& RedHat

Red Hat Ansible Automation Platform
2.4

Red Hat Ansible Automation Platform
hardening guide

Install, configure, and maintain Ansible Automation Platform running on Red Hat
Enterprise Linux in a secure manner.

Last Updated: 2024-06-04

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation
Platform hardening guide

Install, configure, and maintain Ansible Automation Platform running on Red Hat Enterprise Linux in
a secure manner.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides recommended practices for various processes needed to install, configure, and
maintain Ansible Automation Platform on Red Hat Enterprise Linux in a secure manner.

Table of Contents

Table of Contents

[3 Y O AP 3
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it e ettt et eaeeeneeeaneenaneennnes, 4
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ottt eii e eierieennneeannens 5
CHAPTER 1. INTRODUCTION TO HARDENING ANSIBLE AUTOMATION PLATFORMccvvvinnnt. 6
1.1. AUDIENCE 6
1.2. OVERVIEW OF ANSIBLE AUTOMATION PLATFORM 6
1.2.1. Ansible Automation Platform components 7
CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM .. ittt ieii e iienneanns 8
2.1. PLANNING CONSIDERATIONS 8
2.1.1. Ansible Automation Platform reference architecture 8
2.1.2. Network, firewall, and network services planning for Ansible Automation Platform 10
2.1.3. DNS, NTP, and service planning 1
2.1.3.1.DNS 1
2.1.3.2. DNS and load balancing 1
213.3.NTP 12

2.1.4. User authentication planning 12
2.1.4.1. Automation controller authentication 12
2.1.4.2. Private automation hub authentication 13

2.1.5. Credential management planning for Ansible Automation Platform 14
2.1.5.1. Automation controller operational secrets 14
2.1.5.2. Automation use secrets 15

2.1.6. Logging and log capture 16
2.1.7. Auditing and incident detection 16
2.1.8. Red Hat Enterprise Linux host planning 17
2.1.8.1. Ansible Automation Platform and additional software 17

2.2. INSTALLATION 18
2.2.1. Install from a dedicated installation host 18
2.2.2. Security-relevant variables in the installation inventory 18
2.2.3. Installing with user-provided PKI certificates 20
2.2.4. Sensitive variables in the installation inventory 21
2.2.5. Automation controller STIG considerations 22
2.2.5.1. Fapolicyd 22
2.2.5.2. File systems mounted with "noexec" 22
2.2.5.3. User namespaces 23
2.2.5.4. Sudo and NOPASSWD 23

2.3. INITIAL CONFIGURATION 23
2.3.1. Use infrastructure as code paradigm 24
2.3.2. Controller configuration 25
2.3.2.1. Configure centralized logging 25
2.3.2.2. Configure an external authentication source 28
2.3.2.3. External credential vault considerations 28

2.4. DAY TWO OPERATIONS 28
2.4.1. RBAC considerations 28
2.4.2. Updates and upgrades 30
2.4.2.1. Automation controller STIG considerations 30
2.4.2.2. Disaster recovery and continuity of operations 32

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

PREFACE

PREFACE

This guide provides recommended practices for various processes needed to install, configure, and
maintain Ansible Automation Platform on Red Hat Enterprise Linux in a secure manner.

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

If you have a suggestion to improve this documentation, or find an error, please contact technical
support at https://access.redhat.com to create an issue on the Ansible Automation Platform Jira
project using the docs-product component.

https://access.redhat.com

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

CHAPTER 1. INTRODUCTION TO HARDENING ANSIBLE
AUTOMATION PLATFORM

This document provides guidance for improving the security posture (referred to as “hardening”
throughout this guide) of your Red Hat Ansible Automation Platform deployment on Red Hat Enterprise
Linux.

Other deployment targets, such as OpenShift, are not currently within the scope of this guide. Ansible
Automation Platform managed services available through cloud service provider marketplaces are also
not within the scope of this guide.

This guide takes a practical approach to hardening the Ansible Automation Platform security posture,
starting with the planning and architecture phase of deployment and then covering specific guidance for
installation, initial configuration, and day two operations. As this guide specifically covers Ansible
Automation Platform running on Red Hat Enterprise Linux, hardening guidance for Red Hat Enterprise
Linux will be covered where it affects the automation platform components. Additional considerations
with regards to the Defense Information Systems Agency (DISA) Security Technical Implementation
Guides (STIGs) are provided for those organizations that integrate the DISA STIG as a part of their
overall security strategy.

NOTE

These recommendations do not guarantee security or compliance of your deployment of
Ansible Automation Platform. You must assess security from the unique requirements of
your organization to address specific threats and risks and balance these against
implementation factors.

1.1. AUDIENCE

This guide is written for personnel responsible for installing, configuring, and maintaining Ansible
Automation Platform 2.4 when deployed on Red Hat Enterprise Linux. Additional information is provided
for security operations, compliance assessment, and other functions associated with related security
processes.

1.2. OVERVIEW OF ANSIBLE AUTOMATION PLATFORM

Ansible is an open source, command-line IT automation software application written in Python. You can
use Ansible Automation Platform to configure systems, deploy software, and orchestrate advanced
workflows to support application deployment, system updates, and more. Ansible’s main strengths are
simplicity and ease of use. It also has a strong focus on security and reliability, featuring minimal moving
parts. It uses secure, well-known communication protocols like SSH, HTTPS, and WinRM for transport
and uses a human-readable language that is designed for getting started quickly without extensive
training.

Ansible Automation Platform enhances the Ansible language with enterprise-class features, such as
Role-Based Access Controls (RBAC), centralized logging and auditing, credential management, job
scheduling, and complex automation workflows. With Ansible Automation Platform you get certified
content from our robust partner ecosystem; added security, reporting, and analytics; and life cycle
technical support to scale automation across your organization. Ansible Automation Platform simplifies
the development and operation of automation workloads for managing enterprise application
infrastructure life cycles. It works across multiple IT domains including operations, networking, security,
and development, as well as across diverse hybrid environments.

CHAPTER 1. INTRODUCTION TO HARDENING ANSIBLE AUTOMATION PLATFORWV

1.2.1. Ansible Automation Platform components

Ansible Automation Platform is a modular platform that includes automation controller, automation hub,
Event-Driven Ansible controller, and Insights for Ansible Automation Platform.

Additional resources

For more information about the components provided within Ansible Automation Platform, see Red Hat
Ansible Automation Platform components in the Red Hat Ansible Automation Platform Planning Guide .

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_planning_guide/ref-aap-components

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

This guide takes a practical approach to hardening the Ansible Automation Platform security posture,
starting with the planning and architecture phase of deployment and then covering specific guidance for
the installation phase. As this guide specifically covers Ansible Automation Platform running on Red Hat
Enterprise Linux, hardening guidance for Red Hat Enterprise Linux will be covered where it affects the
automation platform components.

2.1. PLANNING CONSIDERATIONS

When planning an Ansible Automation Platform installation, ensure that the following components are
included:

® |[nstaller-manged components
o Automation controller
o Event-Driven Ansible controller
o Private automation hub
® PostgreSQL database (if not external)
o External services
o Red Hat Insights for Red Hat Ansible Automation Platform
o Automation hub
o registry.redhat.io (default execution environment container registry)

See the system requirements section of the Red Hat Ansible Automation Platform Planning Guide for
additional information.

2.1.1. Ansible Automation Platform reference architecture

For large-scale production environments with availability requirements, this guide recommends
deploying the components described in section 2.1 of this guide using the instructions in the reference
architecture documentation for Red Hat Ansible Automation Platform on Red Hat Enterprise Linux.
While some variation may make sense for your specific technical requirements, following the reference
architecture results in a supported production-ready environment.

