
Red Hat AMQ 6.3

Using Networks of Brokers

Networking multiple brokers for better performance

Last Updated: 2020-10-23

Red Hat AMQ 6.3 Using Networks of Brokers

Networking multiple brokers for better performance

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Message brokers can be connected together to form a robust cluster. Once connected the brokers
can more easily distribute load and provide more robust fault tolerance.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
OVERVIEW
NETWORK OF BROKERS
DYNAMIC NETWORKS

CHAPTER 2. NETWORK CONNECTORS
OVERVIEW
ACTIVE CONSUMERS
SUBSCRIPTIONS
PROPAGATION OF SUBSCRIPTIONS
NETWORK CONNECTOR
SINGLE CONNECTOR
CONNECTORS IN EACH DIRECTION
DUPLEX CONNECTOR
MULTIPLE CONNECTORS
CONDUIT SUBSCRIPTIONS

CHAPTER 3. DYNAMIC AND STATIC PROPAGATION
OVERVIEW
DYNAMIC PROPAGATION
STATIC PROPAGATION
DUPLEX MODE AND STATIC PROPAGATION
SELF-AVOIDING PATHS
BROKERID AND SELF-AVOIDING PATHS
BROKER ID AND BROKER NAME

CHAPTER 4. DESTINATION FILTERING
OVERVIEW
DESTINATION WILDCARDS
FILTERING DESTINATIONS BY INCLUSION
FILTERING DESTINATIONS BY EXCLUSION
COMBINING INCLUSIVE AND EXCLUSIVE FILTERS

CHAPTER 5. USING JMS MESSAGE SELECTORS
OVERVIEW
SCENARIOS THAT DO NOT WORK
RESOLVING THE PROBLEM

CHAPTER 6. NETWORK TOPOLOGIES
OVERVIEW
CONCENTRATOR TOPOLOGY
HUB AND SPOKES TOPOLOGY
TREE TOPOLOGY
MESH TOPOLOGY
COMPLETE GRAPH

CHAPTER 7. OPTIMIZING ROUTES
7.1. INTRODUCTION TO OPTIMIZING ROUTES
7.2. CHOOSING THE SHORTEST ROUTE
7.3. SUPPRESSING DUPLICATE ROUTES

CHAPTER 8. DISCOVERING BROKERS
8.1. DISCOVERY AGENTS

4
4
4
4

5
5
5
5
5
6
6
8
8
9

10

12
12
12
13
15
17
17
18

19
19
19

20
20
21

22
22
22
23

25
25
25
26
26
27
28

30
30
30
32

35
35

Table of Contents

1

. .

. .

. .

8.2. DYNAMIC DISCOVERY PROTOCOL
8.3. FANOUT PROTOCOL

CHAPTER 9. LOAD BALANCING
9.1. BALANCING CONSUMER LOAD
9.2. MANAGING PRODUCER LOAD

CHAPTER 10. JMS-TO-JMS BRIDGE
10.1. BRIDGE ARCHITECTURE
10.2. APACHE CAMEL JMS-TO-JMS BRIDGE
10.3. NATIVE ACTIVEMQ JMS-TO-JMS BRIDGE (DEPRECATED)

INDEX

40
42

46
46
49

51
51
52
59

78

Red Hat AMQ 6.3 Using Networks of Brokers

2

Table of Contents

3

CHAPTER 1. INTRODUCTION

Abstract

Distributing your brokers can provide a number of benefits including fault tolerance, load balancing, and
network segmentation. Red Hat JBoss A-MQ allows you to federate your brokers into a network of
brokers so that distributed brokers can share information and route messages as needed.

OVERVIEW

For many applications, using a single message broker is sufficient. However, there are many cases where
using multiple interconnected brokers is more appropriate. For example, if you need to ensure that your
application is continuously available, if your application needs to process large volumes of messages, or
if your integration solution calls for message processing across distributed location a network of brokers
will work better than a single message broker.

Red Hat JBoss A-MQ facilitates these use cases by making it possible to build up a network of brokers.
A network of brokers is a set of two or more brokers connected together by network connectors. All of
the brokers in the network share information about the clients and destinations each broker hosts. The
connected brokers use this information to route messages through the network.

NETWORK OF BROKERS

A network of brokers is created when one broker establishes a network connector to another broker.
Once the network connector is established the broker that established the connection discovers
information about the destinations being hosted on the other broker and which consumers are actively
listening for messages on the destinations. Using this information, the first broker can route messages
from its producers to consumers on the connected broker. A simple network of brokers, such as this,
spreads load between the two brokers, allows each broker to be configured for specific needs, and
partitions the producers and consumers.

A network of brokers can be expanded by introducing more brokers to the network. This allows you to
build up sophisticated network topologies. You can also create bidirectional connections between
brokers to allow for more sophisticated message routing.

DYNAMIC NETWORKS

To create a robust network, it is important to be able to deploy brokers dynamically through out your
infrastructure. It is also important to be able to add and remove brokers as needed. JBoss A-MQ
facilitates this with a number of discovery protocols. These protocols allow brokers and clients to
determine a list of active brokers. Brokers can automatically add new brokers to a network of brokers
and removes inactive brokers. Clients always have a list of brokers that are available if they need to
failover to a new broker.

Red Hat AMQ 6.3 Using Networks of Brokers

4

CHAPTER 2. NETWORK CONNECTORS

Abstract

The network connector is the glue that binds a network of brokers. They define the pathways between
the brokers and are responsible for controlling how messages propagate throughout the network.

OVERVIEW

Network connectors define the broker-to-broker links that are the basis of a broker network. This
section defines the basic options for configuring network connectors and explains the concepts that
underlie them.

ACTIVE CONSUMERS

An active consumer is a consumer that is connected to one of the brokers in the network, has indicated
to the broker which topics and queues it wants to receive messages on, and is ready to receive
messages. The broker network has the ability to keep track of active consumers, receiving notifications
whenever a consumer connects to or disconnects from the network.

SUBSCRIPTIONS

In the context of a broker network, a subscription is a block of data that represents an active consumer's
interest in receiving messages on a particular queue or on a particular topic. Brokers use the subscription
data to decide what messages to send where. Subscriptions, therefore, encapsulate all of the
information that a broker might need to route messages to a consumer, including JMS selectors and
which route to take through the broker network.

Subscriptions are inherently dynamic. If a given consumer disconnects from the broker network (thus
becoming inactive), its associated subscriptions are automatically cancelled throughout the network.

NOTE

This usage of the term, subscription, deviates from standard JMS terminology, where
there can be topic subscriptions but there is no such thing as a queue subscription. In the
context of broker networks, however, we speak of both topic subscriptions and queue
subscriptions.

PROPAGATION OF SUBSCRIPTIONS

Both topic subscriptions and queue subscriptions propagate automatically through a broker network.
That is, when a consumer connects to a broker, it passes its subscriptions to the local broker and the
local broker then forwards the subscriptions to neighbouring brokers. This process continues until the
subscriptions are propagated throughout the broker network.

Under the hood, Red Hat JBoss A-MQ implements subscription propagation using advisory messages ,
where an advisory message is a message sent through one of the special channels known as an advisory
topic. An advisory topic is essentially a reserved JMS topic used for transmitting administrative
messages. All advisory topics have names that start with the prefix, ActiveMQ.Advisory.

CHAPTER 2. NETWORK CONNECTORS

5

WARNING

In order for dynamic broker networks to function correctly, it is essential that
advisory messages are enabled (which they are by default). Make sure that you do
not disable advisory messages on any broker in the network. For example, if you are
configuring your brokers using XML, make sure that the advisorySupport attribute
on the broker element is not set to false.

In principle, it is possible to configure a static broker network when advisory
messages are disabled. See Chapter 3, Dynamic and Static Propagation for details.

NETWORK CONNECTOR

A broker network is built up by defining directed connections from one broker to another, using network
connectors. The broker that establishes the connection passes messages to the broker it is connected
to. In XML, a network connector is defined using the networkConnector element, which is a child of the
networkConnectors element.

SINGLE CONNECTOR

Figure 2.1, “Single Connector” shows a single network connector from broker A to broker B. The arrow on
the connector indicates the direction of message propagation (from A to B). Subscriptions propagate in
the opposite direction (from B to A). Because of the restriction on the direction of message flow in this
network, it is advisable to connect producers only to broker A and consumers only to broker B.
Otherwise, some messages might not be able to reach the intended consumers.

Figure 2.1. Single Connector

When the connector arrow points from A to B, this implies that the network connector is actually defined
on broker A. For example, the following fragment from broker A's configuration file shows the network
connector that connects to broker B:

Example 2.1. Single connector configuration

Red Hat AMQ 6.3 Using Networks of Brokers

6

The networkConnector element in the preceding example sets the following basic attributes:

name

Identifies this network connector instance uniquely (for example, when monitoring the broker
through JMX). If you define more than one networkConnector element on a broker, you must set
the name in order to ensure that the connector name is unique within the scope of the broker.

uri

The discovery agent URI that returns which brokers to connect to. In other words, broker A connects
to every transport URI returned by the discovery agent.

In the preceding example, the static discovery agent URI returns a single transport URI,
tcp://localhost:61002, which refers to a port opened by one of the transport connectors on broker B.

networkTTL

The network time-to-live (networkTTL) attribute specifies the maximum number of hops that a
message can make through the broker network. It is almost always necessary to set this attribute
because the default value (1) enables a message to make just one hop to a neighboring broker.

Each time a message is forwarded across a network bridge, the receiving broker's ID is appended to
an internal BrokerId array, BrokerPath. Comparison of the networkTTL's setting with the size of
BrokerPath enforces the configured number of hops.

When messages fail to propagate as expected, you can use BrokerPath, which is exposed as a string
property, to check the brokers that specific messages have traversed. Two methods are available,
and both return a comma-separated list of broker IDs:

Browsing a message via JConsole, hawtio, or a JMS browser to check its BrokerPath
property

Programmatically via getStringProperty("JMSActiveMQBrokerPath"); for example:

<beans ...>
 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="brokerA" brokerId="A" ... >
 ...
 <networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3"
 />
 </networkConnectors>
 ...
 <transportConnectors>
 <transportConnector name="openwire" uri="tcp://0.0.0.0:61001"/>
 </transportConnectors>
 </broker>
</beans>

((ActiveMQMessage)message1).getStringProperty(ActiveMQMessage.BROKER_PATH_P
ROPERTY).
 contains(localBroker.getBroker().getBrokerId().toString())

CHAPTER 2. NETWORK CONNECTORS

7

A list of returned broker IDs looks something like this:

In this example, the first ID, jdoe-ThinkPad-T222s-35488-1985672254433-0:2, is an embedded
broker that has an automatically generated ID based on machine-name, and the second and third
brokers were manually created with configured IDs.

CONNECTORS IN EACH DIRECTION

Figure 2.2, “Connectors in Each Direction” shows a pair of network connectors in each direction: one
from broker A to broker B, and one from broker B to broker A. In this network, there is no restriction on
the direction of message flow and messages can propagate freely in either direction. It follows that
producers and consumers can arbitrarily connect to either broker in this network.

Figure 2.2. Connectors in Each Direction

In order to create a connector in the reverse direction, from B to A, define a network connector on
broker B, as follows:

Example 2.2. Two way connector

DUPLEX CONNECTOR

An easier way to enable message propagation in both directions is by enabling duplex mode on an
existing connector. Figure 2.3, “Duplex Connector” shows a duplex network connector defined on broker
A. The duplex connector allows messages to propagate in both directions, but only one network
connector needs to be defined and only one network connection is created.

Figure 2.3. Duplex Connector

[ID:jdoe-ThinkPad-T222s-35488-1985672254433-0:2,
 id_broker3, id_broker2]

<beans ...>
 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="brokerB" brokerId="B"... >
 ...
 <networkConnectors>
 <networkConnector name="linkToBrokerA"
 uri="static:(tcp://localhost:61001)"
 networkTTL="3" />
 </networkConnectors>
 ...
 <transportConnectors>
 <transportConnector name="openwire" uri="tcp://0.0.0.0:61002" />
 </transportConnectors>
 </broker>
</beans>

Red Hat AMQ 6.3 Using Networks of Brokers

8

Figure 2.3. Duplex Connector

To enable duplex mode on a network connector, simply set the duplex attibute to true. For example, to
make the network connector on broker A a duplex connector, you can configure it as follows:

Example 2.3. Duplex connector configuration

NOTE

Duplex mode is particularly useful for cases where a network connection must be
established across a firewall, because only one port need be opened on the firewall to
enable bi-directional traffic.

NOTE

Duplex mode works particularly well in a hub and spoke network. The spokes only need to
know about one hub port and the hub does not need to know any of the spoke addresses
(each spoke opens a duplex network connector to the hub).

MULTIPLE CONNECTORS

It is also possible to establish multiple connectors between brokers, as long as you observe the rule that
each connector has a unique name. Figure 2.4, “Multiple Connectors” shows an example where three
network connectors are established from broker A to broker B.

Figure 2.4. Multiple Connectors

To configure multiple connectors from broker A, use a separate networkConnector element for each
connector and specify a unique name for each connector, as follows:

<networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3"
 duplex="true" />
</networkConnectors>

<networkConnectors>
 <networkConnector name="link01ToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3"
 />
 <networkConnector name="link02ToBrokerB"
 uri="static:(tcp://localhost:61002)"

CHAPTER 2. NETWORK CONNECTORS

9

Here are some potential uses for creating multiple connectors between brokers:

Spreading the load amongst multiple connections.

Defining separate configuration for topics and queues. That is, you can configure one network
connector to transmit queue subscriptions only and another network connector to transmit
topic subscriptions only.

CONDUIT SUBSCRIPTIONS

By default, after passing through a network connector, subscriptions to the same queue or subscriptions
to the same topic are automatically consolidated into a single subscription known as a conduit
subscription. Figure 2.5, “Conduit Subscriptions” shows an overview of how the topic subscriptions from
two consumers, C1 and C2, are consolidated into a single conduit subscription after propagating from
broker B to broker A.

Figure 2.5. Conduit Subscriptions

In this example, each consumer subscribes to the identical topic, t, which gives rise to the subscriptions,
C1:t and C2:t in broker B. Both of these subscriptions propagate automatically from broker B to broker
A. Because broker A has conduit subscriptions enabled, its network connector consolidates the
duplicate subscriptions, C1:t and C2:t, into a single subscription, B:t. Now, if a message on topic t is sent
to broker A, broker A sends a single copy of the message to broker B, to honor the conduit subscription,
B:t. Broker B then sends a copy of the message to each consumer, to honor the topic subscriptions, C1:t
and C2:t.

It is essential to enable conduit subscription in order to avoid duplication of topic messages. Consider

 networkTTL="3"
 />
 <networkConnector name="link03ToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3"
 />
</networkConnectors>

Red Hat AMQ 6.3 Using Networks of Brokers

10

It is essential to enable conduit subscription in order to avoid duplication of topic messages. Consider
what would happen in Figure 2.5, “Conduit Subscriptions” if conduit subscription was disabled. In this
scenario, two subscriptions, B:C1:t and B:C2:t, would be registered in broker A. Now, if a message on
topic t is sent to broker A, broker A would send two copies of the message to broker B, to honor the
topic subscriptions, B:C1:t and B:C2:t. Broker B would then send two copies of the message to each
consumer, to honor the topic subscriptions, C1:t and C2:t. In other words, each consumer would receive
the topic message twice.

Conduit subscriptions can optionally be disabled by setting the conduitSubscriptions attribute to false
on the networkConnector element. See Section 9.1, “Balancing Consumer Load” for more details.

CHAPTER 2. NETWORK CONNECTORS

11

CHAPTER 3. DYNAMIC AND STATIC PROPAGATION

Abstract

Because of the special nature of routing in a messaging system, the propagation of messages must be
inherently dynamic. That is, the broker network must keep track of the active consumers attached to the
network and the routing of messages is governed by the real-time transmission of advisory messages
(subscriptions). However, there are cases in which messages need to be propagated in the absence of
subscriptions.

