
Red Hat 3scale API Management 2.6

Migrating 3scale

Upgrade your 3scale API Management installation.

Last Updated: 2023-03-13

Red Hat 3scale API Management 2.6 Migrating 3scale

Upgrade your 3scale API Management installation.

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides the information to upgrade your 3scale API Management installation to the
latest version.

. .

. .

. .

. .

Table of Contents

PREFACE

PART I. 3SCALE API MANAGEMENT UPGRADE GUIDE: FROM 2.5 TO 2.6

CHAPTER 1. BEFORE YOU BEGIN

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6
2.1. CREATE BACKUP DIRECTORIES FOR THE 3SCALE PROJECT

2.1.1. Backup system-database (MySQL)
2.1.2. Backup zync-database
2.1.3. Backup system-redis
2.1.4. Backup backend-redis
2.1.5. Backup system-app persistent data
2.1.6. Backup DeploymentConfigs
2.1.7. Backup ImageStreams
2.1.8. Backup secrets
2.1.9. Backup services
2.1.10. Backup routes
2.1.11. Backup ConfigMaps
2.1.12. Backup other resources

2.2. CONFIGURE SUPPORT FOR THE AUTHENTICATED REGISTRY
2.3. CREATE OPENSHIFT RESOURCES
2.4. CONFIGURE SYSTEM DEPLOYMENTCONFIGS FOR REDIS ENTERPRISE AND REDIS SENTINEL
2.5. FIX REDIS SENTINEL ENVIRONMENT VARIABLES
2.6. FIX ZYNC ENVIRONMENT VARIABLES
2.7. MIGRATE DEPLOYMENTCONFIG DATABASES TO IMAGESTREAMS
2.8. UPGRADE 3SCALE IMAGES
2.9. MIGRATE FROM WILDCARDROUTER TO ZYNC ROUTE MANAGEMENT

3

4

5

6
6
7
7
7
7
7
7
7
8
8
8
8
8
8
11

13
15
16
16
18
19

Table of Contents

1

Red Hat 3scale API Management 2.6 Migrating 3scale

2

PREFACE
This guide will help you to upgrade 3scale API Management.

PREFACE

3

PART I. 3SCALE API MANAGEMENT UPGRADE GUIDE: FROM
2.5 TO 2.6

This section contains information about upgrading Red Hat 3scale API Management from version 2.5 to
2.6, in a template-based deployment.

WARNING

This process causes disruption in the service and temporarily stops Zync processing
jobs until the upgrade is finished. Make sure to have a maintenance window.

Red Hat 3scale API Management 2.6 Migrating 3scale

4

CHAPTER 1. BEFORE YOU BEGIN
Prior to proceeding with the upgrade, you must consider these points:

Supported configurations

3scale supports upgrade paths from 2.5 to 2.6 with templates only, on OpenShift 3.11.

Previous 3scale versions

Assuming 3scale 2.5 was deployed with the amp.yml standard scenario template, download the
new 3scale 2.6 amp.yml template and then deploy it to create the new OpenShift elements .

To download the 3scale 2.6 amp.yml template, see Configuring nodes and entitlements.

For multi-version upgrades from earlier versions than 2.4, confirm the existence of the system-
environment ConfigMap:

$ oc get configmap system-environment

If you get NotFound error message, refer to the 2.4 Upgrade Guide, under Creating
ConfigMaps.

Tooling

Perform a backup of the databases. The procedure of the backup is specific to each database
type and setup.

Ensure your OpenShift CLI tool is configured in the same project where 3scale is deployed.

Run the commands below in the bash shell.

For this upgrade, download and get the patch files by following these steps:

1. Click templates-migration-2.5-to-2.6.

2. Download and extract the files.

You will see some file references throughout the document that are relative to the contents of the
compressed file you have downloaded. For example, $(cat db-imagestream-patches/backend-redis-
json.patch).

CHAPTER 1. BEFORE YOU BEGIN

5

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/installing_3scale/onpremises-installation#configuring-nodes-and-entitlements
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/html-single/infrastructure/index#new-configmap
files/templates-migration-2.5-to-2.6.tar.gz

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6
Prerequisites

Red Hat 3scale API Management 2.5 deployed in a project.

Tool prerequisites:

base64

jq

Procedure

To upgrade 3scale API Management 2.5 to 2.6, go to the project where 3scale is deployed.

$ oc project <3scale-project>

Then, follow these steps in this order:

1. Create a backup of the 3scale project

2. Configure support for the authenticated registry

3. Create OpenShift resources

4. Configure system DeploymentConfigs for Redis Enterprise and Redis Sentinel

5. Fix Redis Sentinel environment variables

6. Fix Zync environment variables

7. Migrate DeploymentConfig databases to ImageStreams

8. Upgrade 3scale Images

9. Migrate from WildcardRouter to Zync Route Management

2.1. CREATE BACKUP DIRECTORIES FOR THE 3SCALE PROJECT

Use the following procedure to create backup directories for the 3scale project. Note that
{BACKUP_DIR} is the location on your machine of the 3scale backup.

