
OpenShift Container Platform 4.3

Installing

Installing and configuring OpenShift Container Platform clusters

Last Updated: 2020-10-22

OpenShift Container Platform 4.3 Installing

Installing and configuring OpenShift Container Platform clusters

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about installing OpenShift Container Platform and details
about some configuration processes.

. .

. .

. .

Table of Contents

CHAPTER 1. GATHERING INSTALLATION LOGS
1.1. PREREQUISITES
1.2. GATHERING LOGS FROM A FAILED INSTALLATION
1.3. MANUALLY GATHERING LOGS WITH SSH ACCESS TO YOUR HOST(S)
1.4. MANUALLY GATHERING LOGS WITHOUT SSH ACCESS TO YOUR HOST(S)

CHAPTER 2. SUPPORT FOR FIPS CRYPTOGRAPHY
2.1. FIPS VALIDATION IN OPENSHIFT CONTAINER PLATFORM
2.2. FIPS SUPPORT IN COMPONENTS THAT THE CLUSTER USES

2.2.1. etcd
2.2.2. Storage
2.2.3. Runtimes

2.3. INSTALLING A CLUSTER IN FIPS MODE

CHAPTER 3. INSTALLATION CONFIGURATION
3.1. INSTALLATION METHODS FOR DIFFERENT PLATFORMS
3.2. CUSTOMIZING NODES

3.2.1. Adding day-1 kernel arguments
3.2.2. Adding kernel modules to nodes

3.2.2.1. Building and testing the kernel module container
3.2.2.2. Provisioning a kernel module to OpenShift Container Platform

3.2.2.2.1. Provision kernel modules via a MachineConfig
3.2.3. Encrypting disks during installation

3.2.3.1. Enabling TPM v2 disk encryption
3.2.3.2. Enabling Tang disk encryption

3.2.4. Configuring chrony time service
3.2.5. Additional resources

3.3. CREATING A MIRROR REGISTRY FOR INSTALLATION IN A RESTRICTED NETWORK
3.3.1. About the mirror registry
3.3.2. Preparing your mirror host

3.3.2.1. Installing the CLI by downloading the binary
3.3.2.1.1. Installing the CLI on Linux
3.3.2.1.2. Installing the CLI on Windows
3.3.2.1.3. Installing the CLI on macOS

3.3.3. Configuring credentials that allow images to be mirrored
3.3.4. Mirroring the OpenShift Container Platform image repository
3.3.5. Preparing your cluster to gather support data
3.3.6. Using Samples Operator imagestreams with alternate or mirrored registries
3.3.7. Next steps

3.4. AVAILABLE CLUSTER CUSTOMIZATIONS
3.4.1. Cluster configuration resources
3.4.2. Operator configuration resources
3.4.3. Additional configuration resources
3.4.4. Informational Resources

3.5. CONFIGURING YOUR FIREWALL
3.5.1. Configuring your firewall for OpenShift Container Platform

3.6. CONFIGURING A PRIVATE CLUSTER
3.6.1. About private clusters

DNS
Ingress Controller
API server

4
4
4
5
6

7
7
7
7
8
8
8

9
9
9

10
11
11

13
13
16
16
18

20
21
21
21
22
22
22
23
23
23
27
29
29
31
31
31
32
32
33
33
33
36
36
36
36
36

Table of Contents

1

3.6.2. Setting DNS to private
3.6.3. Setting the Ingress Controller to private
3.6.4. Restricting the API server to private

36
38
38

OpenShift Container Platform 4.3 Installing

2

Table of Contents

3

1

CHAPTER 1. GATHERING INSTALLATION LOGS
To assist in troubleshooting a failed OpenShift Container Platform installation, you can gather logs from
the bootstrap and control plane, or master, machines.

1.1. PREREQUISITES

You attempted to install an OpenShift Container Platform cluster, and installation failed.

You provided an SSH key to the installation program, and that key is in your running ssh-agent
process.

1.2. GATHERING LOGS FROM A FAILED INSTALLATION

If you gave an SSH key to your installation program, you can gather data about your failed installation.

NOTE

You use a different command to gather logs about an unsuccessful installation than to
gather logs from a running cluster. If you must gather logs from a running cluster, use the
oc adm must-gather command.

Prerequisites

Your OpenShift Container Platform installation failed before the bootstrap process finished.
The bootstrap node must be running and accessible through SSH.

The ssh-agent process is active on your computer, and you provided both the ssh-agent
process and the installation program the same SSH key.

If you tried to install a cluster on infrastructure that you provisioned, you must have the fully-
qualified domain names of the control plane, or master, machines.

Procedure

1. Generate the commands that are required to obtain the installation logs from the bootstrap and
control plane machines:

If you used installer-provisioned infrastructure, run the following command:

$./openshift-install gather bootstrap --dir=<directory> 1

installation_directory is the directory you stored the OpenShift Container Platform
definition files that the installation program creates.

For installer-provisioned infrastructure, the installation program stores information about
the cluster, so you do not specify the host names or IP addresses

If you used infrastructure that you provisioned yourself, run the following command:

$./openshift-install gather bootstrap --dir=<directory> \ 1
 --bootstrap <bootstrap_address> \ 2
 --master <master_1_address> \ 3

OpenShift Container Platform 4.3 Installing

4

1

2

3 4 5

 --master <master_2_address> \ 4
 --master <master_3_address>" 5

installation_directory is the directory you stored the OpenShift Container Platform
definition files that the installation program creates.

<bootstrap_address> is the fully-qualified domain name or IP address of the cluster’s
bootstrap machine.

For each control plane, or master, machine in your cluster, replace
<master_*_address> with its fully-qualified domain name or IP address.

NOTE

A default cluster contains three control plane machines. List all of your
control plane machines as shown, no matter how many your cluster uses.

The command output resembles the following example:

INFO Pulling debug logs from the bootstrap machine
INFO Bootstrap gather logs captured here "<directory>/log-bundle-<timestamp>.tar.gz"

If you open a Red Hat support case about your installation failure, include the compressed logs
in the case.

1.3. MANUALLY GATHERING LOGS WITH SSH ACCESS TO YOUR
HOST(S)

Manually gather logs in situations where must-gather or automated collection methods do not work.

Prerequisites

You must have SSH access to your host(s).

Procedure

1. Collect the bootkube.service service logs from the bootstrap host using the journalctl
command by running:

$ journalctl -b -f -u bootkube.service

2. Collect the bootstrap host’s container logs using the Podman logs. This is shown as a loop to get
all of the container logs from the host:

$ for pod in $(sudo podman ps -a -q); do sudo podman logs $pod; done

3. Alternatively, collect the host’s container logs using the tail command by running:

tail -f /var/lib/containers/storage/overlay-containers/*/userdata/ctr.log

4. Collect the kubelet.service and crio.service service logs from the master and worker hosts

CHAPTER 1. GATHERING INSTALLATION LOGS

5

4. Collect the kubelet.service and crio.service service logs from the master and worker hosts
using the journalctl command by running:

$ journalctl -b -f -u kubelet.service -u crio.service

5. Collect the master and worker host container logs using the tail command by running:

$ sudo tail -f /var/log/containers/*

1.4. MANUALLY GATHERING LOGS WITHOUT SSH ACCESS TO YOUR
HOST(S)

Manually gather logs in situations where must-gather or automated collection methods do not work.

If you do not have SSH access to your node, you can access the systems journal to investigate what is
happening on your host.

Prerequisites

Your OpenShift Container Platform installation must be complete.

Your API service is still functional.

You have system administrator privileges.

Procedure

1. Access journald unit logs under /var/log by running:

$ oc adm node-logs --role=master -u kubelet

2. Access host file paths under /var/log by running:

$ oc adm node-logs --role=master --path=openshift-apiserver

OpenShift Container Platform 4.3 Installing

6

CHAPTER 2. SUPPORT FOR FIPS CRYPTOGRAPHY
Starting with version 4.3, you can install an OpenShift Container Platform cluster that uses FIPS
Validated / Modules in Process cryptographic libraries.

For the Red Hat Enterprise Linux CoreOS (RHCOS) machines in your cluster, this change is applied
when the machines are deployed based on the status of an option in the install-config.yaml file, which
governs the cluster options that a user can change during cluster deployment. With Red Hat Enterprise
Linux machines, you must enable FIPS mode when you install the operating system on the machines
that you plan to use as worker machines. These configuration methods ensure that your cluster meet the
requirements of a FIPS compliance audit: only FIPS Validated / Modules in Process cryptography
packages are enabled before the initial system boot.

