repository</activeProfile>

2.2. DOWNLOADING AND CONFIGURING THE QUARKUS MAVEN
REPOSITORY

If you do not want to use the online Maven repository, you can download and configure the Quarkus
Maven repository to create a Quarkus application with Maven. The Quarkus Maven repository contains
many of the requirements that Java developers typically use to build their applications. This procedure
describes how to edit the settings.xml file to configure the Quarkus Maven repository.

NOTE

When you configure the repository by modifying the Maven settings.xml file, the
changes apply to all of your Maven projects.

Procedure

1. Download the Quarkus Maven repository ZIP file from the Software Downloads page of the Red
Hat Customer Portal (login required).

2. Expand the downloaded archive.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=redhat.quarkus&downloadType=distributions

CHAPTER 2. APACHE MAVEN AND QUARKUS

3. Change directory to the ~/.m2/ directory and open the Maven settings.xml file in a text editor
or integrated development environment (IDE).

4. Add the path of the Quarkus Maven repository that you downloaded to the <profiles> element
of the settings.xml file. The format of the path of the Quarkus Maven repository must be
file://$PATH, for example file:///home/userX/rh-quarkus-1.11.7.GA-maven-
repository/maven-repository.

<!I-- Configure the Quarkus Maven repository -->
<profile>
<id>red-hat-enterprise-maven-repository</id>
<repositories>
<repository>
<id>red-hat-enterprise-maven-repository</id>
<url>file:///path/to/Quarkus/Maven/repository/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>red-hat-enterprise-maven-repository</id>
<url>file:///path/to/Quarkus/Maven/repository/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>

5. Add the following lines to the <activeProfiles> element of the settings.xml file and save the
file.

I <activeProfile>red-hat-enterprise-maven-repository</activeProfile>

Red Hat build of Quarkus 1.11 Getting started with Quarkus

10

IMPORTANT

If your Maven repository contains outdated artifacts, you might encounter one of the
following Maven error messages when you build or deploy your project, where
<artifact_names is the name of a missing artifact and <project_names is the name of
the project you are trying to build:

e Missing artifact <project_name>

e [ERROR] Failed to execute goal on project <artifact_name>; Could not
resolve dependencies for <project_name>

To resolve the issue, delete the cached version of your local repository located in the
~/.m2/repository directory to force a download of the latest Maven artifacts.

CHAPTER 3. CREATING THE GETTING STARTED PROJECT

CHAPTER 3. CREATING THE GETTING STARTED PROJECT

The getting-started project lets you get up and running with a simple Quarkus application using Apache
Maven and the Quarkus Maven plug-in.
Procedure

1. In a command terminal, enter the following command to verify that Maven is using JDK 11 and
that the Maven version is 3.6.2 or higher:

I mvn --version

2. If the preceding command does not return JDK 11, add the path to JDK 11 to the PATH
environment variable and enter the preceding command again.

3. To generate the project, enter one of the following commands:

NOTE

Apple macOS and Microsoft Windows are not supported production
environments.

® |f you are using Linux or Apple macOS, enter the following command:

mvn io.quarkus:quarkus-maven-plugin:1.11.7.Final-redhat-00009:create \
-DprojectGroupld=org.acme \
-DprojectArtifactld=getting-started \
-DplatformGroupld=com.redhat.quarkus \
-DplatformVersion=1.11.7.Final-redhat-00009 \
-DclassName="org.acme.quickstart.GreetingResource" \
-Dpath="/hello"

cd getting-started

® |f you are using the Microsoft Windows command line, enter the following command:

mvn io.quarkus:quarkus-maven-plugin:1.11.7.Final-redhat-00009:create -
DprojectGroupld=org.acme -DprojectArtifactld=getting-started -
DplatformGroupld=com.redhat.quarkus -DplatformVersion=1.11.7.Final-redhat-00009 -
DclassName="org.acme.quickstart.GreetingResource" -Dpath="/hello"

e |f you are using the Microsoft Windows Powershell, enter the following command:

mvn io.quarkus:quarkus-maven-plugin:1.11.7.Final-redhat-00009:create "-
DprojectGroupld=org.acme" "-DprojectArtifactld=getting-started" "-
DplatformVersion=1.11.7.Final-redhat-00009" "-DplatformGroupld=com.redhat.quarkus”
"-DclassName=org.acme.quickstart.GreetingResource" "-Dpath=/hello"