Procedure

1. Create a backup directory:

2. Create directories and subdirectories for your backups:

mkdir ${BACKUP_DIR}

mkdir ${BACKUP_DIR}/system-database ${BACKUP_DIR}/zync-database
${BACKUP_DIR}/system-redis ${BACKUP_DIR}/backend-redis ${BACKUP_DIR}/system-
app ${BACKUP_DIR}/openshift

Red Hat 3scale API Management 2.6 Migrating 3scale

6

2.1.1. Backup system-database (MySQL)

Dump the system-mysql database and store the dump inside ${BACKUP_DIR}/system-
database/system-mysql-backup.gz:

2.1.2. Backup zync-database

Dump the zync-database PostrgreSQL database and store the dump inside ${BACKUP_DIR}/zync-
database/zync-database-backup.gz:

2.1.3. Backup system-redis

Extract the system-redis dump inside ${BACKUP_DIR}/system-redis/system-redis-dump.rdb

2.1.4. Backup backend-redis

Extract the backend-redis dump inside ${BACKUP_DIR}/backend-redis/backend-redis-dump.rdb

2.1.5. Backup system-app persistent data

Copy the system-app persistent data inside ${BACKUP_DIR}/system-app/:

2.1.6. Backup DeploymentConfigs

2.1.7. Backup ImageStreams

mkdir ${BACKUP_DIR}/openshift/configmaps/
${BACKUP_DIR}/openshift/deploymentConfigs ${BACKUP_DIR}/openshift/imageStreams
${BACKUP_DIR}/openshift/other/ ${BACKUP_DIR}/openshift/routes/
${BACKUP_DIR}/openshift/secrets/ ${BACKUP_DIR}/openshift/services/

oc rsh $(oc get pods -l 'deploymentConfig=system-mysql' -o json | jq -r '.items[0].metadata.name')
bash -c 'export MYSQL_PWD=${MYSQL_ROOT_PASSWORD}; mysqldump --single-transaction -
hsystem-mysql -uroot system' | gzip > ${BACKUP_DIR}/system-database/system-mysql-backup.gz

oc rsh $(oc get pods -l 'deploymentConfig=zync-database' -o json | jq '.items[0].metadata.name' -r)
bash -c 'pg_dumpall -c --if-exists' | gzip > ${BACKUP_DIR}/zync-database/zync-database-backup.gz

oc cp $(oc get pods -l 'deploymentConfig=system-redis' -o json | jq '.items[0].metadata.name' -
r):/var/lib/redis/data/dump.rdb ${BACKUP_DIR}/system-redis/system-redis-dump.rdb

oc cp $(oc get pods -l 'deploymentConfig=backend-redis' -o json | jq '.items[0].metadata.name' -
r):/var/lib/redis/data/dump.rdb ${BACKUP_DIR}/backend-redis/backend-redis-dump.rdb

oc rsync $(oc get pods -l 'deploymentConfig=system-app' -o json | jq '.items[0].metadata.name' -
r):/opt/system/public/system ${BACKUP_DIR}/system-app/

for object in `oc get dc | awk '{print $1}' | grep -v NAME`; do oc get -o yaml --export dc ${object} >
${BACKUP_DIR}/openshift/deploymentConfigs/${object}_dc.yaml; done

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6

7

2.1.8. Backup secrets

Back up everything except tokens and secrets default builder and deployer:

2.1.9. Backup services

2.1.10. Backup routes

2.1.11. Backup ConfigMaps

2.1.12. Backup other resources

Make a second backup, to deal with other custom resources that are not backed-up objects

2.2. CONFIGURE SUPPORT FOR THE AUTHENTICATED REGISTRY

As part of 3scale 2.6 release, container images have been migrated from registry.access.redhat.com
to the authenticated registry located in registry.redhat.io. Follow the next steps to prepare the existing
3scale infrastructure to support the new authenticated registry:

1. Create credentials in the new Red Hat authenticated registry, located in registry.redhat.io.

Create a Registry Token, also called Registry Service Account. This registry token is
intended to be used in the 3scale platform to authenticate against registry.redhat.io.

For more details on how to create credentials, see Red Hat Container Registry
Authentication.

for object in `oc get is | awk '{print $1}' | grep -v NAME`; do oc get -o yaml --export is ${object} >
${BACKUP_DIR}/openshift/imageStreams/${object}_is.yaml; done

for object in `oc get secret | awk '{print $1}' | grep -v NAME | grep -v default | grep -v builder | grep -v
deployer`; do oc get -o yaml --export secret ${object} >
${BACKUP_DIR}/openshift/secrets/${object}_secret.yaml; done

for object in `oc get svc | awk '{print $1}' | grep -v NAME`; do oc get -o yaml --export svc ${object} >
${BACKUP_DIR}/openshift/services/${object}_svc.yaml; done

for object in `oc get routes | awk '{print $1}' | grep -v NAME`; do oc get -o yaml --export route
${object} > ${BACKUP_DIR}/openshift/routes/${object}_route.yaml; done

for object in `oc get cm | awk '{print $1}' | grep -v NAME`; do oc get -o yaml --export cm ${object} >
${BACKUP_DIR}/openshift/configmaps/${object}_cm.yaml; done

oc get -o yaml --export all > ${BACKUP_DIR}/openshift/other/threescale-project-elements.yaml

for object in rolebindings serviceaccounts secrets imagestreamtags cm rolebindingrestrictions
limitranges resourcequotas pvc templates cronjobs statefulsets hpa deployments replicasets
poddisruptionbudget endpoints; do
 oc get -o yaml --export $object > ${BACKUP_DIR}/openshift/other/$object.yaml; done

Red Hat 3scale API Management 2.6 Migrating 3scale

8

https://access.redhat.com/RegistryAuthentication

2. Once a Registry Service Account is available, create a new secret containing its credentials in
the OpenShift project where the 3scale infrastructure is deployed:

a. Obtain the OpenShift secret definition by navigating to your Red Hat Service Accounts
panel.

b. Choose the Registry Service Account to be used for 3scale infrastructure.

c. Select the OpenShift Secret tab, and click the download secret link.

