& RedHat

Red Hat Ansible Automation Platform
2.4

Red Hat Ansible Automation Platform
Automation Mesh Guide for VM-based
installations

Automate at scale in a cloud-native way

Last Updated: 2024-02-26

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation
Platform Automation Mesh Guide for VM-based installations

Automate at scale in a cloud-native way

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows how to deploy automation mesh as part of your VM-based Ansible Automation
Platform environment.

Table of Contents

PREF ACE . i i e e

MAKING OPEN SOURCEMOREINCLUSIVE e

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ...t

Table of Contents

CHAPTER 1. PLANNING FOR AUTOMATION MESH IN YOUR VM-BASED RED HAT ANSIBLE AUTOMATION

PLATFORM ENVIRONMENT ... e

1.1. ABOUT AUTOMATION MESH
1.2. CONTROL AND EXECUTION PLANES
1.2.1. Control plane
1.2.2. Execution plane
1.2.3. Peers
1.2.4. Defining automation mesh node types

CHAPTER 2. SETTING UP AUTOMATIONMESHo

2.1. AUTOMATION MESH INSTALLATION
2.2.IMPORTING A CERTIFICATE AUTHORITY (CA) CERTIFICATE

CHAPTER 3. AUTOMATION MESH DESIGN PATTERNSoiiiiiiiiat,

3.1. MULTIPLE HYBRID NODES INVENTORY FILE EXAMPLE

3.2.SINGLE NODE CONTROL PLANE WITH SINGLE EXECUTION NODE
3.3. MINIMUM RESILIENT CONFIGURATION

3.4. SEGREGATED LOCAL AND REMOTE EXECUTION CONFIGURATION
3.5.MULTI-HOPPED EXECUTION NODE

3.6. OUTBOUND ONLY CONNECTIONS TO CONTROLLER NODES

CHAPTER 4. DEPROVISIONING INDIVIDUAL NODES ORGROUPS

4.1. DEPROVISIONING INDIVIDUAL NODES USING THE INSTALLER
4.1.1. Deprovisioning isolated nodes

4.2. DEPROVISIONING GROUPS USING THE INSTALLER
4.2.1. Deprovisioning isolated instance groups

N N NO o O

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-k

PREFACE

PREFACE

Thank you for your interest in Red Hat Ansible Automation Platform. Ansible Automation Platform is a
commercial offering that helps teams manage complex multi-tier deployments by adding control,
knowledge, and delegation to Ansible-powered environments.

This guide helps you to understand the requirements and processes behind setting up an automation
mesh on a VM-based installation of Red Hat Ansible Automation Platform. This document has been
updated to include information for the latest release of Ansible Automation Platform.

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

If you have a suggestion to improve this documentation, or find an error, please contact technical
support at https://access.redhat.com to create an issue on the Ansible Automation Platform Jira
project using the docs-product component.

https://access.redhat.com

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

CHAPTER 1. PLANNING FOR AUTOMATION MESH IN YOUR
VM-BASED RED HAT ANSIBLE AUTOMATION PLATFORM
ENVIRONMENT

The following topics contain information to help plan an automation mesh deployment in your VM-based
Ansible Automation Platform environment. The subsequent sections explain the concepts that

comprise automation mesh in addition to providing examples on how you can design automation mesh
topologies. Simple to complex topology examples are included to illustrate the various ways you can
deploy automation mesh.

1.1. ABOUT AUTOMATION MESH

Automation mesh is an overlay network intended to ease the distribution of work across a large and
dispersed collection of workers through nodes that establish peer-to-peer connections with each other
using existing networks.

Red Hat Ansible Automation Platform 2 replaces Ansible Tower and isolated nodes with automation
controller and automation hub. Automation controller provides the control plane for automation
through its Ul, Restful API, RBAC, workflows and Cl/CD integration, while Automation Mesh can be used
for setting up, discovering, changing or modifying the nodes that form the control and execution layers.

Automation mesh uses TLS encryption for communication, so traffic that traverses external networks
(the internet or other) is encrypted in transit.

Automation Mesh introduces:

® Dynamic cluster capacity that scales independently, enabling you to create, register, group,
ungroup and deregister nodes with minimal downtime.

® Control and execution plane separation that enables you to scale playbook execution capacity
independently from control plane capacity.

