
OpenShift Container Platform 4.2

Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform 4.2

Last Updated: 2020-06-15

OpenShift Container Platform 4.2 Monitoring

Configuring and using the monitoring stack in OpenShift Container Platform 4.2

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and using the Prometheus monitoring stack in
OpenShift Container Platform.

. .

. .

Table of Contents

CHAPTER 1. CLUSTER MONITORING
1.1. ABOUT CLUSTER MONITORING

1.1.1. Stack components and monitored targets
1.2. CONFIGURING THE MONITORING STACK

1.2.1. Maintenance and support
1.2.2. Creating cluster monitoring ConfigMap
1.2.3. Configuring the cluster monitoring stack
1.2.4. Configurable monitoring components
1.2.5. Moving monitoring components to different nodes
1.2.6. Assigning tolerations to monitoring components
1.2.7. Configuring persistent storage

1.2.7.1. Configuring a local persistent volume claim
1.2.7.2. Modifying retention time for Prometheus metrics data

1.2.8. Configuring Alertmanager
1.2.8.1. Alertmanager default configuration
1.2.8.2. Applying custom Alertmanager configuration
1.2.8.3. Alerting rules
1.2.8.4. Listing acting alerting rules

1.3. MANAGING CLUSTER ALERTS
1.3.1. Contents of the Alerting UI
1.3.2. Getting information about alerts and alerting rules
1.3.3. Silencing alerts
1.3.4. Getting information about silences
1.3.5. Editing silences
1.3.6. Expiring silences

1.4. EXAMINING CLUSTER METRICS
1.4.1. Contents of the Metrics UI
1.4.2. Running metrics queries
1.4.3. Exploring the visualized metrics

1.5. ACCESSING PROMETHEUS, ALERTMANAGER, AND GRAFANA
1.5.1. Accessing Prometheus, Alerting UI, and Grafana using the web console
1.5.2. Accessing Prometheus, Alertmanager, and Grafana directly

CHAPTER 2. EXPOSING CUSTOM APPLICATION METRICS FOR AUTOSCALING
2.1. EXPOSING CUSTOM APPLICATION METRICS FOR HORIZONTAL POD AUTOSCALING

3
3
3
5
5
6
6
7
8
9

10
11

12
13
13
14
15
16
16
17
19
21
22
22
22
23
23
25
26
26
26
27

29
29

Table of Contents

1

OpenShift Container Platform 4.2 Monitoring

2

CHAPTER 1. CLUSTER MONITORING

1.1. ABOUT CLUSTER MONITORING

OpenShift Container Platform includes a pre-configured, pre-installed, and self-updating monitoring
stack that is based on the Prometheus open source project and its wider eco-system. It provides
monitoring of cluster components and includes a set of alerts to immediately notify the cluster
administrator about any occurring problems and a set of Grafana dashboards. The cluster monitoring
stack is only supported for monitoring OpenShift Container Platform clusters.

IMPORTANT

To ensure compatibility with future OpenShift Container Platform updates, configuring
only the specified monitoring stack options is supported.

1.1.1. Stack components and monitored targets

The monitoring stack includes these components:

Table 1.1. Monitoring stack components

Component Description

Cluster Monitoring Operator The OpenShift Container Platform Cluster
Monitoring Operator (CMO) is the central
component of the stack. It controls the deployed
monitoring components and resources and ensures
that they are always up to date.

Prometheus Operator The Prometheus Operator (PO) creates, configures,
and manages Prometheus and Alertmanager
instances. It also automatically generates monitoring
target configurations based on familiar Kubernetes
label queries.

Prometheus The Prometheus is the systems and service
monitoring system, around which the monitoring
stack is based.

Prometheus Adapter The Prometheus Adapter exposes cluster resource
metrics API for horizontal pod autoscaling. Resource
metrics are CPU and memory utilization.

Alertmanager The Alertmanager service handles alerts sent by
Prometheus.

kube-state-metrics The kube-state-metrics exporter agent converts
Kubernetes objects to metrics that Prometheus can
use.

