& RedHat

OpenShift Container Platform 4.7

Operators

Working with Operators in OpenShift Container Platform

Last Updated: 2022-10-20

OpenShift Container Platform 4.7 Operators

Working with Operators in OpenShift Container Platform

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information for working with Operators in OpenShift Container Platform.
This includes instructions for cluster administrators on how to install and manage Operators, as well
as information for developers on how to create applications from installed Operators. This also
contains guidance on building your own Operator using the Operator SDK.

Table of Contents

CHAPTER 1. OPERATORS OVERVIEW e

11. FOR DEVELOPERS
1.2. FOR ADMINISTRATORS
1.3. NEXT STEPS

CHAPTER 2. UNDERSTANDING OPERATORSo

2.1. WHAT ARE OPERATORS?
2.1.1. Why use Operators?
2.1.2. Operator Framework
2.1.3. Operator maturity model
2.2. OPERATOR FRAMEWORK PACKAGING FORMATS
2.2.1. Bundle Format
2.2.1.1. Manifests
Additionally supported objects
2.2.1.2. Annotations
2.2.1.3. Dependencies file
2.2.1.4. About opm
2.2.2. Package Manifest Format

2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS

2.3.1. Common Operator Framework terms
2.3.1.1. Bundle
2.3.1.2. Bundle image
2.3.1.3. Catalog source
2.3.1.4. Catalog image
2.3.1.5. Channel
2.3.1.6. Channel head
2.3.1.7. Cluster service version
2.3.1.8. Dependency
2.3.1.9. Index image
2.3.110. Install plan
2.3.1.11. Operator group
2.3.1.12. Package
2.3.1.13. Registry
2.3.1.14. Subscription
2.3.1.15. Update graph
2.4. OPERATOR LIFECYCLE MANAGER (OLM)
2.4.1. Operator Lifecycle Manager concepts and resources
2.4.1.1. What is Operator Lifecycle Manager?
2.4.1.2. OLM resources
2.4.1.2.1. Cluster service version
2.4.1.2.2. Catalog source
2.4.1.2.3. Subscription
2.4.1.2.4. Install plan
2.4.1.2.5. Operator groups
2.4.1.2.6. Operator conditions
2.4.2. Operator Lifecycle Manager architecture
2.4.2.1. Component responsibilities
2.4.2.2. OLM Operator
2.4.2.3. Catalog Operator
2.4.2.4. Catalog Registry
2.4.3. Operator Lifecycle Manager workflow

Table of Contents

OpenShift Container Platform 4.7 Operators

2.4.3.1. Operator installation and upgrade workflow in OLM
2.4.3.1.1. Example upgrade path
2.4.3.1.2. Skipping upgrades
2.4.3.1.3. Replacing multiple Operators
2.4.3.1.4. Z-stream support
2.4.4. Operator Lifecycle Manager dependency resolution
2.4.4.1. About dependency resolution
2.4.4.2. Dependencies file
2.4.4.3. Dependency preferences
2.4.4.3.1. Catalog priority
2.4.4.3.2. Channel ordering
2.4.4.3.3. Order within a channel
2.4.4.3.4. Other constraints
2.4.4.3.4.1. Subscription constraint
2.4.4.3.4.2. Package constraint
2.4.4.4. CRD upgrades
2.4.4.5. Dependency best practices
2.4.4.6. Dependency caveats
2.4.4.7. Example dependency resolution scenarios
Example: Deprecating dependent APIs
Example: Version deadlock
2.4.5. Operator groups
2.4.5.1. About Operator groups
2.4.5.2. Operator group membership
2.4.5.3. Target namespace selection
2.4.5.4. Operator group CSV annotations
2.45.5. Provided APIs annotation
2.4.5.6. Role-based access control
2.45.7. Copied CSVs
2.4.5.8. Static Operator groups
2.4.5.9. Operator group intersection
Rules for intersection
2.4.5.10. Limitations for multi-tenant Operator management
2.4.5.10.1. Additional resources
2.4.5.11. Troubleshooting Operator groups
Membership
2.4.6. Operator conditions
2.4.6.1. About Operator conditions
2.4.6.2. Supported conditions
2.4.6.2.1. Upgradeable condition
2.4.6.3. Additional resources
2.4.7. Operator Lifecycle Manager metrics
2.4.7.1. Exposed metrics
2.4.8. Webhook management in Operator Lifecycle Manager
2.4.8.1. Additional resources

2.5.UNDERSTANDING OPERATORHUB

2.5.1. About OperatorHub
2.5.2. OperatorHub architecture
2.5.2.1. OperatorHub custom resource

2.5.3. Additional resources
2.6. RED HAT-PROVIDED OPERATOR CATALOGS

2.6.1. About Operator catalogs
2.6.2. About Red Hat-provided Operator catalogs

30
32
32
34
35
36
36
36
37
37
37
38
38
38
38
38
38
39
40
40
40

41

41

41

41
42
43
43
47
47
47
48
49
49
49
49
49
49
50
50
50
50
50

51

51

51
52
52
52
53
53
53
54

2.7.CRDS

2.7.1. Extending the Kubernetes API with custom resource definitions
2.7.1.1. Custom resource definitions
2.7.1.2. Creating a custom resource definition
2.7.1.3. Creating cluster roles for custom resource definitions
2.7.1.4. Creating custom resources from a file
2.7.1.5. Inspecting custom resources

2.7.2. Managing resources from custom resource definitions
2.7.2.1. Custom resource definitions
2.7.2.2. Creating custom resources from a file
2.7.2.3. Inspecting custom resources

CHAPTER 3. USER TASKS .. i i i e

3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS
3.1.1. Creating an etcd cluster using an Operator
3.2. INSTALLING OPERATORS IN YOUR NAMESPACE
3.2.1. Prerequisites
3.2.2. Operator installation with OperatorHub
3.2.3. Installing from OperatorHub using the web console
3.2.4. Installing from OperatorHub using the CLI
3.2.5. Installing a specific version of an Operator

CHAPTER 4. ADMINISTRATOR TASKS ... i

4.1. ADDING OPERATORS TO A CLUSTER
4.1.1. Operator installation with OperatorHub
4.1.2. Installing from OperatorHub using the web console
4.1.3. Installing from OperatorHub using the CLI
4.1.4. Installing a specific version of an Operator
4.1.5. Pod placement of Operator workloads
4.2. UPGRADING INSTALLED OPERATORS
4.2.1. Changing the update channel for an Operator
4.2.2. Manually approving a pending Operator upgrade
4.3. DELETING OPERATORS FROM A CLUSTER
4.3.1. Deleting Operators from a cluster using the web console
4.3.2. Deleting Operators from a cluster using the CLI
4.3.3. Refreshing failing subscriptions
4.4. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER
4.4.1. Overriding proxy settings of an Operator
4.4.2. Injecting a custom CA certificate
4.5. VIEWING OPERATOR STATUS
4.5.1. Operator subscription condition types
4.5.2. Viewing Operator subscription status by using the CLI
4.5.3. Viewing Operator catalog source status by using the CLI
4.6. MANAGING OPERATOR CONDITIONS
4.6.1. Overriding Operator conditions
4.6.2. Updating your Operator to use Operator conditions
4.6.2.1. Setting defaults
4.6.3. Additional resources
4.7. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL OPERATORS
4.7.1. Understanding Operator installation policy
4.7.1.1. Installation scenarios
4.7.1.2. Installation workflow
4.7.2. Scoping Operator installations

Table of Contents

55
55
55
55
57
58
59
60
60

61

61

.................. 64

64
64
65
65
65
66
67
70

................... 72

72
72
72
74
77
77
78
78
79
80
80
80

81
83
83
85
86
86
87
87
90
90

91

91

91

91

91
92
92
92

OpenShift Container Platform 4.7 Operators

4.7.2.1. Fine-grained permissions

4.7.3. Troubleshooting permission failures

4.8. MANAGING CUSTOM CATALOGS

4.8.1. Custom catalogs using the Bundle Format
4.8.1.1. Prerequisites
4.8.1.2. Creating an index image
4.8.1.3. Creating a catalog from an index image
4.8.1.4. Updating an index image
4.8.1.5. Pruning an index image

4.8.2. Custom catalogs using the Package Manifest Format
4.8.2.1. Building a Package Manifest Format catalog image
4.8.2.2. Mirroring a Package Manifest Format catalog image
4.8.2.3. Updating a Package Manifest Format catalog image
4.8.2.4. Testing a Package Manifest Format catalog image

4.8.3. Accessing images for Operators from private registries

4.8.4. Disabling the default OperatorHub sources

4.8.5. Removing custom catalogs

4.9. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS

4.9.1. Prerequisites

4.9.2. Disabling the default OperatorHub sources

4.9.3. Pruning an index image

4.9.4. Mirroring an Operator catalog

4.9.5. Creating a catalog from an index image

4.9.6. Updating an index image

CHAPTER 5. DEVELOPING OPERATORS ... i

5.1. ABOUT THE OPERATOR SDK
5.1.1. What are Operators?
5.1.2. Development workflow
5.1.3. Additional resources
5.2. INSTALLING THE OPERATOR SDK CLI
5.2.1. Installing the Operator SDK CLI
5.3. GO-BASED OPERATORS
5.3.1. Getting started with Operator SDK for Go-based Operators
5.3.1.1. Prerequisites
5.3.1.2. Creating and deploying Go-based Operators
5.3.1.3. Next steps
5.3.2. Operator SDK tutorial for Go-based Operators
5.3.2.1. Prerequisites
5.3.2.2. Creating a project
5.3.2.2.1. PROJECT file
5.3.2.2.2. About the Manager
5.3.2.2.3. About multi-group APIs
5.3.2.3. Creating an APl and controller
5.3.2.3.1. Defining the API
5.3.2.3.2. Generating CRD manifests
5.3.2.3.2.1. About OpenAPI validation
5.3.2.4. Implementing the controller
5.3.2.4.1. Resources watched by the controller
5.3.2.4.2. Controller configurations
5.3.2.4.3. Reconcile loop
5.3.2.4.4. Permissions and RBAC manifests
5.3.2.5. Running the Operator

94
96
97
97
97
97
98
99
101
103
103
105
108
12
14
18
18
19
120
120
121
123
128
130

133
133
133
133
134
134
134
135
135
135
136
137
137
138
138
139
139
139
140
140

141

141
142
146
147
147
148
148

5.3.2.5.1. Running locally outside the cluster
5.3.2.5.2. Preparing your Operator to use supported images
5.3.2.5.3. Running as a deployment on the cluster
5.3.2.5.4. Bundling an Operator and deploying with Operator Lifecycle Manager
5.3.2.6. Creating a custom resource
5.3.2.7. Additional resources
5.3.3. Project layout for Go-based Operators
5.3.3.1. Go-based project layout
5.4. ANSIBLE-BASED OPERATORS
5.4.1. Getting started with Operator SDK for Ansible-based Operators
5.4.1.1. Prerequisites
5.4.1.2. Creating and deploying Ansible-based Operators
5.4.1.3. Next steps
5.4.2. Operator SDK tutorial for Ansible-based Operators
5.4.2.1. Prerequisites
5.4.2.2. Creating a project
5.4.2.2.1. PROJECT file
5.4.2.3. Creating an API
5.4.2.4. Modifying the manager
5.4.2.5. Running the Operator
5.4.2.5.1. Running locally outside the cluster
5.4.2.5.2. Preparing your Operator to use supported images
5.4.2.5.3. Running as a deployment on the cluster
5.4.2.5.4. Bundling an Operator and deploying with Operator Lifecycle Manager
5.4.2.6. Creating a custom resource
5.4.2.7. Additional resources
5.4.3. Project layout for Ansible-based Operators
5.4.3.1. Ansible-based project layout
5.4.4. Ansible support in Operator SDK
5.4.4.1. Custom resource files
5.4.4.2. watches.yaml file
5.4.4.2.1. Advanced options
5.4.4.3. Extra variables sent to Ansible
5.4.4.4. Ansible Runner directory
5.4.5. Kubernetes Collection for Ansible
5.4.5.1. Installing the Kubernetes Collection for Ansible
5.4.5.2. Testing the Kubernetes Collection locally
5.4.5.3. Next steps
5.4.6. Using Ansible inside an Operator
5.4.6.1. Custom resource files
5.4.6.2. Testing an Ansible-based Operator locally
5.4.6.3. Testing an Ansible-based Operator on the cluster
5.4.6.4. Ansible logs
5.4.6.4.1. Viewing Ansible logs
5.4.6.4.2. Enabling full Ansible results in logs
5.4.6.4.3. Enabling verbose debugging in logs
5.4.7. Custom resource status management
5.4.7.1. About custom resource status in Ansible-based Operators
5.4.7.2. Tracking custom resource status manually
5.5. HELM-BASED OPERATORS
5.5.1. Getting started with Operator SDK for Helm-based Operators
5.5.1.1. Prerequisites
5.5.1.2. Creating and deploying Helm-based Operators

Table of Contents

149
149
150

151
153
155
155
155
156
156
156
156
158
158
158
159
159
159
160

161

161
162
163
164
166
168
168
168
169
169
170

171
172
173
173
173
174
176
176
176
177
179
180
180

181
182
182
182
183
183
183
184
184

OpenShift Container Platform 4.7 Operators

5.5.1.3. Next steps
5.5.2. Operator SDK tutorial for Helm-based Operators
5.5.2.1. Prerequisites
5.5.2.2. Creating a project
5.5.2.2.1. Existing Helm charts
5.5.2.2.2. PROJECT file
5.5.2.3. Understanding the Operator logic
5.5.2.3.1. Sample Helm chart
5.5.2.3.2. Modifying the custom resource spec
5.5.2.4. Running the Operator
5.5.2.4.1. Running locally outside the cluster
5.5.2.4.2. Preparing your Operator to use supported images
5.5.2.4.3. Running as a deployment on the cluster
5.5.2.4.4. Bundling an Operator and deploying with Operator Lifecycle Manager
5.5.2.5. Creating a custom resource
5.5.2.6. Additional resources
5.5.3. Project layout for Helm-based Operators
5.5.3.1. Helm-based project layout
5.5.4. Helm support in Operator SDK
5.5.4.1. Helm charts
5.6. DEFINING CLUSTER SERVICE VERSIONS (CSVS)
5.6.1. How CSV generation works
5.6.1.1. Generated files and resources
5.6.1.2. Version management
5.6.2. Manually-defined CSV fields
5.6.2.1. Operator metadata annotations
Example use cases
5.6.3. Enabling your Operator for restricted network environments
5.6.4. Enabling your Operator for multiple architectures and operating systems
5.6.4.1. Architecture and operating system support for Operators
5.6.5. Setting a suggested namespace
5.6.6. Enabling Operator conditions
5.6.7. Defining webhooks
5.6.7.1. Webhook considerations for OLM
Certificate authority constraints
Admission webhook rules constraints
Conversion webhook constraints
5.6.8. Understanding your custom resource definitions (CRDs)
5.6.8.1. Owned CRDs
5.6.8.2. Required CRDs
5.6.8.3. CRD upgrades
5.6.8.3.1. Adding a new CRD version
5.6.8.3.2. Deprecating or removing a CRD version
5.6.8.4. CRD templates
5.6.8.5. Hiding internal objects
5.6.8.6. Initializing required custom resources
5.6.9. Understanding your APl services
5.6.9.1. Owned API services
5.6.9.1.1. APl service resource creation
5.6.9.1.2. APl service serving certificates
5.6.9.2. Required API services
5.7. WORKING WITH BUNDLE IMAGES
5.7.1. Bundling an Operator and deploying with Operator Lifecycle Manager

185
185
186
186
187
188
188
189
189
189
190
190
191
192
194
196
196
196
197
197
197
198
198
199
199
201
203
203
206
207
208
208
210
212
212
212
212
213
213
215
216
216
217
218
218
219
220
220
221
222
222
222
222

Table of Contents

5.7.2. Testing an Operator upgrade on Operator Lifecycle Manager 224
5.7.3. Additional resources 226
5.8. VALIDATING OPERATORS USING THE SCORECARD TOOL 226
5.8.1. About the scorecard tool 226
5.8.2. Scorecard configuration 227
5.8.3. Built-in scorecard tests 228
5.8.4. Running the scorecard tool 229
5.8.5. Scorecard output 229
5.8.6. Selecting tests 230
5.8.7. Enabling parallel testing 231
5.8.8. Custom scorecard tests 232
5.9. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS 235
5.9.1. Prometheus Operator support 235
5.9.2. Metrics helper 235
5.9.2.1. Modifying the metrics port 236
5.9.3. Service monitors 236
5.9.3.1. Creating service monitors 236
5.10. CONFIGURING LEADER ELECTION 237
5.10.1. Operator leader election examples 237
5.10.1.1. Leader-for-life election 238
5.10.1.2. Leader-with-lease election 238

5.11. OPERATOR SDK CLI REFERENCE 238
5.11.1. bundle 239
5.11.1.1. validate 239
511.2. cleanup 239
5.11.3. completion 240
511.4. create 240
5.11.4.1. api 240
5.11.5. generate 240
511.5.1. bundle 240
5.11.5.2. kustomize 242
5.11.5.2.1. manifests 242

5.11.6. init 242
51.7. run 243
511.7.1. bundle 243
5.11.7.2. bundle-upgrade 244
5.11.8. scorecard 244
CHAPTER 6. CLUSTER OPERATORS REFERENCE ...\ttt ieii i et eieeaneennneennnns 246
6.1. CLOUD CREDENTIAL OPERATOR 246
Purpose 246
Project 246
CRDs 246
Configuration objects 246
Additional resources 246
6.2. CLUSTER AUTHENTICATION OPERATOR 246
Purpose 246
Project 247
6.3. CLUSTER AUTOSCALER OPERATOR 247
Purpose 247
Project 247
CRDs 247
6.4. CLUSTER CONFIG OPERATOR 247

OpenShift Container Platform 4.7 Operators

Purpose
Project
6.5. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR
Purpose
Project
6.6. CLUSTER IMAGE REGISTRY OPERATOR
Purpose
Project
6.7. CLUSTER MACHINE APPROVER OPERATOR
Purpose
Project
6.8. CLUSTER MONITORING OPERATOR
Purpose
Project
CRDs
Configuration objects
6.9. CLUSTER NETWORK OPERATOR
Purpose
6.10. OPENSHIFT CONTROLLER MANAGER OPERATOR
Purpose
Project
6.11. CLUSTER SAMPLES OPERATOR
Purpose
Project
6.12. CLUSTER STORAGE OPERATOR
Purpose
Project
Configuration
Notes
6.13. CLUSTER VERSION OPERATOR
Purpose
Project
Additional resources
6.14. CONSOLE OPERATOR
Purpose
Project
6.15. DNS OPERATOR
Purpose
Project
6.16. ETCD CLUSTER OPERATOR
Purpose
Project
CRDs
Configuration objects
6.17. INGRESS OPERATOR
Purpose
Project
CRDs
Configuration objects
Notes
6.18. INSIGHTS OPERATOR
Purpose
Project

247
247
247
247
247
247
247
248
248
248
248
248
248
248
248
249
249
249
249
249
249
249
249
250
250
250
250
250
250

251

251

251

251

251

251

251

251

251

251

251

251

251
252
252
252
252
252
252
252
252
253
253
253

Configuration
Notes
Additional resources
6.19. KUBERNETES API SERVER OPERATOR
Purpose
Project
CRDs
Configuration objects
6.20. KUBERNETES CONTROLLER MANAGER OPERATOR
Purpose
Project
6.21. KUBERNETES SCHEDULER OPERATOR
Purpose
Project
Configuration
6.22. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR
Purpose
Project
6.23. MACHINE APl OPERATOR
Purpose
Project
CRDs
6.24. MACHINE CONFIG OPERATOR
Purpose
Project
6.25. MARKETPLACE OPERATOR
Purpose
Project
6.26. NODE TUNING OPERATOR
Purpose
Project
6.27. OPENSHIFT API SERVER OPERATOR
Purpose
Project
CRDs
6.28. OPERATOR LIFECYCLE MANAGER OPERATORS
Purpose
CRDs
OLM Operator
Catalog Operator
Catalog Registry
Additional resources
6.29. OPENSHIFT SERVICE CA OPERATOR
Purpose
Project
6.30. VSPHERE PROBLEM DETECTOR OPERATOR
Purpose
Configuration
Notes
Additional resources

Table of Contents

253
253
253
253
253
253
253
253
254
254
254
254
254
254
254
255
255
255
255
255
255
255
255
255
255
255
255
256
256
256
256
256
256
256
256
256
256
257
258
258
259
259
259
259
259
259
259
259
259
259

OpenShift Container Platform 4.7 Operators

10

CHAPTER 1. OPERATORS OVERVIEW

CHAPTER 1. OPERATORS OVERVIEW

Operators are among the most important components of OpenShift Container Platform. Operators are
the preferred method of packaging, deploying, and managing services on the control plane. They can
also provide advantages to applications that users run.

Operators integrate with Kubernetes APIs and CLI tools such as kubectl and oc commands. They
provide the means of monitoring applications, performing health checks, managing over-the-air (OTA)
updates, and ensuring that applications remain in your specified state.

While both follow similar Operator concepts and goals, Operators in OpenShift Container Platform are
managed by two different systems, depending on their purpose:

® Cluster Operators, which are managed by the Cluster Version Operator (CVO), are installed by
default to perform cluster functions.

e Optional add-on Operators, which are managed by Operator Lifecycle Manager (OLM), can be
made accessible for users to run in their applications.

With Operators, you can create applications to monitor the running services in the cluster. Operators are
designed specifically for your applications. Operators implement and automate the common Day 1

operations such as installation and configuration as well as Day 2 operations such as autoscaling up and
down and creating backups. All these activities are in a piece of software running inside your cluster.

1.1. FOR DEVELOPERS

As a developer, you can perform the following Operator tasks:
® [nstall Operator SDK CLI.
® Create Go-based Operators, Ansible-based Operators, and Helm-based Operators.
® Use Operator SDK to build,test, and deploy an Operator .

® |nstall and subscribe an Operator to your namespace .

Create an application from an installed Operator through the web console .

1.2. FOR ADMINISTRATORS
As a cluster administrator, you can perform the following Operator tasks:
® Manage custom catalogs
® Allow non-cluster administrators to install Operators
® |nstall an Operator from OperatorHub
® View Operator status.
® Manage Operator conditions
® Upgrade installed Operators

® Delete installed Operators

1

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-golang-quickstart
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-ansible-quickstart
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-helm-quickstart
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-installing-operators-in-namespace
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-creating-apps-from-installed-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-creating-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-installing-operators-in-namespace
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-status
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-managing-operatorconditions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-deleting-operators-from-a-cluster

OpenShift Container Platform 4.7 Operators

® Configure proxy support
® Use Operator Lifecycle Manager on restricted networks

To know all about the cluster Operators that Red Hat provides, see Cluster Operators reference.

1.3. NEXT STEPS

To understand more about Operators, see What are Operators?

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-configuring-proxy-support
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-restricted-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#cluster-operators-ref
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-what-operators-are

CHAPTER 2. UNDERSTANDING OPERATORS

CHAPTER 2. UNDERSTANDING OPERATORS

2.1. WHAT ARE OPERATORS?

Conceptually, Operators take human operational knowledge and encode it into software that is more
easily shared with consumers.

Operators are pieces of software that ease the operational complexity of running another piece of
software. They act like an extension of the software vendor’s engineering team, monitoring a Kubernetes
environment (such as OpenShift Container Platform) and using its current state to make decisions in
real time. Advanced Operators are designed to handle upgrades seamlessly, react to failures
automatically, and not take shortcuts, like skipping a software backup process to save time.

More technically, Operators are a method of packaging, deploying, and managing a Kubernetes
application.

A Kubernetes application is an app that is both deployed on Kubernetes and managed using the
Kubernetes APIs and kubectl or oc tooling. To be able to make the most of Kubernetes, you require a
set of cohesive APIs to extend in order to service and manage your apps that run on Kubernetes. Think
of Operators as the runtime that manages this type of app on Kubernetes.

2.1.1. Why use Operators?

Operators provide:
® Repeatability of installation and upgrade.
e Constant health checks of every system component.
® Qver-the-air (OTA) updates for OpenShift components and ISV content.

® A place to encapsulate knowledge from field engineers and spread it to all users, not just one or
two.

Why deploy on Kubernetes?

Kubernetes (and by extension, OpenShift Container Platform) contains all of the primitives needed
to build complex distributed systems - secret handling, load balancing, service discovery, autoscaling
- that work across on-premises and cloud providers.

Why manage your app with Kubernetes APIs andkubectl tooling?

These APIs are feature rich, have clients for all platforms and plug into the cluster’s access
control/auditing. An Operator uses the Kubernetes extension mechanism, custom resource
definitions (CRDs), so your custom object, for example MongoDB, looks and acts just like the built-
in, native Kubernetes objects.

How do Operators compare with service brokers?

A service broker is a step towards programmatic discovery and deployment of an app. However,
because it is not a long running process, it cannot execute Day 2 operations like upgrade, failover, or
scaling. Customizations and parameterization of tunables are provided at install time, versus an
Operator that is constantly watching the current state of your cluster. Off-cluster services are a good
match for a service broker, although Operators exist for these as well.

2.1.2. Operator Framework

The Operator Framework is a family of tools and capabilities to deliver on the customer experience

13

https://marketplace.redhat.com/en-us/products/mongodb-enterprise-advanced-from-ibm

OpenShift Container Platform 4.7 Operators

described above. It is not just about writing code; testing, delivering, and updating Operators is just as
important. The Operator Framework components consist of open source tools to tackle these
problems:

Operator SDK

The Operator SDK assists Operator authors in bootstrapping, building, testing, and packaging their
own Operator based on their expertise without requiring knowledge of Kubernetes APl complexities.

Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control
(RBAC) of Operators in a cluster. Deployed by default in OpenShift Container Platform 4.7.

Operator Registry

The Operator Registry stores cluster service versions (CSVs) and custom resource definitions
(CRDs) for creation in a cluster and stores Operator metadata about packages and channels. It runs
in a Kubernetes or OpenShift cluster to provide this Operator catalog data to OLM.

OperatorHub

OperatorHub is a web console for cluster administrators to discover and select Operators to install
on their cluster. It is deployed by default in OpenShift Container Platform.

These tools are designed to be composable, so you can use any that are useful to you.

2.1.3. Operator maturity model

The level of sophistication of the management logic encapsulated within an Operator can vary. This
logic is also in general highly dependent on the type of the service represented by the Operator.

One can however generalize the scale of the maturity of the encapsulated operations of an Operator for
certain set of capabilities that most Operators can include. To this end, the following Operator maturity

model defines five phases of maturity for generic day two operations of an Operator:

Figure 2.1. Operator maturity model

Level Il Level Il Level IV

Basic Install Seamless Upgrades Full Lifecycle Deep Insights Auto Pilot

Automated application Patch and minor version App lifecycle, storage Metrics, alerts, log Horizontal/vertical scaling,
provisioning and upgrades supported lifecycle (backup, failure processing and workload auto config tuning, abnormal
configuration management recovery) analysis detection, scheduling tuning
<—— HELM >

A
v

A

ANSIBLE

= GO

v

The above model also shows how these capabilities can best be developed through the Helm, Go, and
Ansible capabilities of the Operator SDK.

14

CHAPTER 2. UNDERSTANDING OPERATORS

2.2. OPERATOR FRAMEWORK PACKAGING FORMATS

This guide outlines the packaging formats for Operators supported by Operator Lifecycle Manager
(OLM) in OpenShift Container Platform.

2.2.1. Bundle Format

The Bundle Format for Operators is a new packaging format introduced by the Operator Framework. To
improve scalability and to better enable upstream users hosting their own catalogs, the Bundle Format
specification simplifies the distribution of Operator metadata.

An Operator bundle represents a single version of an Operator. On-disk bundle manifests are
containerized and shipped as a bundle image, which is a non-runnable container image that stores the
Kubernetes manifests and Operator metadata. Storage and distribution of the bundle image is then
managed using existing container tools like podman and docker and container registries such as Quay.
Operator metadata can include:

e |nformation that identifies the Operator, for example its name and version.

® Additional information that drives the Ul, for example its icon and some example custom
resources (CRs).

® Required and provided APls.
® Related images.
When loading manifests into the Operator Registry database, the following requirements are validated:
® The bundle must have at least one channel defined in the annotations.
® FEvery bundle has exactly one cluster service version (CSV).

e |f a CSV owns a custom resource definition (CRD), that CRD must exist in the bundle.

2.2.1.1. Manifests

Bundle manifests refer to a set of Kubernetes manifests that define the deployment and RBAC model of
the Operator.

A bundle includes one CSV per directory and typically the CRDs that define the owned APIs of the CSV
in its /manifests directory.

Example Bundle Format layout

eted

— manifests

| — etedcluster.crd.yaml
| L— etcdoperator.clusterserviceversion.yaml

L— secret.yaml
L— configmap.yaml
L— metadata
L annotations.yaml
L— dependencies.yaml

Additionally supported objects

15

OpenShift Container Platform 4.7 Operators

The following object types can also be optionally included in the /manifests directory of a bundle:

Supported optional object types

® (ClusterRole

® ClusterRoleBinding
e ConfigMap

® ConsoleYamiSample
o PodDisruptionBudget
® PriorityClass

® PrometheusRule

® Role

® RoleBinding

e Secret

® Service

® ServiceAccount

e ServiceMonitor

e VerticalPodAutoscaler

When these optional objects are included in a bundle, Operator Lifecycle Manager (OLM) can create
them from the bundle and manage their lifecycle along with the CSV:

Lifecycle for optional objects
® When the CSV is deleted, OLM deletes the optional object.

® When the CSV is upgraded:

o If the name of the optional object is the same, OLM updates it in place.

o If the name of the optional object has changed between versions, OLM deletes and
recreates it.

2.2.1.2. Annotations

A bundle also includes an annotations.yaml file in its /metadata directory. This file defines higher level
aggregate data that helps describe the format and package information about how the bundle should
be added into an index of bundles:

Example annotations.yaml

annotations:
operators.operatorframework.io.bundle.mediatype.v1: "registry+vi" ﬂ

16

CHAPTER 2. UNDERSTANDING OPERATORS

operators.operatorframework.io.bundle.manifests.vi: "manifests/" g
operators.operatorframework.io.bundle.metadata.vi: "metadata/" 6
operators.operatorframework.io.bundle.package.v1: "test-operator” ﬂ
operators.operatorframework.io.bundle.channels.v1: "beta,stable" 9
operators.operatorframework.io.bundle.channel.default.vi: "stable" G

The media type or format of the Operator bundle. The registry+v1 format means it contains a
CSV and its associated Kubernetes objects.

The path in the image to the directory that contains the Operator manifests. This label is reserved
for future use and currently defaults to manifests/. The value manifests.v1 implies that the bundle
contains Operator manifests.

The path in the image to the directory that contains metadata files about the bundle. This label is
reserved for future use and currently defaults to metadata/. The value metadata.v1 implies that
this bundle has Operator metadata.

The package name of the bundle.

The list of channels the bundle is subscribing to when added into an Operator Registry.

Qv o6 o 9O

The default channel an Operator should be subscribed to when installed from a registry.

{

NOTE

In case of a mismatch, the annotations.yaml file is authoritative because the on-cluster
Operator Registry that relies on these annotations only has access to this file.

2.2.1.3. Dependencies file

The dependencies of an Operator are listed in a dependencies.yaml file in the metadata/ folder of a
bundle. This file is optional and currently only used to specify explicit Operator-version dependencies.

The dependency list contains a type field for each item to specify what kind of dependency this is. There
are two supported types of Operator dependencies:

e olm.package: This type indicates a dependency for a specific Operator version. The
dependency information must include the package name and the version of the package in
semver format. For example, you can specify an exact version such as 0.5.2 or a range of
versions such as >0.5.1.

e olm.gvk: With a gvk type, the author can specify a dependency with group/version/kind (GVK)
information, similar to existing CRD and API-based usage in a CSV. This is a path to enable
Operator authors to consolidate all dependencies, API or explicit versions, to be in the same
place.

In the following example, dependencies are specified for a Prometheus Operator and etcd CRDs:

Example dependencies.yaml file

dependencies:
- type: olm.package
value:
packageName: prometheus

17

OpenShift Container Platform 4.7 Operators

version: ">0.27.0"
- type: olm.gvk
value:
group: etcd.database.coreos.com
kind: EtcdCluster
version: vibeta2

Additional resources

® Operator Lifecycle Manager dependency resolution

2.2.1.4. About opm

The opm CLI tool is provided by the Operator Framework for use with the Operator Bundle Format.
This tool allows you to create and maintain catalogs of Operators from a list of bundles, called an index,
that are similar to software repositories. The result is a container image, called an index image, which can
be stored in a container registry and then installed on a cluster.

An index contains a database of pointers to Operator manifest content that can be queried through an
included API that is served when the container image is run. On OpenShift Container Platform,
Operator Lifecycle Manager (OLM) can use the index image as a catalog by referencingitin a
CatalogSource object, which polls the image at regular intervals to enable frequent updates to installed
Operators on the cluster.

® See CLltools for steps on installing the opm CLI.

2.2.2. Package Manifest Format

The Package Manifest Format for Operators is the legacy packaging format introduced by the Operator
Framework. While this format is deprecated in OpenShift Container Platform 4.5, it is still supported and
Operators provided by Red Hat are currently shipped using this method.

In this format, a version of an Operator is represented by a single cluster service version (CSV) and
typically the custom resource definitions (CRDs) that define the owned APIs of the CSV, though
additional objects may be included.

All versions of the Operator are nested in a single directory:

Example Package Manifest Format layout

etcd

F—o0.6.1

—— etcdcluster.crd.yaml

—— etcdoperator.clusterserviceversion.yaml
F—0.9.0

—— etcdbackup.crd.yaml

—— etcdcluster.crd.yaml

—— etcdoperator.v0.9.0.clusterserviceversion.yaml
—— etcdrestore.crd.yaml

F—o0.9.2

—— etcdbackup.crd.yaml

—— etcdcluster.crd.yaml

—— etcdoperator.v0.9.2.clusterserviceversion.yaml
—— etcdrestore.crd.yam|

L etcd.package.yaml

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-understanding-dependency-resolution
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#opm-cli

CHAPTER 2. UNDERSTANDING OPERATO

It also includes a <hame>.package.yaml file that is the package manifest that defines the package
name and channels details:

Example package manifest

packageName: etcd
channels:
- name: alpha

currentCSV: etcdoperator.v0.9.2
- name: beta

currentCSV: etcdoperator.v0.9.0
- name: stable

currentCSV: etcdoperator.v0.9.2
defaultChannel: alpha

When loading package manifests into the Operator Registry database, the following requirements are
validated:

® FEvery package has at least one channel.

® FEvery CSV pointed to by a channel in a package exists.

® Every version of an Operator has exactly one CSV.

e |fa CSV owns a CRD, that CRD must exist in the directory of the Operator version.

e |f a CSV replaces another, both the old and the new must exist in the package.

2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS
This topic provides a glossary of common terms related to the Operator Framework, including Operator

Lifecycle Manager (OLM) and the Operator SDK, for both packaging formats: Package Manifest
Format and Bundle Format.

2.3.1. Common Operator Framework terms

2.3.1.1. Bundle

In the Bundle Format, a bundle is a collection of an Operator CSV, manifests, and metadata. Together,
they form a unique version of an Operator that can be installed onto the cluster.

2.3.1.2. Bundle image

In the Bundle Format, a bundle image is a container image that is built from Operator manifests and that
contains one bundle. Bundle images are stored and distributed by Open Container Initiative (OCl) spec
container registries, such as Quay.io or DockerHub.

2.3.1.3. Catalog source

A catalog source is a repository of CSVs, CRDs, and packages that define an application.

2.3.1.4. Catalog image

RS

19

OpenShift Container Platform 4.7 Operators

In the Package Manifest Format, a catalog image is a containerized datastore that describes a set of
Operator metadata and update metadata that can be installed onto a cluster using OLM.

2.3.1.5. Channel

A channel defines a stream of updates for an Operator and is used to roll out updates for subscribers.
The head points to the latest version of that channel. For example, a stable channel would have all
stable versions of an Operator arranged from the earliest to the latest.

An Operator can have several channels, and a subscription binding to a certain channel would only look
for updates in that channel.

2.3.1.6. Channel head

A channel head refers to the latest known update in a particular channel.

2.3.1.7. Cluster service version

A cluster service version (CSV) is a YAML manifest created from Operator metadata that assists OLM in
running the Operator in a cluster. It is the metadata that accompanies an Operator container image,
used to populate user interfaces with information such as its logo, description, and version.

Itis also a source of technical information that is required to run the Operator, like the RBAC rules it
requires and which custom resources (CRs) it manages or depends on.

2.3.1.8. Dependency

An Operator may have a dependency on another Operator being present in the cluster. For example, the
Vault Operator has a dependency on the etcd Operator for its data persistence layer.

OLM resolves dependencies by ensuring that all specified versions of Operators and CRDs are installed
on the cluster during the installation phase. This dependency is resolved by finding and installing an
Operator in a catalog that satisfies the required CRD API, and is not related to packages or bundles.

2.3.1.9. Index image

In the Bundle Format, an index image refers to an image of a database (a database snapshot) that
contains information about Operator bundles including CSVs and CRDs of all versions. This index can
host a history of Operators on a cluster and be maintained by adding or removing Operators using the
opm CLI tool.

2.3.1.10. Install plan

An install plan is a calculated list of resources to be created to automatically install or upgrade a CSV.

2.3.1.11. Operator group

An Operator group configures all Operators deployed in the same namespace as the OperatorGroup
object to watch for their CRin a list of namespaces or cluster-wide.

2.3.1.12. Package

In the Bundle Format, a package is a directory that encloses all released history of an Operator with each
version. A released version of an Operator is described in a CSV manifest alongside the CRDs.

20

CHAPTER 2. UNDERSTANDING OPERATORS

2.3.1.13. Registry

A registry is a database that stores bundle images of Operators, each with all of its latest and historical
versions in all channels.

2.3.1.14. Subscription

A subscription keeps CSVs up to date by tracking a channel in a package.

2.3.1.15. Update graph

An update graph links versions of CSVs together, similar to the update graph of any other packaged
software. Operators can be installed sequentially, or certain versions can be skipped. The update graph
is expected to grow only at the head with newer versions being added.

2.4. OPERATOR LIFECYCLE MANAGER (OLM)

2.4.1. Operator Lifecycle Manager concepts and resources

This guide provides an overview of the concepts that drive Operator Lifecycle Manager (OLM) in
OpenShift Container Platform.

2.4.1.1. What is Operator Lifecycle Manager?

Operator Lifecycle Manager (OLM) helps users install, update, and manage the lifecycle of Kubernetes
native applications (Operators) and their associated services running across their OpenShift Container
Platform clusters. It is part of the Operator Framework, an open source toolkit designed to manage
Operators in an effective, automated, and scalable way.

Figure 2.2. Operator Lifecycle Manager workflow

Operators Lifecycle Manager

Install and update across clusters
Namespace A Namespace B

Operator manifest Cluster catalog Apps Apps

OLM runs by default in OpenShift Container Platform 4.7, which aids cluster administrators in installing,
upgrading, and granting access to Operators running on their cluster. The OpenShift Container
Platform web console provides management screens for cluster administrators to install Operators, as
well as grant specific projects access to use the catalog of Operators available on the cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,
monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

2.4.1.2. OLM resources

21

https://operatorframework.io/

OpenShift Container Platform 4.7 Operators

The following custom resource definitions (CRDs) are defined and managed by Operator Lifecycle
Manager (OLM):

Table 2.1. CRDs managed by OLM and Catalog Operators

Resource Short name Description

ClusterServic csv Application metadata. For example: name, version, icon, required

eVersion resources.

(CSV)

CatalogSour catsrc A repository of CSVs, CRDs, and packages that define an application.

ce

Subscription sub Keeps CSVs up to date by tracking a channel in a package.

InstallPlan ip Calculated list of resources to be created to automatically install or
upgrade a CSV.

OperatorGro og Configures all Operators deployed in the same namespace as the

up OperatorGroup object to watch for their custom resource (CR) in a

list of namespaces or cluster-wide.

OperatorCon - Creates a communication channel between OLM and an Operator it
ditions manages. Operators can write to the Status.Conditions array to
communicate complex states to OLM.

2.4.1.2.1. Cluster service version

A cluster service version (CSV) represents a specific version of a running Operator on an OpenShift
Container Platform cluster. It is a YAML manifest created from Operator metadata that assists Operator
Lifecycle Manager (OLM) in running the Operator in the cluster.

OLM requires this metadata about an Operator to ensure that it can be kept running safely on a cluster,
and to provide information about how updates should be applied as new versions of the Operator are
published. This is similar to packaging software for a traditional operating system; think of the packaging
step for OLM as the stage at which you make your rpm, deb, or apk bundle.

A CSV includes the metadata that accompanies an Operator container image, used to populate user
interfaces with information such as its name, version, description, labels, repository link, and logo.

A CSV is also a source of technical information required to run the Operator, such as which custom
resources (CRs) it manages or depends on, RBAC rules, cluster requirements, and install strategies. This
information tells OLM how to create required resources and set up the Operator as a deployment.

2.4.1.2.2. Catalog source

A catalog source represents a store of metadata, typically by referencing an index image storedin a
container registry. Operator Lifecycle Manager (OLM) queries catalog sources to discover and install
Operators and their dependencies. The OperatorHub in the OpenShift Container Platform web console
also displays the Operators provided by catalog sources.

22

TIP

CHAPTER 2. UNDERSTANDING OPERATORS

Cluster administrators can view the full list of Operators provided by an enabled catalog source on a
cluster by using the Administration - Cluster Settings —» Global Configuration -» OperatorHub page
in the web console.

The spec of a CatalogSource object indicates how to construct a pod or how to communicate with a
service that serves the Operator Registry gRPC API.

Example 2.1. Example CatalogSource object

® O

00

apiVersion: operators.coreos.com/vialphat
kind: CatalogSource
metadata:

generation: 1
name: example-catalog ﬂ
namespace: openshift-marketplace 9

spec:

displayName: Example Catalog 6
image: quay.io/example-org/example-catalog:v1 ﬂ
priority: -400 €
publisher: Example Org
sourceType: grpc
updateStrategy:
registryPoll:
interval: 30mO0s

status:

connectionState:
address: example-catalog.openshift-marketplace.svc:50051
lastConnect: 2021-08-26T18:14:31Z
lastObservedState: READY 6
latestimageRegistryPoll: 2021-08-26T18:46:25Z Q
registryService:
createdAt: 2021-08-26T16:16:37Z
port: 50051
protocol: grpc
serviceName: example-catalog
serviceNamespace: openshift-marketplace

Name for the CatalogSource object. This value is also used as part of the name for the related
pod that is created in the requested namespace.

Namespace to create the catalog available. To make the catalog available cluster-wide in all
namespaces, set this value to openshift-marketplace. The default Red Hat-provided catalog
sources also use the openshift-marketplace namespace. Otherwise, set the value to a specific
namespace to make the Operator only available in that namespace.

Display name for the catalog in the web console and CLI.

Index image for the catalog.

Weight for the catalog source. OLM uses the weight for prioritization during dependency
resolution. A higher weight indicates the catalog is preferred over lower-weighted catalogs.

23

OpenShift Container Platform 4.7 Operators

6 Source types include the following:

9

grpc with an image reference: OLM pulls the image and runs the pod, which is
expected to serve a compliant API.

grpc with an address field: OLM attempts to contact the gRPC API at the given
address. This should not be used in most cases.

configmap: OLM parses config map data and runs a pod that can serve the gRPC API
over it.

Automatically check for new versions at a given interval to stay up-to-date.

Last observed state of the catalog connection. For example:

READY: A connection is successfully established.
CONNECTING: A connection is attempting to establish.

TRANSIENT_FAILURE: A temporary problem has occurred while attempting to
establish a connection, such as a timeout. The state will eventually switch back to
CONNECTING and try again.

See States of Connectivity in the gRPC documentation for more details.

@ Latest time the container registry storing the catalog image was polled to ensure the image is
up-to-date.

@ Status information for the catalog’s Operator Registry service.

Referencing the name of a CatalogSource object in a subscription instructs OLM where to search to
find a requested Operator:

kind: Subscription

metadata:

name: example-operator
namespace: example-namespace

channel: stable

name: example-operator

source: example-catalog
sourceNamespace: openshift-marketplace

Example 2.2. Example Subscription object referencing a catalog source
apiVersion: operators.coreos.com/vialphai
spec:

Additional resources

® Understanding OperatorHub

® Red Hat-provided Operator catalogs

® Catalog priority

24

https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-understanding-operatorhub
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-rh-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-dependency-catalog-priority_olm-understanding-dependency-resolution

CHAPTER 2. UNDERSTANDING OPERATORS

® Viewing Operator catalog source status by using the CLI

2.4.1.2.3. Subscription

A subscription, defined by a Subscription object, represents an intention to install an Operator. It is the
custom resource that relates an Operator to a catalog source.

Subscriptions describe which channel of an Operator package to subscribe to, and whether to perform
updates automatically or manually. If set to automatic, the subscription ensures Operator Lifecycle
Manager (OLM) manages and upgrades the Operator to ensure that the latest version is always running
in the cluster.

Example Subscription object

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: example-operator
namespace: example-namespace
spec:
channel: stable
name: example-operator
source: example-catalog
sourceNamespace: openshift-marketplace

This Subscription object defines the name and namespace of the Operator, as well as the catalog from
which the Operator data can be found. The channel, such as alpha, beta, or stable, helps determine
which Operator stream should be installed from the catalog source.

The names of channels in a subscription can differ between Operators, but the naming scheme should
follow a common convention within a given Operator. For example, channel names might follow a minor
release update stream for the application provided by the Operator (1.2, 1.3) or a release frequency
(stable, fast).

In addition to being easily visible from the OpenShift Container Platform web console, it is possible to
identify when there is a newer version of an Operator available by inspecting the status of the related
subscription. The value associated with the currentCSV field is the newest version that is known to
OLM, and installedCSV is the version that is installed on the cluster.

Additional resources

® Viewing Operator subscription status by using the CLI

2.4.1.2.4. Install plan

An install plan, defined by an InstallPlan object, describes a set of resources that Operator Lifecycle
Manager (OLM) creates to install or upgrade to a specific version of an Operator. The version is defined
by a cluster service version (CSV).

To install an Operator, a cluster administrator, or a user who has been granted Operator installation
permissions, must first create a Subscription object. A subscription represents the intent to subscribe
to a stream of available versions of an Operator from a catalog source. The subscription then creates an
InstallPlan object to facilitate the installation of the resources for the Operator.

The install plan must then be approved according to one of the following approval strategies:

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-cs-status-cli_olm-status
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-status-viewing-cli_olm-status

OpenShift Container Platform 4.7 Operators

e |f the subscription’s spec.installPlanApproval field is set to Automatic, the install planis
approved automatically.

e |f the subscription’s spec.installPlanApproval field is set to Manual, the install plan must be
manually approved by a cluster administrator or user with proper permissions.

After the install plan is approved, OLM creates the specified resources and installs the Operator in the
namespace that is specified by the subscription.

Example 2.3. Example InstallPlan object
apiVersion: operators.coreos.com/vialphai
kind: InstallPlan
metadata:

name: install-abcde
namespace: operators

spec:
approval: Automatic
approved: true
clusterServiceVersionNames:
- my-operator.vi.0.1
generation: 1
status:

catalogSources: []
conditions:

- lastTransitionTime: '2021-01-01T20:17:27Z'
lastUpdateTime: '2021-01-01T20:17:27Z'
status: "True'
type: Installed

phase: Complete
plan:

- resolving: my-operator.vi1.0.1
resource:

group: operators.coreos.com
kind: ClusterServiceVersion
manifest: >-

name: my-operator.vi1.0.1
sourceName: redhat-operators
sourceNamespace: openshift-marketplace
version: vialphai

status: Created

- resolving: my-operator.v1.0.1

resource:
group: apiextensions.k8s.io
kind: CustomResourceDefinition
manifest: >-

name: webservers.web.servers.org
sourceName: redhat-operators
sourceNamespace: openshift-marketplace
version: vibetai
status: Created
- resolving: my-operator.v1.0.1
resource:

26

CHAPTER 2. UNDERSTANDING OPERATORS

resource:
group: rbac.authorization.k8s.io
kind: Role
manifest: >-
sourceName: redhat-operators
sourceNamespace: openshift-marketplace
version: v1
status: Created
- resolving: my-operator.v1.0.1
resource:
group: rbac.authorization.k8s.io
kind: RoleBinding
manifest: >-

name: my-operator.v1.0.1-my-operator-6d7cbc6f57
sourceName: redhat-operators
sourceNamespace: openshift-marketplace
version: v1
status: Created

group: "
kind: ServiceAccount
manifest: >-
name: my-operator
sourceName: redhat-operators
sourceNamespace: openshift-marketplace
version: v1
status: Created
- resolving: my-operator.vi1.0.1
name: my-operator.v1.0.1-my-operator-6d7cbc6f57
Additional resources

® Allowing non-cluster administrators to install Operators

2.4.1.2.5. Operator groups

An Operator group, defined by the OperatorGroup resource, provides multitenant configuration to
OLM-installed Operators. An Operator group selects target namespaces in which to generate required
RBAC access for its member Operators.

The set of target namespaces is provided by a comma-delimited string stored in the

olm.targetNamespaces annotation of a cluster service version (CSV). This annotation is applied to the
CSV instances of member Operators and is projected into their deployments.

Additional resources

® Operator groups.

2.4.1.2.6. Operator conditions

As part of its role in managing the lifecycle of an Operator, Operator Lifecycle Manager (OLM) infers

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-creating-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-understanding-operatorgroups

OpenShift Container Platform 4.7 Operators

the state of an Operator from the state of Kubernetes resources that define the Operator. While this
approach provides some level of assurance that an Operator is in a given state, there are many instances
where an Operator might need to communicate information to OLM that could not be inferred
otherwise. This information can then be used by OLM to better manage the lifecycle of the Operator.

OLM provides a custom resource definition (CRD) called OperatorCondition that allows Operators to
communicate conditions to OLM. There are a set of supported conditions that influence management
of the Operator by OLM when present in the Status.Conditions array of an OperatorCondition
resource.

Additional resources

® Operator conditions.

2.4.2. Operator Lifecycle Manager architecture

This guide outlines the component architecture of Operator Lifecycle Manager (OLM) in OpenShift
Container Platform.

2.4.2.1. Component responsibilities

Operator Lifecycle Manager (OLM) is composed of two Operators: the OLM Operator and the Catalog
Operator.

Each of these Operators is responsible for managing the custom resource definitions (CRDs) that are
the basis for the OLM framework:

Table 2.2. CRDs managed by OLM and Catalog Operators

Resource Description

ClusterServic csv OLM Application metadata: name, version, icon, required resources,

eVersion installation, and so on.

(CSV)

InstallPlan ip Catal Calculated list of resources to be created to automatically install or
og upgrade a CSV.

CatalogSour cats Catal Arepository of CSVs, CRDs, and packages that define an application.
ce rc og

Subscription sub Catal Used to keep CSVs up to date by tracking a channel in a package.
og

OperatorGro og OLM Configures all Operators deployed in the same namespace as the
up OperatorGroup object to watch for their custom resource (CR) in a list
of namespaces or cluster-wide.

Each of these Operators is also responsible for creating the following resources:

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-operatorconditions

CHAPTER 2. UNDERSTANDING OPERATORS

Table 2.3. Resources created by OLM and Catalog Operators

Resource Owner

Deployments OLM

ServiceAccounts

(Cluster)Roles

(Cluster)RoleBindings

CustomResourceDefinitions (CRDs) Catalog

ClusterServiceVersions

2.4.2.2. OLM Operator

The OLM Operator is responsible for deploying applications defined by CSV resources after the
required resources specified in the CSV are present in the cluster.

The OLM Operator is not concerned with the creation of the required resources; you can choose to
manually create these resources using the CLI or using the Catalog Operator. This separation of concern
allows users incremental buy-in in terms of how much of the OLM framework they choose to leverage
for their application.

The OLM Operator uses the following workflow:

1. Watch for cluster service versions (CSVs) in a namespace and check that requirements are met.

2. If requirements are met, run the install strategy for the CSV.

NOTE

A CSV must be an active member of an Operator group for the install strategy to
run.

2.4.2.3. Catalog Operator

The Catalog Operator is responsible for resolving and installing cluster service versions (CSVs) and the
required resources they specify. It is also responsible for watching catalog sources for updates to
packages in channels and upgrading them, automatically if desired, to the latest available versions.

To track a package in a channel, you can create a Subscription object configuring the desired package,
channel, and the CatalogSource object you want to use for pulling updates. When updates are found,
an appropriate InstallPlan object is written into the namespace on behalf of the user.