® Deployment choices that are resilient to latency, reconfigurable without outage, and that
dynamically re-reroute to choose a different path when outages occur.

® Connectivity that includes bi-directional, multi-hopped mesh communication possibilities which
are Federal Information Processing Standards (FIPS) compliant.

1.2. CONTROL AND EXECUTION PLANES

Automation mesh makes use of unique node types to create both the control and execution plane.
Learn more about the control and execution plane and their node types before designing your
automation mesh topology.

1.2.1. Control plane

The control plane consists of hybrid and control nodes. Instances in the control plane run persistent
automation controller services such as the the web server and task dispatcher, in addition to project
updates, and management jobs.

e Hybrid nodes - this is the default node type for control plane nodes, responsible for
automation controller runtime functions like project updates, management jobs and ansible-
runner task operations. Hybrid nodes are also used for automation execution.

IG FOR AUTOMATION MESH IN YOUR VM-BASED RED HAT ANSIBLE AUTOMATION PLATFORM ENVIRONMEN'

® Control nodes - control nodes run project and inventory updates and system jobs, but not
regular jobs. Execution capabilities are disabled on these nodes.
1.2.2. Execution plane

The execution plane consists of execution nodes that execute automation on behalf of the control
plane and have no control functions. Hop nodes serve to communicate. Nodes in the execution plane
only run user-space jobs, and may be geographically separated, with high latency, from the control
plane.

® Execution nodes - Execution nodes run jobs under ansible-runner with podman isolation.
This node type is similar to isolated nodes. This is the default node type for execution plane

nodes.

® Hop nodes- similar to a jump host, hop nodes route traffic to other execution nodes. Hop
nodes cannot execute automation.

1.2.3. Peers

Peer relationships define node-to-node connections. You can define peers within the
[automationcontroller] and [execution_nodes] groups or using the [automationcontroller:vars] or
[execution_nodes:vars] groups

1.2.4. Defining automation mesh node types

The examples in this section demonstrate how to set the node type for the hosts in your inventory file.

You can set the node_type for single nodes in the control plane or execution plane inventory groups. To
define the node type for an entire group of nodes, set the node_type in the vars stanza for the group.

® The permitted values for node_type in the control plane [automationcontroller] group are
hybrid (default) and control.

® The permitted values for node_type in the [execution_nodes] group are execution (default)
and hop.

Hybrid node

The following inventory consists of a single hybrid node in the control plane:

[automationcontroller]
control-plane-1.example.com

Control node

The following inventory consists of a single control node in the control plane:

[automationcontroller]
control-plane-1.example.com node_type=control

If you set node_type to control in the vars stanza for the control plane nodes, then all of the nodes in
control plane are control nodes.

I [automationcontroller]

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

control-plane-1.example.com

[automationcontroller:vars]
node_type=control

Execution node

The following stanza defines a single execution node in the execution plane:

[execution_nodes]
execution-plane-1.example.com

Hop node

The following stanza defines a single hop node and an execution node in the execution plane. The
node_type variable is set for every individual node.

[execution_nodes]
execution-plane-1.example.com node_type=hop
execution-plane-2.example.com

If you want to set the node_type at the group level, you must create separate groups for the execution
nodes and the hop nodes.

[execution_nodes]
execution-plane-1.example.com
execution-plane-2.example.com

[execution_group]
execution-plane-2.example.com

[execution_group:vars]
node_type=execution

[hop_group]
execution-plane-1.example.com

[hop_group:vars]
node_type=hop

Peer connections

Create node-to-node connections using the peers= host variable. The following example connects
control-plane-1.example.com to execution-node-1.example.com and execution-node-
1.example.com to execution-node-2.example.com:

[automationcontroller]
control-plane-1.example.com peers=execution-node-1.example.com

[automationcontroller:vars]
node_type=control

IG FOR AUTOMATION MESH IN YOUR VM-BASED RED HAT ANSIBLE AUTOMATION PLATFORM ENVIRONMEN'

[execution_nodes]
execution-node-1.example.com peers=execution-node-2.example.com
execution-node-2.example.com

Additional resources

® See the example automation mesh topologies in this guide for more examples of how to
implement mesh nodes.

