
Red Hat 3Scale 2.0

Deployment Options

For Use with Red Hat 3Scale 2.0

Last Updated: 2018-04-10

Red Hat 3Scale 2.0 Deployment Options

For Use with Red Hat 3Scale 2.0

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide documents deployment options for Red Hat 3Scale 2.0.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. APICAST OVERVIEW
1.1. PREREQUISITES
1.2. DEPLOYMENT OPTIONS
1.3. ENVIRONMENTS
1.4. API CONFIGURATION
1.5. CONFIGURE THE INTEGRATION SETTINGS
1.6. CONFIGURE YOUR SERVICE
1.7. MAPPING RULES
1.8. MAPPING RULES WORKFLOW
1.9. HOST HEADER
1.10. PRODUCTION DEPLOYMENT
1.11. PUBLIC BASE URL
1.12. PROTECTING YOUR API BACKEND
1.13. USING APICAST WITH PRIVATE APIS

CHAPTER 2. APICAST HOSTED
2.1. PREREQUISITES
2.2. STEP 1: DEPLOY YOUR API WITH APICAST HOSTED IN A STAGING ENVIRONMENT
2.3. STEP 2: DEPLOY YOUR API WITH THE APICAST HOSTED INTO PRODUCTION

2.3.1. Bear in mind

CHAPTER 3. APICAST SELF-MANAGED
3.1. PREREQUISITES
3.2. STEP 1: INSTALL OPENRESTY AND DEPENDENCIES
3.3. STEP 2: DEPLOY AND RUN APICAST

CHAPTER 4. APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT
4.1. PREREQUISITES
4.2. STEP 1: INSTALL THE DOCKER CONTAINERIZED ENVIRONMENT
4.3. STEP 2: RUN THE DOCKER CONTAINERIZED ENVIRONMENT GATEWAY

4.3.1. The Docker command options
4.4. STEP 3: TESTING APICAST
4.5. STEP 4: TROUBLESHOOTING APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT

4.5.1. Cannot connect to the Docker daemon error
4.5.2. Basic Docker command-line interface commands

4.6. STEP 5: CUSTOMISING THE GATEWAY
4.6.1. Custom Lua logic
4.6.2. Customising the configuration files

CHAPTER 5. RUNNING APICAST ON RED HAT OPENSHIFT
5.1. PREREQUISITES
5.2. STEP 1: SET UP OPENSHIFT

5.2.1. Install the Docker containerized environment
5.2.2. Start OpenShift cluster

5.2.2.1. Setting up OpenShift cluster on a remote server
5.3. STEP 2: DEPLOY APICAST USING THE OPENSHIFT TEMPLATE
5.4. STEP 3: CREATE ROUTES IN OPENSHIFT CONSOLE

5.4.1. Configure wildcard domains (technical preview)
5.4.1.1. Pre-requisites
5.4.1.2. Steps

CHAPTER 6. ADVANCED APICAST CONFIGURATION
6.1. DEFINE A SECRET TOKEN

4
4
4
4
5
5
5
6
7
8
8
8
9
9

10
10
10
11
11

12
12
12
13

14
14
14
14
15
15
16
16
16
16
16
17

18
18
18
18
19
19
20
21
23
24
24

25
25

Table of Contents

1

. .

. .

. .

6.2. CREDENTIALS
6.3. ERROR MESSAGES
6.4. CONFIGURATION HISTORY
6.5. DEBUGGING
6.6. EXTENDING THE GATEWAY

CHAPTER 7. APICAST AND OAUTH 2.0
7.1. PREREQUISITES
7.2. APICAST CONFIGURATION IN 3SCALE ADMIN PORTAL
7.3. RUNNING APICAST WITH OAUTH
7.4. TESTING THE FLOW

7.4.1. Requesting an Authorization Code
7.4.2. Exchanging the Authorization Code for an Access Token

CHAPTER 8. CODE LIBRARIES
8.1. PYTHON
8.2. RUBY GEM
8.3. PERL
8.4. PHP
8.5. JAVA
8.6. .NET
8.7. NODE.JS

CHAPTER 9. PLUGIN SETUP
9.1. HOW PLUGINS WORK
9.2. STEP 1: SELECT YOUR LANGUAGE AND DOWNLOAD THE PLUGIN
9.3. STEP 2: CHECK THE METRICS YOU’VE SET FOR YOUR API
9.4. STEP 3: INSTALL THE PLUGIN CODE TO YOUR APPLICATION
9.5. STEP 4: ADD CALLS TO AUTHORIZE AS API TRAFFIC ARRIVES

9.5.1. Usage on authrep mode
9.6. STEP 5: DEPLOY AND RUN TRAFFIC

25
26
27
28
29

30
30
30
31
31
32
33

34
34
34
34
34
34
35
35

36
36
36
37
37
39
39
40

Red Hat 3Scale 2.0 Deployment Options

2

Table of Contents

3

CHAPTER 1. APICAST OVERVIEW
APIcast is an NGINX based API gateway used to integrate your internal and external API services with
3scale API Management Platform.

The latest released and supported version of APIcast is 2.0.

In this guide you’ll learn more about deployment options, environments provided, and how to get started.

1.1. PREREQUISITES

APIcast is not a standalone API gateway, it needs connection to 3scale API Manager. In case you don’t
yet have a 3scale account please follow these steps:

Sign up for a new account at 3scale.net

Activate your 3scale account

Log in to your 3scale Admin Portal

The Admin Portal URL should look like https://<DOMAIN>-admin.3scale.net, where <DOMAIN>
is the domain you specified on sign up.

1.2. DEPLOYMENT OPTIONS

You can use APIcast hosted or self-managed, in both cases, it needs connection to the rest of the
3scale API management platform:

APIcast hosted: 3scale hosts APIcast in the cloud. In this case, APIcast is already deployed for
you and it’s limited to 50,000 calls per day.

APIcast built-in: Two APIcast (staging and production) come by default with the 3scale API
Management Platform (AMP) installation. They come pre-configured and ready to use out-of-
the-box.

APIcast self-managed: You can deploy APIcast wherever you want. The self-managed mode is
the intended mode of operation for production environments. Here are a few recommended
options to deploy APIcast:

Native deployment: Install OpenResty and other dependencies on your own server and run
APIcast using the code and configuration provided by 3scale.

the Docker containerized environment: Download a ready to use Docker-formatted container
image, which includes all of the dependencies to run APIcast in a Docker-formatted
container.

OpenShift: Run APIcast on a supported version of OpenShift. You can connect self-
managed APIcasts both to a 3scale AMP installation or to a 3scale online account.

1.3. ENVIRONMENTS

By default, when you create a 3scale account, you get APIcast hosted in two different environments:

Red Hat 3Scale 2.0 Deployment Options

4

https://www.3scale.net/signup/
https://www.3scale.net/
https:
https://access.redhat.com/articles/2798521

Staging: Intended to be used only while configuring and testing your API integration. When you
have confirmed that your setup is working as expected, then you can choose to deploy it to the
production environment.

Production: Limited to 50,000 calls per day and supports the following out-of-the-box
authentication options: API key, and App ID and App key pair.

1.4. API CONFIGURATION

Follow the next steps to configure APIcast in no time.

1.5. CONFIGURE THE INTEGRATION SETTINGS

Go to the Dashboard → API tab and click on the Integration link. If you have more than one API in your
account, you’ll need to select the API first.

On top of the Integration page you will see your integration options. By default, the deloyment option is
APIcast hosted, and the authentication mode is API key. You can change these settings by clicking on
edit integration settings in the top right corner. Note that OAuth 2.0 authentication is only available for
the Self-managed deployment.

1.6. CONFIGURE YOUR SERVICE

You will need to declare your API backend in the Private Base URL field, which is the endpoint host of
your API backend. APIcast will redirect all traffic to your API backend after all authentication,
authorization, rate limits and statistics have been processed.