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_planning_guide/platform-system-requirements

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

Figure 2.1. Reference architecture overview

console.redhat.com services

Red Hat Insights automation hub
>[I«
i Load balancer l
Ansible Site 1 (active) Ansible Site 2 (passive)
automation private private automation
controller automation hub automation hub controller
Cluster Cluster Cluster Cluster
Node 1 Node 1 Node 1 Node 1
+“—> +—>
<+ —»
Node 2 Node 2 Node 2 Node 2
Node 3 Node 3 Node 3 Node 3
h—" ., hN—" ., N— -, N—" -,
\— " — —
PostgreSQL PostgreSQL PostgreSQL PostgreSQL
A A v + + v A A
automation mesh i ; automation mesh
execution execution i ; execution execution
node 1 node 2 ! : node 1 node 2
1]
1 1
_________________ TR
1
: l
1
v v
—) =" —
Git repository Git repository Centralized
(automation controller) (private automation hub) logging
44— Replication of automation controller PostgreSQL via Webhooks 4---P Replication of private automation hub PostgreSQL via Webhooks

Event-Driven Ansible is a new feature of Ansible Automation Platform 2.4 that was not available when
the reference architecture detailed in Figure 1: Reference architecture overview was originally written.
Currently, the supported configuration is a single automation controller, single automation hub, and
single Event-Driven Ansible controller node with external (installer managed) database. For an
organization interested in Event-Driven Ansible, the recommendation is to install according to the
configuration documented in the Ansible Automation Platform Installation Guide. This document
provides additional clarifications when Event-Driven Ansible specific hardening configuration is required.

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_installation_guide/assembly-platform-install-scenario#ref-single-controller-hub-eda-with-managed-db

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

For smaller production deployments where the full reference architecture may not be needed, this guide
recommends deploying Ansible Automation Platform with a dedicated PostgreSQL database server

whether managed by the installer or provided externally.

2.1.2. Network, firewall, and network services planning for Ansible Automation

Platform

Ansible Automation Platform requires access to a network to integrate to external auxiliary services and
to manage target environments and resources such as hosts, other network devices, applications, cloud
services. The network ports and protocols section of the Ansible Automation Platform planning guide

describes how Ansible Automation Platform components interact on the network as well as which ports
and protocols are used, as shown in the following diagram:

Figure 2.2. Ansible Automation Platform Network ports and protocols

Management ports SSH/WinRM/HTTPS

.

Port 22
Vo i

TS Installation host

Port 22

e mm e mm e —————————————

SSH
Port 22

Execution node 1 Hop node Managed host
4 Port — P — 9
..... > — 27199 —p <
H execnode > hop.node host
= i
5 |
E Openshift ! Execution node 2 Automation hub
' Container Platform H — ports —
| L 20/ —>
! container group . exec.node — 443 —p hub.node
: b
E .
i [
i P T ’
i E - i Port Port Port Port
H f—— 443 27199 27199 5432
: B Ve }
H I
H Automation EDA i i Automation | PostgreSQL
H controller o controller database
H v <+—
P P I
i | eda.node ' controller.node Port database.node
! i v 5432
1 i 1 I
P P A A
P P | Port ,
.) ; 5432 |
SSH SSH SSH SSH
Port 22 Port 22
D

—» Used consistently / all TCP ports unless noted
— Directional flow is defined in the installation inventory

installer.node

————

WW

---P Used only during install

---P Required when uploading automation content using bundle installer

When planning firewall or cloud network security group configurations related to Ansible Automation
Platform, see the Network ports and protocols section of the Ansible Automation Platform Planning

Guide to understand what network ports need to be opened on a firewall or security group.

For more information on using a load balancer, and for outgoing traffic requirements for services
compatible with Ansible Automation Platform. Consult the Red Hat Knowledgebase article What ports
need to be opened in the firewall for Ansible Automation Platform 2 Services?. For internet-connected

10

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html-single/red_hat_ansible_automation_platform_planning_guide/index#ref-network-ports-protocols_planning
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html-single/red_hat_ansible_automation_platform_planning_guide/index#ref-network-ports-protocols_planning
https://access.redhat.com/solutions/6756251

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

systems, this article also defines the outgoing traffic requirements for services that Ansible Automation
Platform can be configured to use, such as Ansible automation hub, Red Hat Insights for Red Hat Ansible
Automation Platform, Ansible Galaxy, the registry.redhat.io container image registry, and so on.

For internet-connected systems, this article also defines the outgoing traffic requirements for services
that Ansible Automation Platform can be configured to use, such as Red Hat automation hub, Insights
for Ansible Automation Platform, Ansible Galaxy, the registry.redhat.io container image registry, and so
on.

Restrict access to the ports used by the Ansible Automation Platform components to protected
networks and clients. The following restrictions are highly recommended:

® Restrict the PostgreSQL database port (5432) on the database servers so that only the other
Ansible Automation Platform component servers (automation controller, automation hub,
Event-Driven Ansible controller) are permitted access.

® Restrict SSH access to the Ansible Automation Platform servers from the installation host and
other trusted systems used for maintenance access to the Ansible Automation Platform
servers.

® Restrict HTTPS access to the automation controller, automation hub, and Event-Driven Ansible
controller from trusted networks and clients.

2.1.3. DNS, NTP, and service planning

2.1.3.1. DNS

When installing Ansible Automation Platform, the installer script checks that certain infrastructure
servers are defined with a Fully Qualified Domain Name (FQDN) in the installer inventory. This guide
recommends that all Ansible Automation Platform infrastructure nodes have a valid FQDN defined in
DNS which resolves to a routable IP address, and that these FQDNs be used in the installer inventory
file.

2.1.3.2. DNS and load balancing

When using a load balancer with Ansible Automation Platform as described in the reference
architecture, an additional FQDN is needed for each load-balanced component (automation controller
and private automation hub).

For example, if the following hosts are defined in the Ansible Automation Platform installer inventory
file:

[automationcontroller]

controller0.example.com
controller1.example.com
controller2.example.com

[automationhub]

hub0.example.com
hub1.example.com
hub2.example.com

Then the load balancer can use the FQDNs controller.example.com and hub.example.com for the
user-facing name of these Ansible Automation Platform services.

1

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

When a load balancer is used in front of the private automation hub, the installer must be aware of the
load balancer FQDN. Before installing Ansible Automation Platform, in the installation inventory file set
the automationhub_main_url variable to the FQDN of the load balancer. For example, to match the
previous example, you would set the variable to automationhub_main_url = hub.example.com.

2.1.3.3.NTP

Configure each server in the Ansible Automation Platform infrastructure to synchronize time with an
NTP pool or your organization’s NTP service. This ensures that logging and auditing events generated
by Ansible Automation Platform have an accurate time stamp, and that any scheduled jobs running
from the automation controller execute at the correct time.

For information on configuring the chrony service for NTP synchronization, see Using Chrony in the Red
Hat Enterprise Linux documentation.

2.1.4. User authentication planning

When planning for access to the Ansible Automation Platform user interface or API, be aware that user
accounts can either be local or mapped to an external authentication source such as LDAP. This guide
recommends that where possible, all primary user accounts should be mapped to an external
authentication source. Using external account sources eliminates a source of error when working with
permissions in this context and minimizes the amount of time devoted to maintaining a full set of users
exclusively within Ansible Automation Platform. This includes accounts assigned to individual persons as
well as for non-person entities such as service accounts used for external application integration.
Reserve any local administrator accounts such as the default "admin" account for emergency access or
"break glass" scenarios where the external authentication mechanism is not available.

NOTE

The Event-Driven Ansible controller does not currently support external authentication,
only local accounts.

For user accounts on the Red Hat Enterprise Linux servers that run the Ansible Automation Platform
services, follow your organizational policies to determine if individual user accounts should be local or
from an external authentication source. Only users who have a valid need to perform maintenance tasks
on the Ansible Automation Platform components themselves should be granted access to the
underlying Red Hat Enterprise Linux servers, as the servers will have configuration files that contain
sensitive information such as encryption keys and service passwords. Because these individuals must
have privileged access to maintain Ansible Automation Platform services, minimizing the access to the
underlying Red Hat Enterprise Linux servers is critical. Do not grant sudo access to the root account or
local Ansible Automation Platform service accounts (awx, pulp, postgres) to untrusted users.

NOTE

The local Ansible Automation Platform service accounts such as awx, pulp, and postgres
are created and managed by the Ansible Automation Platform installer. These particular
accounts on the underlying Red Hat Enterprise Linux hosts cannot come from an external
authentication source.

