& RedHat

Red Hat build of Quarkus 1.11

Configuring your Quarkus applications

Last Updated: 2021-06-15

Red Hat build of Quarkus 1.1 Configuring your Quarkus applications

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to configure Quarkus applications.

Table of Contents

Table of Contents

o L 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ... e 4
MAKING OPEN SOURCE MORE INCLUSIVE ... i e i it 5
CHAPTER 1. RED HAT BUILD OF QUARKUS CONFIGURATIONOPTIONSot 6
CHAPTER 2. CREATING THE CONFIGURATION QUICKSTART PROJECTot 7

CHAPTER 3. GENERATING AN EXAMPLE CONFIGURATION FILE FOR YOUR QUARKUS APPLICATION .. 8

CHAPTER 4. INJECTING CONFIGURATION VALUES INTO YOUR QUARKUS APPLICATION 9
4.1. ANNOTATING A CLASS WITH @ CONFIGPROPERTIES 10
4.2. USING NESTED OBJECT CONFIGURATION 13
4.3. ANNOTATING AN INTERFACE WITH @ CONFIGPROPERTIES 15

CHAPTER 5. ACCESSING THE CONFIGURATIONFROMCODE ... i 18

CHAPTER 6. SETTING CONFIGURATION PROPERTIES e 19

CHAPTER 7. PROPERTY EXPRESSIONS ... i i i i i 21
7.1. EXAMPLE USAGE OF PROPERTY EXPRESSIONS 21

CHAPTER 8. USING CONFIGURATION PROFILES ... i i i 23
8.1.SETTING A CUSTOM CONFIGURATION PROFILE 23

CHAPTER 9. SETTING CUSTOM CONFIGURATIONSOURCESt 25

CHAPTER 10. USING CUSTOM CONFIGURATION CONVERTERS AS CONFIGURATION VALUES 28
10.1. SETTING CUSTOM CONVERTERS PRIORITY 28

CHAPTER 11. ADDING YAML CONFIGURATION SUPPORT ... it 30
11.1. USING NESTED OBJECT CONFIGURATION WITH YAML 30
11.2. SETTING CUSTOM CONFIGURATION PROFILES WITH YAML 31
11.3. MANAGING CONFIGURATION KEY CONFLICTS 32

CHAPTER 12. UPDATING THE FUNCTIONAL TEST TO VALIDATE CONFIGURATION CHANGES 33

CHAPTER 13. PACKAGING AND RUNNING YOUR QUARKUS APPLICATION ..o, 34

CHAPTER 14. ADDITIONAL RESOURCES ... i i e i et 35

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

PREFACE

PREFACE

As an application developer, you can use Red Hat build of Quarkus to create microservices-based
applications written in Java that run on OpenShift and serverless environments. Applications compiled
to native executables have small memory footprints and fast startup times.

This guide describes how to configure a Quarkus application using the Eclipse MicroProfile Config
method or YAML format. The procedures include configuration examples created using the Quarkus
config-quickstart exercise.

Prerequisites

® Have OpenJDK (JDK) 1l installed and the JAVA_HOME environment variable specifies the
location of the Java SDK.

o Login the Red Hat Customer Portal to download the Red Hat build of Open JDK from the
Software Downloads page.

® Have Apache Maven 3.8.1 or higher installed.
o Download Maven from the Apache Maven Project website.

® Have Maven configured to use artifacts from the Quarkus Maven repository.

o Tolearn how to configure Maven settings see Getting started with Quarkus.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=core.service.openjdk&downloadType=distributions
https://maven.apache.org/
https://maven.repository.redhat.com/ga/
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/getting_started_with_quarkus

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our technical content and encourage you to tell us what you think. If
you'd like to add comments, provide insights, correct a typo, or even ask a question, you can do so
directly in the documentation.

NOTE

You must have a Red Hat account and be logged in to the customer portal.

To submit documentation feedback from the customer portal, do the following:

1.

2.

3.

4.

5.

Select the Multi-page HTML format.

Click the Feedback button at the top-right of the document.
Highlight the section of text where you want to provide feedback.
Click the Add Feedback dialog next to your highlighted text.

Enter your feedback in the text box on the right of the page and then click Submit.

We automatically create a tracking issue each time you submit feedback. Open the link that is displayed
after you click Submit and start watching the issue or add more comments.

Thank you for the valuable feedback.

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

CHAPTER 1. RED HAT BUILD OF QUARKUS CONFIGURATION
OPTIONS

Configuration options enable you to change the settings of your application in a single configuration file.
Quarkus supports configuration profiles that let you group related properties and switch between
profiles as required.

You can use the MicroProfile Config specification from the Eclipse MicroProfile project to inject
configuration properties into your application and configure them using a method defined in your code.
By default, Quarkus reads properties from the application.properties file located in the
src/main/resources directory.

By adding the config-yaml dependency to your project pom.xml file you can add your application
properties in the application.yaml file using the YAML format.

Quarkus can also read application properties from different sources, such as the file system, database,
or any source that can be loaded by a Java application.

https://microprofile.io/project/eclipse/microprofile-config

CHAPTER 2. CREATING THE CONFIGURATION QUICKSTART PROJECT

CHAPTER 2. CREATING THE CONFIGURATION QUICKSTART

PROJECT

The config-quickstart project lets you get up and running with a simple Quarkus application using
Apache Maven and the Quarkus Maven plug-in. The following procedure demonstrates how you can
create a Quarkus Maven project.