These commands create the following elements in the ./getting-started directory:
o The Maven project directory structure

o An org.acme.quickstart.GreetingResource resource exposed on /hello

1

Red Hat build of Quarkus 1.11 Getting started with Quarkus

o Associated unit tests for testing your application in native mode and JVM mode

o Alanding page that is accessible on http://localhost:8080 after you start the
application

o Example Dockerfile.jvm, Dockerfile.native, and Dockerfile.fast-jar files in the
src/main/docker directory

o The application configuration file

4. After the directory structure is created, open the pom.xml file in a text editor and examine the
contents of the file:

<dependencyManagement>
<dependencies>
<dependency>
<groupld>com.redhat.quarkus</groupld>
<artifactld>quarkus-universe-bom</artifactld>
<version>${quarkus.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-maven-plugin</artifactid>
<version>${quarkus-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>build</goal>
<goal>generate-code</goal>
<goal>generate-code-tests</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

The Quarkus BOM is included in the <dependencyManagements section of the pom.xml file.
Therefore, you do not need to list the versions of individual Quarkus dependencies in the
pom.xml file. In addition, you can see the quarkus-maven-plugin plug-in that is responsible for
packaging the application and providing the development mode.

5. Review the quarkus-resteasy dependency in the pom.xml file. This dependency enables you to
develop REST applications:

<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-resteasy</artifactld>
</dependency>

12

CHAPTER 3. CREATING THE GETTING STARTED PROJECT

6. Review the src/main/java/org/acme/quickstart/GreetingResource.java file:

package org.acme.quickstart;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

@Path("/hello")
public class GreetingResource {

@GET
@Produces(MediaType. TEXT_PLAIN)
public String hello() {
return "hello";
}
}

This file contains a simple REST endpoint that returns hello as a response to a request that you
send to the /hello endpoint.

NOTE

With Quarkus, the Application class for JAX-RS is supported but not required. In
addition, only one instance of the GreetingResource class is created and not
one per request. You can configure this by using different *Scoped annotations,
for example ApplicationScoped, RequestScoped, and so forth.

You can create a Quarkus Maven project using the code.quarkus.redhat.com project generator. See
Creating a Quarkus Maven project using code.quarkus.redhat.com for details.

13

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/getting_started_with_quarkus/index#proc-creating-quarkus-project-using-code-quarkus-redhat-com_quarkus-getting-started

Red Hat build of Quarkus 1.11 Getting started with Quarkus

CHAPTER 4. COMPILING AND STARTING THE QUARKUS
GETTING STARTED PROJECT

After you have created the Quarkus Getting Started project, you can compile the Hello application and
verify that the hello endpoint returns hello.

This example uses the Quarkus built-in development mode. In development mode, you can update the

application sources and configurations while your application is running. Your changes will appear in the
running application.

Prerequisites

® You have created the Quarkus Getting Started project.

Procedure

1. To compile the Quarkus Hello application in development mode, enter the following command
from the project directory:

I ./mvnw compile quarkus:dev

The following example shows the output of this command:

[INFQO] org.acme:getting-started
[INFQO] Building getting-started 1.0.0-SNAPSHOT
[INFO] [jar]

[INFO]

[INFQO] --- maven-resources-plugin:2.6:resources (default-resources) @ getting-started ---
[INFQO] Using 'UTF-8' encoding to copy filtered resources.

[INFQ] skip non existing resourceDirectory /Users/starksm/Dev/JBoss/Quarkus/starksm64-
quarkus-quickstarts/getting-started/src/main/resources

[INFO]

[INFQO] --- maven-compiler-plugin:3.1:compile (default-compile) @ getting-started ---

[INFO] Changes detected - recompiling the module!

