
Red Hat 3Scale 2.0

Infrastructure

For Use with Red Hat 3Scale 2.0

Last Updated: 2018-07-31

Red Hat 3Scale 2.0 Infrastructure

For Use with Red Hat 3Scale 2.0

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide documents deployment and infrastructure management with Red Hat 3Scale 2.0.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. API DEPLOYMENT ON MICROSOFT AZURE
1.1. CREATE AND CONFIGURE MICROSOFT AZURE VM
1.2. INSTALL OPENRESTY
1.3. CONFIGURE YOUR GITHUB REPO

1.3.1. Warning
1.4. CONFIGURE YOUR API

1.4.1. On 3scale
1.4.2. Capistrano setup

1.5. CAPISTRANO SETUP
1.6. DEPLOY

1.6.1. Troubleshooting

CHAPTER 2. DEPLOY AN API ON AMAZON EC2 FOR AWS ROOKIES
2.1. PREREQUISITES
2.2. CREATE AND CONFIGURE EC2 INSTANCE
2.3. PREPARE INSTANCE FOR DEPLOYMENT
2.4. DEPLOYING THE APPLICATION

2.4.1. Optional
2.5. ENABLING API MANAGEMENT WITH 3SCALE
2.6. INSTALL AND DEPLOY APICAST (YOUR API GATEWAY)

CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE
3.1. 1. 3SCALE AMP OPENSHIFT TEMPLATES
3.2. 2. SYSTEM REQUIREMENTS

3.2.1. Environment Requirements
3.2.2. Hardware Requirements

3.3. 3. CONFIGURE NODES AND ENTITLEMENTS
3.4. 4. DEPLOY THE 3SCALE AMP ON OPENSHIFT USING A TEMPLATE

3.4.1. Prerequisites:
3.4.2. 4.1. Import the AMP Template
3.4.3. 4.2. Configure Wildcard Domains (Optional, Tech Preview)
3.4.4. 4.3. Configure SMTP Variables (Optional)

3.5. 5. 3SCALE AMP TEMPLATE PARAMETERS
3.6. 6. USE APICAST WITH AMP ON OPENSHIFT

3.6.1. 6.1. Deploy APIcast Templates on an Existing OpenShift Cluster Containing Your AMP
3.6.2. 6.2. Connect APIcast from an OpenShift Cluster Outside of an OpenShift Cluster Containing Your AMP

3.6.3. 6.3. Connect APIcast from Other Deployments
3.6.4. 6.4. Change Built-In APIcast Default Behavior
3.6.5. 6.5. Connect Multiple APIcast Deployments on a Single OpenShift Cluster over Internal Service Routes

3.7. 7. TROUBLESHOOTING
3.7.1. 7.1. Previous Deployment Leaves Dirty Persistent Volume Claims
3.7.2. 7.2. Incorrectly Pulling from the Docker Registry
3.7.3. 7.3. Permissions Issues for MySQL when Persistent Volumes are Mounted Locally
3.7.4. 7.4. Unable to Upload Logo or Images Because Persistent Volumes are not Writable by OpenShift
3.7.5. 7.5. Create Secure Routes on OpenShift
3.7.6. 7.6. APIcast on a Different Project from AMP Fails to Deploy Due to Problem with Secrets
3.7.7. 7.7. Deployment Script is Unable to Create Persistent Storage Volumes

CHAPTER 4. 3SCALE AMP 2.0 ON-PREMISES OPERATIONS AND SCALING GUIDE
4.1. 1. INTRODUCTION

4
4
5
5
5
5
5
8
8

10
10

11
11
11
11
12
13
13
15

16
16
16
16
16
16
17
17
17
18
19
20
22
22

23
24
24

24
25
26
26
27
27
28
28
28

30
30

Table of Contents

1

. .

4.1.1. 1.1. Prerequisites
4.1.1.1. Further Reading

4.2. 2. RE-DEPLOYING APICAST
4.3. 3 SCALING UP AMP ON PREMISES

4.3.1. 3.1. Scaling up Storage
4.3.1.1. 3.1.1. Method 1, Backup and Swap Persistent Volumes
4.3.1.2. 3.1.2. Method 2. Back up and Redeploy AMP

4.3.2. 3.2. Scaling up Performance
4.3.2.1. 3.2.1. Configuring 3scale On-Premises Deployments
4.3.2.2. 3.2.2. Vertical and Horizontal Hardware Scaling
4.3.2.3. 3.2.3. Scaling Up Routers
4.3.2.4. 3.2.4. Further Reading

4.4. 4. OPERATIONS TROUBLESHOOTING
4.4.1. 4.1. Access Your Logs
4.4.2. 4.2. Job Queues

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT
5.1. PART 1: FUSE ON OPENSHIFT SETUP

5.1.1. Step 1
5.1.2. Step 2
5.1.3. Step 3
5.1.4. Step 4
5.1.5. Step 5
5.1.6. Step 6
5.1.7. Step 7
5.1.8. Step 8
5.1.9. Step 9
5.1.10. Step 10
5.1.11. Step 11

5.2. PART 2: CONFIGURE 3SCALE API MANAGEMENT
5.2.1. Step 1
5.2.2. Step 2
5.2.3. Step 3
5.2.4. Step 4
5.2.5. Step 5

5.3. PART 3: INTEGRATION OF YOUR API SERVICES
5.4. PART 4: TESTING THE API AND API MANAGEMENT

5.4.1. Step 1
5.4.2. Step 2
5.4.3. Step 3
5.4.4. Step 4
5.4.5. Step 5

30
30
30
31
31
31
31
32
32
32
33
33
33
33
33

34
35
35
36
36
37
38
39
39
40
40
41
42
42
42
42
43
44
44
45
45
45
46
46
47
47

Red Hat 3Scale 2.0 Infrastructure

2

Table of Contents

3

CHAPTER 1. API DEPLOYMENT ON MICROSOFT AZURE
Since APIs are platform agnostic, they can be deployed on any platform. This tutorial is fast web API
deployment on Microsoft Azure. You will use the Ruby Grape gem to create the API interface, an NGINX
proxy, Thin server, and Capistrano to deploy using the command line.

For the purpose of this tutorial, you can use any Ruby-based API running on Thin server, or you can
clone the Echo-API.

1.1. CREATE AND CONFIGURE MICROSOFT AZURE VM

Start to generate a X509 certificate with a 2048-bit RSA keypair to ssh into your Azure VM. It will be
useful when you will set up your VM.

To generate this type of key, you can run the following command:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout
myPrivateKey.key -out myCert.pem

Now, get started by creating your Microsoft Azure account. For this tutorial, you can use the free trial
option. Once the Azure account is created, go to the Dashboard on the Virtual Machines tab. There, you
will be guided to create your first VM. Choose the from gallery option and select an Ubuntu Server 12.04
LTS.

On step 2 you will be able to upload the pem you created earlier, you should not be prompted for your
password again.

In steps 3 and 4, choose the options that best suit your needs.

It will take a couple of minutes for your VM to be ready. When it is, you will be able to access its
dashboard where you can monitor activity (CPU, disk, network) of your VM and upgrade its size.

The VM comes with a few packages installed, so you’ll need to access it to install other components.
Once the key is created, you can ssh to your VM.

ssh -i myPrivateKey.key -p 22 username@servicename.cloudapp.net

Once in the VM, run the following commands to install everything you need:

You can check that Ruby installation is complete by running:

ruby -v

It should output something like ruby 1.9.3p194 (2012-04-20 revision 35410) [x86_64-linux].

You also need to install bundler and thin:

sudo apt-get -y update
sudo apt-get -y upgrade
sudo apt-get -y install ruby1.9.3 build-essential libsqlite3-dev libpcre3
libpcre3-dev libssl-dev openssl libreadline6 libreadline6-dev libxml2-dev
libxslt1-dev

Red Hat 3Scale 2.0 Infrastructure

4

http://www.3scale.net/wp-content/uploads/2012/06/What-is-an-API-1.0.pdf
http://windowsazure.com
http://github.com/intridea/grape
http://code.macournoyer.com/thin/
https://github.com/capistrano/capistrano
https://github.com/3scale/echo-api
https://azure.microsoft.com/en-us/free/
https://manage.windowsazure.com

Now, you should have everything you need on the VM. Go back to its dashboard and click on the
endpoints tab. There, add the HTTP endpoint on port 80, and the fields should autofill.

1.2. INSTALL OPENRESTY

In order to streamline this step, we recommend that you install the fantastic OpenResty web application.
It’s the standard NGINX core bundled with almost all the necessary third-party NGINX modules built in.