Procedure

1. Verify that Maven is using JDK 11 and that the Maven version is 3.8.1 or higher:

mvn --version

If this command does not return JDK 11, ensure that the directory where JDK 11is installed on
your system is included in the PATH environment variable:

export PATH=$PATH:/path/to/jdk-11

2. Enter the following command to generate the project:

mvn io.quarkus:quarkus-maven-plugin:1.11.7.Final-redhat-00009:create \
-DprojectGroupld=org.acme \
-DprojectArtifactld=config-quickstart \
-DplatformGroupld=com.redhat.quarkus \
-DplatformVersion=1.11.7.Final-redhat-00009 \
-DclassName="org.acme.config.GreetingResource" \
-Dpath="/greeting"

cd config-quickstart

This command creates the following items in the config-quickstart directory:

The Maven project directory structure

An org.acme.config.GreetingResource resource

A landing page that you can access at http://localhost:8080 after you start the application
Associated unit tests for testing your application in native mode and JVM mode

Example Dockerfile.jvm, Dockerfile.native and Dockerfile.fast-jar files in
src/main/docker

The application configuration file

NOTE

Alternatively, you can download a Quarkus Maven project to use in this
tutorial from the Quarkus quickstart archive or clone the Quarkus
Quickstarts Git repository. The exercise is located in the config-quickstart
directory.

https://github.com/quarkusio/quarkus-quickstarts/archive/1.11.7.Final.zip
https://github.com/quarkusio/quarkus-quickstarts
https://github.com/quarkusio/quarkus-quickstarts/tree/1.11.7.Final/config-quickstart

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

CHAPTER 3. GENERATING AN EXAMPLE CONFIGURATION
FILE FOR YOUR QUARKUS APPLICATION

You can create an application.properties.example file with all of the available configuration values and
documentation for the extensions that your application is configured to use. You can repeat this

procedure after you install a new extension to see what additional configuration options have been
added.

Prerequisites

® Have a Quarkus Maven project.

Procedure

® To create an application.properties.example file, enter the following command:
I /mvnw quarkus:generate-config

This command creates the application.properties.example file in the src/main/resources/
directory. The file contains all of the configuration options exposed through the extensions that
you installed. These options are commented out and have a default value where applicable.

The following example shows the HTTP port configuration entry from the
application.properties.example file:

I #quarkus.http.port=8080

Additional resources

® Quarkus Community Documentation - All Configuration Options

https://quarkus.io/guides/all-config

CHAPTER 4. INJECTING CONFIGURATION VALUES INTO YOUR QUARKUS APPLICATION

CHAPTER 4. INJECTING CONFIGURATION VALUES INTO
YOUR QUARKUS APPLICATION

Red Hat build of Quarkus uses the MicroProfile Config feature to inject configuration data into the
application. You can access the configuration through context and dependency injection (CDI) or by
using a method defined in your code.

You can use the @ConfigProperty annotation to map an object property to a key in the MicroProfile

ConfigSources file of your application. This procedure shows you how to inject an individual property
configuration into a Quarkus config-quickstart project.

Prerequisites

® You have created the Quarkus config-quickstart project.

Procedure

1. Open the src/main/resources/application.properties file.

2. Add configuration properties to your configuration file where <keys is the property name and
<values is the value of the property:

I <key>=<value>

The following example shows how to set the values for the greeting.message and the
greeting.name properties in the Quarkus config-quickstart project:

src/main/resources/application.properties

greeting.message = hello
greeting.name = quarkus

IMPORTANT

Use quarkus as a prefix to Quarkus properties.

3. Review the GreetingResource.java file and make sure it includes the following import
statements:

import org.eclipse.microprofile.config.inject. ConfigProperty;
import java.util.Optional;

4. Define the corresponding properties by annotating them with @ConfigProperty as shown in
the following example:

src/main/java/org/acme/config/GreetingResource.java

@ConfigProperty(name = "greeting.message") 0
String message;

@ConfigProperty(name = "greeting.suffix", defaultValue="1") g
String suffix;

https://microprofile.io/project/eclipse/microprofile-config

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

@ConfigProperty(name = "greeting.name")
Optional<String> name;

ﬂ If you do not provide a value for this property, the application will fail and throw the
following exception message:
javax.enterprise.inject.spi.DeploymentException: No config value of type [class
java.lang.String] exists for: greeting.message

9 If you do not provide a value for the greeting.suffix, Quarkus resolves it to the default
value.

9 If the Optional parameter does not have a value, it returns no value for greeting.name.

NOTE

To inject a configured value, you can use @ConfigProperty. The @Inject
annotation is not necessary for members annotated with @ConfigProperty.

5. Edit your hello method to return the following message:

src/main/java/org/acme/config/GreetingResource.java

@GET
@Produces(MediaType. TEXT_PLAIN)
public String hello() {
return message + " " + name.orElse("world") + suffix;

}
6. Compile and start your application in development mode:

I /mvnw quarkus:dev

7. Enter the following command in a new terminal window to verify that the endpoint returns the
message:

I curl http://localhost:8080/greeting
This command returns the following output:
I hello quarkus!

8. Press CTRL+C to stop the application.

4.1. ANNOTATING A CLASS WITH @CONFIGPROPERTIES

As an alternative to injecting multiple related configuration values individually, you can use the
@io.quarkus.arc.config.ConfigProperties annotation to group configuration properties. The following
procedure demonstrates the use of @ConfigProperties annotation on the Quarkus config-quickstart
project.

10

CHAPTER 4. INJECTING CONFIGURATION VALUES INTO YOUR QUARKUS APPLICATION

Prerequisites

® You have created the Quarkus config-quickstart project.