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

CHAPTER 2. SETTING UP AUTOMATION MESH

Configure the Ansible Automation Platform installer to set up automation mesh for your Ansible
environment. Perform additional tasks to customize your installation, such as importing a Certificate
Authority (CA) certificate.

2.1. AUTOMATION MESH INSTALLATION
You use the Ansible Automation Platform installation program to set up automation mesh or to upgrade

to automation mesh. To provide Ansible Automation Platform with details about the nodes, groups, and
peer relationships in your mesh network, you define them in an the inventory file in the installer bundle.

Additional Resources

® Red Hat Ansible Automation Platform Installation Guide

® Automation Mesh Design Patterns

2.2. IMPORTING A CERTIFICATE AUTHORITY (CA) CERTIFICATE
A Certificate Authority (CA) verifies and signs individual node certificates in an automation mesh

environment. You can provide your own CA by specifying the path to the certificate and the private RSA
key file in the inventory file of your Red Hat Ansible Automation Platform installer.

NOTE

The Ansible Automation Platform installation program generates a CA if you do not
provide one.

Procedure

1. Open the inventory file for editing.
2. Add the mesh_ca_keyfile variable and specify the full path to the private RSA key (.key).
3. Add the mesh_ca_certfile variable and specify the full path to the CA certificate file (.crt).

4. Save the changes to the inventory file.

Example

[all:vars]
mesh_ca_keyfile=/tmp/<mesh_CA>.key
mesh_ca_certfile=/tmp/<mesh_CA>.crt

With the CA files added to the inventory file, run the installation program to apply the CA. This process
copies the CA to the to /etc/receptor/tls/ca/ directory on each control and execution node on your
mesh network.

Additional resources

® Red Hat Ansible Automation Platform System Requirements

10

https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_installation_guide/index
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.4/html/red_hat_ansible_automation_platform_planning_guide/platform-system-requirements

CHAPTER 3. AUTOMATION MESH DESIGN PATTERNS

CHAPTER 3. AUTOMATION MESH DESIGN PATTERNS

The automation mesh topologies in this section provide examples you can use to design a mesh
deployment in your environment. Examples range from a simple, hydrid node deployment to a complex
pattern that deploys numerous automation controller instances, employing several execution and hop
nodes.

Prerequisites

® You reviewed conceptual information on node types and relationsips

NOTE

The following examples include images that illustrate the mesh topology. The arrows in
the images indicate the direction of peering. After peering is established, the connection
between the nodes allows bidirectional communication.

3.1. MULTIPLE HYBRID NODES INVENTORY FILE EXAMPLE

This example inventory file deploys a control plane consisting of multiple hybrid nodes. The nodes in the
control plane are automatically peered to one another.

[automationcontroller]

aap_c_1.example.com
aap_c_2.example.com
aap_c_3.example.com

The following image displays the topology of this mesh network.

PN

Control nodes

aap_c_1 (< aap_c_2 44— aap_c_3

The default node_type for nodes in the control plane is hybrid. You can explicitly set the node_type of
individual nodes to hybrid in the [automationcontroller group]:

[automationcontroller]

aap_c_1.example.com node_type=hybrid
aap_c_2.example.com node_type=hybrid
aap_c_3.example.com node_type=hybrid

Alternatively, you can set the node_type of all nodes in the [automationcontroller] group. When you
add new nodes to the control plane they are automatically set to hybrid nodes.

I [automationcontroller]

1

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

aap_c_1.example.com
aap_c_2.example.com
aap_c_3.example.com

[automationcontroller:vars]
node_type=hybrid

If you think that you might add control nodes to your control plane in future, it is better to define a
separate group for the hybrid nodes, and set the node_type for the group:

[automationcontroller]

aap_c_1.example.com
aap_c_2.example.com
aap_c_3.example.com

[hybrid_group]
aap_c_1.example.com
aap_c_2.example.com
aap_c_3.example.com
[hybrid_group:vars]
node_type=hybrid
3.2. SINGLE NODE CONTROL PLANE WITH SINGLE EXECUTION NODE

This example inventory file deploys a single-node control plane and establishes a peer relationship to an
execution node.

[automationcontroller]
aap_c_1.example.com

[automationcontroller:vars]
node_type=control

peers=execution_nodes

[execution_nodes]
aap_e_1.example.com

The following image displays the topology of this mesh network.