Typically, the Private Base URL of your API will be something like https://api-
backend.yourdomain.com:443, on the domain that you manage (yourdomain.com). For instance,
if you were integrating with the Twitter API the Private Base URL would be
https://api.twitter.com/. In this example will use the Echo API hosted by 3scale – a simple API
that accepts any path and returns information about the request (path, request parameters, headers,
etc.). Its Private Base URL is https://echo-api.3scale.net:443. Private Base URL

Test your private (unmanaged) API is working. For example, for the Echo API we can make the following
call with curl command:

curl "https://echo-api.3scale.net:443"

We’ll get the following response:

{
 "method": "GET",
 "path": "/",
 "args": "",
 "body": "",

CHAPTER 1. APICAST OVERVIEW

5

https://api-backend.yourdomain.com:443
https://api.twitter.com/
https://echo-api.3scale.net:443

 "headers": {
 "HTTP_VERSION": "HTTP/1.1",
 "HTTP_HOST": "echo-api.3scale.net",
 "HTTP_ACCEPT": "*/*",
 "HTTP_USER_AGENT": "curl/7.51.0",
 "HTTP_X_FORWARDED_FOR": "2.139.235.79, 10.0.103.58",
 "HTTP_X_FORWARDED_HOST": "echo-api.3scale.net",
 "HTTP_X_FORWARDED_PORT": "443",
 "HTTP_X_FORWARDED_PROTO": "https",
 "HTTP_FORWARDED": "for=10.0.103.58;host=echo-
api.3scale.net;proto=https"
 },
 "uuid": "ee626b70-e928-4cb1-a1a4-348b8e361733"
 }

Once you’ve confirmed that your API is working, you will need to configure the test call for the hosted
staging environment. Enter a path existing in your API in the API test GET request field (for example,
/v1/word/good.json).

Save the settings by clicking on the Update & Test Staging Configuration button in the bottom right
part of the page. This will deploy the APIcast configuration to the 3scale hosted staging environment. If
everything is configured correctly, the vertical line on the left should turn green.

If you are using one of the Self-managed deployment options, save the configuration from the GUI
and make sure it is pointing to your deployed API gateway by adding the correct host in the staging or
production Public base URL field. Before making any calls to your production gateway, don’t forget to
click on the Promote v.x to Production button.

Find the sample curl at the bottom of the staging section and run it from the console:

curl "https://XXX.staging.apicast.io:443/v1/word/good.json?
user_key=YOUR_USER_KEY"

NOTE

You should get the same response as above, however, this time the request will go
through the 3scale hosted APIcast instance. Note: You should make sure you have an
application with valid credentials for the service. If you are using the default API service
created on sign up to 3scale, you should already have an application. Otherwise, if you
see USER_KEY or APP_ID and APP_KEY values in the test curl, you need to create an
application for this service first.

And that’s it! You have your API integrated with 3scale.

3scale hosted APIcast gateway does the validation of the credentials and applies the rate limits that you
defined for the application plan of the application. If you try to make a call without credentials, or with
invalid credentials, you will see an error message. The code and the text of the message can be
configured, check out the Advanced APIcast configuration article for more information.

1.7. MAPPING RULES

By default we start with a very simple mapping rule,

Red Hat 3Scale 2.0 Deployment Options

6

This rule means that any GET request that starts with / will increment the metric hits by 1. This mapping
rule will match any request to your API. Most likely you will change this rule since it is too generic.

The mapping rules define which metrics (and methods) you want to report depending on the requests to
your API. For instance, below you can see the rules for the Echo API that serves us as an example:

The matching of the rules is done by prefix and can be arbitrarily complex (the notation follows Swagger
and ActiveDocs specification)

You can do a match on the path over a literal string: /hello

Mapping rules can contain named wildcards: /{word}

This rule will match anything in the placeholder {word}, making requests like /morning match the rule.

Wildcards can appear between slashes or between slash and dot.

Mapping rules can also include parameters on the query string or in the body: /{word}?
value={value}

APIcast will try to fetch the parameters from the query string when it’s a GET and from the body when it’s
a POST, DELETE, PUT.

Parameters can also have named wildcards.

Note that all mapping rules are evaluated. There is no precedence (order does not matter). If we added a
rule /v1 to the example on the figure above, it would always be matched for the requests whose path
starts with /v1 regardless if it is /v1/word or /v1/sentence. Keep in mind that if two different rules
increment the same metric by one, and the two rules are matched, the metric will be incremented by two.

1.8. MAPPING RULES WORKFLOW

The intended workflow to define mapping rules is as follows:

CHAPTER 1. APICAST OVERVIEW

7

You can add new rules by clicking the Add Mapping Rule button. Then you select an HTTP
method, a pattern, a metric (or method) and finally its increment. When you are done, click
Update & Test Staging Configuration to apply the changes.

Mapping rules will be grayed out on the next reload to prevent accidental modifications.

To edit an existing mapping rule you must enable it first by clicking the pencil icon on the right.

To delete a rule click on the trash icon.

Modifications and deletions will be saved when you hit the Update & Test Staging
Configuration button.

For more advanced configuration options, you can check the APIcast advanced configuration tutorial.

1.9. HOST HEADER

This option is only needed for those API backends that reject traffic unless the Host header matches the
expected one. In these cases, having a gateway in front of your API backend will cause problems since
the Host will be the one of the gateway, e.g. xxx-yyy.staging.apicast.io

To avoid this issue you can define the host your API backend expects in the Host Header field in the
Authentication Settings, and the hosted APIcast instance will rewrite the host.

1.10. PRODUCTION DEPLOYMENT

Once you have configured your API integration and verified it is working in the Staging environment, you
can go ahead with one of the APIcast production deployments. See the Deployment options in the
beginning of this article.

At the bottom of the Integration page you will find the Production section. You will find two fields here: the
Private Base URL, which will be the same as you configured in the Staging section, and the Public Base
URL.

1.11. PUBLIC BASE URL

The Public Base URL is the URL, which your developers will use to make requests to your API,
protected by 3scale. This will be the URL of your APIcast instance.

In APIcast hosted, the Public Base URL is set by 3scale and can’t be changed.

If you are using one of the Self-managed deployment options, you can choose your own Public
Base URL for each one of the environments provided (staging and production), on a domain name you
are managing. Note that this URL should be different from the one of your API backend, and could be

Red Hat 3Scale 2.0 Deployment Options

8

something like https://api.yourdomain.com:443, where yourdomain.com is the domain that
belongs to you. After setting the Public Base URL make sure you save the changes and, if necessary,
promote the changes in staging to production.

Please note that APIcast v2 will only accept calls to the hostname which is specified in the Public Base
URL. For example, if for the Echo API used as an example above, we specify https://echo-
api.3scale.net:443 as the Public Base URL, the correct call would be be:

curl "https://echo-api.3scale.net:443/hello?user_key=YOUR_USER_KEY"

In case you don’t yet have a public domain for your API, you can also use the APIcast IP in the requests,
but you still need to specify a value in the Public Base URL field (even if the domain is not real), and in
this case make sure you provide the host in the Host header, for example:

curl "http://192.0.2.12:80/hello?user_key=YOUR_USER_KEY" -H "Host: echo-
api.3scale.net"

If you are deploying on local machine, you can also just use "localhost" as the domain, so the Public
Base URL will look like http://localhost:80, and then you can make requests like this:

curl "http://localhost:80/hello?user_key=YOUR_USER_KEY"

In case you have multiple API services, you will need to set this Public Base URL appropriately for each
service. APIcast will route the requests based on the hostname.

1.12. PROTECTING YOUR API BACKEND

Once you have APIcast working in production, you might want to restrict direct access to your API
backend without credentials. The easiest way to do this is by using the Secret Token set by APIcast.
Please refer to the Advanced APIcast configuration for information on how to set it up.

1.13. USING APICAST WITH PRIVATE APIS

With APIcast it is possible to protect the APIs which are not publicly accessible on the Internet. The
requirements that must be met are:

APIcast self-managed must be used as the deployment option

APIcast needs to be accessible from the public internet and be able to make outbound calls to
the 3scale Service Management API

the API backend should be accessible by APIcast

In this case you can set your internal domain name or the IP address of your API in the Private Base
URL field and follow the rest of the steps as usual. Note, however, that you will not be able to take
advantage of the Staging environment, and the test calls will not be successful, as the Staging APIcast
instance is hosted by 3scale and will not have access to your private API backend). But once you deploy
APIcast in your production environment, if the configuration is correct, APIcast will work as expected.

CHAPTER 1. APICAST OVERVIEW

9

https://api.yourdomain.com:443
https://echo-api.3scale.net:443
http://localhost:80

CHAPTER 2. APICAST HOSTED
Once you complete this tutorial, you’ll have your API fully protected by a secure gateway in the cloud.

APIcast hosted is the best deployment option if you want to launch your API as fast as possible, or if you
want to make the minimum infrastructure changes on your side.

2.1. PREREQUISITES

You have reviewed the deployment alternatives and decided to use APIcast hosted to integrate
your API with 3scale.

Your API backend service is accessible over the public Internet (a secure communication will be
established to prevent users from bypassing the access control gateway).

You do not expect demand for your API to exceed the limit of 50,000 hits/day (beyond this, we
recommend upgrading to the self-managed gateway).