The Catalog Operator uses the following workflow:

1. Connect to each catalog source in the cluster.

2. Watch for unresolved install plans created by a user, and if found:

- . bl _ /AN Lt L L oo b b all . /AN L

29

OpenShift Container Platform 4.7 Operators

d. rinaine Lov matcning tne name requestead ana adad tne LoV as a resolvea resource.
b. For each managed or required CRD, add the CRD as a resolved resource.
c. Foreachrequired CRD, find the CSV that manages it.

3. Watch for resolved install plans and create all of the discovered resources for it, if approved by a
user or automatically.

4. Watch for catalog sources and subscriptions and create install plans based on them.

2.4.2.4. Catalog Registry

The Catalog Registry stores CSVs and CRDs for creation in a cluster and stores metadata about
packages and channels.

A package manifest is an entry in the Catalog Registry that associates a package identity with sets of
CSVs. Within a package, channels point to a particular CSV. Because CSVs explicitly reference the CSV

that they replace, a package manifest provides the Catalog Operator with all of the information that is
required to update a CSV to the latest version in a channel, stepping through each intermediate version.

2.4.3. Operator Lifecycle Manager workflow

This guide outlines the workflow of Operator Lifecycle Manager (OLM) in OpenShift Container
Platform.

2.4.3.1. Operator installation and upgrade workflow in OLM

In the Operator Lifecycle Manager (OLM) ecosystem, the following resources are used to resolve
Operator installations and upgrades:

® ClusterServiceVersion (CSV)

e CatalogSource

® Subscription
Operator metadata, defined in CSVs, can be stored in a collection called a catalog source. OLM uses
catalog sources, which use the Operator Registry API, to query for available Operators as well as

upgrades for installed Operators.

Figure 2.3. Catalog source overview

[] Channel Package

Community Operators (CatalogSource)

etcd couchbase

alpha beta preview stable

30

https://github.com/operator-framework/operator-registry

CHAPTER 2. UNDERSTANDING OPERATORS

Within a catalog source, Operators are organized into packages and streams of updates called channels,
which should be a familiar update pattern from OpenShift Container Platform or other software on a
continuous release cycle like web browsers.

Figure 2.4. Packages and channels in a Catalog source

[] channel Package ClusterServiceVersion —» replaces previous version
eted
alpha beta
etcdoperator.v0.9.2 etcdoperator.v0.9.2

!

etcdoperator.v0.9.0

|

etcdoperator.v0.6.1 etcdoperator.v0.6.1

A user indicates a particular package and channel in a particular catalog source in a subscription, for
example an eted package and its alpha channel. If a subscription is made to a package that has not yet
been installed in the namespace, the latest Operator for that package is installed.

NOTE

OLM deliberately avoids version comparisons, so the "latest" or "newest" Operator
available from a given catalog = channel - package path does not necessarily need to be
the highest version number. It should be thought of more as the head reference of a
channel, similar to a Git repository.

Each CSV has a replaces parameter that indicates which Operator it replaces. This builds a graph of
CSVs that can be queried by OLM, and updates can be shared between channels. Channels can be
thought of as entry points into the graph of updates:

31

OpenShift Container Platform 4.7 Operators

Figure 2.5. OLM graph of available channel updates

[1 Channel Package ClusterServiceVersion —» replaces previous version
eted
alpha beta
etcdoperator.v0.9.2 etcdoperator.v0.9.2

|

etcdoperator.v0.9.0

vy

etcdoperator.v0.6.1

Example channels in a package

packageName: example
channels:
- name: alpha

currentCSV: example.v0.1.2
- name: beta

currentCSV: example.v0.1.3
defaultChannel: alpha

For OLM to successfully query for updates, given a catalog source, package, channel, and CSV, a catalog
must be able to return, unambiguously and deterministically, a single CSV that replaces the input CSV.

2.4.3.1.1. Example upgrade path

For an example upgrade scenario, consider an installed Operator corresponding to CSV version 0.1.1.
OLM queries the catalog source and detects an upgrade in the subscribed channel with new CSV
version 0.1.3 that replaces an older but not-installed CSV version 0.1.2, which in turn replaces the older
and installed CSV version 0.1.1.

OLM walks back from the channel head to previous versions via the replaces field specified in the CSVs
to determine the upgrade path 0.1.3 = 0.1.2 - 0.1.1; the direction of the arrow indicates that the
former replaces the latter. OLM upgrades the Operator one version at the time until it reaches the
channel head.

For this given scenario, OLM installs Operator version 0.1.2 to replace the existing Operator version

0.1.1. Then, it installs Operator version 0.1.3 to replace the previously installed Operator version 0.1.2. At
this point, the installed operator version 0.1.3 matches the channel head and the upgrade is completed.

2.4.3.1.2. Skipping upgrades

The basic path for upgrades in OLM is:

32

CHAPTER 2. UNDERSTANDING OPERATORS

® A catalog source is updated with one or more updates to an Operator.

e OLM traverses every version of the Operator until reaching the latest version the catalog
source contains.

However, sometimes this is not a safe operation to perform. There will be cases where a published
version of an Operator should never be installed on a cluster if it has not already, for example because a
version introduces a serious vulnerability.

In those cases, OLM must consider two cluster states and provide an update graph that supports both:
® The "bad" intermediate Operator has been seen by the cluster and installed.
® The "bad" intermediate Operator has not yet been installed onto the cluster.

By shipping a new catalog and adding a skipped release, OLM is ensured that it can always get a single
unique update regardless of the cluster state and whether it has seen the bad update yet.

Example CSV with skipped release

apiVersion: operators.coreos.com/vialphai
kind: ClusterServiceVersion
metadata:
name: etcdoperator.v0.9.2
namespace: placeholder
annotations:
spec:
displayName: etcd
description: Etcd Operator
replaces: etcdoperator.v0.9.0
skips:
- etcdoperator.v0.9.1

Consider the following example of Old CatalogSource and New CatalogSource.

33

OpenShift Container Platform 4.7 Operators

Figure 2.6. Skipping updates

[Channel Package ClusterServiceVersion — replaces previous version

Old CatalogSource New CatalogSource

etcd etcd

alpha

v

etcdoperator.v0.9.2

etcdoperator.v0.9.0

'

etcdoperator.v0.6.1

alpha

v

etcdoperator.v0.9.2

etcdoperator.v0.9.0

'

etcdoperator.v0.6.1

This graph maintains that:
® Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.
® Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

® |f the bad update has not yet been installed, it will never be.

2.4.3.1.3. Replacing multiple Operators

Creating New CatalogSource as described requires publishing CSVs that replace one Operator, but
can skip several. This can be accomplished using the skipRange annotation:

I olm.skipRange: <semver_range>

where <semver_ranges has the version range format supported by the semver library.

When searching catalogs for updates, if the head of a channel has a skipRange annotation and the
currently installed Operator has a version field that falls in the range, OLM updates to the latest entry in
the channel.

The order of precedence is:

1. Channel head in the source specified by sourceName on the subscription, if the other criteria
for skipping are met.

2. The next Operator that replaces the current one, in the source specified by sourceName.

34

https://github.com/blang/semver#ranges

CHAPTER 2. UNDERSTANDING OPERATORS

3. Channel head in another source that is visible to the subscription, if the other criteria for
skipping are met.

4. The next Operator that replaces the current one in any source visible to the subscription.

Example CSV with skipRange

apiVersion: operators.coreos.com/vialphai
kind: ClusterServiceVersion
metadata:
name: elasticsearch-operator.v4.1.2
namespace: <namespace>
annotations:
olm.skipRange: '>=4.1.0 <4.1.2'

2.4.3.1.4. Z-stream support
A z-stream, or patch release, must replace all previous z-stream releases for the same minor version.
OLM does not consider major, minor, or patch versions, it just needs to build the correct graphin a

catalog.

In other words, OLM must be able to take a graph as in Old CatalogSource and, similar to before,
generate a graph as in New CatalogSource:

Figure 2.7. Replacing several Operators

[Channel Package ClusterServiceVersion — replaces previous version
Old CatalogSource New CatalogSource
etcd etcd
alpha alpha

etcdoperator.v0.9.3
etcdoperator.v0.9.2 4—
etcdoperator.v0.9.0 +— etcdoperator.v0.9.0 4+—
! '
etcdoperator.v0.6.1 etcdoperator.v0.6.1

This graph maintains that:

35

OpenShift Container Platform 4.7 Operators

® Any Operator found in Old CatalogSource has a single replacement in New CatalogSource.
® Any Operator found in New CatalogSource has a single replacement in New CatalogSource.

® Any z-stream release in Old CatalogSource will update to the latest z-stream release in New
CatalogSource.

e Unavailable releases can be considered "virtual" graph nodes; their content does not need to
exist, the registry just needs to respond as if the graph looks like this.
2.4.4. Operator Lifecycle Manager dependency resolution

This guide outlines dependency resolution and custom resource definition (CRD) upgrade lifecycles with
Operator Lifecycle Manager (OLM) in OpenShift Container Platform.

2.4.4.1. About dependency resolution

OLM manages the dependency resolution and upgrade lifecycle of running Operators. In many ways, the
problems OLM faces are similar to other operating system package managers like yum and rpm.

However, there is one constraint that similar systems do not generally have that OLM does: because
Operators are always running, OLM attempts to ensure that you are never left with a set of Operators
that do not work with each other.

This means that OLM must never do the following:
® |nstall a set of Operators that require APIs that cannot be provided.

® Update an Operator in a way that breaks another that depends upon it.

2.4.4.2. Dependencies file

The dependencies of an Operator are listed in a dependencies.yaml file in the metadata/ folder of a
bundle. This file is optional and currently only used to specify explicit Operator-version dependencies.

The dependency list contains a type field for each item to specify what kind of dependency this is. There
are two supported types of Operator dependencies:

e olm.package: This type indicates a dependency for a specific Operator version. The
dependency information must include the package name and the version of the package in
semver format. For example, you can specify an exact version such as 0.5.2 or a range of
versions such as >0.5.1.

e olm.gvk: With a gvk type, the author can specify a dependency with group/version/kind (GVK)
information, similar to existing CRD and API-based usage in a CSV. This is a path to enable
Operator authors to consolidate all dependencies, API or explicit versions, to be in the same
place.

In the following example, dependencies are specified for a Prometheus Operator and etcd CRDs:

Example dependencies.yaml file

dependencies:
- type: olm.package
value:
packageName: prometheus

36

CHAPTER 2. UNDERSTANDING OPERATORS

version: ">0.27.0"
- type: olm.gvk
value:
group: etcd.database.coreos.com
kind: EtcdCluster
version: vibeta2

2.4.4.3. Dependency preferences

There can be many options that equally satisfy a dependency of an Operator. The dependency resolver
in Operator Lifecycle Manager (OLM) determines which option best fits the requirements of the
requested Operator. As an Operator author or user, it can be important to understand how these
choices are made so that dependency resolution is clear.

2.4.4.3.1. Catalog priority

On OpenShift Container Platform cluster, OLM reads catalog sources to know which Operators are
available for installation.

Example CatalogSource object

apiVersion: "operators.coreos.com/vialphai"
kind: "CatalogSource"
metadata:
name: "my-operators"
namespace: "operators"
spec:
sourceType: grpc
image: example.com/my/operator-index:v1
displayName: "My Operators"
priority: 100

A CatalogSource object has a priority field, which is used by the resolver to know how to prefer options
for a dependency.

There are two rules that govern catalog preference:
® Options in higher-priority catalogs are preferred to options in lower-priority catalogs.

® Options in the same catalog as the dependent are preferred to any other catalogs.

2.4.4.3.2. Channel ordering

An Operator package in a catalog is a collection of update channels that a user can subscribe toin a
OpenShift Container Platform cluster. Channels can be used to provide a particular stream of updates
for a minor release (1.2, 1.3) or a release frequency (stable, fast).

Itis likely that a dependency might be satisfied by Operators in the same package, but different
channels. For example, version 1.2 of an Operator might exist in both the stable and fast channels.

Each package has a default channel, which is always preferred to non-default channels. If no option in

the default channel can satisfy a dependency, options are considered from the remaining channels in
lexicographic order of the channel name.

37

OpenShift Container Platform 4.7 Operators

2.4.4.3.3. Order within a channel

There are almost always multiple options to satisfy a dependency within a single channel. For example,
Operators in one package and channel provide the same set of APlIs.

When a user creates a subscription, they indicate which channel to receive updates from. This
immediately reduces the search to just that one channel. But within the channel, it is likely that many
Operators satisfy a dependency.

Within a channel, newer Operators that are higher up in the update graph are preferred. If the head of a
channel satisfies a dependency, it will be tried first.

2.4.4.3.4. Other constraints

In addition to the constraints supplied by package dependencies, OLM includes additional constraints to
represent the desired user state and enforce resolution invariants.

2.4.4.3.4.1. Subscription constraint

A subscription constraint filters the set of Operators that can satisfy a subscription. Subscriptions are
user-supplied constraints for the dependency resolver. They declare the intent to either install a new
Operator if it is not already on the cluster, or to keep an existing Operator updated.

2.4.4.3.4.2. Package constraint

Within a namespace, no two Operators may come from the same package.

2.4.4.4. CRD upgrades

OLM upgrades a custom resource definition (CRD) immediately if it is owned by a singular cluster
service version (CSV). If a CRD is owned by multiple CSVs, then the CRD is upgraded when it has
satisfied all of the following backward compatible conditions:

® All existing serving versions in the current CRD are present in the new CRD.

® Al existing instances, or custom resources, that are associated with the serving versions of the
CRD are valid when validated against the validation schema of the new CRD.

Additional resources

® Adding a new CRD version

® Deprecating or removing a CRD version

2.4.4.5. Dependency best practices

When specifying dependencies, there are best practices you should consider.

Depend on APIs or a specific version range of Operators

Operators can add or remove APIs at any time; always specify an olm.gvk dependency on any APIs
your Operators requires. The exception to this is if you are specifying olm.package constraints
instead.

Set a minimum version

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-dependency-resolution-adding-new-crd-version_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-dependency-resolution-removing-crd-version_osdk-generating-csvs

CHAPTER 2. UNDERSTANDING OPERATORS

The Kubernetes documentation on APl changes describes what changes are allowed for Kubernetes-
style Operators. These versioning conventions allow an Operator to update an APl without bumping
the APl version, as long as the APl is backwards-compatible.

For Operator dependencies, this means that knowing the API version of a dependency might not be
enough to ensure the dependent Operator works as intended.

For example:
® TestOperator v1.0.0 provides vlalphal APl version of the MyObject resource.
® TestOperator v1.0.1 adds a new field spec.newfield to MyObject, but still at vialphal.

Your Operator might require the ability to write spec.newfield into the MyObject resource. An
olm.gvk constraint alone is not enough for OLM to determine that you need TestOperator v1.0.1 and
not TestOperator v1.0.0.

Whenever possible, if a specific Operator that provides an APl is known ahead of time, specify an
additional olm.package constraint to set a minimum.

Omit a maximum version or allow a very wide range

Because Operators provide cluster-scoped resources such as APl services and CRDs, an Operator
that specifies a small window for a dependency might unnecessarily constrain updates for other
consumers of that dependency.

Whenever possible, do not set a maximum version. Alternatively, set a very wide semantic range to
prevent conflicts with other Operators. For example, >1.0.0 <2.0.0.

Unlike with conventional package managers, Operator authors explicitly encode that updates are
safe through channels in OLM. If an update is available for an existing subscription, it is assumed that
the Operator author is indicating that it can update from the previous version. Setting a maximum
version for a dependency overrides the update stream of the author by unnecessarily truncating it at
a particular upper bound.

A NOTE

L

Cluster administrators cannot override dependencies set by an Operator author.

However, maximum versions can and should be set if there are known incompatibilities that must be
avoided. Specific versions can be omitted with the version range syntax, for example > 1.0.0 !1.2.1.

Additional resources

® Kubernetes documentation: Changing the API

2.4.4.6. Dependency caveats

When specifying dependencies, there are caveats you should consider.

No compound constraints (AND)

There is currently no method for specifying an AND relationship between constraints. In other words,
there is no way to specify that one Operator depends on another Operator that both provides a
given APl and has version >1.1.0.

This means that when specifying a dependency such as:

39

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api_changes.md#readme

OpenShift Container Platform 4.7 Operators

dependencies:
- type: olm.package
value:
packageName: etcd
version: ">3.1.0"
- type: olm.gvk
value:
group: etcd.database.coreos.com
kind: EtcdCluster
version: vibeta2

It would be possible for OLM to satisfy this with two Operators: one that provides EtcdCluster and
one that has version >3.1.0. Whether that happens, or whether an Operator is selected that satisfies
both constraints, depends on the ordering that potential options are visited. Dependency
preferences and ordering options are well-defined and can be reasoned about, but to exercise
caution, Operators should stick to one mechanism or the other.

Cross-namespace compatibility

OLM performs dependency resolution at the namespace scope. It is possible to get into an update
deadlock if updating an Operator in one namespace would be an issue for an Operator in another
namespace, and vice-versa.

2.4.4.7. Example dependency resolution scenarios

In the following examples, a provider is an Operator which "owns" a CRD or APl service.

Example: Deprecating dependent APIs
A and B are APIs (CRDs):

® The provider of A depends on B.

® The provider of B has a subscription.

® The provider of B updates to provide C but deprecates B.
This results in:

® B no longer has a provider.

® Ano longer works.
This is a case OLM prevents with its upgrade strategy.

Example: Version deadlock
A and B are APIs:

® The provider of A requires B.
® The provider of B requires A.
® The provider of A updates to (provide A2, require B2) and deprecate A.
® The provider of B updates to (provide B2, require A2) and deprecate B.

If OLM attempts to update A without simultaneously updating B, or vice-versa, it is unable to progress
to new versions of the Operators, even though a new compatible set can be found.

40

CHAPTER 2. UNDERSTANDING OPERATORS

This is another case OLM prevents with its upgrade strategy.

2.4.5. Operator groups

This guide outlines the use of Operator groups with Operator Lifecycle Manager (OLM) in OpenShift
Container Platform.

2.4.5.1. About Operator groups

An Operator group, defined by the OperatorGroup resource, provides multitenant configuration to
OLM-installed Operators. An Operator group selects target namespaces in which to generate required
RBAC access for its member Operators.

The set of target namespaces is provided by a comma-delimited string stored in the

olm.targetNamespaces annotation of a cluster service version (CSV). This annotation is applied to the
CSV instances of member Operators and is projected into their deployments.

2.4.5.2. Operator group membership
An Operator is considered a member of an Operator group if the following conditions are true:
® The CSV of the Operator exists in the same namespace as the Operator group.

® Theinstall modes in the CSV of the Operator support the set of namespaces targeted by the
Operator group.

An install mode in a CSV consists of an InstallModeType field and a boolean Supported field. The spec
of a CSV can contain a set of install modes of four distinct InstallModeTypes:

Table 2.4. Install modes and supported Operator groups

InstallModeType Description

OwnNamespace The Operator can be a member of an Operator group that selects its
own namespace.

SingleNamespace The Operator can be a member of an Operator group that selects one
namespace.
MultiNamespace The Operator can be a member of an Operator group that selects more

than one namespace.

AlINamespaces The Operator can be a member of an Operator group that selects all
namespaces (target namespace set is the empty string """).

NOTE

If the spec of a CSV omits an entry of InstallModeType, then that type is considered
unsupported unless support can be inferred by an existing entry that implicitly supports it.

2.4.5.3. Target namespace selection

41

OpenShift Container Platform 4.7 Operators

You can explicitly name the target namespace for an Operator group using the
spec.targetNamespaces parameter:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: my-group
namespace: my-namespace
spec:
targetNamespaces:
- my-namespace

You can alternatively specify a namespace using a label selector with the spec.selector parameter:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

name: my-group

namespace: my-namespace
spec:

selector:

cool.io/prod: "true"

IMPORTANT

Listing multiple namespaces via spec.targetNamespaces or use of a label selector via
spec.selector is not recommended, as the support for more than one target namespace
in an Operator group will likely be removed in a future release.

If both spec.targetNamespaces and spec.selector are defined, spec.selector is ignored.
Alternatively, you can omit both spec.selector and spec.targetNamespaces to specify a global
Operator group, which selects all namespaces:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:

name: my-group

namespace: my-namespace

The resolved set of selected namespaces is shown in the status.namespaces parameter of an Opeator
group. The status.namespace of a global Operator group contains the empty string ("), which signals
to a consuming Operator that it should watch all namespaces.

2.4.5.4. Operator group CSV annotations

Member CSVs of an Operator group have the following annotations:

Annotation Description

olm.operatorGroup=<group_nhame> Contains the name of the Operator group.

42

CHAPTER 2. UNDERSTANDING OPERATORS

Annotation Description

olm.operatorNamespace= Contains the namespace of the Operator group.
<group_namespace>

olm.targetNamespaces= Contains a comma-delimited string that lists the
<target_namespaces> target namespace selection of the Operator group.
NOTE

All annotations except olm.targetNamespaces are included with copied CSVs. Omitting
the olm.targetNamespaces annotation on copied CSVs prevents the duplication of
target namespaces between tenants.

2.4.5.5. Provided APIs annotation

A group/version/kind (GVK) is a unique identifier for a Kubernetes API. Information about what GVKs are
provided by an Operator group are shown in an olm.providedAPIs annotation. The value of the
annotation is a string consisting of <kind>.<version>.<group> delimited with commas. The GVKs of
CRDs and APl services provided by all active member CSVs of an Operator group are included.

Review the following example of an OperatorGroup object with a single active member CSV that
provides the PackageManifest resource:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
annotations:
olm.providedAPIs: PackageManifest.vialphai.packages.apps.redhat.com
name: olm-operators
namespace: local

spec:
selector: {}
serviceAccount:
metadata:
creationTimestamp: null
targetNamespaces:
- local
status:
lastUpdated: 2019-02-19T16:18:28Z
namespaces:
- local

2.4.5.6. Role-based access control

When an Operator group is created, three cluster roles are generated. Each contains a single
aggregation rule with a cluster role selector set to match a label, as shown below:

43

OpenShift Container Platform 4.7 Operators

Cluster role Label to match

<operatorgroup_name>-admin olm.opgroup.permissions/aggregate-to-
admin: <operatorgroup_name>

<operatorgroup_name>-edit olm.opgroup.permissions/aggregate-to-edit:
<operatorgroup_name>

<operatorgroup_name>-view olm.opgroup.permissions/aggregate-to-view:
<operatorgroup_name>

The following RBAC resources are generated when a CSV becomes an active member of an Operator
group, as long as the CSV is watching all namespaces with the AlINamespaces install mode and is not in
a failed state with reason InterOperatorGroupOwnerConflict:

® Cluster roles for each APl resource from a CRD

® Cluster roles for each APl resource from an APl service

® Additional roles and role bindings

Table 2.5. Cluster roles generated for each APl resource from a CRD

Cluster role Settings

<kind>.<group>-<version>-admin Verbs on <Kkind>:

*
[]

Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-admin: true

e olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

44

CHAPTER 2. UNDERSTANDING OPERATORS

Cluster role Settings

<kind>.<group>-<version>-edit

<kind>.<group>-<version>-view

<kind>.<group>-<version>-view-crdview

Verbs on <kind>:
e create
e update
e patch
e delete
Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-edit: true

e olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

Verbs on <kind>:
e get
o list
e watch
Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-view: true

e olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

Verbs on apiextensions.k8s.io
customresourcedefinitions <crd-names>:

e get
Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-view: true

e olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

Table 2.6. Cluster roles generated for each API resource from an APl service

Cluster role Settings

45

OpenShift Container Platform 4.7 Operators

Cluster role Settings

<kind>.<group>-<version>-admin

<kind>.<group>-<version>-edit

<kind>.<group>-<version>-view

Additional roles and role bindings

Verbs on <kind>:

*
[]

Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-admin: true

e olm.opgroup.permissions/aggregate-
to-admin: <operatorgroup_name>

Verbs on <kind>:
e create
e update
e patch
e delete
Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-edit: true

e olm.opgroup.permissions/aggregate-
to-edit: <operatorgroup_name>

Verbs on <kind>:
e (get
o list
e watch
Aggregation labels:

e rbac.authorization.k8s.io/aggregate-
to-view: true

e olm.opgroup.permissions/aggregate-
to-view: <operatorgroup_name>

e |f the CSV defines exactly one target namespace that contains *, then a cluster role and
corresponding cluster role binding are generated for each permission defined in the
permissions field of the CSV. All resources generated are given the olm.owner: <csv_name>
and olm.owner.namespace: <CsvV_namespace> labels.

46

CHAPTER 2. UNDERSTANDING OPERATORS

® |T the LSV does not define exactly one target namespace that contains -, then all roles and role
bindings in the Operator namespace with the olm.owner: <csv_name> and
olm.owner.namespace: <csv_namespace> labels are copied into the target namespace.

2.4.5.7. Copied CSVs

OLM creates copies of all active member CSVs of an Operator group in each of the target namespaces
of that Operator group. The purpose of a copied CSV is to tell users of a target namespace that a
specific Operator is configured to watch resources created there.

Copied CSVs have a status reason Copied and are updated to match the status of their source CSV.
The olm.targetNamespaces annotation is stripped from copied CSVs before they are created on the
cluster. Omitting the target namespace selection avoids the duplication of target namespaces between
tenants.

Copied CSVs are deleted when their source CSV no longer exists or the Operator group that their
source CSV belongs to no longer targets the namespace of the copied CSV.

2.4.5.8. Static Operator groups

An Operator group is static if its spec.staticProvidedAPIs field is set to true. As a result, OLM does not
modify the olm.providedAPIs annotation of an Operator group, which means that it can be set in
advance. This is useful when a user wants to use an Operator group to prevent resource contentionin a
set of namespaces but does not have active member CSVs that provide the APIs for those resources.

Below is an example of an Operator group that protects Prometheus resources in all namespaces with
the something.cool.io/cluster-monitoring: "true" annotation:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: cluster-monitoring
namespace: cluster-monitoring
annotations:
olm.providedAPIs:
Alertmanager.vi.monitoring.coreos.com,Prometheus.vi.monitoring.coreos.com,PrometheusRule.v1.mo
nitoring.coreos.com,ServiceMonitor.v1.monitoring.coreos.com
spec:
staticProvidedAPIs: true
selector:
matchLabels:
something.cool.io/cluster-monitoring: "true"

2.4.5.9. Operator group intersection
Two Operator groups are said to have intersecting provided APIs if the intersection of their target
namespace sets is not an empty set and the intersection of their provided API sets, defined by

olm.providedAPIs annotations, is not an empty set.

A potential issue is that Operator groups with intersecting provided APIs can compete for the same
resources in the set of intersecting namespaces.

47

OpenShift Container Platform 4.7 Operators

NOTE

When checking intersection rules, an Operator group namespace is always included as
part of its selected target namespaces.

Rules for intersection
Each time an active member CSV synchronizes, OLM queries the cluster for the set of intersecting
provided APIs between the Operator group of the CSV and all others. OLM then checks if that set is an
empty set:
e |ftrue and the CSV's provided APlIs are a subset of the Operator group’s:
o Continue transitioning.
e |[ftrue and the CSV's provided APIs are not a subset of the Operator group'’s:
o If the Operator group is static:
® Clean up any deployments that belong to the CSV.

® Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

o If the Operator group is not static:

® Replace the Operator group’s olm.providedAPIls annotation with the union of itself
and the CSV's provided APlIs.

e |f false and the CSV's provided APIs are not a subset of the Operator group'’s:
o Clean up any deployments that belong to the CSV.
o Transition the CSV to a failed state with status reason InterOperatorGroupOwnerConflict.

e |f false and the CSV's provided APlIs are a subset of the Operator group’s:
o If the Operator group is static:

®m Clean up any deployments that belong to the CSV.

B Transition the CSV to a failed state with status reason
CannotModifyStaticOperatorGroupProvidedAPIs.

o If the Operator group is not static:

®m Replace the Operator group’s olm.providedAPIs annotation with the difference
between itself and the CSV's provided APls.

NOTE

Failure states caused by Operator groups are non-terminal.

The following actions are performed each time an Operator group synchronizes:

® The set of provided APIs from active member CSVs is calculated from the cluster. Note that
copied CSVs are ignored.

48

CHAPTER 2. UNDERSTANDING OPERATORS

® The cluster setis compared to olm.providedAPIs, and if olm.providedAPls contains any extra
APlIs, then those APIs are pruned.

® Al CSVs that provide the same APlIs across all namespaces are requeued. This notifies
conflicting CSVs in intersecting groups that their conflict has possibly been resolved, either
through resizing or through deletion of the conflicting CSV.

2.4.5.10. Limitations for multi-tenant Operator management

OpenShift Container Platform provides limited support for simultaneously installing different variations
of an Operator on a cluster. Operators are control plane extensions. All tenants, or namespaces, share
the same control plane of a cluster. Therefore, tenants in a multi-tenant environment also have to share
Operators.

The Operator Lifecycle Manager (OLM) installs Operators multiple times in different namespaces. One
constraint of this is that the Operator’s API versions must be the same.

Different major versions of an Operator often have incompatible custom resource definitions (CRDs).
This makes it difficult to quickly verify OLMs.

2.4.5.10.1. Additional resources

® Allowing non-cluster administrators to install Operators

2.4.5.11. Troubleshooting Operator groups
Membership

® |f more than one Operator group exists in a single namespace, any CSV created in that
namespace transitions to a failure state with the reason TooManyOperatorGroups. CSVsin a
failed state for this reason transition to pending after the number of Operator groups in their
namespaces reaches one.

e |f the install modes of a CSV do not support the target namespace selection of the Operator
group in its namespace, the CSV transitions to a failure state with the reason
UnsupportedOperatorGroup. CSVs in a failed state for this reason transition to pending after
either the target namespace selection of the Operator group changes to a supported
configuration, or the install modes of the CSV are modified to support the target namespace
selection.

2.4.6. Operator conditions

This guide outlines how Operator Lifecycle Manager (OLM) uses Operator conditions.

2.4.6.1. About Operator conditions

As part of its role in managing the lifecycle of an Operator, Operator Lifecycle Manager (OLM) infers
the state of an Operator from the state of Kubernetes resources that define the Operator. While this
approach provides some level of assurance that an Operator is in a given state, there are many instances
where an Operator might need to communicate information to OLM that could not be inferred
otherwise. This information can then be used by OLM to better manage the lifecycle of the Operator.

OLM provides a custom resource definition (CRD) called OperatorCondition that allows Operators to

communicate conditions to OLM. There are a set of supported conditions that influence management
of the Operator by OLM when present in the Status.Conditions array of an OperatorCondition

49

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-creating-policy

OpenShift Container Platform 4.7 Operators
resource.

2.4.6.2. Supported conditions

Operator Lifecycle Manager (OLM) supports the following Operator conditions.

2.4.6.2.1. Upgradeable condition

The Upgradeable Operator condition prevents an existing cluster service version (CSV) from being
replaced by a newer version of the CSV. This condition is useful when:

® An Operator is about to start a critical process and should not be upgraded until the process is
completed.

® An Operator is performing a migration of custom resources (CRs) that must be completed
before the Operator is ready to be upgraded.

Example Upgradeable Operator condition

apiVersion: operators.coreos.com/v1
kind: OperatorCondition
metadata:
name: my-operator
namespace: operators
status:
conditions:

- type: Upgradeable ﬂ
status: "False"
reason: "migration”
message: "The Operator is performing a migration."
lastTransitionTime: "2020-08-24T23:15:55Z"

ﬂ Name of the condition.

A False value indicates the Operator is not ready to be upgraded. OLM prevents a CSV that
replaces the existing CSV of the Operator from leaving the Pending phase.

2.4.6.3. Additional resources

® Managing Operator conditions

® Enabling Operator conditions
2.4.7. Operator Lifecycle Manager metrics

2.4.7.1. Exposed metrics

Operator Lifecycle Manager (OLM) exposes certain OLM-specific resources for use by the
Prometheus-based OpenShift Container Platform cluster monitoring stack.

Table 2.7. Metrics exposed by OLM

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-operatorconditions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-operatorconditions_osdk-generating-csvs

CHAPTER 2. UNDERSTANDING OPERATORS

Name Description

catalog_source Number of catalog sources.

_count

csv_abnormal When reconciling a cluster service version (CSV), present whenever a CSV version is in
any state other than Succeeded, for example when it is not installed. Includes the
name, namespace, phase, reason, and version labels. A Prometheus alert is
created when this metric is present.

csv_count Number of CSVs successfully registered.

csv_succeeded When reconciling a CSV, represents whether a CSV version is in a Succeeded state
(value 1) or not (value 0). Includes the name, namespace, and version labels.

csv_upgrade_c Monotonic count of CSV upgrades.
ount

install_plan_co Number of install plans.
unt

subscription_co Number of subscriptions.
unt

subscription_sy Monotonic count of subscription syncs. Includes the channel, installed CSV, and
nc_total subscription name labels.

2.4.8. Webhook management in Operator Lifecycle Manager

Webhooks allow Operator authors to intercept, modify, and accept or reject resources before they are
saved to the object store and handled by the Operator controller. Operator Lifecycle Manager (OLM)
can manage the lifecycle of these webhooks when they are shipped alongside your Operator.

See Defining cluster service versions (CSVs) for details on how an Operator developer can define
webhooks for their Operator, as well as considerations when running on OLM.

2.4.8.1. Additional resources

® Types of webhook admission plug-ins

® Kubernetes documentation:

o Validating admission webhooks
o Mutating admission webhooks

o Conversion webhooks

2.5.UNDERSTANDING OPERATORHUB

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-defining-csv-webhook_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/architecture/#admission-webhook-types_admission-plug-ins
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#webhook-conversion

OpenShift Container Platform 4.7 Operators

2.5.1. About OperatorHub

OperatorHub is the web console interface in OpenShift Container Platform that cluster administrators
use to discover and install Operators. With one click, an Operator can be pulled from its off-cluster
source, installed and subscribed on the cluster, and made ready for engineering teams to self-service
manage the product across deployment environments using Operator Lifecycle Manager (OLM).

Cluster administrators can choose from catalogs grouped into the following categories:

Category Description

Red Hat Operators ~ Red Hat products packaged and shipped by Red Hat. Supported by Red Hat.

Certified Products from leading independent software vendors (ISVs). Red Hat partners with
Operators ISVs to package and ship. Supported by the ISV.
Red Hat Certified software that can be purchased from Red Hat Marketplace.

Marketplace

Community Optionally-visible software maintained by relevant representatives in the operator-
Operators framework/community-operators GitHub repository. No official support.

Custom Operators Operators you add to the cluster yourself. If you have not added any custom Operators,
the Custom category does not appear in the web console on your OperatorHub.

Operators on OperatorHub are packaged to run on OLM. This includes a YAML file called a cluster
service version (CSV) containing all of the CRDs, RBAC rules, deployments, and container images
required to install and securely run the Operator. It also contains user-visible information like a
description of its features and supported Kubernetes versions.

The Operator SDK can be used to assist developers packaging their Operators for use on OLM and
OperatorHub. If you have a commercial application that you want to make accessible to your customers,
getitincluded using the certification workflow provided on the Red Hat Partner Connect portal at
connect.redhat.com.

2.5.2. OperatorHub architecture
The OperatorHub Ul component is driven by the Marketplace Operator by default on OpenShift
Container Platform in the openshift-marketplace namespace.

2.5.2.1. OperatorHub custom resource

The Marketplace Operator manages an OperatorHub custom resource (CR) named cluster that
manages the default CatalogSource objects provided with OperatorHub. You can modify this resource
to enable or disable the default catalogs, which is useful when configuring OpenShift Container Platform
in restricted network environments.

Example OperatorHub custom resource

apiVersion: config.openshift.io/v1
kind: OperatorHub
metadata:

52

https://marketplace.redhat.com/
https://github.com/operator-framework/community-operators
https://connect.redhat.com

CHAPTER 2. UNDERSTANDING OPERATORS

name: cluster
spec:
disableAllDefaultSources: true)

sources: [9

{

name: "community-operators",
disabled: false

}
]

disableAllDefaultSources is an override that controls availability of all default catalogs that are
configured by default during an OpenShift Container Platform installation.

9 Disable default catalogs individually by changing the disabled parameter value per source.

2.5.3. Additional resources
® Catalog source
® About the Operator SDK
® Defining cluster service versions (CSVs)
® Operator installation and upgrade workflow in OLM
® Red Hat Partner Connect

® Red Hat Marketplace
2.6. RED HAT-PROVIDED OPERATOR CATALOGS

2.6.1. About Operator catalogs

An Operator catalog is a repository of metadata that Operator Lifecycle Manager (OLM) can query to
discover and install Operators and their dependencies on a cluster. OLM always installs Operators from
the latest version of a catalog. As of OpenShift Container Platform 4.6, Red Hat-provided catalogs are
distributed using index images.

An index image, based on the Operator Bundle Format, is a containerized snapshot of a catalog. It is an
immutable artifact that contains the database of pointers to a set of Operator manifest content. A
catalog can reference an index image to source its content for OLM on the cluster.

NOTE

Starting in OpenShift Container Platform 4.6, index images provided by Red Hat replace
the App Registry catalog images, based on the deprecated Package Manifest Format,
that are distributed for previous versions of OpenShift Container Platform 4. While App
Registry catalog images are not distributed by Red Hat for OpenShift Container Platform
4.6 and later, custom catalog images based on the Package Manifest Format are still
supported.

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-catalogsource_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-upgrades_olm-workflow
https://connect.redhat.com
https://marketplace.redhat.com

OpenShift Container Platform 4.7 Operators

As catalogs are updated, the latest versions of Operators change, and older versions may be removed or
altered. In addition, when OLM runs on an OpenShift Container Platform cluster in a restricted network
environment, it is unable to access the catalogs directly from the Internet to pull the latest content.

As a cluster administrator, you can create your own custom index image, either based on a Red Hat-
provided catalog or from scratch, which can be used to source the catalog content on the cluster.
Creating and updating your own index image provides a method for customizing the set of Operators
available on the cluster, while also avoiding the aforementioned restricted network environment issues.

IMPORTANT

When creating custom catalog images, previous versions of OpenShift Container
Platform 4 required using the oc adm catalog build command, which has been
deprecated for several releases. With the availability of Red Hat-provided index images
starting in OpenShift Container Platform 4.6, catalog builders should start switching to
using the opm index command to manage index images before the oc adm catalog
build command is removed in a future release.

Additional resources

® Managing custom catalogs

® Using Operator Lifecycle Manager on restricted networks

2.6.2. About Red Hat-provided Operator catalogs

The following Operator catalogs are distributed by Red Hat:

Catalog Index image Description

redhat- registry.redhat.io/redhat/redhat-operator- Red Hat products

operators index:v4.7 packaged and shipped
by Red Hat. Supported
by Red Hat.

certified- registry.redhat.io/redhat/certified-operator- Products from leading

operators index:v4.7 independent software

vendors (ISVs). Red Hat
partners with ISVs to
package and ship.
Supported by the ISV.

redhat- registry.redhat.io/redhat/redhat-marketplace- Certified software that
marketplace index:v4.7 can be purchased from
Red Hat Marketplace.

community- registry.redhat.io/redhat/community-operator- Software maintained by

operators index:v4.7 relevant representatives
in the operator-
framework/community-
operators GitHub
repository. No official
support.

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-restricted-networks
https://marketplace.redhat.com/
https://github.com/operator-framework/community-operators

CHAPTER 2. UNDERSTANDING OPERATORS

2.7. CRDS

2.7.1. Extending the Kubernetes API with custom resource definitions

Operators use the Kubernetes extension mechanism, custom resource definitions (CRDs), so that
custom objects managed by the Operator look and act just like the built-in, native Kubernetes objects.
This guide describes how cluster administrators can extend their OpenShift Container Platform cluster
by creating and managing CRDs.

2.7.1.1. Custom resource definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A custom resource definition (CRD) object defines a new, unique object type, called a kind, in the cluster
and lets the Kubernetes APl server handle its entire lifecycle.

Custom resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

When a cluster administrator adds a new CRD to the cluster, the Kubernetes APl server reacts by
creating a new RESTful resource path that can be accessed by the entire cluster or a single project
(namespace) and begins serving the specified CR.

Cluster administrators that want to grant access to the CRD to other users can use cluster role
aggregation to grant access to users with the admin, edit, or view default cluster roles. Cluster role
aggregation allows the insertion of custom policy rules into these cluster roles. This behavior integrates
the new resource into the RBAC policy of the cluster as if it was a built-in resource.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other

software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of the
lifecycle of an Operator, making them available to all users.

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

2.7.1.2. Creating a custom resource definition

To create custom resource (CR) objects, cluster administrators must first create a custom resource
definition (CRD).

Prerequisites
® Access to an OpenShift Container Platform cluster with cluster-admin user privileges.

Procedure

To create a CRD:
1. Create a YAML file that contains the following field types:

Example YAML file for a CRD

55

OpenShift Container Platform 4.7 Operators

56

apiVersion: apiextensions.k8s.io/v1 ﬂ
kind: CustomResourceDefinition
metadata:
name: crontabs.stable.example.com g
spec:
group: stable.example.com 6
versions:
name: vi ﬂ
scope: Namespaced 9
names:
plural: crontabs G
singular: crontab ﬂ
kind: CronTab @)
shortNames:

-t @

Use the apiextensions.k8s.io/v1 API.

Specify a name for the definition. This must be in the <plural-names.<group> format
using the values from the group and plural fields.

o

Specify a group name for the API. An API group is a collection of objects that are logically
related. For example, all batch objects like Job or ScheduledJob could be in the batch API
group (such as batch.api.example.com). A good practice is to use a fully-qualified-
domain name (FQDN) of your organization.

Specify a version name to be used in the URL. Each API group can exist in multiple
versions, for example vialpha, vibeta, v1.

Specify whether the custom objects are available to a project (Namespaced) or all
projects in the cluster (Cluster).

Specify the plural name to use in the URL. The plural field is the same as a resource in an
AP| URL.

Specify a singular name to use as an alias on the CLI and for display.

Specify the kind of objects that can be created. The type can be in CamelCase.

909 9 ® o

Specify a shorter string to match your resource on the CLI.

NOTE

By default, a CRD is cluster-scoped and available to all projects.

2. Create the CRD object:
I $ oc create -f <file_name>.yaml

A new RESTful APl endpoint is created at:

I /apis/<spec:group>/<spec:version>/<scope>/*/<names-plural>/...

CHAPTER 2. UNDERSTANDING OPERATORS

For example, using the example file, the following endpoint is created:

I /apis/stable.example.com/v1/namespaces/*/crontabs/...

You can now use this endpoint URL to create and manage CRs. The object kind is based on the
spec.kind field of the CRD object you created.

2.7.1.3. Creating cluster roles for custom resource definitions

Cluster administrators can grant permissions to existing cluster-scoped custom resource definitions
(CRDs). If you use the admin, edit, and view default cluster roles, you can take advantage of cluster role
aggregation for their rules.

IMPORTANT

You must explicitly assign permissions to each of these roles. The roles with more
permissions do not inherit rules from roles with fewer permissions. If you assign a rule to a
role, you must also assign that verb to roles that have more permissions. For example, if
you grant the get crontabs permission to the view role, you must also grant it to the edit
and admin roles. The admin or edit role is usually assigned to the user that created a
project through the project template.

Prerequisites

® (Createa CRD.

Procedure

1. Create a cluster role definition file for the CRD. The cluster role definition is a YAML file that
contains the rules that apply to each cluster role. A OpenShift Container Platform controller
adds the rules that you specify to the default cluster roles.

Example YAML file for a cluster role definition

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1 ﬂ
metadata:
name: aggregate-cron-tabs-admin-edit g
labels:
rbac.authorization.k8s.io/aggregate-to-admin: "true"
rbac.authorization.k8s.io/aggregate-to-edit: "true"
rules:
- apiGroups: ["stable.example.com"] 9
resources: ["crontabs"]
verbs: ["get", "list", "watch", "create", "update", "patch", "delete", "deletecollection"] ﬂ
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: aggregate-cron-tabs-view 6
labels:
Add these permissions to the "view" default role.
rbac.authorization.k8s.io/aggregate-to-view: "true" Q

57

OpenShift Container Platform 4.7 Operators

rbac.authorization.k8s.io/aggregate-to-cluster-reader: "true"
rules:
- apiGroups: ["stable.example.com"] m
resources: ["crontabs"]

verbs: ["get", "list", "watch"]

@ Use the rbac.authorization.k8s.io/v1 AP!.

wSpecify a name for the definition.

9 Specify this label to grant permissions to the admin default role.

Q Specify this label to grant permissions to the edit default role.

wSpecify the group name of the CRD.

wSpecify the plural name of the CRD that these rules apply to.

pecify the verbs that represent the permissions that are granted to the role. For example,

apply read and write permissions to the admin and edit roles and only read permission to
the view role.

@ Specify this label to grant permissions to the view default role.

@ Specify this label to grant permissions to the cluster-reader default role.

2. Create the cluster role:

I $ oc create -f <file_name>.yaml

2.7.1.4. Creating custom resources from a file

After a custom resource definitions (CRD) has been added to the cluster, custom resources (CRs) can
be created with the CLI from a file using the CR specification.

Prerequisites

® CRD added to the cluster by a cluster administrator.

Procedure

58

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object:

Example YAML file for a CR

apiVersion: "stable.example.com/v1" 0
kind: CronTab @)
metadata:
name: my-new-cron-object 6
finalizers:
- finalizer.stable.example.com

CHAPTER 2. UNDERSTANDING OPERATORS

spec: 9
cronSpec: " * * * /5"
image: my-awesome-cron-image

Specify the group name and APl version (name/version) from the CRD.
Specify the type in the CRD.

Specify a name for the object.

o599®9 —

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

®

2. After you create the file, create the object:

I $ oc create -f <file_name>.yaml

2.7.1.5. Inspecting custom resources

You can inspect custom resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

® A CR object exists in a namespace to which you have access.

Procedure

1. To getinformation on a specific kind of a CR, run:
I $ oc get <kind>

For example:
I $ oc get crontab
Example output

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

I $ oc get crontabs
I $ oc get crontab

I $ oc get ct

59

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

OpenShift Container Platform 4.7 Operators

2. You can also view the raw YAML data for a CR:
I $ oc get <kind> -0 yaml

For example:
I $ oc get ct -0 yaml
Example output

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
kind: CronTab
metadata:
clusterName: "
creationTimestamp: 2017-05-31T12:56:35Z
deletionGracePeriodSeconds: null
deletionTimestamp: null
name: my-new-cron-object
namespace: default
resourceVersion: "285"
selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
uid: 9423255b-4600-11e7-af6a-28d2447dc82b
spec:
cronSpec: ™ * * * /5 ﬂ
image: my-awesome-cron-image 9

wCustom data from the YAML that you used to create the object displays.

2.7.2. Managing resources from custom resource definitions

This guide describes how developers can manage custom resources (CRs) that come from custom
resource definitions (CRDs).

2.7.2.1. Custom resource definitions

In the Kubernetes API, a resource is an endpoint that stores a collection of API objects of a certain kind.
For example, the built-in Pods resource contains a collection of Pod objects.

A custom resource definition (CRD) object defines a new, unique object type, called a kind, in the cluster
and lets the Kubernetes APl server handle its entire lifecycle.

Custom resource (CR) objects are created from CRDs that have been added to the cluster by a cluster
administrator, allowing all cluster users to add the new resource type into projects.

Operators in particular make use of CRDs by packaging them with any required RBAC policy and other

software-specific logic. Cluster administrators can also add CRDs manually to the cluster outside of the
lifecycle of an Operator, making them available to all users.

60

CHAPTER 2. UNDERSTANDING OPERATORS

NOTE

While only cluster administrators can create CRDs, developers can create the CR from an
existing CRD if they have read and write permission to it.

2.7.2.2. Creating custom resources from a file

After a custom resource definitions (CRD) has been added to the cluster, custom resources (CRs) can
be created with the CLI from a file using the CR specification.

Prerequisites

® CRD added to the cluster by a cluster administrator.

Procedure

1. Create a YAML file for the CR. In the following example definition, the cronSpec and image
custom fields are set in a CR of Kind: CronTab. The Kind comes from the spec.kind field of
the CRD object:

Example YAML file for a CR

apiVersion: "stable.example.com/v1" 0
kind: CronTab @)
metadata:
name: my-new-cron-object 6
finalizers:
- finalizer.stable.example.com
spec: 6
cronSpec: " * * * /5"
image: my-awesome-cron-image

Specify the group name and APl version (name/version) from the CRD.
Specify the type in the CRD.

Specify a name for the object.

- -

Specify the finalizers for the object, if any. Finalizers allow controllers to implement
conditions that must be completed before the object can be deleted.

Specify conditions specific to the type of object.

®

2. After you create the file, create the object:

I $ oc create -f <file_name>.yaml

2.7.2.3. Inspecting custom resources

You can inspect custom resource (CR) objects that exist in your cluster using the CLI.

Prerequisites

61

https://kubernetes.io/docs/tasks/access-kubernetes-api/extend-api-custom-resource-definitions/#finalizers

OpenShift Container Platform 4.7 Operators

® A CR object exists in a namespace to which you have access.

Procedure

62

1. To getinformation on a specific kind of a CR, run:
I $ oc get <kind>

For example:
I $ oc get crontab
Example output

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

Resource names are not case-sensitive, and you can use either the singular or plural forms
defined in the CRD, as well as any short name. For example:

I $ oc get crontabs
I $ oc get crontab

I $ oc get ct
2. You can also view the raw YAML data for a CR:
I $ oc get <kind> -0 yaml
For example:
I $ oc get ct -0 yaml
Example output

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
kind: CronTab
metadata:
clusterName: "
creationTimestamp: 2017-05-31T12:56:35Z
deletionGracePeriodSeconds: null
deletionTimestamp: null
name: my-new-cron-object
namespace: default
resourceVersion: "285"
selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
uid: 9423255b-4600-11e7-af6a-28d2447dc82b

CHAPTER 2. UNDERSTANDING OPERATORS

spec:
cronSpec: ™ * * * /5 ﬂ
image: my-awesome-cron-image g

wCustom data from the YAML that you used to create the object displays.

63

OpenShift Container Platform 4.7 Operators

CHAPTER 3. USER TASKS

3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS

This guide walks developers through an example of creating applications from an installed Operator
using the OpenShift Container Platform web console.

3.1.1. Creating an etcd cluster using an Operator

This procedure walks through creating a new etcd cluster using the etcd Operator, managed by
Operator Lifecycle Manager (OLM).

Prerequisites

Access to an OpenShift Container Platform 4.7 cluster.

The etcd Operator already installed cluster-wide by an administrator.

Procedure

1.

5.

64

Create a new project in the OpenShift Container Platform web console for this procedure. This
example uses a project called my-etcd.

Navigate to the Operators = Installed Operatorspage. The Operators that have been installed
to the cluster by the cluster administrator and are available for use are shown here as a list of
cluster service versions (CSVs). CSVs are used to launch and manage the software provided by
the Operator.

TIP

You can get this list from the CLI using:

I $ oc get csv

On the Installed Operators page, click the etcd Operator to view more details and available
actions.

As shown under Provided APls, this Operator makes available three new resource types,
including one for an etcd Cluster (the EtcdCluster resource). These objects work similar to the
built-in native Kubernetes ones, such as Deployment or ReplicaSet, but contain logic specific
to managing etcd.

Create a new etcd cluster:

a. In the etcd Cluster API box, click Create instance

b. The next screen allows you to make any modifications to the minimal starting template of an
EtcdCluster object, such as the size of the cluster. For now, click Create to finalize. This
triggers the Operator to start up the pods, services, and other components of the new etcd
cluster.

Click on the example etcd cluster, then click the Resources tab to see that your project now
contains a number of resources created and configured automatically by the Operator.

CHAPTER 3. USER TASKS

Verify that a Kubernetes service has been created that allows you to access the database from
other pods in your project.

6. All users with the edit role in a given project can create, manage, and delete application
instances (an etcd cluster, in this example) managed by Operators that have already been
created in the project, in a self-service manner, just like a cloud service. If you want to enable
additional users with this ability, project administrators can add the role using the following
command:

I $ oc policy add-role-to-user edit <user> -n <target_project>

You now have an etcd cluster that will react to failures and rebalance data as pods become unhealthy or
are migrated between nodes in the cluster. Most importantly, cluster administrators or developers with
proper access can now easily use the database with their applications.

3.2. INSTALLING OPERATORS IN YOUR NAMESPACE

If a cluster administrator has delegated Operator installation permissions to your account, you can install
and subscribe an Operator to your namespace in a self-service manner.

3.2.1. Prerequisites

® A cluster administrator must add certain permissions to your OpenShift Container Platform user
account to allow self-service Operator installation to a namespace. See Allowing non-cluster
administrators to install Operators for details.

3.2.2. Operator installation with OperatorHub

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a user with the proper permissions, you can install an Operator from OperatorHub using the
OpenShift Container Platform web console or CLI.