Procedure

1. Review the GreetingResource.java file and make sure it includes the following import
statements:

src/main/java/org/acme/config/GreetingResource.java

import java.util.Optional;
import javax.inject.Inject;

2. Create a file GreetingConfiguration.java in the src/main/java/org/acme/config directory.
3. Add the ConfigProperties and Optional imports to the GreetingConfiguration.java file:

src/main/java/org/acme/config/GreetingConfiguration.java

import io.quarkus.arc.config.ConfigProperties;
import java.util.Optional;
import javax.inject.Inject;

4. Create a GreetingConfiguration class for the greeting properties in your
GreetingConfiguration.java file:

src/main/java/org/acme/config/GreetingConfiguration.java

@ConfigProperties(prefix = "greeting") ﬂ
public class GreetingConfiguration {

private String message;
private String suffix = "I";
private Optional<String> name;

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}

public String getSuffix() {
return suffix;

}

public void setSuffix(String suffix) {
this.suffix = suffix;

}

public Optional<String> getName() {
return name;

1

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

}

public void setName(Optional<String> name) {
this.name = name;

}
}

ﬂ prefix is optional. If you do not specify a prefix, it is determined by the name of the class. In
this example, the prefix is greeting.

9 If greeting.suffix is not set, ! is the default value.

5. Inject the GreetingConfiguration class into the GreetingResource class using the @Inject
annotation:

src/main/java/org/acme/config/GreetingResource.java

@Path("/greeting")
public class GreetingResource {

@Inject
GreetingConfiguration config;

@GET
@Produces(MediaType. TEXT_PLAIN)
public String hello() {
return config.getMessage() + " " + config.getName().orElse("world") + config.getSuffix();
}
}

6. Compile and start your application in development mode:

I /mvnw quarkus:dev

IMPORTANT

If you do not provide values for the class properties, the application fails to
compile and you receive a javax.enterprise.inject.spi.DeploymentException
that indicates a missing value. This does not apply to Optional fields and fields
with a default value.

7. Enter the following command in a new terminal window to verify that the endpoint returns the
message:

I curl http://localhost:8080/greeting

8. You receive the following message:
I hello quarkus!

9. Press CTRL+C to stop the application.

12

CHAPTER 4. INJECTING CONFIGURATION VALUES INTO YOUR QUARKUS APPLICATION

4.2. USING NESTED OBJECT CONFIGURATION

You can define a nested class inside an existing class. This procedure demonstrates how to create a
nested class configuration in the Quarkus config-quickstart project.

Prerequisites

® You have created the Quarkus config-quickstart project.

Procedure

1. Review the GreetingConfiguration.java file and make sure it includes the following import
statements:

src/main/java/org/acme/config/GreetingConfiguration.java

import io.quarkus.arc.config.ConfigProperties;
import java.util.Optional;
import java.util.List;

2. Add the configuration in your GreetingConfiguration.java file using the @ConfigProperties
annotation.
The following example shows the configuration of the GreetingConfiguration class and its
properties:

src/main/java/org/acme/config/GreetingConfiguration.java

@ConfigProperties(prefix = "greeting")
public class GreetingConfiguration {

public String message;
public String suffix = "I";
public Optional<String> name;

}

3. Add a nested class inside the GreetingConfiguration class as shown in the following example:

src/main/java/org/acme/config/GreetingConfiguration.java

@ConfigProperties(prefix = "greeting")
public class GreetingConfiguration {

public String message;

public String suffix = "I";
public Optional<String> name;
public ContentConfig content;

public static class ContentConfig {
public Integer prizeAmount;
public List<String> recipients;
}
}

13

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

14

This example shows a nested class ContentConfig. The name of the field, in this case content,
determines the name of the properties bound to the object.

. Set the greeting.content.prize-amount and greeting.content.recipients configuration

properties in your application.properties file.
The following example shows the values of properties for the GreetingConfiguration and
ContentConfig classes:

src/main/resources/application.properties

greeting.message = hello
greeting.name = quarkus
greeting.content.prize-amount=10
greeting.content.recipients=Jane,John

. Inject the GreetingConfiguration class into the GreetingResource class using the @Inject

annotation, and update the message string that the /greeting endpoint returns to have the
message show the values that you set for the new greeting.content.prize-amount and
greeting.content.recipients properties that you added:

src/main/java/org/acme/config/GreetingResource.java

@Path("/greeting")
public class GreetingResource {

@Inject
GreetingConfiguration config;

@GET
@Produces(MediaType. TEXT_PLAIN)
public String hello() {
return config.message + " " + config.name.orElse("world") + config.suffix + "\n" +
config.content.recipients + " receive total of candies: " + config.content.prizeAmount;

}

}

6. Compile and start your application in development mode:

I /mvnw quarkus:dev

IMPORTANT

If you do not provide values for the class properties, the application fails to
compile and you receive a javax.enterprise.inject.spi.DeploymentException
that indicates a missing value. This does not apply to Optional fields and fields
with a default value.

7. Enter the following command in a new terminal window to verify that the endpoint returns the

message:

I curl http://localhost:8080/greeting

CHAPTER 4. INJECTING CONFIGURATION VALUES INTO YOUR QUARKUS APPLICATION

8. You receive the message that contains the greeting on the first line and the recipients of the
prize and the prize amount on the second line:

hello quarkus!
Jane,John receive total of candies: 10

9. Press CTRL+C to stop the application.

NOTE

Classes annotated with @ConfigProperties can be annotated with Bean Validation
annotations similar to the following example:

@ConfigProperties(prefix = "greeting")
public class GreetingConfiguration {

@Size(min = 20)

public String message;

public String suffix = "I";
}

Your project must include the quarkus-hibernate-validator dependency.