2.2. STEP 1: DEPLOY YOUR API WITH APICAST HOSTED IN A
STAGING ENVIRONMENT

The first step is to configure your API and test it in your staging environment. Define the private base
URL and its endpoints, choose the placement of credentials and other configuration details that you can
read about here. Once you’re done entering your configuration, go ahead and click on Update & Test
Staging Environment button to run a test call that will go through the APIcast staging instance to your
API.

Red Hat 3Scale 2.0 Deployment Options

10

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-overview
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-overview

If everything was configured correctly, you should see a green confirmation message.

Before moving on to the next step, make sure that you have configured a secret token to be validated by
your backend service. You can define the value for the secret token under Authentication Settings.
This will ensure that nobody can bypass APIcast’s access control.

2.3. STEP 2: DEPLOY YOUR API WITH THE APICAST HOSTED INTO
PRODUCTION

At this point, you’re ready to take your API configuration to a production environment. To deploy your
3scale-hosted APIcast instance, go back to the 'Integration and Configuration' page and click on the
'Promote to v.x to Production' button. Repeat this step to promote further changes in your staging
environment to your production environment.

It will take between 5 and 7 minutes for your configuration to deploy and propagate to all the cloud
APIcast instances. During redeployment, your API will not experience any downtime. However, API calls
may return different responses depending on which instance serves the call. You’ll know it has been
deployed once the box around your production environment has turned green.

Both the staging and production APIcast instances have base URLs on the apicast.io domain. You can
easily tell them apart because the staging environment URLs have a staging subdomain. For example:

staging: https://api-2445581448324.staging.apicast.io:443

production: https://api-2445581448324.apicast.io:443

2.3.1. Bear in mind

50,000 hits/day is the maximum allowed for your API through the APIcast production cloud
instance. You can check your API usage in the Analytics section of your Admin Portal.

There is a hard throttle limit of 20 hits/second on any spike in API traffic.

Above the throttle limit, APIcast returns a response code of 403. This is the same as the default
for an application over rate limits. If you want to differentiate the errors, please check the
response body.

CHAPTER 2. APICAST HOSTED

11

https://api-2445581448324.staging.apicast.io:443
https://api-2445581448324.apicast.io:443

CHAPTER 3. APICAST SELF-MANAGED
This tutorial shows the necessary steps to deploy the latest version of APIcast on your own server to
have it ready to be used as a 3scale API gateway.

For details on the previous version of self-managed APIcast (Nginx downloadable configuration files),
please see here

3.1. PREREQUISITES

You will need to configure APIcast in your 3scale Admin Portal as per the APIcast Overview, if you
haven’t done so already. Make sure Self-managed Gateway is selected as the deployment option in the
integration settings.

You should also have a server where you’ll deploy your API gateway(s). This tutorial covers how to
install your self-managed APIcast instance on a server running Red Hat Enterprise Linux – the operating
system supported by the Red Hat 3scale API management platform. The server can be located either in
the cloud, or on premise.

3.2. STEP 1: INSTALL OPENRESTY AND DEPENDENCIES

APIcast requires some external modules for NGINX. Even though it’s possible to compile NGINX with
these modules from source, we strongly recommend using OpenResty – an excellent bundle that already
includes all the necessary modules.

This guide covers the steps to set up the official pre-built packages that OpenResty provides for Red Hat
Enterprise Linux (RHEL) version 7. The latest installation instructions can be found in the OpenResty
documentation.

For other operating systems please refer to the OpenResty installation instructions.

First, add the openresty repository to your RHEL system by creating the file
/etc/yum.repos.d/OpenResty.repo with the following content:

[openresty]
name=Official OpenResty Repository
baseurl=https://copr-
be.cloud.fedoraproject.org/results/openresty/openresty/epel-7-$basearch/
skip_if_unavailable=True
gpgcheck=1
gpgkey=https://copr-
be.cloud.fedoraproject.org/results/openresty/openresty/pubkey.gpg
enabled=1
enabled_metadata=1

Install OpenResty and the resty command-line utility with the following command:

sudo yum install openresty openresty-resty

You can learn more about these and other OpenResty packages in OpenResty documentation.

APIcast uses LuaRocks for managing Lua dependencies. As it’s not in the standard Yum repositories,
you must first enable the EPEL (Extra Packages for Enterprise Linux) package repository. Please refer
to the following article on Red Hat Customer Portal for more information on how to enable EPEL on

Red Hat 3Scale 2.0 Deployment Options

12

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-self-managed-nginx-config-files
https://openresty.org/en/linux-packages.html
http://openresty.org/en/installation.html
https://openresty.org/en/rpm-packages.html
https://fedoraproject.org/wiki/EPEL
https://access.redhat.com/solutions/3358

RHEL.

For RHEL 7 you can run the following command:

sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-
latest-7.noarch.rpm

Install LuaRocks:

sudo yum install luarocks

If you are using OAuth authentication method, please refer to APIcast OAuth guide for more details on
how to set it up.

3.3. STEP 2: DEPLOY AND RUN APICAST

In the latest version of APIcast the code that implements the gateway logic is separated from the
configuration of your API. In order to deploy APIcast to your server, you’ll first need to get the APIcast
code.

To use the latest stable version of APIcast, check the APIcast releases page.

Go to the apicast directory, that you checked out with git or extracted from the downloaded archive.

Run the following command to install all the Lua dependencies:

sudo luarocks make apicast/*.rockspec --tree /usr/local/openresty/luajit

You can start APIcast using the bin/apicast executable included in the package.

THREESCALE_PORTAL_ENDPOINT=https://<access_token>@<domain>-
admin.3scale.net bin/apicast

Here <access_token> is an Access Token for the 3scale Account Management API, and <domain>-
admin.3scale.net is the URL of your 3scale Admin Portal.

This command will start APIcast and download the latest APIcast configuration from the 3scale Admin
Portal.

bin/apicast executable accepts a number of options, you can check them out by running:

bin/apicast -h

Additional parameters can be specified using environment variables.

APICAST_LOG_FILE=logs/error.log bin/apicast -c config.json -d -v -v -v

The above command will run APIcast as a daemon (-d option,) using the configuration file
config.json, with the error logs at debug level (-v -v -v) and written to the logs/error.log file
inside the apicast directory (the prefix directory).

And that’s it! You should now be running APIcast Self-Managed. If you’re looking to install APIcast on
OpenShift or using the Docker containerized environment, we recommend checking out those tutorials.

CHAPTER 3. APICAST SELF-MANAGED

13

https://github.com/3scale/apicast/releases
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/accounts#tokens

CHAPTER 4. APICAST ON THE DOCKER CONTAINERIZED
ENVIRONMENT

This is a step-by-step guide to deploy APIcast inside a Docker-formatted container ready to be used as a
3scale API gateway.

4.1. PREREQUISITES

You will need to configure APIcast in your 3scale Admin Portal as per the APIcast Overview, if you
haven’t done so already.

4.2. STEP 1: INSTALL THE DOCKER CONTAINERIZED ENVIRONMENT

This guide covers the steps to set up the Docker containerized environment on Red Hat Enterprise Linux
(RHEL) 7.

Docker-formatted containers provided by Red Hat are released as part of the Extras channel in RHEL.
To enable additional repositories, you can use either the Subscription Manager, or yum config manager.
See the RHEL product documentation for details.

For a RHEL 7 deployed on a AWS EC2 instance we’ll use the following the instructions:

List all repositories:

sudo yum repolist all

Find the *-extras repository

Enable extras repository:

sudo yum-config-manager --enable rhui-REGION-rhel-server-extras

Install the Docker containerized environment package:

sudo yum install docker

For other operating systems please refer to the Docker documentation on:

Installing the Docker containerized environment on Linux distributions

the Docker containerized environment for Mac

the Docker containerized environment for Windows

4.3. STEP 2: RUN THE DOCKER CONTAINERIZED ENVIRONMENT
GATEWAY

Start the Docker daemon:

sudo systemctl start docker.service

To check if the Docker daemon is running use the following command:

Red Hat 3Scale 2.0 Deployment Options

14

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html/RHSM/supplementary-repos.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sec-Configuring_Yum_and_Yum_Repositories.html#sec-Managing_Yum_Repositories
https://docs.docker.com/engine/installation/linux/
https://docs.docker.com/docker-for-mac/
https://docs.docker.com/docker-for-windows/

sudo systemctl status docker.service

You can download a ready to use Docker-formatted container image from the Red Hat registry:

sudo docker pull registry.access.redhat.com/3scale-amp20/apicast-
gateway:1.0

Run APIcast in a Docker-formatted container with the command:

sudo docker run --name apicast --rm -p 8080:8080 -e
THREESCALE_PORTAL_ENDPOINT=https://<access_token>@<domain>-
admin.3scale.net registry.access.redhat.com/3scale-amp20/apicast-
gateway:1.0

Here <access_token> is an Access Token for the 3scale Account Management API, the Provider Key
can also be used instead of the access token, and <domain>-admin.3scale.net is the URL of your
3scale admin portal.