During installation, you must determine the following initial settings for the Operator:

Installation Mode
Choose a specific namespace in which to install the Operator.
Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.

If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an
update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

® Understanding OperatorHub

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-creating-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-understanding-operatorhub

OpenShift Container Platform 4.7 Operators

3.2.3. Installing from OperatorHub using the web console

You can install and subscribe to an Operator from OperatorHub using the OpenShift Container Platform
web console.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation

permissions.

Procedure

66

1. Navigate in the web console to the Operators = OperatorHub page.

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type advanced to find the Advanced Cluster Management for Kubernetes Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

a. Choose a specific, single namespace in which to install the Operator. The Operator will only
watch and be made available for use in this single namespace.

b. Select an Update Channel (if more than one is available).
c. Select Automatic or Manual approval strategy, as described earlier.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

7. After the upgrade status of the subscription is Up to date, select Operators - Installed
Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should ultimately resolve to InstallSucceeded in the relevant namespace.

CHAPTER 3. USER TASKS

NOTE

For the All namespaces... installation mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

a. Check the logsin any pods in the openshift-operators project (or other relevant
namespace if A specific namespace... installation mode was selected) on the Workloads =
Pods page that are reporting issues to troubleshoot further.

3.2.4. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

® |nstall the oc command to your local system.

Procedure

1. View the list of Operators available to the cluster from OperatorHub:

I $ oc get packagemanifests -n openshift-marketplace

Example output

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m

couchbase-enterprise-certified Certified Operators 91m

crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m

Note the catalog for your desired Operator.

2. Inspect your desired Operator to verify its supported install modes and available channels:

I $ oc describe packagemanifests <operator_name> -n openshift-marketplace

67

OpenShift Container Platform 4.7 Operators

68

3. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to
generate required RBAC access for all Operators in the same namespace as the Operator
group.

The namespace to which you subscribe the Operator must have an Operator group that
matches the install mode of the Operator, either the AlINamespaces or SingleNamespace
mode. If the Operator you intend to install uses the AlINamespaces, then the openshift-
operators namespace already has an appropriate Operator group in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate Operator group in place, you must create one.

NOTE

The web console version of this procedure handles the creation of the
OperatorGroup and Subscription objects automatically behind the scenes for
you when choosing SingleNamespace mode.

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup object

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: <operatorgroup_name>
namespace: <namespace>
spec:
targetNamespaces:
- <namespace>

b. Create the OperatorGroup object:
I $ oc apply -f operatorgroup.yaml

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example
sub.yaml:

Example Subscription object

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:

name: <subscription_name>

namespace: openshift-operators ﬂ
spec:

channel: <channel_name> g

name: <operator_name>
source: redhat-operators
sourceNamespace: openshift-marketplace 9
config:
env:
- name: ARGS
value: "-v=10"

® 90 O 0 9 @9 9600600 O

CHAPTER 3. USER TASKS

envFrom: a

- secretRef:
name: license-secret
volumes: 6
- name: <volume_name>
configMap:
name: <configmap_name>
volumeMounts:
- mountPath: <directory_name>
name: <volume_name>
tolerations: @
- operator: "Exists"
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
nodeSelector: @
foo: bar

For AlINamespaces install mode usage, specify the openshift-operators namespace.
Otherwise, specify the relevant single namespace for SingleNamespace install mode
usage.

Name of the channel to subscribe to.

Name of the Operator to subscribe to.

Name of the catalog source that provides the Operator.

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

The env parameter defines a list of Environment Variables that must exist in all containers
in the pod created by OLM.

The envFrom parameter defines a list of sources to populate Environment Variables in the
container.

The volumes parameter defines a list of Volumes that must exist on the pod created by
OLM.

The volumeMounts parameter defines a list of VolumeMounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that does
not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of Tolerations for the pod created by OLM.

The resources parameter defines resource constraints for all the containers in the pod
created by OLM.

The nodeSelector parameter defines a NodeSelector for the pod created by OLM.

69

OpenShift Container Platform 4.7 Operators

5. Create the Subscription object:

I $ oc apply -f sub.yaml

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for
the Operator should appear in the target namespace, and APIs provided by the Operator should
be available for creation.

Additional resources
® Operator groups

® Channel names

3.2.5. Installing a specific version of an Operator

You can install a specific version of an Operator by setting the cluster service version (CSV) in a
Subscription object.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions

® OpenShift CLI (o¢) installed

Procedure

1. Create a Subscription object YAML file that subscribes a namespace to an Operator with a
specific version by setting the startingCSV field. Set the installPlanApproval field to Manual
to prevent the Operator from automatically upgrading if a later version exists in the catalog.
For example, the following sub.yaml file can be used to install the Red Hat Quay Operator
specifically to version 3.4.0:

Subscription with a specific starting Operator version

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: quay-operator
namespace: quay
spec:
channel: quay-v3.4
installPlanApproval: Manual 0
name: quay-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
startingCSV: quay-operator.v3.4.0 g

ﬂ Set the approval strategy to Manual in case your specified version is superseded by a later
version in the catalog. This plan prevents an automatic upgrade to a later version and
requires manual approval before the starting CSV can complete the installation.

9 Set a specific version of an Operator CSV.

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-operatorgroups-about_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-subscription_olm-understanding-olm

CHAPTER 3. USER TASKS

2. Create the Subscription object:
I $ oc apply -f sub.yaml

3. Manually approve the pending install plan to complete the Operator installation.

Additional resources

® Manually approving a pending Operator upgrade

71

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-approving-pending-upgrade_olm-upgrading-operators

OpenShift Container Platform 4.7 Operators

CHAPTER 4. ADMINISTRATOR TASKS

4.1. ADDING OPERATORS TO A CLUSTER

Cluster administrators can install Operators to an OpenShift Container Platform cluster by subscribing
Operators to namespaces with OperatorHub.

4.1.1. Operator installation with OperatorHub

OperatorHub is a user interface for discovering Operators; it works in conjunction with Operator
Lifecycle Manager (OLM), which installs and manages Operators on a cluster.

As a user with the proper permissions, you can install an Operator from OperatorHub using the
OpenShift Container Platform web console or CLI.

During installation, you must determine the following initial settings for the Operator:

Installation Mode
Choose a specific namespace in which to install the Operator.
Update Channel

If an Operator is available through multiple channels, you can choose which channel you want to
subscribe to. For example, to deploy from the stable channel, if available, select it from the list.

Approval Strategy

You can choose automatic or manual updates.

If you choose automatic updates for an installed Operator, when a new version of that Operator is
available in the selected channel, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention.

If you select manual updates, when a newer version of an Operator is available, OLM creates an

update request. As a cluster administrator, you must then manually approve that update request to
have the Operator updated to the new version.

® Understanding OperatorHub

4.1.2. Installing from OperatorHub using the web console

You can install and subscribe to an Operator from OperatorHub using the OpenShift Container Platform
web console.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

® Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions.

Procedure

1. Navigate in the web console to the Operators = OperatorHub page.

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-understanding-operatorhub

CHAPTER 4. ADMINISTRATOR TASKS

2. Scroll or type a keyword into the Filter by keyword box to find the Operator you want. For
example, type advanced to find the Advanced Cluster Management for Kubernetes Operator.
You can also filter options by Infrastructure Features. For example, select Disconnected if you
want to see Operators that work in disconnected environments, also known as restricted
network environments.

3. Select the Operator to display additional information.

NOTE

Choosing a Community Operator warns that Red Hat does not certify
Community Operators; you must acknowledge the warning before continuing.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:
a. Select one of the following:

e All namespaces on the cluster (default)installs the Operator in the default openshift-
operators namespace to watch and be made available to all namespaces in the cluster.
This option is not always available.

® A specific namespace on the clusterallows you to choose a specific, single namespace
in which to install the Operator. The Operator will only watch and be made available for
use in this single namespace.

b. Choose a specific, single namespace in which to install the Operator. The Operator will only
watch and be made available for use in this single namespace.

c. Select an Update Channel (if more than one is available).
d. Select Automatic or Manual approval strategy, as described earlier.

6. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

a. If you selected a Manual approval strategy, the upgrade status of the subscription remains
Upgrading until you review and approve the install plan.
After approving on the Install Plan page, the subscription upgrade status moves to Up to
date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

7. After the upgrade status of the subscription is Up to date, select Operators - Installed

Operators to verify that the cluster service version (CSV) of the installed Operator eventually
shows up. The Status should ultimately resolve to InstallSucceeded in the relevant namespace.

NOTE

For the All namespaces... installation mode, the status resolves to
InstallSucceeded in the openshift-operators namespace, but the status is
Copied if you check in other namespaces.

If it does not:

73

OpenShift Container Platform 4.7 Operators

a. Check the logsin any pods in the openshift-operators project (or other relevant

namespace if A specific namespace... installation mode was selected) on the Workloads =

Pods page that are reporting issues to troubleshoot further.

4.1.3. Installing from OperatorHub using the CLI

Instead of using the OpenShift Container Platform web console, you can install an Operator from
OperatorHub using the CLI. Use the oc command to create or update a Subscription object.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation

permissions.

Install the oc command to your local system.

Procedure

74

1. View the list of Operators available to the cluster from OperatorHub:

I $ oc get packagemanifests -n openshift-marketplace

Example output

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m

couchbase-enterprise-certified Certified Operators 91m

crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m

Note the catalog for your desired Operator.

. Inspect your desired Operator to verify its supported install modes and available channels:

I $ oc describe packagemanifests <operator_name> -n openshift-marketplace

. An Operator group, defined by an OperatorGroup object, selects target namespaces in which to

generate required RBAC access for all Operators in the same namespace as the Operator
group.

The namespace to which you subscribe the Operator must have an Operator group that
matches the install mode of the Operator, either the AlINamespaces or SingleNamespace
mode. If the Operator you intend to install uses the AlINamespaces, then the openshift-
operators namespace already has an appropriate Operator group in place.

However, if the Operator uses the SingleNamespace mode and you do not already have an
appropriate Operator group in place, you must create one.

CHAPTER 4. ADMINISTRATOR TASKS

NOTE

The web console version of this procedure handles the creation of the
OperatorGroup and Subscription objects automatically behind the scenes for
you when choosing SingleNamespace mode.

a. Create an OperatorGroup object YAML file, for example operatorgroup.yaml:

Example OperatorGroup object

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: <operatorgroup_name>
namespace: <namespace>
spec:
targetNamespaces:
- <namespace>

b. Create the OperatorGroup object:
I $ oc apply -f operatorgroup.yaml

4. Create a Subscription object YAML file to subscribe a namespace to an Operator, for example
sub.yaml:

Example Subscription object

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: <subscription_name>
namespace: openshift-operators ﬂ
spec:
channel: <channel_name> g
name: <operator_name>
source: redhat-operators
sourceNamespace: openshift-marketplace 6
config:
env:
- name: ARGS
value: "-v=10"
envFrom: a
- secretRef:
name: license-secret
volumes: G
- name: <volume_name>
configMap:
name: <configmap_name>
volumeMounts:
- mountPath: <directory_name>
name: <volume_name>
tolerations: @

75

OpenShift Container Platform 4.7 Operators

- operator: "Exists"
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"
nodeSelector: @
foo: bar

For AlINamespaces install mode usage, specify the openshift-operators namespace.
Otherwise, specify the relevant single namespace for SingleNamespace install mode
usage.

Name of the channel to subscribe to.
Name of the Operator to subscribe to.
Name of the catalog source that provides the Operator.

Namespace of the catalog source. Use openshift-marketplace for the default
OperatorHub catalog sources.

The env parameter defines a list of Environment Variables that must exist in all containers
in the pod created by OLM.

The envFrom parameter defines a list of sources to populate Environment Variables in the
container.

The volumes parameter defines a list of Volumes that must exist on the pod created by
OLM.

The volumeMounts parameter defines a list of VolumeMounts that must exist in all
containers in the pod created by OLM. If a volumeMount references a volume that does
not exist, OLM fails to deploy the Operator.

The tolerations parameter defines a list of Tolerations for the pod created by OLM.

The resources parameter defines resource constraints for all the containers in the pod
created by OLM.

90 O O 9 @9 9600600 9O

The nodeSelector parameter defines a NodeSelector for the pod created by OLM.

S

5. Create the Subscription object:

I $ oc apply -f sub.yaml

At this point, OLM is now aware of the selected Operator. A cluster service version (CSV) for
the Operator should appear in the target namespace, and APIs provided by the Operator should
be available for creation.

Additional resources

76

® About Operator groups

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-operatorgroups-about_olm-understanding-operatorgroups

CHAPTER 4. ADMINISTRATOR TASKS

4.1.4. Installing a specific version of an Operator

You can install a specific version of an Operator by setting the cluster service version (CSV) in a
Subscription object.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with Operator installation
permissions

® OpenShift CLI (o¢) installed

Procedure

1. Create a Subscription object YAML file that subscribes a namespace to an Operator with a
specific version by setting the startingCSV field. Set the installPlanApproval field to Manual
to prevent the Operator from automatically upgrading if a later version exists in the catalog.
For example, the following sub.yaml file can be used to install the Red Hat Quay Operator
specifically to version 3.4.0:

Subscription with a specific starting Operator version

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: quay-operator
namespace: quay
spec:
channel: quay-v3.4
installPlanApproval: Manual 0
name: quay-operator
source: redhat-operators
sourceNamespace: openshift-marketplace
startingCSV: quay-operator.v3.4.0 g

ﬂ Set the approval strategy to Manual in case your specified version is superseded by a later
version in the catalog. This plan prevents an automatic upgrade to a later version and
requires manual approval before the starting CSV can complete the installation.

9 Set a specific version of an Operator CSV.

2. Create the Subscription object:
I $ oc apply -f sub.yaml

3. Manually approve the pending install plan to complete the Operator installation.

Additional resources

® Manually approving a pending Operator upgrade

4.1.5. Pod placement of Operator workloads

77

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-approving-pending-upgrade_olm-upgrading-operators

OpenShift Container Platform 4.7 Operators

By default, Operator Lifecycle Manager (OLM) places pods on arbitrary worker nodes when installing an
Operator or deploying Operand workloads. As an administrator, you can use projects with a combination
of node selectors, taints, and tolerations to control the placement of Operators and Operands to
specific nodes.

Controlling pod placement of Operator and Operand workloads has the following prerequisites:

1. Determine a node or set of nodes to target for the pods per your requirements. If available, note
an existing label, such as node-role.kubernetes.io/app, that identifies the node or nodes.
Otherwise, add a label, such as myoperator, by using a machine set or editing the node directly.
You will use this label in a later step as the node selector on your project.

2. If you want to ensure that only pods with a certain label are allowed to run on the nodes, while
steering unrelated workloads to other nodes, add a taint to the node or nodes by using a
machine set or editing the node directly. Use an effect that ensures that new pods that do not
match the taint cannot be scheduled on the nodes. For example, a myoperator:NoSchedule
taint ensures that new pods that do not match the taint are not scheduled onto that node, but
existing pods on the node are allowed to remain.

3. Create a project that is configured with a default node selector and, if you added a taint, a
matching toleration.

At this point, the project you created can be used to steer pods towards the specified nodes in the
following scenarios:

For Operator pods

Administrators can create a Subscription object in the project. As a result, the Operator pods are
placed on the specified nodes.

For Operand pods

Using an installed Operator, users can create an application in the project, which places the custom
resource (CR) owned by the Operator in the project. As a result, the Operand pods are placed on the
specified nodes, unless the Operator is deploying cluster-wide objects or resources in other
namespaces, in which case this customized pod placement does not apply.

Additional resources

® Adding taints and tolerations manually to nodes or with machine sets
® Creating project-wide node selectors

® Creating a project with a node selector and toleration

4.2. UPGRADING INSTALLED OPERATORS

As a cluster administrator, you can upgrade Operators that have been previously installed using
Operator Lifecycle Manager (OLM) on your OpenShift Container Platform cluster.
4.2.1. Changing the update channel for an Operator

The subscription of an installed Operator specifies an update channel, which is used to track and receive
updates for the Operator. To upgrade the Operator to start tracking and receiving updates from a newer
channel, you can change the update channel in the subscription.

The names of update channels in a subscription can differ between Operators, but the naming scheme
should follow a common convention within a given Operator. For example, channel names might follow a

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#nodes-scheduler-taints-tolerations-adding_nodes-scheduler-taints-tolerations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#nodes-scheduler-taints-tolerations-adding-machineset_nodes-scheduler-taints-tolerations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#nodes-scheduler-node-selectors-project_nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/nodes/#nodes-scheduler-taints-tolerations-projects_nodes-scheduler-taints-tolerations

CHAPTER 4. ADMINISTRATOR TASKS

minor release update stream for the application provided by the Operator (1.2, 1.3) or a release
frequency (stable, fast).

NOTE

Installed Operators cannot change to a channel that is older than the current channel.

If the approval strategy in the subscription is set to Automatic, the upgrade process initiates as soon as
a new Operator version is available in the selected channel. If the approval strategy is set to Manual, you
must manually approve pending upgrades.

Prerequisites

® An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators = Installed Operators.

2. Click the name of the Operator you want to change the update channel for.
3. Click the Subscription tab.

4. Click the name of the update channel under Channel.

5. Click the newer update channel that you want to change to, then click Save.

6. For subscriptions with an Automatic approval strategy, the upgrade begins automatically.
Navigate back to the Operators = Installed Operators page to monitor the progress of the
upgrade. When complete, the status changes to Succeeded and Up to date.

For subscriptions with a Manual approval strategy, you can manually approve the upgrade from
the Subscription tab.
4.2.2. Manually approving a pending Operator upgrade

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin.

Prerequisites

® An Operator previously installed using Operator Lifecycle Manager (OLM).

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators = Installed Operators.

2. Operators that have a pending upgrade display a status with Upgrade available. Click the name
of the Operator you want to upgrade.

3. Click the Subscription tab. Any upgrades requiring approval are displayed next to Upgrade
Status. For example, it might display 1requires approval

79

OpenShift Container Platform 4.7 Operators

4. Click 1requires approval then click Preview Install Plan.
5. Review the resources that are listed as available for upgrade. When satisfied, click Approve.

6. Navigate back to the Operators - Installed Operatorspage to monitor the progress of the
upgrade. When complete, the status changes to Succeeded and Up to date.

4.3. DELETING OPERATORS FROM A CLUSTER

The following describes how to delete Operators that were previously installed using Operator Lifecycle
Manager (OLM) on your OpenShift Container Platform cluster.
4.3.1. Deleting Operators from a cluster using the web console

Cluster administrators can delete installed Operators from a selected namespace by using the web
console.

Prerequisites

® Access to an OpenShift Container Platform cluster web console using an account with cluster-
admin permissions.

Procedure

1. From the Operators — Installed Operators page, scroll or type a keyword into the Filter by
name to find the Operator you want. Then, click on it.

2. On the right side of the Operator Details page, select Uninstall Operator from the Actions list.
An Uninstall Operator? dialog box is displayed, reminding you that:

Removing the Operator will not remove any of its custom resource definitions or managed
resources. If your Operator has deployed applications on the cluster or configured off-
cluster resources, these will continue to run and need to be cleaned up manually.

This action removes the Operator as well as the Operator deployments and pods, if any. Any
Operands, and resources managed by the Operator, including CRDs and CRs, are not removed.
The web console enables dashboards and navigation items for some Operators. To remove
these after uninstalling the Operator, you might need to manually delete the Operator CRDs.

3. Select Uninstall. This Operator stops running and no longer receives updates.

4.3.2. Deleting Operators from a cluster using the CLI

Cluster administrators can delete installed Operators from a selected namespace by using the CLI.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

® oc command installed on workstation.

Procedure

80

CHAPTER 4. ADMINISTRATOR TASKS

1. Check the current version of the subscribed Operator (for example, jaeger) in the currentCSV
field:

I $ oc get subscription jaeger -n openshift-operators -o yaml | grep currentCSV
Example output
I currentCSV: jaeger-operator.v1.8.2
2. Delete the subscription (for example, jaeger):
I $ oc delete subscription jaeger -n openshift-operators
Example output
I subscription.operators.coreos.com "jaeger" deleted

3. Delete the CSV for the Operator in the target namespace using the currentCSV value from the
previous step:

I $ oc delete clusterserviceversion jaeger-operator.v1.8.2 -n openshift-operators
Example output

I clusterserviceversion.operators.coreos.com "jaeger-operator.v1.8.2" deleted

4.3.3. Refreshing failing subscriptions

In Operator Lifecycle Manager (OLM), if you subscribe to an Operator that references images that are
not accessible on your network, you can find jobs in the openshift-marketplace namespace that are
failing with the following errors:

Example output

ImagePullBackOff for
Back-off pulling image "example.com/openshift4/ose-elasticsearch-operator-
bundle@sha256:6d2587129c846ec28d384540322b40b05833e7e00b25cca584e004af9a1d292e"

Example output

rpc error: code = Unknown desc = error pinging docker registry example.com: Get
"https://example.com/v2/": dial tcp: lookup example.com on 10.0.0.1:53: no such host

As a result, the subscription is stuck in this failing state and the Operator is unable to install or upgrade.

You can refresh a failing subscription by deleting the subscription, cluster service version (CSV), and
other related objects. After recreating the subscription, OLM then reinstalls the correct version of the
Operator.

Prerequisites

81

OpenShift Container Platform 4.7 Operators

® You have a failing subscription that is unable to pull an inaccessible bundle image.

® You have confirmed that the correct bundle image is accessible.

Procedure

82

1. Get the names of the Subscription and ClusterServiceVersion objects from the namespace

where the Operator is installed:

I $ oc get sub,csv -n <namespace>
Example output

NAME PACKAGE SOURCE CHANNEL
subscription.operators.coreos.com/elasticsearch-operator elasticsearch-operator redhat-
operators 5.0

NAME DISPLAY VERSION
REPLACES PHASE
clusterserviceversion.operators.coreos.com/elasticsearch-operator.5.0.0-65 OpenShift
Elasticsearch Operator 5.0.0-65 Succeeded

2. Delete the subscription:

I $ oc delete subscription <subscription_name> -n <namespace>

3. Delete the cluster service version:

I $ oc delete csv <csv_name> -n <namespace>

4. Getthe names of any failing jobs and related config maps in the openshift-marketplace

namespace:
I $ oc get job,configmap -n openshift-marketplace
Example output

NAME COMPLETIONS DURATION AGE
job.batch/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbcch 1/1
26s 9m30s

NAME DATA AGE
configmap/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 3
9m30s

5. Delete the job:

I $ oc delete job <job_name> -n openshift-marketplace

This ensures pods that try to pull the inaccessible image are not recreated.

6. Delete the config map:

CHAPTER 4. ADMINISTRATOR TASKS

I $ oc delete configmap <configmap_name> -n openshift-marketplace

7. Reinstall the Operator using OperatorHub in the web console.

Verification

® Check that the Operator has been reinstalled successfully:

I $ oc get sub,csv,installplan -n <namespace>

4.4. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE
MANAGER

If a global proxy is configured on the OpenShift Container Platform cluster, Operator Lifecycle Manager
(OLM) automatically configures Operators that it manages with the cluster-wide proxy. However, you
can also configure installed Operators to override the global proxy or inject a custom CA certificate.

Additional resources

® Configuring the cluster-wide proxy

e Configuring a custom PKI (custom CA certificate)

4.4.1. Overriding proxy settings of an Operator

If a cluster-wide egress proxy is configured, Operators running with Operator Lifecycle Manager (OLM)
inherit the cluster-wide proxy settings on their deployments. Cluster administrators can also override
these proxy settings by configuring the subscription of an Operator.

IMPORTANT

Operators must handle setting environment variables for proxy settings in the pods for
any managed Operands.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

Procedure

1. Navigate in the web console to the Operators = OperatorHub page.
2. Select the Operator and click Install.

3. On the Install Operator page, modify the Subscription object to include one or more of the
following environment variables in the spec section:

e HTTP_PROXY
e HTTPS_PROXY

e NO_PROXY

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#enable-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/networking/#configuring-a-custom-pki

OpenShift Container Platform 4.7 Operators

For example:

Subscription object with proxy setting overrides

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: etcd-config-test
namespace: openshift-operators
spec:
config:
env:
- name: HTTP_PROXY
value: test_http
- name: HTTPS_PROXY
value: test_https
- name: NO_PROXY
value: test
channel: clusterwide-alpha
installPlanApproval: Automatic
name: etcd
source: community-operators
sourceNamespace: openshift-marketplace
startingCSV: etcdoperator.v0.9.4-clusterwide

NOTE

These environment variables can also be unset using an empty value to remove
any previously set cluster-wide or custom proxy settings.

OLM handles these environment variables as a unit; if at least one of them is set, all three are
considered overridden and the cluster-wide defaults are not used for the deployments of the
subscribed Operator.

4. Click Install to make the Operator available to the selected namespaces.

5. After the CSV for the Operator appears in the relevant namespace, you can verify that custom
proxy environment variables are set in the deployment. For example, using the CLI:

$ oc get deployment -n openshift-operators \
etcd-operator -0 yaml \
| grep -i "PROXY" -A 2

Example output

- name: HTTP_PROXY
value: test_http

- name: HTTPS_PROXY
value: test_https

- name: NO_PROXY
value: test

image: quay.io/coreos/etcd-

84

CHAPTER 4. ADMINISTRATOR TASKS

operator@sha256:66a37fd61a06a43969854ee6d3e21088a980b93838e284a6086b13917f96b0
d9c

4.4.2. Injecting a custom CA certificate

When a cluster administrator adds a custom CA certificate to a cluster using a config map, the Cluster
Network Operator merges the user-provided certificates and system CA certificates into a single
bundle. You can inject this merged bundle into your Operator running on Operator Lifecycle Manager
(OLM), which is useful if you have a man-in-the-middle HTTPS proxy.

Prerequisites

® Access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions.

® Custom CA certificate added to the cluster using a config map.

® Desired Operator installed and running on OLM.

Procedure

1. Create an empty config map in the namespace where the subscription for your Operator exists
and include the following label:

apiVersion: vi
kind: ConfigMap
metadata:
name: trusted-ca ﬂ
labels:
config.openshift.io/inject-trusted-cabundle: "true"

ﬂ Name of the config map.

9 Requests the Cluster Network Operator to inject the merged bundle.

After creating this config map, it is immediately populated with the certificate contents of the
merged bundle.

2. Update your the Subscription object to include a spec.config section that mounts the
trusted-ca config map as a volume to each container within a pod that requires a custom CA:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: my-operator
spec:
package: etcd
channel: alpha
config: ﬂ
selector:
matchLabels:
<labels_for_pods> 9
volumes:

85

OpenShift Container Platform 4.7 Operators

QD009

- name: trusted-ca
configMap:
name: trusted-ca
items:
- key: ca-bundle.crt ﬂ
path: tls-ca-bundle.pem 6
volumeMounts:
- name: trusted-ca
mountPath: /etc/pki/ca-trust/extracted/pem
readOnly: true

Add a config section if it does not exist.

Specify labels to match pods that are owned by the Operator.
Create a trusted-ca volume.

ca-bundle.crt is required as the config map key.
tls-ca-bundle.pem is required as the config map path.

Create a trusted-ca volume mount.

4.5. VIEWING OPERATOR STATUS

Understanding the state of the system in Operator Lifecycle Manager (OLM) is important for making
decisions about and debugging problems with installed Operators. OLM provides insight into
subscriptions and related catalog sources regarding their state and actions performed. This helps users

better understand the healthiness of their Operators.

4.5.1. Operator subscription condition types

Subscriptions can report the following condition types:

Table 4.1. Subscription condition types

Condition Description

CatalogSourcesUnhealthy

unhealthy.

InstallPlanMissing An install plan for a subscription is missing.

InstallPlanPending

InstallPlanFailed An install plan for a subscription has failed.

86

Some or all of the catalog sources to be used in resolution are

An install plan for a subscription is pending installation.

CHAPTER 4. ADMINISTRATOR TASKS

NOTE
Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application

Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

Additional resources

® Refreshing failing subscriptions

4.5.2. Viewing Operator subscription status by using the CLI

You can view Operator subscription status by using the CLI.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

® You have installed the OpenShift CLI (oc).

Procedure
1. List Operator subscriptions:

I $ oc get subs -n <operator_namespace>

2. Use the oc describe command to inspect a Subscription resource:

I $ oc describe sub <subscription_name> -n <operator_namespace>

3. Inthe command output, find the Conditions section for the status of Operator subscription
condition types. In the following example, the CatalogSourcesUnhealthy condition type has a
status of false because all available catalog sources are healthy:

Example output

Conditions:
Last Transition Time: 2019-07-29T13:42:57Z
Message: all available catalogsources are healthy
Reason: AllCatalogSourcesHealthy
Status: False
Type: CatalogSourcesUnhealthy
NOTE

Default OpenShift Container Platform cluster Operators are managed by the Cluster
Version Operator (CVO) and they do not have a Subscription object. Application
Operators are managed by Operator Lifecycle Manager (OLM) and they have a
Subscription object.

4.5.3. Viewing Operator catalog source status by using the CLI

87

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-refresh-subs_olm-deleting-operators-from-a-cluster

OpenShift Container Platform 4.7 Operators

You can view the status of an Operator catalog source by using the CLI.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

® You have installed the OpenShift CLI (oc).

Procedure

1. List the catalog sources in a namespace. For example, you can check the openshift-
marketplace namespace, which is used for cluster-wide catalog sources:

I $ oc get catalogsources -n openshift-marketplace
Example output

NAME DISPLAY TYPE PUBLISHER AGE
certified-operators Certified Operators grpc Red Hat 55m
community-operators Community Operators grpc Red Hat 55m
example-catalog Example Catalog grpc Example Org 2m25s
redhat-marketplace Red Hat Marketplace grpc Red Hat 55m
redhat-operators Red Hat Operators grpc Red Hat 55m

2. Use the oc describe command to get more details and status about a catalog source:

I $ oc describe catalogsource example-catalog -n openshift-marketplace
Example output

Name: example-catalog
Namespace: openshift-marketplace

Status:
Connection State:
Address: example-catalog.openshift-marketplace.svc:50051
Last Connect: 2021-09-09T17:07:35Z
Last Observed State: TRANSIENT_FAILURE
Registry Service:
Created At: 2021-09-09T17:05:45Z
Port: 50051
Protocol: grpc
Service Name: example-catalog
Service Namespace: openshift-marketplace

In the preceding example output, the last observed state is TRANSIENT_FAILURE. This state
indicates that there is a problem establishing a connection for the catalog source.

3. List the pods in the namespace where your catalog source was created:

I $ oc get pods -n openshift-marketplace

Example output

88

CHAPTER 4. ADMINISTRATOR TASKS

NAME READY STATUS RESTARTS AGE
certified-operators-cvonn 1/1 Running 0 36m
community-operators-6v8Ip 1/1 Running 0 36m
marketplace-operator-86bfc75f9b-jkgbc 1/1 Running 0 42m
example-catalog-bwt8z 0/1 ImagePullBackOff 0 3m55s
redhat-marketplace-57p8c 1/1 Running 0 36m
redhat-operators-smxx8 1/1 Running 0 36m

When a catalog source is created in a namespace, a pod for the catalog source is created in that
namespace. In the preceding example output, the status for the example-catalog-bwt8z pod is
ImagePullBackOff. This status indicates that there is an issue pulling the catalog source’s index
image.

4. Use the oc describe command to inspect a pod for more detailed information:

I $ oc describe pod example-catalog-bwt8z -n openshift-marketplace

Example output

Name: example-catalog-bwt8z

Namespace: openshift-marketplace

Priority: 0

Node: ci-In-jyryyg2-f76d1-ggdbg-worker-b-vsxjd/10.0.128.2

Events:

Type Reason Age From Message

Normal Scheduled 48s default-scheduler Successfully assigned openshift-
marketplace/example-catalog-bwt8z to ci-In-jyryyf2-f76d1-fgdbg-worker-b-vsxjd

Normal AddedInterface 47s multus Add eth0 [10.131.0.40/23] from
openshift-sdn

Normal BackOff 20s (x2 over 46s) kubelet Back-off pulling image
"quay.io/example-org/example-catalog:v1"

Warning Failed 20s (x2 over 46s) kubelet Error: ImagePullBackOff
Normal Pulling 8s (x3 over 47s) kubelet Pulling image "quay.io/example-
org/example-catalog:v1"

Warning Failed 8s (x3 over 47s) kubelet Failed to pull image

"quay.io/example-org/example-catalog:v1": rpc error: code = Unknown desc = reading
manifest v1 in quay.io/example-org/example-catalog: unauthorized: access to the requested
resource is not authorized

Warning Failed 8s (x3 over 47s) kubelet Error: ErrlmagePull

In the preceding example output, the error messages indicate that the catalog source’s index
image is failing to pull successfully because of an authorization issue. For example, the index
image might be stored in a registry that requires login credentials.

Additional resources

® Operator Lifecycle Manager concepts and resources = Catalog source
® gRPC documentation: States of Connectivity

® Accessing images for Operators from private registries

89

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-catalogsource_olm-understanding-olm
https://grpc.github.io/grpc/core/md_doc_connectivity-semantics-and-api.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-accessing-images-private-registries_olm-managing-custom-catalogs

OpenShift Container Platform 4.7 Operators

4.6. MANAGING OPERATOR CONDITIONS

As a cluster administrator, you can manage Operator conditions by using Operator Lifecycle Manager
(OLM).

4.6.1. Overriding Operator conditions

As a cluster administrator, you might want to ignore a supported Operator condition reported by an
Operator. When present, Operator conditions in the Spec.Overrides array override the conditions in the
Status.Conditions array, allowing cluster administrators to deal with situations where an Operator is
incorrectly reporting a state to Operator Lifecycle Manager (OLM).

For example, consider a known version of an Operator that always communicates that it is not
upgradeable. In this instance, you might want to upgrade the Operator despite the Operator
communicating that it is not upgradeable. This could be accomplished by overriding the Operator
condition by adding the condition type and status to the Spec.Overrides array in the
OperatorCondition resource.

Prerequisites

® An Operator with an OperatorCondition resource, installed using OLM.

Procedure

1. Edit the OperatorCondition resource for the Operator:

I $ oc edit operatorcondition <name>

2. Add a Spec.Overrides array to the object:

Example Operator condition override

apiVersion: operators.coreos.com/v1
kind: OperatorCondition
metadata:
name: my-operator
namespace: operators
spec:
overrides:
- type: Upgradeable ﬂ
status: "True"
reason: "upgradelsSafe"
message: "This is a known issue with the Operator where it always reports that it cannot
be upgraded.”
status:
conditions:
- type: Upgradeable
status: "False"
reason: "migration”
message: "The operator is performing a migration."
lastTransitionTime: "2020-08-24T23:15:55Z"

ﬂ Allows the cluster administrator to change the upgrade readiness to True.

90

CHAPTER 4. ADMINISTRATOR TASKS

4.6.2. Updating your Operator to use Operator conditions

Operator Lifecycle Manager (OLM) automatically creates an OperatorCondition resource for each
ClusterServiceVersion resource that it reconciles. All service accounts in the CSV are granted the
RBAC to interact with the OperatorCondition owned by the Operator.

An Operator author can develop their Operator to use the operator-lib library such that, after the
Operator has been deployed by OLM, it can set its own conditions. For more on writing logic to set
Operator conditions as an Operator author, see the Operator SDK documentation.

4.6.2.1. Setting defaults

In an effort to remain backwards compatible, OLM treats the absence of an OperatorCondition
resource as opting out of the condition. Therefore, an Operator that opts in to using Operator conditions
should set default conditions before the ready probe for the pod is set to true. This provides the
Operator with a grace period to update the condition to the correct state.

4.6.3. Additional resources

® Operator conditions

4.7. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL
OPERATORS

Operators can require wide privileges to run, and the required privileges can change between versions.
Operator Lifecycle Manager (OLM) runs with cluster-admin privileges. By default, Operator authors
can specify any set of permissions in the cluster service version (CSV) and OLM will consequently grant
it to the Operator.

Cluster administrators should take measures to ensure that an Operator cannot achieve cluster-scoped
privileges and that users cannot escalate privileges using OLM. One method for locking this down
requires cluster administrators auditing Operators before they are added to the cluster. Cluster
administrators are also provided tools for determining and constraining which actions are allowed during
an Operator installation or upgrade using service accounts.

By associating an Operator group with a service account that has a set of privileges granted to it, cluster
administrators can set policy on Operators to ensure they operate only within predetermined boundaries
using RBAC rules. The Operator is unable to do anything that is not explicitly permitted by those rules.

This self-sufficient, limited scope installation of Operators by non-cluster administrators means that
more of the Operator Framework tools can safely be made available to more users, providing a richer
experience for building applications with Operators.

4.7.1. Understanding Operator installation policy

Using Operator Lifecycle Manager (OLM), cluster administrators can choose to specify a service
account for an Operator group so that all Operators associated with the group are deployed and run
against the privileges granted to the service account.

The APIService and CustomResourceDefinition resources are always created by OLM using the

cluster-admin role. A service account associated with an Operator group should never be granted
privileges to write these resources.

o1

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-operatorconditions

OpenShift Container Platform 4.7 Operators

If the specified service account does not have adequate permissions for an Operator that is being
installed or upgraded, useful and contextual information is added to the status of the respective
resource(s) so that it is easy for the cluster administrator to troubleshoot and resolve the issue.

Any Operator tied to this Operator group is now confined to the permissions granted to the specified
service account. If the Operator asks for permissions that are outside the scope of the service account,
the install fails with appropriate errors.

4.7.1.1. Installation scenarios

When determining whether an Operator can be installed or upgraded on a cluster, Operator Lifecycle
Manager (OLM) considers the following scenarios:

A cluster administrator creates a new Operator group and specifies a service account. All
Operator(s) associated with this Operator group are installed and run against the privileges
granted to the service account.

A cluster administrator creates a new Operator group and does not specify any service account.
OpenShift Container Platform maintains backward compatibility, so the default behavior
remains and Operator installs and upgrades are permitted.

For existing Operator groups that do not specify a service account, the default behavior
remains and Operator installs and upgrades are permitted.

A cluster administrator updates an existing Operator group and specifies a service account.
OLM allows the existing Operator to continue to run with their current privileges. When such an
existing Operator is going through an upgrade, it is reinstalled and run against the privileges
granted to the service account like any new Operator.

A service account specified by an Operator group changes by adding or removing permissions,
or the existing service account is swapped with a new one. When existing Operators go through
an upgrade, it is reinstalled and run against the privileges granted to the updated service
account like any new Operator.

A cluster administrator removes the service account from an Operator group. The default
behavior remains and Operator installs and upgrades are permitted.

4.7.1.2. Installation workflow

When an Operator group is tied to a service account and an Operator is installed or upgraded, Operator
Lifecycle Manager (OLM) uses the following workflow:

1.

2.

The given Subscription object is picked up by OLM.

OLM fetches the Operator group tied to this subscription.

OLM determines that the Operator group has a service account specified.

OLM creates a client scoped to the service account and uses the scoped client to install the
Operator. This ensures that any permission requested by the Operator is always confined to

that of the service account in the Operator group.

OLM creates a new service account with the set of permissions specified in the CSV and assigns
it to the Operator. The Operator runs as the assigned service account.

4.7.2. Scoping Operator installations

92

CHAPTER 4. ADMINISTRATOR TASKS

To provide scoping rules to Operator installations and upgrades on Operator Lifecycle Manager (OLM),
associate a service account with an Operator group.

Using this example, a cluster administrator can confine a set of Operators to a designated namespace.

Procedure

1. Create a new namespace:

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: Namespace
metadata:

name: scoped
EOF

2. Allocate permissions that you want the Operator(s) to be confined to. This involves creating a
new service account, relevant role(s), and role binding(s).

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: ServiceAccount
metadata:
name: scoped
namespace: scoped
EOF

The following example grants the service account permissions to do anything in the designated
namespace for simplicity. In a production environment, you should create a more fine-grained
set of permissions:

$ cat <<EOF | oc create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: scoped
namespace: scoped
rules:
- apiGroups: ["™"]
resources: ["*"]
verbs: ["*"]
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: scoped-bindings
namespace: scoped
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: scoped
subjects:
- kind: ServiceAccount

93

OpenShift Container Platform 4.7 Operators

name: scoped
namespace: scoped
EOF

3. Create an OperatorGroup object in the designated namespace. This Operator group targets
the designated namespace to ensure that its tenancy is confined to it.
In addition, Operator groups allow a user to specify a service account. Specify the service
account created in the previous step:

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: scoped
namespace: scoped
spec:
serviceAccountName: scoped
targetNamespaces:
- scoped
EOF

Any Operator installed in the designated namespace is tied to this Operator group and
therefore to the service account specified.

4. Create a Subscription object in the designated namespace to install an Operator:

$ cat <<EOF | oc create -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: etcd
namespace: scoped
spec:
channel: singlenamespace-alpha
name: etcd
source: <catalog_source_name> ﬂ

sourceNamespace: <catalog_source_namespace> 9
EOF

Specify a catalog source that already exists in the designated namespace or one thatis in
the global catalog namespace.

9 Specify a namespace where the catalog source was created.
Any Operator tied to this Operator group is confined to the permissions granted to the

specified service account. If the Operator requests permissions that are outside the scope of
the service account, the installation fails with relevant errors.

4.7.2.1. Fine-grained permissions

Operator Lifecycle Manager (OLM) uses the service account specified in an Operator group to create or
update the following resources related to the Operator being installed:

o (ClusterServiceVersion

94

CHAPTER 4. ADMINISTRATOR TASKS

® Subscription

e Secret

® ServiceAccount

® Service

® ClusterRole and ClusterRoleBinding
® Role and RoleBinding

To confine Operators to a designated namespace, cluster administrators can start by granting the
following permissions to the service account:

NOTE
The following role is a generic example and additional rules might be required based on
the specific Operator.

kind: Role

rules:

- apiGroups: ["operators.coreos.com”]
resources: ["subscriptions"”, "clusterserviceversions"]
verbs: ["get", "create”, "update”, "patch"]
- apiGroups: [""]
resources: ["services", "serviceaccounts"]
verbs: ["get", "create”, "update”, "patch"]
- apiGroups: ["rbac.authorization.k8s.io"]
resources: ["roles", "rolebindings"]
verbs: ["get", "create”, "update”, "patch"]
- apiGroups: ["apps"] ﬂ
resources: ["deployments"]
verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]
- apiGroups: [""] 9
resources: ["pods"]
verbs: ["list", "watch", "get", "create", "update", "patch", "delete"]

wAdd permissions to create other resources, such as deployments and pods shown here.

In addition, if any Operator specifies a pull secret, the following permissions must also be added:

kind: ClusterRole ﬂ
rules:
- apiGroups: [""]
resources: ["secrets"]
verbs: ["get"]
kind: Role
rules:
- apiGroups: [""]
resources: ["secrets"]
verbs: ["create”, "update”, "patch"]

95

OpenShift Container Platform 4.7 Operators

ﬂ Required to get the secret from the OLM namespace.

4.7.3. Troubleshooting permission failures

If an Operator installation fails due to lack of permissions, identify the errors using the following
procedure.

Procedure

1. Review the Subscription object. Its status has an object reference installPlanRef that points
to the InstallPlan object that attempted to create the necessary [Cluster]Role[Binding]
object(s) for the Operator:

apiVersion: operators.coreos.com/v1
kind: Subscription
metadata:
name: etcd
namespace: scoped
status:
installPlanRef:
apiVersion: operators.coreos.com/v1
kind: InstallPlan
name: install-4plp8
namespace: scoped
resourceVersion: "117359"
uid: 2c1df80e-afea-11e9-bce3-5254009¢c9¢c23

2. Check the status of the InstallPlan object for any errors:

apiVersion: operators.coreos.com/v1
kind: InstallPlan
status:
conditions:
- lastTransitionTime: "2019-07-26T21:13:10Z"
lastUpdateTime: "2019-07-26T21:13:10Z"
message: 'error creating clusterrole etcdoperator.v0.9.4-clusterwide-dsfx4:
clusterroles.rbac.authorization.k8s.io
is forbidden: User "system:serviceaccount:scoped:scoped" cannot create resource
"clusterroles" in API group "rbac.authorization.k8s.io" at the cluster scope'
reason: InstallComponentFailed
status: "False"
type: Installed
phase: Failed

The error message tells you:

® The type of resource it failed to create, including the API group of the resource. In this case,
it was clusterroles in the rbac.authorization.k8s.io group.

® The name of the resource.

® The type of error:is forbidden tells you that the user does not have enough permission to
do the operation.

96

CHAPTER 4. ADMINISTRATOR TASKS

® The name of the user who attempted to create or update the resource. In this case, it refers
to the service account specified in the Operator group.

® The scope of the operation: cluster scope or not.
The user can add the missing permission to the service account and then iterate.

NOTE

Operator Lifecycle Manager (OLM) does not currently provide the complete
list of errors on the first try.

4.8. MANAGING CUSTOM CATALOGS
This guide describes how to work with custom catalogs for Operators packaged using either the Bundle

Format or the legacy Package Manifest Format on Operator Lifecycle Manager (OLM) in OpenShift
Container Platform.

Additional resources

® Red Hat-provided Operator catalogs
4.8.1. Custom catalogs using the Bundle Format

4.8.1.1. Prerequisites

® |[nstall the opm CLI.

4.8.1.2. Creating an index image

You can create an index image using the opm CLI.

Prerequisites

® opm version 1.12.3+
® podman version 1.9.3+

® A bundle image built and pushed to a registry that supports Docker v2-2

IMPORTANT

The internal registry of the OpenShift Container Platform cluster cannot be used
as the target registry because it does not support pushing without a tag, which is
required during the mirroring process.

Procedure

1. Start a new index:

$ opm index add \
--bundles <registry>/<namespace>/<bundle_image_name>:<tag> \0
--tag <registry>/<namespace>/<index_image_name>:<tag> \
[--binary-image <registry_base_image>]

97

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-bundle-format_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-package-manifest-format_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-rh-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#opm-cli
https://docs.docker.com/registry/spec/manifest-v2-2/

OpenShift Container Platform 4.7 Operators

ﬂ Comma-separated list of bundle images to add to the index.
9 The image tag that you want the index image to have.

9 Optional: An alternative registry base image to use for serving the catalog.

2. Push the index image to a registry.

a. If required, authenticate with your target registry:
I $ podman login <registry>
b. Push the index image:

I $ podman push <registry>/<namespace>/test-catalog:latest

4.8.1.3. Creating a catalog from an index image

You can create an Operator catalog from an index image and apply it to an OpenShift Container
Platform cluster for use with Operator Lifecycle Manager (OLM).

Prerequisites

® Anindex image built and pushed to a registry.

Procedure
1. Create a CatalogSource object that references your index image.

a. Modify the following to your specifications and save it as a catalogSource.yaml file:

apiVersion: operators.coreos.com/vialphai
kind: CatalogSource
metadata:

name: my-operator-catalog

namespace: openshift-marketplace ﬂ
spec:

sourceType: grpc

image: <registry>:<port>/<namespace>/redhat-operator-index:v4.7 g

displayName: My Operator Catalog

publisher: <publisher_name>

updateStrategy:

registryPoll:
interval: 30m

ﬂ If you want the catalog source to be available globally to users in all namespaces,
specify the openshift-marketplace namespace. Otherwise, you can specify a different
namespace for the catalog to be scoped and available only for that namespace.

Specify your index image.

Specify your name or an organization name publishing the catalog.

o

98

CHAPTER 4. ADMINISTRATOR TASKS

Q Catalog sources can automatically check for new versions to keep up to date.

b. Use the file to create the CatalogSource object:

I $ oc apply -f catalogSource.yaml

2. Verify the following resources are created successfully.

a. Check the pods:

I $ oc get pods -n openshift-marketplace
Example output

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

b. Check the catalog source:

I $ oc get catalogsource -n openshift-marketplace

Example output

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

c. Check the package manifest:

I $ oc get packagemanifest -n openshift-marketplace

Example output

NAME CATALOG AGE
jaeger-product My Operator Catalog 93s

You can now install the Operators from the OperatorHub page on your OpenShift Container Platform
web console.

Additional resources

e |f yourindex image is hosted on a private registry and requires authentication, see Accessing
images for Operators from private registries.

4.8.1.4. Updating an index image

After configuring OperatorHub to use a catalog source that references a custom index image, cluster
administrators can keep the available Operators on their cluster up to date by adding bundle images to
the index image.

You can update an existing index image using the opm index add command.

99

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-accessing-images-private-registries_olm-managing-custom-catalogs

OpenShift Container Platform 4.7 Operators

Prerequisites

® opm version 1.12.3+
® podman version 1.9.3+
® Anindex image built and pushed to a registry.

® An existing catalog source referencing the index image.

Procedure

1. Update the existing index by adding bundle images:

$ opm index add \
--bundles <registry>/<namespace>/<new_bundle_image>@sha256:<digest> \ﬂ
--from-index <registry>/<namespace>/<existing_index_image>:<existing_tag> \9
--tag <registry>/<namespace>/<existing_index_image>:<updated_tag> \G
--pull-tool podman

The --bundles flag specifies a comma-separated list of additional bundle images to add to
the index.

The --from-index flag specifies the previously pushed index.

The --tag flag specifies the image tag to apply to the updated index image.

O00® 9O

The --pull-tool flag specifies the tool used to pull container images.

where:

<registry>

Specifies the hostname of the registry, such as quay.io or mirror.example.com.
<nhamespace>

Specifies the namespace of the registry, such as ocs-dev or abc.
<new_bundle_image>

Specifies the new bundle image to add to the registry, such as ocs-operator.
<digest>

Specifies the SHA image ID, or digest, of the bundle image, such as
c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a41.

<existing_index_image>

Specifies the previously pushed image, such as abe-redhat-operator-index.
<existing_tag>

Specifies a previously pushed image tag, such as 4.7.
<updated_tag>

Specifies the image tag to apply to the updated index image, such as 4.7.1.

Example command

I $ opm index add \

100

CHAPTER 4. ADMINISTRATOR TASKS

--bundles quay.io/ocs-dev/ocs-
operator@sha256:c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a
41\

--from-index mirror.example.com/abc/abc-redhat-operator-index:4.7 \

--tag mirror.example.com/abc/abe-redhat-operator-index:4.7.1 \

--pull-tool podman

2. Push the updated index image:

I $ podman push <registry>/<namespace>/<existing_index_image>:<updated_tag>

3. After Operator Lifecycle Manager (OLM) automatically polls the index image referenced in the
catalog source at its regular interval, verify that the new packages are successfully added:

I $ oc get packagemanifests -n openshift-marketplace

4.8.1.5. Pruning an index image

An index image, based on the Operator Bundle Format, is a containerized snapshot of an Operator
catalog. You can prune an index of all but a specified list of packages, which creates a copy of the source
index containing only the Operators that you want.

Prerequisites

® podman version 1.9.3+
e grpcurl (third-party command-line tool)
® opm version 1.18.0+

® Access to aregistry that supports Docker v2-2

IMPORTANT

The internal registry of the OpenShift Container Platform cluster cannot be used
as the target registry because it does not support pushing without a tag, which is
required during the mirroring process.

Procedure

1. Authenticate with your target registry:
I $ podman login <target_registry>

2. Determine the list of packages you want to include in your pruned index.

a. Run the source index image that you want to prune in a container. For example:

$ podman run -p50051:50051 \
-it registry.redhat.io/redhat/redhat-operator-index:v4.7

Example output

101

https://github.com/fullstorydev/grpcurl
https://docs.docker.com/registry/spec/manifest-v2-2/

OpenShift Container Platform 4.7 Operators

Trying to pull registry.redhat.io/redhat/redhat-operator-index:v4.7...
Getting image source signatures
Copying blob ae8a0c23f5b1 done

INFO[0000] serving registry database=/database/index.db port=50051

b. In a separate terminal session, use the grpcurl command to get a list of the packages
provided by the index:

I $ grpcurl -plaintext localhost:50051 api.Registry/ListPackages > packages.out

c. Inspect the packages.out file and identify which package names from this list you want to
keep in your pruned index. For example:

Example snippets of packages list

"name": "advanced-cluster-management”

}

"name": "jaeger-product”

}

{

"name": "quay-operator"

}

d. In the terminal session where you executed the podman run command, press Ctrl and C to
stop the container process.

3. Run the following command to prune the source index of all but the specified packages:

$ opm index prune \
-f registry.redhat.io/redhat/redhat-operator-index:v4.7 \0
-p advanced-cluster-management,jaeger-product,quay-operator \9
[-i registry.redhat.io/openshift4/ose-operator-registry:v4.7] \
-t <target_registry>:<port>/<namespace>/redhat-operator-index:v4.7 ﬂ

Index to prune.
Comma-separated list of packages to keep.
Required only for IBM Power Systems and IBM Z images: Operator Registry base image

with the tag that matches the target OpenShift Container Platform cluster major and
minor version.

09

Q Custom tag for new index image being built.