Because FIPS must be enabled before the operating system that your cluster uses boots for the first
time, you cannot enable FIPS after you deploy a cluster.

2.1. FIPS VALIDATION IN OPENSHIFT CONTAINER PLATFORM

OpenShift Container Platform uses certain FIPS Validated / Modules in Process modules within Red Hat
Enterprise Linux (RHEL) and RHCOS for the operating system components that it uses. See RHEL7
core crypto components. For example, when users SSH into OpenShift Container Platform clusters and
containers, those connections are properly encrypted.

OpenShift Container Platform components are written in Go and built with Red Hat’s golang compiler.
When you enable FIPS mode for your cluster, all OpenShift Container Platform components that require
cryptographic signing call RHEL and RHCOS cryptographic libraries.

Table 2.1. FIPS mode attributes and limitations in OpenShift Container Platform 4.3

Attributes Limitations

FIPS support in RHEL 7 operating systems. The FIPS implementation does not offer a single
function that both computes hash functions and
validates the keys that are based on that hash. This
limitation will continue to be evaluated and improved
in future OpenShift Container Platform releases.

FIPS support in CRI-O runtimes.

FIPS support in OpenShift Container Platform
services.

FIPS Validated / Modules in Process cryptographic
module and algorithms that are obtained from RHEL
7 and RHCOS binaries and images.

Use of FIPS compatible golang compiler. TLS FIPS support is not complete but is planned for
future OpenShift Container Platform releases.

2.2. FIPS SUPPORT IN COMPONENTS THAT THE CLUSTER USES

Although the OpenShift Container Platform cluster itself uses FIPS Validated / Modules in Process
modules, ensure that the systems that support your OpenShift Container Platform cluster use FIPS
Validated / Modules in Process modules for cryptography.

2.2.1. etcd

CHAPTER 2. SUPPORT FOR FIPS CRYPTOGRAPHY

7

https://access.redhat.com/articles/3359851

To ensure that the secrets that are stored in etcd use FIPS Validated / Modules in Process encryption,
boot the node in FIPS mode. After you install the cluster in FIPS mode, you can encrypt the etcd data by
using the FIPS-approved aes cbc cryptographic algorithm.

2.2.2. Storage

For local storage, use RHEL-provided disk encryption or Container Native Storage that uses RHEL-
provided disk encryption. By storing all data in volumes that use RHEL-provided disk encryption and
enabling FIPS mode for your cluster, both data at rest and data in motion, or network data, are
protected by FIPS Validated / Modules in Process encryption. You can configure your cluster to encrypt
the root filesystem of each node, as described in Customizing nodes.

2.2.3. Runtimes

To ensure that containers know that they are running on a host that is using FIPS Validated / Modules in
Process cryptography modules, use CRI-O to manage your runtimes. CRI-O supports FIPS-Mode, in
that it configures the containers to know that they are running in FIPS mode.

2.3. INSTALLING A CLUSTER IN FIPS MODE

To install a cluster in FIPS mode, follow the instructions to install a customized cluster on your preferred
infrastructure. Ensure that you set fips: true in the install-config.yaml file before you deploy your
cluster.

Amazon Web Services

Microsoft Azure

Bare metal

Google Cloud Platform

Red Hat OpenStack Platform (RHOSP)

VMware vSphere

To apply AES CBC encryption to your etcd data store, follow the Encrypting etcd data process after
you install your cluster.

If you add RHEL nodes to your cluster, ensure that you enable FIPS mode on the machines before their
initial boot. See Adding RHEL compute machines to an OpenShift Container Platform cluster and
Enabling FIPS Mode in the RHEL 7 documentation.

OpenShift Container Platform 4.3 Installing

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/authentication/#encrypting-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-aws-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-azure-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-gcp-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-openstack-installer-custom
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/authentication/#encrypting-etcd
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/machine_management/#adding-rhel-compute
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/chap-federal_standards_and_regulations#sec-Enabling-FIPS-Mode

CHAPTER 3. INSTALLATION CONFIGURATION

3.1. INSTALLATION METHODS FOR DIFFERENT PLATFORMS

You can perform different types of installations on different platforms.

NOTE

Not all installation options are currently available for all platforms, as shown in the
following tables.

Table 3.1. Installer-provisioned infrastructure options

 AWS Azure GCP OpenStac
k

Bare
metal

vSphere IBM Z

Default X X X

Custom X X X X

Network
Operator

X X X

Private
clusters

X X X

Existing
virtual
private
networks

X X X

Table 3.2. User-provisioned infrastructure options

 AWS Azure GCP OpenStac
k

Bare
metal

vSphere IBM Z

Custom X X X X X

Network
Operator

 X X

Restricted
network

X X X X

3.2. CUSTOMIZING NODES

Although directly making changes to OpenShift Container Platform nodes is discouraged, there are
times when it is necessary to implement a required low-level security, networking, or performance
feature. Direct changes to OpenShift Container Platform nodes can be done by:

CHAPTER 3. INSTALLATION CONFIGURATION

9

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_aws/#installing-aws-default
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_azure/#installing-azure-default
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_gcp/#installing-gcp-default
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_aws/#installing-aws-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_azure/#installing-azure-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_gcp/#installing-gcp-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_openstack/#installing-openstack-installer-custom
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_aws/#installing-aws-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_azure/#installing-azure-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_gcp/#installing-gcp-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_aws/#installing-aws-private
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_azure/#installing-azure-private
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_gcp/#installing-gcp-private
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_aws/#installing-aws-vpc
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_azure/#installing-azure-vnet
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_gcp/#installing-gcp-vpc
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_aws/#installing-aws-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_azure/#installing-azure-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_gcp/#installing-gcp-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_bare_metal/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_vsphere/#installing-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_bare_metal/#installing-bare-metal-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_vsphere/#installing-vsphere-network-customizations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_aws/#installing-restricted-networks-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_gcp/#installing-restricted-networks-gcp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_bare_metal/#installing-restricted-networks-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_on_vsphere/#installing-restricted-networks-vsphere

Creating MachineConfigs that are included in manifest files to start up a cluster during
openshift-install.

Creating MachineConfigs that are passed to running OpenShift Container Platform nodes via
the Machine Config Operator.

The following sections describe features that you might want to configure on your nodes in this way.

3.2.1. Adding day-1 kernel arguments

ALthough it is often preferable to modify kernel arguments as a day-2 activity, you might want to add
kernel arguments to all master or worker nodes during initial cluster installation. Here are some reasons
you might want to add kernel arguments during cluster installation so they take effect before the
systems first boot up:

You want to disable a feature, such as SELinux, so it has no impact on the systems when they
first come up.

You need to do some low-level network configuration before the systems start.

To add kernel arguments to master or worker nodes, you can create a MachineConfig object and inject
that object into the set of manifest files used by Ignition during cluster setup.

For a listing of arguments you can pass to a RHEL 8 kernel at boot time, see Kernel.org kernel
parameters. It is best to only add kernel arguments with this procedure if they are needed to complete
the initial OpenShift Container Platform installation.

Procedure

1. Generate the Kubernetes manifests for the cluster:

$./openshift-install create manifests --dir=<installation_directory>

2. Decide if you want to add kernel arguments to worker or master nodes.

3. In the openshift directory, create a file (for example, 99_openshift-machineconfig_master-
kargs.yaml) to define a MachineConfig object to add the kernel settings. This example adds a
loglevel=7 kernel argument to master nodes:

$ cat << EOF > 99_openshift-machineconfig_master-kargs.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: 99_openshift-machineconfig_master-kargs
spec:
 kernelArguments:
 - 'loglevel=7'
EOF

You can change master to worker to add kernel arguments to worker nodes instead. Create a
separate YAML file to add to both master and worker nodes.

You can now continue on to create the cluster.

OpenShift Container Platform 4.3 Installing

10

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

3.2.2. Adding kernel modules to nodes

For most common hardware, the Linux kernel includes the device driver modules needed to use that
hardware when the computer starts up. For some hardware, however, modules are not available in Linux.
Therefore, you must find a way to provide those modules to each host computer. This procedure
describes how to do that for nodes in an OpenShift Container Platform cluster.

When a kernel module is first deployed by following these instructions, the module is made available for
the current kernel. If a new kernel is installed, the kmods-via-containers software will rebuild and deploy
the module so a compatible version of that module is available with the new kernel.

The way that this feature is able to keep the module up to date on each node is by:

Adding a systemd service to each node that starts at boot time to detect if a new kernel has
been installed and

If a new kernel is detected, the service rebuilds the module and installs it to the kernel

For information on the software needed for this procedure, see the kmods-via-containers github site.

