& RedHat

Red Hat Ansible Automation Platform
2.4

Deploying Ansible Automation Platform 2 on
Red Hat OpenShift

Last Updated: 2023-11-14

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation
Platform 2 on Red Hat OpenShift

Roger Lopez
ansible-feedback@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides the best practices to deploy Ansible Automation Platform 2 on Red Hat
OpenShift.

Table of Contents

Table of Contents

COMMENTS AND FEEDBACK .o i i i i i e e it ii e as 3
CHAPTER 1. OVERVIEW L i i i i i et ittt i e, 4
CHAPTER 2. WHY ANSIBLE AUTOMATION PLATFORM ON RED HAT OPENSHIFT?oooiel. 6
CHAPTER 3. BEFORE YOU ST ART ..t i i i e ettt 7

3.1. RESOURCE MANAGEMENT FOR PODS AND CONTAINERS 7
3.1.1. What is a resource request? 7
3.1.2. What is a resource limit? 7
3.1.3. Why does resource management matter? 7
3.1.4. Planning of resources 7

3.2. SIZE RECOMMENDATIONS FOR YOUR AUTOMATION CONTROLLER POD CONTAINERS 8

3.3. SIZE RECOMMENDATIONS FOR YOUR POSTGRES POD 10

3.4. SIZE RECOMMENDATIONS FOR YOUR AUTOMATION JOB PODS 1

3.5. SUMMARY OF AUTOMATION CONTROLLER POD SIZE RECOMMENDATIONS 13

3.6. SIZE RECOMMENDATIONS FOR YOUR AUTOMATION HUB PODS 13

3.7.SPECIFYING DEDICATED NODES FOR AUTOMATION CONTROLLER POD 15
3.7.1. Assigning control pods to specific worker nodes for automation controller 15

3.8. HANDLING DATABASE HIGH AVAILABILITY 16

CHAPTER 4. PREREQUISITES .. ittt ittt ettt et eaneteeeaanneeeesaennneeeesennnneesennns 18
CHAPTERS. INSTALLING THE ANSIBLE AUTOMATION PLATFORM OPERATORviiiiiiiiieeennn, 19
CHAPTER 6. INSTALLING AUTOMATION CONTROLLER ... ittt ei e eeieenneenns 21
CHAPTER 7. INSTALLING AUTOMATION HUB ...ttt ettt ei et eeieenaeennnennneenn, 23
CHAPTER 8. LOGIN TO YOUR AUTOMATION CONTROLLERDASHBOARDcciiiiiiiiiiiennnnn, 25
CHAPTER 9. LOGIN TO YOUR AUTOMATION HUB DASHBOARDtiiittiiitiiinieennnennneenn, 26
CHAPTER 10. MONITORING YOUR ANSIBLE AUTOMATION PLATFORM ...ttt 27

10.1. WHAT WILL BE USED TO MONITOR THE API METRICS? 27

10.2. WHAT METRICS CAN | EXPECT TO SEE? 27

10.3. INSTALLATION VIA AN ANSIBLE PLAYBOOK 27
10.3.1. Create a custom credential type 28
10.3.2. Create a kubeconfig credential 28
10.3.3. Create a project 28
10.3.4. Create a job template & run the Ansible Playbook 29

APPENDIX A. ABOUT THE AUTHO R ..ttt ittt i et et eeaeeanneeaneeraneennneennens 30
APPENDIX B. DELETE EXISTING PVCS FROM PREVIOUS AAP INSTALLATIONScciiiiinnnn... 31
APPENDIX C. APPLYING LABELS AND TAINTSTO RED HATOPENSHIFTNODEcccviiivue.... 32
APPENDIX D. CREATE AN AMAZON S3 BUCKET .. .ttttttttitteiteeteeaneenaneennneeaneenaneennnes 33
APPENDIX E. CREATING AN AWS S3 SECRET ...tiittttiitttitteiteeeeeenneeanneraneeraneennneeanens 34
APPENDIX F. ADDING ADDITIONAL MANAGED NAMESPACES TO THE AAP OPERATOR 35
APPENDIX G. REFERENCE S .. ittt ittt et ettt it ettt e eeeeaneennneeaneennneennnes 36
APPENDIX H. REVISION HISTORY ottt ittt et ettt ettt et eeaeennneeaneenaneennnes 37

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

COMMENTS AND FEEDBACK

COMMENTS AND FEEDBACK

In the spirit of open source, we invite anyone to provide feedback and comments on any reference
architecture. Although we review our papers internally, sometimes issues or typographical errors are
encountered. Feedback allows us to not only improve the quality of the papers we produce, but allows
the reader to provide their thoughts on potential improvements and topic expansion to the papers.
Feedback on the papers can be provided by emailing ansible-feedback@redhat.com. Please refer to the
title within the email.

mailto:ansible-feedback@redhat.com

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

CHAPTER 1. OVERVIEW

The Ansible Automation Platform (AAP) 2.3 on Red Hat OpenShift reference architecture provides an
opinionated setup of deploying an Ansible Automation Platform environment. It provides a step-by-step
deployment procedure with the latest best practices to install and configure Ansible Automation
Platform 2.3. It is best suited for system and platform administrators looking to deploy Ansible
Automation Platform on Red Hat OpenShift.

By utilizing the power of Red Hat OpenShift, we can streamline the deployment of Ansible Automation
Platform and significantly reduce the time and effort required to set it up.

Figure 1.1. automation controller architecture

A

Cluster admin

Install AAP operator on
OpenShift cluster

Ansible Automation Automation Controller Architecture
Platform operator
Automation
Controller controller pod
Automation Controller install di b
operator e ki . automation job pod
P Automation Job
launched
task €8 | —--mmmmmmmmmmmmmm—m-——-- »
Platform Resource
operator
postgres pod
Automation Hub
operator postgres

N
—

PVC
(PostgreSQL 13)

The Figure 1.1, “automation controller architecture”, shows the deployment process flow of the Ansible
Automation Platform (AAP) operator deploying the automation controller component. The automation
controller operator, one of the three operators that comprise the larger Ansible Automation Platform

operator, is responsible for deploying the various pods including the controller, postgres and automation
job pods.

CHAPTER 1. OVERVIEW

Figure 1.2. automation hub architecture

A

Cluster admin

Install AAP operator on
OpenShift cluster

v

Ansible Automation Automation Hub Architecture
Platform operator

content pod (x2) redis pod web pod
Automation Controller _— content redis -
operator i
i i i
: S — y
Platform Resource L : '
operator ! '
1
| api pod worker pod (x2) postgres pod
Automation |
Automation Hub Hub install ’ api worker postgres
operator |
| |

Storage backend PVC
(Shared FileSystem or Object Storage — ReadWriteMany) (PostgreSQL 13)

Similarly, the Figure 1.2, “automation hub architecture” shows the AAP operator deploying the
automation hub component. The automation hub operator deploys various pods that communicate with
each other to deliver automation hub to share internally generated content, Red Hat Ansible Certified
Content, execution environments, and Ansible Validated Content with your teams.