OVERVIEW

The fundamental purpose of a broker network is to route messages to their intended recipients, which
are consumers that could be attached at any point in the network. The peculiar difficulty in devising
routing rules for a messaging network is that messages are sent to an abstract destination rather than a
physical destination. In other words, a message might be sent to a specific queue, but that gives you no
clue as to which broker or which consumer that message should ultimately be sent to. Contrast this with
the Internet Protocol (IP), where each message packet includes a header with an IP address that
references the physical location of the destination host.

Because of the special nature of routing in a messaging system, the propagation of messages must be
inherently dynamic. That is, the broker network must keep track of the active consumers attached to the
network and the routing of messages is governed by the real-time transmission of advisory messages
(subscriptions).

DYNAMIC PROPAGATION

Figure 3.1, “Dynamic Propagation of Queue Messages” illustrates how dynamic propagation works for
messages sent to a queue. The broker connectors in this network are simple (non-duplex).

Figure 3.1. Dynamic Propagation of Queue Messages

Red Hat AMQ 6.3 Using Networks of Brokers

12

Figure 3.1. Dynamic Propagation of Queue Messages

The dynamic message propagation in this example proceeds as follows:

1. As shown in part (a), initially, there are no consumers attached to the network. A producer, P,
connects to broker A and starts sending messages to a particular queue, TEST.FOO. Because
there are no consumers attached to the network, all of the messages accumulate in broker A.
The messages do not propagate any further at this time.

2. As shown in part (b), a consumer, C, now connects to the network at broker E and subscribes to
the same queue, TEST.FOO, to which the producer is sending messages.

3. The consumer's subscription, s, propagates through the broker network, following the reverse
arrow direction, until it reaches broker A.

4. After broker A receives the subscription, s, it knows that it can send the messages accumulated
in the queue, TEST.FOO, to the consumer, C. Based on the information in the subscription, s,
broker A sends messages along the path ABCE to reach consumer C.

STATIC PROPAGATION

Static propagation refers to message propagation that occurs in the absence of subscription
information. Sometimes, because of the way a broker network is set up, it can make sense to move
messages between brokers, even when there is no relevant subscription information.

Static propagation is configured by specifying the queue (or queues) that you want to statically
propagate. Into the relevant networkConnector element, insert staticallyIncludedDestinations as a
child element and then list the queues and topics you want to propagate using the queue and topic

CHAPTER 3. DYNAMIC AND STATIC PROPAGATION

13

child elements. For example, to specify that messages in the queue, TEST.FOO, are statically
propagated from A to B, you would define the network connector in broker A's configuration as follows:

NOTE

You can use wildcards when specifying statically included queue names or topic names—
for example, the physicalName attribute in the preceding example could be set to
TEST.*. See Chapter 4, Destination Filtering .

Consider the network shown in Figure 3.2, “Static Propagation of Queue Messages” . This network is set
up so that consumers only attach to broker D or to broker E Messages sent to the queue, TEST.FOO,
are configured to propagate statically on all on all of the network connectors, (A,B), (B,C), (C,D), and
(C,E).

Figure 3.2. Static Propagation of Queue Messages

The static message propagation in this example proceeds as follows:

1. Initially, there are no consumers attached to the network. A producer, P, connects to broker A
and sends 10 messages to the queue, TEST.FOO.

2. Because the network connector, (A,B), has enabled static propagation for the queue,
TEST.FOO, the 10 messages on broker A are forwarded to broker B.

3. Likewise, because the network connector, (B,C), has enabled static propagation for the queue,
TEST.FOO, the 10 messages on broker B are forwarded to broker C.

<networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3">
 <staticallyIncludedDestinations>
 <queue physicalName="TEST.FOO"/>
 </staticallyIncludedDestinations>
 </networkConnector>
</networkConnectors>

Red Hat AMQ 6.3 Using Networks of Brokers

14

4. Finally, because the network connectors, (C,D) and (C,E), have enabled static propagation for
the queue, TEST.FOO, the 10 messages on broker C are alternately sent to broker D and broker
E. In other words, the brokers, D and E, receive every second message. Hence, at the end of the
static propagation, there are 5 messages on broker D and 5 messages on broker E.

NOTE

Using the preceding static configuration, it is possible for messages to get stuck in a
particular broker. For example, if a consumer now connects to broker E, it will receive the
5 messages stored on broker E, but it will not receive the 5 messages stored on broker D.
The messages remain stuck on broker D until a consumer connects directly to it.

DUPLEX MODE AND STATIC PROPAGATION

It is also possible to use static propagation in combination with duplex connectors. In this case,
messages can propagate statically in either direction through the duplex connector. For example,
Figure 3.3, “Duplex Mode and Static Propagation” shows a network of four brokers, B, C, D, and E, linked
by duplex connectors. All of the connectors have enabled static propagation for the queue, TEST.FOO.

Figure 3.3. Duplex Mode and Static Propagation

CHAPTER 3. DYNAMIC AND STATIC PROPAGATION

15

Figure 3.3. Duplex Mode and Static Propagation

In part (a), the producer, P, connects to broker B and sends 10 messages to the queue, TEST.FOO. The
static message propagation then proceeds as follows:

1. Because the duplex connector, {B,C}, has enabled static propagation for the queue, TEST.FOO,
the 10 messages on broker B are forwarded to broker C.

2. Because the duplex connectors, {C,D} and {C,E}, have enabled static propagation for the
queue, TEST.FOO, the 10 messages on broker C are alternately sent to broker D and broker E.
At the end of the static propagation, there are 5 messages on broker D and 5 messages on
broker E.

In part (b), the producer, P, connects to broker C and sends 9 messages to the queue, TEST.FOO.
Because static propagation is enabled on all of the connectors, broker C sends messages alternately to
B, D, and E. At the end of the static propagation, there are 3 messages on broker B, 3 messages on
broker D, and 3 messages on broker E.

Red Hat AMQ 6.3 Using Networks of Brokers

16

SELF-AVOIDING PATHS

Brokers implement a strategy of self-avoiding paths in order to prevent pathalogical routes from
occurring in a statically configured broker network. For example, consider what could happen, if a closed
loop occurs in a network with statically configured duplex connectors. If the brokers followed a strategy
of simply forwarding messages to a neighbouring broker (or brokers), messages could end up circulating
around the closed loop for ever. This does not happen, however, because the broker network applies a
strategy of self-avoiding paths to static propagation. For example, Figure 3.4, “Self-Avoiding Paths”
shows a network consisting of three brokers, A, B, and C, linked by statically configured duplex
connectors. The path ABCA forms a closed loop in this network.

Figure 3.4. Self-Avoiding Paths

The static message propagation in this example proceeds as follows:

1. The producer, P, connects to broker A and sends 100 messages to the queue, TEST.FOO.

2. The 100 messages on broker A are alternately sent to broker B and broker C. The 50 messages
sent to broker B are immediately forwarded to broker C, but at this point the messages stop
moving and remain on broker C. The self-avoiding path strategy dictates that messages can not
return to a broker they have already visited.

3. Similarly, the 50 messages sent from broker A to broker C are immediately forwarded to broker
B, but do not travel any further than that.

BROKERID AND SELF-AVOIDING PATHS

Red Hat JBoss A-MQ uses broker ID values (set by the broker element's brokerId attribute) to figure
out self-avoiding paths. By default, the broker ID value is generated dynamically and assigned a new
value each time a broker starts up. If your network topology relies on self-avoiding paths, however, this
default behavior is not appropriate. If a broker is stopped and restarted, it would rejoin the network with
a different broker ID, which confuses the self-avoiding path algorithm and can lead to stuck messages.

In the context of a broker network, therefore, it is recommended that you set the broker ID explicitly on

CHAPTER 3. DYNAMIC AND STATIC PROPAGATION

17

In the context of a broker network, therefore, it is recommended that you set the broker ID explicitly on
the broker element, as shown in the following example:

NOTE

Make sure you always specify a broker ID that is unique within the current broker network.

BROKER ID AND BROKER NAME

By default, BrokerId is generated automatically, based on the host name of the machine and is used in
broker to broker communication to identify peers. BrokerName is human readable and used on the disk
to partition a store default directory and as the vm connection url. When BrokerName is transformed
into a URL or into a file name, some of the characters are replaced. This means that the broker applies
the transformation as needed. Hence it is recommended to limit the brokerName to characters that are
valid in a URL.

If the brokerId is not specified in configuration, on a restart of a broker in a network, the restarted broker
has a new unique brokerId and replay back to that broker is allowed after a restart. If the brokerId is
specified, then after a restart the identity is preserved and replay back to that broker is suppressed.

It is valid to have a restarted broker look unique and it is valid to have its identity persist between
restarts. For example, by default replay of a message back to where it came from (based on the
brokerId) is not allowed. When used with a custom network bridge filter that limits replay of messages,
specifying the brokerId is necessary to allow replay suppression to continue after the restart of a broker
in the network.

Networked brokers use the brokerName (the human readable version) in network bridge naming and
use the brokerId to prevent cycles and loops in a network topology.

<broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="brokerA" brokerId="A"... >
 ...
</broker>

Red Hat AMQ 6.3 Using Networks of Brokers

18

CHAPTER 4. DESTINATION FILTERING

Abstract

One reason to create a network of brokers is to partition message destinations to sub-domains of the
network. Red Hat JBoss A-MQ can apply filters to destination names to prevent messages for a
destination from passing through a network connector.

OVERVIEW

Typically, one of the basic tasks of managing a broker network is to partition the network so that certain
queues and topics are restricted to a sub-domain, while messages on other queues and topics are
allowed to cross domains. This kind of domain management can be achieved by applying filters at
certain points in the network. Red Hat JBoss A-MQ lets you define filters on network connectors in
order to control the flow of messages throughout the network.

JBoss A-MQ allows you to control the flow of messages in two ways:

specifying which destinations' messages can pass through a connector

excluding messages for specific destinations from passing through a connector

DESTINATION WILDCARDS

Destination names are often segmented to denote how they are related. For example, an application
may use the prefix PRICE.STOCK to denote all of the destinations that handle stock quotes. The
application may then further segment the destination names such that all stock quotes from the New
York Stock Exchange were prefixed with PRICE.STOCK.NYSE and stock quotes from NASDAQ used
the prefix PRICE.STOCK.NASDAQ. Using wildcards would be a natural way to create filters for specific
types of destinations.

Table 4.1, “Destination Name Wildcards” describes the characters can be used to define wildcard
matches for destination names.

Table 4.1. Destination Name Wildcards

Wildcard Description

. Separates segments in a path name.

* Matches any single segment in a path name.

> Matches any number of segments in a path name.

Table 4.2, “Example Destination Wildcards” shows some examples of destination wildcards and the
names they would match.

Table 4.2. Example Destination Wildcards

CHAPTER 4. DESTINATION FILTERING

19

Destination wildcard What it matches

PRICE.> Any price for any product on any exchange.

PRICE.STOCK.> Any price for a stock on any exchange.

PRICE.STOCK.NASDAQ.* Any stock price on NASDAQ.

PRICE.STOCK.*.IBM Any IBM stock price on any exchange.

FILTERING DESTINATIONS BY INCLUSION

The default behavior of a network connector is to allow messages for all destinations to pass. You can,
however, configure a network connector to only allow messages for specific destinations to pass. If you
use segmented destination names, you can use wildcards to filter groups of destinations.

You do this by adding a dynamicallyIncludedDestinations child to the network connector's
networkConnector element. The included destinations are specified using queue and topic children.
Example 4.1, “Network Connector Using Inclusive Filtering” shows configuration for a network connector
that only passes messages destined for queues with names that match TRADE.STOCK.> and topics
with names that match PRICE.STOCK.>.

Example 4.1. Network Connector Using Inclusive Filtering

IMPORTANT

Once you add the dynamicallyIncludedDestinations to a network connector's
configuration, the network connector will only pass messages for the specified
destinations.

FILTERING DESTINATIONS BY EXCLUSION

Another way of partitioning a network and create filters is to explicitly specify a list destinations whose
messages are not allowed to pass through a network connector. If you use segmented destination
names, you can use wildcards to filter groups of destinations.

You do this by adding a excludedDestinations child to the network connector's networkConnector
element. The excluded destinations are specified using queue and topic children. Example 4.2,
“Network Connector Using Exclusive Filtering” shows configuration for a network connector that blocks

<networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3">
 <dynamicallyIncludedDestinations>
 <queue physicalName="TRADE.STOCK.>"/>
 <topic physicalName="PRICE.STOCK.>"/>
 </dynamicallyIncludedDestinations>
 </networkConnector>
</networkConnectors>

Red Hat AMQ 6.3 Using Networks of Brokers

20

messages destined for queues with names that match TRADE.STOCK.NYSE.* and topics with names
that match PRICE.STOCK.NYSE.*.

Example 4.2. Network Connector Using Exclusive Filtering

COMBINING INCLUSIVE AND EXCLUSIVE FILTERS

You can combine inclusive and exclusive filtering to create complex network partitions. Example 4.3,
“Combining Exclusive and Inclusive Filters” shows a network connector that is configured to transmit
stock prices from any exchange except the NYSE and transmits orders to trade stocks for any exchange
except the NYSE.

Example 4.3. Combining Exclusive and Inclusive Filters

<networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3">
 <excludedDestinations>
 <queue physicalName="TRADE.STOCK.NYSE.*"/>
 <topic physicalName="PRICE.STOCK.NYSE.*"/>
 </excludedDestinations>
 </networkConnector>
</networkConnectors>

<networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3">
 <dynamicallyIncludedDestinations>
 <queue physicalName="TRADE.STOCK.>"/>
 <topic physicalName="PRICE.STOCK.>"/>
 </dynamicallyIncludedDestinations>
 <excludedDestinations>
 <queue physicalName="TRADE.STOCK.NYSE.*"/>
 <topic physicalName="PRICE.STOCK.NYSE.*"/>
 </excludedDestinations>
 </networkConnector>
</networkConnectors>

CHAPTER 4. DESTINATION FILTERING

21

CHAPTER 5. USING JMS MESSAGE SELECTORS

Abstract

Red Hat JBoss A-MQ supports using JMS message selectors to filter messages. When using JMS
message selectors with a network of brokers, you need to be aware of how the message selectors
interact with conduit subscriptions. The interaction can lead to some undesirable outcomes if not
properly managed.

OVERVIEW

JMS message selectors allow consumers to filter messages by testing the contents of a message's JMS
header. The selectors are specified when the consumer connects to a broker and starts listing to
messages on a particular destination. The broker then filters the messages that delivered to the
consumer.

Brokers in a network also use JMS message selectors to determine how messages are routed. A
consumer's message selectors are included in the subscription information propagated throughout the
network. All of the brokers can then use this information to filter messages before forwarding messages
through a network connector.

The one instance where message selectors are not used is when one or more consumer subscriptions are
combined into a conduit subscription. This means that the broker receiving the conduit subscription
cannot use the message selectors when determining what messages to forward.

SCENARIOS THAT DO NOT WORK

Trouble arises when message selectors are combined with conduit subscriptions for consumers that are
listening on the same queue.

Consider the broker network shown in Figure 5.1, “JMS Message Selectors and Conduit Subscriptions” .
Consumers C1 and C2 subscribe to the same queue and they also define JMS message selectors. C1
selects messages for which the region header is equal to us. C2 selects messages for which the region
header is equal to emea.

Figure 5.1. JMS Message Selectors and Conduit Subscriptions

Red Hat AMQ 6.3 Using Networks of Brokers

22

Figure 5.1. JMS Message Selectors and Conduit Subscriptions

The consumer subscriptions, s1 and s2, automatically propagate to broker A. Because these
subscriptions are both on the same queue broker A combines the subscriptions into a single conduit
subscription, cs, which does not include any selector details. When the producer P starts sending
messages to the queue, broker A forwards the messages alternately to broker B and broker C without
checking whether the messages satisfy the relevant selectors.

The best case scenario is that, by luck, the messages are forwarded to the broker with a selector that
matches the message. The worst case scenario is that all of the messages for region emea end up on
broker B and all of the messages for region us end up on broker C. Chances are that the result would be
somewhere in the middle. However, that means that at least some messages will sit at a broker where
they will never be consumed.

If the consumers were both listening to a topic instead of a queue broker A would send a copy of every
message to both networked brokers. All of the messages would get processed because C1 would
consume the messages for the US region and C2 would consumer the messages for the EMEA region.
However, any messages for the EMEA region would sit unconsumed in broker C and any messages for
the US region would sit unconsumed in broker B.

