
OpenShift Enterprise 3.2

Cluster Administration

OpenShift Enterprise 3.2 Cluster Administration

Last Updated: 2018-10-24

OpenShift Enterprise 3.2 Cluster Administration

OpenShift Enterprise 3.2 Cluster Administration

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Cluster Administration topics cover the day to day tasks for managing your OpenShift
cluster and other advanced configuration topics.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. MANAGING NODES
2.1. OVERVIEW
2.2. LISTING NODES
2.3. ADDING NODES
2.4. DELETING NODES
2.5. UPDATING LABELS ON NODES
2.6. LISTING PODS ON NODES
2.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE
2.8. EVACUATING PODS ON NODES
2.9. CONFIGURING NODE RESOURCES
2.10. CHANGING NODE TRAFFIC INTERFACE

CHAPTER 3. MANAGING USERS
3.1. OVERVIEW
3.2. ADDING A USER
3.3. VIEWING USER AND IDENTITY LISTS
3.4. MANAGING USER AND GROUP LABELS
3.5. DELETING A USER

CHAPTER 4. MANAGING PROJECTS
4.1. OVERVIEW
4.2. SELF-PROVISIONING PROJECTS

4.2.1. Modifying the Template for New Projects
4.2.2. Disabling Self-provisioning

4.3. USING NODE SELECTORS
4.3.1. Setting the Cluster-wide Default Node Selector
4.3.2. Setting the Project-wide Node Selector
4.3.3. Developer-specified Node Selectors

4.4. LIMITING NUMBER OF SELF-PROVISIONED PROJECTS PER USER

CHAPTER 5. CONFIGURING SERVICE ACCOUNTS
5.1. OVERVIEW
5.2. USER NAMES AND GROUPS
5.3. ENABLING SERVICE ACCOUNT AUTHENTICATION
5.4. MANAGED SERVICE ACCOUNTS
5.5. INFRASTRUCTURE SERVICE ACCOUNTS
5.6. SERVICE ACCOUNTS AND SECRETS

CHAPTER 6. MANAGING AUTHORIZATION POLICIES
6.1. OVERVIEW
6.2. VIEWING ROLES AND BINDINGS

6.2.1. Viewing Cluster Policy
6.2.2. Viewing Local Policy

6.3. MANAGING ROLE BINDINGS
6.4. GRANTING USERS DAEMONSET PERMISSIONS
6.5. CREATING A LOCAL ROLE

CHAPTER 7. MANAGING SECURITY CONTEXT CONSTRAINTS
7.1. OVERVIEW
7.2. LISTING SECURITY CONTEXT CONSTRAINTS
7.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT

7

8
8
8
9
9

10
10
10
11
11
12

13
13
13
13
13
14

15
15
15
15
16
17
17
17
18
18

20
20
20
20
21
21
22

23
23
23
23
31
32
33
34

36
36
36
36

Table of Contents

1

. .

. .

. .

. .

. .

7.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS
7.5. DELETING SECURITY CONTEXT CONSTRAINTS
7.6. UPDATING SECURITY CONTEXT CONSTRAINTS
7.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS
7.8. HOW DO I?

7.8.1. Grant Access to the Privileged SCC
7.8.2. Grant a Service Account Access to the Privileged SCC
7.8.3. Enable Images to Run with USER in the Dockerfile
7.8.4. Enable Container Images that Require Root
7.8.5. Use --mount-host on the Registry
7.8.6. Provide Additional Capabilities
7.8.7. Modify Cluster Default Behavior
7.8.8. Use the hostPath Volume Plug-in
7.8.9. Ensure That Admission Attempts to Use a Specific SCC First
7.8.10. Add an SCC to a User or Group

CHAPTER 8. SETTING QUOTAS
8.1. OVERVIEW
8.2. RESOURCES MANAGED BY QUOTA
8.3. QUOTA SCOPES
8.4. QUOTA ENFORCEMENT
8.5. REQUESTS VS LIMITS
8.6. SAMPLE RESOURCE QUOTA DEFINITIONS
8.7. CREATING A QUOTA
8.8. VIEWING A QUOTA
8.9. CONFIGURING QUOTA SYNCHRONIZATION PERIOD
8.10. ACCOUNTING FOR QUOTA IN DEPLOYMENT CONFIGURATIONS

CHAPTER 9. SETTING LIMIT RANGES
9.1. OVERVIEW

9.1.1. Container Limits
9.1.2. Pod Limits
9.1.3. Image Limits
9.1.4. Image Stream Limits

9.1.4.1. Counting of Image References
9.2. CREATING A LIMIT RANGE
9.3. VIEWING LIMITS
9.4. DELETING LIMITS

CHAPTER 10. PRUNING OBJECTS
10.1. OVERVIEW
10.2. BASIC PRUNE OPERATIONS
10.3. PRUNING DEPLOYMENTS
10.4. PRUNING BUILDS
10.5. PRUNING IMAGES

CHAPTER 11. GARBAGE COLLECTION
11.1. OVERVIEW
11.2. CONTAINER GARBAGE COLLECTION

11.2.1. Detecting Containers for Deletion
11.3. IMAGE GARBAGE COLLECTION

11.3.1. Detecting Images for Deletion

CHAPTER 12. SCHEDULER

37
38
38
39
39
39
40
40
40
40
40
41
42
42
42

43
43
43
44
45
45
45
48
48
48
49

50
50
51
52
52
53
54
54
54
55

56
56
56
56
57
57

60
60
60
61
61
62

63

OpenShift Enterprise 3.2 Cluster Administration

2

. .

. .

. .

. .

12.1. OVERVIEW
12.2. GENERIC SCHEDULER

12.2.1. Filter the Nodes
12.2.2. Prioritize the Filtered List of Nodes
12.2.3. Select the Best Fit Node

12.3. AVAILABLE PREDICATES
12.3.1. Static Predicates
12.3.2. Configurable Predicates

12.4. AVAILABLE PRIORITY FUNCTIONS
12.4.1. Static Priority Functions
12.4.2. Configurable Priority Functions

12.5. SCHEDULER POLICY
12.5.1. Default Scheduler Policy
12.5.2. Modifying Scheduler Policy

12.6. USE CASES
12.6.1. Infrastructure Topological Levels
12.6.2. Affinity
12.6.3. Anti Affinity

12.7. SAMPLE POLICY CONFIGURATIONS
12.8. SCHEDULER EXTENSIBILITY

12.8.1. Enhancements
12.8.2. Replacement

12.9. CONTROLLING POD PLACEMENT
12.9.1. Constraining Pod Placement Using Node Name
12.9.2. Constraining Pod Placement Using a Node Selector

CHAPTER 13. ALLOCATING NODE RESOURCES
13.1. OVERVIEW
13.2. CONFIGURING NODES FOR ALLOCATED RESOURCES
13.3. COMPUTING ALLOCATED RESOURCES
13.4. VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY
13.5. SCHEDULER

CHAPTER 14. OVERCOMMITTING
14.1. OVERVIEW
14.2. REQUESTS AND LIMITS
14.3. COMPUTE RESOURCES

14.3.1. CPU
14.3.2. Memory

14.4. QUALITY OF SERVICE CLASSES
14.5. CONFIGURING MASTERS FOR OVERCOMMITMENT
14.6. CONFIGURING NODES FOR OVERCOMMITMENT

14.6.1. Enforcing CPU Limits
14.6.2. Reserving Resources for System Processes
14.6.3. Kernel Tunable Flags
14.6.4. Disabling Swap Memory

CHAPTER 15. LIMIT RUN-ONCE POD DURATION
15.1. OVERVIEW
15.2. CONFIGURING THE RUNONCEDURATION PLUG-IN
15.3. SPECIFYING A CUSTOM DURATION PER PROJECT

CHAPTER 16. MONITORING ROUTERS
16.1. OVERVIEW

63
63
63
63
63
63
63
64
65
65
65
66
66
66
66
67
67
67
67
69
70
70
70
71
71

73
73
73
73
74
74

75
75
75
75
75
75
76
76
77
78
78
79
79

81
81
81
81

82
82

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

16.2. VIEWING STATISTICS
16.3. DISABLING STATISTICS VIEW
16.4. VIEWING LOGS
16.5. VIEWING THE ROUTER INTERNALS

CHAPTER 17. HIGH AVAILABILITY
17.1. OVERVIEW
17.2. CONFIGURING IP FAILOVER

17.2.1. Virtual IP Addresses
17.2.2. Configuring a Highly-available Routing Service
17.2.3. Configuring a Highly-available Network Service
17.2.4. Dynamically Updating Virtual IPs for a Highly-available Service
17.2.5. Multiple Highly Available Services In a Network

CHAPTER 18. MANAGING POD NETWORKS
18.1. OVERVIEW
18.2. JOINING PROJECT NETWORKS
18.3. MAKING PROJECT NETWORKS GLOBAL

CHAPTER 19. IPTABLES
19.1. OVERVIEW
19.2. RESTARTING

CHAPTER 20. SECURING BUILDS BY STRATEGY
20.1. OVERVIEW
20.2. DISABLING A BUILD STRATEGY GLOBALLY
20.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY
20.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT

CHAPTER 21. BUILDING DEPENDENCY TREES
21.1. OVERVIEW
21.2. USAGE

CHAPTER 22. BACKUP AND RESTORE
22.1. OVERVIEW
22.2. PREREQUISITES
22.3. CLUSTER BACKUP
22.4. CLUSTER RESTORE FOR SINGLE-MEMBER ETCD CLUSTERS
22.5. CLUSTER RESTORE FOR MULTIPLE-MEMBER ETCD CLUSTERS

22.5.1. Embedded etcd
22.5.2. Separate etcd

22.5.2.1. Adding Additional etcd Members
22.6. BRINGING OPENSHIFT ENTERPRISE SERVICES BACK ONLINE
22.7. PROJECT BACKUP

22.7.1. Role Bindings
22.7.2. Service Accounts
22.7.3. Secrets
22.7.4. Persistent Volume Claims

22.8. PROJECT RESTORE
22.9. APPLICATION DATA BACKUP
22.10. APPLICATION DATA RESTORE

CHAPTER 23. TROUBLESHOOTING OPENSHIFT SDN
23.1. OVERVIEW
23.2. NOMENCLATURE

82
82
82
83

84
84
84
85
85
87
89
90

91
91
91
91

92
92
92

93
93
93
94
94

95
95
95

96
96
96
97
97
98
99
99

101
103
104
104
104
104
104
105
105
106

107
107
107

OpenShift Enterprise 3.2 Cluster Administration

4

. .

23.3. DEBUGGING EXTERNAL ACCESS TO AN HTTP SERVICE
23.4. DEBUGGING THE ROUTER
23.5. DEBUGGING A SERVICE
23.6. DEBUGGING NODE TO NODE NETWORKING
23.7. DEBUGGING LOCAL NETWORKING

23.7.1. The Interfaces on a Node
23.7.2. SDN Flows Inside a Node
23.7.3. Debugging Steps

23.7.3.1. Is IP Forwarding Enabled?
23.7.3.2. Is firewalld Disabled?
23.7.3.3. Are your routes correct?

23.7.4. Is the Open vSwitch configured correctly?
23.7.4.1. Is the iptables configuration correct?
23.7.4.2. Is your external network correct?

23.8. DEBUGGING VIRTUAL NETWORKING
23.8.1. Builds on a Virtual Network are Failing

23.9. DEBUGGING POD EGRESS
23.10. READING THE LOGS
23.11. DEBUGGING KUBERNETES
23.12. FURTHER HELP
23.13. MISCELLANEOUS NOTES

23.13.1. Other clarifications on ingress
23.13.2. TLS Handshake Timeout
23.13.3. Other debugging notes

CHAPTER 24. REVISION HISTORY: CLUSTER ADMINISTRATION
24.1. TUE MAY 02 2017
24.2. THU APR 13 2017
24.3. MON MAR 27 2017
24.4. MON MAR 20 2017
24.5. TUE MAR 14 2017
24.6. WED JAN 25 2017
24.7. MON JAN 09 2017
24.8. TUE DEC 20 2016
24.9. MON DEC 05 2016
24.10. MON NOV 21 2016
24.11. TUE NOV 01 2016
24.12. MON OCT 24 2016
24.13. MON OCT 17 2016
24.14. TUE OCT 11 2016
24.15. TUE OCT 04 2016
24.16. TUE SEP 13 2016
24.17. TUE SEP 06 2016
24.18. TUE AUG 23 2016
24.19. MON AUG 01 2016
24.20. WED JUL 27 2016
24.21. THU JUL 14 2016
24.22. TUE JUN 14 2016
24.23. FRI JUN 10 2016
24.24. MON MAY 30 2016
24.25. THU MAY 12 2016

108
109
110
111
112
113
113
114
114
114
114
114
116
116
116
116
117
117
117
118
118
118
118
118

119
119
119
119
119
119
119
120
120
120
120
120
120
121
121
121
121
121
122
122
122
122
123
123
123
123

Table of Contents

5

OpenShift Enterprise 3.2 Cluster Administration

6

CHAPTER 1. OVERVIEW

These Cluster Administration topics cover the day-to-day tasks for managing your OpenShift Enterprise
cluster and other advanced configuration topics.

CHAPTER 1. OVERVIEW

7

CHAPTER 2. MANAGING NODES

2.1. OVERVIEW

You can manage nodes in your instance using the CLI.

When you perform node management operations, the CLI interacts with node objects that are
representations of actual node hosts. The master uses the information from node objects to validate
nodes with health checks.

2.2. LISTING NODES

To list all nodes that are known to the master:

$ oc get nodes
NAME LABELS
STATUS
node1.example.com kubernetes.io/hostname=node1.example.com Ready
node2.example.com kubernetes.io/hostname=node2.example.com Ready

To only list information about a single node, replace <node> with the full node name:

$ oc get node <node>

The STATUS column in the output of these commands can show nodes with the following conditions:

Table 2.1. Node Conditions

Condition Description

Ready The node is passing the health checks performed from the master by returning
StatusOK.

NotReady The node is not passing the health checks performed from the master.

SchedulingDisabled Pods cannot be scheduled for placement on the node.

NOTE

The STATUS column can also show Unknown for a node if the CLI cannot find any node
condition.

To get more detailed information about a specific node, including the reason for the current condition:

$ oc describe node <node>

For example:

$ oc describe node node1.example.com
Name: node1.example.com

OpenShift Enterprise 3.2 Cluster Administration

8

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#node-object-definition
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#node

Labels: kubernetes.io/hostname=node1.example.com
CreationTimestamp: Wed, 10 Jun 2015 17:22:34 +0000
Conditions:
 Type Status LastHeartbeatTime LastTransitionTime Reason Message
 Ready True Wed, 10 Jun 2015 19:56:16 +0000 Wed, 10 Jun 2015 17:22:34
+0000 kubelet is posting ready status
Addresses: 127.0.0.1
Capacity:
 memory: 1017552Ki
 pods: 100
 cpu: 2
Version:
 Kernel Version: 3.17.4-301.fc21.x86_64
 OS Image: Fedora 21 (Twenty One)
 Container Runtime Version: docker://1.6.0
 Kubelet Version: v0.17.1-804-g496be63
 Kube-Proxy Version: v0.17.1-804-g496be63
ExternalID: node1.example.com
Pods: (2 in total)
 docker-registry-1-9yyw5
 router-1-maytv
No events.

2.3. ADDING NODES

To add nodes to your existing OpenShift Enterprise cluster, you can run an Ansible playbook that
handles installing the node components, generating the required certificates, and other important steps.
See the advanced installation method for instructions on running the playbook directly.

Alternatively, if you used the quick installation method, you can re-run the installer to add nodes, which
performs the same steps.

2.4. DELETING NODES

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node itself are not deleted. Any bare pods not backed by a replication controller would be
inaccessible to OpenShift Enterprise, pods backed by replication controllers would be rescheduled to
other available nodes, and local manifest pods would need to be manually deleted.

To delete a node from the OpenShift Enterprise cluster:

1. Evacuate pods from the node you are preparing to delete.

2. Delete the node object:

$ oc delete node <node>

3. Check that the node has been removed from the node list:

$ oc get nodes

Pods should now be only scheduled for the remaining nodes that are in Ready state.

4. If you want to uninstall all OpenShift Enterprise content from the node host, including all pods

CHAPTER 2. MANAGING NODES

9

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#adding-nodes-advanced
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#adding-nodes-or-reinstalling-quick
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#node-configuration-files

and containers, continue to Uninstalling Nodes and follow the procedure using the uninstall.yml
playbook. The procedure assumes general understanding of the advanced installation method
using Ansible.

2.5. UPDATING LABELS ON NODES

To add or update labels on a node:

$ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>

To see more detailed usage:

$ oc label -h

2.6. LISTING PODS ON NODES

To list all or selected pods on one or more nodes:

$ oadm manage-node <node1> <node2> \
 --list-pods [--pod-selector=<pod_selector>] [-o json|yaml]

To list all or selected pods on selected nodes:

$ oadm manage-node --selector=<node_selector> \
 --list-pods [--pod-selector=<pod_selector>] [-o json|yaml]

2.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE

By default, healthy nodes with a Ready status are marked as schedulable, meaning that new pods are
allowed for placement on the node. Manually marking a node as unschedulable blocks any new pods
from being scheduled on the node. Existing pods on the node are not affected.

To mark a node or nodes as unschedulable:

$ oadm manage-node <node1> <node2> --schedulable=false

For example:

$ oadm manage-node node1.example.com --schedulable=false
NAME LABELS
STATUS
node1.example.com kubernetes.io/hostname=node1.example.com
Ready,SchedulingDisabled

To mark a currently unschedulable node or nodes as schedulable:

$ oadm manage-node <node1> <node2> --schedulable

Alternatively, instead of specifying specific node names (e.g., <node1> <node2>), you can use the --
selector=<node_selector> option to mark selected nodes as schedulable or unschedulable.

OpenShift Enterprise 3.2 Cluster Administration

10

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#uninstalling-nodes-advanced
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#labels

1

2

3

4

2.8. EVACUATING PODS ON NODES

Evacuating pods allows you to migrate all or selected pods from a given node or nodes. Nodes must first
be marked unschedulable to perform pod evacuation.

Only pods backed by a replication controller can be evacuated; the replication controllers create new
pods on other nodes and remove the existing pods from the specified node(s). Bare pods, meaning those
not backed by a replication controller, are unaffected by default. You can evacuate a subset of pods by
specifying a pod-selector. Pod selector is based on labels, so all the pods with the specified label will be
evacuated.

To list pods that will be migrated without actually performing the evacuation, use the --dry-run option:

$ oadm manage-node <node1> <node2> \
 --evacuate --dry-run [--pod-selector=<pod_selector>]

To actually evacuate all or selected pods on one or more nodes:

$ oadm manage-node <node1> <node2> \
 --evacuate [--pod-selector=<pod_selector>]

You can force deletion of bare pods by using the --force option:

$ oadm manage-node <node1> <node2> \
 --evacuate --force [--pod-selector=<pod_selector>]

Alternatively, instead of specifying specific node names (e.g., <node1> <node2>), you can use the --
selector=<node_selector> option to evacuate pods on selected nodes.

2.9. CONFIGURING NODE RESOURCES

You can configure node resources by adding kubelet arguments to the node configuration file
(/etc/origin/node/node-config.yaml). Add the kubeletArguments section and include any desired
options:

kubeletArguments:

 max-pods: 1
 - "110"

 resolv-conf: 2
 - "/etc/resolv.conf"

 image-gc-high-threshold: 3
 - "90"

 image-gc-low-threshold: 4
 - "80"

Number of pods that can run on this kubelet.

Resolver configuration file used as the basis for the container DNS resolution configuration.

The percent of disk usage after which image garbage collection is always run. Default: 90%

The percent of disk usage before which image garbage collection is never run. Lowest disk usage
to garbage collect to. Default: 80%

CHAPTER 2. MANAGING NODES

11

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#replication-controllers

To view all available kubelet options:

$ kubelet -h

This can also be set during an advanced installation using the openshift_node_kubelet_args
variable. For example:

openshift_node_kubelet_args={'max-pods': ['110'], 'resolv-conf':
['/etc/resolv.conf'], 'image-gc-high-threshold': ['90'], 'image-gc-low-
threshold': ['80']}

2.10. CHANGING NODE TRAFFIC INTERFACE

By default, DNS routes all node traffic. During node registration, the master receives the node IP
addresses from the DNS configuration, and therefore accessing nodes via DNS is the most flexible
solution for most deployments.

If your deployment is using a cloud provider, then the node gets the IP information from the cloud
provider. However, openshift-sdn attempts to determine the IP through a variety of methods, including a
DNS lookup on the nodeName (if set), or on the system hostname (if nodeName is not set).

However, you may need to change the node traffic interface. For example, where:

OpenShift Enterprise is installed in a cloud provider where internal hostnames are not
configured/resolvable by all hosts.

The node’s IP from the master’s perspective is not the same as the node’s IP from its own
perspective.

Configuring the openshift_set_node_ip Ansible variable forces node traffic through an interface
other than the default network interface.

To change the node traffic interface:

1. Set the openshift_set_node_ip Ansible variable to true.

2. Set the openshift_ip to the IP address for the node you want to configure.

Although openshift_set_node_ip can be useful as a workaround for the cases stated in this section,
it is generally not suited for production environments. This is because the node will no longer function
properly if it receives a new IP address.

OpenShift Enterprise 3.2 Cluster Administration

12

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#configuring-ansible

CHAPTER 3. MANAGING USERS

3.1. OVERVIEW

This topic describes the management of user accounts, including how new user accounts are created in
OpenShift Enterprise and how they can be deleted.

3.2. ADDING A USER

After new users log in to OpenShift Enterprise, an account is created for that user per the identity
provider configured on the master. The cluster administrator can manage the access level of each user.

3.3. VIEWING USER AND IDENTITY LISTS

OpenShift Enterprise user configuration is stored in several locations within OpenShift Enterprise.
Regardless of the identity provider, OpenShift Enterprise internally stores details like role-based access
control (RBAC) information and group membership. To completely remove user information, this data
must be removed in addition to the user account.

In OpenShift Enterprise, two object types contain user data outside the identification provider: user and
identity.

To get the current list of users:

$ oc get user
NAME UID FULL NAME IDENTITIES
demo 75e4b80c-dbf1-11e5-8dc6-0e81e52cc949
htpasswd_auth:demo

To get the current list of identities:

$ oc get identity
NAME IDP NAME IDP USER NAME USER NAME USER
UID
htpasswd_auth:demo htpasswd_auth demo demo
75e4b80c-dbf1-11e5-8dc6-0e81e52cc949

Note the matching UID between the two object types. If you attempt to change the authentication
provider after starting to use OpenShift Enterprise, the user names that overlap will not work because of
the entries in the identity list, which will still point to the old authentication method.

3.4. MANAGING USER AND GROUP LABELS

To add a label to a user or group:

$ oc label user/<user_name> <label_name>

For example, if the user name is theuser and the label is level=gold:

$ oc label user/theuser level=gold

CHAPTER 3. MANAGING USERS

13

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#identity-providers

To remove the label:

$ oc label user/<user_name> <label_name>-

To show labels for a user or group:

$ oc describe user/<user_name>

3.5. DELETING A USER

To delete a user:

1. Delete the user record:

$ oc delete user demo
user "demo" deleted

2. Delete the user identity.
The identity of the user is related to the identification provider you use. Get the provider name
from the user record in oc get user.

In this example, the identity provider name is htpasswd_auth. The command is:

oc delete identity htpasswd_auth:demo
identity "htpasswd_auth:demo" deleted

If you skip this step, the user will not be able to log in again.

After you complete these steps, a new account will be created in OpenShift Enterprise when the user
logs in again.

If your intention is to prevent the user from being able to log in again (for example, if an employee has
left the company and you want to permanently delete the account), you can also remove the user from
your authentication back end (like htpasswd, kerberos, or others) for the configured identity provider.

For example, if you are using htpasswd, delete the entry in the htpasswd file that is configured for
OpenShift Enterprise with the user name and password.

For external identification management like Lightweight Directory Access Protocol (LDAP) or Internet
Download Manager (IDM), use the user management tools to remove the user entry.

OpenShift Enterprise 3.2 Cluster Administration

14

CHAPTER 4. MANAGING PROJECTS

4.1. OVERVIEW

In OpenShift Enterprise, projects are used to group and isolate related objects. As an administrator, you
can give developers access to certain projects, allow them to create their own, and give them
administrative rights within individual projects.

4.2. SELF-PROVISIONING PROJECTS

You can allow developers to create their own projects. There is an endpoint that will provision a project
according to a template. The web console and oc new-project command use this endpoint when a
developer creates a new project.

4.2.1. Modifying the Template for New Projects

The API server automatically provisions projects based on the template that is identified by the
projectRequestTemplate parameter of the master-config.yaml file. If the parameter is not defined,
the API server creates a default template that creates a project with the requested name, and assigns
the requesting user to the "admin" role for that project.

To create your own custom project template:

1. Start with the current default project template:

$ oadm create-bootstrap-project-template -o yaml > template.yaml

2. Use a text editor to modify the template.yaml file by adding objects or modifying existing
objects.

3. Load the template:

$ oc create -f template.yaml -n default

4. Modify the master-config.yaml file to reference the loaded template:

...
projectConfig:
 projectRequestTemplate: "default/project-request"
 ...

When a project request is submitted, the API substitutes the following parameters into the template:

Parameter Description

PROJECT_NAME The name of the project. Required.

PROJECT_DISPLAYNAME The display name of the project. May be empty.

PROJECT_DESCRIPTION The description of the project. May be empty.

CHAPTER 4. MANAGING PROJECTS

15

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-projects

PROJECT_ADMIN_USER The username of the administrating user.

PROJECT_REQUESTING_USE
R

The username of the requesting user.

Parameter Description

Access to the API is granted to developers with the self-provisioner role and the self-
provisioners cluster role binding. This role is available to all authenticated developers by default.

4.2.2. Disabling Self-provisioning

You can prevent an authenticated user group from self-provisioning new projects.

