
OpenShift Container Platform 4.6

Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in
production environments

Last Updated: 2022-10-04

OpenShift Container Platform 4.6 Scalability and performance

Scaling your OpenShift Container Platform cluster and tuning performance in production
environments

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for scaling your cluster and optimizing the performance of
your OpenShift Container Platform environment.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. RECOMMENDED PRACTICES FOR INSTALLING LARGE CLUSTERS
1.1. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE CLUSTERS

CHAPTER 2. RECOMMENDED HOST PRACTICES
2.1. RECOMMENDED NODE HOST PRACTICES
2.2. CREATING A KUBELETCONFIG CRD TO EDIT KUBELET PARAMETERS
2.3. CONTROL PLANE NODE SIZING

2.3.1. Increasing the flavor size of the Amazon Web Services (AWS) master instances
2.4. RECOMMENDED ETCD PRACTICES
2.5. DEFRAGMENTING ETCD DATA
2.6. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE COMPONENTS
2.7. MOVING THE MONITORING SOLUTION
2.8. MOVING THE DEFAULT REGISTRY
2.9. MOVING THE ROUTER
2.10. INFRASTRUCTURE NODE SIZING
2.11. ADDITIONAL RESOURCES

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES
3.1. RECOMMENDED PRACTICES FOR SCALING THE CLUSTER
3.2. MODIFYING A MACHINE SET
3.3. ABOUT MACHINE HEALTH CHECKS

3.3.1. MachineHealthChecks on Bare Metal
3.3.2. Limitations when deploying machine health checks

3.4. SAMPLE MACHINEHEALTHCHECK RESOURCE
3.4.1. Short-circuiting machine health check remediation

3.4.1.1. Setting maxUnhealthy by using an absolute value
3.4.1.2. Setting maxUnhealthy by using percentages

3.5. CREATING A MACHINEHEALTHCHECK RESOURCE

CHAPTER 4. USING THE NODE TUNING OPERATOR
4.1. ABOUT THE NODE TUNING OPERATOR
4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION
4.3. DEFAULT PROFILES SET ON A CLUSTER
4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED
4.5. CUSTOM TUNING SPECIFICATION
4.6. CUSTOM TUNING EXAMPLE
4.7. SUPPORTED TUNED DAEMON PLUG-INS

CHAPTER 5. USING CLUSTER LOADER
5.1. INSTALLING CLUSTER LOADER
5.2. RUNNING CLUSTER LOADER
5.3. CONFIGURING CLUSTER LOADER

5.3.1. Example Cluster Loader configuration file
5.3.2. Configuration fields

5.4. KNOWN ISSUES

CHAPTER 6. USING CPU MANAGER
6.1. SETTING UP CPU MANAGER

CHAPTER 7. USING TOPOLOGY MANAGER
7.1. TOPOLOGY MANAGER POLICIES
7.2. SETTING UP TOPOLOGY MANAGER
7.3. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

6
6

7
7
7

10
11

12
13
16
16
17
19

20
21

22
22
22
23
24
24
25
26
27
27
27

29
29
29
30
31
32
36
37

39
39
39
39
40
41

44

45
45

50
50
51
51

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 8. SCALING THE CLUSTER MONITORING OPERATOR
8.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS
8.2. CONFIGURING CLUSTER MONITORING

CHAPTER 9. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
9.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
9.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER
MAXIMUMS ARE TESTED
9.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
9.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

CHAPTER 10. OPTIMIZING STORAGE
10.1. AVAILABLE PERSISTENT STORAGE OPTIONS
10.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

10.2.1. Specific application storage recommendations
10.2.1.1. Registry
10.2.1.2. Scaled registry
10.2.1.3. Metrics
10.2.1.4. Logging
10.2.1.5. Applications

10.2.2. Other specific application storage recommendations
10.3. DATA STORAGE MANAGEMENT

CHAPTER 11. OPTIMIZING ROUTING
11.1. BASELINE INGRESS CONTROLLER (ROUTER) PERFORMANCE
11.2. INGRESS CONTROLLER (ROUTER) PERFORMANCE OPTIMIZATIONS

CHAPTER 12. OPTIMIZING NETWORKING
12.1. OPTIMIZING THE MTU FOR YOUR NETWORK
12.2. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE CLUSTERS
12.3. IMPACT OF IPSEC

CHAPTER 13. MANAGING BARE METAL HOSTS
13.1. ABOUT BARE METAL HOSTS AND NODES
13.2. MAINTAINING BARE METAL HOSTS

13.2.1. Adding a bare metal host to the cluster using the web console
13.2.2. Adding a bare metal host to the cluster using YAML in the web console
13.2.3. Automatically scaling machines to the number of available bare metal hosts

CHAPTER 14. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
14.1. WHAT HUGE PAGES DO
14.2. HOW HUGE PAGES ARE CONSUMED BY APPS
14.3. CONFIGURING HUGE PAGES

14.3.1. At boot time

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES
15.1. UNDERSTANDING LOW LATENCY
15.2. INSTALLING THE PERFORMANCE ADDON OPERATOR

15.2.1. Installing the Operator using the CLI
15.2.2. Installing the Performance Addon Operator using the web console

15.3. UPGRADING PERFORMANCE ADDON OPERATOR
15.3.1. About upgrading Performance Addon Operator

15.3.1.1. How Performance Addon Operator upgrades affect your cluster
15.3.1.2. Upgrading Performance Addon Operator to the next minor version

15.3.2. Monitoring upgrade status

53
53
54

56
56

58
58
59

63
63
64
64
65
65
65
66
66
66
66

68
68
69

70
70
71
71

72
72
72
72
73
74

76
76
76
77
77

80
80
80
80
82
83
83
83
83
84

OpenShift Container Platform 4.6 Scalability and performance

2

. .

15.4. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS
15.4.1. Known limitations for real-time
15.4.2. Provisioning a worker with real-time capabilities
15.4.3. Verifying the real-time kernel installation
15.4.4. Creating a workload that works in real-time
15.4.5. Creating a pod with a QoS class of Guaranteed
15.4.6. Optional: Disabling CPU load balancing for DPDK
15.4.7. Assigning a proper node selector
15.4.8. Scheduling a workload onto a worker with real-time capabilities

15.5. CONFIGURING HUGE PAGES
15.6. ALLOCATING MULTIPLE HUGE PAGE SIZES
15.7. RESTRICTING CPUS FOR INFRA AND APPLICATION CONTAINERS
15.8. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE
15.9. PERFORMING END-TO-END TESTS FOR PLATFORM VERIFICATION

15.9.1. Prerequisites
15.9.2. Running the tests
15.9.3. Image parameters

15.9.3.1. Ginkgo parameters
15.9.3.2. Available features

15.9.4. Dry run
15.9.5. Disconnected mode

15.9.5.1. Mirroring the images to a custom registry accessible from the cluster
15.9.5.2. Instruct the tests to consume those images from a custom registry
15.9.5.3. Mirroring to the cluster internal registry
15.9.5.4. Mirroring a different set of images

15.9.6. Discovery mode
15.9.6.1. Required environment configuration prerequisites
15.9.6.2. Limiting the nodes used during tests
15.9.6.3. Using a single performance profile
15.9.6.4. Disabling the performance profile cleanup

15.9.7. Troubleshooting
15.9.8. Test reports

15.9.8.1. JUnit test output
15.9.8.2. Test failure report
15.9.8.3. A note on podman
15.9.8.4. Running on OpenShift Container Platform 4.4
15.9.8.5. Using a single performance profile

15.9.9. Impacts on the cluster
15.9.9.1. SCTP
15.9.9.2. SR-IOV
15.9.9.3. PTP
15.9.9.4. Performance
15.9.9.5. DPDK
15.9.9.6. Cleaning up

15.10. DEBUGGING LOW LATENCY CNF TUNING STATUS
15.10.1. Machine config pools

15.11. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR RED HAT SUPPORT
15.11.1. About the must-gather tool
15.11.2. About collecting low latency tuning data
15.11.3. Gathering data about specific features

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL
VRAN DEDICATED ACCELERATOR ACC100

85
85
85
87
87
87
89
89
90
90
91
91

93
94
95
96
96
96
96
97
97
97
97
97
99
99
99

100
101
101
102
102
102
102
102
102
103
103
103
103
104
104
104
104
104
105
106
107
107
107

109

Table of Contents

3

16.1. UNDERSTANDING INTEL HARDWARE ACCELERATOR CARDS FOR OPENSHIFT CONTAINER PLATFORM

Intel FPGA PAC N3000
vRAN Dedicated Accelerator ACC100

16.2. INSTALLING THE OPENNESS OPERATOR FOR INTEL FPGA PAC N3000
16.2.1. Installing the Operator by using the CLI
16.2.2. Installing the OpenNESS Operator for Intel FPGA PAC N3000 Operator by using the web console

16.3. PROGRAMMING THE OPENNESS OPERATOR FOR INTEL FPGA PAC N3000
16.3.1. Programming the N3000 with a vRAN bitstream

16.4. INSTALLING THE OPENNESS SR-IOV OPERATOR FOR WIRELESS FEC ACCELERATORS
16.4.1. Installing the OpenNESS SR-IOV Operator for Wireless FEC Accelerators by using the CLI
16.4.2. Installing the OpenNESS SR-IOV Operator for Wireless FEC Accelerators by using the web console
16.4.3. Configuring the SR-IOV-FEC Operator for Intel FPGA PAC N3000
16.4.4. Configuring the SR-IOV-FEC Operator for the Intel vRAN Dedicated Accelerator ACC100
16.4.5. Verifying application pod access and FPGA usage on OpenNESS

16.5. ADDITIONAL RESOURCES

109
109
109
109
110
111

112
112
118
119
121
122
129
136
140

OpenShift Container Platform 4.6 Scalability and performance

4

Table of Contents

5

CHAPTER 1. RECOMMENDED PRACTICES FOR INSTALLING
LARGE CLUSTERS

Apply the following practices when installing large clusters or scaling clusters to larger node counts.

1.1. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE
CLUSTERS

When installing large clusters or scaling the cluster to larger node counts, set the cluster network cidr
accordingly in your install-config.yaml file before you install the cluster:

The default cluster network cidr 10.128.0.0/14 cannot be used if the cluster size is more than 500
nodes. It must be set to 10.128.0.0/12 or 10.128.0.0/10 to get to larger node counts beyond 500 nodes.

networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineCIDR: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16

OpenShift Container Platform 4.6 Scalability and performance

6

CHAPTER 2. RECOMMENDED HOST PRACTICES
This topic provides recommended host practices for OpenShift Container Platform.

IMPORTANT

These guidelines apply to OpenShift Container Platform with software-defined
networking (SDN), not Open Virtual Network (OVN).

2.1. RECOMMENDED NODE HOST PRACTICES

The OpenShift Container Platform node configuration file contains important options. For example, two
parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and
maxPods.

When both options are in use, the lower of the two values limits the number of pods on a node.
Exceeding these values can result in:

Increased CPU utilization.

Slow pod scheduling.

Potential out-of-memory scenarios, depending on the amount of memory in the node.

Exhausting the pool of IP addresses.

Resource overcommitting, leading to poor user application performance.

IMPORTANT

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

podsPerCore sets the number of pods the node can run based on the number of processor cores on
the node. For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum
number of pods allowed on the node will be 40.

Setting podsPerCore to 0 disables this limit. The default is 0. podsPerCore cannot exceed maxPods.

maxPods sets the number of pods the node can run to a fixed value, regardless of the properties of the
node.

2.2. CREATING A KUBELETCONFIG CRD TO EDIT KUBELET
PARAMETERS

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited.

kubeletConfig:
 podsPerCore: 10

 kubeletConfig:
 maxPods: 250

CHAPTER 2. RECOMMENDED HOST PRACTICES

7

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited.
However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC).
This allows you to create a KubeletConfig custom resource (CR) to edit the kubelet parameters.

NOTE

As the fields in the kubeletConfig object are passed directly to the kubelet from
upstream Kubernetes, the kubelet validates those values directly. Invalid values in the
kubeletConfig object might cause cluster nodes to become unavailable. For valid values,
see the Kubernetes documentation.

Procedure

1. View the available machine configuration objects that you can select:

By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

2. To check the current value of max pods per node, run:

Look for value: pods: <value>.

For example:

Example output

3. To set the max pods per node on the worker nodes, create a custom resource file that contains
the kubelet configuration. For example, change-maxPods-cr.yaml:

The rate at which the kubelet talks to the API server depends on queries per second (QPS) and

$ oc get machineconfig

oc describe node <node-ip> | grep Allocatable -A6

oc describe node ip-172-31-128-158.us-east-2.compute.internal | grep Allocatable -A6

Allocatable:
 attachable-volumes-aws-ebs: 25
 cpu: 3500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 15341844Ki
 pods: 250

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: large-pods
 kubeletConfig:
 maxPods: 500

OpenShift Container Platform 4.6 Scalability and performance

8

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

burst values. The default values, 50 for kubeAPIQPS and 100 for kubeAPIBurst, are good
enough if there are limited pods running on each node. Updating the kubelet QPS and burst
rates is recommended if there are enough CPU and memory resources on the node:

a. Update the machine config pool for workers with the label:

b. Create the KubeletConfig object:

c. Verify that the KubeletConfig object is created:

This should return set-max-pods.

Depending on the number of worker nodes in the cluster, wait for the worker nodes to be
rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15
minutes.

4. Check for maxPods changing for the worker nodes:

a. Verify the change by running:

This should show a status of True and type:Success

Procedure

By default, only one machine is allowed to be unavailable when applying the kubelet-related
configuration to the available worker nodes. For a large cluster, it can take a long time for the
configuration change to be reflected. At any time, you can adjust the number of machines that are
updating to speed up the process.

1. Edit the worker machine config pool:

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: large-pods
 kubeletConfig:
 maxPods: <pod_count>
 kubeAPIBurst: <burst_rate>
 kubeAPIQPS: <QPS>

$ oc label machineconfigpool worker custom-kubelet=large-pods

$ oc create -f change-maxPods-cr.yaml

$ oc get kubeletconfig

$ oc describe node

$ oc get kubeletconfigs set-max-pods -o yaml

CHAPTER 2. RECOMMENDED HOST PRACTICES

9

2. Set maxUnavailable to the desired value.

IMPORTANT

When setting the value, consider the number of worker nodes that can be
unavailable without affecting the applications running on the cluster.

2.3. CONTROL PLANE NODE SIZING

The control plane node resource requirements depend on the number of nodes in the cluster. The
following control plane node size recommendations are based on the results of control plane density
focused testing. The control plane tests create the following objects across the cluster in each of the
namespaces depending on the node counts:

12 image streams

3 build configurations

6 builds

1 deployment with 2 pod replicas mounting two secrets each

2 deployments with 1 pod replica mounting two secrets

3 services pointing to the previous deployments

3 routes pointing to the previous deployments

10 secrets, 2 of which are mounted by the previous deployments

10 config maps, 2 of which are mounted by the previous deployments

Number of worker
nodes

Cluster load
(namespaces)

CPU cores Memory (GB)

25 500 4 16

100 1000 8 32

250 4000 16 96

On a large and dense cluster with three masters or control plane nodes, the CPU and memory usage will
spike up when one of the nodes is stopped, rebooted or fails. The failures can be due to unexpected
issues with power, network or underlying infrastructure in addition to intentional cases where the cluster
is restarted after shutting it down to save costs. The remaining two control plane nodes must handle the
load in order to be highly available which leads to increase in the resource usage. This is also expected
during upgrades because the masters are cordoned, drained, and rebooted serially to apply the

$ oc edit machineconfigpool worker

spec:
 maxUnavailable: <node_count>

OpenShift Container Platform 4.6 Scalability and performance

10

operating system updates, as well as the control plane Operators update. To avoid cascading failures,
keep the overall CPU and memory resource usage on the control plane nodes to at most 60% of all
available capacity to handle the resource usage spikes. Increase the CPU and memory on the control
plane nodes accordingly to avoid potential downtime due to lack of resources.

IMPORTANT

The node sizing varies depending on the number of nodes and object counts in the
cluster. It also depends on whether the objects are actively being created on the cluster.
During object creation, the control plane is more active in terms of resource usage
compared to when the objects are in the running phase.

IMPORTANT

If you used an installer-provisioned infrastructure installation method, you cannot modify
the control plane node size in a running OpenShift Container Platform 4.6 cluster.
Instead, you must estimate your total node count and use the suggested control plane
node size during installation.

IMPORTANT

The recommendations are based on the data points captured on OpenShift Container
Platform clusters with OpenShiftSDN as the network plug-in.

NOTE

In OpenShift Container Platform 4.6, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. The sizes are determined taking that into consideration.

2.3.1. Increasing the flavor size of the Amazon Web Services (AWS) master instances

When you have overloaded AWS master nodes in a cluster and the master nodes require more
resources, you can increase the flavor size of the master instances.

NOTE

It is recommended to backup etcd before increasing the flavor size of the AWS master
instances.

Prerequisites

You have an IPI (installer-provisioned infrastructure) or UPI (user-provisioned infrastructure)
cluster on AWS.

Procedure

1. Open the AWS console, fetch the master instances.

2. Stop one master instance.

3. Select the stopped instance, and click Actions → Instance Settings → Change instance type.

4. Change the instance to a larger type, ensuring that the type is the same base as the previous

CHAPTER 2. RECOMMENDED HOST PRACTICES

11

4. Change the instance to a larger type, ensuring that the type is the same base as the previous
selection, and apply changes. For example, you can change m5.xlarge to m5.2xlarge or
m5.4xlarge.

5. Backup the instance, and repeat the steps for the next master instance.

Additional resources

Backing up etcd

2.4. RECOMMENDED ETCD PRACTICES

For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large
and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data
store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise
a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and
deletes.

Monitor these key metrics:

etcd_server_quota_backend_bytes, which is the current quota limit

etcd_mvcc_db_total_size_in_use_in_bytes, which indicates the actual database usage after a
history compaction

etcd_debugging_mvcc_db_total_size_in_bytes, which shows the database size, including
free space waiting for defragmentation

For more information about defragmenting etcd, see the "Defragmenting etcd data" section.

Because etcd writes data to disk and persists proposals on disk, its performance depends on disk
performance. Slow disks and disk activity from other processes can cause long fsync latencies. Those
latencies can cause etcd to miss heartbeats, not commit new proposals to the disk on time, and
ultimately experience request timeouts and temporary leader loss. Run etcd on machines that are
backed by SSD or NVMe disks with low latency and high throughput. Consider single-level cell (SLC)
solid-state drives (SSDs), which provide 1 bit per memory cell, are durable and reliable, and are ideal for
write-intensive workloads.

Some key metrics to monitor on a deployed OpenShift Container Platform cluster are p99 of etcd disk
write ahead log duration and the number of etcd leader changes. Use Prometheus to track these
metrics.

The etcd_disk_wal_fsync_duration_seconds_bucket metric reports the etcd disk fsync
duration.

The etcd_server_leader_changes_seen_total metric reports the leader changes.

To rule out a slow disk and confirm that the disk is reasonably fast, verify that the 99th
percentile of the etcd_disk_wal_fsync_duration_seconds_bucket is less than 10 ms.

To validate the hardware for etcd before or after you create the OpenShift Container Platform cluster,
you can use an I/O benchmarking tool called fio.

Prerequisites

Container runtimes such as Podman or Docker are installed on the machine that you’re testing.

OpenShift Container Platform 4.6 Scalability and performance

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/backup_and_restore/#backing-up-etcd

Data is written to the /var/lib/etcd path.

Procedure

Run fio and analyze the results:

If you use Podman, run this command:

If you use Docker, run this command:

The output reports whether the disk is fast enough to host etcd by comparing the 99th percentile of the
fsync metric captured from the run to see if it is less than 10 ms.

Because etcd replicates the requests among all the members, its performance strongly depends on
network input/output (I/O) latency. High network latencies result in etcd heartbeats taking longer than
the election timeout, which results in leader elections that are disruptive to the cluster. A key metric to
monitor on a deployed OpenShift Container Platform cluster is the 99th percentile of etcd network peer
latency on each etcd cluster member. Use Prometheus to track the metric.

The histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[2m]))
metric reports the round trip time for etcd to finish replicating the client requests between the members.
Ensure that it is less than 50 ms.

2.5. DEFRAGMENTING ETCD DATA

Manual defragmentation must be performed periodically to reclaim disk space after etcd history
compaction and other events cause disk fragmentation.

History compaction is performed automatically every five minutes and leaves gaps in the back-end
database. This fragmented space is available for use by etcd, but is not available to the host file system.
You must defragment etcd to make this space available to the host file system.

Because etcd writes data to disk, its performance strongly depends on disk performance. Consider
defragmenting etcd every month, twice a month, or as needed for your cluster. You can also monitor the
etcd_db_total_size_in_bytes metric to determine whether defragmentation is necessary.

WARNING

Defragmenting etcd is a blocking action. The etcd member will not response until
defragmentation is complete. For this reason, wait at least one minute between
defragmentation actions on each of the pods to allow the cluster to recover.

Follow this procedure to defragment etcd data on each etcd member.

Prerequisites

$ sudo podman run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/openshift-scale/etcd-perf

$ sudo docker run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/openshift-scale/etcd-perf

CHAPTER 2. RECOMMENDED HOST PRACTICES

13

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Determine which etcd member is the leader, because the leader should be defragmented last.

a. Get the list of etcd pods:

Example output

b. Choose a pod and run the following command to determine which etcd member is the
leader:

Example output

Based on the IS LEADER column of this output, the https://10.0.199.170:2379 endpoint is
the leader. Matching this endpoint with the output of the previous step, the pod name of
the leader is etcd-ip-10-0-199-170.example.redhat.com.

2. Defragment an etcd member.

a. Connect to the running etcd container, passing in the name of a pod that is not the leader:

$ oc get pods -n openshift-etcd -o wide | grep -v quorum-guard | grep etcd

etcd-ip-10-0-159-225.example.redhat.com 3/3 Running 0 175m
10.0.159.225 ip-10-0-159-225.example.redhat.com <none> <none>
etcd-ip-10-0-191-37.example.redhat.com 3/3 Running 0 173m
10.0.191.37 ip-10-0-191-37.example.redhat.com <none> <none>
etcd-ip-10-0-199-170.example.redhat.com 3/3 Running 0 176m
10.0.199.170 ip-10-0-199-170.example.redhat.com <none> <none>

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint
status --cluster -w table

Defaulting container name to etcdctl.
Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see
all of the containers in this pod.
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.4.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.4.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com

OpenShift Container Platform 4.6 Scalability and performance

14

b. Unset the ETCDCTL_ENDPOINTS environment variable:

c. Defragment the etcd member:

Example output

If a timeout error occurs, increase the value for --command-timeout until the command
succeeds.

d. Verify that the database size was reduced:

Example output

This example shows that the database size for this etcd member is now 41 MB as opposed
to the starting size of 104 MB.

e. Repeat these steps to connect to each of the other etcd members and defragment them.
Always defragment the leader last.
Wait at least one minute between defragmentation actions to allow the etcd pod to recover.
Until the etcd pod recovers, the etcd member will not respond.

3. If any NOSPACE alarms were triggered due to the space quota being exceeded, clear them.

a. Check if there are any NOSPACE alarms:

Example output

sh-4.4# unset ETCDCTL_ENDPOINTS

sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag

Finished defragmenting etcd member[https://localhost:2379]

sh-4.4# etcdctl endpoint status -w table --cluster

+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER |
RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.4.9 | 104 MB | false | false |
7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9 | 41 MB | false | false |
7 | 91624 | 91624 | | 1
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.4.9 | 104 MB | true | false |
7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------
+------------+--------------------+--------+

sh-4.4# etcdctl alarm list

memberID:12345678912345678912 alarm:NOSPACE

CHAPTER 2. RECOMMENDED HOST PRACTICES

15

b. Clear the alarms:

2.6. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE
COMPONENTS

The following infrastructure workloads do not incur OpenShift Container Platform worker subscriptions:

Kubernetes and OpenShift Container Platform control plane services that run on masters

The default router

The integrated container image registry

The HAProxy-based Ingress Controller

The cluster metrics collection, or monitoring service, including components for monitoring user-
defined projects

Cluster aggregated logging

Service brokers

Red Hat Quay

Red Hat OpenShift Container Storage

Red Hat Advanced Cluster Manager

Red Hat Advanced Cluster Security for Kubernetes

Red Hat OpenShift GitOps

Red Hat OpenShift Pipelines

Any node that runs any other container, pod, or component is a worker node that your subscription must
cover.

Additional resources

For information on infrastructure nodes and which components can run on infrastructure nodes,
see the "Red Hat OpenShift control plane and infrastructure nodes" section in the OpenShift
sizing and subscription guide for enterprise Kubernetes document.

2.7. MOVING THE MONITORING SOLUTION

By default, the Prometheus Cluster Monitoring stack, which contains Prometheus, Grafana, and
AlertManager, is deployed to provide cluster monitoring. It is managed by the Cluster Monitoring
Operator. To move its components to different machines, you create and apply a custom config map.

Procedure

1. Save the following ConfigMap definition as the cluster-monitoring-configmap.yaml file:

sh-4.4# etcdctl alarm disarm

OpenShift Container Platform 4.6 Scalability and performance

16

https://www.redhat.com/en/resources/openshift-subscription-sizing-guide

Running this config map forces the components of the monitoring stack to redeploy to
infrastructure nodes.

2. Apply the new config map:

3. Watch the monitoring pods move to the new machines:

4. If a component has not moved to the infra node, delete the pod with this component:

The component from the deleted pod is re-created on the infra node.

2.8. MOVING THE DEFAULT REGISTRY

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |+
 alertmanagerMain:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 prometheusK8s:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 prometheusOperator:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 grafana:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 k8sPrometheusAdapter:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 kubeStateMetrics:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 telemeterClient:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 openshiftStateMetrics:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 thanosQuerier:
 nodeSelector:
 node-role.kubernetes.io/infra: ""

$ oc create -f cluster-monitoring-configmap.yaml

$ watch 'oc get pod -n openshift-monitoring -o wide'

$ oc delete pod -n openshift-monitoring <pod>

CHAPTER 2. RECOMMENDED HOST PRACTICES

17

You configure the registry Operator to deploy its pods to different nodes.

Prerequisites

Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the config/instance object:

Example output

2. Edit the config/instance object:

3. Modify the spec section of the object to resemble the following YAML:

$ oc get configs.imageregistry.operator.openshift.io/cluster -o yaml

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:
 creationTimestamp: 2019-02-05T13:52:05Z
 finalizers:
 - imageregistry.operator.openshift.io/finalizer
 generation: 1
 name: cluster
 resourceVersion: "56174"
 selfLink: /apis/imageregistry.operator.openshift.io/v1/configs/cluster
 uid: 36fd3724-294d-11e9-a524-12ffeee2931b
spec:
 httpSecret: d9a012ccd117b1e6616ceccb2c3bb66a5fed1b5e481623
 logging: 2
 managementState: Managed
 proxy: {}
 replicas: 1
 requests:
 read: {}
 write: {}
 storage:
 s3:
 bucket: image-registry-us-east-1-c92e88cad85b48ec8b312344dff03c82-392c
 region: us-east-1
status:
...

$ oc edit configs.imageregistry.operator.openshift.io/cluster

spec:
 affinity:
 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 namespaces:
 - openshift-image-registry

OpenShift Container Platform 4.6 Scalability and performance

18

4. Verify the registry pod has been moved to the infrastructure node.

a. Run the following command to identify the node where the registry pod is located:

b. Confirm the node has the label you specified:

Review the command output and confirm that node-role.kubernetes.io/infra is in the
LABELS list.

2.9. MOVING THE ROUTER

You can deploy the router pod to a different machine set. By default, the pod is deployed to a worker
node.