4.3. ANNOTATING AN INTERFACE WITH @CONFIGPROPERTIES

An alternative method for managing properties is to define them as an interface. If you annotate an
interface with @ConfigProperties, the interface can extend other interfaces, and you can use methods
from the entire interface hierarchy to bind properties.

This procedure shows an implementation of the GreetingConfiguration class as an interface in the
Quarkus config-quickstart project.

Prerequisites

® You have created the Quarkus config-quickstart project.

Procedure

1. Review the GreetingConfiguration.java file and make sure it includes the following import
statements:

src/main/java/org/acme/config/GreetingConfiguration.java

import io.quarkus.arc.config.ConfigProperties;
import org.eclipse.microprofile.config.inject. ConfigProperty;
import java.util.Optional;

2. Add a GreetingConfiguration class as an interface to your GreetingConfiguration.java file:

src/main/java/org/acme/config/GreetingConfiguration.java

@ConfigProperties(prefix = "greeting")
public interface GreetingConfiguration {

15

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

16

@ConfigProperty(name = "message") 0
String message();

@ConfigProperty(defaultValue = "!")
String getSuffix(); @

Optional<String> getName(); 6

You must set the @ConfigProperty annotation because the name of the configuration
property does not follow the getter method naming conventions.

In this example, name was not set so the corresponding property will be greeting.suffix.

o0

You do not need to specify the @ConfigProperty annotation because the method name
follows the getter method naming conventions (greeting.name being the corresponding
property) and no default value is needed.

3. Inject the GreetingConfiguration class into the GreetingResource class using the @Inject
annotation:

src/main/java/org/acme/config/GreetingResource.java

@Path("/greeting")
public class GreetingResource {

@Inject
GreetingConfiguration config;

@GET
@Produces(MediaType. TEXT_PLAIN)
public String hello() {
return config.message() + " " + config.getName().orElse("world") + config.getSuffix();
}
}

4. Compile and start your application in development mode:

I /mvnw quarkus:dev

IMPORTANT

If you do not provide values for the class properties, the application fails to
compile and you receive a javax.enterprise.inject.spi.DeploymentException
that indicates a missing value. This does not apply to Optional fields and fields
with a default value.

5. Enter the following command in a new terminal window to verify that the endpoint returns the
message:

I curl http://localhost:8080/greeting

CHAPTER 4. INJECTING CONFIGURATION VALUES INTO YOUR QUARKUS APPLICATION

6. You receive the following message:
I hello quarkus!

7. Press CTRL+C to stop the application.

17

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

18

CHAPTER 5. ACCESSING THE CONFIGURATION FROM CODE

You can access the configuration by using a method defined in your code. You can achieve dynamic
lookups or retrieve configured values from classes that are either CDI beans or JAX-RS resources.

You can access the configuration using the
org.eclipse.microprofile.config.ConfigProvider.getConfig() method. The getValue method of the
Config object returns the values of the configuration properties.

Prerequisites

® You have a Quarkus Maven project.

Procedure
® Access the configuration using one of the following options:

o To access a configuration of a property that is defined already in your
application.properties file, use the following syntax where DATABASE.NAME is the name
of a property that is assigned to a databaseName variable:

String databaseName = ConfigProvider.getConfig().getValue("DATABASE.NAME",
String.class);

o To access a configuration of a property that might not be defined in your
application.properties file, use the following syntax:

Optional<String> maybeDatabaseName =
ConfigProvider.getConfig().getOptionalValue("DATABASE.NAME", String.class);

CHAPTER 6. SETTING CONFIGURATION PROPERTIES

CHAPTER 6. SETTING CONFIGURATION PROPERTIES

By default, Quarkus reads properties from the application.properties file located in the
src/main/resources directory. If you change build properties, make sure to repackage your application.

Quarkus configures most properties during build time. Extensions can define properties as overridable

at run time, for example the database URL, a user name, and a password which can be specific to your
target environment.

Prerequisites

® You have a Quarkus Maven project.
Procedure
1. To package your Quarkus project, enter the following command:

I ./mvnw clean package

2. Use one of the following methods to set the configuration properties:

® Setting system properties:
Enter the following command where <keys is the name of the configuration property you
want to add and <values is the value of the property:

I java -D<key>=<value> -jar target/myapp-runner.jar

For example, to set the value of the quarkus.datasource.password property, enter the
following command:

I java -Dquarkus.datasource.password=youshallnotpass -jar target/myapp-runner.jar

® Setting environment variables:
Enter the following command where <keys is the name of the configuration property you
want to set and <values is the value of the property:

I export <key>=<value> ; java -jar target/myapp-runner.jar

NOTE

Environment variable names follow the conversion rules of Eclipse
MicroProfile. Convert the name to upper case and replace any character that
is not alphanumeric with an underscore ().

® Using an environment file:
Create an .env file in your current working directory and add configuration properties where
<PROPERTY_KEYs is the property name and <values is the value of the property:

I <PROPERTY_KEY>=<value>

19

https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/configsources.asciidoc#default-configsources

Red Hat build of Quarkus 1.1 Configuring your Quarkus applications

NOTE
' For development mode, this file can be located in the root directory of your
project, but it is advised to not track the file in version control. If you create an

.env file in the root directory of your project, you can define keys and values
that the program reads as properties.

e Using the application.properties file.
Place the configuration file in $PWD/config/application.properties directory where the
application runs so any runtime properties defined in that file will override the default

configuration.