1. Log in as a user with cluster-admin privileges.

2. Remove the self-provisionerscluster role from the group.

$ oadm policy remove-cluster-role-from-group self-provisioner
system:authenticated system:authenticated:oauth

3. Set the projectRequestMessage parameter value in the master-config.yaml file to instruct
developers how to request a new project. This parameter value is a string that will be presented
to a user in the web console and command line when the user attempts to self-provision a
project. You might use one of the following messages:

To request a project, contact your system administrator at projectname@example.com.

To request a new project, fill out the project request form located at
https://internal.example.com/openshift-project-request .

Example YAML file

4. Edit the self-provisioners cluster role to prevent automatic updates to the role. Automatic
updates reset the cluster roles to the default state.

To update the role from the command line:

i. Run the following command:

$ oc edit clusterrole self-provisioner

ii. In the displayed role, set the openshift.io/reconcile-protect parameter value
to true, as shown in the following example:

...
projectConfig:
 ProjectRequestMessage: "message"
 ...

apiVersion: authorization.openshift.io/v1
kind: ClusterRole

OpenShift Enterprise 3.2 Cluster Administration

16

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
mailto:projectname@example.com
https://internal.example.com/openshift-project-request
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#updating-policy-definitions

To update the role by using automation, use the following command:

$ oc patch clusterrole self-provisioner -p '{ "metadata": {
"annotations": { "openshift.io/reconcile-protect": "true" } } }'

4.3. USING NODE SELECTORS

Node selectors are used in conjunction with labeled nodes to control pod placement.

NOTE

Labels can be assigned during an advanced installation, or added to a node after
installation.

4.3.1. Setting the Cluster-wide Default Node Selector

As a cluster administrator, you can set the cluster-wide default node selector to restrict pod placement to
specific nodes.

Edit the master configuration file at /etc/origin/master/master-config.yaml and add a value for a default
node selector. This is applied to the pods created in all projects without a specified nodeSelector
value:

...
projectConfig:
 defaultNodeSelector: "type=user-node,region=east"
...

Restart the OpenShift service for the changes to take effect:

systemctl restart atomic-openshift-master

4.3.2. Setting the Project-wide Node Selector

To create an individual project with a node selector, use the --node-selector option when creating a
project. For example, if you have an OpenShift Enterprise topology with multiple regions, you can use a
node selector to restrict specific OpenShift Enterprise projects to only deploy pods onto nodes in a
specific region.

The following creates a new project named myproject and dictates that pods be deployed onto nodes
labeled user-node and east:

$ oadm new-project myproject \
 --node-selector='type=user-node,region=east'

metadata:
 annotations:
 authorization.openshift.io/system-only: "true"
 openshift.io/description: A user that can request project.
 openshift.io/reconcile-protect: "true"
...

CHAPTER 4. MANAGING PROJECTS

17

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#configuring-node-host-labels

Once this command is run, this becomes the adminstrator-set node selector for all pods contained in the
specified project.

NOTE

While the new-project subcommand is available for both oadm and oc, the cluster
administrator and developer commands respectively, creating a new project with a node
selector is only available with the oadm command. The new-project subcommand is not
available to project developers when self-provisioning projects.

Using the oadm new-project command adds an annotation section to the project. You can edit a
project, and change the openshift.io/node-selector value to override the default:

...
metadata:
 annotations:
 openshift.io/node-selector: type=user-node,region=east
...

If openshift.io/node-selector is set to an empty string (oadm new-project --node-
selector=""), the project will not have an adminstrator-set node selector, even if the cluster-wide
default has been set. This means that, as a cluster administrator, you can set a default to restrict
developer projects to a subset of nodes and still enable infrastructure or other projects to schedule the
entire cluster.

4.3.3. Developer-specified Node Selectors

OpenShift Enterprise developers can set a node selector on their pod configuration if they wish to restrict
nodes even further. This will be in addition to the project node selector, meaning that you can still dictate
node selector values for all projects that have a node selector value.

For example, if a project has been created with the above annotation (openshift.io/node-
selector: type=user-node,region=east) and a developer sets another node selector on a pod
in that project, for example clearance=classified, the pod will only ever be scheduled on nodes that
have all three labels (type=user-node, region=east, and clearance=classified). If they set
region=west on a pod, their pods would be demanding nodes with labels region=east and
region=west, which cannot work. The pods will never be scheduled, because labels can only be set to
one value.

4.4. LIMITING NUMBER OF SELF-PROVISIONED PROJECTS PER USER

The number of self-provisioned projects requested by a given user can be limited with the
ProjectRequestLimitadmission control plug-in.

IMPORTANT

If your project request template was created in OpenShift Enterprise 3.1 or earlier using
the process described in Modifying the Template for New Projects, then the generated
template does not include the annotation openshift.io/requester:
${PROJECT_REQUESTING_USER}, which is used for the
ProjectRequestLimitConfig. You must add the annotation.

OpenShift Enterprise 3.2 Cluster Administration

18

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#assigning-pods-to-specific-nodes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-admission-controllers

1

2

3

In order to specify limits for users, a configuration must be specified for the plug-in within the master
configuration file (/etc/origin/master/master-config.yaml). The plug-in configuration takes a list of user
label selectors and the associated maximum project requests.

Selectors are evaluated in order. The first one matching the current user will be used to determine the
maximum number of projects. If a selector is not specified, a limit applies to all users. If a maximum
number of projects is not specified, then an unlimited number of projects are allowed for a specific
selector.

The following configuration sets a global limit of 2 projects per user while allowing 10 projects for users
with a label of level=advanced and unlimited projects for users with a label of level=admin.

For selector level=admin, no maxProjects is specified. This means that users with this label
will not have a maximum of project requests.

For selector level=advanced, a maximum number of 10 projects will be allowed.

For the third entry, no selector is specified. This means that it will be applied to any user that doesn’t
satisfy the previous two rules. Because rules are evaluated in order, this rule should be specified
last.

NOTE

Managing User and Group Labels provides further guidance on how to add, remove, or
show labels for users and groups.

Once your changes are made, restart OpenShift Enterprise for the changes to take effect.

systemctl restart atomic-openshift-master

admissionConfig:
 pluginConfig:
 ProjectRequestLimit:
 configuration:
 apiVersion: v1
 kind: ProjectRequestLimitConfig
 limits:
 - selector:

 level: admin 1
 - selector:

 level: advanced 2
 maxProjects: 10

 - maxProjects: 2 3

CHAPTER 4. MANAGING PROJECTS

19

CHAPTER 5. CONFIGURING SERVICE ACCOUNTS

5.1. OVERVIEW

When a person uses the OpenShift Enterprise CLI or web console, their API token authenticates them to
the OpenShift Enterprise API. However, when a regular user’s credentials are not available, it is common
for components to make API calls independently. For example:

Replication controllers make API calls to create or delete pods.

Applications inside containers can make API calls for discovery purposes.

External applications can make API calls for monitoring or integration purposes.

Service accounts provide a flexible way to control API access without sharing a regular user’s
credentials.

5.2. USER NAMES AND GROUPS

Every service account has an associated user name that can be granted roles, just like a regular user.
The user name is derived from its project and name:

system:serviceaccount:<project>:<name>

For example, to add the view role to the robot service account in the top-secret project:

$ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

Every service account is also a member of two groups:

system:serviceaccounts

Includes all service accounts in the system.

system:serviceaccounts:<project>

Includes all service accounts in the specified project.

For example, to allow all service accounts in all projects to view resources in the top-secret project:

$ oc policy add-role-to-group view system:serviceaccounts -n top-secret

To allow all service accounts in the managers project to edit resources in the top-secret project:

$ oc policy add-role-to-group edit system:serviceaccounts:managers -n top-
secret

5.3. ENABLING SERVICE ACCOUNT AUTHENTICATION

Service accounts authenticate to the API using tokens signed by a private RSA key. The authentication
layer verifies the signature using a matching public RSA key.

OpenShift Enterprise 3.2 Cluster Administration

20

1

2

3

1

2

3

4

To enable service account token generation, update the serviceAccountConfig stanza in the
/etc/origin/master/master-config.yml file on the master to specify a privateKeyFile (for signing),
and a matching public key file in the publicKeyFiles list:

serviceAccountConfig:
 ...

 masterCA: ca.crt 1

 privateKeyFile: serviceaccounts.private.key 2
 publicKeyFiles:

 - serviceaccounts.public.key 3
 - ...

CA file used to validate the API server’s serving certificate.

Private RSA key file (for token signing).

Public RSA key files (for token verification). If private key files are provided, then the public key
component is used. Multiple public key files can be specified, and a token will be accepted if it can
be validated by one of the public keys. This allows rotation of the signing key, while still accepting
tokens generated by the previous signer.

5.4. MANAGED SERVICE ACCOUNTS

Service accounts are required in each project to run builds, deployments, and other pods. The
managedNames setting in the /etc/origin/master/master-config.yml file on the master controls which
service accounts are automatically created in every project:

serviceAccountConfig:
 ...

 managedNames: 1

 - builder 2

 - deployer 3

 - default 4
 - ...

List of service accounts to automatically create in every project.

A builder service account in each project is required by build pods, and is given the
system:image-builder role, which allows pushing images to any image stream in the project using
the internal container registry.

A deployer service account in each project is required by deployment pods, and is given the
system:deployer role, which allows viewing and modifying replication controllers and pods in the
project.

A default service account is used by all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal container registry.

5.5. INFRASTRUCTURE SERVICE ACCOUNTS

CHAPTER 5. CONFIGURING SERVICE ACCOUNTS

21

Several infrastructure controllers run using service account credentials. The following service accounts
are created in the OpenShift Enterprise infrastructure project (openshift-infra) at server start, and given
the following roles cluster-wide:

Service Account Description

replication-controller Assigned the system:replication-controller role

deployment-controller Assigned the system:deployment-controller role

build-controller Assigned the system:build-controller role. Additionally, the build-controller
service account is included in the privileged security context constraint in order to
create privileged build pods.

To configure the project where those service accounts are created, set the
openshiftInfrastructureNamespace field in in the /etc/origin/master/master-config.yml file on
the master:

policyConfig:
 ...
 openshiftInfrastructureNamespace: openshift-infra

5.6. SERVICE ACCOUNTS AND SECRETS

Set the limitSecretReferences field in the /etc/origin/master/master-config.yml file on the master
to true to require pod secret references to be whitelisted by their service accounts. Set its value to
false to allow pods to reference any secret in the project.

serviceAccountConfig:
 ...
 limitSecretReferences: false

OpenShift Enterprise 3.2 Cluster Administration

22

CHAPTER 6. MANAGING AUTHORIZATION POLICIES

6.1. OVERVIEW

You can use the CLI to view authorization policies and the administrator CLI to manage the roles and
bindings within a policy.

6.2. VIEWING ROLES AND BINDINGS

Roles grant various levels of access in the system-wide cluster policy as well as project-scoped local
policies. Users and groups can be associated with, or bound to, multiple roles at the same time. You can
view details about the roles and their bindings using the oc describe command.

Users with the cluster-admindefault role in the cluster policy can view cluster policy and all local
policies. Users with the admindefault role in a given local policy can view that project-scoped policy.

NOTE

Review a full list of verbs in the Evaluating Authorization section.

6.2.1. Viewing Cluster Policy

To view the cluster roles and their associated rule sets in the cluster policy:

$ oc describe clusterPolicy default

Example 6.1. Viewing Cluster Roles

$ oc describe clusterPolicy default
Name: default
Created: 5 days ago
Labels: <none>
Annotations: <none>
Last Modified: 2016-03-17 13:25:27 -0400 EDT
admin Verbs Non-Resource URLs Extension Resource Names
API Groups Resources
 [create delete deletecollection get list patch update watch] []
[] [] [configmaps endpoints persistentvolumeclaims pods pods/attach
pods/exec pods/log pods/portforward pods/proxy replicationcontrollers
replicationcontrollers/scale secrets serviceaccounts services
services/proxy]
 [create delete deletecollection get list patch update watch] []
[] [] [buildconfigs buildconfigs/instantiate
buildconfigs/instantiatebinary buildconfigs/webhooks buildlogs builds
builds/clone builds/custom builds/docker builds/log builds/source
deploymentconfigrollbacks deploymentconfigs deploymentconfigs/log
deploymentconfigs/scale deployments generatedeploymentconfigs
imagestreamimages imagestreamimports imagestreammappings imagestreams
imagestreams/secrets imagestreamtags localresourceaccessreviews
localsubjectaccessreviews processedtemplates projects
resourceaccessreviews rolebindings roles routes subjectaccessreviews
templateconfigs templates]
 [create delete deletecollection get list patch update watch] []

CHAPTER 6. MANAGING AUTHORIZATION POLICIES

23

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#cluster-policy-and-local-policy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#cluster-policy-and-local-policy
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#users-and-groups
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#evaluating-authorization

[] [autoscaling] [horizontalpodautoscalers]
 [create delete deletecollection get list patch update watch] []
[] [batch] [jobs]
 [create delete deletecollection get list patch update watch] []
[] [extensions] [daemonsets horizontalpodautoscalers jobs
replicationcontrollers/scale]
 [get list watch] [] [] [] [bindings configmaps
endpoints events imagestreams/status limitranges minions namespaces
namespaces/status nodes persistentvolumeclaims persistentvolumes pods
pods/log pods/status policies policybindings replicationcontrollers
replicationcontrollers/status resourcequotas resourcequotas/status
resourcequotausages routes/status securitycontextconstraints
serviceaccounts services]
 [get update] [] [] [] [imagestreams/layers]
 [update] [] [] [] [routes/status]
basic-user Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get] [] [~] [] [users]
 [list] [] [] [] [projectrequests]
 [get list] [] [] [] [clusterroles]
 [list] [] [] [] [projects]
 [create] [] IsPersonalSubjectAccessReview [] []
[localsubjectaccessreviews subjectaccessreviews]
cluster-admin Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [*] [] [] [*] [*]
 [*] [*] [] [] []
cluster-reader Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get list watch] [] [] [] [bindings buildconfigs
buildconfigs/instantiate buildconfigs/instantiatebinary
buildconfigs/webhooks buildlogs builds builds/clone builds/details
builds/log clusternetworks clusterpolicies clusterpolicybindings
clusterrolebindings clusterroles configmaps deploymentconfigrollbacks
deploymentconfigs deploymentconfigs/log deploymentconfigs/scale
deployments endpoints events generatedeploymentconfigs groups
hostsubnets identities images imagestreamimages imagestreamimports
imagestreammappings imagestreams imagestreams/status imagestreamtags
limitranges localresourceaccessreviews localsubjectaccessreviews minions
namespaces netnamespaces nodes oauthclientauthorizations oauthclients
persistentvolumeclaims persistentvolumes pods pods/log policies
policybindings processedtemplates projectrequests projects
replicationcontrollers resourceaccessreviews resourcequotas
resourcequotausages rolebindings roles routes routes/status
securitycontextconstraints serviceaccounts services subjectaccessreviews
templateconfigs templates useridentitymappings users]
 [get list watch] [] [] [autoscaling]
[horizontalpodautoscalers]
 [get list watch] [] [] [batch] [jobs]
 [get list watch] [] [] [extensions] [daemonsets
horizontalpodautoscalers jobs replicationcontrollers/scale]
 [create] [] [] [] [resourceaccessreviews
subjectaccessreviews]
 [get] [] [] [] [nodes/metrics]
 [create get] [] [] [] [nodes/stats]
 [get] [*] [] [] []

OpenShift Enterprise 3.2 Cluster Administration

24

cluster-status Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get] [/api /api/* /apis /apis/* /healthz /healthz/* /oapi
/oapi/* /osapi /osapi/ /version] [] [] []
edit Verbs Non-Resource URLs Extension Resource Names
API Groups Resources
 [create delete deletecollection get list patch update watch] []
[] [] [configmaps endpoints persistentvolumeclaims pods pods/attach
pods/exec pods/log pods/portforward pods/proxy replicationcontrollers
replicationcontrollers/scale secrets serviceaccounts services
services/proxy]
 [create delete deletecollection get list patch update watch] []
[] [] [buildconfigs buildconfigs/instantiate
buildconfigs/instantiatebinary buildconfigs/webhooks buildlogs builds
builds/clone builds/custom builds/docker builds/log builds/source
deploymentconfigrollbacks deploymentconfigs deploymentconfigs/log
deploymentconfigs/scale deployments generatedeploymentconfigs
imagestreamimages imagestreamimports imagestreammappings imagestreams
imagestreams/secrets imagestreamtags processedtemplates routes
templateconfigs templates]
 [create delete deletecollection get list patch update watch] []
[] [autoscaling] [horizontalpodautoscalers]
 [create delete deletecollection get list patch update watch] []
[] [batch] [jobs]
 [create delete deletecollection get list patch update watch] []
[] [extensions] [daemonsets horizontalpodautoscalers jobs
replicationcontrollers/scale]
 [get list watch] [] [] [] [bindings configmaps
endpoints events imagestreams/status limitranges minions namespaces
namespaces/status nodes persistentvolumeclaims persistentvolumes pods
pods/log pods/status projects replicationcontrollers
replicationcontrollers/status resourcequotas resourcequotas/status
resourcequotausages routes/status securitycontextconstraints
serviceaccounts services]
 [get update] [] [] [] [imagestreams/layers]
registry-admin Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [create delete deletecollection get list patch update watch] []
[] [] [imagestreamimages imagestreamimports imagestreammappings
imagestreams imagestreams/secrets imagestreamtags]
 [create delete deletecollection get list patch update watch] []
[] [] [localresourceaccessreviews localsubjectaccessreviews
resourceaccessreviews rolebindings roles subjectaccessreviews]
 [get update] [] [] [] [imagestreams/layers]
 [get list watch] [] [] [] [policies policybindings]
 [get] [] [] [] [namespaces projects]
registry-editor Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get] [] [] [] [namespaces projects]
 [create delete deletecollection get list patch update watch] []
[] [] [imagestreamimages imagestreamimports imagestreammappings
imagestreams imagestreams/secrets imagestreamtags]
 [get update] [] [] [] [imagestreams/layers]
registry-viewer Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get list watch] [] [] [] [imagestreamimages

CHAPTER 6. MANAGING AUTHORIZATION POLICIES

25

imagestreamimports imagestreammappings imagestreams imagestreamtags]
 [get] [] [] [] [imagestreams/layers namespaces
projects]
self-provisioner Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [create] [] [] [] [projectrequests]
system:build-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [] [builds]
 [update] [] [] [] [builds]
 [create] [] [] [] [builds/custom builds/docker
builds/source]
 [get] [] [] [] [imagestreams]
 [create delete get list] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:daemonset-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [extensions] [daemonsets]
 [list watch] [] [] [] [pods]
 [list watch] [] [] [] [nodes]
 [update] [] [] [extensions] [daemonsets/status]
 [create delete] [] [] [] [pods]
 [create] [] [] [] [pods/binding]
 [create patch update] [] [] [] [events]
system:deployer Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get list] [] [] [] [replicationcontrollers]
 [get update] [] [] [] [replicationcontrollers]
 [create get list watch] [] [] [] [pods]
 [get] [] [] [] [pods/log]
 [update] [] [] [] [imagestreamtags]
system:deployment-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [] [replicationcontrollers]
 [get update] [] [] [] [replicationcontrollers]
 [create delete get list update] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:discovery Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [get] [/api /api/* /apis /apis/* /oapi /oapi/* /osapi
/osapi/ /version] [] [] []
system:hpa-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [extensions autoscaling]
[horizontalpodautoscalers]
 [update] [] [] [extensions autoscaling]
[horizontalpodautoscalers/status]
 [get update] [] [] [extensions]
[replicationcontrollers/scale]
 [get update] [] [] [] [deploymentconfigs/scale]
 [create patch update] [] [] [] [events]
 [list] [] [] [] [pods]
 [proxy] [] [https:heapster:] [] [services]
system:image-builder Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get update] [] [] [] [imagestreams/layers]

OpenShift Enterprise 3.2 Cluster Administration

26

 [update] [] [] [] [builds/details]
system:image-pruner Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [delete] [] [] [] [images]
 [get list] [] [] [] [buildconfigs builds
deploymentconfigs images imagestreams pods replicationcontrollers]
 [update] [] [] [] [imagestreams/status]
system:image-puller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get] [] [] [] [imagestreams/layers]
system:image-pusher Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get update] [] [] [] [imagestreams/layers]
system:job-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [extensions batch] [jobs]
 [update] [] [] [extensions batch] [jobs/status]
 [list watch] [] [] [] [pods]
 [create delete] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:master Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [*] [] [] [*] [*]
system:namespace-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [delete get list watch] [] [] [] [namespaces]
 [update] [] [] [] [namespaces/finalize
namespaces/status]
 [delete deletecollection get list] [] [] [*] [*]
system:node Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [create] [] [] [] [localsubjectaccessreviews
subjectaccessreviews]
 [get list watch] [] [] [] [services]
 [create get list watch] [] [] [] [nodes]
 [update] [] [] [] [nodes/status]
 [create patch update] [] [] [] [events]
 [get list watch] [] [] [] [pods]
 [create delete get] [] [] [] [pods]
 [update] [] [] [] [pods/status]
 [get] [] [] [] [configmaps secrets]
 [get] [] [] [] [persistentvolumeclaims
persistentvolumes]
 [get] [] [] [] [endpoints]
system:node-admin Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [] [nodes]
 [proxy] [] [] [] [nodes]
 [*] [] [] [] [nodes/log nodes/metrics nodes/proxy
nodes/stats]
system:node-proxier Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [] [endpoints services]
system:node-reader Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [] [nodes]

CHAPTER 6. MANAGING AUTHORIZATION POLICIES

27

 [get] [] [] [] [nodes/metrics]
 [create get] [] [] [] [nodes/stats]
system:oauth-token-deleter Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [delete] [] [] [] [oauthaccesstokens
oauthauthorizetokens]
system:pv-binder-controller Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [list watch] [] [] [] [persistentvolumes]
 [create delete get update] [] [] []
[persistentvolumes]
 [update] [] [] [] [persistentvolumes/status]
 [list watch] [] [] [] [persistentvolumeclaims]
 [get update] [] [] [] [persistentvolumeclaims]
 [update] [] [] [] [persistentvolumeclaims/status]
system:pv-provisioner-controller Verbs Non-Resource URLs
Extension Resource Names API Groups Resources
 [list watch] [] [] [] [persistentvolumes]
 [create delete get update] [] [] []
[persistentvolumes]
 [update] [] [] [] [persistentvolumes/status]
 [list watch] [] [] [] [persistentvolumeclaims]
 [get update] [] [] [] [persistentvolumeclaims]
 [update] [] [] [] [persistentvolumeclaims/status]
system:pv-recycler-controller Verbs Non-Resource URLs
Extension Resource Names API Groups Resources
 [list watch] [] [] [] [persistentvolumes]
 [create delete get update] [] [] []
[persistentvolumes]
 [update] [] [] [] [persistentvolumes/status]
 [list watch] [] [] [] [persistentvolumeclaims]
 [get update] [] [] [] [persistentvolumeclaims]
 [update] [] [] [] [persistentvolumeclaims/status]
 [list watch] [] [] [] [pods]
 [create delete get] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:registry Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [delete get] [] [] [] [images]
 [get] [] [] [] [imagestreamimages imagestreams
imagestreams/secrets imagestreamtags]
 [update] [] [] [] [imagestreams]
 [create] [] [] [] [imagestreammappings]
 [list] [] [] [] [resourcequotas]
system:replication-controller Verbs Non-Resource URLs
Extension Resource Names API Groups Resources
 [list watch] [] [] [] [replicationcontrollers]
 [get update] [] [] [] [replicationcontrollers]
 [update] [] [] [] [replicationcontrollers/status]
 [list watch] [] [] [] [pods]
 [create delete] [] [] [] [pods]
 [create patch update] [] [] [] [events]
system:router Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [list watch] [] [] [] [endpoints routes]
 [update] [] [] [] [routes/status]

OpenShift Enterprise 3.2 Cluster Administration

28

system:sdn-manager Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [create delete get list watch] [] [] [] [hostsubnets]
 [create delete get list watch] [] [] []
[netnamespaces]
 [get list watch] [] [] [] [nodes]
 [create get] [] [] [] [clusternetworks]
system:sdn-reader Verbs Non-Resource URLs Extension
Resource Names API Groups Resources
 [get list watch] [] [] [] [hostsubnets]
 [get list watch] [] [] [] [netnamespaces]
 [get list watch] [] [] [] [nodes]
 [get] [] [] [] [clusternetworks]
 [get list watch] [] [] [] [namespaces]
system:webhook Verbs Non-Resource URLs Extension Resource
Names API Groups Resources
 [create get] [] [] [] [buildconfigs/webhooks]
view Verbs Non-Resource URLs Extension Resource Names
API Groups Resources
 [get list watch] [] [] [] [bindings buildconfigs
buildconfigs/instantiate buildconfigs/instantiatebinary
buildconfigs/webhooks buildlogs builds builds/clone builds/log
configmaps deploymentconfigrollbacks deploymentconfigs
deploymentconfigs/log deploymentconfigs/scale deployments endpoints
events generatedeploymentconfigs imagestreamimages imagestreamimports
imagestreammappings imagestreams imagestreams/status imagestreamtags
limitranges minions namespaces namespaces/status nodes
persistentvolumeclaims persistentvolumes pods pods/log pods/status
processedtemplates projects replicationcontrollers
replicationcontrollers/status resourcequotas resourcequotas/status
resourcequotausages routes routes/status securitycontextconstraints
serviceaccounts services templateconfigs templates]
 [get list watch] [] [] [autoscaling]
[horizontalpodautoscalers]
 [get list watch] [] [] [batch] [jobs]
 [get list watch] [] [] [extensions] [daemonsets
horizontalpodautoscalers jobs]

To view the current set of cluster bindings, which shows the users and groups that are bound to various
roles:

$ oc describe clusterPolicyBindings :default

Example 6.2. Viewing Cluster Bindings

$ oc describe clusterPolicyBindings :default
Name: :default
Created: 4 hours ago
Labels: <none>
Last Modified: 2015-06-10 17:22:26 +0000 UTC
Policy: <none>
RoleBinding[basic-users]:
 Role: basic-user
 Users: []

CHAPTER 6. MANAGING AUTHORIZATION POLICIES

29

 Groups: [system:authenticated]
RoleBinding[cluster-admins]:
 Role: cluster-admin
 Users: []
 Groups: [system:cluster-admins]
RoleBinding[cluster-readers]:
 Role: cluster-reader
 Users: []
 Groups: [system:cluster-readers]
RoleBinding[cluster-status-binding]:
 Role: cluster-status
 Users: []
 Groups: [system:authenticated system:unauthenticated]
RoleBinding[self-provisioners]:
 Role: self-provisioner
 Users: []
 Groups: [system:authenticated]
RoleBinding[system:build-controller]:
 Role: system:build-controller
 Users: [system:serviceaccount:openshift-infra:build-controller]
 Groups: []
RoleBinding[system:deployment-controller]:
 Role: system:deployment-controller
 Users: [system:serviceaccount:openshift-infra:deployment-
controller]
 Groups: []
RoleBinding[system:masters]:
 Role: system:master
 Users: []
 Groups: [system:masters]
RoleBinding[system:node-proxiers]:
 Role: system:node-proxier
 Users: []
 Groups: [system:nodes]
RoleBinding[system:nodes]:
 Role: system:node
 Users: []
 Groups: [system:nodes]
RoleBinding[system:oauth-token-deleters]:
 Role: system:oauth-token-deleter
 Users: []
 Groups: [system:authenticated system:unauthenticated]
RoleBinding[system:registrys]:
 Role: system:registry
 Users: []
 Groups: [system:registries]
RoleBinding[system:replication-controller]:
 Role: system:replication-controller
 Users: [system:serviceaccount:openshift-infra:replication-
controller]
 Groups: []
RoleBinding[system:routers]:
 Role: system:router
 Users: []
 Groups: [system:routers]
RoleBinding[system:sdn-readers]:

OpenShift Enterprise 3.2 Cluster Administration

30

 Role: system:sdn-reader
 Users: []
 Groups: [system:nodes]
RoleBinding[system:webhooks]:
 Role: system:webhook
 Users: []
 Groups: [system:authenticated system:unauthenticated]

6.2.2. Viewing Local Policy

While the list of local roles and their associated rule sets are not viewable within a local policy, all of the
default roles are still applicable and can be added to users or groups, other than the cluster-admin
default role. The local bindings, however, are viewable.