RESOLVING THE PROBLEM

When you are faced with a network of brokers suffering from the effects of combining conduit
subscriptions and message selectors and the consumers are listening to a queue, the easiest solution is
to disable conduit subscriptions at the network connector where the problem arises.

You disable conduit subscriptions by setting the networkConnector element's conduitSubscriptions

CHAPTER 5. USING JMS MESSAGE SELECTORS

23

You disable conduit subscriptions by setting the networkConnector element's conduitSubscriptions
to false. Example 5.1, “Disabling Conduit Subscriptions” shows configuration for a network connector
with conduit subscriptions disabled.

Example 5.1. Disabling Conduit Subscriptions

If the problem arises using topics, the solution is more difficult. Disabling conduit subscriptions will cause
more problems. In this case, you will need to rethink the requirements of your application. If you must use
message selectors with topics in a network of brokers, you have two options:

ensure that your network topology is such that messages won't be sent to brokers without
appropriate consumers

ensure that the orphaned messages will not create issues in your application

<networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3"
 conduitSubscriptions="false" />
</networkConnectors>

Red Hat AMQ 6.3 Using Networks of Brokers

24

CHAPTER 6. NETWORK TOPOLOGIES

Abstract

The topology of your network describes the pattern created by the pathways through your network.
Different topologies are appropriate for particular use cases.

OVERVIEW

The following examples illustrate some of the common topologies encountered real-world networks:

the section called “Concentrator topology” .

the section called “Hub and spokes topology” .

the section called “Tree topology” .

the section called “Mesh topology” .

the section called “Complete graph” .

CONCENTRATOR TOPOLOGY

If you anticipate that your system will have a large number of incoming connections that would
overwhelm a single broker, you can deploy a concentrator topology to deal with this scenario, as shown
in Figure 6.1, “Concentrator Topology” .

Figure 6.1. Concentrator Topology

The idea of the concentrator topology is that you deploy brokers in two (or more) layers in order to
funnel incoming connections into a smaller collection of services. The first layer consists of a relatively
large number of brokers, with each broker servicing a large number of incoming connections (from
producers P1 to Pn). The next layer consists of a smaller number of brokers, where each broker in the
first layer connects to all of the brokers in the second layer. With this topology, each broker in the
second layer can receive messages from any of the producers.

CHAPTER 6. NETWORK TOPOLOGIES

25

HUB AND SPOKES TOPOLOGY

The hub and spokes, as shown in Figure 6.2, “Hub and Spoke Topology” , is a topology that is relatively
easy to set up and maintain. The edges in this graph are all assumed to represent duplex network
connectors.

Figure 6.2. Hub and Spoke Topology

This topology is relatively robust. The only critical element is the hub node, so you would need to focus
your maintenance efforts on keeping the hub up and running. Routes are determinate and the diameter
of the network is always 2, no matter how many nodes are added.

TREE TOPOLOGY

The tree, as shown in Figure 6.3, “Tree Topology”, is a topology that arises naturally when a physical
network grows in an informal manner.

Figure 6.3. Tree Topology

Red Hat AMQ 6.3 Using Networks of Brokers

26

Figure 6.3. Tree Topology

For example, if the network under consideration is an ethernet LAN, R could represent the hub in the
basement of the IT department's building and A could represent a router in the ground floor of another
building. If you want to extend the LAN to the first and second floor of building A, you are unlikely to run
dedicated cables back to the IT hub for each of these floors. It is more likely that you will simply plug a
second tier of routers, A1 and A2, into the existing router, A, on the ground floor. In this way, you
effectively add another layer to the tree topology.

MESH TOPOLOGY

The mesh, as shown in Figure 6.4, “Mesh Topology” , is a topology that arises naturally in a geographic
network, when you decide to link together neighbouring hubs.

Figure 6.4. Mesh Topology

CHAPTER 6. NETWORK TOPOLOGIES

27

Figure 6.4. Mesh Topology

The diameter of a mesh increases whenever you add a node to its periphery. You must, therefore, be
careful to set the network TTL sufficiently high that your network can cope with expansion.
Alternatively, you could set up some mechanism for the central management of broker configurations.
This would enable you to increase the network TTL for all of the brokers simultaneously.

COMPLETE GRAPH

In graph theory, the complete graph on n vertices is the graph with n vertices that has edges joining
every pair of vertices. This graph is denoted by the symbol, Kn. For example, Figure 6.5, “The Complete
Graph, K5” shows the graph, K5.

Figure 6.5. The Complete Graph, K5

Red Hat AMQ 6.3 Using Networks of Brokers

28

Figure 6.5. The Complete Graph, K5

Every complete graph has a diameter of 1. Potentially, a network that is a complete graph could be
difficult to manage, because there are many connections between broker nodes. In practice, though, it is
relatively easy to set up a broker network as a complete graph, if you define all of the network
connectors to use a multicast discovery agent (see Section 8.1.4, “Multicast Discovery Agent”).

NOTE

In the complete graph topology, it is mandatory to set networkTTL=1 in the network
connector elements, in order for the broker network to function correctly.

CHAPTER 6. NETWORK TOPOLOGIES

29

CHAPTER 7. OPTIMIZING ROUTES

Abstract

It is possible, depending on your network's topology, that a message will multiple routes through the
network. Red Hat JBoss A-MQ allows you to configure the network to reduce the number of alternate
routes and choose the optimum route.

7.1. INTRODUCTION TO OPTIMIZING ROUTES

Overview

In network topologies such as a hub-and-spoke or a tree there exists a unique route between any two
brokers. For topologies, such as a mesh or a complete graph , it is possible to have multiple routes
between any two brokers. In such cases, you may need simplify the routing behavior, so that an optimum
route is preferred by the network.

Configuring routing behaviour

Red Hat JBoss A-MQ provides two configuration settings that work in conjunction to refine routing
behavior:

decreaseNetworkConsumerPriority—deprecates the priority of a network connector based on
the number of hops from the message's origin so that messages are routed along the shortest
route

suppressDuplicateQueueSubscriptions—suppresses duplicate subscriptions from
intermediary brokers so that alternative paths are reduced

IMPORTANT

To be most effective these properties should be set on all of the network connectors in
the network of brokers.

7.2. CHOOSING THE SHORTEST ROUTE

Overview

In indeterminate networks, it is typically preferable for messages to take the shortest route. This
reduces the time for the message to reach its destination, reduces the chances of the message being
caught in a broker failure, and reduces the load on the network. In general, sending messages along to
the nearest possible consumer maximizes the effectiveness of the broker network.

This is accomplished by configuring all of the connectors in your network to generate route priorities
that automatically lowers the route's priority for each network connector it must traverse In this way the
broker's can determine the shortest route between a message's producer and its consumer. In most
cases, the broker will use the shortest route. However, if the shortest route is under heavy load, the
broker will divert it to the next shortest route.

Connector configuration

To ensure that the shortest route is preferred, you need to configure all of the network connectors in

Red Hat AMQ 6.3 Using Networks of Brokers

30

To ensure that the shortest route is preferred, you need to configure all of the network connectors in
the network to create priority profiles for each of the possible routes through the network. This is done
by setting the networkConnetor element's decreaseNetworkConsumerPriority attribute to true.

Example 7.1, “Network Connector for Choosing the Shortest Route” shows a network connector
configured to determine the shortest route.

Example 7.1. Network Connector for Choosing the Shortest Route

When decreaseNetworkConsumerPriority is set to true, the route priority is determined as follows:

Local consumers (attached directly to the broker) have a priority of 0.

Network subscriptions have an initial priority of -5.

The priority of a network subscription is reduced by 1 for every network hop that it traverses.

IMPORTANT

If you choose not to enable decreaseNetworkConsumerPriority on all of the
connectors in your network, the brokers will not be able to accurately determine the
shortest route. Some network connectors will not have the proper starting priority and
will not reduce their priority as required.

Route priority and broker load

A broker prefers to send messages to the subscription with the highest priority. However, if the prefetch
buffer for that subscription is full, the broker will divert messages to the subscription with the next
highest priority.

If multiple subscriptions have the same priority, the broker distributes messages equally between those
subscriptions.

Example

Figure 7.1, “Shortest Route in a Mesh Network” illustrates the effect of activating
decreaseNetworkConsumerPriority in a broker network.

Figure 7.1. Shortest Route in a Mesh Network

<networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3"
 decreaseNetworkConsumerPriority="true" />
</networkConnectors>

CHAPTER 7. OPTIMIZING ROUTES

31

Figure 7.1. Shortest Route in a Mesh Network

In this network, there are three alternative routes connecting producer P to consumer C1: PBAFEC1
(three broker hops), PBEC1 (one broker hop), and PBCDEC1 (three broker hops). When
decreaseNetworkConsumerPriority is enabled, the route PBEC1 has highest priority, so messages
from P to C1 are sent along this route unless connector BE's prefetch buffer is full. In the case where
connector BE's prefetch buffer is full messages will be sent to route PBAFEC1 and route PBCDEC1 on
an alternating basis.

7.3. SUPPRESSING DUPLICATE ROUTES

Abstract

Configuring your network to always prefer the shortest route does not ensure deterministic routing. The

Red Hat AMQ 6.3 Using Networks of Brokers

32

alternate routes are still available under heavy load conditions. This can result in dead routes if a
consumer fails or migrates to a new broker. Red Hat JBoss A-MQ allows you to suppress the duplicate
subscriptions that create alternate routes.

Overview

Configuring your broker network to prefer the shortest route does not ensure that routing is
deterministic. Under heavy load, the brokers will use the alternate routes to optimize performance. The
danger of this is that if the message is routed along the longer alternate route and the consumer dies,
the route becomes a dead-end and the message becomes stuck.

Red Hat JBoss A-MQ allows you to configure your network connectors to suppress duplicate
subscriptions that arise from intermediary brokers. This has the effect of eliminating alternate paths
between the networked brokers because only direct connections are recognized.

Connector configuration

To suppress duplicate subscriptions you set the networkConnector element's
suppressDuplicateQueueSubscriptions attribute to true on all of the network connectors in you
network. Example 7.2, “Network Connector that Suppresses Duplicate Routes” shows a network
connector that is configured to suppress duplicate routes.

Example 7.2. Network Connector that Suppresses Duplicate Routes

Broker ID and duplicate routes

JBoss A-MQ uses the brokers' IDs to figure out duplicate routes. In order for the suppression of
duplicate routes to work reliably, you must give each broker a unique ID by explicitly setting the broker
element's brokerId for each broker in the network. Example 7.3, “Setting a Broker's ID” shows
configuration setting a broker's ID.

Example 7.3. Setting a Broker's ID

Example

Consider the network of brokers, A, B, and C, shown in Figure 7.2, “Duplicate Subscriptions in a Network” .
In this scenario, a producer, P, connects to broker A and a consumer, C1 that subscribes to messages
from P connects to broker B. The network TTL is equal to 2, so two alternative routes are possible:

<networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 suppressDuplicateQueueSubscriptions="true"/>
</networkConnectors>

<broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="brokerA" brokerId="A"... >
 ...
</broker>

CHAPTER 7. OPTIMIZING ROUTES

33

the short route: PABC1

long route: PACBC1

Figure 7.2. Duplicate Subscriptions in a Network

If you set decreaseNetworkConsumerPriority to true, the short route is preferred. and messages are
propagated along the route PABC1. However, under heavy load conditions, the short route, PABC1,
can become overloaded and in this case the broker, A, will fall back to the long route, PACBC1. The
problem with this scenario is that when the consumer, C1, shuts down, it can lead to messages getting
stuck on broker C.

Setting suppressDuplicateQueueSubscriptions attribute to true will suppress the intermediary
subscriptions that are generated between A and B. Because this subscription is suppressed the only
route left is PACC1. Routing becomes fully deterministic.

NOTE

In the example shown in Figure 7.2, “Duplicate Subscriptions in a Network” , you could
have suppressed the long route by reducing the network TTL to 1. Normally, however, in a
large network you do not have the option of reducing the network TTL arbitrarily. The
network TTL has to be large enough for messages to reach the most distant brokers in
the network.

Red Hat AMQ 6.3 Using Networks of Brokers

34

CHAPTER 8. DISCOVERING BROKERS

Abstract

One of the main strengths of Red Hat JBoss A-MQ is that brokers can be located dynamically through
out your infrastructure. In order for clients and other brokers to be able to interact with a broker, they
need some way of discovering that the broker exists. JBoss A-MQ does this using a combination of
discovery agents and special URI schemes. In order for location transparency to work, the members of a
messaging application need a way for discovering each other. In Red Hat JBoss A-MQ this is
accomplished using two pieces: discovery agents , components that advertise the brokers available to
other members of a messaging application; and discovery URI, a URI that looks up all of the discoverable
brokers and presents them as a list of actual URIs for use by the client or network connector.

8.1. DISCOVERY AGENTS

Abstract

A discovery agent is a mechanism that advertises available brokers to clients and other brokers.

8.1.1. Introduction to Discovery Agents

What is a discovery agent?

A discovery agent is a mechanism that advertises available brokers to clients and other brokers. When a
client, or broker, using a discovery URI starts up it will look for any brokers that are available using the
specified discovery agent. The clients will update their lists periodically using the same mechanism.

Discovery mechanisms

How a discovery agent learns about the available brokers varies between agents. Some agents use a
static list, some use a third party registry, and some rely on the brokers to provide the information. For
discovery agents that rely on the brokers for information, it is necessary to enable the discovery agent in
the message broker configuration. For example, to enable the multicast discovery agent on an Openwire
endpoint, you edit the relevant transportConnector element as shown in Example 8.1, “Enabling a
Discovery Agent on a Broker”.

Example 8.1. Enabling a Discovery Agent on a Broker

Where the discoveryUri attribute on the transportConnector element is initialized to
multicast://default.

IMPORTANT

<transportConnectors>
 <transportConnector name="openwire"
 uri="tcp://localhost:61716"
 discoveryUri="multicast://default" />
</transportConnectors>

CHAPTER 8. DISCOVERING BROKERS

35

IMPORTANT

If a broker uses multiple transport connectors, you need to configure each transport
connector to use a discovery agent individually. This means that different connectors can
use different discovery mechanisms or that one or more of the connectors can be
undiscoverable.

Discovery agent types

Red Hat JBoss A-MQ currently supports the following discovery agents:

Fuse Fabric Discovery Agent

Static Discovery Agent

Multicast Discovery Agent

Zeroconf Discovery Agent

8.1.2. Fuse Fabric Discovery Agent

Abstract

The Fuse Fabric discovery agent uses Fuse Fabric to discovery brokers that are deployed into a fabric.

Overview

The Fuse Fabric discovery agent uses Fuse Fabric to discover the brokers in a specified group. The
discovery agent requires that all of the discoverable brokers be deployed into a single fabric. When the
client attempts to connect to a broker the agent looks up all of the available brokers in the fabric's
registry and returns the ones in the specified group.

URI

The Fuse Fabric discovery agent URI conforms to the syntax in Example 8.2, “Fuse Fabric Discovery
Agent URI Format”.

Example 8.2. Fuse Fabric Discovery Agent URI Format

Where GID is the ID of the broker group from which the client discovers the available brokers.

Configuring a broker

The Fuse Fabric discovery agent requires that the discoverable brokers are deployed into a single fabric.

The best way to deploy brokers into a fabric is using the management console. For information on using
the management console see "Management Console User Guide" .

You can also use the console to deploy brokers into a fabric. See chapter "Fabric Console Commands"
in "Console Reference".

fabric://GID

Red Hat AMQ 6.3 Using Networks of Brokers

36

https://access.redhat.com/documentation/en-US/Red_Hat_AMQ/6.3/html/Management_Console_User_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_AMQ/6.3/html/Console_Reference/Consolefabric.html

Configuring a client

To use the agent a client must be configured to connect to a broker using a discovery protocol that uses
a Fuse Fabric agent URI as shown in Example 8.3, “Client Connection URL using Fuse Fabric Discovery” .

Example 8.3. Client Connection URL using Fuse Fabric Discovery

A client using the URL in Example 8.3, “Client Connection URL using Fuse Fabric Discovery” will discover
all the brokers in the nwBrokers broker group and generate a list of brokers to which it can connect.