Prerequisites

Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the IngressController custom resource for the router Operator:

The command output resembles the following text:

 topologyKey: kubernetes.io/hostname
 weight: 100
 logLevel: Normal
 managementState: Managed
 nodeSelector:
 node-role.kubernetes.io/infra: ""

$ oc get pods -o wide -n openshift-image-registry

$ oc describe node <node_name>

$ oc get ingresscontroller default -n openshift-ingress-operator -o yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 creationTimestamp: 2019-04-18T12:35:39Z
 finalizers:
 - ingresscontroller.operator.openshift.io/finalizer-ingresscontroller
 generation: 1
 name: default
 namespace: openshift-ingress-operator
 resourceVersion: "11341"
 selfLink: /apis/operator.openshift.io/v1/namespaces/openshift-ingress-
operator/ingresscontrollers/default
 uid: 79509e05-61d6-11e9-bc55-02ce4781844a
spec: {}
status:
 availableReplicas: 2
 conditions:

CHAPTER 2. RECOMMENDED HOST PRACTICES

19

1 1

2. Edit the ingresscontroller resource and change the nodeSelector to use the infra label:

Add the nodeSelector stanza that references the infra label to the spec section, as shown:

3. Confirm that the router pod is running on the infra node.

a. View the list of router pods and note the node name of the running pod:

Example output

In this example, the running pod is on the ip-10-0-217-226.ec2.internal node.

b. View the node status of the running pod:

Specify the <node_name> that you obtained from the pod list.

Example output

Because the role list includes infra, the pod is running on the correct node.

2.10. INFRASTRUCTURE NODE SIZING

 - lastTransitionTime: 2019-04-18T12:36:15Z
 status: "True"
 type: Available
 domain: apps.<cluster>.example.com
 endpointPublishingStrategy:
 type: LoadBalancerService
 selector: ingresscontroller.operator.openshift.io/deployment-ingresscontroller=default

$ oc edit ingresscontroller default -n openshift-ingress-operator

 spec:
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/infra: ""

$ oc get pod -n openshift-ingress -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
router-default-86798b4b5d-bdlvd 1/1 Running 0 28s 10.130.2.4 ip-10-
0-217-226.ec2.internal <none> <none>
router-default-955d875f4-255g8 0/1 Terminating 0 19h 10.129.2.4 ip-10-
0-148-172.ec2.internal <none> <none>

$ oc get node <node_name> 1

NAME STATUS ROLES AGE VERSION
ip-10-0-217-226.ec2.internal Ready infra,worker 17h v1.19.0

OpenShift Container Platform 4.6 Scalability and performance

20

The infrastructure node resource requirements depend on the cluster age, nodes, and objects in the
cluster, as these factors can lead to an increase in the number of metrics or time series in Prometheus.
The following infrastructure node size recommendations are based on the results of cluster maximums
and control plane density focused testing.

IMPORTANT

The sizing recommendations below are only applicable for the Prometheus, Router, and
Registry infrastructure components, which are installed during cluster installation.
Logging is a day-two operation and its sizing recommendation are given in the last two
columns.

Number of worker
nodes

CPU cores Memory (GB) CPU cores with
Logging

Memory (GB)
with Logging

25 4 16 4 64

100 8 32 8 128

250 16 128 16 128

500 32 128 32 192

IMPORTANT

These sizing recommendations are based on scale tests, which create a large number of
objects across the cluster. These tests include reaching some of the cluster maximums. In
the case of 250 and 500 node counts on a OpenShift Container Platform 4.6 cluster,
these maximums are 10000 namespaces with 61000 pods, 10000 deployments, 181000
secrets, 400 config maps, and so on. Prometheus is a highly memory intensive
application; the resource usage depends on various factors including the number of
nodes, objects, the Prometheus metrics scraping interval, metrics or time series, and the
age of the cluster. The disk size also depends on the retention period. You must take
these factors into consideration and size them accordingly.

NOTE

In OpenShift Container Platform 4.6, half of a CPU core (500 millicore) is now reserved
by the system by default compared to OpenShift Container Platform 3.11 and previous
versions. This influences the stated sizing recommendations.

2.11. ADDITIONAL RESOURCES

OpenShift Container Platform cluster maximums

CHAPTER 2. RECOMMENDED HOST PRACTICES

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#planning-your-environment-according-to-object-maximums

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

IMPORTANT

The guidance in this section is only relevant for installations with cloud provider
integration.

These guidelines apply to OpenShift Container Platform with software-defined
networking (SDN), not Open Virtual Network (OVN).

Apply the following best practices to scale the number of worker machines in your OpenShift Container
Platform cluster. You scale the worker machines by increasing or decreasing the number of replicas that
are defined in the worker machine set.

3.1. RECOMMENDED PRACTICES FOR SCALING THE CLUSTER

When scaling up the cluster to higher node counts:

Spread nodes across all of the available zones for higher availability.

Scale up by no more than 25 to 50 machines at once.

Consider creating new machine sets in each available zone with alternative instance types of
similar size to help mitigate any periodic provider capacity constraints. For example, on AWS,
use m5.large and m5d.large.

NOTE

Cloud providers might implement a quota for API services. Therefore, gradually scale the
cluster.

The controller might not be able to create the machines if the replicas in the machine sets are set to
higher numbers all at one time. The number of requests the cloud platform, which OpenShift Container
Platform is deployed on top of, is able to handle impacts the process. The controller will start to query
more while trying to create, check, and update the machines with the status. The cloud platform on
which OpenShift Container Platform is deployed has API request limits and excessive queries might lead
to machine creation failures due to cloud platform limitations.

Enable machine health checks when scaling to large node counts. In case of failures, the health checks
monitor the condition and automatically repair unhealthy machines.

NOTE

When scaling large and dense clusters to lower node counts, it might take large amounts
of time as the process involves draining or evicting the objects running on the nodes
being terminated in parallel. Also, the client might start to throttle the requests if there
are too many objects to evict. The default client QPS and burst rates are currently set to
5 and 10 respectively and they cannot be modified in OpenShift Container Platform.

3.2. MODIFYING A MACHINE SET

To make changes to a machine set, edit the MachineSet YAML. Then, remove all machines associated
with the machine set by deleting each machine or scaling down the machine set to 0 replicas. Then, scale

OpenShift Container Platform 4.6 Scalability and performance

22

the replicas back to the desired number. Changes you make to a machine set do not affect existing
machines.

If you need to scale a machine set without making other changes, you do not need to delete the
machines.

NOTE

By default, the OpenShift Container Platform router pods are deployed on workers.
Because the router is required to access some cluster resources, including the web
console, do not scale the worker machine set to 0 unless you first relocate the router
pods.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

1. Edit the machine set:

2. Scale down the machine set to 0:

Or:

Wait for the machines to be removed.

3. Scale up the machine set as needed:

Or:

Wait for the machines to start. The new machines contain changes you made to the machine
set.

3.3. ABOUT MACHINE HEALTH CHECKS

You can define conditions under which machines in a cluster are considered unhealthy by using a
MachineHealthCheck resource. Machines matching the conditions are automatically remediated.

To monitor machine health, create a MachineHealthCheck custom resource (CR) that includes a label

$ oc edit machineset <machineset> -n openshift-machine-api

$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

23

To monitor machine health, create a MachineHealthCheck custom resource (CR) that includes a label
for the set of machines to monitor and a condition to check, such as staying in the NotReady status for
15 minutes or displaying a permanent condition in the node-problem-detector.

The controller that observes a MachineHealthCheck CR checks for the condition that you defined. If a
machine fails the health check, the machine is automatically deleted and a new one is created to take its
place. When a machine is deleted, you see a machine deleted event.

NOTE

For machines with the master role, the machine health check reports the number of
unhealthy nodes, but the machine is not deleted. For example:

Example output

To limit the disruptive impact of machine deletions, the controller drains and deletes only
one node at a time. If there are more unhealthy machines than the maxUnhealthy
threshold allows for in the targeted pool of machines, the controller stops deleting
machines and you must manually intervene.

To stop the check, remove the custom resource.

3.3.1. MachineHealthChecks on Bare Metal

Machine deletion on bare metal cluster triggers reprovisioning of a bare metal host. Usually bare metal
reprovisioning is a lengthy process, during which the cluster is missing compute resources and
applications might be interrupted. To change the default remediation process from machine deletion to
host power-cycle, annotate the MachineHealthCheck resource with the
machine.openshift.io/remediation-strategy: external-baremetal annotation.

After you set the annotation, unhealthy machines are power-cycled by using BMC credentials.

3.3.2. Limitations when deploying machine health checks

There are limitations to consider before deploying a machine health check:

Only machines owned by a machine set are remediated by a machine health check.

Control plane machines are not currently supported and are not remediated if they are
unhealthy.

If the node for a machine is removed from the cluster, a machine health check considers the
machine to be unhealthy and remediates it immediately.

If the corresponding node for a machine does not join the cluster after the
nodeStartupTimeout, the machine is remediated.

A machine is remediated immediately if the Machine resource phase is Failed.

$ oc get machinehealthcheck example -n openshift-machine-api

NAME MAXUNHEALTHY EXPECTEDMACHINES CURRENTHEALTHY
example 40% 3 1

OpenShift Container Platform 4.6 Scalability and performance

24

1

2

3 4

5

6 7

8

9

3.4. SAMPLE MACHINEHEALTHCHECK RESOURCE

The MachineHealthCheck resource resembles one of the following YAML files:

MachineHealthCheck for bare metal

Specify the name of the machine health check to deploy.

For bare metal clusters, you must include the machine.openshift.io/remediation-strategy:
external-baremetal annotation in the annotations section to enable power-cycle remediation.
With this remediation strategy, unhealthy hosts are rebooted instead of removed from the cluster.

Specify a label for the machine pool that you want to check.

Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-
node-us-east-1a.

Specify the timeout duration for a node condition. If a condition is met for the duration of the
timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for
a workload on an unhealthy machine.

Specify the amount of machines allowed to be concurrently remediated in the targeted pool. This
can be set as a percentage or an integer. If the number of unhealthy machines exceeds the limit set
by maxUnhealthy, remediation is not performed.

Specify the timeout duration that a machine health check must wait for a node to join the cluster
before a machine is determined to be unhealthy.

NOTE

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
 name: example 1
 namespace: openshift-machine-api
 annotations:
 machine.openshift.io/remediation-strategy: external-baremetal 2
spec:
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-machine-role: <role> 3
 machine.openshift.io/cluster-api-machine-type: <role> 4
 machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 5
 unhealthyConditions:
 - type: "Ready"
 timeout: "300s" 6
 status: "False"
 - type: "Ready"
 timeout: "300s" 7
 status: "Unknown"
 maxUnhealthy: "40%" 8
 nodeStartupTimeout: "10m" 9

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

25

1

2 3

4

5 6

7

8

NOTE

The matchLabels are examples only; you must map your machine groups based on your
specific needs.

MachineHealthCheck for all other installation types

Specify the name of the machine health check to deploy.

Specify a label for the machine pool that you want to check.

Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-
node-us-east-1a.

Specify the timeout duration for a node condition. If a condition is met for the duration of the
timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for
a workload on an unhealthy machine.

Specify the amount of machines allowed to be concurrently remediated in the targeted pool. This
can be set as a percentage or an integer. If the number of unhealthy machines exceeds the limit set
by maxUnhealthy, remediation is not performed.

Specify the timeout duration that a machine health check must wait for a node to join the cluster
before a machine is determined to be unhealthy.

NOTE

The matchLabels are examples only; you must map your machine groups based on your
specific needs.

3.4.1. Short-circuiting machine health check remediation

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
 name: example 1
 namespace: openshift-machine-api
spec:
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-machine-role: <role> 2
 machine.openshift.io/cluster-api-machine-type: <role> 3
 machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 4
 unhealthyConditions:
 - type: "Ready"
 timeout: "300s" 5
 status: "False"
 - type: "Ready"
 timeout: "300s" 6
 status: "Unknown"
 maxUnhealthy: "40%" 7
 nodeStartupTimeout: "10m" 8

OpenShift Container Platform 4.6 Scalability and performance

26

Short circuiting ensures that machine health checks remediate machines only when the cluster is
healthy. Short-circuiting is configured through the maxUnhealthy field in the MachineHealthCheck
resource.

If the user defines a value for the maxUnhealthy field, before remediating any machines, the
MachineHealthCheck compares the value of maxUnhealthy with the number of machines within its
target pool that it has determined to be unhealthy. Remediation is not performed if the number of
unhealthy machines exceeds the maxUnhealthy limit.

IMPORTANT

If maxUnhealthy is not set, the value defaults to 100% and the machines are remediated
regardless of the state of the cluster.

The appropriate maxUnhealthy value depends on the scale of the cluster you deploy and how many
machines the MachineHealthCheck covers. For example, you can use the maxUnhealthy value to
cover multiple machine sets across multiple availability zones so that if you lose an entire zone, your
maxUnhealthy setting prevents further remediation within the cluster.

The maxUnhealthy field can be set as either an integer or percentage. There are different remediation
implementations depending on the maxUnhealthy value.

3.4.1.1. Setting maxUnhealthy by using an absolute value

If maxUnhealthy is set to 2:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

These values are independent of how many machines are being checked by the machine health check.

3.4.1.2. Setting maxUnhealthy by using percentages

If maxUnhealthy is set to 40% and there are 25 machines being checked:

Remediation will be performed if 10 or fewer nodes are unhealthy

Remediation will not be performed if 11 or more nodes are unhealthy

If maxUnhealthy is set to 40% and there are 6 machines being checked:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

NOTE

The allowed number of machines is rounded down when the percentage of
maxUnhealthy machines that are checked is not a whole number.

3.5. CREATING A MACHINEHEALTHCHECK RESOURCE

You can create a MachineHealthCheck resource for all MachineSets in your cluster. You should not

CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES

27

You can create a MachineHealthCheck resource for all MachineSets in your cluster. You should not
create a MachineHealthCheck resource that targets control plane machines.

Prerequisites

Install the oc command line interface.

Procedure

1. Create a healthcheck.yml file that contains the definition of your machine health check.

2. Apply the healthcheck.yml file to your cluster:

$ oc apply -f healthcheck.yml

OpenShift Container Platform 4.6 Scalability and performance

28

CHAPTER 4. USING THE NODE TUNING OPERATOR
Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

4.1. ABOUT THE NODE TUNING OPERATOR

The Node Tuning Operator helps you manage node-level tuning by orchestrating the Tuned daemon.
The majority of high-performance applications require some level of kernel tuning. The Node Tuning
Operator provides a unified management interface to users of node-level sysctls and more flexibility to
add custom tuning specified by user needs.

The Operator manages the containerized Tuned daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized Tuned
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized Tuned daemon are rolled back on an event that
triggers a profile change or when the containerized Tuned daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR
SPECIFICATION

Use this process to access an example Node Tuning Operator specification.

Procedure

1. Run:

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or pod labels and profile priorities.

WARNING

While in certain situations the support for pod labels can be a convenient way of
automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality might
be deprecated in future versions of the Node Tuning Operator.

$ oc get Tuned/default -o yaml -n openshift-cluster-node-tuning-operator

CHAPTER 4. USING THE NODE TUNING OPERATOR

29

4.3. DEFAULT PROFILES SET ON A CLUSTER

The following are the default profiles set on a cluster.

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - name: "openshift"
 data: |
 [main]
 summary=Optimize systems running OpenShift (parent profile)
 include=${f:virt_check:virtual-guest:throughput-performance}

 [selinux]
 avc_cache_threshold=8192

 [net]
 nf_conntrack_hashsize=131072

 [sysctl]
 net.ipv4.ip_forward=1
 kernel.pid_max=>4194304
 net.netfilter.nf_conntrack_max=1048576
 net.ipv4.conf.all.arp_announce=2
 net.ipv4.neigh.default.gc_thresh1=8192
 net.ipv4.neigh.default.gc_thresh2=32768
 net.ipv4.neigh.default.gc_thresh3=65536
 net.ipv6.neigh.default.gc_thresh1=8192
 net.ipv6.neigh.default.gc_thresh2=32768
 net.ipv6.neigh.default.gc_thresh3=65536
 vm.max_map_count=262144

 [sysfs]
 /sys/module/nvme_core/parameters/io_timeout=4294967295
 /sys/module/nvme_core/parameters/max_retries=10

 - name: "openshift-control-plane"
 data: |
 [main]
 summary=Optimize systems running OpenShift control plane
 include=openshift

 [sysctl]
 # ktune sysctl settings, maximizing i/o throughput
 #
 # Minimal preemption granularity for CPU-bound tasks:
 # (default: 1 msec# (1 + ilog(ncpus)), units: nanoseconds)
 kernel.sched_min_granularity_ns=10000000
 # The total time the scheduler will consider a migrated process
 # "cache hot" and thus less likely to be re-migrated
 # (system default is 500000, i.e. 0.5 ms)
 kernel.sched_migration_cost_ns=5000000

OpenShift Container Platform 4.6 Scalability and performance

30

4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED

Use this procedure to check which Tuned profiles are applied on every node.

Procedure

1. Check which Tuned pods are running on each node:

Example output

 # SCHED_OTHER wake-up granularity.
 #
 # Preemption granularity when tasks wake up. Lower the value to
 # improve wake-up latency and throughput for latency critical tasks.
 kernel.sched_wakeup_granularity_ns=4000000

 - name: "openshift-node"
 data: |
 [main]
 summary=Optimize systems running OpenShift nodes
 include=openshift

 [sysctl]
 net.ipv4.tcp_fastopen=3
 fs.inotify.max_user_watches=65536
 fs.inotify.max_user_instances=8192

 recommend:
 - profile: "openshift-control-plane"
 priority: 30
 match:
 - label: "node-role.kubernetes.io/master"
 - label: "node-role.kubernetes.io/infra"

 - profile: "openshift-node"
 priority: 40

$ oc get pods -n openshift-cluster-node-tuning-operator -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
cluster-node-tuning-operator-599489d4f7-k4hw4 1/1 Running 0 6d2h 10.129.0.76
ip-10-0-145-113.eu-west-3.compute.internal <none> <none>
tuned-2jkzp 1/1 Running 1 6d3h 10.0.145.113 ip-10-0-145-
113.eu-west-3.compute.internal <none> <none>
tuned-g9mkx 1/1 Running 1 6d3h 10.0.147.108 ip-10-0-
147-108.eu-west-3.compute.internal <none> <none>
tuned-kbxsh 1/1 Running 1 6d3h 10.0.132.143 ip-10-0-132-
143.eu-west-3.compute.internal <none> <none>
tuned-kn9x6 1/1 Running 1 6d3h 10.0.163.177 ip-10-0-163-
177.eu-west-3.compute.internal <none> <none>
tuned-vvxwx 1/1 Running 1 6d3h 10.0.131.87 ip-10-0-131-

CHAPTER 4. USING THE NODE TUNING OPERATOR

31

2. Extract the profile applied from each pod and match them against the previous list:

Example output

4.5. CUSTOM TUNING SPECIFICATION

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
Tuned profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized Tuned daemons are updated.

87.eu-west-3.compute.internal <none> <none>
tuned-zqrwq 1/1 Running 1 6d3h 10.0.161.51 ip-10-0-161-
51.eu-west-3.compute.internal <none> <none>

$ for p in `oc get pods -n openshift-cluster-node-tuning-operator -l openshift-app=tuned -
o=jsonpath='{range .items[*]}{.metadata.name} {end}'`; do printf "\n*** $p ***\n" ; oc logs
pod/$p -n openshift-cluster-node-tuning-operator | grep applied; done

*** tuned-2jkzp ***
2020-07-10 13:53:35,368 INFO tuned.daemon.daemon: static tuning from profile
'openshift-control-plane' applied

*** tuned-g9mkx ***
2020-07-10 14:07:17,089 INFO tuned.daemon.daemon: static tuning from profile
'openshift-node' applied
2020-07-10 15:56:29,005 INFO tuned.daemon.daemon: static tuning from profile
'openshift-node-es' applied
2020-07-10 16:00:19,006 INFO tuned.daemon.daemon: static tuning from profile
'openshift-node' applied
2020-07-10 16:00:48,989 INFO tuned.daemon.daemon: static tuning from profile
'openshift-node-es' applied

*** tuned-kbxsh ***
2020-07-10 13:53:30,565 INFO tuned.daemon.daemon: static tuning from profile
'openshift-node' applied
2020-07-10 15:56:30,199 INFO tuned.daemon.daemon: static tuning from profile
'openshift-node-es' applied

*** tuned-kn9x6 ***
2020-07-10 14:10:57,123 INFO tuned.daemon.daemon: static tuning from profile
'openshift-node' applied
2020-07-10 15:56:28,757 INFO tuned.daemon.daemon: static tuning from profile
'openshift-node-es' applied

*** tuned-vvxwx ***
2020-07-10 14:11:44,932 INFO tuned.daemon.daemon: static tuning from profile
'openshift-control-plane' applied

*** tuned-zqrwq ***
2020-07-10 14:07:40,246 INFO tuned.daemon.daemon: static tuning from profile
'openshift-control-plane' applied

OpenShift Container Platform 4.6 Scalability and performance

32

Management state

The Operator Management state is set by adjusting the default Tuned CR. By default, the Operator is in
the Managed state and the spec.managementState field is not present in the default Tuned CR. Valid
values for the Operator Management state are as follows:

Managed: the Operator will update its operands as configuration resources are updated

Unmanaged: the Operator will ignore changes to the configuration resources

Removed: the Operator will remove its operands and resources the Operator provisioned

Profile data

The profile: section lists Tuned profiles and their names.

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

The individual items of the list:

profile:
- name: tuned_profile_1
 data: |
 # Tuned profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other Tuned daemon plugins supported by the containerized Tuned

...

- name: tuned_profile_n
 data: |
 # Tuned profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

recommend:
<recommend-item-1>
...
<recommend-item-n>

- machineConfigLabels: 1
 <mcLabels> 2
 match: 3
 <match> 4
 priority: <priority> 5
 profile: <tuned_profile_name> 6

CHAPTER 4. USING THE NODE TUNING OPERATOR

33

1

2

3

4

5

6

1

2

3

4

Optional.

A dictionary of key/value MachineConfig labels. The keys must be unique.

If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels is set.

An optional list.

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

A Tuned profile to apply on a match. For example tuned_profile_1.

<match> is an optional list recursively defined as follows:

Node or pod label name.

Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.

Optional object type (node or pod). If omitted, node is assumed.

An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given
recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is
created automatically to apply host settings, such as kernel boot parameters, for the profile
<tuned_profile_name>. This involves finding all machine config pools with machine config selector
matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that are assigned
the found machine config pools. To target nodes that have both master and worker roles, you must use
the master role.

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the
machineConfigLabels item is not considered.

IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in Tuned operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

- label: <label_name> 1
 value: <label_value> 2
 type: <label_type> 3
 <match> 4

OpenShift Container Platform 4.6 Scalability and performance

34

Example: node or pod label based matching

The CR above is translated for the containerized Tuned daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized Tuned daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized Tuned
pod runs on a node with labels node-role.kubernetes.io/master or node-role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es
- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

CHAPTER 4. USING THE NODE TUNING OPERATOR

35

Example: machine config pool based matching

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

4.6. CUSTOM TUNING EXAMPLE

The following CR applies custom node-level tuning for OpenShift Container Platform nodes with label

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-custom
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift node profile with an additional kernel parameter
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_custom=+skew_tick=1
 name: openshift-node-custom

 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-custom"
 priority: 20
 profile: openshift-node-custom

OpenShift Container Platform 4.6 Scalability and performance

36

The following CR applies custom node-level tuning for OpenShift Container Platform nodes with label
tuned.openshift.io/ingress-node-label set to any value. As an administrator, use the following
command to create a custom Tuned CR.

Custom tuning example

IMPORTANT

Custom profile writers are strongly encouraged to include the default Tuned daemon
profiles shipped within the default Tuned CR. The example above uses the default
openshift-control-plane profile to accomplish this.

4.7. SUPPORTED TUNED DAEMON PLUG-INS

Excluding the [main] section, the following Tuned plug-ins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

scheduler

$ oc create -f- <<_EOF_
apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: ingress
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=A custom OpenShift ingress profile
 include=openshift-control-plane
 [sysctl]
 net.ipv4.ip_local_port_range="1024 65535"
 net.ipv4.tcp_tw_reuse=1
 name: openshift-ingress
 recommend:
 - match:
 - label: tuned.openshift.io/ingress-node-label
 priority: 10
 profile: openshift-ingress
EOF

CHAPTER 4. USING THE NODE TUNING OPERATOR

37

scsi_host

selinux

sysctl

sysfs

usb

video

vm

There is some dynamic tuning functionality provided by some of these plug-ins that is not supported.
The following Tuned plug-ins are currently not supported:

bootloader

script

systemd

See Available Tuned Plug-ins and Getting Started with Tuned for more information.

OpenShift Container Platform 4.6 Scalability and performance

38

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

CHAPTER 5. USING CLUSTER LOADER
Cluster Loader is a tool that deploys large numbers of various objects to a cluster, which creates user-
defined cluster objects. Build, configure, and run Cluster Loader to measure performance metrics of
your OpenShift Container Platform deployment at various cluster states.

5.1. INSTALLING CLUSTER LOADER

Procedure

1. To pull the container image, run:

5.2. RUNNING CLUSTER LOADER

Prerequisites

The repository will prompt you to authenticate. The registry credentials allow you to access the
image, which is not publicly available. Use your existing authentication credentials from
installation.

Procedure

1. Execute Cluster Loader using the built-in test configuration, which deploys five template builds
and waits for them to complete:

Alternatively, execute Cluster Loader with a user-defined configuration by setting the
environment variable for VIPERCONFIG:

In this example, ${LOCAL_KUBECONFIG} refers to the path to the kubeconfig on your local
file system. Also, there is a directory called ${LOCAL_CONFIG_FILE_PATH}, which is mounted
into the container that contains a configuration file called test.yaml. Additionally, if the
test.yaml references any external template files or podspec files, they should also be mounted
into the container.

5.3. CONFIGURING CLUSTER LOADER

The tool creates multiple namespaces (projects), which contain multiple templates or pods.

$ podman pull quay.io/openshift/origin-tests:4.6

$ podman run -v ${LOCAL_KUBECONFIG}:/root/.kube/config:z -i \
quay.io/openshift/origin-tests:4.6 /bin/bash -c 'export KUBECONFIG=/root/.kube/config && \
openshift-tests run-test "[sig-scalability][Feature:Performance] Load cluster \
should populate the cluster [Slow][Serial] [Suite:openshift]"'

$ podman run -v ${LOCAL_KUBECONFIG}:/root/.kube/config:z \
-v ${LOCAL_CONFIG_FILE_PATH}:/root/configs/:z \
-i quay.io/openshift/origin-tests:4.6 \
/bin/bash -c 'KUBECONFIG=/root/.kube/config VIPERCONFIG=/root/configs/test.yaml \
openshift-tests run-test "[sig-scalability][Feature:Performance] Load cluster \
should populate the cluster [Slow][Serial] [Suite:openshift]"'

CHAPTER 5. USING CLUSTER LOADER

39

5.3.1. Example Cluster Loader configuration file

Cluster Loader’s configuration file is a basic YAML file:

provider: local 1
ClusterLoader:
 cleanup: true
 projects:
 - num: 1
 basename: clusterloader-cakephp-mysql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: cakephp-mysql.json

 - num: 1
 basename: clusterloader-dancer-mysql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: dancer-mysql.json

 - num: 1
 basename: clusterloader-django-postgresql
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: django-postgresql.json

 - num: 1
 basename: clusterloader-nodejs-mongodb
 tuning: default
 ifexists: reuse
 templates:
 - num: 1
 file: quickstarts/nodejs-mongodb.json

 - num: 1
 basename: clusterloader-rails-postgresql
 tuning: default
 templates:
 - num: 1
 file: rails-postgresql.json

 tuningsets: 2
 - name: default
 pods:
 stepping: 3
 stepsize: 5
 pause: 0 s
 rate_limit: 4
 delay: 0 ms

OpenShift Container Platform 4.6 Scalability and performance

40

1

2

3

4

Optional setting for end-to-end tests. Set to local to avoid extra log messages.