This command runs a Docker-formatted container called "apicast" on port 8080 and grabs the JSON
configuration file from your 3scale portal. For other configuration options check out the APIcast Overview
guide.

4.3.1. The Docker command options

Here are some useful options that can be used with docker run command:

--rm Automatically remove the container when it exits

-d or --detach Run container in background and print container ID. When it is not specified,
the container runs in foreground mode, and you can stop it by CTRL + c. When started in
detached mode, you can reattach to the container with the docker attach command, for
example, docker attach apicast.

-p or --publish Publish a container’s port to the host. The value should have the format
<host port="">:<container port="">, so -p 80:8080 will bind port 8080 of the
container to port 80 of the host machine.

For example, the link:https://support.3scale.net/doc/management-
api.md[Management API] uses port `8090`, so you may want to publish
this port by adding `-p 8090:8090` to the `docker run` command.

-e or --env Set environment variables

-v or --volume Mount a volume. The value is typically represented as <host path="">:
<container path="">[:<options>]. <options> is an optional attribute, it can be set to
:ro to specify that the volume will be read only (it is mounted in read-write mode by default).
Example: -v /host/path:/container/path:ro.

See the Docker run reference for more information on available options.

4.4. STEP 3: TESTING APICAST

CHAPTER 4. APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT

15

https://support.3scale.net/docs/accounts/tokens
https://support.3scale.net/docs/terminology#apikey
apicast-overview
https://docs.docker.com/engine/reference/run/

So now your Docker-formatted container is running with your own configuration file and the Docker-
formatted image from the 3scale registry. You will want to test calls through APIcast on port 8080 and
provide the correct authentication credentials, which you can get from your 3scale account.

Test calls will not only verify that APIcast is running correctly but also that authentication and reporting is
being handled successfully.

NOTE

Make sure that the host you use for the calls is the same that is same as configured in the
Public Base URL field on the Integration page.

4.5. STEP 4: TROUBLESHOOTING APICAST ON THE DOCKER
CONTAINERIZED ENVIRONMENT

4.5.1. Cannot connect to the Docker daemon error

If you see the error message:

docker: Cannot connect to the Docker daemon. Is the docker daemon running
on this host?.

then it may be that the Docker service hasn’t started. You can check the status of the Docker daemon by
running sudo systemctl status docker.service.

Make sure you are running as root user, as the Docker containerized environment requires root
permissions in RHEL by default (see more information here).

4.5.2. Basic Docker command-line interface commands

If you started the container in detached mode (-d option) and want to check the logs for the running
APIcast instance, you can use the log command:

sudo docker logs <container>

where <container> is the container name ("apicast" in the example above) or the container ID. You
can get the list of the running containers and ther IDs and names with the command sudo docker ps.

To stop the container, run sudo docker stop <container>. You can also remove the container by
running sudo docker rm <container>.

Please refer to Docker commands reference for more information on available commands.

4.6. STEP 5: CUSTOMISING THE GATEWAY

There are some customizations that cannot be managed through the admin portal and require writing
custom logic to APIcast itself.

4.6.1. Custom Lua logic

The easiest way to customise APIcast logic is to rewrite the existing file with your own and attach it as a
volume.

Red Hat 3Scale 2.0 Deployment Options

16

http://www.projectatomic.io/blog/2015/08/why-we-dont-let-non-root-users-run-docker-in-centos-fedora-or-rhel/
https://docs.docker.com/engine/reference/commandline/

-v $(pwd)/path_to/file.lua:/opt/app-root/src/src/file.lua:ro

The -v flag attaches the local file to the stated path in the Docker-formatted container.

4.6.2. Customising the configuration files

The same steps apply to custom configuration files as the Lua scripting. If you just want to add to the
existing conf files rather than overwrite then ensure the name of your new file does not clash with pre-
existing ones. This will automatically be included in the main nginx.conf.

To make edits to the config.json you can grab this file from your admin portal with the following URL:
https://<account>-admin.3scale.net/admin/api/nginx/spec.json and copy & paste the
contents locally. You can pass this local JSON file with the following command to start APIcast:

docker run --name apicast --rm -p 8080:8080 -v
$(pwd)/path_to/config.json:/opt/app/config.json:ro -e
THREESCALE_CONFIG_FILE=/opt/app/config.json

You should now be able to run APIcast on the Docker containerized environment. For other deployment
options, check out the related articles.

CHAPTER 4. APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT

17

https:/admin/api/nginx/spec.json

CHAPTER 5. RUNNING APICAST ON RED HAT OPENSHIFT
This tutorial describes how to use APIcast v2 – the dockerized 3scale API Gateway that is packaged for
easy installation and operation on Red Hat OpenShift v3.

5.1. PREREQUISITES

To follow the tutorial steps below, you will first need to configure APIcast in your 3scale Admin Portal as
per the APIcast Overview. Make sure Self-managed Gateway is selected as the deployment option in
the integration settings. You should have both Staging and Production environment configured to
proceed.

5.2. STEP 1: SET UP OPENSHIFT

If you already have a running OpenShift cluster, you can skip this step. Otherwise, continue reading.

For production deployments you can follow the instructions for OpenShift installation. In order to get
started quickly in development environments, there are a couple of ways you can install OpenShift:

Using oc cluster up command –
https://github.com/openshift/origin/blob/master/docs/cluster_up_down.md (used in this tutorial,
with detailed instructions for Mac and Windows in addition to Linux which we cover here)

All-In-One Virtual Machine using Vagrant – https://www.openshift.org/vm

In this tutorial the OpenShift cluster will be installed using:

Red Hat Enterprise Linux (RHEL) 7

Docker containerized environment v1.10.3

OpenShift Origin command line interface (CLI) - v1.3.1

5.2.1. Install the Docker containerized environment

Docker-formatted container images provided by Red Hat are released as part of the Extras channel in
RHEL. To enable additional repositories, you can use either the Subscription Manager, or yum config
manager. See the RHEL product documentation for details.

For a RHEL 7 deployed on a AWS EC2 instance we’ll use the following the instructions:

1. List all repositories:

sudo yum repolist all

Find the *-extras repository.

1. Enable extras repository:

sudo yum-config-manager --enable rhui-REGION-rhel-server-extras

2. Install Docker-formatted container images:

sudo yum install docker docker-registry

Red Hat 3Scale 2.0 Deployment Options

18

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-overview
https://docs.openshift.com/container-platform/3.3/install_config/install/quick_install.html
https://github.com/openshift/origin/blob/master/docs/cluster_up_down.md
https://www.openshift.org/vm
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html/RHSM/supplementary-repos.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sec-Configuring_Yum_and_Yum_Repositories.html#sec-Managing_Yum_Repositories

3. Add an insecure registry of 172.30.0.0/16 by adding or uncommenting the following line in
/etc/sysconfig/docker file:

INSECURE_REGISTRY='--insecure-registry 172.30.0.0/16'

4. Start the Docker containerized environment:

sudo systemctl start docker

You can verify that the Docker containerized environment is running with the command:

sudo systemctl status docker

5.2.2. Start OpenShift cluster

Download the latest stable release of the client tools (openshift-origin-client-tools-
VERSION-linux-64bit.tar.gz) from OpenShift releases page, and place the Linux oc binary
extracted from the archive in your PATH.

NOTE

Please be aware that the oc cluster set of commands are only available in the
1.3+ or newer releases.

the docker command runs as the root user, so you will need to run any oc or
docker commands with root privileges.

Open a terminal with a user that has permission to run docker commands and run:

oc cluster up

At the bottom of the output you will find information about the deployed cluster:

 -- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://172.30.0.112:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

Note the IP address that is assigned to your OpenShift server, we will refer to it in the tutorial as
OPENSHIFT-SERVER-IP.

5.2.2.1. Setting up OpenShift cluster on a remote server

CHAPTER 5. RUNNING APICAST ON RED HAT OPENSHIFT

19

https://github.com/openshift/origin/releases

In case you are deploying the OpenShift cluster on a remote server, you will need to explicitly specify a
public hostname and a routing suffix on starting the cluster, in order to be able to access the OpenShift
web console remotely.