8.1.3. Static Discovery Agent

Abstract

The static discovery agent uses an explicit list of broker URLs to specify the available brokers.

Overview

The static discovery agent does not truly discover the available brokers. It uses an explicit list of broker
URLs to specify the available brokers. Brokers are not involved with the static discovery agent. The client
only knows about the brokers that are hard coded into the agent's URI.

Using the agent

The static discovery agent is a client-side only agent. It does not require any configuration on the
brokers that will be discovered.

To use the agent, you simply configure the client to connect to a broker using a discovery protocol that
uses a static agent URI.

The static discovery agent URI conforms to the syntax in Example 8.4, “Static Discovery Agent URI
Format”.

Example 8.4. Static Discovery Agent URI Format

Example

Example 8.5, “Discovery URI using the Static Discovery Agent” shows a discovery URI that configures a
client to use the static discovery agent to connect to one member of a broker pair.

Example 8.5. Discovery URI using the Static Discovery Agent

discovery:(fabric://nwBrokers)

static://(URI1,URI2,URI3,...)

discovery:(static://(tcp://localhost:61716,tcp://localhost:61816))

CHAPTER 8. DISCOVERING BROKERS

37

8.1.4. Multicast Discovery Agent

Abstract

The multicast discovery agent uses the IP multicast protocol to find any message brokers currently
active on the local network.

Overview

The multicast discovery agent uses the IP multicast protocol to find any message brokers currently
active on the local network. The agent requires that each broker you want to advertise is configured to
use the multicast agent to publish its details to a multicast group. Clients using the multicast agent as
part of the discovery URI they use for connecting to a broker will use the agent to receive the list of
available brokers advertising in the specified multicast group.

IMPORTANT

Your local network (LAN) must be configured appropriately for the IP/multicast protocol
to work.

URI

The multicast discovery agent URI conforms to the syntax in Example 8.6, “Multicast Discovery Agent
URI Format”.

Example 8.6. Multicast Discovery Agent URI Format

Where GroupID is an alphanumeric identifier. All participants in the same discovery group must use the
same GroupID.

Configuring a broker

For a broker to be discoverable using the multicast discovery agent, you must enable the discovery
agent in the broker's configuration. To enable the multicast discovery agent you set the
transportConnector element's discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 8.7, “Enabling a Multicast Discovery Agent on a Broker” .

Example 8.7. Enabling a Multicast Discovery Agent on a Broker

The broker configured in Example 8.7, “Enabling a Multicast Discovery Agent on a Broker” is
discoverable as part of the multicast group default.

multicast://GroupID

<transportConnectors>
 <transportConnector name="openwire"
 uri="tcp://localhost:61716"
 discoveryUri="multicast://default" />
</transportConnectors>

Red Hat AMQ 6.3 Using Networks of Brokers

38

Configuring a client

To use the multicast agent a client must be configured to connect to a broker using a discovery URI that
uses a multicast agent URI as shown in Example 8.8, “Client Connection URL using Multicast Discovery” .

Example 8.8. Client Connection URL using Multicast Discovery

A client using the URI in Example 8.8, “Client Connection URL using Multicast Discovery” will discover all
the brokers advertised in the default multicast group and generate a list of brokers to which it can
connect.

8.1.5. Zeroconf Discovery Agent

Abstract

The zeroconf discovery agent uses an open source implementation of Apple's Bonjour networking
technology to find any brokers currently active on the local network.

Overview

The zeroconf discovery agent is derived from Apple’s Bonjour Networking technology, which defines the
zeroconf protocol as a mechanism for discovering services on a network. Red Hat JBoss A-MQ bases its
implementation of the zeroconf discovery agent on JmDSN, which is a service discovery protocol that is
layered over IP/multicast and is compatible with Apple Bonjour.

The agent requires that each broker you want to advertise is configured to use a multicast discovery
agent to publish its details to a multicast group. Clients using the zeroconf agent as part of the discovery
URI they use for connecting to a broker will use the agent to receive the list of available brokers
advertising in the specified multicast group.

IMPORTANT

Your local network (LAN) must be configured to use IP/multicast for the zeroconf agent
to work.

URI

The zeroconf discovery agent URI conforms to the syntax in Example 8.9, “Zeroconf Discovery Agent
URI Format”.

Example 8.9. Zeroconf Discovery Agent URI Format

Where the GroupID is an alphanumeric identifier. All participants in the same discovery group must use
the same GroupID.

discovery:(multicast://default)

zeroconf://GroupID

CHAPTER 8. DISCOVERING BROKERS

39

http://developer.apple.com/networking/bonjour/
http://sourceforge.net/projects/jmdns/

Configuring a broker

For a broker to be discoverable using the zeroconf discovery agent, you must enable a multicast
discovery agent in the broker's configuration. To enable the multicast discovery agent you set the
transportConnector element's discoveryUri attribute to a mulitcast discovery agent URI as shown in
Example 8.10, “Enabling a Multicast Discovery Agent on a Broker” .

Example 8.10. Enabling a Multicast Discovery Agent on a Broker

The broker configured in Example 8.10, “Enabling a Multicast Discovery Agent on a Broker” is
discoverable as part of the multicast group NEGroup.

Configuring a client

To use the agent a client must be configured to connect to a broker using a discovery protocol that uses
a zeroconf agent URI as shown in Example 8.11, “Client Connection URL using Zeroconf Discovery” .

Example 8.11. Client Connection URL using Zeroconf Discovery

A client using the URL in Example 8.11, “Client Connection URL using Zeroconf Discovery” will discover
all the brokers advertised in the NEGroup multicast group and generate a list of brokers to which it can
connect.

8.2. DYNAMIC DISCOVERY PROTOCOL

Abstract

The dynamic discovery protocol combines reconnect logic with a discovery agent to dynamically create
a list of brokers to which the client can connect.

Overview

The dynamic discovery protocol combines reconnect logic with a discovery agent to dynamically create a
list of brokers to which the client can connect. The discovery protocol invokes a discovery agent in order
to build up a list of broker URIs. The protocol then randomly chooses a URI from the list and attempts to
establish a connection to it. If it does not succeed, or if the connection subsequently fails, a new
connection is established to one of the other URIs in the list.

URI syntax

Example 8.12, “Dynamic Discovery URI” shows the syntax for a discovery URI.

<transportConnectors>
 <transportConnector name="openwire"
 uri="tcp://localhost:61716"
 discoveryUri="multicast://NEGroup" />
</transportConnectors>

discovery:(zeroconf://NEGroup)

Red Hat AMQ 6.3 Using Networks of Brokers

40

Example 8.12. Dynamic Discovery URI

DiscoveryAgentUri is URI for the discovery agent used to build up the list of available brokers. Discovery
agents are described in Section 8.1, “Discovery Agents” .

The options, ?Options, are specified in the form of a query list. The discovery options are described in
Table 8.1, “Dynamic Discovery Protocol Options” . You can also inject transport options as described in
the section called “Setting options on the discovered transports” .

NOTE

If no options are required, you can drop the parentheses from the URI. The resulting URI
would take the form discovery:DiscoveryAgentUri

Transport options

The discovery protocol supports the options described in Table 8.1, “Dynamic Discovery Protocol
Options”.

Table 8.1. Dynamic Discovery Protocol Options

Option Default Description

initialReconnectDelay 10 Specifies, in milliseconds, how
long to wait before the first
reconnect attempt.

maxReconnectDelay 30000 Specifies, in milliseconds, the
maximum amount of time to wait
between reconnect attempts.

useExponentialBackOff true Specifies if an exponential back-
off is used between reconnect
attempts.

backOffMultiplier 2 Specifies the exponent used in
the exponential back-off
algorithm.

maxReconnectAttempts -1 Specifies the maximum number of
reconnect attempts before an
error is sent back to the client. -1
specifies unlimited attempts. 0
denotes that reconnects are
disabled, i.e., try once to
reconnect. Values greater than 0
denote the maximum number of
reconnect attempts.

discovery:(DiscoveryAgentUri)?Options

CHAPTER 8. DISCOVERING BROKERS

41

Sample URI

Example 8.13, “Discovery Protocol URI” shows a discovery URI that uses a multicast discovery agent.

Example 8.13. Discovery Protocol URI

Setting options on the discovered transports

The list of transport options, Options, in the discovery URI can also be used to set options on the
discovered transports. If you set an option not listed in the section called “Setting options on the
discovered transports”, the URI parser attempts to inject the option setting into every one of the
discovered endpoints.

Example 8.14, “Injecting Transport Options into a Discovered Transport” shows a discovery URI that sets
the TCP connectionTimeout option to 10 seconds.

Example 8.14. Injecting Transport Options into a Discovered Transport

The 10 second timeout setting is injected into every discovered TCP endpoint.

8.3. FANOUT PROTOCOL

Abstract

The fanout protocol allows clients to connect to multiple brokers at once and broadcast messages to
consumers connected to all of the brokers at once.

Overview

The fanout protocol enables a producer to auto-discover broker endpoints and broadcast topic
messages to all of the discovered brokers. The fanout protocol gives producers a convenient mechanism
for broadcasting messages to multiple brokers that are not part of a network of brokers.

The fanout protocol relies on a discovery agent to build up the list of broker URIs to which it connects.

URI syntax

Example 8.15, “Fanout URI Syntax” shows the syntax for a fanout URI.

Example 8.15. Fanout URI Syntax

DiscoveryAgentUri is URI for the discovery agent used to build up the list of available brokers. Discovery

discovery:(multicast://default)?initialReconnectDelay=100

discovery:(multicast://default)?connectionTimeout=10000

fanout://(DiscoveryAgentUri)?Options

Red Hat AMQ 6.3 Using Networks of Brokers

42

DiscoveryAgentUri is URI for the discovery agent used to build up the list of available brokers. Discovery
agents are described in Section 8.1, “Discovery Agents” .

The options, ?Options, are specified in the form of a query list. The discovery options are described in
Table 8.2, “Fanout Protocol Options” . You can also inject transport options as described in the section
called “Setting options on the discovered transports”.

NOTE

If no options are required, you can drop the parentheses from the URI. The resulting URI
would take the form fanout://DiscoveryAgentUri

Transport options

The fanout protocol supports the transport options described in Table 8.2, “Fanout Protocol Options” .

Table 8.2. Fanout Protocol Options

Option Name Default Description

initialReconnectDelay 10 Specifies, in milliseconds, how
long the transport will wait before
the first reconnect attempt.

maxReconnectDelay 30000 Specifies, in milliseconds, the
maximum amount of time to wait
between reconnect attempts.

useExponentialBackOff true Specifies if an exponential back-
off is used between reconnect
attempts.

backOffMultiplier 2 Specifies the exponent used in
the exponential back-off
algorithm.

maxReconnectAttempts -1 Specifies the maximum number of
reconnect attempts before an
error is sent back to the client. -1
specifies unlimited attempts. 0
denotes that reconnects are
disabled, i.e., try once to
reconnect. Values greater than 0
denote the maximum number of
reconnect attempts.

fanOutQueues false Specifies whether queue
messages are replicated to every
connected broker. For more
information see the section called
“Applying fanout to queue
messages”.

CHAPTER 8. DISCOVERING BROKERS

43

minAckCount 2 Specifies the minimum number of
brokers to which the client must
connect before it sends out
messages. For more informaiton
see the section called “Minimum
number of brokers”.

Option Name Default Description

Sample URI

Example 8.16, “Fanout Protocol URI” shows a discovery URI that uses a multicast discovery agent.

Example 8.16. Fanout Protocol URI

Applying fanout to queue messages

The fanout protocol replicates topic messages by sending each topic message to all of the connected
brokers. By default, however, the fanout protocol does not replicate queue messages.

For queue messages, the fanout protocol picks one of the brokers at random and sends all of the queue
messages to that broker. This is a sensible default, because under normal circumstances, you would not
want to create more than one copy of a queue message.

It is possible to change the default behavior by setting the fanOutQueues option to true. This
configures the protocol so that it also replicates queue messages.

Minimum number of brokers

By default, the fanout protocol does not start sending messages until the producer has connected to a
minimum of two brokers . You can customize this minimum value using the minAckCount option.

Setting minimum number of brokers equal to the expected number of discovered brokers ensures that
all of the available brokers start receiving messages at the same time. This ensures that no messages
are missed if a broker starts up after the producer has started sending messages.

Using fanout with a broker network

You have to be careful when using the fanout protocol with brokers that are joined in a network of
brokers.

The combination of the fanout protocol's broadcasting behavior and the nature of how messages are
propagated through a network of brokers makes it likely that consumers will receive duplicate
messages. If, for example, you joined four brokers into a network of brokers and connected a consumer
listening for messages on topic hello.jason to broker A and connected a producer to broker B to send
messages to topic hello.jason, the consumer would get one copy of the messages. If, on the other
hand, the producer connects to the network using the fanout protocol, the producer will connect to

fanout://(multicast://default)?initialReconnectDelay=100

Red Hat AMQ 6.3 Using Networks of Brokers

44

every broker in the network simultaneously and start sending messages. Each of the four brokers will
receive a copy of every message and deliver its copy to the consumer. So, for each message, the
consumer will get four copies.

CHAPTER 8. DISCOVERING BROKERS

45

CHAPTER 9. LOAD BALANCING

Abstract

Broker networks can address the problem of load balancing in a messaging system. Consumer load is
managed by changing how network connectors recognize subscriptions. Producer load is managed using
different broker topologies.

9.1. BALANCING CONSUMER LOAD

Abstract

When using queues it is easy to balance load over a group of consumers. The messages are evenly
distributed among all of the consumers attached to a queue. In a network of brokers, however, conduit
subscriptions can adversely effect the ability of brokers to evenly distribute messages to all of the
queue subscribers. This can be mitigated by disabling conduit subscriptions.

Overview

Multiple consumers attached to a JMS queue automatically obey competing consumer semantics. That
is, each message transmitted by the queue is consumed by one consumer only. Hence, if you want to
scale up load balancing on the consumer side, all that you need to do is attach extra consumers to the
queue. The competing consumer semantics of the JMS queue then automatically ensures that the
queue's messages are evenly distributed amongst the attached consumers.

The default behavior of Red Hat JBoss A-MQ's conduit subscriptions, however, can sometimes be
detrimental to load balancing on the consumer side. As described in the section called “Conduit
subscriptions”, conduit subscriptions concentrate all of the subscriptions from a networked broker into a
single subscription. For topics this behavior optimizes traffic and has no effect on consumer load. For
queues, however, it results in uneven message distribution which can impede consumer load balancing.

Default load behavior

Figure 9.1, “Message Flow when Conduit Subscriptions Enabled” illustrates how conduit subscriptions
can result in uneven message distribution to the consumers of a queue.

Figure 9.1. Message Flow when Conduit Subscriptions Enabled

Red Hat AMQ 6.3 Using Networks of Brokers

46

Figure 9.1. Message Flow when Conduit Subscriptions Enabled

Assume that the consumers, C1, C2, and C3, all subscribe to the TEST.FOO queue. Producer, P,
connects to Broker A and sends 12 messages to the TEST.FOO queue. By default conduit subscriptions
are enabled and Broker A sees only a single subscription from Broker B and a single subscription from
consumer C1. So, Broker A sends messages alternately to C1 and B. Assuming that C1 and B process
messages at the same speed, A sends a total of 6 messages to C1 and 6 messages to B.

Broker B sees two subscriptions, from C2 and C3 respectively. So, Broker B will send messages
alternately to C2 and C3. Assuming that both consumers process messages at equal speed, each
consumer receives a total of 3 messages.

In the end, the distribution of messages amongst the consumers is 6, 3, 3, which is not optimally load
balanced. C1 processes twice as many messages as either C2 or C3.

Disabling conduit subscriptions

If you want to improve the load balancing behavior for queues, you can disable conduit subscriptions by
setting the networkConnector element's conduitSubscriptions to false. Example 9.1, “Disabling
Conduit Subscriptions” shows configuration for a network connector with conduit subscriptions disabled.

Example 9.1. Disabling Conduit Subscriptions

<networkConnectors>
 <networkConnector name="linkToBrokerB"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3"
 conduitSubscriptions="false" />
</networkConnectors>

CHAPTER 9. LOAD BALANCING

47

WARNING

As described in the section called “Conduit subscriptions” , conduit subscriptions
protect against duplicate topic messages. If you are using both queues and topics
consider using separate network connectors for queues and topics. See the section
called “Separate connectors for topics and queues”.