The tuning sets allow rate limiting and stepping, the ability to create several batches of pods while
pausing in between sets. Cluster Loader monitors completion of the previous step before
continuing.

Stepping will pause for M seconds after each N objects are created.

Rate limiting will wait M milliseconds between the creation of objects.

This example assumes that references to any external template files or pod spec files are also mounted
into the container.

IMPORTANT

If you are running Cluster Loader on Microsoft Azure, then you must set the
AZURE_AUTH_LOCATION variable to a file that contains the output of
terraform.azure.auto.tfvars.json, which is present in the installer directory.

5.3.2. Configuration fields

Table 5.1. Top-level Cluster Loader Fields

Field Description

cleanup Set to true or false. One definition per
configuration. If set to true, cleanup deletes all
namespaces (projects) created by Cluster Loader at
the end of the test.

projects A sub-object with one or many definition(s). Under
projects, each namespace to create is defined and
projects has several mandatory subheadings.

tuningsets A sub-object with one definition per configuration.
tuningsets allows the user to define a tuning set to
add configurable timing to project or object creation
(pods, templates, and so on).

sync An optional sub-object with one definition per
configuration. Adds synchronization possibilities
during object creation.

Table 5.2. Fields under projects

Field Description

num An integer. One definition of the count of how many
projects to create.

CHAPTER 5. USING CLUSTER LOADER

41

basename A string. One definition of the base name for the
project. The count of identical namespaces will be
appended to Basename to prevent collisions.

tuning A string. One definition of what tuning set you want
to apply to the objects, which you deploy inside this
namespace.

ifexists A string containing either reuse or delete. Defines
what the tool does if it finds a project or namespace
that has the same name of the project or namespace
it creates during execution.

configmaps A list of key-value pairs. The key is the config map
name and the value is a path to a file from which you
create the config map.

secrets A list of key-value pairs. The key is the secret name
and the value is a path to a file from which you
create the secret.

pods A sub-object with one or many definition(s) of pods
to deploy.

templates A sub-object with one or many definition(s) of
templates to deploy.

Field Description

Table 5.3. Fields under pods and templates

Field Description

num An integer. The number of pods or templates to
deploy.

image A string. The docker image URL to a repository
where it can be pulled.

basename A string. One definition of the base name for the
template (or pod) that you want to create.

file A string. The path to a local file, which is either a pod
spec or template to be created.

parameters Key-value pairs. Under parameters, you can specify
a list of values to override in the pod or template.

OpenShift Container Platform 4.6 Scalability and performance

42

Table 5.4. Fields under tuningsets

Field Description

name A string. The name of the tuning set which will match
the name specified when defining a tuning in a
project.

pods A sub-object identifying the tuningsets that will
apply to pods.

templates A sub-object identifying the tuningsets that will
apply to templates.

Table 5.5. Fields under tuningsets pods or tuningsets templates

Field Description

stepping A sub-object. A stepping configuration used if you
want to create an object in a step creation pattern.

rate_limit A sub-object. A rate-limiting tuning set configuration
to limit the object creation rate.

Table 5.6. Fields under tuningsets pods or tuningsets templates, stepping

Field Description

stepsize An integer. How many objects to create before
pausing object creation.

pause An integer. How many seconds to pause after
creating the number of objects defined in stepsize.

timeout An integer. How many seconds to wait before failure
if the object creation is not successful.

delay An integer. How many milliseconds (ms) to wait
between creation requests.

Table 5.7. Fields under sync

Field Description

CHAPTER 5. USING CLUSTER LOADER

43

server A sub-object with enabled and port fields. The
boolean enabled defines whether to start an HTTP
server for pod synchronization. The integer port
defines the HTTP server port to listen on (9090 by
default).

running A boolean. Wait for pods with labels matching
selectors to go into Running state.

succeeded A boolean. Wait for pods with labels matching
selectors to go into Completed state.

selectors A list of selectors to match pods in Running or
Completed states.

timeout A string. The synchronization timeout period to wait
for pods in Running or Completed states. For
values that are not 0, use units: [ns|us|ms|s|m|h].

Field Description

5.4. KNOWN ISSUES

Cluster Loader fails when called without configuration. (BZ#1761925)

If the IDENTIFIER parameter is not defined in user templates, template creation fails with error:
unknown parameter name "IDENTIFIER". If you deploy templates, add this parameter to your
template to avoid this error:

If you deploy pods, adding the parameter is unnecessary.

{
 "name": "IDENTIFIER",
 "description": "Number to append to the name of resources",
 "value": "1"
}

OpenShift Container Platform 4.6 Scalability and performance

44

https://bugzilla.redhat.com/show_bug.cgi?id=1761925

1

CHAPTER 6. USING CPU MANAGER
CPU Manager manages groups of CPUs and constrains workloads to specific CPUs.

CPU Manager is useful for workloads that have some of these attributes:

Require as much CPU time as possible.

Are sensitive to processor cache misses.

Are low-latency network applications.

Coordinate with other processes and benefit from sharing a single processor cache.

6.1. SETTING UP CPU MANAGER

Procedure

1. Optional: Label a node:

2. Edit the MachineConfigPool of the nodes where CPU Manager should be enabled. In this
example, all workers have CPU Manager enabled:

3. Add a label to the worker machine config pool:

4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to
the label created in the previous step to have the correct nodes updated with the new kubelet
config. See the machineConfigPoolSelector section:

Specify a policy:

none. This policy explicitly enables the existing default CPU affinity scheme, providing

oc label node perf-node.example.com cpumanager=true

oc edit machineconfigpool worker

metadata:
 creationTimestamp: 2020-xx-xxx
 generation: 3
 labels:
 custom-kubelet: cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s 2

CHAPTER 6. USING CPU MANAGER

45

2

1 2

none. This policy explicitly enables the existing default CPU affinity scheme, providing
no affinity beyond what the scheduler does automatically.

static. This policy allows pods with certain resource characteristics to be granted
increased CPU affinity and exclusivity on the node.

Optional. Specify the CPU Manager reconcile frequency. The default is 5s.

5. Create the dynamic kubelet config:

This adds the CPU Manager feature to the kubelet config and, if needed, the Machine Config
Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

6. Check for the merged kubelet config:

Example output

7. Check the worker for the updated kubelet.conf:

Example output

These settings were defined when you created the KubeletConfig CR.

8. Create a pod that requests a core or multiple cores. Both limits and requests must have their
CPU value set to a whole integer. That is the number of cores that will be dedicated to this pod:

Example output

oc create -f cpumanager-kubeletconfig.yaml

oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep
ownerReference -A7

 "ownerReferences": [
 {
 "apiVersion": "machineconfiguration.openshift.io/v1",
 "kind": "KubeletConfig",
 "name": "cpumanager-enabled",
 "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
 }
]

oc debug node/perf-node.example.com
sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

cpuManagerPolicy: static 1
cpuManagerReconcilePeriod: 5s 2

cat cpumanager-pod.yaml

apiVersion: v1

OpenShift Container Platform 4.6 Scalability and performance

46

9. Create the pod:

10. Verify that the pod is scheduled to the node that you labeled:

Example output

11. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process:

Pods of quality of service (QoS) tier Guaranteed are placed within the kubepods.slice. Pods of
other QoS tiers end up in child cgroups of kubepods:

kind: Pod
metadata:
 generateName: cpumanager-
spec:
 containers:
 - name: cpumanager
 image: gcr.io/google_containers/pause-amd64:3.0
 resources:
 requests:
 cpu: 1
 memory: "1G"
 limits:
 cpu: 1
 memory: "1G"
 nodeSelector:
 cpumanager: "true"

oc create -f cpumanager-pod.yaml

oc describe pod cpumanager

Name: cpumanager-6cqz7
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: perf-node.example.com/xxx.xx.xx.xxx
...
 Limits:
 cpu: 1
 memory: 1G
 Requests:
 cpu: 1
 memory: 1G
...
QoS Class: Guaranteed
Node-Selectors: cpumanager=true

├─init.scope
│ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
└─kubepods.slice
 ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
 │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
 │ └─32706 /pause

CHAPTER 6. USING CPU MANAGER

47

Example output

12. Check the allowed CPU list for the task:

Example output

13. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system cannot
run on the core allocated for the Guaranteed pod:

Example output

cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-
pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-
b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done

cpuset.cpus 1
tasks 32706

grep ^Cpus_allowed_list /proc/32706/status

 Cpus_allowed_list: 1

cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-
podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-
c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus

0
oc describe node perf-node.example.com

...
Capacity:
 attachable-volumes-aws-ebs: 39
 cpu: 2
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8162900Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 ephemeral-storage: 124768236Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 7548500Ki
 pods: 250
------- ---- ------------ ---------- --------------- ------------- --
-
 default cpumanager-6cqz7 1 (66%) 1 (66%) 1G (12%)
1G (12%) 29m

Allocated resources:

OpenShift Container Platform 4.6 Scalability and performance

48

This VM has two CPU cores. The system-reserved setting reserves 500 millicores, meaning
that half of one core is subtracted from the total capacity of the node to arrive at the Node
Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can
run one of the CPU Manager pods since each will take one whole core. A whole core is
equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the
pod, but it will never be scheduled:

 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 1440m (96%) 1 (66%)

NAME READY STATUS RESTARTS AGE
cpumanager-6cqz7 1/1 Running 0 33m
cpumanager-7qc2t 0/1 Pending 0 11s

CHAPTER 6. USING CPU MANAGER

49

CHAPTER 7. USING TOPOLOGY MANAGER
Topology Manager collects hints from the CPU Manager, Device Manager, and other Hint Providers to
align pod resources, such as CPU, SR-IOV VFs, and other device resources, for all Quality of Service
(QoS) classes on the same non-uniform memory access (NUMA) node.

Topology Manager uses topology information from collected hints to decide if a pod can be accepted or
rejected on a node, based on the configured Topology Manager policy and pod resources requested.

Topology Manager is useful for workloads that use hardware accelerators to support latency-critical
execution and high throughput parallel computation.

NOTE

To use Topology Manager you must use the CPU Manager with the static policy. For
more information on CPU Manager, see Using CPU Manager.

7.1. TOPOLOGY MANAGER POLICIES

Topology Manager aligns Pod resources of all Quality of Service (QoS) classes by collecting topology
hints from Hint Providers, such as CPU Manager and Device Manager, and using the collected hints to
align the Pod resources.

NOTE

To align CPU resources with other requested resources in a Pod spec, the CPU Manager
must be enabled with the static CPU Manager policy.

Topology Manager supports four allocation policies, which you assign in the cpumanager-enabled
custom resource (CR):

none policy

This is the default policy and does not perform any topology alignment.

best-effort policy

For each container in a pod with the best-effort topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores
the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager stores this and admits the pod to the node.

restricted policy

For each container in a pod with the restricted topology management policy, kubelet calls each Hint
Provider to discover their resource availability. Using this information, the Topology Manager stores
the preferred NUMA Node affinity for that container. If the affinity is not preferred, Topology
Manager rejects this pod from the node, resulting in a pod in a Terminated state with a pod
admission failure.

single-numa-node policy

For each container in a pod with the single-numa-node topology management policy, kubelet calls
each Hint Provider to discover their resource availability. Using this information, the Topology
Manager determines if a single NUMA Node affinity is possible. If it is, the pod is admitted to the
node. If a single NUMA Node affinity is not possible, the Topology Manager rejects the pod from the
node. This results in a pod in a Terminated state with a pod admission failure.

OpenShift Container Platform 4.6 Scalability and performance

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#using-cpu-manager

1

2

7.2. SETTING UP TOPOLOGY MANAGER

To use Topology Manager, you must configure an allocation policy in the cpumanager-enabled custom
resource (CR). This file might exist if you have set up CPU Manager. If the file does not exist, you can
create the file.

Prequisites

Configure the CPU Manager policy to be static. Refer to Using CPU Manager in the Scalability
and Performance section.

Procedure

To activate Topololgy Manager:

1. Configure the Topology Manager allocation policy in the cpumanager-enabled custom
resource (CR).

This parameter must be static.

Specify your selected Topology Manager allocation policy. Here, the policy is single-numa-
node. Acceptable values are: default, best-effort, restricted, single-numa-node.

Additional resources

For more information on CPU Manager, see Using CPU Manager.

7.3. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

The example Pod specs below help illustrate pod interactions with Topology Manager.

The following pod runs in the BestEffort QoS class because no resource requests or limits are specified.

$ oc edit KubeletConfig cpumanager-enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: cpumanager-enabled
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: cpumanager-enabled
 kubeletConfig:
 cpuManagerPolicy: static 1
 cpuManagerReconcilePeriod: 5s
 topologyManagerPolicy: single-numa-node 2

spec:
 containers:
 - name: nginx
 image: nginx

CHAPTER 7. USING TOPOLOGY MANAGER

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#using-cpu-manager

The next pod runs in the Burstable QoS class because requests are less than limits.

If the selected policy is anything other than none, Topology Manager would not consider either of these
Pod specifications.

The last example pod below runs in the Guaranteed QoS class because requests are equal to limits.

Topology Manager would consider this pod. The Topology Manager consults the CPU Manager static
policy, which returns the topology of available CPUs. Topology Manager also consults Device Manager
to discover the topology of available devices for example.com/device.

Topology Manager will use this information to store the best Topology for this container. In the case of
this pod, CPU Manager and Device Manager will use this stored information at the resource allocation
stage.

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 requests:
 memory: "100Mi"

spec:
 containers:
 - name: nginx
 image: nginx
 resources:
 limits:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"
 requests:
 memory: "200Mi"
 cpu: "2"
 example.com/device: "1"

OpenShift Container Platform 4.6 Scalability and performance

52

CHAPTER 8. SCALING THE CLUSTER MONITORING
OPERATOR

OpenShift Container Platform exposes metrics that the Cluster Monitoring Operator collects and stores
in the Prometheus-based monitoring stack. As an administrator, you can view system resources,
containers and components metrics in one dashboard interface, Grafana.

8.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS

Red Hat performed various tests for different scale sizes.

NOTE

The Prometheus storage requirements below are not prescriptive. Higher resource
consumption might be observed in your cluster depending on workload activity and
resource use.

Table 8.1. Prometheus Database storage requirements based on number of nodes/pods in the
cluster

Number of
Nodes

Number of
pods

Prometheus
storage
growth per
day

Prometheus
storage
growth per 15
days

RAM Space
(per scale
size)

Network (per
tsdb chunk)

50 1800 6.3 GB 94 GB 6 GB 16 MB

100 3600 13 GB 195 GB 10 GB 26 MB

150 5400 19 GB 283 GB 12 GB 36 MB

200 7200 25 GB 375 GB 14 GB 46 MB

Approximately 20 percent of the expected size was added as overhead to ensure that the storage
requirements do not exceed the calculated value.

The above calculation is for the default OpenShift Container Platform Cluster Monitoring Operator.

NOTE

CPU utilization has minor impact. The ratio is approximately 1 core out of 40 per 50
nodes and 1800 pods.

Recommendations for OpenShift Container Platform

Use at least three infrastructure (infra) nodes.

Use at least three openshift-container-storage nodes with non-volatile memory express
(NVMe) drives.

CHAPTER 8. SCALING THE CLUSTER MONITORING OPERATOR

53

1

2 4

3

5

8.2. CONFIGURING CLUSTER MONITORING

You can increase the storage capacity for the Prometheus component in the cluster monitoring stack.

Procedure

To increase the storage capacity for Prometheus:

1. Create a YAML configuration file, cluster-monitoring-config.yaml. For example:

A typical value is PROMETHEUS_RETENTION_PERIOD=15d. Units are measured in time
using one of these suffixes: s, m, h, d.

The storage class for your cluster.

A typical value is PROMETHEUS_STORAGE_SIZE=2000Gi. Storage values can be a plain
integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

A typical value is ALERTMANAGER_STORAGE_SIZE=20Gi. Storage values can be a plain
integer or as a fixed-point integer using one of these suffixes: E, P, T, G, M, K. You can also
use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

2. Add values for the retention period, storage class, and storage sizes.

3. Save the file.

4. Apply the changes by running:

apiVersion: v1
kind: ConfigMap
data:
 config.yaml: |
 prometheusK8s:
 retention: {{PROMETHEUS_RETENTION_PERIOD}} 1
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: {{STORAGE_CLASS}} 2
 resources:
 requests:
 storage: {{PROMETHEUS_STORAGE_SIZE}} 3
 alertmanagerMain:
 nodeSelector:
 node-role.kubernetes.io/infra: ""
 volumeClaimTemplate:
 spec:
 storageClassName: {{STORAGE_CLASS}} 4
 resources:
 requests:
 storage: {{ALERTMANAGER_STORAGE_SIZE}} 5
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring

OpenShift Container Platform 4.6 Scalability and performance

54

$ oc create -f cluster-monitoring-config.yaml

CHAPTER 8. SCALING THE CLUSTER MONITORING OPERATOR

55

CHAPTER 9. PLANNING YOUR ENVIRONMENT ACCORDING
TO OBJECT MAXIMUMS

Consider the following tested object maximums when you plan your OpenShift Container Platform
cluster.

These guidelines are based on the largest possible cluster. For smaller clusters, the maximums are lower.
There are many factors that influence the stated thresholds, including the etcd version or storage data
format.

IMPORTANT

These guidelines apply to OpenShift Container Platform with software-defined
networking (SDN), not Open Virtual Network (OVN).

In most cases, exceeding these numbers results in lower overall performance. It does not necessarily
mean that the cluster will fail.

9.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER
MAXIMUMS FOR MAJOR RELEASES

Tested Cloud Platforms for OpenShift Container Platform 3.x: Red Hat OpenStack Platform (RHOSP),
Amazon Web Services and Microsoft Azure. Tested Cloud Platforms for OpenShift Container Platform
4.x: Amazon Web Services, Microsoft Azure and Google Cloud Platform.

Maximum type 3.x tested maximum 4.x tested maximum

Number of nodes 2,000 2,000

Number of pods [1] 150,000 150,000

Number of pods per node 250 500 [2]

Number of pods per core There is no default value. There is no default value.

Number of namespaces [3] 10,000 10,000

Number of builds 10,000 (Default pod RAM 512 Mi)
- Pipeline Strategy

10,000 (Default pod RAM 512 Mi)
- Source-to-Image (S2I) build
strategy

Number of pods per namespace
[4]

25,000 25,000

Number of routes and back ends
per Ingress Controller

2,000 per router 2,000 per router

Number of secrets 80,000 80,000

OpenShift Container Platform 4.6 Scalability and performance

56

Number of config maps 90,000 90,000

Number of services [5] 10,000 10,000

Number of services per
namespace

5,000 5,000

Number of back-ends per service 5,000 5,000

Number of deployments per

namespace [4]

2,000 2,000

Number of build configs 12,000 12,000

Number of secrets 40,000 40,000

Number of custom resource
definitions (CRD)

There is no default value. 512 [6]

Maximum type 3.x tested maximum 4.x tested maximum

1. The pod count displayed here is the number of test pods. The actual number of pods depends
on the application’s memory, CPU, and storage requirements.

2. This was tested on a cluster with 100 worker nodes with 500 pods per worker node. The default
maxPods is still 250. To get to 500 maxPods, the cluster must be created with a maxPods set
to 500 using a custom kubelet config. If you need 500 user pods, you need a hostPrefix of 22
because there are 10-15 system pods already running on the node. The maximum number of
pods with attached persistent volume claims (PVC) depends on storage backend from where
PVC are allocated. In our tests, only OpenShift Container Storage v4 (OCS v4) was able to
satisfy the number of pods per node discussed in this document.

3. When there are a large number of active projects, etcd might suffer from poor performance if
the keyspace grows excessively large and exceeds the space quota. Periodic maintenance of
etcd, including defragmentation, is highly recommended to free etcd storage.

4. There are a number of control loops in the system that must iterate over all objects in a given
namespace as a reaction to some changes in state. Having a large number of objects of a given
type in a single namespace can make those loops expensive and slow down processing given
state changes. The limit assumes that the system has enough CPU, memory, and disk to satisfy
the application requirements.

5. Each service port and each service back-end has a corresponding entry in iptables. The number
of back-ends of a given service impact the size of the endpoints objects, which impacts the size
of data that is being sent all over the system.

6. OpenShift Container Platform has a limit of 512 total custom resource definitions (CRD),
including those installed by OpenShift Container Platform, products integrating with OpenShift
Container Platform and user created CRDs. If there are more than 512 CRDs created, then there
is a possibility that oc commands requests may be throttled.

NOTE

CHAPTER 9. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

57

NOTE

Red Hat does not provide direct guidance on sizing your OpenShift Container Platform
cluster. This is because determining whether your cluster is within the supported bounds
of OpenShift Container Platform requires careful consideration of all the
multidimensional factors that limit the cluster scale.

9.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND
CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED

AWS cloud platform:

Node Flavor vCPU RAM(GiB) Disk type Disk
size(GiB)
/IOS

Count Region

Master/et

cd [1]

r5.4xlarge 16 128 io1 220 /
3000

3 us-west-2

Infra [2] m5.12xlarg
e

48 192 gp2 100 3 us-west-2

Workload
[3]

m5.4xlarg
e

16 64 gp2 500 [4] 1 us-west-2

Worker m5.2xlarg
e

8 32 gp2 100 3/25/250

/500 [5]

us-west-2

1. io1 disks with 3000 IOPS are used for master/etcd nodes as etcd is I/O intensive and latency
sensitive.

2. Infra nodes are used to host Monitoring, Ingress, and Registry components to ensure they have
enough resources to run at large scale.

3. Workload node is dedicated to run performance and scalability workload generators.

4. Larger disk size is used so that there is enough space to store the large amounts of data that is
collected during the performance and scalability test run.

5. Cluster is scaled in iterations and performance and scalability tests are executed at the
specified node counts.

9.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED
CLUSTER MAXIMUMS

IMPORTANT

OpenShift Container Platform 4.6 Scalability and performance

58

IMPORTANT

Oversubscribing the physical resources on a node affects resource guarantees the
Kubernetes scheduler makes during pod placement. Learn what measures you can take
to avoid memory swapping.

Some of the tested maximums are stretched only in a single dimension. They will vary
when many objects are running on the cluster.

The numbers noted in this documentation are based on Red Hat’s test methodology,
setup, configuration, and tunings. These numbers can vary based on your own individual
setup and environments.

While planning your environment, determine how many pods are expected to fit per node:

required pods per cluster / pods per node = total number of nodes needed

The current maximum number of pods per node is 250. However, the number of pods that fit on a node
is dependent on the application itself. Consider the application’s memory, CPU, and storage
requirements, as described in How to plan your environment according to application requirements .

Example scenario

If you want to scope your cluster for 2200 pods per cluster, you would need at least five nodes,
assuming that there are 500 maximum pods per node:

2200 / 500 = 4.4

If you increase the number of nodes to 20, then the pod distribution changes to 110 pods per node:

2200 / 20 = 110

Where:

required pods per cluster / total number of nodes = expected pods per node

9.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO
APPLICATION REQUIREMENTS

Consider an example application environment:

Pod type Pod quantity Max memory CPU cores Persistent
storage

apache 100 500 MB 0.5 1 GB

node.js 200 1 GB 1 1 GB

postgresql 100 1 GB 2 10 GB

JBoss EAP 100 1 GB 1 1 GB

CHAPTER 9. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

59

Extrapolated requirements: 550 CPU cores, 450GB RAM, and 1.4TB storage.

Instance size for nodes can be modulated up or down, depending on your preference. Nodes are often
resource overcommitted. In this deployment scenario, you can choose to run additional smaller nodes or
fewer larger nodes to provide the same amount of resources. Factors such as operational agility and
cost-per-instance should be considered.

Node type Quantity CPUs RAM (GB)

Nodes (option 1) 100 4 16

Nodes (option 2) 50 8 32

Nodes (option 3) 25 16 64

Some applications lend themselves well to overcommitted environments, and some do not. Most Java
applications and applications that use huge pages are examples of applications that would not allow for
overcommitment. That memory can not be used for other applications. In the example above, the
environment would be roughly 30 percent overcommitted, a common ratio.

The application pods can access a service either by using environment variables or DNS. If using
environment variables, for each active service the variables are injected by the kubelet when a pod is run
on a node. A cluster-aware DNS server watches the Kubernetes API for new services and creates a set
of DNS records for each one. If DNS is enabled throughout your cluster, then all pods should
automatically be able to resolve services by their DNS name. Service discovery using DNS can be used in
case you must go beyond 5000 services. When using environment variables for service discovery, the
argument list exceeds the allowed length after 5000 services in a namespace, then the pods and
deployments will start failing. Disable the service links in the deployment’s service specification file to
overcome this:

apiVersion: v1
kind: Template
metadata:
 name: deployment-config-template
 creationTimestamp:
 annotations:
 description: This template will create a deploymentConfig with 1 replica, 4 env vars and a service.
 tags: ''
objects:
- apiVersion: v1
 kind: DeploymentConfig
 metadata:
 name: deploymentconfig${IDENTIFIER}
 spec:
 template:
 metadata:
 labels:
 name: replicationcontroller${IDENTIFIER}
 spec:
 enableServiceLinks: false
 containers:
 - name: pause${IDENTIFIER}

OpenShift Container Platform 4.6 Scalability and performance

60

 image: "${IMAGE}"
 ports:
 - containerPort: 8080
 protocol: TCP
 env:
 - name: ENVVAR1_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR2_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR3_${IDENTIFIER}
 value: "${ENV_VALUE}"
 - name: ENVVAR4_${IDENTIFIER}
 value: "${ENV_VALUE}"
 resources: {}
 imagePullPolicy: IfNotPresent
 capabilities: {}
 securityContext:
 capabilities: {}
 privileged: false
 restartPolicy: Always
 serviceAccount: ''
 replicas: 1
 selector:
 name: replicationcontroller${IDENTIFIER}
 triggers:
 - type: ConfigChange
 strategy:
 type: Rolling
- apiVersion: v1
 kind: Service
 metadata:
 name: service${IDENTIFIER}
 spec:
 selector:
 name: replicationcontroller${IDENTIFIER}
 ports:
 - name: serviceport${IDENTIFIER}
 protocol: TCP
 port: 80
 targetPort: 8080
 portalIP: ''
 type: ClusterIP
 sessionAffinity: None
 status:
 loadBalancer: {}
parameters:
- name: IDENTIFIER
 description: Number to append to the name of resources
 value: '1'
 required: true
- name: IMAGE
 description: Image to use for deploymentConfig
 value: gcr.io/google-containers/pause-amd64:3.0
 required: false
- name: ENV_VALUE
 description: Value to use for environment variables

CHAPTER 9. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS

61

The number of application pods that can run in a namespace is dependent on the number of services
and the length of the service name when the environment variables are used for service discovery.
ARG_MAX on the system defines the maximum argument length for a new process and it is set to
2097152 KiB by default. The Kubelet injects environment variables in to each pod scheduled to run in
the namespace including:

<SERVICE_NAME>_SERVICE_HOST=<IP>

<SERVICE_NAME>_SERVICE_PORT=<PORT>

<SERVICE_NAME>_PORT=tcp://<IP>:<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP=tcp://<IP>:<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP_PROTO=tcp

<SERVICE_NAME>_PORT_<PORT>_TCP_PORT=<PORT>

<SERVICE_NAME>_PORT_<PORT>_TCP_ADDR=<ADDR>

The pods in the namespace will start to fail if the argument length exceeds the allowed value and the
number of characters in a service name impacts it. For example, in a namespace with 5000 services, the
limit on the service name is 33 characters, which enables you to run 5000 pods in the namespace.

 generate: expression
 from: "[A-Za-z0-9]{255}"
 required: false
labels:
 template: deployment-config-template

OpenShift Container Platform 4.6 Scalability and performance

62

CHAPTER 10. OPTIMIZING STORAGE
Optimizing storage helps to minimize storage use across all resources. By optimizing storage,
administrators help ensure that existing storage resources are working in an efficient manner.