[INFO] Compiling 2 source files to /Users/starksm/Dev/JBoss/Quarkus/starksm64-quarkus-
quickstarts/getting-started/target/classes

[INFO]

[INFQ] --- quarkus-maven-plugin:<version>:dev (default-cli) @ getting-started ---

Listening for transport dt_socket at address: 5005

2019-02-28 17:05:22,347 INFO [io.qua.dep.QuarkusAugmentor] (main) Beginning quarkus
augmentation

2019-02-28 17:05:22,635 INFO [io.qua.dep.QuarkusAugmentor] (main) Quarkus
augmentation completed in 288ms

2019-02-28 17:05:22,770 INFO [io.quarkus] (main) Quarkus started in 0.668s. Listening on:
http://localhost:8080

2019-02-28 17:05:22,771 INFO [io.quarkus] (main) Installed features: [cdi, resteasy]

2. Enter the following command in a new terminal window to send a request to the endpoint
provided by the application:

curl -w "\n" http://localhost:8080/hello
hello

14

CHAPTER 4. COMPILING AND STARTING THE QUARKUS GETTING STARTED PROJECT

NOTE

This example uses the "\n" attribute to automatically add a new line before the
output of the command. This prevents your terminal from printing a '%' character
or putting both the result and the next command prompt on the same line.

3. Press CTRL+C to stop the application.

15

Red Hat build of Quarkus 1.11 Getting started with Quarkus

CHAPTER 5. USING QUARKUS DEPENDENCY INJECTION

Dependency injection enables a service to be used in a way that is completely independent of any client
consumption. It separates the creation of client dependencies from the client’s behavior, which enables
program designs to be loosely coupled.

Dependency injection in Red Hat build of Quarkus is based on Quarkus ArC which is a CDI-based build-
time oriented dependency injection solution tailored for Quarkus architecture. Because ArCis a
transitive dependency of quarkus-resteasy, and quarkus-resteasy is a dependency of your project,
ArC will already be downloaded.

Prerequisites

® You have created the Quarkus Getting Started project.

Procedure

1. To modify the application and add a companion bean, create the
src/main/java/org/acme/quickstart/GreetingService.java file with the following content:

package org.acme.quickstart;
import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class GreetingService {

public String greeting(String name) {
return "hello " + name;

}

2. Edit the src/main/java/org/acme/quickstart/GreetingResource.java to inject the
GreetingService and create a new endpoint using it:

package org.acme.quickstart;

import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

import org.jboss.resteasy.annotations.jaxrs.PathParam;

@Path("/hello")
public class GreetingResource {

@Inject
GreetingService service;

@GET

@Produces(MediaType. TEXT_PLAIN)
@Path("/greeting/{name}")

16

CHAPTER 5. USING QUARKUS DEPENDENCY INJECTION

public String greeting(@PathParam String name) {
return service.greeting(name);

}

@GET
@Produces(MediaType. TEXT_PLAIN)
public String hello() {

return "hello";

}
}

3. If you stopped the application, enter the following command to restart it:

I ./mvnw compile quarkus:dev

4. To verify that the endpoint returns hello quarkus, enter the following command in a new
terminal window:

curl -w "\n" http://localhost:8080/hello/greeting/quarkus
hello quarkus

17

Red Hat build of Quarkus 1.11 Getting started with Quarkus

CHAPTER 6. TESTING YOUR QUARKUS APPLICATION WITH
JUNIT

After you compile your Quarkus Getting Started project, test your application with the JUnit 5
framework to ensure that it runs as expected. There are two test dependencies in the Quarkus project
generated pom.xml file:

<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-junit5</artifactld>
<scope>test</scope>

</dependency>

<dependency>
<groupld>io.rest-assured</groupld>
<artifactld>rest-assured</artifactld>
<scope>test</scope>

</dependency>

The quarkus-junit5 dependency is required for testing because it provides the @QuarkusTest
annotation that controls the JUnit 5 testing framework. The rest-assured dependency is not required
but because it provides a convenient way to test HTTP endpoints, it is integrated as well. It automatically
sets the correct URL so no configuration is required.

NOTE

These tests use the REST-assured framework, but you can use a different library if you
prefer.

Prerequisites

® You have compiled the Quarkus Getting Started project.