To view the current set of local bindings, which shows the users and groups that are bound to various
roles:

$ oc describe policyBindings :default

By default, the current project is used when viewing local policy. Alternatively, a project can be specified
with the -n flag. This is useful for viewing the local policy of another project, if the user already has the
admindefault role in it.

Example 6.3. Viewing Local Bindings

$ oc describe policyBindings :default -n joe-project
Name: :default
Created: About a minute ago
Labels: <none>
Last Modified: 2015-06-10 21:55:06 +0000 UTC
Policy: <none>
RoleBinding[admins]:
 Role: admin
 Users: [joe]
 Groups: []
RoleBinding[system:deployers]:
 Role: system:deployer
 Users: [system:serviceaccount:joe-project:deployer]
 Groups: []
RoleBinding[system:image-builders]:
 Role: system:image-builder
 Users: [system:serviceaccount:joe-project:builder]
 Groups: []
RoleBinding[system:image-pullers]:
 Role: system:image-puller
 Users: []
 Groups: [system:serviceaccounts:joe-project]

By default in a local policy, only the binding for the admin role is immediately listed. However, if other
default roles are added to users and groups within a local policy, they become listed as well.

CHAPTER 6. MANAGING AUTHORIZATION POLICIES

31

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles

6.3. MANAGING ROLE BINDINGS

Adding, or binding, a role to users or groups gives the user or group the relevant access granted by the
role. You can add and remove roles to and from users and groups using oadm policy commands.

When managing a user or group’s associated roles for a local policy using the following operations, a
project may be specified with the -n flag. If it is not specified, then the current project is used.

Table 6.1. Local Policy Operations

Command Description

$ oadm policy who-can <verb>
<resource>

Indicates which users can perform an action on a
resource.

$ oadm policy add-role-to-user
<role> <username>

Binds a given role to specified users in the current
project.

$ oadm policy remove-role-from-user
<role> <username>

Removes a given role from specified users in the
current project.

$ oadm policy remove-user
<username>

Removes specified users and all of their roles in the
current project.

$ oadm policy add-role-to-group
<role> <groupname>

Binds a given role to specified groups in the current
project.

$ oadm policy remove-role-from-
group <role> <groupname>

Removes a given role from specified groups in the
current project.

$ oadm policy remove-group
<groupname>

Removes specified groups and all of their roles in the
current project.

You can also manage role bindings for the cluster policy using the following operations. The -n flag is
not used for these operations because the cluster policy uses non-namespaced resources.

Table 6.2. Cluster Policy Operations

Command Description

$ oadm policy add-cluster-role-to-
user <role> <username>

Binds a given role to specified users for all projects in
the cluster.

$ oadm policy remove-cluster-role-
from-user <role> <username>

Removes a given role from specified users for all
projects in the cluster.

$ oadm policy add-cluster-role-to-
group <role> <groupname>

Binds a given role to specified groups for all projects
in the cluster.

OpenShift Enterprise 3.2 Cluster Administration

32

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#users-and-groups

1

$ oadm policy remove-cluster-role-
from-group <role> <groupname>

Removes a given role from specified groups for all
projects in the cluster.

Command Description

For example, you can add the admin role to the alice user in joe-project by running:

$ oadm policy add-role-to-user admin alice -n joe-project

You can then view the local bindings and verify the addition in the output:

$ oc describe policyBindings :default -n joe-project
Name: :default
Created: 5 minutes ago
Labels: <none>
Last Modified: 2015-06-10 22:00:44 +0000 UTC
Policy: <none>
RoleBinding[admins]:
 Role: admin

 Users: [alice joe] 1
 Groups: []
RoleBinding[system:deployers]:
 Role: system:deployer
 Users: [system:serviceaccount:joe-project:deployer]
 Groups: []
RoleBinding[system:image-builders]:
 Role: system:image-builder
 Users: [system:serviceaccount:joe-project:builder]
 Groups: []
RoleBinding[system:image-pullers]:
 Role: system:image-puller
 Users: []
 Groups: [system:serviceaccounts:joe-project]

The alice user has been added to the admins RoleBinding.

6.4. GRANTING USERS DAEMONSET PERMISSIONS

By default, project developers do not have the permission to create daemonsets. As a cluster
administrator, you can grant them the abilities.

1. Define a ClusterRole file:

apiVersion: v1
kind: ClusterRole
metadata:
 name: daemonset-admin
rules:
 - resources:
 - daemonsets
 apiGroups:
 - extensions

CHAPTER 6. MANAGING AUTHORIZATION POLICIES

33

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-daemonsets

 verbs:
 - create
 - get
 - list
 - watch
 - delete
 - update

2. Create the role:

$ oadm policy add-role-to-user daemonset-admin <user>

6.5. CREATING A LOCAL ROLE

To create a local role for a project, you can either copy and modify an existing role or build a new role
from scratch. It is recommended that you build it from scratch so that you understand each of the
permissions assigned.

To copy the cluster role view to use as a local role, run:

$ oc get clusterrole view -o yaml > clusterrole_view.yaml
$ cp clusterrole_view.yaml localrole_exampleview.yaml
$ vim localrole_exampleview.yaml
1. Update kind: ClusterRole to kind: Role
2. Update name: view to name: exampleview
3. Remove resourceVersion, selfLink, uid, and creationTimestamp
$ oc create -f path/to/localrole_exampleview.yaml -n
<project_you_want_to_add_the_local_role_exampleview_to>

To create a new role from scratch, save this snippet into the file role_exampleview.yaml:

Example Role Named exampleview

apiVersion: v1
kind: Role
metadata:
 name: exampleview
rules:
- apiGroups: null
 attributeRestrictions: null
 resources:
 - pods
 - builds
 verbs:
 - get
 - list
 - watch

Then, to use the current project, run:

$ oc project <project_you_want_to_add_the_local_role_exampleview_to>

Optionally, annotate it with a description.

OpenShift Enterprise 3.2 Cluster Administration

34

To use the new role, run:

$ oadm policy add-role-to-user exampleview user2

NOTE

A clusterrolebinding is a role binding that exists at the cluster level. A
rolebinding exists at the project level. This can be confusing. The
clusterrolebinding view must be assigned to a user within a project for that user to
view the project. Local roles are only created if a cluster role does not provide the set of
permissions needed for a particular situation, which is unlikely.

Some cluster role names are initially confusing. The clusterroleclusteradmin can
be assigned to a user within a project, making it appear that this user has the privileges of
a cluster administrator. This is not the case. The clusteradmin cluster role bound to a
certain project is more like a super administrator for that project, granting the permissions
of the cluster role admin, plus a few additional permissions like the ability to edit rate
limits. This can appear especially confusing via the web console UI, which does not list
cluster policy (where cluster administrators exist). However, it does list local policy (where
a locally bound clusteradmin may exist).

Within a project, project administrators should be able to see rolebindings, not
clusterrolebindings.

CHAPTER 6. MANAGING AUTHORIZATION POLICIES

35

CHAPTER 7. MANAGING SECURITY CONTEXT CONSTRAINTS

7.1. OVERVIEW

Security context constraints allow administrators to control permissions for pods. To learn more about
this API type, see the security context constraints (SCCs) architecture documentation. You can manage
SCCs in your instance as normal API objects using the CLI.

NOTE

You must have cluster-admin privileges to manage SCCs.

7.2. LISTING SECURITY CONTEXT CONSTRAINTS

To get a current list of SCCs:

$ oc get scc

NAME PRIV CAPS SELINUX RUNASUSER
FSGROUP SUPGROUP PRIORITY READONLYROOTFS VOLUMES
anyuid false [] MustRunAs RunAsAny
RunAsAny RunAsAny 10 false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]
hostaccess false [] MustRunAs MustRunAsRange
MustRunAs RunAsAny <none> false [configMap
downwardAPI emptyDir hostPath persistentVolumeClaim secret]
hostmount-anyuid false [] MustRunAs RunAsAny
RunAsAny RunAsAny <none> false [configMap
downwardAPI emptyDir hostPath persistentVolumeClaim secret]
hostnetwork false [] MustRunAs MustRunAsRange
MustRunAs MustRunAs <none> false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]
nonroot false [] MustRunAs MustRunAsNonRoot
RunAsAny RunAsAny <none> false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]
privileged true [] RunAsAny RunAsAny
RunAsAny RunAsAny <none> false [*]
restricted false [] MustRunAs MustRunAsRange
MustRunAs RunAsAny <none> false [configMap
downwardAPI emptyDir persistentVolumeClaim secret]

7.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT

To examine a particular SCC, use oc get, oc describe, oc export, or oc edit. For example, to
examine the restricted SCC:

$ oc describe scc restricted

Name: restricted
Priority: <none>
Access:
 Users: <none>
 Groups: system:authenticated

OpenShift Enterprise 3.2 Cluster Administration

36

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles

Settings:
 Allow Privileged: false
 Default Add Capabilities: <none>
 Required Drop Capabilities: <none>
 Allowed Capabilities: <none>
 Allowed Volume Types:
awsElasticBlockStore,azureFile,cephFS,cinder,configMap,downwardAPI,emptyDi
r,fc,flexVolume,flocker,gcePersistentDisk,gitRepo,glusterfs,iscsi,nfs,pers
istentVolumeClaim,rbd,secret
 Allow Host Network: false
 Allow Host Ports: false
 Allow Host PID: false
 Allow Host IPC: false
 Read Only Root Filesystem: false
 Run As User Strategy: MustRunAsRange
 UID: <none>
 UID Range Min: <none>
 UID Range Max: <none>
 SELinux Context Strategy: MustRunAs
 User: <none>
 Role: <none>
 Type: <none>
 Level: <none>
 FSGroup Strategy: RunAsAny
 Ranges: <none>
 Supplemental Groups Strategy: RunAsAny
 Ranges: <none>

NOTE

In order to preserve customized SCCs during upgrades, do not edit settings on the default
SCCs other than priority, users, groups, labels, and annotations.

7.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS

To create a new SCC:

1. Define the SCC in a JSON or YAML file:

Example 7.1. Security Context Constraint Object Definition

kind: SecurityContextConstraints
apiVersion: v1
metadata:
 name: scc-admin
allowPrivilegedContainer: true
runAsUser:
 type: RunAsAny
seLinuxContext:
 type: RunAsAny
fsGroup:
 type: RunAsAny
supplementalGroups:
 type: RunAsAny
users:
- my-admin-user

CHAPTER 7. MANAGING SECURITY CONTEXT CONSTRAINTS

37

groups:
- my-admin-group

Optionally, you can add drop capabilities to an SCC by setting the
requiredDropCapabilities: field with the desired values. Any specified capabilities will be
dropped from the container. For example, to create an SCC with the KILL, MKNOD, and
SYS_CHROOT required drop capabilities, add the following to the SCC object:

requiredDropCapabilities:
- KILL
- MKNOD
- SYS_CHROOT

You can see the list of possible values in the Docker documentation.

2. Then, run oc create passing the file to create it:

$ oc create -f scc_admin.yaml
securitycontextconstraints/scc-admin

3. Verify that the SCC was created:

$ oc get scc
NAME PRIV CAPS HOSTDIR SELINUX RUNASUSER
privileged true [] true RunAsAny RunAsAny
restricted false [] false MustRunAs
MustRunAsRange
scc-admin true [] false RunAsAny RunAsAny

7.5. DELETING SECURITY CONTEXT CONSTRAINTS

To delete an SCC:

$ oc delete scc <scc_name>

NOTE

If you delete the default SCCs, they will not be regenerated upon restart, unless you
delete all SCCs. If any constraint already exists within the system, no regeneration will
take place.

7.6. UPDATING SECURITY CONTEXT CONSTRAINTS

To update an existing SCC:

$ oc edit scc <scc_name>

OpenShift Enterprise 3.2 Cluster Administration

38

https://docs.docker.com/engine/reference/run/#/runtime-privilege-and-linux-capabilities

NOTE

In order to preserve customized SCCs during upgrades, do not edit settings on the default
SCCs other than priority, users, and groups.

7.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS

Default SCCs will be created when the master is started if they are missing. To reset SCCs to defaults,
or update existing SCCs to new default definitions after an upgrade you may:

1. Delete any SCC you would like to be reset and let it be recreated by restarting the master

2. Use the oadm policy reconcile-sccs command

The oadm policy reconcile-sccs command will set all SCC policies to the default values but
retain any additional users, groups, labels, and annotations as well as priorities you may have already
set. To view which SCCs will be changed you may run the command with no options or by specifying
your preferred output with the -o <format> option.

After reviewing it is recommended that you back up your existing SCCs and then use the --confirm
option to persist the data.

NOTE

If you would like to reset priorities and grants, use the --additive-only=false
option.

NOTE

If you have customized settings other than priority, users, groups, labels, or annotations
in an SCC, you will lose those settings when you reconcile.

7.8. HOW DO I?

The following describe common scenarios and procedures using SCCs.

7.8.1. Grant Access to the Privileged SCC

In some cases, an administrator might want to allow users or groups outside the administrator group
access to create more privileged pods. To do so, you can:

1. Determine the user or group you would like to have access to the SCC.

2. Run:

$ oadm policy add-scc-to-user <scc_name> <user_name>
$ oadm policy add-scc-to-group <scc_name> <group_name>

For example, to allow the e2e-user access to the privileged SCC, run:

$ oadm policy add-scc-to-user privileged e2e-user

CHAPTER 7. MANAGING SECURITY CONTEXT CONSTRAINTS

39

7.8.2. Grant a Service Account Access to the Privileged SCC

First, create a service account. For example, to create service account mysvcacct in project
myproject:

$ oc create serviceaccount mysvcacct -n myproject

Then, add the service account to the privileged SCC.

$ oadm policy add-scc-to-user privileged
system:serviceaccount:myproject:mysvcacct

7.8.3. Enable Images to Run with USER in the Dockerfile

To relax the security in your cluster so that images are not forced to run as a pre-allocated UID, without
granting everyone access to the privileged SCC:

1. Grant all authenticated users access to the anyuid SCC:

$ oadm policy add-scc-to-group anyuid system:authenticated

WARNING

This allows images to run as the root UID if no USER is specified in the Dockerfile.

7.8.4. Enable Container Images that Require Root

Some container images (examples: postgres and redis) require root access and have certain
expectations about how volumes are owned. For these images, add the service account to the anyuid
SCC.

$ oadm policy add-scc-to-user anyuid
system:serviceaccount:myproject:mysvcacct

7.8.5. Use --mount-host on the Registry

It is recommended that persistent storage using PersistentVolume and PersistentVolumeClaim
objects be used for registry deployments. If you are testing and would like to instead use the oadm
registry command with the --mount-host option, you must first create a new service account for
the registry and add it to the privileged SCC. See the Administrator Guide for full instructions.

7.8.6. Provide Additional Capabilities

In some cases, an image may require capabilities that Docker does not provide out of the box. You can
provide the ability to request additional capabilities in the pod specification which will be validated against
an SCC.

OpenShift Enterprise 3.2 Cluster Administration

40

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-service-accounts
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-docker-registry
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#storage-for-the-registry

IMPORTANT

This allows images to run with elevated capabilities and should be used only if necessary.
You should not edit the default restricted SCC to enable additional capabilities.

When used in conjunction with a non-root user, you must also ensure that the file that requires the
additional capability is granted the capabilities using the setcap command. For example, in the
Dockerfile of the image:

setcap cap_net_raw,cap_net_admin+p /usr/bin/ping

Further, if a capability is provided by default in Docker, you do not need to modify the pod specification to
request it. For example, NET_RAW is provided by default and capabilities should already be set on ping,
therefore no special steps should be required to run ping.

To provide additional capabilities:

1. Create a new SCC

2. Add the allowed capability using the allowedCapabilities field.

3. When creating the pod, request the capability in the securityContext.capabilities.add
field.

7.8.7. Modify Cluster Default Behavior

To modify your cluster so that it does not pre-allocate UIDs, allows containers to run as any user, and
prevents privileged containers:

NOTE

In order to preserve customized SCCs during upgrades, do not edit settings on the default
SCCs other than priority, users, groups, labels, and annotations.

1. Edit the restricted SCC:

 $ oc edit scc restricted

2. Change runAsUser.Type to RunAsAny.

3. Ensure allowPrivilegedContainer is set to false.

4. Save the changes.

To modify your cluster so that it does not pre-allocate UIDs and does not allow containers to run as root:

1. Edit the restricted SCC:

 $ oc edit scc restricted

2. Change runAsUser.Type to MustRunAsNonRoot.

3. Save the changes.

CHAPTER 7. MANAGING SECURITY CONTEXT CONSTRAINTS

41

7.8.8. Use the hostPath Volume Plug-in

To relax the security in your cluster so that pods are allowed to use the hostPath volume plug-in
without granting everyone access to the privileged SCC:

1. Edit the restricted SCC:

$ oc edit scc restricted

2. Add allowHostDirVolumePlugin: true.

3. Save the changes.

7.8.9. Ensure That Admission Attempts to Use a Specific SCC First

You may control the sort ordering of SCCs in admission by setting the Priority field of the SCCs.
Please see the SCC Prioritization section for more information on sorting.

7.8.10. Add an SCC to a User or Group

To add an SCC to a user:

$ oadm policy add-scc-to-user <scc_name> <user_name>

To add an SCC to a service account:

$ oadm policy add-scc-to-user <scc_name> \
 system:serviceaccount:<serviceaccount_namespace>:<serviceaccount_name>

To add an SCC to a group:

$ oadm policy add-scc-to-group <scc_name> <group_name>

To add an SCC to all service accounts in a namespace:

$ oadm policy add-scc-to-group <scc_name> \
 system:serviceaccounts:<serviceaccount_namespace>

OpenShift Enterprise 3.2 Cluster Administration

42

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#scc-prioritization

CHAPTER 8. SETTING QUOTAS

8.1. OVERVIEW

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project by
type, as well as the total amount of compute resources that may be consumed by resources in that
project.

NOTE

See the Developer Guide for more on compute resources.

8.2. RESOURCES MANAGED BY QUOTA

The following describes the set of compute resources and object types that may be managed by a quota.

NOTE

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

Table 8.1. Compute Resources Managed by Quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot
exceed this value. cpu and requests.cpu are the same value and can be
used interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot
exceed this value. cpu and requests.cpu are the same value and can be
used interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.storage The sum of storage requests across all persistent volume claims cannot exceed
this value. storage and requests.storage are the same value and can
be used interchangeably.

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot
exceed this value.

CHAPTER 8. SETTING QUOTAS

43

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-compute-resources

limits.storage The sum of storage limits across all persistent volume claims cannot exceed
this value.

Resource Name Description

Table 8.2. Object Counts Managed by Quota

Resource Name Description

pods The total number of pods in a non-terminal state that can exist in the project.

replicationcontrol
lers

The total number of replication controllers that can exist in the project.

resourcequotas The total number of resource quotas that can exist in the project.

services The total number of services that can exist in the project.

secrets The total number of secrets that can exist in the project.

configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumecl
aims

The total number of persistent volume claims that can exist in the project.

8.3. QUOTA SCOPES

Each quota can have an associated set of scopes. A quota will only measure usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

Scope Description

Terminating Match pods where spec.activeDeadlineSeconds >= 0.

NotTerminating Match pods where spec.activeDeadlineSeconds is nil.

BestEffort Match pods that have best effort quality of service for either cpu or memory.

NotBestEffort Match pods that do not have best effort quality of service for cpu and memory.

A BestEffort scope restricts a quota to limiting the following resources:

pods

OpenShift Enterprise 3.2 Cluster Administration

44

A Terminating, NotTerminating, or NotBestEffort scope restricts a quota to tracking the following
resources:

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

8.4. QUOTA ENFORCEMENT

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. A configurable amount of time determines how long it takes to reduce quota
usage statistics to their current observed system value.

If project modifications exceed a quota usage limit, the server denies the action, and an appropriate error
message is returned to the user explaining the quota constraint violated, and what their currently
observed usage stats are in the system.

8.5. REQUESTS VS LIMITS

When allocating compute resources, each container may specify a request and a limit value each for
CPU and memory. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for
limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit
for those resources.

8.6. SAMPLE RESOURCE QUOTA DEFINITIONS

Example 8.1. object-counts.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: object-counts
spec:
 hard:

CHAPTER 8. SETTING QUOTAS

45

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-compute-resources

1

2

3

4

5

1

2

3

4

5

 configmaps: "10" 1

 persistentvolumeclaims: "4" 2

 replicationcontrollers: "20" 3

 secrets: "10" 4

 services: "10" 5

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.

The total number of replication controllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

Example 8.2. compute-resources.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:

 pods: "4" 1

 requests.cpu: "1" 2

 requests.memory: 1Gi 3

 limits.cpu: "2" 4

 limits.memory: 2Gi 5

The total number of pods in a non-terminal state that can exist in the project.

Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.

Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

Example 8.3. besteffort.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:

OpenShift Enterprise 3.2 Cluster Administration

46

1

2

1

2

3

4

1

 pods: "1" 1
 scopes:

 - BestEffort 2

The total number of pods in a non-terminal state with BestEffort quality of service that can exist
in the project.

Restricts the quota to only matching pods that have BestEffort quality of service for either
memory or CPU.

Example 8.4. compute-resources-long-running.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:

 pods: "4" 1

 limits.cpu: "4" 2

 limits.memory: "2Gi" 3
 scopes:

 - NotTerminating 4

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds is nil.
For example, this quota would not charge for build or deployer pods.

Example 8.5. compute-resources-time-bound.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:

 pods: "2" 1

 limits.cpu: "1" 2

 limits.memory: "1Gi" 3
 scopes:

 - Terminating 4

The total number of pods in a non-terminal state.

CHAPTER 8. SETTING QUOTAS

47

2

3

4

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For
example, this quota would charge for build or deployer pods, but not long running pods like a
web server or database.

8.7. CREATING A QUOTA

To create a quota, first define the quota to your specifications in a file, for example as seen in Sample
Resource Quota Definitions. Then, create using that file to apply it to a project:

$ oc create -f <resource_quota_definition> [-n <project_name>]

For example:

$ oc create -f resource-quota.json -n demoproject

8.8. VIEWING A QUOTA

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the
web console to the project’s Settings tab.

You can also use the CLI to view quota details:

1. First, get the list of quotas defined in the project. For example, for a project called demoproject:

$ oc get quota -n demoproject
NAME AGE
besteffort 11m
compute-resources 2m
object-counts 29m

2. Then, describe the quota you are interested in, for example the object-counts quota:

$ oc describe quota object-counts -n demoproject
Name: object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

8.9. CONFIGURING QUOTA SYNCHRONIZATION PERIOD

OpenShift Enterprise 3.2 Cluster Administration

48

When a set of resources are deleted, the synchronization time frame of resources is determined by the
resource-quota-sync-period setting in the /etc/origin/master/master-config.yaml file.

Before quota usage is restored, a user may encounter problems when attempting to reuse the resources.
You can change the resource-quota-sync-period setting to have the set of resources regenerate
at the desired amount of time (in seconds) and for the resources to be available again:

kubernetesMasterConfig:
 apiLevels:
 - v1beta3
 - v1
 apiServerArguments: null
 controllerArguments:
 resource-quota-sync-period:
 - "10s"

After making any changes, restart the master service to apply them.

Adjusting the regeneration time can be helpful for creating resources and determining resource usage
when automation is used.

NOTE

The resource-quota-sync-period setting is designed to balance system
performance. Reducing the sync period can result in a heavy load on the master.

8.10. ACCOUNTING FOR QUOTA IN DEPLOYMENT CONFIGURATIONS

If a quota has been defined for your project, see Deployment Resources for considerations on any
deployment configurations.