12

CHAPTER 3. AUTOMATION MESH DESIGN PATTERNS

Control nodes

aap_c_1

A

aap_e_1

The [automationcontroller] stanza defines the control nodes. If you add a new node to the
automationcontroller group, it will automatically peer with the aap_c_1.example.com node.

The [automationcontroller:vars] stanza sets the node type to control for all nodes in the control plane
and defines how the nodes peer to the execution nodes:

e |f you add a new node to the execution_nodes group, the control plane nodes automatically
peer to it.

e |f you add a new node to the automationcontroller group, the node type is set to control.

The [execution_nodes] stanza lists all the execution and hop nodes in the inventory. The default node
type is execution. You can specify the node type for an individual node:

[execution_nodes]
aap_e_1.example.com node_type=execution

Alternatively, you can set the node_type of all execution nodes in the [execution_nodes] group. When
you add new nodes to the group, they are automatically set to execution nodes.

[execution_nodes]
aap_e_1.example.com

[execution_nodes:vars]
node_type=execution

13

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

If you plan to add hop nodes to your inventory in future, it is better to define a separate group for the
execution nodes, and set the node_type for the group:

[execution_nodes]
aap_e_1.example.com

[local_execution_group]
aap_e_1.example.com

[local_execution_group:vars]
node_type=execution

3.3. MINIMUM RESILIENT CONFIGURATION

This example inventory file deploys a control plane consisting of two control nodes, and two execution
nodes. All nodes in the control plane are automatically peered to one another. All nodes in the control

plane are peered with all nodes in the execution_nodes group. This configuration is resilient because
the execution nodes are reachable from all control nodes.

The capacity algorithm determines which control node is chosen when a job is launched. Refer to
Automation controller Capacity Determination and Job Impact in the Automation Controller User Guide
for more information.

The following inventory file defines this configuration.

[automationcontroller]
aap_c_1.example.com
aap_c_2.example.com

[automationcontroller:vars]
node_type=control
peers=execution_nodes
[execution_nodes]

aap_e_1.example.com
aap_e_2.example.com

The [automationcontroller] stanza defines the control nodes. All nodes in the control plane are peered
to one another. If you add a new node to the automationcontroller group, it will automatically peer with
the original nodes.

The [automationcontroller:vars] stanza sets the node type to control for all nodes in the control plane
and defines how the nodes peer to the execution nodes:

e |f you add a new node to the execution_nodes group, the control plane nodes automatically
peer toit.

e |f you add a new node to the automationcontroller group, the node type is set to control.

The following image displays the topology of this mesh network.

14

https://docs.ansible.com/automation-controller/latest/html/userguide/jobs.html#at-capacity-determination-and-job-impact

CHAPTER 3. AUTOMATION MESH DESIGN PATTERNS

Control nodes

aap_c_l r<— aap_c_2
=~ Z

Y Y

aap_e_1 aap_e_2

3.4.SEGREGATED LOCAL AND REMOTE EXECUTION
CONFIGURATION

This configuration adds a hop node and a remote execution node to the resilient configuration. The
remote execution node is reachable from the hop node.

You can use this setup if you are setting up execution nodes in a remote location, or if you need to run
automation in a DMZ network.

[automationcontroller]
aap_c_1.example.com
aap_c_2.example.com

[automationcontroller:vars]
node_type=control
peers=instance_group_local

[execution_nodes]
aap_e_1.example.com
aap_e_2.example.com
aap_h_1.example.com node_type=hop
aap_e_3.example.com

[instance_group_local]

aap_e_1.example.com
aap_e_2.example.com

[hop]
aap_h_1.example.com

[hop:vars]
peers=automationcontroller

[instance_group_remote]
aap_e_3.example.com

[instance_group_remote:vars]
peers=hop

15

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

The following image displays the topology of this mesh network.

aap_e_3

aap_h_1

7 5
Control notes

aap_c_1 r<— aap_c_2
SN 7

Y Y

aap_e_1 aap_e_2

The [automationcontroller:vars] stanza sets the node types for all nodes in the control plane and
defines how the control nodes peer to the local execution nodes:

® All nodes in the control plane are automatically peered to one another.
® Allnodes in the control plane are peered with all local execution nodes.