2.1.4.1. Automation controller authentication

Automation controller currently supports the following external authentication mechanisms:

® Azure Activity Directory

12

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/configuring-time-synchronization_configuring-basic-system-settings#using-chrony_configuring-time-synchronization

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

® GitHub single sign-on

® Google OAuth2 single sign-in
e LDAP

e RADIUS

e SAML

e TACACS+

® Generic OIDC

Choose an authentication mechanism that adheres to your organization’s authentication policies, and
refer to the Controller Configuration - Authentication documentation to understand the prerequisites
for the relevant authentication mechanism. The authentication mechanism used must ensure that the
authentication-related traffic between Ansible Automation Platform and the authentication back-end is
encrypted when the traffic occurs on a public or non-secure network (for example, LDAPS or LDAP over
TLS, HTTPS for OAuth2 and SAML providers, etc.).

In automation controller, any “system administrator” account can edit, change, and update any inventory
or automation definition. Restrict these account privileges to the minimum set of users possible for low-
level automation controller configuration and disaster recovery.

2.1.4.2. Private automation hub authentication

Private automation hub currently supports the following external authentication mechanisms:
® Ansible Automation Platform central authentication (based on RHSSO)
e [DAP

For production use, LDAP is the preferred external authentication mechanism for private automation
hub. Ansible Automation Platform central authentication is an option that can be deployed with the
Ansible Automation Platform installer, but it only deploys one central authentication server instance,
making it a potential single point of failure. Standalone mode for Ansible Automation Platform central
authentication is not recommended in a production environment. However, if you already have the
separate Red Hat Single Sign-On (RHSSO) product deployed in your production environment, it can be
used as an external authentication source for private automation hub.

The Ansible Automation Platform Installer configures LDAP authentication for private automation hub
during installation. For more information, see LDAP configuration on a private automation hub .

The following installer inventory file variables must be filled out prior to installation:

Table 2.1. Inventory variable for automation hub LDAP settings

Variable Details

automationhub_authentication_backend Set to "ldap" in order to use LDAP authentication.

automationhub_ldap_server_uri The LDAP server URI, for example "Idap://Idap-
server.example.com" or "ldaps://Idap-
server.example.com:636".

13

https://docs.ansible.com/automation-controller/latest/html/administration/configure_tower_in_tower.html#authentication
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html-single/red_hat_ansible_automation_platform_installation_guide/index#ref-ldap-config-on-pah_platform-install-scenario

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

Variable Details

automationhub_ldap_bind_dn The account used to connect to the LDAP server.
This account should be one with sufficient privileges
to query the LDAP server for users and groups, but it
should not be an administrator account or one with
the ability to modify LDAP records.

automationhub_ldap_bind_password The password used by the bind account to access the
LDAP server.

automationhub_ldap_user_search_base_dn The base DN used to search for users.

automationhub_ldap_group_search_base_d The base DN used to search for groups.
n

In order to ensure that LDAP traffic is encrypted between the private automation hub and the LDAP
server, the LDAP server must support LDAP over TLS or LDAP over SSL (LDAPS).

2.1.5. Credential management planning for Ansible Automation Platform

Automation controller uses credentials to authenticate requests to jobs against machines, synchronize
with inventory sources, and import project content from a version control system. Automation controller
manages three sets of secrets:

® User passwords for local automation controller users See the User Authentication Planning
section of this guide for additional details.

® Secrets for automation controller operational use (database password, message bus password,
and so on).

® Secrets for automation use (SSH keys, cloud credentials, external password vault credentials,
and so on).

Implementing a privileged access or credential management solution to protect credentials from
compromise is a highly recommended practice. Organizations should audit the use of, and provide
additional programmatic control over, access and privilege escalation.

You can further secure automation credentials by ensuring they are unique and stored only in
automation controller. Services such as OpenSSH can be configured to allow credentials on connections
only from specific addresses. Use different credentials for automation from those used by system
administrators to log into a server. Although direct access should be limited where possible, it can be
used for disaster recovery or other ad-hoc management purposes, allowing for easier auditing.

Different automation jobs might need to access a system at different levels. For example, you can have
low-level system automation that applies patches and performs security baseline checking, while a
higher-level piece of automation deploys applications. By using different keys or credentials for each
piece of automation, the effect of any one key vulnerability is minimized. This also allows for easy
baseline auditing.

2.1.5.1. Automation controller operational secrets

14

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

Automation controller contains the following secrets used operationally:

Table 2.2. Automation controller operational secrets

File Details

/etc/tower/SECRET_KEY A secret key used for encrypting automation secrets
in the database. If the SECRET_KEY changes oris
unknown, no encrypted fields in the database will be

accessible.
/etc/tower/tower.cert SSL certificate and key for the automation controller
web service. A self-signed cert/key is installed by
/etc/tower/tower.key default; you can provide a locally appropriate

certificate and key (see Installing with user-provided
PKI certificates for more information).

/etc/tower/conf.d/postgres.py Contains the password used by the automation
controller to connect to the database.

/etc/tower/conf.d/channels.py Contains the secret used by the automation
controller for websocket broadcasts.

These secrets are stored unencrypted on the Automation controller server, as the automation controller
service must read them all in an automated fashion at startup. All files are protected by Unix
permissions, and restricted to the root user or the automation controller service user awx. These files
should be routinely monitored to ensure there has been no unauthorized access or modification.

NOTE

Automation controller was formerly named Ansible Tower. These file locations retain the
previous product name.

2.1.5.2. Automation use secrets

Automation controller stores a variety of secrets in the database that are either used for automation or
are aresult of automation. Automation use secrets include:

e All secret fields of all credential types (passwords, secret keys, authentication tokens, secret
cloud credentials).

® Secret tokens and passwords for external services defined in automation controller settings.
® “password” type survey field entries.
You can grant users and teams the ability to use these credentials without actually exposing the
credential to the user. This means that if a user moves to a different team or leaves the organization,
you don't have to re-key all of your systems.
automation controller uses SSH (or the Windows equivalent) to connect to remote hosts . To pass the

key from the automation controller to SSH, the key must be decrypted before it can be written to a
named pipe. Automation controller then uses that pipe to send the key to SSH (so that it is never

15

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

written to disk). If passwords are used, the automation controller handles those by responding directly to
the password prompt and decrypting the password before writing it to the prompt.

As an administrator with superuser access, you can define a custom credential type in a standard format
using a YAML/JSON-like definition, enabling the assignment of new credential types to jobs and
inventory updates. This enables you to define a custom credential type that works in ways similar to
existing credential types. For example, you can create a custom credential type that injects an API token
for a third-party web service into an environment variable, which your playbook or custom inventory
script can consume.

To encrypt secret fields, Ansible Automation Platform uses AES in CBC mode with a 256-bit key for
encryption, PKCS7 padding, and HMAC using SHA256 for authentication. The encryption/decryption
process derives the AES-256 bit encryption key from the SECRET_KEY, the field name of the model
field, and the database-assigned auto-incremented record ID. Thus, if any attribute used in the key
generation process changes, Ansible Automation Platform fails to correctly decrypt the secret. Ansible
Automation Platform is designed such that the SECRET_KEY is never readable in playbooks Ansible
Automation Platform launches, so that these secrets are never readable by Ansible Automation Platform
users, and no secret field values are ever made available through the Ansible Automation Platform REST
API. If a secret value is used in a playbook, you must use no_log on the task so that it is not accidentally
logged. For more information, see Protecting sensitive data with no log.

2.1.6. Logging and log capture

Visibility and analytics is an important pillar of Enterprise Security and Zero Trust Architecture. Logging
is key to capturing actions and auditing. You can manage logging and auditing by using the built-in audit
support described in the Auditing the system section of the Security hardening for Red Hat Enterprise
Linux guide. Controller’s built-in logging and activity stream support automation controller logs all
changes within automation controller and automation logs for auditing purposes. More detailed
information is available in the Logging and Aggregation section of the automation controller
documentation.