Balanced load behavior

Figure 9.2, “Message Flow when Conduit Subscriptions Disabled” illustrates the message flow through a
queue with distributed consumers when conduit subscriptions are disabled.

Figure 9.2. Message Flow when Conduit Subscriptions Disabled

Assume that the consumers, C1, C2, and C3, all subscribe to the TEST.FOO queue. Producer, P,
connects to Broker A and sends 12 messages to the TEST.FOO queue. With conduit subscriptions
disabled, Broker A sees both of the subscriptions on Broker B and a single subscription from consumer
C1. Broker A sends messages alternately to each of the subscriptions. Assuming that all of the
consumers process messages at equal speeds, C1 receives 4 messages and Broker B receives 8
messages.

Broker B sees two subscriptions, from C2 and C3 respectively. So, Broker B will send messages

Red Hat AMQ 6.3 Using Networks of Brokers

48

Broker B sees two subscriptions, from C2 and C3 respectively. So, Broker B will send messages
alternately to C2 and C3. Assuming that both consumers process messages at equal speed, each
consumer receives a total of 4 messages.

In the end, the distribution of messages amongst the consumers is 4, 4, 4, which is optimally balanced.

Separate connectors for topics and queues

If your brokers need to handle both queues and topics, you might need to disable conduit subscriptions
for queues to optimize load balancing, but also enable conduit subscriptions for topics to avoid duplicate
topic messages.

Because the conduitSubscriptions attribute applies simultaneously to queues and topics, you cannot
configure this using a single network connector. It is possible to configure topics and queues differently
by using multiple network connectors: one for queues and another for topics.

Example 9.2, “Separate Configuration of Topics and Queues” shows how to configure separate network
connectors for topics and queues. The queuesOnly network connector, which has conduit subscriptions
disabled, is equipped with a filter that transmits only queue messages. The topicsOnly network
connector, which has conduit subscriptions enabled, is equipped with a filter that transmits only topic
messages.

Example 9.2. Separate Configuration of Topics and Queues

9.2. MANAGING PRODUCER LOAD

Overview

For greater scalability on the producer side, you might want to spread the message load across multiple
brokers. For the purpose of spreading the load across brokers, one of the most useful topologies is the
concentrator topology.

Concentrator topology

Figure 9.3, “Load Balancing with the Concentrator Topology” illustrates a two layer network arranged in

<networkConnectors>
 <networkConnector name="queuesOnly"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3"
 conduitSubscriptions="false">
 <dynamicallyIncludedDestinations>
 <queue physicalName=">"/>
 </dynamicallyIncludedDestinations>
 </networkConnector>
 <networkConnector name="topicsOnly"
 uri="static:(tcp://localhost:61002)"
 networkTTL="3">
 <dynamicallyIncludedDestinations>
 <topic physicalName=">"/>
 </dynamicallyIncludedDestinations>
 </networkConnector>
</networkConnectors>

CHAPTER 9. LOAD BALANCING

49

Figure 9.3, “Load Balancing with the Concentrator Topology” illustrates a two layer network arranged in
a concentrator topology.

Figure 9.3. Load Balancing with the Concentrator Topology

The two layers of brokers manage the producer load as follows:

The first layer of brokers, A, B, and C, accepts connections from message producers and
specializes in receiving incoming messages.

The second layer of brokers, X and Y, accepts connections from message consumers and
specializes in sending messages to the consumers.

With this topology, the first layer of brokers, A, B, and C, can focus on managing a large number of
incoming producer connections. The received messages are consolidated within the brokers before
being passed through a relatively small number of network connectors to the second layer, X and Y.
Assuming the number of consumers is small, the brokers, X and Y, only need to deal with a relatively
small number of connections. If the number of consumers is large, you could add a third layer of brokers
to fan out and handle the consumer connections.

Client configuration

When connecting to a broker network laid out in a concentrator topology, producers and consumers
must be configured to connect to the brokers in the appropriate layer. In the case of a producer
connecting to the concentrator topology shown in Figure 9.3, “Load Balancing with the Concentrator
Topology”, producers should connect to the brokers in the first layer: A, B, and C. Consumers should
connect to the brokers in the second layer: X and Y.

Red Hat AMQ 6.3 Using Networks of Brokers

50

CHAPTER 10. JMS-TO-JMS BRIDGE

Abstract

There are two alternative implementations available for implementing a JMS-to-JMS bridge: the
Apache Camel JMS-to-JMS bridge (which can be built using Camel route definitions and the JMS and
ActiveMQ components for connectivity); or the native ActiveMQ JMS-to-JMS bridge (which can be
used only to route JMS messages). In most cases, Apache Camel is the preferred way to build a
messaging bridge.

10.1. BRIDGE ARCHITECTURE

Overview

The purpose of a JMS-to-JMS bridge is to enable two different JMS providers that speak a different
wire protocol to communicate with each other. A bridge consists essentially of two different client
libraries strapped together: one client library facilitates communication with the first JMS provider; and
the other client library facilitates communication with the second JMS provider.

The basic architecture is illustrated in Figure 10.1, “Architecture of the JMS-to-JMS Bridge” .

Figure 10.1. Architecture of the JMS-to-JMS Bridge

A
ct

iv
eM

Q
C

lie
nt

 L
ib

s

Th
ird

-P
ar

ty
C

lie
nt

 L
ib

s

JMS API

Routing
Rules

Apache
ActiveMQ

Broker

Wire protocols

JMS defines the interfaces for a messaging service and describes how a client interacts with the
messaging service. But JMS does not define the details of a messaging implementation and, in
particular, JMS does not specify how to implement an on-the-wire protocol for transmitting messages.
Because of this, different JMS providers use different wire protocols.

For Java clients, the ActiveMQ broker normally uses the Openwire/TCP protocol, which is not
compatible with a third-party JMS provider. Hence, you cannot simply connect an ActiveMQ broker
directly to a third-party JMS provider. It is generally necessary to interpose a JMS-to-JMS bridge
between the ActiveMQ broker and the third-party JMS provider.

ActiveMQ client libraries

To enable the JMS-to-JMS bridge to talk to the ActiveMQ broker, it is necessary for the ActiveMQ
client libraries to be installed in the bridge. These ActiveMQ client libraries are normally installed by
default in JBoss A-MQ, so no action is required to make them available.

CHAPTER 10. JMS-TO-JMS BRIDGE

51

Third-party client libraries

To enable the JMS-to-JMS bridge to talk to the third-party JMS provider, it is necessary for the third-
party client libraries to be installed in the bridge. These third-party client libraries are not available by
default in the JBoss A-MQ container. Third-party JMS providers are licensed separately from JBoss A-
MQ. After purchasing the relevant licence from a third-party vendor, you can install the relevant client
libraries into the JBoss A-MQ container (see Section 10.3.7, “Sample Bridge Configuration”).

JMS API

The JMS API is layered between the JMS-to-JMS bridge and the client libraries. The JMS API enables
the bridge to invoke both of the client libraries (ActiveMQ and third-party) using standard method calls.

Router rules

There are two different approaches to defining router rules, depending on which bridge implementation
you choose:

Apache Camel JMS-to-JMS bridge—a general-purpose routing engine, which includes support
for processing messages using enterprise integration patterns, and over 100 integration
components (including FTP, HTTP, and Web services).

Native ActiveMQ JMS-to-JMS bridge (deprecated)—special-purpose routing engine, which is
capable of routing JMS messages between arbitrary JMS providers. This implementation
includes automatic proxy support for ReplyTo messages.

10.2. APACHE CAMEL JMS-TO-JMS BRIDGE

10.2.1. Configuring the Broker

Overview

You need to modify the broker configuration in order to add a VM transport connector.

NOTE

This is the only modification you should make to the broker configuration file. The Apache
Camel JMS-to-JMS bridge must not be embedded inside the broker configuration file.
The broker configuration file is not a regular Spring XML file: it is used by a specialized
sevice factory, which controls the broker life cycle.

Broker configuration file

In a standalone container, the broker is configured by the following file:

Adding a VM transport connector

To ensure efficient communication between the Apache Camel JMS-to-JMS bridge and the broker,
create a Virtual Machine (VM) transport connector on the broker. Th VM protocol provide a high
performace connection between processes that are running inside the same Java Virtual Machine.

InstallDir/etc/activemq.xml

Red Hat AMQ 6.3 Using Networks of Brokers

52

Example 10.1, “Embedded Apache Camel JMS-to-JMS Bridge” shows how to add a VM connector to the
broker configuration in the etc/activemq.xml file.

Example 10.1. Embedded Apache Camel JMS-to-JMS Bridge

10.2.2. Configuring ActiveMQ JMS Connections

The Camel ActiveMQ component

The Camel ActiveMQ component (hosted in the Apache ActiveMQ project) is a Camel component that
is used to integrate the Apache ActiveMQ Java client with Camel. Using the Camel ActiveMQ
component, it is possible to define JMS consumer endpoints (at the start of a Camel route) and JMS
producer endpoints (at the end of a Camel route).

Apache Camel bridge configuration file

The simplest way to configure the Apache Camel JMS-to-JMS file is to create a Spring XML file and
copy it into the hot deploy directory. For the current example, we assume that the bridge configuration
is stored in the following file:

NOTE

Subsequently, if you need to undeploy the Spring XML file, you can do so by deleting the
jms-bridge.xml file from the deploy/ directory while the Karaf container is running .

Spring XML example

The following code example shows how to define and configure a Camel ActiveMQ endpoint by adding
Spring XML code to the bridge configuration file, InstallDir/deploy/jms-bridge.xml.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="${broker-name}"
 dataDirectory="${data}"
 start="false">
 ...
 <transportConnectors>
 <transportConnector name="openwire" uri="tcp://0.0.0.0:0?maximumConnections=1000"/>
 <!-- Create a VM endpoint to enable embedded connections -->
 <transportConnector uri="vm://local" />
 </transportConnectors>

 </broker>
 ...
</beans>

InstallDir/deploy/jms-bridge.xml

<?xml version="1.0" encoding="UTF-8"?>

CHAPTER 10. JMS-TO-JMS BRIDGE

53

Note the following points about this example:

The bean with ID, activemq, and of type, ActiveMQComponent, defines the Camel ActiveMQ
component instance. This bean overrides the default ActiveMQ component instance and
implicitly associates the bean ID value, activemq, with the URI scheme of the same name. The
activemq URI scheme can then be used to define endpoints of this component in a Camel
route.

The bean with ID, jmsConfig, is used to configure the ActiveMQ component (and supports
many additional options).

The bean with ID, amqConnectionFactory, is a JMS connection factory that is used to create
connections to the ActiveMQ broker. Note the following attribute settings:

The brokerURL attribute specifies the transport protocol for connecting to the broker. In
this case, the protocol is vm://local, which uses the Java Virtual Machine to route messages
directly to and from the embedded broker.

Defining an endpoint with the activemq scheme

The bean ID of the ActiveMQ component (in this example, activemq) is implicitly adopted as the URI
scheme for defining ActiveMQ endpoints in Camel routes. For example, to define an endpoint that
connects to the QueueA queue in the ActiveMQ broker, use the following URI:

To define an endpoint that connects to the TopicA topic in the ActiveMQ broker, use the following URI:

Other types of ActiveMQ connection factory

<beans xmlns="http://www.springframework.org/schema/beans" ... >
 ...
 <!--
 -- Configure the ActiveMQ broker connection
 -->
 <bean id="amqConnectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="vm://local?create=false"/>
 </bean>

 <bean id="jmsConfig"
 class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="amqConnectionFactory"/>
 <property name="concurrentConsumers" value="10"/>
 </bean>

 <bean id="activemq"
 class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="configuration" ref="jmsConfig"/>
 </bean>
 ...
</beans>

activemq:queue:QueueA

activemq:topic:TopicA

Red Hat AMQ 6.3 Using Networks of Brokers

54

ActiveMQ provides a variety of different types of JMS connection factory, as follows:

ActiveMQConnectionFactory

For ordinary JMS connections (includes support for JMS authentication).

ActiveMQSslConnectionFactory

For configuring JMS connections over SSL/TLS (encrypted transport).

ActiveMQXAConnectionFactory

For integrating the ActiveMQ client with an XA transaction manager.

References

For more details about the Camel ActiveMQ component, see the following references:

The ActiveMQ component chapter from the EIP Component Reference .

The community documentation for the ActiveMQ Component.

10.2.3. Configuring Third-Party JMS Connections

The Camel JMS component

The Camel JMS component is a general purpose JMS integration point that can be used to integrate
Apache Camel with any JMS client library. Using the Camel JMS component, it is possible to define JMS
consumer endpoints (at the start of a Camel route) and JMS producer endpoints (at the end of a Camel
route).

Alternative approaches

You can connect to a third-party JMS broker using either of the following approaches:

the section called “Reference a connection factory bean” .

the section called “Look up a connection factory in JNDI” .

Reference a connection factory bean

You can configure connections to a third-party JMS provider by instantiating a
javax.jms.ConnectionFactory instance directly as a Spring bean. You can then inject this third-party
connection factory bean into the configuration of the Camel JMS component.

For example, you can instantiate and reference a WebSphere MQ queue connection factory by adding
the following XML code to the bridge configuration, deploy/jms-bridge.xml:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" ... >
 ...
 <!-- Configure IBM WebSphere MQ connection factory -->
 <bean id="websphereConnectionFactory"
 class="com.ibm.mq.jms.MQConnectionFactory">
 <property name="transportType" value="1"/>

CHAPTER 10. JMS-TO-JMS BRIDGE

55

http://camel.apache.org/activemq.html

Look up a connection factory in JNDI

You can use JNDI to configure connections to a third-party JMS provider by configuring the
destinationResolver attribute of Camel's JmsComponent class to reference a Spring
JndiDestinationResolver instance.

For example, to look up a WebSphere MQ connection factory in an LDAP based JNDI server, you could
add the following XML code to the bridge configuration file, deploy/jms-bridge.xml, as follows:

 <property name="hostName" value="localhost"/>
 <property name="port" value="1414"/>
 <property name="queueManager" value="QM_TEST"/>
 </bean>

 <bean id="websphereConfig"
 class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="websphereConnectionFactory"/>
 <property name="concurrentConsumers" value="10"/>
 </bean>

 <bean id="websphere"
 class="org.apache.camel.component.jms.JmsComponent">
 <property name="configuration" ref="websphereConfig"/>
 </bean>
 ...
</beans>

<beans ... >
 ...
 <!-- Configure a Spring JNDI template instance -->
 <bean id="jmsJndiTemplate"
 class="org.springframework.jndi.JndiTemplate">
 <property name="environment">
 <props>
 <prop key="java.naming.factory.initial">com.sun.jndi.ldap.LdapCtxFactory</prop>
 <prop
key="java.naming.provider.url">ldap://server.company.com/o=company_us,c=us</prop>
 </props>
 </property>
 </bean>

 <bean id="jmsConnectionFactory"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiTemplate" ref="jmsJndiTemplate"/>
 <property name="jndiName" value="jms/websphere-test"/>
 </bean>

 <bean id="jndiDestinationResolver"
 class="org.springframework.jms.support.destination.JndiDestinationResolver">
 <property name="jndiTemplate" ref="jmsJndiTemplate"/>
 </bean>

 <bean id="websphereConfig"
 class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="jmsConnectionFactory"/>

Red Hat AMQ 6.3 Using Networks of Brokers

56

References

For more details about the Camel JMS component, see the following references:

The JMS component chapter from the EIP Component Reference .

The community documentation for the JMS Component.

10.2.4. Defining Apache Camel Routes

Overview

Apache Camel is a sophisticated and flexible routing engine. At the simplest level, you can use it move
JMS messages back and forth between an ActiveMQ broker and a third-party JMS provider. But Camel
can do much more. You can insert processors into a route to process the message contents and Camel
also has built in processors that implement a wide variety of Enterprise Integration Patterns.

The description in this section—which shows you how to define simple pass-through routes—only
scratches the surface of Camel's capabilities. It is recommended that you take a look at some of the
references at the end of this section to get a better idea of Camel's capabilities.