In addition, this reference architecture highlights key steps involved in providing an efficient and scalable
environment delivered by a solid foundation for any of your automation efforts.

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

CHAPTER 2. WHY ANSIBLE AUTOMATION PLATFORM ON

RED HAT OPENSHIFT?

Running Ansible Automation Platform 2.3 on Red Hat OpenShift 4.x can provide a more efficient and
automated way to deploy and manage the platform, as well as better integration with Red Hat
OpenShift's built-in monitoring, logging, security, and scalability features.

Additionally, using Red Hat OpenShift's Operator Lifecycle Manager (OLM) to deploy and manage the
Ansible Automation Platform operator can simplify the update and upgrade process, allowing for more
control and flexibility.

A further breakdown of those benefits can be seen below:

Automation: The Ansible Automation Platform operator provides a way to automate the
deployment and management of the Ansible Automation Platform on Red Hat OpenShift. This
can help you to reduce the time and effort required to deploy and manage the platform, and
ensure that it is running in a consistent and predictable way.

Scalability: The operator can help you to scale the Ansible Automation Platform to meet the
needs of your organization. You can easily deploy multiple instances of the platform and
manage them from a single location.

Flexibility: The operator provides a flexible way to deploy and manage the Ansible Automation
Platform. You can customize the configuration of the platform to suit your specific needs, and
deploy it in different environments, such as development, staging, and production.

Monitoring and troubleshooting: The operator integrates with Red Hat OpenShift's built-in
monitoring and logging tools, like Prometheus and Grafana, which can be used to monitor the
resource usage of the platform and identify any bottlenecks.

Management and upgrade: Using the Operator Lifecycle Manager (OLM) that comes with Red

Hat OpenShift 4.x, you can easily deploy, manage, and upgradem the Ansible Automation
Platform operator across your cluster.

[1]Ansible Automation Platform supported lifecycle versions -
https://access.redhat.com/support/policy/updates/ansible-automation-platform

https://access.redhat.com/support/policy/updates/ansible-automation-platform

CHAPTER 3. BEFORE YOU START

CHAPTER 3. BEFORE YOU START

Prior to deploying AAP on Red Hat OpenShift, it's important to understand key considerations that need
to be addressed before installation. These factors determine the health and scalability of your AAP
environment throughout its lifecycle.

In this section, you will find a breakdown of those key considerations including:
® Red Hat OpenShift resource management
® Sizing recommendations for your automation controller pod containers
® Sizing recommendations for your Postgres pod
® Sizing recommendations for your automation job pods
® Sizing recommendations for your automation hub pods

One of the key aspects of a successful deployment is the proper resource management for pods and
containers to ensure optimal performance and availability of your AAP application for your Red Hat
OpenShift cluster.

3.1. RESOURCE MANAGEMENT FOR PODS AND CONTAINERS

Two key resources regarding resource management are your CPU and memory (RAM). Red Hat
OpenShift uses resource requests and resource limits to control the amount of resources that a
container can consume in a pod.

3.1.1. What is a resource request?

A resource request is the minimum amount of resources a container needs to run and function properly.
The Kubernetes scheduler uses this value to ensure that there are enough resources available for the
container.

3.1.2. What is a resource limit?

Resource limits, on the other hand, are the maximum amount of resources that a container can consume.
Setting resource limits ensures a container does not consume more resources than it should, which can
cause other containers to suffer from resource starvation.

3.1.3. Why does resource management matter?

When it comes to AAP, setting the correct resource requests and limits is crucial. Inadequate resource
allocation can result in the termination of the control pod, causing the loss of all automation jobs within
the automation controller.

3.1.4. Planning of resources

While setting the proper resource management values, organizations need to consider which
architecture best suits their needs based on the resources available. For example, determining whether
high availability of their Ansible Automation Platform environment is more important than maximizing
capacity to run automation jobs.

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

To better illustrate, let's take the existing Red Hat OpenShift environment used in this reference
architecture. It consists of:

® 3 control plane nodes
® 3 worker nodes
Each of these nodes consists of 4 vCPUs and 16 GiB of RAM.

Since the control plane nodes of a Red Hat OpenShift cluster do not run any applications, the example
focuses on the 3 worker nodes that are available.

With these 3 worker nodes, we need to determine what is more important: maximizing Ansible
Automation Platform availability or running as many automation jobs as possible or both?

If availability is of utmost importance, then the focus will be on ensuring that two control pods run on
separate worker nodes (e.g. worker0 and worker1), while all automation jobs are run within the
remaining worker node (e.g. worker2).

However, this reduces the resources available for running automation jobs in half, as the recommended
practice is to separate control pods and automation pods from running in the same worker node.

If maximizing the amount of automation jobs to run is the main goal, then using one worker node (e.g.
worker0) for the control pod and utilizing the remaining two worker nodes (e.g. worker1 and worker2)
for running automation jobs would double the resources available for running jobs but at the cost of not
having redundancy of the control pod.

Of course, the solution may be that both are equally important and if that is the case, additional
resources (e.g. adding more worker nodes) would be needed to satisfy both requirements.

3.2. SIZE RECOMMENDATIONS FOR YOUR AUTOMATION
CONTROLLER POD CONTAINERS

Looking back at our Figure 1.1, "automation controller architecture” from the overview section, you will
notice the control pod contains 4 containers:

® web

® ce

® redis

® task
Each of these containers performs a unique function in Ansible automation controller and it's critical to
understand how resource configurations affect the control pod. By default, Red Hat OpenShift provides
low values that are sufficient for a minimal test installation but isn’t optimal for running Ansible
Automation Platform in production.
The Red Hat OpenShift defaults for Ansible Automation Platform are:

e CPU:100m

® Memory: 128Mi

Red Hat OpenShift, by default, does not configure any maximum resource limits and will attempt to
assign all possible resources requested by the Ansible Automation Platform control pod. This

CHAPTER 3. BEFORE YOU START

configuration can cause starvation of resources and affect other applications running on the Red Hat
OpenShift cluster.

To demonstrate a starting point for the resource requests and limits of our containers in the control Pod,
[will be using the following assumptions:

® 3 Worker nodes available within a Red Hat OpenShift cluster each with 4 vCPU and 16GiB RAM
® Maximizing resources for automation jobs is more important than high availability

® One dedicated worker node for running automation controller

® Remaining two worker nodes for running automation jobs

When it comes to sizing the containers within the control pod, it is important to consider the specifics of
your workload. While | have conducted performance tests that provide specific recommendations for
this reference environment, these recommendations may not be applicable to all types of workloads.