For example, if you are deploying on an AWS EC2 instance, you should specify the following options:

oc cluster up --public-hostname=ec2-54-321-67-89.compute-1.amazonaws.com -
-routing-suffix=54.321.67.89.xip.io

where ec2-54-321-67-89.compute-1.amazonaws.com is the Public Domain, and 54.321.67.89
is the IP of the instance. You will then be able to access the OpenShift web console at https://ec2-54-
321-67-89.compute-1.amazonaws.com:8443.

5.3. STEP 2: DEPLOY APICAST USING THE OPENSHIFT TEMPLATE

1. By default you are logged in as developer and can proceed to the next step.
Otherwise login into OpenShift using the oc login command from the OpenShift Client tools
you downloaded and installed in the previous step. The default login credentials are username =
"developer" and password = "developer":

oc login https://OPENSHIFT-SERVER-IP:8443

You should see Login successful. in the output.

2. Create your project. This example sets the display name as gateway

oc new-project "3scalegateway" --display-name="gateway" --
description="3scale gateway demo"

The response should look like this:

Now using project "3scalegateway" on server
"https://172.30.0.112:8443".

Ignore the suggested next steps in the text output at the command prompt and proceed to the
next step below.

3. Create a new Secret to reference your project by replacing <access_token> and <domain>
with yours.

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<access_token>@<domain>-admin.3scale.net

Here <access_token> is an Access Token (not a Service Token) for the 3scale Account
Management API, and <domain>-admin.3scale.net is the URL of your 3scale Admin
Portal.

The response should look like this:

secret/apicast-configuration-url-secret

4. Create an application for your APIcast Gateway from the template, and start the deployment:

Red Hat 3Scale 2.0 Deployment Options

20

https://ec2-54-321-67-89.compute-1.amazonaws.com:8443
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/accounts#tokens#creating-access-tokens

oc new-app -f https://raw.githubusercontent.com/3scale/3scale-amp-
openshift-templates/2.0.0.GA-redhat-2/apicast-gateway/apicast.yml

You should see the following messages at the bottom of the output:

--> Creating resources with label app=3scale-gateway ...
 deploymentconfig "apicast" created
 service "apicast" created
--> Success
 Run 'oc status' to view your app.

5.4. STEP 3: CREATE ROUTES IN OPENSHIFT CONSOLE

1. Open the web console for your OpenShift cluster in your browser: https://OPENSHIFT-SERVER-
IP:8443/console/
Use the value specified in --public-hostname instead of OPENSHIFT-SERVER-IP if you
started OpenShift cluster on a remote server.

You should see the login screen:

NOTE

You may receive a warning about an untrusted web-site. This is expected, as we
are trying to access the web console through secure protocol, without having
configured a valid certificate. While you should avoid this in production
environment, for this test setup you can go ahead and create an exception for this
address.

2. Log in using the developer credentials created or obtained in the Setup OpenShift section
above.
You will see a list of projects, including the "gateway" project you created from the command line
above.

CHAPTER 5. RUNNING APICAST ON RED HAT OPENSHIFT

21

https://openshift-server-ip:8443/console/

If you do not see your gateway project, you probably created it with a different user and will need
to assign the policy role to to this user.

3. Click on "gateway" and you will see the Overview tab.
OpenShift downloaded the code for APIcast and started the deployment. You may see the
message Deployment #1 running when the deployment is in progress.

When the build completes, the UI will refresh and show two instances of APIcast (2 pods) that
have been started by OpenShift, as defined in the template.

Each APIcast instance, upon starting, downloads the required configuration from 3scale using
the settings you provided on the Integration page of your 3scale Admin Portal.

OpenShift will maintain two APIcast instances and monitor the health of both; any unhealthy
APIcast instance will automatically be replaced with a new one.

4. In order to allow your APIcast instances to receive traffic, you’ll need to create a route. Start by
clicking on Create Route.

Red Hat 3Scale 2.0 Deployment Options

22

Enter the same host you set in 3scale above in the section Public Base URL (without the http://
and without the port) , e.g. gateway.openshift.demo, then click the Create button.

Create a new route for every 3scale service you define. Alternatively, you could avoid having to
create a new route for every 3scale service you define by deploying a wildcard router.

5.4.1. Configure wildcard domains (technical preview)

CHAPTER 5. RUNNING APICAST ON RED HAT OPENSHIFT

23

Technical preview: Note that the wildcard router is currently a technical preview feature.

5.4.1.1. Pre-requisites

Use of the wildcard domain feature requires the following:

OpenShift version 3.4

a wildcard domain that is not being used for any other routes, or as another project’s namespace
domain

your router must be configured to allow wildcard routes

5.4.1.2. Steps

Perform the following steps to configure a wildcard domain:

1. From a terminal session, log in to OpenShift: oc login

2. Create a wildcard router configured with your wildcard domain

3. Download the wildcard.yml template from the latest release in this GitHub repository.

4. Switch to the project which contains your AMP deployment: oc project <project_name>

5. Enter the oc new-app command, specifying the following:

the -file option and the path to the wildcard.yml template

the --param option and the WILDCARD_DOMAIN of your openshift cluster

the --param option and the TENANT_NAME from the project which contains your AMP
deployment

oc new-app -f wildcard.yml --param WILDCARD_DOMAIN= guide.

6. Run OpenShift V3 on your dedicated datacenter or on your favorite cloud platform using the
advanced installation documentation listed above.

7. Register a custom domain name for your API services, and configure your API integration in
3scale Admin Portal, and in OpenShift by adding new routes.

8. Learn more about OpenShift from the OpenShift documentation

Red Hat 3Scale 2.0 Deployment Options

24

https://docs.openshift.com/container-platform/3.4/install_config/router/default_haproxy_router.html#using-wildcard-routes
https://github.com/3scale/3scale-amp-openshift-templates/releases
https://docs.openshift.com/container-platform/3.3/welcome/index.html

CHAPTER 6. ADVANCED APICAST CONFIGURATION
This section covers the advanced settings option of 3scale’s API gateway in the staging environment.

6.1. DEFINE A SECRET TOKEN

For security reasons, any request from 3scale’s gateway to your API backend will contain a header
called X-3scale-proxy-secret-token. You can set the value of this header in Authentication
Settings on the Integration page.

Setting the secret token will act as a shared secret between the proxy and your API so that you can
block all API requests that do not come from the gateway if you so wish. This gives an extra layer of
security to protect your public endpoint while you’re in the process of setting up your traffic management
policies with the sandbox gateway.

Your API backend must have a public resolvable domain for the gateway to work, so anyone who might
know your API backend could bypass the credentials checking. This should not be a problem because
the API gateway in the staging environment is not meant for production use, but it’s always better to have
a fence available.

6.2. CREDENTIALS

The API credentials within 3scale are always user_key or app_id/app_key depending on the
authentication mode you’re using (OAuth is not available for the API gateway in the staging
environment). However, you might want to use different credential names in your API. In this case, you’ll
need to set custom names for the user_key if you’re using API key mode:

or for the app_id and app_key:

CHAPTER 6. ADVANCED APICAST CONFIGURATION

25

For instance, you could rename app_id to key if that fits your API better. The gateway will take the
name key and convert it to app_id before doing the authorization call to 3scale’s backend. Note that
the new credential name has to be alphanumeric.

You can decide whether your API passes credentials in the query string (or body if not a GET) or in the
headers.

6.3. ERROR MESSAGES

Another important element for a full-fledged configuration is to define your own custom error messages.

It’s important to note that 3scale’s API gateway in the staging environment will do a pass through of any
error message generated by your API. However, since the management layer of your API is now carried
out by the gateway, there are some errors that your API will never see since some requests will be
terminated by the gateway.

Red Hat 3Scale 2.0 Deployment Options

26

These errors are the following:

Authentication missing: this error will be generated whenever an API request does not contain
any credentials. This occurs when users forget to add their credentials to an API request.

Authentication failed: this error will be generated whenever an API request does not contain
valid credentials. This can be because the credentials are fake or because the application has
been temporarily suspended.

No match: this error means that the request did not match any mapping rule, therefore no metric
is updated. This is not necessary an error, but it means that either the user is trying random
paths or that your mapping rules do not cover legitimate cases.

6.4. CONFIGURATION HISTORY

Every time you click on the Update & Test Staging Configuration button, the current configuration will
be saved in a JSON file. The staging gateway will pull the latest configuration with each new request. For
each environment, staging or production, you can see a history of all the previous configuration files.

