
Red Hat AMQ 7.7

Using AMQ Interconnect

For Use with AMQ Interconnect 1.8

Last Updated: 2020-06-23

Red Hat AMQ 7.7 Using AMQ Interconnect

For Use with AMQ Interconnect 1.8

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install, configure, and manage AMQ Interconnect to build a large-scale
messaging network.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. OVERVIEW

CHAPTER 1. OVERVIEW OF AMQ INTERCONNECT
1.1. KEY FEATURES
1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS
1.4. DOCUMENT CONVENTIONS

PART II. LEARN

CHAPTER 2. IMPORTANT TERMS AND CONCEPTS
2.1. OVERVIEW OF AMQP
2.2. WHAT ROUTERS ARE
2.3. HOW ROUTERS ROUTE MESSAGES
2.4. ROUTER SECURITY
2.5. ROUTER MANAGEMENT

PART III. GET STARTED

CHAPTER 3. GETTING STARTED
3.1. INSTALLING AMQ INTERCONNECT ON RED HAT ENTERPRISE LINUX
3.2. EXPLORING THE DEFAULT ROUTER CONFIGURATION FILE
3.3. STARTING THE ROUTER
3.4. SENDING TEST MESSAGES
3.5. NEXT STEPS

PART IV. INSTALL

CHAPTER 4. AMQ INTERCONNECT DEPLOYMENT GUIDELINES
4.1. ROUTER OPERATING MODES
4.2. SECURITY GUIDELINES
4.3. ROUTER CONNECTION GUIDELINES

Inter-router connections are bidirectional
Factors that affect the direction of connection establishment

CHAPTER 5. INSTALLING AMQ INTERCONNECT
5.1. INSTALLING AMQ INTERCONNECT ON RED HAT ENTERPRISE LINUX
5.2. PREPARING ROUTER CONFIGURATIONS
5.3. STARTING A ROUTER

CHAPTER 6. UPGRADING AMQ INTERCONNECT

PART V. CONFIGURE

CHAPTER 7. CONFIGURING ROUTER PROPERTIES

CHAPTER 8. CONFIGURING NETWORK CONNECTIONS
8.1. CONNECTING ROUTERS
8.2. LISTENING FOR CLIENT CONNECTIONS
8.3. CONNECTING TO EXTERNAL AMQP CONTAINERS
8.4. UNDERSTANDING CONNECTION FAILOVER

CHAPTER 9. SECURING NETWORK CONNECTIONS
9.1. SECURING CONNECTIONS BETWEEN ROUTERS
9.2. SECURING INCOMING CLIENT CONNECTIONS

5

6
6
6
6
6

7

8
8
8
9

10
11

12

13
13
13
15
16
17

18

19
19
19

20
20
20

21
21
22
23

24

25

26

27
27
28
29
30

32
32
34

Table of Contents

1

. .

. .

. .

. .

. .

9.2.1. Enabling SSL/TLS encryption
9.2.2. Enabling SSL/TLS client authentication
9.2.3. Enabling user name and password authentication
9.2.4. Integrating with Kerberos

9.3. SECURING OUTGOING CONNECTIONS
9.3.1. Connecting using one-way SSL/TLS authentication
9.3.2. Connecting using mutual SSL/TLS authentication
9.3.3. Connecting using user name and password authentication

CHAPTER 10. CONFIGURING AUTHORIZATION
10.1. TYPES OF POLICIES
10.2. HOW POLICIES ENFORCE CONNECTION AND RESOURCE LIMITS
10.3. SETTING GLOBAL LIMITS
10.4. SETTING CONNECTION AND RESOURCE LIMITS FOR MESSAGING ENDPOINTS

10.4.1. Enabling vhost policies
10.4.2. Creating vhost policies
10.4.3. Creating vhost policies as JSON files
10.4.4. Setting resource limits for outgoing connections
10.4.5. Methods for specifying vhost policy source and target addresses
10.4.6. Vhost policy hostname pattern matching rules
10.4.7. Vhost policy examples

CHAPTER 11. CONFIGURING LOGGING
11.1. LOGGING MODULES
11.2. CONFIGURING DEFAULT LOGGING

CHAPTER 12. CONFIGURING ROUTING
12.1. CONFIGURING MESSAGE ROUTING

12.1.1. Understanding message routing
12.1.1.1. Message routing flow control
12.1.1.2. Addresses
12.1.1.3. Routing patterns
12.1.1.4. Message settlement and reliability

12.1.2. Configuring address semantics
12.1.3. Configuring addresses for prioritized message delivery
12.1.4. Configuring brokered messaging

12.1.4.1. How AMQ Interconnect enables brokered messaging
12.1.4.2. Routing messages through broker queues
12.1.4.3. Handling undeliverable messages

12.1.5. Address pattern matching
12.2. CREATING LINK ROUTES

12.2.1. Understanding link routing
12.2.1.1. Link routing flow control
12.2.1.2. Link route addresses
12.2.1.3. Routing patterns for link routing

12.2.2. Creating a link route
12.2.3. Link route example: Connecting clients and brokers on different networks

Router configuration
How the client receives messages

PART VI. MANAGE

CHAPTER 13. MONITORING USING AMQ CONSOLE
13.1. SETTING UP ACCESS TO AMQ CONSOLE

35
36
37
38
39
40
40
42

44
44
44
44
45
45
46
49
50
51

53
54

57
57
58

60
60
60
60
61
61

63
64
65
66
66
67
70
71
72
72
72
73
73
73
75
76
77

78

79
79

Red Hat AMQ 7.7 Using AMQ Interconnect

2

. .

. .

. .

. .

13.2. ACCESSING AMQ CONSOLE
13.3. MONITORING THE ROUTER NETWORK USING AMQ CONSOLE

CHAPTER 14. MONITORING USING QDSTAT
14.1. SYNTAX FOR USING QDSTAT
14.2. COMMANDS FOR MONITORING THE ROUTER NETWORK

CHAPTER 15. MANAGING USING QDMANAGE

CHAPTER 16. TROUBLESHOOTING AMQ INTERCONNECT
16.1. VIEWING LOG ENTRIES
16.2. TROUBLESHOOTING USING LOGS

APPENDIX A. USING YOUR SUBSCRIPTION
A.1. ACCESSING YOUR ACCOUNT
A.2. ACTIVATING A SUBSCRIPTION
A.3. DOWNLOADING RELEASE FILES
A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

80
80

82
82
82

84

86
86
86

92
92
92
92
92

Table of Contents

3

Red Hat AMQ 7.7 Using AMQ Interconnect

4

PART I. OVERVIEW

PART I. OVERVIEW

5

CHAPTER 1. OVERVIEW OF AMQ INTERCONNECT
AMQ Interconnect is a lightweight AMQP message router for building scalable, available, and
performant messaging networks.

1.1. KEY FEATURES

You can use AMQ Interconnect to flexibly route messages between any AMQP-enabled endpoints,
including clients, servers, and message brokers. AMQ Interconnect provides the following benefits:

Connects clients and message brokers into an internet-scale messaging network with uniform
addressing

Supports high-performance direct messaging

Uses redundant network paths to route around failures

Streamlines the management of large deployments

1.2. SUPPORTED STANDARDS AND PROTOCOLS

AMQ Interconnect supports the following industry-recognized standards and network protocols:

Version 1.0 of the Advanced Message Queueing Protocol (AMQP)

Modern TCP with IPv6

NOTE

The details of distributed transactions (XA) within AMQP are not provided in the 1.0
version of the specification. AMQ Interconnect does not support XA transactions.

Additional resources

OASIS AMQP 1.0 Specification .

1.3. SUPPORTED CONFIGURATIONS

AMQ Interconnect is supported on Red Hat Enterprise Linux 6, 7, and 8. See Red Hat AMQ 7 Supported
Configurations for more information.

1.4. DOCUMENT CONVENTIONS

In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

Red Hat AMQ 7.7 Using AMQ Interconnect

6

http://www.amqp.org/resources/download
https://access.redhat.com/articles/2791941
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

PART II. LEARN

PART II. LEARN

7

CHAPTER 2. IMPORTANT TERMS AND CONCEPTS
Before using AMQ Interconnect, you should be familiar with AMQP and understand some key concepts
about AMQ Interconnect.

2.1. OVERVIEW OF AMQP

AMQ Interconnect implements version 1.0 of the Advanced Message Queueing Protocol (AMQP)
specification. Therefore, you should understand several key AMQP terms and concepts before
deploying or configuring AMQ Interconnect.

Containers

AMQP is a wire-level messaging protocol for transferring messages between applications called
containers. In AMQP, a container is any application that sends or receives messages, such as a client
application or message broker.
Containers connect to each other over connections, which are channels for communication.

Nodes

Containers contain addressable entities called nodes that are responsible for storing or delivering
messages. For example, a queue on a message broker is a node.

Links

Messages are transferred between connected containers over links. A link is a unidirectional route
between nodes. Essentially, a link is a channel for sending or receiving messages.
Links are established over sesssions, which are contexts for sending and receiving messages.
Sessions are established over connections.

Additional resources

OASIS AMQP 1.0 Specification

AMQP Essentials Refcard

Video series introducing AMQP 1.0

2.2. WHAT ROUTERS ARE

AMQ Interconnect is an application layer program running as a normal user program or as a daemon. A
running instance of AMQ Interconnect is called a router.

Routers do not take responsibility for messages

Routers transfer messages between producers and consumers, but unlike message brokers, they do
not take responsibility for messages. Instead, routers propagate message settlement and disposition
across a network such that delivery guarantees are met. That is, the router network will deliver the
message – possibly through several intermediate routers – and then route the consumer’s
acknowledgement of that message back across the same path. The responsibility for the message is
transfered from the producer to the consumer as if they were directly connected.

Routers are combined to form router networks

Routers are often deployed in topologies of multiple routers called a router network. Routers use
link-state routing protocols and algorithms similar to the Open Shortest Path First (OSPF) and
Intermediate System to Intermediate System (IS-IS) protocols to calculate the best path from every

Red Hat AMQ 7.7 Using AMQ Interconnect

8

http://www.amqp.org/resources/download
https://dzone.com/refcardz/amqp-essentials?chapter=1
https://channel9.msdn.com/Blogs/Subscribe/The-AMQP-10-Protocol-16-Overview

message source to every message destination, and to recover quickly from failures. A router network
relies on redundant network paths to provide continued connectivity in case of system or network
failure.

Routers enhance both direct and indirect messaging patterns

A messaging client can make a single AMQP connection into a router network and, over that
connection, exchange messages with one or more message brokers connected to any router in the
network. At the same time, the client can exchange messages directly with other endpoints without
involving a broker at all.

Example 2.1. Enhancing the use of message brokers

Routers can enhance a cluster of message brokers that provide a scalable, distributed work
queue.

The router network makes the broker cluster appear as a single queue, with producers publishing
to a single address, and consumers subscribing to a single address. The router network can
distribute work to any broker in the cluster, and collect work from any broker for any consumer.

The routers improve the scalability of the broker cluster, because brokers can be added or
removed from the cluster without affecting the clients.

The routers also solve the common difficulty of "stuck messages". Without the router network, if a
consumer is connected to a broker that does not have any messages (but other brokers in the
cluster do have messages), you must either transfer the messages or leave them "stuck". The
routers solve this issue, however, because all of the consumers are connected to all of the brokers
through the router network. A message on any broker can be delivered to any of the consumers.

2.3. HOW ROUTERS ROUTE MESSAGES

In a router network, routing is the process by which messages are delivered to their destinations. To
accomplish this, AMQ Interconnect offers two different routing mechanisms:

Message routing

Message routing enables you to distribute messages in anycast and multicast patterns. These
patterns can be used for both direct routing, in which the router distributes messages between
clients without a message broker, and indirect routing, in which the router enables clients to
exchange messages through a message broker.
Message routing is useful for the following types of requirements:

Default, basic message routing
AMQ Interconnect automatically routes messages by default, so manual configuration is only
required if you want routing behavior that is different than the default.

Message-based routing patterns
Message routing supports both anycast and multicast routing patterns. You can load-
balance individual messages across multiple consumers, and multicast (or fan-out) messages
to multiple subscribers.

Sharding messages across multiple message brokers when message delivery order is not
important
Sharding messages from one producer might cause that producer’s messages to be received
in a different order than the order in which they were sent.

CHAPTER 2. IMPORTANT TERMS AND CONCEPTS

9

Link routing

Link routing enables you to establish a dedicated, virtual "path" between a sender and receiver that
travels through the router network. Link routes are typically used to connect clients to message
brokers in scenarios in which a direct connection is unfeasible. Therefore, link routes enable
messaging capabilities that are not possible with message routing, such as:

Transactional messaging
Link routing supports local transactions to a single broker. Distributed transactions are not
supported.

Guaranteed message delivery order
Link routing to a sharded queue preserves the delivery order of the producer’s messages by
causing all messages on that link to go to the same broker instance.

End-to-end flow control
Flow control is "real" in that credits flow across the link route from the receiver to the sender.

Server-side selectors
With a link route, consumers can provide server-side selectors for broker subscriptions.

Additional resources

Section 12.1, “Configuring message routing”

Section 12.2, “Creating link routes”

2.4. ROUTER SECURITY

AMQ Interconnect provides authentication and authorization mechanisms so that you can control who
can access the router network, and what they can do with the messaging resources.

Authentication

AMQ Interconnect supports both SSL/TLS and SASL for encrypting and authenticating remote
peers. Using these mechanisms, you can secure the router network in the following ways:

Authenticate incoming connections from remote peers (such as clients and message
brokers)

Provide authentication credentials for outgoing connections to remote peers (such as
clients and message brokers)

Secure the inter-router connections between the routers in the router network

Authorization

AMQ Interconnect provides a policy mechanism that you can use to enforce user connection
restrictions and AMQP resource access control.

Additional resources

Chapter 9, Securing network connections

Chapter 10, Configuring authorization

Red Hat AMQ 7.7 Using AMQ Interconnect

10

2.5. ROUTER MANAGEMENT

AMQ Interconnect provides both graphical and CLI tools for monitoring and managing a router network.

Red Hat AMQ Interconnect Console

A web console for monitoring the layout and health of the router network.

qdstat

A command-line tool for monitoring the status of a router in the router network. Using this tool, you
can view the following information about a router:

Incoming and outgoing connections

Incoming and outgoing links

Router network topology from the perspective of this router

Addresses known to this router

Link routes and autolinks

Memory consumption information

qdmanage

A command-line tool for viewing and updating the configuration of a router at runtime.

Additional resources

Management

CHAPTER 2. IMPORTANT TERMS AND CONCEPTS

11

PART III. GET STARTED

Red Hat AMQ 7.7 Using AMQ Interconnect

12

CHAPTER 3. GETTING STARTED
This section provides a quick introduction to AMQ Interconnect by showing you how to install AMQ
Interconnect, start the router with the default configuration settings, and distribute messages between
two clients.

3.1. INSTALLING AMQ INTERCONNECT ON RED HAT ENTERPRISE
LINUX

AMQ Interconnect is distributed as a set of RPM packages, which are available through your Red Hat
subscription.

Procedure

1. Ensure your subscription has been activated and your system is registered.
For more information about using the Customer Portal to activate your Red Hat subscription
and register your system for packages, see Appendix A, Using your subscription .

2. Subscribe to the required repositories:

Red Hat Enterprise Linux 6

$ sudo subscription-manager repos --enable=amq-interconnect-1-for-rhel-6-server-rpms --
enable=amq-clients-2-for-rhel-6-server-rpms

Red Hat Enterprise Linux 7

$ sudo subscription-manager repos --enable=amq-interconnect-1-for-rhel-7-server-rpms --
enable=amq-clients-2-for-rhel-7-server-rpms

Red Hat Enterprise Linux 8

$ sudo subscription-manager repos --enable=amq-interconnect-1-for-rhel-8-x86_64-rpms --
enable=amq-clients-2-for-rhel-8-x86_64-rpms

3. Use the yum or dnf command to install the qpid-dispatch-router, qpid-dispatch-tools, and
qpid-dispatch-console packages and their dependencies:

$ sudo yum install qpid-dispatch-router qpid-dispatch-tools qpid-dispatch-console

4. Use the which command to verify that the qdrouterd executable is present.

$ which qdrouterd
/usr/sbin/qdrouterd

The qdrouterd executable should be located at /usr/sbin/qdrouterd.

3.2. EXPLORING THE DEFAULT ROUTER CONFIGURATION FILE

The router’s configuration file (qdrouterd.conf) controls the way in which the router functions. The
default configuration file contains the minimum number of settings required for the router to run. As you

CHAPTER 3. GETTING STARTED

13

become more familiar with the router, you can add to or change these settings, or create your own
configuration files.

By default, the router configuration file defines the following settings for the router:

Operating mode

How it listens for incoming connections

Routing patterns for the message routing mechanism

Procedure

1. Open the following file: /etc/qpid-dispatch/qdrouterd.conf.
When AMQ Interconnect is installed, qdrouterd.conf is installed in this directory. When the
router is started, it runs with the settings defined in this file.

2. Review the default settings in qdrouterd.conf.

Default configuration file

router {
 mode: standalone 1
 id: Router.A 2
}

listener { 3
 host: 0.0.0.0
 port: amqp
 authenticatePeer: no
}

address { 4
 prefix: closest
 distribution: closest
}

address {
 prefix: multicast
 distribution: multicast
}

address {
 prefix: unicast
 distribution: closest
}

address {
 prefix: exclusive
 distribution: closest
}

address {

Red Hat AMQ 7.7 Using AMQ Interconnect

14

1

2

3

4

 prefix: broadcast
 distribution: multicast
}

By default, the router operates in standalone mode. This means that it can only
communicate with endpoints that are directly connected to it. It cannot connect to other
routers, or participate in a router network.