As a starting point, | decided to take advantage of the performance collection playbooks, specifically the
chatty_tasks.yml.

The performance benchmark consisted of:
® Creating an inventory with 1 host
e Creating a job template that runs the chatty_tasks.yml file

The chatty_tasks job template utilizes the ansible.builtin.debug module to generate a set number of
debug messages per host and generates the necessary inventory. By utilizing the ansible.builtin.debug
module, | can obtain an accurate representation of the automation controller’s performance without
introducing any additional overhead.

The job template was executed with a specified concurrency level ranging from 10 to 50, indicating the
number of simultaneous invocations of the job template.

The following resource requests and resource limits depicted below are the results of the performance
benchmark and can be used as a starting baseline to run AAP with a Red Hat OpenShift cluster with
similar resources.

spec:

ee_resource_requirements:
limits:
cpu: 500m
memory: 400Mi
requests:
cpu: 100m
memory: 400Mi
task_resource_requirements:
limits:
cpu: 4000m
memory: 8Gi
requests:
cpu: 1000m
memory: 8Gi
web_resource_requirements:
limits:

https://github.com/ansible/test-playbooks
https://github.com/ansible/test-playbooks/blob/master/chatty_tasks.yml

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

cpu: 2000m
memory: 1.5Gi
requests:
cpu: 500m
memory: 1.5Gi
redis_resource_requirements:

limits:

cpu: 500m

memory: 1.5Gi
requests:

cpu: 250m

memory: 1.5Gi

NOTE

Memory resource requests and limits are matched to prevent overutilization of memory
resources within your Red Hat OpenShift cluster which can cause Out Of Memory (OOM)
Kill of your pods. If resource limits are greater than resource requests, it can cause a
scenario where you are allowing overutilization of your Red Hat OpenShift nodes.

NOTE

CPU resource requests and limits differ from memory as CPU resources are considered
compressible. This means that Red Hat OpenShift will attempt to throttle our container’s
CPU when hitting the resource limit but it will not terminate the container. In the above
containers within the control pod, CPU requests were provided that are sufficient CPU
for the workload given, but allowed to burst higher under load by setting its threshold
(CPU limit) to a higher value.

WARNING

The scenario above is making the assumption that no other applications are using
resources within that worker node that the control pod resides in as it uses a
dedicated Red Hat OpenShift worker node. More details can be found Section 3.7,
“Specifying dedicated nodes for automation controller pod”.

3.3. SIZE RECOMMENDATIONS FOR YOUR POSTGRES POD

After conducting the performance benchmark tests using the chatty_task playbook, it was observed
that a CPU resource request below 500m may cause CPU throttling in a Postgres pod, as additional
resources requested above the initial resource request, but below the resource limit, are not guaranteed
to the pod. However, the CPU limit was set to 1000m (1 vCPU) because there were bursts during the the
test that exceeded the 500m request.

With regards to memory, since memory is not a compressible resource, it was observed that during the
chatty_task performance tests the Postgres pod at its highest levels in the tests consumed slightly over
650Mi of RAM.

10

CHAPTER 3. BEFORE YOU START

Therefore, based on the results, my memory resource request and limit recommendation for this
reference environment is 1Gi to provide a sufficient buffer and avoid a potential Out Of Memory (OOM)
Kill of the Postgres pod.

The following resource requests and resource limits depicted below are the results of the performance
benchmark test and can be used as a starting baseline to run your Postgres Pod.

spec:

postgres_resource_requirements:
limits:
cpu: 1000m
memory: 1Gi
requests:
cpu: 500m
memory: 1Gi

' WARNING
A The values below are specific to this reference environment and may not be

sufficient for your workload. It is important to monitor the performance of your
Postgres pod and adjust the resource allocations to meet your performance needs.

3.4. SIZE RECOMMENDATIONS FOR YOUR AUTOMATION JOB PODS
An Ansible Automation Platform job is an instance of automation controller launching an Ansible
playbook against an inventory of hosts. When Ansible Automation Platform runs on Red Hat OpenShift,
the default execution queue is a Container Group created by the operator at install time.

A container group consists of a Kubernetes credential and a default Pod specification. When jobs are
launched into a Container Group, a pod is created by automation controller in the namespace specified

by the Container Group pod specification. These pods are referred to as automation job pods.

In order to determine an appropriate size for the automation job pods, one must first understand the
capabilities of how many jobs the automation controller control plane can launch concurrently.

In this example, we have 3 worker nodes (each 4 vCPU and 16GiB of RAM). One worker node hosts the
control pod and the other two worker nodes are used for automation jobs.

Based on these values, we can determine the control capacity that the automation controller control
plane can run.

The following formula provides the breakdown:
Total control capacity = Total Memory in MB / Fork size in MB
Based on a worker node, this can be expressed as:

Total control capacity = 16,000 MB / 100 MB =160

1

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

NOTE

For those interested in more details about the calculations, review Resource
Determination for Capacity Algorithm

What this means is that the automation controller is configured to launch 160 jobs concurrently.
However, adjustments to this value need to be made in order to match our container group/execution
plane capacity that we will get into shortly.

NOTE

For simplicity, 16GB is rounded to 16,000 MB, and the size of one fork is 100MB by
default.

Now that we've calculated the available control capacity, we can determine the maximum number of
concurrent automation jobs.

To determine this, we must be aware that an automation job pod specification within a container
group/execution plane has a default request of vCPU 250m and 100Mi of RAM.

Using the total memory of one worker node:
16,000 MB / 100 MiB =160 concurrent jobs
Using the total CPU of one worker node:

4000 millicpu / 250 millicpu =16 concurrent jobs

Based on the above values, we must set the maximum concurrent jobs on a node to be the smallest of
the two concurrent job values - 16. Since there are two worker nodes allocated to run automation jobs in
our example, this number doubles to 32 (16 concurrent jobs per worker node).

Automation controller’s configuration is currently set to 160 concurrent jobs, and the available worker
node capacity only allows for 32 concurrent jobs. This is an issue as the numbers are unbalanced.

What this means is automation controller’'s control plane believes it can launch 160 jobs concurrently,
while the Kubernetes scheduler will only schedule up to 32 automation job pods concurrently in the
Container Group namespace.

Unbalanced values between the control plane and the container group/execution plane can lead to
issues where:

e |f the control plane capacity is higher than the Container Group’s maximum number of
concurrent job pods that it can schedule, the control plane will attempt to start jobs by
submitting pods to be started. These pods, however, won't actually begin to run until resources
are made available. If the job pod does not start within the timeout of
AWX_CONTAINER_GROUP_POD_PENDING_TIMEOUT, the job will be aborted (default is 2
hours).

e |f the Container Group is able to support more concurrent automation jobs than the control
plane believes it can launch, this capacity will be effectively wasted as the automation controller
will not launch enough automation jobs to ever reach the max number of concurrent automation
jobs the Container Group could support.