CHAPTER 1. CLUSTER MONITORING

3

https://prometheus.io/
https://grafana.com/

openshift-state-metrics The openshift-state-metrics exporter expands
upon kube-state-metrics by adding metrics for
OpenShift Container Platform-specific resources.

node-exporter node-exporter is an agent deployed on every node
to collect metrics about it.

Grafana The Grafana analytics platform provides dashboards
for analyzing and visualizing the metrics. The Grafana
instance that is provided with the monitoring stack,
along with its dashboards, is read-only.

Component Description

All the components of the monitoring stack are monitored by the stack and are automatically updated
when OpenShift Container Platform is updated.

In addition to the components of the stack itself, the monitoring stack monitors:

CoreDNS

Elasticsearch (if Logging is installed)

Etcd

Fluentd (if Logging is installed)

HAProxy

Image registry

Kubelets

Kubernetes apiserver

Kubernetes controller manager

Kubernetes scheduler

Metering (if Metering is installed)

OpenShift apiserver

OpenShift controller manager

Operator Lifecycle Manager (OLM)

Telemeter client

NOTE

OpenShift Container Platform 4.2 Monitoring

4

NOTE

Each OpenShift Container Platform component is responsible for its monitoring
configuration. For problems with a component’s monitoring, open a bug in Bugzilla
against that component, not against the general monitoring component.

Other OpenShift Container Platform framework components might be exposing metrics as well. For
details, see their respective documentation.

Next steps

Configure the monitoring stack.

1.2. CONFIGURING THE MONITORING STACK

Prior to OpenShift Container Platform 4, the Prometheus Cluster Monitoring stack was configured
through the Ansible inventory file. For that purpose, the stack exposed a subset of its available
configuration options as Ansible variables. You configured the stack before you installed OpenShift
Container Platform.

In OpenShift Container Platform 4, Ansible is not the primary technology to install OpenShift Container
Platform anymore. The installation program provides only a very low number of configuration options
before installation. Configuring most OpenShift framework components, including the Prometheus
Cluster Monitoring stack, happens post-installation.

This section explains what configuration is supported, shows how to configure the monitoring stack, and
demonstrates several common configuration scenarios.

Prerequisites

The monitoring stack imposes additional resource requirements. Consult the computing
resources recommendations in Scaling the Cluster Monitoring Operator and verify that you
have sufficient resources.

1.2.1. Maintenance and support

The supported way of configuring OpenShift Container Platform Monitoring is by configuring it using the
options described in this document. Do not use other configurations, as they are unsupported.
Configuration paradigms might change across Prometheus releases, and such cases can only be
handled gracefully if all configuration possibilities are controlled. If you use configurations other than
those described in this section, your changes will disappear because the cluster-monitoring-operator
reconciles any differences. The operator reverses everything to the defined state by default and by
design.

Explicitly unsupported cases include:

Creating additional ServiceMonitor objects in the openshift-* namespaces. This extends the
targets the cluster monitoring Prometheus instance scrapes, which can cause collisions and load
differences that cannot be accounted for. These factors might make the Prometheus setup
unstable.

Creating unexpected ConfigMap objects or PrometheusRule objects. This causes the cluster
monitoring Prometheus instance to include additional alerting and recording rules.

Modifying resources of the stack. The Prometheus Monitoring Stack ensures its resources are
always in the state it expects them to be. If they are modified, the stack will reset them.

CHAPTER 1. CLUSTER MONITORING

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/monitoring/#configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/scalability_and_performance/#scaling-cluster-monitoring-operator

Using resources of the stack for your purposes. The resources created by the Prometheus
Cluster Monitoring stack are not meant to be used by any other resources, as there are no
guarantees about their backward compatibility.

Stopping the Cluster Monitoring Operator from reconciling the monitoring stack.

Adding new alerting rules.

Modifying the monitoring stack Grafana instance.

1.2.2. Creating cluster monitoring ConfigMap

To configure the Prometheus Cluster Monitoring stack, you must create the cluster monitoring
ConfigMap.