' NOTE
You can also use the config/application.properties features in
! development mode. Place the config/application.properties inside the

target directory. Any cleaning operation from the build tool, for example mvn
clean, will remove the config directory as well.

20

CHAPTER 7. PROPERTY EXPRESSIONS

CHAPTER 7. PROPERTY EXPRESSIONS

Property expressions are combinations of property references and plain text strings that you can use to
substitute values of properties in your configuration.

Much like a variable, you can use a property expression in Quarkus to substitute a value of a
configuration property instead of hardcoding it. A property expression is resolved when
java.util.Properties reads the value of the property from a configuration source in your application.

This means that if a configuration property is read form your configuration at compile time, the property
expression is also resolved at compile time. If the configuration property is overriden at runtime, its value
is resolved at runtime.

Property expressions can be resolved using more than one configuration source. This means that you
can use a value of a property that is defined in one configuration source to expand a property expression
that you use in another configuration source.

If the value of a property in an expression cannot be resolved, and you do not set a default value for the
expression, your application encounters a NoSuchElementException.

7.1. EXAMPLE USAGE OF PROPERTY EXPRESSIONS

In this section you can find examples of how you can use property expressions to achieve greater
flexibility when configuring of your Quarkus application.

® Substituting the value of a configuration property:
You can use a property expression to avoid hardcoding property values in you configuration. Use
the ${<property_names} syntax to write an expression that references a configuration
property, as shown in the following example:

application.properties

remote.host=quarkus.io
callable.url=https://${remote.host}/

The value of the callable.url property resolves to https://quarkus.io/.

® Setting a property value that is specific to a particular configuration profile:
In the following example, the %dev configuration profile and the default configuration profile
are set to use data source connection URLs with different host addresses. Depending on the
configuration profile with which you start your application, your data source driver uses the
database URL that you set for the profile:

application.properties

%dev.quarkus.datasource.jdbc.url=jdbc:mysql://localhost:3306/mydatabase ?useSSL=false
quarkus.datasource.jdbc.url=jdbc:mysql://remotehost:3306/mydatabase ?useSSL=false

You can achieve the same result in a simplified way by setting a different value of the custom
application.server property for each configuration profile. You can then reference the property
in the database connection URL of your application, as shown in the example:

application.properties

21

https://quarkus.io/

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

22

%dev.application.server=localhost
application.server=remotehost

quarkus.datasource.jdbc.url=jdbc:mysql://${application.server}:3306/mydatabase?
useSSL=false

The application.server property resolves to the appropriate value depending on the profile
that you choose when you run your application.

Setting a default value of a property expression:

You can define a default value for a property expression. Quarkus uses the default value if the
value of the property that is required to expand the expression is not resolved from any of your
configuration sources. You can set a default value of an expression using the following syntax:

I ${<expression>:<default_value>}

In the following example, the property expression in the data source URL uses mysql.db.server
as the default value of the application.server property:

application.properties

quarkus.datasource.jdbc.url=jdbc:mysql://${application.server:mysqgl.db.server}:3306/mydatabas
e?useSSlL=false

Nesting property expressions:

You can compose property expressions by nesting a property expression inside another
property expression. When nested property expressions are expanded, the inner expression is
expanded first:

I ${<outer_property_expression>${<inner_property_expression>}}

Multiple property expressions:
You can join two or more property expression together as shown below:

I ${<first_property>}${<second_property>}

Combining property expressions with environment variables:

You can use property expressions to substitute the values of environment variables. The
expression in the following example substitutes the value that is set for the HOST environment
variable as the value of the application.host property. When HOST environment variable is not
set, application.host uses the value of the remote.host property as the default:

application.properties

remote.host=quarkus.io
application.host=${HOST:${remote.host}}

CHAPTER 8. USING CONFIGURATION PROFILES

CHAPTER 8. USING CONFIGURATION PROFILES

You can use different configuration profiles depending on your environment. Configuration profiles
enable you to have multiple configurations in the same file and select between them using a profile
name. Red Hat build of Quarkus has three configuration profiles. In addition, you can create your own
custom profiles.

Quarkus default profiles:

® dev: Activated in development mode
® test: Activated when running tests
® prod: The default profile when not running in development or test mode

Prerequisites

® You have a Quarkus Maven project.
Procedure
1. Open your Java resource file and add the following import statement:

I import io.quarkus.runtime.configuration.ProfileManager;

2. To display the current configuration profile, add a log invoking the
ProfileManager.getActiveProfile() method:

LOGGER:.infof("The application is starting with profile "%s™,
ProfileManager.getActiveProfile());

NOTE

Itis not possible to access the current profile using the
@ConfigProperty("quarkus.profile”) method.

8.1. SETTING A CUSTOM CONFIGURATION PROFILE

You can create as many configuration profiles as you want. You can have multiple configurations in the
same file and you can select between them using a profile name.

Procedure

1. To set a custom profile, create a configuration property with the profile name in the
application.properties file, where <keys is the name of the property, <values is the property
value, and <profiles is the name of a profile:

I Y%<profile>.<key>=<value>

In the following example configuration, the value of quarkus.http.port is 9090 by default, and
becomes 8181 when the dev profile is activated:

23

Red Hat build of Quarkus 1.1 Configuring your Quarkus applications

quarkus.http.port=9090
Y%dev.quarkus.http.port=8181

2. Use one of the following methods to enable a profile:
® Set the quarkus.profile system property.

o To enable a profile using the quarkus.profile system property, enter the following
command:

I mvn -Dquarkus.profile=<value> quarkus:dev

o Setthe QUARKUS_PROFILE environment variable.

o To enable profile using an environment variable, enter the following command:

I export QUARKUS_PROFILE=<profile>

NOTE

The system property value takes precedence over the environment
variable value.