JMS endpoint syntax

To create a JMS endpoint in an Apache Camel route, specify an endpoint URI according to the following
queue syntax:

Or according to the following topic syntax:

Where the URI scheme, JmsUriScheme, is equal to the bean ID of the corresponding JMS component
(or ActiveMQ component) defined in Spring XML—for example, activemq or websphere.

Route syntax

In the XML language, Camel routes are defined inside a camelContext element. Each route definition
appears inside a route element, starting with a from element (which defines a consumer endpoint for
receiving messages) and ending with a to element (which defines a producer endpoint for sending
messages).

For example, to perform simple, straight-through routing, consuming messages from the TEST.FOO

 <property name="destinationResolver" ref="jndiDestinationResolver"/>
 <property name="concurrentConsumers" value="10"/>
 </bean>

 <bean id="websphere"
 class="org.apache.camel.component.jms.JmsComponent">
 <property name="configuration" ref="websphereConfig"/>
 </bean>
 ...
</beans>

JmsUriScheme:queue:QueueName[?Options]

JmsUriScheme:topic:TopicName[?Options]

CHAPTER 10. JMS-TO-JMS BRIDGE

57

http://camel.apache.org/jms.html
http://www.enterpriseintegrationpatterns.com

For example, to perform simple, straight-through routing, consuming messages from the TEST.FOO
queue on the ActiveMQ broker and passing them straight on to the TEST.FOO queue on the
WebSphere messaging system, you can use the following route definition:

Sample routes

The following sample Camel routes give examples of how to route queues and topics into and out of the
ActiveMQ broker. To define these routes, you would add them to the bridge configuration file,
InstallDir/deploy/jms-bridge.xml.

mapJmsMessage option

In the preceding example, the consumer endpoints are configured with the mapJmsMessage set to
false. This prevents the JMS message from being parsed into the standard Java data format, thus
ensuring that the message is passed straight through without processing, which gives optimum
performance for a pass-through route.

On the other hand, if you want to perform any processing on the message content or the message

<camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="activemq:queue:TEST.FOO"/>
 <to uri="websphere:queue:TEST.FOO"/>
 </route>
</camelContext>

<beans ... >
 ...
 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <!-- Route outgoing QueueA queue -->
 <route>
 <from uri="activemq:queue:QueueA?mapJmsMessage=false"/>
 <to uri="websphere:queue:QueueA"/>
 </route>

 <!-- Route outgoing TopicA topic -->
 <route>
 <from uri="activemq:topic:TopicA?mapJmsMessage=false"/>
 <to uri="websphere:topic:TopicA"/>
 </route>

 <!-- Route incoming QueueX queue -->
 <route>
 <from uri="websphere:queue:QueueX?mapJmsMessage=false"/>
 <to uri="activemq:queue:QueueX"/>
 </route>

 <!-- Route incoming TopicX topic -->
 <route>
 <from uri="websphere:topic:TopicX?mapJmsMessage=false"/>
 <to uri="activemq:topic:TopicX"/>
 </route>

 </camelContext>
</beans>

Red Hat AMQ 6.3 Using Networks of Brokers

58

On the other hand, if you want to perform any processing on the message content or the message
headers, you should remove this option (or set it to true).

Camel schema location

If you want to take advantage of the content completion feature of your XML editor, you can configure
your editor to fetch the Camel schema from the following location:

The preceding location always holds the latest version of the Camel schema. If you want to specify a
particular version of the schema, you can use the version-specific location:

References

Apache Camel is a sophisticated routing and integration tool. To get a better idea of the capabilities of
this tool, please consult the following guides from the JBoss Fuse library:

Implementing Enterprise Integration Patterns

Routing Expression and Predicate Languages

EIP Component Reference

10.3. NATIVE ACTIVEMQ JMS-TO-JMS BRIDGE (DEPRECATED)

10.3.1. Embedded Native Configuration

Overview

The normal way to configure a native ActiveMQ JMS-to-JMS bridge is to embed it in an ActiveMQ
broker instance. This makes sense, because the JMS-to-JMS bridge requires an ActiveMQ broker to be
running in any case. This deployment approach means that you start and stop the ActiveMQ broker and
the JMS-to-JMS bridge simultaneously, which is convenient from a systems management perspective.

Spring configuration

Example 10.2, “Embedded native JMS-to-JMS Bridge” shows the outline configuration of a native JMS-
to-JMS bridge embedded in a broker configuration. The native JMS-to-JMS bridge configuration is
introduced by the jmsBridgeConnectors element, which can contain any number of
jmsQueueConnector elements and jmsTopicConnector elements. The detailed configuration of the
bridge is described in the following sections.

Example 10.2. Embedded native JMS-to-JMS Bridge

http://camel.apache.org/schema/spring/camel-spring.xsd

http://camel.apache.org/schema/spring/camel-spring-Version.xsd

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core"
 id="localbroker"

CHAPTER 10. JMS-TO-JMS BRIDGE

59

https://access.redhat.com/site/documentation/JBoss_Fuse/

Router rules

The heart of the JMS-to-JMS bridge is a simple set of routing rules, where each rule describe how to
pull messages off a particular queue or topic, and how to push the messages to the corresponding
queue or topic in the other JMS provider. Figure 10.2, “Routing Rules in the JMS-to-JMS Bridge” shows
an overview of the kinds of routing rule you can define in the JMS-to-JMS bridge.

Figure 10.2. Routing Rules in the JMS-to-JMS Bridge

Routing Rules

Queue A Queue A

Topic B Topic B

Inbound

Queue X Queue X

Outbound

Rule types

The JMS-to-JMS bridge enables you to define the following types of routing rule:

Inbound queue-to-queue mapping—defines a rule for pulling messages off a queue in the third-
party JMS provider and forwarding the messages to a queue (possibly with a different name) in
the ActiveMQ broker.

Outbound queue-to-queue mapping—defines a rule for pulling messages off a queue in the
ActiveMQ broker and forwarding the messages to a queue (possibly with a different name) in
the third-party JMS provider.

Inbound topic-to-topic mapping—defines a rule for receiving messages from a topic in the third-
party JMS provider and forwarding the messages to a topic (possibly with a different name) in
the ActiveMQ broker.

Outbound topic-to-topic mapping—defines a rule for receiving messages from a topic in the

 brokerName="localBroker"
 persistent="false">

 <jmsBridgeConnectors>
 <jmsQueueConnector> ... </jmsQueueConnector>
 ...
 <jmsTopicConnector> ... </jmsTopicConnector>
 ...
 </jmsBridgeConnectors>

 <transportConnectors>
 <transportConnector uri="tcp://localhost:61234" />
 </transportConnectors>

 </broker>
 ...
</beans>

Red Hat AMQ 6.3 Using Networks of Brokers

60

Outbound topic-to-topic mapping—defines a rule for receiving messages from a topic in the
ActiveMQ broker and forwarding the messages to a topic (possibly with a different name) in the
third-party JMS provider.

10.3.2. Connecting to the ActiveMQ Broker

Bootstrapping an embedded bridge

In the case of an embedded JMS-to-JMS bridge (as shown in Example 10.2, “Embedded native JMS-
to-JMS Bridge”), connecting to the ActiveMQ broker is trivial. The bridge automatically connects to the
broker in which it is embedded, using the ActiveMQ VM (virtual machine) protocol.

In other words, no configuration is required to connect to the ActiveMQ broker in the embedded case.

Non-embedded deployments

It is also possible to deploy a native JMS-to-JMS bridge separately from an ActiveMQ broker (non-
embedded case). For this type of deployment, the jmsQueueConnector supports various attributes
(localQueueConnection, localQueueConnectionFactory, and so on), which you can use to configure
the ActiveMQ broker connection explicitly. Likewise, the jmsTopicConnector element supports
attributes for configuring an ActiveMQ broker connection explicitly. This type of deployment lies beyond
the scope of the current guide. We recommend that you use an embedded deployment of the native
JMS-to-JMS bridge.

10.3.3. Connecting to the Third-Party JMS Provider

Overview

You can connect to a third-party JMS provider using either of the following approaches:

the section called “Reference a connection factory bean” .

the section called “Look up a connection factory in JNDI” .

Reference a connection factory bean

You can configure connections to a third-party JMS provider by instantiating a
javax.jms.QueueConnectionFactory instance directly as a Spring bean. You can then reference this
bean from the native JMS-to-JMS bridge by setting the outboundQueueConnectionFactory attribute
of the jmsQueueConnector element.

For example, you can instantiate and reference a WebSphere MQ queue connection factory as follows:

<beans ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core" ... >

 <jmsBridgeConnectors>
 <jmsQueueConnector outboundQueueConnectionFactory="#remoteFactory">
 ...
 </jmsQueueConnector>
 </jmsBridgeConnectors>
 ...
 </broker>

CHAPTER 10. JMS-TO-JMS BRIDGE

61

Similarly, you can configure the jmsTopicConnector element by setting the
outboundTopicConnectionFactory attribute to reference a javax.jms.TopicConnectionFactory
instance.

Look up a connection factory in JNDI

You can configure connections to a third-party JMS provider by looking up a
javax.jms.QueueConnectionFactory instance in a JNDI directory (assuming that some administrative
tool has already instantiated and registered the connection factory in JNDI).

For example, to look up a WebSphere MQ connection factory in an LDAP based JNDI server, you could
use a configuration like the following:

Where the jndiOutboundTemplate attribute references an org.springframework.jndi.JndiTemplate

 ...
 <!-- Configure IBM WebSphere MQ queue connection factory -->
 <bean id="remoteFactory" class="com.ibm.mq.jms.MQQueueConnectionFactory">
 <property name="transportType" value="1"/>
 <property name="hostName" value="localhost"/>
 <property name="port" value="1414"/>
 <property name="queueManager" value="QM_TEST"/>
 </bean>
 ...
</beans>

<beans ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core" ... >

 <jmsBridgeConnectors>
 <jmsQueueConnector
 jndiOutboundTemplate="#remoteJndi"
 outboundQueueConnectionFactoryName="cn=MQQueueCF">
 ...
 </jmsQueueConnector>
 </jmsBridgeConnectors>
 ...
 </broker>
 ...
 <!-- Configure a Spring JNDI template instance -->
 <bean id="remoteJndi" class="org.springframework.jndi.JndiTemplate">
 <property name="environment">
 <props>
 <prop key="java.naming.factory.initial">
 com.sun.jndi.ldap.LdapCtxFactory
 </prop>
 <prop key="java.naming.provider.url">
 ldap://server.company.com/o=company_us,c=us
 </prop>
 </props>
 </property>
 </bean>
 ...
</beans>

Red Hat AMQ 6.3 Using Networks of Brokers

62

bean instance, which is a Spring wrapper class that configures a JNDI directory. In this example, the JNDI
directory is LDAP based, so the JndiTemplate bean is configured with the URL for connecting to the
LDAP server. The outboundQueueConnectionFactoryName attribute specifies a query on the LDAP
server, which should return a javax.jms.QueueConnectionFactory instance.

10.3.4. Configuring Queue Bridges

Overview

The routing of queue messages within the native JMS-to-JMS bridge is configured using the
inboundQueueBridges element and the outboundQueueBridges element. Using these elements, you
can specify which queues to bridge between the third-party JMS provider and the ActiveMQ broker.

Inbound queue bridges

The inboundQueueBridges element and the inboundQueueBridge child elements are used to route
queue messages from the third-party JMS provider to the ActiveMQ broker. In this case, inbound means
heading into the ActiveMQ broker.

For example, consider the following inbound queue bridge configuration in Spring XML:

The preceding configuration creates a JMS consumer client, which is connected to the third-party JMS
provider, and a JMS producer client, which is connected to the ActiveMQ broker. The bridge pulls
messages off the QueueA queue on the third-party JMS provider and pushes the messages on to the
QueueA queue on the ActiveMQ broker.

If the names of the corresponding queues in each provider are different, you can map between the
queues using the following configuration:

Where inboundQueueName specifies the name of the queue on the third-party JMS provider and
localQueueName specifies the name of the queue on the ActiveMQ broker.

Outbound queue bridges

The outboundQueueBridges element and the outboundQueueBridge child elements are used to
route queue messages from the ActiveMQ broker to the third-party JMS provider. In this case,
outbound means heading away from the ActiveMQ broker.

For example, consider the following outbound queue bridge configuration in Spring XML:

The preceding configuration creates a JMS consumer client, which is connected to the ActiveMQ

<inboundQueueBridges>
 <inboundQueueBridge inboundQueueName="QueueA" />
</inboundQueueBridges>

<inboundQueueBridges>
 <inboundQueueBridge
 inboundQueueName="QueueA"
 localQueueName="org.activemq.example.QueueA" />
</inboundQueueBridges>

<outboundQueueBridges>
 <outboundQueueBridge outboundQueueName="QueueX" />
</inboundQueueBridges>

CHAPTER 10. JMS-TO-JMS BRIDGE

63

The preceding configuration creates a JMS consumer client, which is connected to the ActiveMQ
broker, and a JMS producer client, which is connected to the third-party JMS provider. The bridge pulls
messages off the QueueX queue on the ActiveMQ broker and pushes the messages on to the QueueX
queue on the third-party JMS provider.

If the names of the corresponding queues in each provider are different, you can map between the
queues using the following configuration:

Where outboundQueueName specifies the name of the queue on the third-party JMS provider and
localQueueName specifies the name of the queue on the ActiveMQ broker.

Sample queue bridges

Example 10.3, “Sample Queue Bridges” shows a sample configuration of a native JMS-to-JMS bridge,
which routes three inbound queues, QueueA, QueueB, and QueueC, and three outbound queues,
QueueX, QueueY, and QueueZ.

Example 10.3. Sample Queue Bridges

<outboundQueueBridges>
 <outboundQueueBridge
 outboundQueueName="QueueX"
 localQueueName="org.activemq.example.QueueX" />
</inboundQueueBridges>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core" ... >

 <jmsBridgeConnectors>
 <jmsQueueConnector
 outboundQueueConnectionFactory="#remoteFactory">

 <inboundQueueBridges>
 <inboundQueueBridge inboundQueueName="QueueA" />
 <inboundQueueBridge inboundQueueName="QueueB" />
 <inboundQueueBridge inboundQueueName="QueueC" />
 </inboundQueueBridges>

 <outboundQueueBridges>
 <outboundQueueBridge outboundQueueName="QueueX" />
 <outboundQueueBridge outboundQueueName="QueueY" />
 <outboundQueueBridge outboundQueueName="QueueZ" />
 </outboundQueueBridges>
 </jmsQueueConnector>
 </jmsBridgeConnectors>

 <transportConnectors>
 <transportConnector uri="tcp://localhost:61234" />
 </transportConnectors>

 </broker>
 ...
</beans>

Red Hat AMQ 6.3 Using Networks of Brokers

64

10.3.5. Configuring Topic Bridges

Overview

The routing of topic messages within the native JMS-to-JMS bridge is configured using the
inboundTopicBridges element and the outboundTopicBridges element. Using these elements, you
can specify which topics to bridge between the third-party JMS provider and the ActiveMQ broker.

Inbound topic bridges

The inboundTopicBridges element and the inboundTopicBridge child elements are used to route
topic messages from the third-party JMS provider to the ActiveMQ broker. In this case, inbound means
heading into the ActiveMQ broker.

For example, consider the following inbound topic bridge configuration in Spring XML:

The preceding configuration creates a JMS consumer client, which is connected to the third-party JMS
provider, and a JMS producer client, which is connected to the ActiveMQ broker. The bridge pulls
messages off the TopicA topic on the third-party JMS provider and pushes the messages on to the
TopicA topic on the ActiveMQ broker.

If the names of the corresponding topics in each provider are different, you can map between the topics
using the following configuration:

Where inboundTopicName specifies the name of the topic on the third-party JMS provider and
localTopicName specifies the name of the topic on the ActiveMQ broker.

Outbound topic bridges

The outboundTopicBridges element and the outboundTopicBridge child elements are used to route
topic messages from the ActiveMQ broker to the third-party JMS provider. In this case, outbound
means heading away from the ActiveMQ broker.