Prerequisites

An installed oc CLI tool

Administrative privileges for the cluster

Procedure

1. Check whether the cluster-monitoring-config ConfigMap object exists:

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

2. If it does not exist, create it:

$ oc -n openshift-monitoring create configmap cluster-monitoring-config

3. Start editing the cluster-monitoring-config ConfigMap:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

4. Create the data section if it does not exist yet:

1.2.3. Configuring the cluster monitoring stack

You can configure the Prometheus Cluster Monitoring stack using ConfigMaps. ConfigMaps configure
the Cluster Monitoring Operator, which in turn configures components of the stack.

Prerequisites

Make sure you have the cluster-monitoring-config ConfigMap object with the

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |

OpenShift Container Platform 4.2 Monitoring

6

Make sure you have the cluster-monitoring-config ConfigMap object with the
data/config.yaml section.

Procedure

1. Start editing the cluster-monitoring-config ConfigMap:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Put your configuration under data/config.yaml as key-value pair
<component_name>: <component_configuration>:

Substitute <component> and <configuration_for_the_component> accordingly.

For example, create this ConfigMap to configure a Persistent Volume Claim (PVC) for
Prometheus:

Here, prometheusK8s defines the Prometheus component and the following lines define its
configuration.

3. Save the file to apply the changes. The pods affected by the new configuration are restarted
automatically.

1.2.4. Configurable monitoring components

This table shows the monitoring components you can configure and the keys used to specify the
components in the ConfigMap:

Table 1.2. Configurable monitoring components

Component Key

Prometheus Operator prometheusOperator

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 <configuration_for_the_component>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 volumeClaimTemplate: spec: storageClassName: fast volumeMode: filesystem
resources: requests: storage: 40Gi

CHAPTER 1. CLUSTER MONITORING

7

Prometheus prometheusK8s

Alertmanager alertmanagerMain

kube-state-metrics kubeStateMetrics

openshift-state-metrics openshiftStateMetrics

Grafana grafana

Telemeter Client telemeterClient

Prometheus Adapter k8sPrometheusAdapter

Component Key

From this list, only Prometheus and Alertmanager have extensive configuration options. All other
components usually provide only the nodeSelector field for being deployed on a specified node.

1.2.5. Moving monitoring components to different nodes

You can move any of the monitoring stack components to specific nodes.

Prerequisites

Make sure you have the cluster-monitoring-config ConfigMap object with the
data/config.yaml section.

Procedure

1. Start editing the cluster-monitoring-config ConfigMap:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Specify the nodeSelector constraint for the component under data/config.yaml:

Substitute <component> accordingly and substitute <node_key>: <node_value> with the

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 nodeSelector:
 <node_key>: <node_value>
 <node_key>: <node_value>
 <...>

OpenShift Container Platform 4.2 Monitoring

8

Substitute <component> accordingly and substitute <node_key>: <node_value> with the
map of key-value pairs that specifies the destination node. Often, only a single key-value pair is
used.

The component can only run on a node that has each of the specified key-value pairs as labels.
The node can have additional labels as well.

For example, to move components to the node that is labeled foo: bar, use:

3. Save the file to apply the changes. The components affected by the new configuration are
moved to new nodes automatically.

Additional resources

See the Kubernetes documentation for details on the nodeSelector constraint.

1.2.6. Assigning tolerations to monitoring components

You can assign tolerations to any of the monitoring stack components to enable moving them to tainted
nodes.

Prerequisites

Make sure you have the cluster-monitoring-config ConfigMap object with the
data/config.yaml section.

Procedure

1. Start editing the cluster-monitoring-config ConfigMap:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Specify tolerations for the component:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusOperator: nodeSelector: foo: bar prometheusK8s: nodeSelector: foo:
bar alertmanagerMain: nodeSelector: foo: bar kubeStateMetrics: nodeSelector: foo:
bar grafana: nodeSelector: foo: bar telemeterClient: nodeSelector: foo: bar
k8sPrometheusAdapter: nodeSelector: foo: bar
 openshiftStateMetrics:
 nodeSelector:
 node-role.kubernetes.io/infra: ""

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring

CHAPTER 1. CLUSTER MONITORING

9

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#nodeselector

Substitute <component> and <toleration_specification> accordingly.