If the name of a group of nodes begins with instance_group_, the installer recognises it as an instance
group and adds it to the Ansible Automation Platform user interface.

3.5.MULTI-HOPPED EXECUTION NODE

In this configuration, resilient controller nodes are peered with resilient local execution nodes. Resilient
local hop nodes are peered with the controller nodes. A remote execution node and a remote hop node
are peered with the local hop nodes.

You can use this setup if you need to run automation in a DMZ network from a remote network.

[automationcontroller]

aap_c_1.example.com
aap_c_2.example.com
aap_c_3.example.com

[automationcontroller:vars]

node_type=control
peers=instance_group_local

16

CHAPTER 3. AUTOMATION MESH DESIGN PATTERNS

[execution_nodes]
aap_e_1.example.com
aap_e_2.example.com
aap_e_3.example.com
aap_e_4.example.com
aap_h_1.example.com node_type=hop
aap_h_2.example.com node_type=hop
aap_h_3.example.com node_type=hop

[instance_group_local]
aap_e_1.example.com

aap_e_2.example.com

[instance_group_remote]
aap_e_3.example.com

[instance_group_remote:vars]
peers=local_hop

[instance_group_multi_hop_remote]
aap_e_4.example.com

[instance_group_multi_hop_remote:vars]
peers=remote_multi_hop

[local_hop]
aap_h_1.example.com
aap_h_2.example.com

[local_hop:vars]
peers=automationcontroller

[remote_multi_hop]
aap_h_3 peers=local_hop

The following image displays the topology of this mesh network.

17

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

aap_e_4

aap_e_3 aap_h_3

aap_h_2 aap_h_1

Control nodes

aap_c_2 t#— aap_c_3 r<—m aap_c_1

aap_e_1 aap_e_2

The [automationcontroller:vars] stanza sets the node types for all nodes in the control plane and
defines how the control nodes peer to the local execution nodes:

® All nodes in the control plane are automatically peered to one another.
® Allnodes in the control plane are peered with all local execution nodes.
The [local_hop:vars] stanza peers all nodes in the [local_hop] group with all the control nodes.

If the name of a group of nodes begins with instance_group_, the installer recognises it as an instance
group and adds it to the Ansible Automation Platform user interface.

3.6. OUTBOUND ONLY CONNECTIONS TO CONTROLLER NODES

This example inventory file deploys a control plane consisting of two control nodes, and several
execution nodes. Only outbound connections are allowed to the controller nodes All nodes in the
‘execution_nodes' group are peered with all nodes in the controller plane.

[automationcontroller]
controller-[1:2].example.com

18

CHAPTER 3. AUTOMATION MESH DESIGN PATTERNS

[execution_nodes]
execution-[1:5].example.com

[execution_nodes:vars]

connection is established *from* the execution nodes *to* the automationcontroller
peers=automationcontroller

The following image displays the topology of this mesh network.

Control nodes

aap_c_I

PN

f 1 2 N N

aap-e-1 aap-g-2 aap-e-3 aap-g-4 aap-e-5

— receptor_listener_ports

Execution nodes

19

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

CHAPTER 4. DEPROVISIONING INDIVIDUAL NODES OR
GROUPS

You can deprovision automation mesh nodes and instance groups using the Ansible Automation
Platform installer. The procedures in this section describe how to deprovision specific nodes or entire
groups, with example inventory files for each procedure.

4.1. DEPROVISIONING INDIVIDUAL NODES USING THE INSTALLER

You can deprovision nodes from your automation mesh using the Ansible Automation Platform installer.
Edit the inventory file to mark the nodes to deprovision, then run the installer. Running the installer also
removes all configuration files and logs attached to the node.

NOTE

You can deprovision any of your inventory’s hosts except for the first host specified in the
[automationcontroller] group.

Procedure

e Append node_state=deprovision to nodes in the installer file you want to deprovision.

Example

This example inventory file deprovisions two nodes from an automation mesh configuration.