4. Run the following command to push the new index image to your target registry:

102

CHAPTER 4. ADMINISTRATOR TASKS

I $ podman push <target_registry>:<port>/<namespace>/redhat-operator-index:v4.7

where <namespaces is any existing namespace on the registry.
4.8.2. Custom catalogs using the Package Manifest Format

4.8.2.1. Building a Package Manifest Format catalog image

Cluster administrators can build a custom Operator catalog image based on the Package Manifest
Format to be used by Operator Lifecycle Manager (OLM). The catalog image can be pushed to a
container image registry that supports Docker v2-2. For a cluster on a restricted network, this registry
can be aregistry that the cluster has network access to, such as a mirror registry created during a
restricted network cluster installation.

IMPORTANT

The internal registry of the OpenShift Container Platform cluster cannot be used as the
target registry because it does not support pushing without a tag, which is required during
the mirroring process.

For this example, the procedure assumes use of a mirror registry that has access to both your network
and the Internet.

NOTE

Only the Linux version of the oc client can be used for this procedure, because the
) Windows and macOS versions do not provide the oc adm catalog build command.

Prerequisites

® Workstation with unrestricted network access

® oc version 4.3.5+ Linux client

® podman version 1.9.3+

® Access to mirror registry that supports Docker v2-2

e |f you are working with private registries, set the REG_CREDS environment variable to the file
path of your registry credentials for use in later steps. For example, for the podman CLI:

I $ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

e |f you are working with private namespaces that your quay.io account has access to, you must
set a Quay authentication token. Set the AUTH_TOKEN environment variable for use with the -
-auth-token flag by making a request against the login APl using your quay.io credentials:

$ AUTH_TOKEN=$(curl -sH "Content-Type: application/json" \
-XPOST https://quay.io/cnr/api/v1/users/login -d '

{

"user": {
"username": ""<quay_username>"",

103

https://docs.docker.com/registry/spec/manifest-v2-2/
https://docs.docker.com/registry/spec/manifest-v2-2/
https://quay.io
https://quay.io

OpenShift Container Platform 4.7 Operators

"password": ""<quay_password>

}
}'1iq -r ".token’)

Procedure

1. On the workstation with unrestricted network access, authenticate with the target mirror
registry:

I $ podman login <registry _host_name>

2. Authenticate with registry.redhat.io so that the base image can be pulled during the build:

I $ podman login registry.redhat.io

3. Build a catalog image based on the redhat-operators catalog from Quay.io, tagging and
pushing it to your mirror registry:

$ oc adm catalog build \
--appregistry-org redhat-operators \ﬂ
--from=regqistry.redhat.io/openshift4/ose-operator-registry:v4.7 \9
--filter-by-os="linux/amd64" \e
--to=<registry_host_name>:<port>/olm/redhat-operators:vi \ﬂ
[-a ${REG_CREDS}] \@
[--insecure] \
[--auth-token "${AUTH_TOKEN}"] @)

Organization (namespace) to pull from an App Registry instance.

Set --from to the Operator Registry base image using the tag that matches the target
OpenShift Container Platform cluster major and minor version.

Set --filter-by-os to the operating system and architecture to use for the base image,
which must match the target OpenShift Container Platform cluster. Valid values are
linux/amd64, linux/ppc64le, and linux/s390x.

Name your catalog image and include a tag, for example, v1.

Optional: If required, specify the location of your registry credentials file.

Optional: If you do not want to configure trust for the target registry, add the --insecure
flag.

SO 906 O o009

Optional: If other application registry catalogs are used that are not public, specify a Quay
authentication token.

Example output

INFO[0013] loading Bundles
dir=/var/folders/st/9cskxqs53II13wdn434vw4cd80000gn/T/300666084/manifests-829192605

Pushed sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3
to example_registry:5000/0lm/redhat-operators:v1

104

CHAPTER 4. ADMINISTRATOR TASKS

Sometimes invalid manifests are accidentally introduced catalogs provided by Red Hat; when
this happens, you might see some errors:

Example output with errors

INFO[0014] directory
dir=/var/folders/st/9cskxqs53113wdn434vw4cd80000gn/T/300666084/manifests-829192605
file=4.2 load=package

W1114 19:42:37.876180 34665 builder.go:141] error building database: error loading
package into db: fuse-camel-k-operator.v7.5.0 specifies replacement that couldn't be found
Uploading ... 244.9kB/s

These errors are usually non-fatal, and if the Operator package mentioned does not contain an
Operator you plan to install or a dependency of one, then they can be ignored.

Additional resources

® Mirroring images for a disconnected installation

4.8.2.2. Mirroring a Package Manifest Format catalog image

Cluster administrators can mirror a custom Operator catalog image based on the Package Manifest
Format into a registry and use a catalog source to load the content onto their cluster. For this example,
the procedure uses a custom redhat-operators catalog image previously built and pushed to a
supported registry.

Prerequisites

o Workstation with unrestricted network access

® A custom Operator catalog image based on the Package Manifest Format pushed to a
supported registry

® oc version 43.5+
® podman version 1.9.3+

® Access to mirror registry that supports Docker v2-2

IMPORTANT

The internal registry of the OpenShift Container Platform cluster cannot be used
as the target registry because it does not support pushing without a tag, which is
required during the mirroring process.

e |f you are working with private registries, set the REG_CREDS environment variable to the file
path of your registry credentials for use in later steps. For example, for the podman CLI:

I $ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

Procedure

105

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installing-mirroring-installation-images
https://docs.docker.com/registry/spec/manifest-v2-2/

OpenShift Container Platform 4.7 Operators

106

1. The oc adm catalog mirror command extracts the contents of your custom Operator catalog
image to generate the manifests required for mirroring. You can choose to either:

Allow the default behavior of the command to automatically mirror all of the image content
to your mirror registry after generating manifests, or

Add the --manifests-only flag to only generate the manifests required for mirroring, but do
not actually mirror the image content to a registry yet. This can be useful for reviewing what
will be mirrored, and it allows you to make any changes to the mapping list if you only require
a subset of the content. You can then use that file with the oc image mirror command to
mirror the modified list of images in a later step.

On your workstation with unrestricted network access, run the following command:

® 0009

6]

$ oc adm catalog mirror \

<registry_host_name>:<port>/olm/redhat-operators:v1 \ﬂ
<registry_host_name>:<port> \

[-a ${REG_CREDS}]\ @)

[--insecure] \

[--index-filter-by-os="<platform>/<arch>"] \ 9
[--manifests-only]

Specify your Operator catalog image.
Specify the fully qualified domain name (FQDN) for the target registry.
Optional: If required, specify the location of your registry credentials file.

Optional: If you do not want to configure trust for the target registry, add the --insecure
flag.

Optional: Specify which platform and architecture of the catalog image to select when
multiple variants are available. Images are passed as '<platforms/<arch>[/<variant>]". This
does not apply to images referenced by the catalog image. Valid values are linux/amd64,
linux/ppc64le, and linux/s390x.

Optional: Only generate the manifests required for mirroring and do not actually mirror the
image content to a registry.

Example output

using database path mapping: /:Amp/190214037
wrote database to /tmp/190214037
using database at: /tmp/190214037/bundles.db ﬂ

Temporary database generated by the command.

After running the command, a manifests-<index_image name>-<random_numbers>/
directory is created in the current directory and generates the following files:

b i PR TN Y o (G on [o [S SR P R o SO IS R o l o PO DR [DEGY o [P U R DR T

CHAPTER 4. ADMINISTRATOR TASKS

® 1 Nne catalogoource.yarri 1ie IS a basiC deTtiniton 1or a vdataiogosource opject tnatlis pre-
populated with your catalog image tag and other relevant metadata. This file can be used as
is or modified to add the catalog source to your cluster.

® The imageContentSourcePolicy.yaml file defines an ImageContentSourcePolicy object
that can configure nodes to translate between the image references stored in Operator
manifests and the mirrored registry.

NOTE

If your cluster uses an ImageContentSourcePolicy object to configure
repository mirroring, you can use only global pull secrets for mirrored
registries. You cannot add a pull secret to a project.

® The mapping.txt file contains all of the source images and where to map them in the target
registry. This file is compatible with the oc image mirror command and can be used to
further customize the mirroring configuration.

2. If you used the --manifests-only flag in the previous step and want to mirror only a subset of
the content:

a. Modify the list of images in your mapping.txt file to your specifications. If you are unsure of
the exact names and versions of the subset of images you want to mirror, use the following
steps to find them:

i. Run the sqlite3 tool against the temporary database that was generated by the oc
adm catalog mirror command to retrieve a list of images matching a general search
query. The output helps inform how you will later edit your mapping.txt file.

For example, to retrieve a list of images that are similar to the string clusterlogging.4.3:

$ echo "select * from related_image \
where operatorbundle_name like 'clusterlogging.4.3%";" \
| sqlite3 -line /tmp/190214037/bundles.db €))

Refer to the previous output of the oc adm catalog mirror command to find the
path of the database file.

Example output

image = registry.redhat.io/openshift-logging/kibana6-
rhel8@sha256:aa4a8b2a00836d0e28aa6497ad90a3c116f135f382d8211e3c55f34fb36
dfe61

operatorbundle_name = clusterlogging.4.3.33-202008111029.p0

image = registry.redhat.io/openshift4/ose-oauth-
proxy@sha256:6b4db07f6e6c962fc96473d86c44532c93b146bbefe311d0c348117bf75
9c506

operatorbundle_name = clusterlogging.4.3.33-202008111029.p0

ii. Use the results from the previous step to edit the mapping.txt file to only include the
subset of images you want to mirror.
For example, you can use the image values from the previous example output to find
that the following matching lines exist in your mapping.txt file:

107

OpenShift Container Platform 4.7 Operators

Matching image mappings in mapping.txt

registry.redhat.io/openshift-logging/kibana6-
rhel8@sha256:aa4a8b2a00836d0e28aa6497ad90a3c116f135f382d8211e3c55f34fb36
dfe61=<registry_host_name>:<port>/kibana6-rhel8:a767c8f0
registry.redhat.io/openshift4/ose-oauth-
proxy@sha256:6b4db07f6e6c962fc96473d86c44532c93b146bbefe311d0c348117bf75
9c506=<registry_host_name>:<port>/openshift4-ose-oauth-proxy:3754ea2b

In this example, if you only want to mirror these images, you would then remove all other
entries in the mapping.txt file and leave only the above two lines.

b. Still on your workstation with unrestricted network access, use your modified mapping.txt
file to mirror the images to your registry using the oc image mirror command:

$ oc image mirror \
[-a ${REG_CREDS}] \
--filter-by-os=".""\
-f ./manifests-redhat-operators-<random_number>/mapping.txt

1

' WARNING
A If the --filter-by-o0s flag remains unset or set to any value other than .*

the command filters out different architectures, which changes the
digest of the manifest list, also known as a multi-arch image. The
incorrect digest causes deployments of those images and Operators on
disconnected clusters to fail.

3. Create the ImageContentSourcePolicy object:

$ oc create -f ./manifests-redhat-operators-
<random_number>/imageContentSourcePolicy.yam|

You can now create a CatalogSource object to reference your mirrored content.

Additional resources

® Architecture and operating system support for Operators

e |f your catalog image is hosted on a private registry and requires authentication, see Accessing
images for Operators from private registries.

4.8.2.3. Updating a Package Manifest Format catalog image

After a cluster administrator has configured OperatorHub to use custom Operator catalog images,
administrators can keep their OpenShift Container Platform cluster up to date with the latest Operators
by capturing updates made to App Registry catalogs provided by Red Hat. This is done by building and
pushing a new Operator catalog image, then replacing the existing spec.image parameter in the
CatalogSource object with the new image digest.

108

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-arch-os-support_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-accessing-images-private-registries_olm-managing-custom-catalogs

CHAPTER 4. ADMINISTRATOR TASKS

For this example, the procedure assumes a custom redhat-operators catalog image is already
configured for use with OperatorHub.

NOTE

Only the Linux version of the oc client can be used for this procedure, because the
Windows and macOS versions do not provide the oc adm catalog build command.

Prerequisites

® \Workstation with unrestricted network access
® oc version 4.3.5+ Linux client
® podman version 1.9.3+

® Access to mirror registry that supports Docker v2-2

IMPORTANT

The internal registry of the OpenShift Container Platform cluster cannot be used
as the target registry because it does not support pushing without a tag, which is
required during the mirroring process.

® OperatorHub configured to use custom catalog images

e |f you are working with private registries, set the REG_CREDS environment variable to the file
path of your registry credentials for use in later steps. For example, for the podman CLI:

I $ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

e |f you are working with private namespaces that your quay.io account has access to, you must
set a Quay authentication token. Set the AUTH_TOKEN environment variable for use with the -
-auth-token flag by making a request against the login APl using your quay.io credentials:

$ AUTH_TOKEN=$(curl -sH "Content-Type: application/json" \
-XPOST https://quay.io/cnr/api/v1/users/login -d '

{

"user": {
"username": ""<quay_username>"",
"password": ""<quay_password>""

}
}'1iq -r ".token")

Procedure

1. On the workstation with unrestricted network access, authenticate with the target mirror
registry:

I $ podman login <registry _host_name>

2. Authenticate with registry.redhat.io so that the base image can be pulled during the build:

109

https://docs.docker.com/registry/spec/manifest-v2-2/
https://quay.io
https://quay.io

OpenShift Container Platform 4.7 Operators

I $ podman login registry.redhat.io

3. Build a new catalog image based on the redhat-operators catalog from Quay.io, tagging and
pushing it to your mirror registry:

$ oc adm catalog build \
--appregistry-org redhat-operators \ﬂ
--from=regqistry.redhat.io/openshift4/ose-operator-registry:v4.7 \9
--filter-by-os="linux/amd64" \e
--to=<registry_host_name>:<port>/olm/redhat-operators:v2 \ﬂ
[-a ${REG_CREDS}] \@
[--insecure] \
[--auth-token "${AUTH_TOKEN}"] @)

Organization (namespace) to pull from an App Registry instance.

Set --from to the Operator Registry base image using the tag that matches the target
OpenShift Container Platform cluster major and minor version.

Set --filter-by-os to the operating system and architecture to use for the base image,
which must match the target OpenShift Container Platform cluster. Valid values are

linux/amd64, linux/ppc64le, and linux/s390x.

Name your catalog image and include a tag, for example, v2 because it is the updated
catalog.

Optional: If required, specify the location of your registry credentials file.

Optional: If you do not want to configure trust for the target registry, add the --insecure
flag.

SO 90 6 O 09

Optional: If other application registry catalogs are used that are not public, specify a Quay
authentication token.

Example output

INFO[0013] loading Bundles
dir=/var/folders/st/9cskxqs53113wdn434vw4cd80000gn/T/300666084/manifests-829192605

Pushed sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3
to example_registry:5000/0lm/redhat-operators:v2

4. Mirror the contents of your catalog to your target registry. The following oc adm catalog
mirror command extracts the contents of your custom Operator catalog image to generate the
manifests required for mirroring and mirrors the images to your registry:

$ oc adm catalog mirror \
<registry_host_name>:<port>/olm/redhat-operators:v2 \ ﬂ
<registry_host_name>:<port> \
[-a ${REG_CREDS}]\ @)
[--insecure] \ ﬂ
[--index-filter-by-os="<platform>/<arch>'] 9

110

CHAPTER 4. ADMINISTRATOR TASKS

Specify your new Operator catalog image.
Specify the fully qualified domain name (FQDN) for the target registry.
Optional: If required, specify the location of your registry credentials file.

Optional: If you do not want to configure trust for the target registry, add the --insecure
flag.

® 0009

Optional: Specify which platform and architecture of the catalog image to select when
multiple variants are available. Images are passed as '<platform>/<arch>[/<variant>]". This
does not apply to images referenced by the catalog image. Valid values are linux/amd64,
linux/ppc64le, and linux/s390x.

5. Apply the newly generated manifests:

I $ oc replace -f ./manifests-redhat-operators-<random_number>

IMPORTANT

It is possible that you do not need to apply the
imageContentSourcePolicy.yaml manifest. Complete a diff of the files to
determine if changes are necessary.

6. Update your CatalogSource object that references your catalog image.
a. If you have your original catalogsource.yaml file for this CatalogSource object:

i. Edityour catalogsource.yaml file to reference your new catalog image in the
spec.image field:

apiVersion: operators.coreos.com/vialphai
kind: CatalogSource
metadata:
name: my-operator-catalog
namespace: openshift-marketplace
spec:
sourceType: grpc
image: <registry_host_namex>:<port>/olm/redhat-operators:v2 ﬂ
displayName: My Operator Catalog
publisher: grpc

ﬂ Specify your new Operator catalog image.

ii. Use the updated file to replace the CatalogSource object:
I $ oc replace -f catalogsource.yaml

b. Alternatively, edit the catalog source using the following command and reference your new
catalog image in the spec.image parameter:

I $ oc edit catalogsource <catalog_source_name> -n openshift-marketplace

m

OpenShift Container Platform 4.7 Operators

Updated Operators should now be available from the OperatorHub page on your OpenShift Container
Platform cluster.

Additional resources

® Architecture and operating system support for Operators

4.8.2.4. Testing a Package Manifest Format catalog image

You can validate Operator catalog image content by running it as a container and querying its gRPC API.
To further test the image, you can then resolve a subscription in Operator Lifecycle Manager (OLM) by
referencing the image in a catalog source. For this example, the procedure uses a custom redhat-
operators catalog image previously built and pushed to a supported registry.

Prerequisites

® A custom Package Manifest Format catalog image pushed to a supported registry
® podman version 1.9.3+
® oc version 4.3.5+

® Access to mirror registry that supports Docker v2-2

IMPORTANT

The internal registry of the OpenShift Container Platform cluster cannot be used
as the target registry because it does not support pushing without a tag, which is
required during the mirroring process.

e grpcurl
Procedure
1. Pull the Operator catalog image:

I $ podman pull <registry_host_name>:<port>/olm/redhat-operators:v1

2. Run the image:

$ podman run -p 50051:50051 \
-it <registry_host_name>:<port>/olm/redhat-operators:v1

3. Query the running image for available packages using grpcurl:

I $ grpcurl -plaintext localhost:50051 api.Registry/ListPackages
Example output

{

"name": "3scale-operator”

}
{

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-arch-os-support_osdk-generating-csvs
https://docs.docker.com/registry/spec/manifest-v2-2/
https://github.com/fullstorydev/grpcurl

CHAPTER 4. ADMINISTRATOR TASKS

"name": "amq-broker"

}
{

"name": "amqg-online"

}

4. Get the latest Operator bundle in a channel:

$ grpcurl -plaintext -d '{"pkgName":"kiali-ossm","channelName":"stable"}' localhost:50051
api.Registry/GetBundleForChannel

Example output

{

"csvName": "kiali-operator.v1.0.7",
"packageName": "kiali-ossm",
"channelName": "stable",

5. Get the digest of the image:

$ podman inspect \
--format="{{index .RepoDigests 0}}'\
<registry_host_name>:<port>/olm/redhat-operators:v1

Example output

example_registry:5000/0lm/redhat-
operators@sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054bal344654ff1edaf6bf827e3

6. Assuming an Operator group exists in namespace my-ns that supports your Operator and its
dependencies, create a CatalogSource object using the image digest. For example:

apiVersion: operators.coreos.com/vialphai
kind: CatalogSource
metadata:
name: custom-redhat-operators
namespace: my-ns
spec:
sourceType: grpc
image: example_reqistry:5000/olm/redhat-
operators@sha256:f73d42950021f9240389f99ddc5b0c7f1b533c054ba344654ff1edaf6bf827e3

displayName: Red Hat Operators

7. Create a subscription that resolves the latest available servicemeshoperator and its
dependencies from your catalog image:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:

name: servicemeshoperator

namespace: my-ns

13

OpenShift Container Platform 4.7 Operators

spec:
source: custom-redhat-operators
sourceNamespace: my-ns
name: servicemeshoperator
channel: "1.0"

4.8.3. Accessing images for Operators from private registries

If certain images relevant to Operators managed by Operator Lifecycle Manager (OLM) are hosted in
an authenticated container image registry, also known as a private registry, OLM and OperatorHub are
unable to pull the images by default. To enable access, you can create a pull secret that contains the
authentication credentials for the registry. By referencing one or more pull secrets in a catalog source,
OLM can handle placing the secrets in the Operator and catalog namespace to allow installation.

Other images required by an Operator or its Operands might require access to private registries as well.
OLM does not handle placing the secrets in target tenant namespaces for this scenario, but
authentication credentials can be added to the global cluster pull secret or individual namespace service
accounts to enable the required access.

The following types of images should be considered when determining whether Operators managed by
OLM have appropriate pull access:

Index or catalog images

A CatalogSource object can reference an index image or a catalog image, which are catalog sources
packaged as container images hosted in images registries. Index images use the Bundle Format and
reference bundle images, while catalog images use the Package Manifest Format. If an index or
catalog image is hosted in a private registry, a secret can be used to enable pull access.

Bundle images

Operator bundle images are metadata and manifests packaged as container images that represent a
unique version of an Operator. If any bundle images referenced in a catalog source are hosted in one
or more private registries, a secret can be used to enable pull access.

Operator and Operand images

If an Operator installed from a catalog source uses a private image, either for the Operator image
itself or one of the Operand images it watches, the Operator will fail to install because the
deployment will not have access to the required registry authentication. Referencing secretsin a
catalog source does not enable OLM to place the secrets in target tenant namespaces in which
Operands are installed.

Instead, the authentication details can be added to the global cluster pull secret in the openshift-
config namespace, which provides access to all namespaces on the cluster. Alternatively, if providing
access to the entire cluster is not permissible, the pull secret can be added to the default service
accounts of the target tenant namespaces.

Prerequisites
® At least one of the following hosted in a private registry:

o Anindex image or catalog image.
o An Operator bundle image.

o An Operator or Operand image.

Procedure

14

CHAPTER 4. ADMINISTRATOR TASKS

1. Create a secret for each required private registry.

a. Login to the private registry to create or update your registry credentials file:

I $ podman login <registry>:<port>

NOTE

The file path of your registry credentials can be different depending on the
container tool used to log in to the registry. For the podman CLI, the default
location is ${XDG_RUNTIME_DIR}/containers/auth.json. For the docker
CLlI, the default location is /root/.docker/config.json.

b. Itis recommended to include credentials for only one registry per secret, and manage
credentials for multiple registries in separate secrets. Multiple secrets can be included in a
CatalogSource object in later steps, and OpenShift Container Platform will merge the
secrets into a single virtual credentials file for use during an image pull.

A registry credentials file can, by default, store details for more than one registry. Verify the
current contents of your file. For example:

File storing credentials for two registries

{
"auths": {
"reqgistry.redhat.io": {
"auth": "FrNHNydQXdzcINgdg=="
)
"quay.io": {
"auth": "Xd2lhdsbnRib21iMQ=="
}
}
}

Because this file is used to create secrets in later steps, ensure that you are storing details
for only one registry per file. This can be accomplished by using either of the following
methods:

e Use the podman logout <registry> command to remove credentials for additional
registries until only the one registry you want remains.

e Edit your registry credentials file and separate the registry details to be stored in
multiple files. For example:

File storing credentials for one registry

"auths": {
"reqgistry.redhat.io”: {
"auth": "FrNHNydQXdzcINgdg=="
}

File storing credentials for another registry

115

OpenShift Container Platform 4.7 Operators

"auths": {
"quay.io": {
"auth": "Xd2lhdsbnRib21iMQ=="
}

c. Create a secret in the openshift-marketplace namespace that contains the authentication

credentials for a private registry:

$ oc create secret generic <secret_name> \
-n openshift-marketplace \
--from-file=.dockerconfigjson=<path/to/registry/credentials> \
--type=kubernetes.io/dockerconfigjson

Repeat this step to create additional secrets for any other required private registries,
updating the --from-file flag to specify another registry credentials file path.

2. Create or update an existing CatalogSource object to reference one or more secrets:

apiVersion: operators.coreos.com/vialphai
kind: CatalogSource
metadata:
name: my-operator-catalog
namespace: openshift-marketplace
spec:
sourceType: grpc
secrets:
- "<secret_name_1>"
- "<secret_name_2>"
image: <registry>:<port>/<namespace>/<image>:<tag>
displayName: My Operator Catalog
publisher: <publisher_name>
updateStrategy:
registryPoll:
interval: 30m

ﬂ Add a spec.secrets section and specify any required secrets.

3. If any Operator or Operand images that are referenced by a subscribed Operator require access
to a private registry, you can either provide access to all namespaces in the cluster, or individual

target tenant namespaces.

® To provide access to all namespaces in the cluster, add authentication details to the global

cluster pull secret in the openshift-config namespace.

16

CHAPTER 4. ADMINISTRATOR TASKS

' WARNING
A Cluster resources must adjust to the new global pull secret, which can

temporarily limit the usability of the cluster.

a. Extract the .dockerconfigjson file from the global pull secret:

I $ oc extract secret/pull-secret -n openshift-config --confirm

b. Update the .dockerconfigjson file with your authentication credentials for the
required private registry or registries and save it as a new file:

$ cat .dockerconfigjson |\

ja --compact-output ".auths["<registry>:<port>/<namespace>/"] |= . + {"auth™"
<token>"}"\

> new_dockerconfigjson

Replace <registry>:<port>/<namespace> with the private registry details and
<token> with your authentication credentials.

c. Update the global pull secret with the new file:

$ oc set data secret/pull-secret -n openshift-config \
--from-file=.dockerconfigjson=new_dockerconfigjson

® To update an individual namespace, add a pull secret to the service account for the
Operator that requires access in the target tenant namespace.

a. Recreate the secret that you created for the openshift-marketplace in the tenant
namespace:

$ oc create secret generic <secret_name> \
-n <tenant_namespace> \
--from-file=.dockerconfigjson=<path/to/registry/credentials> \
--type=kubernetes.io/dockerconfigjson

b. Verify the name of the service account for the Operator by searching the tenant
namespace:

I $oc get sa -n <tenant_namespace> ﬂ

If the Operator was installed in an individual namespace, search that namespace. If
the Operator was installed for all namespaces, search the openshift-operators
namespace.

Example output

17

OpenShift Container Platform 4.7 Operators

NAME SECRETS AGE
builder 2 6mis
default 2 6mis
deployer 2 6mis
etcd-operator 2 5m1830

ﬂ Service account for an installed etcd Operator.

c. Link the secret to the service account for the Operator:

$ oc secrets link <operator_sa> \
-n <tenant_namespace> \
<secret_name> \
--for=pull

Additional resources

® See Whatis a secret? for more information on the types of secrets, including those used for
registry credentials.

® See Updating the global cluster pull secret for more details on the impact of changing this
secret.

® See Allowing pods to reference images from other secured registries for more details on linking
pull secrets to service accounts per namespace.

4.8.4. Disabling the default OperatorHub sources

Operator catalogs that source content provided by Red Hat and community projects are configured for
OperatorHub by default during an OpenShift Container Platform installation. As a cluster administrator,
you can disable the set of default catalogs.

Procedure

e Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the
OperatorHub object:

$ oc patch OperatorHub cluster --type json \
-p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

TIP
Alternatively, you can use the web console to manage catalog sources. From the Administration —

Cluster Settings — Global Configuration = OperatorHub page, click the Sources tab, where you can
create, delete, disable, and enable individual sources.

4.8.5. Removing custom catalogs

As a cluster administrator, you can remove custom Operator catalogs that have been previously added
to your cluster by deleting the related catalog source.

Procedure

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cicd/#builds-secrets-overview_creating-build-inputs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/images/#images-update-global-pull-secret_using-image-pull-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/images/#images-allow-pods-to-reference-images-from-secure-registries_using-image-pull-secrets

CHAPTER 4. ADMINISTRATOR TASKS

1. In the Administrator perspective of the web console, navigate to Administration = Cluster
Settings.

2. Click the Global Configuration tab, and then click OperatorHub.

3. Click the Sources tab.

4. Select the Options menu for the catalog that you want to remove, and then click Delete
CatalogSource.

4.9. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED
NETWORKS

For OpenShift Container Platform clusters that are installed on restricted networks, also known as
disconnected clusters, Operator Lifecycle Manager (OLM) by default cannot access the Red Hat-
provided OperatorHub sources hosted on remote registries because those remote sources require full
Internet connectivity.

However, as a cluster administrator you can still enable your cluster to use OLM in a restricted network if
you have a workstation that has full Internet access. The workstation, which requires full Internet access

to pull the remote OperatorHub content, is used to prepare local mirrors of the remote sources, and
push the content to a mirror registry.

The mirror registry can be located on a bastion host, which requires connectivity to both your
workstation and the disconnected cluster, or a completely disconnected, or airgapped, host, which
requires removable media to physically move the mirrored content to the disconnected environment.
This guide describes the following process that is required to enable OLM in restricted networks:

® Disable the default remote OperatorHub sources for OLM.

® Use a workstation with full Internet access to create and push local mirrors of the OperatorHub
content to a mirror registry.

e Configure OLM to install and manage Operators from local sources on the mirror registry
instead of the default remote sources.

After enabling OLM in a restricted network, you can continue to use your unrestricted workstation to
keep your local OperatorHub sources updated as newer versions of Operators are released.

19

OpenShift Container Platform 4.7 Operators

IMPORTANT

While OLM can manage Operators from local sources, the ability for a given Operator to
run successfully in a restricted network still depends on the Operator itself. The Operator
must:

® List any related images, or other container images that the Operator might
require to perform their functions, in the relatedimages parameter of its
ClusterServiceVersion (CSV) object.

e Reference all specified images by a digest (SHA) and not by a tag.

See the following Red Hat Knowledgebase Article for a list of Red Hat Operators that
support running in disconnected mode:

https://access.redhat.com/articles/4740011

Additional resources

® Red Hat-provided Operator catalogs

® FEnabling your Operator for restricted network environments

4.9.1. Prerequisites

® | oginto your OpenShift Container Platform cluster as a user with cluster-admin privileges.

e |f you want to prune the default catalog and selectively mirror only a subset of Operators, install
the opm CLI.

NOTE

If you are using OLM in a restricted network on IBM Z, you must have at least 12 GB
allocated to the directory where you place your registry.

4.9.2. Disabling the default OperatorHub sources

Operator catalogs that source content provided by Red Hat and community projects are configured for
OperatorHub by default during an OpenShift Container Platform installation. In a restricted network
environment, you must disable the default catalogs as a cluster administrator. You can then configure
OperatorHub to use local catalog sources.

Procedure

e Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the
OperatorHub object:

$ oc patch OperatorHub cluster --type json \
-p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

120

https://access.redhat.com/articles/4740011
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-rh-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-enabling-operator-for-restricted-network_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#opm-cli

CHAPTER 4. ADMINISTRATOR TASKS

TIP

Alternatively, you can use the web console to manage catalog sources. From the Administration —
Cluster Settings — Global Configuration = OperatorHub page, click the Sources tab, where you can
create, delete, disable, and enable individual sources.

4.9.3. Pruning an index image

An index image, based on the Operator Bundle Format, is a containerized snapshot of an Operator
catalog. You can prune an index of all but a specified list of packages, which creates a copy of the source
index containing only the Operators that you want.

When configuring Operator Lifecycle Manager (OLM) to use mirrored content on restricted network
OpenShift Container Platform clusters, use this pruning method if you want to only mirror a subset of
Operators from the default catalogs.

For the steps in this procedure, the target registry is an existing mirror registry that is accessible by your

workstation with unrestricted network access. This example also shows pruning the index image for the
default redhat-operators catalog, but the process is the same for any index image.

Prerequisites

® Workstation with unrestricted network access
® podman version 1.9.3+

e grpcurl (third-party command-line tool)

® opm version 1.18.0+

® Access to aregistry that supports Docker v2-2

IMPORTANT

The internal registry of the OpenShift Container Platform cluster cannot be used
as the target registry because it does not support pushing without a tag, which is
required during the mirroring process.

Procedure

1. Authenticate with registry.redhat.io:
I $ podman login registry.redhat.io

2. Authenticate with your target registry:
I $ podman login <target_registry>

3. Determine the list of packages you want to include in your pruned index.

a. Run the source index image that you want to prune in a container. For example:

$ podman run -p50051:50051 \
-it registry.redhat.io/redhat/redhat-operator-index:v4.7

121

https://github.com/fullstorydev/grpcurl
https://docs.docker.com/registry/spec/manifest-v2-2/

OpenShift Container Platform 4.7 Operators

Example output

Trying to pull registry.redhat.io/redhat/redhat-operator-index:v4.7...
Getting image source signatures
Copying blob ae8a0c23f5b1 done

INFO[0000] serving registry database=/database/index.db port=50051

b. In a separate terminal session, use the grpcurl command to get a list of the packages
provided by the index:

I $ grpcurl -plaintext localhost:50051 api.Registry/ListPackages > packages.out

c. Inspect the packages.out file and identify which package names from this list you want to
keep in your pruned index. For example:

Example snippets of packages list

"name": "advanced-cluster-management”

}

"name": "jaeger-product”

}

{

"name": "quay-operator"

}

d. Inthe terminal session where you executed the podman run command, press Ctrl and C to
stop the container process.

4. Run the following command to prune the source index of all but the specified packages:

$ opm index prune \
-f registry.redhat.io/redhat/redhat-operator-index:v4.7 \0
-p advanced-cluster-management,jaeger-product,quay-operator \g
[-i registry.redhat.io/openshift4/ose-operator-registry:v4.7] \
-t <target_regqistry>:<port>/<namespace>/redhat-operator-index:v4.7 ﬂ

Index to prune.

Comma-separated list of packages to keep.

Required only for IBM Power Systems and IBM Z images: Operator Registry base image
with the tag that matches the target OpenShift Container Platform cluster major and

minor version.

Custom tag for new index image being built.

O 000

122

CHAPTER 4. ADMINISTRATOR TASKS

5. Run the following command to push the new index image to your target registry:
I $ podman push <target_registry>:<port>/<namespace>/redhat-operator-index:v4.7

where <namespaces is any existing namespace on the registry. For example, you might create
an olm-mirror namespace to push all mirrored content to.

4.9.4. Mirroring an Operator catalog

You can mirror the Operator content of a Red Hat-provided catalog, or a custom catalog, into a
container image registry using the oc adm catalog mirror command. The target registry must support
Docker v2-2. For a cluster on a restricted network, this registry can be one that the cluster has network
access to, such as a mirror registry created during a restricted network cluster installation.

IMPORTANT

The internal registry of the OpenShift Container Platform cluster cannot be used as the
target registry because it does not support pushing without a tag, which is required during
the mirroring process.

The oc adm catalog mirror command also automatically mirrors the index image that is specified
during the mirroring process, whether it be a Red Hat-provided index image or your own custom-built
index image, to the target registry. You can then use the mirrored index image to create a catalog
source that allows Operator Lifecycle Manager (OLM) to load the mirrored catalog onto your OpenShift
Container Platform cluster.

Prerequisites

® Workstation with unrestricted network access.
® podman version 1.9.3 or later.
® Access to mirror registry that supports Docker v2-2.

® Decide which namespace on your mirror registry you will use to store the mirrored Operator
content. For example, you might create an olm-mirror namespace.

e |f your mirror registry does not have Internet access, connect removable media to your
workstation with unrestricted network access.

e |f you are working with private registries, including registry.redhat.io, set the REG_CREDS
environment variable to the file path of your registry credentials for use in later steps. For
example, for the podman CLI:

I $ REG_CREDS=${XDG_RUNTIME_DIR}/containers/auth.json

Procedure

1. If you want to mirror a Red Hat-provided catalog, run the following command on your
workstation with unrestricted network access to authenticate with registry.redhat.io:

I $ podman login registry.redhat.io

2. The oc adm catalog mirror command extracts the contents of an index image to generate the

123

https://docs.docker.com/registry/spec/manifest-v2-2/
https://docs.docker.com/registry/spec/manifest-v2-2/

OpenShift Container Platform 4.7 Operators

124

manifests required for mirroring. The default behavior of the command generates manifests,
then automatically mirrors all of the image content from the index image, as well as the index
image itself, to your mirror registry. Alternatively, if your mirror registry is on a completely
disconnected, or airgapped, host, you can first mirror the content to removable media, move the
media to the disconnected environment, then mirror the content from the media to the registry.

e Option A: If your mirror registry is on the same networlas your workstation with
unrestricted network access, take the following actions on your workstation:

a. If your mirror registry requires authentication, run the following command to log in to
the registry:

I $ podman login <mirror_registry>

b. Run the following command to mirror the content:

® 0 o

$ oc adm catalog mirror \

<index_image> \0
<mirror_registry>:<port>/<namespace> \9
[-a ${REG_CREDS}] \@)

[--insecure] \
[--index-filter-by-os="<platform>/<arch>'] \e
[--manifests-only]

Specify the index image for the catalog you want to mirror. For example, this might
be a pruned index image that you created previously, or one of the source index
images for the default catalogs, such as registry.redhat.io/redhat/redhat-
operator-index:v4.7.

Specify the fully qualified domain name (FQDN) for the target registry and
namespace to mirror the Operator content to, where <namespaces is any existing
namespace on the registry. For example, you might create an olm-mirror
namespace to push all mirrored content to.

Optional: If required, specify the location of your registry credentials file.
{REG_CREDS} is required for registry.redhat.io.

Optional: If you do not want to configure trust for the target registry, add the --
insecure flag.

Optional: Specify which platform and architecture of the index image to select
when multiple variants are available. Images are passed as '<platforms>/<arch>
[/<variant>]'. This does not apply to images referenced by the index. Valid values
are linux/amd64, linux/ppc64le, and linux/s390x.

Optional: Generate only the manifests required for mirroring, and do not actually
mirror the image content to a registry. This option can be useful for reviewing what
will be mirrored, and it allows you to make any changes to the mapping list if you
require only a subset of packages. You can then use the mapping.txt file with the
oc image mirror command to mirror the modified list of images in a later step.
This flag is intended for only advanced selective mirroring of content from the
catalog; the opm index prune command, if you used it previously to prune the
index image, is suitable for most catalog management use cases.

CHAPTER 4. ADMINISTRATOR TASKS

Example output

src image has index label for database path: /database/index.db
using database path mapping: /database/index.db:/tmp/153048078
wrote database to /tmp/153048078

wrote mirroring manifests to manifests-redhat-operator-index-1614211642 9

ﬂ Directory for the temporary index.db database generated by the command.

9 Be sure to record the manifests directory name that is generated. This directory
name is used in a later step.

NOTE

Red Hat Quay does not support nested repositories. As a result, running
the oc adm catalog mirror command will fail with a 401 unauthorized
error. As a workaround, you can use the -=-max-components=2 option
when running the oc adm catalog mirror command to disable the
creation of nested repositories. For more information on this workaround,
see the Unauthorized error thrown while using catalog mirror command
with Quay registry Knowledgebase Solution article.

e Option B: If your mirror registry is on a disconnected hosttake the following actions.

a. Run the following command on your workstation with unrestricted network access to
mirror the content to local files:

$ oc adm catalog mirror \
<index_image> \0
file:///local/index \@)
[-a ${REG_CREDS}]\
[--insecure]

ﬂ Specify the index image for the catalog you want to mirror. For example, this might
be a pruned index image that you created previously, or one of the source index
images for the default catalogs, such as registry.redhat.io/redhat/redhat-
operator-index:v4.7.

9 Mirrors content to local files in your current directory.

Example output
info: Mirroring completed in 5.93s (5.915MB/s)
wrote mirroring manifests to manifests-my-index-1614985528 0

To upload local images to a registry, run:

oc adm catalog mirror file://local/index/myrepo/my-index:v1
REGISTRY/REPOSITORY @

125

https://access.redhat.com/solutions/5440741

OpenShift Container Platform 4.7 Operators

ﬂ Be sure to record the manifests directory name that is generated. This directory
name is used in a later step.

9 Record the expanded file:// path that based on your provided index image. This
pathis used in a later step.

b. Copy the v2/directory that is generated in your current directory to removable media.

c. Physically remove the media and attach it to a host in the disconnected environment
that has access to the mirror registry.

d. If your mirror registry requires authentication, run the following command on your host
in the disconnected environment to log in to the registry:

I $ podman login <mirror_registry>

e. Run the following command from the parent directory containing the v2/ directory to
upload the images from local files to the mirror registry:

$ oc adm catalog mirror \
file://local/index/<repo>/<index_image>:<tag> \0
<mirror_registry>:<port>/<namespace> \
[-a ${REG_CREDS]}] \
[--insecure]

ﬂ Specify the file:// path from the previous command output.

9 Specify the fully qualified domain name (FQDN) for the target registry and
namespace to mirror the Operator content to, where <hamespaces> is any existing
namespace on the registry. For example, you might create an olm-mirror
namespace to push all mirrored content to.

NOTE

Red Hat Quay does not support nested repositories. As a result, running
the oc adm catalog mirror command will fail with a 401 unauthorized
error. As a workaround, you can use the -=-max-components=2 option
when running the oc adm catalog mirror command to disable the
creation of nested repositories. For more information on this workaround,
see the Unauthorized error thrown while using catalog mirror command
with Quay registry Knowledgebase Solution article.

f. Run the oc adm catalog mirror command again. Use the newly mirrored index image as
the source and the same mirror registry namespace used in the previous step as the
target:

$ oc adm catalog mirror \
<mirror_registry>:<port>/<index_image> \
<mirror_registry>:<port>/<namespace> \
--manifests-only \0
[-a ${REG_CREDS}]\
[--insecure]

126

https://access.redhat.com/solutions/5440741

CHAPTER 4. ADMINISTRATOR TASKS

The --manifests-only flag is required for this step so that the command does not
copy all of the mirrored content again.

IMPORTANT

This step is required because the image mappings in the
imageContentSourcePolicy.yaml file generated during the previous
step must be updated from local paths to valid mirror locations. Failure to
do so will cause errors when you create the ImageContentSourcePolicy
object in a later step.

3. After mirroring the content to your registry, inspect the manifests directory that is generated in
your current directory.

Lol NOTE

{ i

» The manifests directory name is used in a later step.

If you mirrored content to a registry on the same network in the previous step, the directory
name takes the following form:

I manifests-<index_image_name>-<random_number>

If you mirrored content to a registry on a disconnected host in the previous step, the directory
name takes the following form:

I manifests-index/<namespace>/<index_image_name>-<random_number>

The manifests directory contains the following files, some of which might require further
modification:

® The catalogSource.yaml file is a basic definition for a CatalogSource object that is pre-
populated with your index image tag and other relevant metadata. This file can be used as is
or modified to add the catalog source to your cluster.

IMPORTANT

If you mirrored the content to local files, you must modify your
catalogSource.yaml file to remove any backslash (/) characters from the
metadata.name field. Otherwise, when you attempt to create the object, it
fails with an "invalid resource name" error.

e The imageContentSourcePolicy.yaml file defines an ImageContentSourcePolicy object
that can configure nodes to translate between the image references stored in Operator
manifests and the mirrored registry.

% NOTE

If your cluster uses an ImageContentSourcePolicy object to configure
repository mirroring, you can use only global pull secrets for mirrored
registries. You cannot add a pull secret to a project.

127

OpenShift Container Platform 4.7 Operators

® The mapping.txt file contains all of the source images and where to map them in the target
registry. This file is compatible with the oc image mirror command and can be used to
further customize the mirroring configuration.

IMPORTANT

If you used the --manifests-only flag during the mirroring process and want
to further trim the subset of packages to be mirrored, see the steps in the
"Mirroring a Package Manifest Format catalog image" procedure about
modifying your mapping.txt file and using the file with the oc image mirror
command. After following those further actions, you can continue this
procedure.

4. On a host with access to the disconnected cluster, create the ImageContentSourcePolicy
(ICSP) object by running the following command to specify the
imageContentSourcePolicy.yaml file in your manifests directory:

I $ oc create -f <path/to/manifests/dir>/imageContentSourcePolicy.yaml
where <path/to/manifests/dir> is the path to the manifests directory for your mirrored content.

NOTE

Applying the ICSP causes all worker nodes in the cluster to restart. You must wait
for this reboot process to finish cycling through each of your worker nodes
before proceeding.

You can now create a CatalogSource object to reference your mirrored index image and Operator
content.

Additional resources
® Mirroring images for a disconnected installation
® Architecture and operating system support for Operators

® Mirroring a Package Manifest Format catalog image

4.9.5. Creating a catalog from an index image

You can create an Operator catalog from an index image and apply it to an OpenShift Container
Platform cluster for use with Operator Lifecycle Manager (OLM).

Prerequisites

® Anindex image built and pushed to a registry.

Procedure

1. Create a CatalogSource object that references your index image. If you used the oc adm
catalog mirror command to mirror your catalog to a target registry, you can use the generated
catalogSource.yaml file as a starting point.

a. Modify the following to your specifications and save it as a catalogSource.yaml file:

128

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-arch-os-support_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-mirroring-package-manifest-catalog_olm-managing-custom-catalogs

CHAPTER 4. ADMINISTRATOR TASKS

apiVersion: operators.coreos.com/vialphai
kind: CatalogSource
metadata:
name: my-operator-catalog ﬂ
namespace: openshift-marketplace 9
spec:
sourceType: grpc
image: <registry>:<port>/<namespace>/redhat-operator-index:v4.7 e
displayName: My Operator Catalog
publisher: <publisher_name>
updateStrategy:
registryPoll:
interval: 30m

If you mirrored content to local files before uploading to a registry, remove any
backslash (/) characters from the metadata.name field to avoid an "invalid resource
name" error when you create the object.

If you want the catalog source to be available globally to users in all namespaces,
specify the openshift-marketplace namespace. Otherwise, you can specify a different
namespace for the catalog to be scoped and available only for that namespace.

Specify your index image.

Specify your name or an organization name publishing the catalog.

00 O O

Catalog sources can automatically check for new versions to keep up to date.

b. Use the file to create the CatalogSource object:
I $ oc apply -f catalogSource.yaml

2. Verify the following resources are created successfully.

a. Check the pods:
I $ oc get pods -n openshift-marketplace
Example output

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

b. Check the catalog source:

I $ oc get catalogsource -n openshift-marketplace

Example output

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

129

OpenShift Container Platform 4.7 Operators

c. Check the package manifest:

I $ oc get packagemanifest -n openshift-marketplace

Example output

NAME CATALOG AGE
jaeger-product My Operator Catalog 93s

You can now install the Operators from the OperatorHub page on your OpenShift Container Platform
web console.

Additional resources
e |f yourindex image is hosted on a private registry and requires authentication, see Accessing
images for Operators from private registries.
4.9.6. Updating an index image

After configuring OperatorHub to use a catalog source that references a custom index image, cluster
administrators can keep the available Operators on their cluster up to date by adding bundle images to
the index image.

You can update an existing index image using the opm index add command. For restricted networks,
the updated content must also be mirrored again to the cluster.

Prerequisites
® opm version 1.12.3+
® podman version 1.9.3+
® Anindex image built and pushed to a registry.

® An existing catalog source referencing the index image.

Procedure

1. Update the existing index by adding bundle images:

$ opm index add \
--bundles <registry>/<namespace>/<new_bundle_image>@sha256:<digest> \ﬂ
--from-index <registry>/<namespace>/<existing_index_image>:<existing_tag> \g
--tag <registry>/<namespace>/<existing_index_image>:<updated_tag> \6
--pull-tool podman

The --bundles flag specifies a comma-separated list of additional bundle images to add to
the index.

The --from-index flag specifies the previously pushed index.

o

The --tag flag specifies the image tag to apply to the updated index image.

130

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-accessing-images-private-registries_olm-managing-custom-catalogs

CHAPTER 4. ADMINISTRATOR TASKS
Q The --pull-tool flag specifies the tool used to pull container images.

where:

<registry>

Specifies the hostname of the registry, such as quay.io or mirror.example.com.
<hamespace>

Specifies the namespace of the registry, such as ocs-dev or abc.
<new_bundle_image>

Specifies the new bundle image to add to the registry, such as ocs-operator.
<digest>

Specifies the SHA image ID, or digest, of the bundle image, such as
¢c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a41.

<existing_index_image>

Specifies the previously pushed image, such as abe-redhat-operator-index.
<existing_tag>

Specifies a previously pushed image tag, such as 4.7.
<updated_tag>

Specifies the image tag to apply to the updated index image, such as 4.7.1.

Example command

$ opm index add \

--bundles quay.io/ocs-dev/ocs-
operator@sha256:c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a
41\

--from-index mirror.example.com/abc/abc-redhat-operator-index:4.7 \

--tag mirror.example.com/abc/abe-redhat-operator-index:4.7.1 \

--pull-tool podman

. Push the updated index image:

I $ podman push <registry>/<namespace>/<existing_index_image>:<updated_tag>

. Follow the steps in the Mirroring an Operator catalog procedure again to mirror the updated
content. However, when you get to the step about creating the ImageContentSourcePolicy
(ICSP) object, use the oc replace command instead of the oc create command. For example:

$ oc replace -f ./manifests-redhat-operator-index-
<random_number>/imageContentSourcePolicy.yam|

This change is required because the object already exists and must be updated.

NOTE

Normally, the oc apply command can be used to update existing objects that
were previously created using oc apply. However, due to a known issue regarding
the size of the metadata.annotations field in ICSP objects, the oc replace
command must be used for this step currently.

131

OpenShift Container Platform 4.7 Operators

4. After Operator Lifecycle Manager (OLM) automatically polls the index image referenced in the
catalog source at its regular interval, verify that the new packages are successfully added:

I $ oc get packagemanifests -n openshift-marketplace

Additional resources

® Mirroring an Operator catalog

132

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-mirror-catalog_olm-restricted-networks

CHAPTER 5. DEVELOPING OPERATORS

CHAPTER 5. DEVELOPING OPERATORS

5.1. ABOUT THE OPERATOR SDK

The Operator Framework is an open source toolkit to manage Kubernetes native applications, called
Operators, in an effective, automated, and scalable way. Operators take advantage of Kubernetes
extensibility to deliver the automation advantages of cloud services, like provisioning, scaling, and
backup and restore, while being able to run anywhere that Kubernetes can run.

Operators make it easy to manage complex, stateful applications on top of Kubernetes. However,
writing an Operator today can be difficult because of challenges such as using low-level APIs, writing

boilerplate, and a lack of modularity, which leads to duplication.

The Operator SDK, a component of the Operator Framework, provides a command-line interface (CLI)
tool that Operator developers can use to build, test, and deploy an Operator.

Why use the Operator SDK?

The Operator SDK simplifies this process of building Kubernetes-native applications, which can require
deep, application-specific operational knowledge. The Operator SDK not only lowers that barrier, but it
also helps reduce the amount of boilerplate code required for many common management capabilities,

such as metering or monitoring.

The Operator SDK is a framework that uses the controller-runtime library to make writing Operators
easier by providing the following features:

® High-level APIs and abstractions to write the operational logic more intuitively
® Tools for scaffolding and code generation to quickly bootstrap a new project

® Integration with Operator Lifecycle Manager (OLM) to streamline packaging, installing, and
running Operators on a cluster

® Extensions to cover common Operator use cases

® Metrics set up automatically in any generated Go-based Operator for use on clusters where the
Prometheus Operator is deployed

Operator authors with cluster administrator access to a Kubernetes-based cluster (such as OpenShift
Container Platform) can use the Operator SDK CLI to develop their own Operators based on Go,
Ansible, or Helm. Kubebuilder is embedded into the Operator SDK as the scaffolding solution for Go-

based Operators, which means existing Kubebuilder projects can be used as is with the Operator SDK
and continue to work.

NOTE

OpenShift Container Platform 4.7 supports Operator SDK v1.3.0 or later.

5.1.1. What are Operators?

For an overview about basic Operator concepts and terminology, see Understanding Operators.

5.1.2. Development workflow

The Operator SDK provides the following workflow to develop a new Operator:

133

https://operatorframework.io/
https://github.com/kubernetes-sigs/controller-runtime
https://kubebuilder.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-what-operators-are

OpenShift Container Platform 4.7 Operators

1. Create an Operator project by using the Operator SDK command-line interface (CLI).
2. Define new resource APIs by adding custom resource definitions (CRDs).
3. Specify resources to watch by using the Operator SDK API.

4. Define the Operator reconciling logic in a designated handler and use the Operator SDK API to
interact with resources.

5. Use the Operator SDK CLI to build and generate the Operator deployment manifests.

Figure 5.1. Operator SDK workflow

Operator SDK Build, test, iterate

{
} Operator manifest

Foundation Publish i Operator image

Test locally Test with live cluster

At a high level, an Operator that uses the Operator SDK processes events for watched resources in an
Operator author-defined handler and takes actions to reconcile the state of the application.

5.1.3. Additional resources

® Certified Operator Build Guide

5.2. INSTALLING THE OPERATOR SDK CLI

The Operator SDK provides a command-line interface (CLI) tool that Operator developers can use to
build, test, and deploy an Operator. You can install the Operator SDK CLI on your workstation so that
you are prepared to start authoring your own Operators.

NOTE

OpenShift Container Platform 4.7 supports Operator SDK v1.3.0.