To avoid risking aborted jobs or unused resources, it is recommended to balance the effective control
capacity with the max number of concurrent jobs that the default Container Group can support.

12

https://docs.ansible.com/automation-controller/latest/html/userguide/jobs.html#resource-determination-for-capacity-algorithm

CHAPTER 3. BEFORE YOU START

The term "effective control capacity" is used because the max number of jobs the control plane will
launch is affected by a setting called AWX_CONTROL_NODE_TASK_IMPACT. The
AWX_CONTROL_NODE_TASK_IMPACT variable defines the amount of capacity that can be
consumed on the control pod per automation job, effectively controlling the number of automation jobs
that the control pod will attempt to start.

To achieve a balance between the effective control capacity and the available execution capacity, we
can set the AWX_CONTROL_NODE_TASK _IMPACT variable to a value that limits the number of

concurrent jobs that are to run on the automation controller control plane to match the number of
automation job pods that are to be launched by the container group/execution plane.

To calculate the optimal value of AWX_CONTROL_NODE_TASK_IMPACT to avoid launching more
concurrent automation jobs than the Container Group can support, we can use the following formula:

AWX_CONTROL_NODE_TASK_IMPACT = control capacity / max concurrent jobs the container group
can launch

For our reference environment, this is:
AWX_CONTROL_NODE_TASK_ IMPACT=160/32=5
This concludes that for this reference environment, AWX_CONTROL_NODE_TASK_IMPACT should

equal 5. This value will be set within the extra_setting portion of the Chapter 6, Installing automation
controller chapter, which we'll cover later in this document.

3.5. SUMMARY OF AUTOMATION CONTROLLER POD SIZE
RECOMMENDATIONS

Properly setting the resource requests and limits of our control plane (control pod) and our container
group/execution plane (automation job pods) is necessary to ensure the control and execution capacity
is balanced. The correct configuration can be determined by:

® Calculating the control capacity

® Calculating the number of automation jobs that can run concurrently

® Setting the AWX_CONTROL_NODE_TASK_IMPACT variable with the appropriate balance
value within the install of automation controller

3.6. SIZE RECOMMENDATIONS FOR YOUR AUTOMATION HUB PODS

Within the Figure 1.2, “automation hub architecture” outlined in the overview section, you'll notice that
the deployment is composed of seven pods, each hosting a container.

The list of pods consists of:
® content (x2)
® redis
® api
® postgres

® worker (x2)

13

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

The seven pods that comprise the automation hub architecture work together to efficiently manage and
distribute content, and are critical to the overall performance and scalability of your automation hub
environment.

Among these pods, the worker pods are particularly important as they are responsible for processing,
synchronizing, and distributing content. Due to this, it is important to set the appropriate amount of
resources to the worker pods to ensure they can perform their tasks.

NOTE

The following are guidelines intended to provide an estimate of the resource requests
and limits required for your automation hub environment. The actual resource needs will
vary depending on the setup.

For example, an environment with a large number of repositories that are performing
frequent updates or synchronizations may require more resources to handle the
processing load.

In this reference environment, to determine the size of the pods, preliminary tests were done using one
of the highest memory consumption tasks that can take place in an automation hub environment —
synchronization of remote repositories.

The findings determined that to successfully sync remote repositories within automation hub the
following resource requests and resource limits needed to be set for each of the pods:

spec:

content:
resource_requirements:
limits:
cpu: 250mm
memory: 400Mi
requests:
cpu: 100m
memory: 400Mi

redis:
resource_requirements:

limits:

cpu: 250m

memory: 200Mi
requests:

cpu: 100m

memory: 200Mi

api:
resource_requirements:

limits:

cpu: 250m

memory: 400Mi
requests:

cpu: 150m

memory: 400Mi

postgres_resource_requirements:

14

CHAPTER 3. BEFORE YOU START

resource_requirements:
limits:
cpu: 500m
memory: 1Gi
requests:
cpu: 200m
memory: 1Gi

worker:
resource_requirements:

limits:

cpu: 1000m

memory: 3Gi
requests:

cpu: 400m

memory: 3Gi

3.7.SPECIFYING DEDICATED NODES FOR AUTOMATION
CONTROLLERPOD

Running control pods on dedicated nodes is important in order to separate control pods and automation
job pods and prevent resource contention between these two types of pods. This separation helps to
maintain the stability and reliability of the control pods and the services they provide, without the risk of
degradation due to resource constraints.

In this reference environment, the focus is on maximizing the number of automation jobs that can be
run. This means that of the available 3 worker nodes within the Red Hat OpenShift environment, one
worker node is dedicated to running the control pod, while the other 2 worker nodes are used for
execution of automation jobs.

' WARNING
A Dedicating only one worker node to run the control pod runs the potential risk of

losing the service as it won't have anywhere else to start up if the dedicated worker
node were to go down. To remedy this situation, reducing the number of worker
nodes that run automation jobs or adding an additional worker node to run an
additional control pod replica within the Red Hat OpenShift cluster are viable
options.

3.7.1. Assigning control pods to specific worker nodes for automation controller

To assign a control pod to a specific node in Red Hat OpenShift, a combination of using the
node_selector field in the pod specification, as well as, the topology_spread_constraints fields are
used. The node_selector field allows you to specify the label criteria that a node must match in order to
be eligible to host the pod. For example, if you have a node with the label aap_node_type: control,
specify the following in the pod specification to assign the pod to this node:

spec:

15

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

node_selector: |
aap_node_type: control

The topology_spread_constraints sets the maximum number of pods (maxSkew) that can be
scheduled on a node with label aap_node_type: control to 1. The topologyKey is set to
kubernetes.io/hostname, a built-in label that indicates the hostname of the node. The
whenUnsatisfiable setting is set to ScheduleAnyway, that allows the pod to be scheduled when there
aren’t enough nodes with the required label to meet the constraints. The labelSelector matches pods
with the label aap_node_type: control. The impact of this is that Red Hat OpenShift prioritizes
scheduling a single controller pod per node. However, if there are more replica requests than available
worker nodes, Red Hat OpenShift permits scheduling multiple controller pods in the same existing
worker node if sufficient resources are available.