The unique identifier of the router. This ID is used as the container-id (container name) at
the AMQP protocol level. If it is not specified, the router shall generate a random identifier
at startup.

The listener entity handles incoming connections from client endpoints. By default, the
router listens on all network interfaces on the default AMQP port (5672).

By default, the router is configured to use the message routing mechanism. Each address
entity defines how messages that are received with a particular address prefix should be
distributed. For example, all messages with addresses that start with closest will be
distributed using the closest distribution pattern.

NOTE

If a client requests a message with an address that is not defined in the router’s
configuration file, the balanced distribution pattern will be used automatically.

Additional resources

For more information about the router configuration file (including available entities and
attributes), see the qdrouterd man page .

3.3. STARTING THE ROUTER

After installing AMQ Interconnect, you start the router by using the qdrouterd command.

Procedure

1. Start the router:

The router starts, using the default configuration file stored at /etc/qpid-
dispatch/qdrouterd.conf.

2. Review the qdrouterd command output to verify the router status.
This example shows that the router was correctly installed, is running, and is ready to route
traffic between clients:

$ qdrouterd
Fri May 20 09:38:03 2017 SERVER (info) Container Name: Router.A
Fri May 20 09:38:03 2017 ROUTER (info) Router started in Standalone mode
Fri May 20 09:38:03 2017 ROUTER (info) Router Core thread running. 0/Router.A
Fri May 20 09:38:03 2017 ROUTER (info) In-process subscription M/$management
Fri May 20 09:38:03 2017 AGENT (info) Activating management agent on

$ qdrouterd

CHAPTER 3. GETTING STARTED

15

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.html

$_management_internal
Fri May 20 09:38:03 2017 ROUTER (info) In-process subscription L/$management
Fri May 20 09:38:03 2017 ROUTER (info) In-process subscription L/$_management_internal
Fri May 20 09:38:03 2017 DISPLAYNAME (info) Activating DisplayNameService on
$displayname
Fri May 20 09:38:03 2017 ROUTER (info) In-process subscription L/$displayname
Fri May 20 09:38:03 2017 CONN_MGR (info) Configured Listener: 0.0.0.0:amqp proto=any
role=normal
Fri May 20 09:38:03 2017 POLICY (info) Policy configured maximumConnections: 0,
policyFolder: '', access rules enabled: 'false'
Fri May 20 09:38:03 2017 POLICY (info) Policy fallback defaultApplication is disabled
Fri May 20 09:38:03 2017 SERVER (info) Operational, 4 Threads Running

Additional resources

The qdrouterd man page .

3.4. SENDING TEST MESSAGES

After starting the router, send some test messages to see how the router can connect two endpoints by
distributing messages between them.

This procedure demonstrates a simple configuration consisting of a single router with two clients
connected to it: a sender and a receiver. The receiver wants to receive messages on a specific address,
and the sender sends messages to that address.

A broker is not used in this procedure, so there is no "store and forward" mechanism in the middle.
Instead, the messages flow from the sender, through the router, to the receiver only if the receiver is
online, and the sender can confirm that the messages have arrived at their destination.

Prerequisites

AMQ Python must be installed. For more information, see Using the AMQ Python Client .

Procedure

1. Navigate to the AMQ Python examples directory.

<install-dir>

The directory where you installed AMQ Python.

2. Start the simple_recv.py receiver client.

This command starts the receiver and listens on the examples address
(127.0.0.1:5672/examples). The receiver is also set to receive a maximum of five messages.

NOTE

In practice, the order in which you start senders and receivers does not matter. In
both cases, messages will be sent as soon as the receiver comes online.

$ cd <install-dir>/examples/python/

$ python simple_recv.py -a 127.0.0.1:5672/examples -m 5

Red Hat AMQ 7.7 Using AMQ Interconnect

16

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/using_the_amq_python_client/

3. In a new terminal window, navigate to the Python examples directory and run the
simple_send.py example:

This command sends five auto-generated messages to the examples address
(127.0.0.1:5672/examples) and then confirms that they were delivered and acknowledged by
the receiver:

4. Verify that the receiver client received the messages.
The receiver client should display the contents of the five messages:

3.5. NEXT STEPS

After using AMQ Interconnect to distribute messages between two clients, you can use the following
sections to learn more about AMQ Interconnect configuration, deployment, and management.

Change the router’s configuration

AMQ Interconnect ships with default settings that are suitable for many basic use cases. You can
further experiment with the standalone router that you used in the Getting started example by
changing the router’s essential properties, network connections, security settings, logging, and
routing mechanisms.

Install and configure AMQ Interconnect

AMQ Interconnect is typically deployed in router networks. You can design a router network of any
arbitrary topology to interconnect the endpoints in your messaging network.

Monitor and manage AMQ Interconnect

You can use the web console and command-line management tools to monitor the status and
performance of the routers in your router network.

$ cd <install-dir>/examples/python/
$ python simple_send.py -a 127.0.0.1:5672/examples -m 5

all messages confirmed

{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}

CHAPTER 3. GETTING STARTED

17

PART IV. INSTALL

Red Hat AMQ 7.7 Using AMQ Interconnect

18

CHAPTER 4. AMQ INTERCONNECT DEPLOYMENT
GUIDELINES

To plan your router network and design the network topology, you must first understand the different
router modes and how you can use them to create different types of networks.

4.1. ROUTER OPERATING MODES

In AMQ Interconnect, each router can operate in standalone, interior, or edge mode. In a router network,
you deploy multiple interior routers or a combination of interior and edge routers to create the desired
network topology.

Standalone

The router operates as a single, standalone network node. A standalone router cannot be used in a
router network - it does not establish connections with other routers, and only routes messages
between directly-connected endpoints.

Interior

The router is part of the interior of the router network. Interior routers establish connections with
each other and automatically compute the lowest cost paths across the network. You can have up to
128 interior routers in the router network.

Edge

The router maintains a single uplink connection to one or more interior routers. Edge routers do not
participate in the routing protocol or route computation, but they enable you to efficiently scale the
routing network. There are no limits to the number of edge routers you can deploy in a router
network.

4.2. SECURITY GUIDELINES

In the router network, the interior routers should be secured with a strong authentication mechanism in
which they identify themselves to each other. You should choose and plan this authentication
mechanism before creating the router network.

WARNING

If the interior routers are not properly secured, unauthorized routers (or endpoints
pretending to be routers) could join the router network, compromising its integrity
and availability.

You can choose a security mechanism that best fits your requirements. However, you should consider
the following recommendations:

Create an X.509 Certificate Authority (CA) to oversee the interior portion of the router
network.

Generate an individual certificate for each interior router.
Each interior router can be configured to use the CA to authenticate connections from any
other interior routers.

CHAPTER 4. AMQ INTERCONNECT DEPLOYMENT GUIDELINES

19

NOTE

Connections from edge routers and clients can use different levels of security,
depending on your requirements.

By using these recommendations, a new interior router cannot join the network until the owner of the
CA issues a new certificate for the new router. In addition, an intruder wishing to spoof an interior router
cannot do so because it would not have a valid X.509 certificate issued by the network’s CA.

4.3. ROUTER CONNECTION GUIDELINES

Before creating a router network, you should understand how routers connect to each other, and the
factors that affect the direction in which an inter-router connection should be established.

Inter-router connections are bidirectional
When a connection is established between routers, message traffic flows in both directions across that
connection. Each connection has a client side (a connector) and a server side (a listener) for the
purposes of connection establishment. Once the connection is established, the two sides become equal
participants in a bidirectional connection. For the purposes of routing AMQP traffic across the network,
the direction of connection establishment is not relevant.

Factors that affect the direction of connection establishment
When establishing inter-router connections, you must choose which router will be the "listener" and
which will be the "connector". There should be only one connection between any pair of routers.

When determining the direction of inter-router connections in the network topology, consider the
following factors:

IP network boundaries and firewalls

Generally, inter-router connections should always be established from more private to more public.
For example, to connect a router in a private IP network to another router in a public location (such
as a public cloud provider), the router in the private network must have the connector and the router
in the public location must have the listener. This is because the public location cannot reach the
private location by TCP/IP without the use of VPNs or other firewall features designed to allow
public-to-private access.

Network topology

The topology of the router network may affect the direction in which connections should be
established between the routers. For example, a star-topology that has a series of routers connected
to one or two central "hub" routers should have listeners on the hub and connectors on the spokes.
That way, new spoke routers may be added without changing the configuration of the hub.

Red Hat AMQ 7.7 Using AMQ Interconnect

20

CHAPTER 5. INSTALLING AMQ INTERCONNECT
You can deploy AMQ Interconnect as a single standalone router, or as multiple routers connected
together in a router network. Router networks may represent any arbitrary topology, enabling you to
design the network to best fit your requirements.

With AMQ Interconnect, the router network topology is independent from the message routing. This
means that messaging clients always experience the same message routing behavior regardless of the
underlying network topology. Even in a multi-site or hybrid cloud router network, the connected
endpoints behave as if they were connected to a single, logical router.

To create the router network topology, complete the following:

1. Review the deployment guidelines.
You should understand the different router operating modes you can deploy in your topology,
and be aware of security requirements for the interior portion of the router network.

2. Install AMQ Interconnect on the host .
If you are creating a router network with multiple routers, repeat this step on each host.

3. Prepare the router configurations.
After installing AMQ Interconnect, configure it to define how it should connect to other routers
and endpoints, and how it should operate.

4. Start the routers.
After the routers are configured, start them so that they can connect to each other and begin
routing messages.

5.1. INSTALLING AMQ INTERCONNECT ON RED HAT ENTERPRISE
LINUX

AMQ Interconnect is distributed as a set of RPM packages, which are available through your Red Hat
subscription.

Procedure

1. Ensure your subscription has been activated and your system is registered.
For more information about using the Customer Portal to activate your Red Hat subscription
and register your system for packages, see Appendix A, Using your subscription .

2. Subscribe to the required repositories:

Red Hat Enterprise Linux 6

$ sudo subscription-manager repos --enable=amq-interconnect-1-for-rhel-6-server-rpms --
enable=amq-clients-2-for-rhel-6-server-rpms

Red Hat Enterprise Linux 7

$ sudo subscription-manager repos --enable=amq-interconnect-1-for-rhel-7-server-rpms --
enable=amq-clients-2-for-rhel-7-server-rpms

Red Hat Enterprise Linux 8

CHAPTER 5. INSTALLING AMQ INTERCONNECT

21

$ sudo subscription-manager repos --enable=amq-interconnect-1-for-rhel-8-x86_64-rpms --
enable=amq-clients-2-for-rhel-8-x86_64-rpms

3. Use the yum or dnf command to install the qpid-dispatch-router, qpid-dispatch-tools, and
qpid-dispatch-console packages and their dependencies:

$ sudo yum install qpid-dispatch-router qpid-dispatch-tools qpid-dispatch-console

4. Use the which command to verify that the qdrouterd executable is present.

$ which qdrouterd
/usr/sbin/qdrouterd

The qdrouterd executable should be located at /usr/sbin/qdrouterd.

5.2. PREPARING ROUTER CONFIGURATIONS

After installing AMQ Interconnect, configure it to define how it should connect to other routers and
endpoints, and how it should operate. If you are creating a router network, complete this workflow for
each router in the network.

Prerequisites

AMQ Interconnect is installed on the host.

Procedure

1. Configure essential router properties.
To participate in a router network, a router must be configured with a unique ID and an
operating mode.

2. Configure network connections.

a. Connect the router to any other routers in the router network.
Repeat this step for each additional router to which you want to connect this router.

b. If the router should connect with an AMQP client, configure a client connection.

c. If the router should connect to an external AMQP container (such as a message broker),
configure the connection.

3. Secure each of the connections that you configured in the previous step .

4. (Optional) Configure any additional properties.
These properties should be configured the same way on each router. Therefore, you should only
configure each one once, and then copy the configuration to each additional router in the router
network.

Authorization
If necessary, configure policies to control which messaging resources clients are able to
access on the router network.

Routing
AMQ Interconnect automatically routes messages without any configuration: clients can

Red Hat AMQ 7.7 Using AMQ Interconnect

22

send messages to the router network, and the router automatically routes them to their
destinations. However, you can configure the routing to meet your exact requirements. You
can configure the routing patterns to be used for certain addresses, create waypoints and
autolinks to route messages through broker queues, and create link routes to connect
clients to brokers.

Logging
You can set the default logging configuration to ensure that events are logged at the
correct level for your environment.

5. Repeat this workflow for each additional router that you want to add to the router network.

5.3. STARTING A ROUTER

You use the qdrouterd command to start a router. You can start a router in the foreground, the
background, or as a service.

Procedure

Do one of the following:

To… Enter this command…

Start the router in the
foreground

Start the router in the
background as a daemon

Start the router as a service
Red Hat Enterprise Linux 6

Red Hat Enterprise Linux 7 and later versions

NOTE

If you start the router as a service, the systemd
LimitNOFILE limit affects the number of
connections that can be open for the router. If you
reach the limit, the router is not able to accept any
more connections, and an error message is logged
indicating "Too many open files". To avoid reaching
this limit, increase the LimitNOFILE value for the
systemd process.

For more information, see How to set limits for
services in RHEL 7 and systemd.

$ qdrouterd

$ qdrouterd -d

$ sudo service qdrouterd start

$ systemctl start qdrouterd.service

CHAPTER 5. INSTALLING AMQ INTERCONNECT

23

https://access.redhat.com/solutions/1257953

CHAPTER 6. UPGRADING AMQ INTERCONNECT
You should upgrade AMQ Interconnect to the latest version to ensure that you have the latest
enhancements and fixes. The upgrade process involves installing the new AMQ Interconnect packages
and restarting your routers.

You can use these instructions to upgrade AMQ Interconnect to a new minor release or maintenance
release.

Minor Release

AMQ Interconnect periodically provides point releases, which are minor updates that include new
features, as well as bug and security fixes. If you plan to upgrade from one AMQ Interconnect point
release to another, for example, from AMQ Interconnect 1.0 to AMQ Interconnect 1.1, code changes
should not be required for applications that do not use private, unsupported, or technical preview
components.

Maintenance Release

AMQ Interconnect also periodically provides maintenance releases that contain bug fixes.
Maintenance releases increment the minor release version by the last digit, for example from 1.0.0 to
1.0.1. A maintenance release should not require code changes; however, some maintenance releases
might require configuration changes.

Prerequisites

Before performing an upgrade, you should have reviewed the release notes for the target release to
ensure that you understand the new features, enhancements, fixes, and issues. To find the release notes
for the target release, see the Red Hat Customer Portal .

Procedure

1. Upgrade the qpid-dispatch-router and qpid-dispatch-tools packages and their dependencies:

For more information, see Chapter 5, Installing AMQ Interconnect .

2. Restart each router in your router network.
To avoid disruption, you should restart each router one at a time.

This example restarts a router in Red Hat Enterprise Linux 7:

For more information about starting a router, see Section 5.3, “Starting a router” .

$ sudo yum update qpid-dispatch-router qpid-dispatch-tools

$ systemctl restart qdrouterd.service

Red Hat AMQ 7.7 Using AMQ Interconnect

24

https://access.redhat.com/products/red-hat-amq

PART V. CONFIGURE

PART V. CONFIGURE

25

CHAPTER 7. CONFIGURING ROUTER PROPERTIES
By default, AMQ Interconnect operates in standalone mode with a randomly-generated ID. If you want
to use this router in a router network, you must change these properties.

Procedure

1. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

2. In the router section, specify the mode and ID.
This example shows a router configured to operate in interior mode:

router {
 mode: interior
 id: Router.A
}

mode

Specify one of the following modes:

standalone - Use this mode if the router does not communicate with other routers and
is not part of a router network. When operating in this mode, the router only routes
messages between directly connected endpoints.

interior - Use this mode if the router is part of a router network and needs to collaborate
with other routers.

edge - Use this mode if the router is an edge router that will connect to a network of
interior routers.

id

The unique identifier for the router. This ID will also be the container name at the AMQP
protocol level.

3. If necessary, configure any additional properties for the router.
For information about additional attributes, see router in the qdrouterd.conf man page.

Red Hat AMQ 7.7 Using AMQ Interconnect

26

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.conf.html#_router

CHAPTER 8. CONFIGURING NETWORK CONNECTIONS
AMQ Interconnect connects clients, servers, AMQP services, and other routers through network
connections. To connect the router to other messaging endpoints, you configure listeners to accept
connections, and connectors to make outbound connections. However, connections are bidirectional -
once the connection is established, message traffic flows in both directions.

You can do the following:

Connect a router to another router

Listen for client connections

Connect a router to an external AMQP container

Understand connection failover

8.1. CONNECTING ROUTERS

To connect a router to another router in the router network, you configure a connector on one router to
create the outbound connection, and a listener on the other router to accept the connection.

Because connections are bidirectional, there should only be one connection between any pair of routers.
Once the connection is established, message traffic flows in both directions.

This procedure describes how to connect a router to another router in the router network.

Procedure

1. Determine the direction of the connection.
Decide which router should be the "connector", and which should be the "listener". The direction
of the connection establishment is sometimes arbitrary, but consider the following factors:

IP network boundaries and firewalls

Generally, inter-router connections should always be established from more private to more
public. For example, to connect a router in a private IP network to another router in a public
location (such as a public cloud provider), the router in the private network must be the
"connector" and the router in the public location must be the "listener". This is because the
public location cannot reach the private location by TCP/IP without the use of VPNs or
other firewall features designed to allow public-to-private access.