On your Azure VM Compile and install NGINX:

1.3. CONFIGURE YOUR GITHUB REPO

This tutorial uses GitHub to host the code. If you don’t already have a repo for your API, make sure to
create one and host it on github.com. If you’re not familiar with Git and GitHub, check out this great
tutorial.

To use Git on your VM and have access to your GitHub repo, you need to generate an SSH key on your
VM and add it to Github as explained here.

1.3.1. Warning

Hosting your code on a public GitHub repo makes it vulnerable. Make sure it does not contain any
sensitive information such as provider keys before pushing it publicly.

1.4. CONFIGURE YOUR API

This is how the system will work:

1. Thin server will be launched on port 8000.

2. The upstream YOURAPINAME is listening on localhost:8000.

3. Upcoming connections on port 80 (as defined in the server section) are "redirected" to
YOURAPINAME.

1.4.1. On 3scale

Rather than reinvent the wheel and implement rate limits, access controls, and analytics from scratch,
you’ll use 3scale. If you don’t have an account yet, sign up here, activate it, and log in to the new
instance through the links provided. The first time you log in, choose the option for some sample data to

sudo gem install bundler
sudo gem install thin

cd ~
sudo wget http://agentzh.org/misc/nginx/ngx_openresty-VERSION.tar.gz
sudo tar -zxvf ngx_openresty-VERSION.tar.gz
cd ngx_openresty-VERSION/
sudo ./configure --prefix=/opt/openresty --with-luajit --with-
http_iconv_module -j2
sudo make
sudo make install

CHAPTER 1. API DEPLOYMENT ON MICROSOFT AZURE

5

http://git-scm.com/docs/gittutorial
https://help.github.com/articles/generating-ssh-keys#platform-all
http://www.3scale.net/signup

be created, so you’ll have some API keys to use later. Go through the tour to get a glimpse of the
systems functionality (optional) and then go ahead with implementation.

To get some instant results, start with the API gateway in the staging environment, which can be used
while in development. Then configure an NGINX proxy, which can scale up for full production
deployments.

There is some documentation on configuring the API proxy here and more advanced configuration
options here.

Once you sign in to your 3scale account, launch your API on the main Dashboard screen or Go to
API→Select the service (API)→Integration in the sidebar→Proxy https://www.3scale.net/2015/06/how-to-
deploy-an-api-amazon-ec2/

Set the address of your API backend -

`http://YOURAPP.cloudapp.net:80`

1. After creating some app credentials in 3scale, you can test your API by hitting the staging API
gateway endpoint:

`https://XXX.staging.apicast.io/v1/words/awesome.json?
app_id=APP_ID&app_key=APP_KEY`

where, XXX is specific to your staging API gateway and APP_ID and APP_KEY are the ID and key of one
of the sample applications you created when you first logged in to your 3scale account. (If you missed
that step, just create a developer account and an application within that account.)

Try it without app credentials, next with incorrect credentials. Then once authenticated, within and over
any rate limits that you’ve defined. Once it’s working to your satisfaction, download the config files for
NGINX.

Red Hat 3Scale 2.0 Infrastructure

6

http://www.3scale.net/api-key-generation-access-control-lp/
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-overview
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#advanced-apicast-config
https://www.3scale.net/logmein/
https://www.3scale.net/2015/06/how-to-deploy-an-api-amazon-ec2/

NOTE

Any time you have errors, check whether you can access the API directly: your-public-
dns:3000/v1/words/awesome.json. If it’s not available, check whether the AWS instance is
running and whether the Thin server is running on the instance.*

There, you will be able to change your API backend address to http://YOURAPP.cloudapp.net:80.

Once you’re done, click on Download your nginx config. That will download an archive containing
the .conf and .lua file you’re going to use to configure your app.

Modify the .conf accordingly:

If the API gateway and the API are on the same VM, delete the block:

… ​and replace it with… ​

WARNING

YOURAPINAME can only contain URL valid characters as defined in RFC 3986.

In the .lua file, modify the line ngx.var.proxy_pass =
"http://backend_YOURAPP.cloudapp.net".

With ngx.var.proxy_pass = "http://YOURAPINAME" in all cases.

Replace server_name api.2445580546262.proxy.3scale.net; with

server_name YOURSERVICENAME.cloudapp.net;

In the server block, add this on top:

Replace access_by_lua_file lua_tmp.lua;

… ​with… ​ access_by_lua_file /opt/openresty/nginx/conf/lua_tmp.lua;

Before post_action /out_of_band_authrep_action; add:

upstream backend_YOURAPP.cloudapp.net{
server
}

upstream YOURAPINAME {
server 127.0.0.1:8000;
}



root /home/USERNAME/apps/YOURAPINAME/current;
access_log /home/USERNAME/apps/YOURAPINAME/current/log/thin.log;
error_log /home/USERNAME/apps/YOURAPINAME/current/log/error.log;

CHAPTER 1. API DEPLOYMENT ON MICROSOFT AZURE

7

http://yourapp.cloudapp.net:80
http://tools.ietf.org/html/rfc3986

Finally, rename those files nginx.conf and tmp_lua.lua.

1.4.2. Capistrano setup

Use Capistrano to deploy the API. Capistrano is an automation tool, which will let you set up tasks for
your deployments and execute them using a command line interface. Capistrano is used on your local
machine to deploy on your remote VM.

To install Capistrano, add this line to your gem file: gem 'capistrano'

Run the following command locally to install the new gems and set up Capistrano: bundle capify.

Copy nginx.conf and tmp_lua.lua into /config.

1.5. CAPISTRANO SETUP

When you ran the capify command, you created two files, Capfile and deploy.rb. In deploy.rb,
you describe all the commands necessary to deploy your app.

In /config edit deploy.rb and replace the content with the following:

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $http_host;

require "bundler/capistrano"
set :application, "YOURAPINAME"
set :user,"USERNAME"
set :scm, :git
set :repository, "git@github.com:GITHUBUSERNAME/REPO.git"
set :branch, "master"

set :use_sudo, false

server "VNDNSname", :web, :app, :db, primary: true

set :deploy_to, "/home/#{user}/apps/#{application}"
default_run_options[:pty] = true
ssh_options[:forward_agent] = false
ssh_options[:port] = 22
ssh_options[:keys] = ["/PATH/TO/myPrivateKey.key"]

namespace :deploy do
 task :start, :roles => [:web, :app] do
 run "cd #{deploy_to}/current && nohup bundle exec thin start -C
config/production_config.yml -R config.ru"
 sudo "/opt/openresty/nginx/sbin/nginx -p /opt/openresty/nginx/ -c
/opt/openresty/nginx/conf/nginx.conf"
 end

 task :stop, :roles => [:web, :app] do
 run "kill -QUIT cat /opt/openresty/nginx/logs/nginx.pid"
 run "cd #{deploy_to}/current && nohup bundle exec thin stop -C
config/production_config.yml -R config.ru"
 end

Red Hat 3Scale 2.0 Infrastructure

8

This will ensure that Capistrano doesn’t try to run rake:migrate. (This is not a Rails project!)

In above text, replace the following:

VNDNSname with your .cloudapp.net DNS.

YOURAPINAME with your applicationame.

USERNAME with the username used to login into the VM.

GITHUBUSERNAME with your Github username.

REPO with your Github repo name.

/PATH/TO with the path to access the SSH key created before.

The above works well if you don’t have a database in your API. If you do have a database, comment the
lines:

You also need to add a file production_config.yml in /config to configure the Thin server.

 task :restart, :roles => [:web, :app] do
 deploy.stop
 deploy.start
 end

 task :setup_config, roles: :app do
 sudo "ln -nfs #{current_path}/config/nginx.conf
/opt/openresty/nginx/conf/nginx.conf"
 sudo "ln -nfs #{current_path}/config/lua_tmp.lua
/opt/openresty/nginx/conf/lua_tmp.lua"
 sudo "mkdir -p #{shared_path}/config"
 end
 after "deploy:setup", "deploy:setup_config"
end

task :cold do
 deploy.update
 deploy.start
end

task :cold do
 deploy.update
 deploy.start
end

environment: production
chdir: /home/USERNAME/apps/YOURAPINAME/current/
address: 127.0.0.1
user: USERNAME
port: 8000
pid: /home/USERNAME/apps/YOURAPINAME/current/tmp/thin.pid
rackup: /home/USERNAME/apps/YOURAPINAME/current/config.ru
log: /home/USERNAME/apps/YOURAPINAME/current/log/thin.log

CHAPTER 1. API DEPLOYMENT ON MICROSOFT AZURE

9

Again, change usernames and paths accordingly.

Commit the changes on the project and upload them to GitHub.

You are almost done.

1.6. DEPLOY

From your local development machine, run the following command to set up the remote Azure VM:

You should not be prompted for a password if the path to your ssh key is correct.