This guide recommends that you configure Ansible Automation Platform and the underlying Red Hat
Enterprise Linux systems to collect logging and auditing centrally, rather than reviewing it on the local
system. Automation controller must be configured to use external logging to compile log records from
multiple components within the controller server. The events occurring must be time-correlated to
conduct accurate forensic analysis. This means that the controller server must be configured with an
NTP server that is also used by the logging aggregator service, as well as the targets of the controller.
The correlation must meet certain industry tolerance requirements. In other words, there might be a
varying requirement that time stamps of different logged events must not differ by any amount greater
than X seconds. This capability should be available in the external logging service.

Another critical capability of logging is the ability to use cryptography to protect the integrity of log
tools. Log data includes all information (for example, log records, log settings, and log reports) needed
to successfully log information system activity. It is common for attackers to replace the log tools or
inject code into the existing tools to hide or erase system activity from the logs. To address this risk, log
tools must be cryptographically signed so that you can identify when the log tools have been modified,
manipulated, or replaced. For example, one way to validate that the log tool(s) have not been modified,
manipulated or replaced is to use a checksum hash against the tool file(s). This ensures the integrity of
the tool(s) has not been compromised.

2.1.7. Auditing and incident detection

Ansible Automation Platform should be used to fulfill security policy requirements by applying the NIST
Cybersecurity Framework for common use cases, such as:

® Requiring HTTPS for web servers on Red Hat Enterprise Linux.

16

https://docs.ansible.com/ansible/latest/reference_appendices/logging.html#protecting-sensitive-data-with-no-log
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/auditing-the-system_security-hardening
https://docs.ansible.com/automation-controller/latest/html/administration/logging.html

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

® Requiring TLS encryption for internal communication between web servers and database
servers on Red Hat Enterprise Linux.

® Generating reports showing that the policy is properly deployed.
® Monitoring for drift that violates the policy.
® Automating correction of any policy violation.

This can be done through 5 steps of the cybersecurity framework:

IDENTIFY
Define the requirements to be implemented according to the security policy.
PROTECT
Implement and apply the requirements as an Ansible Playbook.
DETECT
Monitor for drift and generate an audit report.
RESPOND
Explore actions that could be taken when an incident is detected.
RECOVER

Use Ansible to restore the systems to the known good configuration.

2.1.8. Red Hat Enterprise Linux host planning

The security of Ansible Automation Platform relies in part on the configuration of the underlying Red
Hat Enterprise Linux servers. For this reason, the underlying Red Hat Enterprise Linux hosts for each
Ansible Automation Platform component must be installed and configured in accordance with the
Security hardening for Red Hat Enterprise Linux 8 or Security hardening for Red Hat Enterprise Linux 9
(depending on which operating system will be used), as well as any security profile requirements (CIS,
STIG, HIPAA, and so on) used by your organization.

Note that applying certain security controls from the STIG or other security profiles may conflict with
Ansible Automation Platform support requirements. Some examples are listed in the Automation
controller STIG considerations section, although this is not an exhaustive list. To maintain a supported
configuration, be sure to discuss any such conflicts with your security auditors so the Ansible
Automation Platform requirements are understood and approved.

2.1.8.1. Ansible Automation Platform and additional software

When installing the Ansible Automation Platform components on Red Hat Enterprise Linux servers, the
Red Hat Enterprise Linux servers should be dedicated to that use alone. Additional server capabilities
should not be installed in addition to Ansible Automation Platform, as this is an unsupported
configuration and may affect the security and performance of the Ansible Automation Platform
software.

Similarly, when Ansible Automation Platform is deployed on a Red Hat Enterprise Linux host, it installs
software like the nginx web server, the Pulp software repository, and the PostgreSQL database server.
This software should not be modified or used in a more generic fashion (for example, do not use nginx to
server additional website content or PostgreSQL to host additional databases) as this is an unsupported
configuration and may affect the security and performance of Ansible Automation Platform. The
configuration of this software is managed by the Ansible Automation Platform installer, and any manual
changes might be undone when performing upgrades.

17

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/security_hardening/index

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

2.2. INSTALLATION

There are installation-time decisions that affect the security posture of Ansible Automation Platform.
The installation process includes setting a number of variables, some of which are relevant to the
hardening of the Ansible Automation Platform infrastructure. Before installing Ansible Automation
Platform, consider the guidance in the installation section of this guide.

2.2.1. Install from a dedicated installation host

The Ansible Automation Platform installer can be run from one of the infrastructure servers, such as an
automation controller, or from an external system that has SSH access to the Ansible Automation
Platform infrastructure servers. The Ansible Automation Platform installer is also used not just for
installation, but for subsequent day-two operations, such as backup and restore, as well as upgrades.
This guide recommends performing installation and day-two operations from a dedicated external
server, hereafter referred to as the installation host. Doing so eliminates the need to log in to one of the
infrastructure servers to run these functions. The installation host must only be used for management of
Ansible Automation Platform and must not run any other services or software.

The installation host must be a Red Hat Enterprise Linux server that has been installed and configured in
accordance with Security hardening for Red Hat Enterprise Linux and any security profile requirements
relevant to your organization (CIS, STIG, and so on). Obtain the Ansible Automation Platform installer as
described in the Automation Platform Planning Guide, and create the installer inventory file as describe
in the Automation Platform Installation Guide. This inventory file is used for upgrades, adding
infrastructure components, and day-two operations by the installer, so preserve the file after installation
for future operational use.

Access to the installation host must be restricted only to those personnel who are responsible for
managing the Ansible Automation Platform infrastructure. Over time, it will contain sensitive
information, such as the installer inventory (which contains the initial login credentials for Ansible
Automation Platform), copies of user-provided PKIl keys and certificates, backup files, and so on. The
installation host must also be used for logging in to the Ansible Automation Platform infrastructure
servers through SSH when necessary for infrastructure management and maintenance.

2.2.2. Security-relevant variables in the installation inventory

The installation inventory file defines the architecture of the Ansible Automation Platform
infrastructure, and provides a number of variables that can be used to modify the initial configuration of
the infrastructure components. For more information on the installer inventory, see the Ansible
Automation Platform Installation Guide.

The following table lists a number of security-relevant variables and their recommended values for
creating the installation inventory.

Table 2.3. Security-relevant inventory variables

Variable Recommended Value Details

postgres_use_ssl true The installer configures the
installer-managed Postgres
database to accept SSL-based
connections when this variable is
set.

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/index
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html-single/red_hat_ansible_automation_platform_planning_guide/index#choosing_and_obtaining_a_red_hat_ansible_automation_platform_installer
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html-single/red_hat_ansible_automation_platform_installation_guide/index#proc-editing-installer-inventory-file_platform-install-scenario
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html-single/red_hat_ansible_automation_platform_installation_guide/index#proc-editing-installer-inventory-file_platform-install-scenario

pg_ssimode

nginx_disable_https

automationhub_disable_http
s

automationedacontroller_dis
able_https

verify-full

false

false

false

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

By default, when the controller
connects to the database, it tries
an encrypted connection, but it is
not enforced. Setting this variable
to "verify-full" requires a mutual
TLS negotiation between the
controller and the database. The
postgres_use_ssl variable
must also be set to "true" for this
pg_ssimode to be effective.

NOTE: If a third-party database is
used instead of the installer-
managed database, the third-
party database must be set up
independently to accept mTLS
connections.

If set to "true", this variable
disables HTTPS connections to
the controller. The default is
"false", so if this variable is absent
from the installer inventory it is
effectively the same as explicitly
defining the variable to "false".

If set to "true”, this variable
disables HTTPS connections to
the private automation hub. The
default is "false", so if this variable
is absent from the installer
inventory it is effectively the same
as explicitly defining the variable
to "false".

If set to "true”, this variable
disables HTTPS connections to
the Event-Driven Ansible
controller. The default is "false",
so if this variable is absent from
the installer inventory it is
effectively the same as explicitly
defining the variable to "false".

In scenarios such as the reference architecture where a load balancer is used with multiple controllers or
hubs, SSL client connections can be terminated at the load balancer or passed through to the individual
Ansible Automation Platform servers. If SSL is being terminated at the load balancer, this guide
recommends that the traffic gets re-encrypted from the load balancer to the individual Ansible
Automation Platform servers, to ensure that end-to-end encryption is in use. In this scenario, the
*_disable_https variables listed in Table 2.3 would remain the default value of "false".