CHAPTER 8. SETTING QUOTAS

49

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#deployment-resources

1

2

3

4

CHAPTER 9. SETTING LIMIT RANGES

9.1. OVERVIEW

A limit range, defined by a LimitRange object, enumerates compute resource constraints in a project at
the pod and container level, and specifies the amount of resources that a pod or container can consume.

All resource create and modification requests are evaluated against each LimitRange object in the
project. If the resource violates any of the enumerated constraints, then the resource is rejected. If the
resource does not set an explicit value, and if the constraint supports a default value, then the default
value is applied to the resource.

Example 9.1. Limit Range Object Definition

The name of the limit range object.

The maximum amount of CPU that a pod can request on a node across all containers.

The maximum amount of memory that a pod can request on a node across all containers.

The minimum amount of CPU that a pod can request on a node across all containers.

apiVersion: "v1"
kind: "LimitRange"
metadata:

 name: "resource-limits" 1
spec:
 limits:
 -
 type: "Pod"
 max:

 cpu: "2" 2

 memory: "1Gi" 3
 min:

 cpu: "200m" 4

 memory: "6Mi" 5
 -
 type: "Container"
 max:

 cpu: "2" 6

 memory: "1Gi" 7
 min:

 cpu: "100m" 8

 memory: "4Mi" 9
 default:

 cpu: "300m" 10

 memory: "200Mi" 11
 defaultRequest:

 cpu: "200m" 12

 memory: "100Mi" 13
 maxLimitRequestRatio:

 cpu: "10" 14

OpenShift Enterprise 3.2 Cluster Administration

50

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-compute-resources
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-projects

5

6

7

8

9

10

11

12

13

14

The minimum amount of memory that a pod can request on a node across all containers.

The maximum amount of CPU that a single container in a pod can request.

The maximum amount of memory that a single container in a pod can request.

The minimum amount of CPU that a single container in a pod can request.

The minimum amount of memory that a single container in a pod can request.

The default amount of CPU that a container will be limited to use if not specified.

The default amount of memory that a container will be limited to use if not specified.

The default amount of CPU that a container will request to use if not specified.

The default amount of memory that a container will request to use if not specified.

The maximum amount of CPU burst that a container can make as a ratio of its limit over request.

9.1.1. Container Limits

Supported Resources:

CPU

Memory

Supported Constraints:

Per container, the following must hold true if specified:

Table 9.1. Container

Constraint Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than or
equal to container/resources.limits[resource] (optional)

If the configuration defines a min CPU, then the request value must be greater
than the CPU value. A limit value does not need to be specified.

Max container.resources.limits[resource] (required) less than or
equal to Max[resource]

If the configuration defines a max CPU, then you do not need to define a
request value, but a limit value does need to be set that satisfies the maximum
CPU constraint.

CHAPTER 9. SETTING LIMIT RANGES

51

MaxLimitRequestRat
io

MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

If a configuration defines a maxLimitRequestRatio value, then any new
containers must have both a request and limit value. Additionally, OpenShift
Enterprise calculates a limit to request ratio by dividing the limit by the request.
This value should be a non-negative integer greater than 1.

For example, if a container has cpu: 500 in the limit value, and cpu:
100 in the request value, then its limit to request ratio for cpu is 5. This
ratio must be less than or equal to the maxLimitRequestRatio.

Constraint Behavior

Supported Defaults:

Default[resource]

Defaults container.resources.limit[resource] to specified value if none.

Default Requests[resource]

Defaults container.resources.requests[resource] to specified value if none.

9.1.2. Pod Limits

Supported Resources:

CPU

Memory

Supported Constraints:

Across all containers in a pod, the following must hold true:

Table 9.2. Pod

Constraint Enforced Behavior

Min Min[resource] less than or equal to
container.resources.requests[resource] (required) less than or
equal to container.resources.limits[resource] (optional)

Max container.resources.limits[resource] (required) less than or
equal to Max[resource]

MaxLimitRequestRat
io

MaxLimitRequestRatio[resource] less than or equal to (
container.resources.limits[resource] /
container.resources.requests[resource])

9.1.3. Image Limits

OpenShift Enterprise 3.2 Cluster Administration

52

Supported Resources:

Storage

Resource type name:

openshift.io/Image

Per image, the following must hold true if specified:

Table 9.3. Image

Constraint Behavior

Max image.dockerimagemetadata.size less than or equal to
Max[resource]

NOTE

To prevent blobs exceeding the limit from being uploaded to the registry, the registry must
be configured to enforce quota. An environment variable
REGISTRY_MIDDLEWARE_REPOSITORY_OPENSHIFT_ENFORCEQUOTA must be set to
true which is done by default for new deployments. To update older deployment
configuration, refer to Enforcing quota in the Registry.

WARNING

The image size is not always available in the manifest of an uploaded image. This is
especially the case for images built with Docker 1.10 or higher and pushed to a v2
registry. If such an image is pulled with an older Docker daemon, the image manifest
will be converted by the registry to schema v1 lacking all the size information. No
storage limit set on images will prevent it from being uploaded.

The issue is being addressed.

9.1.4. Image Stream Limits

Supported Resources:

openshift.io/image-tags

openshift.io/images

Resource type name:

openshift.io/ImageStream

Per image stream, the following must hold true if specified:

Table 9.4. ImageStream

CHAPTER 9. SETTING LIMIT RANGES

53

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#enforcing-quota-in-the-registry
https://github.com/openshift/origin/issues/7706

Constraint Behavior

Max[openshift.io/i
mage-tags]

length(uniqueimagetags(imagestream.spec.tags)) less
than or equal to Max[openshift.io/image-tags]

uniqueimagetags returns unique references to images of given spec tags.

Max[openshift.io/i
mages]

length(uniqueimages(imagestream.status.tags)) less
than or equal to Max[openshift.io/images]

uniqueimages returns unique image names found in status tags. The name
equals image’s digest.

9.1.4.1. Counting of Image References

Resource openshift.io/image-tags represents unique image references. Possible references are
an ImageStreamTag, an ImageStreamImage and a DockerImage. They may be created using
commands oc tag and oc import-image or by using tag tracking. No distinction is made between
internal and external references. However, each unique reference tagged in the image stream’s
specification is counted just once. It does not restrict pushes to an internal container registry in any way,
but is useful for tag restriction.

Resource openshift.io/images represents unique image names recorded in image stream status. It
allows for restriction of a number of images that can be pushed to the internal registry. Internal and
external references are not distinguished.

9.2. CREATING A LIMIT RANGE

To apply a limit range to a project, create a limit range object definition on your file system to your
desired specifications, then run:

$ oc create -f <limit_range_file> -n <project>

9.3. VIEWING LIMITS

You can view any limit ranges defined in a project by navigating in the web console to the project’s
Settings tab.

You can also use the CLI to view limit range details:

1. First, get the list of limit ranges defined in the project. For example, for a project called
demoproject:

$ oc get limits -n demoproject
NAME AGE
resource-limits 6d

2. Then, describe the limit range you are interested in, for example the resource-limits limit range:

<<<<<<< HEAD
$ oc describe limits resource-limits
Name: resource-limits

OpenShift Enterprise 3.2 Cluster Administration

54

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#referencing-images-in-image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#adding-tag

Namespace: demoproject
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- --------------- ------------- ------------

Pod cpu 30m 2 - - -
Pod memory 150Mi 1Gi - - -
Container memory 150Mi 1Gi 307Mi 512Mi -
Container cpu 30m 2 60m 1 -
=======
$ oc describe limits resource-limits -n demoproject
Name: resource-limits
Namespace: demoproject
Type Resource Min
Max Default Request Default Limit Max Limit/Request Ratio
---- -------- --- -
-- --------------- ------------- -----------------------
Pod cpu 200m 2
- - -
Pod memory 6Mi
1Gi - - -
Container cpu 100m 2
200m 300m 10
Container memory 4Mi
1Gi 100Mi 200Mi -
openshift.io/Image storage -
1Gi - - -
openshift.io/ImageStream openshift.io/image - 12
- - -
openshift.io/ImageStream openshift.io/image-tags - 10
- - -
>>>>>>> 7fb6456... Fix `oc describe limits` example

9.4. DELETING LIMITS

Remove any active limit range to no longer enforce the limits of a project:

$ oc delete limits <limit_name>

CHAPTER 9. SETTING LIMIT RANGES

55

CHAPTER 10. PRUNING OBJECTS

10.1. OVERVIEW

Over time, API objects created in OpenShift Enterprise can accumulate in the etcd data store through
normal user operations, such as when building and deploying applications.

As an administrator, you can periodically prune older versions of objects from your OpenShift Enterprise
instance that are no longer needed. For example, by pruning images you can delete older images and
layers that are no longer in use, but are still taking up disk space.

10.2. BASIC PRUNE OPERATIONS

The CLI groups prune operations under a common parent command.

$ oadm prune <object_type> <options>

This specifies:

The <object_type> to perform the action on, such as builds, deployments, or images.

The <options> supported to prune that object type.

10.3. PRUNING DEPLOYMENTS

In order to prune deployments that are no longer required by the system due to age and status,
administrators may run the following command:

$ oadm prune deployments [<options>]

Table 10.1. Prune Deployments CLI Configuration Options

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all deployments whose deployment config no longer exists, status
is complete or failed, and replica count is zero.

--keep-complete=<N> Per deployment config, keep the last N deployments whose status is
complete and replica count is zero. (default 5)

--keep-failed=<N> Per deployment config, keep the last N deployments whose status is
failed and replica count is zero. (default 1)

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to
the current time. (default 60m)

To see what a pruning operation would delete:

OpenShift Enterprise 3.2 Cluster Administration

56

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#master

$ oadm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

To actually perform the prune operation:

$ oadm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

10.4. PRUNING BUILDS

In order to prune builds that are no longer required by the system due to age and status, administrators
may run the following command:

$ oadm prune builds [<options>]

Table 10.2. Prune Builds CLI Configuration Options

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all builds whose build config no longer exists, status is complete,
failed, error, or canceled.

--keep-complete=<N> Per build config, keep the last N builds whose status is complete. (default
5)

--keep-failed=<N> Per build config, keep the last N builds whose status is failed, error, or
canceled (default 1)

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to
the current time. (default 60m)

To see what a pruning operation would delete:

$ oadm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

To actually perform the prune operation:

$ oadm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

10.5. PRUNING IMAGES

In order to prune images that are no longer required by the system due to age and status, administrators
may run the following command:

$ oadm prune images [<options>]

CHAPTER 10. PRUNING OBJECTS

57

NOTE

Currently, to prune images you must first log in to the CLI as a user with an access token.
The user must also have the cluster rolesystem:image-pruner or greater (for example,
cluster-admin).

NOTE

Pruning images removes data from the integrated registry. For this operation to work
properly, ensure your registry is configured with storage:delete:enabled set to true.

Table 10.3. Prune Images CLI Configuration Options

Option Description

--certificate-
authority

The path to a certificate authority file to use when communicating with
the OpenShift Enterprise-managed registries. Defaults to the certificate
authority data from the current user’s config file.

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--keep-tag-revisions=
<N>

For each image stream, keep up to at most N image revisions per tag.
(default 3)

--keep-younger-than=
<duration>

Do not prune any image that is younger than <duration> relative to
the current time. Do not prune any image that is referenced by any other
object that is younger than <duration> relative to the current time.
(default 60m)

OpenShift Enterprise uses the following logic to determine which images and layers to prune:

Remove any image "managed by OpenShift Enterprise" (i.e., images with the annotation
openshift.io/image.managed) that was created at least --keep-younger-than minutes
ago and is not currently referenced by:

any pod created less than --keep-younger-than minutes ago.

any image stream created less than --keep-younger-than minutes ago.

any running pods.

any pending pods.

any replication controllers.

any deployment configurations.

any build configurations.

any builds.

the --keep-tag-revisions most recent items in stream.status.tags[].items.

OpenShift Enterprise 3.2 Cluster Administration

58

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#basic-setup-and-login
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#oauth
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#docker-registry-configuration-reference-storage

There is no support for pruning from external registries.

When an image is pruned, all references to the image are removed from all image streams that
have a reference to the image in status.tags.

Image layers that are no longer referenced by any images are removed as well.

To see what a pruning operation would delete:

$ oadm prune images --keep-tag-revisions=3 --keep-younger-than=60m

To actually perform the prune operation:

$ oadm prune images --keep-tag-revisions=3 --keep-younger-than=60m --
confirm

CHAPTER 10. PRUNING OBJECTS

59

CHAPTER 11. GARBAGE COLLECTION

11.1. OVERVIEW

The OpenShift Enterprise node performs two types of garbage collection:

Container garbage collection: Removes terminated containers. Typically run every minute.

Image garbage collection: Removes images not referenced by any running pods. Typically run
every five minutes.

11.2. CONTAINER GARBAGE COLLECTION

The policy for container garbage collection is based on three node settings:

Setting Description

minimum-
container-ttl-
duration

The minimum age that a container is eligible for garbage collection. The default is
1m (one minute). Use 0 for no limit. Values for this setting can be specified using
unit suffixes such as h for hour, m for minutes, s for seconds.

maximum-dead-
containers-per-
container

The number of instances to retain per pod container. The default is 2.

maximum-dead-
containers

The maximum number of total dead containers in the node. The default is 100.

The maximum-dead-containers setting takes precedence over the maximum-dead-containers-
per-container setting when there is a conflict. For example, if retaining the number of maximum-
dead-containers-per-container would result in a total number of containers that is greater than
maximum-dead-containers, the oldest containers will be removed to satisfy the maximum-dead-
containers limit.

When the node removes the dead containers, all files inside those containers are removed as well. Only
containers created by the node will be garbage collected.

You can specify values for these settings in the kubeletArguments section of the
/etc/origin/node/node-config.yaml file on node hosts. Add the section if it does not already exist:

Container Garbage Collection Settings

kubeletArguments:
 minimum-container-ttl-duration:
 - "10s"
 maximum-dead-containers-per-container:
 - "2"
 maximum-dead-containers:
 - "100"

OpenShift Enterprise 3.2 Cluster Administration

60

11.2.1. Detecting Containers for Deletion

Each spin of the garbage collector loop goes through the following steps:

1. Retrieve a list of available containers.

2. Filter out all containers that are running or are not alive longer than the minimum-container-
ttl-duration parameter.

3. Classify all remaining containers into equivalence classes based on pod and image name
membership.

4. Remove all unidentified containers (containers that are managed by kubelet but their name is
malformed).

5. For each class that contains more containers than the maximum-dead-containers-per-
container parameter, sort containers in the class by creation time.

6. Start removing containers from the oldest first until the maximum-dead-containers-per-
container parameter is met.

7. If there are still more containers in the list than the maximum-dead-containers parameter,
the collector starts removing containers from each class so the number of containers in each
one is not greater than the average number of containers per class, or
<all_remaining_containers>/<number_of_classes>.

8. If this is still not enough, sort all containers in the list and start removing containers from the
oldest first until the maximum-dead-containers criterion is met.

11.3. IMAGE GARBAGE COLLECTION

Image garbage collection relies on disk usage as reported by cAdvisor on the node to decide which
images to remove from the node. It takes the following settings into consideration:

Setting Description

image-gc-high-
threshold

The percent of disk usage (expressed as an integer) which triggers image garbage
collection. The default is 90.

image-gc-low-
threshold

The percent of disk usage (expressed as an integer) to which image garbage
collection attempts to free. Default is 80.

You can specify values for these settings in the kubeletArguments section of the
/etc/origin/node/node-config.yaml file on node hosts. Add the section if it does not already exist:

Image Garbage Collection Settings

kubeletArguments:
 image-gc-high-threshold:
 - "90"
 image-gc-low-threshold:
 - "80"

CHAPTER 11. GARBAGE COLLECTION

61

11.3.1. Detecting Images for Deletion

Two lists of images are retrieved in each garbage collector run:

1. A list of images currently running in at least one pod

2. A list of images available on a host

As new containers are run, new images appear. All images are marked with a time stamp. If the image is
running (the first list above) or is newly detected (the second list above), it is marked with the current
time. The remaining images are already marked from the previous spins. All images are then sorted by
the time stamp.

Once the collection starts, the oldest images get deleted first until the stopping criterion is met.

OpenShift Enterprise 3.2 Cluster Administration

62

CHAPTER 12. SCHEDULER

12.1. OVERVIEW

The Kubernetes pod scheduler is responsible for determining placement of new pods onto nodes within
the cluster. It reads data from the pod and tries to find a node that is a good fit based on configured
policies. It is completely independent and exists as a standalone/pluggable solution. It does not modify
the pod and just creates a binding for the pod that ties the pod to the particular node.

12.2. GENERIC SCHEDULER

The existing generic scheduler is the default platform-provided scheduler "engine" that selects a node to
host the pod in a 3-step operation:

1. Filter the nodes

2. Prioritize the filtered list of nodes

3. Select the best fit node

12.2.1. Filter the Nodes

The available nodes are filtered based on the constraints or requirements specified. This is done by
running each of the nodes through the list of filter functions called 'predicates'.

12.2.2. Prioritize the Filtered List of Nodes

This is achieved by passing each node through a series of 'priority' functions that assign it a score
between 0 - 10, with 0 indicating a bad fit and 10 indicating a good fit to host the pod. The scheduler
configuration can also take in a simple "weight" (positive numeric value) for each priority function. The
node score provided by each priority function is multiplied by the "weight" (default weight is 1) and then
combined by just adding the scores for each node provided by all the priority functions. This weight
attribute can be used by administrators to give higher importance to some priority functions.

12.2.3. Select the Best Fit Node

The nodes are sorted based on their scores and the node with the highest score is selected to host the
pod. If multiple nodes have the same high score, then one of them is selected at random.

12.3. AVAILABLE PREDICATES

There are several predicates provided out of the box in Kubernetes. Some of these predicates can be
customized by providing certain parameters. Multiple predicates can be combined to provide additional
filtering of nodes.

12.3.1. Static Predicates

These predicates do not take any configuration parameters or inputs from the user. These are specified
in the scheduler configuration using their exact name.

PodFitsPorts deems a node to be fit for hosting a pod based on the absence of port conflicts.

{"name" : "PodFitsPorts"}

CHAPTER 12. SCHEDULER

63

PodFitsResources determines a fit based on resource availability. The nodes can declare their
resource capacities and then pods can specify what resources they require. Fit is based on requested,
rather than used resources.

{"name" : "PodFitsResources"}

NoDiskConflict determines fit based on non-conflicting disk volumes. It evaluates if a pod can fit due to
the volumes it requests, and those that are already mounted. It is GCE and Amazon EBS specific.

{"name" : "NoDiskConflict"}

MatchNodeSelector determines fit based on node selector query that is defined in the pod.

{"name" : "MatchNodeSelector"}

HostName determines fit based on the presence of the Host parameter and a string match with the
name of the host.

{"name" : "HostName"}

12.3.2. Configurable Predicates

These predicates can be configured by the user to tweak their functioning. They can be given any user-
defined name. The type of the predicate is identified by the argument that they take. Since these are
configurable, multiple predicates of the same type (but different configuration parameters) can be
combined as long as their user-defined names are different.

ServiceAffinity filters out nodes that do not belong to the specified topological level defined by the
provided labels. This predicate takes in a list of labels and ensures affinity within the nodes (that have the
same label values) for pods belonging to the same service. If the pod specifies a value for the labels in
its NodeSelector, then the nodes matching those labels are the ones where the pod is scheduled. If the
pod does not specify the labels in its NodeSelector, then the first pod can be placed on any node based
on availability and all subsequent pods of the service will be scheduled on nodes that have the same
label values.

{"name" : "Zone", "argument" : {"serviceAffinity" : {"labels" :
["zone"]}}}

LabelsPresence checks whether a particular node has a certain label defined or not, regardless of its
value. Matching by label can be useful, for example, where nodes have their physical location or status
defined by labels.

{"name" : "RequireRegion", "argument" : {"labelsPresence" : {"labels" :
["region"], "presence" : true}}}

If "presence" is false, and any of the requested labels match any of the nodes’s labels, it returns
false. Otherwise, it returns true.

If "presence" is true, and any of the requested labels do not match any of the node’s labels, it
returns false. Otherwise, it returns true.

OpenShift Enterprise 3.2 Cluster Administration

64

12.4. AVAILABLE PRIORITY FUNCTIONS

A custom set of priority functions can be specified to configure the scheduler. There are several priority
functions provided out-of-the-box in Kubernetes. Some of these priority functions can be customized by
providing certain parameters. Multiple priority functions can be combined and different weights can be
given to each in order to impact the prioritization. A weight is required to be specified and cannot be 0 or
negative.

12.4.1. Static Priority Functions

These priority functions do not take any configuration parameters or inputs from the user. These are
specified in the scheduler configuration using their exact name as well as the weight.

LeastRequestedPriority favors nodes with fewer requested resources. It calculates the percentage of
memory and CPU requested by pods scheduled on the node, and prioritizes nodes that have the highest
available/remaining capacity.

{"name" : "LeastRequestedPriority", "weight" : 1}

BalancedResourceAllocation favors nodes with balanced resource usage rate. It calculates the
difference between the consumed CPU and memory as a fraction of capacity, and prioritizes the nodes
based on how close the two metrics are to each other. This should always be used together with
LeastRequestedPriority.

{"name" : "BalancedResourceAllocation", "weight" : 1}

ServiceSpreadingPriority spreads pods by minimizing the number of pods belonging to the same
service onto the same machine.

{"name" : "ServiceSpreadingPriority", "weight" : 1}

EqualPriority gives an equal weight of one to all nodes, if no priority configs are provided. It is not
required/recommended outside of testing.

{"name" : "EqualPriority", "weight" : 1}

12.4.2. Configurable Priority Functions

These priority functions can be configured by the user by providing certain parameters. They can be
given any user-defined name. The type of the priority function is identified by the argument that they
take. Since these are configurable, multiple priority functions of the same type (but different configuration
parameters) can be combined as long as their user-defined names are different.

ServiceAntiAffinity takes a label and ensures a good spread of the pods belonging to the same service
across the group of nodes based on the label values. It gives the same score to all nodes that have the
same value for the specified label. It gives a higher score to nodes within a group with the least
concentration of pods.

{"name" : "RackSpread", "weight" : 1, "argument" : {"serviceAntiAffinity"
: {"label" : "rack"}}}

LabelPreference prefers nodes that have a particular label defined or not, regardless of its value.

CHAPTER 12. SCHEDULER

65

{"name" : "RackPreferred", "weight" : 1, "argument" : {"labelPreference" :
{"label" : "rack"}}}

12.5. SCHEDULER POLICY

The selection of the predicate and priority functions defines the policy for the scheduler. Administrators
can provide a JSON file that specifies the predicates and priority functions to configure the scheduler.
The path to the scheduler policy file can be specified in the master configuration file. In the absence of
the scheduler policy file, the default configuration gets applied.

It is important to note that the predicates and priority functions defined in the scheduler configuration file
will completely override the default scheduler policy. If any of the default predicates and priority functions
are required, they have to be explicitly specified in the scheduler configuration file.

12.5.1. Default Scheduler Policy

The default scheduler policy includes the following predicates:

1. PodFitsPorts

2. PodFitsResources

3. NoDiskConflict

4. MatchNodeSelector

5. HostName

The default scheduler policy includes the following priority functions. Each of the priority function has a
weight of '1' applied to it:

1. LeastRequestedPriority

2. BalancedResourceAllocation

3. ServiceSpreadingPriority

12.5.2. Modifying Scheduler Policy

The scheduler policy is defined in a file on the master, named /etc/origin/master/scheduler.json by
default, unless overridden by the kubernetesMasterConfig.schedulerConfigFile field in the
master configuration file.

To modify the scheduler policy:

1. Edit the scheduler configuration file to set the desired predicates and priority functions. You can
create a custom configuration, or modify one of the sample policy configurations.

2. Restart the OpenShift Enterprise master services for the changes to take effect.

12.6. USE CASES

One of the important use cases for scheduling within OpenShift Enterprise is to support flexible affinity
and anti-affinity policies.

OpenShift Enterprise 3.2 Cluster Administration

66

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#master-configuration-files
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#launching-servers-using-configuration-files

12.6.1. Infrastructure Topological Levels

Administrators can define multiple topological levels for their infrastructure (nodes). This is done by
specifying labels on nodes (e.g., region=r1, zone=z1, rack=s1). These label names have no
particular meaning and administrators are free to name their infrastructure levels anything (eg,
city/building/room). Also, administrators can define any number of levels for their infrastructure topology,
with three levels usually being adequate (eg. regions → zones → racks). Lastly, administrators can
specify affinity and anti-affinity rules at each of these levels in any combination.

12.6.2. Affinity

Administrators should be able to configure the scheduler to specify affinity at any topological level, or
even at multiple levels. Affinity at a particular level indicates that all pods that belong to the same service
will be scheduled onto nodes that belong to the same level. This handles any latency requirements of
applications by allowing administrators to ensure that peer pods do not end up being too geographically
separated. If no node is available within the same affinity group to host the pod, then the pod will not get
scheduled.

12.6.3. Anti Affinity

Administrators should be able to configure the scheduler to specify anti-affinity at any topological level, or
even at multiple levels. Anti-Affinity (or 'spread') at a particular level indicates that all pods that belong to
the same service will be spread across nodes that belong to that level. This ensures that the application
is well spread for high availability purposes. The scheduler will try to balance the service pods across all
applicable nodes as evenly as possible.

12.7. SAMPLE POLICY CONFIGURATIONS

The configuration below specifies the default scheduler configuration, if it were to be specified via the
scheduler policy file.

kind: "Policy"
version: "v1"
predicates:
 - name: "PodFitsPorts"
 - name: "PodFitsResources"
 - name: "NoDiskConflict"
 - name: "MatchNodeSelector"
 - name: "HostName"
priorities:
 - name: "LeastRequestedPriority"
 weight: 1
 - name: "BalancedResourceAllocation"
 weight: 1
 - name: "ServiceSpreadingPriority"
 weight: 1

IMPORTANT

In all of the sample configurations below, the list of predicates and priority functions is
truncated to include only the ones that pertain to the use case specified. In practice, a
complete/meaningful scheduler policy should include most, if not all, of the default
predicates and priority functions listed above.