Capistrano will connect to your VM and create an apps directory under the home directory of the user
account.

Now, you can deploy your API to the VM and launch Thin server using the command: cap
deploy:cold

This command should get the latest commit on your GitHub. Launch OpenResty and Thin server.

Your API should now be available on the URL:

MYAPI.cloudapp.net/path/to/resources

1.6.1. Troubleshooting

If you are not able to access to your API, ssh to your VM and check that you can call it on localhost
using curl. Like this:

 curl -X GET http://localhost:8000/v2/words/hello.json?
app_id=APPID&app_key=APPKEY`

If it works, there is something wrong in nginx configuration.

You can check nginx logs on your VM with

cat /opt/openresty/nginx/logs/error.log

You should now have an API running on an Azure Linux instance.

Hope you enjoyed this tutorial. Please let us know if you have any questions or comments. We look
forward to hearing from you.

max_conns: 1024
timeout: 30
max_persistent_conns: 512
daemonize: true

git add .
git commit -m "adding config files"
git push

cap deploy:setup

Red Hat 3Scale 2.0 Infrastructure

10

CHAPTER 2. DEPLOY AN API ON AMAZON EC2 FOR AWS
ROOKIES

At 3scale we find Amazon to be a fantastic platform for running APIs due to the complete control you
have on the application stack. However, for people new to AWS, the learning curve is quite steep. So we
put together our best practices into this short tutorial. Besides Amazon EC2, we’ll use the Ruby Grape
gem to create the API interface and an NGINX gateway to handle access control. Best of all everything
in this tutorial is completely free.

2.1. PREREQUISITES

For the purpose of this tutorial you’ll need a running API based on Ruby and Thin server. If you don’t
have one you can simply clone an example repo as described below in the “Deploying the Application”
section.

We’ll begin with the creation and configuration of the Amazon EC2 instance. If you already have an EC2
instance (micro or not), you can jump to the next step, “Preparing Instance for Deployment”.

2.2. CREATE AND CONFIGURE EC2 INSTANCE

Start by signing up for the Amazon Elastic Compute Cloud (Amazon EC2). The free tier is enough to
cover all your basic needs. Once the account is created, go to the EC2 dashboard under your AWS
Management Console and click on the “launch instance” button. That will transfer you to a pop-up
window where you’ll continue the process:

Choose the classic wizard

Choose an AMI (Ubuntu Server 12.04.1 LTS 32bit, T1micro instance) leaving all the other
settings for “instance details” as default

Create a key pair and download it. This will be the key that you’ll use to make an ssh connection
to the server. It’s VERY IMPORTANT!

Add inbound rules for the firewall with source always 0.0.0.0/0 (HTTP, HTTPS, ALL ICMP, TCP
port 3000 used by the Ruby Thin server)

2.3. PREPARE INSTANCE FOR DEPLOYMENT

Once the instance is created and running, you can connect there directly from the console (Windows
users from PuTTY). Right click on your instance, connect, and choose Connect with a standalone SSH
Client.

Follow the steps and change the username to “ubuntu” (instead of “root”) in the given example.

CHAPTER 2. DEPLOY AN API ON AMAZON EC2 FOR AWS ROOKIES

11

http://aws.amazon.com/free/

After executing this step you are connected to your instance. You’ll have to install new packages. Some
of them require root credentials, so you’ll have to set a new root password: sudo passwd root. Then
login as root: su root.

Now with root credentials, execute: sudo apt-get update

Switch back to your normal user with exit command and install all required packages:

Install the libraries that will be required by rvm, Ruby, and Git:

Install Git (on Linux rather than from Source)

Install rvm

Install Ruby

2.4. DEPLOYING THE APPLICATION

Our example, the Sentiment API, is located on GitHub. Try cloning the repository:

git clone git@github.com:jerzyn/api-demo.git

You can review the code and tutorial on creating and deploying this app here and here. Note the
changes — we’re using only v1, as authentication will go through the gateway.

Now you can deploy the app by issuing bundle install.

sudo apt-get install build-essential git zlib1g-dev libssl-dev
libreadline-gplv2-dev imagemagick libxml2-dev libxslt1-dev openssl zlib1g
libyaml-dev libxslt-dev autoconf libc6-dev ncurses-dev automake libtool
bison libpq-dev libpq5 libeditline-dev

 sudo apt-get install libreadline6 libreadline6-dev

rvm install 1.9.3
rvm use 1.9.3 --default

Red Hat 3Scale 2.0 Infrastructure

12

http://www.git-scm.com/book/en/Getting-Started-Installing-Git
https://rvm.io/rvm/install/
http://www.3scale.net/2012/06/the-10-minute-api-up-running-3scale-grape-heroku-api-10-minutes/
http://www.3scale.net/2012/07/how-to-out-of-the-box-api-analytics/

Now you can start the thin server: thin start.

To access the API directly (without any security or access control) access: your-public-
ip:3000/v1/words/awesome.json You can find your public IP in the AWS EC2 Dashboard >
Instances in the details window of your instance.

2.4.1. Optional

If you want to assign a custom domain to your Amazon instance, you’ll have to do one thing: Add an A
record to the DNS record of your domain, mapping the domain to the public IP address.

Your domain provider should either give you some way to set the A record (the IPv4 address), or it will
give you a way to edit the nameservers of your domain. If they don’t allow you to set the A record directly
find a DNS management service, register your domain as a zone there, and the service will give you the
nameservers to enter in the admin panel of your domain provider. You can then add the A record for the
domain. Some possible DNS management services include ZoneEdit (basic, free) or Amazon route 53.

At this point, your API is open to the world. This is good and bad— ​it’s great that you’re sharing, but bad
that without rate limits a few apps could kill the resources of your server and you would have no insight
into who is using your API and how it’s being used. The solution is to add API management.

2.5. ENABLING API MANAGEMENT WITH 3SCALE

Rather than reinventing the wheel and implement rate limits, access controls, and analytics from scratch,
you can leverage the 3scale API Management Platform. Sign up for a 3scale account if you haven’t
already, activate it, and log in through the links provided. The first time you log in, some sample data will
be created for you so you’ll have an API key to use later. You can go through the wizard to get an idea of
the system’s functionality (optional). Then start with the implementation.

To get some instant results, we’ll start with the API gateway in the staging environment which can be
used while in development. Then we’ll configure an NGINX gateway that can scale up for full production
deployments. Here’s some documentation on the configuration of the API gateway, as well as more
advanced configuration options.

Once you’ve signed in to your 3scale account, go to Dashboard > API > Select the service (API) >
Integration > edit integration settings and then choose APIcast Self-managed.

CHAPTER 2. DEPLOY AN API ON AMAZON EC2 FOR AWS ROOKIES

13

http://www.3scale.net/
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-overview
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#advanced-apicast-config

Red Hat 3Scale 2.0 Infrastructure

14

Set the address of of your API backend. This has to be the public IP address unless the custom domain
has been set, including http protocol and port 3000. Now you can save the changes to the API gateway
in the staging environment to test your API by hitting the staging endpoint.

http://api.XXX.proxy.3scale.net/v1/words/awesome.json?user_key=USER_KEY

Where XXX is specific to your 3scale account and USER_KEY is the authentication key of one of the
sample applications created when you first logged into your 3scale account. (If you missed that step just
create a developer account and an application within that account.)

Try it without app credentials; next with incorrect credentials; and then once authenticated, within and
over any rate limits you have defined. Once it’s working to your satisfaction you can download the config
files for NGINX.

NOTE

Whenever you have errors, check whether you can access the API directly: your-public-
dns:3000/v1/words/awesome.json. If that is not available, you need to check whether the
AWS instance is running and whether the Thin server is running on the instance.

2.6. INSTALL AND DEPLOY APICAST (YOUR API GATEWAY)

Finally, to deploy install and deploy APIcast, follow the steps in the APIcast 2.0 self-managed tutorial for
'local' deploy.

You’re almost finished! The last step is to start the NGINX gateway and put some traffic through it. If it’s
not running yet (remember the Thin server has to be started first), go to your EC2 instance terminal (the
one you were connecting through ssh before) and start it now.

The last step will be verifying that the traffic goes through with a proper authorization. To do that, access:

http://your-public-ip/v1/words/awesome.json?app_id=APP_ID&app_key=APP_KEY

where APP_ID and APP_KEY are key and ID of the application you want to access through the API call.

Once everything is confirmed as working correctly, you’ll want to block public access to the API backend
on port 3000, which bypasses any access controls.

CHAPTER 2. DEPLOY AN API ON AMAZON EC2 FOR AWS ROOKIES

15

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-v2-self-managed

CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION
GUIDE

In this guide you’ll learn how to install 3scale 2.0 (on-premises) on OpenShift using OpenShift templates.