Procedure

1. Open the generated pom.xml file and review the contents:

<plugin>
<artifactld>maven-surefire-plugin</artifactid>
<version>${surefire-plugin.version}</version>
<configuration>
<systemPropertyVariables>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariable>
</configuration>
</plugin>

Note, that:

® the java.util.logging.manager system property is set to ensure that you application uses
the correct log manager for the test.

18

CHAPTER 6. TESTING YOUR QUARKUS APPLICATION WITH JUNIT

e the maven.home property points to the location of the settings.xml file in which you can
store custom Maven configuration that you want to apply to your project.

2. Edit the src/test/java/org/acme/quickstart/GreetingResourceTest.java file to match the
following content:

package org.acme.quickstart;

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

import java.util.UUID;

import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.is;

@QuarkusTest
public class GreetingResourceTest {

@Test
public void testHelloEndpoint() {
given()
.when().get("/hello")
.then()
.statusCode(200)
.body(is("hello"));

}

@Test
public void testGreetingEndpoint() {
String uuid = UUID.randomUUID().toString();
given()
.pathParam("name", uuid)
.when().get("/hello/greeting/{name}")
.then()
.statusCode(200)
.body(is("hello " + uuid));

NOTE

By using the QuarkusTest runner, you instruct JUnit to start the application
before starting the tests.

3. Torun these tests from Maven, enter the following command:

I J/mvnw test

NOTE

You can also run the test from your IDE. If you do this, make sure to stop the
application first.

19

Red Hat build of Quarkus 1.11 Getting started with Quarkus

By default, tests run on port 8081 so they do not conflict with the running application. In
Quarkus, the RestAssured dependency is configured to use this port. If you want to use a
different client, use the @TestHTTPResource annotation to directly inject the URL of the
tested application into a field on the Test class. This field can be of the type String, URL or
URI. You can also provide the test path in this annotation. For example, to test a servlet mapped
to /myservlet, add the following lines to your test:

@TestHTTPResource("/myserviet")
URL testUrl;

4. If necessary, specify the test port in the quarkus.http.test-port configuration property.

NOTE

Quarkus also creates a system property called test.url that is set to the base test URL for
situations where you cannot use injection.

20

CHAPTER 7. PACKAGING AND RUNNING THE QUARKUS GETTING STARTED APPLICATION

CHAPTER 7. PACKAGING AND RUNNING THE QUARKUS
GETTING STARTED APPLICATION

After you compile your Quarkus Getting Started project, you can package it in a JAR file and run it from
the command line.

Prerequisites

® You have compiled the Quarkus Getting Started project.

Procedure

1. To package your Quarkus Getting Started project, enter the following command in the root
directory:

I ./mvnw package

This command produces the following JAR files in the /target directory:

e getting-started-1.0-0-SNAPSHOT.jar: Contains the classes and resources of the projects.
This is the regular artifact produced by the Maven build.

e getting-started-1.0-0-SNAPSHOT-runner.jar: Is an executable JAR file. Be aware that this
file is not an uber-JAR file because the dependencies are copied into the target/lib
directory.

' WARNING
A When your application is running in development mode, you must press

CTRL+C to stop your application. You will encounter a port conflict
when you try to package your application when development mode is
enabled.

2. Enter the following command to start your application:

I java -jar target/getting-started-1.0-0-SNAPSHOT-runner.jar

NOTE

The Class-Path entry of the MANIFEST.MF file from the runner JAR file
explicitly lists the JAR files from the lib directory. If you want to deploy your
application from another location, you must copy the runner JAR file as well as
the lib directory.

21

Red Hat build of Quarkus 1.11 Getting started with Quarkus

CHAPTER 8. CREATING A QUARKUS MAVEN PROJECT USING
CODE.QUARKUS.REDHAT.COM

As an application developer, you can use code.quarkus.redhat.com to generate a Quarkus Maven project
and automatically add and configure the extensions that you want to use in your application. In addition,

code.quarkus.redhat.com automatically manages the configuration parameters required to compile your
project into a native executable.

This section walks you through the process of generating a Quarkus Maven project including:
® Specifying basic details about your application.
® Choosing the extensions that you want to include in your project.
® Generating a downloadable archive with your project files.