Note that it is not possible to automatically roll back to previous versions. Instead we provide a history of
all your configuration versions with their associated JSON files. These files can be used to check what
configuration you had deployed at any moment on time. If you want to, you can recreate any
deployments manually.

CHAPTER 6. ADVANCED APICAST CONFIGURATION

27

6.5. DEBUGGING

Setting up the gateway configuration is easy, but still some errors can occur on the way. For those cases
the gateway can return some useful debug information that will be helpful to track down what is going on.

To enable the debug mode on 3scale’s API gateway in the staging environment you can add the
following header with your provider key to a request to your gateway: X-3scale-debug:
YOUR_PROVIDER_KEY

When the header is found and the provider key is valid, the gateway will add the following information to
the response headers:

Basically, X-3scale-matched-rules tells you which mapping rules have been activated by the
request. Note that it is a list. The header X-3scale-credentials returns the credentials that have
been passed to 3scale’s backend. Finally X-3scale-usage tells you the usage that will be reported to
3scale’s backend.

You can check the logic for your mapping rules and usage reporting in the Lua file, in the function
extract_usage_x() where x is your service_id.

In this example, the comment -- rule: /v1/word/{word}.json -- shows which particular rule
the Lua code refers to. Each rule has a Lua snippet like the one above. Comments are delimited by -- ,
--[[,]]-- in Lua, and with # in NGINX.

Unfortunately, there is no automatic rollback for Lua files if you make any changes. However, if your
current configuration is not working but the previous one was OK, you can download the previous
configuration files from the deployment history.

X-3scale-matched-rules: /v1/word/{word}.json, /v1
 X-3scale-credentials: app_key=APP_KEY&app_id=APP_ID
X-3scale-usage: usage[version_1]=1&usage[word]=1

...
 local args = get_auth_params(nil, method)
 local m = ngx.re.match(path,[=[^/v1/word/([\w_\.-]+)\.json]=])
 if (m and method == "GET") then
 -- rule: /v1/word/{word}.json --
 params["word"] = m[1]
 table.insert(matched_rules, "/v1/word/{word}.json")
 usage_t["word"] = set_or_inc(usage_t, "word", 1)
 found = true
 end
 ...

Red Hat 3Scale 2.0 Deployment Options

28

6.6. EXTENDING THE GATEWAY

3scale’s hosted APIcast is quite flexible, but there are sometimes things that cannot be done because
the console interface doesn’t allow it or because of security reasons due to a multi-tenant gateway.

If you need to extend your API gateway, you can always run it locally on your servers (see the APIcast
self-managed section to deploy your own API gateway) and point it to the proper service and
configuration from your 3scale account.

When you’re running the gateway on your servers, you can customize it to enable any feature you might
need – NGINX with Lua is an extremely powerful, open-source piece of technology.

We have written a blog post explaining how to augment APIs with NGINX and Lua. Here are some
examples that can be done:

Basic DoS protection: white-lists, black-lists, rate-limiting at the second level.

Define arbitrarily complex mapping rules.

API rewrite rules – for example, you might want API requests starting with /v1/* to be rewritten to
/versions/1/* when they hit your API backend.

Content filtering: you can add checks on the content of the requests, either for security or to filter
out undesired side effects.

Content rewrites: you can transform the results of your API.

Many, many more. Combining the power and flexibility of NGINX with Lua scripting is an
awesome combination.

CHAPTER 6. ADVANCED APICAST CONFIGURATION

29

http://3scale.github.com/2013/01/09/augment-your-api-without-touching-it

CHAPTER 7. APICAST AND OAUTH 2.0
Please note that OAuth authentication mode is not available on APIcast hosted yet.

This document refers to configuring OAuth 2.0 for the latest version of APIcast. To run APIcast, follow
any of its deployment method instructions: Self-Managed, the Docker containerized environment or
OpenShift.

For details on OAuth support in the previous version of APIcast (Nginx downloadable configuration files),
please see here.

7.1. PREREQUISITES

APIcast offers support for the OAuth 2.0 Authorization Code flow out of the box as long as the following
pre-requisites are met:

An Authorization Server as defined in RFC6749#1.1 with the one exception that the access
tokens will be issued by APIcast instead. In this case the Authorization Server will only
authenticate the resource owner and obtain their authorization.

A Redis instance.

7.2. APICAST CONFIGURATION IN 3SCALE ADMIN PORTAL

In order to configure this, we will first need to choose the OAuth Authentication method from the
Integration Settings (API > Integration > edit integration settings) screen on our 3scale Admin
Portal. We will also need to ensure we have selected the Self-managed Gateway option, as it is not
currently possible to run APIcast with OAuth 2.0 Authorization Code support on the APIcast cloud
gateway.

Once that is done, we will see an additional field in the Integration Screen (API > Integration) under
Authentication Settings: OAuth Authorization Endpoint. Here we define where Resource Owners will be
redirected to in order to authenticate and confirm they authorize a given client access to their resources
(as per RFC6749#4.1).

All other fields on the Integration Screen should be configured as per the APIcast Overview document.
Since we will be running all components locally for this example, my Public Base URL where APIcast is
running will be http://localhost:8080.

Red Hat 3Scale 2.0 Deployment Options

30

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-self-managed
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-docker
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-openshift
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-oauth-before-may-2017
https://tools.ietf.org/html/rfc6749#section-1.1
https://redis.io
https://tools.ietf.org/html/rfc6749#section-4.1.1
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/deployment_options#apicast-overview
http://localhost:8080

In order to show a sample integration with an Authorization Server we will use a very simple Ruby app to
act as an Authorization Server. This app will run on localhost port 3000 with the OAuth Authorization
Endpoint at http://localhost:3000/auth/login.

The sample code for this app can be found in the apicast/examples directory under oauth2/auth-
server. There is also a file named docker-compose.yml that allows you to deploy a test
environment to test the API Integration and OAuth 2.0 Authorization Code Flow..

7.3. RUNNING APICAST WITH OAUTH

In order to start APIcast in OAuth mode, we will first need to have a Redis instance running and pass in
the instance details when running APIcast.

In our case, this is running on localhost:6379. Since this is running on the default port, we only need
to specify REDIS_HOST, if this were running on any other port, we would also have to specify
REDIS_PORT. We can then start APIcast like so:

REDIS_HOST=localhost
THREESCALE_PORTAL_ENDPOINT=https://MY_PROVIDER_KEY@MY_ADMIN_PORTAL.3scale.
net bin/apicast -v

Here we have added the -v flag to run APIcast in verbose mode, in order to allow us to get more
debugging output in case anything goes wrong, but this can be omitted.

Our Authorization Server should also be up and running and ready to receive requests.

7.4. TESTING THE FLOW

In order to test this flow, we will be running all components: APIcast, Redis, Authorization Server and
Client, using the Docker Compose tool as per the oauth2 example listed in the examples directory in
the APIcast GitHub repository. This will take care of starting up all of the required components. However,
you can also start each of them up individually. Please ensure you do not already have any APIcast,
Redis or other component instances already running on the same ports at the same time. Note that you
will need to have the Docker containerized environment and the Docker Compose tool installed to use
these examples.

The first component to come into play is the sample client application, which would be written by a
Developer to request an access token from APIcast. This is a simple Ruby app that will act as the client
(as per the client role defined in RFC6749#1.1) in the Authorization Code Flow. The sample code for the
client app can be found in the apicast/examples folder under oauth2/client.

We will be running this application on localhost:3001. The application has a /callback endpoint
defined to receive and process any authorization codes and access tokens from APIcast. As such, this
location will need to be set up on our 3scale account, under a test application, as the Redirect URL.

CHAPTER 7. APICAST AND OAUTH 2.0

31

http://localhost:3000/auth/login
https://docs.docker.com/compose/
https://github.com/3scale/apicast/tree/master/examples/oauth2
https://github.com/3scale/apicast
https://www.docker.com/what-docker
https://www.docker.com/products/docker-compose
https://tools.ietf.org/html/rfc6749#section-1.1

7.4.1. Requesting an Authorization Code

Once all the configuration is in place and we have started all of our components (either using the
docker-compose template or individually,) we can navigate to http://localhost:3001. Here we
can enter a client_id, redirect_uri and scope, then click Authorize to request an authorization
code. We will get the client_id and client_secret values from the 3scale application above. The
redirect_url will be defined by the client application itself, and as such will already come pre-filled.
The scope value defines the type of access requested. In this case it can be any string value and it will
be displayed to the resource owner when they provide their consent.