For example, a oc adm taint nodes node1 key1=value1:NoSchedule taint prevents the
scheduler from placing pods in the foo: bar node. To make the alertmanagerMain component
ignore that taint and to place alertmanagerMain in foo: bar normally, use this toleration:

3. Save the file to apply the changes. The new component placement configuration is applied
automatically.

Additional resources

See the OpenShift Container Platform documentation on taints and tolerations.

See the Kubernetes documentation on taints and tolerations.

1.2.7. Configuring persistent storage

Running cluster monitoring with persistent storage means that your metrics are stored to a persistent
volume (PV) and can survive a pod being restarted or recreated. This is ideal if you require your metrics
or alerting data to be guarded from data loss. For production environments, it is highly recommended to
configure persistent storage. Because of the high IO demands, it is advantageous to use local storage.

IMPORTANT

See Recommended configurable storage technology .

Prerequisites

Dedicate sufficient local persistent storage to ensure that the disk does not become full. How
much storage you need depends on the number of pods. For information on system
requirements for persistent storage, see Prometheus database storage requirements.

Make sure you have a persistent Volume (PV) ready to be claimed by the persistent volume
claim (PVC), one PV for each replica. Because Prometheus has two replicas and Alertmanager
has three replicas, you need five PVs to support the entire monitoring stack. The PVs should be
available from the Local Storage Operator. This does not apply if you enable dynamically
provisioned storage.

data:
 config.yaml: |
 <component>:
 tolerations:
 <toleration_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 nodeSelector:
 foo: bar
 tolerations: - key: "key1" operator: "Equal" value: "value1" effect: "NoSchedule"

OpenShift Container Platform 4.2 Monitoring

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/nodes/#nodes-scheduler-taints-tolerations
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/scalability_and_performance/#recommended-configurable-storage-technology_persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/scalability_and_performance/#prometheus-database-storage-requirements

Use the block type of storage.

Configure local persistent storage.

1.2.7.1. Configuring a local persistent volume claim

For the Prometheus or Alertmanager to use a persistent volume (PV), you first must configure a
persistent volume claim (PVC).

Prerequisites

Make sure you have the cluster-monitoring-config ConfigMap object with the
data/config.yaml section.

Procedure

1. Edit the cluster-monitoring-config ConfigMap:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Put your PVC configuration for the component under data/config.yaml:

See the Kubernetes documentation on PersistentVolumeClaims for information on how to
specify volumeClaimTemplate.

For example, to configure a PVC that claims local persistent storage for Prometheus, use:

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 <component>:
 volumeClaimTemplate:
 metadata:
 name: <PVC_name_prefix>
 spec:
 storageClassName: <storage_class>
 resources:
 requests:
 storage: <amount_of_storage>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 volumeClaimTemplate:
 metadata:
 name: localpvc

CHAPTER 1. CLUSTER MONITORING

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/storage/#persistent-storage-using-local-volume
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

In the above example, the storage class created by the Local Storage Operator is called local-
storage.

To configure a PVC that claims local persistent storage for Alertmanager, use:

3. Save the file to apply the changes. The pods affected by the new configuration are restarted
automatically and the new storage configuration is applied.

1.2.7.2. Modifying retention time for Prometheus metrics data

By default, the Prometheus Cluster Monitoring stack configures the retention time for Prometheus data
to be 15 days. You can modify the retention time to change how soon the data is deleted.

Prerequisites

Make sure you have the cluster-monitoring-config ConfigMap object with the
data/config.yaml section.

Procedure

1. Start editing the cluster-monitoring-config ConfigMap:

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

2. Put your retention time configuration under data/config.yaml:

 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:
 metadata:
 name: localpvc
 spec:
 storageClassName: local-storage
 resources:
 requests:
 storage: 40Gi

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring

OpenShift Container Platform 4.2 Monitoring

12

Substitute <time_specification> with a number directly followed by ms (milliseconds), s
(seconds), m (minutes), h (hours), d (days), w (weeks), or y (years).