Network topology

The topology of the router network may affect the direction in which connections should be
established between the routers. For example, a star-topology that has a series of routers
connected to one or two central "hub" routers should have "listeners" on the hub and
"connectors" on the spokes. That way, new spoke routers may be added without changing
the configuration of the hub.

2. On the router that should create the connection, open the /etc/qpid-dispatch/qdrouterd.conf
configuration file and add a connector.
This example creates a connector for an inter-router connection between two interior routers:

connector {
 host: 192.0.2.1
 port: 5001

CHAPTER 8. CONFIGURING NETWORK CONNECTIONS

27

 role: inter-router
 ...
}

host

The IP address (IPv4 or IPv6) or hostname on which the router will connect.

port

The port number or symbolic service name on which the router will connect.

role

The role of the connection. If the connection is between two interior routers, specify inter-
router. If the connection is between an interior router and an edge router, specify edge.

3. On the router that should accept the connection establishment, open the /etc/qpid-
dispatch/qdrouterd.conf configuration file and verify that an inter-router listener is
configured.
This example creates a listener to accept the connection establishment configured in the
previous step:

listener {
 host: 0.0.0.0
 port: 5001
 role: inter-router
 ...
}

host

The IP address (IPv4 or IPv6) or hostname on which the router will listen.

port

The port number or symbolic service name on which the router will listen.

role

The role of the connection. If the connection is between two interior routers, specify inter-
router. If the connection is between an interior router and an edge router, specify edge.

4. If the router should connect to any other routers, repeat this procedure.
Edge routers can only connect to interior routers. They cannot connect to other edge routers.

Additional resources

After connecting a router to another router, secure the connection.
For more information, see Section 9.1, “Securing connections between routers” .

8.2. LISTENING FOR CLIENT CONNECTIONS

To enable a router to listen for and accept connections from AMQP clients, you configure a listener.

Once the connection is enabled on the router, clients can connect to it using the same methods they use
to connect to a broker. From the client’s perspective, the router connection and link establishment are
identical to a broker connection and link establishment.

NOTE

Red Hat AMQ 7.7 Using AMQ Interconnect

28

NOTE

Instead of configuring a listener to listen for connections from the client, you can
configure a connector to initiate connections to the client. In this case, the router will use
the connector to initiate the connection, but it will not create any links. Links are only
created by the peer that accepts the connection.

Procedure

1. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

2. Configure a listener with the normal role.

listener {
 host: primary.example.com
 port: 5672
 role: normal
 failoverUrls: secondary.example.com:20000, tertiary.example.com
 ...
}

host

The IP address (IPv4 or IPv6) or hostname on which the router will listen.

port

The port number or symbolic service name on which the router will listen.

role

The role of the connection. Specify normal to indicate that this connection is used for
message delivery for AMQP clients.

failoverUrls (optional)

A comma-separated list of backup URLs the client can use to reconnect if the established
connection is lost. Each URL must use the following form:
[(amqp|amqps|ws|wss)://](HOST|IP ADDRESS)[:port]

For more information, see Section 8.4, “Understanding connection failover” .

Additional resources

After enabling a router to listen for client connections, secure the connection.
For more information, see Section 9.2, “Securing incoming client connections” .

8.3. CONNECTING TO EXTERNAL AMQP CONTAINERS

To enable a router to establish a connection to an external AMQP container (such as a message broker),
you configure a connector.

NOTE

Instead of configuring a connector to initiate connections to the AMQP container, you
can configure a listener to listen for connections from the AMQP container. However, in
this case, the addresses on the AMQP container are available for routing only after the
AMQP container has created a connection.

CHAPTER 8. CONFIGURING NETWORK CONNECTIONS

29

Procedure

1. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

2. Configure a connector with the route-container role.
This example creates a connector that initiates connections to a broker. The addresses on the
broker will be available for routing once the router creates the connection and it is accepted by
the broker.

connector {
 name: my-broker
 host: 192.0.2.10
 port: 5672
 role: route-container
 ...
}

name

The name of the connector. Specify a name that describes the entity to which the router will
connect.

host

The IP address (IPv4 or IPv6) or hostname to which the router will connect.

port

The port number or symbolic service name to which the router will connect.

role

The role of the connection. Specify route-container to indicate that this connection is for an
AMQP container that holds known addresses.

Additional resources

After enabling a router to connect to an external AMQP container, configure any necessary
security credentials.
For more information, see Section 9.3, “Securing outgoing connections” .

8.4. UNDERSTANDING CONNECTION FAILOVER

If a connection between a router and a remote host fails, connection failover enables the connection to
be reestablished automatically on an alternate URL.

A router can use connection failover for both incoming and outgoing connections.

Connection failover for outgoing connections

By default, when you configure a connector on a router, the router attempts to maintain an open
network transport connection to the configured remote host and port. If the connection cannot be
established, the router continually retries until the connection is established. If the connection is
established and then fails, the router immediately attempts to reestablish the connection.
When the router establishes a connection to a remote host, the client may provide the router with
alternate connection information (sometimes called failover lists) that it can use if the connection is
lost. In these cases, rather than attempting to reestablish the connection on the same host, the
router will also try the alternate hosts.

Connection failover is particularly useful when the router establishes outgoing connections to a

Red Hat AMQ 7.7 Using AMQ Interconnect

30

Connection failover is particularly useful when the router establishes outgoing connections to a
cluster of servers providing the same service.

Connection failover for incoming connections

You can configure a listener on a router to provide a list of failover URLs to be used as backups. If
the connection is lost, the client can use these failover URLs to reestablish the connection to the
router.

CHAPTER 8. CONFIGURING NETWORK CONNECTIONS

31

CHAPTER 9. SECURING NETWORK CONNECTIONS
You can configure AMQ Interconnect to communicate with clients, routers, and brokers in a secure way
by authenticating and encrypting the router’s connections. AMQ Interconnect supports the following
security protocols:

SSL/TLS for certificate-based encryption and mutual authentication

SASL for authentication with mechanisms

You configure SSL/TLS, SASL (or a combination of both) to secure any of the following:

Secure connections between routers

Secure incoming client connections

Secure outgoing connections

9.1. SECURING CONNECTIONS BETWEEN ROUTERS

Connections between interior routers should be secured with SSL/TLS encryption and authentication
(also called mutual authentication) to prevent unauthorized routers (or endpoints pretending to be
routers) from joining the network.

SSL/TLS mutual authentication requires an X.509 Certificate Authority (CA) with individual certificates
generated for each interior router. Connections between the interior routers are encrypted, and the CA
authenticates each incoming inter-router connection.

This procedure describes how to secure a connection between two interior routers using SSL/TLS
mutual authentication.

Prerequisites

An X.509 Certificate Authority must exist for the interior routers.

A security certificate must be generated for each router and be signed by the CA.

An inter-router connection must exist between the routers.
For more information, see Section 8.1, “Connecting routers”.

Procedure

1. On the router that establishes the connection, do the following:

a. Open the /etc/qpid-dispatch/qdrouterd.conf.

b. If the router does not contain an sslProfile that defines the private keys and certificates for
the inter-router network, then add one.
This sslProfile contains the locations of the private key and certificates that the router
uses to authenticate with its peer.

sslProfile {
 name: inter-router-tls
 certFile: /etc/pki/tls/certs/tls.crt
 caCertFile: /etc/pki/tls/certs/ca.crt

Red Hat AMQ 7.7 Using AMQ Interconnect

32

 privateKeyFile: /etc/pki/tls/private/tls.key
 password: file:/etc/pki/tls/private/password.txt
 ...
}

name

A unique name that you can use to refer to this sslProfile.

certFile

The absolute path to the file containing the public certificate for this router.

caCertFile

The absolute path to the CA certificate that was used to sign the router’s certificate.

privateKeyFile

The absolute path to the file containing the private key for this router’s public certificate.

NOTE

Ensure that the qdrouterd or root user can access the private key. For
example:

chmod 0600 /etc/pki/tls/private/tls.key
chown qdrouterd /etc/pki/tls/private/tls.key

password

The password to unlock the certificate key. You do not need to specify this if the
certificate key does not have a password. By using different prefixes, you can specify the
password several different ways depending on your security requirements:

Specify the absolute path to a file that contains the password. This is the most
secure option, because you can set permissions on the file that contains the
password. For example:

password: file:/etc/qpid-dispatch-certs/inter-router/password.txt

Specify an environment variable that stores the password. Use this option with
caution, because the environment of other processes is visible on certain platforms.
For example:

password: env:CERT_PASSWORD

Specify the password in clear text. This option is insecure, so it should only be used if
security is not a concern. For example:

password: pass:mycertpassword

c. Configure the inter-router connector for this connection to use the sslProfile that you
created.

connector {
 host: 192.0.2.1

CHAPTER 9. SECURING NETWORK CONNECTIONS

33

 port: 5001
 role: inter-router
 sslProfile: inter-router-tls
 ...
}

sslProfile

The name of the sslProfile that defines the SSL/TLS private keys and certificates for
the inter-router network.

2. On the router that listens for the connection, do the following:

a. Open the /etc/qpid-dispatch/qdrouterd.conf.

b. If the router does not contain an sslProfile that defines the private keys and certificates for
the inter-router network, then add one.

c. Configure the inter-router listener for this connection to use SSL/TLS to secure the
connection.

listener {
 host: 0.0.0.0
 port: 5001
 role: inter-router
 sslProfile: inter_router_tls
 authenticatePeer: yes
 requireSsl: yes
 saslMechanisms: EXTERNAL
 ...
}

sslProfile

The name of the sslProfile that defines the SSL/TLS private keys and certificates for
the inter-router network.

authenticatePeer

Specify yes to authenticate the peer interior router’s identity.

requireSsl

Specify yes to encrypt the connection with SSL/TLS.

saslMechanisms

Specify EXTERNAL to enable X.509 client certificate authentication.

9.2. SECURING INCOMING CLIENT CONNECTIONS

You can use SSL/TLS and SASL to provide the appropriate level of security for client traffic into the
router network. You can use the following methods to secure incoming connections to a router from
AMQP clients, external containers, or edge routers:

Enable SSL/TLS encryption

Enable SSL/TLS client authentication

Enable user name and password authentication

Red Hat AMQ 7.7 Using AMQ Interconnect

34

Integrate with Kerberos

9.2.1. Enabling SSL/TLS encryption

You can use SSL/TLS to encrypt an incoming connection from a client.

Prerequisites

An X.509 Certificate Authority (CA) must exist for the client connections.

A security certificate must be generated and signed by the CA.

Procedure

1. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

2. If the router does not contain an sslProfile that defines the private keys and certificates for
client connections, then add one.
This sslProfile contains the locations of the private key and certificates that the router should
use to encrypt connections from clients.

sslProfile {
 name: service-tls
 certFile: /etc/pki/tls/certs/tls.crt
 caCertFile: /etc/pki/tls/certs/ca.crt
 privateKeyFile: /etc/pki/tls/private/tls.key
 password: file:/etc/pki/tls/private/password.txt
 ...
}

name

A unique name that you can use to refer to this sslProfile.

certFile

The absolute path to the file containing the public certificate for this router.

caCertFile

The absolute path to the CA certificate that was used to sign the router’s certificate.

privateKeyFile

The absolute path to the file containing the private key for this router’s public certificate.

NOTE

Ensure that the qdrouterd or root user can access the private key. For
example:

chmod 0600 /etc/pki/tls/private/tls.key
chown qdrouterd /etc/pki/tls/private/tls.key

password

The password to unlock the certificate key. You do not need to specify this if the certificate

CHAPTER 9. SECURING NETWORK CONNECTIONS

35

The password to unlock the certificate key. You do not need to specify this if the certificate
key does not have a password. By using different prefixes, you can specify the password
several different ways depending on your security requirements:

Specify the absolute path to a file that contains the password. This is the most secure
option, because you can set permissions on the file that contains the password. For
example:

password: file:/etc/qpid-dispatch-certs/inter-router/password.txt

Specify an environment variable that stores the password. Use this option with caution,
because the environment of other processes is visible on certain platforms. For example:

password: env:CERT_PASSWORD

Specify the password in clear text. This option is insecure, so it should only be used if
security is not a concern. For example:

password: pass:mycertpassword

3. Configure the listener for this connection to use SSL/TLS to encrypt the connection.
This example configures a normal listener to encrypt connections from clients.

listener {
 host: 0.0.0.0
 port: 5672
 role: normal
 sslProfile: inter_router_tls
 requireSsl: yes
 ...
}

sslProfile

The name of the sslProfile that defines the SSL/TLS private keys and certificates for client
connections.

requireSsl

Specify true to encrypt the connection with SSL/TLS.

9.2.2. Enabling SSL/TLS client authentication

In addition to SSL/TLS encryption, you can also use SSL/TLS to authenticate an incoming connection
from a client. With this method, a clients must present its own X.509 certificate to the router, which the
router uses to verify the client’s identity.

Prerequisites

SSL/TLS encryption must be configured.
For more information, see Section 9.2.1, “Enabling SSL/TLS encryption” .

The client must have an X.509 certificate that it can use to authenticate to the router.

Procedure

Red Hat AMQ 7.7 Using AMQ Interconnect

36

1. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

2. Configure the listener for this connection to use SSL/TLS to authenticate the client.
This example adds SSL/TLS authentication to a normal listener to authenticate incoming
connections from a client. The client will only be able to connect to the router by presenting its
own X.509 certificate to the router, which the router will use to verify the client’s identity.

listener {
 host: 0.0.0.0
 port: 5672
 role: normal
 sslProfile: service-tls
 requireSsl: yes
 authenticatePeer: yes
 saslMechanisms: EXTERNAL
 ...
}

authenticatePeer

Specify yes to authenticate the client’s identity.

saslMechanisms

Specify EXTERNAL to enable X.509 client certificate authentication.

9.2.3. Enabling user name and password authentication

You can use the SASL PLAIN mechanism to authenticate incoming client connections against a set of
user names and passwords. You can use this method by itself, or you can combine it with SSL/TLS
encryption.

Prerequisites

The cyrus-sasl-plain plugin is installed.
Cyrus SASL uses plugins to support specific SASL mechanisms. Before you can use a particular
SASL mechanism, the relevant plugin must be installed.

To see a list of Cyrus SASL plugins in Red Hat Enterprise Linux, use the yum search cyrus-sasl
command. To install a Cyrus SASL plugin, use the yum install <plugin> command.

Procedure

1. If necessary, add the user names and passwords to the SASL database.
This example adds a new user (user1@example.com) to the SASL database (qdrouterd.sasldb):

$ sudo saslpasswd2 -c -f qdrouterd.sasldb -u example.com user1

NOTE

The full user name is the user name you entered plus the domain name (<user-
name>@<domain-name>). Providing a domain name is not required when you
add a user to the database, but if you do not provide one, a default domain will be
added automatically (the hostname of the machine on which the tool is running).

CHAPTER 9. SECURING NETWORK CONNECTIONS

37

2. Ensure that the qdrouterd process can read the SASL database.
If the qdrouterd process runs as an unprivileged user, you might need to adjust the permissions
or ownership of the SASL database so that the router can read it.

This example makes the qdrouterd user the owner of the SASL database:

$ sudo chown qdrouterd /var/lib/qdrouterd/qdrouterd.sasldb

3. Open the /etc/sasl2/qdrouterd.conf configuration file.
This example shows a /etc/sasl2/qdrouterd.conf configuration file:

pwcheck_method: auxprop
auxprop_plugin: sasldb
sasldb_path: qdrouterd.sasldb
mech_list: ANONYMOUS DIGEST-MD5 EXTERNAL PLAIN GSSAPI

4. Verify that the mech_list attribute contains the PLAIN mechanism.

5. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

6. In the router section, specify the path to the SASL configuration file.

router {
 mode: interior
 id: Router.A
 saslConfigDir: /etc/sasl2/
}

saslConfigDir

The absolute path to the SASL configuration file that contains the path to the SASL
database that stores the user names and passwords.

7. Configure the listener for this connection to authenticate clients using SASL PLAIN.
This example configures basic user name and password authentication for a listener. In this
case, no SSL/TLS encryption is being used.

listener {
 host: 0.0.0.0
 port: 5672
 authenticatePeer: yes
 saslMechanisms: PLAIN
 }

9.2.4. Integrating with Kerberos

If you have implemented Kerberos in your environment, you can use it with the GSSAPI SASL
mechanism to authenticate incoming connections.

Prerequisites

A Kerberos infrastructure must be deployed in your environment.

In the Kerberos environment, a service principal of amqp/<hostname>@<realm> must be

Red Hat AMQ 7.7 Using AMQ Interconnect

38

In the Kerberos environment, a service principal of amqp/<hostname>@<realm> must be
configured.
This is the service principal that AMQ Interconnect uses.

The cyrus-sasl-gssapi package must be installed on each client and the router host machine.

Procedure

1. On the router’s host machine, open the /etc/sasl2/qdrouterd.conf configuration file.
This example shows a /etc/sasl2/qdrouterd.conf configuration file:

pwcheck_method: auxprop
auxprop_plugin: sasldb
sasldb_path: qdrouterd.sasldb
keytab: /etc/krb5.keytab
mech_list: ANONYMOUS DIGEST-MD5 EXTERNAL PLAIN GSSAPI

2. Verify the following:

The mech_list attribute contains the GSSAPI mechanism.

The keytab attribute points to the location of the keytab file.

3. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

4. In the router section, specify the path to the SASL configuration file.

router {
 mode: interior
 id: Router.A
 saslConfigDir: /etc/sasl2/
}

saslConfigDir

The absolute path to the SASL configuration file that contains the path to the SASL
database.

5. For each incoming connection using Kerberos for authentication, set the listener to use the
GSSAPI mechanism.

listener {
 host: 0.0.0.0
 port: 5672
 authenticatePeer: yes
 saslMechanisms: GSSAPI
 }

9.3. SECURING OUTGOING CONNECTIONS

If a router is configured to create connections to external AMQP containers (such as message brokers),
you can use the following methods to secure the connection:

Connect using SSL/TLS encryption (one-way authentication)

CHAPTER 9. SECURING NETWORK CONNECTIONS

39

Connect using SSL/TLS mutual authentication

Connect using user name and password authentication (with or without SSL/TLS encryption)

9.3.1. Connecting using one-way SSL/TLS authentication

You can connect to an external AMQP container (such as a broker) using one-way SSL/TLS. With this
method, the router validates the external AMQP container’s server certificate to verify its identity.

Procedure

1. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

2. If the router does not contain an sslProfile that defines a certificate that can be used to
validate the external AMQP container’s identity, then add one.

sslProfile {
 name: broker-tls
 caCertFile: /etc/qpid-dispatch-certs/ca.crt
 ...
}

name

A unique name that you can use to refer to this sslProfile.

caCertFile

The absolute path to the CA certificate used to verify the external AMQP container’s
identity.

3. Configure the connector for this connection to use SSL/TLS to validate the server certificate
received by the broker during the SSL handshake.
This example configures a connector to a broker. When the router connects to the broker, it will
use the CA certificate defined in the broker-tls sslProfile to validate the server certificate
received from the broker.

connector {
 host: 192.0.2.1
 port: 5672
 role: route-container
 sslProfile: broker-tls
 ...
}

sslProfile

The name of the sslProfile that defines the certificate to use to validate the external AMQP
container’s identity.

9.3.2. Connecting using mutual SSL/TLS authentication

You can connect to an external AMQP container (such as a broker) using mutual SSL/TLS
authentication. With this method, the router, acting as a client, provides a certificate to the external
AMQP container so that it can verify the router’s identity.

Prerequisites

Red Hat AMQ 7.7 Using AMQ Interconnect

40

An X.509 Certificate Authority (CA) must exist for the router.

A security certificate must be generated for the router and be signed by the CA.

Procedure

1. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

2. If the router does not contain an sslProfile that defines the private keys and certificates to
connect to the external AMQP container, then add one.
This sslProfile contains the locations of the private key and certificates that the router should
use to authenticate with its peer.

sslProfile {
 name: broker-tls
 certFile: /etc/pki/tls/certs/tls.crt
 caCertFile: /etc/pki/tls/certs/ca.crt
 privateKeyFile: /etc/pki/tls/private/tls.key
 password: file:/etc/pki/tls/private/password.txt
 ...
}

name

A unique name that you can use to refer to this sslProfile.

certFile

The absolute path to the file containing the public certificate for this router.

caCertFile

The absolute path to the CA certificate that was used to sign the router’s certificate.

privateKeyFile

The absolute path to the file containing the private key for this router’s public certificate.

NOTE

Ensure that the qdrouterd or root user can access the private key. For
example:

chmod 0600 /etc/pki/tls/private/tls.key
chown qdrouterd /etc/pki/tls/private/tls.key

password

The password to unlock the certificate key. You do not need to specify this if the certificate
key does not have a password. By using different prefixes, you can specify the password
several different ways depending on your security requirements:

Specify the absolute path to a file that contains the password. This is the most secure
option, because you can set permissions on the file that contains the password. For
example:

password: file:/etc/qpid-dispatch-certs/inter-router/password.txt

CHAPTER 9. SECURING NETWORK CONNECTIONS

41

Specify an environment variable that stores the password. Use this option with caution,
because the environment of other processes is visible on certain platforms. For example:

password: env:CERT_PASSWORD

Specify the password in clear text. This option is insecure, so it should only be used if
security is not a concern. For example:

password: pass:mycertpassword

3. Configure the connector for this connection to use the sslProfile that you created.

connector {
 host: 192.0.2.1
 port: 5672
 role: route-container
 sslProfile: broker-tls
 saslMechanisms: EXTERNAL
 ...
}

sslProfile

The name of the sslProfile that defines the SSL/TLS private keys and certificates for the
inter-router network.

9.3.3. Connecting using user name and password authentication

You can use the SASL PLAIN mechanism to connect to an external AMQP container that requires a user
name and password. You can use this method by itself, or you can combine it with SSL/TLS encryption.

Prerequisites

The cyrus-sasl-plain plugin is installed.
Cyrus SASL uses plugins to support specific SASL mechanisms. Before you can use a particular
SASL mechanism, the relevant plugin must be installed.

To see a list of Cyrus SASL plugins in Red Hat Enterprise Linux, use the yum search cyrus-sasl
command. To install a Cyrus SASL plugin, use the yum install <plugin> command.

Procedure

1. Open the /etc/qpid-dispatch/qdrouterd.conf configuration file.

2. Configure the connector for this connection to provide user name and password credentials to
the external AMQP container.

connector {
 host: 192.0.2.1
 port: 5672
 role: route-container
 saslMechanisms: PLAIN

Red Hat AMQ 7.7 Using AMQ Interconnect

42

 saslUsername: user
 saslPassword: file:/path/to/file/password.txt
 }

saslPassword

The password to connect to the peer. By using different prefixes, you can specify the
password several different ways depending on your security requirements:

Specify the absolute path to a file that contains the password. This is the most secure
option, because you can set permissions on the file that contains the password. For
example:

password: file:/path/to/file/password.txt

Specify an environment variable that stores the password. Use this option with caution,
because the environment of other processes is visible on certain platforms. For example:

password: env:PASSWORD

Specify the password in clear text. This option is insecure, so it should only be used if
security is not a concern. For example:

password: pass:mypassword

CHAPTER 9. SECURING NETWORK CONNECTIONS

43

CHAPTER 10. CONFIGURING AUTHORIZATION
You can configure policies to secure messaging resources in your messaging environment. Policies
ensure that only authorized users can access messaging endpoints through the router network, and that
the resources on those endpoints are used in an authorized way.

Section 10.1, “Types of policies”

Section 10.2, “How policies enforce connection and resource limits”

Section 10.3, “Setting global limits”

Section 10.4, “Setting connection and resource limits for messaging endpoints”

10.1. TYPES OF POLICIES

AMQ Interconnect provides the following types of policies to control connection and resource limits:

Global policies

Settings for the router. A global policy defines the maximum number of incoming user connections
for the router (across all messaging endpoints), and defines how the router should use vhost policies.

Vhost policies

Connection and AMQP resource limits for a router ingress port (called an AMQP virtual host, or
vhost). A vhost policy defines what a client using a particular connection can access on any
messaging endpoint in the router network.

The resource limits defined in global and vhost policies are applied to user connections only. The limits
do not affect inter-router connections or router connections that are outbound to waypoints.

Access to an AMQP resource allowed by policy for a given user connection to a given vhost is granted
across the entire router network. Access restrictions are applied only at the router port to which a client
is connected and only to resource requests originated by the client.

10.2. HOW POLICIES ENFORCE CONNECTION AND RESOURCE LIMITS

AMQ Interconnect uses policies to determine whether to permit a connection, and if it is permitted, to
apply the appropriate resource limits.

When a client creates a connection to a router, the router first determines whether to allow or deny the
connection. This decision is based on the following criteria:

Whether the connection will exceed the router’s global connection limit (defined in the global
policy)

Whether the connection will exceed the vhost’s connection limits (defined in the vhost policy
that matches the host to which the connection is directed)

If the connection is allowed, the router assigns the user (the authenticated user name from the
connection) to a user group, and enforces the user group’s resource limits for the lifetime of the
connection.

10.3. SETTING GLOBAL LIMITS

You can create a global policy to set the incoming connection and message size limits for a router.

Red Hat AMQ 7.7 Using AMQ Interconnect

44

Procedure

In the /etc/qpid-dispatch/qdrouterd.conf configuration file, add a policy section and set the
limits.
This example sets the incoming connection limit and message size:

policy {
 maxConnections: 10000
 maxMessageSize: 500000
}

maxConnections

The total number of concurrent client connections that can be open for this router. This limit
is always enforced, even if no other policy settings have been defined. The limit is applied to
all incoming connections regardless of remote host, authenticated user, or targeted vhost.
The default (and the maximum) value is 65535.

maxMessageSize

The maximum size in bytes of AMQP message transfers allowed for this router. This limit is
applied only to transfers over user connections and is not applied to inter-router or edge
router connections. This limit may be overridden by vhost or by vhost user group settings. A
value of 0 disables this limit.

10.4. SETTING CONNECTION AND RESOURCE LIMITS FOR
MESSAGING ENDPOINTS

You can define the connection limit and AMQP resource limits for a messaging endpoint by configuring
a vhost policy . Vhost policies define what resources clients are permitted to access on a messaging
endpoint over a particular connection.

NOTE

A vhost is typically the name of the host to which the client connection is directed. For
example, if a client application opens a connection to the
amqp://mybroker.example.com:5672/queue01 URL, the vhost would be
mybroker.example.com.

Section 10.4.1, “Enabling vhost policies”

Section 10.4.2, “Creating vhost policies”

Section 10.4.3, “Creating vhost policies as JSON files”

Section 10.4.4, “Setting resource limits for outgoing connections”

Section 10.4.5, “Methods for specifying vhost policy source and target addresses”

Section 10.4.6, “Vhost policy hostname pattern matching rules”

Section 10.4.7, “Vhost policy examples”

10.4.1. Enabling vhost policies

You must enable the router to use vhost policies before you can create the policies.

CHAPTER 10. CONFIGURING AUTHORIZATION

45

Procedure

In the /etc/qpid-dispatch/qdrouterd.conf configuration file, add a policy section if one does
not exist, and enable vhost policies for the router.

policy {
 ...
 enableVhostPolicy: true
 enableVhostNamePatterns: true
 defaultVhost: $default
}

enableVhostPolicy

Enables the router to enforce the connection denials and resource limits defined in the
configured vhost policies. The default is false, which means that the router will not enforce
any vhost policies.

enableVhostNamePatterns

Enables pattern matching for vhost hostnames. If set to true, you can use wildcards to
specify a range of hostnames for a vhost. If set to false, vhost hostnames are treated as
literal strings. This means that you must specify the exact hostname for each vhost. The
default is false.

defaultVhost

The name of the default vhost policy, which is applied to any connection for which a vhost
policy has not been configured. The default is $default. If defaultVhost is not defined, then
default vhost processing is disabled.

10.4.2. Creating vhost policies

A vhost policy defines the connection limits and resource limits for users connecting to the router from a
remote host. You must create one vhost policy for each remote host.

Prerequisites

Vhost policies must be enabled for the router. For more information, see Section 10.4.1, “Enabling vhost
policies”.

Procedure

1. Add a vhost section and define the connection and message size limits for the messaging
endpoint.
The connection limits apply to all users that are connected to the vhost. These limits control the
number of users that can be connected simultaneously to the vhost.

vhost {
 hostname: example.com
 maxConnections: 10000
 maxMessageSize: 500000
 maxConnectionsPerUser: 100
 maxConnectionsPerHost: 100
 allowUnknownUser: true
 ...
}

hostname

Red Hat AMQ 7.7 Using AMQ Interconnect

46

The literal hostname of the vhost (the messaging endpoint) or a pattern that matches the
vhost hostname. This vhost policy will be applied to any client connection that is directed to
the hostname that you specify. This name must be unique; you can only have one vhost
policy per hostname.
If enableVhostNamePatterns is set to true, you can use wildcards to specify a pattern that
matches a range of hostnames. For more information, see Section 10.4.6, “Vhost policy
hostname pattern matching rules”.

maxConnections

The global maximum number of concurrent client connections allowed for this vhost. The
default is 65535.

maxMessageSize

The maximum size in bytes of AMQP message transfers allowed for connections to this
vhost. This limit overrides the policy maxMessageSize value and may be overridden by vhost
user group settings. A value of 0 disables this limit.

maxConnectionsPerUser

The maximum number of concurrent client connections allowed for any user. The default is
65535.

maxConnectionsPerHost

The maximum number of concurrent client connections allowed for any remote host (the
host from which the client is connecting). The default is 65535.

allowUnknownUser

Whether unknown users (users who are not members of a defined user group) are allowed to
connect to the vhost. Unknown users are assigned to the $default user group and receive
$default settings. The default is false, which means that unknown users are not allowed.

2. In the vhost section, beneath the connection settings that you added, add a groups entity to
define the resource limits.
You define resource limits by user group. A user group specifies the messaging resources the
members of the group are allowed to access.

This example shows three user groups: admin, developers, and $default:

vhost {
 ...
 groups: {
 admin: {
 users: admin1, admin2
 remoteHosts: 127.0.0.1, ::1
 sources: *
 targets: *
 }
 developers: {
 users: dev1, dev2, dev3
 remoteHosts: *
 sources: myqueue1, myqueue2
 targets: myqueue1, myqueue2
 }
 $default: {
 remoteHosts: *
 allowDynamicSource: true,
 allowAdminStatusUpdate: true,

CHAPTER 10. CONFIGURING AUTHORIZATION

47

 sources: myqueue1, myqueue2
 targets: myqueue1, myqueue2
 }
 }
}

users

A list of authenticated users for this user group. Use commas to separate multiple users. A
user may belong to only one vhost user group.

remoteHosts

A list of remote hosts from which the users may connect. A host can be a hostname, IP
address, or IP address range. Use commas to separate multiple hosts. To allow access from
all remote hosts, specify a wildcard *. To deny access from all remote hosts, leave this
attribute blank.

maxConnectionsPerUser

The maximum number of connections that may be created by users in this user group. This
value, if specified, overrides the vhost maxConnectionsPerUser value.

maxConnectionsPerHost

The maximum number of concurrent connections that may be created by users in this user
group from any of the permitted remote hosts. This value, if specified, overrides the vhost
maxConnectionsPerUser value.

maxMessageSize

The maximum size in bytes of AMQP message transfers allowed for connections created by
users in this group. This limit overrides the policy and vhost maxMessageSize values. A value
of 0 disables this limit.

allowDynamicSource

If true, connections from users in this group are permitted to attach receivers to dynamic
sources. This permits creation of listeners to temporary addresses or temporary queues. If
false, use of dynamic sources is not permitted.

allowAdminStatusUpdate

If true, connections from users in this group are permitted to modify the adminStatus of
connections. This permits termination of sender or receiver connections. If false, the users of
this group are prohibited from terminating any connections. Inter-router connections can
never be terminated by any usee. The default is true, even if the policy is not configured.

allowWaypointLinks

If true, connections from users in this group are permitted to attach links using waypoint
capabilities. This allows endpoints to act as waypoints (that is, brokers) without the need for
configuring auto-links. If false, use of waypoint capabilities is not permitted.

allowDynamicLinkRoutes

If true, connections from users in this group may dynamically create connection-scoped link
route destinations. This allows endpoints to act as link route destinations (that is, brokers)
without the need for configuring link routes. If false, creation of dynamic link route
destinations is not permitted.

allowFallbackLinks

If true, connections from users in this group are permitted to attach links using fallback-link
capabilities. This allows endpoints to act as fallback destinations (and sources) for addresses
that have fallback enabled. If false, use of fallback-link capabilities is not permitted.

sources | sourcePattern

A list of AMQP source addresses from which users in this group may receive messages.

Red Hat AMQ 7.7 Using AMQ Interconnect

48

Use sources to specify one or more literal addresses. To specify multiple addresses, use a
comma-separated list. To prevent users in this group from receiving messages from any
addresses, leave this attribute blank. To allow access to an address specific to a particular
user, specify the ${user} token. For more information, see Section 10.4.5, “Methods for
specifying vhost policy source and target addresses”.

Alternatively, you can use sourcePattern to match one or more addresses that correspond
to a pattern. A pattern is a sequence of words delimited by either a . or / character. You can
use wildcard characters to represent a word. The * character matches exactly one word, and
the # character matches any sequence of zero or more words.

To specify multiple address ranges, use a comma-separated list of address patterns. For
more information, see]. To allow access to address ranges that are specific to a particular
user, specify the ${user} token. For more information, see xref:methods-specifying-vhost-
policy-source-target-addresses-router-rhel[.

targets | targetPattern

A list of AMQP target addresses from which users in this group may send messages. You can
specify multiple AMQP addresses and use user name substitution and address patterns the
same way as with source addresses.

3. If necessary, add any advanced user group settings to the vhost user groups.
The advanced user group settings enable you to define resource limits based on the AMQP
connection open, session begin, and link attach phases of the connection. For more information,
see vhost in the qdrouterd.conf man page.

10.4.3. Creating vhost policies as JSON files

As an alternative to using the router configuration file, you can configure vhost policies in JSON files. If
you have multiple routers that need to share the same vhost configuration, you can put the vhost
configuration JSON files in a location accessible to each router, and then configure the routers to apply
the vhost policies defined in these JSON files.

Prerequisites

Vhost policies must be enabled for the router. For more information, see Section 10.4.1,
“Enabling vhost policies”.

Procedure

1. In the /etc/qpid-dispatch/qdrouterd.conf configuration file, specify the directory where you
want to store the vhost policy definition JSON files.

policy {
 ...
 policyDir: /etc/qpid-dispatch-policies
}

policyDir

The absolute path to the directory that holds vhost policy definition files in JSON format.
The router processes all of the vhost policies in each JSON file that is in this directory.