10.1. AVAILABLE PERSISTENT STORAGE OPTIONS

Understand your persistent storage options so that you can optimize your OpenShift Container
Platform environment.

Table 10.1. Available storage options

Storage
type

Description Examples

Block
Presented to the operating system (OS) as
a block device

Suitable for applications that need full
control of storage and operate at a low
level on files bypassing the file system

Also referred to as a Storage Area Network
(SAN)

Non-shareable, which means that only one
client at a time can mount an endpoint of
this type

AWS EBS and VMware vSphere
support dynamic persistent volume
(PV) provisioning natively in OpenShift
Container Platform.

File
Presented to the OS as a file system export
to be mounted

Also referred to as Network Attached
Storage (NAS)

Concurrency, latency, file locking
mechanisms, and other capabilities vary
widely between protocols,
implementations, vendors, and scales.

RHEL NFS, NetApp NFS [1], and
Vendor NFS

Object
Accessible through a REST API endpoint

Configurable for use in the OpenShift
Container Platform Registry

Applications must build their drivers into
the application and/or container.

AWS S3

1. NetApp NFS supports dynamic PV provisioning when using the Trident plug-in.

IMPORTANT

CHAPTER 10. OPTIMIZING STORAGE

63

IMPORTANT

Currently, CNS is not supported in OpenShift Container Platform 4.6.

10.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY

The following table summarizes the recommended and configurable storage technologies for the given
OpenShift Container Platform cluster application.

Table 10.2. Recommended and configurable storage technology

Storage
type

ROX1 RWX2 Registry Scaled
registry

Metrics3 Logging Apps

1 ReadOnlyMany

2 ReadWriteMany

3 Prometheus is the underlying technology used for metrics.

4 This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS, and Azure
Disk.

5 For metrics, using file storage with the ReadWriteMany (RWX) access mode is unreliable. If you use file
storage, do not configure the RWX access mode on any persistent volume claims (PVCs) that are
configured for use with metrics.

6 For logging, using any shared storage would be an anti-pattern. One volume per elasticsearch is
required.

7 Object storage is not consumed through OpenShift Container Platform’s PVs or PVCs. Apps must
integrate with the object storage REST API.

Block Yes4 No Configura
ble

Not
configura
ble

Recomme
nded

Recomme
nded

Recomme
nded

File Yes4 Yes Configura
ble

Configura
ble

Configura

ble5

Configura

ble6

Recomme
nded

Object Yes Yes Recomme
nded

Recomme
nded

Not
configura
ble

Not
configura
ble

Not
configura

ble7

NOTE

A scaled registry is an OpenShift Container Platform registry where two or more pod
replicas are running.

10.2.1. Specific application storage recommendations

OpenShift Container Platform 4.6 Scalability and performance

64

IMPORTANT

Testing shows issues with using the NFS server on Red Hat Enterprise Linux (RHEL) as
storage backend for core services. This includes the OpenShift Container Registry and
Quay, Prometheus for monitoring storage, and Elasticsearch for logging storage.
Therefore, using RHEL NFS to back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift Container Platform core components.

10.2.1.1. Registry

In a non-scaled/high-availability (HA) OpenShift Container Platform registry cluster deployment:

The storage technology does not have to support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage followed by block storage.

File storage is not recommended for OpenShift Container Platform registry cluster deployment
with production workloads.

10.2.1.2. Scaled registry

In a scaled/HA OpenShift Container Platform registry cluster deployment:

The storage technology must support RWX access mode.

The storage technology must ensure read-after-write consistency.

The preferred storage technology is object storage.

Amazon Simple Storage Service (Amazon S3), Google Cloud Storage (GCS), Microsoft Azure
Blob Storage, and OpenStack Swift are supported.

Object storage should be S3 or Swift compliant.

For non-cloud platforms, such as vSphere and bare metal installations, the only configurable
technology is file storage.

Block storage is not configurable.

10.2.1.3. Metrics

In an OpenShift Container Platform hosted metrics cluster deployment:

The preferred storage technology is block storage.

Object storage is not configurable.

IMPORTANT

It is not recommended to use file storage for a hosted metrics cluster deployment with
production workloads.

CHAPTER 10. OPTIMIZING STORAGE

65

10.2.1.4. Logging

In an OpenShift Container Platform hosted logging cluster deployment:

The preferred storage technology is block storage.

Object storage is not configurable.

10.2.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

Storage technologies that support dynamic PV provisioning have low mount time latencies, and
are not tied to nodes to support a healthy cluster.

Application developers are responsible for knowing and understanding the storage
requirements for their application, and how it works with the provided storage to ensure that
issues do not occur when an application scales or interacts with the storage layer.

10.2.2. Other specific application storage recommendations

IMPORTANT

It is not recommended to use RAID configurations on Write intensive workloads, such as
etcd. If you are running etcd with a RAID configuration, you might be at risk of
encountering performance issues with your workloads.

Red Hat OpenStack Platform (RHOSP) Cinder: RHOSP Cinder tends to be adept in ROX
access mode use cases.

Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block
storage.

The etcd database must have enough storage and adequate performance capacity to enable a
large cluster. Information about monitoring and benchmarking tools to establish ample storage
and a high-performance environment is described in Recommended etcd practices .

10.3. DATA STORAGE MANAGEMENT

The following table summarizes the main directories that OpenShift Container Platform components
write data to.

Table 10.3. Main directories for storing OpenShift Container Platform data

Directory Notes Sizing Expected growth

/var/log Log files for all
components.

10 to 30 GB. Log files can grow
quickly; size can be
managed by growing
disks or by using log
rotate.

OpenShift Container Platform 4.6 Scalability and performance

66

/var/log Log files for all
components.

10 to 30 GB. Log files can grow
quickly; size can be
managed by growing
disks or by using log
rotate.

/var/lib/etcd Used for etcd storage
when storing the
database.

Less than 20 GB.

Database can grow up
to 8 GB.

Will grow slowly with the
environment. Only
storing metadata.

Additional 20-25 GB for
every additional 8 GB of
memory.

/var/lib/containers This is the mount point
for the CRI-O runtime.
Storage used for active
container runtimes,
including pods, and
storage of local images.
Not used for registry
storage.

50 GB for a node with 16
GB memory. Note that
this sizing should not be
used to determine
minimum cluster
requirements.

Additional 20-25 GB for
every additional 8 GB of
memory.

Growth is limited by
capacity for running
containers.

/var/lib/kubelet Ephemeral volume
storage for pods. This
includes anything
external that is mounted
into a container at
runtime. Includes
environment variables,
kube secrets, and data
volumes not backed by
persistent volumes.

Varies Minimal if pods requiring
storage are using
persistent volumes. If
using ephemeral
storage, this can grow
quickly.

Directory Notes Sizing Expected growth

CHAPTER 10. OPTIMIZING STORAGE

67

CHAPTER 11. OPTIMIZING ROUTING
The OpenShift Container Platform HAProxy router scales to optimize performance.

11.1. BASELINE INGRESS CONTROLLER (ROUTER) PERFORMANCE

The OpenShift Container Platform Ingress Controller, or router, is the Ingress point for all external
traffic destined for OpenShift Container Platform services.

When evaluating a single HAProxy router performance in terms of HTTP requests handled per second,
the performance varies depending on many factors. In particular:

HTTP keep-alive/close mode

Route type

TLS session resumption client support

Number of concurrent connections per target route

Number of target routes

Back end server page size

Underlying infrastructure (network/SDN solution, CPU, and so on)

While performance in your specific environment will vary, Red Hat lab tests on a public cloud instance of
size 4 vCPU/16GB RAM. A single HAProxy router handling 100 routes terminated by backends serving
1kB static pages is able to handle the following number of transactions per second.

In HTTP keep-alive mode scenarios:

Encryption LoadBalancerService HostNetwork

none 21515 29622

edge 16743 22913

passthrough 36786 53295

re-encrypt 21583 25198

In HTTP close (no keep-alive) scenarios:

Encryption LoadBalancerService HostNetwork

none 5719 8273

edge 2729 4069

passthrough 4121 5344

OpenShift Container Platform 4.6 Scalability and performance

68

re-encrypt 2320 2941

Encryption LoadBalancerService HostNetwork

Default Ingress Controller configuration with ROUTER_THREADS=4 was used and two different
endpoint publishing strategies (LoadBalancerService/HostNetwork) were tested. TLS session
resumption was used for encrypted routes. With HTTP keep-alive, a single HAProxy router is capable of
saturating 1 Gbit NIC at page sizes as small as 8 kB.

When running on bare metal with modern processors, you can expect roughly twice the performance of
the public cloud instance above. This overhead is introduced by the virtualization layer in place on public
clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide
to how many applications to use behind the router:

Number of applications Application type

5-10 static file/web server or caching proxy

100-1000 applications generating dynamic content

In general, HAProxy can support routes for 5 to 1000 applications, depending on the technology in use.
Ingress Controller performance might be limited by the capabilities and performance of the applications
behind it, such as language or static versus dynamic content.

Ingress, or router, sharding should be used to serve more routes towards applications and help
horizontally scale the routing tier.

For more information on Ingress sharding, see Configuring Ingress Controller sharding by using route
labels and Configuring Ingress Controller sharding by using namespace labels .

11.2. INGRESS CONTROLLER (ROUTER) PERFORMANCE
OPTIMIZATIONS

OpenShift Container Platform no longer supports modifying Ingress Controller deployments by setting
environment variables such as ROUTER_THREADS, ROUTER_DEFAULT_TUNNEL_TIMEOUT,
ROUTER_DEFAULT_CLIENT_TIMEOUT, ROUTER_DEFAULT_SERVER_TIMEOUT, and
RELOAD_INTERVAL.

You can modify the Ingress Controller deployment, but if the Ingress Operator is enabled, the
configuration is overwritten.

CHAPTER 11. OPTIMIZING ROUTING

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#nw-ingress-sharding-route-labels_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#nw-ingress-sharding-namespace-labels_configuring-ingress

CHAPTER 12. OPTIMIZING NETWORKING
The OpenShift SDN uses OpenvSwitch, virtual extensible LAN (VXLAN) tunnels, OpenFlow rules, and
iptables. This network can be tuned by using jumbo frames, network interface controllers (NIC) offloads,
multi-queue, and ethtool settings.

OVN-Kubernetes uses Geneve (Generic Network Virtualization Encapsulation) instead of VXLAN as the
tunnel protocol.

VXLAN provides benefits over VLANs, such as an increase in networks from 4096 to over 16 million, and
layer 2 connectivity across physical networks. This allows for all pods behind a service to communicate
with each other, even if they are running on different systems.

VXLAN encapsulates all tunneled traffic in user datagram protocol (UDP) packets. However, this leads
to increased CPU utilization. Both these outer- and inner-packets are subject to normal checksumming
rules to guarantee data is not corrupted during transit. Depending on CPU performance, this additional
processing overhead can cause a reduction in throughput and increased latency when compared to
traditional, non-overlay networks.

Cloud, VM, and bare metal CPU performance can be capable of handling much more than one Gbps
network throughput. When using higher bandwidth links such as 10 or 40 Gbps, reduced performance
can occur. This is a known issue in VXLAN-based environments and is not specific to containers or
OpenShift Container Platform. Any network that relies on VXLAN tunnels will perform similarly because
of the VXLAN implementation.

If you are looking to push beyond one Gbps, you can:

Evaluate network plug-ins that implement different routing techniques, such as border gateway
protocol (BGP).

Use VXLAN-offload capable network adapters. VXLAN-offload moves the packet checksum
calculation and associated CPU overhead off of the system CPU and onto dedicated hardware
on the network adapter. This frees up CPU cycles for use by pods and applications, and allows
users to utilize the full bandwidth of their network infrastructure.

VXLAN-offload does not reduce latency. However, CPU utilization is reduced even in latency tests.

12.1. OPTIMIZING THE MTU FOR YOUR NETWORK

There are two important maximum transmission units (MTUs): the network interface controller (NIC)
MTU and the cluster network MTU.

The NIC MTU is only configured at the time of OpenShift Container Platform installation. The MTU
must be less than or equal to the maximum supported value of the NIC of your network. If you are
optimizing for throughput, choose the largest possible value. If you are optimizing for lowest latency,
choose a lower value.

The SDN overlay’s MTU must be less than the NIC MTU by 50 bytes at a minimum. This accounts for
the SDN overlay header. So, on a normal ethernet network, set this to 1450. On a jumbo frame ethernet
network, set this to 8950.

For OVN and Geneve, the MTU must be less than the NIC MTU by 100 bytes at a minimum.

NOTE

OpenShift Container Platform 4.6 Scalability and performance

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#about-openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#about-ovn-kubernetes

NOTE

This 50 byte overlay header is relevant to the OpenShift SDN. Other SDN solutions
might require the value to be more or less.

12.2. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE
CLUSTERS

When installing large clusters or scaling the cluster to larger node counts, set the cluster network cidr
accordingly in your install-config.yaml file before you install the cluster:

The default cluster network cidr 10.128.0.0/14 cannot be used if the cluster size is more than 500
nodes. It must be set to 10.128.0.0/12 or 10.128.0.0/10 to get to larger node counts beyond 500 nodes.

12.3. IMPACT OF IPSEC

Because encrypting and decrypting node hosts uses CPU power, performance is affected both in
throughput and CPU usage on the nodes when encryption is enabled, regardless of the IP security
system being used.

IPSec encrypts traffic at the IP payload level, before it hits the NIC, protecting fields that would
otherwise be used for NIC offloading. This means that some NIC acceleration features might not be
usable when IPSec is enabled and will lead to decreased throughput and increased CPU usage.

Additional resources

Modifying advanced network configuration parameters

Configuration parameters for the OVN-Kubernetes default CNI network provider

Configuration parameters for the OpenShift SDN default CNI network provider

networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineCIDR: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16

CHAPTER 12. OPTIMIZING NETWORKING

71

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/installing/#modifying-nwoperator-config-startup_installing-aws-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#nw-operator-configuration-parameters-for-ovn-sdn_cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#nw-operator-configuration-parameters-for-openshift-sdn_cluster-network-operator

CHAPTER 13. MANAGING BARE METAL HOSTS
When you install OpenShift Container Platform on a bare metal cluster, you can provision and manage
bare metal nodes using machine and machineset custom resources (CRs) for bare metal hosts that
exist in the cluster.

13.1. ABOUT BARE METAL HOSTS AND NODES

To provision a Red Hat Enterprise Linux CoreOS (RHCOS) bare metal host as a node in your cluster, first
create a MachineSet custom resource (CR) object that corresponds to the bare metal host hardware.
Bare metal host machine sets describe infrastructure components specific to your configuration. You
apply specific Kubernetes labels to these machine sets and then update the infrastructure components
to run on only those machines.

Machine CR’s are created automatically when you scale up the relevant MachineSet containing a
metal3.io/autoscale-to-hosts annotation. OpenShift Container Platform uses Machine CR’s to
provision the bare metal node that corresponds to the host as specified in the MachineSet CR.

13.2. MAINTAINING BARE METAL HOSTS

You can maintain the details of the bare metal hosts in your cluster from the OpenShift Container
Platform web console. Navigate to Compute → Bare Metal Hosts, and select a task from the Actions
drop down menu. Here you can manage items such as BMC details, boot MAC address for the host,
enable power management, and so on. You can also review the details of the network interfaces and
drives for the host.

You can move a bare metal host into maintenance mode. When you move a host into maintenance
mode, the scheduler moves all managed workloads off the corresponding bare metal node. No new
workloads are scheduled while in maintenance mode.

You can deprovision a bare metal host in the web console. Deprovisioning a host does the following
actions:

1. Annotates the bare metal host CR with cluster.k8s.io/delete-machine: true

2. Scales down the related machine set

NOTE

Powering off the host without first moving the daemon set and unmanaged static pods
to another node can cause service disruption and loss of data.

Additional resources

Adding compute machines to bare metal

13.2.1. Adding a bare metal host to the cluster using the web console

You can add bare metal hosts to the cluster in the web console.

Prerequisites

Install an RHCOS cluster on bare metal.

OpenShift Container Platform 4.6 Scalability and performance

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/machine_management/#adding-bare-metal-compute-user-infra

Log in as a user with cluster-admin privileges.

Procedure

1. In the web console, navigate to Compute → Bare Metal Hosts.

2. Select Add Host → New with Dialog.

3. Specify a unique name for the new bare metal host.

4. Set the Boot MAC address.

5. Set the Baseboard Management Console (BMC) Address.

6. Optionally, enable power management for the host. This allows OpenShift Container Platform
to control the power state of the host.

7. Enter the user credentials for the host’s baseboard management controller (BMC).

8. Select to power on the host after creation, and select Create.

9. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to
Compute → MachineSets, and increase the number of machine replicas in the cluster by
selecting Edit Machine count from the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale command and
the appropriate bare metal machine set.

13.2.2. Adding a bare metal host to the cluster using YAML in the web console

You can add bare metal hosts to the cluster in the web console using a YAML file that describes the
bare metal host.

Prerequisites

Install a RHCOS compute machine on bare metal infrastructure for use in the cluster.

Log in as a user with cluster-admin privileges.

Create a Secret CR for the bare metal host.

Procedure

1. In the web console, navigate to Compute → Bare Metal Hosts.

2. Select Add Host → New from YAML.

3. Copy and paste the below YAML, modifying the relevant fields with the details of your host:

apiVersion: metal3.io/v1alpha1
kind: BareMetalHost
metadata:
 name: <bare_metal_host_name>

CHAPTER 13. MANAGING BARE METAL HOSTS

73

1 credentialsName must reference a valid Secret CR. The baremetal-operator cannot
manage the bare metal host without a valid Secret referenced in the credentialsName.
For more information about secrets and how to create them, see Understanding secrets .

4. Select Create to save the YAML and create the new bare metal host.

5. Scale up the number of replicas to match the number of available bare metal hosts. Navigate to
Compute → MachineSets, and increase the number of machines in the cluster by selecting Edit
Machine count from the Actions drop-down menu.

NOTE

You can also manage the number of bare metal nodes using the oc scale
command and the appropriate bare metal machine set.

13.2.3. Automatically scaling machines to the number of available bare metal hosts

To automatically create the number of Machine objects that matches the number of available
BareMetalHost objects, add a metal3.io/autoscale-to-hosts annotation to the MachineSet object.

Prerequisites

Install RHCOS bare metal compute machines for use in the cluster, and create corresponding
BareMetalHost objects.

Install the OpenShift Container Platform CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Annotate the machine set that you want to configure for automatic scaling by adding the
metal3.io/autoscale-to-hosts annotation. Replace <machineset> with the name of the
machine set.

Wait for the new scaled machines to start.

NOTE

spec:
 online: true
 bmc:
 address: <bmc_address>
 credentialsName: <secret_credentials_name> 1
 disableCertificateVerification: True
 bootMACAddress: <host_boot_mac_address>
 hardwareProfile: unknown

$ oc annotate machineset <machineset> -n openshift-machine-api 'metal3.io/autoscale-to-
hosts=<any_value>'

OpenShift Container Platform 4.6 Scalability and performance

74

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/nodes/#nodes-pods-secrets-about_nodes-pods-secrets

NOTE

When you use a BareMetalHost object to create a machine in the cluster and labels or
selectors are subsequently changed on the BareMetalHost, the BareMetalHost object
continues be counted against the MachineSet that the Machine object was created
from.

Additional resources

Expanding the cluster

MachineHealthChecks on bare metal

CHAPTER 13. MANAGING BARE METAL HOSTS

75

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/installing/#ipi-install-expanding-the-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/machine_management/#machine-health-checks-bare-metal_deploying-machine-health-checks

CHAPTER 14. WHAT HUGE PAGES DO AND HOW THEY ARE
CONSUMED BY APPLICATIONS

14.1. WHAT HUGE PAGES DO

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. In order to use huge pages, code must
be written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate
the management of huge pages without application knowledge, but they have limitations. In particular,
they are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high
memory utilization or fragmentation due to defragmenting efforts of THP, which can lock memory
pages. For this reason, some applications may be designed to (or recommend) usage of pre-allocated
huge pages instead of THP.

In OpenShift Container Platform, applications in a pod can allocate and consume pre-allocated huge
pages.

14.2. HOW HUGE PAGES ARE CONSUMED BY APPS

Nodes must pre-allocate huge pages in order for the node to report its huge page capacity. A node can
only pre-allocate huge pages for a single size.

Huge pages can be consumed through container-level resource requirements using the resource name
hugepages-<size>, where size is the most compact binary notation using integer values supported on a
particular node. For example, if a node supports 2048KiB page sizes, it exposes a schedulable resource
hugepages-2Mi. Unlike CPU or memory, huge pages do not support over-commitment.

apiVersion: v1
kind: Pod
metadata:
 generateName: hugepages-volume-
spec:
 containers:
 - securityContext:
 privileged: true
 image: rhel7:latest
 command:
 - sleep
 - inf
 name: example
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:

OpenShift Container Platform 4.6 Scalability and performance

76

1 Specify the amount of memory for hugepages as the exact amount to be allocated. Do not specify
this value as the amount of memory for hugepages multiplied by the size of the page. For
example, given a huge page size of 2MB, if you want to use 100MB of huge-page-backed RAM for
your application, then you would allocate 50 huge pages. OpenShift Container Platform handles
the math for you. As in the above example, you can specify 100MB directly.

Allocating huge pages of a specific size

Some platforms support multiple huge page sizes. To allocate huge pages of a specific size, precede the
huge pages boot command parameters with a huge page size selection parameter hugepagesz=<size>.
The <size> value must be specified in bytes with an optional scale suffix [kKmMgG]. The default huge
page size can be defined with the default_hugepagesz=<size> boot parameter.

Huge page requirements

Huge page requests must equal the limits. This is the default if limits are specified, but requests
are not.

Huge pages are isolated at a pod scope. Container isolation is planned in a future iteration.

EmptyDir volumes backed by huge pages must not consume more huge page memory than the
pod request.

Applications that consume huge pages via shmget() with SHM_HUGETLB must run with a
supplemental group that matches proc/sys/vm/hugetlb_shm_group.

Additional resources

Configuring Transparent Huge Pages

14.3. CONFIGURING HUGE PAGES

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. There are two
ways of reserving huge pages: at boot time and at run time. Reserving at boot time increases the
possibility of success because the memory has not yet been significantly fragmented. The Node Tuning
Operator currently supports boot time allocation of huge pages on specific nodes.

14.3.1. At boot time

Procedure

To minimize node reboots, the order of the steps below needs to be followed:

1. Label all nodes that need the same huge pages setting by a label.

 hugepages-2Mi: 100Mi 1
 memory: "1Gi"
 cpu: "1"
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

$ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=

CHAPTER 14. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

77

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-configuring_transparent_huge_pages

1

2

3

4

2. Create a file with the following content and name it hugepages-tuned-boottime.yaml:

Set the name of the Tuned resource to hugepages.

Set the profile section to allocate huge pages.

Note the order of parameters is important as some platforms support huge pages of
various sizes.

Enable machine config pool based matching.

3. Create the Tuned hugepages profile

4. Create a file with the following content and name it hugepages-mcp.yaml:

5. Create the machine config pool:

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: hugepages 1
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile: 2
 - data: |
 [main]
 summary=Boot time configuration for hugepages
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 3
 name: openshift-node-hugepages

 recommend:
 - machineConfigLabels: 4
 machineconfiguration.openshift.io/role: "worker-hp"
 priority: 30
 profile: openshift-node-hugepages

$ oc create -f hugepages-tuned-boottime.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-hp
 labels:
 worker-hp: ""
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-hp: ""

OpenShift Container Platform 4.6 Scalability and performance

78

Given enough non-fragmented memory, all the nodes in the worker-hp machine config pool should now
have 50 2Mi huge pages allocated.

WARNING

This functionality is currently only supported on Red Hat Enterprise Linux CoreOS
(RHCOS) 8.x worker nodes. On Red Hat Enterprise Linux (RHEL) 7.x worker nodes
the Tuned [bootloader] plug-in is currently not supported.

$ oc create -f hugepages-mcp.yaml

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi

CHAPTER 14. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS

79

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW
LATENCY NODES

15.1. UNDERSTANDING LOW LATENCY

The emergence of Edge computing in the area of Telco / 5G plays a key role in reducing latency and
congestion problems and improving application performance.

Simply put, latency determines how fast data (packets) moves from the sender to receiver and returns
to the sender after processing by the receiver. Obviously, maintaining a network architecture with the
lowest possible delay of latency speeds is key for meeting the network performance requirements of
5G. Compared to 4G technology, with an average latency of 50ms, 5G is targeted to reach latency
numbers of 1ms or less. This reduction in latency boosts wireless throughput by a factor of 10.

Many of the deployed applications in the Telco space require low latency that can only tolerate zero
packet loss. Tuning for zero packet loss helps mitigate the inherent issues that degrade network
performance. For more information, see Tuning for Zero Packet Loss in Red Hat OpenStack Platform
(RHOSP).

The Edge computing initiative also comes in to play for reducing latency rates. Think of it as literally
being on the edge of the cloud and closer to the user. This greatly reduces the distance between the
user and distant data centers, resulting in reduced application response times and performance latency.

Administrators must be able to manage their many Edge sites and local services in a centralized way so
that all of the deployments can run at the lowest possible management cost. They also need an easy way
to deploy and configure certain nodes of their cluster for real-time low latency and high-performance
purposes. Low latency nodes are useful for applications such as Cloud-native Network Functions (CNF)
and Data Plane Development Kit (DPDK).

OpenShift Container Platform currently provides mechanisms to tune software on an OpenShift
Container Platform cluster for real-time running and low latency (around <20 microseconds reaction
time). This includes tuning the kernel and OpenShift Container Platform set values, installing a kernel,
and reconfiguring the machine. But this method requires setting up four different Operators and
performing many configurations that, when done manually, is complex and could be prone to mistakes.

OpenShift Container Platform provides a Performance Addon Operator to implement automatic tuning
in order to achieve low latency performance for OpenShift applications. The cluster administrator uses
this performance profile configuration that makes it easier to make these changes in a more reliable way.
The administrator can specify whether to update the kernel to kernel-rt, the CPUs that will be reserved
for housekeeping, and the CPUs that will be used for running the workloads.

15.2. INSTALLING THE PERFORMANCE ADDON OPERATOR

Performance Addon Operator provides the ability to enable advanced node performance tunings on a
set of nodes. As a cluster administrator, you can install Performance Addon Operator using the
OpenShift Container Platform CLI or the web console.

15.2.1. Installing the Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware.

OpenShift Container Platform 4.6 Scalability and performance

80

https://www.redhat.com/en/blog/tuning-zero-packet-loss-red-hat-openstack-platform-part-1

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the Performance Addon Operator by completing the following actions:

a. Create the following Namespace Custom Resource (CR) that defines the openshift-
performance-addon-operator namespace, and then save the YAML in the pao-
namespace.yaml file:

b. Create the namespace by running the following command:

2. Install the Performance Addon Operator in the namespace you created in the previous step by
creating the following objects:

a. Create the following OperatorGroup CR and save the YAML in the pao-
operatorgroup.yaml file:

b. Create the OperatorGroup CR by running the following command:

c. Run the following command to get the channel value required for the next step.

Example output

d. Create the following Subscription CR and save the YAML in the pao-sub.yaml file:

Example Subscription

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-performance-addon-operator

$ oc create -f pao-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-performance-addon-operator
 namespace: openshift-performance-addon-operator
spec:
 targetNamespaces:
 - openshift-performance-addon-operator

$ oc create -f pao-operatorgroup.yaml

$ oc get packagemanifest performance-addon-operator -n openshift-marketplace -o
jsonpath='{.status.defaultChannel}'

4.6

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

81

1

2

Specify the value from you obtained in the previous step for the
.status.defaultChannel parameter.

You must specify the redhat-operators value.

e. Create the Subscription object by running the following command:

f. Change to the openshift-performance-addon-operator project:

15.2.2. Installing the Performance Addon Operator using the web console

As a cluster administrator, you can install the Performance Addon Operator using the web console.