For example, to configure retention time to be 24 hours, use:

3. Save the file to apply the changes. The pods affected by the new configuration are restarted
automatically.

1.2.8. Configuring Alertmanager

The Prometheus Alertmanager is a component that manages incoming alerts, including:

Alert silencing

Alert inhibition

Alert aggregation

Reliable deduplication of alerts

Grouping alerts

Sending grouped alerts as notifications through receivers such as email, PagerDuty, and
HipChat

1.2.8.1. Alertmanager default configuration

The default configuration of the OpenShift Container Platform Monitoring Alertmanager cluster is this:

data:
 config.yaml: |
 prometheusK8s:
 retention: <time_specification>

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: 24h

global:
 resolve_timeout: 5m
route:
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 12h
 receiver: default
 routes:
 - match:
 alertname: Watchdog
 repeat_interval: 5m

CHAPTER 1. CLUSTER MONITORING

13

1

OpenShift Container Platform monitoring ships with the Watchdog alert, which fires continuously.
Alertmanager repeatedly sends notifications for the Watchdog alert to the notification provider, for
example, to PagerDuty. The provider is usually configured to notify the administrator when it stops
receiving the Watchdog alert. This mechanism helps ensure continuous operation of Prometheus as well
as continuous communication between Alertmanager and the notification provider.

1.2.8.2. Applying custom Alertmanager configuration

You can overwrite the default Alertmanager configuration by editing the alertmanager-main secret
inside the openshift-monitoring namespace.

Prerequisites

An installed jq tool for processing JSON data

Procedure

1. Print the currently active Alertmanager configuration into file alertmanager.yaml:

$ oc -n openshift-monitoring get secret alertmanager-main --template='{{ index .data
"alertmanager.yaml" }}' |base64 -d > alertmanager.yaml

2. Change the configuration in file alertmanager.yaml to your new configuration:

service specifies the service that fires the alerts.

 receiver: watchdog
receivers:
- name: default
- name: watchdog

global:
 resolve_timeout: 5m
route:
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 12h
 receiver: default
 routes:
 - match:
 alertname: Watchdog
 repeat_interval: 5m
 receiver: watchdog
 - match:
 service: <your_service> 1
 routes:
 - match:
 <your_matching_rules> 2
 receiver: <receiver> 3
receivers:
- name: default
- name: watchdog
- name: <receiver>
 <receiver_configuration>

OpenShift Container Platform 4.2 Monitoring

14

2

3

<your_matching_rules> specify the target alerts.

receiver specifies the receiver to use for the alert.

For example, this listing configures PagerDuty for notifications:

With this configuration, alerts of critical severity fired by the example-app service are sent
using the team-frontend-page receiver, which means that these alerts are paged to a chosen
person.

3. Apply the new configuration in the file:

$ oc -n openshift-monitoring create secret generic alertmanager-main --from-
file=alertmanager.yaml --dry-run -o=yaml | oc -n openshift-monitoring replace secret --
filename=-

Additional resources

See the PagerDuty official site for more information on PagerDuty.

See the PagerDuty Prometheus Integration Guide to learn how to retrieve the service_key.

See Alertmanager configuration for configuring alerting through different alert receivers.

1.2.8.3. Alerting rules

OpenShift Container Platform Cluster Monitoring by default ships with a set of pre-defined alerting
rules.

Note that:

The default alerting rules are used specifically for the OpenShift Container Platform cluster and
nothing else. For example, you get alerts for a persistent volume in the cluster, but you do not
get them for persistent volume in your custom namespace.

global:
 resolve_timeout: 5m
route:
 group_wait: 30s
 group_interval: 5m
 repeat_interval: 12h
 receiver: default
 routes:
 - match:
 alertname: Watchdog
 repeat_interval: 5m
 receiver: watchdog
 - match: service: example-app routes: - match: severity: critical receiver: team-
frontend-page
receivers:
- name: default
- name: watchdog
- name: team-frontend-page pagerduty_configs: - service_key: "your-key"

CHAPTER 1. CLUSTER MONITORING

15

https://www.pagerduty.com/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/
https://prometheus.io/docs/alerting/configuration/

Currently you cannot add custom alerting rules.

Some alerting rules have identical names. This is intentional. They are sending alerts about the
same event with different thresholds, with different severity, or both.