3. After downloading the OpenShift secret from the Red Hat Service Accounts panel, modify the
name field in the metadata section of the YAML file, replacing the existing name with the
threescale-registry-auth name.
The secret looks something similar to this:

apiVersion: v1
kind: Secret
metadata:
 name: threescale-registry-auth
data:
 .dockerconfigjson: a-base64-encoded-string-containing-auth-credentials
type: kubernetes.io/dockerconfigjson

4. Save the changes, and create the secret in the OpenShift project where 3scale 2.5 is currently
deployed:

$ oc create -f the-secret-name.yml

5. After creating the secret, you can check its existence. The following command returns a secret
with content:

$ oc get secret threescale-registry-auth

6. Create the amp service account that will use the threescale-registry-auth secret. To do so,
create the file amp-sa.yml with the following content:

apiVersion: v1
kind: ServiceAccount
imagePullSecrets:
- name: threescale-registry-auth
metadata:
 name: amp

7. Deploy the amp service account:

$ oc create -f amp-sa.yml

8. Ensure that the amp service account was correctly created. The following command returns the
created service account with content, and having threescale-registry-auth as one of the
elements in the imagePullSecrets section:

$ oc get sa amp -o yaml

9. Verify that permissions once applied to the default service account of the existing 3scale

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6

9

9. Verify that permissions once applied to the default service account of the existing 3scale
project are replicated to the new amp service account.

If Service Discovery was configured in Service Account authentication mode, following the
instructions available in Configuring without OAuth server, and cluster-role view permission
was granted to the system:serviceaccount:<3scale-project>:default user, then that same
permission needs now to be applied to system:serviceaccount:<3scale-project>:amp:

$ oc adm policy add-cluster-role-to-user view system:serviceaccount:<3scale-
project>:amp

10. Update all existing DeploymentConfigs to use the new amp service account:

$ THREESCALE_DC_NAMES="apicast-production apicast-staging apicast-wildcard-router
backend-cron backend-listener backend-redis backend-worker system-app system-
memcache system-mysql system-redis system-sidekiq system-sphinx zync zync-database"
for component in ${THREESCALE_DC_NAMES}; do oc patch dc $component --patch
'{"spec":{"template": {"spec": {"serviceAccountName": "amp"}}}}' ; done

The output of the command contains these lines:

deploymentconfig.apps.openshift.io/apicast-production patched
deploymentconfig.apps.openshift.io/apicast-staging patched
deploymentconfig.apps.openshift.io/apicast-wildcard-router patched
deploymentconfig.apps.openshift.io/backend-cron patched
deploymentconfig.apps.openshift.io/backend-listener patched
deploymentconfig.apps.openshift.io/backend-redis patched
deploymentconfig.apps.openshift.io/backend-worker patched
deploymentconfig.apps.openshift.io/system-app patched
deploymentconfig.apps.openshift.io/system-memcache patched
deploymentconfig.apps.openshift.io/system-mysql patched
deploymentconfig.apps.openshift.io/system-redis patched
deploymentconfig.apps.openshift.io/system-sidekiq patched
deploymentconfig.apps.openshift.io/system-sphinx patched
deploymentconfig.apps.openshift.io/zync patched
deploymentconfig.apps.openshift.io/zync-database patched

The previous command will also redeploy all 3scale existing DeploymentConfigs triggering a
reboot of them.

11. While DeploymentConfigs are rebooted, you might observe changes in their status. Wait until all
the DeploymentConfigs are Ready.

You can check the status of DeploymentConfigs by typing the following command, and
verifying that for each DeploymentConfig the Desired and Current columns have the same
value and are different to zero:

$ oc get dc

12. Also, verify that all pods are in Running status and all of them are Ready.

$ oc get pods

13. Check that all DeploymentConfigs have the amp service account set with this command:

Red Hat 3scale API Management 2.6 Migrating 3scale

10

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/admin_portal_guide/service-discovery-configuration-procedure#configuring-without-oauth

$ for component in ${THREESCALE_DC_NAMES}; do oc get dc $component -o yaml | grep
-i serviceAccountName; done

14. As a result of the previous command, the following line repeated as many times as the number
of elements defined in the previously set THREESCALE_DC_NAMES environment variable is
visible:

serviceAccountName: amp

15. At this point the DeploymentConfigurations are ready to use Red Hat authenticated registry
images.

2.3. CREATE OPENSHIFT RESOURCES

This section provides the steps required for the creation of these new elements. As part of the 3scale
2.6 release the following OpenShift elements have been added:

New ImageStreams for the databases:

backend-redis

system-redis

system-memcached

system-mysql

zync-database-postgresql

New zync-que component, which contains the following OpenShift objects:

zync-que DeploymentConfig

zync-que-sa ServiceAccount

zync-que Role

zync-que-rolebinding RoleBinding

To create the new OpenShift elements, follow the next steps:

1. Create the following environment variable that contains the WildcardDomain set when 3scale
2.5 was deployed:

$ THREESCALE_WILDCARD_DOMAIN=$(oc get configmap system-environment -o json |
jq .data.THREESCALE_SUPERDOMAIN -r)

2. Verify that the THREESCALE_WILDCARD_DOMAIN environment variable is not empty and it
has the same value as the Wildcard Domain that was set when deploying 3scale 2.5.