NOTE

You must create the Namespace CR and OperatorGroup CR as mentioned in the
previous section.

Procedure

1. Install the Performance Addon Operator using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose Performance Addon Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under A specific namespace on the cluster select
openshift-performance-addon-operator. Then, click Install.

2. Optional: Verify that the performance-addon-operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that Performance Addon Operator is listed in the openshift-operators project
with a Status of Succeeded.

NOTE

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-performance-addon-operator-subscription
 namespace: openshift-performance-addon-operator
spec:
 channel: "<channel>" 1
 name: performance-addon-operator
 source: redhat-operators 2
 sourceNamespace: openshift-marketplace

$ oc create -f pao-sub.yaml

$ oc project openshift-performance-addon-operator

OpenShift Container Platform 4.6 Scalability and performance

82

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with a Succeeded message, you can ignore the
Failed message.

If the Operator does not appear as installed, you can troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the openshift-
operators project.

15.3. UPGRADING PERFORMANCE ADDON OPERATOR

You can manually upgrade to the next minor version of Performance Addon Operator and monitor the
status of an update by using the web console.

15.3.1. About upgrading Performance Addon Operator

You can upgrade to the next minor version of Performance Addon Operator by using the
OpenShift web console to change the channel of your Operator subscription.

You can enable automatic z-stream updates during Performance Addon Operator installation.

Updates are delivered via the Marketplace Operator, which is deployed during OpenShift
Container Platform installation.The Marketplace Operator makes external Operators available
to your cluster.

The amount of time an update takes to complete depends on your network connection. Most
automatic updates complete within fifteen minutes.

15.3.1.1. How Performance Addon Operator upgrades affect your cluster

Neither the low latency tuning nor huge pages are affected.

Updating the Operator should not cause any unexpected reboots.

15.3.1.2. Upgrading Performance Addon Operator to the next minor version

You can manually upgrade Performance Addon Operator to the next minor version by using the
OpenShift Container Platform web console to change the channel of your Operator subscription.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Access the OpenShift web console and navigate to Operators → Installed Operators.

2. Click Performance Addon Operator to open the Operator Details page.

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

83

3. Click the Subscription tab to open the Subscription Overview page.

4. In the Channel pane, click the pencil icon on the right side of the version number to open the
Change Subscription Update Channel window.

5. Select the next minor version. For example, if you want to upgrade to Performance Addon
Operator 4.6, select 4.6.

6. Click Save.

7. Check the status of the upgrade by navigating to Operators → Installed Operators. You can
also check the status by running the following oc command:

15.3.2. Monitoring upgrade status

The best way to monitor Performance Addon Operator upgrade status is to watch the
ClusterServiceVersion (CSV) PHASE. You can also monitor the CSV conditions in the web console or
by running the oc get csv command.

NOTE

The PHASE and conditions values are approximations that are based on available
information.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Run the following command:

2. Review the output, checking the PHASE field. For example:

3. Run get csv again to verify the output:

Example output

$ oc get csv -n openshift-performance-addon-operator

$ oc get csv

VERSION REPLACES PHASE
4.6.0 performance-addon-operator.v4.5.0 Installing
4.5.0 Replacing

oc get csv

NAME DISPLAY VERSION REPLACES
PHASE
performance-addon-operator.v4.5.0 Performance Addon Operator 4.6.0 performance-

OpenShift Container Platform 4.6 Scalability and performance

84

15.4. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS

Many industries and organizations need extremely high performance computing and might require low
and predictable latency, especially in the financial and telecommunications industries. For these
industries, with their unique requirements, OpenShift Container Platform provides a Performance
Addon Operator to implement automatic tuning to achieve low latency performance and consistent
response time for OpenShift Container Platform applications.

The cluster administrator uses this performance profile configuration that makes it easier to make these
changes in a more reliable way. The administrator can specify whether to update the kernel to kernel-rt
(real-time), the CPUs that will be reserved for housekeeping, and the CPUs that are used for running
the workloads.

WARNING

The usage of execution probes in conjunction with applications that require
guaranteed CPUs can cause latency spikes. It is recommended to use other probes,
such as a properly configured set of network probes, as an alternative.

15.4.1. Known limitations for real-time

NOTE

The RT kernel is only supported on worker nodes.

To fully utilize the real-time mode, the containers must run with elevated privileges. See Set capabilities
for a Container for information on granting privileges.

OpenShift Container Platform restricts the allowed capabilities, so you might need to create a
SecurityContext as well.

NOTE

This procedure is fully supported with bare metal installations using Red Hat Enterprise
Linux CoreOS (RHCOS) systems.

Establishing the right performance expectations refers to the fact that the real-time kernel is not a
panacea. Its objective is consistent, low-latency determinism offering predictable response times. There
is some additional kernel overhead associated with the real-time kernel. This is due primarily to handling
hardware interruptions in separately scheduled threads. The increased overhead in some workloads
results in some degradation in overall throughput. The exact amount of degradation is very workload
dependent, ranging from 0% to 30%. However, it is the cost of determinism.

15.4.2. Provisioning a worker with real-time capabilities

1. Install Performance Addon Operator to the cluster.

addon-operator.v4.5.0 Succeeded

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

85

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-capabilities-for-a-container

2. Optional: Add a node to the OpenShift Container Platform cluster. See Setting BIOS
parameters.

3. Add the label worker-rt to the worker nodes that require the real-time capability by using the
oc command.

4. Create a new machine config pool for real-time nodes:

Note that a machine config pool worker-rt is created for group of nodes that have the label
worker-rt.

5. Add the node to the proper machine config pool by using node role labels.

NOTE

You must decide which nodes are configured with real-time workloads. You could
configure all of the nodes in the cluster, or a subset of the nodes. The
Performance Addon Operator that expects all of the nodes are part of a
dedicated machine config pool. If you use all of the nodes, you must point the
Performance Addon Operator to the worker node role label. If you use a subset,
you must group the nodes into a new machine config pool.

6. Create the PerformanceProfile with the proper set of housekeeping cores and
realTimeKernel: enabled: true.

7. You must set machineConfigPoolSelector in PerformanceProfile:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-rt
 labels:
 machineconfiguration.openshift.io/role: worker-rt
spec:
 machineConfigSelector:
 matchExpressions:
 - {
 key: machineconfiguration.openshift.io/role,
 operator: In,
 values: [worker, worker-rt],
 }
 paused: false
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-rt: ""

 apiVersion: performance.openshift.io/v2
 kind: PerformanceProfile
 metadata:
 name: example-performanceprofile
 spec:
 ...
 realTimeKernel:
 enabled: true
 nodeSelector:

OpenShift Container Platform 4.6 Scalability and performance

86

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index#Setting_BIOS_parameters

8. Verify that a matching machine config pool exists with a label:

Example output

9. OpenShift Container Platform will start configuring the nodes, which might involve multiple
reboots. Wait for the nodes to settle. This can take a long time depending on the specific
hardware you use, but 20 minutes per node is expected.

10. Verify everything is working as expected.

15.4.3. Verifying the real-time kernel installation

Use this command to verify that the real-time kernel is installed:

Note the worker with the role worker-rt that contains the string 4.18.0-211.rt5.23.el8.x86_64:

15.4.4. Creating a workload that works in real-time

Use the following procedures for preparing a workload that will use real-time capabilities.

Procedure

1. Create a pod with a QoS class of Guaranteed.

2. Optional: Disable CPU load balancing for DPDK.

3. Assign a proper node selector.

When writing your applications, follow the general recommendations described in Application tuning and
deployment.

15.4.5. Creating a pod with a QoS class of Guaranteed

 node-role.kubernetes.io/worker-rt: ""
 machineConfigPoolSelector:
 machineconfiguration.openshift.io/role: worker-rt

$ oc describe mcp/worker-rt

Name: worker-rt
Namespace:
Labels: machineconfiguration.openshift.io/role=worker-rt

$ oc get node -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP
EXTERNAL-IP OS-IMAGE KERNEL-VERSION
CONTAINER-RUNTIME
rt-worker-0.example.com Ready worker,worker-rt 5d17h v1.22.1
128.66.135.107 <none> Red Hat Enterprise Linux CoreOS 46.82.202008252340-0 (Ootpa)
4.18.0-211.rt5.23.el8.x86_64 cri-o://1.19.0-90.rhaos4.6.git4a0ac05.el8-rc.1
[...]

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

87

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/8/html-single/tuning_guide/index#chap-Application_Tuning_and_Deployment

Keep the following in mind when you create a pod that is given a QoS class of Guaranteed:

Every container in the pod must have a memory limit and a memory request, and they must be
the same.

Every container in the pod must have a CPU limit and a CPU request, and they must be the
same.

The following example shows the configuration file for a pod that has one container. The container has a
memory limit and a memory request, both equal to 200 MiB. The container has a CPU limit and a CPU
request, both equal to 1 CPU.

1. Create the pod:

2. View detailed information about the pod:

Example output

NOTE

If a container specifies its own memory limit, but does not specify a memory
request, OpenShift Container Platform automatically assigns a memory request
that matches the limit. Similarly, if a container specifies its own CPU limit, but
does not specify a CPU request, OpenShift Container Platform automatically
assigns a CPU request that matches the limit.

apiVersion: v1
kind: Pod
metadata:
 name: qos-demo
 namespace: qos-example
spec:
 containers:
 - name: qos-demo-ctr
 image: <image-pull-spec>
 resources:
 limits:
 memory: "200Mi"
 cpu: "1"
 requests:
 memory: "200Mi"
 cpu: "1"

$ oc apply -f qos-pod.yaml --namespace=qos-example

$ oc get pod qos-demo --namespace=qos-example --output=yaml

spec:
 containers:
 ...
status:
 qosClass: Guaranteed

OpenShift Container Platform 4.6 Scalability and performance

88

15.4.6. Optional: Disabling CPU load balancing for DPDK

Functionality to disable or enable CPU load balancing is implemented on the CRI-O level. The code
under the CRI-O disables or enables CPU load balancing only when the following requirements are met.

The pod must use the performance-<profile-name> runtime class. You can get the proper
name by looking at the status of the performance profile, as shown here:

The pod must have the cpu-load-balancing.crio.io: true annotation.

The Performance Addon Operator is responsible for the creation of the high-performance runtime
handler config snippet under relevant nodes and for creation of the high-performance runtime class
under the cluster. It will have the same content as default runtime handler except it enables the CPU
load balancing configuration functionality.

To disable the CPU load balancing for the pod, the Pod specification must include the following fields:

NOTE

Only disable CPU load balancing when the CPU manager static policy is enabled and for
pods with guaranteed QoS that use whole CPUs. Otherwise, disabling CPU load
balancing can affect the performance of other containers in the cluster.

15.4.7. Assigning a proper node selector

The preferred way to assign a pod to nodes is to use the same node selector the performance profile
used, as shown here:

apiVersion: performance.openshift.io/v1
kind: PerformanceProfile
...
status:
 ...
 runtimeClass: performance-manual

apiVersion: v1
kind: Pod
metadata:
 ...
 annotations:
 ...
 cpu-load-balancing.crio.io: "true"
 ...
 ...
spec:
 ...
 runtimeClassName: performance-<profile_name>
 ...

apiVersion: v1
kind: Pod
metadata:
 name: example
spec:

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

89

1

For more information, see Placing pods on specific nodes using node selectors .

15.4.8. Scheduling a workload onto a worker with real-time capabilities

Use label selectors that match the nodes attached to the machine config pool that was configured for
low latency by the Performance Addon Operator. For more information, see Assigning pods to nodes .

15.5. CONFIGURING HUGE PAGES

Nodes must pre-allocate huge pages used in an OpenShift Container Platform cluster. Use the
Performance Addon Operator to allocate huge pages on a specific node.

OpenShift Container Platform provides a method for creating and allocating huge pages. Performance
Addon Operator provides an easier method for doing this using the performance profile.

For example, in the hugepages pages section of the performance profile, you can specify multiple
blocks of size, count, and, optionally, node:

node is the NUMA node in which the huge pages are allocated. If you omit node, the pages are
evenly spread across all NUMA nodes.

NOTE

Wait for the relevant machine config pool status that indicates the update is finished.

These are the only configuration steps you need to do to allocate huge pages.

Verification

To verify the configuration, see the /proc/meminfo file on the node:

Example output

 # ...
 nodeSelector:
 node-role.kubernetes.io/worker-rt: ""

hugepages:
 defaultHugepagesSize: "1G"
 pages:
 - size: "1G"
 count: 4
 node: 0 1

$ oc debug node/ip-10-0-141-105.ec2.internal

grep -i huge /proc/meminfo

AnonHugePages: ###### ##
ShmemHugePages: 0 kB
HugePages_Total: 2

OpenShift Container Platform 4.6 Scalability and performance

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/index#nodes-scheduler-node-selectors
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

Use oc describe to report the new size:

Example output

15.6. ALLOCATING MULTIPLE HUGE PAGE SIZES

You can request huge pages with different sizes under the same container. This allows you to define
more complicated pods consisting of containers with different huge page size needs.

For example, you can define sizes 1G and 2M and the Performance Addon Operator will configure both
sizes on the node, as shown here:

15.7. RESTRICTING CPUS FOR INFRA AND APPLICATION CONTAINERS

Generic housekeeping and workload tasks use CPUs in a way that may impact latency-sensitive
processes. By default, the container runtime uses all online CPUs to run all containers together, which
can result in context switches and spikes in latency. Partitioning the CPUs prevents noisy processes
from interfering with latency-sensitive processes by separating them from each other. The following
table describes how processes run on a CPU after you have tuned the node using the Performance
Addon Operator:

Table 15.1. Process' CPU assignments

Process type Details

Burstable and BestEffort pods Runs on any CPU except where low latency workload
is running

HugePages_Free: 2
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: #### ##
Hugetlb: #### ##

$ oc describe node worker-0.ocp4poc.example.com | grep -i huge

 hugepages-1g=true
 hugepages-###: ###
 hugepages-###: ###

spec:
 hugepages:
 defaultHugepagesSize: 1G
 pages:
 - count: 1024
 node: 0
 size: 2M
 - count: 4
 node: 1
 size: 1G

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

91

Infrastructure pods Runs on any CPU except where low latency workload
is running

Interrupts Redirects to reserved CPUs (optional in OpenShift
Container Platform 4.6 and later)

Kernel processes Pins to reserved CPUs

Latency-sensitive workload pods Pins to a specific set of exclusive CPUs from the
isolated pool

OS processes/systemd services Pins to reserved CPUs

Process type Details

The allocatable capacity of cores on a node for pods of all QoS process types, Burstable, BestEffort, or
Guaranteed, is equal to the capacity of the isolated pool. The capacity of the reserved pool is removed
from the node’s total core capacity for use by the cluster and operating system housekeeping duties.

Example 1

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 25
cores to QoS Guaranteed pods and 25 cores for BestEffort or Burstable pods. This matches the
capacity of the isolated pool.

Example 2

A node features a capacity of 100 cores. Using a performance profile, the cluster administrator allocates
50 cores to the isolated pool and 50 cores to the reserved pool. The cluster administrator assigns 50
cores to QoS Guaranteed pods and one core for BestEffort or Burstable pods. This exceeds the
capacity of the isolated pool by one core. Pod scheduling fails because of insufficient CPU capacity.

The exact partitioning pattern to use depends on many factors like hardware, workload characteristics
and the expected system load. Some sample use cases are as follows:

If the latency-sensitive workload uses specific hardware, such as a network interface card (NIC),
ensure that the CPUs in the isolated pool are as close as possible to this hardware. At a
minimum, you should place the workload in the same Non-Uniform Memory Access (NUMA)
node.

The reserved pool is used for handling all interrupts. When depending on system networking,
allocate a sufficiently-sized reserve pool to handle all the incoming packet interrupts. In 4.6 and
later versions, workloads can optionally be labeled as sensitive. The decision regarding which
specific CPUs should be used for reserved and isolated partitions requires detailed analysis and
measurements. Factors like NUMA affinity of devices and memory play a role. The selection also
depends on the workload architecture and the specific use case.

IMPORTANT

The reserved and isolated CPU pools must not overlap and together must span all
available cores in the worker node.

OpenShift Container Platform 4.6 Scalability and performance

92

1

2

3

To ensure that housekeeping tasks and workloads do not interfere with each other, specify two groups
of CPUs in the spec section of the performance profile.

isolated - Specifies the CPUs for the application container workloads. Workloads running on
these CPUs experience the lowest latency as well as zero interruptions and can, for example,
reach high zero packet loss bandwidth.

reserved - Specifies the CPUs for the cluster and operating system housekeeping duties.
Threads in the reserved group are often busy. Do not run latency-sensitive applications in the
reserved group. Latency-sensitive applications run in the isolated group. .Procedure

1. Create a performance profile appropriate for the environment’s hardware and topology.

2. Add the reserved and isolated parameters with the CPUs you want reserved and isolated
for the infra and application containers:

Specify which CPUs are for infra containers to perform cluster and operating system
housekeeping duties.

Specify which CPUs are for application containers to run workloads.

Specify a node selector to apply the performance profile to specific nodes.

15.8. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE
PROFILE

The performance profile lets you control latency tuning aspects of nodes that belong to a certain
machine config pool. After you specify your settings, the PerformanceProfile object is compiled into
multiple objects that perform the actual node level tuning:

A MachineConfig file that manipulates the nodes.

A KubeletConfig file that configures the Topology Manager, the CPU Manager, and the
OpenShift Container Platform nodes.

The Tuned profile that configures the Node Tuning Operator.

Procedure

1. Prepare a cluster.

2. Create a machine config pool.

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
 name: infra-cpus
spec:
 cpu:
 reserved: "0-4,9" 1
 isolated: "5-8" 2
 nodeSelector: 3
 node-role.kubernetes.io/worker: ""

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

93

1

2

3. Install the Performance Addon Operator.

4. Create a performance profile that is appropriate for your hardware and topology. In the
performance profile, you can specify whether to update the kernel to kernel-rt, allocation of
huge pages, the CPUs that will be reserved for operating system housekeeping processes and
CPUs that will be used for running the workloads.
This is a typical performance profile:

Valid values are true or false. Setting the true value installs the real-time kernel on the node.

Use this field to configure the topology manager policy. Valid values are none (default), best-
effort, restricted, and single-numa-node. For more information, see Topology Manager Policies .

15.9. PERFORMING END-TO-END TESTS FOR PLATFORM
VERIFICATION

The Cloud-native Network Functions (CNF) tests image is a containerized test suite that validates
features required to run CNF payloads. You can use this image to validate a CNF-enabled OpenShift
cluster where all the components required for running CNF workloads are installed.

The tests run by the image are split into three different phases:

Simple cluster validation

Setup

End to end tests

The validation phase checks that all the features required to be tested are deployed correctly on the
cluster.

Validations include:

apiVersion: performance.openshift.io/v1
kind: PerformanceProfile
metadata:
 name: performance
spec:
 cpu:
 isolated: "5-15"
 reserved: "0-4"
 hugepages:
 defaultHugepagesSize: "1G"
 pages:
 -size: "1G"
 count: 16
 node: 0
 realTimeKernel:
 enabled: true 1
 numa: 2
 topologyPolicy: "best-effort"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

OpenShift Container Platform 4.6 Scalability and performance

94

https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/#topology-manager-policies
https://quay.io/repository/openshift-kni/cnf-tests?tag=latest&tab=tags

Targeting a machine config pool that belong to the machines to be tested

Enabling SCTP on the nodes

Having the Performance Addon Operator installed

Having the SR-IOV Operator installed

Having the PTP Operator installed

Using OVN kubernetes as the SDN

The tests need to perform an environment configuration every time they are executed. This involves
items such as creating SR-IOV node policies, performance profiles, or PTP profiles. Allowing the tests to
configure an already configured cluster might affect the functionality of the cluster. Also, changes to
configuration items such as SR-IOV node policy might result in the environment being temporarily
unavailable until the configuration change is processed.

15.9.1. Prerequisites

The test entrypoint is /usr/bin/test-run.sh. It runs both a setup test set and the real
conformance test suite. The minimum requirement is to provide it with a kubeconfig file and its
related $KUBECONFIG environment variable, mounted through a volume.

The tests assumes that a given feature is already available on the cluster in the form of an
Operator, flags enabled on the cluster, or machine configs.

Some tests require a pre-existing machine config pool to append their changes to. This must be
created on the cluster before running the tests.
The default worker pool is worker-cnf and can be created with the following manifest:

You can use the ROLE_WORKER_CNF variable to override the worker pool name:

NOTE

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-cnf
 labels:
 machineconfiguration.openshift.io/role: worker-cnf
spec:
 machineConfigSelector:
 matchExpressions:
 - {
 key: machineconfiguration.openshift.io/role,
 operator: In,
 values: [worker-cnf, worker],
 }
 paused: false
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker-cnf: ""

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig -e
ROLE_WORKER_CNF=custom-worker-pool registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6
/usr/bin/test-run.sh

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

95

NOTE

Currently, not all tests run selectively on the nodes belonging to the pool.

15.9.2. Running the tests

Assuming the file is in the current folder, the command for running the test suite is:

This allows your kubeconfig file to be consumed from inside the running container.

15.9.3. Image parameters

Depending on the requirements, the tests can use different images. There are two images used by the
tests that can be changed using the following environment variables:

CNF_TESTS_IMAGE

DPDK_TESTS_IMAGE

For example, to change the CNF_TESTS_IMAGE with a custom registry run the following command:

15.9.3.1. Ginkgo parameters

The test suite is built upon the ginkgo BDD framework. This means that it accepts parameters for
filtering or skipping tests.

You can use the -ginkgo.focus parameter to filter a set of tests:

NOTE

There is a particular test that requires both SR-IOV and SCTP. Given the selective nature
of the focus parameter, this test is triggered by only placing the sriov matcher. If the
tests are executed against a cluster where SR-IOV is installed but SCTP is not, adding the
-ginkgo.skip=SCTP parameter causes the tests to skip SCTP testing.

15.9.3.2. Available features

The set of available features to filter are:

performance

sriov

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/test-run.sh

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig -e
CNF_TESTS_IMAGE="custom-cnf-tests-image:latests" registry.redhat.io/openshift4/cnf-tests-
rhel8:v4.6 /usr/bin/test-run.sh

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/test-run.sh -ginkgo.focus="performance|sctp"

OpenShift Container Platform 4.6 Scalability and performance

96

ptp

sctp

dpdk

15.9.4. Dry run

Use this command to run in dry-run mode. This is useful for checking what is in the test suite and
provides output for all of the tests the image would run.

15.9.5. Disconnected mode

The CNF tests image support running tests in a disconnected cluster, meaning a cluster that is not able
to reach outer registries. This is done in two steps:

1. Performing the mirroring.

2. Instructing the tests to consume the images from a custom registry.

15.9.5.1. Mirroring the images to a custom registry accessible from the cluster

A mirror executable is shipped in the image to provide the input required by oc to mirror the images
needed to run the tests to a local registry.

Run this command from an intermediate machine that has access both to the cluster and to
registry.redhat.io over the Internet:

Then, follow the instructions in the following section about overriding the registry used to fetch the
images.

15.9.5.2. Instruct the tests to consume those images from a custom registry

This is done by setting the IMAGE_REGISTRY environment variable:

15.9.5.3. Mirroring to the cluster internal registry

OpenShift Container Platform provides a built-in container image registry, which runs as a standard
workload on the cluster.

Procedure

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/test-run.sh -ginkgo.dryRun -ginkgo.v

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/mirror -registry my.local.registry:5000/ | oc
image mirror -f -

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig -e
IMAGE_REGISTRY="my.local.registry:5000/" -e CNF_TESTS_IMAGE="custom-cnf-tests-
image:latests" registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/test-run.sh

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

97

https://catalog.redhat.com/software/containers/explore

1. Gain external access to the registry by exposing it with a route:

2. Fetch the registry endpoint:

3. Create a namespace for exposing the images:

4. Make that image stream available to all the namespaces used for tests. This is required to allow
the tests namespaces to fetch the images from the cnftests image stream.

5. Retrieve the docker secret name and auth token:

6. Write a dockerauth.json similar to this:

7. Do the mirroring:

8. Run the tests:

$ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":
{"defaultRoute":true}}' --type=merge

REGISTRY=$(oc get route default-route -n openshift-image-registry --template='{{ .spec.host
}}')

$ oc create ns cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:sctptest:default --
namespace=cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:cnf-features-
testing:default --namespace=cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:performance-addon-
operators-testing:default --namespace=cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:dpdk-testing:default
--namespace=cnftests

$ oc policy add-role-to-user system:image-puller system:serviceaccount:sriov-conformance-
testing:default --namespace=cnftests

SECRET=$(oc -n cnftests get secret | grep builder-docker | awk {'print $1'}
TOKEN=$(oc -n cnftests get secret $SECRET -o jsonpath="{.data['\.dockercfg']}" | base64 --
decode | jq '.["image-registry.openshift-image-registry.svc:5000"].auth')

echo "{\"auths\": { \"$REGISTRY\": { \"auth\": $TOKEN } }}" > dockerauth.json

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/mirror -registry $REGISTRY/cnftests
| oc image mirror --insecure=true -a=$(pwd)/dockerauth.json -f -

OpenShift Container Platform 4.6 Scalability and performance

98

15.9.5.4. Mirroring a different set of images

Procedure

1. The mirror command tries to mirror the u/s images by default. This can be overridden by
passing a file with the following format to the image:

2. Pass it to the mirror command, for example saving it locally as images.json. With the following
command, the local path is mounted in /kubeconfig inside the container and that can be passed
to the mirror command.

15.9.6. Discovery mode

Discovery mode allows you to validate the functionality of a cluster without altering its configuration.
Existing environment configurations are used for the tests. The tests attempt to find the configuration
items needed and use those items to execute the tests. If resources needed to run a specific test are
not found, the test is skipped, providing an appropriate message to the user. After the tests are finished,
no cleanup of the pre-configured configuration items is done, and the test environment can be
immediately used for another test run.

Some configuration items are still created by the tests. These are specific items needed for a test to run;
for example, a SR-IOV Network. These configuration items are created in custom namespaces and are
cleaned up after the tests are executed.

An additional bonus is a reduction in test run times. As the configuration items are already there, no time
is needed for environment configuration and stabilization.

To enable discovery mode, the tests must be instructed by setting the DISCOVERY_MODE
environment variable as follows:

15.9.6.1. Required environment configuration prerequisites

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig -e
IMAGE_REGISTRY=image-registry.openshift-image-registry.svc:5000/cnftests cnf-tests-
local:latest /usr/bin/test-run.sh

[
 {
 "registry": "public.registry.io:5000",
 "image": "imageforcnftests:4.6"
 },
 {
 "registry": "public.registry.io:5000",
 "image": "imagefordpdk:4.6"
 }
]

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/mirror --registry
"my.local.registry:5000/" --images "/kubeconfig/images.json" | oc image mirror -f -

$ docker run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig -e
DISCOVERY_MODE=true registry.redhat.io/openshift-kni/cnf-tests /usr/bin/test-run.sh

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

99

SR-IOV tests

Most SR-IOV tests require the following resources:

SriovNetworkNodePolicy.

At least one with the resource specified by SriovNetworkNodePolicy being allocatable; a
resource count of at least 5 is considered sufficient.

Some tests have additional requirements:

An unused device on the node with available policy resource, with link state DOWN and not a
bridge slave.

A SriovNetworkNodePolicy with a MTU value of 9000.

DPDK tests

The DPDK related tests require:

A performance profile.

A SR-IOV policy.

A node with resources available for the SR-IOV policy and available with the
PerformanceProfile node selector.

PTP tests

A slave PtpConfig (ptp4lOpts="-s" ,phc2sysOpts="-a -r").

A node with a label matching the slave PtpConfig.

SCTP tests

SriovNetworkNodePolicy.

A node matching both the SriovNetworkNodePolicy and a MachineConfig that enables
SCTP.

Performance Operator tests

Various tests have different requirements. Some of them are:

A performance profile.

A performance profile having profile.Spec.CPU.Isolated = 1.