19

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

NOTE

This guide recommends using an external database in production environments, but for
development and testing scenarios the database could be co-located on the automation
controller. Due to current PostgreSQL 13 limitations, setting pg_ssimode = verify-full
when the database is co-located on the automation controller results in an error
validating the host name during TLS negotiation. Until this issue is resolved, an external
database must be used to ensure mutual TLS authentication between the automation

controller and the database.

2.2.3. Installing with user-provided PKI certificates

By default, Ansible Automation Platform creates self-signed PKI certificates for the infrastructure
components of the platform. Where an existing PKl infrastructure is available, certificates must be
generated for the automation controller, private automation hub, Event-Driven Ansible controller, and
the postgres database server. Copy the certificate files and their relevant key files to the installer
directory, along with the CA certificate used to verify the certificates.

Use the following inventory variables to configure the infrastructure components with the new

certificates.

Table 2.4. PKI certificate inventory variables

Variable

custom_ca_cert

web_server_ssl_cert

web_server_ssl_key

automationhub_ssl_cert

automationhub_ssl_key

postgres_ssl_cert

postgres_ssl_key

automationedacontroller_ssl_cert

20

Details

The file name of the CA certificate located in the
installer directory.

The file name of the automation controller PKI
certificate located in the installer directory.

The file name of the automation controller PKI key
located in the installer directory.

The file name of the private automation hub PKI
certificate located in the installer directory.

The file name of the private automation hub PKIl key
located in the installer directory.

The file name of the database server PKI certificate
located in the installer directory. This variable is only
needed for the installer-managed database server,
not if a third-party database is used.

The file name of the database server PKI certificate
located in the installer directory. This variable is only
needed for the installer-managed database server,
not if a third-party database is used.

The file name of the Event-Driven Ansible controller
PKI certificate located in the installer directory.

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

automationedacontroller_ssl_key The file name of the Event-Driven Ansible controller
PKl key located in the installer directory.

When multiple automation controller are deployed with a load balancer, the web_server_ssl_cert and
web_server_ssl_key are shared by each controller. To prevent hostname mismatches, the certificate’s
Common Name (CN) must match the DNS FQDN used by the load balancer. This also applies when
deploying multiple private automation hub and the automationhub_ssl_cert and
automationhub_ssl_key variables. If your organizational policies require unique certificates for each
service, each certificate requires a Subject Alt Name (SAN) that matches the DNS FQDN used for the
load-balanced service. To install unique certificates and keys on each automation controller, the
certificate and key variables in the installation inventory file must be defined as per-host variables
instead of in the [all:vars] section. For example:

[automationcontroller]

controller0.example.com web_server_ssl_cert=/path/to/cert0 web_server_ssl_key=/path/to/key0
controller1.example.com web_server_ssl_cert=/path/to/cert1 web_server_ssl_key=/path/to/key1
controller2.example.com web_server_ssl_cert=/path/to/cert2 web_server_ssl_key=/path/to/key2

[automationhub]

hub0.example.com automationhub_ssl_cert=/path/to/cert0 automationhub_ssl_key=/path/to/key0
hub1.example.com automationhub_ssl_cert=/path/to/cert1 automationhub_ssl_key=/path/to/key1
hub2.example.com automationhub_ssl_cert=/path/to/cert2 automationhub_ssl_key=/path/to/key2

2.2.4. Sensitive variables in the installation inventory

The installation inventory file contains a number of sensitive variables, mainly those used to set the initial
passwords used by Ansible Automation Platform, that are normally kept in plain text in the inventory file.
To prevent unauthorized viewing of these variables, you can keep these variables in an encrypted
Ansible vault. To do this, go to the installer directory and create a vault file:

e cd /path/to/ansible-automation-platform-setup-bundle-2.4-1-x86_64
® ansible-vault create vault.yml

You will be prompted for a password to the new Ansible vault. Do not lose the vault password because it
is required every time you need to access the vault file, including during day-two operations and
performing backup procedures. You can secure the vault password by storing it in an encrypted
password manager or in accordance with your organizational policy for storing passwords securely.

Add the sensitive variables to the vault, for example:

admin_password: <secure_controller_password>

pg_password: <secure_db_password>
automationhub_admin_password: <secure_hub_password>
automationhub_pg_password: <secure_hub_db_password>
automationhub_Ildap_bind_password: <ldap_bind_password>
automationedacontroller_admin_password: <secure_eda_password>
automationedacontroller_pg_password: <secure_eda_db_password>

Make sure these variables are not also present in the installation inventory file. To use the new Ansible
vault with the installer, run it with the command ./setup.sh -e @vault.yml — --ask-vault-pass.

21

https://docs.ansible.com/ansible/latest/vault_guide/index.html

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

2.2.5. Automation controller STIG considerations

For organizations that use the Defense Information Systems Agency (DISA) Security Technical
Implementation Guides (STIGs) as a part of their overall security strategy, a STIG for the Ansible
Automation Platform automation controller is now available. The STIG only covers the automation
controller component of Ansible Automation Platform at this time. When applying the STIG to an
automation controller, there are a number of considerations to keep in mind.

The automation controller STIG overview document states that it is meant to be used in conjunction
with the STIG for Red Hat Enterprise Linux 8. This version of the automation controller STIG was
released prior to a STIG for Red Hat Enterprise Linux 9 being available, so Red Hat Enterprise Linux 8
should be used as the underlying host OS when applying the automation controller STIG. Certain Red
Hat Enterprise Linux 8 STIG controls will conflict with Ansible Automation Platform installation and
operation, which can be mitigated as described in the following sections.

2.2.5.1. Fapolicyd

The Red Hat Enterprise Linux 8 STIG requires the fapolicyd daemon to be running. However, Ansible
Automation Platform is not currently supported when fapolicyd enforcing policy, as this causes failures
during the installation and operation of Ansible Automation Platform. Because of this, the installer runs
a pre-flight check that will halt installation if it discovers that fapolicyd is enforcing policy. This guide
recommends setting fapolicyd to permissive mode on the automation controller using the following
steps:

1. Edit the file /etc/fapolicyd/fapolicyd.conf and set "permissive = 1".
2. Restart the service with the command sudo systemctl restart fapolicyd.service.

In environments where STIG controls are routinely audited, discuss waiving the fapolicy-related STIG
controls with your security auditor.

NOTE
If the Red Hat Enterprise Linux 8 STIG is also applied to the installation host, the default

fapolicyd configuration causes the Ansible Automation Platform installer to fail. In this
case, the recommendation is to set fapolicyd to permissive mode on the installation host.

2.2.5.2. File systems mounted with "noexec"

The Red Hat Enterprise Linux 8 STIG requires that a number of file systems are mounted with the
noexec option to prevent execution of binaries located in these file systems. The Ansible Automation
Platform installer runs a preflight check that will fail if any of the following file systems are mounted with
the noexec option:

® /tmp

® /var

® /var/tmp

To install Ansible Automation Platform, you must re-mount these file systems with the noexec option
removed. Once installation is complete, proceed with the following steps:

1. Reapply the noexec option to the /tmp and /var/tmp file systems.

22

https://www.redhat.com/en/blog/disa-releases-first-ansible-stig

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

2. Change the automation controller job execution path from /tmp to an alternate directory that
does not have the noexec option enabled.

3. To make this change, log in to the automation controller Ul as an administrator, navigate to
Settings and select Jobs settings.

4. Change the "Job execution path" setting to the alternate directory.

During normal operations, the file system which contains the /var/lib/awx subdirectory (typically /var)
must not be mounted with the noexec option, or the automation controller cannot run automation jobs
in execution environments.

In environments where STIG controls are routinely audited, discuss waiving the STIG controls related to
file system noexec with your security auditor.
2.2.5.3. User namespaces

The Red Hat Enterprise Linux 8 STIG requires that the kernel setting user.max_user_namespaces is
set to "0", but only if Linux containers are not in use. Because Ansible Automation Platform uses
containers as part of its execution environment capability, this STIG control does not apply to the
automation controller.