$ echo ${THREESCALE_WILDCARD_DOMAIN}

3. Create the following environment variable that contains the ImportPolicy ImageStream value
set in the ImageStreams:

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6

11

$ IMPORT_POLICY_VAL=$(oc get imagestream amp-system -o json | jq -r
".spec.tags[0].importPolicy.insecure")
if ["$IMPORT_POLICY_VAL" == "null"]; then
 IMPORT_POLICY_VAL="false"
fi

4. Verify that the IMPORT_POLICY_VAL environment variable is either true or false:

$ echo ${IMPORT_POLICY_VAL}

5. Create the following environment variable that contains the current value of the app
Kubernetes label in the 3scale pods. For example taking it from the backend-listener pod:

$ DEPLOYED_APP_LABEL=$(oc get dc backend-listener -o json | jq
.spec.template.metadata.labels.app -r)

6. Verify that the DEPLOYED_APP_LABEL environment variable is not empty or null:

$ echo ${DEPLOYED_APP_LABEL}

7. Deploy the new OpenShift objects for the 2.6 release using the 3scale 2.6 amp.yml standard
scenario template:

$ oc new-app -f amp.yml --param
WILDCARD_DOMAIN=${THREESCALE_WILDCARD_DOMAIN} --param
IMAGESTREAM_TAG_IMPORT_INSECURE=${IMPORT_POLICY_VAL} --param
APP_LABEL=${DEPLOYED_APP_LABEL}

You will see several errors. These are expected because some of the elements already existed in
3scale 2.5. The only visible lines that are not errors include:

imagestream.image.openshift.io "zync-database-postgresql" created
imagestream.image.openshift.io "backend-redis" created
imagestream.image.openshift.io "system-redis" created
imagestream.image.openshift.io "system-memcached" created
imagestream.image.openshift.io "system-mysql" created
role.rbac.authorization.k8s.io "zync-que-role" created
serviceaccount "zync-que-sa" created
rolebinding.rbac.authorization.k8s.io "zync-que-rolebinding" created
deploymentconfig.apps.openshift.io "zync-que" created

8. Verify that all the new ImageStreams described before exist, and also all the new zync-que
related elements:

$ oc get is system-redis
$ oc get is system-mysql
$ oc get is system-memcached
$ oc get is zync-database-postgresql
$ oc get is backend-redis
$ oc get role zync-que-role
$ oc get sa zync-que-sa
$ oc get rolebinding zync-que-rolebinding
$ oc get dc zync-que

Red Hat 3scale API Management 2.6 Migrating 3scale

12

All of the previous commands return an output showing that they have been created. Also, if you
enter:

$ oc get pods | grep -i zync-que

You will see that its status is Error or some other error that indicates that is crashing. That is
expected because Zync images have not been updated at this point. This is done in point 4 of
the Section 2.8, “Upgrade 3scale Images” section.

2.4. CONFIGURE SYSTEM DEPLOYMENTCONFIGS FOR REDIS
ENTERPRISE AND REDIS SENTINEL

This section will help you configure the existing system DeploymentConfigs to use the secret fields you
created. These secret fields are used as environment variables in system-redis.

1. Add the fields related to the Redis Enterprise compatibility for system connections in the
system-redis secret:

$ oc patch secret/system-redis --patch '{"stringData":
{"MESSAGE_BUS_SENTINEL_HOSTS": "", "MESSAGE_BUS_SENTINEL_ROLE": "",
"SENTINEL_HOSTS": "", "SENTINEL_ROLE": "", "MESSAGE_BUS_NAMESPACE": "",
"MESSAGE_BUS_URL": "", "NAMESPACE": ""}}'

2. Add the new environment variables into system-app containers:

$ oc patch dc/system-app -p "$(cat redis-patches/system-app-podcontainers.patch)"

This command triggers a reboot of the system-app DeploymentConfig. Wait until the
DeploymentConfig pods are rebooted and in Ready status again.

3. List all the environment variables of a DeploymentConfig with this command:

$ oc set env dc a-deployment-config-name --list

Run this command to retrieve the list of environment variables before and after each patch
command in the items of this step.

The following are special cases where the command to list environment variables cannot be
used and require specific commands:

The pre-hook pod:

$ oc get dc system-app -o json | jq
.spec.strategy.rollingParams.pre.execNewPod.env

The system-sidekiq initContainer

$ oc get dc system-sidekiq -o json | jq .spec.template.spec.initContainers[0].env

4. Add the new environment variables into the system-app pre-hook pod:

$ oc patch dc/system-app -p "$(cat redis-patches/system-app-prehookpod-json.patch)" --
type json

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6

13

After running the previous commands, the existing environment variables remain without
changes. Additionally, new variables are added to the pre-hook pod of system-app, and to all
containers of system-app (system-master, system-developer, system-provider), using the
system-secret secret as its source:

REDIS_NAMESPACE

MESSAGE_BUS_REDIS_NAMESPACE

MESSAGE_BUS_REDIS_URL

MESSAGE_BUS_REDIS_SENTINEL_HOSTS

MESSAGE_BUS_REDIS_SENTINEL_ROLE

REDIS_SENTINEL_HOSTS

REDIS_SENTINEL_ROLE

BACKEND_REDIS_SENTINEL_HOSTS

BACKEND_REDIS_SENTINEL_ROLE

5. Add the new environment variables into system-sidekiq:

$ oc patch dc/system-sidekiq -p "$(cat redis-patches/system-sidekiq.patch)"

This command will trigger a reboot of the system-sidekiq DeploymentConfig. Wait until the
DeploymentConfig pods are rebooted and in ready status again.