A few important issues to keep in mind:

This procedure is Technology Preview.

Software tools and examples are not yet available in official RPM form and can only be obtained
for now from unofficial github.com sites noted in the procedure.

Third-party kernel modules you might add through these procedures are not supported by Red
Hat.

In this procedure, the software needed to build your kernel modules is deployed in a RHEL 8
container. Keep in mind that modules are rebuilt automatically on each node when that node
gets a new kernel. For that reason, each node needs access to a yum repository that contains
the kernel and related packages needed to rebuild the module. That content is best provided
with a valid RHEL subscription.

3.2.2.1. Building and testing the kernel module container

Before deploying kernel modules to your OpenShift Container Platform cluster, you can test the
process on a separate RHEL system. Gather the kernel module’s source code, the KVC framework, and
the kmod-via-containers software. Then build and test the module. To do that on a RHEL 8 system, do
the following:

Procedure

1. Get a RHEL 8 system, then register and subscribe it:

subscription-manager register
Username: yourname
Password: ***************
subscription-manager attach --auto

2. Install software needed to build the software and container:

yum install podman make git -y

CHAPTER 3. INSTALLATION CONFIGURATION

11

https://github.com/kmods-via-containers/kmods-via-containers

3. Clone the kmod-via-containers repository:

$ mkdir kmods; cd kmods
$ git clone https://github.com/kmods-via-containers/kmods-via-containers

4. Install a KVC framework instance on your RHEL 8 build host to test the module. This adds a
kmods-via-container systemd service and loads it:

$ cd kmods-via-containers/
$ sudo make install
$ sudo systemctl daemon-reload

5. Get the kernel module source code. The source code might be used to build a third-party
module that you do not have control over, but is supplied by others. You will need content
similar to the content shown in the kvc-simple-kmod example that can be cloned to your
system as follows:

$ cd ..
$ git clone https://github.com/kmods-via-containers/kvc-simple-kmod

6. Edit the configuration file, simple-kmod.conf, in his example, and change the name of the
Dockerfile to Dockerfile.rhel so the file appears as shown here:

$ cd kvc-simple-kmod
$ cat simple-kmod.conf

KMOD_CONTAINER_BUILD_CONTEXT="https://github.com/kmods-via-containers/kvc-
simple-kmod.git"
KMOD_CONTAINER_BUILD_FILE=Dockerfile.rhel
KMOD_SOFTWARE_VERSION=dd1a7d4
KMOD_NAMES="simple-kmod simple-procfs-kmod"

7. Create an instance of kmods-via-containers@.service for your kernel module, simple-kmod
in this example, and enable it:

$ sudo make install
$ sudo kmods-via-containers build simple-kmod $(uname -r)

8. Enable and start the systemd service, then check the status:

$ sudo systemctl enable kmods-via-containers@simple-kmod.service
$ sudo systemctl start kmods-via-containers@simple-kmod.service
$ sudo systemctl status kmods-via-containers@simple-kmod.service
● kmods-via-containers@simple-kmod.service - Kmods Via Containers - simple-kmod
 Loaded: loaded (/etc/systemd/system/kmods-via-containers@.service;
 enabled; vendor preset: disabled)
 Active: active (exited) since Sun 2020-01-12 23:49:49 EST; 5s ago...

9. To confirm that the kernel modules are loaded, use the lsmod command to list the modules:

$ lsmod | grep simple_
simple_procfs_kmod 16384 0
simple_kmod 16384 0

10. The simple-kmod example has a few other ways to test that it is working. Look for a "Hello world"

OpenShift Container Platform 4.3 Installing

12

10. The simple-kmod example has a few other ways to test that it is working. Look for a "Hello world"
message in the kernel ring buffer with dmesg:

$ dmesg | grep 'Hello world'
[6420.761332] Hello world from simple_kmod.

Check the value of simple-procfs-kmod in /proc:

$ sudo cat /proc/simple-procfs-kmod
simple-procfs-kmod number = 0

Run the spkut command to get more information from the module:

$ sudo spkut 44
KVC: wrapper simple-kmod for 4.18.0-147.3.1.el8_1.x86_64
Running userspace wrapper using the kernel module container...
+ podman run -i --rm --privileged
 simple-kmod-dd1a7d4:4.18.0-147.3.1.el8_1.x86_64 spkut 44
simple-procfs-kmod number = 0
simple-procfs-kmod number = 44

Going forward, when the system boots this service will check if a new kernel is running. If there is a new
kernel, the service builds a new version of the kernel module and then loads it. If the module is already
built, it will just load it.

3.2.2.2. Provisioning a kernel module to OpenShift Container Platform

Depending on whether or not you must have the kernel module in place when OpenShift Container
Platform cluster first boots, you can set up the kernel modules to be deployed in one of two ways:

Provision kernel modules at cluster install time (day-1): You can create the content as a
MachineConfig and provide it to openshift-install by including it with a set of manifest files.

Provision kernel modules via Machine Config Operator (day-2): If you can wait until the
cluster is up and running to add your kernel module, you can deploy the kernel module software
via the Machine Config Operator (MCO).

In either case, each node needs to be able to get the kernel packages and related software packages at
the time that a new kernel is detected. There are a few ways you can set up each node to be able to
obtain that content.

Provide RHEL entitlements to each node.

Get RHEL entitlements from an existing RHEL host, from the /etc/pki/entitlement directory and
copy them to the same location as the other files you provide when you build your Ignition
config.

Inside the Dockerfile, add pointers to a yum repository containing the kernel and other
packages. This must include new kernel packages as they are needed to match newly installed
kernels.

3.2.2.2.1. Provision kernel modules via a MachineConfig

By packaging kernel module software with a MachineConfig you can deliver that software to worker or
master nodes at installation time or via the Machine Config Operator.

CHAPTER 3. INSTALLATION CONFIGURATION

13

First create a base Ignition config that you would like to use. At installation time, the Ignition config will
contain the ssh public key to add to the authorized_keys file for the core user on the cluster. To add
the MachineConfig later via the MCO instead, the ssh public key is not required. For both type, the
example simple-kmod service creates a systemd unit file, which requires a kmods-via-
containers@simple-kmod.service.

NOTE

The systemd unit is a workaround for an upstream bug and makes sure that the kmods-
via-containers@simple-kmod.service gets started on boot:

1. Get a RHEL 8 system, then register and subscribe it:

subscription-manager register
Username: yourname
Password: ***************
subscription-manager attach --auto

2. Install software needed to build the software:

yum install podman make git -y

3. Create an Ignition config file that creates a systemd unit file:

$ mkdir kmods; cd kmods
$ cat <<EOF > ./baseconfig.ign
{
 "ignition": { "version": "2.2.0" },
 "passwd": {
 "users": [
 {
 "name": "core",
 "groups": ["sudo"],
 "sshAuthorizedKeys": [
 "ssh-rsa AAAA"
]
 }
]
 },
 "systemd": {
 "units": [{
 "name": "require-kvc-simple-kmod.service",
 "enabled": true,
 "contents": "[Unit]\nRequires=kmods-via-containers@simple-
kmod.service\n[Service]\nType=oneshot\nExecStart=/usr/bin/true\n\n[Install]\nWantedBy=multi-
user.target"
 }]
 }
}
EOF

NOTE

OpenShift Container Platform 4.3 Installing

14

https://github.com/coreos/ignition/issues/586

NOTE

You must add your public SSH key to the baseconfig.ign file to use the file
during openshift-install. The public SSH key is not needed if you create the
MachineConfig via the MCO.

4. Create a base MCO YAML snippet that looks like:

$ cat <<EOF > mc-base.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 10-kvc-simple-kmod
spec:
 config:
EOF

+

NOTE

The mc-base.yaml is set to deploy the kernel module on worker nodes. To deploy on
master nodes, change the role from worker to master. To do both, you could repeat the
whole procedure using different file names for the two types of deployments.