To check the user.max_user_namespaces kernel setting, complete the following steps:
1. Log in to your automation controller at the command line.
2. Run the command sudo sysctl user.max_user_namespaces.
3. If the output indicates that the value is zero, look at the contents of the file /etc/sysctl.conf and
all files under /ete/sysctl.d/, edit the file containing the user.max_user_namespaces setting,

and set the value to "65535".

4. To apply this new value, run the command sudo sysctl -p <file>, where <file> is the file just
modified.

5. Re-run the command sudo sysctl user.max_user_namespaces and verify that the value is
now set to "65535".

2.2.5.4. Sudo and NOPASSWD

The Red Hat Enterprise Linux 8 STIG requires that all users with sudo privileges must provide a
password (that is, the "NOPASSWD" directive must not be used in a sudoers file). The Ansible
Automation Platform installer runs many tasks as a privileged user, and by default expects to be able to
elevate privileges without a password. To provide a password to the installer for elevating privileges,
append the following options when launching the installer script: ./setup.sh <setup options> ——ask-
become-pass.

This also applies when running the installer script for day-two operations such as backup and restore.

2.3.INITIAL CONFIGURATION

Granting access to certain parts of the system exposes security vulnerabilities. Apply the following
practices to help secure access:

® Minimize access to system administrative accounts. There is a difference between the user
interface (web interface) and access to the operating system that the automation controller is

23

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

running on. A system administrator or root user can access, edit, and disrupt any system
application. Anyone with root access to the controller has the potential ability to decrypt those
credentials, and so minimizing access to system administrative accounts is crucial for
maintaining a secure system.

® Minimize local system access. Automation controller should not require local user access except
for administrative purposes. Non-administrator users should not have access to the controller
system.

® Enforce separation of duties. Different components of automation may need to access a
system at different levels. Use different keys or credentials for each component so that the
effect of any one key or credential vulnerability is minimized.

® Restrict automation controller to the minimum set of users possible for low-level controller
configuration and disaster recovery only. In a controller context, any controller ‘system
administrator’ or ‘superuser’ account can edit, change, and update any inventory or automation
definition in the controller.

2.3.1. Use infrastructure as code paradigm

The Red Hat Community of Practice has created a set of automation content available via collections to
manage Ansible Automation Platform infrastructure and configuration as code. This enables automation
of the platform itself through Infrastructure as Code (laC) or Configuration as Code (CaC). While many
of the benefits of this approach are clear, there are critical security implications to consider.

The following Ansible content collections are available for managing Ansible Automation Platform
components using an infrastructure as code methodology, all of which are found on the Ansible
Automation Hub:

Table 2.5. Ansible content collections

Validated Collection Collection Purpose

infra.aap_utilities Ansible content for automating day 1and day 2
operations of Ansible Automation Platform, including
installation, backup and restore, certificate
management, and more.

infra.controller_configuration A collection of roles to manage automation
controller components, including managing users and
groups (RBAC), projects, job templates and
workflows, credentials, and more.

infra.ah_configuration Ansible content for interacting with automation hub,
including users and groups (RBAC), collection upload
and management, collection approval, managing the
execution environment image registry, and more.

infra.ee_utilities A collection of roles for creating and managing
execution environment images, or migrating from the
older Tower virtualenvs to execution environments.

Many organizations use Cl/CD platforms to configure pipelines or other methods to manage this type of
infrastructure. However, using Ansible Automation Platform natively, a webhook can be configured to

24

https://console.redhat.com/ansible/automation-hub

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

link a Git-based repository natively. In this way, Ansible can respond to git events to trigger Job
Templates directly. This removes the need for external Cl components from this overall process and
thus reduces the attack surface.

These practices allow version control of all infrastructure and configuration. Apply Git best practices to
ensure proper code quality inspection prior to being synchronized into Ansible Automation Platform.
Relevant Git best practices include the following:

® Creating pull requests.

® Ensuring that inspection tools are in place.

® Ensuring that no plain text secrets are committed.

® Ensuring that pre-commit hooks and any other policies are followed.

laC also encourages using external vault systems which removes the need to store any sensitive data in
the repository, or deal with having to individually vault files as needed. For more information on using
external vault systems, see section 2.3.2.3 External credential vault considerations within this guide.

2.3.2. Controller configuration

2.3.2.1. Configure centralized logging

A critical capability of logging is the ability for the automation controller to detect and take action to
mitigate a failure, such as reaching storage capacity, which by default shuts down the controller. This
guide recommends that the application server be part of a high availability system. When this is the case,
automation controller will take the following steps to mitigate failure:

e |f the failure was caused by the lack of log record storage capacity, the application must
continue generating log records if possible (automatically restarting the log service if
necessary), overwriting the oldest log records in a first-in-first-out manner.

e |flogrecords are sent to a centralized collection server and communication with this server is
lost or the server fails, the application must queue log records locally until communication is
restored or until the log records are retrieved manually. Upon restoration of the connection to
the centralized collection server, action must be taken to synchronize the local log data with the
collection server.

To verify the rsyslog configuration for each automation controller host, complete the following steps for
each automation controller:

The administrator must check the rsyslog configuration for each automation controller host to verify the
log rollover against a organizationally defined log capture size. To do this, use the following steps, and
correct using the configuration steps as required:

1. Check the LOG_AGGREGATOR_MAX DISK_USAGE_GB field in the automation controller
configuration. On the host, execute:

I awx-manage print_settings LOG_AGGREGATOR_MAX_DISK_USAGE_GB

If this field is not set to the organizationally defined log capture size, then follow the
configuration steps.

2. Check LOG_AGGREGATOR_MAX_DISK_USAGE_PATH field in the automation controller
configuration for the log file location to /var/lib/awx. On the host, execute:

25

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

I awx-manage print_settings LOG_AGGREGATOR_MAX_DISK_USAGE_PATH

If this field is not set to /var/lib/awx, then follow these configuration steps:

a. Open a web browser and navigate to https://<automation controller
server>/api/v2/settings/logging/, where <automation controller server> is the fully-qualified
hostname of your automation controller. If the Log In option is displayed, click it, log in as an
automation controller adminstrator account, and continue.

b. In the Content section, modify the following values, then click PUT:

o | OG_AGGREGATOR_MAX_DISK_USAGE_GB = <new log buffer in GB>
e | OG_AGGREGATOR_MAX_DISK_USAGE_PATH = /var/lib/awx

Note that this change will need to be made on each automation controller in a load-balanced
scenario.

All user session data must be logged to support troubleshooting, debugging and forensic analysis for
visibility and analytics. Without this data from the controller’s web server, important auditing and analysis
for event investigations will be lost. To verify that the system is configured to ensure that user session
datais logged, use the following steps:

For each automation controller host, navigate to console Settings >> System >> Miscellaneous System.

1. Click Edit.

2. Set the following:

® FEnable Activity Stream = On
® Enable Activity Stream for Inventory Sync = On
® QOrganization Admins Can Manage Users and Teams = Off
® All Users Visible to Organization Admins = On
3. Click Save

To set up logging to any of the aggregator types, read the documentation on supported log
aggregators and configure your log aggregator using the following steps:

1. Navigate to Ansible Automation Platform.
2. Click Settings.
3. Under the list of System options, select Logging settings.
4. At the bottom of the Logging settings screen, click Edit.
5. Set the configurable options from the fields provided:
® Enable External Logging: Click the toggle button to ON if you want to send logs to an
external log aggregator. The Ul requires the Logging Aggregator and Logging Aggregator

Port fields to be filled in before this can be done.

® | ogging Aggregator: Enter the hostname or IP address you want to send logs.

26

https://docs.ansible.com/automation-controller/latest/html/administration/logging.html#logging-aggregator-services

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

Logging Aggregator Port: Specify the port for the aggregator if it requires one.

Logging Aggregator Type: Select the aggregator service from the drop-down menu:

o Splunk

° Loggly

o Sumologic

o Elastic stack (formerly ELK stack)

Logging Aggregator Username: Enter the username of the logging aggregator if required.