After running the previous command, the following environment variables have been added,
keeping the existing ones unaltered, to the system-sidekiq InitContainer of the system-
sidekiq pod:

REDIS_NAMESPACE

MESSAGE_BUS_REDIS_NAMESPACE

MESSAGE_BUS_REDIS_URL

MESSAGE_BUS_REDIS_SENTINEL_HOSTS

MESSAGE_BUS_REDIS_SENTINEL_ROLE

REDIS_SENTINEL_HOSTS

REDIS_SENTINEL_ROLE
Moreover, the following environment variables have been added to the system-sidekiq
pod:

REDIS_NAMESPACE

MESSAGE_BUS_REDIS_NAMESPACE

MESSAGE_BUS_REDIS_URL

MESSAGE_BUS_REDIS_SENTINEL_HOSTS

Red Hat 3scale API Management 2.6 Migrating 3scale

14

MESSAGE_BUS_REDIS_SENTINEL_ROLE

REDIS_SENTINEL_HOSTS

REDIS_SENTINEL_ROLE

BACKEND_REDIS_SENTINEL_HOSTS

BACKEND_REDIS_SENTINEL_ROLE

6. Add the new environment variables to system-sphinx:

$ oc patch dc/system-sphinx -p "$(cat redis-patches/system-sphinx.patch)"

This command triggers a reboot of the system-sphinx DeploymentConfig. Wait until the
DeploymentConfig pods are rebooted and in ready status again.

After running the previous command, the following environment variables have been added,
keeping the existing ones unaltered, to the system-sphinx pod:

REDIS_NAMESPACE

MESSAGE_BUS_REDIS_NAMESPACE

MESSAGE_BUS_REDIS_URL

MESSAGE_BUS_REDIS_SENTINEL_HOSTS

MESSAGE_BUS_REDIS_SENTINEL_ROLE

REDIS_SENTINEL_HOSTS

REDIS_SENTINEL_ROLE

REDIS_URL

2.5. FIX REDIS SENTINEL ENVIRONMENT VARIABLES

This step involves fixing an issue in 3scale 2.5 that prevented a Redis Sentinel connection configuration
to work in backend-worker and backend-cron pods.

1. Run the following command to see all the existing environment variables of a DeploymentConfig
InitContainer:

$ oc get dc a-deployment-config-name -o json | jq .spec.template.spec.initContainers[0].env

Use this command to retrieve the list of environment variables before and after each patch
command that is executed in this procedure to verify everything has worked as expected.

2. Apply the Redis Sentinel connections fix in backend-worker:

$ oc patch dc/backend-worker -p "$(cat redis-patches/backend-worker.patch)"

After running this command, the following environment variables have been added to the
backend-worker InitContainer of the backend-worker DeploymentConfig:

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6

15

CONFIG_REDIS_PROXY

CONFIG_REDIS_SENTINEL_HOSTS

CONFIG_REDIS_SENTINEL_ROLE

CONFIG_QUEUES_SENTINEL_HOSTS

CONFIG_QUEUES_SENTINEL_ROLE

RACK_ENV

3. Apply the Redis Sentinel connections fix in backend-cron:

$ oc patch dc/backend-cron -p "$(cat redis-patches/backend-cron.patch)"

After running this command, the following environment variables have been added to the
backend-cron InitContainer of the backend-cron DeploymentConfig:

CONFIG_REDIS_PROXY

CONFIG_REDIS_SENTINEL_HOSTS

CONFIG_REDIS_SENTINEL_ROLE

CONFIG_QUEUES_SENTINEL_HOSTS

CONFIG_QUEUES_SENTINEL_ROLE

RACK_ENV

2.6. FIX ZYNC ENVIRONMENT VARIABLES

Run the following command to update the zync environment:

2.7. MIGRATE DEPLOYMENTCONFIG DATABASES TO
IMAGESTREAMS

In 2.6, the deployed 3scale DeploymentConfigs that contain a database have been migrated to obtain
the container images from ImageStreams, instead of a direct reference to the image URL.

1. Migrate backend-redis DeploymentConfig to use backend-redis ImageStream:

$ oc patch dc/backend-redis -p "$(cat db-imagestream-patches/backend-redis-json.patch)" --
type json

This triggers a redeployment of the backend-redis DeploymentConfig, and the
DeploymentConfig has now an ImageChange trigger referencing the backend-redis
ImageStream.

oc patch dc zync -p '{"spec": {"template": {"spec": {"containers": [{"name": "zync", "env":
[{"name": "POD_NAME", "valueFrom": {"fieldRef": {"apiVersion": "v1", "fieldPath":
"metadata.name"}}}, {"name": "POD_NAMESPACE", "valueFrom": {"fieldRef": {"apiVersion":
"v1", "fieldPath": "metadata.namespace"}}}]}]}}}}'

Red Hat 3scale API Management 2.6 Migrating 3scale

16

backend-worker, backend-cron or backend-listener might temporarily fail until backend-
redis pod is redeployed.
Wait until the DeploymentConfig pods are rebooted and in ready status again.