2. In the vhost policy definition directory, create a JSON file for each vhost policy.

Example 10.1. Vhost Policy Definition JSON File

CHAPTER 10. CONFIGURING AUTHORIZATION

49

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.conf.html#_vhost

For more information about these attributes, see Section 10.4.2, “Creating vhost policies” .

10.4.4. Setting resource limits for outgoing connections

If a router establishes an outgoing connection to an external AMQP container (such as a client or
broker), you can restrict the resources that the external container can access on the router by
configuring a connector vhost policy.

The resource limits that are defined in a connector vhost policy are applied to links that are initiated by
the external AMQP container. The connector vhost policy does not restrict links that the router creates.

A connector vhost policy can only be applied to a connector with a normal or route-container role. You
cannot apply connector vhost policies to connectors that have inter-router or edge roles.

Prerequisites

Vhost policies are enabled for the router. For more information, see Section 10.4.1, “Enabling
vhost policies”.

Procedure

1. In the /etc/qpid-dispatch/qdrouterd.conf configuration file, add a vhost section with a
$connector user group.

[
 ["vhost", {
 "hostname": "example.com",
 "maxConnections": 10000,
 "maxConnectionsPerUser": 100,
 "maxConnectionsPerHost": 100,
 "allowUnknownUser": true,
 "groups": {
 "admin": {
 "users": ["admin1", "admin2"],
 "remoteHosts": ["127.0.0.1", "::1"],
 "sources": "*",
 "targets": "*"
 },
 "developers": {
 "users": ["dev1", "dev2", "dev3"],
 "remoteHosts": "*",
 "sources": ["myqueue1", "myqueue2"],
 "targets": ["myqueue1", "myqueue2"]
 },
 "$default": {
 "remoteHosts": "*",
 "allowDynamicSource": true,
 "sources": ["myqueue1", "myqueue2"],
 "targets": ["myqueue1", "myqueue2"]
 }
 }
 }]
]

Red Hat AMQ 7.7 Using AMQ Interconnect

50

vhost {
 hostname: my-connector-policy
 groups: {
 $connector: {
 sources: *
 targets: *
 maxSenders: 5
 maxReceivers: 10
 allowAnonymousSender: true
 allowWaypointLinks: true
 }
 }
}

hostname

A unique name to identify the connector vhost policy. This name does not represent an
actual hostname; therefore, choose a name that will not conflict with an actual vhost
hostname.

$connector

Identifies this vhost policy as a connector vhost policy. For more information about the
resource limits you can apply, see Section 10.4.2, “Creating vhost policies” .

2. Apply the connector vhost policy to the connector that establishes the connection to the
external AMQP container.
The following example applies the connector vhost policy that was configured in the previous
step:

connector {
 host: 192.0.2.10
 port: 5672
 role: normal
 policyVhost: my-connector-policy
}

10.4.5. Methods for specifying vhost policy source and target addresses

If you want to allow or deny access to multiple addresses on a vhost, there are several methods you can
use to match multiple addresses without having to specify each address individually.

The following table describes the methods a vhost policy can use to specify multiple source and target
addresses:

To… Do this…

Allow all users in the user group to
access all source or target
addresses

Use a * wildcard character.

Example 10.2. Receive from any address

sources: *

CHAPTER 10. CONFIGURING AUTHORIZATION

51

Prevent all users in the user group
from accessing all source or
target addresses

Do not specify a value.

Example 10.3. Prohibit message transfers to all addresses

targets:

To… Do this…

Red Hat AMQ 7.7 Using AMQ Interconnect

52

Allow access to some resources
specific to each user

Use the ${user} username substitution token. You can use this token
with source, target, sourcePattern, and targetPattern.

NOTE

You can only specify the ${user} token once in an
AMQP address name or pattern. If there are multiple
tokens in an address, only the leftmost token will be
substituted.

Example 10.4. Receive from a user-specific address

This definition allows the users in the user group to receive messages
from any address that meets any of the following rules:

Starts with the prefix tmp_ and ends with the user name

Starts with the prefix temp followed by any additional
characters

Starts with the user name, is followed by -home-, and ends
with any additional characters

sources: tmp_${user}, temp*, ${user}-home-*

Example 10.5. User-specific address patterns

This definition allows the users in the user group to receive messages
from any address that meets any of the following rules:

Starts with the prefix tmp and ends with the user name

Starts with the prefix temp followed by zero or more
additional characters

Starts with the user name, is followed by home, and ends
with one or more additional characters

sourcePattern: tmp.${user}, temp/#, ${user}.home/*

NOTE

In an address pattern (sourcePattern or
targetPattern), the username substitution token must
be either the first or last token in the pattern. The token
must also be alone within its delimited field, which
means that it cannot be concatenated with literal text
prefixes or suffixes.

To… Do this…

10.4.6. Vhost policy hostname pattern matching rules

In a vhost policy, vhost hostnames can be either literal hostnames or patterns that cover a range of

CHAPTER 10. CONFIGURING AUTHORIZATION

53

In a vhost policy, vhost hostnames can be either literal hostnames or patterns that cover a range of
hostnames.

A hostname pattern is a sequence of words with one or more of the following wildcard characters:

* represents exactly one word

represents zero or more words

The following table shows some examples of hostname patterns:

This pattern… Matches… But not…

*.example.com www.example.com example.comsrv2.www.exam
ple.com

#.example.com example.comwww.example.c
oma.b.c.d.example.com

myhost.com

www.*.test.example.com www.a.test.example.com www.test.example.comwww.
a.b.c.test.example.com

www.#.test.example.com www.test.example.comwww.
a.test.example.comwww.a.b.
c.test.example.com

test.example.com

Vhost hostname pattern matching applies the following precedence rules:

Policy pattern Precedence

Exact match High

* Medium

Low

NOTE

AMQ Interconnect does not permit you to create vhost hostname patterns that conflict
with existing patterns. This includes patterns that can be reduced to be the same as an
existing pattern. For example, you would not be able to create the #.#.#.#.com pattern if
#.com already exists.

10.4.7. Vhost policy examples

These examples demonstrate how to use vhost policies to authorize access to messaging resources.

Example 10.6. Defining basic resource limits for a messaging endpoint

In this example, a vhost policy defines resource limits for clients connecting to the example.com

Red Hat AMQ 7.7 Using AMQ Interconnect

54

1

2

3

4

5

6

7

8

9

10

In this example, a vhost policy defines resource limits for clients connecting to the example.com
host.

The rules defined in this vhost policy will be applied to any user connecting to example.com.

Each user can open up to 10 connections to the vhost.

Any user can connect to this vhost. Users that are not part of the admin group are assigned to
the $default group.

If the admin1 or admin2 user connects to the vhost, they are assigned to the admin user
group.

Users in the admin user group must connect from localhost. If the admin user attempts to
connect from any other host, the connection will be denied.

Users in the admin user group can receive from any address.

Users in the admin user group can send to any address.

Any non-admin user is permitted to connect from any host.

Non-admin users are permitted to receive messages from any addresses that start with the
news, sports, or chat prefixes.

Non-admin users are permitted to send messages to any addresses that start with the chat
prefix.

Example 10.7. Limiting memory consumption

By using the advanced vhost policy attributes, you can control how much system buffer memory a
user connection can potentially consume.

[
 ["vhost", {
 "hostname": "example.com", 1
 "maxConnectionsPerUser": 10, 2
 "allowUnknownUser": true, 3
 "groups": {
 "admin": {
 "users": ["admin1", "admin2"], 4
 "remoteHosts": ["127.0.0.1", "::1"], 5
 "sources": "*", 6
 "targets": "*" 7
 },
 "$default": {
 "remoteHosts": "*", 8
 "sources": ["news*", "sports*" "chat*"], 9
 "targets": "chat*" 10
 }
 }
 }]
]

CHAPTER 10. CONFIGURING AUTHORIZATION

55

1

2

3

4

5

6

7

In this example, a stock trading site provides services for stock traders. However, the site must also
accept high-capacity, automated data feeds from stock exchanges. To prevent trading activity from
consuming memory needed for the feeds, a larger amount of system buffer memory is allotted to the
feeds than to the traders.

This example uses the maxSessions and maxSessionWindow attributes to set the buffer memory
consumption limits for each AMQP session. These settings are passed directly to the AMQP
connection and session negotiations, and do not require any processing cycles on the router.

This example does not show the vhost policy settings that are unrelated to buffer allocation.

The rules defined in this vhost policy will be applied to any user connecting to traders.com.

The traders group includes trader1, trader2, and any other user defined in the list.

At most, 5,000,000 bytes of data can be in flight on each session.

Only one session per connection is allowed.

The feeds group includes two users.

At most, 1,200,000,000 bytes of data can be in flight on each session.

Up to three sessions per connection are allowed.

[
 ["vhost", {
 "hostname": "traders.com", 1
 "groups": {
 "traders": {
 "users": ["trader1", "trader2"], 2
 "maxFrameSize": 10000,
 "maxSessionWindow": 5000000, 3
 "maxSessions": 1 4
 },
 "feeds": {
 "users": ["nyse-feed", "nasdaq-feed"], 5
 "maxFrameSize": 60000,
 "maxSessionWindow": 1200000000, 6
 "maxSessions": 3 7
 }
 }
 }]
]

Red Hat AMQ 7.7 Using AMQ Interconnect

56

CHAPTER 11. CONFIGURING LOGGING
AMQ Interconnect contains internal logging modules that provide important information about each
router. For each module, you can configure the logging level, the format of the log file, and the location
to which the logs should be written.

11.1. LOGGING MODULES

AMQ Interconnect logs are broken into different categories called logging modules . Each module
provides important information about a particular aspect of AMQ Interconnect.

DEFAULT

The default module. This module applies defaults to all of the other logging modules.

ROUTER

This module provides information and statistics about the local router. This includes how the router
connects to other routers in the network, and information about the remote destinations that are
directly reachable from the router (link routes, waypoints, autolinks, and so on).

ROUTER_HELLO

This module provides information about the Hello protocol used by interior routers to exchange Hello
messages, which include information about the router’s ID and a list of its reachable neighbors (the
other routers with which this router has bidirectional connectivity).

ROUTER_LS

This module provides information about link-state data between routers, including Router
Advertisement (RA), Link State Request (LSR), and Link State Update (LSU) messages.
Periodically, each router sends an LSR to the other routers and receives an LSU with the requested
information. Exchanging the above information, each router can compute the next hops in the
topology, and the related costs.

ROUTER_MA

This module provides information about the exchange of mobile address information between
routers, including Mobile Address Request (MAR) and Mobile Address Update (MAU) messages
exchanged between routers. You can use this log to monitor the state of mobile addresses attached
to each router.

MESSAGE

This module provides information about AMQP messages sent and received by the router, including
information about the address, body, and link. You can use this log to find high-level information
about messages on a particular router.

SERVER

This module provides information about how the router is listening for and connecting to other
containers in the network (such as clients, routers, and brokers). This information includes the state
of AMQP messages sent and received by the broker (open, begin, attach, transfer, flow, and so on),
and the related content of those messages.

AGENT

This module provides information about configuration changes made to the router from either
editing the router’s configuration file or using qdmanage.

CONTAINER

This module provides information about the nodes related to the router. This includes only the AMQP
relay node.

ERROR

CHAPTER 11. CONFIGURING LOGGING

57

This module provides detailed information about error conditions encountered during execution.

POLICY

This module provides information about policies that have been configured for the router.

Additional resources

For examples of these logging modules, see Section 16.2, “Troubleshooting using logs”.

11.2. CONFIGURING DEFAULT LOGGING

You can specify the types of events that should be logged, the format of the log entries, and where
those entries should be sent.

Procedure

1. In the /etc/qpid-dispatch/qdrouterd.conf configuration file, add a log section to set the default
logging properties:
This example configures all logging modules to log events starting at the info level:

log {
 module: DEFAULT
 enable: info+
 includeTimestamp: yes
}

module

Specify DEFAULT.

enable

The logging level. You can specify any of the following levels (from lowest to highest):

trace - provides the most information, but significantly affects system performance

debug - useful for debugging, but affects system performance

info - provides general information without affecting system performance

notice - provides general information, but is less verbose than info

warning - provides information about issues you should be aware of, but which are not
errors

error - error conditions that you should address

critical - critical system issues that you must address immediately

To specify multiple levels, use a comma-separated list. You can also use + to specify a level
and all levels above it. For example, trace,debug,warning+ enables trace, debug, warning,
error, and critical levels. For default logging, you should typically use the info+ or notice+
level. These levels will provide general information, warnings, and errors for all modules
without affecting the performance of AMQ Interconnect.

includeTimestamp

Set this to yes to include the timestamp in all logs.

Red Hat AMQ 7.7 Using AMQ Interconnect

58

For information about additional log attributes, see log in the qdrouterd.conf man page.

2. If you want to configure non-default logging for any of the logging modules, add an additional
log section for each module that should not follow the default.
This example configures the ROUTER logging module to log debug events:

log {
 module: ROUTER
 enable: debug
 includeTimestamp: yes
}

Additional resources

For more information about viewing and using logs, see Chapter 16, Troubleshooting AMQ
Interconnect.

CHAPTER 11. CONFIGURING LOGGING

59

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.conf.html#_log

CHAPTER 12. CONFIGURING ROUTING
Routing is the process by which messages are delivered to their destinations. To accomplish this, AMQ
Interconnect provides two routing mechanisms: message routing and link routing .

Message routing

Message routing is the default routing mechanism. You can use it to route messages on a per-
message basis between clients directly (direct-routed messaging), or to and from broker queues
(brokered messaging).

Link routing

A link route represents a private messaging path between a sender and a receiver in which the router
passes the messages between end points. You can use it to connect a client to a service (such as a
broker queue).

12.1. CONFIGURING MESSAGE ROUTING

Message routing is the default routing mechanism. You can use it to route messages on a per-message
basis between clients directly (direct-routed messaging), or to and from broker queues (brokered
messaging).

With message routing, you can do the following:

Understand message routing concepts

Configure address semantics (route messages between clients)

Configure addresses for prioritized message delivery

Configure brokered messaging

Understand address pattern matching

12.1.1. Understanding message routing

With message routing, routing is performed on messages as producers send them to a router. When a
message arrives on a router, the router routes the message and its settlement based on the message’s
address and routing pattern .

12.1.1.1. Message routing flow control

AMQ Interconnect uses a credit-based flow control mechanism to ensure that producers can only send
messages to a router if at least one consumer is available to receive them. Because AMQ Interconnect
does not store messages, this credit-based flow control prevents producers from sending messages
when there are no consumers present.

A client wishing to send a message to the router must wait until the router has provided it with credit.
Attempting to publish a message without credit available will cause the client to block. Once credit is
made available, the client will unblock, and the message will be sent to the router.

NOTE

Most AMQP client libraries enable you to determine the amount of credit available to a
producer. For more information, consult your client’s documentation.

Red Hat AMQ 7.7 Using AMQ Interconnect

60

12.1.1.2. Addresses

Addresses determine how messages flow through your router network. An address designates an
endpoint in your messaging network, such as:

Endpoint processes that consume data or offer a service

Topics that match multiple consumers to multiple producers

Entities within a messaging broker:

Queues

Durable Topics

Exchanges

When a router receives a message, it uses the message’s address to determine where to send the
message (either its destination or one step closer to its destination).

AMQ Interconnect considers addresses to be mobile in that any user of an address may be directly
connected to any router in the router network and may even move around the topology. In cases where
messages are broadcast to or balanced across multiple consumers, the users of the address may be
connected to multiple routers in the network.

Mobile addresses may be discovered during normal router operation or configured through
management settings.

12.1.1.3. Routing patterns

Routing patterns define the paths that a message with a mobile address can take across a network.
These routing patterns can be used for both direct routing, in which the router distributes messages
between clients without a broker, and indirect routing, in which the router enables clients to exchange
messages through a broker.

Routing patterns fall into two categories: Anycast (Balanced and Closest) and Multicast. There is no
concept of "unicast" in which there is only one consumer for an address.

Anycast distribution delivers each message to one consumer whereas multicast distribution delivers each
message to all consumers.

Each address has one of the following routing patterns, which define the path that a message with the
address can take across the messaging network:

Balanced

An anycast method that allows multiple consumers to use the same address. Each message is
delivered to a single consumer only, and AMQ Interconnect attempts to balance the traffic load
across the router network.
If multiple consumers are attached to the same address, each router determines which outbound
path should receive a message by considering each path’s current number of unsettled deliveries.
This means that more messages will be delivered along paths where deliveries are settled at higher
rates.

NOTE

CHAPTER 12. CONFIGURING ROUTING

61

NOTE

AMQ Interconnect neither measures nor uses message settlement time to determine
which outbound path to use.

In this scenario, the messages are spread across both receivers regardless of path length:

Figure 12.1. Balanced Message Routing

Closest

An anycast method in which every message is sent along the shortest path to reach the destination,
even if there are other consumers for the same address.
AMQ Interconnect determines the shortest path based on the topology cost to reach each of the
consumers. If there are multiple consumers with the same lowest cost, messages will be spread
evenly among those consumers.

In this scenario, all messages sent by Sender will be delivered to Receiver 1:

Figure 12.2. Closest Message Routing

Multicast

Messages are sent to all consumers attached to the address. Each consumer will receive one copy of
the message.
In this scenario, all messages are sent to all receivers:

Figure 12.3. Multicast Message Routing

Red Hat AMQ 7.7 Using AMQ Interconnect

62

Figure 12.3. Multicast Message Routing

12.1.1.4. Message settlement and reliability

AMQ Interconnect can deliver messages with the following degrees of reliability:

At most once

At least once

Exactly once

The level of reliability is negotiated between the producer and the router when the producer establishes
a link to the router. To achieve the negotiated level of reliability, AMQ Interconnect treats all messages
as either pre-settled or unsettled.