1. Get the kmods-via-containers software:

$ git clone https://github.com/kmods-via-containers/kmods-via-containers
$ git clone https://github.com/kmods-via-containers/kvc-simple-kmod

2. Get your module software. In this example, kvc-simple-kmod is used:

3. Create a fakeroot directory and populate it with files that you want to deliver via Ignition, using
the repositories cloned earlier:

$ FAKEROOT=$(mktemp -d)
$ cd kmods-via-containers
$ make install DESTDIR=${FAKEROOT}/usr/local CONFDIR=${FAKEROOT}/etc/
$ cd ../kvc-simple-kmod
$ make install DESTDIR=${FAKEROOT}/usr/local CONFDIR=${FAKEROOT}/etc/

4. Get a tool called filetranspiler and dependent software:

$ cd ..
$ sudo yum install -y python3
git clone https://github.com/ashcrow/filetranspiler.git

5. Generate a final MachineConfig YAML (mc.yaml) and have it include the base Ignition config,
base MachineConfig, and the fakeroot directory with files you would like to deliver:

CHAPTER 3. INSTALLATION CONFIGURATION

15

$./filetranspiler/filetranspile -i ./baseconfig.ign \
 -f ${FAKEROOT} --format=yaml --dereference-symlinks \
 | sed 's/^/ /' | (cat mc-base.yaml -) > 99_simple-kmod.yaml

6. If the cluster is not up yet, generate manifest files and add this file to the openshift directory. If
the cluster is already running, apply the file as follows:

$ oc create -f 99_simple-kmod.yaml

Your nodes will start the kmods-via-containers@simple-kmod.service service and the kernel
modules will be loaded.

7. To confirm that the kernel modules are loaded, you can log in to a node (using oc debug
node/<openshift-node>, then chroot /host). To list the modules, use the lsmod command:

$ lsmod | grep simple_
simple_procfs_kmod 16384 0
simple_kmod 16384 0

3.2.3. Encrypting disks during installation

During OpenShift Container Platform installation, you can enable disk encryption on all master and
worker nodes. This feature:

Is available for installer provisioned infrastructure and user provisioned infrastructure
deployments

Is supported on Red Hat Enterprise Linux CoreOS (RHCOS) systems only

Sets up disk encryption during the manifest installation phase so all data written to disk, from
first boot forward, is encrypted

Encrypts data on the root filesystem only (/dev/mapper/coreos-luks-root on /)

Requires no user intervention for providing passphrases

Uses AES-256-CBC encryption

Should be enabled for your cluster to support FIPS.

There are two different supported encryption modes:

TPM v2: This is the preferred mode. TPM v2 stores passphrases in a secure cryptoprocessor. To
implement TPM v2 disk encryption, create an Ignition config file as described below.

Tang: To use Tang to encrypt your cluster, you need to use a Tang server. Clevis implements
decryption on the client side. Tang encryption mode is only supported for bare metal installs.

Follow one of the two procedures to enable disk encryption for the nodes in your cluster.

3.2.3.1. Enabling TPM v2 disk encryption

Use this procedure to enable TPM v2 mode disk encryption during OpenShift Container Platform
deployment.

OpenShift Container Platform 4.3 Installing

16

Procedure

1. Check to see if TPM v2 encryption needs to be enabled in the BIOS on each node. This is
required on most Dell systems. Check the manual for your computer.

2. Generate the Kubernetes manifests for the cluster:

$./openshift-install create manifests --dir=<installation_directory>

3. In the openshift directory, create a master and/or worker file to encrypt disks for those nodes.
Here are examples of those two files:

$ cat << EOF > ./99_openshift-worker-tpmv2-encryption.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: worker-tpm
 labels:
 machineconfiguration.openshift.io/role: worker
spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;base64,e30K
 filesystem: root
 mode: 420
 path: /etc/clevis.json
EOF

$ cat << EOF > ./99_openshift-master-tpmv2-encryption.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: master-tpm
 labels:
 machineconfiguration.openshift.io/role: master
spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;base64,e30K
 filesystem: root
 mode: 420
 path: /etc/clevis.json
EOF

4. Make a backup copy of the YAML file. You should do this because the file will be deleted when
you create the cluster.

CHAPTER 3. INSTALLATION CONFIGURATION

17

5. Continue with the remainder of the OpenShift Container Platform deployment.

3.2.3.2. Enabling Tang disk encryption

Use this procedure to enable Tang mode disk encryption during OpenShift Container Platform
deployment.

Procedure

1. Access a Red Hat Enterprise Linux server from which you can configure the encryption settings
and run openshift-install to install a cluster and oc to work with it.

2. Set up or access an existing Tang server. See Network-bound disk encryption for instructions.
See Securing Automated Decryption New Cryptography and Techniques for a presentation on
Tang.

3. Add kernel arguments to configure networking when you do the Red Hat Enterprise Linux
CoreOS (RHCOS) installations for your cluster. For example, to configure DHCP networking,
identify ip=dhcp, or set static networking when you add parameters to the kernel command line.
For both DHCP and static networking, you also must provide the rd.neednet=1 kernel
argument.

IMPORTANT

Skipping this step causes the second boot to fail.

4. Generate the thumbprint. Install the clevis package, it is not already installed, and generate a
thumbprint from the Tang server. Replace the value of url with the Tang server URL:

$ sudo yum install clevis -y
$ echo nifty random wordwords \
 | clevis-encrypt-tang \
 '{"url":"https://tang.example.org"}'

The advertisement contains the following signing keys:

PLjNyRdGw03zlRoGjQYMahSZGu9

Do you wish to trust these keys? [ynYN] y
eyJhbmc3SlRyMXpPenc3ajhEQ01tZVJiTi1oM...

5. Create a Base64 encoded file, replacing the URL of the Tang server (url) and thumbprint (thp)
you just generated:

$ (cat <<EOM
{
 "url": "https://tang.example.com",
 "thp": "PLjNyRdGw03zlRoGjQYMahSZGu9"
}
EOM
) | base64 -w0

ewogInVybCI6ICJodHRwczovL3RhbmcuZXhhbXBsZS5jb20iLAogInRocCI6ICJaUk1leTFjR3cw
N3psVExHYlhuUWFoUzBHdTAiCn0K

OpenShift Container Platform 4.3 Installing

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption_security-hardening#network-bound-disk-encryption_configuring-automated-unlocking-of-encrypted-volumes-using-policy-based-decryption
https://youtu.be/2uLKvB8Z5D0

6. Replace the “source” in the TPM2 example with the Base64 encoded file for one or both of
these examples for worker and/or master nodes:

IMPORTANT

You must add the rd.neednet=1 kernel argument.

$ cat << EOF > ./99-openshift-worker-tang-encryption.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: worker-tang
 labels:
 machineconfiguration.openshift.io/role: worker
spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;base64,e30K
 source:
data:text/plain;base64,ewogInVybCI6ICJodHRwczovL3RhbmcuZXhhbXBsZS5jb20iLAogInRoc
CI6ICJaUk1leTFjR3cwN3psVExHYlhuUWFoUzBHdTAiCn0K
 filesystem: root
 mode: 420
 path: /etc/clevis.json
 kernelArguments:
 - rd.neednet=1 <.>
EOF

Required.

$ cat << EOF > ./99_openshift-master-encryption.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: master-tang
 labels:
 machineconfiguration.openshift.io/role: master
spec:
 config:
 ignition:
 version: 2.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;base64,e30K
 source:
data:text/plain;base64,ewogInVybCI6ICJodHRwczovL3RhbmcuZXhhbXBsZS5jb20iLAogInRoc
CI6ICJaUk1leTFjR3cwN3psVExHYlhuUWFoUzBHdTAiCn0K
 filesystem: root
 mode: 420

CHAPTER 3. INSTALLATION CONFIGURATION

19

 path: /etc/clevis.json
 kernelArguments:
 - rd.neednet=1 <.>
EOF

Required.

7. Continue with the remainder of the OpenShift Container Platform deployment.

3.2.4. Configuring chrony time service

You can set the time server and related settings used by the chrony time service (chronyd) by modifying
the contents of the chrony.conf file and passing those contents to your nodes as a MachineConfig.