5.2.1. Installing the Operator SDK CLI

You can install the OpenShift SDK CLI tool on Linux.

Prerequisites

® Govli3+

e docker v17.03+, podman v1.9.3+, or buildah v1.7+

134

https://redhat-connect.gitbook.io/certified-operator-guide/
https://golang.org/dl/

CHAPTER 5. DEVELOPING OPERATORS

Procedure

1.

2.

3.

Navigate to the OpenShift mirror site.
From the 4.7.23 directory, download the latest version of the tarball for Linux.

Unpack the archive:

I $ tar xvf operator-sdk-v1.3.0-ocp-linux-x86_64.tar.gz

Make the file executable:

I $ chmod +x operator-sdk

Move the extracted operator-sdk binary to a directory that is on your PATH.

TIP

To check your PATH:

I $ echo $PATH

I $ sudo mv ./operator-sdk /usr/local/bin/operator-sdk

Verification

After you install the Operator SDK CLI, verify that it is available:

I $ operator-sdk version
Example output

I operator-sdk version: "v1.3.0-ocp", ...

5.3. GO-BASED OPERATORS

5.3.1. Getting started with Operator SDK for Go-based Operators

To demonstrate the basics of setting up and running a Go-based Operator using tools and libraries
provided by the Operator SDK, Operator developers can build an example Go-based Operator for
Memcached, a distributed key-value store, and deploy it to a cluster.

5.3.1.1. Prerequisites

Operator SDK CLI installed
OpenShift CLI (oc) v4.7+ installed

Logged into an OpenShift Container Platform 4.7 cluster with oc with an account that has
cluster-admin permissions

135

https://mirror.openshift.com/pub/openshift-v4/x86_64/clients/operator-sdk/4.7.23/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#getting-started-cli

OpenShift Container Platform 4.7 Operators

® To allow the cluster pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret.

5.3.1.2. Creating and deploying Go-based Operators

You can build and deploy a simple Go-based Operator for Memcached by using the Operator SDK.

Procedure
1. Create a project.

a. Create your project directory:

I $ mkdir memcached-operator

b. Change into the project directory:
I $ cd memcached-operator

c. Run the operator-sdk init command to initialize the project:

$ operator-sdk init \
--domain=example.com \
--repo=github.com/example-inc/memcached-operator

The command uses the Go plug-in by default.

d. To enable your Go-based Operator to run on OpenShift Container Platform, edit the
config/manager/manager.yaml file and replace the following line:

I runAsUser: 65532
with:

I runAsNonRoot: true

NOTE

This step is a temporary workaround required for Go-based Operators only.
For more information, see BZ#1914406.

2. Create an APL.
Create a simple Memcached API:

$ operator-sdk create api \
--resource=true \
--controller=true \
--group cache \
--version v1\
--kind Memcached

3. Build and push the Operator image.

136

https://bugzilla.redhat.com/show_bug.cgi?id=1914406#c1

CHAPTER 5. DEVELOPING OPERATORS

Use the default Makefile targets to build and push your Operator. Set IMG with a pull spec for
your image that uses a registry you can push to:

I $ make docker-build docker-push IMG=<registry>/<user>/<image_name>:<tag>

4. Run the Operator.

a. Install the CRD:

I $ make install

b. Deploy the project to the cluster. Set IMG to the image that you pushed:

I $ make deploy IMG=<registry>/<user>/<image_name>:<tag>

5. Create a sample custom resource (CR).

a. Create asample CR:

$ oc apply -f config/samples/cache_v1_memcached.yaml \
-n memcached-operator-system

b. Watch for the CR to reconcile the Operator:

$ oc logs deployment.apps/memcached-operator-controller-manager \
-Cc manager \
-n memcached-operator-system

6. Clean up.
Run the following command to clean up the resources that have been created as part of this
procedure:

I $ make undeploy

5.3.1.3. Next steps
® See Operator SDK tutorial for Go-based Operators for a more in-depth walkthrough on building
a Go-based Operator.
5.3.2. Operator SDK tutorial for Go-based Operators

Operator developers can take advantage of Go programming language support in the Operator SDK to
build an example Go-based Operator for Memcached, a distributed key-value store, and manage its
lifecycle.

This process is accomplished using two centerpieces of the Operator Framework:

Operator SDK
The operator-sdk CLI tool and controller-runtime library API
Operator Lifecycle Manager (OLM)

Installation, upgrade, and role-based access control (RBAC) of Operators on a cluster

137

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-golang-tutorial

OpenShift Container Platform 4.7 Operators

NOTE

This tutorial goes into greater detail than Getting started with Operator SDK for Go-
based Operators.

5.3.2.1. Prerequisites

® Operator SDK CLlI installed
® OpenShift CLI (oc) v4.7+ installed

® | oggedinto an OpenShift Container Platform 4.7 cluster with oc with an account that has
cluster-admin permissions

® To allow the cluster pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret.

5.3.2.2. Creating a project

Use the Operator SDK CLI to create a project called memcached-operator.
Procedure
1. Create a directory for the project:

I $ mkdir -p $HOME/projects/memcached-operator

2. Change to the directory:

I $ cd $HOME/projects/memcached-operator

3. Activate support for Go modules:

I $ export GO111MODULE=0n

4. Run the operator-sdk init command to initialize the project:

$ operator-sdk init \
--domain=example.com \
--repo=github.com/example-inc/memcached-operator

NOTE

The operator-sdk init command uses the Go plug-in by default.

The operator-sdk init command generates a go.mod file to be used with Go modules. The --
repo flag is required when creating a project outside of $GOPATH/src/, because generated
files require a valid module path.

5. To enable your Go-based Operator to run on OpenShift Container Platform, edit the
config/manager/manager.yaml file and replace the following line:

I runAsUser: 65532

138

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-golang-quickstart
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#getting-started-cli
https://golang.org/ref/mod

CHAPTER 5. DEVELOPING OPERATORS

with:

I runAsNonRoot: true

NOTE

This step is a temporary workaround required for Go-based Operators only. For
more information, see BZ#1914406.

5.3.2.2.1. PROJECT file

Among the files generated by the operator-sdk init command is a Kubebuilder PROJECT file.
Subsequent operator-sdk commands, as well as help output, that are run from the project root read
this file and are aware that the project type is Go. For example:

domain: example.com

layout: go.kubebuilder.io/v3

projectName: memcached-operator

repo: github.com/example-inc/memcached-operator

version: 3-alpha

plugins:
manifests.sdk.operatorframework.io/v2: {}
scorecard.sdk.operatorframework.io/v2: {}

5.3.2.2.2. About the Manager

The main program for the Operator is the main.go file, which initializes and runs the Manager. The
Manager automatically registers the Scheme for all custom resource (CR) API definitions and sets up
and runs controllers and webhooks.

The Manager can restrict the namespace that all controllers watch for resources:

I mgr, err := ctrl.NewManager(cfg, manager.Options{Namespace: namespace})

By default, the Manager watches the namespace where the Operator runs. To watch all namespaces,
you can leave the namespace option empty:

I magr, err := ctr.NewManager(cfg, manager.Options{Namespace: ""})

You can also use the MultiNamespacedCacheBuilder function to watch a specific set of namespaces:

var namespaces [Jstring ﬂ
magr, err := ctrl.NewManager(cfg, manager.Options{ 9
NewCache: cache.MultiNamespacedCacheBuilder(namespaces),

)
ﬂ List of namespaces.

9 Creates a Cmd struct to provide shared dependencies and start components.

5.3.2.2.3. About multi-group APIs

139

https://bugzilla.redhat.com/show_bug.cgi?id=1914406#c1
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/manager#Manager
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/cache#MultiNamespacedCacheBuilder

OpenShift Container Platform 4.7 Operators

Before you create an APl and controller, consider whether your Operator requires multiple APl groups.
This tutorial covers the default case of a single group API, but to change the layout of your project to
support multi-group APls, you can run the following command:

I $ operator-sdk edit --multigroup=true

This command updates the PROJECT file, which should look like the following example:

domain: example.com
layout: go.kubebuilder.io/v3
multigroup: true

For multi-group projects, the APl Go type files are created in the apis/<group>/<versions/ directory,
and the controllers are created in the controllers/<groups/ directory. The Dockerfile is then updated
accordingly.

Additional resource

® For more details on migrating to a multi-group project, see the Kubebuilder documentation.

5.3.2.3. Creating an API and controller

Use the Operator SDK CLI to create a custom resource definition (CRD) APl and controller.

Procedure

1. Run the following command to create an API with group cache, version, v1, and kind
Memcached:

$ operator-sdk create api \
--group=cache \
--version=v1 \
--kind=Memcached

2. When prompted, enter y for creating both the resource and controller:

Create Resource [y/n]

y
Create Controller [y/n]

y
Example output

Writing scaffold for you to edit...
api/vi/memcached_types.go
controllers/memcached_controller.go

This process generates the Memcached resource API at api/vli/memcached_types.go and the
controller at controllers/memcached_controller.go.

5.3.2.3.1. Defining the API

140

https://book.kubebuilder.io/migration/multi-group.html

CHAPTER 5. DEVELOPING OPERATORS

Define the API for the Memcached custom resource (CR).

Procedure

1. Modify the Go type definitions at api/vi/memcached_types.go to have the following spec and
status:

// MemcachedSpec defines the desired state of Memcached
type MemcachedSpec struct {

// +kubebuilder:validation:Minimum=0

// Size is the size of the memcached deployment

Size int32 “json:"size™

}

// MemcachedStatus defines the observed state of Memcached
type MemcachedStatus struct {

// Nodes are the names of the memcached pods

Nodes []string “json:"nodes™

}

2. Update the generated code for the resource type:

I $ make generate

TIP

After you modify a *_types.go file, you must run the make generate command to update the
generated code for that resource type.

The above Makefile target invokes the controller-gen utility to update the
api/v1/zz_generated.deepcopy.go file. This ensures your APl Go type definitions implement
the runtime.Object interface that all Kind types must implement.

5.3.2.3.2. Generating CRD manifests

After the APl is defined with spec and status fields and custom resource definition (CRD) validation
markers, you can generate CRD manifests.

Procedure
® Run the following command to generate and update CRD manifests:
I $ make manifests

This Makefile target invokes the controller-gen utility to generate the CRD manifests in the
config/crd/bases/cache.example.com_memcacheds.yaml file.

5.3.2.3.2.1. About OpenAPI validation

OpenAPIv3 schemas are added to CRD manifests in the spec.validation block when the manifests are
generated. This validation block allows Kubernetes to validate the properties in a Memcached custom
resource (CR) when it is created or updated.

141

OpenShift Container Platform 4.7 Operators

Markers, or annotations, are available to configure validations for your API. These markers always have a
+kubebuilder:validation prefix.

Additional resources

® For more details on the usage of markers in API code, see the following Kubebuilder
documentation:

o CRD generation
o Markers
o List of OpenAPIv3 validation markers

® For more details about OpenAPIv3 validation schemas in CRDs, see the Kubernetes
documentation.

5.3.2.4. Implementing the controller

After creating a new APl and controller, you can implement the controller logic.

Procedure

® For this example, replace the generated controller file controllers/memcached_controller.go
http.//www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software

with following example implementation:
Example 5.1. Example memcached_controller.go
/*
Copyright 2020.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Y/

package controllers

import (

appsvi "k8s.io/api/apps/v1"

corevi "k8s.io/api/core/vi"
"k8s.io/apimachinery/pkg/api/errors"

metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/types"

"reflect”

"context"

142

https://book.kubebuilder.io/reference/generating-crd.html
https://book.kubebuilder.io/reference/markers.html
https://book.kubebuilder.io/reference/markers/crd-validation.html
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#specifying-a-structural-schema

CHAPTER 5. DEVELOPING OPERATORS

"github.com/go-logr/logr"
"k8s.io/apimachinery/pkg/runtime"

ctrl "sigs.k8s.io/controller-runtime"
"sigs.k8s.io/controller-runtime/pkg/client”

cachevialphai "github.com/example/memcached-operator/api/vialphail”

~

// MemcachedReconciler reconciles a Memcached object
type MemcachedReconciler struct {

client.Client

Log logr.Logger

Scheme *runtime.Scheme

—

/

+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds, verbs=get;list;watcl
;create;update;patch;delete

/
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/status,verbs=get;uf
date;patch

/
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/finalizers,verbs=up:
ate

/
+kubebuilder:rbac:groups=apps,resources=deployments,verbs=get,list;watch,create;update;
patch;delete

// +kubebuilder:rbac:groups=core,resources=pods,verbs=get;list;

// Reconcile is part of the main kubernetes reconciliation loop which aims to

// move the current state of the cluster closer to the desired state.

// TODO(user): Modify the Reconcile function to compare the state specified by
// the Memcached object against the actual cluster state, and then

// perform operations to make the cluster state reflect the state specified by

// the user.

/

// For more details, check Reconcile and its Result here:

// - https.//pkg.go.dev/sigs.k8s.io/controller-runtime@v0. 7.0/pkg/reconcile

func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl. Request)
(ctrl.Result, error) {

log := r.Log.WithValues("memcached", req.NamespacedName)

// Fetch the Memcached instance
memcached := &cachevialphal.Memcached{}
err := r.Get(ctx, req.NamespacedName, memcached)
if err 1= nil {
if errors.IsNotFound(err) {
// Request object not found, could have been deleted after reconcile request.
// Owned objects are automatically garbage collected. For additional cleanup logic use
finalizers.
// Return and don't requeue
log.Info("Memcached resource not found. Ignoring since object must be deleted")
return ctrl.Result{}, nil
}
// Error reading the object - requeue the request.
log.Error(err, "Failed to get Memcached")

143

OpenShift Container Platform 4.7 Operators

return ctrl.Result{}, err

}

// Check if the deployment already exists, if not create a new one
found := &appsv1.Deployment{}

err = r.Get(ctx, types.NamespacedName{Name: memcached.Name, Namespace:
memcached.Namespace}, found)

if err 1= nil && errors.IsNotFound(err) {

// Define a new deployment

dep := r.deploymentForMemcached(memcached)

log.Info("Creating a new Deployment", "Deployment.Namespace", dep.Namespace,
"Deployment.Name", dep.Name)

err = r.Create(ctx, dep)

if err 1= nil {

log.Error(err, "Failed to create new Deployment", "Deployment.Namespace",
dep.Namespace, "Deployment.Name", dep.Name)

return ctrl.Result{}, err

}

// Deployment created successfully - return and requeue

return ctrl.Result{Requeue: true}, nil

} else if err 1= nil {

log.Error(err, "Failed to get Deployment")

return ctrl.Result{}, err

}

// Ensure the deployment size is the same as the spec
size := memcached.Spec.Size
if *found.Spec.Replicas != size {

found.Spec.Replicas = &size

err = r.Update(ctx, found)

if err 1= nil {

log.Error(err, "Failed to update Deployment”, "Deployment.Namespace",
found.Namespace, "Deployment.Name", found.Name)

return ctrl.Result{}, err

}

// Spec updated - return and requeue

return ctrl.Result{Requeue: true}, nil

}

// Update the Memcached status with the pod names
// List the pods for this memcached's deployment
podList := &corev1.PodList{}
listOpts := []client.ListOption{
client.InNamespace(memcached.Namespace),
client.MatchingLabels(labelsForMemcached(memcached.Name)),
}
if err = r.List(ctx, podList, listOpts...); err != nil {
log.Error(err, "Failed to list pods", "Memcached.Namespace", memcached.Namespace,
"Memcached.Name", memcached.Name)
return ctrl.Result{}, err

}

podNames := getPodNames(podList.ltems)
// Update status.Nodes if needed

if Ireflect.DeepEqual(podNames, memcached.Status.Nodes) {
memcached.Status.Nodes = podNames

144

CHAPTER 5. DEVELOPING OPERATORS

err := r.Status().Update(ctx, memcached)

if err 1= nil {

log.Error(err, "Failed to update Memcached status")
return ctrl.Result{}, err

}
}

return ctrl.Result{}, nil

—

// deploymentForMemcached returns a memcached Deployment object
func (r *MemcachedReconciler) deploymentForMemcached(m
*cachevialphail.Memcached) *appsv1.Deployment {

Is := labelsForMemcached(m.Name)

replicas := m.Spec.Size

dep := &appsv1.Deployment{
ObjectMeta: metav1.0ObjectMetaf
Name: m.Name,
Namespace: m.Namespace,
b
Spec: appsv1.DeploymentSpec{
Replicas: &replicas,
Selector: &metav1.LabelSelector{
MatchLabels: Is,
b
Template: corevi.PodTemplateSpec{
ObjectMeta: metav1.ObjectMeta{
Labels: Is,
b
Spec: corev1.PodSpec{
Containers: [Jcorev1.Container{{
Image: "memcached:1.4.36-alpine",
Name: "memcached",
Command: [Jstring{"memcached", "-m=64", "-0", "modern”, "-v"},
Ports: [Jcorev1.ContainerPort{{
ContainerPort: 11211,
Name: "memcached",

// Set Memcached instance as the owner and controller
ctrl.SetControllerReference(m, dep, r.Scheme)
return dep

—

// labelsForMemcached returns the labels for selecting the resources
// belonging to the given memcached CR name.
func labelsForMemcached(name string) map[string]string {
return map[string]string{"app": "memcached", "memcached_cr": name}

——

// getPodNames returns the pod names of the array of pods passed in

145

OpenShift Container Platform 4.7 Operators

func getPodNames(pods [Jcorevi1.Pod) []string {
var podNames []string

, pod := range pods {

podNames = append(podNames, pod.Name)
return podNames

// SetupWithManager sets up the controller with the Manager.
func (r *"MemcachedReconciler) SetupWithManager(mgr ctrl.Manager) error {
return ctrl. NewControllerManagedBy(mgr).
For(&cachevialphal.Memcached{}).
Owns(&appsv1.Deployment{}).
Complete r)

The example controller runs the following reconciliation logic for each Memcached custom
resource (CR):

o Create a Memcached deployment if it does not exist.
o Ensure that the deployment size is the same as specified by the Memcached CR spec.

o Update the Memcached CR status with the names of the memcached pods.

The next subsections explain how the controller in the example implementation watches resources and

how the reconcile loop is triggered. You can skip these subsections to go directly to Running the
Operator.

5.3.2.4.1. Resources watched by the controller

The SetupWithManager() function in controllers/memcached_controller.go specifies how the
controller is built to watch a CR and other resources that are owned and managed by that controller.

import (
appsvi "k8s.io/api/apps/v1"

)...

func (r *"MemcachedReconciler) SetupWithManager(mgr ctrl. Manager) error {
return ctrl. NewControllerManagedBy(mgr).

For(&cachevi.Memcached{}).

Owns(&appsvi.Deployment{}).

Complete(r)
}

NewControllerManagedBy() provides a controller builder that allows various controller configurations.
For(&cachev1.Memcached{}) specifies the Memcached type as the primary resource to watch. For
each Add, Update, or Delete event for a Memcached type, the reconcile loop is sent a reconcile

Request argument, which consists of a namespace and name key, for that Memcached object.

Owns(&appsv1.Deployment{}) specifies the Deployment type as the secondary resource to watch.

146

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-run-operator_osdk-golang-tutorial

CHAPTER 5. DEVELOPING OPERATORS

For each Deployment type Add, Update, or Delete event, the event handler maps each event to a
reconcile request for the owner of the deployment. In this case, the owner is the Memcached object for
which the deployment was created.

5.3.2.4.2. Controller configurations

You can initialize a controller by using many other useful configurations. For example:

® Set the maximum number of concurrent reconciles for the controller by using the
MaxConcurrentReconciles option, which defaults to 1:

func (r *MemcachedReconciler) SetupWithManager(mgr ctrl. Manager) error {
return ctrl. NewControllerManagedBy(mgr).
For(&cachevi.Memcached{}).
Owns(&appsvi.Deployment{}).
WithOptions(controller.Options{
MaxConcurrentReconciles: 2,

})-
Complete(r)

® Filter watch events using predicates.

® Choose the type of EventHandler to change how a watch event translates to reconcile requests
for the reconcile loop. For Operator relationships that are more complex than primary and
secondary resources, you can use the EnqueueRequestsFromMapFunc handler to transform a
watch event into an arbitrary set of reconcile requests.

For more details on these and other configurations, see the upstream Builder and Controller GoDocs.

5.3.2.4.3. Reconcile loop

Every controller has a reconciler object with a Reconcile() method that implements the reconcile loop.
The reconcile loop is passed the Request argument, which is a namespace and name key used to find
the primary resource object, Memcached, from the cache:

import (
ctrl "sigs.k8s.io/controller-runtime”

cachev1 "github.com/example-inc/memcached-operator/api/v1"

)...

func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result, error) {
// Lookup the Memcached instance for this reconcile request
memcached := &cachevi.Memcached{}
err := r.Get(ctx, req.NamespacedName, memcached)

Based on the return values, result, and error, the request might be requeued and the reconcile loop
might be triggered again:

// Reconcile successful - don't requeue
return ctrl.Result{}, nil

147

https://godoc.org/sigs.k8s.io/controller-runtime/pkg/handler#hdr-EventHandlers
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/builder#example-Builder
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/controller

OpenShift Container Platform 4.7 Operators

// Reconcile failed due to error - requeue
return ctrl.Result{}, err

// Requeue for any reason other than an error
return ctrl.Result{Requeue: true}, nil

You can set the Result.RequeueAfter to requeue the request after a grace period as well:

import "time"
// Reconcile for any reason other than an error after 5 seconds

return ctrl.Result{RequeueAfter: time.Second*5}, nil

NOTE

You can return Result with RequeueAfter set to periodically reconcile a CR.

For more on reconcilers, clients, and interacting with resource events, see the Controller Runtime Client
APl documentation.

5.3.2.4.4. Permissions and RBAC manifests

The controller requires certain RBAC permissions to interact with the resources it manages. These are
specified using RBAC markers, such as the following:

/
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds,verbs=get,list;watch,create;upc
ate;patch;delete

/7
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/status,verbs=get;update;patch
// +kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/finalizers, verbs=update

/
+kubebuilder:rbac:groups=apps,resources=deployments,verbs=getlist;watch,;create;update;patch;delet
// +kubebuilder:rbac:groups=core,resources=pods,verbs=get;list;

func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result, error) {

}...

The ClusterRole object manifest at config/rbac/role.yaml is generated from the previous markers by
using the controller-gen utility whenever the make manifests command is run.

5.3.2.5. Running the Operator

There are three ways you can use the Operator SDK CLI to build and run your Operator:
® Run locally outside the cluster as a Go program.
® Run as a deployment on the cluster.

e Bundle your Operator and use Operator Lifecycle Manager (OLM) to deploy on the cluster.

148

https://sdk.operatorframework.io/docs/building-operators/golang/references/client/

CHAPTER 5. DEVELOPING OPERATORS

NOTE

Before running your Go-based Operator as either a deployment on OpenShift Container
Platform or as a bundle that uses OLM, ensure that your project has been updated to use
supported images.

5.3.2.5.1. Running locally outside the cluster

You can run your Operator project as a Go program outside of the cluster. This is useful for
development purposes to speed up deployment and testing.

Procedure

® Run the following command to install the custom resource definitions (CRDs) in the cluster
configured in your ~/.kube/config file and run the Operator locally:

I $ make install run

Example output

2021-01-10T21:09:29.016-0700 INFO controller-runtime.metrics metrics server is starting to
listen {"addr": ":8080"}

2021-01-10T21:09:29.017-0700 INFO setup starting manager
2021-01-10T21:09:29.017-0700 INFO controller-runtime.manager starting metrics server
{"path": "/metrics"}

2021-01-10T21:09:29.018-0700 INFO controller-runtime.manager.controller.memcached
Starting EventSource {"reconciler group": "cache.example.com", "reconciler kind":
"Memcached", "source": "kind source: /, Kind="}

2021-01-10T21:09:29.218-0700 INFO controller-runtime.manager.controller.memcached
Starting Controller {"reconciler group": "cache.example.com", "reconciler kind":
"Memcached"}

2021-01-10T21:09:29.218-0700 INFO controller-runtime.manager.controller.memcached
Starting workers {"reconciler group": "cache.example.com”, "reconciler kind": "Memcached",
"worker count": 1}

5.3.2.5.2. Preparing your Operator to use supported images

Before running your Go-based Operator on OpenShift Container Platform, update your project to use
supported images.

Procedure

1. Update the project root-level Dockerfile to use supported images. Change the default runner
image reference from:

I FROM gcr.io/distroless/static:nonroot

to:

I FROM registry.access.redhat.com/ubi8/ubi-minimal:latest

la) PN It a4/ L Lt Lt LN _l._ N i ___ai__ _ 1IN AFFAN . AFFAN

149

OpenShift Container Platform 4.7 Operators

Z. bepenaing on tne o project version, your pockerTtiie mignt contain d USEHR 003394£:0009< Or
USER nonroot:nonroot directive. In either case, remove the line, as it is not required by the
supported runner image.

3. In the config/default/manager_auth_proxy_patch.yaml file, change the image value from:
I gcr.io/kubebuilder/kube-rbac-proxy:<tag>
to use the supported image:

I registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.7

5.3.2.5.3. Running as a deployment on the cluster

You can run your Operator project as a deployment on your cluster.

Prerequisites

Procedure

150

® Prepared your Go-based Operator to run on OpenShift Container Platform by updating the
project to use supported images

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

a. Build the image:

I $ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMDG64 architectures. Docker will
automatically set the environment variable to the value specified by —
platform. With Buildah, the —build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

I $ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_names>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to deploy the Operator:

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

CHAPTER 5. DEVELOPING OPERATORS

I $ make deploy IMG=<registry>/<user>/<image_name>:<tag>

By default, this command creates a namespace with the name of your Operator project in the
form <project_names>-system and is used for the deployment. This command also installs the
RBAC manifests from config/rbac.

3. Verify that the Operator is running:

I $ oc get deployment -n <project_name>-system
Example output

NAME READY UP-TO-DATE AVAILABLE AGE
<project_namex>-controller-manager 11 1 1 8m

5.3.2.5.4. Bundling an Operator and deploying with Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) helps you to install, update, and generally manage the lifecycle of
Operators and their associated services on a Kubernetes cluster. OLM is installed by default on
OpenShift Container Platform and runs as a Kubernetes extension so that you can use the web console
and the OpenShift CLI (oc) for all Operator lifecycle management functions without any additional

tools.

The Operator Bundle Format is the default packaging method for Operator SDK and OLM. You can get
your Operator ready for OLM by using the Operator SDK to build, push, validate, and run a bundle image
with OLM.

Prerequisites

Operator SDK CLlI installed on a development workstation
OpenShift CLI (oe) v4.7+ installed

Operator Lifecycle Manager (OLM) installed on a Kubernetes-based cluster (v1.16.0 or later if
you use apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.7)

Logged into the cluster with oc using an account with cluster-admin permissions
Operator project initialized by using the Operator SDK

If your Operator is Go-based, your project must have been updated to use supported images
for running on OpenShift Container Platform

Procedure

1. Run the following make commands in your Operator project directory to build and push your

Operator image. Modify the IMG argument in the following steps to reference a repository that
you have access to. You can obtain an account for storing containers at repository sites such as
Quay.io.

a. Build the image:

I $ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

151

OpenShift Container Platform 4.7 Operators

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMDG64 architectures. Docker will
automatically set the environment variable to the value specified by —
platform. With Buildah, the —build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

I $ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

2. Create your Operator bundle manifest by running the make bundle command, which invokes
several commands, including the Operator SDK generate bundle and bundle validate
subcommands:

I $ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

Bundle manifests for an Operator describe how to display, create, and manage an application.
The make bundle command creates the following files and directories in your Operator project:

® A bundle manifests directory named bundle/manifests that contains a
ClusterServiceVersion object

® A bundle metadata directory named bundle/metadata
® All custom resource definitions (CRDs) in a config/crd directory
® A Dockerfile bundle.Dockerfile

These files are then automatically validated by using operator-sdk bundile validate to ensure
the on-disk bundle representation is correct.

3. Build and push your bundle image by running the following commands. OLM consumes
Operator bundles using an index image, which reference one or more bundle images.

a. Build the bundle image. Set BUNDLE_IMAGE with the details for the registry, user
namespace, and image tag where you intend to push the image:

I $ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

b. Push the bundle image:

I $ docker push <registry>/<user>/<bundle_image_name>:<tag>

4. Check the status of OLM on your cluster by using the following Operator SDK command:

$ operator-sdk olm status \
--olm-namespace=openshift-operator-lifecycle-manager

5. Run the Operator on your cluster by using the OLM integration in Operator SDK:

152

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

CHAPTER 5. DEVELOPING OPERATORS

$ operator-sdk run bundle \
[-n <namespace>] \ﬂ
<registry>/<user>/<bundle_image_name>:<tag>

By default, the command installs the Operator in the currently active project in your
~/.kube/config file. You can add the -n flag to set a different namespace scope for the
installation.

This command performs the following actions:
® Create anindex image with your bundle image injected.

® Create a catalog source that points to your new index image, which enables OperatorHub to
discover your Operator.

® Deploy your Operator to your cluster by creating an Operator group, subscription, install
plan, and all other required objects, including RBAC.

5.3.2.6. Creating a custom resource

After your Operator is installed, you can test it by creating a custom resource (CR) that is now provided
on the cluster by the Operator.

Prerequisites

® Example Memcached Operator, which provides the Memcached CR, installed on a cluster

Procedure

1. Change to the namespace where your Operator is installed. For example, if you deployed the
Operator using the make deploy command:

I $ oc project memcached-operator-system

2. Edit the sample Memcached CR manifest at config/samples/cache_v1_memcached.yaml to
contain the following specification:

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
name: memcached-sample
spec:
size: 3

3. Create the CR:

I $ oc apply -f config/samples/cache_v1_memcached.yaml

4. Ensure that the Memcached Operator creates the deployment for the sample CR with the
correct size:

153

OpenShift Container Platform 4.7 Operators

I $ oc get deployments

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 8m
memcached-sample 3/3 3 3 im

5. Check the pods and CR status to confirm the status is updated with the Memcached pod
names.

a. Check the pods:
I $ oc get pods
Example output

NAME READY STATUS RESTARTS AGE

memcached-sample-6fd7¢98d8-7dqdr 1/1 Running 0 im
memcached-sample-6fd7¢98d8-g5k7v ~ 1/1 Running 0 im
memcached-sample-6fd7¢c98d8-m7vn7 1/1 Running 0 im

b. Check the CR status:

I $ oc get memcached/memcached-sample -0 yaml
Example output

apiVersion: cache.example.com/v1
kind: Memcached
metadata:

name: memcached-sample

spec:
size: 3

status:
nodes:
- memcached-sample-6fd7¢98d8-7dqdr
- memcached-sample-6fd7c98d8-g5k7v
- memcached-sample-6fd7¢98d8-m7vn7

6. Update the deployment size.

a. Update config/samples/cache_v1_memcached.yaml file to change the spec.size field in
the Memcached CR from 3 to 5:

$ oc patch memcached memcached-sample \
-p '{"spec"{"size": 5}}' \
--type=merge

b. Confirm that the Operator changes the deployment size:

154

CHAPTER 5. DEVELOPING OPERATORS

I $ oc get deployments

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 10m
memcached-sample 55 5 5 3m

7. Clean up the resources that have been created as part of this tutorial.

e |f you used the make deploy command to test the Operator, run the following command:

I $ make undeploy

e |f you used the operator-sdk run bundle command to test the Operator, run the following
command:

I $ operator-sdk cleanup <project_name>

5.3.2.7. Additional resources
® See Project layout for Go-based Operators to learn about the directory structures created by
the Operator SDK.
5.3.3. Project layout for Go-based Operators
The operator-sdk CLI can generate, or scaffold, a number of packages and files for each Operator
project.
5.3.3.1. Go-based project layout

Go-based Operator projects, the default type, generated using the operator-sdk init command contain
the following files and directories:

File or directory Purpose

main.go Main program of the Operator. This instantiates a new manager that registers all
custom resource definitions (CRDs) in the apis/ directory and starts all controllers in
the controllers/ directory.

apis/ Directory tree that defines the APIs of the CRDs. You must edit the
apis/<version>/<kind>_types.go files to define the API for each resource type and
import these packages in your controllers to watch for these resource types.

controllers/ Controller implementations. Edit the controller/<kind>_controller.go files to define
the reconcile logic of the controller for handling a resource type of the specified kind.

config/ Kubernetes manifests used to deploy your controller on a cluster, including CRDs,
RBAC, and certificates.

155

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-golang-project-layout

OpenShift Container Platform 4.7 Operators

File or directory Purpose

Makefile Targets used to build and deploy your controller.
Dockerfile Instructions used by a container engine to build your Operator.
manifests/ Kubernetes manifests for registering CRDs, setting up RBAC, and deploying the

Operator as a deployment.

5.4. ANSIBLE-BASED OPERATORS

5.4.1. Getting started with Operator SDK for Ansible-based Operators

The Operator SDK includes options for generating an Operator project that leverages existing Ansible
playbooks and modules to deploy Kubernetes resources as a unified application, without having to write
any Go code.

To demonstrate the basics of setting up and running an Ansible-based Operator using tools and
libraries provided by the Operator SDK, Operator developers can build an example Ansible-based
Operator for Memcached, a distributed key-value store, and deploy it to a cluster.

5.4.1.1. Prerequisites

Operator SDK CLI installed

OpenShift CLI (oc) v4.7+ installed

Ansible version v2.9.0

Ansible Runner version v1.1.0+

Ansible Runner HTTP Event Emitter plug-in version v1.0.0+
OpenShift Python client version vO.11.2+

Logged into an OpenShift Container Platform 4.7 cluster with oc with an account that has
cluster-admin permissions

To allow the cluster pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret.

5.4.1.2. Creating and deploying Ansible-based Operators

You can build and deploy a simple Ansible-based Operator for Memcached by using the Operator SDK.

Procedure

1.

156

Create a project.

a. Create your project directory:

I $ mkdir memcached-operator

https://docs.ansible.com/ansible/latest/index.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#getting-started-cli
https://docs.ansible.com/ansible/2.9/index.html
https://ansible-runner.readthedocs.io/en/latest/install.html
https://github.com/ansible/ansible-runner-http
https://pypi.org/project/openshift/

CHAPTER 5. DEVELOPING OPERATORS

b. Change into the project directory:

I $ cd memcached-operator
c. Run the operator-sdk init command with the ansible plug-in to initialize the project:
$ operator-sdk init \

--plugins=ansible \
--domain=example.com

2. Create an APL.
Create a simple Memcached API:

$ operator-sdk create api \
--group cache \
--version vi\
--kind Memcached \

--generate-role ﬂ

ﬂ Generates an Ansible role for the API.

3. Build and push the Operator image.
Use the default Makefile targets to build and push your Operator. Set IMG with a pull spec for
your image that uses a registry you can push to:

I $ make docker-build docker-push IMG=<registry>/<user>/<image_name>:<tag>

4. Run the Operator.

a. Install the CRD:
I $ make install
b. Deploy the project to the cluster. Set IMG to the image that you pushed:

I $ make deploy IMG=<registry>/<user>/<image_name>:<tag>

5. Create a sample custom resource (CR).

a. Create asample CR:

$ oc apply -f config/samples/cache_v1_memcached.yaml \
-n memcached-operator-system

b. Watch for the CR to reconcile the Operator:

$ oc logs deployment.apps/memcached-operator-controller-manager \
-Cc manager \
-n memcached-operator-system

Example output

157

OpenShift Container Platform 4.7 Operators

10205 17:48:45.881666 7 leaderelection.go:253] successfully acquired lease
memcached-operator-system/memcached-operator
{"level":"info","ts":1612547325.8819902,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting
EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level™:"info","ts":1612547325.98242,"logger":"controller-
runtime.manager.controller.memcached-controller”,"msg":"Starting Controller"}
{"level":"info","ts":1612547325.9824686,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":4}
{"level":"info","ts":1612547348.8311093,"logger":"runner","msg":"Ansible-runner exited
successfully","job":"4037200794235010051","name":"memcached-
sample","namespace":"memcached-operator-system"}

6. Clean up.
Run the following command to clean up the resources that have been created as part of this
procedure:

I $ make undeploy

5.4.1.3. Next steps

® See Operator SDK tutorial for Ansible-based Operators for a more in-depth walkthrough on
building an Ansible-based Operator.

5.4.2. Operator SDK tutorial for Ansible-based Operators

Operator developers can take advantage of Ansible support in the Operator SDK to build an example
Ansible-based Operator for Memcached, a distributed key-value store, and manage its lifecycle. This
tutorial walks through the following process:

® Create a Memcached deployment

® Ensure that the deployment size is the same as specified by the Memcached custom resource
(CR) spec

e Update the Memcached CR status using the status writer with the names of the memcached
pods

This process is accomplished by using two centerpieces of the Operator Framework:

Operator SDK
The operator-sdk CLI tool and controller-runtime library API
Operator Lifecycle Manager (OLM)

Installation, upgrade, and role-based access control (RBAC) of Operators on a cluster

NOTE

This tutorial goes into greater detail than Getting started with Operator SDK for Ansible-
based Operators.

5.4.2.1. Prerequisites

158

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-ansible-tutorial
https://docs.ansible.com/ansible/latest/index.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-ansible-quickstart

CHAPTER 5. DEVELOPING OPERATORS

® Operator SDK CLlI installed

® OpenShift CLI (oc) v4.7+ installed

® Ansible version v2.9.0

® Ansible Runner version v1.1.0+

® Ansible Runner HTTP Event Emitter plug-in version v1.0.0+
® OpenShift Python client version vO.11.2+

® | oggedinto an OpenShift Container Platform 4.7 cluster with oc with an account that has
cluster-admin permissions

® To allow the cluster pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret.

5.4.2.2. Creating a project

Use the Operator SDK CLI to create a project called memcached-operator.
Procedure
1. Create a directory for the project:

I $ mkdir -p $HOME/projects/memcached-operator

2. Change to the directory:

I $ cd $HOME/projects/memcached-operator

3. Run the operator-sdk init command with the ansible plug-in to initialize the project:

$ operator-sdk init \
--plugins=ansible \
--domain=example.com

5.4.2.2.1. PROJECT file

Among the files generated by the operator-sdk init command is a Kubebuilder PROJECT file.
Subsequent operator-sdk commands, as well as help output, that are run from the project root read
this file and are aware that the project type is Ansible. For example:

domain: example.com

layout: ansible.sdk.operatorframework.io/v1
projectName: memcached-operator
version: 3-alpha

5.4.2.3. Creating an API

Use the Operator SDK CLI to create a Memcached API.

159

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#getting-started-cli
https://docs.ansible.com/ansible/2.9/index.html
https://ansible-runner.readthedocs.io/en/latest/install.html
https://github.com/ansible/ansible-runner-http
https://pypi.org/project/openshift/

OpenShift Container Platform 4.7 Operators

Procedure

® Run the following command to create an APl with group cache, version, v1, and kind
Memcached:

$ operator-sdk create api \
--group cache \
--version vi\
--kind Memcached \

--generate-role ﬂ

ﬂ Generates an Ansible role for the API.

After creating the API, your Operator project updates with the following structure:

Memcached CRD
Includes a sample Memcached resource

Manager

Program that reconciles the state of the cluster to the desired state by using:

® Areconciler, either an Ansible role or playbook

e A watches.yaml file, which connects the Memcached resource to the memcached Ansible
role

5.4.2.4. Modifying the manager

Update your Operator project to provide the reconcile logic, in the form of an Ansible role, which runs
every time a Memcached resource is created, updated, or deleted.

Procedure

1. Update the roles/memcached/tasks/main.yml file with the following structure:

- name: start memcached
community.kubernetes.k8s:
definition:
kind: Deployment
apiVersion: apps/v1
metadata:
name: '{{ ansible_operator_meta.name }}-memcached'
namespace: {{ ansible_operator_meta.namespace }}'
spec:
replicas: "{{size}}"
selector:
matchLabels:
app: memcached
template:
metadata:
labels:
app: memcached
spec:

160

CHAPTER 5. DEVELOPING OPERATORS

containers:
- name: memcached
command:
- memcached
- -m=64
--0
- modern
- -V
image: "docker.io/memcached:1.4.36-alpine"
ports:
- containerPort: 11211

This memcached role ensures a memcached deployment exist and sets the deployment size.

2. Set default values for variables used in your Ansible role by editing the
roles/'memcached/defaults/main.yml file:

defaults file for Memcached
size: 1

3. Update the Memcached sample resource in the config/samples/cache_vi_memcached.yaml
file with the following structure:

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
name: memcached-sample
spec:
size: 3
The key-value pairs in the custom resource (CR) spec are passed to Ansible as extra variables.

NOTE

The names of all variables in the spec field are converted to snake case, meaning
lowercase with an underscore, by the Operator before running Ansible. For example,
serviceAccount in the spec becomes service_account in Ansible.

You can disable this case conversion by setting the snakeCaseParameters option to

false in your watches.yaml file. It is recommended that you perform some type validation
in Ansible on the variables to ensure that your application is receiving expected input.

5.4.2.5. Running the Operator

There are three ways you can use the Operator SDK CLI to build and run your Operator:
® Run locally outside the cluster as a Go program.
® Run as a deployment on the cluster.

e Bundle your Operator and use Operator Lifecycle Manager (OLM) to deploy on the cluster.

5.4.2.5.1. Running locally outside the cluster

161

OpenShift Container Platform 4.7 Operators

You can run your Operator project as a Go program outside of the cluster. This is useful for
development purposes to speed up deployment and testing.

Procedure

® Run the following command to install the custom resource definitions (CRDs) in the cluster
configured in your ~/.kube/config file and run the Operator locally:

I $ make install run

Example output

{"level":"info","ts":1612589622.7888272,"logger":"ansible-controller","msg":"Watching
resource","Options.Group":"cache.example.com”,"Options.Version":"v1","Options.Kind":"Memc
ached"}

{"level":"info","ts":1612589622.7897573,"logger":"proxy","msg":"Starting to
serve","Address":"127.0.0.1:8888"}
{"level":"info","ts":1612589622.789971,"logger":"controller-runtime.manager","msg":"starting
metrics server","path":"/metrics"}
{"level":"info","ts":1612589622.7899997,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting
EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612589622.8904517,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612589622.8905244,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":8}

5.4.2.5.2. Preparing your Operator to use supported images

Before running your Ansible-based Operator on OpenShift Container Platform, update your project to
use supported images.

Procedure

1. Update the project root-level Dockerfile to use supported images. Change the default builder
image reference from:

I FROM quay.io/operator-framework/ansible-operator:v1.3.0
to:

I FROM registry.redhat.io/openshift4/ose-ansible-operator:v4.7

IMPORTANT

Use the builder image version that matches your Operator SDK version. Failure
to do so can result in problems due to project layout, or scaffolding, differences,
particularly when mixing newer upstream versions of the Operator SDK with
downstream OpenShift Container Platform builder images.

2. In the config/default/manager_auth_proxy_patch.yaml file, change the image value from:

162

CHAPTER 5. DEVELOPING OPERATORS

I gcr.io/kubebuilder/kube-rbac-proxy:<tag>
to use the supported image:

I registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.7

5.4.2.5.3. Running as a deployment on the cluster

You can run your Operator project as a deployment on your cluster.

Procedure

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

a. Build the image:

I $ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMDG64 architectures. Docker will
automatically set the environment variable to the value specified by —
platform. With Buildah, the —build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

I $ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_names>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to deploy the Operator:
I $ make deploy IMG=<registry>/<user>/<image_name>:<tag>
By default, this command creates a namespace with the name of your Operator project in the

form <project_names>-system and is used for the deployment. This command also installs the
RBAC manifests from config/rbac.

3. Verify that the Operator is running:

I $ oc get deployment -n <project_name>-system

163

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

OpenShift Container Platform 4.7 Operators

Example output

<project_namex>-controller-manager 11 1 1 8m

I NAME READY UP-TO-DATE AVAILABLE AGE

5.4.2.5.4. Bundling an Operator and deploying with Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) helps you to install, update, and generally manage the lifecycle of
Operators and their associated services on a Kubernetes cluster. OLM is installed by default on
OpenShift Container Platform and runs as a Kubernetes extension so that you can use the web console
and the OpenShift CLI (oc) for all Operator lifecycle management functions without any additional

tools.

The Operator Bundle Format is the default packaging method for Operator SDK and OLM. You can get
your Operator ready for OLM by using the Operator SDK to build, push, validate, and run a bundle image
with OLM.

Prerequisites

Operator SDK CLI installed on a development workstation
OpenShift CLI (oe) v4.7+ installed

Operator Lifecycle Manager (OLM) installed on a Kubernetes-based cluster (v1.16.0 or later if
you use apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.7)

Logged into the cluster with oc using an account with cluster-admin permissions

Operator project initialized by using the Operator SDK

Procedure

1. Run the following make commands in your Operator project directory to build and push your

164

Operator image. Modify the IMG argument in the following steps to reference a repository that
you have access to. You can obtain an account for storing containers at repository sites such as
Quay.io.

a. Build the image:

I $ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMDG64 architectures. Docker will
automatically set the environment variable to the value specified by —
platform. With Buildah, the —build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

I $ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

CHAPTER 5. DEVELOPING OPERATORS

2. Create your Operator bundle manifest by running the make bundle command, which invokes
several commands, including the Operator SDK generate bundle and bundle validate
subcommands:

I $ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

Bundle manifests for an Operator describe how to display, create, and manage an application.
The make bundle command creates the following files and directories in your Operator project:

® A bundle manifests directory named bundle/manifests that contains a
ClusterServiceVersion object

® A bundle metadata directory named bundle/metadata
® All custom resource definitions (CRDs) in a config/crd directory
® A Dockerfile bundle.Dockerfile

These files are then automatically validated by using operator-sdk bundile validate to ensure
the on-disk bundle representation is correct.

3. Build and push your bundle image by running the following commands. OLM consumes
Operator bundles using an index image, which reference one or more bundle images.

a. Build the bundle image. Set BUNDLE_IMAGE with the details for the registry, user
namespace, and image tag where you intend to push the image:

I $ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>
b. Push the bundle image:

I $ docker push <registry>/<user>/<bundle_image_name>:<tag>

4. Check the status of OLM on your cluster by using the following Operator SDK command:

$ operator-sdk olm status \
--olm-namespace=openshift-operator-lifecycle-manager

5. Run the Operator on your cluster by using the OLM integration in Operator SDK:

$ operator-sdk run bundle \
[-n <namespace>] \ﬂ
<registry>/<user>/<bundle_image_name>:<tag>

By default, the command installs the Operator in the currently active project in your
~/.kube/config file. You can add the -n flag to set a different namespace scope for the
installation.

This command performs the following actions:
® Create anindex image with your bundle image injected.

® Create a catalog source that points to your new index image, which enables OperatorHub to
discover your Operator.

165

OpenShift Container Platform 4.7 Operators

® Deploy your Operator to your cluster by creating an Operator group, subscription, install
plan, and all other required objects, including RBAC.

5.4.2.6. Creating a custom resource

After your Operator is installed, you can test it by creating a custom resource (CR) that is now provided
on the cluster by the Operator.

Prerequisites

® Example Memcached Operator, which provides the Memcached CR, installed on a cluster

Procedure

1. Change to the namespace where your Operator is installed. For example, if you deployed the
Operator using the make deploy command:

I $ oc project memcached-operator-system

2. Edit the sample Memcached CR manifest at config/samples/cache_v1_memcached.yaml to
contain the following specification:

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
name: memcached-sample
spec:
size: 3

3. Create the CR:

I $ oc apply -f config/samples/cache_v1_memcached.yaml

4. Ensure that the Memcached Operator creates the deployment for the sample CR with the
correct size:

I $ oc get deployments

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 8m
memcached-sample 33 3 3 im

5. Check the pods and CR status to confirm the status is updated with the Memcached pod
names.

a. Check the pods:

I $ oc get pods

166

CHAPTER 5. DEVELOPING OPERATORS

Example output

NAME READY STATUS RESTARTS AGE

memcached-sample-6fd7¢98d8-7dqdr 1/1 Running 0 im
memcached-sample-6fd7¢98d8-g5k7v ~ 1/1 Running 0 im
memcached-sample-6fd7¢c98d8-m7vn7 1/1 Running 0 im

b. Check the CR status:

I $ oc get memcached/memcached-sample -0 yaml

Example output

apiVersion: cache.example.com/v1
kind: Memcached
metadata:

name: memcached-sample
spec:
size: 3
status:
nodes:
- memcached-sample-6fd7¢98d8-7dqdr

- memcached-sample-6fd7c98d8-g5k7v
- memcached-sample-6fd7¢98d8-m7vn7

6. Update the deployment size.

a. Update config/samples/cache_v1_memcached.yaml file to change the spec.size field in
the Memcached CR from 3 to 5:

$ oc patch memcached memcached-sample \
-p '{"spec":{"size": 5}}' \
--type=merge

b. Confirm that the Operator changes the deployment size:

I $ oc get deployments

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 10m
memcached-sample 55 5 5 3m

7. Clean up the resources that have been created as part of this tutorial.

e |f you used the make deploy command to test the Operator, run the following command:

I $ make undeploy

167

OpenShift Container Platform 4.7 Operators

® |t you used the operator-sdk run bundle command to test the Operator, run the ftollowing
command:

I $ operator-sdk cleanup <project_name>

5.4.2.7. Additional resources
® See Project layout for Ansible-based Operators to learn about the directory structures created
by the Operator SDK.
5.4.3. Project layout for Ansible-based Operators
The operator-sdk CLI can generate, or scaffold, a number of packages and files for each Operator
project.
5.4.3.1. Ansible-based project layout

Ansible-based Operator projects generated using the operator-sdk init --plugins ansible command
contain the following directories and files:

File or directory Purpose

Dockerfile Dockerfile for building the container image for the Operator.

Makefile Targets for building, publishing, deploying the container image that wraps the Operator
binary, and targets for installing and uninstalling the custom resource definition (CRD).

PROJECT YAML file containing metadata information for the Operator.
config/crd Base CRD files and the kustomization.yaml file settings.
config/default Collects all Operator manifests for deployment. Use by the make deploy command.

config/manager Controller manager deployment.

config/prometh ServiceMonitor resource for monitoring the Operator.
eus

config/rbac Role and role binding for leader election and authentication proxy.

config/samples Sample resources created for the CRDs.

config/testing Sample configurations for testing.
playbooks/ A subdirectory for the playbooks to run.
roles/ Subdirectory for the roles tree to run.

168

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-ansible-project-layout

CHAPTER 5. DEVELOPING OPERATORS

File or directory Purpose

watches.yaml Group/version/kind (GVK) of the resources to watch, and the Ansible invocation
method. New entries are added by using the create api command.

requirements.y YAML file containing the Ansible collections and role dependencies to install during a
mi build.

molecule/ Molecule scenarios for end-to-end testing of your role and Operator.

5.4.4. Ansible support in Operator SDK

5.4.4.1. Custom resource files

Operators use the Kubernetes extension mechanism, custom resource definitions (CRDs), so your
custom resource (CR) looks and acts just like the built-in, native Kubernetes objects.

The CR file format is a Kubernetes resource file. The object has mandatory and optional fields:

Table 5.1. Custom resource fields

Field Description

apiVersion Version of the CR to be created.

kind Kind of the CR to be created.

metadata Kubernetes-specific metadata to be created.

spec (optional) Key-value list of variables which are passed to Ansible. This field is empty by
default.

status Summarizes the current state of the object. For Ansible-based Operators,

the status subresource is enabled for CRDs and managed by the
operator_sdk.util.k8s_status Ansible module by default, which includes
condition information to the CR status.

annotations Kubernetes-specific annotations to be appended to the CR.

The following list of CR annotations modify the behavior of the Operator:

Table 5.2. Ansible-based Operator annotations

Annotation Description

ansible.operator- Specifies the reconciliation interval for the CR. This value is parsed using the
sdk/reconcile-period standard Golang package time. Specifically, ParseDuration is used which
applies the default suffix of s, giving the value in seconds.

169

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#status-subresource
https://golang.org/pkg/time/
https://golang.org/pkg/time/#ParseDuration

OpenShift Container Platform 4.7 Operators

Example Ansible-based Operator annotation

apiVersion: "test1.example.com/vialphai”
kind: "Test1"
metadata:
name: "example"
annotations:
ansible.operator-sdk/reconcile-period: "30s"

5.4.4.2. watches.yaml file

A group/version/kind (GVK) is a unique identifier for a Kubernetes API. The watches.yaml file contains a
list of mappings from custom resources (CRs), identified by its GVK, to an Ansible role or playbook. The
Operator expects this mapping file in a predefined location at /opt/ansible/watches.yaml.