Pre-settled

Sometimes called fire and forget, the router settles the incoming and outgoing deliveries and
propagates the settlement to the message’s destination. However, it does not guarantee delivery.

Unsettled

AMQ Interconnect propagates the settlement between the producer and consumer. For an anycast
address, the router associates the incoming delivery with the resulting outgoing delivery. Based on
this association, the router propagates changes in delivery state from the consumer to the producer.
For a multicast address, the router associates the incoming delivery with all outbound deliveries. The
router waits for each consumer to set their delivery’s final state. After all outgoing deliveries have
reached their final state, the router sets a final delivery state for the original inbound delivery and
passes it to the producer.

The following table describes the reliability guarantees for unsettled messages sent to an anycast or
multicast address:

Final disposition Anycast Multicast

accepted The consumer accepted the message. At least one consumer accepted the
message, but no consumers rejected it.

released The message did not reach its
destination.

The message did not reach any of the
consumers.

CHAPTER 12. CONFIGURING ROUTING

63

modified The message may or may not have
reached its destination. The delivery is
considered to be "in-doubt" and should
be re-sent if "at least once" delivery is
required.

The message may or may not have
reached any of the consumers.
However, no consumers rejected or
accepted it.

rejected The consumer rejected the message. At least one consumer rejected the
message.

Final disposition Anycast Multicast

12.1.2. Configuring address semantics

You can route messages between clients without using a broker. In a brokerless scenario (sometimes
called direct-routed messaging), AMQ Interconnect routes messages between clients directly.

To route messages between clients, you configure an address with a routing distribution pattern. When a
router receives a message with this address, the message is routed to its destination or destinations
based on the address’s routing distribution pattern.

Procedure

1. In the /etc/qpid-dispatch/qdrouterd.conf configuration file, add an address section.

address {
 prefix: my_address
 distribution: multicast
 ...
}

prefix | pattern

The address or group of addresses to which the address settings should be applied. You can
specify a prefix to match an exact address or beginning segment of an address. Alternatively,
you can specify a pattern to match an address using wildcards.
A prefix matches either an exact address or the beginning segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match the
address my_address as well as my_address.1 and my_address/1. However, it would not
match my_address1.

A pattern matches an address that corresponds to a pattern. A pattern is a sequence of
words delimited by either a . or / character. You can use wildcard characters to represent a
word. The * character matches exactly one word, and the # character matches any sequence
of zero or more words.

The * and # characters are reserved as wildcards. Therefore, you should not use them in the
message address.

For more information about creating address patterns, see Section 12.1.5, “Address pattern
matching”.

NOTE

Red Hat AMQ 7.7 Using AMQ Interconnect

64

NOTE

You can convert a prefix value to a pattern by appending /# to it. For
example, the prefix a/b/c is equivalent to the pattern a/b/c/#.

distribution

The message distribution pattern. The default is balanced, but you can specify any of the
following options:

balanced - Messages sent to the address will be routed to one of the receivers, and the
routing network will attempt to balance the traffic load based on the rate of settlement.

closest - Messages sent to the address are sent on the shortest path to reach the
destination. It means that if there are multiple receivers for the same address, only the
closest one will receive the message.

multicast - Messages are sent to all receivers that are attached to the address in a
publish/subscribe model.
For more information about message distribution patterns, see Section 12.1.1.3, “Routing
patterns”.

For information about additional attributes, see address in the qdrouterd.conf man page.

2. Add the same address section to any other routers that need to use the address.
The address that you added to this router configuration file only controls how this router
distributes messages sent to the address. If you have additional routers in your router network
that should distribute messages for this address, then you must add the same address section
to each of their configuration files.

12.1.3. Configuring addresses for prioritized message delivery

You can set the priority level of an address to control how AMQ Interconnect processes messages sent
to that address. Within the scope of a connection, AMQ Interconnect attempts to process messages
based on their priority. For a connection with a large volume of messages in flight, this lowers the latency
for higher-priority messages.

Assigning a high priority level to an address does not guarantee that messages sent to the address will
be delivered before messages sent to lower-priority addresses. However, higher-priority messages will
travel more quickly through the router network than they otherwise would.

NOTE

You can also control the priority level of individual messages by setting the priority level
in the message header. However, the address priority takes precedence: if you send a
prioritized message to an address with a different priority level, the router will use the
address priority level.

Procedure

In the /etc/qpid-dispatch/qdrouterd.conf configuration file, add or edit an address and assign a
priority level.
This example adds an address with the highest priority level. The router will attempt to deliver
messages sent to this address before messages with lower priority levels.

CHAPTER 12. CONFIGURING ROUTING

65

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.conf.html#_address

address {
 prefix: my-high-priority-address
 priority: 9
 ...
}

priority

The priority level to assign to all messages sent to this address. The range of valid priority
levels is 0-9, in which the higher the number, the higher the priority. The default is 4.

Additional resources

For more information about setting the priority level in a message, see the AMQP 1.0
specification.

12.1.4. Configuring brokered messaging

If you require "store and forward" capabilities, you can configure AMQ Interconnect to use brokered
messaging. In this scenario, clients connect to a router to send and receive messages, and the router
routes the messages to or from queues on a message broker.

You can configure the following:

Route messages through broker queues
You can route messages to a queue hosted on a single broker, or route messages to a sharded
queue distributed across multiple brokers.

Store and retrieve undeliverable messages on a broker queue

12.1.4.1. How AMQ Interconnect enables brokered messaging

Brokered messaging enables AMQ Interconnect to store messages on a broker queue. This requires a
connection to the broker, a waypoint address to represent the broker queue, and autolinks to attach to
the waypoint address.

An autolink is a link that is automatically created by the router to attach to a waypoint address. With
autolinks, client traffic is handled on the router, not the broker. Clients attach their links to the router,
and then the router uses internal autolinks to connect to the queue on the broker. Therefore, the queue
will always have a single producer and a single consumer regardless of how many clients are attached to
the router.

Figure 12.4. Brokered messaging

Red Hat AMQ 7.7 Using AMQ Interconnect

66

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html

Figure 12.4. Brokered messaging

In this diagram, the sender connects to the router and sends messages to my_queue. The router
attaches an outgoing link to the broker, and then sends the messages to my_queue. Later, the receiver
connects to the router and requests messages from my_queue. The router attaches an incoming link to
the broker to receive the messages from my_queue, and then delivers them to the receiver.

You can also route messages to a sharded queue, which is a single, logical queue comprised of multiple,
underlying physical queues. Using queue sharding, it is possible to distribute a single queue over multiple
brokers. Clients can connect to any of the brokers that hold a shard to send and receive messages.

Figure 12.5. Brokered messaging with sharded queue

In this diagram, a sharded queue (my_queue) is distributed across two brokers. The router is connected
to the clients and to both brokers. The sender connects to the router and sends messages to my_queue.
The router attaches an outgoing link to each broker, and then sends messages to each shard (by default,
the routing distribution is balanced). Later, the receiver connects to the router and requests all of the
messages from my_queue. The router attaches an incoming link to one of the brokers to receive the
messages from my_queue, and then delivers them to the receiver.

12.1.4.2. Routing messages through broker queues

CHAPTER 12. CONFIGURING ROUTING

67

You can route messages to and from a broker queue to provide clients with access to the queue through
a router. In this scenario, clients connect to a router to send and receive messages, and the router routes
the messages to or from the broker queue.

You can route messages to a queue hosted on a single broker, or route messages to a sharded queue
distributed across multiple brokers.

Procedure

1. In the /etc/qpid-dispatch/qdrouterd.conf configuration file, add a waypoint address for the
broker queue.
A waypoint address identifies a queue on a broker to which you want to route messages. This
example adds a waypoint address for the my_queue queue:

address {
 prefix: my_queue
 waypoint: yes
}

prefix | pattern

The address prefix or pattern that matches the broker queue to which you want to send
messages. You can specify a prefix to match an exact address or beginning segment of an
address. Alternatively, you can specify a pattern to match an address using wildcards.
A prefix matches either an exact address or the beginning segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match the
address my_address as well as my_address.1 and my_address/1. However, it would not
match my_address1.

A pattern matches an address that corresponds to a pattern. A pattern is a sequence of
words delimited by either a . or / character. You can use wildcard characters to represent a
word. The * character matches exactly one word, and the # character matches any sequence
of zero or more words.

The * and # characters are reserved as wildcards. Therefore, you should not use them in the
message address.

For more information about creating address patterns, see Section 12.1.5, “Address pattern
matching”.

NOTE

You can convert a prefix value to a pattern by appending /# to it. For
example, the prefix a/b/c is equivalent to the pattern a/b/c/#.

waypoint

Set this attribute to yes so that the router handles messages sent to this address as a
waypoint.

2. Connect the router to the broker.

a. Add an outgoing connection to the broker if one does not exist.
If the queue is sharded across multiple brokers, you must add a connection for each broker.
For more information, see Section 8.3, “Connecting to external AMQP containers” .

NOTE

Red Hat AMQ 7.7 Using AMQ Interconnect

68

NOTE

If the connection to the broker fails, AMQ Interconnect automatically
attempts to reestablish the connection and reroute message deliveries to
any available alternate destinations. However, some deliveries could be
returned to the sender with a RELEASED or MODIFIED disposition.
Therefore, you should ensure that your clients can handle these deliveries
appropriately (generally by resending them).

b. If you want to send messages to the broker queue, add an outgoing autolink to the broker
queue.
If the queue is sharded across multiple brokers, you must add an outgoing autolink for each
broker.

This example configures an outgoing auto link to send messages to a broker queue:

autoLink {
 address: my_queue
 connection: my_broker
 direction: out
 ...
}

address

The address of the broker queue. When the autolink is created, it will be attached to this
address.

externalAddress

An optional alternate address for the broker queue. You use an external address if the
broker queue should have a different address than that which the sender uses. In this
scenario, senders send messages to the address address, and then the router routes
them to the broker queue represented by the externalAddress address.

connection | containerID

How the router should connect to the broker. You can specify either an outgoing
connection (connection) or the container ID of the broker (containerID).

direction

Set this attribute to out to specify that this autolink can send messages from the router
to the broker.

For information about additional attributes, see autoLink in the qdrouterd.conf man page.

3. If you want to receive messages from the broker queue, add an incoming autolink from the
broker queue:
If the queue is sharded across multiple brokers, you must add an outgoing autolink for each
broker.

This example configures an incoming auto link to receive messages from a broker queue:

autoLink {
 address: my_queue
 connection: my_broker
 direction: in
 ...
}

CHAPTER 12. CONFIGURING ROUTING

69

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.conf.html#_autolink

address

The address of the broker queue. When the autolink is created, it will be attached to this
address.

externalAddress

An optional alternate address for the broker queue. You use an external address if the broker
queue should have a different address than that which the receiver uses. In this scenario,
receivers receive messages from the address address, and the router retrieves them from
the broker queue represented by the externalAddress address.

connection | containerID

How the router should connect to the broker. You can specify either an outgoing connection
(connection) or the container ID of the broker (containerID).

direction

Set this attribute to in to specify that this autolink can receive messages from the broker to
the router.

For information about additional attributes, see autoLink in the qdrouterd.conf man page.

12.1.4.3. Handling undeliverable messages

You handle undeliverable messages for an address by configuring autolinks that point to fallback
destinations. A fallback destination (such as a queue on a broker) stores messages that are not directly
routable to any consumers.

During normal message delivery, AMQ Interconnect delivers messages to the consumers that are
attached to the router network. However, if no consumers are reachable, the messages are diverted to
any fallback destinations that were configured for the address (if the autolinks that point to the fallback
destinations are active). When a consumer reconnects and becomes reachable again, it receives the
messages stored at the fallback destination.

NOTE

AMQ Interconnect preserves the original delivery order for messages stored at a fallback
destination. However, when a consumer reconnects, any new messages produced while
the queue is draining will be interleaved with the messages stored at the fallback
destination.

Prerequisites

The router is connected to a broker.
For more information, see Section 8.3, “Connecting to external AMQP containers” .

Procedure

This procedure enables fallback for an address and configures autolinks to connect to the broker queue
that provides the fallback destination for the address.

1. In the /etc/qpid-dispatch/qdrouterd.conf configuration file, enable fallback destinations for the
address.

address {
 prefix: my_address
 enableFallback: yes

Red Hat AMQ 7.7 Using AMQ Interconnect

70

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.conf.html#_autolink

}

2. Add an outgoing autolink to a queue on the broker.
For the address for which you enabled fallback, if messages are not routable to any consumers,
the router will use this autolink to send the messages to a queue on the broker.

autoLink {
 address: my_address.2
 direction: out
 connection: my_broker
 fallback: yes
}

3. If you want the router to send queued messages to attached consumers as soon as they
connect to the router network, add an incoming autolink.
As soon as a consumer attaches to the router, it will receive the messages stored in the broker
queue, along with any new messages sent by the producer. The original delivery order of the
queued messages is preserved; however, the queued messages will be interleaved with the new
messages.

If you do not add the incoming autolink, the messages will be stored on the broker, but will not
be sent to consumers when they attach to the router.

autoLink {
 address: my_address.2
 direction: in
 connection: my_broker
 fallback: yes
}

12.1.5. Address pattern matching

In some router configuration scenarios, you might need to use pattern matching to match a range of
addresses rather than a single, literal address. Address patterns match any address that corresponds to
the pattern.

An address pattern is a sequence of tokens (typically words) that are delimited by either . or / characters.
They also can contain special wildcard characters that represent words:

* represents exactly one word

represents zero or more words

Example 12.1. Address pattern

This address contains two tokens, separated by the / delimiter:

my/address

Example 12.2. Address pattern with wildcard

This address contains three tokens. The * is a wildcard, representing any single word that might be
between my and address:

CHAPTER 12. CONFIGURING ROUTING

71

my/*/address

The following table shows some address patterns and examples of the addresses that would match
them:

This pattern… Matches… But not…

news/* news/europe

news/usa

news

news/usa/sports

news/# news

news/europe

news/usa/sports

europe

usa

news/europe/# news/europe

news/europe/sports

news/europe/politics/fr

news/usa

europe

news/*/sports news/europe/sports

news/usa/sports

news

news/europe/fr/sports

12.2. CREATING LINK ROUTES

A link route represents a private messaging path between a sender and a receiver in which the router
passes the messages between end points. You can use it to connect a client to a service (such as a
broker queue).

12.2.1. Understanding link routing

Link routing provides an alternative strategy for brokered messaging. A link route represents a private
messaging path between a sender and a receiver in which the router passes the messages between end
points. You can think of a link route as a "virtual connection" or "tunnel" that travels from a sender,
through the router network, to a receiver.

With link routing, routing is performed on link-attach frames, which are chained together to form a
virtual messaging path that directly connects a sender and receiver. Once a link route is established, the
transfer of message deliveries, flow frames, and dispositions is performed across the link route.

12.2.1.1. Link routing flow control

Unlike message routing, with link routing, the sender and receiver handle flow control directly: the
receiver grants link credits, which is the number of messages it is able to receive. The router sends them
directly to the sender, and then the sender sends the messages based on the credits that the receiver
granted.

Red Hat AMQ 7.7 Using AMQ Interconnect

72

1

12.2.1.2. Link route addresses

A link route address represents a broker queue, topic, or other service. When a client attaches a link
route address to a router, the router propagates a link attachment to the broker resource identified by
the address.

Using link route addresses, the router network does not participate in aggregated message distribution.
The router simply passes message delivery and settlement between the two end points.

12.2.1.3. Routing patterns for link routing

Routing patterns are not used with link routing, because there is a direct link between the sender and
receiver. The router only makes a routing decision when it receives the initial link-attach request frame.
Once the link is established, the router passes the messages along the link in a balanced distribution.

12.2.2. Creating a link route

Link routes establish a link between a sender and a receiver that travels through a router. You can
configure inward and outward link routes to enable the router to receive link-attaches from clients and
to send them to a particular destination.

With link routing, client traffic is handled on the broker, not the router. Clients have a direct link through
the router to a broker’s queue. Therefore, each client is a separate producer or consumer.

NOTE

If the connection to the broker fails, the routed links are detached, and the router will
attempt to reconnect to the broker (or its backup). Once the connection is reestablished,
the link route to the broker will become reachable again.

From the client’s perspective, the client will see the detached links (that is, the senders or
receivers), but not the failed connection. Therefore, if you want the client to reattach
dropped links in the event of a broker connection failure, you must configure this
functionality on the client. Alternatively, you can use message routing with autolinks
instead of link routing. For more information, see Section 12.1.4.2, “Routing messages
through broker queues”.

Procedure

1. Add an outgoing connection to the broker if one does not exist.
If the queue is sharded across multiple brokers, you must add a connection for each broker. For
more information, see Section 8.3, “Connecting to external AMQP containers” .

2. If you want clients to send local transactions to the broker, create a link route for the transaction
coordinator:

linkRoute {
 prefix: $coordinator 1
 connection: my_broker
 direction: in
}

The $coordinator prefix designates this link route as a transaction coordinator. When the
client opens a transacted session, the requests to start and end the transaction are
propagated along this link route to the broker.

AMQ Interconnect does not support routing transactions to multiple brokers. If you have

CHAPTER 12. CONFIGURING ROUTING

73

AMQ Interconnect does not support routing transactions to multiple brokers. If you have
multiple brokers in your environment, choose a single broker and route all transactions to it.