Procedure

1. Create the contents of the chrony.conf file and encode it as base64. For example:

$ cat << EOF | base64
 server clock.redhat.com iburst
 driftfile /var/lib/chrony/drift
 makestep 1.0 3
 rtcsync
 logdir /var/log/chrony
 EOF

ICAgIHNlcnZlciBjbG9jay5yZWRoYXQuY29tIGlidXJzdAogICAgZHJpZnRmaWxlIC92YXIvbGli
L2Nocm9ueS9kcmlmdAogICAgbWFrZXN0ZXAgMS4wIDMKICAgIHJ0Y3N5bmMKICAgIGxvZ2
RpciAv
dmFyL2xvZy9jaHJvbnkK

2. Create the MachineConfig file, replacing the base64 string with the one you just created
yourself. This example adds the file to master nodes. You can change it to worker or make an
additional MachineConfig for the worker role:

$ cat << EOF > ./99_masters-chrony-configuration.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: master
 name: masters-chrony-configuration
spec:
 config:
 ignition:
 config: {}
 security:
 tls: {}
 timeouts: {}
 version: 2.2.0
 networkd: {}
 passwd: {}
 storage:
 files:

OpenShift Container Platform 4.3 Installing

20

 - contents:
 source: data:text/plain;charset=utf-
8;base64,c2VydmVyIGNsb2NrLnJlZGhhdC5jb20gaWJ1cnN0CmRyaWZ0ZmlsZSAvdmFyL2xp
Yi9jaHJvbnkvZHJpZnQKbWFrZXN0ZXAgMS4wIDMKcnRjc3luYwpsb2dkaXIgL3Zhci9sb2cvY2h
yb255Cg==
 verification: {}
 filesystem: root
 mode: 420
 path: /etc/chrony.conf
 osImageURL: ""
EOF

3. Make a backup copy of the configuration file.

4. If the cluster is not up yet, generate manifest files, add this file to the openshift directory, then
continue to create the cluster.

5. If the cluster is already running, apply the file as follows:

 $ oc apply -f ./masters-chrony-configuration.yaml

3.2.5. Additional resources

See Support for FIPS cryptography for information on FIPS support.

3.3. CREATING A MIRROR REGISTRY FOR INSTALLATION IN A
RESTRICTED NETWORK

Before you install a cluster on infrastructure that you provision in a restricted network, you must mirror
the required container images into that environment. Installations on a restricted network are supported
on only infrastructure that you provision, not infrastructure that the installer provisions. You can also use
this procedure in unrestricted networks to ensure your clusters only use container images that have
satisfied your organizational controls on external content.

IMPORTANT

You must have access to the internet to obtain the necessary container images. In this
procedure, you place the mirror registry on a mirror host that has access to both your
network and the internet. If you do not have access to a mirror host, use the disconnected
procedure to copy images to a device you can move across network boundaries with.

3.3.1. About the mirror registry

You can mirror the images that are required for OpenShift Container Platform installation and
subsequent product updates to a mirror registry. These actions use the same process. The release
image, which contains the description of the content, and the images it references are all mirrored. In
addition, the Operator catalog source image and the images that it references must be mirrored for
each Operator that you use. After you mirror the content, you configure each cluster to retrieve this
content from your mirror registry.

The mirror registry can be any container registry that supports the most recent container image API,
which is referred to as schema2. All major cloud provider registries, as well as Red Hat Quay, Artifactory,
and the open source Docker distribution registry have the necessary support. Using one of these

CHAPTER 3. INSTALLATION CONFIGURATION

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-fips
https://github.com/docker/distribution

registries ensures that OpenShift Container Platform can verify the integrity of each image in
disconnected environments.

The mirror registry must be reachable by every machine in the clusters that you provision. If the registry
is unreachable installation, updating, or normal operations such as workload relocation might fail. For
that reason, you must run mirror registries in a highly available way, and the mirror registries must at least
match the production availability of your OpenShift Container Platform clusters.

When you populate a mirror registry with OpenShift Container Platform images, you can follow two
scenarios. If you have a host that can access both the internet and your mirror registry, but not your
cluster nodes, you can directly mirror the content from that machine. This process is referred to as
connected mirroring. If you have no such host, you must mirror the images to a file system and then bring
that host or removable media into your restricted environment. This process is referred to as
disconnected mirroring .

3.3.2. Preparing your mirror host

Before you perform the mirror procedure, you must prepare the host to retrieve content and push it to
the remote location.

3.3.2.1. Installing the CLI by downloading the binary

You can install the OpenShift CLI (oc) in order to interact with OpenShift Container Platform from a
command-line interface. You can install oc on Linux, Windows, or macOS.

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands
in OpenShift Container Platform 4.3. Download and install the new version of oc.

3.3.2.1.1. Installing the CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

1. Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.

2. Select your infrastructure provider, and, if applicable, your installation type.

3. In the Command-line interface section, select Linux from the drop-down menu and click
Download command-line tools.

4. Unpack the archive:

$ tar xvzf <file>

5. Place the oc binary in a directory that is on your PATH.
To check your PATH, execute the following command:

$ echo $PATH

After you install the CLI, it is available using the oc command:

OpenShift Container Platform 4.3 Installing

22

https://cloud.redhat.com/openshift/install

$ oc <command>

3.3.2.1.2. Installing the CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

1. Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.

2. Select your infrastructure provider, and, if applicable, your installation type.

3. In the Command-line interface section, select Windows from the drop-down menu and click
Download command-line tools.

4. Unzip the archive with a ZIP program.

5. Move the oc binary to a directory that is on your PATH.
To check your PATH, open the command prompt and execute the following command:

C:\> path

After you install the CLI, it is available using the oc command:

C:\> oc <command>

3.3.2.1.3. Installing the CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

1. Navigate to the Infrastructure Provider page on the Red Hat OpenShift Cluster Manager site.

2. Select your infrastructure provider, and, if applicable, your installation type.

3. In the Command-line interface section, select MacOS from the drop-down menu and click
Download command-line tools.

4. Unpack and unzip the archive.

5. Move the oc binary to a directory on your PATH.
To check your PATH, open a terminal and execute the following command:

$ echo $PATH

After you install the CLI, it is available using the oc command:

$ oc <command>

3.3.3. Configuring credentials that allow images to be mirrored

Create a container image registry credentials file that allows mirroring images from Red Hat to your

CHAPTER 3. INSTALLATION CONFIGURATION

23

https://cloud.redhat.com/openshift/install
https://cloud.redhat.com/openshift/install

1

Create a container image registry credentials file that allows mirroring images from Red Hat to your
mirror.

WARNING

Do not use this image registry credentials file as the pull secret when you install a
cluster. If you provide this file when you install cluster, all of the machines in the
cluster will have write access to your mirror registry.

WARNING

This process requires that you have write access to a container image registry on
the mirror registry and adds the credentials to a registry pull secret.

IMPORTANT

Do not use this image registry credentials file as the pull secret when you install a cluster.
If you provide this file when you install cluster, all of the machines in the cluster will have
write access to your mirror registry.

Prerequisites

You configured a mirror registry to use in your restricted network.

You identified an image repository location on your mirror registry to mirror images into.

You provisioned a mirror registry account that allows images to be uploaded to that image
repository.

Procedure

Complete the following steps on the installation host:

1. Download your registry.redhat.io pull secret from the Pull Secret page on the Red Hat
OpenShift Cluster Manager site and save it to a .json file.

2. Generate the base64-encoded user name and password or token for your mirror registry:

For <user_name> and <password>, specify the user name and password that you
configured for your registry.

3. Make a copy of your pull secret in JSON format:

$ echo -n '<user_name>:<password>' | base64 -w0 1
BGVtbYk3ZHAtqXs=

OpenShift Container Platform 4.3 Installing

24

https://cloud.redhat.com/openshift/install/pull-secret

1

1

2

Specify the path to the folder to store the pull secret in and a name for the JSON file that
you create.

The contents of the file resemble the following example:

4. Edit the new file and add a section that describes your registry to it:

For <mirror_registry>, specify the registry domain name, and optionally the port, that
your mirror registry uses to serve content. For example, registry.example.com or
registry.example.com:5000

For <credentials>, specify the base64-encoded user name and password for the mirror
registry.

The file resembles the following example:

$ cat ./pull-secret.text | jq . > <path>/<pull-secret-file> 1

{
 "auths": {
 "cloud.openshift.com": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "quay.io": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 },
 "registry.redhat.io": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 }
 }
}

 "auths": {
 "<mirror_registry>": { 1
 "auth": "<credentials>", 2
 "email": "you@example.com"
 },

{
 "auths": {
 "<mirror_registry>": {
 "auth": "<credentials>",
 "email": "you@example.com"
 },
 "cloud.openshift.com": {
 "auth": "b3BlbnNo...",

CHAPTER 3. INSTALLATION CONFIGURATION

25

1

2

1. Edit the new file and add a section that describes your registry to it:

 "auths": {
...
 "<mirror_registry>": { 1
 "auth": "<credentials>", 2
 "email": "you@example.com"
 },
...

For <mirror_registry>, specify the registry domain name, and optionally the port, that
your mirror registry uses to serve content. For example, registry.example.com or
registry.example.com:5000

For <credentials>, specify the base64-encoded user name and password for the mirror
registry.