For example, consider the following outbound topic bridge configuration in Spring XML:

The preceding configuration creates a JMS consumer client, which is connected to the ActiveMQ
broker, and a JMS producer client, which is connected to the third-party JMS provider. The bridge pulls
messages off the TopicX topic on the ActiveMQ broker and pushes the messages on to the TopicX

<inboundTopicBridges>
 <inboundTopicBridge inboundTopicName="TopicA" />
</inboundTopicBridges>

<inboundTopicBridges>
 <inboundTopicBridge
 inboundTopicName="TopicA"
 localTopicName="org.activemq.example.TopicA" />
</inboundTopicBridges>

<outboundTopicBridges>
 <outboundTopicBridge outboundTopicName="TopicX" />
</inboundTopicBridges>

CHAPTER 10. JMS-TO-JMS BRIDGE

65

topic on the third-party JMS provider.

If the names of the corresponding topics in each provider are different, you can map between the topics
using the following configuration:

Where outboundTopicName specifies the name of the topic on the third-party JMS provider and
localTopicName specifies the name of the topic on the ActiveMQ broker.

Sample topic bridges

Example 10.4, “Sample Topic Bridges” shows a sample configuration of a native JMS-to-JMS bridge,
which routes three inbound topics, TopicA, TopicB, and TopicC, and three outbound topics, TopicX,
TopicY, and TopicZ.

Example 10.4. Sample Topic Bridges

<outboundTopicBridges>
 <outboundTopicBridge
 outboundTopicName="TopicX"
 localTopicName="org.activemq.example.TopicX" />
</inboundTopicBridges>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans" ... >
 ...
 <broker xmlns="http://activemq.apache.org/schema/core" ... >

 <jmsBridgeConnectors>
 <jmsTopicConnector
 outboundTopicConnectionFactory="#remoteFactory">

 <inboundTopicBridges>
 <inboundTopicBridge inboundTopicName="TopicA" />
 <inboundTopicBridge inboundTopicName="TopicB" />
 <inboundTopicBridge inboundTopicName="TopicC" />
 </inboundTopicBridges>

 <outboundTopicBridges>
 <outboundTopicBridge outboundTopicName="TopicX" />
 <outboundTopicBridge outboundTopicName="TopicY" />
 <outboundTopicBridge outboundTopicName="TopicZ" />
 </outboundTopicBridges>
 </jmsTopicConnector>
 </jmsBridgeConnectors>

 <transportConnectors>
 <transportConnector uri="tcp://localhost:61234" />
 </transportConnectors>

 </broker>
 ...
</beans>

Red Hat AMQ 6.3 Using Networks of Brokers

66

10.3.6. Deploying a Bridge

Overview

To deploy a native JMS-to-JMS bridge in the JBoss A-MQ broker, perform the following steps:

the section called “Deploy the Third-Party Client Libraries” .

the section called “Deploy the Bridge” .

Deploy the Third-Party Client Libraries

A basic prerequisite for using the third-party JMS provider is that the third-party JMS client libraries are
installed in the JBoss A-MQ OSGi container. Before they are deployed into the OSGi container,
however, the third-party client JARs must also be packaged as OSGi bundles. A quick and easy way to
convert a JAR into an OSGi bundle is to prefix it with the wrap: URL prefix.

For example, given the client JAR file foo-jms-client.jar located in the /tmp directory, you could deploy
it into the OSGi container as follows:

If the third-party client libraries are already packaged as OSGi bundles, you can leave out the wrap:
prefix.

Deploy the Bridge

To deploy the native JMS-to-JMS bridge in embedded mode, edit the InstallDir/etc/activemq.xml file,
and insert the jmsBridgeConnectors element as a child of the broker element, as follows:

JBossA-MQ:karaf@root> osgi:install -s wrap:file:///tmp/foo-jms-client.jar

<beans ... >

 <!-- Allows us to use system properties and fabric as variables in this configuration file -->
 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties">
 <bean class="io.fabric8.mq.fabric.ConfigurationProperties"/>
 </property>
 </bean>

 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="${broker-name}"
 dataDirectory="${data}"
 start="false">
 ...
 <jmsBridgeConnectors>
 <jmsQueueConnector> ... </jmsQueueConnector>
 ...
 <jmsTopicConnector> ... </jmsTopicConnector>
 ...
 </jmsBridgeConnectors>
 ...
 </broker>

</beans>

CHAPTER 10. JMS-TO-JMS BRIDGE

67

The native JMS-to-JMS bridge will be enabled when you restart the A-MQ broker.

10.3.7. Sample Bridge Configuration

Overview

This section describes a sample configuration for native JMS-to-JMS bridge between a JBoss A-MQ
broker and a WebSphere MQ server. This example assumes you are using the Java client libraries from
WebSphere MQ version 7.0.1.3.

ActiveMQ-to-WebSphere MQ bridge

Example 10.5, “ActiveMQ-to-WebSphere MQ Configuration” shows a sample configuration for an
ActiveMQ-to-WebSphere MQ bridge, which you could add to the broker configuration in the
InstallDir/etc/activemq.xml file.

Example 10.5. ActiveMQ-to-WebSphere MQ Configuration

<beans ... >

 <!-- Allows us to use system properties and fabric as variables in this configuration file -->
 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties">
 <bean class="io.fabric8.mq.fabric.ConfigurationProperties"/>
 </property>
 </bean>

 <broker xmlns="http://activemq.apache.org/schema/core"
 brokerName="${broker-name}"
 dataDirectory="${data}"
 start="false">
 ...
 <jmsBridgeConnectors>
 <jmsQueueConnector outboundQueueConnectionFactory="#remoteFactory">
 <inboundQueueBridges>
 <inboundQueueBridge inboundQueueName="QueueA" />
 </inboundQueueBridges>

 <outboundQueueBridges>
 <outboundQueueBridge outboundQueueName="QueueX" />
 </outboundQueueBridges>
 </jmsQueueConnector>
 </jmsBridgeConnectors>
 ...
 </broker>
 ...
 <!-- Configure IBM WebSphere MQ queue connection factory -->
 <bean id="remoteFactory" class="com.ibm.mq.jms.MQQueueConnectionFactory">
 <property name="transportType" value="1"/>
 <property name="hostName" value="localhost"/>
 <property name="port" value="1414"/>
 <property name="queueManager" value="QM_TEST"/>
 </bean>
 ...
</beans>

Red Hat AMQ 6.3 Using Networks of Brokers

68

This example assumes that you have already created a QueueA queue and a QueueX queue on the
WebSphere MQ server. ActiveMQ will create the corresponding queues dynamically—there is no need to
create them in advance.

Deploying the WebSphere MQ client libraries

Conveniently, WebSphere MQ 7.0 provides OSGi bundle versions of the client libraries in the following
directory:

For the WebSphere MQ Java client, you need to install the following JARs (OSGi bundles):

You can deploy these client libraries into JBoss A-MQ OSGi container using the following series of
install commands:

10.3.8. Handling ReplyTo Destinations

Overview

One of the features of the native ActiveMQ JMS-to-JMS bridge is its ability to handle ReplyTo
destinations automatically. No special configuration is necessary—this feature is enabled by default.

ReplyTo destinations

ReplyTo destinations are a feature of the JMS specification. An individual JMS message can be created
with a JMSReplyTo header, which specifies the Destination (Queue or Topic) on which the sender
expects to receive a reply.

$MQ_INSTALL_DIR/java/lib/OSGI

com.ibm.mq.osgi.directip_7.0.1.3.jar
com.ibm.msg.client.osgi.commonservices.j2se_7.0.1.3.jar
com.ibm.msg.client.osgi.jms.prereq_7.0.1.3.jar
com.ibm.msg.client.osgi.jms_7.0.1.3.jar
com.ibm.msg.client.osgi.nls_7.0.1.3.jar
com.ibm.msg.client.osgi.wmq.nls_7.0.1.3.jar
com.ibm.msg.client.osgi.wmq.prereq_7.0.1.3.jar
com.ibm.msg.client.osgi.wmq_7.0.1.3.jar

JBossA-MQ:karaf@root> osgi:install -s file:/tmp/mqclient/com.ibm.mq.osgi.directip_7.0.1.3.jar
JBossA-MQ:karaf@root> osgi:install -s
file:/tmp/mqclient/com.ibm.msg.client.osgi.commonservices.j2se_7.0.1.3.jar
JBossA-MQ:karaf@root> osgi:install -s
file:/tmp/mqclient/com.ibm.msg.client.osgi.jms.prereq_7.0.1.3.jar
JBossA-MQ:karaf@root> osgi:install -s file:/tmp/mqclient/com.ibm.msg.client.osgi.jms_7.0.1.3.jar
JBossA-MQ:karaf@root> osgi:install -s file:/tmp/mqclient/com.ibm.msg.client.osgi.nls_7.0.1.3.jar
JBossA-MQ:karaf@root> osgi:install -s file:/tmp/mqclient/com.ibm.msg.client.osgi.wmq.nls_7.0.1.3.jar
JBossA-MQ:karaf@root> osgi:install -s
file:/tmp/mqclient/com.ibm.msg.client.osgi.wmq.prereq_7.0.1.3.jar
JBossA-MQ:karaf@root> osgi:install -s file:/tmp/mqclient/com.ibm.msg.client.osgi.wmq_7.0.1.3.jar

CHAPTER 10. JMS-TO-JMS BRIDGE

69

Automatic proxification

To support ReplyTo destinations effectively, the native JMS-to-JMS bridge implements support for
automatic proxification. The problem is that whenever a message defines a JMSReplyTo header, a
corresponding rule must be put in place to ensure that the reply message is propagated back through
the bridge. In general, the most effective approach is for the bridge to create the required rule
dynamically, whenever a JMSReployTo header is encountered.

For example, Figure 10.3, “Automatic Proxification in the native JMS-to-JMS Bridge” shows how the
native JMS-to-JMS bridge automatically creates a return route for the reply to message M1, where the
ReplyTo destination is a queue named ReplyA.

Figure 10.3. Automatic Proxification in the native JMS-to-JMS Bridge

Routing Rules

Queue A Queue A

Inbound

Reply A Reply A

Outbound
dynamically
created rule

10.3.9. Implementing Message Convertors

Overview

Sometimes, in addition to forwarding messages, it is also necessary to reformat the messages that pass
through the bridge. The native JMS-to-JMS bridge provides interception points for converting queue
messages and topic messages.

You can implement two different kinds of message convertor, as follows:

Inbound message convertor—converts third-party JMS messages to ActiveMQ messages.

Outbound message convertor—converts ActiveMQ messages to third-party JMS messages.

JmsMessageConvertor interface

Example 10.6, “JmsMessageConvertor interface” shows the definition of the JmsMessageConvertor
interface, which can be used as the basis for implementing either an inbound message convertor or an
outbound message convertor.

Example 10.6. JmsMessageConvertor interface

package org.apache.activemq.network.jms;

import javax.jms.Connection;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;

/**

Red Hat AMQ 6.3 Using Networks of Brokers

70

Message converter methods

The JmsMesageConvertor interface exposes the following methods:

Message convert(Message message)

This variant of the convert method is called, if the doHandleReplyTo option is set to false or if the
ReplyTo destination on the message is null. In this case, the convert method should simply reformat
the message content as required.

Message convert(Message message, Destination replyTo)

This variant of the convert method is called, if the ReplyTo destination on the message is non-null.
In this case, in addition to reformatting the message, you have the ability to change the replyTo
destination, so that the reply to this message is redirected to a different destination.

The replyTo argument contains the original destination of the message. If you want to change the
ReplyTo destination, you can do so by calling the message.setJMSReplyTo() method, passing in the
changed destination.

The reason you might want to change the ReplyTo destination is in order to take control of
proxification (see Section 10.3.8, “Handling ReplyTo Destinations”). Proxification is necessary,
because the ActiveMQ broker is not able to make a direct connection back to the third-party JMS
provider.

void setConnection(Connection connection)

Provides a reference to the javax.jms.Connection object to which messages will be forwarded . In
other words, if this message convertor is used as an inbound message convertor, this connection is
the connection to the ActiveMQ broker. If this message convertor is used as an outbound message
convertor, this connection is the connection to the third-party JMS provider.

Sample implementation

Example 10.7, “Sample Message Convertor” shows a trivial implementation of a message convertor,
which passes messages through without performing any conversion.

Example 10.7. Sample Message Convertor

 * Converts Message from one JMS to another
 */
public interface JmsMesageConvertor {

 Message convert(Message message) throws JMSException;

 Message convert(Message message, Destination replyTo) throws JMSException;

 void setConnection(Connection connection);

}

package org.apache.activemq.network.jms;

import javax.jms.Connection;

CHAPTER 10. JMS-TO-JMS BRIDGE

71

Configuring the message convertor

Message convertors can be attached to the native JMS-to-JMS bridge using the
inboundMessageConvertor and outboundMessageConvertor attributes.

For example, to use the SimpleJmsMessageConvertor implementation both as an inbound message
convertor and as an outbound message convertor, you could configure a JMS queue connector as
follows:

import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.Message;

/**
 * Converts Message from one JMS to another
 *
 * @org.apache.xbean.XBean
 */
public class SimpleJmsMessageConvertor implements JmsMesageConvertor {

 public Message convert(Message message) throws JMSException {
 return message;
 }

 public Message convert(Message message, Destination replyTo) throws JMSException {
 Message msg = convert(message);
 if (replyTo != null) {
 msg.setJMSReplyTo(replyTo);
 } else {
 msg.setJMSReplyTo(null);
 }
 return msg;
 }

 public void setConnection(Connection connection) {
 // do nothing
 }
}

<jmsBridgeConnectors>
 <jmsQueueConnector
 outboundQueueConnectionFactory="#remoteFactory"

inboundMessageConvertor="org.apache.activemq.network.jms.SimpleJmsMessageConvertor
"

outboundMessageConvertor="org.apache.activemq.network.jms.SimpleJmsMessageConverto
r">

 <inboundQueueBridges>
 <inboundQueueBridge inboundQueueName="QueueA" />
 </inboundQueueBridges>

 <outboundQueueBridges>

Red Hat AMQ 6.3 Using Networks of Brokers

72

10.3.10. Configuration Reference

Overview

jmsQueueConnector attributes

The following attributes can be used to configure the jmsQueueConnector element:

id

Optional beran ID of xs:ID type, which could be used to reference this bean.

inboundMessageConvertor

References a bean instance of org.apache.activemq.network.jms.JmsMesageConvertor type,
which transforms inbound messages from the third-party JMS provider into a format that is suitable
for the ActiveMQ broker.

jndiLocalTemplate

References a bean instance of org.springframework.jndi.JndiTemplate type, which provides
access to a JNDI directory instance. Used in combination with the localConnectionFactoryName
attribute to locate a JMS QueueConnectionFactory instance in a JNDI directory, where this
connection factory instance is then used to connect to the local JMS provider (that is, the ActiveMQ
broker).

jndiOutboundTemplate

References a bean instance of org.springframework.jndi.JndiTemplate type, which provides
access to a JNDI directory instance. Used in combination with the
outboundQueueConnectionFactoryName attribute to locate a JMS QueueConnectionFactory
instance in a JNDI directory, where this connection factory instance is then used to connect to the
third-party JMS provider.

localClientId

Sets the ID of the local connection (useful for logging and JMX monitoring).

localConnectionFactoryName

Specifies the JNDI name of a QueueConnectionFactory instance. Used in combination with the
jndiLocalTemplate attribute to connect to the local JMS provider (that is, the ActiveMQ broker).

localPassword

Specifies the password part of the credentials used to log on to the local JMS provider (ActiveMQ
broker). Used in combination with the localUsername attribute.

localQueueConnection

References a bean of javax.jms.QueueConnection type, which is used to connect to the local JMS
provider (ActiveMQ broker).