3.1. 1. 3SCALE AMP OPENSHIFT TEMPLATES

As of 3scale API Management Platform (AMP) 2.0, Red Hat provides an OpenShift template. You can
use this template to deploy AMP onto OpenShift Container Platform 3.3 and 3.4.

The 3scale AMP template is composed of the following:

Two built-in APIcast API gateways

One AMP admin portal and developer portal with persistent storage

3.2. 2. SYSTEM REQUIREMENTS

The 3scale AMP OpenShift template requires the following:

3.2.1. Environment Requirements

Persistent Volumes:

3 RWO (ReadWriteOnce) persistent volumes for Redis and MySQL persistence

1 RWX (ReadWriteMany) persistent volume for CMS and System-app Assets

The RWX persistent volume must be configured to be group writable. Refer to the OpenShift
documentation for a list of persistent volume types which support the required access modes.

3.2.2. Hardware Requirements

Hardware requirements depend on your usage needs. Red Hat recommends you test and configure your
environment to meet your specific requirements. Consider the following recommendations when
configuring your environment for 3scale on OpenShift:

Compute optimized nodes for deployments on cloud environments (AWS c4.2xlarge or Azure
Standard_F8).

Very large installations may require a separate node (AWS M4 series or Azure Av2 series) for
Redis if memory needs exceed your current node’s available RAM.

Separate nodes between routing and compute tasks

Dedicate compute nodes to 3scale specific tasks

Set the PUMA_WORKERS variable of the backend listener to the number of cores in your compute
node

3.3. 3. CONFIGURE NODES AND ENTITLEMENTS

Before you can deploy 3scale on OpenShift, you must configure your nodes and the entitlements
required for your environment to fetch images from Red Hat.

Red Hat 3Scale 2.0 Infrastructure

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.6/html-single/architecture/#persistent-volumes

Perform the following steps to configure entitlements:

1. Install Red Hat Enterprise Linux (RHEL) onto each of your nodes

2. Register your nodes with Red Hat using the Red Hat Subscription Manager (RHSM)

3. Attach your nodes to your 3scale subscription using RHSM.

4. Install OpenShift onto your nodes, complying with the following requirements:

You must use OpenShift version 3.3 or 3.4

You must configure persistent storage on a file system that supports multiple writes.

5. Install the OpenShift command line interface

6. Enable access to the rhel-7-server-3scale-amp-2.0-rpms repository using the
subscription manager:

sudo subscription-manager repos --enable=rhel-7-server-3scale-amp-2.0-rpms

1. Install the 3scale-amp-template AMP template. The template will be saved in
/opt/amp/templates.

sudo yum install 3scale-amp-template

3.4. 4. DEPLOY THE 3SCALE AMP ON OPENSHIFT USING A
TEMPLATE

3.4.1. Prerequisites:

An OpenShift cluster configured as specified in the Chapter 3, Configure Nodes and Entitlements
section

A domain, preferably wildcard, that resolves to your OpenShift cluster.

Access to the Red Hat container catalog

(Optional) A working SMTP server for email functionality

Follow these procedures to install AMP onto OpenShift using a .yml template:

4.1, “Import the AMP Template”

4.3, “Configure SMTP Variables (Optional)”

3.4.2. 4.1. Import the AMP Template

Once you meet the Prerequisites, you can import the AMP template into your OpenShift cluster.

Perform the following steps to import the AMP template into your OpenShift cluster:

1. Download amp.yml from the 3scale GitHub page

CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

17

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/using_red_hat_subscription_management/registering-cmd
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/using_red_hat_subscription_management/sect-red_hat_subscription_management-using_red_hat_subscription_management-section_3
https://docs.openshift.com/container-platform/latest/install_config/index.html
https://docs.openshift.com/container-platform/latest/install_config/persistent_storage/index.html
https://docs.openshift.com/container-platform/3.4/cli_reference/get_started_cli.html#installing-the-cli
https://docs.openshift.com/container-platform/3.4/install_config/install/prerequisites.html#prereq-dns
https://access.redhat.com/containers/#/faq
https://raw.githubusercontent.com/3scale/3scale-amp-openshift-templates/2.0.0.GA-redhat-2/amp/amp.yml

2. From a terminal session log in to OpenShift:

oc login

1. Select your project, or create a new project:

oc project <project_name>

oc new-project <project_name>

1. Enter the oc new-app command:

Specify the --file option with the path to the amp.yml file

Specify the --param option with the WILDCARD_DOMAIN parameter set to the domain of
your OpenShift cluster:

oc new-app --file /path/to/amp.yml --param WILDCARD_DOMAIN=
<WILDCARD_DOMAIN>

NOTE

If you encounter a timeout error after entering oc new-app, you may need to
manually create persistent storage volumes. See Section 7.7, “Deployment
Script is Unable to Create Persistent Storage Volumes”, in the
troubleshooting guide, for information on how to do this.

2. The terminal will output the URL and credentials for your newly created AMP admin portal. Save
these details for future reference.

NOTE

You may need to wait a few minutes for AMP to fully deploy on OpenShift for your
login and credentials to work.

3.4.3. 4.2. Configure Wildcard Domains (Optional, Tech Preview)

Wildcard domains allow you to direct subdomain traffic through your wildcard domain.

NOTE

The Wildcard Domain feature is a tech preview.

Use of the wildcard domain feature requires the following:

OpenShift version 3.4

a wildcard domain that is not being used for any other routes, or as another project’s namespace
domain

your router must be configured to allow wildcard routes

Red Hat 3Scale 2.0 Infrastructure

18

Perform the following steps to configure a wildcard domain:

1. From a terminal session, log in to OpenShift:

oc login

2. Create a wildcard router configured with your wildcard domain

3. Download the wildcard.yml template from the 3scale GitHub page

4. Switch to the project which contains your AMP deployment:

oc project <project_name>

5. Enter the oc new-app command, specifying the following:

the -file option and the path to the wildcard.yml template

the --param option and the WILDCARD_DOMAIN of your openshift cluster

the --param option and the TENANT_NAME from the project which contains your AMP
deployment

oc new-app -f wildcard.yml --param WILDCARD_DOMAIN=<a-domain-
that-resolves-to-your-ocp-cluster.com> --param TENANT_NAME=3scale

Once configured, your AMP deployment will connect to the built-in APIcast gateways automatically and
direct all subdomain traffic through your wildcard domain.

Considerations

Consider the following limitations when using the wildcard domain feature:

API endpoints must end with the -staging or -production suffix (e.g. api1-
production.example.com, api1-staging.example.com), If your API endpoints do not have one of
these suffixes, calls will return a 500 error code.

You must deploy the router in same project as the AMP

This template will work only with an AMP.yml deploymentMore Information

For information about wildcard domains on OpenShift, visit Using Wildcard Routes (for a Subdomain).

3.4.4. 4.3. Configure SMTP Variables (Optional)

OpenShift uses email to send notifications and invite new users. If you intend to use these features, you
must provide your own SMTP server and configure SMTP variables in the SMTP config map.

Follow these steps to configure the SMTP variables in the SMTP config map:

1. If you are not already logged in, log in to OpenShift:

oc login

CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

19

https://docs.openshift.com/container-platform/3.4/install_config/router/default_haproxy_router.html#using-wildcard-routes
https://raw.githubusercontent.com/3scale/3scale-amp-openshift-templates/2.0.0.GA-redhat-2/amp/wildcard.yml
https://docs.openshift.com/container-platform/3.4/install_config/router/default_haproxy_router.html#using-wildcard-routes
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/accounts#notifications
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/accounts#inviting-users-managing-rights

2. Configure variables for the SMTP config map. Use the oc patch command, specify the
configmap and smtp objects, followed by the -p option and write the following new values in
JSON for the following variables:

Variable Description

address Allows you to specify a remote mail server as a
relay

username Specify your mail server username

password Specify your mail server password

domain Specify a HELO domain

port Specify the port on which the mail server is
listening for new connections

authentication Specify the authentication type of your mail
server. Allowed values: plain (sends the
password in the clear), login (send password
Base64 encoded), or cram_md5 (exchange
information and a cryptographic Message Digest
5 algorithm to hash important information)

openssl.verify.mode Specify how OpenSSL checks certificates when
using TLS. Allowed values: none, peer,
client_once, or
fail_if_no_peer_cert.

Example:

3. Once you have set the configmap variables, redeploy the system-app, system-resque, and
system-sidekiq pods:

3.5. 5. 3SCALE AMP TEMPLATE PARAMETERS

Template parameters configure environment variables of the AMP yml template during and after
deployment.