The file resembles the following example:

{
 "auths": {
 "cloud.openshift.com": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "quay.io": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 },
 "<mirror_registry>": {
 "auth": "<credentials>",
 "email": "you@example.com"
 },

 "email": "you@example.com"
 },
 "quay.io": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 },
 "registry.redhat.io": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 }
 }
}

OpenShift Container Platform 4.3 Installing

26

1

2

3

4

5

 "registry.redhat.io": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 }
 }
}

3.3.4. Mirroring the OpenShift Container Platform image repository

Mirror the OpenShift Container Platform image repository to your registry to use during cluster
installation or upgrade.

Prerequisites

Your mirror host has access to the internet.

You configured a mirror registry to use in your restricted network and can access the certificate
and credentials that you configured.

You downloaded the pull secret from the Pull Secret page on the Red Hat OpenShift Cluster
Manager site and modified it to include authentication to your mirror repository.

Procedure

Complete the following steps on the mirror host:

1. Review the OpenShift Container Platform downloads page to determine the version of
OpenShift Container Platform that you want to install and determine the corresponding tag on
the Repository Tags page.

2. Set the required environment variables:

$ export OCP_RELEASE=<release_version> 1
$ export LOCAL_REGISTRY='<local_registry_host_name>:<local_registry_host_port>' 2
$ export LOCAL_REPOSITORY='<local_repository_name>' 3
$ export PRODUCT_REPO='openshift-release-dev' 4
$ export LOCAL_SECRET_JSON='<path_to_pull_secret>' 5
$ export RELEASE_NAME="ocp-release" 6
$ export ARCHITECTURE=<server_architecture> 7
$ REMOVABLE_MEDIA_PATH=<path> 8

For <release_version>, specify the tag that corresponds to the version of OpenShift
Container Platform to install for your architecture, such as 4.3.0.

For <local_registry_host_name>, specify the registry domain name for your mirror
repository, and for <local_registry_host_port>, specify the port that it serves content on.

For <local_repository_name>, specify the name of the repository to create in your
registry, such as ocp4/openshift4.

The repository to mirror. For a production release, you must specify openshift-release-
dev.

For <path_to_pull_secret>, specify the absolute path to and file name of the pull secret
for your mirror registry that you created.

CHAPTER 3. INSTALLATION CONFIGURATION

27

https://cloud.redhat.com/openshift/install/pull-secret
https://access.redhat.com/downloads/content/290/
https://quay.io/repository/openshift-release-dev/ocp-release?tab=tags

6

7

8

The release mirror. For a production release, you must specify ocp-release.

For server_architecture, specify the architecture of the server, such as x86_64.

For <path>, specify the path to the directory to host the mirrored images.

3. Mirror the version images to the internal container registry:

If your mirror host does not have internet access, take the following actions:

i. Connect the removable media to a system that is connected to the internet.

ii. Review the images and configuration manifests to mirror:

$ oc adm -a ${LOCAL_SECRET_JSON} release mirror
--from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-
${ARCHITECTURE}
--to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}
--to-release-
image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-
${ARCHITECTURE} --run-dry

iii. Record the entire imageContentSources section from the output of the previous
command. The information about your mirrors is unique to your mirrored repository, and
you must add the imageContentSources section to the install-config.yaml file during
installation.

iv. Mirror the images to a directory on the removable media:

$ oc adm release mirror -a ${LOCAL_SECRET_JSON} --to-
dir=${REMOVABLE_MEDIA_PATH}/mirror
quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-
${ARCHITECTURE}

v. Take the media to the restricted network environment and upload the images to the
local container registry.

$ oc image mirror -a ${LOCAL_SECRET_JSON} --from-
dir=${REMOVABLE_MEDIA_PATH}/mirror
"file://openshift/release:${OCP_RELEASE}*"
${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}

If the local container registry is connected to the mirror host, take the following actions:

i. Directly push the release images to the local registry by using following command:

$ oc adm -a ${LOCAL_SECRET_JSON} release mirror \
 --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-
${ARCHITECTURE} \
 --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
 --to-release-
image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-
${ARCHITECTURE}

This command pulls the release information as a digest, and its output includes the

OpenShift Container Platform 4.3 Installing

28

This command pulls the release information as a digest, and its output includes the
imageContentSources data that you require when you install your cluster.

ii. Record the entire imageContentSources section from the output of the previous
command. The information about your mirrors is unique to your mirrored repository, and
you must add the imageContentSources section to the install-config.yaml file during
installation.

NOTE

The image name gets patched to Quay.io during the mirroring process, and the podman
images will show Quay.io in the registry on the bootstrap virtual machine.

1. To create the installation program that is based on the content that you mirrored, extract it and
pin it to the release:

$ oc adm -a ${LOCAL_SECRET_JSON} release extract --command=openshift-install
"${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-${ARCHITECTURE}"

IMPORTANT

To ensure that you use the correct images for the version of OpenShift
Container Platform that you selected, you must extract the installation program
from the mirrored content.

You must perform this step on a machine with an active internet connection.

3.3.5. Preparing your cluster to gather support data

Clusters using a restricted network must import the default must-gather image in order to gather
debugging data for Red Hat support. The must-gather image is not imported by default, and clusters on
a restricted network do not have access to the internet to pull the latest image from a remote
repository.

Procedure

1. Import the default must-gather image from your installation payload:

$ oc import-image is/must-gather -n openshift

3.3.6. Using Samples Operator imagestreams with alternate or mirrored registries

Most imagestreams in the OpenShift namespace managed by the Samples Operator point to images
located in the Red Hat registry at registry.redhat.io. Mirroring will not apply to these imagestreams.

IMPORTANT

CHAPTER 3. INSTALLATION CONFIGURATION

29

https://registry.redhat.io

IMPORTANT

The jenkins, jenkins-agent-maven, and jenkins-agent-nodejs imagestreams come
from the install payload and are managed by the Samples Operator, so no further
mirroring procedures are needed for those imagestreams.

Setting the samplesRegistry field in the Sample Operator configuration file to
registry.redhat.io is redundant because it is already directed to registry.redhat.io for
everything but Jenkins images and imagestreams. It also breaks the installation payload
for Jenkins imagestreams.

The Samples Operator prevents the use of the following registries for the Jenkins
imagestreams:

docker.io

registry.redhat.io

registry.access.redhat.com

quay.io.

NOTE

The cli, installer, must-gather, and tests imagestreams, while part of the install payload,
are not managed by the Samples Operator. These are not addressed in this procedure.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Create a pull secret for your mirror registry.

Procedure

1. Access the images of a specific imagestream to mirror, for example:

$ oc get is <imagestream> -n openshift -o json | jq .spec.tags[].from.name | grep
registry.redhat.io

2. Mirror images from registry.redhat.io associated with any imagestreams you need in the
restricted network environment into one of the defined mirrors, for example:

$ oc image mirror registry.redhat.io/rhscl/ruby-25-rhel7:latest ${MIRROR_ADDR}/rhscl/ruby-
25-rhel7:latest

3. Add the required trusted CAs for the mirror in the cluster’s image configuration object:

$ oc create configmap registry-config --from-
file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config
$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-config"}}}' --type=merge

4. Update the samplesRegistry field in the Samples Operator configuration object to contain the
hostname portion of the mirror location defined in the mirror configuration:

OpenShift Container Platform 4.3 Installing

30

https://registry.redhat.io
https://registry.redhat.io
https://docker.io
https://registry.redhat.io
https://registry.access.redhat.com
https://quay.io
https://registry.redhat.io

$ oc edit configs.samples.operator.openshift.io -n openshift-cluster-samples-operator

NOTE

This is required because the imagestream import process does not use the mirror
or search mechanism at this time.

5. Add any imagestreams that are not mirrored into the skippedImagestreams field of the
Samples Operator configuration object. Or if you do not want to support any of the sample
imagestreams, set the Samples Operator to Removed in the Samples Operator configuration
object.

NOTE

Any unmirrored imagestreams that are not skipped, or if the Samples Operator is
not changed to Removed, will result in the Samples Operator reporting a
Degraded status two hours after the imagestream imports start failing.

Many of the templates in the OpenShift namespace reference the imagestreams. So using
Removed to purge both the imagestreams and templates will eliminate the possibility of
attempts to use them if they are not functional because of any missing imagestreams.

3.3.7. Next steps

Install a cluster on infrastructure that you provision in your restricted nework, such as on VMware
vSphere, bare metal, or Amazon Web Services.

3.4. AVAILABLE CLUSTER CUSTOMIZATIONS

You complete most of the cluster configuration and customization after you deploy your OpenShift
Container Platform cluster. A number of configuration resources are available.