CHAPTER 12. SCHEDULER

67

Three topological levels defined as region (affinity) -→ zone (affinity) -→ rack (anti-affinity)

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RegionZoneAffinity"
 argument:
 serviceAffinity:
 labels:
 - "region"
 - "zone"
priorities:
...
 - name: "RackSpread"
 weight: 1
 argument:
 serviceAntiAffinity:
 label: "rack"

Three topological levels defined as city (affinity) → building (anti-affinity) → room (anti-affinity):

kind: "Policy"
version: "v1"
predicates:
...
 - name: "CityAffinity"
 argument:
 serviceAffinity:
 labels:
 - "city"
priorities:
...
 - name: "BuildingSpread"
 weight: 1
 argument:
 serviceAntiAffinity:
 label: "building"
 - name: "RoomSpread"
 weight: 1
 argument:
 serviceAntiAffinity:
 label: "room"

Only use nodes with the 'region' label defined and prefer nodes with the 'zone' label defined:

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RequireRegion"
 argument:
 labelsPresence:
 labels:
 - "region"

OpenShift Enterprise 3.2 Cluster Administration

68

 presence: true
priorities:
...
 - name: "ZonePreferred"
 weight: 1
 argument:
 labelPreference:
 label: "zone"
 presence: true

Configuration example combining static and configurable predicates and priority functions:

kind: "Policy"
version: "v1"
predicates:
...
 - name: "RegionAffinity"
 argument:
 serviceAffinity:
 labels:
 - "region"
 - name: "RequireRegion"
 argument:
 labelsPresence:
 labels:
 - "region"
 presence: true
 - name: "BuildingNodesAvoid"
 argument:
 labelsPresence:
 labels:
 - "building"
 presence: false
 - name: "PodFitsPorts"
 - name: "MatchNodeSelector"
priorities:
...
 - name: "ZoneSpread"
 weight: 2
 argument:
 serviceAntiAffinity:
 label: "zone"
 - name: "ZonePreferred"
 weight: 1
 argument:
 labelPreference:
 label: "zone"
 presence: true
 - name: "ServiceSpreadingPriority"
 weight: 1

12.8. SCHEDULER EXTENSIBILITY

CHAPTER 12. SCHEDULER

69

As is the case with almost everything else in Kubernetes/OpenShift Enterprise, the scheduler is built
using a plug-in model and the current implementation itself is a plug-in. There are two ways to extend the
scheduler functionality:

Enhancements

Replacement

12.8.1. Enhancements

The scheduler functionality can be enhanced by adding new predicates and priority functions. They can
either be contributed upstream or maintained separately. These predicates and priority functions would
need to be registered with the scheduler factory and then specified in the scheduler policy file.

12.8.2. Replacement

Since the scheduler is a plug-in, it can be replaced in favor of an alternate implementation. The
scheduler code has a clean separation that watches new pods as they get created and identifies the
most suitable node to host them. It then creates bindings (pod to node bindings) for the pods using the
master API.

12.9. CONTROLLING POD PLACEMENT

As a cluster administrator, you can set a policy to prevent application developers with certain roles from
targeting specific nodes when scheduling pods.

IMPORTANT

This process involves the pods/binding permission role, which is needed to target
particular nodes. The constraint on the use of the nodeSelector field of a pod
configuration is based on the pods/binding permission and the
nodeSelectorLabelBlacklist configuration option.

The nodeSelectorLabelBlacklist field of a master configuration file gives you control over the
labels that certain roles can specify in a pod configuration’s nodeSelector field. Users, service
accounts, and groups that have the pods/binding permission can specify any node selector. Those
without the pods/binding permission are prohibited from setting a nodeSelector for any label that
appears in nodeSelectorLabelBlacklist.

As a hypothetical example, an OpenShift Enterprise cluster might consist of five data centers spread
across two regions. In the U.S., us-east, us-central, and us-west; and in the Asia-Pacific region
(APAC),"apac-east and apac-west. Each node in each geographical region is labeled accordingly. For
example, region: us-east.

NOTE

See Updating Labels on Nodes for details on assigning labels.

As a cluster administrator, you can create an infrastructure where application developers should be
deploying pods only onto the nodes closest to their geographical location. You can create a node
selector, grouping the U.S. data centers into superregion: us and the APAC data centers into
superregion: apac.

OpenShift Enterprise 3.2 Cluster Administration

70

To maintain an even loading of resources per data center, you can add the desired region to the
nodeSelectorLabelBlacklist section of a master configuration. Then, whenever a developer
located in the U.S. creates a pod, it is deployed onto a node in one of the regions with the
superregion: us label. If the developer tries to target a specific region for their pod (for example,
region: us-east), they will receive an error. If they try again, without the node selector on their pod, it
can still be deployed onto the region they tried to target, because superregion: us is set as the
project-level node selector, and nodes labeled region: us-east are also labeled superregion:
us.

12.9.1. Constraining Pod Placement Using Node Name

Ensure a pod is deployed onto only a specified node host by assigning it a label and specifying this in the
nodeName setting in a pod configuration.

1. Ensure you have the desired labels and node selector set up in your environment.
For example, make sure that your pod configuration features the nodeName value indicating the
desired label:

apiVersion: v1
kind: Pod
spec:
 nodeName: <key: value>

2. Modify the master configuration file, /etc/origin/master/master-config.yaml, in two places to
add nodeSelectorLabelBlacklist to the admissionConfig section:

...
admissionConfig:
 pluginConfig:
 PodNodeConstraints:
 configuration:
 apiversion: v1
 kind: PodNodeConstraintsConfig
...

3. Restart OpenShift Enterprise for the changes to take effect.

systemctl restart atomic-openshift-master

12.9.2. Constraining Pod Placement Using a Node Selector

Using nodeSelector in a pod configuration, you can ensure that pods are only placed onto nodes with
specific labels.

1. Ensure you have the desired labels (see Updating Labels on Nodes for details) and node
selector set up in your environment.
For example, make sure that your pod configuration features the nodeSelector value
indicating the desired label:

apiVersion: v1
kind: Pod
spec:

CHAPTER 12. SCHEDULER

71

 nodeSelector:
 <key>: <value>
...

2. Modify the master configuration file, /etc/origin/master/master-config.yaml, to add
nodeSelectorLabelBlacklist to the admissionConfig section with the labels that are
assigned to the node hosts you want to deny pod placement:

...
admissionConfig:
 pluginConfig:
 PodNodeConstraints:
 configuration:
 apiversion: v1
 kind: PodNodeConstraintsConfig
 nodeSelectorLabelBlacklist:
 - kubernetes.io/hostname
 - <label>
...

3. Restart OpenShift Enterprise for the changes to take effect.

systemctl restart atomic-openshift-master

OpenShift Enterprise 3.2 Cluster Administration

72

CHAPTER 13. ALLOCATING NODE RESOURCES

13.1. OVERVIEW

To provide more reliable scheduling and minimize node resource overcommitment, each node can
reserve a portion of its resources for use by all underlying node components (e.g., kubelet, kube-proxy,
Docker) and the remaining system components (e.g., sshd, NetworkManager) on the host. Once
specified, the scheduler has more information about the resources (e.g., memory, CPU) a node has
allocated for pods.

13.2. CONFIGURING NODES FOR ALLOCATED RESOURCES

Resources reserved for node components are based on two node settings:

Setting Description

kube-reserved Resources reserved for node components. Default is none.

system-reserved Resources reserved for the remaining system components. Default is
none.

You can set these in the kubeletArguments section of the node configuration file (the
/etc/origin/node/node-config.yaml file by default) using a set of <resource_type>=
<resource_quantity> pairs (e.g., cpu=200m,memory=512Mi). Add the section if it does not already
exist:

Example 13.1. Node Allocatable Resources Settings

Currently, the cpu and memory resource types are supported. For cpu, the resource quantity is
specified in units of cores (e.g., 200m, 0.5, 1). For memory, it is specified in units of bytes (e.g., 200Ki,
50Mi, 5Gi).

See Compute Resources for more details.

If a flag is not set, it defaults to 0. If none of the flags are set, the allocated resource is set to the node’s
capacity as it was before the introduction of allocatable resources.

13.3. COMPUTING ALLOCATED RESOURCES

An allocated amount of a resource is computed based on the following formula:

[Allocatable] = [Node Capacity] - [kube-reserved] - [system-reserved]

kubeletArguments:
 kube-reserved:
 - "cpu=200m,memory=512Mi"
 system-reserved:
 - "cpu=200m,memory=512Mi"

CHAPTER 13. ALLOCATING NODE RESOURCES

73

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#node-configuration-files
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-compute-resources

If [Allocatable] is negative, it is set to 0.

13.4. VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY

To see a node’s current capacity and allocatable resources, you can run:

$ oc get node/<node_name> -o yaml
...
status:
...
 allocatable:
 cpu: "4"
 memory: 8010948Ki
 pods: "110"
 capacity:
 cpu: "4"
 memory: 8010948Ki
 pods: "110"
...

13.5. SCHEDULER

The scheduler now uses the value of node.Status.Allocatable instead of
node.Status.Capacity to decide if a node will become a candidate for pod scheduling.

By default, the node will report its machine capacity as fully schedulable by the cluster.

OpenShift Enterprise 3.2 Cluster Administration

74

CHAPTER 14. OVERCOMMITTING

14.1. OVERVIEW

Containers can specify compute resource requests and limits. Requests are used for scheduling your
container and provide a minimum service guarantee. Limits constrain the amount of compute resource
that may be consumed on your node.

The scheduler attempts to optimize the utilization of compute resources across all nodes in the cluster. It
places pods on nodes with consideration to the pods' compute resource requests and nodes' available
capacity to find for each pod the node that provides the best fit.

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node, which may be desirable in development environments where a tradeoff of guaranteed
performance for capacity is acceptable.

14.2. REQUESTS AND LIMITS

For each compute resource, a container may specify a resource request and limit. Scheduling decisions
are made based on the request to ensure that a node has enough capacity available to meet the
requested value. If a container specifies limits, but omits requests, the requests are defaulted to the
limits. A container is not able to exceed the specified limit on the node.

The enforcement of limits is dependent upon the compute resource type. If a container makes no request
or limit, the container is scheduled to a node with no resource guarantees. In practice, the container is
able to consume as much of the specified resource as is available with the lowest local priority. In low
resource situations, containers that specify no resource requests are given the lowest quality of service.

14.3. COMPUTE RESOURCES

The node-enforced behavior for compute resources is specific to the resource type.

14.3.1. CPU

A container is guaranteed the amount of CPU it requests and is additionally able to consume excess
CPU available on the node, up to any limit specified by the container. If multiple containers are
attempting to use excess CPU, CPU time is distributed based on the amount of CPU requested by each
container.

For example, if one container requested 500m of CPU time and another container requested 250m of
CPU time, then any extra CPU time available on the node is distributed among the containers in a 2:1
ratio. If a container specified a limit, it will be throttled not to use more CPU than the specified limit.

CPU requests are enforced using the CFS shares support in the Linux kernel. By default, CPU limits are
enforced using the CFS quota support in the Linux kernel over a 100ms measuring interval, though this
can be disabled.

14.3.2. Memory

A container is guaranteed the amount of memory it requests. A container may use more memory than
requested, but once it exceeds its requested amount, it could be killed in a low memory situation on the
node.

CHAPTER 14. OVERCOMMITTING

75

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-compute-resources

If a container uses less memory than requested, it will not be killed unless system tasks or daemons
need more memory than was accounted for in the node’s resource reservation. If a container specifies a
limit on memory, it is immediately killed if it exceeds the limit amount.

14.4. QUALITY OF SERVICE CLASSES

A node is overcommitted when it has a pod scheduled that makes no request, or when the sum of limits
across all pods on that node exceeds available machine capacity.

In an overcommitted environment, it is possible that the pods on the node will attempt to use more
compute resource than is available at any given point in time. When this occurs, the node must give
priority to one pod over another. The facility used to make this decision is referred to as a Quality of
Service (QoS) Class.

For each compute resource, a container is divided into one of three QoS classes with decreasing order
of priority:

Table 14.1. Quality of Service Classes

Priority Class
Name

Description

1 (highest) Guarantee
d

If limits and optionally requests are set (not equal to 0) for all resources and
they are equal, then the container is classified as Guaranteed.

2 Burstable If requests and optionally limits are set (not equal to 0) for all resources, and
they are not equal, then the container is classified as Burstable.

3 (lowest) BestEffort If requests and limits are not set for any of the resources, then the container is
classified as BestEffort.

Memory is an incompressible resource, so in low memory situations, containers that have the lowest
priority are killed first:

Guaranteed containers are considered top priority, and are guaranteed to only be killed if they
exceed their limits, or if the system is under memory pressure and there are no lower priority
containers that can be evicted.

Burstable containers under system memory pressure are more likely to be killed once they
exceed their requests and no other BestEffort containers exist.

BestEffort containers are treated with the lowest priority. Processes in these containers are first
to be killed if the system runs out of memory.

14.5. CONFIGURING MASTERS FOR OVERCOMMITMENT

Scheduling is based on resources requested, while quota and hard limits refer to resource limits, which
can be set higher than requested resources. The difference between request and limit determines the
level of overcommit; for instance, if a container is given a memory request of 1Gi and a memory limit of
2Gi, it is scheduled based on the 1Gi request being available on the node, but could use up to 2Gi; so it
is 200% overcommitted.

If OpenShift Enterprise administrators would like to control the level of overcommit and manage

OpenShift Enterprise 3.2 Cluster Administration

76

1

2

3

4

container density on nodes, masters can be configured to override the ratio between request and limit
set on developer containers. In conjunction with a per-project LimitRange specifying limits and defaults,
this adjusts the container limit and request to achieve the desired level of overcommit.

This requires configuring the ClusterResourceOverride admission controller in the master-
config.yaml as in the following example (reuse the existing configuration tree if it exists, or introduce
absent elements as needed):

kubernetesMasterConfig:
 admissionConfig:
 pluginConfig:

 ClusterResourceOverride: 1
 configuration:
 apiVersion: v1
 kind: ClusterResourceOverrideConfig

 memoryRequestToLimitPercent: 25 2

 cpuRequestToLimitPercent: 25 3

 limitCPUToMemoryPercent: 200 4

This is the plug-in name; case matters and anything but an exact match for a plug-in name is
ignored.

(optional, 1-100) If a container memory limit has been specified or defaulted, the memory request is
overridden to this percentage of the limit.

(optional, 1-100) If a container CPU limit has been specified or defaulted, the CPU request is
overridden to this percentage of the limit.

(optional, positive integer) If a container memory limit has been specified or defaulted, the CPU limit
is overridden to a percentage of the memory limit, with a 100 percentage scaling 1Gi of RAM to
equal 1 CPU core. This is processed prior to overriding CPU request (if configured).

After changing the master configuration, a master restart is required.

Note that these overrides have no effect if no limits have been set on containers. Create a LimitRange
object with default limits (per individual project, or in the project template) in order to ensure that the
overrides apply.

Note also that after overrides, the container limits and requests must still be validated by any LimitRange
objects in the project. It is possible, for example, for developers to specify a limit close to the minimum
limit, and have the request then be overridden below the minimum limit, causing the pod to be forbidden.
This unfortunate user experience should be addressed with future work, but for now, configure this
capability and LimitRanges with caution.

When configured, overrides can be disabled per-project (for example, to allow infrastructure components
to be configured independently of overrides) by editing the project and adding the following annotation:

quota.openshift.io/cluster-resource-override-enabled: "false"

14.6. CONFIGURING NODES FOR OVERCOMMITMENT

In an overcommitted environment, it is important to properly configure your node to provide best system
behavior.

CHAPTER 14. OVERCOMMITTING

77

14.6.1. Enforcing CPU Limits

Nodes by default enforce specified CPU limits using the CPU CFS quota support in the Linux kernel. If
you do not want to enforce CPU limits on the node, you can disable its enforcement by modifying the
node configuration file (the node-config.yaml file) to include the following:

kubeletArguments:
 cpu-cfs-quota:
 - "false"

If CPU limit enforcement is disabled, it is important to understand the impact that will have on your node:

If a container makes a request for CPU, it will continue to be enforced by CFS shares in the
Linux kernel.

If a container makes no explicit request for CPU, but it does specify a limit, the request will
default to the specified limit, and be enforced by CFS shares in the Linux kernel.

If a container specifies both a request and a limit for CPU, the request will be enforced by CFS
shares in the Linux kernel, and the limit will have no impact on the node.

14.6.2. Reserving Resources for System Processes

The scheduler ensures that there are enough resources for all pods on a node based on the pod
requests. It verifies that the sum of requests of containers on the node is no greater than the node
capacity. It includes all containers started by the node, but not containers or processes started outside
the knowledge of the cluster.

It is recommended that you reserve some portion of the node capacity to allow for the system daemons
that are required to run on your node for your cluster to function (sshd, docker, etc.). In particular, it is
recommended that you reserve resources for incompressible resources such as memory.

If you want to explicitly reserve resources for non-pod processes, there are two ways to do so:

The preferred method is to allocate node resources by specifying resources available for
scheduling. See Allocating Node Resources for more details.

Alternatively, you can create a resource-reserver pod that does nothing but reserve capacity
from being scheduled on the node by the cluster. For example:

Example 14.1. resource-reserver Pod Definition

apiVersion: v1
kind: Pod
metadata:
 name: resource-reserver
spec:
 containers:
 - name: sleep-forever
 image: gcr.io/google_containers/pause:0.8.0
 resources:
 limits:

 cpu: 100m 1

 memory: 150Mi 2

OpenShift Enterprise 3.2 Cluster Administration

78

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-master-node-configuration

1

2

1

The amount of CPU to reserve on a node for host-level daemons unknown to the
cluster.

The amount of memory to reserve on a node for host-level daemons unknown to the
cluster.

You can save your definition to a file, for example resource-reserver.yaml, then place the file in
the node configuration directory, for example /etc/origin/node/ or the --config=<dir>
location if otherwise specified.

Additionally, the node server needs to be configured to read the definition from the node
configuration directory, by naming the directory in the kubeletArguments.config field of the
node configuration file (usually named node-config.yaml):

kubeletArguments:
 config:

 - "/etc/origin/node" 1

If --config=<dir> is specified, use <dir> here.

With the resource-reserver.yaml file in place, starting the node server also launches the sleep-
forever container. The scheduler takes into account the remaining capacity of the node,
adjusting where to place cluster pods accordingly.

To remove the resource-reserver pod, you can delete or move the resource-reserver.yaml file
from the node configuration directory.

14.6.3. Kernel Tunable Flags

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, the node instructs the kernel to always overcommit memory:

$ sysctl -w vm.overcommit_memory=1

The node also instructs the kernel not to panic when it runs out of memory. Instead, the kernel OOM killer
should kill processes based on priority:

$ sysctl -w vm.panic_on_oom=0

NOTE

The above flags should already be set on nodes, and no further action is required.

14.6.4. Disabling Swap Memory

It is important to understand that oversubscribing the physical resources on a node affects resource
guarantees the Kubernetes scheduler makes during pod placement. For example, suppose two
guaranteed pods have reached their memory limit. Each container may start using swap. Eventually, if

CHAPTER 14. OVERCOMMITTING

79

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-master-node-configuration

there is not enough swap space, processes in the pods can be terminated (due to the system being
oversubscribed).

There are options that can help you avoid having to swap, such as moving pods to nodes with free
resources, adding physical memory, reducing vm.swappiness, the use of huge pages, or disabling
vm.overcommit.

WARNING

Swap can also be disabled, but that is not recommended. Disable swap memory on
each node by running:

$ swapoff -a

OpenShift Enterprise 3.2 Cluster Administration

80

1

1

CHAPTER 15. LIMIT RUN-ONCE POD DURATION

15.1. OVERVIEW

OpenShift Enterprise relies on run-once pods to perform tasks such as deploying a pod or performing a
build. Run-once pods are pods that have a RestartPolicy of Never or OnFailure.

The cluster administrator can use the RunOnceDuration admission control plug-in to force a limit on the
time that those run-once pods can be active. Once the time limit expires, the cluster will try to actively
terminate those pods. The main reason to have such a limit is to prevent tasks such as builds to run for
an excessive amount of time.

15.2. CONFIGURING THE RUNONCEDURATION PLUG-IN

The plug-in configuration should include the default active deadline for run-once pods. This deadline will
be enforced globally, but can be superseded on a per-project basis.

Specify the global default for run-once pods in seconds.

15.3. SPECIFYING A CUSTOM DURATION PER PROJECT

In addition to specifying a global maximum duration for run-once pods, an administrator can add an
annotation (openshift.io/active-deadline-seconds-override) to a specific project to
override the global default.

Overrides the default active deadline seconds for run-once pods to 1000 seconds. Note that the
value of the override must be specified in string form.

kubernetesMasterConfig:
 admissionConfig:
 pluginConfig:
 RunOnceDuration:
 configuration:
 apiVersion: v1
 kind: RunOnceDurationConfig

 activeDeadlineSecondsOverride: 3600 1

apiVersion: v1
kind: Project
metadata:
 annotations:

 openshift.io/active-deadline-seconds-override: "1000" 1

CHAPTER 15. LIMIT RUN-ONCE POD DURATION

81

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-deployments
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#dev-guide-builds

CHAPTER 16. MONITORING ROUTERS

16.1. OVERVIEW

Depending on the underlying implementation, you can monitor a running router in multiple ways. This
topic discusses the HAProxy template router and the components to check to ensure its health.

16.2. VIEWING STATISTICS

The HAProxy router exposes a web listener for the HAProxy statistics. Enter the router’s public IP
address and the correctly configured port (1936 by default) to view the statistics page, and enter the
administrator password when prompted. This password and port are configured during the router
installation, but they can be found by viewing the haproxy.config file on the container.

16.3. DISABLING STATISTICS VIEW

By default the HAProxy statistics are exposed on port 1936 (with a password protected account). To
disable exposing the HAProxy statistics, specify 0 as the stats port number.

$ oadm router hap --service-account=router --stats-port=0

Note: HAProxy will still collect and store statistics, it would just not expose them via a web listener. You
can still get access to the statistics by sending a request to the HAProxy AF_UNIX socket inside the
HAProxy Router container.

$ cmd="echo 'show stat' | socat - UNIX-
CONNECT:/var/lib/haproxy/run/haproxy.sock"
$ routerPod=$(oc get pods --selector="router=router" \
 --template="{{with index .items 0}}{{.metadata.name}}{{end}}")
$ oc exec $routerPod -- bash -c "$cmd"

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers. Instead, you can SSH into a node host, then use the docker exec
command on the desired container.

16.4. VIEWING LOGS

To view a router log, run the oc logs command on the pod. Since the router is running as a plug-in
process that manages the underlying implementation, the log is for the plug-in, not the actual HAProxy
log.

To view the logs generated by HAProxy, start a syslog server and pass the location to a router pod using
the following environment variables.

Table 16.1. Router Syslog Variables

OpenShift Enterprise 3.2 Cluster Administration

82

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/errata/RHSA-2015:1650

Environment Variable Description

ROUTER_SYSLOG_ADDR
ESS

The IP address of the syslog server. Port 514 is the default if no port is
specified.

ROUTER_LOG_LEVEL Optional. Set to change the HAProxy log level. If not set, the default log level is
warning. This can be changed to any log level that HAProxy supports.

To set a running router pod to send messages to a syslog server:

$ oc set env dc/router ROUTER_SYSLOG_ADDRESS=<dest_ip:dest_port>
ROUTER_LOG_LEVEL=<level>

For example, the following sets HAProxy to send logs to 127.0.0.1 with the default port 514 and changes
the log level to debug.

$ oc set env dc/router ROUTER_SYSLOG_ADDRESS=127.0.0.1
ROUTER_LOG_LEVEL=debug

16.5. VIEWING THE ROUTER INTERNALS

routes.json

Routes are processed by the HAProxy router, and are stored both in memory, on disk, and in the
HAProxy configuration file. The internal route representation, which is passed to the template to generate
the HAProxy configuration file, is found in the /var/lib/containers/router/routes.json file. When
troubleshooting a routing issue, view this file to see the data being used to drive configuration.

HAProxy configuration

You can find the HAProxy configuration and the backends that have been created for specific routes in
the /var/lib/haproxy/conf/haproxy.config file. The mapping files are found in the same directory. The
helper frontend and backends use mapping files when mapping incoming requests to a backend.

Certificates

Certificates are stored in two places:

Certificates for edge terminated and re-encrypt terminated routes are stored in the
/var/lib/containers/router/certs directory.

Certificates that are used for connecting to backends for re-encrypt terminated routes are stored
in the /var/lib/containers/router/cacerts directory.

The files are keyed by the namespace and name of the route. The key, certificate, and CA certificate are
concatenated into a single file. You can use OpenSSL to view the contents of these files.

CHAPTER 16. MONITORING ROUTERS

83

https://www.openssl.org/

CHAPTER 17. HIGH AVAILABILITY

17.1. OVERVIEW

This topic describes how to set up highly-available services on your OpenShift Enterprise cluster.

The Kubernetes replication controller ensures that the deployment requirements, in particular the number
of replicas, are satisfied when the appropriate resources are available. When run with two or more
replicas, the router can be resilient to failures, providing a highly-available service. Depending on how the
router instances are discovered (via a service, DNS entry, or IP addresses), this could impose
operational requirements to handle failure cases when one or more router instances are "unreachable".

For some IP-based traffic services, virtual IP addresses (VIPs) should always be serviced for as long as
a single instance is available. This simplifies the operational overhead and handles failure cases
gracefully.

IMPORTANT

Even though a service is highly available, performance can still be affected.

Use cases for high-availability include:

I want my cluster to be assigned a resource set and I want the cluster to automatically manage
those resources.