® Using the custom commands for compiling and starting your application.

Prerequisites

® Have a web browser.

Procedure

1. Navigate to https://code.quarkus.redhat.com using a web browser.

2. Specify basic details about your project:

a. Enter a group name for your project. The format of the name follows the Java package
naming convention, for example, org.acme.

b. Enter a name that you want to use for Maven artifacts generated from your project, for
example code-with-quarkus.

c. Select the build tool that you want to use to compile and start your application. The build
tool that you choose determines:

® the directory structure of your generated project.
e the format of configuration files used in your generated project.

® the custom build script and command for compiling and starting your application that
code.quarkus.redhat.com displays for you after you generate your project.

NOTE

Red Hat provides support for using code.quarkus.redhat.com to create
Quarkus Maven projects only. Generating Gradle projects is not
supported by Red Hat.

22

https://code.quarkus.redhat.com

CHAPTER 8. CREATING A QUARKUS MAVEN PROJECT USING CODE.QUARKUS.REDHAT.COWN

Configure your application details

Group org.acme
Artifact code-with-guarkus
Build Tool Maven v D CONFIGURE MORE OPTIONS

3. Specify additional details about your application project:

a. Select Configure more options to display the fields that contain additional application

details.

b. Enter a version that is used in artifacts generated from your project. The default value of
this field is 1.0.0-SNAPSHOT. Using semantic versioning is recommended, but you can use

a different type of versioning, if you prefer.

c. Select whether you want code.quarkus.redhat.com to add example code to your project.

When you add extensions that are marked with the *- icon to your project from the list of
extensions, you can enable this option to automatically create example class files and
resource files for those extensions when you generate your project. When you do not add
any extensions that provide example code, this option does not affect your generated

project.
Configure your application details

Group org.acme Version 1.8.8-SNAPSHOT

Artifact code-with-quarkus W= Example Code Yes, Please v

Build Tool Maven v B CLOSE
NOTE

code.quarkus.redhat.com automatically uses the latest release of Red Hat
build of Quarkus. You can manually change the BOM version in the pom.xml

file after you generate your project.

4. Select the extensions that you want to use in your application from the list of extensions. The
selected extensions are included as dependencies of your Quarkus application with their
versions being managed by the Quarkus platform to ensure their compatibility.

You can enable the option to automatically generate example code for extensions that are

marked with the *- icon.

=

eb
RESTEasy JAX-RS -
RESTEasy Jackson L =
RESTEasy JSON-B
Eclipse Vert.x GraphQL
Hibernate Validator

Mutiny support for REST Client

REST Client
[0 REST Client JAXB

Pick your extensions

Q RESTEasy, Hibernate ORM, Web...

Selected Extensions

REST Client
YAML Configuration L =

REST endpoint framework implementing JAX-RS and more

Jackson serialization support for RESTEasy

JSON-B serialization support for RESTEasy

Query the API using GraphQL

validate object properties (field, getter) and method parameters fory... §
Enable Mutiny for the REST client

Call REST services

Enable XML serialization for the REST Client

23

https://semver.org/

Red Hat build of Quarkus 1.11 Getting started with Quarkus

Note, that Red Hat provides different levels of support for individual extensions on the list,
which are indicated by labels next to the name of each extension:

® SUPPORTED extensions are fully supported by Red Hat for use in enterprise application in
production environments.

® TECH-PREVIEW extensions are subject to limited support by Red Hat in production
environments under the Technology Preview Features Support Scope.

® DEV-SUPPORT extensions are not supported by Red Hat for use in production
environments, but the core functionalities that they provide are supported by Red Hat
developers for use in developing new applications.

e Unlabeled extensions are not supported by Red Hat for use in production environments.

® DEPRECATED extension are planned to be replaced by a newer technology or
implementation that provides the same functionality.
You can expand the overflow menu (:) next to each of the extensions to access additional
options that you can use to:

o add the extension to an existing project using the Quarkus maven plugin on the
command line.

o copy an XML snippet to add the the extension to the pom.xml file of a project.
o obtain the groupld, artifactld and version of each extension.

o open the extension guide.