The client application will then redirect the resource owner to the Authorization endpoint (as per
RFC6749#4.1.1), in this case the /authorize endpoint on our APIcast instance:
localhost:8080/authorize. The resulting client request will be something like:

GET /authorize?
response_type=code&client_id=CLIENT_ID&state=STATE_VALUE&redirect_uri=http
s%3A%2F%2Flocalhost%3A3001%2Fcallback HTTP/1.1
Host: localhost:8080

APIcast will check the client_id and redirect_uri values and redirect the resource owner to the
Authorization Server endpoint (http://localhost:3000/auth/login) for authentication. APIcast will forward on
the original request parameters to the Authorization Server.

The resource owner should log in to the Authorization Server (our sample Authorization Server will
accept any values for username and password) at which point they will be presented with a consent
page to accept or deny the request for access.

Red Hat 3Scale 2.0 Deployment Options

32

http://localhost:3001
https://tools.ietf.org/html/rfc6749#section-4.1.1
http://localhost:3000/auth/login

The Authorization server will then either redirect back to APIcast (on
http://localhost:8080/callback) to issue an authorization code on request acceptance or the
application’s redirect_uri directly on request denial. This redirection request should include the
original state value as well as the client’s redirect_uri, e.g

HTTP/1.1 302 Found
Location: https://localhost:8080/callback?
state=STATE_VALUE&redirect_uri=http://localhost:3001/callback

If the request is accepted, an authorization code will be issued (as per RFC6749#4.1.2) by APIcast for
the client.

This Authorization Code is sent to the client’s Redirect URL (client callback endpoint on
http://localhost:3001/callback in this case) and will be displayed at the sample client. The
redirection request back to the client will be something like:

HTTP/1.1 302 Found
Location: https://localhost:3001/callback?
state=STATE_VALUE&code=AUTHORIZATION_CODE

We can then exchange this for an access token, by filling in our application’s client_secret.

7.4.2. Exchanging the Authorization Code for an Access Token

Once an authorization code is returned back to the sample client, you can exchange that for an access
token by once again entering in the client_id, additionally providing a client_secret and clicking
Get Token to request an access token. At this point, the client application makes a request to the
APIcast access token endpoint, in our case http://localhost:8080/oauth/token, sending the
client credentials and Redirect URL along with the authorization code. This client request will be
something like:

POST /oauth/token HTTP/1.1
Host: localhost:8080
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=AUTHORIZATION_CODE&client_id=CLIENT_ID&
client_secret=CLIENT_SECRET&redirect_uri=https%3A%2F%2Flocalhost%3A3001%2F
callback

Ideally the client_id and client_secret would be sent in the Authorization header using Basic
HTTP Authentication but, for simplicity, the example client we’re using sends them as body parameters.

APIcast will then validate these credentials and generate an access token with a fixed TTL of one week.
An example token will look something like:

{
 "token_type": "bearer",
 "expires_in": 604800,
 "access_token": "b2ca2d108c193ef7c96a1f07b3a7c66d289aba42"
}

And that’s it! We have now added and tested OAuth 2.0 Authorization Code Flow for our APIcast
instance.

CHAPTER 7. APICAST AND OAUTH 2.0

33

http://localhost:8080/callback
https://tools.ietf.org/html/rfc6749#section-4.1.2
http://localhost:3001/callback
http://localhost:8080/oauth/token

CHAPTER 8. CODE LIBRARIES
3scale plugins allow you to connect to the 3scale architecture in a variety of core programming
languages. Plugins can be deployed anywhere to act as control agents for your API traffic. Download the
latest version of the plugin and gems for the programming language of your choice along with their
corresponding documentation below.

You can also find us on GitHub. For other technical details, refer to the technical overview.

8.1. PYTHON

Download the code here.

Standard distutils installation – unpack the file and from the new directory run:

sudo python setup.py install

Or you can put ThreeScale.py in the same directory as your program. See the README for some usage
examples.

8.2. RUBY GEM

You can download from GitHub or install it directly using:

gem install 3scale_client

8.3. PERL

Download the code bundle here.

It requires:

» LWP::UserAgent (installed by default on most systems)

» XML::Parser (now standard in perl >= 5.6)

Run this to install into the default library location:

perl Makefile.PL && make install

Run this for further install options:

make help

8.4. PHP

Download the code here and drop into your code directory – see the README in the bundle.

8.5. JAVA

Download the JAR bundle here.

Red Hat 3Scale 2.0 Deployment Options

34

http://github.com/3scale
https://www.3scale.net/technical-overview/
http://github.com/3scale/3scale_ws_api_for_python/tree/master
http://github.com/3scale/3scale_ws_api_for_ruby/tree/master
http://github.com/3scale/3scale_ws_api_for_perl/tree/master
http://github.com/3scale/3scale_ws_api_for_php/tree/master
http://github.com/3scale/3scale_ws_api_for_java/tree/master

Just unpack it into a directory and then run the maven build.

8.6. .NET

Download the code here, and see the bundled README.txt for instructions.

8.7. NODE.JS

Download the code here,or install it through the package manager npm:

npm install 3scale

CHAPTER 8. CODE LIBRARIES

35

http://github.com/3scale/3scale_ws_api_for_dotnet/tree/master
https://github.com/3scale/3scale_ws_api_for_nodejs/tree/master

CHAPTER 9. PLUGIN SETUP
By the time you complete this tutorial, you’ll have configured your API to use the available 3scale code
plugins to manage access traffic.

There are several different ways to add 3scale API Management to your API – including using APIcast
(API gateway), Amazon API Gateway with Lambda, 3scale Service Management API, or code plugins.
This tutorial drills down into how to use the code plugin method to get you set up.

9.1. HOW PLUGINS WORK

3scale API plugins are available for a variety of implementation languages including Java, Ruby, PHP,
.NET, and others – the full list can be found in the code libraries section. The plugins provide a wrapper
for the 3scale Service Management API. Find the Service Management API in the 3scale ActiveDocs,
available in your Admin Portal, under the Documentation → 3scale API Docs section, to enable:

API access control and security

PI traffic reporting

API monetization

This wrapper connects back into the 3scale system to set and manage policies, keys, rate limits, and
other controls that you can put in place through the interface. Check out the Getting Started guide to see
how to configure these elements.

Plugins are deployed within your API code to insert a traffic filter on all calls as shown in the figure.

9.2. STEP 1: SELECT YOUR LANGUAGE AND DOWNLOAD THE
PLUGIN

Once you’ve created your 3scale account (signup here), navigate to the code libraries section on this site
and choose a plugin in the language you plan to work with. Click through to the code repository to get the
bundle in the form that you need.

Red Hat 3Scale 2.0 Deployment Options

36

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/infrastructure/#aws-lambda-amazon-api-gateway
https://support.3scale.net/reference/active-docs
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/product/#getting-started
http://www.3scale.net/signup

If your language is not supported or listed, let us know and we’ll inform you of any ongoing support
efforts for your language. Alternatively, you can connect directly to the 3scale Service Management API.

9.3. STEP 2: CHECK THE METRICS YOU’VE SET FOR YOUR API

As described in the API definition tutorial, you can configure multiple metrics and methods for your API
on the API control panel. Each metric and method has a system name that will be required when
configuring your plugin. You can find the metrics in API > Definition area of your Admin Portal.

For more advanced information on metrics, methods, and rate limits see the specific tutorial on rate
limits.

9.4. STEP 3: INSTALL THE PLUGIN CODE TO YOUR APPLICATION

Armed with this information, return to the code and add the downloaded code bundle to your application.
This step varies for each type of plugin, and the form that it takes depends on the way each language
framework uses libraries. For the purposes of this tutorial, this example will proceed with Ruby plugin
instructions. Other plugins integration details are included in the README documentation of each
repository.

This library is distributed as a gem, for which Ruby 2.1 or JRuby 9.1.1.0 are minimum requirements:

gem install 3scale_client

Or alternatively, download the source code from GitHub.

If you are using Bundler, please add this to your Gemfile:

gem '3scale_client'

CHAPTER 9. PLUGIN SETUP

37

https://support.3scale.net/help
https://support.3scale.net/docs/3scale-apis-activedocs
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/access-control/#api-definition-methods-metrics
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/access-control/#rate-limits

and do a bundle install.

If you are using Rails' config.gems, put this into your config/environment.rb

config.gem '3scale_client'

Otherwise, require the gem in whatever way is natural to your framework of choice.

Then, create an instance of the client:

client = ThreeScale::Client.new(service_tokens: true)

NOTE

unless you specify service_tokens: true you will be expected to specify a provider_key
parameter, which is deprecated in favor of Service Tokens:

client = ThreeScale::Client.new(provider_key: 'your_provider_key')

This will comunicate with the 3scale platform SaaS default server.