The tolerations section specifies that pods can only be scheduled on nodes with the label dedicated:
AutomationController, and the effect of the toleration is set to NoSchedule ensuring that pods will
not be scheduled on nodes that don't have the required label. This is used in combination with
topology_spread_contstraints to not only specify how to spread the pods across nodes, but also to
indicate which nodes they can be scheduled on.

spec:

topology_spread_constraints: |
- maxSkew: 1
topologyKey: "kubernetes.io/hostname”
whenUnsatisfiable: "ScheduleAnyway"
labelSelector:
matchLabels:
aap_node_type: control
tolerations: |
- key: "dedicated"
operator: "Equal”
value: "AutomationController"
effect: "NoSchedule"

NOTE

The application of the node label and taints can be found within Appendix C, Applying
labels and taints to Red Hat OpenShift node. The steps to add a node selector, topology
constraints and tolerations to the spec file are shown in Chapter 6, Installing automation
controller.

3.8. HANDLING DATABASE HIGH AVAILABILITY

The deployment of automation controller and automation hub components within Ansible Automation
Platform take advantage of PVCs for their PostgreSQL database. Ensuring the availability of these
PVCs is critical for the stability of running Ansible Automation Platform.

There are several strategies that can be used to handle PVC availability within a Red Hat OpenShift
cluster, such as those provided by Crunchy Data via the Postgres Operator (PGO) and OpenShift Data
Foundation (ODF).

Crunchy Data provides PGO, the Postgres Operator that gives you a declarative Postgres solution that
automatically manages your PostgreSQL clusters. With PGO, users can create their Postgres cluster,
scale and create a high availability (HA) Postgres cluster and connect it to their applications such as
Ansible Automation Platform.

16

CHAPTER 3. BEFORE YOU START

OpenShift Data Foundation (ODF) is a highly available storage solution that can manage persistent
storage for your containerized applications. It consists of multiple open source operators and
technologies including Ceph, NooBaa, and Rook. These different operators allow you to provision and
manage your File, Block, and Object storage that can then be connected to your applications such as
Ansible Automation Platform.

NOTE

The steps to provide highly available PVCs for the PostgreSQL database are beyond the
scope of this reference architecture.

17

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

CHAPTER 4. PREREQUISITES

The installation of Ansible Automation Platform 2.3 for this reference environment uses the following:

18

® Red Hat OpenShift Platform 4.12

® Appendix C, Applying labels and taints to Red Hat OpenShift node

® An Amazon S3 bucket to handle the ReadWriteMany storage requirement for automation hub

WARNING

The installation of AAP 2.3 requires at least version Red Hat OpenShift 4.9. For
more details, visit the Red Hat Ansible Automation Platform Life Cycle page.

NOTE

There are many methods to deploy Red Hat OpenShift. The size of your Red Hat
OpenShift cluster will depend on the specific requirements of your applications (not just
Ansible Automation Platform). Factors to consider include the number of users accessing
the cluster, the amount of data and resources that the applications require to run, and
your scalability and redundancy requirements.

For details on how to deploy Red Hat OpenShift, visit the Install Guide

In addition to the install guide above, review the OpenShift 4 Resources Configuration:
Methodology and Tools blog article to assist in determining the appropriate cluster size
based on your needs.

NOTE

Automation hub requires ReadWriteMany file-based storage, Azure Blob storage, or
Amazon S3-compliant storage for operation so that multiple pods can access shared
content, such as collections.

This reference environment takes advantage of creating an Amazon S3 bucket to fulfill
the request of ReadWriteMany storage. Details Appendix D, Create an Amazon S3
bucket.

https://access.redhat.com/support/policy/updates/ansible-automation-platform
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html/installing/index
https://cloud.redhat.com/blog/openshift-4-resources-configuration-methodology-and-tools

CHAPTER 5. INSTALLING THE ANSIBLE AUTOMATION PLATFORM OPERATOF

CHAPTER 5. INSTALLING THE ANSIBLE AUTOMATION
PLATFORM OPERATOR

When installing the Ansible Automation Platform operator the preferred method of deployment is to
install the cluster-scoped operator on a targeted namespace with manual update approval.

The main advantage of this deployment method is it impacts only resources within the targeted
namespace(s) that can in turn provide flexibility when wanting to limit the scope of the AAP operator in

how it is handled over different namespaces.

Forinstance, if you intend to have separate devel and prod namespaces to manage your different AAP
deployments while testing upgrades.

The steps to deploy the Ansible Automation Platform operator are as follows.

® | ogin to the Red Hat OpenShift web console using your cluster credentials.

In the left-hand navigation menu, select Operators = OperatorHub.

Search for Ansible Automation Platform and select it.

On the Ansible Automation Platform Install page, select "Install”.

On the "Install Operator" page,

o select the appropriate update channel, stable-2.3-cluster-scoped
o select the appropriate installation mode, A specific namespace on the cluster
o select the appropriate installed namespace, Operator recommended Namespace: aap
o select the appropriate update approval, e.g. Manual.
® ClickInstall.
® Click Approve on the Manual approval required.
The process to install the Ansible Automation Platform may take a few minutes prior to being available.

Once the installation is complete, select the View Operator button to view the installed operator in the
namespace specified during the installation (e.g. aap).

NOTE

This AAP operator deployment only targets the namespace aap. If additional
namespaces are to be targeted (managed) by the AAP operator, one must add them to
the OperatorGroup spec file. Details Appendix F, Adding additional managed
namespaces to the AAP Operator.

19

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

20

NOTE

The default resource values for the Ansible Automation Platform operator are suitable
for typical installations. However, if deploying a large number of automation controller
and automation hub environments, it is recommended to increase the resource threshold
for the Ansible Automation Platform operator within the subscription spec using
subscription.spec.config.resources. This ensures that the operator has sufficient
resources to handle the increased workload and prevent performance issues.

CHAPTER 6. INSTALLING AUTOMATION CONTROLLER

CHAPTER 6. INSTALLING AUTOMATION CONTROLLER

With the installation of the Ansible Automation Platform operator completed, the following steps install
an automation controller within a Red Hat OpenShift cluster.

NOTE

The resource requests and limits values are specific to this reference environment. Ensure
to read the Chapter 3, Before you start section to properly calculate the values for your
Red Hat OpenShift environment.

WARNING

When an instance of automation controller is removed, the associated Persistent
Volume Claims (PVCs) are not automatically deleted. This can cause issues during
migration if the new deployment has the same name as the previous deployment. It
is recommended to remove old PVCs prior to deploying a new automation
controller instance in the same namespace. The steps to remove previous
deployment PVCs can be found within Appendix B, Delete existing PVCs from
previous AAP installations.

® | ogin to the Red Hat OpenShift web console using your cluster credentials.

® |n the left-hand navigation menu, select Operators — Installed Operators, select Ansible
Automation Platform.

® Navigate to the Automation Controller tab, then click Create AutomationController.