Table 5.3. watches.yaml file mappings

Field Description

group Group of CR to watch.

version Version of CR to watch.

kind Kind of CR to watch

role (default) Path to the Ansible role added to the container. For example, if your roles

directory is at /opt/ansible/roles/ and your role is named busybox, this
value would be /opt/ansible/roles/busybox. This field is mutually
exclusive with the playbook field.

playbook Path to the Ansible playbook added to the container. This playbook is
expected to be a way to call roles. This field is mutually exclusive with the
role field.

reconcilePeriod (optional) The reconciliation interval, how often the role or playbook is run, for a given
CR.

manageStatus (optional) When set to true (default), the Operator manages the status of the CR

generically. When set to false, the status of the CR is managed elsewhere,
by the specified role or playbook or in a separate controller.

Example watches.yaml file

- version: vialphat ﬂ
group: test1.example.com
kind: Test1
role: /opt/ansible/roles/Test1

- version: vialphai 9

group: test2.example.com
kind: Test2

170

playbook: /opt/ansible/playbook.yml

- version: vialphai 9

group: test3.example.com

kind: Test3

playbook: /opt/ansible/test3.yml

reconcilePeriod: 0
manageStatus: false

09

playbook.

5.4.4.2.1. Advanced options

CHAPTER 5. DEVELOPING OPERATORS

Simple example mapping Test1 to the test1 role.

Simple example mapping Test2 to a playbook.

More complex example for the Test3 kind. Disables re-queuing and managing the CR status in the

Advanced features can be enabled by adding them to your watches.yaml file per GVK. They can go
below the group, version, kind and playbook or role fields.

Some features can be overridden per resource using an annotation on that CR. The options that can be
overridden have the annotation specified below.

Table 5.4. Advanced watches.yaml file options

Feature

Reconcile period

Manage status

Watch dependent
resources

Watch cluster-scoped
resources

YAML key

reconcilePeri
od

manageStatu
s

watchDepen
dentResourc
es

watchCluster
ScopedReso
urces

Description

Time between reconcile runs for a
particular CR.

Allows the Operator to manage
the conditions section of each
CR status section.

Allows the Operator to
dynamically watch resources that
are created by Ansible.

Allows the Operator to watch
cluster-scoped resources that
are created by Ansible.

Annotation for

override

ansible.oper
ator-
sdk/reconcil
e-period

true

true

fals

171

OpenShift Container Platform 4.7 Operators

Feature YAML key Description

Annotation for
override

Max runner artifacts maxRunnerA Manages the number of artifact
rtifacts directories that Ansible Runner
keeps in the Operator container
for each individual resource.

Example watches.yml file with advanced options

- version: vialphai
group: app.example.com
kind: AppService
playbook: /opt/ansible/playbook.yml
maxRunnerArtifacts: 30
reconcilePeriod: 5s
manageStatus: False
watchDependentResources: False

5.4.4.3. Extra variables sent to Ansible

ansible.oper 20
ator-

sdk/max-

runner-

artifacts

Extra variables can be sent to Ansible, which are then managed by the Operator. The spec section of the
custom resource (CR) passes along the key-value pairs as extra variables. This is equivalent to extra

variables passed in to the ansible-playbook command.

The Operator also passes along additional variables under the meta field for the name of the CR and

the namespace of the CR.

For the following CR example:

apiVersion: "app.example.com/vialphai"
kind: "Database"
metadata:
name: "example"
spec:
message: "Hello world 2"
newParameter: "newParam"”

The structure passed to Ansible as extra variables is:

{ "meta": {
"name": "<cr_name>",
"namespace"”: "<cr_namespace>",
b
"message": "Hello world 2",
"new_parameter": "newParam”,
"_app_example_com_database": {
<full_crd>
2
}

172

https://ansible-runner.readthedocs.io/en/latest/intro.html#runner-artifacts-directory-hierarchy

CHAPTER 5. DEVELOPING OPERATORS

The message and newParameter fields are set in the top level as extra variables, and meta provides
the relevant metadata for the CR as defined in the Operator. The meta fields can be accessed using dot
notation in Ansible, for example:

- debug:
msg: "name: {{ ansible_operator_meta.name }}, {{ ansible_operator_meta.namespace }}"

5.4.4.4. Ansible Runner directory

Ansible Runner keeps information about Ansible runs in the container. This is located at /tmp/ansible-
operator/runner/<group>/<version>/<kind>/<namespace>/<name>.

Additional resources

® To learn more about the runner directory, see the Ansible Runner documentation.

5.4.5. Kubernetes Collection for Ansible

To manage the lifecycle of your application on Kubernetes using Ansible, you can use the Kubernetes
Collection for Ansible. This collection of Ansible modules allows a developer to either leverage their
existing Kubernetes resource files written in YAML or express the lifecycle management in native
Ansible.

One of the biggest benefits of using Ansible in conjunction with existing Kubernetes resource files is the
ability to use Jinja templating so that you can customize resources with the simplicity of a few variables
in Ansible.

This section goes into detail on usage of the Kubernetes Collection. To get started, install the collection
on your local workstation and test it using a playbook before moving on to using it within an Operator.

5.4.5.1. Installing the Kubernetes Collection for Ansible

You can install the Kubernetes Collection for Ansible on your local workstation.

Procedure

1. Install Ansible 2.9+:

I $ sudo dnf install ansible

2. Install the OpenShift python client package:

I $ pip3 install openshift

3. Install the Kubernetes Collection using one of the following methods:

® You can install the collection directly from Ansible Galaxy:

I $ ansible-galaxy collection install community.kubernetes

e |f you have already initialized your Operator, you might have a requirements.yml file at the

173

https://ansible-runner.readthedocs.io/en/latest/index.html
https://galaxy.ansible.com/community/kubernetes
https://github.com/openshift/openshift-restclient-python

OpenShift Container Platform 4.7 Operators

top level of your project. This file specifies Ansible dependencies that must be installed for
your Operator to function. By default, this file installs the community.kubernetes
collection as well as the operator_sdk.util collection, which provides modules and plug-ins
for Operator-specific fuctions.

To install the dependent modules from the requirements.yml file:

I $ ansible-galaxy collection install -r requirements.yml

5.4.5.2. Testing the Kubernetes Collection locally

Operator developers can run the Ansible code from their local machine as opposed to running and
rebuilding the Operator each time.

Prerequisites

® |[nitialize an Ansible-based Operator project and create an API that has a generated Ansible role
by using the Operator SDK

® |[nstall the Kubernetes Collection for Ansible

Procedure

1. In your Ansible-based Operator project directory, modify the roles/<kind>/tasks/main.yml file
with the Ansible logic that you want. The roles/<kind>/ directory is created when you use the --
generate-role flag while creating an API. The <kind> replaceable matches the kind that you
specified for the APL.

The following example creates and deletes a config map based on the value of a variable named
state:

- name: set ConfigMap example-config to {{ state }}
community.kubernetes.k8s:
api_version: v1
kind: ConfigMap
name: example-config
namespace: default
state: "{{ state }}"
ignore_errors: true

Change this value if you want the config map to be created in a different namespace from
default.

9 Setting ignore_errors: true ensures that deleting a nonexistent config map does not fail.

2. Modify the roles/<kind>/defaults/main.yml file to set state to present by default:

I state: present

3. Create an Ansible playbook by creating a playbook.yml file in the top-level of your project
directory, and include your <kind> role:

174

CHAPTER 5. DEVELOPING OPERATORS

- hosts: localhost
roles:
- <kind>

4. Run the playbook:

I $ ansible-playbook playbook.yml
Example output

[WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all’

khkkhkkkkkhkkhkkhkhkhkhhkkhkhkkhhhkhkhhkhhhhkhhhhhkhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhkhkhkhhhhkrhhhrhhhkk
PLAY [localhost]

TASK [Gathering Facts]
*hkkkhkkkhkhkkhkkhkhkhkhkhkhkhhhhkhkhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdkhhhrhhhhkhhkhhhhkhkkhhhxkx
ok: [localhost]

TASK [memcached : set ConfigMap example-config to present]

hhkkkkkkkkkkhhhhkkkhhkhhhhhhkhhhhhhhkhkhhhhhhhhkhhhdhhhhhhhhhhhhkhhhddhhhhhhhhhhhrhkhhdhix

changed: [localhost]

PLAY RECAP kkkkkhhkkkkkkhkhhhhkhkhhkhkhhhhhkhkhkhhhhhhhhkhkhhhhhkhhhhhhhhhhhhhhhhhkhhrdhhhhhhhhhhhkkrrrrhixx

localhost :0k=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

5. Verify that the config map was created:
I $ oc get configmaps
Example output

NAME DATA AGE
example-config 0 2mis

6. Rerun the playbook setting state to absent:

I $ ansible-playbook playbook.yml --extra-vars state=absent
Example output

[WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match "all’

khkkkkkkkkhhhhkhkhkhhkhhhhhkhkhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhdhddhhhhhhhhhhhhrrrrhhhhrkx
PLAY [localhost]

TASK [Gathering Facts]

hhkkkkhkkkkkkhhhhkkkhhkhhhhhkhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhkhhhdhhhhhhrhhhhhkkhkhrdhixx

ok: [localhost]

TASK [memcached : set ConfigMap example-config to absent]

hhkkkkhkkkkkhkhkhhhkkkhkhkhkhhhhhkhkhhhhhhkhkhhhhhhhhkhhhdhhhhhhhhhhhhkhhhdhhhhhrrhhhhhkkhkhhdhixx

175

OpenShift Container Platform 4.7 Operators

changed: [localhost]

PLAY RECAP khkkkhhkkkkkkhkhhhhkhkhhhkhhhhhkhkhhhhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhhddhhhhhhhhhhhrrkrrdhixd

localhost :0k=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

7. Verify that the config map was deleted:

I $ oc get configmaps

5.4.5.3. Next steps
® See Using Ansible inside an Operator for details on triggering your custom Ansible logic inside
of an Operator when a custom resource (CR) changes.
5.4.6. Using Ansible inside an Operator

After you are familiar with using the Kubernetes Collection for Ansible locally , you can trigger the same
Ansible logic inside of an Operator when a custom resource (CR) changes. This example maps an Ansible
role to a specific Kubernetes resource that the Operator watches. This mapping is done in the
watches.yaml file.

5.4.6.1. Custom resource files

Operators use the Kubernetes extension mechanism, custom resource definitions (CRDs), so your
custom resource (CR) looks and acts just like the built-in, native Kubernetes objects.

The CR file format is a Kubernetes resource file. The object has mandatory and optional fields:

Table 5.5. Custom resource fields

Field Description

apiVersion Version of the CR to be created.

kind Kind of the CR to be created.

metadata Kubernetes-specific metadata to be created.

spec (optional) Key-value list of variables which are passed to Ansible. This field is empty by
default.

status Summarizes the current state of the object. For Ansible-based Operators,

the status subresource is enabled for CRDs and managed by the
operator_sdk.util.k8s_status Ansible module by default, which includes
condition information to the CR status.

annotations Kubernetes-specific annotations to be appended to the CR.

The following list of CR annotations modify the behavior of the Operator:

176

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-ansible-inside-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-ansible-k8s-collection
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#status-subresource

CHAPTER 5. DEVELOPING OPERATORS

Table 5.6. Ansible-based Operator annotations

Annotation Description

ansible.operator- Specifies the reconciliation interval for the CR. This value is parsed using the
sdk/reconcile-period standard Golang package time. Specifically, ParseDuration is used which
applies the default suffix of §, giving the value in seconds.

Example Ansible-based Operator annotation

apiVersion: "test1.example.com/vialphai”
kind: "Test1"
metadata:
name: "example"
annotations:
ansible.operator-sdk/reconcile-period: "30s"

5.4.6.2. Testing an Ansible-based Operator locally

You can test the logic inside of an Ansible-based Operator running locally by using the make run
command from the top-level directory of your Operator project. The make run Makefile target runs the
ansible-operator binary locally, which reads from the watches.yaml file and uses your ~/.kube/config
file to communicate with a Kubernetes cluster just as the k8s modules do.

NOTE
You can customize the roles path by setting the environment variable
ANSIBLE_ROLES_PATH or by using the ansible-roles-path flag. If the role is not found

in the ANSIBLE_ROLES_PATH value, the Operator looks foritin {{current
directory}}/roles.

Prerequisites

® Ansible Runner version v1.1.0+
® Ansible Runner HTTP Event Emitter plug-in version v1.0.0+

e Performed the previous steps for testing the Kubernetes Collection locally

Procedure

1. Install your custom resource definition (CRD) and proper role-based access control (RBAC)
definitions for your custom resource (CR):

I $ make install

Example output

/usr/bin/kustomize build config/crd | kubectl apply -f -
customresourcedefinition.apiextensions.k8s.io/memcacheds.cache.example.com created

2. Run the make run command:

177

https://golang.org/pkg/time/
https://golang.org/pkg/time/#ParseDuration
https://ansible-runner.readthedocs.io/en/latest/install.html
https://github.com/ansible/ansible-runner-http

OpenShift Container Platform 4.7 Operators

I $ make run
Example output

/home/user/memcached-operator/bin/ansible-operator run
{"level":"info","ts":1612739145.2871568,"logger":"cmd","msg":"Version","Go
Version":"go1.15.5","GOOS":"linux","GOARCH":"amd64","ansible-
operator":"v1.3.0","commit":"1abf57985b43bf6a59dcd18147b3c574fa57d3f6"}
{"level":"info","ts":1612739148.347306,"logger":"controller-runtime.metrics","msg":"metrics
server is starting to listen","addr":":8080"}
{"level":"info","ts":1612739148.3488882,"logger":"watches","msg":"Environment variable not
set; using default
value","envVar":"ANSIBLE_VERBOSITY_MEMCACHED_CACHE_EXAMPLE_COM","default":
2}

{"level":"info","ts":1612739148.3490262,"logger":"cmd","msg":"Environment variable not set;
using default
value","Namespace":"","envVar":"ANSIBLE_DEBUG_LOGS","ANSIBLE_DEBUG_LOGS":fals
e}

{"level":"info","ts":1612739148.3490646,"logger":"ansible-controller","msg":"Watching
resource","Options.Group":"cache.example.com”,"Options.Version":"v1","Options.Kind":"Memc
ached"}

{"level":"info","ts":1612739148.350217,"logger":"proxy","msg":"Starting to
serve","Address":"127.0.0.1:8888"}
{"level":"info","ts":1612739148.3506632,"logger":"controller-runtime.manager","msg":"starting
metrics server","path":"/metrics"}

{"level":"info","ts":1612739148.350784,"logger":"controller-
runtime.manager.controller.memcached-controller”,"msg":"Starting
EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612739148.5511978,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612739148.5512562,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":8}

With the Operator now watching your CR for events, the creation of a CR will trigger your
Ansible role to run.

NOTE

Consider an example config/samples/<gvk>.yaml CR manifest:

apiVersion: <group>.example.com/vialphat
kind: <kind>
metadata:

name: "<kind>-sample"

Because the spec field is not set, Ansible is invoked with no extra variables.
Passing extra variables from a CR to Ansible is covered in another section. It is
important to set reasonable defaults for the Operator.

3. Create aninstance of your CR with the default variable state set to present:

I $ oc apply -f config/samples/<gvk>.yaml

178

CHAPTER 5. DEVELOPING OPERATORS

4. Check that the example-config config map was created:
I $ oc get configmaps

Example output

NAME STATUS AGE
example-config Active 3s

5. Modify your config/samples/<gvks>.yaml file to set the state field to absent. For example:

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
name: memcached-sample
spec:
state: absent

6. Apply the changes:

I $ oc apply -f config/samples/<gvk>.yaml

7. Confirm that the config map is deleted:

I $ oc get configmap

5.4.6.3. Testing an Ansible-based Operator on the cluster

After you have tested your custom Ansible logic locally inside of an Operator, you can test the Operator
inside of a pod on an OpenShift Container Platform cluster, which is prefered for production use.

You can run your Operator project as a deployment on your cluster.

Procedure

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

a. Build the image:

I $ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMDG64 architectures. Docker will
automatically set the environment variable to the value specified by —
platform. With Buildah, the —build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

179

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

OpenShift Container Platform 4.7 Operators

b. Push the image to a repository:

I $ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_names>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to deploy the Operator:
I $ make deploy IMG=<registry>/<user>/<image_name>:<tag>
By default, this command creates a namespace with the name of your Operator project in the
form <project_names>-system and is used for the deployment. This command also installs the

RBAC manifests from config/rbac.

3. Verify that the Operator is running:

I $ oc get deployment -n <project_name>-system
Example output

NAME READY UP-TO-DATE AVAILABLE AGE
<project_namex>-controller-manager 11 1 1 8m

5.4.6.4. Ansible logs

Ansible-based Operators provide logs about the Ansible run, which can be useful for debugging your
Ansible tasks. The logs can also contain detailed information about the internals of the Operator and its
interactions with Kubernetes.

5.4.6.4.1. Viewing Ansible logs

Prerequisites

® Ansible-based Operator running as a deployment on a cluster

Procedure

® To view logs from an Ansible-based Operator, run the following command:

$ oc logs deployment/<project_namex>-controller-manager \
-Cc manager \
-n <namespace>

ﬂ View logs from the manager container.

If you used the make deploy command to run the Operator as a deployment, use the
<project_name>-system namespace.

180

CHAPTER 5. DEVELOPING OPERATORS

Example output

{"level":"info","ts":1612732105.0579333,"logger":"cmd","msg":"Version","Go
Version":"go1.15.5","GOOS":"linux","GOARCH":"amd64","ansible-
operator":"v1.3.0","commit":"1abf57985b43bf6a59dcd18147b3c574fa57d3f6"}
{"level™:"info","ts":1612732105.0587437,"logger":"cmd","msg":"WATCH_NAMESPACE
environment variable not set. Watching all namespaces.","Namespace":""}

10207 21:08:26.110949 7 request.go:645] Throttling request took 1.035521578s, request:
GET:https://172.30.0.1:443/apis/flowcontrol.apiserver.k8s.io/vialphal ?timeout=32s
{"level":"info","ts":1612732107.768025,"logger":"controller-runtime.metrics","msg":"metrics
server is starting to listen","addr":"127.0.0.1:8080"}
{"level":"info","ts":1612732107.768796,"logger":"watches","msg":"Environment variable not
set; using default
value","envVar":"ANSIBLE_VERBOSITY_MEMCACHED_CACHE_EXAMPLE_COM","default":
2}

{"level":"info","ts":1612732107.7688773,"logger":"cmd","msg":"Environment variable not set;
using default
value","Namespace":"","envVar":"ANSIBLE_DEBUG_LOGS","ANSIBLE_DEBUG_LOGS":fals
e}

{"level":"info","ts":1612732107.7688901,"logger":"ansible-controller","msg":"Watching
resource","Options.Group":"cache.example.com","Options.Version":"v1","Options.Kind":"Memc
ached"}

{"level":"info","ts":1612732107.770032,"logger":"proxy","msg":"Starting to
serve","Address":"127.0.0.1:8888"}

10207 21:08:27.770185 7 leaderelection.go:243] attempting to acquire leader lease
memcached-operator-system/memcached-operator...
{"level":"info","ts":1612732107.770202,"logger":"controller-runtime.manager","msg":"starting
metrics server","path":"/metrics"}

10207 21:08:27.784854 7 leaderelection.go:253] successfully acquired lease
memcached-operator-system/memcached-operator
{"level":"info","ts":1612732107.7850506,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting
EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612732107.8853772,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612732107.8854098,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":4}

5.4.6.4.2. Enabling full Ansible results in logs

You can set the environment variable ANSIBLE_DEBUG_LOGS to True to enable checking the full
Ansible result in logs, which can be helpful when debugging.

Procedure

e Edit the config/manager/manager.yaml and
config/default/manager_auth_proxy_patch.yaml files to include the following configuration:

containers:
- name: manager
env:
- name: ANSIBLE_DEBUG_LOGS
value: "True"

181

OpenShift Container Platform 4.7 Operators

5.4.6.4.3. Enabling verbose debugging in logs

While developing an Ansible-based Operator, it can be helpful to enable additional debugging in logs.

Procedure

® Add the ansible.sdk.operatorframework.io/verbosity annotation to your custom resource to
enable the verbosity level that you want. For example:

apiVersion: "cache.example.com/vialphai"
kind: "Memcached"
metadata:
name: "example-memcached"
annotations:
"ansible.sdk.operatorframework.io/verbosity": "4"
spec:
size: 4

5.4.7. Custom resource status management

5.4.7.1. About custom resource status in Ansible-based Operators

Ansible-based Operators automatically update custom resource (CR) status subresources with generic
information about the previous Ansible run. This includes the number of successful and failed tasks and
relevant error messages as shown:

status:
conditions:
- ansibleResult:
changed: 3
completion: 2018-12-03T13:45:57.13329
failures: 1
ok: 6
skipped: 0
lastTransitionTime: 2018-12-03T13:45:57Z
message: 'Status code was -1 and not [200]: Request failed: <urlopen error [Errno
113] No route to host>'
reason: Failed
status: "True"
type: Failure
- lastTransitionTime: 2018-12-03T13:46:13Z
message: Running reconciliation
reason: Running
status: "True"
type: Running

Ansible-based Operators also allow Operator authors to supply custom status values with the
k8s_status Ansible module, which is included in the operator_sdk.util collection. This allows the author
to update the status from within Ansible with any key-value pair as desired.

By default, Ansible-based Operators always include the generic Ansible run output as shown above. If

you would prefer your application did not update the status with Ansible output, you can track the status
manually from your application.

182

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#status-subresource
https://galaxy.ansible.com/operator_sdk/util

CHAPTER 5. DEVELOPING OPERATORS

5.4.7.2. Tracking custom resource status manually

You can use the operator_sdk.util collection to modify your Ansible-based Operator to track custom
resource (CR) status manually from your application.

Prerequisites

® Ansible-based Operator project created by using the Operator SDK

Procedure

1. Update the watches.yaml file with a manageStatus field set to false:

- version: v1
group: api.example.com
kind: <kind>
role: <role>
manageStatus: false

2. Use the operator_sdk.util.k8s_status Ansible module to update the subresource. For example,
to update with key test and value data, operator_sdk.util can be used as shown:

- operator_sdk.util.k8s_status:
api_version: app.example.com/v1
kind: <kind>
name: "{{ ansible_operator_meta.name }}"
namespace: "{{ ansible_operator_meta.namespace }}"
status:
test: data

3. You can declare collections in the meta/main.yml file for the role, which is included for
scaffolded Ansible-based Operators:

collections:
- operator_sdk.util

4. After declaring collections in the role meta, you can invoke the k8s_status module directly:
k8s_status:
status:

key1: valuet

5.5. HELM-BASED OPERATORS

5.5.1. Getting started with Operator SDK for Helm-based Operators

The Operator SDK includes options for generating an Operator project that leverages existing Helm
charts to deploy Kubernetes resources as a unified application, without having to write any Go code.

To demonstrate the basics of setting up and running an Helm-based Operator using tools and libraries

provided by the Operator SDK, Operator developers can build an example Helm-based Operator for
Nginx and deploy it to a cluster.

183

https://helm.sh/docs/
https://helm.sh/docs/

OpenShift Container Platform 4.7 Operators

5.5.1.1. Prerequisites

® Operator SDK CLlI installed
® OpenShift CLI (oc) v4.7+ installed

® | oggedinto an OpenShift Container Platform 4.7 cluster with oc with an account that has
cluster-admin permissions

® To allow the cluster pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret.

5.5.1.2. Creating and deploying Helm-based Operators

You can build and deploy a simple Helm-based Operator for Nginx by using the Operator SDK.

Procedure
1. Create a project.

a. Create your project directory:
I $ mkdir nginx-operator
b. Change into the project directory:
I $ cd nginx-operator
c. Run the operator-sdk init command with the helm plug-in to initialize the project:

$ operator-sdk init \
--plugins=helm

2. Create an API.
Create a simple Nginx AP

$ operator-sdk create api \
--group demo \
--version vi\
--kind Nginx
This APl uses the built-in Helm chart boilerplate from the helm create command.
3. Build and push the Operator image.

Use the default Makefile targets to build and push your Operator. Set IMG with a pull spec for
your image that uses a registry you can push to:

I $ make docker-build docker-push IMG=<registry>/<user>/<image_name>:<tag>

4. Run the Operator.

a. Install the CRD:

I $ make install

184

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#getting-started-cli

5.5.1.3.

CHAPTER 5. DEVELOPING OPERATORS

b. Deploy the project to the cluster. Set IMG to the image that you pushed:

I $ make deploy IMG=<registry>/<user>/<image_name>:<tag>

Add a security context constraint (SCC).

The Nginx service account requires privileged access to run in OpenShift Container Platform.
Add the following SCC to the service account for the nginx-sample pod:

$ oc adm policy add-scc-to-user \
anyuid system:serviceaccount:nginx-operator-system:nginx-sample

. Create a sample custom resource (CR).

a. Create asample CR:

$ oc apply -f config/samples/demo_v1_nginx.yaml \
-n nginx-operator-system

b. Watch for the CR to reconcile the Operator:

$ oc logs deployment.apps/nginx-operator-controller-manager \
-Cc manager \
-n nginx-operator-system

Clean up.

Run the following command to clean up the resources that have been created as part of this
procedure:

I $ make undeploy

Next steps

See Operator SDK tutorial for Helm-based Operators for a more in-depth walkthrough on
building a Helm-based Operator.

5.5.2. Operator SDK tutorial for Helm-based Operators

Operator developers can take advantage of Helm support in the Operator SDK to build an example
Helm-based Operator for Nginx and manage its lifecycle. This tutorial walks through the following
process:

Create a Nginx deployment

Ensure that the deployment size is the same as specified by the Nginx custom resource (CR)
spec

Update the Nginx CR status using the status writer with the names of the nginx pods

This process is accomplished using two centerpieces of the Operator Framework:

Operator SDK
The operator-sdk CLI tool and controller-runtime library API

Operator Lifecycle Manager (OLM)

185

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-helm-tutorial
https://helm.sh/docs/

OpenShift Container Platform 4.7 Operators

Installation, upgrade, and role-based access control (RBAC) of Operators on a cluster

NOTE

This tutorial goes into greater detail than Getting started with Operator SDK for Helm-
based Operators.

5.5.2.1. Prerequisites

® Operator SDK CLlI installed
® OpenShift CLI (oc) v4.7+ installed

® | oggedinto an OpenShift Container Platform 4.7 cluster with oc with an account that has
cluster-admin permissions

® To allow the cluster pull the image, the repository where you push your image must be set as
public, or you must configure an image pull secret.

5.5.2.2. Creating a project

Use the Operator SDK CLI to create a project called nginx-operator.

Procedure

1. Create a directory for the project:
I $ mkdir -p $HOME/projects/nginx-operator
2. Change to the directory:
I $ cd $HOME/projects/nginx-operator
3. Run the operator-sdk init command with the helm plug-in to initialize the project:

$ operator-sdk init \
--plugins=helm\
--domain=example.com \
--group=demo \
--version=v1 \
--kind=Nginx

NOTE
By default, the helm plug-in initializes a project using a boilerplate Helm chart.

You can use additional flags, such as the --helm-chart flag, to initialize a project
using an existing Helm chart.

The init command creates the nginx-operator project specifically for watching a resource with
API version example.com/v1 and kind Nginx.

4. For Helm-based projects, the init command generates the RBAC rules in the
config/rbac/role.yaml file based on the resources that would be deployed by the default

186

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-helm-quickstart
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-installing-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/cli_tools/#getting-started-cli

CHAPTER 5. DEVELOPING OPERATORS

manifest for the chart. Verify that the rules generated in this file meet the permission
requirements of the Operator.

5.5.2.2.1. Existing Helm charts

Instead of creating your project with a boilerplate Helm chart, you can alternatively use an existing chart,
either from your local file system or a remote chart repository, by using the following flags:

o --helm-chart
® --helm-chart-repo
o --helm-chart-version

If the --helm-chart flag is specified, the --group, --version, and --kind flags become optional. If left
unset, the following default values are used:

Flag Value

--domain my.domain

--group charts

--version vi

--kind Deduced from the specified chart

If the --helm-chart flag specifies a local chart archive, for example example-chart-1.2.0.tgz, or
directory, the chart is validated and unpacked or copied into the project. Otherwise, the Operator SDK
attempts to fetch the chart from a remote repository.

If a custom repository URL is not specified by the --helm-chart-repo flag, the following chart reference
formats are supported:

Format Description

<repo_nhame>/< Fetch the Helm chart named <chart_name> from the helm chart repository named

chart_name> <repo_nhames>, as specified in the
$HELM_HOME/repositories/repositories.yaml file. Use the helm repo add
command to configure this file.

<url> Fetch the Helm chart archive at the specified URL.

If a custom repository URL is specified by --helm-chart-repo, the following chart reference format is
supported:

Format Description

187

OpenShift Container Platform 4.7 Operators

Format Description

<chart_name> Fetch the Helm chart named <chart_name> in the Helm chart repository specified by
the --helm-chart-repo URL value.

If the --helm-chart-version flag is unset, the Operator SDK fetches the latest available version of the
Helm chart. Otherwise, it fetches the specified version. The optional --helm-chart-version flag is not
used when the chart specified with the --helm-chart flag refers to a specific version, for example when it
is a local path or a URL.

For more details and examples, run:

I $ operator-sdk init --plugins helm --help

5.5.2.2.2. PROJECT file

Among the files generated by the operator-sdk init command is a Kubebuilder PROJECT file.
Subsequent operator-sdk commands, as well as help output, that are run from the project root read
this file and are aware that the project type is Helm. For example:

domain: example.com
layout: helm.sdk.operatorframework.io/v1
projectName: helm-operator
resources:
- group: demo
kind: Nginx
version: v1
version: 3-alpha

5.5.2.3. Understanding the Operator logic

For this example, the nginx-operator project executes the following reconciliation logic for each Nginx
custom resource (CR):

® Create an Nginx deployment if it does not exist.
® Create an Nginx service if it does not exist.
® Create an Nginx ingress if it is enabled and does not exist.

® Ensure that the deployment, service, and optional ingress match the desired configuration as
specified by the Nginx CR, for example the replica count, image, and service type.

By default, the nginx-operator project watches Nginx resource events as shown in the watches.yaml
file and executes Helm releases using the specified chart:

Use the 'create api' subcommand to add watches to this file.
- group: demo

version: v1

kind: Nginx

chart: helm-charts/nginx
+kubebuilder:scaffold:watch

188

CHAPTER 5. DEVELOPING OPERATORS

5.5.2.3.1. Sample Helm chart

When a Helm Operator project is created, the Operator SDK creates a sample Helm chart that contains
a set of templates for a simple Nginx release.

For this example, templates are available for deployment, service, and ingress resources, along with a
NOTES.txt template, which Helm chart developers use to convey helpful information about a release.

If you are not already familiar with Helm charts, review the Helm developer documentation.

5.5.2.3.2. Modifying the custom resource spec

Helm uses a concept called values to provide customizations to the defaults of a Helm chart, which are
defined in the values.yaml file.

You can override these defaults by setting the desired values in the custom resource (CR) spec. You can
use the number of replicas as an example.

Procedure

1. The helm-charts/nginx/values.yaml file has a value called replicaCount set to 1 by default. To
have two Nginx instances in your deployment, your CR spec must contain replicaCount: 2.
Edit the config/samples/demo_v1_nginx.yaml file to set replicaCount: 2:

apiVersion: demo.example.com/v1
kind: Nginx
metadata:

name: nginx-sample

spec:
replicaCount: 2

2. Similarly, the default service port is set to 80. To use 8080, edit the
config/samples/demo_v1_nginx.yaml file to set spec.port: 8080,which adds the service port
override:

apiVersion: demo.example.com/v1
kind: Nginx
metadata:

name: nginx-sample
spec:

replicaCount: 2

service:

port: 8080

The Helm Operator applies the entire spec as if it was the contents of a values file, just like the helm
install -f ./overrides.yaml command.

5.5.2.4. Running the Operator
There are three ways you can use the Operator SDK CLI to build and run your Operator:

® Run locally outside the cluster as a Go program.

189

https://docs.helm.sh/developing_charts/
https://helm.sh/docs/intro/using_helm/#customizing-the-chart-before-installing

OpenShift Container Platform 4.7 Operators

® Run as a deployment on the cluster.

e Bundle your Operator and use Operator Lifecycle Manager (OLM) to deploy on the cluster.

5.5.2.4.1. Running locally outside the cluster

You can run your Operator project as a Go program outside of the cluster. This is useful for
development purposes to speed up deployment and testing.

Procedure

® Run the following command to install the custom resource definitions (CRDs) in the cluster
configured in your ~/.kube/config file and run the Operator locally:

I $ make install run

Example output

{"level":"info","ts":1612652419.9289865,"logger":"controller-runtime.metrics","msg":"metrics
server is starting to listen","addr":":8080"}
{"level":"info","ts":1612652419.9296563,"logger":"helm.controller","msg":"Watching
resource","apiVersion":"demo.example.com/v1","kind":"Nginx","namespace":"","reconcilePeriod
""1m0s"}
{"level":"info","ts":1612652419.929983,"logger":"controller-runtime.manager","msg":"starting
metrics server","path":"/metrics"}
{"level":"info","ts":1612652419.930015,"logger":"controller-runtime.manager.controller.nginx-
controller","msg":"Starting EventSource","source":"kind source: demo.example.com/v1,
Kind=Nginx"}
{"level":"info","ts":1612652420.2307851,"logger":"controller-runtime.manager.controller.nginx-
controller","msg":"Starting Controller"}
{"level":"info","ts":1612652420.2309358,"logger":"controller-runtime.manager.controller.nginx-
controller","msg":"Starting workers","worker count":8}

5.5.2.4.2. Preparing your Operator to use supported images

Before running your Helm-based Operator on OpenShift Container Platform, update your project to use
supported images.

Procedure

1. Update the project root-level Dockerfile to use supported images. Change the default builder
image reference from:

I FROM quay.io/operator-framework/helm-operator:v1.3.0

to:

I FROM registry.redhat.io/openshift4/ose-helm-operator:v4.7

190

CHAPTER 5. DEVELOPING OPERATORS

IMPORTANT

Use the builder image version that matches your Operator SDK version. Failure
to do so can result in problems due to project layout, or scaffolding, differences,
particularly when mixing newer upstream versions of the Operator SDK with
downstream OpenShift Container Platform builder images.

2. In the config/default/manager_auth_proxy_patch.yaml file, change the image value from:
I gcr.io/kubebuilder/kube-rbac-proxy:<tag>

to use the supported image:

I registry.redhat.io/openshift4/ose-kube-rbac-proxy:v4.7

5.5.2.4.3. Running as a deployment on the cluster

You can run your Operator project as a deployment on your cluster.

Procedure

1. Run the following make commands to build and push the Operator image. Modify the IMG
argument in the following steps to reference a repository that you have access to. You can
obtain an account for storing containers at repository sites such as Quay.io.

a. Build the image:

I $ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMDG64 architectures. Docker will
automatically set the environment variable to the value specified by —
platform. With Buildah, the —build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

I $ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

NOTE

The name and tag of the image, for example IMG=
<registry>/<user>/<image_names>:<tag>, in both the commands can also
be set in your Makefile. Modify the IMG ?= controller:latest value to set
your default image name.

2. Run the following command to deploy the Operator:

I $ make deploy IMG=<registry>/<user>/<image_name>:<tag>

191

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

OpenShift Container Platform 4.7 Operators

By default, this command creates a namespace with the name of your Operator project in the
form <project_names>-system and is used for the deployment. This command also installs the
RBAC manifests from config/rbac.

3. Verify that the Operator is running:

I $ oc get deployment -n <project_name>-system

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
<project_namex>-controller-manager 11 1 1 8m

5.5.2.4.4. Bundling an Operator and deploying with Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) helps you to install, update, and generally manage the lifecycle of
Operators and their associated services on a Kubernetes cluster. OLM is installed by default on
OpenShift Container Platform and runs as a Kubernetes extension so that you can use the web console
and the OpenShift CLI (oc) for all Operator lifecycle management functions without any additional
tools.

The Operator Bundle Format is the default packaging method for Operator SDK and OLM. You can get
your Operator ready for OLM by using the Operator SDK to build, push, validate, and run a bundle image
with OLM.

Prerequisites
® Operator SDK CLl installed on a development workstation
® OpenShift CLI (oc) v4.7+ installed

® Operator Lifecycle Manager (OLM) installed on a Kubernetes-based cluster (v1.16.0 or later if
you use apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.7)

® | ogged into the cluster with oc using an account with cluster-admin permissions

® Operator project initialized by using the Operator SDK

Procedure

1. Run the following make commands in your Operator project directory to build and push your
Operator image. Modify the IMG argument in the following steps to reference a repository that
you have access to. You can obtain an account for storing containers at repository sites such as
Quay.io.

a. Build the image:

I $ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

192

CHAPTER 5. DEVELOPING OPERATORS

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMDG64 architectures. Docker will
automatically set the environment variable to the value specified by —
platform. With Buildah, the —build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

I $ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

2. Create your Operator bundle manifest by running the make bundle command, which invokes
several commands, including the Operator SDK generate bundle and bundle validate
subcommands:

I $ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

Bundle manifests for an Operator describe how to display, create, and manage an application.
The make bundle command creates the following files and directories in your Operator project:

® A bundle manifests directory named bundle/manifests that contains a
ClusterServiceVersion object

® A bundle metadata directory named bundle/metadata
® All custom resource definitions (CRDs) in a config/crd directory
® A Dockerfile bundle.Dockerfile

These files are then automatically validated by using operator-sdk bundile validate to ensure
the on-disk bundle representation is correct.

3. Build and push your bundle image by running the following commands. OLM consumes
Operator bundles using an index image, which reference one or more bundle images.

a. Build the bundle image. Set BUNDLE_IMAGE with the details for the registry, user
namespace, and image tag where you intend to push the image:

I $ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

b. Push the bundle image:

I $ docker push <registry>/<user>/<bundle_image_name>:<tag>

4. Check the status of OLM on your cluster by using the following Operator SDK command:

$ operator-sdk olm status \
--olm-namespace=openshift-operator-lifecycle-manager

5. Run the Operator on your cluster by using the OLM integration in Operator SDK:

193

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

OpenShift Container Platform 4.7 Operators

$ operator-sdk run bundle \
[-n <namespace>] \0
<registry>/<user>/<bundle_image_name>:<tag>

By default, the command installs the Operator in the currently active project in your
~/.kube/config file. You can add the -n flag to set a different namespace scope for the
installation.

This command performs the following actions:

® Create anindex image with your bundle image injected.

® Create a catalog source that points to your new index image, which enables OperatorHub to
discover your Operator.

® Deploy your Operator to your cluster by creating an Operator group, subscription, install
plan, and all other required objects, including RBAC.

5.5.2.5. Creating a custom resource

After your Operator is installed, you can test it by creating a custom resource (CR) that is now provided
on the cluster by the Operator.

Prerequisites

® Example Nginx Operator, which provides the Nginx CR, installed on a cluster

Procedure

1. Change to the namespace where your Operator is installed. For example, if you deployed the
Operator using the make deploy command:

I $ oc project nginx-operator-system

2. Edit the sample Nginx CR manifest at config/samples/demo_v1_nginx.yaml to contain the
following specification:

apiVersion: demo.example.com/v1
kind: Nginx
metadata:
name: nginx-sample
spec:

replicaCount: 3

3. The Nginx service account requires privileged access to run in OpenShift Container Platform.
Add the following security context constraint (SCC) to the service account for the nginx-
sample pod:

$ oc adm policy add-scc-to-user \
anyuid system:serviceaccount:nginx-operator-system:nginx-sample

194

CHAPTER 5. DEVELOPING OPERATORS

4. Create the CR:
I $ oc apply -f config/samples/demo_v1_nginx.yaml|

5. Ensure that the Nginx Operator creates the deployment for the sample CR with the correct
size:

I $ oc get deployments

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
nginx-operator-controller-manager 11 1 1 8m
nginx-sample 3/3 3 3 im

6. Check the pods and CR status to confirm the status is updated with the Nginx pod names.

a. Check the pods:
I $ oc get pods
Example output

NAME READY STATUS RESTARTS AGE
nginx-sample-6fd7c98d8-7dqdr 11 Running 0 im
nginx-sample-6fd7c98d8-g5k7v 11 Running 0 im
nginx-sample-6fd7c98d8-m7vn7 11 Running 0 im

b. Check the CR status:
I $ oc get nginx/nginx-sample -o yaml
Example output

apiVersion: demo.example.com/v1
kind: Nginx
metadata:

name: nginx-sample

spec:
replicaCount: 3

status:
nodes:
- nginx-sample-6fd7c98d8-7dqdr
- nginx-sample-6fd7c98d8-g5k7v
- nginx-sample-6fd7¢c98d8-m7vn7

7. Update the deployment size.

a. Update config/samples/demo_v1_nginx.yaml file to change the spec.size field in the
Nginx CR from 3 to 5:

195

OpenShift Container Platform 4.7 Operators

$ oc patch nginx nginx-sample \
-p '{"spec":{"replicaCount": 5}}'\
--type=merge
b. Confirm that the Operator changes the deployment size:

I $ oc get deployments

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
nginx-operator-controller-manager 171 1 1 10m
nginx-sample 5/5 5 5 3m

8. Clean up the resources that have been created as part of this tutorial.

e |f you used the make deploy command to test the Operator, run the following command:
I $ make undeploy

e |f you used the operator-sdk run bundle command to test the Operator, run the following
command:

I $ operator-sdk cleanup <project_name>

5.5.2.6. Additional resources
® See Project layout for Helm-based Operators to learn about the directory structures created by
the Operator SDK.
5.5.3. Project layout for Helm-based Operators
The operator-sdk CLI can generate, or scaffold, a number of packages and files for each Operator
project.
5.5.3.1. Helm-based project layout

Helm-based Operator projects generated using the operator-sdk init --plugins helm command
contain the following directories and files:

File/folders Purpose

config Kustomize manifests for deploying the Operator on a Kubernetes cluster.
helm-charts/ Helm chart initialized with the operator-sdk create api command.
Dockerfile Used to build the Operator image with the make docker-build command.
watches.yaml Group/version/kind (GVK) and Helm chart location.

196

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-helm-project-layout
https://kustomize.io/

CHAPTER 5. DEVELOPING OPERATORS

File/folders Purpose

Makefile Targets used to manage the project.

PROJECT YAML file containing metadata information for the Operator.

5.5.4. Helm support in Operator SDK

5.5.4.1. Helm charts

One of the Operator SDK options for generating an Operator project includes leveraging an existing
Helm chart to deploy Kubernetes resources as a unified application, without having to write any Go
code. Such Helm-based Operators are designed to excel at stateless applications that require very little
logic when rolled out, because changes should be applied to the Kubernetes objects that are generated
as part of the chart. This may sound limiting, but can be sufficient for a surprising amount of use-cases
as shown by the proliferation of Helm charts built by the Kubernetes community.

The main function of an Operator is to read from a custom object that represents your application
instance and have its desired state match what is running. In the case of a Helm-based Operator, the
spec field of the object is a list of configuration options that are typically described in the Helm
values.yaml file. Instead of setting these values with flags using the Helm CLI (for example, helm install
-f values.yaml), you can express them within a custom resource (CR), which, as a native Kubernetes
object, enables the benefits of RBAC applied to it and an audit trail.

For an example of a simple CR called Tomcat:

apiVersion: apache.org/vialphat
kind: Tomcat
metadata:
name: example-app
spec:
replicaCount: 2

The replicaCount value, 2 in this case, is propagated into the template of the chart where the following
is used:

I {{ .Values.replicaCount }}

After an Operator is built and deployed, you can deploy a new instance of an app by creating a new
instance of a CR, or list the different instances running in all environments using the o¢c command:

I $ oc get Tomcats --all-namespaces

There is no requirement use the Helm CLI or install Tiller; Helm-based Operators import code from the
Helm project. All you have to do is have an instance of the Operator running and register the CR with a
custom resource definition (CRD). Because it obeys RBAC, you can more easily prevent production
changes.

5.6. DEFINING CLUSTER SERVICE VERSIONS (CSVS)

A cluster service version (CSV), defined by a ClusterServiceVersion object, is a YAML manifest created

197

OpenShift Container Platform 4.7 Operators

from Operator metadata that assists Operator Lifecycle Manager (OLM) in running the Operatorin a
cluster. It is the metadata that accompanies an Operator container image, used to populate user
interfaces with information such as its logo, description, and version. It is also a source of technical
information that is required to run the Operator, like the RBAC rules it requires and which custom
resources (CRs) it manages or depends on.

The Operator SDK includes the CSV generator to generate a CSV for the current Operator project,
customized using information contained in YAML manifests and Operator source files.

A CSV-generating command removes the responsibility of Operator authors having in-depth OLM
knowledge in order for their Operator to interact with OLM or publish metadata to the Catalog Registry.
Further, because the CSV spec will likely change over time as new Kubernetes and OLM features are
implemented, the Operator SDK is equipped to easily extend its update system to handle new CSV
features going forward.

5.6.1. How CSV generation works

Operator bundle manifests, which include cluster service versions (CSVs), describe how to display,
create, and manage an application with Operator Lifecycle Manager (OLM). The CSV generator in the
Operator SDK, called by the generate bundle subcommand, is the first step towards publishing your
Operator to a catalog and deploying it with OLM. The subcommand requires certain input manifests to
construct a CSV manifest; all inputs are read when the command is invoked, along with a CSV base, to
idempotently generate or regenerate a CSV.

Typically, the generate kustomize manifests subcommand would be run first to generate the input
Kustomize bases that are consumed by the generate bundle subcommand. However, the Operator SDK
provides the make bundle command, which automates several tasks, including running the following
subcommands in order:

1. generate kustomize manifests

2. generate bundle

3. bundle validate

Additional resources

® See Bundling an Operator and deploying with Operator Lifecycle Manager for a full procedure
that includes generating a bundle and CSV.

5.6.1.1. Generated files and resources

The make bundle command creates the following files and directories in your Operator project:

A bundle manifests directory named bundle/manifests that contains a ClusterServiceVersion
(CSV) object

A bundle metadata directory named bundle/metadata

All custom resource definitions (CRDs) in a config/crd directory
® A Dockerfile bundle.Dockerfile
The following resources are typically included in a CSV:

Role

198

https://kustomize.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-bundle-deploy-olm_osdk-working-bundle-images

CHAPTER 5. DEVELOPING OPERATORS

Defines Operator permissions within a namespace.
ClusterRole

Defines cluster-wide Operator permissions.
Deployment

Defines how an Operand of an Operator is run in pods.
CustomResourceDefinition (CRD)

Defines custom resources that your Operator reconciles.
Custom resource examples

Examples of resources adhering to the spec of a particular CRD.

5.6.1.2. Version management

The --version flag for the generate bundle subcommand supplies a semantic version for your bundle
when creating one for the first time and when upgrading an existing one.

By setting the VERSION variable in your Makefile, the --version flag is automatically invoked using that
value when the generate bundle subcommand is run by the make bundle command. The CSV version
is the same as the Operator version, and a new CSV is generated when upgrading Operator versions.

5.6.2. Manually-defined CSV fields

Many CSV fields cannot be populated using generated, generic manifests that are not specific to
Operator SDK. These fields are mostly human-written metadata about the Operator and various custom
resource definitions (CRDs).

Operator authors must directly modify their cluster service version (CSV) YAML file, adding
personalized data to the following required fields. The Operator SDK gives a warning during CSV

generation when a lack of data in any of the required fields is detected.

The following tables detail which manually-defined CSV fields are required and which are optional.

Table 5.7. Required

Field Description

metadata.name A unique name for this CSV. Operator version should be included in the name to ensure
uniqueness, for example app-operator.v0.1.1.

metadata.capab The capability level according to the Operator maturity model. Options include Basic
ilities Install, Seamless Upgrades, Full Lifecycle, Deep Insights, and Auto Pilot.

spec.displayNa A public name to identify the Operator.
me

spec.descriptio A short description of the functionality of the Operator.
n

spec.keywords Keywords describing the Operator.

199

OpenShift Container Platform 4.7 Operators

Field Description

spec.maintainer = Human or organizational entities maintaining the Operator, with a hame and email.

S

spec.provider The provider of the Operator (usually an organization), with a hame.
spec.labels Key-value pairs to be used by Operator internals.

spec.version Semantic version of the Operator, for example 0.1.1.

spec.customres Any CRDs the Operator uses. This field is populated automatically by the Operator SDK
ourcedefinitions if any CRD YAML files are present in deploy/. However, several fields not in the CRD
manifest spec require user input:

e description: description of the CRD.

® resources: any Kubernetes resources leveraged by the CRD, for example
Pod and StatefulSet objects.

e specDescriptors: Ul hints for inputs and outputs of the Operator.

Table 5.8. Optional

Field Description

spec.replaces The name of the CSV being replaced by this CSV.

spec.links URLs (for example, websites and documentation) pertaining to the Operator or
application being managed, each with a hame and url.

spec.selector Selectors by which the Operator can pair resources in a cluster.

spec.icon A baseb64-encoded icon unique to the Operator, set in a base64data field with a
mediatype.

spec.maturity The level of maturity the software has achieved at this version. Options include

planning, pre-alpha, alpha, beta, stable, mature, inactive, and deprecated.

Further details on what data each field above should hold are found in the CSV spec.

NOTE

Several YAML fields currently requiring user intervention can potentially be parsed from
Operator code.

Additional resources

200

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/doc/design/building-your-csv.md

CHAPTER 5. DEVELOPING OPERATORS

® Operator maturity model

5.6.2.1. Operator metadata annotations

Operator developers can manually define certain annotations in the metadata of a cluster service
version (CSV) to enable features or highlight capabilities in user interfaces (Uls), such as OperatorHub.

The following table lists Operator metadata annotations that can be manually defined using
metadata.annotations fields.

Table 5.9. Annotations

Field Description

alm-examples Provide custom resource definition (CRD) templates
with a minimum set of configuration. Compatible Uls
pre-fill this template for users to further customize.

operatorframework.io/initialization-resource Specify a single required custom resource that must
be created at the time that the Operator is installed.
Must include a template that contains a complete
YAML definition.

operatorframework.io/suggested-namespace Set a suggested namespace where the Operator
should be deployed.

201

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-maturity-model_olm-what-operators-are

OpenShift Container Platform 4.7 Operators

Field Description

operators.openshift.io/infrastructure-features Infrastructure features supported by the Operator.
Users can view and filter by these features when
discovering Operators through OperatorHub in the
web console. Valid, case-sensitive values:

e disconnected: Operator supports being
mirrored into disconnected catalogs,
including all dependencies, and does not
require Internet access. All related images
required for mirroring are listed by the
Operator.

e cnf: Operator provides a Cloud-native
Network Functions (CNF) Kubernetes plug-
in.

® chi: Operator provides a Container
Network Interface (CNI) Kubernetes plug-
in.

® Csi: Operator provides a Container Storage
Interface (CSI) Kubernetes plug-in.

e fips: Operator accepts the FIPS mode of
the underlying platform and works on nodes
that are booted into FIPS mode.

IMPORTANT

The use of FIPS Validated / Modules
in Process cryptographic libraries is
only supported on OpenShift
Container Platform deployments on
the X86_64 architecture.

® proxy-aware: Operator supports running
on a cluster behind a proxy. Operator
accepts the standard proxy environment
variables HTTP_PROXY and
HTTPS_PROXY, which Operator
Lifecycle Manager (OLM) provides to the
Operator automatically when the cluster is
configured to use a proxy. Required
environment variables are passed down to
Operands for managed workloads.

operators.openshift.io/valid-subscription Free-form array for listing any specific subscriptions
that are required to use the Operator. For example,
'["3Scale Commercial License”, "Red Hat
Managed Integration™]'.

202

CHAPTER 5. DEVELOPING OPERATORS

Field Description

operators.operatorframework.io/internal- Hides CRDs in the Ul that are not meant for user
objects manipulation.
Example use cases

Operator supports disconnected and proxy-aware

I operators.openshift.io/infrastructure-features: '["disconnected”, "proxy-aware"]
Operator requires an OpenShift Container Platform license

I operators.openshift.io/valid-subscription: ["OpenShift Container Platform"]'

Operator requires a 3scale license

operators.openshift.io/valid-subscription: '["3Scale Commercial License", "Red Hat Managed
Integration"]'

Operator supports disconnected and proxy-aware, and requires an OpenShift Container
Platform license

operators.openshift.io/infrastructure-features: '["disconnected”, "proxy-aware"]
operators.openshift.io/valid-subscription: ["OpenShift Container Platform"]'

Additional resources

® CRD templates

® |nitializing required custom resources

® Setting a suggested namespace

® FEnabling your Operator for restricted network environments (disconnected mode)
® Hiding internal objects

® Support for FIPS crytography

5.6.3. Enabling your Operator for restricted network environments

As an Operator author, your Operator must meet additional requirements to run properly in a restricted
network, or disconnected, environment.

Operator requirements for supporting disconnected mode
® |n the cluster service version (CSV) of your Operator:

o List any related images, or other container images that your Operator might require to
perform their functions.