2. Migrate system-redis DeploymentConfig to use system-redis ImageStream:

$ oc patch dc/system-redis -p "$(cat db-imagestream-patches/system-redis-json.patch)" --
type json

This triggers a redeployment of the system-redis DeploymentConfig, and the
DeploymentConfig has now an ImageChange trigger referencing the backend-redis
ImageStream.

Wait until the DeploymentConfig pods are rebooted and in ready status again.

3. Migrate the system-memcache DeploymentConfig to use system-memcached ImageStream:

$ oc patch dc/system-memcache -p "$(cat db-imagestream-patches/system-memcached-
json.patch)" --type json

This triggers a redeployment of the system-memcache DeploymentConfig, and the
DeploymentConfig has now an ImageChange trigger referencing the system-memcached
ImageStream.

Wait until the DeploymentConfig pods are rebooted and in ready status again.

4. Migrate system-mysql DeploymentConfig to use system-mysql ImageStream:

$ oc patch dc/system-mysql -p "$(cat db-imagestream-patches/system-mysql-json.patch)" --
type json

This triggers a redeployment of the system-mysql DeploymentConfig, and the
DeploymentConfig has now an ImageChange trigger referencing the system-mysql
ImageStream.

Wait until the DeploymentConfig pods are rebooted and in ready status again.

5. Migrate zync-database DeploymentConfig to use zync-database-postgresql ImageStream:

$ oc patch dc/zync-database -p "$(cat db-imagestream-patches/zync-database-
postgresql.patch)"

This triggers a redeployment of the zync-database DeploymentConfig, and the
DeploymentConfig has now an ImageChange trigger referencing the zync-database-
postgresql ImageStream.

The zync DeploymentConfig pod might temporarily fail until zync-database is available
again, and it might take some time until it is in ready status again. Verify that after some
minutes all ‘zync’ DeploymentConfig pods are in Ready status.

Before you continue, wait until the DeploymentConfig pods are rebooted and in ready
status again.

6. Remove the postgresql ImageStream that is no longer used:

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6

17

$ oc delete ImageStream postgresql

7. To confirm success, verify that:

All database-related DeploymentConfigs are now using the ImageStream. You can verify
that an ImageChange trigger pointing to the corresponding database ImageStream has
been created.

The ImageChange trigger has a field named lastTriggeredImage that contains a URL
pointing to registry.redhat.io.

2.8. UPGRADE 3SCALE IMAGES

1. Patch the amp-system image stream:

$ oc patch imagestream/amp-system --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP system 2.6"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp26/system"}, "name": "2.6",
"referencePolicy": {"type": "Source"}}}]'
$ oc patch imagestream/amp-system --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP system (latest)"}, "from": { "kind":
"ImageStreamTag", "name": "2.6"}, "name": "latest", "referencePolicy": {"type": "Source"}}}]'

This triggers redeployments of system-app, system-sphinx and system-sidekiq
DeploymentConfigs. Wait until they are redeployed, its corresponding new pods are ready, and
the old ones terminated.

NOTE

If you are using Oracle Database, you must rebuild the system image after
executing the instructions above, by following the instructions in 3scale system
image with Oracle Database

2. Patch the amp-apicast image stream:

$ oc patch imagestream/amp-apicast --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP APIcast 2.6"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp26/apicast-gateway"}, "name": "2.6",
"referencePolicy": {"type": "Source"}}}]'
$ oc patch imagestream/amp-apicast --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP APIcast (latest)"}, "from": { "kind":
"ImageStreamTag", "name": "2.6"}, "name": "latest", "referencePolicy": {"type": "Source"}}}]'

This triggers redeployments of apicast-production and apicast-staging DeploymentConfigs.
Wait until they are redeployed, its corresponding new pods are ready, and the old ones
terminated.

3. Patch the amp-backend image stream:

$ oc patch imagestream/amp-backend --type=json -p '[{"op": "add", "path": "/spec/tags/-",
"value": {"annotations": {"openshift.io/display-name": "AMP Backend 2.6"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp26/backend"}, "name": "2.6",
"referencePolicy": {"type": "Source"}}}]'
$ oc patch imagestream/amp-backend --type=json -p '[{"op": "add", "path": "/spec/tags/-",

Red Hat 3scale API Management 2.6 Migrating 3scale

18

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/installing_3scale/system-oracle-support

"value": {"annotations": {"openshift.io/display-name": "AMP Backend (latest)"}, "from": {
"kind": "ImageStreamTag", "name": "2.6"}, "name": "latest", "referencePolicy": {"type":
"Source"}}}]'

This triggers redeployments of backend-listener, backend-worker, and backend-cron
DeploymentConfigs. Wait until they are redeployed, its corresponding new pods are ready, and
the old ones terminated.

4. Patch the amp-zync image stream:

$ oc patch imagestream/amp-zync --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "AMP Zync 2.6"}, "from": { "kind":
"DockerImage", "name": "registry.redhat.io/3scale-amp26/zync"}, "name": "2.6",
"referencePolicy": {"type": "Source"}}}]'
$ oc patch imagestream/amp-zync --type=json -p '[{"op": "add", "path": "/spec/tags/-", "value":
{"annotations": {"openshift.io/display-name": "AMP Zync (latest)"}, "from": { "kind":
"ImageStreamTag", "name": "2.6"}, "name": "latest", "referencePolicy": {"type": "Source"}}}]'

This triggers redeployments of zync and zync-que DeploymentConfigs. Wait until they are
redeployed, its corresponding new pods are ready, and the old ones terminated.