® Within the Form view, provide a Name, e.g. my-automation-controller and select the Advanced
configuration to expand the additional options.

e Within the Additional configuration, set the appropriate Resource Requirements for each
container as calculated from the Before you Startsection.

o Expand Web Container Resource Requirements

B Limits: CPU cores: 2000m, Memory: 1.5Gi

B Requests: CPU cores: 500m, Memory: 1.5Gi

o Expand Task Container Resource Requirements

B Limits: CPU cores: 4000m, Memory: 8Gi

B Requests: CPU cores: 1000m, Memory: 8Gi

o Expand EE Control Plane Container Resource Requirements

B Limits: CPU cores: 500m, Memory: 400Mi

B Requests: CPU cores: 100m, Memory: 400Mi

21

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

o Expand Redis Container Resource Requirements

B Limits: CPU cores: 500m, Memory: 1.5Gi
B Requests: CPU cores: 250m, Memory: 1.5Gi

o Expand PostgreSQL Container Resource Requirements

B Limits: CPU cores: 1000m, Memory: 1Gi
B Requests: CPU cores: 500m, Memory: 1Gi

® At the top of the Create AutomationController page, toggle the YAML view

o Within the spec: section add the extra_settings parameter to pass the
AWX_CONTROL_NODE_TASK_IMPACT value calculated in the Chapter 3, Before you

start section
spec:

extra_settings:
- setting: AWX_CONTROL_NODE_TASK_IMPACT
value: "5"

e Within the YAML view, add the following to the spec section to add dedicated node for your
control pod.

spec:

node_selector: |
aap_node_type: control
topology_spread_constraints: |
- maxSkew: 1
topologyKey: "kubernetes.io/hostname”
whenUnsatisfiable: "ScheduleAnyway"
labelSelector:
matchLabels:
aap_node_type: control
tolerations: |
- key: "dedicated"
operator: "Equal”
value: "AutomationController"
effect: "NoSchedule"

NOTE

Ensure to have your node label and taints to the appropriate dedicated worker
node that shall run the control pods. Details to set can be found within
Appendix C, Applying labels and taints to Red Hat OpenShift node .

-

® C(Click the Create button

22

CHAPTER 7. INSTALLING AUTOMATION HUB

CHAPTER 7. INSTALLING AUTOMATION HUB

With the install

ation of the Ansible Automation Platform operator completed, the following steps install

automation hub within a Red Hat OpenShift cluster.

® Login

NOTE

The resource requests and limits values are specific to this reference environment. Ensure
to read the Chapter 3, Before you start section to properly calculate the values for your
Red Hat OpenShift environment.

WARNING

When an instance of automation hub is removed, the associated Persistent Volume
Claims (PVCs) are not automatically deleted. This can cause issues during migration
if the new deployment has the same name as the previous deployment. It is
recommended to remove old PVCs prior to deploying a new automation hub
instance in the same namespace. The steps to remove previous deployment PVCs
can be found within Appendix B, Delete existing PVCs from previous AAP
installations.

NOTE
Automation hub requires ReadWriteMany file-based storage, Azure Blob storage or

Amazon S3-compliant storage for operation to ensure multiple pods can access shared
content, such as collections.

to the Red Hat OpenShift web console using your cluster credentials.

® |n the left-hand navigation menu, select Operators — Installed Operators, select Ansible
Automation Platform.

® Navigate to the Automation Hub tab, then click Create AutomationHub.

e Within

the Form view

o provide a Name, e.g. my-automation-hub

o Within the Storage type, select your ReadWriteMany compliant storage.

-

NOTE

This reference environment uses Amazon S3 as its ReadWriteMany storage.
Details to create an Amazon S3 bucket can be found in Appendix D, Create
an Amazon S3 bucket.

Provide S3 storage secret Details on how to create within Appendix E, Creating an
AWS S3 Secret.

o Select the Advanced configuration to expand the additional options.

23

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

o Within PostgreSQL container storage requirements (when using a managed instance)

B setstorage limit to 50Gi
B setstorage requests to 8Gi

o Within PostgreSQL container resource requirements (when using a managed instance)

B Limits: CPU cores: 500m, Memory: 1Gi
B Requests: CPU cores: 200m, Memory: 1Gi

o Within Redis deployment configuration, select Advanced configuration
B Select In-memory data store resource requirements

® |imits: CPU cores: 250m, Memory: 200Mi
® Requests: CPU cores: 100m, Memory: 200Mi

o Within API server configuration, select Advanced configuration
®m Select APl server resource requirements

® |imits: CPU cores: 250m, Memory: 400Mi
® Requests: CPU cores: 150m, Memory: 400Mi

o Within Content server configuration, select Advanced configuration
m Select Content server resource requirements

® |imits: CPU cores: 250m, Memory: 400Mi
® Requests: CPU cores: 100m, Memory: 400Mi

o Within Worker configuration, select Advanced configuration
m Select Worker resource requirements

® |imits: CPU cores: 1000m, Memory: 3Gi
® Requests: CPU cores: 500m, Memory: 3Gi

® C(Click the Create button

24

CHAPTER 8. LOGIN TO YOUR AUTOMATION CONTROLLER DASHBOARL

CHAPTER 8. LOGIN TO YOUR AUTOMATION CONTROLLER

DASHBOARD

With a successful installation of automation controller, one can access the dashboard via the following

steps:

Within your Red Hat OpenShift web console, in the left navigation menu, select Operators—
Installed Operators.

Select Ansible Automation Platform.
Within Operator Details, select the Automation Controller tab.
Select the Name of the installed automation controller.

Within the Automation Controller overview, the details including URL, Admin user, and Admin
password are provided.

25

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

26

CHAPTER 9. LOGIN TO YOUR AUTOMATION HUB
DASHBOARD

Within your Red Hat OpenShift web console, in the left navigation menu, select Operators—
Installed Operators.

Select Ansible Automation Platform.
Within Operator Details, select the Automation Hub tab.
Select the Name of the installed automation hub.

Within the Automation Hub overview, the details including URL, Admin user, and Admin
password are provided.

CHAPTER 10. MONITORING YOUR ANSIBLE AUTOMATION PLATFORM

CHAPTER 10. MONITORING YOUR ANSIBLE AUTOMATION
PLATFORM

After a successful installation of Ansible Automation Platform, it is crucial to prioritize the maintenance
of its health and the ability to monitor key metrics.

This section focuses on how to monitor the APl metrics provided by the newly installed Ansible
Automation Platform environment that resides within Red Hat OpenShift.

10.1. WHAT WILL BE USED TO MONITOR THE API METRICS?
Prometheus and Grafana.

Prometheus is an open source monitoring solution for collecting and aggregating metrics. Partner
Prometheus’ monitoring capabilities with Grafana, an open source solution for running data analytics

and pulling up metrics in customizable dashboards, and you get a real-time visualization of metrics to
track the status and health of your Ansible Automation Platform.