3. If you want clients to send messages on this link route, create an incoming link route:

linkRoute {
 prefix: my_queue
 connection: my_broker
 direction: in
 ...
}

prefix | pattern

The address prefix or pattern that matches the broker queue that should be the destination
for routed link-attaches. All messages that match this prefix or pattern will be distributed
along the link route. You can specify a prefix to match an exact address or beginning
segment of an address. Alternatively, you can specify a pattern to match an address using
wildcards.
A prefix matches either an exact address or the beginning segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match the
address my_address as well as my_address.1 and my_address/1. However, it would not
match my_address1.

A pattern matches an address that corresponds to a pattern. A pattern is a sequence of
words delimited by either a . or / character. You can use wildcard characters to represent a
word. The * character matches exactly one word, and the # character matches any sequence
of zero or more words.

The * and # characters are reserved as wildcards. Therefore, you should not use them in the
message address.

For more information about creating address patterns, see Section 12.1.5, “Address pattern
matching”.

NOTE

You can convert a prefix value to a pattern by appending /# to it. For
example, the prefix a/b/c is equivalent to the pattern a/b/c/#.

connection | containerID

How the router should connect to the broker. You can specify either an outgoing connection
(connection) or the container ID of the broker (containerID).
If multiple brokers are connected to the router through this connection, requests for
addresses matching the link route’s prefix or pattern are balanced across the brokers.
Alternatively, if you want to specify a particular broker, use containerID and add the broker’s
container ID.

direction

Set this attribute to in to specify that clients can send messages into the router network on
this link route.

For information about additional attributes, see linkRoute in the qdrouterd.conf man page.

4. If you want clients to receive messages on this link route, create an outgoing link route:

Red Hat AMQ 7.7 Using AMQ Interconnect

74

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.conf.html#_linkroute

linkRoute {
 prefix: my_queue
 connection: my_broker
 direction: out
 ...
}

prefix | pattern

The address prefix or pattern that matches the broker queue from which you want to receive
routed link-attaches. All messages that match this prefix or pattern will be distributed along
the link route. You can specify a prefix to match an exact address or beginning segment of
an address. Alternatively, you can specify a pattern to match an address using wildcards.
A prefix matches either an exact address or the beginning segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match the
address my_address as well as my_address.1 and my_address/1. However, it would not
match my_address1.

A pattern matches an address that corresponds to a pattern. A pattern is a sequence of
words delimited by either a . or / character. You can use wildcard characters to represent a
word. The * character matches exactly one word, and the # character matches any sequence
of zero or more words.

The * and # characters are reserved as wildcards. Therefore, you should not use them in the
message address.

For more information about creating address patterns, see Section 12.1.5, “Address pattern
matching”.

NOTE

You can convert a prefix value to a pattern by appending /# to it. For
example, the prefix a/b/c is equivalent to the pattern a/b/c/#.

connection | containerID

How the router should connect to the broker. You can specify either an outgoing connection
(connection) or the container ID of the broker (containerID).
If multiple brokers are connected to the router through this connection, requests for
addresses matching the link route’s prefix or pattern are balanced across the brokers.
Alternatively, if you want to specify a particular broker, use containerID and add the broker’s
container ID.

direction

Set this attribute to out to specify that this link route is for receivers.

For information about additional attributes, see linkRoute in the qdrouterd.conf man page.

12.2.3. Link route example: Connecting clients and brokers on different networks

This example shows how a link route can connect a client to a message broker that is on a different
private network.

Figure 12.6. Router network with isolated clients

CHAPTER 12. CONFIGURING ROUTING

75

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdrouterd.conf.html#_linkroute

Figure 12.6. Router network with isolated clients

The client is constrained by firewall policy to connect to the router in its own network (R3). However, it
can use a link route to access queues, topics, and any other AMQP services that are provided on
message brokers B1 and B2 — even though they are on different networks.

In this example, the client needs to receive messages from b2.event-queue, which is hosted on broker
B2 in Private Network 1. A link route connects the client and broker even though neither of them is
aware that there is a router network between them.

Router configuration
To enable the client to receive messages from b2.event-queue on broker B2, router R2 must be able to
do the following:

Connect to broker B2

Route links to and from broker B2

Advertise itself to the router network as a valid destination for links that have a b2.event-queue
address

The relevant part of the configuration file for router R2 shows the following:

connector { 1
 name: broker
 role: route-container
 host: 192.0.2.1
 port: 61617
 saslMechanisms: ANONYMOUS
}

linkRoute { 2
 prefix: b2
 direction: in
 connection: broker
}

linkRoute { 3
 prefix: b2

Red Hat AMQ 7.7 Using AMQ Interconnect

76

1

2

3

 direction: out
 connection: broker
}

The outgoing connection from the router to broker B2. The route-container role enables the
router to connect to an external AMQP container (in this case, a broker).

The incoming link route for receiving links from client senders. Any sender with a target whose
address begins with b2 will be routed to broker B2 using the broker connector.

The outgoing link route for sending links to client receivers. Any receivers whose source address
begins with b2 will be routed to broker B2 using the broker connector.

This configuration enables router R2 to advertise itself as a valid destination for targets and sources
starting with b2. It also enables the router to connect to broker B2, and to route links to and from
queues starting with the b2 prefix.

NOTE

While not required, routers R1 and R3 should also have the same configuration.

How the client receives messages
By using the configured link route, the client can receive messages from broker B2 even though they are
on different networks.

Router R2 establishes a connection to broker B2. Once the connection is open, R2 tells the other
routers (R1 and R3) that it is a valid destination for link routes to the b2 prefix. This means that sender
and receiver links attached to R1 or R3 will be routed along the shortest path to R2, which then routes
them to broker B2.

To receive messages from the b2.event-queue on broker B2, the client attaches a receiver link with a
source address of b2.event-queue to its local router, R3. Because the address matches the b2 prefix,
R3 routes the link to R1, which is the next hop in the route to its destination. R1 routes the link to R2,
which routes it to broker B2. The client now has a receiver established, and it can begin receiving
messages.

NOTE

If broker B2 is unavailable for any reason, router R2 will not advertise itself as a
destination for b2 addresses. In this case, routers R1 and R3 will reject link attaches that
should be routed to broker B2 with an error message indicating that there is no route
available to the destination.

CHAPTER 12. CONFIGURING ROUTING

77

PART VI. MANAGE

Red Hat AMQ 7.7 Using AMQ Interconnect

78

CHAPTER 13. MONITORING USING AMQ CONSOLE
AMQ Console is a web console for monitoring the status and performance of AMQ Interconnect router
networks.

Prerequisites

AMQ Console requires the qpid-dispatch-console package.
For more information about installing packages, see the Chapter 5, Installing AMQ Interconnect .

13.1. SETTING UP ACCESS TO AMQ CONSOLE

Before you can access the web console, you must configure a listener to accept HTTP connections for
the web console and serve the console files.

Procedure

1. On the router from which you want to access the web console, open the /etc/qpid-
dispatch/qdrouterd.conf configuration file.

2. Add a listener to serve the console.
This example creates a listener that clients can use to access the web console:

listener {
 host: 0.0.0.0
 port: 8672
 role: normal
 http: true
 httpRootDir: /usr/share/qpid-dispatch/console
}

host

The IP address (IPv4 or IPv6) or hostname on which the router will listen.

port

The port number or symbolic service name on which the router will listen.

role

The role of the connection. Specify normal to indicate that this connection is used for client
traffic.

http

Set this attribute to true to specify that this listener should accept HTTP connections
instead of plain AMQP connections.

httpRootDir

Specify the absolute path to the directory that contains the web console HTML files. The
default directory is the stand-alone console installation directory, usually /usr/share/qpid-
dispatch/console.

3. If you want to secure access to the console, secure the listener.
For more information, see Section 9.2, “Securing incoming client connections” . This example
adds basic user name and password authentication using SASL PLAIN:

listener {

CHAPTER 13. MONITORING USING AMQ CONSOLE

79

 host: 0.0.0.0
 port: 8672
 role: normal
 http: true
 httpRootDir: /usr/share/qpid-dispatch/console
 authenticatePeer: yes
 saslMechanisms: PLAIN
}

4. If you want to set up access to the web console from any other router in the router network,
repeat this procedure for each router.

13.2. ACCESSING AMQ CONSOLE

You can access the web console from a web browser.

Procedure

1. In a web browser, navigate to the web console URL.
The web console URL is the <host>:<port> from the listener that you created to serve the web
console. For example: localhost:8672.

The AMQ Console opens. If you set up user name and password authentication, the Connect
tab is displayed.

2. If necessary, log in to the web console.
If you set up user name and password authentication, enter your user name and password to
access the web console.

The syntax for the user name is <user>@<domain>. For example: admin@my-domain.

13.3. MONITORING THE ROUTER NETWORK USING AMQ CONSOLE

The web console provides several sections that you can use to monitor the router network.

This section… Provides…

Overview Aggregated information about the router network. This information includes the
following:

Dashboard (shows router network statistics)

Routers

Addresses

Links

Connections

Logs

Red Hat AMQ 7.7 Using AMQ Interconnect

80

Visualizations Graphical view of the router network. You can see the following types of
visualizations:

Topology
Topology of the router network, including routers, clients, and brokers. This
visualization also shows how messages are flowing through the network.

Message flow
A chord diagram showing the real-time message flow by address.

Details Detailed configuration information about each AMQP management entity, for
each router in the router network. You can view and change the configuration of
any of the routers in the network.

This section… Provides…

CHAPTER 13. MONITORING USING AMQ CONSOLE

81

CHAPTER 14. MONITORING USING QDSTAT

The qdstat tool is a command-line tool for monitoring the status and performance of AMQ Interconnect
router networks.

14.1. SYNTAX FOR USING QDSTAT

You can use qdstat with the following syntax:

$ qdstat <option> [<connection-options>] [<secure-connection-options>]

This specifies:

An option for the type of information to view.

One or more optional connection options to specify a router for which to view the information.
If you do not specify a connection option, qdstat connects to the router listening on localhost
and the default AMQP port (5672).

The secure connection options if the router for which you want to view information only accepts
secure connections.

Additional resources

For more information about qdstat, see the qdstat man page.

14.2. COMMANDS FOR MONITORING THE ROUTER NETWORK

You can use qdstat to view the status of routers on your router network. For example, you can view
information about the attached links and configured addresses, available connections, and nodes in the
router network.

To… Use this command…

Create a state dump containing all statistics for all
routers

A state dump shows the current operational state of
the router network.

$ qdstat --all-routers --all-entities

If you run this command on an interior router, it
displays the statistics for all interior routers. If you run
the command on an edge router, it displays the
statistics for only that edge router.

Create a state dump containing a single statistic for
all routers $ qdstat -l|-a|-c|--autolinks|--linkroutes|-g|-m -

-all-routers

If you run this command on an interior router, it
displays the statistic for all interior routers. If you run
the command on an edge router, it displays the
statistic for only that edge router.

Red Hat AMQ 7.7 Using AMQ Interconnect

82

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdstat.html

Create a state dump containing all statistics for a
single router $ qdstat --all-entities

This command shows the statistics for the local
router only.

View general statistics for a router
$ qdstat -g [all-routers|<connection-options>]

View a list of connections to a router
$ qdstat -c [all-routers|<connection-options>]

View the AMQP links attached to a router

You can view a list of AMQP links attached to the
router from clients (sender/receiver), from or to
other routers into the network, to other containers
(for example, brokers), and from the tool itself.

$ qdstat -l [all-routers|<connection-options>]

View known routers on the router network
$ qdstat -n [all-routers|<connection-options>]

View the addresses known to a router
$ qdstat -a [all-routers|<connection-options>]

View a router’s autolinks
$ qdstat --autolinks [all-routers|<connection-
options>]

View the status of a router’s link routes
$ qdstat --linkroutes [all-routers|<connection-
options>]

View a router’s memory consumption
$ qdstat -m [all-routers|<connection-options>]

To… Use this command…

Additional resources

For more information about the fields displayed by each qdstat command, see the qdstat man
page.

CHAPTER 14. MONITORING USING QDSTAT

83

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdstat.html

CHAPTER 15. MANAGING USING QDMANAGE

The qdmanage tool is a command-line tool for viewing and modifying the configuration of a running
router at runtime.

NOTE

If you make a change to a router using qdmanage, the change takes effect immediately,
but is lost if the router is stopped. If you want to make a permanent change to a router’s
configuration, you must edit the router’s /etc/qpid-dispatch/qdrouterd.conf
configuration file.

You can use qdmanage with the following syntax:

$ qdmanage [<connection-options>] <operation> [<options>]

This specifies:

One or more optional connection options to specify the router on which to perform the
operation, or to supply security credentials if the router only accepts secure connections.
If you do not specify any connection options, qdmanage connects to the router listening on
localhost and the default AMQP port (5672).

The operation to perform on the router.

One or more optional options to specify a configuration entity on which to perform the
operation or how to format the command output.

When you enter a qdmanage command, it is executed as an AMQP management operation request, and
then the response is returned as command output in JSON format.

For example, the following command executes a query operation on a router, and then returns the
response in JSON format:

$ qdmanage query --type listener
[
 {
 "stripAnnotations": "both",
 "addr": "127.0.0.1",
 "multiTenant": false,
 "requireSsl": false,
 "idleTimeoutSeconds": 16,
 "saslMechanisms": "ANONYMOUS",
 "maxFrameSize": 16384,
 "requireEncryption": false,
 "host": "0.0.0.0",
 "cost": 1,
 "role": "normal",
 "http": false,
 "maxSessions": 32768,
 "authenticatePeer": false,
 "type": "org.apache.qpid.dispatch.listener",
 "port": "amqp",
 "identity": "listener/0.0.0.0:amqp",

Red Hat AMQ 7.7 Using AMQ Interconnect

84

 "name": "listener/0.0.0.0:amqp"
 }
]

Additional resources

For more information about qdmanage, see the qdmanage man page.

CHAPTER 15. MANAGING USING QDMANAGE

85

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdmanage.html

CHAPTER 16. TROUBLESHOOTING AMQ INTERCONNECT
You can use the AMQ Interconnect logs to diagnose and troubleshoot error and performance issues
with the routers in your router network.

16.1. VIEWING LOG ENTRIES

You may need to view log entries to diagnose errors, performance problems, and other important issues.
A log entry consists of an optional timestamp, the logging module, the logging level, and the log
message.

Procedure

Do one of the following:

View log entries on the console.
By default, events are logged to the console, and you can view them there. However, if the
output attribute is set for a particular logging module, then you can find those log entries in
the specified location (stderr, syslog, or a file).

Use the qdstat --log command to view recent log entries.
You can use the --limit parameter to limit the number of log entries that are displayed. For
more information about qdstat, see qdstat man page.

This example displays the last three log entries for Router.A:

$ qdstat --log --limit=3 -r ROUTER.A
Wed Jun 7 17:49:32 2019 ROUTER (none) Core action 'link_deliver'
Wed Jun 7 17:49:32 2019 ROUTER (none) Core action 'send_to'
Wed Jun 7 17:49:32 2019 SERVER (none) [2]:0 -> @flow(19) [next-incoming-id=1,
incoming-window=61, next-outgoing-id=0, outgoing-window=2147483647, handle=0,
delivery-count=1, link-credit=250, drain=false]

Additional resources

For more information about configuring logging modules, see Section 11.2, “Configuring default
logging”.

16.2. TROUBLESHOOTING USING LOGS

You can use AMQ Interconnect log entries to help diagnose error and performance issues with the
routers in your network.

Example 16.1. Troubleshooting connections and links

In this example, ROUTER logs show the lifecycle of a connection and a link that is associated with it.

2019-04-05 14:54:38.037248 -0400 ROUTER (info) [C1] Connection Opened: dir=in
host=127.0.0.1:55440 vhost= encrypted=no auth=no user=anonymous container_id=95e55424-
6c0a-4a5c-8848-65a3ea5cc25a props= 1
2019-04-05 14:54:38.038137 -0400 ROUTER (info) [C1][L6] Link attached: dir=in source={<none>
expire:sess} target={$management expire:sess} 2

Red Hat AMQ 7.7 Using AMQ Interconnect

86

https://qpid.apache.org/releases/qpid-dispatch-1.12.0/man/qdstat.html

1

2

3

4

1

2

1

2019-04-05 14:54:38.041103 -0400 ROUTER (info) [C1][L6] Link lost: del=1 presett=0 psdrop=0
acc=1 rej=0 rel=0 mod=0 delay1=0 delay10=0 3
2019-04-05 14:54:38.041154 -0400 ROUTER (info) [C1] Connection Closed 4

The connection is opened. Each connection has a unique ID (C1). The log also shows some
information about the connection.

A link is attached over the connection. The link is identified with a unique ID (L6). The log also
shows the direction of the link, and the source and target addresses.

The link is detached. The log shows the link’s terminal statistics.

The connection is closed.

NOTE

If necessary, you can use qdmanage to enable protocol-level trace logging for a
particular connection. You can use this to trace the AMQP frames. For example:

$ qdmanage update --type=connection --id=C1 enableProtocolTrace=true

Example 16.2. Troubleshooting the network topology

In this example, on Router.A, the ROUTER_HELLO logs show that it is connected to Router.B, and
that Router.B is connected to Router.A and Router.C:

Tue Jun 7 13:50:21 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.B area=0
inst=1465307413 seen=['Router.A', 'Router.C']) 1
Tue Jun 7 13:50:21 2016 ROUTER_HELLO (trace) SENT: HELLO(id=Router.A area=0
inst=1465307416 seen=['Router.B']) 2
Tue Jun 7 13:50:22 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.B area=0
inst=1465307413 seen=['Router.A', 'Router.C'])
Tue Jun 7 13:50:22 2016 ROUTER_HELLO (trace) SENT: HELLO(id=Router.A area=0
inst=1465307416 seen=['Router.B'])

Router.A received a Hello message from Router.B, which can see Router.A and Router.C.