Additionally, you will see that zync-que, which was in Error status when it was created in
previous sections, is running now and its pods in Ready status.

5. Update the visible release version:

$ oc set env dc/system-app AMP_RELEASE=2.6

This triggers a redeployment of the system-app DeploymentConfig. Wait until it is performed
and its corresponding new pods are ready and the old ones terminated.

6. Finally, you can verify that all the image URLs of the DeploymentConfigs contain the new image
registry URLs (with a hash added at the end of each url):

$ THREESCALE_DC_NAMES="apicast-production apicast-staging apicast-wildcard-router
backend-cron backend-listener backend-redis backend-worker system-app system-
memcache system-mysql system-redis system-sidekiq system-sphinx zync zync-database"
for component in ${THREESCALE_DC_NAMES}; do echo -n "${component} image: " && oc
get dc $component -o json | jq .spec.template.spec.containers[0].image ; done

2.9. MIGRATE FROM WILDCARDROUTER TO ZYNC ROUTE
MANAGEMENT

In 3scale 2.6, the WildcardRouter component and wildcard OpenShift routes have been removed and
are now created as individual OpenShift routes managed by the Zync subsystem. This procedure details
the migration of route management from WildcardRouter to Zync.

At this point, all 3scale images have been upgraded to 3scale 2.6. Creation and deletion of OpenShift
routes corresponding to 3scale services and tenants are automatically managed by the Zync subsystem.
Moreover, all the new Zync infrastructure needed to do so are available by the addition of new
OpenShift elements that has been done in previous sections.

To migrate the OpenShift route management from WildcardRouter to Zync, the old 3scale tenants and
services related to OpenShift routes and wildcard routes must be removed, and then a forced

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6

19

reevaluation of existing services and tenants by Zync must be performed. This will make Zync create
equivalent routes to what you currently have.

When the Public Base URL is modified, an event is triggered in system-app and notifies system-
sidekiq via the job queue stored in system-redis. The job is then processed in the background and sent
to zync where it checks if the data exists already or not on the zync-db. If it detects changes, it creates a
new route via a job processed in zync-que.

IMPORTANT

Before doing anything, if you have manually installed SSL certificates into some routes,
you must copy the certificates assigned to the routes and keep note of what routes was
each certificate assigned to. You will have to install them into the new equivalent routes
that will be created by Zync, in case you want to keep the certificates functionality.

NOTE

Your services is migrated by default with the option hosted.

The Public Base URL will be populated automatically and the routes will be
created by Zync.

Step 1 is only necessary when configuring external APIcast gateways with the
option self_managed.

If you select the 3scale_managed option, routes are managed automatically by
Zync.

Procedure

1. Given that Zync does not manage the routes of external gateways, you can modify the
deployment option of each service not managed by Zync, by following the steps under one of
the proposed alternatives:

In 3scale:

a. Go to the Integration page, and click edit integration settings.

b. Choose the correct deployment option, and save your changes if any.

Using the API:

a. Update the service with a service identifier (ID) with an access token
(ACCESS_TOKEN) and the tenant endpoint (TENANT_URL):

$ curl -XPUT "${TENANT_URL}/admin/api/services/${ID}.json" -d
deployment_option=self_managed -d access_token="${ACCESS_TOKEN}"

Alternatively, you can use the command below if you are using APIcast hosted:

$ curl -XPUT "${TENANT_URL}/admin/api/services/${ID}.json" -d
deployment_option=hosted -d access_token="${ACCESS_TOKEN}"

b. For each service of each tenant, modify the deployment_option field via 3scale or the
API:

Red Hat 3scale API Management 2.6 Migrating 3scale

20

These are the cases where you can set deployment_option to self_managed:

APIcast is linked to a custom route in OpenShift.

APIcast is hosted outside of OpenShift.

APICAST_PATH_ROUTING is set to true.

In other cases, set deployment_option to hosted.

2. Among the potentially existing routes, some default routes were automatically created in 2.5 by
3scale. Start by removing them:

$ oc delete route system-master
$ oc delete route system-provider-admin
$ oc delete route system-developer
$ oc delete route api-apicast-production
$ oc delete route api-apicast-staging

In case you deployed 3scale 2.5 with WILDCARD_POLICY=Subdomain you must remove
the wildcard route with:

$ oc delete route apicast-wildcard-router

Otherwise, if you deployed 3scale 2.5 without WILDCARD_POLICY=Subdomain, you must
remove the routes you manually created for the 3scale tenants and services, to avoid
having duplications of the routes that Zync will create.