You modify the configuration resources to configure the major features of the cluster, such as the
image registry, networking configuration, image build behavior, and the identity provider.

For current documentation of the settings that you control by using these resources, use the oc explain
command, for example oc explain builds --api-version=config.openshift.io/v1

3.4.1. Cluster configuration resources

All cluster configuration resources are globally scoped (not namespaced) and named cluster.

Resource name Description

apiserver.config.op
enshift.io

Provides api-server configuration such as certificates and certificate authorities.

authentication.con
fig.openshift.io

Controls the identity providerand authentication configuration for the cluster.

CHAPTER 3. INSTALLATION CONFIGURATION

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-restricted-networks-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-restricted-networks-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-restricted-networks-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/authentication/#api-server-certificates
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/authentication/#understanding-identity-provider

build.config.opens
hift.io

Controls default and enforced configuration for all builds on the cluster.

console.config.ope
nshift.io

Configures the behavior of the web console interface, including the logout behavior.

featuregate.config
.openshift.io

Enables FeatureGates so that you can use Tech Preview features.

image.config.open
shift.io

Configures how specific image registries should be treated (allowed, disallowed,
insecure, CA details).

ingress.config.ope
nshift.io

Configuration details related to routing such as the default domain for routes.

oauth.config.open
shift.io

Configures identity providers and other behavior related to internal OAuth server flows.

project.config.ope
nshift.io

Configures how projects are created including the project template.

proxy.config.opens
hift.io

Defines proxies to be used by components needing external network access. Note: not
all components currently consume this value.

scheduler.config.o
penshift.io

Configures scheduler behavior such as policies and default nodeselectors.

Resource name Description

3.4.2. Operator configuration resources

These configuration resources are cluster-scoped instances, named cluster, which control the behavior
of a specific component as owned by a particular operator.

Resource name Description

console.operator.o
penshift.io

Controls console appearance such as branding customizations

config.imageregist
ry.operator.opensh
ift.io

Configures internal image registry settings such as public routing, log levels, proxy
settings, resource constraints, replica counts, and storage type.

config.samples.op
erator.openshift.io

Configures the Samples Operator to control which example imagestreams and
templates are installed on the cluster.

3.4.3. Additional configuration resources

These configuration resources represent a single instance of a particular component. In some cases, you

OpenShift Container Platform 4.3 Installing

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/builds/#build-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/web_console/#configuring-web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-cluster-enabling
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/images/#image-configuration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#nw-installation-ingress-config-asset_configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/authentication/#configuring-internal-oauth
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/applications/#configuring-project-creation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-scheduler-default
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/registry/#registry-operator-configuration-resource-overview_configuring-registry-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/images/#configuring-samples-operator

These configuration resources represent a single instance of a particular component. In some cases, you
can request multiple instances by creating multiple instances of the resource. In other cases, the
Operator can use only a specific resource instance name in a specific namespace. Reference the
component-specific documentation for details on how and when you can create additional resource
instances.

Resource
name

Instance
name

Namespace Description

alertmanag
er.monitorin
g.coreos.co
m

main openshift-
monitoring

Controls the alertmanager deployment parameters.

ingresscontr
oller.operat
or.openshift
.io

default openshift-
ingress-
operator

Configures Ingress Operator behavior such as domain,
number of replicas, certificates, and controller placement.

3.4.4. Informational Resources

You use these resources to retrieve information about the cluster. Do not edit these resources directly.

Resource
name

Instance name Description

clusterversion.c
onfig.openshift.
io

version In OpenShift Container Platform 4.3, you must not customize the
ClusterVersion resource for production clusters. Instead, follow the
process to update a cluster.

dns.config.ope
nshift.io

cluster You cannot modify the DNS settings for your cluster. You can view the
DNS Operator status.

infrastructure.c
onfig.openshift.
io

cluster Configuration details allowing the cluster to interact with its cloud
provider.

network.config.
openshift.io

cluster You cannot modify your cluster networking after installation. To
customize your network, follow the process to customize networking
during installation.

3.5. CONFIGURING YOUR FIREWALL

If you use a firewall, you must configure it so that OpenShift Container Platform can access the sites
that it requires to function. You must always grant access to some sites, and you grant access to more if
you use Red Hat Insights, the Telemetry service, a cloud to host your cluster, and certain build
strategies.

3.5.1. Configuring your firewall for OpenShift Container Platform

Before you install OpenShift Container Platform, you must configure your firewall to grant access to the

CHAPTER 3. INSTALLATION CONFIGURATION

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/monitoring/#configuring-alertmanager
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/updating_clusters/#updating-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#dns-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-aws-network-customizations

Before you install OpenShift Container Platform, you must configure your firewall to grant access to the
sites that OpenShift Container Platform requires.

There are no special configuration considerations for services running on only controller nodes versus
worker nodes.

Procedure

1. Allowlist the following registry URLs:

URL Function

registry.redhat.io Provides core container images

quay.io Provides core container images

sso.redhat.com The https://cloud.redhat.com/openshift site uses
authentication from sso.redhat.com

openshift.org Provides Red Hat Enterprise Linux CoreOS (RHCOS)
images

2. Allowlist any site that provides resources for a language or framework that your builds require.

3. If you do not disable Telemetry, you must grant access to the following URLs to access Red Hat
Insights:

URL Function

cert-api.access.redhat.com Required for Telemetry

api.access.redhat.com Required for Telemetry

infogw.api.openshift.com Required for Telemetry

https://cloud.redhat.com/api/ingres
s

Required for Telemetry and for insights-operator

4. If you use Amazon Web Services (AWS), Microsoft Azure, or Google Cloud Platform (GCP) to
host your cluster, you must grant access to the URLs that provide the cloud provider API and
DNS for that cloud:

Cloud URL Function

AWS *.amazonaws.com Required to access AWS services and
resources. Review the AWS Service
Endpoints in the AWS documentation to
determine the exact endpoints to allow for
the regions that you use.

OpenShift Container Platform 4.3 Installing

34

https://cloud.redhat.com/openshift
https://cloud.redhat.com/api/ingress
https://docs.aws.amazon.com/general/latest/gr/rande.html

GCP *.googleapis.com Required to access GCP services and
resources. Review Cloud Endpoints in the
GCP documentation to determine the
endpoints to allow for your APIs.

accounts.google.com Required to access your GCP account.

Azure management.azure.com Required to access Azure services and
resources. Review the Azure REST API
Reference in the Azure documentation to
determine the endpoints to allow for your
APIs.

Cloud URL Function

5. Allowlist the following URLs:

URL Function

mirror.openshift.com Required to access mirrored installation content and
images. This site is also a source of release image
signatures, although the Cluster Version Operator
needs only a single functioning source.

storage.googleapis.com/openshift-
release

A source of release image signatures, although the
Cluster Version Operator needs only a single
functioning source.

*.apps.<cluster_name>.
<base_domain>

Required to access the default cluster routes unless you
set an ingress wildcard during installation.

quay-registry.s3.amazonaws.com Required to access Quay image content in AWS.

api.openshift.com Required to check if updates are available for the
cluster.

art-rhcos-ci.s3.amazonaws.com Required to download Red Hat Enterprise Linux
CoreOS (RHCOS) images.

api.openshift.com Required for your cluster token.

cloud.redhat.com/openshift Required for your cluster token.

Operators require route access to perform health checks. Specifically, the authentication and
web console Operators connect to two routes to verify that the routes work. If you are the
cluster administrator and do not want to allow *.apps.<cluster_name>.<base_domain>, then
allow these routes:

CHAPTER 3. INSTALLATION CONFIGURATION

35

https://cloud.google.com/endpoints/
https://docs.microsoft.com/en-us/rest/api/azure/

oauth-openshift.apps.<cluster_name>.<base_domain>

console-openshift-console.apps.<cluster_name>.<base_domain>, or the host name
that is specified in the spec.route.hostname field of the consoles.operator/cluster object
if the field is not empty.

3.6. CONFIGURING A PRIVATE CLUSTER

After you install an OpenShift Container Platform version 4.3 cluster, you can set some of its core
components to be private.

IMPORTANT

You can configure this change for only clusters that use infrastructure that you provision
to a cloud provider.

3.6.1. About private clusters

By default, OpenShift Container Platform is provisioned using publicly-accessible DNS and endpoints.
You can set the DNS, Ingress Controller, and API server to private after you deploy your cluster.