10.2. WHAT METRICS CAN | EXPECT TO SEE?
The Grafana pre-built dashboard displays:

® Ansible Automation Platform version

® Number of controller nodes

® Number of hosts available in the license

® Number of hosts used

® Total users

® Jobs successful

® Jobs failed

® Quantity by type of job execution

® Graphics showing the number of jobs running and pending jobs

® Graph showing the growth of the tool showing the amount of workflow, hosts, inventories, jobs,
projects, organizations, etc.

This Grafana dashboard can be customized to capture other metrics you may be interested in. However,
customizing the Grafana dashboard is out of scope of this reference architecture.

10.3. INSTALLATION VIA AN ANSIBLE PLAYBOOK

The process to monitor Ansible Automation Platform via Prometheus with a customized Grafana
dashboard can be installed in a matter of minutes. The following provides the steps to do just that,
taking advantage of the pre-built Ansible playbook.

The following steps are required to run the Ansible Playbook successfully:

® Creation of a custom credential type within automation controller

27

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

® Creation of a kubeconfig credential within automation controller

® Creation of a project and job template to run the Ansible Playbook

10.3.1. Create a custom credential type

Within your Ansible Automation Platform dashboard,
1. Under Administration—=Credential Types click the blue Add button.
2. Provide a Name, e.g. Kubeconfig

3. Within the input configuration, input the following YAML:

fields:

- id: kube_config
type: string
label: kubeconfig
secret: true
multiline: true

4. Within the injector configuration, input the following YAML:

env:
K8S_AUTH_KUBECONFIG: '{{ tower.filename.kubeconfig }}'
file:
template.kubeconfig: {{ kube_config }}'

5. Click Save.

10.3.2. Create a kubeconfig credential

Within your Ansible Automation Platform dashboard,
1. Under Resources—=Credentials click the blue Add button.
2. Provide a Name, e.g. OpenShift-Kubeconfig
3. Within the Credential Type dropdown, select Kubeconfig.
4. Within the Type Details text box, insert your kubeconfig file for your Red Hat OpenShift cluster

5. Click Save.

10.3.3. Create a project

Within your Ansible Automation Platform dashboard,
1. Under Resources—=Projects click the blue Add button.
2. Provide a Name, e.g. Monitoring AAP Project
3. Select Default as the Organization.

4. Select Default execution environment as the Execution Environment.

28

CHAPTER 10. MONITORING YOUR ANSIBLE AUTOMATION PLATFORM

5. Select Git as the Source Control Credential Type

6. Within the Type Details,

a. Add the Source Control URL (https://github.com/ansible/aap_ocp_refarch)
7. Within Options,

a. Select Clean, Delete, Update Revision on Launch

8. Click Save.

10.3.4. Create a job template & run the Ansible Playbook

Within your Ansible Automation Platform dsahboard,
1. Under Resources=Templates click the blue Add—-Add job template
2. Provide a Name, e.g. Monitoring AAP Job
3. Select Run as the Job Type.
4. Select Demo Inventory as the Inventory.
5. Select Monitoring AAP Project as the Project.
6. Select Default execution environment as the Execution Environment.
7. Select aap-prometheus-grafana/playbook.yml as the Playbook.
8. Select Credentials and switch the category from Machine to Kubeconfig.

9. Select the appropriate kubeconfig for access to the Red Hat OpenShift cluster, e.g. OpenShift-
Kubeconfig

10. Optional Step: Within the Variables, the following variables may be modified:

a. prometheus_namespace: <your-specified-value>
b. ansible_namespace: <your-specified-value>

1. Click Save.

12. Click Launch to run the Ansible Playbook

13. Details to login to Grafana and Prometheus are shown within the job output

29

https://github.com/ansible/aap_ocp_refarch

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

APPENDIX A. ABOUT THE AUTHOR

Roger Lopez

Roger Lopez is a Principal Technical Marketing Manager bringing
10+ years of computer industry experience delivering high-value
solutions used by our sales, marketing and engineering teams to
develop best practice documentation & methods for internal and
external customers. He is a Red Hat Certified Engineer (RHCE) with
experience building solutions around Ansible, OpenShift and
OpenStack.

30

APPENDIX B. DELETE EXISTING PVCS FROM PREVIOUS AAP INSTALLATIONS

APPENDIX B. DELETE EXISTING PVCS FROM PREVIOUS AAP
INSTALLATIONS

1. Open a terminal window and login to your Red Hat OpenShift cluster, e.g. exporting your
KUBECONFIG file

I $ export KUBECONFIG=/path/to/kubeconfig
2. Verify the list of PVCs in the specified Ansible Automation Platform namespace, e.g. aap
I $ oc get pvc -n aap

e

NOTE

This shows a list of all the PVCs within the aap namespace including their name,
status, capacity, access modes and storage class.

3. Identify the PVC you wish to remove from the list
4. Remove the PVC using the oc delete command
I oc delete pvc <pvc-name-to-remove> -n aap

Verify the list of PVCs available within the aap namespace and ensure the PVC is no longer
displayed.

I $ oc get pvc -n aap

31

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

APPENDIX C. APPLYING LABELS AND TAINTS TO RED HAT

OPENSHIFT NODE

In order to have our control pods run on a dedicated Red Hat OpenShift node, one must set the
appropriate labels and taints to the specified node.

In this example, we will select one of our Red Hat OpenShift nodes with the role worker the label
aap_node_type=control.

32

1. Get the name of one of the nodes you want to label running

I $ oc get nodes

2. Choose a node from the list and note its name, e.g. worker1

3. Apply the aap_node_type=control label to the node

I $ oc label node <node-name> aap_node_type=control

NOTE

Replace <node-name> with the name of the node you want to label.

4. Verify the creation of the label as follows:

I $ oc get nodes --show-labels | grep <node-name>

With the label created, the next step is to add a NoSchedule taint to the worker node we have
already created a label for.

The following command adds a NoSchedule taint to our node:

I oc adm taint nodes <node-name> dedicated=AutomationController:NoSchedule

dedicated: This is the key of the taint that is an arbitrary string supplied that identifies the taint.
AutomationController: This is an arbitrary value given to the taint.

NoSchedule: This is the effect of the taint which specifies no pods that don't tolerate this taint
will be scheduled onto this node.

By applying this taint to our node, we are telling the Kubernetes scheduler to reserve this node
for certain types of workloads that tolerate the taint. In this case, we are reserving the node for
workloads with the dedicated=AutomationController toleration.