A performance profile having profile.Spec.RealTimeKernel.Enabled == true.

A node with no huge pages usage.

15.9.6.2. Limiting the nodes used during tests

The nodes on which the tests are executed can be limited by specifying a NODES_SELECTOR
environment variable. Any resources created by the test are then limited to the specified nodes.

OpenShift Container Platform 4.6 Scalability and performance

100

15.9.6.3. Using a single performance profile

The resources needed by the DPDK tests are higher than those required by the performance test suite.
To make the execution faster, the performance profile used by tests can be overridden using one that
also serves the DPDK test suite.

To do this, a profile like the following one can be mounted inside the container, and the performance
tests can be instructed to deploy it.

To override the performance profile used, the manifest must be mounted inside the container and the
tests must be instructed by setting the PERFORMANCE_PROFILE_MANIFEST_OVERRIDE
parameter as follows:

15.9.6.4. Disabling the performance profile cleanup

When not running in discovery mode, the suite cleans up all the created artifacts and configurations.
This includes the performance profile.

When deleting the performance profile, the machine config pool is modified and nodes are rebooted.
After a new iteration, a new profile is created. This causes long test cycles between runs.

To speed up this process, set CLEAN_PERFORMANCE_PROFILE="false" to instruct the tests not to
clean the performance profile. In this way, the next iteration will not need to create it and wait for it to be
applied.

$ docker run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig -e
NODES_SELECTOR=node-role.kubernetes.io/worker-cnf registry.redhat.io/openshift-kni/cnf-tests
/usr/bin/test-run.sh

apiVersion: performance.openshift.io/v1
kind: PerformanceProfile
metadata:
 name: performance
spec:
 cpu:
 isolated: "4-15"
 reserved: "0-3"
 hugepages:
 defaultHugepagesSize: "1G"
 pages:
 - size: "1G"
 count: 16
 node: 0
 realTimeKernel:
 enabled: true
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

$ docker run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig -e
PERFORMANCE_PROFILE_MANIFEST_OVERRIDE=/kubeconfig/manifest.yaml
registry.redhat.io/openshift-kni/cnf-tests /usr/bin/test-run.sh

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

101

15.9.7. Troubleshooting

The cluster must be reached from within the container. You can verify this by running:

If this does not work, it could be caused by spanning across DNS, MTU size, or firewall issues.

15.9.8. Test reports

CNF end-to-end tests produce two outputs: a JUnit test output and a test failure report.

15.9.8.1. JUnit test output

A JUnit-compliant XML is produced by passing the --junit parameter together with the path where the
report is dumped:

15.9.8.2. Test failure report

A report with information about the cluster state and resources for troubleshooting can be produced by
passing the --report parameter with the path where the report is dumped:

15.9.8.3. A note on podman

When executing podman as non root and non privileged, mounting paths can fail with "permission
denied" errors. To make it work, append :Z to the volumes creation; for example, -v
$(pwd)/:/kubeconfig:Z to allow podman to do the proper SELinux relabeling.

15.9.8.4. Running on OpenShift Container Platform 4.4

With the exception of the following, the CNF end-to-end tests are compatible with OpenShift
Container Platform 4.4:

$ docker run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig -e
CLEAN_PERFORMANCE_PROFILE="false" registry.redhat.io/openshift-kni/cnf-tests /usr/bin/test-
run.sh

$ docker run -v $(pwd)/:/kubeconfig -e KUBECONFIG=/kubeconfig/kubeconfig
registry.redhat.io/openshift-kni/cnf-tests oc get nodes

$ docker run -v $(pwd)/:/kubeconfig -v $(pwd)/junitdest:/path/to/junit -e
KUBECONFIG=/kubeconfig/kubeconfig registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/test-
run.sh --junit /path/to/junit

$ docker run -v $(pwd)/:/kubeconfig -v $(pwd)/reportdest:/path/to/report -e
KUBECONFIG=/kubeconfig/kubeconfig registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/test-
run.sh --report /path/to/report

[test_id:28466][crit:high][vendor:cnf-qe@redhat.com][level:acceptance] Should contain configuration
injected through openshift-node-performance profile
[test_id:28467][crit:high][vendor:cnf-qe@redhat.com][level:acceptance] Should contain configuration
injected through the openshift-node-performance profile

OpenShift Container Platform 4.6 Scalability and performance

102

You can skip these tests by adding the -ginkgo.skip “28466|28467" parameter.

15.9.8.5. Using a single performance profile

The DPDK tests require more resources than what is required by the performance test suite. To make
the execution faster, you can override the performance profile used by the tests using a profile that also
serves the DPDK test suite.

To do this, use a profile like the following one that can be mounted inside the container, and the
performance tests can be instructed to deploy it.

To override the performance profile, the manifest must be mounted inside the container and the tests
must be instructed by setting the PERFORMANCE_PROFILE_MANIFEST_OVERRIDE:

15.9.9. Impacts on the cluster

Depending on the feature, running the test suite could cause different impacts on the cluster. In general,
only the SCTP tests do not change the cluster configuration. All of the other features have various
impacts on the configuration.

15.9.9.1. SCTP

SCTP tests just run different pods on different nodes to check connectivity. The impacts on the cluster
are related to running simple pods on two nodes.

15.9.9.2. SR-IOV

SR-IOV tests require changes in the SR-IOV network configuration, where the tests create and destroy
different types of configuration.

apiVersion: performance.openshift.io/v1
kind: PerformanceProfile
metadata:
 name: performance
spec:
 cpu:
 isolated: "5-15"
 reserved: "0-4"
 hugepages:
 defaultHugepagesSize: "1G"
 pages:
 -size: "1G"
 count: 16
 node: 0
 realTimeKernel:
 enabled: true
 numa:
 topologyPolicy: "best-effort"
 nodeSelector:
 node-role.kubernetes.io/worker-cnf: ""

$ docker run -v $(pwd)/:/kubeconfig:Z -e KUBECONFIG=/kubeconfig/kubeconfig -e
PERFORMANCE_PROFILE_MANIFEST_OVERRIDE=/kubeconfig/manifest.yaml
registry.redhat.io/openshift4/cnf-tests-rhel8:v4.6 /usr/bin/test-run.sh

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

103

This might have an impact if existing SR-IOV network configurations are already installed on the cluster,
because there may be conflicts depending on the priority of such configurations.

At the same time, the result of the tests might be affected by existing configurations.

15.9.9.3. PTP

PTP tests apply a PTP configuration to a set of nodes of the cluster. As with SR-IOV, this might conflict
with any existing PTP configuration already in place, with unpredictable results.

15.9.9.4. Performance

Performance tests apply a performance profile to the cluster. The effect of this is changes in the node
configuration, reserving CPUs, allocating memory huge pages, and setting the kernel packages to be
realtime. If an existing profile named performance is already available on the cluster, the tests do not
deploy it.

15.9.9.5. DPDK

DPDK relies on both performance and SR-IOV features, so the test suite configures both a
performance profile and SR-IOV networks, so the impacts are the same as those described in SR-IOV
testing and performance testing.

15.9.9.6. Cleaning up

After running the test suite, all the dangling resources are cleaned up.

15.10. DEBUGGING LOW LATENCY CNF TUNING STATUS

The PerformanceProfile custom resource (CR) contains status fields for reporting tuning status and
debugging latency degradation issues. These fields report on conditions that describe the state of the
operator’s reconciliation functionality.

A typical issue can arise when the status of machine config pools that are attached to the performance
profile are in a degraded state, causing the PerformanceProfile status to degrade. In this case, the
machine config pool issues a failure message.

The Performance Addon Operator contains the performanceProfile.spec.status.Conditions status
field:

Status:
 Conditions:
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: True
 Type: Available
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: True
 Type: Upgradeable
 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: False
 Type: Progressing

OpenShift Container Platform 4.6 Scalability and performance

104

The Status field contains Conditions that specify Type values that indicate the status of the
performance profile:

Available

All machine configs and Tuned profiles have been created successfully and are available for cluster
components are responsible to process them (NTO, MCO, Kubelet).

Upgradeable

Indicates whether the resources maintained by the Operator are in a state that is safe to upgrade.

Progressing

Indicates that the deployment process from the performance profile has started.

Degraded

Indicates an error if:

Validation of the performance profile has failed.

Creation of all relevant components did not complete successfully.

Each of these types contain the following fields:

Status

The state for the specific type (true or false).

Timestamp

The transaction timestamp.

Reason string

The machine readable reason.

Message string

The human readable reason describing the state and error details, if any.

15.10.1. Machine config pools

A performance profile and its created products are applied to a node according to an associated
machine config pool (MCP). The MCP holds valuable information about the progress of applying the
machine configurations created by performance addons that encompass kernel args, kube config, huge
pages allocation, and deployment of rt-kernel. The performance addons controller monitors changes in
the MCP and updates the performance profile status accordingly.

The only conditions returned by the MCP to the performance profile status is when the MCP is
Degraded, which leads to performaceProfile.status.condition.Degraded = true.

Example

The following example is for a performance profile with an associated machine config pool (worker-cnf)
that was created for it:

1. The associated machine config pool is in a degraded state:

 Last Heartbeat Time: 2020-06-02T10:01:24Z
 Last Transition Time: 2020-06-02T10:01:24Z
 Status: False
 Type: Degraded

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

105

Example output

2. The describe section of the MCP shows the reason:

Example output

3. The degraded state should also appear under the performance profile status field marked as
degraded = true:

Example output

15.11. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR
RED HAT SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including node tuning, NUMA topology, and other information needed to debug issues
with low latency setup.

oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-2ee57a93fa6c9181b546ca46e1571d2d True False
False 3 3 3 0 2d21h
worker rendered-worker-d6b2bdc07d9f5a59a6b68950acf25e5f True False
False 2 2 2 0 2d21h
worker-cnf rendered-worker-cnf-6c838641b8a08fff08dbd8b02fb63f7c False True
True 2 1 1 1 2d20h

oc describe mcp worker-cnf

 Message: Node node-worker-cnf is reporting: "prepping update:
 machineconfig.machineconfiguration.openshift.io \"rendered-worker-cnf-
40b9996919c08e335f3ff230ce1d170\" not
 found"
 Reason: 1 nodes are reporting degraded status on sync

oc describe performanceprofiles performance

Message: Machine config pool worker-cnf Degraded Reason: 1 nodes are reporting
degraded status on sync.
Machine config pool worker-cnf Degraded Message: Node yquinn-q8s5v-w-b-
z5lqn.c.openshift-gce-devel.internal is
reporting: "prepping update: machineconfig.machineconfiguration.openshift.io
\"rendered-worker-cnf-40b9996919c08e335f3ff230ce1d170\" not found". Reason:
MCPDegraded
 Status: True
 Type: Degraded

OpenShift Container Platform 4.6 Scalability and performance

106

For prompt support, supply diagnostic information for both OpenShift Container Platform and low
latency tuning.

15.11.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, such as:

Resource definitions

Audit logs

Service logs

You can specify one or more images when you run the command by including the --image argument.
When you specify an image, the tool collects data related to that feature or product. When you run oc
adm must-gather, a new pod is created on the cluster. The data is collected on that pod and saved in a
new directory that starts with must-gather.local. This directory is created in your current working
directory.

15.11.2. About collecting low latency tuning data

Use the oc adm must-gather CLI command to collect information about your cluster, including features
and objects associated with low latency tuning, including:

The Performance Addon Operator namespaces and child objects.

MachineConfigPool and associated MachineConfig objects.

The Node Tuning Operator and associated Tuned objects.

Linux Kernel command line options.

CPU and NUMA topology

Basic PCI device information and NUMA locality.

To collect Performance Addon Operator debugging information with must-gather, you must specify the
Performance Addon Operator must-gather image:

15.11.3. Gathering data about specific features

You can gather debugging information about specific features by using the oc adm must-gather CLI
command with the --image or --image-stream argument. The must-gather tool supports multiple
images, so you can gather data about more than one feature by running a single command.

NOTE

To collect the default must-gather data in addition to specific feature data, add the --
image-stream=openshift/must-gather argument.

Prerequisites

--image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.6.

CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES

107

1

2

1

Access to the cluster as a user with the cluster-admin role.

The OpenShift Container Platform CLI (oc) installed.

Procedure

1. Navigate to the directory where you want to store the must-gather data.

2. Run the oc adm must-gather command with one or more --image or --image-stream
arguments. For example, the following command gathers both the default cluster data and
information specific to the Performance Addon Operator:

The default OpenShift Container Platform must-gather image.

The must-gather image for low latency tuning diagnostics.

3. Create a compressed file from the must-gather directory that was created in your working
directory. For example, on a computer that uses a Linux operating system, run the following
command:

Replace must-gather-local.5421342344627712289/ with the actual directory name.

4. Attach the compressed file to your support case on the Red Hat Customer Portal .

Additional resources

For more information about MachineConfig and KubeletConfig, see Managing nodes.

For more information about the Node Tuning Operator, see Using the Node Tuning Operator .

For more information about the PerformanceProfile, see Configuring huge pages .

For more information about consuming huge pages from your containers, see How huge pages
are consumed by apps.

$ oc adm must-gather \
 --image-stream=openshift/must-gather \ 1

 --image=registry.redhat.io/openshift4/performance-addon-operator-must-gather-rhel8:v4.6
2

 $ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/ 1

OpenShift Container Platform 4.6 Scalability and performance

108

https://access.redhat.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/nodes/#nodes-nodes-managing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#using-node-tuning-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#configuring-huge-pages_huge-pages
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#how-huge-pages-are-consumed-by-apps_huge-pages

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE
WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN

DEDICATED ACCELERATOR ACC100

16.1. UNDERSTANDING INTEL HARDWARE ACCELERATOR CARDS FOR
OPENSHIFT CONTAINER PLATFORM

Hardware accelerator cards from Intel accelerate 4G/LTE and 5G Virtualized Radio Access Networks
(vRAN) workloads. This in turn increases the overall compute capacity of a commercial, off-the-shelf
platform.

Intel FPGA PAC N3000
The Intel FPGA PAC N3000 is a reference FPGA and uses 4G/LTE or 5G forward error correction
(FEC) as an example workload that accelerates the 5G or 4G/LTE RAN layer 1 (L1) base station network
function. Flash the Intel FPGA PAC N3000 card with 4G/LTE or 5G bitstreams to support vRAN
workloads.

The Intel FPGA PAC N3000 is a full-duplex, 100 Gbps in-system, re-programmable acceleration card
for multi-workload networking application acceleration.

When the Intel FPGA PAC N3000 is programmed with a 4G/LTE or 5G bitstream, it exposes the Single
Root I/O Virtualization (SR-IOV) virtual function (VF) devices used to accelerate the FEC in the vRAN
workload. To take advantage of this functionality for a cloud-native deployment, the physical function
(PF) of the device must be bound to the pf-pci-stub driver to create several VFs. After the VFs are
created, the VFs must be bound to a DPDK userspace driver (vfio) to allocate them to specific pods
running the vRAN workload.

Intel FPGA PAC N3000 support on OpenShift Container Platform depends on two Operators:

OpenNESS Operator for Intel FPGA PAC N3000 (Programming)

OpenNESS Operator for Wireless FEC Accelerators

vRAN Dedicated Accelerator ACC100
The vRAN Dedicated Accelerator ACC100, based on Intel’s eASIC technology is designed to offload and
accelerate the computing-intensive process of forward error correction for 4G/LTE and 5G
technology, freeing up processing power. Intel eASIC devices are structured ASICs, an intermediate
technology between FPGAs and standard application-specific integrated circuits (ASICs).

Intel vRAN Dedicated Accelerator ACC100 support on OpenShift Container Platform uses one
Operator:

OpenNESS Operator for Wireless FEC Accelerators

16.2. INSTALLING THE OPENNESS OPERATOR FOR INTEL FPGA PAC
N3000

The OpenNESS Operator for Intel FPGA PAC N3000 orchestrates and manages the resources or
devices exposed by the Intel FPGA PAC N3000 card within the OpenShift Container Platform cluster.

For vRAN use cases, the OpenNESS Operator for Intel FPGA PAC N3000 is used with the OpenNESS
Operator for Wireless FEC Accelerators.

As a cluster administrator, you can install the OpenNESS Operator for Intel FPGA PAC N3000 by using

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

109

As a cluster administrator, you can install the OpenNESS Operator for Intel FPGA PAC N3000 by using
the OpenShift Container Platform CLI or the web console.

16.2.1. Installing the Operator by using the CLI

As a cluster administrator, you can install the Operator by using the CLI.

Prerequisites

A cluster installed on bare-metal hardware.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the N3000 Operator by completing the following actions:

a. Define the vran-acceleration-operators namespace by creating a file named n3000-
namespace.yaml file as shown in the following example:

b. Create the namespace by running the following command:

2. Install the N3000 Operator in the namespace you created in the previous step:

a. Create the following OperatorGroup CR and save the YAML in the n3000-
operatorgroup.yaml file:

b. Create the OperatorGroup CR by running the following command:

c. Run the following command to get the channel value required for the next step.

apiVersion: v1
kind: Namespace
metadata:
 name: vran-acceleration-operators
 labels:
 openshift.io/cluster-monitoring: "true"

$ oc create -f n3000-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: n3000-operators
 namespace: vran-acceleration-operators
spec:
 targetNamespaces:
 - vran-acceleration-operators

$ oc create -f n3000-operatorgroup.yaml

OpenShift Container Platform 4.6 Scalability and performance

110

1

2

Example output

d. Create the following Subscription CR and save the YAML in the n3000-sub.yaml file:

Specify the value for channel from the value obtained in the previous step for the
.status.defaultChannel parameter.

You must specify the certified-operators value.

e. Create the Subscription CR by running the following command:

Verification

Verify the Operator is installed:

Example output

You have now successfully installed the Operator.

16.2.2. Installing the OpenNESS Operator for Intel FPGA PAC N3000 Operator by
using the web console

As a cluster administrator, you can install the OpenNESS Operator for Intel FPGA PAC N3000 by using
the web console.

NOTE

$ oc get packagemanifest n3000 -n openshift-marketplace -o
jsonpath='{.status.defaultChannel}'

stable

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: n3000-subscription
 namespace: vran-acceleration-operators
spec:
 channel: "<channel>" 1
 name: n3000
 source: certified-operators 2
 sourceNamespace: openshift-marketplace

$ oc create -f n3000-sub.yaml

$ oc get csv

NAME DISPLAY VERSION REPLACES PHASE
n3000.v1.1.0 OpenNESS Operator for Intel® FPGA PAC N3000 1.1.0
Succeeded

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

111

NOTE

You must create the Namespace and OperatorGroup CR as mentioned in the previous
section.

Procedure

1. Install the OpenNESS Operator for Intel FPGA PAC N3000 by using the OpenShift Container
Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose OpenNESS Operator for Intel FPGA PAC N3000 from the list of available
Operators, and then click Install.

c. On the Install Operator page, select All namespaces on the cluster. Then, click Install.

2. Optional: Verify that the N3000 Operator is installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that OpenNESS Operator for Intel FPGA PAC N3000 is listed in the vran-
acceleration-operators project with a Status of InstallSucceeded.

NOTE

During installation, an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the console does not indicate that the Operator is installed, perform the following
troubleshooting steps:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the vran-
acceleration-operators project.

16.3. PROGRAMMING THE OPENNESS OPERATOR FOR INTEL FPGA
PAC N3000

When the Intel FPGA PAC N3000 is programmed with a vRAN 5G bitstream, the hardware exposes the
Intel FPGA PAC N3000 with a vRAN 5G bitstream. This bitstream exposes the Single Root I/O
Virtualization (SR-IOV) virtual function (VF) devices used to accelerate the FEC in the vRAN workload.

As a cluster administrator, you can install the OpenNESS Operator for Intel FPGA PAC N3000 by using
the OpenShift Container Platform CLI or the web console.

16.3.1. Programming the N3000 with a vRAN bitstream

As a cluster administrator, you can program the Intel FPGA PAC N3000 with a vRAN 5G bitstream. This
bitstream exposes the Single Root I/O Virtualization (SR-IOV) virtual function (VF) devices that are
used to accelerate the forward error correction (FEC) in the vRAN workload.

The role of forward error correction (FEC) is to correct transmission errors, where certain bits in a

OpenShift Container Platform 4.6 Scalability and performance

112

The role of forward error correction (FEC) is to correct transmission errors, where certain bits in a
message can be lost or garbled. Messages can be lost or garbled due to noise in the transmission media,
interference, or low signal strength. Without FEC, a garbled message would have to be resent, adding to
the network load and impacting both throughput and latency.

Prerequisites

Intel FPGA PAC N3000 card

Performance Addon Operator with RT kernel configuration

Node or nodes installed with the OpenNESS Operator for Intel FPGA PAC N3000

Log in as a user with cluster-admin privileges

NOTE

All the commands run in the vran-acceleration-operators namespace.

Procedure

1. Change to the vran-acceleration-operators project:

2. Verify that the pods are running:

Example output

The following section provides information on the installed pods:

fpga-driver-daemonset provides and loads the required Open Programmable Accelerator
Engine (OPAE) drivers

fpgainfo-exporter provides N3000 telemetry data for Prometheus

N3000-controller-manager applies N3000Node CRs to the cluster and manages all the
operand containers

N3000-daemonset is the main worker application. It monitors the changes in each node’s
CR and acts on the changes. The logic implemented into this Daemon takes care of
updating the cards' FPGA user image and NIC firmware. It is also responsible for draining
the nodes and taking them out of commission when required by the update.

N3000-discovery discovers N3000 Accelerator devices installed and labels worker nodes if

$ oc project vran-acceleration-operators

$ oc get pods

NAME READY STATUS RESTARTS AGE
fpga-driver-daemonset-8xz4c 1/1 Running 0 15d
fpgainfo-exporter-vhvdq 1/1 Running 1 15d
N3000-controller-manager-b68475c76-gcc6v 2/2 Running 1 15d
N3000-daemonset-5k55l 1/1 Running 1 15d
N3000-discovery-blmjl 1/1 Running 1 15d
N3000-discovery-lblh7 1/1 Running 1 15d

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

113

N3000-discovery discovers N3000 Accelerator devices installed and labels worker nodes if
devices are present

3. Get all the nodes containing the Intel FPGA PAC N3000 card:

Example output

4. Get information about the card on each node:

Example output

$ oc get n3000node

NAME FLASH
node1 NotRequested

$ oc get n3000node node1 -o yaml

status:
 conditions:
 - lastTransitionTime: "2020-12-15T17:09:26Z"
 message: Inventory up to date
 observedGeneration: 1
 reason: NotRequested
 status: "False"
 type: Flashed
 fortville:
 - N3000PCI: 0000:1b:00.0
 NICs:
 - MAC: 64:4c:36:11:1b:a8
 NVMVersion: 7.00 0x800052b0 0.0.0
 PCIAddr: 0000:1a:00.0
 name: Ethernet Controller XXV710 Intel(R) FPGA Programmable Acceleration Card
N3000 for Networking
 - MAC: 64:4c:36:11:1b:a9
 NVMVersion: 7.00 0x800052b0 0.0.0
 PCIAddr: 0000:1a:00.1
 name: Ethernet Controller XXV710 Intel(R) FPGA Programmable Acceleration Card
N3000 for Networking
 - MAC: 64:4c:36:11:1b:ac
 NVMVersion: 7.00 0x800052b0 0.0.0
 PCIAddr: 0000:1c:00.0
 name: Ethernet Controller XXV710 Intel(R) FPGA Programmable Acceleration Card
N3000 for Networking
 - MAC: 64:4c:36:11:1b:ad
 NVMVersion: 7.00 0x800052b0 0.0.0
 PCIAddr: 0000:1c:00.1
 name: Ethernet Controller XXV710 Intel(R) FPGA Programmable Acceleration Card
N3000 for Networking
 fpga:
 - PCIAddr: 0000:1b:00.0 1
 bitstreamId: "0x23000410010310" 2
 bitstreamVersion: 0.2.3
 deviceId: "0x0b30"

OpenShift Container Platform 4.6 Scalability and performance

114

1

2

1

2

3

4

5

The PCIAddr field indicates the PCI address of the card.

The bitstreamId field indicates the bitstream that is currently stored in flash.

5. Save the current bitstreamId, PCIAddr, the name, and the deviceId without "0x" padding.

6. Update the user bitstream of the Intel FPGA PAC N3000 card:

a. Define the N3000 cluster resource to program by creating a file named n3000-
cluster.yaml as shown in the following example:

Specify the name. The name must be n3000.

Specify the node to program.

Specify the URL for the user bitstream. This bitstream file must be accessible on an
HTTP or HTTPS server.

Specify the PCI address of the card to program.

Specify the MD5 checksum of the bitstream that is specified in the userImageURL
field.

The N3000 daemon updates the FPGA user bitstream using the Open Programmable
Acceleration Engine (OPAE) tools and resets the PCI device. The update of the FPGA user
bitstream can require up to 40 minutes per card. For programming cards on multiple nodes,
the programming happens one node at a time.

b. Apply the update to begin programming the card with the bitstream:

The N3000 daemon starts programming the bitstream after the appropriate 5G FEC user
bitstream has been provisioned, such as 20ww27.5-2x2x25G-5GLDPC-v1.6.1-
3.0.0_unsigned.bin in this example, and after the CR has been created.

c. Check the status:

$ oc get n3000node -o json

apiVersion: fpga.intel.com/v1
kind: N3000Cluster
metadata:
 name: n3000 1
 namespace: vran-acceleration-operators
spec:
 nodes:
 - nodeName: "node1" 2
 fpga:
 - userImageURL: "http://10.10.10.122:8000/pkg/20ww27.5-2x2x25G-5GLDPC-
v1.6.1-3.0.0_unsigned.bin" 3
 PCIAddr: "0000:1b:00.0" 4
 checksum: "0b0a87b974d35ea16023ceb57f7d5d9c" 5

$ oc apply -f n3000-cluster.yaml

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

115

Example output

7. Check the logs:

a. Determine the pod name of the N3000 daemon:

Example output

b. View the logs:

Example output

The log file indicates the following flow of events:

The bitstream is downloaded and validated.

The node is drained and no workload is able to run during this time.

Flashing is started:

The bitstream is flashed into the card.

The bitstream is applied.

After flashing is complete the PCI device or devices on the node or nodes are reloaded.
The OpenNESS SR-IOV Operator for Wireless FEC Accelerators is now able to find the
new flashed device or devices.

oc get n3000node

NAME FLASH
node1 InProgress

$ oc get pod -o wide | grep n3000-daemonset | grep node1

n3000-daemonset-5k55l 1/1 Running 0 15d

$ oc logs n3000-daemonset-5k55l

...
{"level":"info","ts":1608054338.8866854,"logger":"daemon.drainhelper.cordonAndDrain()","
msg":"node drained"}
{"level":"info","ts":1608054338.8867319,"logger":"daemon.drainhelper.Run()","msg":"work
er function - start"}
{"level":"info","ts":1608054338.9003832,"logger":"daemon.fpgaManager.ProgramFPGAs","
msg":"Start program","PCIAddr":"0000:1b:00.0"}
{"level":"info","ts":1608054338.9004142,"logger":"daemon.fpgaManager.ProgramFPGA","
msg":"Starting","pci":"0000:1b:00.0"}
{"level":"info","ts":1608056309.9367146,"logger":"daemon.fpgaManager.ProgramFPGA","
msg":"Program FPGA completed, start new power cycle N3000 ...","pci":"0000:1b:00.0"}
{"level":"info","ts":1608056333.3528838,"logger":"daemon.drainhelper.Run()","msg":"work
er function - end","performUncordon":true}
...