[automationcontroller]

126-addr.tatu.home ansible_host=192.168.111.126 node_type=control

121-addr.tatu.home ansible_host=192.168.111.121 node_type=hybrid routable hostname=121-
addr.tatu.home

115-addr.tatu.home ansible_host=192.168.111.115 node_type=hybrid node_state=deprovision

[automationcontroller:vars]
peers=connected_nodes

[execution_nodes]

110-addr.tatu.home ansible_host=192.168.111.110 receptor_listener_port=8928
108-addr.tatu.home ansible_host=192.168.111.108 receptor_listener_port=29182
node_state=deprovision

100-addr.tatu.home ansible_host=192.168.111.100 peers=110-addr.tatu.home node_type=hop

4.1.1. Deprovisioning isolated nodes

You have the option to manually remove any isolated nodes using the awx-manage deprovisioning
utility.

20

CHAPTER 4. DEPROVISIONING INDIVIDUAL NODES OR GROUPS

' WARNING
A Use the deprovisioning command to remove only isolated nodes that have not

migrated to execution nodes. To deprovision execution nodes from your
automation mesh architecture, use the installer method instead.

Procedure

1. Shut down the instance:

I $ automation-controller-service stop

2. Run the deprovision command from another instance, replacing host_name with the name of
the node as listed in the inventory file:

I $ awx-manage deprovision_instance --hostname=<host_name>

4.2. DEPROVISIONING GROUPS USING THE INSTALLER

You can deprovision entire groups from your automation mesh using the Ansible Automation Platform
installer. Running the installer will remove all configuration files and logs attached to the nodes in the

group.

NOTE

You can deprovision any hosts in your inventory except for the first host specified in the
[automationcontroller] group.

Procedure

o Add node_state=deprovision to the [group:vars] associated with the group you wish to
deprovision.

Example

[execution_nodes]

execution-node-1.example.com peers=execution-node-2.example.com
execution-node-2.example.com peers=execution-node-3.example.com
execution-node-3.example.com peers=execution-node-4.example.com
execution-node-4.example.com peers=execution-node-5.example.com
execution-node-5.example.com peers=execution-node-6.example.com
execution-node-6.example.com peers=execution-node-7.example.com
execution-node-7.example.com

[execution_nodes:vars]
node_state=deprovision

4.2.1. Deprovisioning isolated instance groups

21

Red Hat Ansible Automation Platform 2.4 Red Hat Ansible Automation Platform Automation Mesh Guide for VM-b

You have the option to manually remove any isolated instance groups using the awx-manage
deprovisioning utility.

' WARNING
A Use the deprovisioning command to only remove isolated instance groups. To

deprovision instance groups from your automation mesh architecture, use the
installer method instead.

Procedure

® Run the following command, replacing <name> with the name of the instance group:

I $ awx-manage unregister_queue --queuename=<name>

22

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. PLANNING FOR AUTOMATION MESH IN YOUR VM-BASED RED HAT ANSIBLE AUTOMATION PLATFORM ENVIRONMENT
	1.1. ABOUT AUTOMATION MESH
	1.2. CONTROL AND EXECUTION PLANES
	1.2.1. Control plane
	1.2.2. Execution plane
	1.2.3. Peers
	1.2.4. Defining automation mesh node types

	CHAPTER 2. SETTING UP AUTOMATION MESH
	2.1. AUTOMATION MESH INSTALLATION
	2.2. IMPORTING A CERTIFICATE AUTHORITY (CA) CERTIFICATE

	CHAPTER 3. AUTOMATION MESH DESIGN PATTERNS
	3.1. MULTIPLE HYBRID NODES INVENTORY FILE EXAMPLE
	3.2. SINGLE NODE CONTROL PLANE WITH SINGLE EXECUTION NODE
	3.3. MINIMUM RESILIENT CONFIGURATION
	3.4. SEGREGATED LOCAL AND REMOTE EXECUTION CONFIGURATION
	3.5. MULTI-HOPPED EXECUTION NODE
	3.6. OUTBOUND ONLY CONNECTIONS TO CONTROLLER NODES

	CHAPTER 4. DEPROVISIONING INDIVIDUAL NODES OR GROUPS
	4.1. DEPROVISIONING INDIVIDUAL NODES USING THE INSTALLER
	4.1.1. Deprovisioning isolated nodes

	4.2. DEPROVISIONING GROUPS USING THE INSTALLER
	4.2.1. Deprovisioning isolated instance groups