Name Description Default Value Required?

oc patch configmap smtp -p '{"data":{"address":"<your_address>"}}'
oc patch configmap smtp -p '{"data":{"username":"<your_username>"}}'
oc patch configmap smtp -p '{"data":{"password":"<your_password>"}}'

oc deploy system-app --latest
oc deploy system-resque --latest
oc deploy system-sidekiq --latest

Red Hat 3Scale 2.0 Infrastructure

20

AMP_RELEASE AMP release tag. 2.0.0-CR2-redhat-2 yes

ADMIN_PASSWORD A randomly generated
AMP administrator
account password.

N/A yes

ADMIN_USERNAME AMP administrator
account username.

admin yes

APICAST_ACCESS_TO
KEN

Read Only Access
Token that APIcast will
use to download its
configuration.

N/A yes

ADMIN_ACCESS_TOK
EN

Admin Access Token
with all scopes and write
permissions for API
access.

N/A no

WILDCARD_DOMAIN Root domain for the
wildcard routes. For
example, a root domain
example.com will
generate 3scale-
admin.example.co
m.

N/A yes

TENANT_NAME Tenant name under the
root that Admin UI will
be available with -admin
suffix.

3scale yes

MYSQL_USER Username for MySQL
user that will be used for
accessing the database.

mysql yes

MYSQL_PASSWORD Password for the
MySQL user.

N/A yes

MYSQL_DATABASE Name of the MySQL
database accessed.

system yes

MYSQL_ROOT_PASS
WORD

Password for Root user. N/A yes

SYSTEM_BACKEND_U
SERNAME

Internal 3scale API
username for internal
3scale api auth.

3scale_api_user yes

CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

21

SYSTEM_BACKEND_P
ASSWORD

Internal 3scale API
password for internal
3scale api auth.

N/A yes

REDIS_IMAGE Redis image to use rhscl/redis-32-rhel7:3.2 yes

MYSQL_IMAGE Mysql image to use rhscl/mysql-56-rhel7:5.6-
13.5

yes

SYSTEM_BACKEND_S
HARED_SECRET

Shared secret to import
events from backend to
system.

N/A yes

SYSTEM_APP_SECRE
T_KEY_BASE

System application
secret key base

N/A yes

APICAST_MANAGEME
NT_API

Scope of the APIcast
Management API. Can
be disabled, status or
debug. At least status
required for health
checks.

status no

APICAST_OPENSSL_V
ERIFY

Turn on/off the
OpenSSL peer
verification when
downloading the
configuration. Can be
set to true/false.

false no

APICAST_RESPONSE_
CODES

Enable logging response
codes in APIcast.

true no

3.6. 6. USE APICAST WITH AMP ON OPENSHIFT

APIcast with AMP on OpenShift differs from APIcast with AMP hosted and requires unique configuration
procedures.

The topics in this section explain how to deploy APIcast with AMP on OpenShift.

3.6.1. 6.1. Deploy APIcast Templates on an Existing OpenShift Cluster Containing
Your AMP

AMP OpenShift templates contain 2 built-in APIcast API gateways by default. If you require more API
gateways, or require separate APIcast deployments, you can deploy additional APIcast templates onto
your OpenShift cluster.

Follow the steps below to deploy additional API gateways onto your OpenShift cluster:

1. Create an /docs/accounts/tokens[access token] with the following configurations:

Red Hat 3Scale 2.0 Infrastructure

22

scoped to Account Management API

has read-only access

2. Log in to your APIcast Cluster:

oc login

3. Create a secret, which allows APIcast to communicate with AMP. Specify new-basicauth,
apicast-configuration-url-secret, and the --password parameter with the access
token, tenant name, and wildcard domain of your AMP deployment:

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<APICAST_ACCESS_TOKEN>@<TENANT_NAME>-admin.
<WILDCARD_DOMAIN>

NOTE

TENANT_NAME is the name under the root that Admin UI will be available with.
TENANT_NAME default value is "3scale". If you used a custom value in your AMP
deployment, then you must input that value here.

4. Import the APIcast template by downloading the apicast.yml, located on the 3scale GitHub, and
running the oc new-app command, specifying the --file option with the apicast.yml file:

oc new-app --file /path/to/file/apicast.yml

3.6.2. 6.2. Connect APIcast from an OpenShift Cluster Outside of an OpenShift
Cluster Containing Your AMP

If you deploy APIcast onto a different OpenShift cluster, outside of your AMP cluster, you must connect
over the public route.

1. Create an /docs/accounts/tokens[access token] with the following configurations:

scoped to Account Management API

has read-only access

2. Log in to your APIcast Cluster:

oc login

3. Create a secret, which allows APIcast to communicate with AMP. Specify new-basicauth,
apicast-configuration-url-secret, and the --password parameter with the access
token, tenant name, and wildcard domain of your AMP deployment:

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<APICAST_ACCESS_TOKEN>@<TENANT_NAME>-admin.
<WILDCARD_DOMAIN>

CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

23

NOTE

TENANT_NAME is the name under the root that Admin UI will be available with.
TENANT_NAME default value is "3scale". If you used a custom value in your AMP
deployment, then you must input that value here.

4. Deploy APIcast onto an OpenShift cluster outside of the OpenShift Cluster with the oc new-app
command. Specify the --file option and the file path of your apicast.yml file:

oc new-app --file /path/to/file/apicast.yml

5. Update the apicast BACKEND_ENDPOINT_OVERRIDE environment variable set to the URL
backend. followed by the wildcard domain of the OpenShift Cluster containing your AMP
deployment:

oc env dc/apicast --overwrite
BACKEND_ENDPOINT_OVERRIDE=https://backend.<WILDCARD_DOMAIN>

3.6.3. 6.3. Connect APIcast from Other Deployments

Once you have deployed APIcast on other platforms, such as the /docs/deployment-options/apicast-
docker[Docker] containerized environment or /docs/deployment-options/apicast-v2-self-managed[native
installations], you can connect them to AMP on OpenShift by configuring the
BACKEND_ENDPOINT_OVERRIDE environment variable in your AMP OpenShift Cluster:

1. Log in to your AMP OpenShift Cluster:

oc login

2. Configure the system-app object BACKEND_ENDPOINT_OVERRIDE environment variable:
If you are using a native installation:

BACKEND_ENDPOINT_OVERRIDE=https://backend.<your_openshift_subdomain>
bin/apicast

If are using the Docker containerized environment:

docker run -e BACKEND_ENDPOINT_OVERRIDE=https://backend.
<your_openshift_subdomain>

3.6.4. 6.4. Change Built-In APIcast Default Behavior

In external APIcast deployments, you can modify default behavior by changing template parameters in
the APIcast OpenShift template.

In built-in APIcast deployments, AMP and APIcast are deployed from a single template. You must modify
environment variables after deployment if you wish to change default behavior for built-in APIcast
deployments.

3.6.5. 6.5. Connect Multiple APIcast Deployments on a Single OpenShift Cluster
over Internal Service Routes

Red Hat 3Scale 2.0 Infrastructure

24

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-openshift

If you deploy multiple APIcast gateways into the same OpenShift cluster, you can configure them to
connect using internal routes through the backend listener service instead of the default external route
configuration.

You must have an OpenShift SDN plugin installed to connect over internal service routes. How you
connect depends on which SDN you have installed.

ovs-subnet

If you are using the ovs-subnet OpenShift SDN plugin, follow these steps to connect over internal
routes:

1. Log in to your OpenShift Cluster, if you have not already done so:

oc login

2. Enter the oc new-app command with the path to the apicast.yml file:

Specify the --param option with the BACKEND_ENDPOINT_OVERRIDE parameter set to the
domain of your OpenShift cluster’s AMP project:

oc new-app -f apicast.yml --param
BACKEND_ENDPOINT_OVERRIDE=http://backend-listener.
<AMP_PROJECT>.svc.cluster.local:3000

ovs-multitenant

If you are using the 'ovs-multitenant' Openshift SDN plugin, follow these steps to connect over internal
routes:

1. Log in to your OpenShift Cluster, if you have not already done so:

oc login

2. As admin, specify the oadm command with the pod-network and join-projects options to
set up communication between both projects:

oadm pod-network join-projects --to=<AMP_PROJECT> <APICAST_PROJECT>

3. Enter the oc new-app cotion with the path to the apicast.yml file

Specify the --param option with the BACKEND_ENDPOINT_OVERRIDE parameter set to the
domain of your OpenShift cluster’s AMP project:

oc new-app -f apicast.yml --param
BACKEND_ENDPOINT_OVERRIDE=http://backend-listener.
<AMP_PROJECT>.svc.cluster.local:3000

More information

For information on Openshift SDN and project network isolation, visit: Openshift SDN

3.7. 7. TROUBLESHOOTING

CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

25

https://docs.openshift.com/container-platform/3.5/architecture/additional_concepts/sdn.html

This section contains a list of common installation issues, and provides guidance for resolution.