At this point, all the routes related to services and tenants must have been removed. Now, you will
perform the creation of equivalent routes by Zync:

1. Force the resync of all 3scale services and tenants OpenShift routes with Zync:

$ SYSTEM_SIDEKIQ_POD=$(oc get pods | grep sidekiq | awk '{print $1}')

2. Check that SYSTEM_SIDEKIQ_POD environment variable result is not empty:

$ echo ${SYSTEM_SIDEKIQ_POD}

3. Finally, perform the resynchronization:

$ oc exec -it ${SYSTEM_SIDEKIQ_POD} -- bash -c 'bundle exec rake zync:resync:domains'

You will see output of this style with information about notifications to system:

No valid API key has been set, notifications will not be sent
ActiveMerchant MODE set to 'production'
[Core] Using http://backend-listener:3000/internal/ as URL
OpenIdAuthentication.store is nil. Using in-memory store.
[EventBroker] notifying subscribers of Domains::ProviderDomainsChangedEvent 59a554f6-
7b3f-4246-9c36-24da988ca800
[EventBroker] notifying subscribers of ZyncEvent caa8e941-b734-4192-acb0-0b12cbaab9ca
Enqueued ZyncWorker#d92db46bdba7a299f3e88f14 with args: ["caa8e941-b734-4192-
acb0-0b12cbaab9ca", {:type=>"Provider", :id=>1, :parent_event_id=>"59a554f6-7b3f-4246-
9c36-24da988ca800", :parent_event_type=>"Domains::ProviderDomainsChangedEvent",

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6

21

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.6/html/administering_the_api_gateway/apicast_environment_variables#path-routing

:tenant_id=>1}]
[EventBroker] notifying subscribers of Domains::ProviderDomainsChangedEvent 9010a199-
2af1-4023-9b8d-297bd618096f
…

New routes are created for all the existing tenants and services, after forcing Zync to reevaluate
them. Route creation might take some minutes depending on the number of services and
tenants.

By the end of the process, you will see created:

One Master Admin Portal route.
For every 3scale tenant two routes are created:

Tenant’s Admin Portal route.

Tenant’s Developer Portal route.
For every 3scale service two routes are created:

APIcast staging Route corresponding to the service.

APIcast production Route corresponding to the service.

4. Verify that all the expected routes explained above have been created for all your existing
services and tenants. You can see all the routes by running:

$ oc get routes

The host/port field shown as the output of the previous command must be the URL of the
routes.

In case you deployed 3scale 2.5 with the WILDCARD_POLICY set to Subdomain, all of the
new routes must have the same base WildcardDomain as the old OpenShift wildcard Route.

Otherwise, in case you deployed 3scale 2.5 without WILDCARD_POLICY=Subdomain the
new routes must have the same host as the old routes that you have removed, including the
ones that were automatically created by 3scale in the 2.5 release.

5. Finally, in case you were using custom SSL certificates for the old wildcard route, or the old
manually created routes, install them into the new ones created by Zync. You can do so by
editing the routes via the OpenShift web panel and adding the certificate/s into them.

6. Verify that Services and Tenants that existed before this migration are still resolvable using the
new routes. To do so perform the following tests:

a. Resolve the route of an existing APIcast production URL associated to a 3scale service that
already existed before this migration.

b. Resolve the route of an existing APIcast staging URL associated to a 3scale service that
already existed before this migration.

c. Resolve the route of an existing Tenant that already existed before this migration.

7. When verifying that the new Zync functionality is working, confirm that new routes are
generated when creating new tenants and services. To do so perform the following tests:

a. Create a new tenant from the ‘master’ panel and verify that after some seconds the new

Red Hat 3scale API Management 2.6 Migrating 3scale

22

a. Create a new tenant from the ‘master’ panel and verify that after some seconds the new
Routes associated to it appear in OpenShift.

b. Create a new Service in one of your existing tenants and verify that after some seconds the
new Routes associated to it appear in OpenShift.

8. Remove the apicast-wildcard-router service:

$ oc delete service apicast-wildcard-router

9. Remove the deprecated WildcardRouter subsystem:

$ oc delete ImageStream amp-wildcard-router
$ oc delete DeploymentConfig apicast-wildcard-router

After you have performed all the listed steps, 3scale upgrade from 2.5 to 2.6 is now complete.

CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6

23

	Table of Contents
	PREFACE
	PART I. 3SCALE API MANAGEMENT UPGRADE GUIDE: FROM 2.5 TO 2.6
	CHAPTER 1. BEFORE YOU BEGIN
	CHAPTER 2. UPGRADING 3SCALE 2.5 TO 2.6
	2.1. CREATE BACKUP DIRECTORIES FOR THE 3SCALE PROJECT
	2.1.1. Backup system-database (MySQL)
	2.1.2. Backup zync-database
	2.1.3. Backup system-redis
	2.1.4. Backup backend-redis
	2.1.5. Backup system-app persistent data
	2.1.6. Backup DeploymentConfigs
	2.1.7. Backup ImageStreams
	2.1.8. Backup secrets
	2.1.9. Backup services
	2.1.10. Backup routes
	2.1.11. Backup ConfigMaps
	2.1.12. Backup other resources

	2.2. CONFIGURE SUPPORT FOR THE AUTHENTICATED REGISTRY
	2.3. CREATE OPENSHIFT RESOURCES
	2.4. CONFIGURE SYSTEM DEPLOYMENTCONFIGS FOR REDIS ENTERPRISE AND REDIS SENTINEL
	2.5. FIX REDIS SENTINEL ENVIRONMENT VARIABLES
	2.6. FIX ZYNC ENVIRONMENT VARIABLES
	2.7. MIGRATE DEPLOYMENTCONFIG DATABASES TO IMAGESTREAMS
	2.8. UPGRADE 3SCALE IMAGES
	2.9. MIGRATE FROM WILDCARDROUTER TO ZYNC ROUTE MANAGEMENT