203

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-crds-templates_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-init-resource_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-suggested-namespace_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-enabling-operator-for-restricted-network_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-hiding-internal-objects_osdk-generating-csvs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#installing-fips

OpenShift Container Platform 4.7 Operators

o Reference all specified images by a digest (SHA) and not by a tag.
e All dependencies of your Operator must also support running in a disconnected mode.
® Your Operator must not require any off-cluster resources.

For the CSV requirements, you can make the following changes as the Operator author.

Prerequisites

® An Operator project with a CSV.

Procedure
1. Use SHA references to related images in two places in the CSV for your Operator:

a. Update spec.relatedimages:

spec:
relatedlmages: ﬂ
- name: etcd-operator g
image: quay.io/etcd-
operator/operator@sha256:d134a9865524c29fcf75bbc4469013bc38d8a15cb5f41acfddbe
b9e492556e4 €)
- name: etcd-image
image: quay.io/etcd-
operator/etcd@sha256:13348c15263bd8838ec1d5fc4550ede9860fcbb0f843e48cbccec07
810eebb68

ﬂ Create a relatedlmages section and set the list of related images.
Q Specify a unique identifier for the image.

g Specify each image by a digest (SHA), not by an image tag.

b. Update the env section in the deployment when declaring environment variables that inject
the image that the Operator should use:

spec:
install:
spec:
deployments:
- name: etcd-operator-v3.1.1
spec:
replicas: 1
selector:
matchLabels:
name: etcd-operator
strategy:
type: Recreate
template:
metadata:
labels:

204

CHAPTER 5. DEVELOPING OPERATORS

name: etcd-operator
spec:
containers:
- args:
- /opt/etcd/bin/etcd_operator_run.sh
env:
- name: WATCH_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.annotations['olm.targetNamespaces']
- name: ETCD_OPERATOR_DEFAULT_ETCD_IMAGE ﬂ
value: quay.io/etcd-
operator/etcd@sha256:13348c15263bd8838ec1d5fc4550ede9860fcbb0f843e48cbccec07?
810eebb6s @)
-name: ETCD_LOG_LEVEL
value: INFO
image: quay.io/etcd-
operator/operator@sha256:d134a9865524c29fcf75bbc4469013bc38d8a15cb5f41acfddbe
b9e492556e4 €)
imagePullPolicy: IfNotPresent
livenessProbe:
httpGet:
path: /healthy
port: 8080
initialDelaySeconds: 10
periodSeconds: 30
name: etcd-operator
readinessProbe:
httpGet:
path: /ready
port: 8080
initialDelaySeconds: 10
periodSeconds: 30
resources: {}
serviceAccountName: etcd-operator
strategy: deployment

ﬂ Inject the images referenced by the Operator by using environment variables.
9 Specify each image by a digest (SHA), not by an image tag.

g Also reference the Operator container image by a digest (SHA), not by an image tag.

NOTE
When configuring probes, the timeoutSeconds value must be lower than the

periodSeconds value. The timeoutSeconds default value is 1. The
periodSeconds default value is 10.

2. Add the disconnected annotation, which indicates that the Operator works in a disconnected
environment:

205

OpenShift Container Platform 4.7 Operators

metadata:
annotations:
operators.openshift.io/infrastructure-features: '["disconnected"|'

Operators can be filtered in OperatorHub by this infrastructure feature.

5.6.4. Enabling your Operator for multiple architectures and operating systems

Operator Lifecycle Manager (OLM) assumes that all Operators run on Linux hosts. However, as an
Operator author, you can specify whether your Operator supports managing workloads on other
architectures, if worker nodes are available in the OpenShift Container Platform cluster.

If your Operator supports variants other than AMD64 and Linux, you can add labels to the cluster

service version (CSV) that provides the Operator to list the supported variants. Labels indicating
supported architectures and operating systems are defined by the following:

labels:
operatorframework.io/arch.<arch>: supported ﬂ
operatorframework.io/0s.<0s>: supported

ﬂ Set <arch> to a supported string.

9 Set <0s> to a supported string.

NOTE

Only the labels on the channel head of the default channel are considered for filtering
package manifests by label. This means, for example, that providing an additional
architecture for an Operator in the non-default channel is possible, but that architecture
is not available for filtering in the PackageManifest API.

If a CSV does not include an os label, it is treated as if it has the following Linux support label by default:

labels:
operatorframework.io/os.linux: supported
If a CSV does not include an arch label, it is treated as if it has the following AMD64 support label by
default:
labels:
operatorframework.io/arch.amd64: supported

If an Operator supports multiple node architectures or operating systems, you can add multiple labels, as
well.

Prerequisites

® An Operator project with a CSV.

® To support listing multiple architectures and operating systems, your Operator image
referenced in the CSV must be a manifest list image.

206

CHAPTER 5. DEVELOPING OPERATORS

® Forthe Operator to work properly in restricted network, or disconnected, environments, the
image referenced must also be specified using a digest (SHA) and not by a tag.
Procedure

® Add alabel in the metadata.labels of your CSV for each supported architecture and operating
system that your Operator supports:

labels:
operatorframework.io/arch.s390x: supported
operatorframework.io/0s.zos: supported
operatorframework.io/os.linux: supported

operatorframework.io/arch.amdé4: supported

fter you add a new architecture or operating system, you must also now include the
default os.linux and arch.amd64 variants explicitly.

Additional resources

® Sece the Image Manifest V 2, Schema 2 specification for more information on manifest lists.

5.6.4.1. Architecture and operating system support for Operators

The following strings are supported in Operator Lifecycle Manager (OLM) on OpenShift Container
Platform when labeling or filtering Operators that support multiple architectures and operating systems:

Table 5.10. Architectures supported on OpenShift Container Platform

Architecture String

AMD64 amdé64
64-bit PowerPC little-endian ppc64le
IBM Z s390x

Table 5.11. Operating systems supported on OpenShift Container Platform

Operating system String

Linux linux

2/0S zos

NOTE

Different versions of OpenShift Container Platform and other Kubernetes-based
distributions might support a different set of architectures and operating systems.

207

https://docs.docker.com/registry/spec/manifest-v2-2/#manifest-list

OpenShift Container Platform 4.7 Operators

5.6.5. Setting a suggested namespace

Some Operators must be deployed in a specific namespace, or with ancillary resources in specific
namespaces, to work properly. If resolved from a subscription, Operator Lifecycle Manager (OLM)
defaults the namespaced resources of an Operator to the namespace of its subscription.

As an Operator author, you can instead express a desired target namespace as part of your cluster
service version (CSV) to maintain control over the final namespaces of the resources installed for their
Operators. When adding the Operator to a cluster using OperatorHub, this enables the web console to
autopopulate the suggested namespace for the cluster administrator during the installation process.

Procedure

® |nyour CSV, set the operatorframework.io/suggested-namespace annotation to your
suggested namespace:

metadata:
annotations:
operatorframework.io/suggested-namespace: <namespace> ﬂ

ﬂ Set your suggested namespace.

5.6.6. Enabling Operator conditions

Operator Lifecycle Manager (OLM) provides Operators with a channel to communicate complex states
that influence OLM behavior while managing the Operator. By default, OLM creates an
OperatorCondition custom resource definition (CRD) when it installs an Operator. Based on the
conditions set in the OperatorCondition custom resource (CR), the behavior of OLM changes
accordingly.

To support Operator conditions, an Operator must be able to read the OperatorCondition CR created
by OLM and have the ability to complete the following tasks:

® Get the specific condition.
® Set the status of a specific condition.

This can be accomplished by using the operator-lib library. An Operator author can provide a controller-
runtime client in their Operator for the library to access the OperatorCondition CR owned by the
Operator in the cluster.

The library provides a generic Conditions interface, which has the following methods to Get and Set a
conditionType in the OperatorCondition CR:

Get

To get the specific condition, the library uses the client.Get function from controller-runtime, which
requires an ObjectKey of type types.NamespacedName present in conditionAccessor.

Set

To update the status of the specific condition, the library uses the client.Update function from
controller-runtime. An error occurs if the conditionType is not present in the CRD.

The Operator is allowed to modify only the status subresource of the CR. Operators can either delete
or update the status.conditions array to include the condition. For more details on the format and
description of the fields present in the conditions, see the upstream Condition GoDocs.

208

https://github.com/operator-framework/operator-lib/tree/v0.3.0
https://github.com/kubernetes-sigs/controller-runtime/tree/master/pkg/client
https://godoc.org/k8s.io/apimachinery/pkg/apis/meta/v1#Condition

CHAPTER 5. DEVELOPING OPERATORS

NOTE

Operator SDK v1.3.0 supports operator-lib vO.3.0.

Prerequisites

® An Operator project generated using the Operator SDK.

Procedure

To enable Operator conditions in your Operator project:

1. In the go.mod file of your Operator project, add operator-framework/operator-lib as a
required library:

module github.com/example-inc/memcached-operator
go 1.15

require (
k8s.io/apimachinery v0.19.2
k8s.io/client-go v0.19.2
sigs.k8s.io/controller-runtime v0.7.0
operator-framework/operator-lib v0.3.0

)

2. Write your own constructor in your Operator logic that will result in the following outcomes:

® Accepts a controller-runtime client.
® Accepts a conditionType.
® Returns a Condition interface to update or add conditions.

Because OLM currently supports the Upgradeable condition, you can create an interface that
has methods to access the Upgradeable condition. For example:

import (

apiv1 "github.com/operator-framework/api/pkg/operators/v1"

)

func NewUpgradeable(cl client.Client) (Condition, error) {
return NewCondition(cl, "apiv1.OperatorUpgradeable”)

}

cond, err := NewUpgradeable(cl);

In this example, the NewUpgradeable constructor is further used to create a variable cond of
type Condition. The cond variable would in turn have Get and Set methods, which can be used
for handling the OLM Upgradeable condition.

Additional resources

® Operator conditions

209

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-operatorconditions

OpenShift Container Platform 4.7 Operators

5.6.7. Defining webhooks

Webhooks allow Operator authors to intercept, modify, and accept or reject resources before they are
saved to the object store and handled by the Operator controller. Operator Lifecycle Manager (OLM)
can manage the lifecycle of these webhooks when they are shipped alongside your Operator.

The cluster service version (CSV) resource of an Operator can include a webhookdefinitions section to
define the following types of webhooks:

® Admission webhooks (validating and mutating)

® Conversion webhooks

Procedure

e Add a webhookdefinitions section to the spec section of the CSV of your Operator and
include any webhook definitions using a type of ValidatingAdmissionWebhook,
MutatingAdmissionWebhook, or ConversionWebhook. The following example contains all
three types of webhooks:

CSV containing webhooks

apiVersion: operators.coreos.com/vialphai
kind: ClusterServiceVersion
metadata:
name: webhook-operator.v0.0.1
spec:
customresourcedefinitions:
owned:
- kind: WebhookTest
name: webhooktests.webhook.operators.coreos.io ﬂ
version: v1
install:
spec:
deployments:
- name: webhook-operator-webhook

strategy: deployment
installModes:

- supported: false
type: OwnNamespace

- supported: false
type: SingleNamespace

- supported: false
type: MultiNamespace

- supported: true
type: AlINamespaces

webhookdefinitions:

- type: ValidatingAdmissionWebhook g
admissionReviewVersions:
- vibetai
- vi
containerPort: 443
targetPort: 4343

210

CHAPTER 5. DEVELOPING OPERATORS

deploymentName: webhook-operator-webhook
failurePolicy: Fail
generateName: vwebhooktest.kb.io
rules:
- apiGroups:
- webhook.operators.coreos.io
apiVersions:
- vi
operations:
- CREATE
- UPDATE
resources:
- webhooktests
sideEffects: None
webhookPath: /validate-webhook-operators-coreos-io-vi-webhooktest
type: MutatingAdmissionWebhook 6
admissionReviewVersions:
- vibetai
-vi
containerPort: 443
targetPort: 4343
deploymentName: webhook-operator-webhook
failurePolicy: Fail
generateName: mwebhooktest.kb.io
rules:
- apiGroups:
- webhook.operators.coreos.io
apiVersions:
- vi
operations:
- CREATE
- UPDATE
resources:
- webhooktests
sideEffects: None
webhookPath: /mutate-webhook-operators-coreos-io-v1-webhooktest
type: ConversionWebhook
admissionReviewVersions:
- vibetai
- vi
containerPort: 443
targetPort: 4343
deploymentName: webhook-operator-webhook
generateName: cwebhooktest.kb.io
sideEffects: None
webhookPath: /convert
conversionCRDs:
- webhooktests.webhook.operators.coreos.io 9

ﬂ The CRDs targeted by the conversion webhook must exist here.
9 A validating admission webhook.

9 A mutating admission webhook.

21

OpenShift Container Platform 4.7 Operators

Q A conversion webhook.

9 The spec.PreserveUnknownFields property of each CRD must be set to false or nil.

Additional resources
® Types of webhook admission plug-ins
® Kubernetes documentation:
o Validating admission webhooks
o Mutating admission webhooks

o Conversion webhooks

5.6.7.1. Webhook considerations for OLM

When deploying an Operator with webhooks using Operator Lifecycle Manager (OLM), you must define
the following:

® The type field must be set to either ValidatingAdmissionWebhook,
MutatingAdmissionWebhook, or ConversionWebhook, or the CSV will be placed in a failed
phase.

® The CSV must contain a deployment whose name is equivalent to the value supplied in the
deploymentName field of the webhookdefinition.

When the webhook is created, OLM ensures that the webhook only acts upon namespaces that match
the Operator group that the Operator is deployed in.

Certificate authority constraints

OLM is configured to provide each deployment with a single certificate authority (CA). The logic that
generates and mounts the CA into the deployment was originally used by the API service lifecycle logic.
As aresult:

® The TLS certificate file is mounted to the deployment at
/apiserver.local.config/certificates/apiserver.crt.

® The TLS key file is mounted to the deployment at
/apiserver.local.config/certificates/apiserver.key.

Admission webhook rules constraints

To prevent an Operator from configuring the cluster into an unrecoverable state, OLM places the CSV

in the failed phase if the rules defined in an admission webhook intercept any of the following requests:
® Requests that target all groups

® Requests that target the operators.coreos.com group

® Requests that target the ValidatingWebhookConfigurations or
MutatingWebhookConfigurations resources

Conversion webhook constraints

OLM places the CSV in the failed phase if a conversion webhook definition does not adhere to the
following constraints:

212

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/architecture/#admission-webhook-types_admission-plug-ins
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#webhook-conversion

CHAPTER 5. DEVELOPING OPERATORS

® (CSVs featuring a conversion webhook can only support the AlINamespaces install mode.

® The CRD targeted by the conversion webhook must have its spec.preserveUnknownFields
field set to false or nil.

® The conversion webhook defined in the CSV must target an owned CRD.

® There can only be one conversion webhook on the entire cluster for a given CRD.

5.6.8. Understanding your custom resource definitions (CRDs)

There are two types of custom resource definitions (CRDs) that your Operator can use: ones that are
owned by it and ones that it depends on, which are required.

5.6.8.1. Owned CRDs

The custom resource definitions (CRDs) owned by your Operator are the most important part of your
CSV. This establishes the link between your Operator and the required RBAC rules, dependency
management, and other Kubernetes concepts.

It is common for your Operator to use multiple CRDs to link together concepts, such as top-level
database configuration in one object and a representation of replica sets in another. Each one should be
listed out in the CSV file.

Table 5.12. Owned CRD fields

Field Description Required/optional
Name The full name of your CRD. Required
Version The version of that object API. Required
Kind The machine readable name of your CRD. Required
DisplayName A human readable version of your CRD name, for example Required

MongoDB Standalone.

Description A short description of how this CRD is used by the Operator Required
or a description of the functionality provided by the CRD.

Group The API group that this CRD belongs to, for example Optional
database.example.com.

213

OpenShift Container Platform 4.7 Operators

Field Description Required/optional

Resources Your CRDs own one or more types of Kubernetes objects. Optional
These are listed in the resources section to inform your
users of the objects they might need to troubleshoot or how
to connect to the application, such as the service or ingress
rule that exposes a database.

It is recommended to only list out the objects that are

important to a human, not an exhaustive list of everything
you orchestrate. For example, do not list config maps that
store internal state that are not meant to be modified by a

user.

SpecDescriptors, These descriptors are a way to hint Uls with certain inputs or ~ Optional
StatusDescriptors outputs of your Operator that are most important to an end

, and user. If your CRD contains the name of a secret or config

ActionDescriptors map that the user must provide, you can specify that here.
These items are linked and highlighted in compatible Uls.

There are three types of descriptors:

e SpecDescriptors: A reference to fields in the
spec block of an object.

e StatusDescriptors: A reference to fields in the
status block of an object.

e ActionDescriptors: A reference to actions that
can be performed on an object.

All descriptors accept the following fields:

e DisplayName: A human readable name for the
Spec, Status, or Action.

e Description: A short description of theSpec,
Status, or Action and how it is used by the
Operator.

e Path: A dot-delimited path of the field on the
object that this descriptor describes.

o X-Descriptors: Used to determine which
"capabilities” this descriptor has and which Ul
component to use. See the openshift/console

project for a canonical list of React Ul X-
Descriptors for OpenShift Container Platform.

Also see the openshift/console project for more
information on Descriptors in general.

The following example depicts a MongoDB Standalone CRD that requires some user input in the form
of a secret and config map, and orchestrates services, stateful sets, pods and config maps:

Example owned CRD

I - displayName: MongoDB Standalone

214

https://github.com/openshift/console/tree/release-4.3/frontend/packages/operator-lifecycle-manager/src/components/descriptors/types.ts
https://github.com/openshift/console/tree/release-4.3/frontend/packages/operator-lifecycle-manager/src/components/descriptors

CHAPTER 5. DEVELOPING OPERATORS

group: mongodb.com
kind: MongoDbStandalone
name: mongodbstandalones.mongodb.com
resources:
- kind: Service
name:"
version: v1
- kind: StatefulSet
name:"
version: vibeta2
- kind: Pod
name:"
version: v1
- kind: ConfigMap
name:"
version: v1
specDescriptors:
- description: Credentials for Ops Manager or Cloud Manager.
displayName: Credentials
path: credentials
x-descriptors:
- 'urn:alm:descriptor:com.tectonic.ui:selector:core:vi:Secret’
- description: Project this deployment belongs to.
displayName: Project
path: project
x-descriptors:
- 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:ConfigMap'
- description: MongoDB version to be installed.
displayName: Version
path: version
x-descriptors:
- 'urn:alm:descriptor:com.tectonic.ui:label’
statusDescriptors:
- description: The status of each of the pods for the MongoDB cluster.
displayName: Pod Status
path: pods
x-descriptors:
- 'urn:alm:descriptor:com.tectonic.ui:podStatuses’
version: v1
description: >-
MongoDB Deployment consisting of only one host. No replication of
data.

5.6.8.2. Required CRDs

Relying on other required CRDs is completely optional and only exists to reduce the scope of individual
Operators and provide a way to compose multiple Operators together to solve an end-to-end use case.

An example of this is an Operator that might set up an application and install an etcd cluster (from an
etcd Operator) to use for distributed locking and a Postgres database (from a Postgres Operator) for
data storage.

Operator Lifecycle Manager (OLM) checks against the available CRDs and Operators in the cluster to
fulfill these requirements. If suitable versions are found, the Operators are started within the desired
namespace and a service account created for each Operator to create, watch, and modify the
Kubernetes resources required.

215

OpenShift Container Platform 4.7 Operators

Table 5.13. Required CRD fields

Field Description Required/optional
Name The full name of the CRD you require. Required
Version The version of that object API. Required
Kind The Kubernetes object kind. Required
DisplayName A human readable version of the CRD. Required
Description A summary of how the component fits in your larger Required

architecture.

Example required CRD

required:
- name: etcdclusters.etcd.database.coreos.com
version: vibeta2
kind: EtcdCluster
displayName: etcd Cluster
description: Represents a cluster of etcd nodes.

5.6.8.3. CRD upgrades

OLM upgrades a custom resource definition (CRD) immediately if it is owned by a singular cluster
service version (CSV). If a CRD is owned by multiple CSVs, then the CRD is upgraded when it has
satisfied all of the following backward compatible conditions:

® All existing serving versions in the current CRD are present in the new CRD.

® Al existing instances, or custom resources, that are associated with the serving versions of the
CRD are valid when validated against the validation schema of the new CRD.

5.6.8.3.1. Adding a new CRD version

Procedure

To add a new version of a CRD to your Operator:

1. Add a new entry in the CRD resource under the versions section of your CSV.
For example, if the current CRD has a version vialpha1 and you want to add a new version
vibetal and mark it as the new storage version, add a new entry for vibeta1l:

versions:

- name: vialphat
served: true
storage: false

- name: vibetal ﬂ
served: true
storage: true

216

CHAPTER 5. DEVELOPING OPERATORS

ﬂ New entry.

2. Ensure the referencing version of the CRD in the owned section of your CSV is updated if the
CSV intends to use the new version:

customresourcedefinitions:
owned:
- name: cluster.example.com
version: vibetal ﬂ
kind: cluster
displayName: Cluster

Q Update the version.

3. Push the updated CRD and CSV to your bundle.

5.6.8.3.2. Deprecating or removing a CRD version

Operator Lifecycle Manager (OLM) does not allow a serving version of a custom resource definition
(CRD) to be removed right away. Instead, a deprecated version of the CRD must be first disabled by
setting the served field in the CRD to false. Then, the non-serving version can be removed on the
subsequent CRD upgrade.

Procedure

To deprecate and remove a specific version of a CRD:

1. Mark the deprecated version as non-serving to indicate this version is no longer in use and may
be removed in a subsequent upgrade. For example:

versions:
- name: vialphat
served: false ﬂ
storage: true

Q Set to false.

2. Switch the storage version to a serving version if the version to be deprecated is currently the
storage version. For example:

versions:

- name: vialphat
served: false
storage: false ﬂ

- name: vibetal
served: true

storage: true @)

wUpdate the storage fields accordingly.

217

OpenShift Container Platform 4.7 Operators

NOTE

To remove a specific version that is or was the storage version from a CRD, that

version must be removed from the storedVersion in the status of the CRD. OLM
will attempt to do this for you if it detects a stored version no longer exists in the
new CRD.

3. Upgrade the CRD with the above changes.

4. In subsequent upgrade cycles, the non-serving version can be removed completely from the
CRD. For example:

versions:
- name: vibeta1l
served: true
storage: true

5. Ensure the referencing CRD version in the owned section of your CSV is updated accordingly if
that version is removed from the CRD.

5.6.8.4. CRD templates

Users of your Operator must be made aware of which options are required versus optional. You can
provide templates for each of your custom resource definitions (CRDs) with a minimum set of
configuration as an annotation named alm-examples. Compatible Uls will pre-fill this template for users
to further customize.

The annotation consists of a list of the kind, for example, the CRD name and the corresponding
metadata and spec of the Kubernetes object.

The following full example provides templates for EtcdCluster, EtcdBackup and EtcdRestore:

metadata:
annotations:
alm-examples: >-
[{"apiVersion":"etcd.database.coreos.com/vibeta2","kind":"EtcdCluster","metadata”:

'name":"example”,"namespace":"default"},"spec":{"size":3,"version":"3.2.13"}},
'apiVersion":"etcd.database.coreos.com/vibeta2","kind":"EtcdRestore","metadata”:

'name":"example-etcd-cluster"},"spec":{"etcdCluster":{"name":"example-etcd-

cluster},"backupStorageType":"S3","s3"{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}},

{"apiVersion":"etcd.database.coreos.com/vibeta2","kind":"EtcdBackup","metadata":
{"name":"example-etcd-cluster-backup"},"spec":{"etcdEndpoints":["'<etcd-cluster-

endpoints>"],"storageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}}]

{.
R
R

5.6.8.5. Hiding internal objects

It is common practice for Operators to use custom resource definitions (CRDs) internally to accomplish
a task. These objects are not meant for users to manipulate and can be confusing to users of the
Operator. For example, a database Operator might have a Replication CRD that is created whenever a
user creates a Database object with replication: true.

As an Operator author, you can hide any CRDs in the user interface that are not meant for user

manipulation by adding the operators.operatorframework.io/internal-objects annotation to the
cluster service version (CSV) of your Operator.

218

CHAPTER 5. DEVELOPING OPERATORS

Procedure

1. Before marking one of your CRDs as internal, ensure that any debugging information or
configuration that might be required to manage the application is reflected on the status or
spec block of your CR, if applicable to your Operator.

2. Add the operators.operatorframework.io/internal-objects annotation to the CSV of your
Operator to specify any internal objects to hide in the user interface:

Internal object annotation

apiVersion: operators.coreos.com/vialphai
kind: ClusterServiceVersion
metadata:
name: my-operator-v1.2.3
annotations:
operators.operatorframework.io/internal-objects:

'["my.internal.crd1.i0","my.internal.crd2.i0"] 0
ﬂ Set any internal CRDs as an array of strings.

5.6.8.6. Initializing required custom resources

An Operator might require the user to instantiate a custom resource before the Operator can be fully
functional. However, it can be challenging for a user to determine what is required or how to define the
resource.

As an Operator developer, you can specify a single required custom resource that must be created at
the time that the Operator is installed by adding the operatorframework.io/initialization-resource
annotation to the cluster service version (CSV). The annotation must include a template that contains a
complete YAML definition that is required to initialize the resource during installation.

If this annotation is defined, after installing the Operator from the OpenShift Container Platform web
console, the user is prompted to create the resource using the template provided in the CSV.

Procedure

e Add the operatorframework.io/initialization-resource annotation to the CSV of your Operator
to specify a required custom resource. For example, the following annotation requires the
creation of a StorageCluster resource and provides a full YAML definition:

Initialization resource annotation

apiVersion: operators.coreos.com/vialphai
kind: ClusterServiceVersion
metadata:
name: my-operator-v1.2.3
annotations:
operatorframework.io/initialization-resource: |-
{
"apiVersion": "ocs.openshift.io/v1",
"kind": "StorageCluster",
"metadata": {

219

OpenShift Container Platform 4.7 Operators

"name": "example-storagecluster”
b
"spec": {
"manageNodes": false,
"monPVCTemplate": {
"spec": {
"accessModes":
"ReadWriteOnce"
1,
"resources": {
"requests": {
"storage": "10Gi"
}
}

"storageClassName": "gp2"
}

b

"storageDeviceSets": [
{
"count": 3,
"dataPVCTemplate": {
"spec": {
"accessModes": |
"ReadWriteOnce"
1,
"resources": {
"requests": {
"storage": "1Ti"
!
2

"storageClassName": "gp2",
"volumeMode": "Block"

}
}

"name": "example-deviceset",
"placement: {},

"portable": true,

"resources": {}

5.6.9. Understanding your APl services

As with CRDs, there are two types of APl services that your Operator may use: owned and required.

5.6.9.1. Owned APl services

When a CSV owns an APl service, it is responsible for describing the deployment of the extension api-
server that backs it and the group/version/kind (GVK) it provides.

An APl service is uniquely identified by the group/version it provides and can be listed multiple times to
denote the different kinds it is expected to provide.

220

CHAPTER 5. DEVELOPING OPERATORS

Table 5.14. Owned API service fields

Field Description Required/optional

Group Group that the API service provides, for example Required
database.example.com.

Version Version of the APl service, for example vialphat. Required
Kind A kind that the APl service is expected to provide. Required
Name The plural name for the API service provided. Required
DeploymentName Name of the deployment defined by your CSV that Required

corresponds to your APl service (required for owned API
services). During the CSV pending phase, the OLM
Operator searches the InstallStrategy of your CSV for a
Deployment spec with a matching name, and if not found,
does not transition the CSV to the "Install Ready" phase.

DisplayName A human readable version of your APl service name, for Required
example MongoDB Standalone.

Description A short description of how this APl service is used by the Required
Operator or a description of the functionality provided by
the APl service.

Resources Your APl services own one or more types of Kubernetes Optional
objects. These are listed in the resources section to inform
your users of the objects they might need to troubleshoot
or how to connect to the application, such as the service or
ingress rule that exposes a database.

It is recommended to only list out the objects that are

important to a human, not an exhaustive list of everything
you orchestrate. For example, do not list config maps that
store internal state that are not meant to be modified by a

user.
SpecDescriptors, Essentially the same as for owned CRDs. Optional
StatusDescriptors

,and

ActionDescriptors

5.6.9.1.1. APl service resource creation

Operator Lifecycle Manager (OLM) is responsible for creating or replacing the service and APl service
resources for each unique owned APl service:

® Service pod selectors are copied from the CSV deployment matching the DeploymentName
field of the API service description.

221

OpenShift Container Platform 4.7 Operators

® A new CA key/certificate pair is generated for each installation and the base64-encoded CA
bundle is embedded in the respective APl service resource.

5.6.9.1.2. APl service serving certificates

OLM handles generating a serving key/certificate pair whenever an owned APl service is being installed.
The serving certificate has a common name (CN) containing the hostname of the generated Service
resource and is signed by the private key of the CA bundle embedded in the corresponding APl service
resource.

The certificate is stored as a type kubernetes.io/tls secret in the deployment namespace, and a volume
named apiservice-cert is automatically appended to the volumes section of the deployment in the CSV
matching the DeploymentName field of the API service description.

If one does not already exist, a volume mount with a matching name is also appended to all containers of
that deployment. This allows users to define a volume mount with the expected name to accommodate
any custom path requirements. The path of the generated volume mount defaults to
/apiserver.local.config/certificates and any existing volume mounts with the same path are replaced.

5.6.9.2. Required API services

OLM ensures all required CSVs have an APl service that is available and all expected GVKs are
discoverable before attempting installation. This allows a CSV to rely on specific kinds provided by API
services it does not own.

Table 5.15. Required API service fields

Field Description Required/optional

Group Group that the API service provides, for example Required
database.example.com.

Version Version of the APl service, for example vialphat. Required
Kind A kind that the APl service is expected to provide. Required
DisplayName A human readable version of your API service name, for Required

example MongoDB Standalone.

Description A short description of how this APl service is used by the Required
Operator or a description of the functionality provided by
the APl service.

5.7.WORKING WITH BUNDLE IMAGES

You can use the Operator SDK to package, deploy, and upgrade Operators in the Bundle Format on
Operator Lifecycle Manager (OLM).

5.7.1. Bundling an Operator and deploying with Operator Lifecycle Manager

Operator Lifecycle Manager (OLM) helps you to install, update, and generally manage the lifecycle of
Operators and their associated services on a Kubernetes cluster. OLM is installed by default on

222

CHAPTER 5. DEVELOPING OPERATORS

OpenShift Container Platform and runs as a Kubernetes extension so that you can use the web console
and the OpenShift CLI (oc) for all Operator lifecycle management functions without any additional

tools.

The Operator Bundle Format is the default packaging method for Operator SDK and OLM. You can get
your Operator ready for OLM by using the Operator SDK to build, push, validate, and run a bundle image
with OLM.

Prerequisites

Operator SDK CLlI installed on a development workstation
OpenShift CLI (oe) v4.7+ installed

Operator Lifecycle Manager (OLM) installed on a Kubernetes-based cluster (v1.16.0 or later if
you use apiextensions.k8s.io/v1 CRDs, for example OpenShift Container Platform 4.7)

Logged into the cluster with oc using an account with cluster-admin permissions
Operator project initialized by using the Operator SDK

If your Operator is Go-based, your project must have been updated to use supported images
for running on OpenShift Container Platform

Procedure

1. Run the following make commands in your Operator project directory to build and push your

Operator image. Modify the IMG argument in the following steps to reference a repository that
you have access to. You can obtain an account for storing containers at repository sites such as
Quay.io.

a. Build the image:

I $ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

NOTE

The Dockerfile generated by the SDK for the Operator explicitly references
GOARCH=amd64 for go build. This can be amended to
GOARCH=$TARGETARCH for non-AMDG64 architectures. Docker will
automatically set the environment variable to the value specified by —
platform. With Buildah, the —build-arg will need to be used for the purpose.
For more information, see Multiple Architectures.

b. Push the image to a repository:

I $ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

2. Create your Operator bundle manifest by running the make bundle command, which invokes

several commands, including the Operator SDK generate bundle and bundle validate
subcommands:

I $ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

223

https://sdk.operatorframework.io/docs/advanced-topics/multi-arch/#supporting-multiple-architectures

OpenShift Container Platform 4.7 Operators

Bundle manifests for an Operator describe how to display, create, and manage an application.
The make bundle command creates the following files and directories in your Operator project:

® A bundle manifests directory named bundle/manifests that contains a
ClusterServiceVersion object

® A bundle metadata directory named bundle/metadata
® All custom resource definitions (CRDs) in a config/crd directory
® A Dockerfile bundle.Dockerfile

These files are then automatically validated by using operator-sdk bundle validate to ensure
the on-disk bundle representation is correct.

3. Build and push your bundle image by running the following commands. OLM consumes
Operator bundles using an index image, which reference one or more bundle images.

a. Build the bundle image. Set BUNDLE_IMAGE with the details for the registry, user
namespace, and image tag where you intend to push the image:

I $ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>
b. Push the bundle image:
I $ docker push <registry>/<user>/<bundle_image_name>:<tag>

4. Check the status of OLM on your cluster by using the following Operator SDK command:

$ operator-sdk olm status \
--olm-namespace=openshift-operator-lifecycle-manager

5. Run the Operator on your cluster by using the OLM integration in Operator SDK:

$ operator-sdk run bundle \
[-n <namespace>] \ﬂ
<registry>/<user>/<bundle_image_name>:<tag>

By default, the command installs the Operator in the currently active project in your
~/.kube/config file. You can add the -n flag to set a different namespace scope for the
installation.

This command performs the following actions:
® Create anindex image with your bundle image injected.

® Create a catalog source that points to your new index image, which enables OperatorHub to
discover your Operator.

® Deploy your Operator to your cluster by creating an Operator group, subscription, install
plan, and all other required objects, including RBAC.

5.7.2. Testing an Operator upgrade on Operator Lifecycle Manager

224

CHAPTER 5. DEVELOPING OPERATORS

You can quickly test upgrading your Operator by using Operator Lifecycle Manager (OLM) integration in
the Operator SDK, without requiring you to manually manage index images and catalog sources.

The run bundle-upgrade subcommand automates triggering an installed Operator to upgrade to a later
version by specifying a bundle image for the later version.

Prerequisites

® Operator installed with OLM by using the run bundle subcommand

® Abundle image that represents a later version of the installed Operator

Procedure

1. If your Operator has not already been installed on OLM with the run bundle subcommand,
install the earlier version of your Operator by specifying the bundle image. For example, for a
Memcached Operator:

I $ operator-sdk run bundle <registry>/<user>/memcached-operator:v0.0.1

Example output

INFO[0009] Successfully created registry pod: quay-io-demo-memcached-operator-v0-0-1
INFO[0009] Created CatalogSource: memcached-operator-catalog

INFO[0010] OperatorGroup "operator-sdk-og" created

INFO[0010] Created Subscription: memcached-operator-v0-0-1-sub

INFO[0013] Approved InstallPlan install-bgggr for the Subscription: memcached-operator-v0-
0-1-sub

INFO[0013] Waiting for ClusterServiceVersion "my-project/memcached-operator.v0.0.1" to
reach 'Succeeded' phase

INFO[0013] Waiting for ClusterServiceVersion "my-project/memcached-operator.v0.0.1" to
appear

INFO[0019] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.1" phase:
Succeeded

2. Upgrade the installed Operator by specifying the bundle image for the later Operator version:

I $ operator-sdk run bundle-upgrade <registry>/<user>/memcached-operator:v0.0.2

Example output

INFO[0002] Found existing subscription with name memcached-operator-v0-0-1-sub and
namespace my-project

INFO[0002] Found existing catalog source with name memcached-operator-catalog and
namespace my-project

INFO[0009] Successfully created registry pod: quay-io-demo-memcached-operator-v0-0-2
INFO[0009] Updated catalog source memcached-operator-catalog with address and
annotations

INFO[0010] Deleted previous registry pod with name "quay-io-demo-memcached-operator-
v0-0-1"

INFO[0041] Approved InstallPlan install-gvcjh for the Subscription: memcached-operator-v0-
0-1-sub

INFO[0042] Waiting for ClusterServiceVersion "my-project/memcached-operator.v0.0.2" to
reach 'Succeeded' phase

225

OpenShift Container Platform 4.7 Operators

INFO[0042] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
InstallReady

INFO[0043] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
Installing

INFO[0044] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
Succeeded

INFO[0044] Successfully upgraded to "memcached-operator.v0.0.2"

3. Clean up the installed Operators:

I $ operator-sdk cleanup memcached-operator

5.7.3. Additional resources

® See Operator Framework packaging formats for details on the Bundle Format.

® See Managing custom catalogs for details on adding bundle images to index images by using
the opm command.

® See Operator Lifecycle Manager workflow for details on how upgrades work for installed
Operators.

5.8. VALIDATING OPERATORS USING THE SCORECARD TOOL
As an Operator author, you can use the scorecard tool in the Operator SDK to do the following tasks:
e Validate that your Operator project is free of syntax errors and packaged correctly

® Review suggestions about ways you can improve your Operator

5.8.1. About the scorecard tool

While the Operator SDK bundle validate subcommand can validate local bundle directories and remote
bundle images for content and structure, you can use the scorecard command to run tests on your
Operator based on a configuration file and test images. These tests are implemented within test images
that are configured and constructed to be executed by the scorecard.

The scorecard assumes it is run with access to a configured Kubernetes cluster, such as OpenShift
Container Platform. The scorecard runs each test within a pod, from which pod logs are aggregated and
test results are sent to the console. The scorecard has built-in basic and Operator Lifecycle Manager
(OLM) tests and also provides a means to execute custom test definitions.

Scorecard workflow

1. Create all resources required by any related custom resources (CRs) and the Operator

2. Create a proxy container in the deployment of the Operator to record calls to the API server
and run tests

3. Examine parameters in the CRs
The scorecard tests make no assumptions as to the state of the Operator being tested. Creating

Operators and CRs for an Operators are beyond the scope of the scorecard itself. Scorecard tests can,
however, create whatever resources they require if the tests are designed for resource creation.

226

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-bundle-format_olm-packaging-format
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-managing-custom-catalogs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-workflow

CHAPTER 5. DEVELOPING OPERATORS

scorecard command syntax
I $ operator-sdk scorecard <bundle_dir_or_image> [flags]

The scorecard requires a positional argument for either the on-disk path to your Operator bundle or the
name of a bundle image.

For further information about the flags, run:

I $ operator-sdk scorecard -h

5.8.2. Scorecard configuration

The scorecard tool uses a configuration that allows you to configure internal plug-ins, as well as several
global configuration options. Tests are driven by a configuration file named config.yaml, which is
generated by the make bundle command, located in your bundle/ directory:

J/bundle

L tests

L scorecard
L— config.yaml

Example scorecard configuration file

kind: Configuration
apiversion: scorecard.operatorframework.io/vialpha3
metadata:
name: config
stages:
- parallel: true
tests:
- image: quay.io/operator-framework/scorecard-test:v1.3.0
entrypoint:
- scorecard-test
- basic-check-spec
labels:
suite: basic
test: basic-check-spec-test
image: quay.io/operator-framework/scorecard-test:v1.3.0
entrypoint:
- scorecard-test
- olm-bundle-validation
labels:
suite: olm
test: olm-bundle-validation-test

The configuration file defines each test that scorecard can execute. The following fields of the
scorecard configuration file define the test as follows:

227

OpenShift Container Platform 4.7 Operators

Configuration field Description

image Test container image name that implements a test

entrypoint Command and arguments that are invoked in the test image to execute a
test

labels Scorecard-defined or custom labels that select which tests to run

5.8.3. Built-in scorecard tests

The scorecard ships with pre-defined tests that are arranged into suites: the basic test suite and the
Operator Lifecycle Manager (OLM) suite.

Table 5.16. Basic test suite

Test Description Short name
Spec Block Exists This test checks the custom resource (CR) created in the basic-check-spec-
cluster to make sure that all CRs have a spec block. test

Table 5.17. OLM test suite

Test Description Short name

Bundle Validation This test validates the bundle manifests found in the olm-bundle-
bundle that is passed into scorecard. If the bundle validation-test
contents contain errors, then the test result output
includes the validator log as well as error messages from
the validation library.

Provided APIs Have This test verifies that the custom resource definitions olm-crds-have-
Validation (CRDs) for the provided CRs contain a validation section validation-test
and that there is validation for each spec and status
field detected in the CR.

Owned CRDs Have This test makes sure that the CRDs for each CR provided olm-crds-have-
Resources Listed via the cr-manifest option have aresources resources-test

subsection in the owned CRDs section of the

ClusterServiceVersion (CSV). If the test detects used

resources that are not listed in the resources section, it

lists them in the suggestions at the end of the test. Users

are required to fill out the resources section after initial

code generation for this test to pass.

Spec Fields With This test verifies that every field in the CRs spec sections ~ olm-spec-
Descriptors has a corresponding descriptor listed in the CSV. descriptors-test

228

CHAPTER 5. DEVELOPING OPERATORS

Test Description Short name

Status Fields With This test verifies that every field in the CRs status olm-status-

Descriptors sections have a corresponding descriptor listed in the descriptors-test
CsV.

5.8.4. Running the scorecard tool

A default set of Kustomize files are generated by the Operator SDK after running the init command.
The default bundle/tests/scorecard/config.yaml file that is generated can be immediately used to run
the scorecard tool against your Operator, or you can modify this file to your test specifications.

Prerequisites

® Operator project generated by using the Operator SDK

Procedure

1. Generate or regenerate your bundle manifests and metadata for your Operator:
I $ make bundle

This command automatically adds scorecard annotations to your bundle metadata, which is used
by the scorecard command to run tests.

2. Run the scorecard against the on-disk path to your Operator bundle or the name of a bundle
image:

I $ operator-sdk scorecard <bundle_dir_or_image>

5.8.5. Scorecard output

The --output flag for the scorecard command specifies the scorecard results output format: either text
or json.

Example 5.2. Example JSON output snippet
{
"apiVersion": "scorecard.operatorframework.io/vialpha3",
"kind": "TestList",
"items": [
{

"kind": "Test",
"apiVersion": "scorecard.operatorframework.io/vialpha3",
"spec": {
"image": "quay.io/operator-framework/scorecard-test:v1.3.0",
"entrypoint": [
"scorecard-test",
"olm-bundle-validation”

229

OpenShift Container Platform 4.7 Operators

1,
"labels": {
"suite": "olm",
"test™: "olm-bundle-validation-test"
}
b
"status": {
"results™: [
{
"name": "olm-bundle-validation”,
"log": "time=\"2020-06-10T19:02:49Z2\" level=debug msg=\"Found manifests directory\"

name=bundle-test\ntime=\"2020-06-10T19:02:492\" level=debug msg=\"Found metadata
directory\" name=bundle-test\ntime=\"2020-06-10T19:02:492\" level=debug msg=\"Getting
mediaType info from manifests directory\" name=bundle-test\ntime=\"2020-06-10T19:02:49Z2\"
level=info msg=\"Found annotations file\" name=bundle-test\ntime=\"2020-06-10T19:02:49Z\"
level=info msg=\"Could not find optional dependencies file\" name=bundle-test\n",

"state": "pass”

Example 5.3. Example text output snippet

Image: quay.io/operator-framework/scorecard-test:v1.3.0
Entrypoint: [scorecard-test olm-bundle-validation]

Labels:

"suite":"olm"
"test":"olm-bundle-validation-test"
Results:

Name: olm-bundle-validation
State: pass

Log:

time="2020-07-15T03:19:02Z" level=debug msg="Found manifests directory" name=bundle-test

time="2020-07-15T03:19:02Z" level=debug msg="Found metadata directory" name=bundle-test

time="2020-07-15T03:19:02Z" level=debug msg="Getting mediaType info from manifests
directory" name=bundle-test

time="2020-07-15T03:19:02Z" level=info msg="Found annotations file" name=bundle-test

time="2020-07-15T03:19:02Z" level=info msg="Could not find optional dependencies file"
name=bundle-test

NOTE

The output format spec matches the Test type layout.

5.8.6. Selecting tests

Scorecard tests are selected by setting the --selector CLI flag to a set of label strings. If a selector flag is
not supplied, then all the tests within the scorecard configuration file are run.

230

https://pkg.go.dev/github.com/operator-framework/api/pkg/apis/scorecard/v1alpha3#Test

CHAPTER 5. DEVELOPING OPERATORS

Tests are run serially with test results being aggregated by the scorecard and written to standard output,
or stdout.

Procedure

1. To select a single test, for example basic-check-spec-test, specify the test by using the --
selector flag:

$ operator-sdk scorecard <bundle_dir_or_image> \
-0 text)\
--selector=test=basic-check-spec-test

2. To select a suite of tests, for example olm, specify a label that is used by all of the OLM tests:

$ operator-sdk scorecard <bundle_dir_or_image> \
-0 text)\
--selector=suite=o0lm

3. To select multiple tests, specify the test names by using the selector flag using the following
syntax:

$ operator-sdk scorecard <bundle_dir_or_image> \
-0 text)\
--selector="test in (basic-check-spec-test,olm-bundle-validation-test)'

5.8.7. Enabling parallel testing

As an Operator author, you can define separate stages for your tests using the scorecard configuration
file. Stages run sequentially in the order they are defined in the configuration file. A stage contains a list
of tests and a configurable parallel setting.

By default, or when a stage explicitly sets parallel to false, tests in a stage are run sequentially in the
order they are defined in the configuration file. Running tests one at a time is helpful to guarantee that
no two tests interact and conflict with each other.

However, if tests are designed to be fully isolated, they can be parallelized.

Procedure

® Torun aset of isolated tests in parallel, include them in the same stage and set parallel to true:

apiVersion: scorecard.operatorframework.io/vialpha3
kind: Configuration
metadata:
name: config
stages:
- parallel: true 0
tests:
- entrypoint:
- scorecard-test
- basic-check-spec
image: quay.io/operator-framework/scorecard-test:v1.3.0
labels:
suite: basic

231

OpenShift Container Platform 4.7 Operators

test: basic-check-spec-test
- entrypoint:
- scorecard-test
- olm-bundle-validation
image: quay.io/operator-framework/scorecard-test:v1.3.0
labels:
suite: olm
test: olm-bundle-validation-test

ﬂ Enables parallel testing

All tests in a parallel stage are executed simultaneously, and scorecard waits for all of them to
finish before proceding to the next stage. This can make your tests run much faster.

5.8.8. Custom scorecard tests
The scorecard tool can run custom tests that follow these mandated conventions:
® Tests are implemented within a container image

® Tests accept an entrypoint which include a command and arguments

® Tests produce vialpha3 scorecard output in JSON format with no extraneous logging in the
test output

® Tests can obtain the bundle contents at a shared mount point of /bundle
® Tests can access the Kubernetes APl using an in-cluster client connection

Writing custom tests in other programming languages is possible if the test image follows the above
guidelines.

The following example shows of a custom test image written in Go:

Example 5.4. Example custom scorecard test
// Copyright 2020 The Operator-SDK Authors
/
// Licensed under the Apache License, Version 2.0 (the "License");

// you may not use this file except in compliance with the License.

// You may obtain a copy of the License at

/

// http://www.apache.org/licenses/LICENSE-2.0

/7

// Unless required by applicable law or agreed to in writing, software

// distributed under the License is distributed on an "AS IS" BASIS,

// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and

// limitations under the License.

package main
import (

"encoding/json"
"fmtll

232

CHAPTER 5. DEVELOPING OPERATORS

lllogll
IIOS"

scapivialpha3 "github.com/operator-framework/api/pkg/apis/scorecard/vialpha3"
apimanifests "github.com/operator-framework/api/pkg/manifests”

)

// This is the custom scorecard test example binary

// As with the Redhat scorecard test image, the bundle that is under
// test is expected to be mounted so that tests can inspect the

// bundle contents as part of their test implementations.

// The actual test is to be run is named and that name is passed

// as an argument to this binary. This argument mechanism allows
// this binary to run various tests all from within a single

// test image.

const PodBundleRoot = "/bundle"

func main() {
entrypoint := 0s.Args[1:]
if len(entrypoint) == 0 {
log.Fatal("Test name argument is required")

}

// Read the pod's untar'd bundle from a well-known path.
cfg, err := apimanifests.GetBundleFromDir(PodBundleRoot)
if err 1= nil {

log.Fatal(err.Error())

}

var result scapivialpha3.TestStatus

// Names of the custom tests which would be passed in the
// “operator-sdk’ command.
switch entrypoint[0] {
case CustomTest1Name:
result = CustomTest1(cfg)
case CustomTest2Name:
result = CustomTest2(cfg)
default:
result = printValidTests()

}

// Convert scapivialpha3. TestResult to json.
prettyJSON, err := json.Marshallndent(result, ™, " ")
if err 1= nil {

log.Fatal("Failed to generate json", err)

}
fmt.Printf("%s\n", string(prettyJSON))

}

// printValidTests will print out full list of test names to give a hint to the end user on what the valid
tests are.

func printValidTests() scapivialpha3.TestStatus {

result := scapivialpha3.TestResult{}

233

OpenShift Container Platform 4.7 Operators

234

result.State = scapivialpha3.FailState
result.Errors = make([]string, 0)
result.Suggestions = make([]string, 0)

str := fmt.Sprintf("Valid tests for this image include: %s %s",
CustomTest1Name,

CustomTest2Name)

result.Errors = append(result.Errors, str)

return scapivialpha3.TestStatus{

Results: [|scapivialpha3.TestResult{result},

}
}

const (
CustomTest1Name = "customtest1”
CustomTest2Name = "customtest2"

)

// Define any operator specific custom tests here.
// CustomTest1 and CustomTest2 are example test functions. Relevant operator specific
// test logic is to be implemented in similarly.

func CustomTest1(bundle *apimanifests.Bundle) scapivialpha3.TestStatus {
r := scapivialpha3.TestResult{}
r.Name = CustomTest1Name
r.State = scapivialpha3.PassState
r.Errors = make([]string, 0)
r.Suggestions = make([]string, 0)
almExamples := bundle.CSV.GetAnnotations()["alm-examples"]
if almExamples == "" {
fmt.Printin("no alm-examples in the bundle CSV")

}

return wrapResult(r)

}

func CustomTest2(bundle *apimanifests.Bundle) scapivialpha3.TestStatus {
r := scapivialpha3.TestResult{}
r.Name = CustomTest2Name
r.State = scapivialpha3.PassState
r.Errors = make([]string, 0)
r.Suggestions = make([]string, 0)
almExamples := bundle.CSV.GetAnnotations()["alm-examples"]
if almExamples == "" {
fmt.Printin("no alm-examples in the bundle CSV")

}

return wrapResult(r)

}

func wrapResult(r scapivialpha3.TestResult) scapivialpha3.TestStatus {
return scapivialpha3.TestStatus{
Results: [Jscapivialpha3.TestResult{r},

}
}

CHAPTER 5. DEVELOPING OPERATORS

5.9. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS

This guide describes the built-in monitoring support provided by the Operator SDK using the
Prometheus Operator and details usage for Operator authors.

5.9.1. Prometheus Operator support

Prometheus is an open-source systems monitoring and alerting toolkit. The Prometheus Operator
creates, configures, and manages Prometheus clusters running on Kubernetes-based clusters, such as
OpenShift Container Platform.

Helper functions exist in the Operator SDK by default to automatically set up metrics in any generated
Go-based Operator for use on clusters where the Prometheus Operator is deployed.

5.9.2. Metrics helper

In Go-based Operators generated using the Operator SDK, the following function exposes general
metrics about the running program:

I func ExposeMetricsPort(ctx context.Context, port int32) (*v1.Service, error)

These metrics are inherited from the controller-runtime library API. By default, the metrics are served
on 0.0.0.0:8383/metrics.

A Service object is created with the metrics port exposed, which can be then accessed by Prometheus.
The Service object is garbage collected when the leader pod's root owner is deleted.

The following example is present in the emd/manager/main.go file in all Operators generated using the
Operator SDK:

import(
"github.com/operator-framework/operator-sdk/pkg/metrics"
"machine.openshift.io/controller-runtime/pkg/manager”

)

var (
// Change the below variables to serve melrics on a different host or port.
metricsHost ="0.0.0.0" ﬂ

metricsPort int32 = 8383 @)
)

1-‘;J-nc main() {

// Pass metrics address to controller-runtime manager
mgr, err := manager.New(cfg, manager.Options{
Namespace: namespace,
MetricsBindAddress: fmt.Sprintf("%s:%d", metricsHost, metricsPort),

D

// Create Service object to expose the metrics port.
_, err = metrics.ExposeMetricsPort(ctx, metricsPort)
if err 1= nil {

// handle error

235

https://prometheus.io/

OpenShift Container Platform 4.7 Operators

log.Info(err.Error())

}
}

ﬂ The host that the metrics are exposed on.

9 The port that the metrics are exposed on.

5.9.2.1. Modifying the metrics port

Operator authors can modify the port that metrics are exposed on.