7.1, “Previous Deployment Leaves Dirty Persistent Volume Claims”

7.2, “Incorrectly Pulling from the Docker Registry”

7.3, “Permissions Issues for MySQL when Persistent Volumes are Mounted Locally”

7.4, “Unable to Upload Logo or Images Because Persistent Volumes are not Writable by
OpenShift”

7.5, “Create Secure Routes on OpenShift”

7.6, “APIcast on a Different Project from AMP Fails to Deploy Due to Problem with Secrets”

7.7, “Deployment Script is Unable to Create Persistent Storage Volumes”

3.7.1. 7.1. Previous Deployment Leaves Dirty Persistent Volume Claims

Problem

A previous deployment attempt leaves a dirty Persistent Volume Claim (PVC), causing the MySQL
container to fail to start.

Cause

Deleting a project in OpenShift does not clean the PVCs associated with it.

Solution

1. Find the PVC containing the erroneous MySQL data with oc get pvc:

2. Stop the deployment of the system-mysql pod by clicking cancel deployment in the
OpenShift UI.

3. Delete everything under the MySQL path to clean the volume.

4. Start a new system-mysql deployment.

3.7.2. 7.2. Incorrectly Pulling from the Docker Registry

Problem

The following error occurs during installation:

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES
AGE
backend-redis-storage Bound vol003 100Gi RWO,RWX
4d
mysql-storage Bound vol006 100Gi RWO,RWX
4d
system-redis-storage Bound vol008 100Gi RWO,RWX
4d
system-storage Bound vol004 100Gi RWO,RWX
4d

Red Hat 3Scale 2.0 Infrastructure

26

Cause

OpenShift searches for and pulls container images by issuing the docker command. This command
refers to the docker.io Docker registry, instead of the registry.access.redhat.com Red Hat
container registry.

This occurs when the system contains an unexpected version of the Docker containerized environment.

Solution

Use the appropriate version of the Docker containerized environment.

3.7.3. 7.3. Permissions Issues for MySQL when Persistent Volumes are Mounted
Locally

Problem

The system-msql pod crashes and does not deploy, causing other systems dependant on it to fail
deployment. The pod’s log displays the following error:

Cause

The MySQL process is started with inappropriate user permissions.

Solution

1. The directories used for the persistent volumes MUST have the write permissions for the root
group. Having rw permissions for the root user is not enough, as the MySQL service runs as a
different user in the root group. Execute the following as root user:

chmod -R g+w /path/for/pvs

2. Execute the following command to prevent SElinux from blocking access:

chcon -Rt svirt_sandbox_file_t /path/for/pvs

3.7.4. 7.4. Unable to Upload Logo or Images Because Persistent Volumes are not
Writable by OpenShift

Problem

Unable to upload a logo using OpenShift version 3.4. system-app logs display the following error:

Errno::EACCES (Permission denied @ dir_s_mkdir -
/opt/system/public//system/provider-name/2

svc/system-redis - 1EX.AMP.LE.IP:6379
 dc/system-redis deploys docker.io/rhscl/redis-32-rhel7:3.2-5.3
 deployment #1 failed 13 minutes ago: config change

[ERROR] Can't start server : on unix socket: Permission denied
[ERROR] Do you already have another mysqld server running on socket:
/var/lib/mysql/mysql.sock ?
[ERROR] Aborting

CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

27

http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/

Cause

Persistent volumes are not writable by OpenShift.

Solution

Ensure your persistent volume is writable by OpenShift. It should be owned by root group and be group
writable.

3.7.5. 7.5. Create Secure Routes on OpenShift

Problem

Test calls do not work after creation of a new service and routes on OpenShift. Direct calls via curl also
fail, stating: service not available.

Cause

3scale requires HTTPS routes by default, and OpenShift routes are not secured.

Solution

Ensure the "secure route" checkbox is enabled in your OpenShift router settings.

3.7.6. 7.6. APIcast on a Different Project from AMP Fails to Deploy Due to Problem
with Secrets

Problem

APIcast deploy fails (pod doesn’t turn blue). The following error appears in the logs:

update acceptor rejected apicast-3: pods for deployment "apicast-3" took
longer than 600 seconds to become ready

The following error appears in the pod:

Error synching pod, skipping: failed to "StartContainer" for "apicast"
with RunContainerError: "GenerateRunContainerOptions: secrets \"apicast-
configuration-url-secret\" not found"

Cause

The secret was not properly set up.

Solution

When creating a secret with APIcast v3, specify apicast-configuration-url-secret:

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<ACCESS_TOKEN>@<TENANT_NAME>-admin.<WILDCARD_DOMAIN>

3.7.7. 7.7. Deployment Script is Unable to Create Persistent Storage Volumes

Red Hat 3Scale 2.0 Infrastructure

28

Problem

A command creating a persistent volume claim in the amp.yml script might fail. If the command fails, you
see the following error message:

timeout expired waiting for volumes to attach/mount for pod

Cause

This error is caused by a bug in Kubernetes.

Solution

Perform the following steps to correct the error and deploy AMP:

1. Remove the project that contains the failed installation:

oc delete project <project_name>

2. Create a new project or select an existing project:

oc new-project <project_name>

oc project <project_name>

3. Download pvc.yml, located on the 3scale GitHub.

4. From a terminal session within the same folder as the downloaded template run oc new-app,
specifying the --file option and the pvc.yml file:

oc new-app --file pvc.yml

NOTE

The pvc.yml script may take a few minutes to create the persistent volume claims
on your OpenShift cluster.

5. Continue the installation process at the #import_the_amp_template[Section 4.1, “Import the AMP
Template”] task

NOTE

During your next deployment, you may see an error related to persistent volume claims,
you can safely ignore this message.

CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE

29

https://github.com/kubernetes/kubernetes/issues/28962
https://raw.githubusercontent.com/3scale/3scale-amp-openshift-templates/2.0.0.GA-redhat-2/amp/pvc.yml

CHAPTER 4. 3SCALE AMP 2.0 ON-PREMISES OPERATIONS
AND SCALING GUIDE

4.1. 1. INTRODUCTION

This document describes operations and scaling tasks of a Red Hat 3scale AMP 2.0 On-Premises
installation.

4.1.1. 1.1. Prerequisites

Before you can perform the steps in this guide, you must have installed and initially configured AMP On-
Premises on OpenShift 3.3 or 3.4.

This document is not intended for local installations on laptops or similar end user equipment.

4.1.1.1. Further Reading

Health and Liveness Monitoring

OpenShift Documentation

4.2. 2. RE-DEPLOYING APICAST

Once you have deployed AMP On-Premises and your chosen APIcast deployment method, you can test
and promote system changes through your AMP dashboard. By default, APIcast deployments on
OpenShift, both built-in and on other OpenShift clusters, are configured to allow you to publish changes
to your staging and production gateways through the AMP UI.

Redeploy APIcast on OpenShift:

1. Make system changes

2. In the UI, deploy to staging and test

3. In the UI, promote to production

4. By default, APIcast retrieves and publishes the promoted update once every 5 minutes

If you are using APIcast on the Docker containerized environment or a native installation, you must
configure your staging and production gateways, as well as configure how often your gateway retrieves
published changes. Once you have configured your APIcast gateways, you can redeploy APIcast
through the AMP UI.

To redeploy APIcast on the Docker containerized environment or a native installations:

1. Configure your APIcast gateway and connect it to AMP On-Premises

2. Make system changes

3. In the UI, deploy to staging and test

4. In the UI, promote to production

5. APIcast will retrieve and publish the promoted update at the configured frequency

Red Hat 3Scale 2.0 Infrastructure

30

https://docs.openshift.com/container-platform/latest/dev_guide/application_health.html
https://docs.openshift.com/index.html

4.3. 3 SCALING UP AMP ON PREMISES

4.3.1. 3.1. Scaling up Storage

As your APIcast deployment grows, you may need to increase the amount of storage available. How you
scale up storage depends on which type of file system you are using for your persistent storage.