Logging Aggregator Password/Token: Enter the password of the logging aggregator if
required.

Log System Tracking Facts Individually: Click the tooltip icon for additional information,
whether or not you want to turn it on, or leave it off by default.

Logging Aggregator Protocol: Select a connection type (protocol) to communicate with the
log aggregator. Subsequent options vary depending on the selected protocol.

Logging Aggregator Level Threshold: Select the level of severity you want the log handler
to report.

TCP Connection Timeout: Specify the connection timeout in seconds. This option is only
applicable to HTTPS and TCP log aggregator protocols.

Enable/disable HTTPS certificate verification: Certificate verification is enabled by default
for HTTPS log protocol. Click the toggle button to OFF if you do not want the log handler to
verify the HTTPS certificate sent by the external log aggregator before establishing a
connection.

Loggers to Send Data to the Log Aggregator Form: All four types of data are pre-
populated by default. Click the tooltip icon next to the field for additional information on
each data type. Delete the data types you do not want.

Log Format For API 4XX Errors: Configure a specific error message.

6. Click Save to apply the settings or Cancel to abandon the changes.

7. To verify if your configuration is set up correctly, Save first then click Test. This sends a test log
message to the log aggregator using the current logging configuration in the automation
controller. You should check to make sure this test message was received by your external log
aggregator.

A automation controller account is automatically created for any user who logs in with an LDAP
username and password. These users can automatically be placed into organizations as regular users or
organization administrators. This means that logging should be turned on when LDAP integration is in
use. You can enable logging messages for the SAML adapter the same way you can enable logging for

LDAP.

The following steps enable the LDAP logging:

To enable logging for LDAP, you must set the level to DEBUG in the Settings configuration window.

27

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

1. Click Settings from the left navigation pane and select Logging settings from the System list of
options.

2. Click Edit.
3. Set the Logging Aggregator Level Threshold field to Debug.

4. Click Save to save your changes.

2.3.2.2. Configure an external authentication source

As noted in the User authentication planning section, external authentication is recommended for user
access to the automation controller. After you choose the authentication type that best suits your
needs, navigate to Settings —] and selectAuthentication in the automation controller Ul- click on
the relevant link for your authentication back-end = and follow the relevant instructions for
link:https://docs.ansible.com/automation-
controller/latest/html/administration/configure_tower_in_tower.html#authentication[configuring
the authentication connection.

When using LDAP for external authentication with the automation controller, navigate to Settings and
select Authentication and then select LDAP settings on the automation controller and ensure that one
of the following is configured:

® For LDAP over SSL, the LDAP Server URI setting must begin with Idaps://" and use port 636,
for example Idaps://Idap-server.example.com:636.

® For LDAP over TLS, the LDAP Start TLS setting must be set to "On".

2.3.2.3. External credential vault considerations

Secrets management is an essential component of maintaining a secure automation platform. We
recommend the following secrets management practices:

® Ensure that there are no unauthorized users with access to the system, and ensure that only
users who require access are granted it. Automation controller encrypts sensitive information
such as passwords and API tokens, but also stores the key to decryption. Authorized users
potentially have access to everything.

® Use an external system to manage secrets. In cases where credentials need to be updated, an
external system can retrieve updated credentials with less complexity than an internal system.
External systems for managing secrets include CyberArk, HashiCorp Vault, Microsoft Azure Key
Management, and others. For more information, see the Secret Management System section of
the Automation controller User Guide v4.4.

2.4. DAY TWO OPERATIONS

Day 2 Operations include Cluster Health and Scaling Checks, including Host, Project, and environment
level Sustainment. You should continually analyze configuration and security drift.

2.4.1. RBAC considerations

As an administrator, you can use the Role-Based Access Controls (RBAC) built into automation
controller to delegate access to server inventories, organizations, and more. Administrators can also
centralize the management of various credentials, allowing end users to leverage a needed secret

28

https://docs.ansible.com/automation-controller/4.4/html/userguide/credential_plugins.html#secret-management-system

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

without ever exposing that secret to the end user. RBAC controls allow the controller to help you
increase security and streamline management.

RBAC is the practice of granting roles to users or teams. RBACs are easiest to think of in terms of Roles
which define precisely who or what can see, change, or delete an “object” for which a specific capability
is being set.

There are a few main concepts that you should become familiar with regarding automation controller’s
RBAC design-roles, resources, and users. Users can be members of a role, which gives them certain
access to any resources associated with that role, or any resources associated with “descendant” roles.

Arole is essentially a collection of capabilities. Users are granted access to these capabilities and the
controller’s resources through the roles to which they are assigned or through roles inherited through
the role hierarchy.

Roles associate a group of capabilities with a group of users. All capabilities are derived from
membership within a role. Users receive capabilities only through the roles to which they are assigned or
through roles they inherit through the role hierarchy. All members of a role have all capabilities granted
to that role. Within an organization, roles are relatively stable, while users and capabilities are both
numerous and may change rapidly. Users can have many roles.

For further detail on Role Hierarchy, access inheritance, Built in Roles, permissions, personas, Role
Creation, and so on see Role-Based Access Controls.

The following is an example of an organization with roles and resource permissions:

Figure 2.3. RBAC role scopes within automation controller

Network zone

¢ Organization Additional
& (Developement) resources

Org admin

¢ Team Additional
& (Devleam) resources

Team admin

System System Org B l

Auditor role Admin role Adminrole Q

Normal users

(read only) (read and write) (read and write)

Team Normal Personal
Adminrole | Userrole Credentials

User access is based on managing permissions to system objects (users, groups, namespaces) rather
than by assigning permissions individually to specific users. You can assign permissions to the groups you
create. You can then assign users to these groups. This means that each user in a group has the
permissions assigned to that group.

29

https://docs.ansible.com/automation-controller/latest/html/userguide/security.html#role-based-access-controls

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

Groups created in Automation Hub can range from system administrators responsible for governing
internal collections, configuring user access, and repository management to groups with access to
organize and upload internally developed content to Automation Hub. For more information, see
Automation hub permissions for consistency.

View-only access can be enabled for further lockdown of the private automation hub. By enabling view-
only access, you can grant access for users to view collections or namespaces on your private
automation hub without the need for them to log in. View-only access allows you to share content with
unauthorized users while restricting their ability to only view or download source code, without
permissions to edit anything on your private automation hub. Enable view-only access for your private
automation hub by editing the inventory file found on your Red Hat Ansible Automation Platform
installer.

2.4.2. Updates and upgrades

All upgrades should be no more than two major versions behind what you are currently upgrading to. For
example, to upgrade to automation controller 4.3, you must first be on version 4.1.x because there is no
direct upgrade path from version 3.8.x or earlier. Refer to Upgrading to Ansible Automation Platform
for additional information. To run automation controller 4.3, you must also have Ansible 2.12 or later.

2.4.2.1. Automation controller STIG considerations

Automation controller must install security-relevant software updates within the time period specified
by your organizational policy and any security profiles you require to maintain the integrity and
confidentiality of the system and its orgainzational assets.

Security flaws with software applications are discovered daily. Red Hat constantly updates and patches
automation controller to address newly discovered security vulnerabilities. Organizations (including any
contractor to the organization) are required to promptly install security-relevant software updates (for
example, patches, service packs, and hot fixes). Flaws discovered during security assessments,
continuous monitoring, incident response activities, or information system error handling must also be
addressed expeditiously.

As a system administrator for each automation controller host, perform the following:

1. Inspect the status of the DNF Automatic timer:
systemctl status dnf-automatic.timer

2. If Active: active is not included in the output, this is a finding.

3. Inspect the configuration of DNF Automatic:
grep apply_updates /etc/dnf/automatic.conf

4. If apply_updates = yes is not displayed, this is a finding.

5. Install and enable DNF Automatic:
dnf install dnf-automatic (run the install) systemctl enable --now dnf-automatic.timer

6. Modify /etc/dnf/automatic.conf and set apply_updates = yes.

All automation controller nginx front-end web server files must be verified for their integrity (e.g.,
checksums and hashes) before becoming part of the production web server. Verifying that a patch,
upgrade, certificate, and so on, being added to the web server is unchanged from the producer of the
file is essential for file validation and nonrepudiation of the information. The automation controller nginx
web server host must have a mechanism to verify that files are valid prior to installation.