OpenShift Container Platform 4.6 Scalability and performance

116

Verification

1. Verify the status after the FPGA user bitstream update is complete:

Example output

2. Verify that the bitstream ID of the card has changed:

Example output

oc get n3000node

NAME FLASH
node1 Succeeded

oc get n3000node node1 -o yaml

status:
 conditions:
 - lastTransitionTime: "2020-12-15T18:18:53Z"
 message: Flashed successfully 1
 observedGeneration: 2
 reason: Succeeded
 status: "True"
 type: Flashed
 fortville:
 - N3000PCI: 0000:1b:00.0
 NICs:
 - MAC: 64:4c:36:11:1b:a8
 NVMVersion: 7.00 0x800052b0 0.0.0
 PCIAddr: 0000:1a:00.0
 name: Ethernet Controller XXV710 Intel(R) FPGA Programmable Acceleration Card
N3000 for Networking
 - MAC: 64:4c:36:11:1b:a9
 NVMVersion: 7.00 0x800052b0 0.0.0
 PCIAddr: 0000:1a:00.1
 name: Ethernet Controller XXV710 Intel(R) FPGA Programmable Acceleration Card
N3000 for Networking
 - MAC: 64:4c:36:11:1b:ac
 NVMVersion: 7.00 0x800052b0 0.0.0
 PCIAddr: 0000:1c:00.0
 name: Ethernet Controller XXV710 Intel(R) FPGA Programmable Acceleration Card
N3000 for Networking
 - MAC: 64:4c:36:11:1b:ad
 NVMVersion: 7.00 0x800052b0 0.0.0
 PCIAddr: 0000:1c:00.1
 name: Ethernet Controller XXV710 Intel(R) FPGA Programmable Acceleration Card
N3000 for Networking
 fpga:
 - PCIAddr: 0000:1b:00.0 2
 bitstreamId: "0x2315842A010601" 3
 bitstreamVersion: 0.2.3
 deviceId: "0x0b30" 4

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

117

1

2

3

4

The message field indicates the device is successfully flashed.

The PCIAddr field indicates the PCI address of the card.

The bitstreamId field indicates the updated bitstream ID.

The deviceID field indicates that device ID of the bitstream inside the card exposed to the
system.

3. Check the FEC PCI devices on the node:

a. Verify the node configuration is applied correctly:

Expected output

b. Verify that you can use the node file system:

Expected output

c. List the PCI devices associated with the accelerator on your system:

Expected output

Devices belonging to the FPGA are reported in the output. Device ID 0b30 is the RSU
interface used to program the card, and the 0d8f is a physical function of the newly
programmed 5G device.

16.4. INSTALLING THE OPENNESS SR-IOV OPERATOR FOR WIRELESS
FEC ACCELERATORS

The role of the OpenNESS SR-IOV Operator for Wireless FEC Accelerators is to orchestrate and
manage the devices exposed by a range of Intel vRAN FEC acceleration hardware within the OpenShift
Container Platform cluster.

$ oc debug node/node1

Starting pod/<node-name>-debug ...
To use host binaries, run `chroot /host`

Pod IP: <ip-address>
If you don't see a command prompt, try pressing enter.

sh-4.4#

sh-4.4# chroot /host

sh-4.4#

$ lspci | grep accelerators

1b:00.0 Processing accelerators: Intel Corporation Device 0b30
1d:00.0 Processing accelerators: Intel Corporation Device 0d8f (rev 01)

OpenShift Container Platform 4.6 Scalability and performance

118

One of the most compute-intensive 4G/LTE and 5G workloads is RAN layer 1 (L1) forward error
correction (FEC). FEC resolves data transmission errors over unreliable or noisy communication
channels. FEC technology detects and corrects a limited number of errors in 4G/LTE or 5G data
without the need for retransmission.

The FEC devices are provided by the Intel FPGA PAC N3000 and the Intel vRAN Dedicated Accelerator
ACC100 for the vRAN use case.

NOTE

The Intel FPGA PAC N3000 FPGA requires flashing with an 4G/LTE or 5G bitstream.

The OpenNESS SR-IOV Operator for Wireless FEC Accelerators provides functionality to create virtual
functions (VFs) for the FEC device, binds them to appropriate drivers, and configures the VFs queues
for functionality in 4G/LTE or 5G deployment.

As a cluster administrator, you can install the OpenNESS SR-IOV Operator for Wireless FEC
Accelerators by using the OpenShift Container Platform CLI or the web console.

16.4.1. Installing the OpenNESS SR-IOV Operator for Wireless FEC Accelerators by
using the CLI

As a cluster administrator, you can install the OpenNESS SR-IOV Operator for Wireless FEC
Accelerators by using the CLI.

Prerequisites

A cluster installed on bare-metal hardware.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the OpenNESS SR-IOV Operator for Wireless FEC Accelerators by
completing the following actions:

a. Define the vran-acceleration-operators namespace by creating a file named sriov-
namespace.yaml as shown in the following example:

b. Create the namespace by running the following command:

2. Install the OpenNESS SR-IOV Operator for Wireless FEC Accelerators in the namespace you
created in the previous step by creating the following objects:

apiVersion: v1
kind: Namespace
metadata:
 name: vran-acceleration-operators
 labels:
 openshift.io/cluster-monitoring: "true"

$ oc create -f sriov-namespace.yaml

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

119

1

2

a. Create the following OperatorGroup CR and save the YAML in the sriov-
operatorgroup.yaml file:

b. Create the OperatorGroup CR by running the following command:

c. Run the following command to get the channel value required for the next step.

Example output

d. Create the following Subscription CR and save the YAML in the sriov-sub.yaml file:

Specify the value for channel from the value obtained in the previous step for the
.status.defaultChannel parameter.

You must specify the certified-operators value.

e. Create the Subscription CR by running the following command:

Verification

Verify that the Operator is installed:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: vran-operators
 namespace: vran-acceleration-operators
spec:
 targetNamespaces:
 - vran-acceleration-operators

$ oc create -f sriov-operatorgroup.yaml

$ oc get packagemanifest sriov-fec -n openshift-marketplace -o
jsonpath='{.status.defaultChannel}'

stable

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-fec-subscription
 namespace: vran-acceleration-operators
spec:
 channel: "<channel>" 1
 name: sriov-fec
 source: certified-operators 2
 sourceNamespace: openshift-marketplace

$ oc create -f sriov-sub.yaml

OpenShift Container Platform 4.6 Scalability and performance

120

Example output

16.4.2. Installing the OpenNESS SR-IOV Operator for Wireless FEC Accelerators by
using the web console

As a cluster administrator, you can install the OpenNESS SR-IOV Operator for Wireless FEC
Accelerators by using the web console.

NOTE

You must create the Namespace and OperatorGroup CR as mentioned in the previous
section.

Procedure

1. Install the OpenNESS SR-IOV Operator for Wireless FEC Accelerators by using the OpenShift
Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Choose OpenNESS SR-IOV Operator for Wireless FEC Accelerators from the list of
available Operators, and then click Install.

c. On the Install Operator page, select All namespaces on the cluster. Then, click Install.

2. Optional: Verify that the SRIOV-FEC Operator is installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that OpenNESS SR-IOV Operator for Wireless FEC Accelerators is listed in the
vran-acceleration-operators project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the console does not indicate that the Operator is installed, perform the following
troubleshooting steps:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for pods in the vran-
acceleration-operators project.

$ oc get csv -n vran-acceleration-operators -o custom-
columns=Name:.metadata.name,Phase:.status.phase

Name Phase
sriov-fec.v1.1.0 Succeeded

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

121

16.4.3. Configuring the SR-IOV-FEC Operator for Intel FPGA PAC N3000

This section describes how to program the SR-IOV-FEC Operator for Intel FPGA PAC N3000. The SR-
IOV-FEC Operator handles the management of the forward error correction (FEC) devices that are
used to accelerate the FEC process in vRAN L1 applications.

Configuring the SR-IOV-FEC Operator involves:

Creating the desired virtual functions (VFs) for the FEC device

Binding the VFs to the appropriate drivers

Configuring the VF queues for desired functionality in a 4G or 5G deployment

The role of forward error correction (FEC) is to correct transmission errors, where certain bits in a
message can be lost or garbled. Messages can be lost or garbled due to noise in the transmission media,
interference, or low signal strength. Without FEC, a garbled message would have to be resent, adding to
the network load and impacting throughput and latency.

Prerequisites

Intel FPGA PAC N3000 card

Node or nodes installed with the OpenNESS Operator for Intel FPGA PAC N3000
(Programming)

Node or nodes installed with the OpenNESS Operator for Wireless FEC Accelerators

RT kernel configured with Performance Addon Operator

Procedure

1. Change to the vran-acceleration-operators project:

2. Verify that the SR-IOV-FEC Operator is installed:

Example output

3. Verify that the N3000 and sriov-fec pods are running:

Example output

$ oc project vran-acceleration-operators

$ oc get csv -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
sriov-fec.v1.1.0 Succeeded
n3000.v1.1.0 Succeeded

$ oc get pods

NAME READY STATUS RESTARTS AGE
fpga-driver-daemonset-8xz4c 1/1 Running 0 15d

OpenShift Container Platform 4.6 Scalability and performance

122

The following section provides information on the installed pods:

fpga-driver-daemonset provides and loads the required Open Programmable Accelerator
Engine (OPAE) drivers

fpgainfo-exporter provides N3000 telemetry data for Prometheus

N3000-controller-manager applies N3000Node CRs to the cluster and manages all the
operand containers

N3000-daemonset is the main worker application

N3000-discovery discovers N3000 Accelerator devices installed and labels worker nodes if
devices are present

sriov-device-plugin expose the FEC virtual functions as resources under the node

sriov-fec-controller-manager applies CR to the node and maintains the operands
containers

sriov-fec-daemonset is responsible for:

Discovering the SRIOV NICs on each node.

Syncing the status of the custom resource (CR) defined in step 6.

Taking the spec of the CR as input and configuring the discovered NICs.

4. Retrieve all the nodes containing one of the supported vRAN FEC accelerator devices:

Example output

5. Find the physical function (PF) of the SR-IOV FEC accelerator device to configure:

Example output

fpgainfo-exporter-vhvdq 1/1 Running 1 15d
N3000-controller-manager-b68475c76-gcc6v 2/2 Running 1 15d
N3000-daemonset-5k55l 1/1 Running 1 15d
N3000-discovery-blmjl 1/1 Running 1 15d
N3000-discovery-lblh7 1/1 Running 1 15d
sriov-device-plugin-j5jlv 1/1 Running 1 15d
sriov-fec-controller-manager-85b6b8f4d4-gd2qg 1/1 Running 1 15d
sriov-fec-daemonset-kqqs6 1/1 Running 1 15d

$ oc get sriovfecnodeconfig

NAME CONFIGURED
node1 Succeeded

$ oc get sriovfecnodeconfig node1 -o yaml

status:
 conditions:
 - lastTransitionTime: "2021-03-19T17:19:37Z"

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

123

1

2

This field indicates the PCI Address of the card.

This field shows that the virtual functions are empty.

6. Configure the FEC device with the desired setting.

a. Create the following custom resource (CR) and save the YAML in the
sriovfec_n3000_cr.yaml file:

 message: Configured successfully
 observedGeneration: 1
 reason: ConfigurationSucceeded
 status: "True"
 type: Configured
 inventory:
 sriovAccelerators:
 - deviceID: 0d5c
 driver: ""
 maxVirtualFunctions: 16
 pciAddress: 0000.1d.00.0 1
 vendorID: "8086"
 virtualFunctions: [] 2

apiVersion: sriovfec.intel.com/v1
kind: SriovFecClusterConfig
metadata:
 name: config
 namespace: vran-acceleration-operators
spec:
 nodes:
 - nodeName: node1 1
 physicalFunctions:
 - pciAddress: 0000:1d:00.0 2
 pfDriver: pci-pf-stub
 vfDriver: vfio-pci
 vfAmount: 2 3
 bbDevConfig:
 n3000:
 # Network Type: either "FPGA_5GNR" or "FPGA_LTE"
 networkType: "FPGA_5GNR"
 pfMode: false
 flrTimeout: 610
 downlink:
 bandwidth: 3
 loadBalance: 128
 queues: 4
 vf0: 16
 vf1: 16
 vf2: 0
 vf3: 0
 vf4: 0
 vf5: 0
 vf6: 0
 vf7: 0

OpenShift Container Platform 4.6 Scalability and performance

124

1

2

3

4

5

Specify the node name.

Specify the PCI Address of the card on which the SR-IOV-FEC Operator will be
installed.

Specify the number of virtual functions. Create two virtual functions.

On vf0 create one queue with 16 buses (downlink and uplink).

On vf1 create one queue with 16 buses (downlink and uplink).

NOTE

For Intel PAC N3000 for vRAN Acceleration the user can create up to 8 VF
devices. Each FEC PF device provides a total of 64 queues to be configured,
32 queues for uplink and 32 queues for downlink. The queues would be
typically distributed evenly across the VFs.

b. Apply the CR:

After applying the CR, the SR-IOV FEC daemon starts configuring the FEC device.

Verification

1. Check the status:

Example output

 uplink:
 bandwidth: 3
 loadBalance: 128
 queues: 5
 vf0: 16
 vf1: 16
 vf2: 0
 vf3: 0
 vf4: 0
 vf5: 0
 vf6: 0
 vf7: 0

$ oc apply -f sriovfec_n3000_cr.yaml

$ oc get sriovfecclusterconfig config -o yaml

status:
 conditions:
 - lastTransitionTime: "2020-12-15T17:19:37Z"
 message: Configured successfully
 observedGeneration: 1
 reason: ConfigurationSucceeded
 status: "True"
 type: Configured

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

125

2. Check the logs:

a. Determine the name of the SR-IOV daemon pod:

Example output

b. View the logs:

Example output

 inventory:
 sriovAccelerators:
 - deviceID: 0d8f
 driver: pci-pf-stub
 maxVirtualFunctions: 8
 pciAddress: 0000:1d:00.0
 vendorID: "8086"
 virtualFunctions:
 - deviceID: 0d90
 driver: vfio-pci
 pciAddress: 0000:1d:00.1
 - deviceID: 0d90
 driver: vfio-pci
 pciAddress: 0000:1d:00.2

$ oc get pod | grep sriov-fec-daemonset

sriov-fec-daemonset-kqqs6 1/1 Running 0 19h

$ oc logs sriov-fec-daemonset-kqqs6

2020-12-16T12:46:47.720Z INFO daemon.NodeConfigurator.applyConfig
configuring PF {"requestedConfig": {"pciAddress":"0000:1d:00.0","pfDriver":"pci-pf-
stub","vfDriver":"vfio-pci","vfAmount":2,"bbDevConfig":{"n3000":{
"networkType":"FPGA_5GNR","pfMode":false,"flrTimeout":610,"downlink":
{"bandwidth":3,"loadBalance":128,"queues":{"vf0":16,"vf1":16}},"uplink":
{"bandwidth":3,"loadBalance":128,"queues":{"vf0":16,"vf1":16}}}}}}
2020-12-16T12:46:47.720Z INFO daemon.NodeConfigurator.loadModule
executing command {"cmd": "/usr/sbin/chroot /host/ modprobe pci-pf-stub"}
2020-12-16T12:46:47.724Z INFO daemon.NodeConfigurator.loadModule
commands output {"output": ""}
2020-12-16T12:46:47.724Z INFO daemon.NodeConfigurator.loadModule
executing command {"cmd": "/usr/sbin/chroot /host/ modprobe vfio-pci"}
2020-12-16T12:46:47.727Z INFO daemon.NodeConfigurator.loadModule
commands output {"output": ""}
2020-12-16T12:46:47.727Z INFO daemon.NodeConfigurator device's
driver_override path {"path": "/sys/bus/pci/devices/0000:1d:00.0/driver_override"}
2020-12-16T12:46:47.727Z INFO daemon.NodeConfigurator driver bind path
{"path": "/sys/bus/pci/drivers/pci-pf-stub/bind"}
2020-12-16T12:46:47.998Z INFO daemon.NodeConfigurator device's
driver_override path {"path": "/sys/bus/pci/devices/0000:1d:00.1/driver_override"}
2020-12-16T12:46:47.998Z INFO daemon.NodeConfigurator driver bind path
{"path": "/sys/bus/pci/drivers/vfio-pci/bind"}
2020-12-16T12:46:47.998Z INFO daemon.NodeConfigurator device's

OpenShift Container Platform 4.6 Scalability and performance

126

driver_override path {"path": "/sys/bus/pci/devices/0000:1d:00.2/driver_override"}
2020-12-16T12:46:47.998Z INFO daemon.NodeConfigurator driver bind path
{"path": "/sys/bus/pci/drivers/vfio-pci/bind"}
2020-12-16T12:46:47.999Z INFO daemon.NodeConfigurator.applyConfig
executing command {"cmd": "/sriov_workdir/pf_bb_config FPGA_5GNR -c
/sriov_artifacts/0000:1d:00.0.ini -p 0000:1d:00.0"}
2020-12-16T12:46:48.017Z INFO daemon.NodeConfigurator.applyConfig
commands output {"output": "ERROR: Section (FLR) or name (flr_time_out) is not valid.
FEC FPGA RTL v3.0
UL.DL Weights = 3.3
UL.DL Load Balance = 1
28.128
Queue-PF/VF Mapping Table = READY
Ring Descriptor Size = 256 bytes

--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 | PF | VF0 | VF1 | VF2 | VF3 | VF4 | VF5 | VF6 | VF7 |
--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+
UL-Q'00 | | X | | | | | | | |
UL-Q'01 | | X | | | | | | | |
UL-Q'02 | | X | | | | | | | |
UL-Q'03 | | X | | | | | | | |
UL-Q'04 | | X | | | | | | | |
UL-Q'05 | | X | | | | | | | |
UL-Q'06 | | X | | | | | | | |
UL-Q'07 | | X | | | | | | | |
UL-Q'08 | | X | | | | | | | |
UL-Q'09 | | X | | | | | | | |
UL-Q'10 | | X | | | | | | | |
UL-Q'11 | | X | | | | | | | |
UL-Q'12 | | X | | | | | | | |
UL-Q'13 | | X | | | | | | | |
UL-Q'14 | | X | | | | | | | |
UL-Q'15 | | X | | | | | | | |
UL-Q'16 | | | X | | | | | | |
UL-Q'17 | | | X | | | | | | |
UL-Q'18 | | | X | | | | | | |
UL-Q'19 | | | X | | | | | | |
UL-Q'20 | | | X | | | | | | |
UL-Q'21 | | | X | | | | | | |
UL-Q'22 | | | X | | | | | | |
UL-Q'23 | | | X | | | | | | |
UL-Q'24 | | | X | | | | | | |
UL-Q'25 | | | X | | | | | | |
UL-Q'26 | | | X | | | | | | |
UL-Q'27 | | | X | | | | | | |
UL-Q'28 | | | X | | | | | | |
UL-Q'29 | | | X | | | | | | |
UL-Q'30 | | | X | | | | | | |
UL-Q'31 | | | X | | | | | | |
DL-Q'32 | | X | | | | | | | |
DL-Q'33 | | X | | | | | | | |
DL-Q'34 | | X | | | | | | | |
DL-Q'35 | | X | | | | | | | |
DL-Q'36 | | X | | | | | | | |
DL-Q'37 | | X | | | | | | | |

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

127

3. Check the FEC configuration of the card:

Example output

DL-Q'38 | | X | | | | | | | |
DL-Q'39 | | X | | | | | | | |
DL-Q'40 | | X | | | | | | | |
DL-Q'41 | | X | | | | | | | |
DL-Q'42 | | X | | | | | | | |
DL-Q'43 | | X | | | | | | | |
DL-Q'44 | | X | | | | | | | |
DL-Q'45 | | X | | | | | | | |
DL-Q'46 | | X | | | | | | | |
DL-Q'47 | | X | | | | | | | |
DL-Q'48 | | | X | | | | | | |
DL-Q'49 | | | X | | | | | | |
DL-Q'50 | | | X | | | | | | |
DL-Q'51 | | | X | | | | | | |
DL-Q'52 | | | X | | | | | | |
DL-Q'53 | | | X | | | | | | |
DL-Q'54 | | | X | | | | | | |
DL-Q'55 | | | X | | | | | | |
DL-Q'56 | | | X | | | | | | |
DL-Q'57 | | | X | | | | | | |
DL-Q'58 | | | X | | | | | | |
DL-Q'59 | | | X | | | | | | |
DL-Q'60 | | | X | | | | | | |
DL-Q'61 | | | X | | | | | | |
DL-Q'62 | | | X | | | | | | |
DL-Q'63 | | | X | | | | | | |
--------+-----+-----+-----+-----+-----+-----+-----+-----+-----+

Mode of operation = VF-mode
FPGA_5GNR PF [0000:1d:00.0] configuration complete!"}
2020-12-16T12:46:48.017Z INFO daemon.NodeConfigurator.enableMasterBus
executing command {"cmd": "/usr/sbin/chroot /host/ setpci -v -s 0000:1d:00.0
COMMAND"}
2020-12-16T12:46:48.037Z INFO daemon.NodeConfigurator.enableMasterBus
commands output {"output": "0000:1d:00.0 @04 = 0102\n"}
2020-12-16T12:46:48.037Z INFO daemon.NodeConfigurator.enableMasterBus
executing command {"cmd": "/usr/sbin/chroot /host/ setpci -v -s 0000:1d:00.0
COMMAND=0106"}
2020-12-16T12:46:48.054Z INFO daemon.NodeConfigurator.enableMasterBus
commands output {"output": "0000:1d:00.0 @04 0106\n"}
2020-12-16T12:46:48.054Z INFO daemon.NodeConfigurator.enableMasterBus
MasterBus set {"pci": "0000:1d:00.0", "output": "0000:1d:00.0 @04 0106\n"}
2020-12-16T12:46:48.160Z INFO daemon.drainhelper.Run() worker function -
end {"performUncordon": true}

$ oc get sriovfecnodeconfig node1 -o yaml

status:
 conditions:
 - lastTransitionTime: "2020-12-15T17:19:37Z"
 message: Configured successfully

OpenShift Container Platform 4.6 Scalability and performance

128

1

2

0d8f is the deviceID physical function of the FEC device.

0d90 is the deviceID virtual function of the FEC device.

16.4.4. Configuring the SR-IOV-FEC Operator for the Intel vRAN Dedicated
Accelerator ACC100

Programming the Intel vRAN Dedicated Accelerator ACC100 exposes the Single Root I/O Virtualization
(SRIOV) virtual function (VF) devices that are then used to accelerate the FEC in the vRAN workload.
The Intel vRAN Dedicated Accelerator ACC100 accelerates 4G and 5G Virtualized Radio Access
Networks (vRAN) workloads. This in turn increases the overall compute capacity of a commercial, off-
the-shelf platform. This device is also known as Mount Bryce.

The SR-IOV-FEC Operator handles the management of the forward error correction (FEC) devices
that are used to accelerate the FEC process in vRAN L1 applications.

Configuring the SR-IOV-FEC Operator involves:

Creating the virtual functions (VFs) for the FEC device

Binding the VFs to the appropriate drivers

Configuring the VF queues for desired functionality in a 4G or 5G deployment

The role of forward error correction (FEC) is to correct transmission errors, where certain bits in a
message can be lost or garbled. Messages can be lost or garbled due to noise in the transmission media,
interference, or low signal strength. Without FEC, a garbled message would have to be resent, adding to
the network load and impacting throughput and latency.

Prerequisites

Intel FPGA ACC100 5G/4G card

Node or nodes installed with the OpenNESS Operator for Wireless FEC Accelerators

Enable global SR-IOV and VT-d settings in the BIOS for the node

 observedGeneration: 1
 reason: ConfigurationSucceeded
 status: "True"
 type: Configured
 inventory:
 sriovAccelerators:
 - deviceID: 0d8f 1
 driver: pci-pf-stub
 maxVirtualFunctions: 8
 pciAddress: 0000:1d:00.0
 vendorID: "8086"
 virtualFunctions:
 - deviceID: 0d90 2
 driver: vfio-pci
 pciAddress: 0000:1d:00.1
 - deviceID: 0d90
 driver: vfio-pci
 pciAddress: 0000:1d:00.2

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

129

RT kernel configured with Performance Addon Operator

Log in as a user with cluster-admin privileges

Procedure

1. Change to the vran-acceleration-operators project:

2. Verify that the SR-IOV-FEC Operator is installed:

Example output

3. Verify that the sriov-fec pods are running:

Example output

sriov-device-plugin expose the FEC virtual functions as resources under the node

sriov-fec-controller-manager applies CR to the node and maintains the operands
containers

sriov-fec-daemonset is responsible for:

Discovering the SRIOV NICs on each node.

Syncing the status of the custom resource (CR) defined in step 6.

Taking the spec of the CR as input and configuring the discovered NICs.

4. Retrieve all the nodes containing one of the supported vRAN FEC accelerator devices:

Example output

5. Find the physical function (PF) of the SR-IOV FEC accelerator device to configure:

$ oc project vran-acceleration-operators

$ oc get csv -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
sriov-fec.v1.1.0 Succeeded

$ oc get pods

NAME READY STATUS RESTARTS AGE
sriov-device-plugin-j5jlv 1/1 Running 1 15d
sriov-fec-controller-manager-85b6b8f4d4-gd2qg 1/1 Running 1 15d
sriov-fec-daemonset-kqqs6 1/1 Running 1 15d

$ oc get sriovfecnodeconfig

NAME CONFIGURED
node1 Succeeded

OpenShift Container Platform 4.6 Scalability and performance

130

1

2

Example output

This field indicates the PCI address of the card.

This field shows that the virtual functions are empty.

6. Configure the number of virtual functions and queue groups on the FEC device:

a. Create the following custom resource (CR) and save the YAML in the
sriovfec_acc100cr.yaml file:

NOTE

This example configures the ACC100 8/8 queue groups for 5G, 4 queue
groups for Uplink, and another 4 queue groups for Downlink.

$ oc get sriovfecnodeconfig node1 -o yaml

status:
 conditions:
 - lastTransitionTime: "2021-03-19T17:19:37Z"
 message: Configured successfully
 observedGeneration: 1
 reason: ConfigurationSucceeded
 status: "True"
 type: Configured
 inventory:
 sriovAccelerators:
 - deviceID: 0d5c
 driver: ""
 maxVirtualFunctions: 16
 pciAddress: 0000:af:00.0 1
 vendorID: "8086"
 virtualFunctions: [] 2

apiVersion: sriovfec.intel.com/v1
kind: SriovFecClusterConfig
metadata:
 name: config 1
spec:
 nodes:
 - nodeName: node1 2
 physicalFunctions:
 - pciAddress: 0000:af:00.0 3
 pfDriver: "pci-pf-stub"
 vfDriver: "vfio-pci"
 vfAmount: 16 4
 bbDevConfig:
 acc100:
 # Programming mode: 0 = VF Programming, 1 = PF Programming
 pfMode: false
 numVfBundles: 16

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

131

1

2

3

4

Specify a name for the CR object. The only name that can be specified is config.

Specify the node name.

Specify the PCI address of the card on which the SR-IOV-FEC Operator will be
installed.

Specify the number of virtual functions to create. For the Intel vRAN Dedicated
Accelerator ACC100, create all 16 VFs.

NOTE

The card is configured to provide up to 8 queue groups with up to 16 queues
per group. The queue groups can be divided between groups allocated to 5G
and 4G and Uplink and Downlink. The Intel vRAN Dedicated Accelerator
ACC100 can be configured for:

4G or 5G only

4G and 5G at the same time

Each configured VF has access to all the queues. Each of the queue groups
have a distinct priority level. The request for a given queue group is made
from the application level that is, the vRAN application leveraging the FEC
device.

b. Apply the CR:

After applying the CR, the SR-IOV FEC daemon starts configuring the FEC device.