3. To repackage the application and change the profile, enter the following command:

./mvnw package -Dquarkus.profile=<profile>
java -jar target/myapp-runner.jar

The following example shows a command that activates the prod-aws profile:

./mvnw package -Dquarkus.profile=prod-aws
java -jar target/myapp-runner.jar

NOTE
The default Quarkus application runtime profile is set to the profile used to build the
application. Red Hat build of Quarkus automatically selects a profile depending on your

environment mode. For example, when your application is running as a JAR, Quarkus is in
prod mode.

24

CHAPTER 9. SETTING CUSTOM CONFIGURATION SOURCES

CHAPTER 9. SETTING CUSTOM CONFIGURATION SOURCES

By default, your Quarkus application reads properties from the application.properties file in the
src/main/resources subdirectory of your project. However, because Quarkus supports MicroProfile
Config, you can also load the configuration of your application from other sources. You can introduce
custom configuration sources for your configured values by providing classes that implement the
org.eclipse.microprofile.config.spi.ConfigSource and the
org.eclipse.microprofile.config.spi.ConfigSourceProvider interfaces. This procedure demonstrates
how you can implement a custom configuration source in your Quarkus project.

Prerequisite

® Have the Quarkus config-quickstart project.

Procedure

1. Create an ExampleConfigSourceProvider.java file in your project and add the following
imports:

src/main/java/org/acme/config/ExampleConfigSourceProvider.java

package org.acme.config;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import org.eclipse.microprofile.config.spi.ConfigSource;
import org.eclipse.microprofile.config.spi.ConfigSourceProvider;

2. Create a class that implements the
org.eclipse.microprofile.config.spi.ConfigSourceProvider interface. You must override its
getConfigSources method to return a list of ConfigSource objects:

The following example shows a custom implementation of the ConfigSourceProvider and the
ConfigSource interfaces:

src/main/java/org/acme/config/ExampleConfigSourceProvider.java

public class ExampleConfigSourceProvider implements ConfigSourceProvider {

private final int times = 2;
private final String name = "example";
private final String value = "value";

@Override
public Iterable<ConfigSource> getConfigSources(ClassLoader forClassLoader) {
InMemoryConfigSource configSource = new
InMemoryConfigSource(Integer.MIN_VALUE, "example config source");
for (inti=0;i< this.times; i++) {
configSource.add(this.name + ".key" + (i + 1), this.value + (i + 1));

}

return Collections.singletonList(configSource);

}

25

Red Hat build of Quarkus 1.1 Configuring your Quarkus applications

private static final class InMemoryConfigSource implements ConfigSource {

private final Map<String, String> values = new HashMap<>();
private final int ordinal;
private final String name;

private InMemoryConfigSource(int ordinal, String name) {
this.ordinal = ordinal;
this.name = name;

}

public void add(String key, String value) {
values.put(key, value);

}

@Override
public Map<String, String> getProperties() {
return values;

}

@Override
public Set<String> getPropertyNames() {
return values.keySet();

}

@Override
public int getOrdinal() {
return ordinal;

}

@Override
public String getValue(String propertyName) {
return values.get(propertyName);

}

@Override
public String getName() {
return name;
}
}
}

3. Create a file named org.eclipse.microprofile.config.spi.ConfigSourceProvider in the
src/main/resources/META-INF/services/ subdirectory of your project, and enter the fully
qualified name of the class that implements the ConfigSourceProvider in the file that you
created:

src/main/resources/META-
INF/services/org.eclipse.microprofile.config.spi.ConfigSourceProvider

I org.acme.config.ExampleConfigSourceProvider

You must perform this step to ensure that the ConfigSourceProvider that you created is
registered and installed when you compile and start your application.

26

CHAPTER 9. SETTING CUSTOM CONFIGURATION SOURCES

. Enter the following command to compile and start your application in development mode:
I /mvnw quarkus:dev

. Enter the following command in a new terminal window to verify that the /greeting endpoint
returns the expected message:

I curl http://localhost:8080/greeting

. When your application reads the custom configuration properly, you receive the following
response.

I hello quarkus!

27

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

CHAPTER 10. USING CUSTOM CONFIGURATION
CONVERTERS AS CONFIGURATION VALUES
You can store custom types as configuration values by implementing

org.eclipse.microprofile.config.spi.Converter<T> and adding its fully qualified class name into the
META-INF/services/org.eclipse.microprofile.config.spi.Converter file.

Prerequisites

® You have created the Quarkus config-quickstart project.

Procedure
1. Include the fully qualified class name of the converter in your META-

INF/services/org.eclipse.microprofile.config.spi.Converter service file as shown in the
following example:

org.acme.config.MicroProfileCustomValueConverter
org.acme.config.SomeOtherConverter
org.acme.config.YetAnotherConverter

2. Implement the converter class to override the convert method:
package org.acme.config;
import org.eclipse.microprofile.config.spi.Converter;

public class MicroProfileCustomValueConverter implements
Converter<MicroProfileCustomValue> {

@Override
public MicroProfileCustomValue convert(String value) {

return new MicroProfileCustomValue(Integer.valueOf(value));
}

}

NOTE

Your custom converter class must be public and must have a public no-
argument constructor. Your custom converter class cannot be abstract.