30

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html/getting_started_with_automation_hub/assembly-user-access#ref-permissions
https://docs.ansible.com/automation-controller/latest/html/upgrade-migration-guide/upgrade_considerations.html

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

As a System Administrator, for each automation controller nginx web server host, perform the following:

1.

Verify the integrity of the automation controller nginx web server hosts files:
aide --check

Verify the displayed checksums against previously reserved checksums of the Advanced
Intrusion Detection Environment (AIDE) database.

If there are any unauthorized or unexplained changes against previous checksumes, this is a
finding.

As a System Administrator, for each automation controller nginx web server host, perform the following:

1.

4.

Check for existing or install AIDE:
yum install -y aide

Create or update the AIDE database immediately after initial installation of each automation
controller nginx web server host:

aide --init && mv /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz

Accept any expected changes to the host by updating the AIDE database:
aide --update

The output will provide checksums for the AIDE database. Save in a protected location.

All automation controller nginx web server accounts not utilized by installed features (for example, tools,
utilities, specific services, and so on) must not be created and must be deleted when the web server
feature is uninstalled. If web server accounts are not being used, they must be deleted when the web
server is uninstalled. This is because the accounts become stale over time and are not tended to. Also, if
accounts are not going to be used, they must not be created for the same reason. Both situations create
an opportunity for web server exploitation.

When accounts used for web server features such as documentation, sample code, example
applications, tutorials, utilities, and services are created, even though the feature is not installed, they
become an exploitable threat to a web server. These accounts become inactive and are not monitored
through regular use, and passwords for the accounts are not created or updated. An attacker can use
these accounts to gain access to the web server and begin investigating ways to elevate the account
privileges.

The accounts used for all automation controller nginx web server features not installed must not be
created and must be deleted when these features are uninstalled.

As a System Administrator for each automation controller nginx web server, perform the following:

1.

Examine nginx users in /etc/passwd.

2. Verify a single user nginx exists using the command:

3.

[grep -c nginx /etc/passwd ==17] || echo FAILED

If FAILED is displayed, this is a finding.

As a System Administrator for each automation controller nginx web server, perform the following:

1.

2.

Reinstall automation controller if no nginx users exist in /etc/passwd

Review all users enumerated in /etc/passwd, and remove any that are not attributable to Red
Hat Enterprise Linux or automation controller and/or organizationally disallowed.

31

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform hardening guide

The automation controller nginx web server is configured to check for and install security-relevant
software updates from an authoritative source within an organizationally identified time period from the
availability of the update. By default, this time period will be every 24 hours.

As a System Administrator for each automation controller nginx web server host, perform the following:

1. Verify the system is configured to receive updates from an organizationally defined source for

authoritative system updates:
yum -v repolist

If each URL is not valid and consistent with organizationally defined requirements, this is a
finding.

If each repository is not enabled in accordance with organizationally defined requirements, this
is a finding.

If the system is not configured to automatically receive and apply system updates from this
source at least every 30 days, or manually receive and apply updates at least every 30 days, this
is a finding.

As a system administrator, for each automation controller nginx web server host, perform the following:

1.

Either configure update repositories in accordance with organizationally defined requirements
or subscribe to Red Hat update repositories for the underlying operating system.

Execute an update from these repositories:
$ yum update -y

Perform one of the following:

a. Schedule an update to occur every 30 days, or in accordance with organizationally defined
policy:
$ yum install -y dnf-automatic && sed -i '/apply_updates/s/no/yes/'
/etc/dnf/automatic.conf && sed -i '/OnCalendar/s/*OnCalendar\s*=./OnCalendar=-1-*
6:00/' /usr/lib/systemd/system/dnf-automatic.timer && systemctl enable --now dnf-
automatic.timer

b. Schedule manual updates to occur at least every 30 days, or in accordance with
organizationally defined policy.

4. Restart the automation controller nginx web server host.

2.4.2.2. Disaster recovery and continuity of operations

Taking regular backups of Ansible Automation Platform is a critical part of disaster recovery planning.
Both backups and restores are performed using the installer, so these actions should be performed from
the dedicated installation host described earlier in this document. Refer to the Backing Up and
Restoring section of the automation controller documentation for further details on how to perform
these operations.

An important aspect of backups is that they contain a copy of the database as well as the secret key
used to decrypt credentials stored in the database, so the backup files should be stored in a secure
encrypted location. This means that access to endpoint credentials are protected properly. Access to
backups should be limited only to Ansible Automation Platform administrators who have root shell
access to automation controller and the dedicated installation host.

32

https://docs.ansible.com/automation-controller/latest/html/administration/backup_restore.html

CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM

The two main reasons an Ansible Automation Plattorm administrator needs to back up their Ansible
Automation Platform environment are:

® To save a copy of the data from your Ansible Automation Platform environment, so you can
restore it if needed.

® To use the backup to restore the environment into a different set of servers if you're creating a
new Ansible Automation Platform cluster or preparing for an upgrade.

In all cases, the recommended and safest process is to always use the same versions of PostgreSQL and
Ansible Automation Platform to back up and restore the environment.

Using some redundancy on the system is highly recommended. If the secrets system is down, the
automation controller cannot fetch the information and can fail in a way that would be recoverable once
the service is restored. If you believe the SECRET_KEY automation controller generated for you has
been compromised and has to be regenerated, you can run a tool from the installer that behaves much
like the automation controller backup and restore tool.

To generate a new secret key, perform the following steps:

1. Backup your Ansible Automation Platform database before you do anything else! Follow the
procedure described in the Backing Up and Restoring Controller section.

2. Using the inventory from your install (same inventory with which you run backups/restores), run
setup.sh -k.

A backup copy of the prior key is saved in /etc/tower/.

33

https://docs.ansible.com/automation-controller/latest/html/administration/backup_restore.html

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO HARDENING ANSIBLE AUTOMATION PLATFORM
	1.1. AUDIENCE
	1.2. OVERVIEW OF ANSIBLE AUTOMATION PLATFORM
	1.2.1. Ansible Automation Platform components

	CHAPTER 2. HARDENING ANSIBLE AUTOMATION PLATFORM
	2.1. PLANNING CONSIDERATIONS
	2.1.1. Ansible Automation Platform reference architecture
	2.1.2. Network, firewall, and network services planning for Ansible Automation Platform
	2.1.3. DNS, NTP, and service planning
	2.1.3.1. DNS
	2.1.3.2. DNS and load balancing
	2.1.3.3. NTP

	2.1.4. User authentication planning
	2.1.4.1. Automation controller authentication
	2.1.4.2. Private automation hub authentication

	2.1.5. Credential management planning for Ansible Automation Platform
	2.1.5.1. Automation controller operational secrets
	2.1.5.2. Automation use secrets

	2.1.6. Logging and log capture
	2.1.7. Auditing and incident detection
	2.1.8. Red Hat Enterprise Linux host planning
	2.1.8.1. Ansible Automation Platform and additional software

	2.2. INSTALLATION
	2.2.1. Install from a dedicated installation host
	2.2.2. Security-relevant variables in the installation inventory
	2.2.3. Installing with user-provided PKI certificates
	2.2.4. Sensitive variables in the installation inventory
	2.2.5. Automation controller STIG considerations
	2.2.5.1. Fapolicyd
	2.2.5.2. File systems mounted with "noexec"
	2.2.5.3. User namespaces
	2.2.5.4. Sudo and NOPASSWD

	2.3. INITIAL CONFIGURATION
	2.3.1. Use infrastructure as code paradigm
	2.3.2. Controller configuration
	2.3.2.1. Configure centralized logging
	2.3.2.2. Configure an external authentication source
	2.3.2.3. External credential vault considerations

	2.4. DAY TWO OPERATIONS
	2.4.1. RBAC considerations
	2.4.2. Updates and upgrades
	2.4.2.1. Automation controller STIG considerations
	2.4.2.2. Disaster recovery and continuity of operations