If you are using a network file system (NFS), you can scale up your persistent volume using the oc
edit pv command:

oc edit pv <pv_name>

If you are using any other storage method, you must scale up your persistent volume manually using
either of the following methods:

4.3.1.1. 3.1.1. Method 1, Backup and Swap Persistent Volumes

1. Back up the data on your existing persistent volume

2. Create and attach a target persistent volume, scaled for your new size requirements

3. Create a pre-bound persistent volume claim, specify: The size of your new PVC The persistent
volume name using the volumeName field

4. Restore data from your backup onto your newly created PV

5. Modify your deployment configuration with the name of your new PV:

oc edit dc/system-app

6. Verify your new PV is configured and working correctly

7. Delete your previous PVC to release its claimed resources

4.3.1.2. 3.1.2. Method 2. Back up and Redeploy AMP

1. Back up the data on your existing persistent volume

2. Shut down your 3scale pods

3. Create and attach a target persistent volume, scaled for your new size requirements

4. Restore data from your backup onto your newly created PV

5. Create a pre-bound persistent volume claim. Specify:

The size of your new PVC

The persistent volume name using the volumeName field

6. Deploy your AMP.yml

7. Verify your new PV is configured and working correctly.

8. Delete your previous PVC to release its claimed resources.

CHAPTER 4. 3SCALE AMP 2.0 ON-PREMISES OPERATIONS AND SCALING GUIDE

31

4.3.2. 3.2. Scaling up Performance

4.3.2.1. 3.2.1. Configuring 3scale On-Premises Deployments

By default, 3scale deployments run 1 process per pod. You can increase performance by running more
processes per pod. Red Hat recommends running 1-2 processes per core on each node.

Perform the following steps to add more processes to a pod:

1. Log in to your OpenShift cluster

oc login

2. Switch to your 3scale project

oc project <project_name>

3. Set the appropriate environment variable to the the desired number of processes per pod

APICAST_WORKERS for APIcast pods (Red Hat recommends no more than 2 per
deployment)

PUMA_WORKERS for backend pods

UNICORN_WORKERS for system pods

oc env dc/apicast --overwrite APICAST_WORKERS=
<number_of_processes>

oc env dc/backend --overwrite PUMA_WORKERS=<number_of_processes>

oc env dc/system-app --overwrite UNICORN_WORKERS=
<number_of_processes>

4.3.2.2. 3.2.2. Vertical and Horizontal Hardware Scaling

You can increase the performance of your AMP deployment on OpenShift by adding resources. You can
add more compute nodes as pods to your OpenShift cluster (horizontal scaling), or you can allocate
more resources to existing compute nodes (vertical scaling).

Horizontal Scaling

You can add more compute nodes as pods to your OpenShift. As long as your additional compute nodes
match the existing nodes in your cluster, you do not have to reconfigure any environment variables.

Vertical Scaling

You can allocate more resources to existing compute nodes. If you allocate more resources, you must
add additional processes to your pods to increase performance.

Note

Red Hat does not recommend mixing compute nodes of a different specification or configuration on your
3scale deployment.

Red Hat 3Scale 2.0 Infrastructure

32

4.3.2.3. 3.2.3. Scaling Up Routers

As your traffic increases, you must ensure your OCP routers can adequately handle requests. If your
routers are limiting the throughput of your requests, you must scale up your router nodes.

4.3.2.4. 3.2.4. Further Reading

Scaling tasks, adding hardware compute nodes to OpenShift

Adding Compute Nodes

Routers

4.4. 4. OPERATIONS TROUBLESHOOTING

4.4.1. 4.1. Access Your Logs

Each component’s deployment configuration contains logs for access and exceptions. If you encounter
issues with your deployment, check these logs for details.

Follow these steps to access logs in 3scale:

1. Find the ID of the pod you want logs for:

oc get pods

2. Enter oc logs and the ID of your chosen pod:

oc logs <pod>

The system pod has 2 containers, each with a separate log. To access a container’s log, specify the --
container parameter with the system-provider and system-developer:

4.4.2. 4.2. Job Queues

Job Queues contain logs of information sent from the system-resque and system-sidekiq pods.
Use these logs to check if your cluster is processing data. You can query the logs using the OpenShift
CLI:

oc get jobs

oc logs <job>

oc logs <pod> --container=system-provider
oc logs <pod> --container=system-developer

CHAPTER 4. 3SCALE AMP 2.0 ON-PREMISES OPERATIONS AND SCALING GUIDE

33

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION
WITH FUSE, 3SCALE, AND OPENSHIFT

This tutorial describes how to get a full-stack API solution (API design, development, hosting, access
control, monetization, etc.) using Red Hat JBoss xPaaS for OpenShift and 3scale API Management
Platform - Cloud.

The tutorial is based on a collaboration between Red Hat and 3scale to provide a full-stack API solution.
This solution includes design, development, and hosting of your API on the Red Hat JBoss xPaaS for
OpenShift, combined with the 3scale API Management Platform for full control, visibility, and
monetization features.

The API itself can be deployed on Red Hat JBoss xPaaS for OpenShift, which can be hosted in the cloud
as well as on premise (that’s the Red Hat part). The API management (the 3scale part) can be hosted on
Amazon Web Services (AWS), using 3scale APIcast or OpenShift. This gives a wide range of different
configuration options for maximum deployment flexibility.

The diagram below summarizes the main elements of this joint solution. It shows the whole integration
chain including enterprise backend systems, middleware, API management, and API customers.

For specific support questions, please contact support.

This tutorial shows three different deployment scenarios step by step:

1. Scenario 1 – A Fuse on OpenShift application containing the API. The API is managed by 3scale
with the API gateway hosted on Amazon Web Services (AWS) using the 3scale AMI.

2. Scenario 2 – A Fuse on OpenShift application containing the API. The API is managed by 3scale
with the API gateway hosted on APIcast (3scale’s cloud hosted API gateway).

Red Hat 3Scale 2.0 Infrastructure

34

http://pages.3scale.net/rs/3scale/images/3scale-redhat-joint-solution-brief.pdf
https://www.openshift.com/xpaas
http://www.3scale.net/apicast/
https://access.redhat.com/support/
http://www.jboss.org/products/fuse
https://aws.amazon.com/marketplace/pp/B00QHIY9OW
http://www.3scale.net/apicast/

3. Scenario 3 – A Fuse on OpenShift application containing the API. The API is managed by 3scale
with the API gateway hosted on OpenShift

This tutorial is split into four parts:

Part 1: Fuse on OpenShift setup to design and implement the API

Part 2: Configuration of 3scale API Management

Part 3: Integration of your API services

Part 4: Testing the API and API management

The diagram below shows the roles the various parts play in this configuration.

5.1. PART 1: FUSE ON OPENSHIFT SETUP

You will create a Fuse on OpenShift application that contains the API to be managed. You will use the
REST quickstart that is included with Fuse 6.1. This requires a medium or large gear, as using the small
gear will result in memory errors and/or horrible performance.

5.1.1. Step 1

Sign in to your OpenShift online account. Sign up for an OpenShift online account if you don’t already
have one.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

35

https://www.openshift.com/
http://www.jboss.org/products/fuse
http://www.jboss.org/products/fuse

5.1.2. Step 2

Click the "add application" button after signing in.

5.1.3. Step 3

Under xPaaS, select the Fuse type for the application.

Red Hat 3Scale 2.0 Infrastructure

36

5.1.4. Step 4

Now configure the application. Enter the subdomain you’d like your application to show up under, such
as "restapitest". This will give a full URL of the form "appname-domain.rhcloud.com" – in the example
below "restapitest-ossmentor.rhcloud.com". Change the gear size to medium or large, which is required
for the Fuse cartridge. Now click on "create application".

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

37

5.1.5. Step 5

Click "create application".

Red Hat 3Scale 2.0 Infrastructure

38

5.1.6. Step 6

Browse the application hawtio console and sign in.

5.1.7. Step 7

After signing in, click on the "runtime" tab and the container, and add the REST API example.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

39

5.1.8. Step 8

Click on the "add a profile" button.

5.1.9. Step 9

Scroll down to examples/quickstarts and click the "REST" checkbox, then "add". The REST profile should
show up on the container associated profile page.

Red Hat 3Scale 2.0 Infrastructure

40

5.1.10. Step 10

Click on the runtime/APIs tab to verify the REST API profile.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

41

5.1.11. Step 11

Verify the REST API is working. Browse to customer 123, which will return the ID and name in XML
format.

5.2. PART 2: CONFIGURE 3SCALE API MANAGEMENT

To protect the API that you just created in Part 1 using 3scale API Management, you first must conduct
the according configuration, which is then later deployed according to one of the three scenarios
presented.

Once you have your API set up on OpenShift, you can start setting it up on 3scale to provide the
management layer for access control and usage monitoring.

5.2.1. Step 1

Log in to your 3scale account. You can sign up for a 3scale account at www.3scale.net if you don’t
already have one. When you log in to your account for the first time, follow the wizard to learn the basics
about integrating your API with 3scale.

5.2.2. Step 2

In API > Integration, you can enter the public URL for the Fuse application on OpenShift that you just
created, e.g. "restapitest-ossmentor.rhcloud.com" and click on Test. This will test your setup against the
3scale API Gateway in the staging environment. The staging API gateway allows you to test your 3scale
setup before deploying your proxy configuration to AWS.