Web
L asy - SUPPORTED REST endpoint framework implementing JAX-RS and more .
[RESTEasy JAX-RS - dpoint f kimpl d H
[0 RESTEasy Jackson - Jacksan serializaticn support for RESTEasy :
[0 RESTEasy JSON-B JSOM-B serialization support for RESTEasy :
[Eclipse Vert.x GraphQL Query the AP using GraphQL :

ibernate Validator |tz eii=s walidate object properties (field, getter) and method parameters fory.. =
O Hib Valid :
[0 Mutiny support far REST Client Enable Mutiny for the REST client H
REST Client Call REST services E
O REST Client JAXB EnablexMLse [Copy the command to add it with Maven
3 REST Client JSON-B |- 2ei=e Enable JSOM-I e
9 ten om0 nane B Copythe command to add it with Gradle
[J REST Client Jackson Enable Jacksor

B Copy the extension pom.xml snippet

[0 REST resources for Hibernate ORM with P... Generate JAX-
[J REST resources for MongoDB with Panache Generate JAX- i Copy the extension GAV
[0 RESTEasy JAXB XML serializatic M Open Extension Guide
[0 RESTEasy Multipart Multipart support for RESTEasy :

5. Select Generate your application to confirm your choices and display the overlay screen with the
download link for the archive that contains your generated project. The overlay screen also
shows the custom command that you can use to compile and start your application.

6. Select Download the ZIP to save the archive with the generated project files to your machine.

7. Extract the contents of the archive.

8. Navigate to the directory that contains your extracted project files:

24

https://access.redhat.com/articles/3348731
https://access.redhat.com/support/offerings/techpreview

CHAPTER 8. CREATING A QUARKUS MAVEN PROJECT USING CODE.QUARKUS.REDHAT.COM

I cd <directory_name>

9. Compile and start your application in development mode:

I ./mvnw compile quarkus:dev

25

Red Hat build of Quarkus 1.11 Getting started with Quarkus

CHAPTER 9. ADDITIONAL RESOURCES

Developing and compiling your Quarkus applications with Apache Maven
Using Quarkus development mode

Configuring your Quarkus applications

Compiling your Quarkus applications to native executables

Deploying your Quarkus applications to OpenShift

Testing your Quarkus applications

Apache Maven Project

Guide to naming conventions on groupld, artifactld, and version

JUnit 5 website

REST-assured website

Revised on 2021-06-2213:03:35 UTC

26

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/developing_and_compiling_your_quarkus_applications_with_apache_maven
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/developing_and_compiling_your_quarkus_applications_with_apache_maven/index#proc-quarkus-dev-mode_quarkus-maven
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/configuring_your_quarkus_applications
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/compiling_your_quarkus_applications_to_native_executables
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/deploying_your_quarkus_applications_to_openshift
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/testing_your_quarkus_applications
https://maven.apache.org/
https://maven.apache.org/guides/mini/guide-naming-conventions.html#guide-to-naming-conventions-on-groupid-artifactid-and-version
https://junit.org/junit5/
http://rest-assured.io

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RED HAT BUILD OF QUARKUS
	CHAPTER 2. APACHE MAVEN AND QUARKUS
	2.1. CONFIGURING THE MAVEN SETTINGS.XML FILE FOR THE ONLINE REPOSITORY
	2.2. DOWNLOADING AND CONFIGURING THE QUARKUS MAVEN REPOSITORY

	CHAPTER 3. CREATING THE GETTING STARTED PROJECT
	CHAPTER 4. COMPILING AND STARTING THE QUARKUS GETTING STARTED PROJECT
	CHAPTER 5. USING QUARKUS DEPENDENCY INJECTION
	CHAPTER 6. TESTING YOUR QUARKUS APPLICATION WITH JUNIT
	CHAPTER 7. PACKAGING AND RUNNING THE QUARKUS GETTING STARTED APPLICATION
	CHAPTER 8. CREATING A QUARKUS MAVEN PROJECT USING CODE.QUARKUS.REDHAT.COM
	CHAPTER 9. ADDITIONAL RESOURCES