3. Use your custom type as a configuration value:

@ConfigProperty(name = "configuration.value.name")
MicroProfileCustomValue value;

Additional resources:

® List of converters in the microprofile-config GitHub repository

10.1. SETTING CUSTOM CONVERTERS PRIORITY

28

https://github.com/eclipse/microprofile-config/blob/master/spec/src/main/asciidoc/converters.asciidoc

CHAPTER 10. USING CUSTOM CONFIGURATION CONVERTERS AS CONFIGURATION VALUES
The default priority for all Quarkus core converters is 200 and for all other converters it is 100. However,
you can set a higher priority for your custom converters using the javax.annotation.Priority annotation.

The following procedure demonstrates an implementation of a custom converter
MicroProfileCustomValue that is assigned a priority of 150 and will take precedence over
MicroProfileCustomValueConverter which has a value of 100.

Prerequisites

® You have created the Quarkus config-quickstart project.

Procedure

1. Add the following import statements to your service file:

package org.acme.config;

import javax.annotation.Priority;
import org.eclipse.microprofile.config.spi.Converter;

2. Set a priority for your custom converter by annotating the class with the @Priority annotation
and passing it a priority value:

@Priority(150)
public class MyCustomConverter implements Converter<MicroProfileCustomValue> {

@Override
public MicroProfileCustomValue convert(String value) {

final int secretNumber;
if (value.startsFrom("OBF:")) {

secretNumber = Integer.valueOf(SecretDecoder.decode(value));
} else {

secretNumber = Integer.valueOf(value);

}

return new MicroProfileCustomValue(secretNumber);

}
}

NOTE

If you add a new converter, you must list it in the META-
INF/services/org.eclipse.microprofile.config.spi.Converter service file.

29

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

CHAPTER 1. ADDING YAML CONFIGURATION SUPPORT

Red Hat build of Quarkus supports YAML configuration files through the SmallRye Config
implementation of Eclipse MicroProfile Config. You can add the Quarkus Config YAML extension and
use YAML over properties for configuration. Quarkus supports using application.yml as well as
application.yaml as the name of the YAML file.

The YAML configuration file takes precedence over the application.properties file. The recommended
approach is to delete the application.properties file and use only one type of configuration file to avoid
errors.

Procedure
® Use one of the following methods to add the YAML extension in your project:

o Open the pom.xml file and add the quarkus-config-yaml extension as a dependency:

<dependency>
<groupld>io.quarkus</groupld>
<artifactld>quarkus-config-yaml</artifactld>
</dependency>

o To add the quarkus-config-yaml extension from the command line, enter the following
command from your project directory:

I /mvnw quarkus:add-extension -Dextensions="quarkus-config-yaml"

11.1. USING NESTED OBJECT CONFIGURATION WITH YAML

You can define a nested class inside an already existing class. This procedure shows how you can set
nested configuration properties for your Quarkus application using a configuration file in YAML format.

Prerequisites

® Have a Quarkus Maven project.

® Have a PostgreSQL data source.

® Have the following extensions as dependencies in the pom.xml file of your project:
o quarkus-rest-client,
o quarkus-jdbc-postgresql

o quarkus-config-yaml

Procedure

1. Open the src/main/resources/application.yaml configuration file.

2. Add the nested class configuration properties to your application.yaml file as shown in the
example:

src/main/resources/application.yaml

30

CHAPTER 11. ADDING YAML CONFIGURATION SUPPORT

Properties that configure the JDBC data source driver of your PostgreSQL data source
quarkus:
datasource:
url: jdbc:postgresql://localhost:5432/some-database
driver: org.postgresql.Driver
username: quarkus
password: quarkus

Property that configures the URL of the endpoint to which the rest client sends requests
org:
acme:
restclient:
CountriesService/mp-rest/url: https://restcountries.eu/rest

Property that configures the log message level for your application
quarkus:
log:
category:

Do not use spaces in names of configuration properties that you place inside quotation
marks

"io.quarkus.category":

level: INFO

Note, that you can use comments to describe your configuration properties in a similar way as
you use them in application.properties.

NOTE

Always use spaces to indent the properties in your YAML configuration file.
YAML does not allow using tabs for indentation.

11.2. SETTING CUSTOM CONFIGURATION PROFILES WITH YAML

With Quarkus you can set configuration properties and values that are specific to different configuration
profiles of your application. You can start your application with a specific profile to access a particular
configuration. This procedure demonstrates how you can provide a configuration for a specific profile in
YAML format.

Prerequisites

® Have a Quarkus Maven project that is configured to use a PostgreSQL data source with a JDBC
data source driver.

® Have the quarkus-jdbc-postgresql and quarkus-config-yaml extensions as dependencies in
the pom.xml file of your project.
Procedure

1. Open the src/main/resources/application.yaml configuration file.

2. To set a profile dependent configuration, add the profile name before defining the key-value
pairs using the "%<profile_name>" syntax. Ensure that you place the profile name inside
quotation marks. In YAML, all strings that begin with a special character must be placed inside
quotation marks.

31

Red Hat build of Quarkus 1.1 Configuring your Quarkus applications

In the following example the PostgreSQL database is configured to be available at the
jdbc:postgresql://localhost:5432/some-database URL when you start your Quarkus
application in development mode:

src/main/resources/application.yaml

"Y%edev":
Properties that configure the JDBC data source driver of your PostgreSQL data source
quarkus:
datasource:

url: jdbc:postgresql://localhost:5432/some-database
driver: org.postgresql.Driver
username: quarkus
password: quarkus

11.3. MANAGING CONFIGURATION KEY CONFLICTS

Structured formats such as YAML only support a subset of the possible configuration namespace. The
following procedure shows a solution of a conflict between two configuration properties,
quarkus.http.cors and quarkus.http.cors.methods, where one property is the prefix of another.