Red Hat 3Scale 2.0 Infrastructure

42

http://www.3scale.net

5.2.3. Step 3

The next step is to set up the API methods that you want to monitor and rate limit. To do that go to API >
Definition and click on 'New method'.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

43

For more details on creating methods, visit our API definition tutorial.

5.2.4. Step 4

Once you have all of the methods that you want to monitor and control set up under the application plan,
you’ll need to map these to actual HTTP methods on endpoints of your API. Go back to the integration
page and expand the "mapping rules" section.

Create mapping rules for each of the methods you created under the application plan.

Once you have done that, your mapping rules will look something like this:

For more details on mapping rules, visit our tutorial about mapping rules.

5.2.5. Step 5

Once you’ve clicked "update and test" to save and test your configuration, you are ready to download the
set of configuration files that will allow you to configure your API gateway on AWS. For the API gateway,
you should use a high-performance, open-source proxy called nginx. You will find the necessary
configuration files for nginx on the same integration page by scrolling down to the "production" section.

Red Hat 3Scale 2.0 Infrastructure

44

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/access_control#api-definition-methods-metrics
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/access_control#mapping-rules
http://nginx.org/

The next section will now take you through various hosting scenarios.

5.3. PART 3: INTEGRATION OF YOUR API SERVICES

There are different ways in which you can integrate your API services in 3scale. Choose the one that
best fits your needs:

APIcast hosted on AWS

APIcast hosted

APIcast on OpenShift

5.4. PART 4: TESTING THE API AND API MANAGEMENT

Testing the correct functioning of the API and the API Management is independent from the chosen
scenario. You can use your favorite REST client and run the following commands.

5.4.1. Step 1

Retrieve the customer instance with id 123.

http://54.149.46.234/cxf/crm/customerservice/customers/123?
user_key=b9871b41027002e68ca061faeb2f972b

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

45

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#aws-proxy-ami
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-hosted
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-openshift

5.4.2. Step 2

Create a customer.

http://54.149.46.234/cxf/crm/customerservice/customers?
user_key=b9871b41027002e68ca061faeb2f972b

5.4.3. Step 3

Update the customer instance with id 123.

http://54.149.46.234/cxf/crm/customerservice/customers?
user_key=b9871b41027002e68ca061faeb2f972b

Red Hat 3Scale 2.0 Infrastructure

46

5.4.4. Step 4

Delete the customer instance with id 123.

http://54.149.46.234/cxf/crm/customerservice/customers/123?
user_key=b9871b41027002e68ca061faeb2f972b

5.4.5. Step 5

Check the API Management analytics of your API.

If you now log back in to your 3scale account and go to Monitoring > Usage, you can see the various hits
of the API endpoints represented as graphs.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

47

This is just one element of API Management that brings you full visibility and control over your API. Other
features include:

1. Access control

2. Usage policies and rate limits

3. Reporting

4. API documentation and developer portals

5. Monetization and billing

For more details about the specific API Management features and their benefits, please refer to the
3scale API Management Platform product description.

For more details about the specific Red Hat JBoss Fuse product features and their benefits, please refer
to the JBOSS FUSE Overview.

For more details about running Red Hat JBoss Fuse on OpenShift, please refer to the Getting Started
with JBoss Fuse on OpenShift.

Red Hat 3Scale 2.0 Infrastructure

48

http://www.3scale.net/api-management/
http://www.jboss.org/products/fuse/overview/
https://blog.openshift.com/getting-started-with-jboss-fuse-on-openshift/

	Table of Contents
	CHAPTER 1. API DEPLOYMENT ON MICROSOFT AZURE
	1.1. CREATE AND CONFIGURE MICROSOFT AZURE VM
	1.2. INSTALL OPENRESTY
	1.3. CONFIGURE YOUR GITHUB REPO
	1.3.1. Warning

	1.4. CONFIGURE YOUR API
	1.4.1. On 3scale
	1.4.2. Capistrano setup

	1.5. CAPISTRANO SETUP
	1.6. DEPLOY
	1.6.1. Troubleshooting

	CHAPTER 2. DEPLOY AN API ON AMAZON EC2 FOR AWS ROOKIES
	2.1. PREREQUISITES
	2.2. CREATE AND CONFIGURE EC2 INSTANCE
	2.3. PREPARE INSTANCE FOR DEPLOYMENT
	2.4. DEPLOYING THE APPLICATION
	2.4.1. Optional

	2.5. ENABLING API MANAGEMENT WITH 3SCALE
	2.6. INSTALL AND DEPLOY APICAST (YOUR API GATEWAY)

	CHAPTER 3. 3SCALE AMP ON-PREMISES INSTALLATION GUIDE
	3.1. 1. 3SCALE AMP OPENSHIFT TEMPLATES
	3.2. 2. SYSTEM REQUIREMENTS
	3.2.1. Environment Requirements
	3.2.2. Hardware Requirements

	3.3. 3. CONFIGURE NODES AND ENTITLEMENTS
	3.4. 4. DEPLOY THE 3SCALE AMP ON OPENSHIFT USING A TEMPLATE
	3.4.1. Prerequisites:
	3.4.2. 4.1. Import the AMP Template
	3.4.3. 4.2. Configure Wildcard Domains (Optional, Tech Preview)
	3.4.4. 4.3. Configure SMTP Variables (Optional)

	3.5. 5. 3SCALE AMP TEMPLATE PARAMETERS
	3.6. 6. USE APICAST WITH AMP ON OPENSHIFT
	3.6.1. 6.1. Deploy APIcast Templates on an Existing OpenShift Cluster Containing Your AMP
	3.6.2. 6.2. Connect APIcast from an OpenShift Cluster Outside of an OpenShift Cluster Containing Your AMP
	3.6.3. 6.3. Connect APIcast from Other Deployments
	3.6.4. 6.4. Change Built-In APIcast Default Behavior
	3.6.5. 6.5. Connect Multiple APIcast Deployments on a Single OpenShift Cluster over Internal Service Routes

	3.7. 7. TROUBLESHOOTING
	3.7.1. 7.1. Previous Deployment Leaves Dirty Persistent Volume Claims
	3.7.2. 7.2. Incorrectly Pulling from the Docker Registry
	3.7.3. 7.3. Permissions Issues for MySQL when Persistent Volumes are Mounted Locally
	3.7.4. 7.4. Unable to Upload Logo or Images Because Persistent Volumes are not Writable by OpenShift
	3.7.5. 7.5. Create Secure Routes on OpenShift
	3.7.6. 7.6. APIcast on a Different Project from AMP Fails to Deploy Due to Problem with Secrets
	3.7.7. 7.7. Deployment Script is Unable to Create Persistent Storage Volumes

	CHAPTER 4. 3SCALE AMP 2.0 ON-PREMISES OPERATIONS AND SCALING GUIDE
	4.1. 1. INTRODUCTION
	4.1.1. 1.1. Prerequisites
	4.1.1.1. Further Reading

	4.2. 2. RE-DEPLOYING APICAST
	4.3. 3 SCALING UP AMP ON PREMISES
	4.3.1. 3.1. Scaling up Storage
	4.3.1.1. 3.1.1. Method 1, Backup and Swap Persistent Volumes
	4.3.1.2. 3.1.2. Method 2. Back up and Redeploy AMP

	4.3.2. 3.2. Scaling up Performance
	4.3.2.1. 3.2.1. Configuring 3scale On-Premises Deployments
	4.3.2.2. 3.2.2. Vertical and Horizontal Hardware Scaling
	4.3.2.3. 3.2.3. Scaling Up Routers
	4.3.2.4. 3.2.4. Further Reading

	4.4. 4. OPERATIONS TROUBLESHOOTING
	4.4.1. 4.1. Access Your Logs
	4.4.2. 4.2. Job Queues

	CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT
	5.1. PART 1: FUSE ON OPENSHIFT SETUP
	5.1.1. Step 1
	5.1.2. Step 2
	5.1.3. Step 3
	5.1.4. Step 4
	5.1.5. Step 5
	5.1.6. Step 6
	5.1.7. Step 7
	5.1.8. Step 8
	5.1.9. Step 9
	5.1.10. Step 10
	5.1.11. Step 11

	5.2. PART 2: CONFIGURE 3SCALE API MANAGEMENT
	5.2.1. Step 1
	5.2.2. Step 2
	5.2.3. Step 3
	5.2.4. Step 4
	5.2.5. Step 5

	5.3. PART 3: INTEGRATION OF YOUR API SERVICES
	5.4. PART 4: TESTING THE API AND API MANAGEMENT
	5.4.1. Step 1
	5.4.2. Step 2
	5.4.3. Step 3
	5.4.4. Step 4
	5.4.5. Step 5