I want my cluster to be assigned a set of VIPs that the cluster manages and migrates (with zero
or minimal downtime) on failure conditions, and I should not be required to perform any manual
interactions to update the upstream "discovery" sources (e.g., DNS). The cluster should service
all the assigned VIPs when at least a single node is available, despite the current available
resources not being sufficient to reach the desired state.

You can configure a highly-available router or network setup by running multiple instances of the pod
and fronting them with a balancing tier. This can be something as simple as DNS round robin, or as
complex as multiple load-balancing layers.

17.2. CONFIGURING IP FAILOVER

Using IP failover involves switching IP addresses to a redundant or stand-by set of nodes on failure
conditions.

IMPORTANT

At this time of writing, ipfailover is not compatible with cloud infrastructures. In the case of
AWS, an Elastic Load Balancer (ELB) can be used to make OpenShift Enterprise highly
available, using the AWS console.

The oadm ipfailover command helps set up the VIP failover configuration. As an administrator, you
can configure IP failover on an entire cluster, or on a subset of nodes, as defined by the labeled selector.
If you are running in production, match the labeled selector with at least two nodes to ensure you have
failover protection and provide a --replicas=<n> value that matches the number of nodes for the
given labeled selector:

$ oadm ipfailover [<Ip_failover_config_name>] <options> --replicas=<n>

OpenShift Enterprise 3.2 Cluster Administration

84

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#replication-controllers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#routers
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/elb-getting-started.html

The oadm ipfailover command ensures that a failover pod runs on each of the nodes matching the
constraints or label used. This pod uses VRRP (Virtual Router Redundancy Protocol) with Keepalived to
ensure that the service on the watched port is available, and, if needed, Keepalived will automatically
float the VIPs if the service is not available.

17.2.1. Virtual IP Addresses

Keepalived manages a set of virtual IP addresses. The administrator must make sure that all these
addresses:

Are accessible on the configured hosts from outside the cluster.

Are not used for any other purpose within the cluster.

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported
and Keepalived participates in the negotiation to determine which node will serve the VIP. For a node to
participate, the service must be listening on the watch port on a VIP or the check must be disabled.

NOTE

Each VIP in the set may end up being served by a different node.

Option Variable Name Notes

--
virtual
-ips

OPENSHIFT_HA_VIRTUAL_IPS The list of IP address ranges to replicate. This must
be provided. (For example, 1.2.3.4-6,1.2.3.9.)

17.2.2. Configuring a Highly-available Routing Service

The following steps describe how to set up a highly-available router environment with IP failover:

1. Label the nodes for the service. This step can be optional if you run the service on any of the
nodes in your Kubernetes cluster and use VIPs that can float within those nodes. This process
may already exist within a complex cluster, in that nodes may be filtered by any constraints or
requirements specified (e.g., nodes with SSD drives, or higher CPU, memory, or disk
requirements, etc.).
The following example defines a label as router instances that are servicing traffic in the US west
geography ha-router=geo-us-west:

1. Create the ConfigMap:

$ oc create configmap mycustomcheck --from-file=mycheckscript.sh

2. There are two approaches to adding the script to the pod: use oc commands or edit the
deployment configuration.

#!/bin/bash
 # Whatever tests are needed
 # E.g., send request and verify response
exit 0

CHAPTER 17. HIGH AVAILABILITY

85

http://www.keepalived.org/

a. Using oc commands:

b. Editing the ipf-ha-router deployment configuration:

i. Use oc edit dc ipf-ha-router to edit the router deployment configuration with a
text editor.

3. OpenShift Enterprise’s ipfailover internally uses keepalived, so ensure that multicast is enabled
on the nodes labeled above and that the nodes can accept network traffic for 224.0.0.18 (the
VRRP multicast IP address). Depending on your environment’s multicast configuration, you may
need to add an iptables rule to each of the above labeled nodes. If you do need to add the
iptables rules, please also ensure that the rules persist after a system restart:

$ for node in openshift-node-{5,6,7,8,9}; do ssh $node <<EOF

export interface=${interface:-"eth0"}
echo "Check multicast enabled ... ";
ip addr show $interface | grep -i MULTICAST

echo "Check multicast groups ... "
ip maddr show $interface | grep 224.0.0 | grep $interface

echo "Optionally, add accept rule and persist it ... "
sudo /sbin/iptables -I INPUT -i $interface -d 224.0.0.18/32 -j
ACCEPT

echo "Please ensure the above rule is added on system restarts."

EOF
done;

4. Depending on your environment policies, you can either reuse the router service account
created previously or create a new ipfailover service account.
Ensure that either the router service account exists as described in Deploying a Router or
create a new ipfailover service account. The example below creates a new service account
with the name ipfailover in the default namespace:

$ oc create serviceaccount ipfailover -n default

5. Add the ipfailover service account in the default namespace to the privileged SCC:

$ oadm policy add-scc-to-user privileged
system:serviceaccount:default:ipfailover

$ oc set env dc/ipf-ha-router \
 OPENSHIFT_HA_CHECK_SCRIPT=/etc/keepalive/mycheckscript.sh
$ oc volume dc/ipf-ha-router --add --overwrite \
 --name=config-volume \
 --mount-path=/etc/keepalive \
 --source='{"configMap": { "name": "mycustomcheck"}}'

$ oc label nodes openshift-node-{5,6,7,8,9} "ha-router=geo-
us-west"

OpenShift Enterprise 3.2 Cluster Administration

86

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-deploy-router

6. Start the router with at least two replicas on nodes matching the labels used in the first step. The
following example runs three instances using the ipfailover service account:

$ oadm router ha-router-us-west --replicas=5 \
 --selector="ha-svc-nodes=geo-us-west" \
 --labels="ha-svc-nodes=geo-us-west" \
 --service-account=ipfailover

NOTE

The above command runs fewer router replicas than available nodes, so that, in
the chance of node failures, Kubernetes can still ensure three available instances
until the number of available nodes labeled ha-router=geo-us-west is below
three. Additionally, the router uses the host network as well as ports 80 and 443,
so fewer number of replicas are running to ensure a higher Service Level
Availability (SLA). If there are no constraints on the service being setup for
failover, it is possible to target the service to run on one or more, or even all, of
the labeled nodes.

7. Finally, configure the VIPs and failover for the nodes labeled with ha-router=geo-us-west in the
first step. Ensure the number of replicas match the number of nodes and that they satisfy the
label setup in the first step. The name of the ipfailover configuration (ipf-ha-router-us-west in
the example below) should be different from the name of the router configuration (ha-router-us-
west) as both the router and ipfailover create deployment configuration with those names.
Specify the VIPs addresses and the port number that ipfailover should monitor on the desired
instances:

$ oadm ipfailover ipf-ha-router-us-west \
 --replicas=5 --watch-port=80 \
 --selector="ha-router=geo-us-west" \
 --virtual-ips="10.245.2.101-105" \
 --iptables-chain="INPUT" \
 --service-account=ipfailover --create

For details on how to dynamically update the virtual IP addresses for high availability, see Dynamically
Updating Virtual IPs for a Highly-available Service.

17.2.3. Configuring a Highly-available Network Service

The following steps describe how to set up a highly-available IP-based network service with IP failover:

1. Label the nodes for the service. This step can be optional if you run the service on any of the
nodes in your Kubernetes cluster and use VIPs that can float within those nodes. This process
may already exist within a complex cluster, in that the nodes may be filtered by any constraints
or requirements specified (e.g., nodes with SSD drives, or higher CPU, memory, or disk
requirements, etc.).
The following example labels a highly-available cache service that is listening on port 9736 as
ha-cache=geo:

$ oc label nodes openshift-node-{6,3,7,9} "ha-cache=geo"

2. OpenShift Enterprise’s ipfailover internally uses keepalived, so ensure that multicast is enabled
on the nodes labeled above and that the nodes can accept network traffic for 224.0.0.18 (the
VRRP multicast IP address). Depending on your environment’s multicast configuration, you may

CHAPTER 17. HIGH AVAILABILITY

87

need to add an iptables rule to each of the above labeled nodes. If you do need to add the
iptables rules, please also ensure that the rules persist after a system restart:

$ for node in openshift-node-{6,3,7,9}; do ssh $node <<EOF
export interface=${interface:-"eth0"}
echo "Check multicast enabled ... ";
ip addr show $interface | grep -i MULTICAST

echo "Check multicast groups ... "
ip maddr show $interface | grep 224.0.0 | grep $interface

echo "Optionally, add accept rule and persist it ... "
sudo /sbin/iptables -I INPUT -i $interface -d 224.0.0.18/32 -j
ACCEPT

echo "Please ensure the above rule is added on system restarts."

EOF
done;

3. Create a new ipfailover service account in the default namespace:

$ oc create serviceaccount ipfailover -n default

4. Add the ipfailover service account in the default namespace to the privileged SCC:

$ oadm policy add-scc-to-user privileged
system:serviceaccount:default:ipfailover

5. Run a geo-cache service with two or more replicas. An example configuration for running a
geo-cache service is provided here.

IMPORTANT

Be sure to replace the myimages/geo-cache container image referenced in the
file with your intended image. Also, change the number of replicas to the desired
amount and ensure the label matches the one used in the first step.

$ oc create -n <namespace> -f ./examples/geo-cache.json

6. Finally, configure the VIPs and failover for the nodes labeled with ha-cache=geo in the first step.
Ensure the number of replicas match the number of nodes and that they satisfy the label setup in
first step. Specify the VIP addresses and the port number that ipfailover should monitor for the
desired instances:

$ oadm ipfailover ipf-ha-geo-cache \\
 --replicas=5 --watch-port=9736 \
 --selector="ha-svc-nodes=geo-us-west" \
 --virtual-ips=10.245.3.101-105 \
 --vrrp-id-offset=10 \
 --service-account=ipfailover --create

Using the above example, you can now use the VIPs 10.245.2.101 through 10.245.2.104 to send traffic

OpenShift Enterprise 3.2 Cluster Administration

88

https://raw.githubusercontent.com/openshift/openshift-docs/master/admin_guide/examples/geo-cache.json

1

1

to the geo-cache service. If a particular geo-cache instance is "unreachable", perhaps due to a node
failure, Keepalived ensures that the VIPs automatically float amongst the group of nodes labeled "ha-
cache=geo" and the service is still reachable via the virtual IP addresses.

17.2.4. Dynamically Updating Virtual IPs for a Highly-available Service

The default deployment strategy for the IP failover service is to recreate the deployment. In order to
dynamically update the virtual IPs for a highly available routing service with minimal or no downtime, you
must:

update the IP failover service deployment configuration to use a rolling update strategy, and

update the OPENSHIFT_HA_VIRTUAL_IPS environment variable with the updated list or sets of
virtual IP addresses.

The following example shows how to dynamically update the deployment strategy and the virtual IP
addresses:

1. Consider an IP failover configuration that was created using the following:

$ oadm ipfailover ipf-ha-router-us-west \
 --replicas=5 --watch-port=80 \
 --selector="ha-router=geo-us-west" \
 --virtual-ips="10.245.2.101-105" \
 --service-account=ipfailover --create

2. Edit the deployment configuration:

$ oc edit dc/ipf-ha-router-us-west

3. Update the spec.strategy.type field from Recreate to Rolling:

spec:
 replicas: 5
 selector:
 ha-router: geo-us-west
 strategy:
 recreateParams:
 timeoutSeconds: 600
 resources: {}

 type: Rolling 1

Set to Rolling.

4. Update the OPENSHIFT_HA_VIRTUAL_IPS environment variable to contain the additional virtual
IP addresses:

- name: OPENSHIFT_HA_VIRTUAL_IPS

 value: 10.245.2.101-105,10.245.2.110,10.245.2.201-205 1

10.245.2.110,10.245.2.201-205 have been added to the list.

CHAPTER 17. HIGH AVAILABILITY

89

17.2.5. Multiple Highly Available Services In a Network

The IPFailover service uses VRRP (Virtual Router Redundancy Protocol) to communicate with its peers.
By default, the generated Keepalived configuration uses a VRRP ID offset starting from 0 (and
sequentially increasing) to denote the peers in a network. If you wish to run multiple highly available
services in the same network (have multiple IP Failover deployments), you need to ensure that there is
no overlap of the VRRP IDs by using a different starting offset for your IPFailover deployment using the -
-vrrp-id-offset=<n> parameter.

$ oadm ipfailover ipf-ha-router-us-west \
 --replicas=5 --watch-port=80 \
 --selector="ha-router=geo-us-west" \
 --virtual-ips="10.245.2.101-105" \
 --credentials=/etc/origin/master/openshift-router.kubeconfig \
 --service-account=ipfailover --create

$ # Second IPFailover service with VRRP ids starting at 10.
$ oadm ipfailover ipf-service-redux \
 --replicas=2 --watch-port=6379 --vrrp-id-offset=10 \
 --selector="ha-service=redux" \
 --virtual-ips="10.245.2.199" \
 --credentials=/etc/origin/master/openshift-router.kubeconfig \
 --service-account=ipfailover --create

OpenShift Enterprise 3.2 Cluster Administration

90

CHAPTER 18. MANAGING POD NETWORKS

18.1. OVERVIEW

When your cluster is configured to use the ovs-multitenant SDN plug-in, you can manage the separate
pod overlay networks for projects using the administrator CLI. See the Configuring the SDN section for
plug-in configuration steps, if necessary.

18.2. JOINING PROJECT NETWORKS

To join projects to an existing project network:

$ oadm pod-network join-projects --to=<project1> <project2> <project3>

In the above example, all the pods and services in <project2> and <project3> can now access any
pods and services in <project1> and vice versa.

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option.

18.3. MAKING PROJECT NETWORKS GLOBAL

To allow projects to access all pods and services in the cluster and vice versa:

$ oadm pod-network make-projects-global <project1> <project2>

In the above example, all the pods and services in <project1> and <project2> can now access any
pods and services in the cluster and vice versa.

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option.

CHAPTER 18. MANAGING POD NETWORKS

91

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-configuring-sdn

CHAPTER 19. IPTABLES

19.1. OVERVIEW

This topic describes how administrators should work with iptables. openshift-sdn takes care of adding the
necessary iptables rules to make it work. Kubernetes and Docker also manage iptables for port
forwarding and services.

19.2. RESTARTING

Docker doesn’t monitor the iptables rules that it adds for exposing ports from containers and hence if
iptables service is restarted, then these rules are lost. So, to safely restart iptables, it is recommended
that the rules are saved and restored.

$ iptables-save > /path/to/iptables.bkp
$ systemctl restart iptables
$ iptables-restore < /path/to/iptables.bkp

OpenShift Enterprise 3.2 Cluster Administration

92

CHAPTER 20. SECURING BUILDS BY STRATEGY

20.1. OVERVIEW

Builds in OpenShift Enterprise are run in privileged containers that have access to the Docker daemon
socket. As a security measure, it is recommended to limit who can run builds and the strategy that is
used for those builds. Custom builds are inherently less safe than Source builds, given that they can
execute any code in the build with potentially full access to the node’s Docker socket, and as such are
disabled by default. Docker build permission should also be granted with caution as a vulnerability in the
Docker build logic could result in a privileges being granted on the host node.

By default, all users that can create builds are granted permission to use the Docker and Source-to-
Image build strategies. Users with cluster-admin privileges can enable the Custom build strategy, as
referenced in the Restricting Build Strategies to a User Globally section of this page.

You can control who can build with what build strategy using an authorization policy. Each build strategy
has a corresponding build subresource. A user must have permission to create a build and permission to
create on the build strategy subresource in order to create builds using that strategy. Default roles are
provided which grant the create permission on the build strategy subresource.

Table 20.1. Build Strategy Subresources and Roles

Strategy Subresource Role

Docker builds/docker system:build-strategy-docker

Source-to-Image builds/source system:build-strategy-source

Custom builds/custom system:build-strategy-custom

20.2. DISABLING A BUILD STRATEGY GLOBALLY

To prevent access to a particular build strategy globally, log in as a user with cluster-admin privileges
and remove the corresponding role from the system:authenticated group:

$ oadm policy remove-cluster-role-from-group system:build-strategy-custom
system:authenticated
$ oadm policy remove-cluster-role-from-group system:build-strategy-docker
system:authenticated
$ oadm policy remove-cluster-role-from-group system:build-strategy-source
system:authenticated

In versions prior to 3.2, the build strategy subresources were included in the admin and edit roles.
Ensure the build strategy subresources are also removed from these roles:

$ oc edit clusterrole admin
$ oc edit clusterrole edit

For each role, remove the line that corresponds to the resource of the strategy to disable.

Example 20.1. Disable the Docker Build Strategy for admin

CHAPTER 20. SECURING BUILDS BY STRATEGY

93

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#security-warning
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#custom-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#source-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#docker-build
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#roles

1

kind: ClusterRole
metadata:
 name: admin
...
rules:
- resources:
 - builds/custom

 - builds/docker 1
 - builds/source
 ...
...

Delete this line to disable Docker builds globally for users with the admin role.

20.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY

To allow only a set of specific users to create builds with a particular strategy:

1. Disable global access to the build strategy.

2. Assign the role corresponding to the build strategy to a specific user. For example, to add the
system:build-strategy-docker cluster role to the user devuser:

$ oadm policy add-cluster-role-to-user system:build-strategy-docker
devuser

WARNING

Granting a user access at the cluster level to the builds/docker subresource means
that the user will be able to create builds with the Docker strategy in any project in
which they can create builds.

20.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A
PROJECT

Similar to granting the build strategy role to a user globally, to allow only a set of specific users within a
project to create builds with a particular strategy:

1. Disable global access to the build strategy.

2. Assign the role corresponding to the build strategy to a specific user within a project. For
example, to add the system:build-strategy-docker role within the project devproject to the
user devuser:

$ oadm policy add-role-to-user system:build-strategy-docker devuser
-n devproject

OpenShift Enterprise 3.2 Cluster Administration

94

CHAPTER 21. BUILDING DEPENDENCY TREES

21.1. OVERVIEW

OpenShift Enterprise uses image change triggers in a build configuration to detect when an image
stream tag has been updated. You can use the oadm build-chain command to build a dependency
tree that identifies which images would be affected by updating an image in a specified image stream.

The build-chain tool can determine which builds to trigger; it analyzes the output of those builds to
determine if they will in turn update another image stream tag. If they do, the tool continues to follow the
dependency tree. Lastly, it outputs a graph specifying the image stream tags that would be impacted by
an update to the top-level tag. The default output syntax for this tool is set to a human-readable format;
the DOT format is also supported.

21.2. USAGE

The following table describes common build-chain usage and general syntax:

Table 21.1. Common build-chain Operations

Description Syntax

Build the dependency tree for the latest tag in
<image-stream>. $ oadm build-chain <image-stream>

Build the dependency tree for the v2 tag in DOT
format, and visualize it using the DOT utility. $ oadm build-chain <image-

stream>:v2 \
 -o dot \
 | dot -T svg -o deps.svg

Build the dependency tree across all projects for the
specified image stream tag found the test project. $ oadm build-chain <image-

stream>:v1 \
 -n test --all

NOTE

You may need to install the graphviz package to use the dot command.

CHAPTER 21. BUILDING DEPENDENCY TREES

95

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#image-change-triggers
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/developer_guide/#defining-a-buildconfig
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#docker-images
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#builds

CHAPTER 22. BACKUP AND RESTORE

22.1. OVERVIEW

In OpenShift Enterprise, you can back up (saving state to separate storage) and restore (recreating state
from separate storage) at the cluster level. There is also some preliminary support for per-project
backup. The full state of a cluster installation includes:

etcd data on each master

API objects

registry storage

volume storage

This topic does not cover how to back up and restore persistent storage, as those topics are left to the
underlying storage provider. However, an example of how to perform a generic backup of application
data is provided.

IMPORTANT

This topic only provides a generic way of backing up applications and the OpenShift
Enterprise cluster. It can not take into account custom requirements. Therefore, you
should create a full backup and restore procedure. To prevent data loss, necessary
precautions should be taken.

22.2. PREREQUISITES

1. Because the restore procedure involves a complete reinstallation, save all the files used in the
initial installation. This may include:

~/.config/openshift/installer.cfg.yml (from the Quick Installation method)

Ansible playbooks and inventory files (from the Advanced Installation method)

/etc/yum.repos.d/ose.repo (from the Disconnected Installation method)

2. Backup the procedures for post-installation steps. Some installations may involve steps that are
not included in the installer. This may include changes to the services outside of the control of
OpenShift Enterprise or the installation of extra services like monitoring agents. Additional
configuration that is not supported yet by the advanced installer might also be affected, for
example when using multiple authentication providers.

3. Install packages that provide various utility commands:

yum install etcd

4. If using a container-based installation, pull the etcd image instead:

docker pull rhel7/etcd

Note the location of the etcd data directory (or $ETCD_DATA_DIR in the following sections), which
depends on how etcd is deployed.

OpenShift Enterprise 3.2 Cluster Administration

96

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-persistent-storage-index
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-quick-install
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-advanced-install
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-disconnected-install

Deployment Type Description Data Directory

separate etcd etcd runs as a separate service, either co-
located on master nodes or on separate
nodes.

/var/lib/etcd

embedded etcd etcd runs as part of the master service. /var/lib/origin/openshift.local.etcd

22.3. CLUSTER BACKUP

1. Save all the certificates and keys, on each master:

cd /etc/origin/master
tar cf /tmp/certs-and-keys-$(hostname).tar *.key *.crt

2. If etcd is running on more than one host, stop it on each host:

sudo systemctl stop etcd

Although this step is not strictly necessary, doing so ensures that the etcd data is fully
synchronized.

3. Create an etcd backup:

etcdctl backup \
 --data-dir $ETCD_DATA_DIR \
 --backup-dir $ETCD_DATA_DIR.bak

NOTE

If etcd is running on more than one host, the various instances regularly
synchronize their data, so creating a backup for one of them is sufficient.

NOTE

For a container-based installation, you must use docker exec to run etcdctl
inside the container.

4. Copy the db file over to the backup you created:

cp "$ETCD_DATA_DIR"/member/snap/db
"$ETCD_DATA_DIR.bak"/member/snap/db

22.4. CLUSTER RESTORE FOR SINGLE-MEMBER ETCD CLUSTERS

To restore the cluster:

1. Reinstall OpenShift Enterprise.
This should be done in the same way that OpenShift Enterprise was previously installed.

CHAPTER 22. BACKUP AND RESTORE

97

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/installation_and_configuration/#install-config-install-index

2. Run all necessary post-installation steps.

3. Restore the certificates and keys, on each master:

cd /etc/origin/master
tar xvf /tmp/certs-and-keys-$(hostname).tar

4. Restore from the etcd backup:

mv $ETCD_DATA_DIR $ETCD_DATA_DIR.orig
cp -Rp $ETCD_DATA_DIR.bak $ETCD_DATA_DIR
chcon -R --reference $ETCD_DATA_DIR.orig $ETCD_DATA_DIR
chown -R etcd:etcd $ETCD_DATA_DIR

5. Create the new single node cluster using etcd’s --force-new-cluster option. You can do
this using the values from /etc/etcd/etcd.conf, or you can temporarily modify the systemd unit
file and start the service normally.
To do so, edit the /usr/lib/systemd/system/etcd.service file, and add --force-new-
cluster:

sed -i '/ExecStart/s/"$/ --force-new-cluster"/'
/usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd --force-
new-cluster"

Then, restart the etcd service:

systemctl daemon-reload
systemctl start etcd

6. Verify the etcd service started correctly, then re-edit the /usr/lib/systemd/system/etcd.service
file and remove the --force-new-cluster option:

sed -i '/ExecStart/s/ --force-new-cluster//'
/usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd"

7. Restart the etcd service, then verify the etcd cluster is running correctly and displays OpenShift
Enterprise’s configuration:

systemctl daemon-reload
systemctl restart etcd

22.5. CLUSTER RESTORE FOR MULTIPLE-MEMBER ETCD CLUSTERS

When using a separate etcd cluster, you must first restore the etcd backup by creating a new, single
node etcd cluster. If you run etcd as a stand-alone service on your master nodes, you can create the
single node etcd cluster on a master node. If you use separate etcd with multiple members, you must
then also add any additional etcd members to the etcd cluster one by one.

OpenShift Enterprise 3.2 Cluster Administration

98

However, the details of the restoration process differ between embedded and external etcd. See the
following section and follow the relevant steps before Bringing OpenShift Services Back Online.

22.5.1. Embedded etcd

Restore your etcd backup and configuration:

1. Run the following on the master with the embedded etcd:

ETCD_DIR=/var/lib/origin/openshift.local.etcd
mv $ETCD_DIR /var/lib/etcd.orig
cp -Rp /var/lib/origin/etcd-backup-<timestamp>/ $ETCD_DIR
chcon -R --reference /var/lib/etcd.orig/ $ETCD_DIR
chown -R etcd:etcd $ETCD_DIR

WARNING

The $ETCD_DIR location differs between external and embedded etcd.

2. Create the new, single node etcd cluster:

etcd -data-dir=/var/lib/origin/openshift.local.etcd \
 -force-new-cluster

Verify etcd has started successfully by checking the output from the above command, which
should look similar to the following near the end:

[...]
2016-06-24 12:14:45.644073 I | etcdserver: starting server...
[version: 2.2.5, cluster version: 2.2]
[...]
2016-06-24 12:14:46.834394 I | etcdserver: published {Name:default
ClientURLs:[http://localhost:2379 http://localhost:4001]} to cluster
5580663a6e0002

3. Shut down the process by running the following from a separate terminal:

pkill etcd

4. Continue to Bringing OpenShift Enterprise Services Back Online.

22.5.2. Separate etcd

Choose a system to be the initial etcd member, and restore its etcd backup and configuration:

1. Run the following on the etcd host:

ETCD_DIR=/var/lib/etcd/

CHAPTER 22. BACKUP AND RESTORE

99

mv $ETCD_DIR /var/lib/etcd.orig
cp -Rp /var/lib/origin/etcd-backup-<timestamp>/ $ETCD_DIR
chcon -R --reference /var/lib/etcd.orig/ $ETCD_DIR
chown -R etcd:etcd $ETCD_DIR

WARNING

The $ETCD_DIR location differs between external and embedded etcd.