If you want to create a Client with a given host and port when connecting to an on-premise instance of
the 3scale platform, you can specify them when creating the instance:

client = ThreeScale::Client.new(service_tokens: true, host:
'service_management_api.example.com', port: 80)

or

client = ThreeScale::Client.new(provider_key: 'your_provider_key', host:
'service_management_api.example.com', port: 80)

Because the object is stateless, you can create just one and store it globally. Then you can perform calls
in the client:

 client.authorize(service_token: 'token', service_id: '123', usage:
usage)
 client.report(service_token: 'token', service_id: '123', usage: usage)

If you had configured a (deprecated) provider key, you would instead use:

client.authrep(service_id: '123', usage: usage)

NOTE

service_id is mandatory since November 2016, both when using service tokens and when
using provider keys

Red Hat 3Scale 2.0 Deployment Options

38

NOTE

You might use the option warn_deprecated: false to avoid deprecation warnings. This is
enabled by default.

SSL and Persistence

Starting with version 2.4.0 you can use two more options: secure and persistent like:

client = ThreeScale::Client.new(provider_key: '...', secure: true,
persistent: true)

secure

Enabling secure will force all traffic going through HTTPS. Because estabilishing SSL/TLS for every call
is expensive, there is persistent.

persistent

Enabling persistent will use HTTP Keep-Alive to keep open connection to our servers. This option
requires installing gem net-http-persistent.

9.5. STEP 4: ADD CALLS TO AUTHORIZE AS API TRAFFIC ARRIVES

The plugin supports the 3 main calls to the 3scale backend:

authrep grants access to your API and reports the traffic on it in one call.

authorize grants access to your API.

report reports traffic on your API.

9.5.1. Usage on authrep mode

You can make request to this backend operation using service_token and service_id, and an
authentication pattern like user_key, or app_id with an optional key, like this:

response = client.authrep(service_token: 'token', service_id:
'service_id', app_id: 'app_id', app_key: 'app_key')

Then call the success? method on the returned object to see if the authorization was successful.

if response.success?
 # All fine, the usage will be reported automatically. Proceeed.
else
 # Something's wrong with this application.
end

The example is using the app_id authentication pattern, but you can also use other patterns such as
user_key.

Example:

CHAPTER 9. PLUGIN SETUP

39

class ApplicationController < ActionController
 # Call the authenticate method on each request to the API
 before_filter :authenticate

 # You only need to instantiate a new Client once and store it as a
global variable
 # If you used a provider key it is advisable to fetch it from the
environment, as
 # it is secret.
 def create_client
 @@threescale_client ||= ThreeScale::Client.new(service_tokens: true)
 end

 # To record usage, create a new metric in your application plan. You
will use the
 # "system name" that you specifed on the metric/method to pass in as the
key to the usage hash.
 # The key needs to be a symbol.
 # A way to pass the metric is to add a parameter that will pass the name
of the metric/method along
 #
 # Note that you don't always want to retrieve the service token and
service id from
 # the parameters - this will depend on your application.
 def authenticate
 response = create_client.authrep(service_token:
params['service_token']
 service_id: params['service_id'],
 app_id: params['app_id'],
 app_key: params['app_key'],
 usage: { params['metric'].to_sym =>
1 })
 if response.success?
 return true
 # All fine, the usage will be reported automatically. Proceeed.
 else
 # Something's wrong with this application.
 puts "#{response.error_message}"
 # raise error
 end
 end
end

9.6. STEP 5: DEPLOY AND RUN TRAFFIC

Once the required calls are added to your code, you can deploy (ideally to a staging/testing environment)
and make API calls to your endpoints. As the traffic reaches the API, it will be filtered by the plugin and
keys checked against issues API credentials. Refer to the Getting Started guide for how to generate valid
keys – a set will have also been created as sample data in your 3scale account.

To see if traffic is flowing, log in to your API Admin Portal and navigate to the Analytics tab – there you
will see traffic reported via the plugin.

Red Hat 3Scale 2.0 Deployment Options

40

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.0/html-single/product/#getting-started

Once the application is making calls to the API, they will become visible on the statistics dashboard and
the Statistics > Usage page for more detailed view.

If you’re receiving errors in the connection, you can also check the "Errors" menu item under Monitoring.

CHAPTER 9. PLUGIN SETUP

41

	Table of Contents
	CHAPTER 1. APICAST OVERVIEW
	1.1. PREREQUISITES
	1.2. DEPLOYMENT OPTIONS
	1.3. ENVIRONMENTS
	1.4. API CONFIGURATION
	1.5. CONFIGURE THE INTEGRATION SETTINGS
	1.6. CONFIGURE YOUR SERVICE
	1.7. MAPPING RULES
	1.8. MAPPING RULES WORKFLOW
	1.9. HOST HEADER
	1.10. PRODUCTION DEPLOYMENT
	1.11. PUBLIC BASE URL
	1.12. PROTECTING YOUR API BACKEND
	1.13. USING APICAST WITH PRIVATE APIS

	CHAPTER 2. APICAST HOSTED
	2.1. PREREQUISITES
	2.2. STEP 1: DEPLOY YOUR API WITH APICAST HOSTED IN A STAGING ENVIRONMENT
	2.3. STEP 2: DEPLOY YOUR API WITH THE APICAST HOSTED INTO PRODUCTION
	2.3.1. Bear in mind

	CHAPTER 3. APICAST SELF-MANAGED
	3.1. PREREQUISITES
	3.2. STEP 1: INSTALL OPENRESTY AND DEPENDENCIES
	3.3. STEP 2: DEPLOY AND RUN APICAST

	CHAPTER 4. APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT
	4.1. PREREQUISITES
	4.2. STEP 1: INSTALL THE DOCKER CONTAINERIZED ENVIRONMENT
	4.3. STEP 2: RUN THE DOCKER CONTAINERIZED ENVIRONMENT GATEWAY
	4.3.1. The Docker command options

	4.4. STEP 3: TESTING APICAST
	4.5. STEP 4: TROUBLESHOOTING APICAST ON THE DOCKER CONTAINERIZED ENVIRONMENT
	4.5.1. Cannot connect to the Docker daemon error
	4.5.2. Basic Docker command-line interface commands

	4.6. STEP 5: CUSTOMISING THE GATEWAY
	4.6.1. Custom Lua logic
	4.6.2. Customising the configuration files

	CHAPTER 5. RUNNING APICAST ON RED HAT OPENSHIFT
	5.1. PREREQUISITES
	5.2. STEP 1: SET UP OPENSHIFT
	5.2.1. Install the Docker containerized environment
	5.2.2. Start OpenShift cluster
	5.2.2.1. Setting up OpenShift cluster on a remote server

	5.3. STEP 2: DEPLOY APICAST USING THE OPENSHIFT TEMPLATE
	5.4. STEP 3: CREATE ROUTES IN OPENSHIFT CONSOLE
	5.4.1. Configure wildcard domains (technical preview)
	5.4.1.1. Pre-requisites
	5.4.1.2. Steps

	CHAPTER 6. ADVANCED APICAST CONFIGURATION
	6.1. DEFINE A SECRET TOKEN
	6.2. CREDENTIALS
	6.3. ERROR MESSAGES
	6.4. CONFIGURATION HISTORY
	6.5. DEBUGGING
	6.6. EXTENDING THE GATEWAY

	CHAPTER 7. APICAST AND OAUTH 2.0
	7.1. PREREQUISITES
	7.2. APICAST CONFIGURATION IN 3SCALE ADMIN PORTAL
	7.3. RUNNING APICAST WITH OAUTH
	7.4. TESTING THE FLOW
	7.4.1. Requesting an Authorization Code
	7.4.2. Exchanging the Authorization Code for an Access Token

	CHAPTER 8. CODE LIBRARIES
	8.1. PYTHON
	8.2. RUBY GEM
	8.3. PERL
	8.4. PHP
	8.5. JAVA
	8.6. .NET
	8.7. NODE.JS

	CHAPTER 9. PLUGIN SETUP
	9.1. HOW PLUGINS WORK
	9.2. STEP 1: SELECT YOUR LANGUAGE AND DOWNLOAD THE PLUGIN
	9.3. STEP 2: CHECK THE METRICS YOU’VE SET FOR YOUR API
	9.4. STEP 3: INSTALL THE PLUGIN CODE TO YOUR APPLICATION
	9.5. STEP 4: ADD CALLS TO AUTHORIZE AS API TRAFFIC ARRIVES
	9.5.1. Usage on authrep mode

	9.6. STEP 5: DEPLOY AND RUN TRAFFIC