Prerequisites

® You have a Quarkus project configured to read YAML configuration files.

Procedure

1. Open your YAML configuration file.

2. To define a YAML property as a prefix of another property, add a tilde (~) in the scope of the
property as shown in the following example:

quarkus:
http:
cors:
~: true
methods: GET,PUT,POST

3. To compile your Quarkus application in development mode, enter the following command from
the project directory:

I /mvnw quarkus:dev

NOTE

You can use YAML keys for conflicting configuration keys at any level because
they are not included in the assembly of configuration property name.

32

CHAPTER 12. UPDATING THE FUNCTIONAL TEST TO VALIDATE CONFIGURATION CHANGES

CHAPTER 12. UPDATING THE FUNCTIONAL TEST TO
VALIDATE CONFIGURATION CHANGES

Before you test the functionality of your application, you must update the functional test to reflect the
changes you made to the endpoint of your application. The following procedure shows how you can
update your testHelloEndpoint method on the Quarkus config-quickstart project.

Procedure

1. Open the GreetingResourceTest.java file.

2. Update the content of the testHelloEndpoint method:

package org.acme.config;

import io.quarkus.test.junit.QuarkusTest;
import org.junit.jupiter.api.Test;

import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.is;

@QuarkusTest
public class GreetingResourceTest {

@Test
public void testHelloEndpoint() {
given()
.when().get("/greeting")
.then()
.statusCode(200)
.body(is("hello quarkus!")); // Modified line

33

Red Hat build of Quarkus 1.11 Configuring your Quarkus applications

CHAPTER 13. PACKAGING AND RUNNING YOUR QUARKUS
APPLICATION

After you compile your Quarkus project, you can package it in a JAR file and run it from the command
line.

Prerequisites

® You have compiled your Quarkus project.

Procedure

1. To package your Quarkus project, enter the following command in the root directory:
I ./mvnw clean package

This command produces the following JAR files in the /target directory:

e config-quickstart-1.0-SNAPSHOT.jar: Contains the classes and resources of the projects.
This is the regular artifact produced by the Maven build.

e config-quickstart-1.0-SNAPSHOT-runner.jar: Is an executable JAR file. Be aware that this
file is not an uber-JAR file because the dependencies are copied into the target/lib
directory.

2. If development mode is running, press CTRL+C to stop development mode. If you do not do
this, you will have a port conflict.

3. To run the application, enter the following command:

I java -jar target/config-quickstart-1.0-SNAPSHOT-runner.jar

NOTE

The Class-Path entry of the MANIFEST.MF file from the runner JAR file
explicitly lists the JAR files from the lib directory. If you want to deploy your
application from another location, you must copy the runner JAR file as well as
the lib directory.

34

CHAPTER 14. ADDITIONAL RESOURCES

CHAPTER 14. ADDITIONAL RESOURCES

® Developing and compiling your Quarkus applications with Apache Maven
® Deploying your Quarkus applications to OpenShift

® Compiling your Quarkus applications to native executables

® Testing your Quarkus applications

Revised on 2021-06-15 14:50:23 UTC

35

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/developing_and_compiling_your_quarkus_applications_with_apache_maven
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/deploying_your_quarkus_applications_to_openshift
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/compiling_your_quarkus_applications_to_native_executables
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/testing_your_quarkus_applications

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RED HAT BUILD OF QUARKUS CONFIGURATION OPTIONS
	CHAPTER 2. CREATING THE CONFIGURATION QUICKSTART PROJECT
	CHAPTER 3. GENERATING AN EXAMPLE CONFIGURATION FILE FOR YOUR QUARKUS APPLICATION
	CHAPTER 4. INJECTING CONFIGURATION VALUES INTO YOUR QUARKUS APPLICATION
	4.1. ANNOTATING A CLASS WITH @CONFIGPROPERTIES
	4.2. USING NESTED OBJECT CONFIGURATION
	4.3. ANNOTATING AN INTERFACE WITH @CONFIGPROPERTIES

	CHAPTER 5. ACCESSING THE CONFIGURATION FROM CODE
	CHAPTER 6. SETTING CONFIGURATION PROPERTIES
	CHAPTER 7. PROPERTY EXPRESSIONS
	7.1. EXAMPLE USAGE OF PROPERTY EXPRESSIONS

	CHAPTER 8. USING CONFIGURATION PROFILES
	8.1. SETTING A CUSTOM CONFIGURATION PROFILE

	CHAPTER 9. SETTING CUSTOM CONFIGURATION SOURCES
	CHAPTER 10. USING CUSTOM CONFIGURATION CONVERTERS AS CONFIGURATION VALUES
	10.1. SETTING CUSTOM CONVERTERS PRIORITY

	CHAPTER 11. ADDING YAML CONFIGURATION SUPPORT
	11.1. USING NESTED OBJECT CONFIGURATION WITH YAML
	11.2. SETTING CUSTOM CONFIGURATION PROFILES WITH YAML
	11.3. MANAGING CONFIGURATION KEY CONFLICTS

	CHAPTER 12. UPDATING THE FUNCTIONAL TEST TO VALIDATE CONFIGURATION CHANGES
	CHAPTER 13. PACKAGING AND RUNNING YOUR QUARKUS APPLICATION
	CHAPTER 14. ADDITIONAL RESOURCES