 <outboundQueueBridge outboundQueueName="QueueX" />
 </outboundQueueBridges>
 </jmsQueueConnector>
</jmsBridgeConnectors>

CHAPTER 10. JMS-TO-JMS BRIDGE

73

localQueueConnectionFactory

References a bean of javax.jms.QueueConnectionFactory type, which is used to connect to the
local JMS provider (ActiveMQ broker).

localUsername

Specifies the username part of the credentials used to log on to the local JMS provider (ActiveMQ
broker). Used in combination with the localPassword attribute.

name

Assigns a name to this jmsQueueConnector element (useful for logging and JMX monitoring).

outboundClientId

Sets the ID of the third-party connection (useful for logging and JMX monitoring).

outboundMessageConvertor

References a bean instance of org.apache.activemq.network.jms.JmsMesageConvertor type,
which transforms outbound messages from the ActiveMQ broker into a format that is suitable for the
third-party JMS provider.

outboundPassword

Specifies the password part of the credentials used to log on to the third-party JMS provider. Used
in combination with the outboundUsername attribute.

outboundQueueConnection

References a bean of javax.jms.QueueConnection type, which is used to connect to the third-party
JMS provider.

outboundQueueConnectionFactory

References a bean of javax.jms.QueueConnectionFactory type, which is used to connect to the
third-party JMS provider.

outboundQueueConnectionFactoryName

Specifies the JNDI name of a QueueConnectionFactory instance. Used in combination with the
jndiOutboundTemplate attribute to connect to the third-party JMS provider.

outboundUsername

Specifies the username part of the credentials used to log on to the third-party JMS provider. Used
in combination with the outboundPassword attribute.

preferJndiDestinationLookup

Specifies whether the connector should first try to find a destination in JNDI before using JMS
semantics to create a Destination. By default, the connector will first use JMS semantics and then
fall back to JNDI look-up. Setting this attribute to true reverses that order.

jmsTopicConnector attributes

The following attributes can be used to configure the jmsTopicConnector element:

Red Hat AMQ 6.3 Using Networks of Brokers

74

id

Optional bean ID of xs:ID type, which could be used to reference this bean.

inboundMessageConvertor

References a bean instance of org.apache.activemq.network.jms.JmsMesageConvertor type,
which transforms inbound messages from the third-party JMS provider into a format that is suitable
for the ActiveMQ broker.

jndiLocalTemplate

References a bean instance of org.springframework.jndi.JndiTemplate type, which provides
access to a JNDI directory instance. Used in combination with the localConnectionFactoryName
attribute to locate a JMS TopicConnectionFactory instance in a JNDI directory, where this
connection factory instance is then used to connect to the local JMS provider (that is, the ActiveMQ
broker).

jndiOutboundTemplate

References a bean instance of org.springframework.jndi.JndiTemplate type, which provides
access to a JNDI directory instance. Used in combination with the
outboundTopicConnectionFactoryName attribute to locate a JMS TopicConnectionFactory
instance in a JNDI directory, where this connection factory instance is then used to connect to the
third-party JMS provider.

localClientId

Sets the ID of the local connection (useful for logging and JMX monitoring).

localConnectionFactoryName

Specifies the JNDI name of a TopicConnectionFactory instance. Used in combination with the
jndiLocalTemplate attribute to connect to the local JMS provider (that is, the ActiveMQ broker).

localPassword

Specifies the password part of the credentials used to log on to the local JMS provider (ActiveMQ
broker). Used in combination with the localUsername attribute.

localTopicConnection

References a bean of javax.jms.TopicConnection type, which is used to connect to the local JMS
provider (ActiveMQ broker).

localTopicConnectionFactory

References a bean of javax.jms.TopicConnectionFactory type, which is used to connect to the
local JMS provider (ActiveMQ broker).

localUsername

Specifies the username part of the credentials used to log on to the local JMS provider (ActiveMQ
broker). Used in combination with the localPassword attribute.

name

Assigns a name to this jmsTopicConnector element (useful for logging and JMX monitoring).

outboundClientId

CHAPTER 10. JMS-TO-JMS BRIDGE

75

Sets the ID of the third-party connection (useful for logging and JMX monitoring).

outboundMessageConvertor

References a bean instance of org.apache.activemq.network.jms.JmsMesageConvertor type,
which transforms outbound messages from the ActiveMQ broker into a format that is suitable for the
third-party JMS provider.

outboundPassword

Specifies the password part of the credentials used to log on to the third-party JMS provider. Used
in combination with the outboundUsername attribute.

outboundTopicConnection

References a bean of javax.jms.TopicConnection type, which is used to connect to the third-party
JMS provider.

outboundTopicConnectionFactory

References a bean of javax.jms.TopicConnectionFactory type, which is used to connect to the
third-party JMS provider.

outboundTopicConnectionFactoryName

Specifies the JNDI name of a TopicConnectionFactory instance. Used in combination with the
jndiOutboundTemplate attribute to connect to the third-party JMS provider.

outboundUsername

Specifies the username part of the credentials used to log on to the third-party JMS provider. Used
in combination with the outboundPassword attribute.

preferJndiDestinationLookup

Specifies whether the connector should first try to find a destination in JNDI before using JMS
semantics to create a Destination. By default, the connector will first use JMS semantics and then
fall back to JNDI look-up. Setting this attribute to true reverses that order.

inboundQueueBridge attributes

The following attributes can be used to configure the inboundQueueBridge element:

doHandleReplyTo

A boolean attribute that specifies whether ReplyTo messages should be handled or not. Default is
true.

id

Optional bean ID of xs:ID type, which could be used to reference this bean.

inboundQueueName

Specifies the name of the queue in the third-party JMS provider, from which messages are
consumed.

localQueueName

Specifies the local queue name (in the ActiveMQ broker), into which messages are pushed. If not

Red Hat AMQ 6.3 Using Networks of Brokers

76

Specifies the local queue name (in the ActiveMQ broker), into which messages are pushed. If not
specified, defaults to the same value as inboundQueueName.

selector

Optionally, specifies a JMS selector string.

outboundQueueBridge attributes

The following attributes can be used to configure the outboundQueueBridge element:

doHandleReplyTo

A boolean attribute that specifies whether ReplyTo messages should be handled or not. Default is
true.

id

Optional bean ID of xs:ID type, which could be used to reference this bean.

outboundQueueName

Specifies the name of the queue in the third-party JMS provider, into which messages are pushed.

localQueueName

Specifies the local queue name (in the ActiveMQ broker), from which messages are consumed. If not
specified, defaults to the same value as outboundQueueName.

selector

Optionally, specifies a JMS selector string.

inboundTopicBridge attributes

The following attributes can be used to configure the inboundTopicBridge element:

consumerName

If this attribute is set, the bridge creates a durable consumer for this topic.

doHandleReplyTo

A boolean attribute that specifies whether ReplyTo messages should be handled or not. Default is
true.

id

Optional bean ID of xs:ID type, which could be used to reference this bean.

inboundTopicName

Specifies the name of the topic in the third-party JMS provider, from which messages are consumed.

localTopicName

Specifies the local topic name (in the ActiveMQ broker), into which messages are pushed. If not
specified, defaults to the same value as inboundTopicName.

CHAPTER 10. JMS-TO-JMS BRIDGE

77

selector

Optionally, specifies a JMS selector string.

outboundTopicBridge attributes

The following attributes can be used to configure the outboundTopicBridge element:

consumerName

If this attribute is set, the bridge creates a durable consumer for this topic.

doHandleReplyTo

A boolean attribute that specifies whether ReplyTo messages should be handled or not. Default is
true.

id

Optional bean ID of xs:ID type, which could be used to reference this bean.

outboundTopicName

Specifies the name of the topic in the third-party JMS provider, into which messages are pushed.

localTopicName

Specifies the local topic name (in the ActiveMQ broker), from which messages are consumed. If not
specified, defaults to the same value as outboundTopicName.

selector

Optionally, specifies a JMS selector string.

INDEX
A

active consumer, Active consumers

B

broker

brokerId, Broker ID and duplicate routes

brokerId, Broker ID and duplicate routes

C

concentrator topology, Concentrator topology

conduit subscription

disabling, Resolving the problem, Disabling conduit subscriptions

impact on queues, Default load behavior

Red Hat AMQ 6.3 Using Networks of Brokers

78

conduitSubscriptions, Resolving the problem, Disabling conduit subscriptions

D

decreaseNetworkConsumerPriority, Connector configuration

destination filtering, Separate connectors for topics and queues

by exclusion, Filtering destinations by exclusion

by inclusion, Filtering destinations by inclusion

destinations

wildcards, Destination wildcards

discovery agent

Fuse Fabric, Fuse Fabric Discovery Agent

multicast, Multicast Discovery Agent

static, Static Discovery Agent

zeroconf, Zeroconf Discovery Agent

discovery protocol

backOffMultiplier, Transport options

initialReconnectDelay, Transport options

maxReconnectAttempts, Transport options

maxReconnectDelay, Transport options

URI, URI syntax

useExponentialBackOff, Transport options

discovery URI, URI syntax

discovery:, URI syntax

discoveryUri, Configuring a broker, Configuring a broker

dynamicallyIncludedDestinations, Filtering destinations by inclusion

queue, Filtering destinations by inclusion

topic, Filtering destinations by inclusion

E

excludedDestinations, Filtering destinations by exclusion

queue, Filtering destinations by exclusion

topic, Filtering destinations by exclusion

INDEX

79

F

fabric://, URI

fanout protocol

backOffMultiplier, Transport options

fanOutQueues, Transport options

initialReconnectDelay, Transport options

maxReconnectAttempts, Transport options

maxReconnectDelay, Transport options

minAckCount, Transport options

URI, URI syntax

useExponentialBackOff, Transport options

fanout URI, URI syntax

fanout://, URI syntax

Fuse Fabric discovery agent

URI, URI

M

multicast discovery agent

broker configuration, Configuring a broker

URI, URI

multicast://, URI

N

network connectors

multiple, Separate connectors for topics and queues

networkConnector, Separate connectors for topics and queues

conduitSubscriptions, Resolving the problem, Disabling conduit subscriptions

decreaseNetworkConsumerPriority, Connector configuration

dynamicallyIncludedDestinations, Filtering destinations by inclusion

excludedDestinations, Filtering destinations by exclusion

name, Single connector

networkTTL, Single connector

suppressDuplicateQueueSubscriptions, Connector configuration

Red Hat AMQ 6.3 Using Networks of Brokers

80

uri, Single connector

S

shortest route, Overview

static discovery agent

URI, Using the agent

static://, Using the agent

suppressDuplicateQueueSubscriptions, Connector configuration

T

transportConnector

discoveryUri, Configuring a broker, Configuring a broker

W

wildcards

destinations, Destination wildcards

Z

zeroconf discovery agent

broker configuration, Configuring a broker

URI, URI

zeroconf://, URI

INDEX

81

	Table of Contents
	CHAPTER 1. INTRODUCTION
	OVERVIEW
	NETWORK OF BROKERS
	DYNAMIC NETWORKS

	CHAPTER 2. NETWORK CONNECTORS
	OVERVIEW
	ACTIVE CONSUMERS
	SUBSCRIPTIONS
	PROPAGATION OF SUBSCRIPTIONS
	NETWORK CONNECTOR
	SINGLE CONNECTOR
	CONNECTORS IN EACH DIRECTION
	DUPLEX CONNECTOR
	MULTIPLE CONNECTORS
	CONDUIT SUBSCRIPTIONS

	CHAPTER 3. DYNAMIC AND STATIC PROPAGATION
	OVERVIEW
	DYNAMIC PROPAGATION
	STATIC PROPAGATION
	DUPLEX MODE AND STATIC PROPAGATION
	SELF-AVOIDING PATHS
	BROKERID AND SELF-AVOIDING PATHS
	BROKER ID AND BROKER NAME

	CHAPTER 4. DESTINATION FILTERING
	OVERVIEW
	DESTINATION WILDCARDS
	FILTERING DESTINATIONS BY INCLUSION
	FILTERING DESTINATIONS BY EXCLUSION
	COMBINING INCLUSIVE AND EXCLUSIVE FILTERS

	CHAPTER 5. USING JMS MESSAGE SELECTORS
	OVERVIEW
	SCENARIOS THAT DO NOT WORK
	RESOLVING THE PROBLEM

	CHAPTER 6. NETWORK TOPOLOGIES
	OVERVIEW
	CONCENTRATOR TOPOLOGY
	HUB AND SPOKES TOPOLOGY
	TREE TOPOLOGY
	MESH TOPOLOGY
	COMPLETE GRAPH

	CHAPTER 7. OPTIMIZING ROUTES
	7.1. INTRODUCTION TO OPTIMIZING ROUTES
	Overview
	Configuring routing behaviour

	7.2. CHOOSING THE SHORTEST ROUTE
	Overview
	Connector configuration
	Route priority and broker load
	Example

	7.3. SUPPRESSING DUPLICATE ROUTES
	Overview
	Connector configuration
	Broker ID and duplicate routes
	Example

	CHAPTER 8. DISCOVERING BROKERS
	8.1. DISCOVERY AGENTS
	8.1.1. Introduction to Discovery Agents
	What is a discovery agent?
	Discovery mechanisms
	Discovery agent types

	8.1.2. Fuse Fabric Discovery Agent
	Overview
	URI
	Configuring a broker
	Configuring a client

	8.1.3. Static Discovery Agent
	Overview
	Using the agent
	Example

	8.1.4. Multicast Discovery Agent
	Overview
	URI
	Configuring a broker
	Configuring a client

	8.1.5. Zeroconf Discovery Agent
	Overview
	URI
	Configuring a broker
	Configuring a client

	8.2. DYNAMIC DISCOVERY PROTOCOL
	Overview
	URI syntax
	Transport options
	Sample URI
	Setting options on the discovered transports

	8.3. FANOUT PROTOCOL
	Overview
	URI syntax
	Transport options
	Sample URI
	Applying fanout to queue messages
	Minimum number of brokers
	Using fanout with a broker network

	CHAPTER 9. LOAD BALANCING
	9.1. BALANCING CONSUMER LOAD
	Overview
	Default load behavior
	Disabling conduit subscriptions
	Balanced load behavior
	Separate connectors for topics and queues

	9.2. MANAGING PRODUCER LOAD
	Overview
	Concentrator topology
	Client configuration

	CHAPTER 10. JMS-TO-JMS BRIDGE
	10.1. BRIDGE ARCHITECTURE
	Overview
	Wire protocols
	ActiveMQ client libraries
	Third-party client libraries
	JMS API
	Router rules

	10.2. APACHE CAMEL JMS-TO-JMS BRIDGE
	10.2.1. Configuring the Broker
	Overview
	Broker configuration file
	Adding a VM transport connector

	10.2.2. Configuring ActiveMQ JMS Connections
	The Camel ActiveMQ component
	Apache Camel bridge configuration file
	Spring XML example
	Defining an endpoint with the activemq scheme
	Other types of ActiveMQ connection factory
	References

	10.2.3. Configuring Third-Party JMS Connections
	The Camel JMS component
	Alternative approaches
	Reference a connection factory bean
	Look up a connection factory in JNDI
	References

	10.2.4. Defining Apache Camel Routes
	Overview
	JMS endpoint syntax
	Route syntax
	Sample routes
	mapJmsMessage option
	Camel schema location
	References

	10.3. NATIVE ACTIVEMQ JMS-TO-JMS BRIDGE (DEPRECATED)
	10.3.1. Embedded Native Configuration
	Overview
	Spring configuration
	Router rules
	Rule types

	10.3.2. Connecting to the ActiveMQ Broker
	Bootstrapping an embedded bridge
	Non-embedded deployments

	10.3.3. Connecting to the Third-Party JMS Provider
	Overview
	Reference a connection factory bean
	Look up a connection factory in JNDI

	10.3.4. Configuring Queue Bridges
	Overview
	Inbound queue bridges
	Outbound queue bridges
	Sample queue bridges

	10.3.5. Configuring Topic Bridges
	Overview
	Inbound topic bridges
	Outbound topic bridges
	Sample topic bridges

	10.3.6. Deploying a Bridge
	Overview
	Deploy the Third-Party Client Libraries
	Deploy the Bridge

	10.3.7. Sample Bridge Configuration
	Overview
	ActiveMQ-to-WebSphere MQ bridge
	Deploying the WebSphere MQ client libraries

	10.3.8. Handling ReplyTo Destinations
	Overview
	ReplyTo destinations
	Automatic proxification

	10.3.9. Implementing Message Convertors
	Overview
	JmsMessageConvertor interface
	Message converter methods
	Sample implementation
	Configuring the message convertor

	10.3.10. Configuration Reference
	Overview
	jmsQueueConnector attributes
	jmsTopicConnector attributes
	inboundQueueBridge attributes
	outboundQueueBridge attributes
	inboundTopicBridge attributes
	outboundTopicBridge attributes

	INDEX