Verification

1. Check the status:

 maxQueueSize: 1024
 uplink4G:
 numQueueGroups: 0
 numAqsPerGroups: 16
 aqDepthLog2: 4
 downlink4G:
 numQueueGroups: 0
 numAqsPerGroups: 16
 aqDepthLog2: 4
 uplink5G:
 numQueueGroups: 4
 numAqsPerGroups: 16
 aqDepthLog2: 4
 downlink5G:
 numQueueGroups: 4
 numAqsPerGroups: 16
 aqDepthLog2: 4

$ oc apply -f sriovfec_acc100cr.yaml

OpenShift Container Platform 4.6 Scalability and performance

132

Example output

2. Check the logs:

a. Determine the pod name of the SR-IOV daemon:

Example output

b. View the logs:

Example output

$ oc get sriovfecclusterconfig config -o yaml

status:
 conditions:
 - lastTransitionTime: "2021-03-19T11:46:22Z"
 message: Configured successfully
 observedGeneration: 1
 reason: Succeeded
 status: "True"
 type: Configured
 inventory:
 sriovAccelerators:
 - deviceID: 0d5c
 driver: pci-pf-stub
 maxVirtualFunctions: 16
 pciAddress: 0000:af:00.0
 vendorID: "8086"
 virtualFunctions:
 - deviceID: 0d5d
 driver: vfio-pci
 pciAddress: 0000:b0:00.0
 - deviceID: 0d5d
 driver: vfio-pci
 pciAddress: 0000:b0:00.1
 - deviceID: 0d5d
 driver: vfio-pci
 pciAddress: 0000:b0:00.2
 - deviceID: 0d5d
 driver: vfio-pci
 pciAddress: 0000:b0:00.3
 - deviceID: 0d5d
 driver: vfio-pci
 pciAddress: 0000:b0:00.4

$ oc get po -o wide | grep sriov-fec-daemonset | grep node1

sriov-fec-daemonset-kqqs6 1/1 Running 0 19h

$ oc logs sriov-fec-daemonset-kqqs6

{"level":"Level(-

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

133

2)","ts":1616794345.4786215,"logger":"daemon.drainhelper.cordonAndDrain()","msg":"no
de drained"}
{"level":"Level(-
4)","ts":1616794345.4786265,"logger":"daemon.drainhelper.Run()","msg":"worker
function - start"}
{"level":"Level(-
4)","ts":1616794345.5762916,"logger":"daemon.NodeConfigurator.applyConfig","msg":"cur
rent node status","inventory":{"sriovAccelerat
ors":
[{"vendorID":"8086","deviceID":"0b32","pciAddress":"0000:20:00.0","driver":"","maxVirtualF
unctions":1,"virtualFunctions":[]},{"vendorID":"8086"
,"deviceID":"0d5c","pciAddress":"0000:af:00.0","driver":"","maxVirtualFunctions":16,"virtualF
unctions":[]}]}}
{"level":"Level(-
4)","ts":1616794345.5763638,"logger":"daemon.NodeConfigurator.applyConfig","msg":"co
nfiguring PF","requestedConfig":{"pciAddress":"
0000:af:00.0","pfDriver":"pci-pf-stub","vfDriver":"vfio-pci","vfAmount":2,"bbDevConfig":
{"acc100":{"pfMode":false,"numVfBundles":16,"maxQueueSize":1
024,"uplink4G":
{"numQueueGroups":4,"numAqsPerGroups":16,"aqDepthLog2":4},"downlink4G":
{"numQueueGroups":4,"numAqsPerGroups":16,"aqDepthLog2":4},"uplink5G":
{"numQueueGroups":0,"numAqsPerGroups":16,"aqDepthLog2":4},"downlink5G":
{"numQueueGroups":0,"numAqsPerGroups":16,"aqDepthLog2":4}}}}}
{"level":"Level(-
4)","ts":1616794345.5774765,"logger":"daemon.NodeConfigurator.loadModule","msg":"ex
ecuting command","cmd":"/usr/sbin/chroot /host/ modprobe pci-pf-stub"}
{"level":"Level(-
4)","ts":1616794345.5842702,"logger":"daemon.NodeConfigurator.loadModule","msg":"co
mmands output","output":""}
{"level":"Level(-
4)","ts":1616794345.5843055,"logger":"daemon.NodeConfigurator.loadModule","msg":"ex
ecuting command","cmd":"/usr/sbin/chroot /host/ modprobe vfio-pci"}
{"level":"Level(-
4)","ts":1616794345.6090655,"logger":"daemon.NodeConfigurator.loadModule","msg":"co
mmands output","output":""}
{"level":"Level(-
2)","ts":1616794345.6091156,"logger":"daemon.NodeConfigurator","msg":"device's
driver_override path","path":"/sys/bus/pci/devices/0000:af:00.0/driver_override"}
{"level":"Level(-
2)","ts":1616794345.6091807,"logger":"daemon.NodeConfigurator","msg":"driver bind
path","path":"/sys/bus/pci/drivers/pci-pf-stub/bind"}
{"level":"Level(-
2)","ts":1616794345.7488534,"logger":"daemon.NodeConfigurator","msg":"device's
driver_override path","path":"/sys/bus/pci/devices/0000:b0:00.0/driver_override"}
{"level":"Level(-
2)","ts":1616794345.748938,"logger":"daemon.NodeConfigurator","msg":"driver bind
path","path":"/sys/bus/pci/drivers/vfio-pci/bind"}
{"level":"Level(-
2)","ts":1616794345.7492096,"logger":"daemon.NodeConfigurator","msg":"device's
driver_override path","path":"/sys/bus/pci/devices/0000:b0:00.1/driver_override"}
{"level":"Level(-
2)","ts":1616794345.7492566,"logger":"daemon.NodeConfigurator","msg":"driver bind
path","path":"/sys/bus/pci/drivers/vfio-pci/bind"}
{"level":"Level(-
4)","ts":1616794345.74968,"logger":"daemon.NodeConfigurator.applyConfig","msg":"exec
uting command","cmd":"/sriov_workdir/pf_bb_config ACC100 -c

OpenShift Container Platform 4.6 Scalability and performance

134

/sriov_artifacts/0000:af:00.0.ini -p 0000:af:00.0"}
{"level":"Level(-
4)","ts":1616794346.5203931,"logger":"daemon.NodeConfigurator.applyConfig","msg":"co
mmands output","output":"Queue Groups: 0 5GUL, 0 5GDL, 4 4GUL, 4 4GDL\nNumber
of 5GUL engines 8\nConfiguration in VF mode\nPF ACC100 configuration
complete\nACC100 PF [0000:af:00.0] configuration complete!\n\n"}
{"level":"Level(-
4)","ts":1616794346.520459,"logger":"daemon.NodeConfigurator.enableMasterBus","msg"
:"executing command","cmd":"/usr/sbin/chroot /host/ setpci -v -s 0000:af:00.0
COMMAND"}
{"level":"Level(-
4)","ts":1616794346.5458736,"logger":"daemon.NodeConfigurator.enableMasterBus","ms
g":"commands output","output":"0000:af:00.0 @04 = 0142\n"}
{"level":"Level(-
4)","ts":1616794346.5459251,"logger":"daemon.NodeConfigurator.enableMasterBus","ms
g":"executing command","cmd":"/usr/sbin/chroot /host/ setpci -v -s 0000:af:00.0
COMMAND=0146"}
{"level":"Level(-
4)","ts":1616794346.5795262,"logger":"daemon.NodeConfigurator.enableMasterBus","ms
g":"commands output","output":"0000:af:00.0 @04 0146\n"}
{"level":"Level(-
2)","ts":1616794346.5795407,"logger":"daemon.NodeConfigurator.enableMasterBus","ms
g":"MasterBus set","pci":"0000:af:00.0","output":"0000:af:00.0 @04 0146\n"}
{"level":"Level(-
4)","ts":1616794346.6867144,"logger":"daemon.drainhelper.Run()","msg":"worker
function - end","performUncordon":true}
{"level":"Level(-
4)","ts":1616794346.6867719,"logger":"daemon.drainhelper.Run()","msg":"uncordoning
node"}
{"level":"Level(-
4)","ts":1616794346.6896322,"logger":"daemon.drainhelper.uncordon()","msg":"starting
uncordon attempts"}
{"level":"Level(-
2)","ts":1616794346.69735,"logger":"daemon.drainhelper.uncordon()","msg":"node
uncordoned"}
{"level":"Level(-
4)","ts":1616794346.6973662,"logger":"daemon.drainhelper.Run()","msg":"cancelling the
context to finish the leadership"}
{"level":"Level(-
4)","ts":1616794346.7029872,"logger":"daemon.drainhelper.Run()","msg":"stopped
leading"}
{"level":"Level(-
4)","ts":1616794346.7030034,"logger":"daemon.drainhelper","msg":"releasing the lock
(bug mitigation)"}
{"level":"Level(-
4)","ts":1616794346.8040674,"logger":"daemon.updateInventory","msg":"obtained
inventory","inv":{"sriovAccelerators":
[{"vendorID":"8086","deviceID":"0b32","pciAddress":"0000:20:00.0","driver":"","maxVirtualF
unctions":1,"virtualFunctions":[]},
{"vendorID":"8086","deviceID":"0d5c","pciAddress":"0000:af:00.0","driver":"pci-pf-
stub","maxVirtualFunctions":16,"virtualFunctions":
[{"pciAddress":"0000:b0:00.0","driver":"vfio-pci","deviceID":"0d5d"},
{"pciAddress":"0000:b0:00.1","driver":"vfio-pci","deviceID":"0d5d"}]}]}}
{"level":"Level(-4)","ts":1616794346.9058325,"logger":"daemon","msg":"Update ignored,
generation unchanged"}

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

135

1

2

3. Check the FEC configuration of the card:

Example output

The value 0d5c is the deviceID physical function of the FEC device.

The value 0d5d is the deviceID virtual function of the FEC device.

16.4.5. Verifying application pod access and FPGA usage on OpenNESS

OpenNESS is an edge computing software toolkit that you can use to onboard and manage applications
and network functions on any type of network.

To verify all OpenNESS features are working together, including SR-IOV binding, the device plugin,

{"level":"Level(-
2)","ts":1616794346.9065044,"logger":"daemon.Reconcile","msg":"Reconciled","namespac
e":"vran-acceleration-operators","name":"pg-itengdvs02r.altera.com"}

$ oc get sriovfecnodeconfig node1 -o yaml

status:
 conditions:
 - lastTransitionTime: "2021-03-19T11:46:22Z"
 message: Configured successfully
 observedGeneration: 1
 reason: Succeeded
 status: "True"
 type: Configured
 inventory:
 sriovAccelerators:
 - deviceID: 0d5c 1
 driver: pci-pf-stub
 maxVirtualFunctions: 16
 pciAddress: 0000:af:00.0
 vendorID: "8086"
 virtualFunctions:
 - deviceID: 0d5d 2
 driver: vfio-pci
 pciAddress: 0000:b0:00.0
 - deviceID: 0d5d
 driver: vfio-pci
 pciAddress: 0000:b0:00.1
 - deviceID: 0d5d
 driver: vfio-pci
 pciAddress: 0000:b0:00.2
 - deviceID: 0d5d
 driver: vfio-pci
 pciAddress: 0000:b0:00.3
 - deviceID: 0d5d
 driver: vfio-pci
 pciAddress: 0000:b0:00.4

OpenShift Container Platform 4.6 Scalability and performance

136

To verify all OpenNESS features are working together, including SR-IOV binding, the device plugin,
Wireless Base Band Device (bbdev) configuration, and SR-IOV (FEC) VF functionality inside a non-root
pod, you can build an image and run a simple validation application for the device.

For more information, go to openess.org.

Prerequisites

Optional: Intel FPGA PAC N3000 card

Node or nodes installed with the n3000-operator

Node or nodes installed with the SR-IOV-FEC operator

Real-Time kernel and huge pages configured with Performance Addon Operator

Log in as a user with cluster-admin privileges

Procedure

1. Create a namespace for the test by completing the following actions:

a. Define the test-bbdev namespace by creating a file named test-bbdev-namespace.yaml
file as shown in the following example:

b. Create the namespace by running the following command:

2. Create the following Pod specification, and then save the YAML in the pod-test.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: test-bbdev
 labels:
 openshift.io/run-level: "1"

$ oc create -f test-bbdev-namespace.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod-bbdev-sample-app
 namespace: test-bbdev 1
spec:
 containers:
 - securityContext:
 privileged: false
 capabilities:
 add:
 - IPC_LOCK
 - SYS_NICE
 name: bbdev-sample-app
 image: bbdev-sample-app:1.0 2
 command: ["sudo", "/bin/bash", "-c", "--"]
 runAsUser: 0 3

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

137

http://www.openness.org

1

2

3

4

5

6

Specify the namespace you created in step 1.

This defines the test image containing the compiled DPDK.

Make the container execute internally as the root user.

Specify hugepage size hugepages-1Gi and the quantity of hugepages that will be
allocated to the pod. Hugepages and isolated CPUs need to be configured using the
Performance Addon Operator.

Specify the number of CPUs.

Testing of the N3000 5G FEC configuration is supported by intel.com/intel_fec_5g.

NOTE

To test the ACC100 configuration, uncomment intel.com/intel_fec_acc100 by
removing the # symbol. To test the N3000 4G/LTE configuration, uncomment
intel.com/intel_fec_lte by removing the # symbol. Only one resource can be
active at any time.

3. Create the pod:

4. Check that the pod is created:

Example output

5. Use a remote shell to log in to the pod-bbdev-sample-app:

 resources:
 requests:
 hugepages-1Gi: 4Gi 4
 memory: 1Gi
 cpu: "4" 5
 intel.com/intel_fec_5g: '1' 6
 #intel.com/intel_fec_acc100: '1'
 #intel.com/intel_fec_lte: '1'
 limits:
 memory: 4Gi
 cpu: "4"
 hugepages-1Gi: 4Gi
 intel.com/intel_fec_5g: '1'
 #intel.com/intel_fec_acc100: '1'
 #intel.com/intel_fec_lte: '1

$ oc apply -f pod-test.yaml

$ oc get pods -n test-bbdev

NAME READY STATUS RESTARTS AGE
pod-bbdev-sample-app 1/1 Running 0 80s

$ oc rsh pod-bbdev-sample-app

OpenShift Container Platform 4.6 Scalability and performance

138

1

Example output

6. Print a list of environment variables:

Example output

This is the PCI address of the virtual function. Depending on the resource that you
requested in the pod-test.yaml file, this can be any one of following three PCI addresses:

PCIDEVICE_INTEL_COM_INTEL_FEC_ACC100

PCIDEVICE_INTEL_COM_INTEL_FEC_5G

PCIDEVICE_INTEL_COM_INTEL_FEC_LTE

7. Change to the test-bbdev directory:

NOTE

The directory is in the pod and not on your local computer.

8. Check the CPUs that are assigned to the pod:

This prints out the CPUs that are assigned to the fec.pod.

Example output

9. Run the test-bbdev application to test the device:

sh-4.4#

sh-4.4# env

N3000_CONTROLLER_MANAGER_METRICS_SERVICE_PORT_8443_TCP_ADDR=172.3
0.133.131
SRIOV_FEC_CONTROLLER_MANAGER_METRICS_SERVICE_PORT_8443_TCP_PROT
O=tcp
DPDK_VERSION=20.11
PCIDEVICE_INTEL_COM_INTEL_FEC_5G=0.0.0.0:1d.00.0 1
~/usr/bin/env
HOSTNAME=fec-pod

sh-4.4# cd test/test-bbdev/

sh-4.4# export CPU=$(cat /sys/fs/cgroup/cpuset/cpuset.cpus)
sh-4.4# echo ${CPU}

24,25,64,65

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

139

1

Example output

While some tests can be skipped, be sure that the vector tests pass.

16.5. ADDITIONAL RESOURCES

sh-4.4# ./test-bbdev.py -e="-l ${CPU} -a ${PCIDEVICE_INTEL_COM_INTEL_FEC_5G}" -c
validation \ -n 64 -b 32 -l 1 -v ./test_vectors/*"

Executing: ../../build/app/dpdk-test-bbdev -l 24-25,64-65 0000:1d.00.0 -- -n 64 -l 1 -c
validation -v ./test_vectors/bbdev_null.data -b 32
EAL: Detected 80 lcore(s)
EAL: Detected 2 NUMA nodes
Option -w, --pci-whitelist is deprecated, use -a, --allow option instead
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'VA'
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: using IOMMU type 1 (Type 1)
EAL: Probe PCI driver: intel_fpga_5ngr_fec_vf (8086:d90) device: 0000:1d.00.0 (socket 1)
EAL: No legacy callbacks, legacy socket not created

===
Starting Test Suite : BBdev Validation Tests
Test vector file = ldpc_dec_v7813.data
Device 0 queue 16 setup failed
Allocated all queues (id=16) at prio0 on dev0
Device 0 queue 32 setup failed
Allocated all queues (id=32) at prio1 on dev0
Device 0 queue 48 setup failed
Allocated all queues (id=48) at prio2 on dev0
Device 0 queue 64 setup failed
Allocated all queues (id=64) at prio3 on dev0
Device 0 queue 64 setup failed
All queues on dev 0 allocated: 64
+ --- +
== test: validation
dev:0000:b0:00.0, burst size: 1, num ops: 1, op type: RTE_BBDEV_OP_LDPC_DEC
Operation latency:
 avg: 23092 cycles, 10.0838 us
 min: 23092 cycles, 10.0838 us
 max: 23092 cycles, 10.0838 us
TestCase [0] : validation_tc passed
 + ~~ +
 + Test Suite Summary : BBdev Validation Tests
 + Tests Total : 1
 + Tests Skipped : 0
 + Tests Passed : 1 1
 + Tests Failed : 0
 + Tests Lasted : 177.67 ms
 + ~~ +

OpenShift Container Platform 4.6 Scalability and performance

140

OpenNESS Operator for Intel® FPGA PAC N3000 (Programming)

OpenNESS Operator for Wireless FEC Accelerators

CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100

141

https://catalog.redhat.com/software/operators/detail/5ffd640a2808e868018797c9
https://catalog.redhat.com/software/operators/detail/6001a748e4e3f23b0b6ad765

	Table of Contents
	CHAPTER 1. RECOMMENDED PRACTICES FOR INSTALLING LARGE CLUSTERS
	1.1. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE CLUSTERS

	CHAPTER 2. RECOMMENDED HOST PRACTICES
	2.1. RECOMMENDED NODE HOST PRACTICES
	2.2. CREATING A KUBELETCONFIG CRD TO EDIT KUBELET PARAMETERS
	2.3. CONTROL PLANE NODE SIZING
	2.3.1. Increasing the flavor size of the Amazon Web Services (AWS) master instances

	2.4. RECOMMENDED ETCD PRACTICES
	2.5. DEFRAGMENTING ETCD DATA
	2.6. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE COMPONENTS
	2.7. MOVING THE MONITORING SOLUTION
	2.8. MOVING THE DEFAULT REGISTRY
	2.9. MOVING THE ROUTER
	2.10. INFRASTRUCTURE NODE SIZING
	2.11. ADDITIONAL RESOURCES

	CHAPTER 3. RECOMMENDED CLUSTER SCALING PRACTICES
	3.1. RECOMMENDED PRACTICES FOR SCALING THE CLUSTER
	3.2. MODIFYING A MACHINE SET
	3.3. ABOUT MACHINE HEALTH CHECKS
	3.3.1. MachineHealthChecks on Bare Metal
	3.3.2. Limitations when deploying machine health checks

	3.4. SAMPLE MACHINEHEALTHCHECK RESOURCE
	3.4.1. Short-circuiting machine health check remediation
	3.4.1.1. Setting maxUnhealthy by using an absolute value
	3.4.1.2. Setting maxUnhealthy by using percentages

	3.5. CREATING A MACHINEHEALTHCHECK RESOURCE

	CHAPTER 4. USING THE NODE TUNING OPERATOR
	4.1. ABOUT THE NODE TUNING OPERATOR
	4.2. ACCESSING AN EXAMPLE NODE TUNING OPERATOR SPECIFICATION
	4.3. DEFAULT PROFILES SET ON A CLUSTER
	4.4. VERIFYING THAT THE TUNED PROFILES ARE APPLIED
	4.5. CUSTOM TUNING SPECIFICATION
	4.6. CUSTOM TUNING EXAMPLE
	4.7. SUPPORTED TUNED DAEMON PLUG-INS

	CHAPTER 5. USING CLUSTER LOADER
	5.1. INSTALLING CLUSTER LOADER
	5.2. RUNNING CLUSTER LOADER
	5.3. CONFIGURING CLUSTER LOADER
	5.3.1. Example Cluster Loader configuration file
	5.3.2. Configuration fields

	5.4. KNOWN ISSUES

	CHAPTER 6. USING CPU MANAGER
	6.1. SETTING UP CPU MANAGER

	CHAPTER 7. USING TOPOLOGY MANAGER
	7.1. TOPOLOGY MANAGER POLICIES
	7.2. SETTING UP TOPOLOGY MANAGER
	7.3. POD INTERACTIONS WITH TOPOLOGY MANAGER POLICIES

	CHAPTER 8. SCALING THE CLUSTER MONITORING OPERATOR
	8.1. PROMETHEUS DATABASE STORAGE REQUIREMENTS
	8.2. CONFIGURING CLUSTER MONITORING

	CHAPTER 9. PLANNING YOUR ENVIRONMENT ACCORDING TO OBJECT MAXIMUMS
	9.1. OPENSHIFT CONTAINER PLATFORM TESTED CLUSTER MAXIMUMS FOR MAJOR RELEASES
	9.2. OPENSHIFT CONTAINER PLATFORM ENVIRONMENT AND CONFIGURATION ON WHICH THE CLUSTER MAXIMUMS ARE TESTED
	9.3. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO TESTED CLUSTER MAXIMUMS
	9.4. HOW TO PLAN YOUR ENVIRONMENT ACCORDING TO APPLICATION REQUIREMENTS

	CHAPTER 10. OPTIMIZING STORAGE
	10.1. AVAILABLE PERSISTENT STORAGE OPTIONS
	10.2. RECOMMENDED CONFIGURABLE STORAGE TECHNOLOGY
	10.2.1. Specific application storage recommendations
	10.2.1.1. Registry
	10.2.1.2. Scaled registry
	10.2.1.3. Metrics
	10.2.1.4. Logging
	10.2.1.5. Applications

	10.2.2. Other specific application storage recommendations

	10.3. DATA STORAGE MANAGEMENT

	CHAPTER 11. OPTIMIZING ROUTING
	11.1. BASELINE INGRESS CONTROLLER (ROUTER) PERFORMANCE
	11.2. INGRESS CONTROLLER (ROUTER) PERFORMANCE OPTIMIZATIONS

	CHAPTER 12. OPTIMIZING NETWORKING
	12.1. OPTIMIZING THE MTU FOR YOUR NETWORK
	12.2. RECOMMENDED PRACTICES FOR INSTALLING LARGE SCALE CLUSTERS
	12.3. IMPACT OF IPSEC

	CHAPTER 13. MANAGING BARE METAL HOSTS
	13.1. ABOUT BARE METAL HOSTS AND NODES
	13.2. MAINTAINING BARE METAL HOSTS
	13.2.1. Adding a bare metal host to the cluster using the web console
	13.2.2. Adding a bare metal host to the cluster using YAML in the web console
	13.2.3. Automatically scaling machines to the number of available bare metal hosts

	CHAPTER 14. WHAT HUGE PAGES DO AND HOW THEY ARE CONSUMED BY APPLICATIONS
	14.1. WHAT HUGE PAGES DO
	14.2. HOW HUGE PAGES ARE CONSUMED BY APPS
	14.3. CONFIGURING HUGE PAGES
	14.3.1. At boot time

	CHAPTER 15. PERFORMANCE ADDON OPERATOR FOR LOW LATENCY NODES
	15.1. UNDERSTANDING LOW LATENCY
	15.2. INSTALLING THE PERFORMANCE ADDON OPERATOR
	15.2.1. Installing the Operator using the CLI
	15.2.2. Installing the Performance Addon Operator using the web console

	15.3. UPGRADING PERFORMANCE ADDON OPERATOR
	15.3.1. About upgrading Performance Addon Operator
	15.3.1.1. How Performance Addon Operator upgrades affect your cluster
	15.3.1.2. Upgrading Performance Addon Operator to the next minor version

	15.3.2. Monitoring upgrade status

	15.4. PROVISIONING REAL-TIME AND LOW LATENCY WORKLOADS
	15.4.1. Known limitations for real-time
	15.4.2. Provisioning a worker with real-time capabilities
	15.4.3. Verifying the real-time kernel installation
	15.4.4. Creating a workload that works in real-time
	15.4.5. Creating a pod with a QoS class of Guaranteed
	15.4.6. Optional: Disabling CPU load balancing for DPDK
	15.4.7. Assigning a proper node selector
	15.4.8. Scheduling a workload onto a worker with real-time capabilities

	15.5. CONFIGURING HUGE PAGES
	15.6. ALLOCATING MULTIPLE HUGE PAGE SIZES
	15.7. RESTRICTING CPUS FOR INFRA AND APPLICATION CONTAINERS
	15.8. TUNING NODES FOR LOW LATENCY WITH THE PERFORMANCE PROFILE
	15.9. PERFORMING END-TO-END TESTS FOR PLATFORM VERIFICATION
	15.9.1. Prerequisites
	15.9.2. Running the tests
	15.9.3. Image parameters
	15.9.3.1. Ginkgo parameters
	15.9.3.2. Available features

	15.9.4. Dry run
	15.9.5. Disconnected mode
	15.9.5.1. Mirroring the images to a custom registry accessible from the cluster
	15.9.5.2. Instruct the tests to consume those images from a custom registry
	15.9.5.3. Mirroring to the cluster internal registry
	15.9.5.4. Mirroring a different set of images

	15.9.6. Discovery mode
	15.9.6.1. Required environment configuration prerequisites
	15.9.6.2. Limiting the nodes used during tests
	15.9.6.3. Using a single performance profile
	15.9.6.4. Disabling the performance profile cleanup

	15.9.7. Troubleshooting
	15.9.8. Test reports
	15.9.8.1. JUnit test output
	15.9.8.2. Test failure report
	15.9.8.3. A note on podman
	15.9.8.4. Running on OpenShift Container Platform 4.4
	15.9.8.5. Using a single performance profile

	15.9.9. Impacts on the cluster
	15.9.9.1. SCTP
	15.9.9.2. SR-IOV
	15.9.9.3. PTP
	15.9.9.4. Performance
	15.9.9.5. DPDK
	15.9.9.6. Cleaning up

	15.10. DEBUGGING LOW LATENCY CNF TUNING STATUS
	15.10.1. Machine config pools

	15.11. COLLECTING LOW LATENCY TUNING DEBUGGING DATA FOR RED HAT SUPPORT
	15.11.1. About the must-gather tool
	15.11.2. About collecting low latency tuning data
	15.11.3. Gathering data about specific features

	CHAPTER 16. OPTIMIZING DATA PLANE PERFORMANCE WITH THE INTEL FPGA PAC N3000 AND INTEL VRAN DEDICATED ACCELERATOR ACC100
	16.1. UNDERSTANDING INTEL HARDWARE ACCELERATOR CARDS FOR OPENSHIFT CONTAINER PLATFORM
	Intel FPGA PAC N3000
	vRAN Dedicated Accelerator ACC100

	16.2. INSTALLING THE OPENNESS OPERATOR FOR INTEL FPGA PAC N3000
	16.2.1. Installing the Operator by using the CLI
	16.2.2. Installing the OpenNESS Operator for Intel FPGA PAC N3000 Operator by using the web console

	16.3. PROGRAMMING THE OPENNESS OPERATOR FOR INTEL FPGA PAC N3000
	16.3.1. Programming the N3000 with a vRAN bitstream

	16.4. INSTALLING THE OPENNESS SR-IOV OPERATOR FOR WIRELESS FEC ACCELERATORS
	16.4.1. Installing the OpenNESS SR-IOV Operator for Wireless FEC Accelerators by using the CLI
	16.4.2. Installing the OpenNESS SR-IOV Operator for Wireless FEC Accelerators by using the web console
	16.4.3. Configuring the SR-IOV-FEC Operator for Intel FPGA PAC N3000
	16.4.4. Configuring the SR-IOV-FEC Operator for the Intel vRAN Dedicated Accelerator ACC100
	16.4.5. Verifying application pod access and FPGA usage on OpenNESS

	16.5. ADDITIONAL RESOURCES