Router.A sent a Hello message to Router.B, which is the only router it can see.

On Router.B, the ROUTER_HELLO log shows the same router topology from a different
perspective:

Tue Jun 7 13:50:18 2016 ROUTER_HELLO (trace) SENT: HELLO(id=Router.B area=0
inst=1465307413 seen=['Router.A', 'Router.C']) 1
Tue Jun 7 13:50:18 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.A area=0
inst=1465307416 seen=['Router.B']) 2
Tue Jun 7 13:50:19 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.C area=0
inst=1465307411 seen=['Router.B']) 3

Router.B sent a Hello message to Router.A and Router.C.

CHAPTER 16. TROUBLESHOOTING AMQ INTERCONNECT

87

2

3

1

2

3

4

5

Router.B received a Hello message from Router.A, which can only see Router.B.

Router.B received a Hello message from Router.C, which can only see Router.B.

Example 16.3. Tracing the link state between routers

Periodically, each router sends a Link State Request (LSR) to the other routers and receives a Link
State Update (LSU) with the requested information. Exchanging the above information, each router
can compute the next hops in the topology, and the related costs.

In this example, the ROUTER_LS logs show the RA, LSR, and LSU messages sent between three
routers:

Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSR(id=Router.A area=0) to: Router.C
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSR(id=Router.A area=0) to: Router.B
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: RA(id=Router.A area=0 inst=1465308600
ls_seq=1 mobile_seq=1) 1
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: LSU(id=Router.B area=0
inst=1465308595 ls_seq=2 ls=LS(id=Router.B area=0 ls_seq=2 peers={'Router.A': 1L, 'Router.C':
1L})) 2
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: LSR(id=Router.B area=0)
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSU(id=Router.A area=0 inst=1465308600
ls_seq=1 ls=LS(id=Router.A area=0 ls_seq=1 peers={'Router.B': 1}))
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: RA(id=Router.C area=0 inst=1465308592
ls_seq=1 mobile_seq=0)
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSR(id=Router.A area=0) to: Router.C
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: LSR(id=Router.C area=0) 3
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) SENT: LSU(id=Router.A area=0 inst=1465308600
ls_seq=1 ls=LS(id=Router.A area=0 ls_seq=1 peers={'Router.B': 1}))
Tue Jun 7 14:10:02 2016 ROUTER_LS (trace) RCVD: LSU(id=Router.C area=0
inst=1465308592 ls_seq=1 ls=LS(id=Router.C area=0 ls_seq=1 peers={'Router.B': 1L})) 4
Tue Jun 7 14:10:03 2016 ROUTER_LS (trace) Computed next hops: {'Router.C': 'Router.B',
'Router.B': 'Router.B'} 5
Tue Jun 7 14:10:03 2016 ROUTER_LS (trace) Computed costs: {'Router.C': 2L, 'Router.B': 1}
Tue Jun 7 14:10:03 2016 ROUTER_LS (trace) Computed valid origins: {'Router.C': [], 'Router.B':
[]}

Router.A sent LSR requests and an RA advertisement to the other routers on the network.

Router.A received an LSU from Router.B, which has two peers: Router.A, and Router.C (with a
cost of 1).

Router.A received an LSR from both Router.B and Router.C, and replied with an LSU.

Router.A received an LSU from Router.C, which only has one peer: Router.B (with a cost of 1).

After the LSR and LSU messages are exchanged, Router.A computed the router topology with
the related costs.

Example 16.4. Tracing the state of mobile addresses attached to a router

Red Hat AMQ 7.7 Using AMQ Interconnect

88

1

2

3

4

5

In this example, the ROUTER_MA logs show the Mobile Address Request (MAR) and Mobile
Address Update (MAU) messages sent between three routers:

Tue Jun 7 14:27:20 2016 ROUTER_MA (trace) SENT: MAU(id=Router.A area=0 mobile_seq=1
add=['Cmy_queue', 'Dmy_queue', 'M0my_queue_wp'] del=[]) 1
Tue Jun 7 14:27:21 2016 ROUTER_MA (trace) RCVD: MAR(id=Router.C area=0 have_seq=0)
2

Tue Jun 7 14:27:21 2016 ROUTER_MA (trace) SENT: MAU(id=Router.A area=0 mobile_seq=1
add=['Cmy_queue', 'Dmy_queue', 'M0my_queue_wp'] del=[])
Tue Jun 7 14:27:22 2016 ROUTER_MA (trace) RCVD: MAR(id=Router.B area=0 have_seq=0)
3

Tue Jun 7 14:27:22 2016 ROUTER_MA (trace) SENT: MAU(id=Router.A area=0 mobile_seq=1
add=['Cmy_queue', 'Dmy_queue', 'M0my_queue_wp'] del=[])
Tue Jun 7 14:27:39 2016 ROUTER_MA (trace) RCVD: MAU(id=Router.C area=0 mobile_seq=1
add=['M0my_test'] del=[]) 4
Tue Jun 7 14:27:51 2016 ROUTER_MA (trace) RCVD: MAU(id=Router.C area=0 mobile_seq=2
add=[] del=['M0my_test']) 5

Router.A sent MAU messages to the other routers in the network to notify them about the
addresses added for my_queue and my_queue_wp.

Router.A received a MAR message in response from Router.C.

Router.A received another MAR message in response from Router.B.

Router.C sent a MAU message to notify the other routers that it added and address for
my_test.

Router.C sent another MAU message to notify the other routers that it deleted the address for
my_test (because the receiver is detached).

Example 16.5. Finding information about messages sent and received by a router

In this example, the MESSAGE logs show that Router.A has sent and received some messages
related to the Hello protocol, and sent and received some other messages on a link for a mobile
address:

Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending
Message{to='amqp:/_topo/0/Router.B/qdrouter'
body='\d1\00\00\00\1b\00\00\00\04\a1\02id\a1\08R'} on link qdlink.p9XmBm19uDqx50R
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Received
Message{to='amqp:/_topo/0/Router.A/qdrouter' body='\d1\00\00\00\8e\00\00\00
\a1\06ls_se'} on link qdlink.phMsJOq7YaFsGAG
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Received Message{
body='\d1\00\00\00\10\00\00\00\02\a1\08seque'} on link qdlink.FYHqBX+TtwXZHfV
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending Message{
body='\d1\00\00\00\10\00\00\00\02\a1\08seque'} on link qdlink.yU1tnPs5KbMlieM
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending Message{to='amqp:/_local/qdhello'
body='\d1\00\00\00G\00\00\00\08\a1\04seen\d0'} on link qdlink.p9XmBm19uDqx50R
Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending
Message{to='amqp:/_topo/0/Router.C/qdrouter'
body='\d1\00\00\00\1b\00\00\00\04\a1\02id\a1\08R'} on link qdlink.p9XmBm19uDqx50R

CHAPTER 16. TROUBLESHOOTING AMQ INTERCONNECT

89

Example 16.6. Tracking configuration changes to a router

In this example, the AGENT logs show that on Router.A, address, linkRoute, and autoLink entities
were added to the router’s configuration file. When the router was started, the AGENT module
applied these changes, and they are now viewable in the log:

Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity: ConnectorEntity(addr=127.0.0.1,
allowRedirect=True, cost=1, host=127.0.0.1, identity=connector/127.0.0.1:5672:BROKER,
idleTimeoutSeconds=16, maxFrameSize=65536, name=BROKER, port=5672, role=route-
container, stripAnnotations=both, type=org.apache.qpid.dispatch.connector,
verifyHostname=True)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAddressEntity(distribution=closest, identity=router.config.address/0,
name=router.config.address/0, prefix=my_address,
type=org.apache.qpid.dispatch.router.config.address, waypoint=False)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAddressEntity(distribution=balanced, identity=router.config.address/1,
name=router.config.address/1, prefix=my_queue_wp,
type=org.apache.qpid.dispatch.router.config.address, waypoint=True)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigLinkrouteEntity(connection=BROKER, direction=in, distribution=linkBalanced,
identity=router.config.linkRoute/0, name=router.config.linkRoute/0, prefix=my_queue,
type=org.apache.qpid.dispatch.router.config.linkRoute)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigLinkrouteEntity(connection=BROKER, direction=out, distribution=linkBalanced,
identity=router.config.linkRoute/1, name=router.config.linkRoute/1, prefix=my_queue,
type=org.apache.qpid.dispatch.router.config.linkRoute)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAutolinkEntity(address=my_queue_wp, connection=BROKER, direction=in,
identity=router.config.autoLink/0, name=router.config.autoLink/0,
type=org.apache.qpid.dispatch.router.config.autoLink)
Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAutolinkEntity(address=my_queue_wp, connection=BROKER, direction=out,
identity=router.config.autoLink/1, name=router.config.autoLink/1,
type=org.apache.qpid.dispatch.router.config.autoLink)

Example 16.7. Troubleshooting policy and vhost access rules

In this example, the POLICY logs show that this router has no limits on maximum connections, and
the default application policy is disabled:

Tue Jun 7 15:07:32 2016 POLICY (info) Policy configured maximumConnections: 0, policyFolder:
'', access rules enabled: 'false'
Tue Jun 7 15:07:32 2016 POLICY (info) Policy fallback defaultApplication is disabled

Example 16.8. Diagnosing errors

In this example, the ERROR logs show that the router failed to start when an incorrect path was
specified for the router’s configuration file:

Red Hat AMQ 7.7 Using AMQ Interconnect

90

$ qdrouterd --conf my_config
Wed Jun 15 09:53:28 2016 ERROR (error) Python: Exception: Cannot load configuration file
my_config: [Errno 2] No such file or directory: 'my_config'
Wed Jun 15 09:53:28 2016 ERROR (error) Traceback (most recent call last):
 File "/usr/lib/qpid-dispatch/python/qpid_dispatch_internal/management/config.py", line 155, in
configure_dispatch
 config = Config(filename)
 File "/usr/lib/qpid-dispatch/python/qpid_dispatch_internal/management/config.py", line 41, in
__init__
 self.load(filename, raw_json)
 File "/usr/lib/qpid-dispatch/python/qpid_dispatch_internal/management/config.py", line 123, in
load
 with open(source) as f:
Exception: Cannot load configuration file my_config: [Errno 2] No such file or directory: 'my_config'

Wed Jun 15 09:53:28 2016 MAIN (critical) Router start-up failed: Python: Exception: Cannot load
configuration file my_config: [Errno 2] No such file or directory: 'my_config'
qdrouterd: Python: Exception: Cannot load configuration file my_config: [Errno 2] No such file or
directory: 'my_config'

Additional resources

For more information about logging modules, see Section 11.1, “Logging modules” .

CHAPTER 16. TROUBLESHOOTING AMQ INTERCONNECT

91

APPENDIX A. USING YOUR SUBSCRIPTION
AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

A.1. ACCESSING YOUR ACCOUNT

Procedure

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

A.2. ACTIVATING A SUBSCRIPTION

Procedure

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

A.3. DOWNLOADING RELEASE FILES

To access .zip, .tar.gz, and other release files, use the customer portal to find the relevant files for
download. If you are using RPM packages or the Red Hat Maven repository, this step is not required.

Procedure

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ entries in the INTEGRATION AND AUTOMATION category.

3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
downloaded release files, this step is not required.

Procedure

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

Red Hat AMQ 7.7 Using AMQ Interconnect

92

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com

4. Use the listed command in your system terminal to complete the registration.

For more information, see How to Register and Subscribe a System to the Red Hat Customer Portal .

Revised on 2020-06-23 07:19:13 UTC

APPENDIX A. USING YOUR SUBSCRIPTION

93

https://access.redhat.com/solutions/253273

	Table of Contents
	PART I. OVERVIEW
	CHAPTER 1. OVERVIEW OF AMQ INTERCONNECT
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. DOCUMENT CONVENTIONS

	PART II. LEARN
	CHAPTER 2. IMPORTANT TERMS AND CONCEPTS
	2.1. OVERVIEW OF AMQP
	2.2. WHAT ROUTERS ARE
	2.3. HOW ROUTERS ROUTE MESSAGES
	2.4. ROUTER SECURITY
	2.5. ROUTER MANAGEMENT

	PART III. GET STARTED
	CHAPTER 3. GETTING STARTED
	3.1. INSTALLING AMQ INTERCONNECT ON RED HAT ENTERPRISE LINUX
	3.2. EXPLORING THE DEFAULT ROUTER CONFIGURATION FILE
	3.3. STARTING THE ROUTER
	3.4. SENDING TEST MESSAGES
	3.5. NEXT STEPS

	PART IV. INSTALL
	CHAPTER 4. AMQ INTERCONNECT DEPLOYMENT GUIDELINES
	4.1. ROUTER OPERATING MODES
	4.2. SECURITY GUIDELINES
	4.3. ROUTER CONNECTION GUIDELINES
	Inter-router connections are bidirectional
	Factors that affect the direction of connection establishment

	CHAPTER 5. INSTALLING AMQ INTERCONNECT
	5.1. INSTALLING AMQ INTERCONNECT ON RED HAT ENTERPRISE LINUX
	5.2. PREPARING ROUTER CONFIGURATIONS
	5.3. STARTING A ROUTER

	CHAPTER 6. UPGRADING AMQ INTERCONNECT
	PART V. CONFIGURE
	CHAPTER 7. CONFIGURING ROUTER PROPERTIES
	CHAPTER 8. CONFIGURING NETWORK CONNECTIONS
	8.1. CONNECTING ROUTERS
	8.2. LISTENING FOR CLIENT CONNECTIONS
	8.3. CONNECTING TO EXTERNAL AMQP CONTAINERS
	8.4. UNDERSTANDING CONNECTION FAILOVER

	CHAPTER 9. SECURING NETWORK CONNECTIONS
	9.1. SECURING CONNECTIONS BETWEEN ROUTERS
	9.2. SECURING INCOMING CLIENT CONNECTIONS
	9.2.1. Enabling SSL/TLS encryption
	9.2.2. Enabling SSL/TLS client authentication
	9.2.3. Enabling user name and password authentication
	9.2.4. Integrating with Kerberos

	9.3. SECURING OUTGOING CONNECTIONS
	9.3.1. Connecting using one-way SSL/TLS authentication
	9.3.2. Connecting using mutual SSL/TLS authentication
	9.3.3. Connecting using user name and password authentication

	CHAPTER 10. CONFIGURING AUTHORIZATION
	10.1. TYPES OF POLICIES
	10.2. HOW POLICIES ENFORCE CONNECTION AND RESOURCE LIMITS
	10.3. SETTING GLOBAL LIMITS
	10.4. SETTING CONNECTION AND RESOURCE LIMITS FOR MESSAGING ENDPOINTS
	10.4.1. Enabling vhost policies
	10.4.2. Creating vhost policies
	10.4.3. Creating vhost policies as JSON files
	10.4.4. Setting resource limits for outgoing connections
	10.4.5. Methods for specifying vhost policy source and target addresses
	10.4.6. Vhost policy hostname pattern matching rules
	10.4.7. Vhost policy examples

	CHAPTER 11. CONFIGURING LOGGING
	11.1. LOGGING MODULES
	11.2. CONFIGURING DEFAULT LOGGING

	CHAPTER 12. CONFIGURING ROUTING
	12.1. CONFIGURING MESSAGE ROUTING
	12.1.1. Understanding message routing
	12.1.1.1. Message routing flow control
	12.1.1.2. Addresses
	12.1.1.3. Routing patterns
	12.1.1.4. Message settlement and reliability

	12.1.2. Configuring address semantics
	12.1.3. Configuring addresses for prioritized message delivery
	12.1.4. Configuring brokered messaging
	12.1.4.1. How AMQ Interconnect enables brokered messaging
	12.1.4.2. Routing messages through broker queues
	12.1.4.3. Handling undeliverable messages

	12.1.5. Address pattern matching

	12.2. CREATING LINK ROUTES
	12.2.1. Understanding link routing
	12.2.1.1. Link routing flow control
	12.2.1.2. Link route addresses
	12.2.1.3. Routing patterns for link routing

	12.2.2. Creating a link route
	12.2.3. Link route example: Connecting clients and brokers on different networks
	Router configuration
	How the client receives messages

	PART VI. MANAGE
	CHAPTER 13. MONITORING USING AMQ CONSOLE
	13.1. SETTING UP ACCESS TO AMQ CONSOLE
	13.2. ACCESSING AMQ CONSOLE
	13.3. MONITORING THE ROUTER NETWORK USING AMQ CONSOLE

	CHAPTER 14. MONITORING USING QDSTAT
	14.1. SYNTAX FOR USING QDSTAT
	14.2. COMMANDS FOR MONITORING THE ROUTER NETWORK

	CHAPTER 15. MANAGING USING QDMANAGE
	CHAPTER 16. TROUBLESHOOTING AMQ INTERCONNECT
	16.1. VIEWING LOG ENTRIES
	16.2. TROUBLESHOOTING USING LOGS

	APPENDIX A. USING YOUR SUBSCRIPTION
	A.1. ACCESSING YOUR ACCOUNT
	A.2. ACTIVATING A SUBSCRIPTION
	A.3. DOWNLOADING RELEASE FILES
	A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