DNS
If you install OpenShift Container Platform on installer-provisioned infrastructure, the installation
program creates records in a pre-existing public zone and, where possible, creates a private zone for the
cluster’s own DNS resolution. In both the public zone and the private zone, the installation program or
cluster creates DNS entries for *.apps, for Ingress, and api, for the API server.

The *.apps records in the public and private zone are identical, so when you delete the public zone, the
private zone seamlessly provides all DNS resolution for the cluster.

Ingress Controller
Because the default Ingress object is created as public, the load balancer is internet-facing and in the
public subnets. You can replace the default Ingress Controller with an internal one.

API server
By default, the installation program creates appropriate network load balancers for the API server to
use for both internal and external traffic.

On Amazon Web Services (AWS), separate public and private load balancers are created. The load
balancers are identical except that an additional port is available on the internal one for use within the
cluster. Although the installation program automatically creates or destroys the load balancer based on
API server requirements, the cluster does not manage or maintain them. As long as you preserve the
cluster’s access to the API server, you can manually modify or move the load balancers. For the public
load balancer, port 6443 is open and the health check is configured for HTTPS against the /readyz path.

On Google Cloud Platform, a single load balancer is created to manage both internal and external API
traffic, so you do not need to modify the load balancer.

On Microsoft Azure, both public and private load balancers are created. However, because of limitations
in current implementation, you just retain both load balancers in a private cluster.

3.6.2. Setting DNS to private

After you deploy a cluster, you can modify its DNS to use only a private zone.

OpenShift Container Platform 4.3 Installing

36

Procedure

1. Review the DNS custom resource for your cluster:

$ oc get dnses.config.openshift.io/cluster -o yaml
apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: "2019-10-25T18:27:09Z"
 generation: 2
 name: cluster
 resourceVersion: "37966"
 selfLink: /apis/config.openshift.io/v1/dnses/cluster
 uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
spec:
 baseDomain: <base_domain>
 privateZone:
 tags:
 Name: <infrastructureID>-int
 kubernetes.io/cluster/<infrastructureID>: owned
 publicZone:
 id: Z2XXXXXXXXXXA4
status: {}

Note that the spec section contains both a private and a public zone.

2. Patch the DNS custom resource to remove the public zone:

$ oc patch dnses.config.openshift.io/cluster --type=merge --patch='{"spec": {"publicZone":
null}}'
dns.config.openshift.io/cluster patched

Because the Ingress Controller consults the DNS definition when it creates Ingress objects,
When you create or modify Ingress objects, only private records are created.

IMPORTANT

DNS records for the existing Ingress objects are not modified when you remove
the public zone.

3. Optional: Review the DNS custom resource for your cluster and confirm that the public zone
was removed:

$ oc get dnses.config.openshift.io/cluster -o yaml
apiVersion: config.openshift.io/v1
kind: DNS
metadata:
 creationTimestamp: "2019-10-25T18:27:09Z"
 generation: 2
 name: cluster
 resourceVersion: "37966"
 selfLink: /apis/config.openshift.io/v1/dnses/cluster
 uid: 0e714746-f755-11f9-9cb1-02ff55d8f976
spec:
 baseDomain: <base_domain>

CHAPTER 3. INSTALLATION CONFIGURATION

37

 privateZone:
 tags:
 Name: <infrastructureID>-int
 kubernetes.io/cluster/<infrastructureID>-wfpg4: owned
status: {}

3.6.3. Setting the Ingress Controller to private

After you deploy a cluster, you can modify its Ingress Controller to use only a private zone.

Procedure

1. Modify the default Ingress Controller to use only an internal endpoint:

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: default
spec:
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal
EOF
ingresscontroller.operator.openshift.io "default" deleted
ingresscontroller.operator.openshift.io/default replaced

The public DNS entry is removed, and the private zone entry is updated.

3.6.4. Restricting the API server to private

After you deploy a cluster to Amazon Web Services (AWS) or Microsoft Azure, you can reconfigure the
API server to use only the private zone.

Prerequisites

Install the OpenShift CLI (oc).

Have access to the web console as a user with admin privileges.

Procedure

1. In the web portal or console for AWS or Azure, take the following actions:

a. Locate and delete appropriate load balancer component.

For AWS, delete the external load balancer. The API DNS entry in the private zone
already points to the internal load balancer, which uses an identical configuration, so you
do not need to modify the internal load balancer.

For Azure, delete the api-internal rule for the load balancer.

b. Delete the api.$clustername.$yourdomain DNS entry in the public zone.

OpenShift Container Platform 4.3 Installing

38

1

1 2

2. From your terminal, list the cluster machines:

$ oc get machine -n openshift-machine-api
NAME STATE TYPE REGION ZONE AGE
lk4pj-master-0 running m4.xlarge us-east-1 us-east-1a 17m
lk4pj-master-1 running m4.xlarge us-east-1 us-east-1b 17m
lk4pj-master-2 running m4.xlarge us-east-1 us-east-1a 17m
lk4pj-worker-us-east-1a-5fzfj running m4.xlarge us-east-1 us-east-1a 15m
lk4pj-worker-us-east-1a-vbghs running m4.xlarge us-east-1 us-east-1a 15m
lk4pj-worker-us-east-1b-zgpzg running m4.xlarge us-east-1 us-east-1b 15m

You modify the control plane machines, which contain master in the name, in the following step.

3. Remove the external load balancer from each control plane machine.

a. Edit a master Machine object to remove the reference to the external load balancer.

$ oc edit machines -n openshift-machine-api <master_name> 1

Specify the name of the control plane, or master, Machine to modify.

b. Remove the lines that describe the external load balancer, which are marked in the following
example, and save and exit the object specification:

Delete this line.

c. Repeat this process for each of the machines that contains master in the name.

...
spec:
 providerSpec:
 value:
 ...
 loadBalancers:
 - name: lk4pj-ext 1
 type: network 2
 - name: lk4pj-int
 type: network

CHAPTER 3. INSTALLATION CONFIGURATION

39

	Table of Contents
	CHAPTER 1. GATHERING INSTALLATION LOGS
	1.1. PREREQUISITES
	1.2. GATHERING LOGS FROM A FAILED INSTALLATION
	1.3. MANUALLY GATHERING LOGS WITH SSH ACCESS TO YOUR HOST(S)
	1.4. MANUALLY GATHERING LOGS WITHOUT SSH ACCESS TO YOUR HOST(S)

	CHAPTER 2. SUPPORT FOR FIPS CRYPTOGRAPHY
	2.1. FIPS VALIDATION IN OPENSHIFT CONTAINER PLATFORM
	2.2. FIPS SUPPORT IN COMPONENTS THAT THE CLUSTER USES
	2.2.1. etcd
	2.2.2. Storage
	2.2.3. Runtimes

	2.3. INSTALLING A CLUSTER IN FIPS MODE

	CHAPTER 3. INSTALLATION CONFIGURATION
	3.1. INSTALLATION METHODS FOR DIFFERENT PLATFORMS
	3.2. CUSTOMIZING NODES
	3.2.1. Adding day-1 kernel arguments
	3.2.2. Adding kernel modules to nodes
	3.2.2.1. Building and testing the kernel module container
	3.2.2.2. Provisioning a kernel module to OpenShift Container Platform

	3.2.3. Encrypting disks during installation
	3.2.3.1. Enabling TPM v2 disk encryption
	3.2.3.2. Enabling Tang disk encryption

	3.2.4. Configuring chrony time service
	3.2.5. Additional resources

	3.3. CREATING A MIRROR REGISTRY FOR INSTALLATION IN A RESTRICTED NETWORK
	3.3.1. About the mirror registry
	3.3.2. Preparing your mirror host
	3.3.2.1. Installing the CLI by downloading the binary

	3.3.3. Configuring credentials that allow images to be mirrored
	3.3.4. Mirroring the OpenShift Container Platform image repository
	3.3.5. Preparing your cluster to gather support data
	3.3.6. Using Samples Operator imagestreams with alternate or mirrored registries
	3.3.7. Next steps

	3.4. AVAILABLE CLUSTER CUSTOMIZATIONS
	3.4.1. Cluster configuration resources
	3.4.2. Operator configuration resources
	3.4.3. Additional configuration resources
	3.4.4. Informational Resources

	3.5. CONFIGURING YOUR FIREWALL
	3.5.1. Configuring your firewall for OpenShift Container Platform

	3.6. CONFIGURING A PRIVATE CLUSTER
	3.6.1. About private clusters
	DNS
	Ingress Controller
	API server

	3.6.2. Setting DNS to private
	3.6.3. Setting the Ingress Controller to private
	3.6.4. Restricting the API server to private