Prerequisites

® Go-based Operator generated using the Operator SDK

® Kubernetes-based cluster with the Prometheus Operator deployed

Procedure

® |n the cmd/manager/main.go file of the generated Operator, change the value of metricsPort
in the following line:

I var metricsPort int32 = 8383

5.9.3. Service monitors

A ServiceMonitor is a custom resource provided by the Prometheus Operator that discovers the
Endpoints in Service objects and configures Prometheus to monitor those pods.

In Go-based Operators generated using the Operator SDK, the GenerateServiceMonitor() helper
function can take a Service object and generate a ServiceMonitor object based on it.

Additional resources

® See the Prometheus Operator documentation for more information about the ServiceMonitor
custom resource definition (CRD).

5.9.3.1. Creating service monitors

Operator authors can add service target discovery of created monitoring services using the
metrics.CreateServiceMonitor() helper function, which accepts the newly created service.

Prerequisites

® Go-based Operator generated using the Operator SDK

® Kubernetes-based cluster with the Prometheus Operator deployed

Procedure

® Add the metrics.CreateServiceMonitor() helper function to your Operator code:

236

https://github.com/coreos/prometheus-operator/blob/7a25bf6b6bb2347dacb235659b73bc210117acc7/Documentation/design.md#servicemonitor

CHAPTER 5. DEVELOPING OPERATORS

import(
"k8s.io/api/core/v1"
"github.com/operator-framework/operator-sdk/pkg/metrics"
"machine.openshift.io/controller-runtime/pkg/client/config"

)

func main() {

// Populate below with the Service(s) for which you want to create ServiceMonitors.

services = []*v1.Service{}

// Create one ServiceMonitor per application per namespace.

// Change the below value to name of the Namespace you want the ServiceMonitor to be
created in.

ns := "default"

// restConfig is used for talking to the Kubernetes apiserver

restConfig := config.GetConfig()

// Pass the Service(s) to the helper function, which in turn returns the array of
ServiceMonitor objects.
serviceMonitors, err := metrics.CreateServiceMonitors(restConfig, ns, services)
if err 1= nil {
// Handle errors here.

}

5.10. CONFIGURING LEADER ELECTION

During the lifecycle of an Operator, it is possible that there may be more than one instance running at
any given time, for example when rolling out an upgrade for the Operator. In such a scenario, it is
necessary to avoid contention between multiple Operator instances using leader election. This ensures
only one leader instance handles the reconciliation while the other instances are inactive but ready to
take over when the leader steps down.

There are two different leader election implementations to choose from, each with its own trade-off:

Leader-for-life

The leader pod only gives up leadership, using garbage collection, when it is deleted. This
implementation precludes the possibility of two instances mistakenly running as leaders, a state also
known as split brain. However, this method can be subject to a delay in electing a new leader. For
example, when the leader pod is on an unresponsive or partitioned node, the pod-eviction-timeout
dictates long how it takes for the leader pod to be deleted from the node and step down, with a
default of 5m. See the Leader-for-life Go documentation for more.

Leader-with-lease

The leader pod periodically renews the leader lease and gives up leadership when it cannot renew the
lease. This implementation allows for a faster transition to a new leader when the existing leader is
isolated, but there is a possibility of split brain in certain situations. See the Leader-with-lease Go
documentation for more.

By default, the Operator SDK enables the Leader-for-life implementation. Consult the related Go
documentation for both approaches to consider the trade-offs that make sense for your use case.

5.10.1. Operator leader election examples

237

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/#options
https://godoc.org/github.com/operator-framework/operator-sdk/pkg/leader
https://github.com/kubernetes/client-go/blob/30b06a83d67458700a5378239df6b96948cb9160/tools/leaderelection/leaderelection.go#L21-L24
https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/leaderelection

OpenShift Container Platform 4.7 Operators

The following examples illustrate how to use the two leader election options for an Operator, Leader-
for-life and Leader-with-lease.

5.10.1.1. Leader-for-life election

With the Leader-for-life election implementation, a call to leader.Become() blocks the Operator as it
retries until it can become the leader by creating the config map named memcached-operator-lock:

import (

"github.com/operator-framework/operator-sdk/pkg/leader"”

)

func main() {

err = leader.Become(context. TODO(), "memcached-operator-lock")
if err 1= nil {

log.Error(err, "Failed to retry for leader lock")

os.Exit(1)

}
.

If the Operator is not running inside a cluster, leader.Become() simply returns without error to skip the
leader election since it cannot detect the name of the Operator.

5.10.1.2. Leader-with-lease election

The Leader-with-lease implementation can be enabled using the Manager Options for leader election:

import (

"sigs.k8s.io/controller-runtime/pkg/manager”

)

func main() {
opts := manager.Options{

LeaderElection: true,
LeaderElectionID: "memcached-operator-lock"

}
mgr, err := manager.New(cfg, opts)

}...

When the Operator is not running in a cluster, the Manager returns an error when starting because it
cannot detect the namespace of the Operator to create the config map for leader election. You can
override this namespace by setting the LeaderElectionNamespace option for the Manager.

5.11. OPERATOR SDK CLI REFERENCE

The Operator SDK command-line interface (CLI) is a development kit designed to make writing
Operators easier.

238

https://godoc.org/github.com/kubernetes-sigs/controller-runtime/pkg/manager#Options

CHAPTER 5. DEVELOPING OPERATORS

Operator SDK CLI syntax
I $ operator-sdk <command> [<subcommand>] [<argument>] [<flags>]

Operator authors with cluster administrator access to a Kubernetes-based cluster (such as OpenShift
Container Platform) can use the Operator SDK CLI to develop their own Operators based on Go,
Ansible, or Helm. Kubebuilder is embedded into the Operator SDK as the scaffolding solution for Go-
based Operators, which means existing Kubebuilder projects can be used as is with the Operator SDK
and continue to work.

5.11.1. bundle

The operator-sdk bundle command manages Operator bundle metadata.

5.11.1.1. validate

The bundle validate subcommand validates an Operator bundle.

Table 5.18. bundle validate flags

Flag Description

-h,--help Help output for the bundle validate subcommand.

--index-builder Tool to pull and unpack bundle images. Only used when validating a bundle image.
(string) Available options are docker, which is the default,podman, ornone.
--list-optional List all optional validators available. When set, no validators are run.
--select-optional Label selector to select optional validators to run. When run with the --list-
(string) optional flag, lists available optional validators.

5.11.2. cleanup

The operator-sdk cleanup command destroys and removes resources that were created for an
Operator that was deployed with the run command.

Table 5.19. cleanup flags

Flag Description

-h,--help Help output for the run bundle subcommand.
--kubeconfig (string) Path to the kubeconfig file to use for CLI requests.
n,--namespace If present, namespace in which to run the CLI request.
(string)

--timeout <duration> Time to wait for the command to complete before failing. The default value is
2mO0s.

239

https://kubebuilder.io/

OpenShift Container Platform 4.7 Operators

5.11.3. completion

The operator-sdk completion command generates shell completions to make issuing CLI commands
quicker and easier.

Table 5.20. completion subcommands

Subcommand Description

bash Generate bash completions.

zsh Generate zsh completions.

Table 5.21. completion flags

Flag Description

-h, --help Usage help output.

For example:
I $ operator-sdk completion bash
Example output

bash completion for operator-sdk -*- shell-script -*-

ex: ts=4 sw=4 et filetype=sh

5.11.4. create

The operator-sdk create command is used to create, or scaffold, a Kubernetes API.

5.11.4.1. api

The create api subcommand scaffolds a Kubernetes API. The subcommand must be runin a project
that was initialized with the init command.

Table 5.22. create api flags

Flag Description

-h,--help Help output for the run bundle subcommand.

5.11.5. generate

The operator-sdk generate command invokes a specific generator to generate code or manifests.

5.11.5.1. bundle

240

CHAPTER 5. DEVELOPING OPERATORS

The generate bundle subcommand generates a set of bundle manifests, metadata, and a
bundle.Dockerfile file for your Operator project.

NOTE

Typically, you run the generate kustomize manifests subcommand first to generate the
input Kustomize bases that are used by the generate bundle subcommand. However,
you can use the make bundle command in an initialized project to automate running
these commands in sequence.

Table 5.23. generate bundle flags

Flag Description

--channels (string)

--crds-dir (string)

--default-channel
(string)

--deploy-dir (string)

-h,--help

--input-dir (string)

--kustomize-dir
(string)

--manifests

--metadata

--output-dir (string)

--overwrite

--package (string)

-q, --quiet

--stdout

Comma-separated list of channels to which the bundle belongs. The default value
is alpha.

Root directory for CustomResoureDefinition manifests.

The default channel for the bundle.

Root directory for Operator manifests, such as deployments and RBAC. This
directory is different from the directory passed to the --input-dir flag.

Help for generate bundle

Directory from which to read an existing bundle. This directory is the parent of
your bundle manifests directory and is different from the--deploy-dir
directory.

Directory containing Kustomize bases and a kustomization.yaml file for bundle
manifests. The default path is config/manifests.

Generate bundle manifests.

Generate bundle metadata and Dockerfile.

Directory to write the bundle to.

Overwrite the bundle metadata and Dockerfile if they exist. The default value is
true.

Package name for the bundle.

Run in quiet mode.

Write bundle manifest to standard out.

241

https://kustomize.io/

OpenShift Container Platform 4.7 Operators

Flag Description

--version (string) Semantic version of the Operator in the generated bundle. Set only when creating
a new bundle or upgrading the Operator.

Additional resources

® See Bundling an Operator and deploying with Operator Lifecycle Manager for a full procedure
that includes using the make bundle command to call the generate bundle subcommand.

5.11.5.2. kustomize

The generate kustomize subcommand contains subcommands that generate Kustomize data for the
Operator.

5.11.5.2.1. manifests

The generate kustomize manifests subcommand generates or regenerates Kustomize bases and a
kustomization.yaml file in the config/manifests directory, which are used to build bundle manifests by
other Operator SDK commands. This command interactively asks for Ul metadata, an important
component of manifest bases, by default unless a base already exists or you set the --interactive=false
flag.

Table 5.24. generate kustomize manifests flags

Flag Description

--apis-dir (string) Root directory for API type definitions.

-h,--help Help for generate kustomize manifests.

--input-dir (string) Directory containing existing Kustomize files.

--interactive When set to false, if no Kustomize base exists, an interactive command prompt is

presented to accept custom metadata.

--output-dir (string) Directory where to write Kustomize files.
--package (string) Package name.
-q, --quiet Run in quiet mode.

5.11.6. init

The operator-sdk init command initializes an Operator project and generates, or scaffolds, a default
project directory layout for the given plug-in.

This command writes the following files:

242

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-bundle-deploy-olm_osdk-working-bundle-images
https://kustomize.io/

CHAPTER 5. DEVELOPING OPERATORS

® Boilerplate license file

o PROJECT file with the domain and repository

o Makefile to build the project

e go.mod file with project dependencies

e kustomization.yaml file for customizing manifests

® Patch file for customizing images for manager manifests
® Patch file for enabling Prometheus metrics

® main.go file to run

Table 5.25. init flags

Flag Description

--help, -h Help output for the init command.

--plugins (string) Name and optionally version of the plug-in to initialize the project with. Available
plug-ins are ansible.sdk.operatorframework.io/v1, go.kubebuilder.io/v2,
go.kubebuilder.io/v3, and helm.sdk.operatorframework.io/v1.

--project-version Project version. Available values are 2 and 3-alpha, which is the default.

5.11.7. run

The operator-sdk run command provides options that can launch the Operator in various
environments.

5.11.7.1. bundle

The run bundle subcommand deploys an Operator in the bundle format with Operator Lifecycle
Manager (OLM).

Table 5.26. run bundle flags

Flag Description

--index-image (string) Index image in which to inject a bundle. The default image is quay.io/operator-
framework/upstream-opm-builder:latest.

--install-mode Install mode supported by the cluster service version (CSV) of the Operator, for
<install_mode_value = example AlINamespaces or SingleNamespace.
>

--timeout <duration> Install timeout. The default value is 2m0s.

--kubeconfig (string) Path to the kubeconfig file to use for CLI requests.

243

OpenShift Container Platform 4.7 Operators

Flag Description

n,--namespace If present, namespace in which to run the CLI request.
(string)

-h,--help Help output for the run bundle subcommand.

Additional resources

® See Operator group membership for details on possible install modes.

5.11.7.2. bundle-upgrade

The run bundle-upgrade subcommand upgrades an Operator that was previously installed in the
bundle format with Operator Lifecycle Manager (OLM).

Table 5.27. run bundle-upgrade flags

Flag Description

--timeout <duration> Upgrade timeout. The default value is 2m0s.

--kubeconfig (string) Path to the kubeconfig file to use for CLI requests.
n,--namespace If present, namespace in which to run the CLI request.
(string)

-h,--help Help output for the run bundle subcommand.

5.11.8. scorecard

The operator-sdk scorecard command runs the scorecard tool to validate an Operator bundle and
provide suggestions for improvements. The command takes one argument, either a bundle image or
directory containing manifests and metadata. If the argument holds an image tag, the image must be
present remotely.

Table 5.28. scorecard flags

Flag Description

-c, --config (string) Path to scorecard configuration file. The default path is
bundle/tests/scorecard/config.yaml.

-h,--help Help output for the scorecard command.

--kubeconfig (string) Path to kubeconfig file.

-L, --list List which tests are available to run.

244

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-operatorgroups-membership_olm-understanding-operatorgroups

CHAPTER 5. DEVELOPING OPERATORS

Flag Description

=N, --namespace Namespace in which to run the test images.

(string)

-0, --output (string) Output format for results. Available values are text, which is the default, andjson.
-1, --selector (string) Label selector to determine which tests are run.

-§, --service-account Service account to use for tests. The default value is default.
(string)

-X, --skip-cleanup Disable resource cleanup after tests are run.
-w, --wait-time Seconds to wait for tests to complete, for example 35s. The default value is30s.
<duration>

Additional resources

® See Validating Operators using the scorecard tool for details about running the scorecard tool.

245

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#osdk-scorecard

OpenShift Container Platform 4.7 Operators

CHAPTER 6. CLUSTER OPERATORS REFERENCE

This reference guide indexes the cluster Operators shipped by Red Hat that serve as the architectural
foundation for OpenShift Container Platform. Cluster Operators are installed by default, unless
otherwise noted, and are managed by the Cluster Version Operator (CVO). For more details on the
control plane architecture, see Operators in OpenShift Container Platform.

Cluster administrators can view cluster Operators in the OpenShift Container Platform web console
from the Administration — Cluster Settings page.

NOTE

Cluster Operators are not managed by Operator Lifecycle Manager (OLM) and
OperatorHub. OLM and OperatorHub are part of the Operator Framework used in
OpenShift Container Platform for installing and running optional add-on Operators.

6.1. CLOUD CREDENTIAL OPERATOR

Purpose

The Cloud Credential Operator (CCO) manages cloud provider credentials as Kubernetes custom
resource definitions (CRDs). The CCO syncs on CredentialsRequest custom resources (CRs) to allow
OpenShift Container Platform components to request cloud provider credentials with the specific
permissions that are required for the cluster to run.

By setting different values for the credentialsMode parameter in the install-config.yaml file, the CCO
can be configured to operate in several different modes. If no mode is specified, or the

credentialsMode parameter is set to an empty string ("), the CCO operates in its default mode.

Project
openshift-cloud-credential-operator

CRDs
e credentialsrequests.cloudcredential.openshift.io

o Scope: Namespaced
o CR: CredentialsRequest
o Validation: Yes

Configuration objects
No configuration required.

Additional resources
® CredentialsRequest custom resource

® About the Cloud Credential Operator

6.2. CLUSTER AUTHENTICATION OPERATOR

Purpose
The Cluster Authentication Operator installs and maintains the Authentication custom resource in a
cluster and can be viewed with:

246

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/architecture/#operators-overview_control-plane
https://operatorframework.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/architecture/#olm-operators_control-plane
https://github.com/openshift/cloud-credential-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/api_reference/#credentialsrequest-cloudcredential-openshift-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/authentication_and_authorization/#about-cloud-credential-operator

CHAPTER 6. CLUSTER OPERATORS REFERENCE

I $ oc get clusteroperator authentication -o yaml

Project
cluster-authentication-operator

6.3. CLUSTER AUTOSCALER OPERATOR

Purpose
The Cluster Autoscaler Operator manages deployments of the OpenShift Cluster Autoscaler using the
cluster-api provider.

Project
cluster-autoscaler-operator

CRDs

e ClusterAutoscaler: This is a singleton resource, which controls the configuration autoscaler
instance for the cluster. The Operator only responds to the ClusterAutoscaler resource named
default in the managed namespace, the value of the WATCH_NAMESPACE environment
variable.

® MachineAutoscaler: This resource targets a node group and manages the annotations to
enable and configure autoscaling for that group, the min and max size. Currently only
MachineSet objects can be targeted.

6.4. CLUSTER CONFIG OPERATOR

Purpose
The Cluster Config Operator performs the following tasks related to config.openshift.io:

® (Creates CRDs.
® Renders the initial custom resources.
® Handles migrations.

Project
cluster-config-operator

6.5. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR

Purpose

The Cluster CSI Snapshot Controller Operator installs and maintains the CSI Snapshot Controller. The
CSI Snapshot Controller is responsible for watching the VolumeSnapshot CRD objects and manages
the creation and deletion lifecycle of volume snapshots.

Project
cluster-csi-snapshot-controller-operator

6.6. CLUSTER IMAGE REGISTRY OPERATOR

Purpose
The Cluster Image Registry Operator manages a singleton instance of the OpenShift Container
Platform registry. It manages all configuration of the registry, including creating storage.

247

https://github.com/openshift/cluster-authentication-operator
https://github.com/openshift/cluster-autoscaler-operator
https://github.com/openshift/cluster-config-operator
https://github.com/openshift/cluster-csi-snapshot-controller-operator

OpenShift Container Platform 4.7 Operators

On initial start up, the Operator creates a default image-registry resource instance based on the
configuration detected in the cluster. This indicates what cloud storage type to use based on the cloud
provider.

If insufficient information is available to define a complete image-registry resource, then an incomplete
resource is defined and the Operator updates the resource status with information about what is
missing.

The Cluster Image Registry Operator runs in the openshift-image-registry namespace and it also

manages the registry instance in that location. All configuration and workload resources for the registry
reside in that namespace.

Project
cluster-image-registry-operator

6.7. CLUSTER MACHINE APPROVER OPERATOR

Purpose
The Cluster Machine Approver Operator automatically approves the CSRs requested for a new worker
node after cluster installation.

NOTE

For the control plane node, the approve-csr service on the bootstrap node automatically
approves all CSRs during the cluster bootstrapping phase.

Project
cluster-machine-approver-operator

6.8. CLUSTER MONITORING OPERATOR

Purpose
The Cluster Monitoring Operator manages and updates the Prometheus-based cluster monitoring stack
deployed on top of OpenShift Container Platform.

Project
openshift-monitoring

CRDs
e alertmanagers.monitoring.coreos.com

o Scope: Namespaced
o CR:alertmanager
o Validation: Yes

o prometheuses.monitoring.coreos.com

o Scope: Namespaced
o CR: prometheus

o Validation: Yes

248

https://github.com/openshift/cluster-image-registry-operator
https://github.com/openshift/cluster-machine-approver
https://github.com/openshift/cluster-monitoring-operator

CHAPTER 6. CLUSTER OPERATORS REFERENCE

e prometheusrules.monitoring.coreos.com

o Scope: Namespaced
o CR: prometheusrule
o Validation: Yes

® servicemonitors.monitoring.coreos.com

o Scope: Namespaced
o CR: servicemonitor
o Validation: Yes

Configuration objects

I $ oc -n openshift-monitoring edit cm cluster-monitoring-config

6.9. CLUSTER NETWORK OPERATOR

Purpose
The Cluster Network Operator installs and upgrades the networking components on an OpenShift
Container Platform cluster.

6.10. OPENSHIFT CONTROLLER MANAGER OPERATOR

Purpose
The OpenShift Controller Manager Operator installs and maintains the OpenShiftControllerManager
custom resource in a cluster and can be viewed with:

I $ oc get clusteroperator openshift-controller-manager -o yaml

The custom resource definitino (CRD) openshiftcontrollermanagers.operator.openshift.io can be
viewed in a cluster with:

I $ oc get crd openshiftcontrollermanagers.operator.openshift.io -o yaml

Project
cluster-openshift-controller-manager-operator

6.11. CLUSTER SAMPLES OPERATOR

Purpose
The Cluster Samples Operator manages the sample image streams and templates stored in the
openshift namespace.

On initial start up, the Operator creates the default samples configuration resource to initiate the

creation of the image streams and templates. The configuration object is a cluster scoped object with
the key cluster and type configs.samples.

249

https://github.com/openshift/cluster-openshift-controller-manager-operator

OpenShift Container Platform 4.7 Operators

The image streams are the Red Hat Enterprise Linux CoreOS (RHCOS)-based OpenShift Container
Platform image streams pointing to images on registry.redhat.io. Similarly, the templates are those
categorized as OpenShift Container Platform templates.

The Cluster Samples Operator deployment is contained within the openshift-cluster-samples-
operator namespace. On start up, the install pull secret is used by the image stream import logic in the
internal registry and APl server to authenticate with registry.redhat.io. An administrator can create any
additional secrets in the openshift namespace if they change the registry used for the sample image
streams. If created, those secrets contain the content of a config.json for docker needed to facilitate
image import.

The image for the Cluster Samples Operator contains image stream and template definitions for the
associated OpenShift Container Platform release. After the Cluster Samples Operator creates a sample,
it adds an annotation that denotes the OpenShift Container Platform version that it is compatible with.
The Operator uses this annotation to ensure that each sample matches the compatible release version.
Samples outside of its inventory are ignored, as are skipped samples.

Modifications to any samples that are managed by the Operator are allowed as long as the version
annotation is not modified or deleted. However, on an upgrade, as the version annotation will change,
those modifications can get replaced as the sample will be updated with the newer version. The Jenkins
images are part of the image payload from the installation and are tagged into the image streams
directly.
The samples resource includes a finalizer, which cleans up the following upon its deletion:

® Operator-managed image streams

® Operator-managed templates

® Operator-generated configuration resources

® (Cluster status resources

Upon deletion of the samples resource, the Cluster Samples Operator recreates the resource using the
default configuration.

Project
cluster-samples-operator

6.12. CLUSTER STORAGE OPERATOR

Purpose
The Cluster Storage Operator sets OpenShift Container Platform cluster-wide storage defaults. It
ensures a default storage class exists for OpenShift Container Platform clusters.

Project
cluster-storage-operator

Configuration
No configuration is required.

Notes

® The Cluster Storage Operator supports Amazon Web Services (AWS) and Red Hat OpenStack
Platform (RHOSP).

250

https://github.com/openshift/cluster-samples-operator
https://github.com/openshift/cluster-storage-operator

CHAPTER 6. CLUSTER OPERATORS REFERENCE

® The created storage class can be made non-default by editing its annotation, but the storage
class cannot be deleted as long as the Operator runs.

6.13. CLUSTER VERSION OPERATOR

Purpose

Cluster Operators manage specific areas of cluster functionality. The Cluster Version Operator (CVO)
manages the lifecycle of cluster Operators, many of which are installed in OpenShift Container Platform
by default.

The CVO also checks with the OpenShift Update Service to see the valid updates and update paths
based on current component versions and information in the graph.

Project
cluster-version-operator

Additional resources

® Operators in OpenShift Container Platform

6.14. CONSOLE OPERATOR

Purpose
The Console Operator installs and maintains the OpenShift Container Platform web console on a
cluster.

Project
console-operator

6.15. DNS OPERATOR
Purpose
The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods that
enables DNS-based Kubernetes Service discovery in OpenShift Container Platform.
The Operator creates a working default deployment based on the cluster’s configuration.
® The default cluster domain is cluster.local.

e Configuration of the CoreDNS Corefile or Kubernetes plug-in is not yet supported.

The DNS Operator manages CoreDNS as a Kubernetes daemon set exposed as a service with a static IP.
CoreDNS runs on all nodes in the cluster.

Project
cluster-dns-operator

6.16. ETCD CLUSTER OPERATOR
Purpose
The etcd cluster Operator automates etcd cluster scaling, enables etcd monitoring and metrics, and

simplifies disaster recovery procedures.

Project

251

https://github.com/openshift/cluster-version-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/architecture/#operators-overview_control-plane
https://github.com/openshift/console-operator
https://github.com/openshift/cluster-dns-operator

OpenShift Container Platform 4.7 Operators

cluster-etcd-operator

CRDs
e etcds.operator.openshift.io

o Scope: Cluster
o CR:etcd
o Validation: Yes

Configuration objects

I $ oc edit etcd cluster

6.17. INGRESS OPERATOR

Purpose
The Ingress Operator configures and manages the OpenShift Container Platform router.

Project
openshift-ingress-operator

CRDs
e clusteringresses.ingress.openshift.io
o Scope: Namespaced
o CR:clusteringresses
o Validation: No
Configuration objects

e Cluster config

o Type Name: clusteringresses.ingress.openshift.io
o Instance Name: default

o View Command:

I $ oc get clusteringresses.ingress.openshift.io -n openshift-ingress-operator default -o
yam|

Notes
The Ingress Operator sets up the router in the openshift-ingress project and creates the deployment
for the router:

I $ oc get deployment -n openshift-ingress

The Ingress Operator uses the clusterNetwork[].cidr from the network/cluster status to determine
what mode (IPv4, IPv6, or dual stack) the managed ingress controller (router) should operate in. For
example, if clusterNetwork contains only a v6 cidr, then the ingress controller operate in IPv6-only

252

https://github.com/openshift/cluster-etcd-operator/
https://github.com/openshift/cluster-ingress-operator

CHAPTER 6. CLUSTER OPERATORS REFERENCE

mode.

In the following example, ingress controllers managed by the Ingress Operator will run in IPv4-only mode
because only one cluster network exists and the network is an IPv4 cidr:

I $ oc get network/cluster -o jsonpath='{.status.clusterNetwork[*]}'
Example output

I map|cidr:10.128.0.0/14 hostPrefix:23]

6.18. INSIGHTS OPERATOR

Purpose

The Insights Operator gathers OpenShift Container Platform configuration data and sends it to Red
Hat. The data is used to produce proactive insights recommendations about potential issues that a
cluster might be exposed to. These insights are communicated to cluster administrators through
Insights Advisor on console.redhat.com.

Project
insights-operator

Configuration
No configuration is required.

Notes
Insights Operator compliments OpenShift Container Platform Telemetry.

Additional resources

® About remote health monitoring for details about Insights Operator and Telemetry

6.19. KUBERNETES API SERVER OPERATOR

Purpose

The Kubernetes API Server Operator manages and updates the Kubernetes APl server deployed on top
of OpenShift Container Platform. The Operator is based on the OpenShift library-go framework and it is
installed using the Cluster Version Operator (CVO).

Project
openshift-kube-apiserver-operator

CRDs
e kubeapiservers.operator.openshift.io

o Scope: Cluster
o CR: kubeapiserver
o Validation: Yes

Configuration objects

253

https://console.redhat.com/
https://github.com/openshift/insights-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/support/#about-remote-health-monitoring
https://github.com/openshift/cluster-kube-apiserver-operator

OpenShift Container Platform 4.7 Operators

I $ oc edit kubeapiserver

6.20. KUBERNETES CONTROLLER MANAGER OPERATOR
Purpose
The Kubernetes Controller Manager Operator manages and updates the Kubernetes Controller
Manager deployed on top of OpenShift Container Platform. The Operator is based on OpenShift
library-go framework and it is installed via the Cluster Version Operator (CVO).
It contains the following components:

® Operator

® Bootstrap manifest renderer

® |nstaller based on static pods

e Configuration observer

By default, the Operator exposes Prometheus metrics through the metrics service.

Project
cluster-kube-controller-manager-operator

6.21. KUBERNETES SCHEDULER OPERATOR

Purpose
The Kubernetes Scheduler Operator manages and updates the Kubernetes Scheduler deployed on top
of OpenShift Container Platform. The Operator is based on the OpenShift Container Platform library-
go framework and it is installed with the Cluster Version Operator (CVO).
The Kubernetes Scheduler Operator contains the following components:

® Operator

® Bootstrap manifest renderer

® |nstaller based on static pods

e Configuration observer

By default, the Operator exposes Prometheus metrics through the metrics service.

Project
cluster-kube-scheduler-operator

Configuration
The configuration for the Kubernetes Scheduler is the result of merging:

® 3 default configuration.
® anobserved configuration from the spec schedulers.config.openshift.io.

All of these are sparse configurations, invalidated JSON snippets which are merged to form a valid
configuration at the end.

254

https://github.com/openshift/cluster-kube-controller-manager-operator
https://github.com/openshift/cluster-kube-scheduler-operator

CHAPTER 6. CLUSTER OPERATORS REFERENCE

6.22. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR

Purpose

The Kubernetes Storage Version Migrator Operator detects changes of the default storage version,
creates migration requests for resource types when the storage version changes, and processes
migration requests.

Project
cluster-kube-storage-version-migrator-operator

6.23. MACHINE API OPERATOR

Purpose

The Machine API Operator manages the lifecycle of specific purpose custom resource definitions
(CRD), controllers, and RBAC objects that extend the Kubernetes API. This declares the desired state of
machines in a cluster.

Project
machine-api-operator

CRDs
o MachineSet
e Machine

e MachineHealthCheck

6.24. MACHINE CONFIG OPERATOR

Purpose
The Machine Config Operator manages and applies configuration and updates of the base operating
system and container runtime, including everything between the kernel and kubelet.
There are four components:
e machine-config-server: Provides Ignition configuration to new machines joining the cluster.
e machine-config-controller: Coordinates the upgrade of machines to the desired
configurations defined by a MachineConfig object. Options are provided to control the

upgrade for sets of machines individually.

e machine-config-daemon: Applies new machine configuration during update. Validates and
verifies the state of the machine to the requested machine configuration.

® machine-config: Provides a complete source of machine configuration at installation, first start
up, and updates for a machine.

Project
openshift-machine-config-operator

6.25. MARKETPLACE OPERATOR

Purpose
The Marketplace Operator is a conduit to bring off-cluster Operators to your cluster.

255

https://github.com/openshift/cluster-kube-storage-version-migrator-operator
https://github.com/openshift/machine-api-operator
https://github.com/openshift/machine-config-operator

OpenShift Container Platform 4.7 Operators

Project
operator-marketplace

6.26. NODE TUNING OPERATOR

Purpose

The Node Tuning Operator helps you manage node-level tuning by orchestrating the Tuned daemon.
The majority of high-performance applications require some level of kernel tuning. The Node Tuning
Operator provides a unified management interface to users of node-level sysctls and more flexibility to
add custom tuning specified by user needs.

The Operator manages the containerized Tuned daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized Tuned
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized Tuned daemon are rolled back on an event that
triggers a profile change or when the containerized Tuned daemon is terminated gracefully by receiving

and handling a termination signal.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

Project
cluster-node-tuning-operator

6.27. OPENSHIFT API SERVER OPERATOR

Purpose
The OpenShift API Server Operator installs and maintains the openshift-apiserver on a cluster.

Project
openshift-apiserver-operator

CRDs
e openshiftapiservers.operator.openshift.io

o Scope: Cluster
o CR: openshiftapiserver

o Validation: Yes

6.28. OPERATOR LIFECYCLE MANAGER OPERATORS

Purpose

Operator Lifecycle Manager (OLM) helps users install, update, and manage the lifecycle of Kubernetes
native applications (Operators) and their associated services running across their OpenShift Container
Platform clusters. It is part of the Operator Framework, an open source toolkit designed to manage
Operators in an effective, automated, and scalable way.

256

https://github.com/operator-framework/operator-marketplace
https://github.com/openshift/cluster-node-tuning-operator
https://github.com/openshift/cluster-openshift-apiserver-operator
https://operatorframework.io/

CHAPTER 6. CLUSTER OPERATORS REFERENCE

Figure 6.1. Operator Lifecycle Manager workflow

Operators Lifecycle Manager

Install and update across clusters
Namespace A Namespace B

Operator manifest Cluster catalog Apps Apps

OLM runs by default in OpenShift Container Platform 4.7, which aids cluster administrators in installing,
upgrading, and granting access to Operators running on their cluster. The OpenShift Container
Platform web console provides management screens for cluster administrators to install Operators, as
well as grant specific projects access to use the catalog of Operators available on the cluster.

For developers, a self-service experience allows provisioning and configuring instances of databases,
monitoring, and big data services without having to be subject matter experts, because the Operator
has that knowledge baked into it.

CRDs
Operator Lifecycle Manager (OLM) is composed of two Operators: the OLM Operator and the Catalog
Operator.

Each of these Operators is responsible for managing the custom resource definitions (CRDs) that are
the basis for the OLM framework:

Table 6.1. CRDs managed by OLM and Catalog Operators

Resource Description

ClusterServic csv OLM Application metadata: name, version, icon, required resources,

eVersion installation, and so on.

(CSV)

InstallPlan ip Catal Calculated list of resources to be created to automatically install or
og upgrade a CSV.

CatalogSour cats Catal Arepository of CSVs, CRDs, and packages that define an application.
ce rc og

Subscription sub Catal Used to keep CSVs up to date by tracking a channel in a package.
og

OperatorGro og OLM Configures all Operators deployed in the same namespace as the
up OperatorGroup object to watch for their custom resource (CR) in a list
of namespaces or cluster-wide.

257

OpenShift Container Platform 4.7 Operators

Each of these Operators is also responsible for creating the following resources:

Table 6.2. Resources created by OLM and Catalog Operators

Resource Owner

Deployments OLM
ServiceAccounts

(Cluster)Roles

(Cluster)RoleBindings

CustomResourceDefinitions (CRDs) Catalog

ClusterServiceVersions

OLM Operator

The OLM Operator is responsible for deploying applications defined by CSV resources after the
required resources specified in the CSV are present in the cluster.

The OLM Operator is not concerned with the creation of the required resources; you can choose to
manually create these resources using the CLI or using the Catalog Operator. This separation of concern
allows users incremental buy-in in terms of how much of the OLM framework they choose to leverage
for their application.

The OLM Operator uses the following workflow:

1. Watch for cluster service versions (CSVs) in a namespace and check that requirements are met.

2. If requirements are met, run the install strategy for the CSV.

NOTE

A CSV must be an active member of an Operator group for the install strategy to
run.

Catalog Operator

The Catalog Operator is responsible for resolving and installing cluster service versions (CSVs) and the
required resources they specify. It is also responsible for watching catalog sources for updates to
packages in channels and upgrading them, automatically if desired, to the latest available versions.

To track a package in a channel, you can create a Subscription object configuring the desired package,
channel, and the CatalogSource object you want to use for pulling updates. When updates are found,
an appropriate InstallPlan object is written into the namespace on behalf of the user.

The Catalog Operator uses the following workflow:

1. Connect to each catalog source in the cluster.

2. Watch for unresolved install plans created by a user, and if found:

258

CHAPTER 6. CLUSTER OPERATORS REFERENCE

a. Find the CSV matching the name requested and add the CSV as a resolved resource.
b. For each managed or required CRD, add the CRD as a resolved resource.
c. Foreachrequired CRD, find the CSV that manages it.

3. Watch for resolved install plans and create all of the discovered resources for it, if approved by a
user or automatically.

4. Watch for catalog sources and subscriptions and create install plans based on them.

Catalog Registry

The Catalog Registry stores CSVs and CRDs for creation in a cluster and stores metadata about
packages and channels.

A package manifest is an entry in the Catalog Registry that associates a package identity with sets of
CSVs. Within a package, channels point to a particular CSV. Because CSVs explicitly reference the CSV
that they replace, a package manifest provides the Catalog Operator with all of the information that is
required to update a CSV to the latest version in a channel, stepping through each intermediate version.

Additional resources

® Understanding Operator Lifecycle Manager (OLM)

6.29. OPENSHIFT SERVICE CA OPERATOR

Purpose
The OpenShift Service CA Operator mints and manages serving certificates for Kubernetes services.

Project
openshift-service-ca-operator

6.30. VSPHERE PROBLEM DETECTOR OPERATOR
Purpose

The vSphere Problem Detector Operator checks clusters that are deployed on vSphere for common
installation and misconfiguration issues that are related to storage.

NOTE

The vSphere Problem Detector Operator is only started by the Cluster Storage Operator
when the Cluster Storage Operator detects that the cluster is deployed on vSphere.

Configuration
No configuration is required.

Notes

® The Operator supports OpenShift Container Platform installations on vSphere.
® The Operator uses the vsphere-cloud-credentials to communicate with vSphere.
® The Operator performs checks that are related to storage.

Additional resources

259

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/operators/#olm-understanding-olm
https://github.com/openshift/service-ca-operator

OpenShift Container Platform 4.7 Operators

® Using the vSphere Problem Detector Operator

260

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html-single/installing/#using-vsphere-problem-detector-operator

	Table of Contents
	CHAPTER 1. OPERATORS OVERVIEW
	1.1. FOR DEVELOPERS
	1.2. FOR ADMINISTRATORS
	1.3. NEXT STEPS

	CHAPTER 2. UNDERSTANDING OPERATORS
	2.1. WHAT ARE OPERATORS?
	2.1.1. Why use Operators?
	2.1.2. Operator Framework
	2.1.3. Operator maturity model

	2.2. OPERATOR FRAMEWORK PACKAGING FORMATS
	2.2.1. Bundle Format
	2.2.1.1. Manifests
	2.2.1.2. Annotations
	2.2.1.3. Dependencies file
	2.2.1.4. About opm

	2.2.2. Package Manifest Format

	2.3. OPERATOR FRAMEWORK GLOSSARY OF COMMON TERMS
	2.3.1. Common Operator Framework terms
	2.3.1.1. Bundle
	2.3.1.2. Bundle image
	2.3.1.3. Catalog source
	2.3.1.4. Catalog image
	2.3.1.5. Channel
	2.3.1.6. Channel head
	2.3.1.7. Cluster service version
	2.3.1.8. Dependency
	2.3.1.9. Index image
	2.3.1.10. Install plan
	2.3.1.11. Operator group
	2.3.1.12. Package
	2.3.1.13. Registry
	2.3.1.14. Subscription
	2.3.1.15. Update graph

	2.4. OPERATOR LIFECYCLE MANAGER (OLM)
	2.4.1. Operator Lifecycle Manager concepts and resources
	2.4.1.1. What is Operator Lifecycle Manager?
	2.4.1.2. OLM resources

	2.4.2. Operator Lifecycle Manager architecture
	2.4.2.1. Component responsibilities
	2.4.2.2. OLM Operator
	2.4.2.3. Catalog Operator
	2.4.2.4. Catalog Registry

	2.4.3. Operator Lifecycle Manager workflow
	2.4.3.1. Operator installation and upgrade workflow in OLM

	2.4.4. Operator Lifecycle Manager dependency resolution
	2.4.4.1. About dependency resolution
	2.4.4.2. Dependencies file
	2.4.4.3. Dependency preferences
	2.4.4.4. CRD upgrades
	2.4.4.5. Dependency best practices
	2.4.4.6. Dependency caveats
	2.4.4.7. Example dependency resolution scenarios

	2.4.5. Operator groups
	2.4.5.1. About Operator groups
	2.4.5.2. Operator group membership
	2.4.5.3. Target namespace selection
	2.4.5.4. Operator group CSV annotations
	2.4.5.5. Provided APIs annotation
	2.4.5.6. Role-based access control
	2.4.5.7. Copied CSVs
	2.4.5.8. Static Operator groups
	2.4.5.9. Operator group intersection
	2.4.5.10. Limitations for multi-tenant Operator management
	2.4.5.11. Troubleshooting Operator groups

	2.4.6. Operator conditions
	2.4.6.1. About Operator conditions
	2.4.6.2. Supported conditions
	2.4.6.3. Additional resources

	2.4.7. Operator Lifecycle Manager metrics
	2.4.7.1. Exposed metrics

	2.4.8. Webhook management in Operator Lifecycle Manager
	2.4.8.1. Additional resources

	2.5. UNDERSTANDING OPERATORHUB
	2.5.1. About OperatorHub
	2.5.2. OperatorHub architecture
	2.5.2.1. OperatorHub custom resource

	2.5.3. Additional resources

	2.6. RED HAT-PROVIDED OPERATOR CATALOGS
	2.6.1. About Operator catalogs
	2.6.2. About Red Hat-provided Operator catalogs

	2.7. CRDS
	2.7.1. Extending the Kubernetes API with custom resource definitions
	2.7.1.1. Custom resource definitions
	2.7.1.2. Creating a custom resource definition
	2.7.1.3. Creating cluster roles for custom resource definitions
	2.7.1.4. Creating custom resources from a file
	2.7.1.5. Inspecting custom resources

	2.7.2. Managing resources from custom resource definitions
	2.7.2.1. Custom resource definitions
	2.7.2.2. Creating custom resources from a file
	2.7.2.3. Inspecting custom resources

	CHAPTER 3. USER TASKS
	3.1. CREATING APPLICATIONS FROM INSTALLED OPERATORS
	3.1.1. Creating an etcd cluster using an Operator

	3.2. INSTALLING OPERATORS IN YOUR NAMESPACE
	3.2.1. Prerequisites
	3.2.2. Operator installation with OperatorHub
	3.2.3. Installing from OperatorHub using the web console
	3.2.4. Installing from OperatorHub using the CLI
	3.2.5. Installing a specific version of an Operator

	CHAPTER 4. ADMINISTRATOR TASKS
	4.1. ADDING OPERATORS TO A CLUSTER
	4.1.1. Operator installation with OperatorHub
	4.1.2. Installing from OperatorHub using the web console
	4.1.3. Installing from OperatorHub using the CLI
	4.1.4. Installing a specific version of an Operator
	4.1.5. Pod placement of Operator workloads

	4.2. UPGRADING INSTALLED OPERATORS
	4.2.1. Changing the update channel for an Operator
	4.2.2. Manually approving a pending Operator upgrade

	4.3. DELETING OPERATORS FROM A CLUSTER
	4.3.1. Deleting Operators from a cluster using the web console
	4.3.2. Deleting Operators from a cluster using the CLI
	4.3.3. Refreshing failing subscriptions

	4.4. CONFIGURING PROXY SUPPORT IN OPERATOR LIFECYCLE MANAGER
	4.4.1. Overriding proxy settings of an Operator
	4.4.2. Injecting a custom CA certificate

	4.5. VIEWING OPERATOR STATUS
	4.5.1. Operator subscription condition types
	4.5.2. Viewing Operator subscription status by using the CLI
	4.5.3. Viewing Operator catalog source status by using the CLI

	4.6. MANAGING OPERATOR CONDITIONS
	4.6.1. Overriding Operator conditions
	4.6.2. Updating your Operator to use Operator conditions
	4.6.2.1. Setting defaults

	4.6.3. Additional resources

	4.7. ALLOWING NON-CLUSTER ADMINISTRATORS TO INSTALL OPERATORS
	4.7.1. Understanding Operator installation policy
	4.7.1.1. Installation scenarios
	4.7.1.2. Installation workflow

	4.7.2. Scoping Operator installations
	4.7.2.1. Fine-grained permissions

	4.7.3. Troubleshooting permission failures

	4.8. MANAGING CUSTOM CATALOGS
	4.8.1. Custom catalogs using the Bundle Format
	4.8.1.1. Prerequisites
	4.8.1.2. Creating an index image
	4.8.1.3. Creating a catalog from an index image
	4.8.1.4. Updating an index image
	4.8.1.5. Pruning an index image

	4.8.2. Custom catalogs using the Package Manifest Format
	4.8.2.1. Building a Package Manifest Format catalog image
	4.8.2.2. Mirroring a Package Manifest Format catalog image
	4.8.2.3. Updating a Package Manifest Format catalog image
	4.8.2.4. Testing a Package Manifest Format catalog image

	4.8.3. Accessing images for Operators from private registries
	4.8.4. Disabling the default OperatorHub sources
	4.8.5. Removing custom catalogs

	4.9. USING OPERATOR LIFECYCLE MANAGER ON RESTRICTED NETWORKS
	4.9.1. Prerequisites
	4.9.2. Disabling the default OperatorHub sources
	4.9.3. Pruning an index image
	4.9.4. Mirroring an Operator catalog
	4.9.5. Creating a catalog from an index image
	4.9.6. Updating an index image

	CHAPTER 5. DEVELOPING OPERATORS
	5.1. ABOUT THE OPERATOR SDK
	5.1.1. What are Operators?
	5.1.2. Development workflow
	5.1.3. Additional resources

	5.2. INSTALLING THE OPERATOR SDK CLI
	5.2.1. Installing the Operator SDK CLI

	5.3. GO-BASED OPERATORS
	5.3.1. Getting started with Operator SDK for Go-based Operators
	5.3.1.1. Prerequisites
	5.3.1.2. Creating and deploying Go-based Operators
	5.3.1.3. Next steps

	5.3.2. Operator SDK tutorial for Go-based Operators
	5.3.2.1. Prerequisites
	5.3.2.2. Creating a project
	5.3.2.3. Creating an API and controller
	5.3.2.4. Implementing the controller
	5.3.2.5. Running the Operator
	5.3.2.6. Creating a custom resource
	5.3.2.7. Additional resources

	5.3.3. Project layout for Go-based Operators
	5.3.3.1. Go-based project layout

	5.4. ANSIBLE-BASED OPERATORS
	5.4.1. Getting started with Operator SDK for Ansible-based Operators
	5.4.1.1. Prerequisites
	5.4.1.2. Creating and deploying Ansible-based Operators
	5.4.1.3. Next steps

	5.4.2. Operator SDK tutorial for Ansible-based Operators
	5.4.2.1. Prerequisites
	5.4.2.2. Creating a project
	5.4.2.3. Creating an API
	5.4.2.4. Modifying the manager
	5.4.2.5. Running the Operator
	5.4.2.6. Creating a custom resource
	5.4.2.7. Additional resources

	5.4.3. Project layout for Ansible-based Operators
	5.4.3.1. Ansible-based project layout

	5.4.4. Ansible support in Operator SDK
	5.4.4.1. Custom resource files
	5.4.4.2. watches.yaml file
	5.4.4.3. Extra variables sent to Ansible
	5.4.4.4. Ansible Runner directory

	5.4.5. Kubernetes Collection for Ansible
	5.4.5.1. Installing the Kubernetes Collection for Ansible
	5.4.5.2. Testing the Kubernetes Collection locally
	5.4.5.3. Next steps

	5.4.6. Using Ansible inside an Operator
	5.4.6.1. Custom resource files
	5.4.6.2. Testing an Ansible-based Operator locally
	5.4.6.3. Testing an Ansible-based Operator on the cluster
	5.4.6.4. Ansible logs

	5.4.7. Custom resource status management
	5.4.7.1. About custom resource status in Ansible-based Operators
	5.4.7.2. Tracking custom resource status manually

	5.5. HELM-BASED OPERATORS
	5.5.1. Getting started with Operator SDK for Helm-based Operators
	5.5.1.1. Prerequisites
	5.5.1.2. Creating and deploying Helm-based Operators
	5.5.1.3. Next steps

	5.5.2. Operator SDK tutorial for Helm-based Operators
	5.5.2.1. Prerequisites
	5.5.2.2. Creating a project
	5.5.2.3. Understanding the Operator logic
	5.5.2.4. Running the Operator
	5.5.2.5. Creating a custom resource
	5.5.2.6. Additional resources

	5.5.3. Project layout for Helm-based Operators
	5.5.3.1. Helm-based project layout

	5.5.4. Helm support in Operator SDK
	5.5.4.1. Helm charts

	5.6. DEFINING CLUSTER SERVICE VERSIONS (CSVS)
	5.6.1. How CSV generation works
	5.6.1.1. Generated files and resources
	5.6.1.2. Version management

	5.6.2. Manually-defined CSV fields
	5.6.2.1. Operator metadata annotations

	5.6.3. Enabling your Operator for restricted network environments
	5.6.4. Enabling your Operator for multiple architectures and operating systems
	5.6.4.1. Architecture and operating system support for Operators

	5.6.5. Setting a suggested namespace
	5.6.6. Enabling Operator conditions
	5.6.7. Defining webhooks
	5.6.7.1. Webhook considerations for OLM

	5.6.8. Understanding your custom resource definitions (CRDs)
	5.6.8.1. Owned CRDs
	5.6.8.2. Required CRDs
	5.6.8.3. CRD upgrades
	5.6.8.4. CRD templates
	5.6.8.5. Hiding internal objects
	5.6.8.6. Initializing required custom resources

	5.6.9. Understanding your API services
	5.6.9.1. Owned API services
	5.6.9.2. Required API services

	5.7. WORKING WITH BUNDLE IMAGES
	5.7.1. Bundling an Operator and deploying with Operator Lifecycle Manager
	5.7.2. Testing an Operator upgrade on Operator Lifecycle Manager
	5.7.3. Additional resources

	5.8. VALIDATING OPERATORS USING THE SCORECARD TOOL
	5.8.1. About the scorecard tool
	5.8.2. Scorecard configuration
	5.8.3. Built-in scorecard tests
	5.8.4. Running the scorecard tool
	5.8.5. Scorecard output
	5.8.6. Selecting tests
	5.8.7. Enabling parallel testing
	5.8.8. Custom scorecard tests

	5.9. CONFIGURING BUILT-IN MONITORING WITH PROMETHEUS
	5.9.1. Prometheus Operator support
	5.9.2. Metrics helper
	5.9.2.1. Modifying the metrics port

	5.9.3. Service monitors
	5.9.3.1. Creating service monitors

	5.10. CONFIGURING LEADER ELECTION
	5.10.1. Operator leader election examples
	5.10.1.1. Leader-for-life election
	5.10.1.2. Leader-with-lease election

	5.11. OPERATOR SDK CLI REFERENCE
	5.11.1. bundle
	5.11.1.1. validate

	5.11.2. cleanup
	5.11.3. completion
	5.11.4. create
	5.11.4.1. api

	5.11.5. generate
	5.11.5.1. bundle
	5.11.5.2. kustomize

	5.11.6. init
	5.11.7. run
	5.11.7.1. bundle
	5.11.7.2. bundle-upgrade

	5.11.8. scorecard

	CHAPTER 6. CLUSTER OPERATORS REFERENCE
	6.1. CLOUD CREDENTIAL OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects
	Additional resources

	6.2. CLUSTER AUTHENTICATION OPERATOR
	Purpose
	Project

	6.3. CLUSTER AUTOSCALER OPERATOR
	Purpose
	Project
	CRDs

	6.4. CLUSTER CONFIG OPERATOR
	Purpose
	Project

	6.5. CLUSTER CSI SNAPSHOT CONTROLLER OPERATOR
	Purpose
	Project

	6.6. CLUSTER IMAGE REGISTRY OPERATOR
	Purpose
	Project

	6.7. CLUSTER MACHINE APPROVER OPERATOR
	Purpose
	Project

	6.8. CLUSTER MONITORING OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects

	6.9. CLUSTER NETWORK OPERATOR
	Purpose

	6.10. OPENSHIFT CONTROLLER MANAGER OPERATOR
	Purpose
	Project

	6.11. CLUSTER SAMPLES OPERATOR
	Purpose
	Project

	6.12. CLUSTER STORAGE OPERATOR
	Purpose
	Project
	Configuration
	Notes

	6.13. CLUSTER VERSION OPERATOR
	Purpose
	Project
	Additional resources

	6.14. CONSOLE OPERATOR
	Purpose
	Project

	6.15. DNS OPERATOR
	Purpose
	Project

	6.16. ETCD CLUSTER OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects

	6.17. INGRESS OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects
	Notes

	6.18. INSIGHTS OPERATOR
	Purpose
	Project
	Configuration
	Notes
	Additional resources

	6.19. KUBERNETES API SERVER OPERATOR
	Purpose
	Project
	CRDs
	Configuration objects

	6.20. KUBERNETES CONTROLLER MANAGER OPERATOR
	Purpose
	Project

	6.21. KUBERNETES SCHEDULER OPERATOR
	Purpose
	Project
	Configuration

	6.22. KUBERNETES STORAGE VERSION MIGRATOR OPERATOR
	Purpose
	Project

	6.23. MACHINE API OPERATOR
	Purpose
	Project
	CRDs

	6.24. MACHINE CONFIG OPERATOR
	Purpose
	Project

	6.25. MARKETPLACE OPERATOR
	Purpose
	Project

	6.26. NODE TUNING OPERATOR
	Purpose
	Project

	6.27. OPENSHIFT API SERVER OPERATOR
	Purpose
	Project
	CRDs

	6.28. OPERATOR LIFECYCLE MANAGER OPERATORS
	Purpose
	CRDs
	OLM Operator
	Catalog Operator
	Catalog Registry
	Additional resources

	6.29. OPENSHIFT SERVICE CA OPERATOR
	Purpose
	Project

	6.30. VSPHERE PROBLEM DETECTOR OPERATOR
	Purpose
	Configuration
	Notes
	Additional resources