2. Restore your /etc/etcd/etcd.conf file from backup or .rpmsave.

3. Create the new single node cluster using etcd’s --force-new-cluster option. You can do
this with a long complex command using the values from /etc/etcd/etcd.conf, or you can
temporarily modify the systemd unit file and start the service normally.
To do so, edit the /usr/lib/systemd/system/etcd.service file, and add --force-new-
cluster:

sed -i '/ExecStart/s/"$/ --force-new-cluster"/'
/usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd --force-
new-cluster"

Then restart the etcd service:

systemctl daemon-reload
systemctl start etcd

4. Verify the etcd service started correctly, then re-edit the /usr/lib/systemd/system/etcd.service
file and remove the --force-new-cluster option:

sed -i '/ExecStart/s/ --force-new-cluster//'
/usr/lib/systemd/system/etcd.service
systemctl show etcd.service --property ExecStart --no-pager

ExecStart=/bin/bash -c "GOMAXPROCS=$(nproc) /usr/bin/etcd"

5. Restart the etcd service, then verify the etcd cluster is running correctly and displays OpenShift
Enterprise’s configuration:

systemctl daemon-reload
systemctl restart etcd
etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \

 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \ 1
 ls /

OpenShift Enterprise 3.2 Cluster Administration

100

1

1

Ensure that you specify the URLs of only active etcd members in the --peers parameter
value.

6. If you have additional etcd members to add to your cluster, continue to Adding Additional etcd
Members. Otherwise, if you only want a single node separate etcd cluster, continue to Bringing
OpenShift Enterprise Services Back Online.

22.5.2.1. Adding Additional etcd Members

To add additional etcd members to the cluster, you must first adjust the default localhost peer in the
peerURLs value for the first member:

1. Get the member ID for the first member using the member list command:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --
peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://17

2.18.0.75:2379" \ 1
 member list

Ensure that you specify the URLs of only active etcd members in the --peers parameter
value.

2. Update the value of peerURLs using the etcdctl member update command by passing the
member ID obtained from the previous step:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --
peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://17
2.18.0.75:2379" \
 member update 511b7fb6cc0001 https://172.18.1.18:2380

Alternatively, you can use curl:

curl --cacert /etc/etcd/ca.crt \
 --cert /etc/etcd/peer.crt \
 --key /etc/etcd/peer.key \
 https://172.18.1.18:2379/v2/members/511b7fb6cc0001 \
 -XPUT -H "Content-Type: application/json" \
 -d '{"peerURLs":["https://172.18.1.18:2380"]}'

3. Re-run the member list command and ensure the peer URLs no longer include localhost.

4. Now, add each additional member to the cluster one at a time.

CHAPTER 22. BACKUP AND RESTORE

101

1

WARNING

Each member must be fully added and brought online one at a time. When
adding each additional member to the cluster, the peerURLs list must be
correct for that point in time, so it will grow by one for each member added.
The etcdctl member add command will output the values that need to
be set in the etcd.conf file as you add each member, as described in the
following instructions.

a. For each member, add it to the cluster using the values that can be found in that system’s
etcd.conf file:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \

 member add 10.3.9.222 https://172.16.4.27:2380 1

Added member named 10.3.9.222 with ID 4e1db163a21d7651 to cluster

ETCD_NAME="10.3.9.222"
ETCD_INITIAL_CLUSTER="10.3.9.221=https://172.16.4.18:2380,10.3.9.
222=https://172.16.4.27:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

In this line, 10.3.9.222 is a label for the etcd member. You can specify the host
name, IP address, or a simple name.

b. Using the environment variables provided in the output of the above etcdctl member add
command, edit the /etc/etcd/etcd.conf file on the member system itself and ensure these
settings match.

c. Now start etcd on the new member:

rm -rf /var/lib/etcd/member
systemctl enable etcd
systemctl start etcd

d. Ensure the service starts correctly and the etcd cluster is now healthy:

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 member list

51251b34b80001: name=10.3.9.221 peerURLs=https://172.16.4.18:2380
clientURLs=https://172.16.4.18:2379
d266df286a41a8a4: name=10.3.9.222

OpenShift Enterprise 3.2 Cluster Administration

102

peerURLs=https://172.16.4.27:2380
clientURLs=https://172.16.4.27:2379

etcdctl --cert-file=/etc/etcd/peer.crt \
 --key-file=/etc/etcd/peer.key \
 --ca-file=/etc/etcd/ca.crt \
 --peers="https://172.16.4.18:2379,https://172.16.4.27:2379" \
 cluster-health

cluster is healthy
member 51251b34b80001 is healthy
member d266df286a41a8a4 is healthy

e. Now repeat this process for the next member to add to the cluster.

5. After all additional etcd members have been added, continue to Bringing OpenShift Enterprise
Services Back Online.

22.6. BRINGING OPENSHIFT ENTERPRISE SERVICES BACK ONLINE

On each OpenShift Enterprise master, restore your master and node configuration from backup and
enable and restart all relevant services.

On the master in a single master cluster:

cp /etc/sysconfig/atomic-openshift-master.rpmsave /etc/sysconfig/atomic-
openshift-master
cp /etc/origin/master/master-config.yaml.<timestamp>
/etc/origin/master/master-config.yaml
cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-
config.yaml
systemctl enable atomic-openshift-master
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-master
systemctl start atomic-openshift-node

On each master in a multi-master cluster:

cp /etc/sysconfig/atomic-openshift-master-api.rpmsave
/etc/sysconfig/atomic-openshift-master-api
cp /etc/sysconfig/atomic-openshift-master-controllers.rpmsave
/etc/sysconfig/atomic-openshift-master-controllers
cp /etc/origin/master/master-config.yaml.<timestamp>
/etc/origin/master/master-config.yaml
cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-
config.yaml
systemctl enable atomic-openshift-master-api
systemctl enable atomic-openshift-master-controllers
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-master-api
systemctl start atomic-openshift-master-controllers
systemctl start atomic-openshift-node

On each OpenShift Enterprise node, restore your node-config.yaml file from backup and enable and
restart the atomic-openshift-node service:

CHAPTER 22. BACKUP AND RESTORE

103

cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-
config.yaml
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-node

Your OpenShift Enterprise cluster should now be back online.

22.7. PROJECT BACKUP

A future release of OpenShift Enterprise will feature specific support for per-project back up and restore.

For now, to back up API objects at the project level, use oc export for each object to be saved. For
example, to save the deployment configuration frontend in YAML format:

$ oc export dc frontend -o yaml > dc-frontend.yaml

To back up all of the project (with the exception of cluster objects like namespaces and projects):

$ oc export all -o yaml > project.yaml

22.7.1. Role Bindings

Sometimes custom policy role bindings are used in a project. For example, a project administrator can
give another user a certain role in the project and grant that user project access.

These role bindings can be exported:

$ oc get rolebindings -o yaml --export=true > rolebindings.yaml

22.7.2. Service Accounts

If custom service accounts are created in a project, these need to be exported:

$ oc get serviceaccount -o yaml --export=true > serviceaccount.yaml

22.7.3. Secrets

Custom secrets like source control management secrets (SSH Public Keys, Username/Password)
should be exported if they are used:

$ oc get secret -o yaml --export=true > secret.yaml

22.7.4. Persistent Volume Claims

If the an application within a project uses a persistent volume through a persistent volume claim (PVC),
these should be backed up:

$ oc get pvc -o yaml --export=true > pvc.yaml

OpenShift Enterprise 3.2 Cluster Administration

104

22.8. PROJECT RESTORE

To restore a project, recreate the project and recreate all all of the objects that were exported during the
backup:

$ oc new-project myproject
$ oc create -f project.yaml
$ oc create -f secret.yaml
$ oc create -f serviceaccount.yaml
$ oc create -f pvc.yaml
$ oc create -f rolebindings.yaml

NOTE

Some resources can fail to be created (for example, pods and default service accounts).

22.9. APPLICATION DATA BACKUP

In many cases, application data can be backed up using the oc rsync command, assuming rsync is
installed within the container image. The Red Hat rhel7 base image does contain rsync. Therefore, all
images that are based on rhel7 contain it as well.

WARNING

This is a generic backup of application data and does not take into account
application-specific backup procedures, for example special export/import
procedures for database systems.

Other means of backup may exist depending on the type of the persistent volume (for example, Cinder,
NFS, Gluster, or others).

The paths to back up are also application specific. You can determine what path to back up by looking at
the mountPath for volumes in the deploymentconfig.

Example of Backing up a Jenkins Deployment’s Application Data

1. Get the application data mountPath from the deploymentconfig:

$ oc get dc/jenkins -o jsonpath='{ .spec.template.spec.containers[?
(@.name=="jenkins")].volumeMounts[?(@.name=="jenkins-
data")].mountPath }'
/var/lib/jenkins

2. Get the name of the pod that is currently running:

$ oc get pod --selector=deploymentconfig=jenkins -o jsonpath='{
.metadata.name }'
jenkins-1-37nux

CHAPTER 22. BACKUP AND RESTORE

105

3. Use the oc rsync command to copy application data:

$ oc rsync jenkins-1-37nux:/var/lib/jenkins /tmp/

NOTE

This type of application data backup can only be performed while an application pod is
currently running.

22.10. APPLICATION DATA RESTORE

The process for restoring application data is similar to the application backup procedure using the oc
rsync tool. The same restrictions apply and the process of restoring application data requires a
persistent volume.

Example of Restoring a Jenkins Deployment’s Application Data

1. Verify the backup:

$ ls -la /tmp/jenkins-backup/
total 8
drwxrwxr-x. 3 user user 20 Sep 6 11:14 .
drwxrwxrwt. 17 root root 4096 Sep 6 11:16 ..
drwxrwsrwx. 12 user user 4096 Sep 6 11:14 jenkins

2. Use the oc rsync tool to copy the data into the running pod:

$ oc rsync /tmp/jenkins-backup/jenkins jenkins-1-37nux:/var/lib

NOTE

Depending on the application, you may be required to restart the application.

3. Restart the application with new data (optional):

$ oc delete pod jenkins-1-37nux

Alternatively, you can scale down the deployment to 0, and then up again:

$ oc scale --replicas=0 dc/jenkins
$ oc scale --replicas=1 dc/jenkins

OpenShift Enterprise 3.2 Cluster Administration

106

CHAPTER 23. TROUBLESHOOTING OPENSHIFT SDN

23.1. OVERVIEW

As described in the SDN documentation there are multiple layers of interfaces that are created to
correctly pass the traffic from one container to another. In order to debug connectivity issues, you have to
test the different layers of the stack to work out where the problem arises. This guide will help you dig
down through the layers to identify the problem and how to fix it.

Part of the problem is that OpenShift Enterprise can be set up many ways, and the networking can be
wrong in a few different places. So this document will work through some scenarios that, hopefully, will
cover the majority of cases. If your problem is not covered, the tools and concepts that are introduced
should help guide debugging efforts.

23.2. NOMENCLATURE

Cluster

The set of machines in the cluster. i.e. the Masters and the Nodes.

Master

A controller of the OpenShift Enterprise cluster. Note that the master may not be a node in the cluster,
and thus, may not have IP connectivity to the pods.

Node

Host in the cluster running OpenShift Enterprise that can host pods.

Pod

Group of containers running on a node, managed by OpenShift Enterprise.

Service

Abstraction that presents a unified network interface that is backed by one or more pods.

Router

A web proxy that can map various URLs and paths into OpenShift Enterprise services to allow
external traffic to travel into the cluster.

Node Address

The IP address of a node. This is assigned and managed by the owner of the network to which the
node is attached. Must be reachable from any node in the cluster (master and client).

Pod Address

The IP address of a pod. These are assigned and managed by OpenShift Enterprise. By default they
are assigned out of the 10.128.0.0/14 network (or, in older versions, 10.1.0.0/16). Only reachable
from the client nodes.

Service Address

An IP address that represents the service, and is mapped to a pod address internally. These are
assigned and managed by OpenShift Enterprise. By default they are assigned out of the
172.30.0.0/16 network. Only reachable from the client nodes.

The following diagram shows all of the pieces involved with external access.

CHAPTER 23. TROUBLESHOOTING OPENSHIFT SDN

107

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-additional-concepts-sdn

23.3. DEBUGGING EXTERNAL ACCESS TO AN HTTP SERVICE

If you are on an machine outside the cluster and are trying to access a resource provided by the cluster
there needs to be a process running in a pod that listens on a public IP address and "routes" that traffic
inside the cluster. The OpenShift Enterprise router serves that purpose for HTTP, HTTPS (with SNI),
WebSockets, or TLS (with SNI).

Assuming you can’t access an HTTP service from the outside of the cluster, let’s start by reproducing the
problem on the command line of the machine where things are failing. Try:

curl -kv http://foo.example.com:8000/bar # But replace the argument
with your URL

If that works, are you reproducing the bug from the right place? It is also possible that the service has
some pods that work, and some that don’t. So jump ahead to the Section 23.4, “Debugging the Router”
section.

If that failed, then let’s resolve the DNS name to an IP address (assuming it isn’t already one):

dig +short foo.example.com # But replace the hostname
with yours

If that doesn’t give back an IP address, it’s time to troubleshoot DNS, but that’s outside the scope of this
guide.

IMPORTANT

Make sure that the IP address that you got back is one that you expect to be running the
router. If it’s not, fix your DNS.

Next, use ping -c address and tracepath address to check that you can reach the router host. It
is possible that they will not respond to ICMP packets, in which case those tests will fail, but the router
machine may be reachable. In which case, try using the telnet command to access the port for the router
directly:

telnet 1.2.3.4 8000

You may get:

OpenShift Enterprise 3.2 Cluster Administration

108

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-routes

Trying 1.2.3.4...
Connected to 1.2.3.4.
Escape character is '^]'.

If so, there’s something listening on the port on the IP address. That’s good. Hit ctrl-] then hit the
enter key and then type close to quit telnet. Move on to the Section 23.4, “Debugging the Router”
section to check other things on the router.

Or you could get:

Trying 1.2.3.4...
telnet: connect to address 1.2.3.4: Connection refused

Which tells us that the router is not listening on that port. Please see the Section 23.4, “Debugging the
Router” section for more pointers on how to configure the router.

Or if you see:

Which tells us that you can’t talk to anything on that IP address. Check your routing, firewalls, and that
you have a router listening on that IP address. To debug the router, see the Section 23.4, “Debugging
the Router” section. For IP routing and firewall issues, debugging that is beyond the purview of this
guide.

23.4. DEBUGGING THE ROUTER

Now that you have an IP address, we need to ssh to that machine and check that the router software is
running on that machine and configured correctly. So let’s ssh there and get administrative OpenShift
Enterprise credentials.

NOTE

If you have access to administrator credentials but are no longer logged in as the default
system user system:admin, you can log back in as this user at any time as long as the
credentials are still present in your CLI configuration file. The following command logs in
and switches to the default project:

$ oc login -u system:admin -n default

Check that the router is running:

oc get endpoints --namespace=default --selector=router
NAMESPACE NAME ENDPOINTS
default router 10.128.0.4:80

If that command fails, then your OpenShift Enterprise configuration is broken. Fixing that is outside the
scope of this document.

You should see one or more router endpoints listed, but that won’t tell you if they are running on the
machine with the given external IP address, since the endpoint IP address will be one of the pod
addresses that is internal to the cluster. To get the list of router host IP addresses, run:

Trying 1.2.3.4...
 telnet: connect to address 1.2.3.4: Connection timed out

CHAPTER 23. TROUBLESHOOTING OPENSHIFT SDN

109

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#users
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/cli_reference/#cli-configuration-files

oc get pods --all-namespaces --selector=router --template='{{range
.items}}HostIP: {{.status.hostIP}} PodIP: {{.status.podIP}}{{end}}
{{"\n"}}'
HostIP: 192.168.122.202 PodIP: 10.128.0.4

You should see the host IP that corresponds to your external address. If you do not, please refer to the
router documentation to configure the router pod to run on the right node (by setting the affinity correctly)
or update your DNS to match the IP addresses where the routers are running.

At this point in the guide, you should be on a node, running your router pod, but you still cannot get the
HTTP request to work. First we need to make sure that the router is mapping the external URL to the
correct service, and if that works, we need to dig into that service to make sure that all endpoints are
reachable.

Let’s list all of the routes that OpenShift Enterprise knows about:

oc get route --all-namespaces
NAME HOST/PORT PATH SERVICE LABELS
TLS TERMINATION
route-unsecured www.example.com /test service-name

If the host name and path from your URL don’t match anything in the list of returned routes, then you
need to add a route. See the router documentation.

If your route is present, then you need to debug access to the endpoints. That’s the same as if you were
debugging problems with a service, so please continue on with the next Section 23.5, “Debugging a
Service” section.

23.5. DEBUGGING A SERVICE

If you can’t communicate with a service from inside the cluster (either because your services can’t
communicate directly, or because you are using the router and everything works until you get into the
cluster) then you need to work out what endpoints are associated with a service and debug them.

First, let’s get the services:

oc get services --all-namespaces
NAMESPACE NAME LABELS
SELECTOR IP(S) PORT(S)
default docker-registry docker-registry=default
docker-registry=default 172.30.243.225 5000/TCP
default kubernetes component=apiserver,provider=kubernetes
<none> 172.30.0.1 443/TCP
default router router=router
router=router 172.30.213.8 80/TCP

You should see your service in the list. If not, then you need to define your service.

The IP addresses listed in the service output are the Kubernetes service IP addresses that Kubernetes
will map to one of the pods that backs that service. So you should be able to talk to that IP address. But,
unfortunately, even if you can, it doesn’t mean all pods are reachable; and if you can’t, it doesn’t mean
all pods aren’t reachable. It just tells you the status of the one that kubeproxy hooked you up to.

Let’s test the service anyway. From one of your nodes:

OpenShift Enterprise 3.2 Cluster Administration

110

https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-routes
https://access.redhat.com/documentation/en-us/openshift_enterprise/3.2/html-single/architecture/#architecture-core-concepts-pods-and-services

curl -kv http://172.30.243.225:5000/bar # Replace the
argument with your service IP address and port

Then, let’s work out what pods are backing our service (replace docker-registry with the name of
the broken service):

oc get endpoints --selector=docker-registry
NAME ENDPOINTS
docker-registry 10.128.2.2:5000

From this, we can see that there’s only one endpoint. So, if your service test succeeded, and the router
test succeeded, then something really odd is going on. But if there’s more than one endpoint, or the
service test failed, try the following for each endpoint. Once you identify what endpoints aren’t working,
then proceed to the next section.

First, test each endpoint (change the URL to have the right endpoint IP, port, and path):

curl -kv http://10.128.2.2:5000/bar

If that works, great, try the next one. If it failed, make a note of it and we’ll work out why, in the next
section.

If all of them failed, then it is possible that the local node is not working, jump to the Section 23.7,
“Debugging Local Networking” section.

If all of them worked, then jump to the Section 23.11, “Debugging Kubernetes” section to work out why
the service IP address isn’t working.

23.6. DEBUGGING NODE TO NODE NETWORKING

Using our list of non-working endpoints, we need to test connectivity to the node.

1. Make sure that all nodes have the expected IP addresses:

oc get hostsubnet
NAME HOST HOST IP
SUBNET
rh71-os1.example.com rh71-os1.example.com 192.168.122.46
10.1.1.0/24
rh71-os2.example.com rh71-os2.example.com 192.168.122.18
10.1.2.0/24
rh71-os3.example.com rh71-os3.example.com 192.168.122.202
10.1.0.0/24

If you are using DHCP they could have changed. Ensure the host names, IP addresses, and
subnets match what you expect. If any node details have changed, use oc edit hostsubnet
to correct the entries.

2. After ensuring the node addresses and host names are correct, list the endpoint IPs and node
IPs:

oc get pods --selector=docker-registry \
 --template='{{range .items}}HostIP: {{.status.hostIP}} PodIP:
{{.status.podIP}}{{end}}{{"\n"}}'

CHAPTER 23. TROUBLESHOOTING OPENSHIFT SDN

111

HostIP: 192.168.122.202 PodIP: 10.128.0.4

3. Find the endpoint IP address you made note of before and look for it in the PodIP entry, and find
the corresponding HostIP address. Then test connectivity at the node host level using the
address from HostIP:

ping -c 3 <IP_address>: No response could mean that an intermediate router is eating
the ICMP traffic.

tracepath <IP_address>: Shows the IP route taken to the target, if ICMP packets are
returned by all hops.
If both tracepath and ping fail, then look for connectivity issues with your local or virtual
network.

4. For local networking, check the following:

Check the route the packet takes out of the box to the target address:

ip route get 192.168.122.202
 192.168.122.202 dev ens3 src 192.168.122.46
 cache

In the above example, it will go out the interface named ens3 with the source address of
192.168.122.46 and go directly to the target. If that is what you expected, use ip a
show dev ens3 to get the interface details and make sure that is the expected interface.

An alternate result may be the following:

ip route get 192.168.122.202
 1.2.3.4 via 192.168.122.1 dev ens3 src 192.168.122.46

It will pass through the via IP value to route appropriately. Ensure that the traffic is routing
correctly. Debugging route traffic is beyond the scope of this guide.

Other debugging options for node to node networking can be solved with the following:

Do you have ethernet link on both ends? Look for Link detected: yes in the output from
ethtool <network_interface>.

Are your duplex settings, and ethernet speeds right on both ends? Look through the rest of the
ethtool <network_interface> information.

Are the cables plugged in correctly? To the correct ports?

Are the switches configured correctly?

Once you have ascertained that the node to node connectivity is fine, we need to look at the SDN
configuration on both ends.

23.7. DEBUGGING LOCAL NETWORKING

OpenShift Enterprise 3.2 Cluster Administration

112

At this point we should have a list of one or more endpoints that you can’t communicate with, but that
have node to node connectivity. For each one, we need to work out what is wrong, but first you need to
understand how the SDN sets up the networking on a node for the different pods.

23.7.1. The Interfaces on a Node

These are the interfaces that the OpenShift Enterprise SDN creates:

br0: The OVS bridge device that containers will be attached to. OpenShift Enterprise SDN also
configures a set of non-subnet-specific flow rules on this bridge. (The multitenant plug-in
does this immediately; the ovssubnet plug-in waits until the SDN master announces the
creation of the new node subnet.)

lbr0: A Linux bridge device, which is configured as Docker’s bridge and given the cluster
subnet gateway address (eg, 10.128.x.1/23).

tun0: An OVS internal port (port 2 on br0). This also gets assigned the cluster subnet gateway
address, and is used for external network access. OpenShift Enterprise SDN configures
netfilter and routing rules to enable access from the cluster subnet to the external network
via NAT.

vlinuxbr and vovsbr: Two Linux peer virtual Ethernet interfaces. vlinuxbr is added to
lbr0, and vovsbr is added to br0 (port 3), to provide connectivity for containers created
directly with Docker outside of OpenShift Enterprise.

vxlan0: The OVS VXLAN device (port 1 on br0), which provides access to containers on
remote nodes.

vethX (in the main netns): A Linux virtual ethernet peer of eth0 in the docker netns. It will be
attached to the OVS bridge on one of the other ports.

23.7.2. SDN Flows Inside a Node

Depending on what you are trying to access (or be accessed from) the path will vary. There are four
different places the SDN connects (inside a node). They are labeled in red on the diagram above.

CHAPTER 23. TROUBLESHOOTING OPENSHIFT SDN

113

Pod: Traffic is going from one pod to another on the same machine (1 to a different 1)

Remote Node (or Pod): Traffic is going from a local pod to a remote node or pod in the same
cluster (1 to 2)

External Machine: Traffic is going from a local pod outside the cluster (1 to 3)

Local Docker: Traffic is going from a local pod to a local container that is not managed by
Kubernetes (1 to 4)

Of course the opposite traffic flows are also possible.

23.7.3. Debugging Steps

23.7.3.1. Is IP Forwarding Enabled?

Check that sysctl net.ipv4.ip_forward is set to 1 (and check the host if this is a VM)

23.7.3.2. Is firewalld Disabled?

Check that firewalld is disabled using systemctl status firewalld. If it is running, you either
need to disable it, or check that it is not blocking traffic. That is outside the scope of this guide.

23.7.3.3. Are your routes correct?

Check the route tables with ip route:

ip route
default via 192.168.122.1 dev ens3
10.128.0.0/14 dev tun0 proto kernel scope link #
This sends all pod traffic into OVS
10.128.2.0/23 dev tun0 proto kernel scope link src 10.128.2.1 #
This is traffic going to local pods, overriding the above
169.254.0.0/16 dev ens3 scope link metric 1002 #
This is for Zeroconf (may not be present)
172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.42.1 #
Docker's private IPs... used only by things directly configured by docker;
not {product-title}
192.168.122.0/24 dev ens3 proto kernel scope link src 192.168.122.46 #
The physical interface on the local subnet

You should see the 10.128.x.x lines (assuming you have your pod network set to the default range in
your configuration). If you do not, check the OpenShift Enterprise logs (see the Section 23.10, “Reading
the Logs” section)

23.7.4. Is the Open vSwitch configured correctly?

Check the Open vSwitch bridges on both sides:

ovs-vsctl list-br
br0

This should just be br0.