5. Verify the taint has been applied

$ oc get nodes \

-0 jsonpath="{range.items[*]{@.metadata.name}{"t"H{@.spec.taints[*].key}:
{@.spec.taints[*].value}{"\n"Hend}'\

| grep AutomationController

APPENDIX D. CREATE AN AMAZON S3 BUCKET

APPENDIX D. CREATE AN AMAZON S3 BUCKET

1. Open a terminal and ensure that the AWS CLlI is installed and configured with your AWS
credentials.

2. Run the following command to create a new S3 bucket:

I $ aws s3 mb s3://<bucket-name> --region <region-name>

' WARNING
A The bucket name must be a unique name.

3. Run the following command to check that the bucket has been successfully created

I $ aws s3 Is | grep <bucket-name>

33

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

APPENDIX E. CREATING AN AWS S3 SECRET

In Red Hat OpenShift, one has the ability to store secrets and use them to authenticate with external
services such as Amazon S3. This reference environment takes advantage of an Amazon S3 bucket to
satisfy the ReadWriteMany requirement to run automation hub.

The following steps show how to create a secret within your Red Hat OpenShift cluster that is to be used
during the Chapter 7, Installing automation hub chapter.

I $ cat s3-secret.yml

apiVersion: v1

kind: Secret

metadata:
name: s3-secret
namespace: aap

stringData:
s3-access-key-id: my_key
s3-secret-access-key: my_access_key
s3-bucket-name: my_bucket
s3-region: my_region

I $ oc create -f s3-secret.yml

34

APPENDIX F. ADDING ADDITIONAL MANAGED NAMESPACES TO THE AAP OPERATOF

APPENDIX F. ADDING ADDITIONAL MANAGED NAMESPACES
TO THE AAP OPERATOR

The following are the steps to add an additional managed namespace to the already existing AAP
operator that resides in the aap namespace.

® | ogin to the Red Hat OpenShift Ul.
e Within the Operators—Installed Operators, select Ansible Automation Platform
e Within the Details page, scroll down to the ClusterServiceVersion Details

o On the right column, click on the OperatorGroup

® Within the OperatorGroup details, select YAML
o Under the spec section add any additional namespaces, e.g. aap-devel
spec:
"’-[argetNamespaces:

- aap
- aap-devel

o C(lick Save

NOTE

The targeted namespace must already exist prior to adding to the OperatorGroup spec
file.

35

Red Hat Ansible Automation Platform 2.4 Deploying Ansible Automation Platform 2 on Red Hat OpenShift

36

APPENDIX G. REFERENCES

What everyone should know about Kubernetes memory limits, OOMKilled pods, and pizza
parties

Pulp Project Hardware requirements

Red Hat Ansible Automation Platform Performance Considerations for Operator Based
Installations

Deploying the Red Hat Ansible Automation Platform operator on OpenShift Container Platform
Pulp Operator storage configuration

AWX Operator

Resources consumed by idle PostgreSQL connections

Operator scoping with OperatorGroups

Ansible Tower and Grafana Dashboards

https://home.robusta.dev/blog/kubernetes-memory-limit
https://docs.pulpproject.org/pulpcore/installation/hardware-requirements.html
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.3/html/red_hat_ansible_automation_platform_performance_considerations_for_operator_based_installations/index
https://access.redhat.com/documentation/en-us/red_hat_ansible_automation_platform/2.3/html/deploying_the_red_hat_ansible_automation_platform_operator_on_openshift_container_platform/index
https://github.com/pulp/pulp-operator/blob/main/docs/configuring/storage.md#configure-aws-s3
https://github.com/ansible/awx-operator
https://aws.amazon.com/blogs/database/resources-consumed-by-idle-postgresql-connections/
https://olm.operatorframework.io/docs/advanced-tasks/operator-scoping-with-operatorgroups
https://github.com/redhat-cop/tower_grafana_dashboards

APPENDIX H. REVISION HISTORY

APPENDIX H. REVISION HISTORY

Revision 1.0-0 2023-03-07 Roger Lopez

o Initial Release

37

	Table of Contents
	COMMENTS AND FEEDBACK
	CHAPTER 1. OVERVIEW
	CHAPTER 2. WHY ANSIBLE AUTOMATION PLATFORM ON RED HAT OPENSHIFT?
	CHAPTER 3. BEFORE YOU START
	3.1. RESOURCE MANAGEMENT FOR PODS AND CONTAINERS
	3.1.1. What is a resource request?
	3.1.2. What is a resource limit?
	3.1.3. Why does resource management matter?
	3.1.4. Planning of resources

	3.2. SIZE RECOMMENDATIONS FOR YOUR AUTOMATION CONTROLLER POD CONTAINERS
	3.3. SIZE RECOMMENDATIONS FOR YOUR POSTGRES POD
	3.4. SIZE RECOMMENDATIONS FOR YOUR AUTOMATION JOB PODS
	3.5. SUMMARY OF AUTOMATION CONTROLLER POD SIZE RECOMMENDATIONS
	3.6. SIZE RECOMMENDATIONS FOR YOUR AUTOMATION HUB PODS
	3.7. SPECIFYING DEDICATED NODES FOR AUTOMATION CONTROLLER POD
	3.7.1. Assigning control pods to specific worker nodes for automation controller

	3.8. HANDLING DATABASE HIGH AVAILABILITY

	CHAPTER 4. PREREQUISITES
	CHAPTER 5. INSTALLING THE ANSIBLE AUTOMATION PLATFORM OPERATOR
	CHAPTER 6. INSTALLING AUTOMATION CONTROLLER
	CHAPTER 7. INSTALLING AUTOMATION HUB
	CHAPTER 8. LOGIN TO YOUR AUTOMATION CONTROLLER DASHBOARD
	CHAPTER 9. LOGIN TO YOUR AUTOMATION HUB DASHBOARD
	CHAPTER 10. MONITORING YOUR ANSIBLE AUTOMATION PLATFORM
	10.1. WHAT WILL BE USED TO MONITOR THE API METRICS?
	10.2. WHAT METRICS CAN I EXPECT TO SEE?
	10.3. INSTALLATION VIA AN ANSIBLE PLAYBOOK
	10.3.1. Create a custom credential type
	10.3.2. Create a kubeconfig credential
	10.3.3. Create a project
	10.3.4. Create a job template & run the Ansible Playbook

	APPENDIX A. ABOUT THE AUTHOR
	APPENDIX B. DELETE EXISTING PVCS FROM PREVIOUS AAP INSTALLATIONS
	APPENDIX C. APPLYING LABELS AND TAINTS TO RED HAT OPENSHIFT NODE
	APPENDIX D. CREATE AN AMAZON S3 BUCKET
	APPENDIX E. CREATING AN AWS S3 SECRET
	APPENDIX F. ADDING ADDITIONAL MANAGED NAMESPACES TO THE AAP OPERATOR
	APPENDIX G. REFERENCES
	APPENDIX H. REVISION HISTORY