OpenShift Enterprise 3.2 Cluster Administration

114

You can list all of the ports that ovs knows about:

ovs-ofctl -O OpenFlow13 dump-ports-desc br0
OFPST_PORT_DESC reply (OF1.3) (xid=0x2):
 1(vxlan0): addr:9e:f1:7d:4d:19:4f
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 2(tun0): addr:6a:ef:90:24:a3:11
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 8(vethe19c6ea): addr:1e:79:f3:a0:e8:8c
 config: 0
 state: 0
 current: 10GB-FD COPPER
 speed: 10000 Mbps now, 0 Mbps max
 9(vovsbr): addr:6e:dc:28:df:63:c3
 config: 0
 state: 0
 current: 10GB-FD COPPER
 speed: 10000 Mbps now, 0 Mbps max
 LOCAL(br0): addr:0a:7f:b4:33:c2:43
 config: PORT_DOWN
 state: LINK_DOWN
 speed: 0 Mbps now, 0 Mbps max

Next list the flows that are configured on that bridge. In output below I have removed the cookie,
duration, n_packets and n_bytes columns; and I have lined up the various columns to make it
easier to understand, and added in-line comments and blank lines:

ovs-ofctl -O OpenFlow13 dump-flows br0
OFPST_FLOW reply (OF1.3) (xid=0x2):

External access is the default if no higher priority matches
table=0, priority=50 actions=output:2

ARP and IP Traffic destined for the local subnet gateway goes out of the
switch to
IP tables and the main route table
table=0, priority=100,arp,arp_tpa=10.128.2.1 actions=output:2
table=0, priority=100, ip, nw_dst=10.128.2.1 actions=output:2

All remote nodes should have two entries here, one for IP and one for
ARP.
Here we see the entries for two remote nodes
table=0, priority=100,arp,arp_tpa=10.128.4.0/23
actions=set_field:192.168.122.18->tun_dst,output:1
table=0, priority=100, ip, nw_dst=10.128.4.0/23
actions=set_field:192.168.122.18->tun_dst,output:1

table=0, priority=100,arp,arp_tpa=10.128.0.0/23
actions=set_field:192.168.122.202->tun_dst,output:1
table=0, priority=100, ip, nw_dst=10.128.0.0/23
actions=set_field:192.168.122.202->tun_dst,output:1

CHAPTER 23. TROUBLESHOOTING OPENSHIFT SDN

115

Other traffic destined for a local pod IP that hasn't been handled by a
higher priority rule
goes out port 9 to the virtual bridge for docker
table=0, priority=75, ip, nw_dst=10.128.2.0/23 actions=output:9
table=0, priority=75, arp,arp_tpa=10.128.2.0/23 actions=output:9

Then ports 3-8 or 10+ are for local pods, here there are two local pods
table=0, priority=100, ip, nw_dst=10.128.2.7 actions=output:8
table=0, priority=100,arp,arp_tpa=10.128.2.7 actions=output:8

table=0, priority=100, ip, nw_dst=10.128.2.10 actions=output:12
table=0, priority=100,arp,arp_tpa=10.128.2.10 actions=output:12

The SDN networking plug-in configures two entries (one for arp and one for ip) with output=1 per peer
endpoint (i.e. if there are five nodes, then there should be 4 * 2 rules; In the example above we have 3
nodes total, so there are four entries above). It also sets up the other entries on ports 2 and 9 that are
shown above. If there are flows missing, please look in the Section 23.10, “Reading the Logs” section.

23.7.4.1. Is the iptables configuration correct?

Check the output from iptables-save to make sure you are not filtering traffic. However, OpenShift
Enterprise sets up iptables rules during normal operation, so do not be surprised to see entries there.

23.7.4.2. Is your external network correct?

Check external firewalls, if any, allow traffic to the target address (this is site-dependent, and beyond the
purview of this guide).

23.8. DEBUGGING VIRTUAL NETWORKING

23.8.1. Builds on a Virtual Network are Failing

If you are installing OpenShift Enterprise using a virtual network (for example, OpenStack), and a build is
failing, the maximum transmission unit (MTU) of the target node host might not be compatible with the
MTU of the primary network interface (for example, eth0).

For a build to complete successfully, the MTU of an SDN must be less than the eth0 network MTU in
order to pass data to between node hosts.

1. Check the MTU of your network by running the ip addr command:

ip addr

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP qlen 1000
 link/ether fa:16:3e:56:4c:11 brd ff:ff:ff:ff:ff:ff
 inet 172.16.0.0/24 brd 172.16.0.0 scope global dynamic eth0
 valid_lft 168sec preferred_lft 168sec
 inet6 fe80::f816:3eff:fe56:4c11/64 scope link
 valid_lft forever preferred_lft forever

The MTU of the above network is 1500.

OpenShift Enterprise 3.2 Cluster Administration

116

2. The MTU in your node configuration must be lower than the network value. Check the mtu in the
node configuration of the targeted node host:

cat /etc/origin/node/node-config.yaml
...
networkConfig:
 mtu: 1450
 networkPluginName: company/openshift-ovs-subnet
...

In the above node configuration file, the mtu value is lower than the network MTU, so no
configuration is needed. If the mtu value was higher, edit the file and lower the value to at least
50 units fewer than the MTU of the primary network interface, then restart the node service. This
would allow larger packets of data to pass between nodes.

23.9. DEBUGGING POD EGRESS

If you are trying to access an external service from a pod, e.g.:

curl -kv github.com

Make sure that the DNS is resolving correctly:

dig +search +noall +answer github.com

That should return the IP address for the github server, but check that you got back the correct address.
If you get back no address, or the address of one of your machines, then you may be matching the
wildcard entry in your local DNS server.

To fix that, you either need to make sure that DNS server that has the wildcard entry is not listed as a
nameserver in your /etc/resolv.conf or you need to make sure that the wildcard domain is not
listed in the search list.

If the correct IP address was returned, then try the debugging advice listed above in Section 23.7,
“Debugging Local Networking”. Your traffic should leave the Open vSwitch on port 2 to pass through the
iptables rules, then out the route table normally.

23.10. READING THE LOGS

Run: journalctl -u atomic-openshift-node.service --boot | less

Look for the Output of setup script: line. Everything starting with '+' below that are the script
steps. Look through that for obvious errors.

Following the script you should see lines with Output of adding table=0. Those are the OVS
rules, and there should be no errors.

23.11. DEBUGGING KUBERNETES

Check iptables -t nat -L to make sure that the service is being NAT’d to the right port on the local
machine for the kubeproxy.

CHAPTER 23. TROUBLESHOOTING OPENSHIFT SDN

117

WARNING

This is all changing soon… Kubeproxy is being eliminated and replaced with an
iptables-only solution.

23.12. FURTHER HELP

1. Run the script at https://raw.githubusercontent.com/openshift/openshift-
sdn/master/hack/debug.sh on the master (or from another machine with access to the master) to
generate useful debugging information.

2. When debugging IP failover problems, run the script at
https://raw.githubusercontent.com/openshift/openshift-sdn/master/hack/ipf-debug.sh on the
master (or from another machine with access to the master) to generate useful debugging
information.

23.13. MISCELLANEOUS NOTES

23.13.1. Other clarifications on ingress

Kube - declare a service as NodePort and it will claim that port on all machines in the cluster (on
what interface?) and then route into kube-proxy and then to a backing pod. See
http://kubernetes.io/v1.0/docs/user-guide/services.html#type-nodeport (some node must be
accessible from outside)

Kube - declare as a LoadBalancer and something you have to write does the rest

OS/AE - Both use the router

23.13.2. TLS Handshake Timeout

When a pod fails to deploy, check its docker log for a TLS handshake timeout:

$ docker log <container_id>
...
[...] couldn't get deployment [...] TLS handshake timeout
...

This condition, and generally, errors in establishing a secure connection, may be caused by a large
difference in the MTU values between tun0 and the primary interface (e.g., eth0), such as when tun0
MTU is 1500 and eth0 MTU is 9000 (jumbo frames).

23.13.3. Other debugging notes

Peer interfaces (of a Linux virtual ethernet pair) can be determined with ethtool -S ifname

Driver type: ethtool -i ifname

OpenShift Enterprise 3.2 Cluster Administration

118

https://raw.githubusercontent.com/openshift/openshift-sdn/master/hack/debug.sh
https://raw.githubusercontent.com/openshift/openshift-sdn/master/hack/ipf-debug.sh
http://kubernetes.io/v1.0/docs/user-guide/services.html#type-nodeport

CHAPTER 24. REVISION HISTORY: CLUSTER
ADMINISTRATION

Red Hat OpenShift Documentation Team 3.2 :experimental:

24.1. TUE MAY 02 2017

Affected Topic Description of Change

Securing Builds by
Strategy

Added that custom builds are disabled by default.

24.2. THU APR 13 2017

Affected Topic Description of Change

Managing Security
Context Constraints

Added information about preserving labels and annotations, in addition to groups.

24.3. MON MAR 27 2017

Affected Topic Description of Change

Setting Limit Ranges Added the missing -n demoproject option to the oc describe limits
example and updated the command’s output.

24.4. MON MAR 20 2017

Affected Topic Description of Change

Managing Authorization
Policies

Updated the ClusterRole file in the Granting Users Daemonset Permissions
section.

24.5. TUE MAR 14 2017

Affected Topic Description of Change

Managing Nodes Renamed instances of openshift_node_set_node_ip to
openshift_set_node_ip, the correct openshift-ansible variable
name.

24.6. WED JAN 25 2017

CHAPTER 24. REVISION HISTORY: CLUSTER ADMINISTRATION

119

Affected Topic Description of Change

Monitoring Routers Removed references to the deprecated --credentials option.

High Availability Removed references to the deprecated --credentials option.

24.7. MON JAN 09 2017

Affected Topic Description of Change

Managing Authorization
Policies

Added clarifying details about cluster roles.

24.8. TUE DEC 20 2016

Affected Topic Description of Change

Backup and Restore Added to the note with information on host backups over 700 MB.

24.9. MON DEC 05 2016

Affected Topic Description of Change

Backup and Restore Added the Backup and Restore section.

24.10. MON NOV 21 2016

Affected Topic Description of Change

Managing Security
Context Constraints

Updated the output for oc get scc.

24.11. TUE NOV 01 2016

Affected Topic Description of Change

Backup and Restore Added a NOTE box to the Cluster Restore section, indicating that the outlined
procedure only works for single-member etcd clusters.

24.12. MON OCT 24 2016

OpenShift Enterprise 3.2 Cluster Administration

120

Affected Topic Description of Change

Configuring Service
Accounts

Added a Service Accounts and Secrets heading.

24.13. MON OCT 17 2016

Affected Topic Description of Change

High Availability Added the Multiple Highly Available Services In a Network section.

24.14. TUE OCT 11 2016

Affected Topic Description of Change

Setting Quotas Added that cpu and requests.cpu are the same value and can be used
interchangeably, as with memory and requests.memory.

24.15. TUE OCT 04 2016

Affected Topic Description of Change

High Availability Fixed deprecated commands in the Configuring a Highly-available Routing
Service section.

Backup and Restore Added Prerequisites details and created new sections for Application Data
Backup, Application Data Restore, Project Restore, as well as backing up Role
Bindings, Service Accounts, Secrets, and Persistent Volume Claims.

Pruning Objects Added a Note box about the required storage:delete:enabled flag when
pruning images.

24.16. TUE SEP 13 2016

Affected Topic Description of Change

Managing Authorization
Policies

Added the Granting Users Daemonset Permissions section.

24.17. TUE SEP 06 2016

CHAPTER 24. REVISION HISTORY: CLUSTER ADMINISTRATION

121

Affected Topic Description of Change

Managing Projects Removed an invalid oc edit command.

24.18. TUE AUG 23 2016

Affected Topic Description of Change

Backup and Restore New topic discussing back up (saving state to separate storage) and restore
(recreating state from separate storage) at the cluster level.

Managing Nodes Added details on how to change the node traffic interface.

Managing Security
Context Constraints

Added information about required drop capabilities to the Creating New Security
Context Constraints section.

24.19. MON AUG 01 2016

Affected Topic Description of Change

Managing Projects Clarified how to remove self-provisioning capabilities in the Disabling Self-
provisioning section.

24.20. WED JUL 27 2016

Affected Topic Description of Change

Managing Projects Added a Note box in the Limiting Number of Self-Provisioned Projects Per User
section with a pointer to the new Managing User and Group Labels section.

Managing Users Added a new Managing User and Group Labels section.

24.21. THU JUL 14 2016

Affected Topic Description of Change

Managing Projects Added an Important box to the Limiting Number of Self-Provisioned Projects Per
User section about the PROJECT_REQUESTING_USER annotation.

High Availability Added an Important box to the Configuring IP Failover section about using high
availability with AWS.

OpenShift Enterprise 3.2 Cluster Administration

122

Troubleshooting
OpenShift SDN

Added the TLS Handshake Timeout section.

Affected Topic Description of Change

24.22. TUE JUN 14 2016

Affected Topic Description of Change

Setting Quotas Added examples for long running versus timebound quota.

Securing Builds by
Strategy

Updated for build strategy role changes.

Overcommitting Added the Configuring Masters for Overcommitment section about the
ClusterResourceOverride admission controller.

24.23. FRI JUN 10 2016

Affected Topic Description of Change

Configuring Service
Accounts

Fixed callout numbering in the Managed Service Accounts example.

Overcommitting Added instructions on how to make the resource-reserver pod start automatically.

Scheduler Added a Modifying Scheduler Policy section.

24.24. MON MAY 30 2016

Affected Topic Description of Change

Overcommitting Updated the Disabling Swap Memory section with options that can help users
avoid having to swap and added a Warning box stating that disabling swap
memory is not recommended.

Managing Security
Context Constraints

Fixed command typos.

24.25. THU MAY 12 2016

CHAPTER 24. REVISION HISTORY: CLUSTER ADMINISTRATION

123

Affected Topic Description of Change

High Availability Added the Dynamically Updating Virtual IPs for a Highly-available Service section.

Limit Run-once Pod
Duration

New topic on the RunOnceDuration plug-in.

Setting Quotas Moved the "Resource Quota" topic from the Developer Guide to Cluster
Administration, as it involves cluster administration tasks, and renamed it Setting
Quotas.

Added reference to the configmaps resource.

Setting Limit Ranges Moved the "Resource Limits" topic from the Developer Guide to Cluster
Administration, as it involves cluster administration tasks, and renamed it Setting
Limit Ranges.

Overcommitting Updated the Reserving Resources for System Processes section to mention the
new allocating node resources method.

Allocating Node
Resources

New topic on reserving node resources.

Scheduler Added the Controlling Pod Placement section.

Managing Security
Context Constraints

Updated to use oc create serviceaccount commands and service
account user names in add-scc-to-user commands.

High Availability

Managing Projects Added the Limiting Number of Self-Provisioned Projects Per User section.

Managing Authorization
Policies

Added new registry roles to output in the Viewing Cluster Policy section.

Managing Projects Added a Limiting Number of Self-Provisioned Projects Per User section.

OpenShift Enterprise 3.2 Cluster Administration

124

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. MANAGING NODES
	2.1. OVERVIEW
	2.2. LISTING NODES
	2.3. ADDING NODES
	2.4. DELETING NODES
	2.5. UPDATING LABELS ON NODES
	2.6. LISTING PODS ON NODES
	2.7. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE
	2.8. EVACUATING PODS ON NODES
	2.9. CONFIGURING NODE RESOURCES
	2.10. CHANGING NODE TRAFFIC INTERFACE

	CHAPTER 3. MANAGING USERS
	3.1. OVERVIEW
	3.2. ADDING A USER
	3.3. VIEWING USER AND IDENTITY LISTS
	3.4. MANAGING USER AND GROUP LABELS
	3.5. DELETING A USER

	CHAPTER 4. MANAGING PROJECTS
	4.1. OVERVIEW
	4.2. SELF-PROVISIONING PROJECTS
	4.2.1. Modifying the Template for New Projects
	4.2.2. Disabling Self-provisioning

	4.3. USING NODE SELECTORS
	4.3.1. Setting the Cluster-wide Default Node Selector
	4.3.2. Setting the Project-wide Node Selector
	4.3.3. Developer-specified Node Selectors

	4.4. LIMITING NUMBER OF SELF-PROVISIONED PROJECTS PER USER

	CHAPTER 5. CONFIGURING SERVICE ACCOUNTS
	5.1. OVERVIEW
	5.2. USER NAMES AND GROUPS
	5.3. ENABLING SERVICE ACCOUNT AUTHENTICATION
	5.4. MANAGED SERVICE ACCOUNTS
	5.5. INFRASTRUCTURE SERVICE ACCOUNTS
	5.6. SERVICE ACCOUNTS AND SECRETS

	CHAPTER 6. MANAGING AUTHORIZATION POLICIES
	6.1. OVERVIEW
	6.2. VIEWING ROLES AND BINDINGS
	6.2.1. Viewing Cluster Policy
	6.2.2. Viewing Local Policy

	6.3. MANAGING ROLE BINDINGS
	6.4. GRANTING USERS DAEMONSET PERMISSIONS
	6.5. CREATING A LOCAL ROLE

	CHAPTER 7. MANAGING SECURITY CONTEXT CONSTRAINTS
	7.1. OVERVIEW
	7.2. LISTING SECURITY CONTEXT CONSTRAINTS
	7.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT
	7.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS
	7.5. DELETING SECURITY CONTEXT CONSTRAINTS
	7.6. UPDATING SECURITY CONTEXT CONSTRAINTS
	7.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS
	7.8. HOW DO I?
	7.8.1. Grant Access to the Privileged SCC
	7.8.2. Grant a Service Account Access to the Privileged SCC
	7.8.3. Enable Images to Run with USER in the Dockerfile
	7.8.4. Enable Container Images that Require Root
	7.8.5. Use --mount-host on the Registry
	7.8.6. Provide Additional Capabilities
	7.8.7. Modify Cluster Default Behavior
	7.8.8. Use the hostPath Volume Plug-in
	7.8.9. Ensure That Admission Attempts to Use a Specific SCC First
	7.8.10. Add an SCC to a User or Group

	CHAPTER 8. SETTING QUOTAS
	8.1. OVERVIEW
	8.2. RESOURCES MANAGED BY QUOTA
	8.3. QUOTA SCOPES
	8.4. QUOTA ENFORCEMENT
	8.5. REQUESTS VS LIMITS
	8.6. SAMPLE RESOURCE QUOTA DEFINITIONS
	8.7. CREATING A QUOTA
	8.8. VIEWING A QUOTA
	8.9. CONFIGURING QUOTA SYNCHRONIZATION PERIOD
	8.10. ACCOUNTING FOR QUOTA IN DEPLOYMENT CONFIGURATIONS

	CHAPTER 9. SETTING LIMIT RANGES
	9.1. OVERVIEW
	9.1.1. Container Limits
	9.1.2. Pod Limits
	9.1.3. Image Limits
	9.1.4. Image Stream Limits
	9.1.4.1. Counting of Image References

	9.2. CREATING A LIMIT RANGE
	9.3. VIEWING LIMITS
	9.4. DELETING LIMITS

	CHAPTER 10. PRUNING OBJECTS
	10.1. OVERVIEW
	10.2. BASIC PRUNE OPERATIONS
	10.3. PRUNING DEPLOYMENTS
	10.4. PRUNING BUILDS
	10.5. PRUNING IMAGES

	CHAPTER 11. GARBAGE COLLECTION
	11.1. OVERVIEW
	11.2. CONTAINER GARBAGE COLLECTION
	11.2.1. Detecting Containers for Deletion

	11.3. IMAGE GARBAGE COLLECTION
	11.3.1. Detecting Images for Deletion

	CHAPTER 12. SCHEDULER
	12.1. OVERVIEW
	12.2. GENERIC SCHEDULER
	12.2.1. Filter the Nodes
	12.2.2. Prioritize the Filtered List of Nodes
	12.2.3. Select the Best Fit Node

	12.3. AVAILABLE PREDICATES
	12.3.1. Static Predicates
	12.3.2. Configurable Predicates

	12.4. AVAILABLE PRIORITY FUNCTIONS
	12.4.1. Static Priority Functions
	12.4.2. Configurable Priority Functions

	12.5. SCHEDULER POLICY
	12.5.1. Default Scheduler Policy
	12.5.2. Modifying Scheduler Policy

	12.6. USE CASES
	12.6.1. Infrastructure Topological Levels
	12.6.2. Affinity
	12.6.3. Anti Affinity

	12.7. SAMPLE POLICY CONFIGURATIONS
	12.8. SCHEDULER EXTENSIBILITY
	12.8.1. Enhancements
	12.8.2. Replacement

	12.9. CONTROLLING POD PLACEMENT
	12.9.1. Constraining Pod Placement Using Node Name
	12.9.2. Constraining Pod Placement Using a Node Selector

	CHAPTER 13. ALLOCATING NODE RESOURCES
	13.1. OVERVIEW
	13.2. CONFIGURING NODES FOR ALLOCATED RESOURCES
	13.3. COMPUTING ALLOCATED RESOURCES
	13.4. VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY
	13.5. SCHEDULER

	CHAPTER 14. OVERCOMMITTING
	14.1. OVERVIEW
	14.2. REQUESTS AND LIMITS
	14.3. COMPUTE RESOURCES
	14.3.1. CPU
	14.3.2. Memory

	14.4. QUALITY OF SERVICE CLASSES
	14.5. CONFIGURING MASTERS FOR OVERCOMMITMENT
	14.6. CONFIGURING NODES FOR OVERCOMMITMENT
	14.6.1. Enforcing CPU Limits
	14.6.2. Reserving Resources for System Processes
	14.6.3. Kernel Tunable Flags
	14.6.4. Disabling Swap Memory

	CHAPTER 15. LIMIT RUN-ONCE POD DURATION
	15.1. OVERVIEW
	15.2. CONFIGURING THE RUNONCEDURATION PLUG-IN
	15.3. SPECIFYING A CUSTOM DURATION PER PROJECT

	CHAPTER 16. MONITORING ROUTERS
	16.1. OVERVIEW
	16.2. VIEWING STATISTICS
	16.3. DISABLING STATISTICS VIEW
	16.4. VIEWING LOGS
	16.5. VIEWING THE ROUTER INTERNALS

	CHAPTER 17. HIGH AVAILABILITY
	17.1. OVERVIEW
	17.2. CONFIGURING IP FAILOVER
	17.2.1. Virtual IP Addresses
	17.2.2. Configuring a Highly-available Routing Service
	17.2.3. Configuring a Highly-available Network Service
	17.2.4. Dynamically Updating Virtual IPs for a Highly-available Service
	17.2.5. Multiple Highly Available Services In a Network

	CHAPTER 18. MANAGING POD NETWORKS
	18.1. OVERVIEW
	18.2. JOINING PROJECT NETWORKS
	18.3. MAKING PROJECT NETWORKS GLOBAL

	CHAPTER 19. IPTABLES
	19.1. OVERVIEW
	19.2. RESTARTING

	CHAPTER 20. SECURING BUILDS BY STRATEGY
	20.1. OVERVIEW
	20.2. DISABLING A BUILD STRATEGY GLOBALLY
	20.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY
	20.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT

	CHAPTER 21. BUILDING DEPENDENCY TREES
	21.1. OVERVIEW
	21.2. USAGE

	CHAPTER 22. BACKUP AND RESTORE
	22.1. OVERVIEW
	22.2. PREREQUISITES
	22.3. CLUSTER BACKUP
	22.4. CLUSTER RESTORE FOR SINGLE-MEMBER ETCD CLUSTERS
	22.5. CLUSTER RESTORE FOR MULTIPLE-MEMBER ETCD CLUSTERS
	22.5.1. Embedded etcd
	22.5.2. Separate etcd
	22.5.2.1. Adding Additional etcd Members

	22.6. BRINGING OPENSHIFT ENTERPRISE SERVICES BACK ONLINE
	22.7. PROJECT BACKUP
	22.7.1. Role Bindings
	22.7.2. Service Accounts
	22.7.3. Secrets
	22.7.4. Persistent Volume Claims

	22.8. PROJECT RESTORE
	22.9. APPLICATION DATA BACKUP
	22.10. APPLICATION DATA RESTORE

	CHAPTER 23. TROUBLESHOOTING OPENSHIFT SDN
	23.1. OVERVIEW
	23.2. NOMENCLATURE
	23.3. DEBUGGING EXTERNAL ACCESS TO AN HTTP SERVICE
	23.4. DEBUGGING THE ROUTER
	23.5. DEBUGGING A SERVICE
	23.6. DEBUGGING NODE TO NODE NETWORKING
	23.7. DEBUGGING LOCAL NETWORKING
	23.7.1. The Interfaces on a Node
	23.7.2. SDN Flows Inside a Node
	23.7.3. Debugging Steps
	23.7.3.1. Is IP Forwarding Enabled?
	23.7.3.2. Is firewalld Disabled?
	23.7.3.3. Are your routes correct?

	23.7.4. Is the Open vSwitch configured correctly?
	23.7.4.1. Is the iptables configuration correct?
	23.7.4.2. Is your external network correct?

	23.8. DEBUGGING VIRTUAL NETWORKING
	23.8.1. Builds on a Virtual Network are Failing

	23.9. DEBUGGING POD EGRESS
	23.10. READING THE LOGS
	23.11. DEBUGGING KUBERNETES
	23.12. FURTHER HELP
	23.13. MISCELLANEOUS NOTES
	23.13.1. Other clarifications on ingress
	23.13.2. TLS Handshake Timeout
	23.13.3. Other debugging notes

	CHAPTER 24. REVISION HISTORY: CLUSTER ADMINISTRATION
	24.1. TUE MAY 02 2017
	24.2. THU APR 13 2017
	24.3. MON MAR 27 2017
	24.4. MON MAR 20 2017
	24.5. TUE MAR 14 2017
	24.6. WED JAN 25 2017
	24.7. MON JAN 09 2017
	24.8. TUE DEC 20 2016
	24.9. MON DEC 05 2016
	24.10. MON NOV 21 2016
	24.11. TUE NOV 01 2016
	24.12. MON OCT 24 2016
	24.13. MON OCT 17 2016
	24.14. TUE OCT 11 2016
	24.15. TUE OCT 04 2016
	24.16. TUE SEP 13 2016
	24.17. TUE SEP 06 2016
	24.18. TUE AUG 23 2016
	24.19. MON AUG 01 2016
	24.20. WED JUL 27 2016
	24.21. THU JUL 14 2016
	24.22. TUE JUN 14 2016
	24.23. FRI JUN 10 2016
	24.24. MON MAY 30 2016
	24.25. THU MAY 12 2016