With the inhibition rules, the lower severity is inhibited when the higher severity is firing.

1.2.8.4. Listing acting alerting rules

You can list the alerting rules that currently apply to the cluster.

Procedure

1. Configure the necessary port forwarding:

$ oc -n openshift-monitoring port-forward svc/prometheus-operated 9090

2. Fetch the JSON object containing acting alerting rules and their properties:

$ curl -s http://localhost:9090/api/v1/rules | jq '[.data.groups[].rules[] |
select(.type=="alerting")]'
[
 {
 "name": "ClusterOperatorDown",
 "query": "cluster_operator_up{job=\"cluster-version-operator\"} == 0",
 "duration": 600,
 "labels": {
 "severity": "critical"
 },
 "annotations": {
 "message": "Cluster operator {{ $labels.name }} has not been available for 10 mins.
Operator may be down or disabled, cluster will not be kept up to date and upgrades will not be
possible."
 },
 "alerts": [],
 "health": "ok",
 "type": "alerting"
 },
 {
 "name": "ClusterOperatorDegraded",
 ...

Additional resources

See also the Alertmanager documentation.

Next steps

Manage cluster alerts.

Learn about remote health reporting and, if necessary, opt out of it.

1.3. MANAGING CLUSTER ALERTS

OpenShift Container Platform 4.2 Monitoring

16

https://prometheus.io/docs/alerting/alertmanager/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/monitoring/#managing-cluster-alerts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/support/#opting-out-remote-health-reporting_opting-out-remote-health-reporting

OpenShift Container Platform 4.2 provides a web interface to the Alertmanager, which enables you to
manage alerts. This section demonstrates how to use the Alerting UI.

1.3.1. Contents of the Alerting UI

This section shows and explains the contents of the Alerting UI, a web interface to the Alertmanager.

The main three pages of the Alerting UI are the Alerts, the Silences, and the YAML pages.

The Alerts page is accessible by clicking Monitoring → Alerting → Alerts in the OpenShift Container
Platform web console.

1. Filtering alerts by their names.

2. Filtering the alerts by their states. To fire, some alerts need a certain condition to be true for the
duration of a timeout. If a condition of an alert is currently true, but the timeout has not been
reached, such an alert is in the Pending state.

3. Alert name.

4. Description of an alert.

5. Current state of the alert and when the alert went into this state.

6. Value of the Severity label of the alert.

7. Actions you can do with the alert.

The Silences page is accessible by clicking Monitoring → Alerting → Silences in the OpenShift
Container Platform web console.

CHAPTER 1. CLUSTER MONITORING

17

1. Creating a silence for an alert.

2. Filtering silences by their name.

3. Filtering silences by their states. If a silence is pending, it is currently not active because it is
scheduled to start at a later time. If a silence expired, it is no longer active because it has
reached its end time.

4. Description of a silence. It includes the specification of alerts that it matches.

5. Current state of the silence. For active silences, it shows when it ends, and for pending silences,
it shows when it starts.

6. Number of alerts that are being silenced by the silence.

7. Actions you can do with a silence.

The YAML page is accessible by clicking Monitoring → Alerting → YAML in the OpenShift Container
Platform web console.

OpenShift Container Platform 4.2 Monitoring

18

1. Upload a file with Alertmanager configuration.

2. Examine and edit the current Alertmanager configuration.

3. Save the updated Alertmanager configuration.

Also, next to the title of each of these pages is a link to the old Alertmanager interface.

Additional resources

See Configuring Alertmanager for more information on changing Alertmanager configuration.

1.3.2. Getting information about alerts and alerting rules

You can find an alert and see information about it or its governing alerting rule.

Procedure

1. Open the OpenShift Container Platform web console and navigate to the Monitoring →
Alerting → Alerts page.

2. Optional: Filter the alerts by name using the Filter Alerts by name field.

3. Optional: Filter the alerts by state using one or more of the state buttons Firing, Silenced,

CHAPTER 1. CLUSTER MONITORING

19

https://docs.openshift.com/container-platform/4.2/monitoring/cluster_monitoring/configuring-the-monitoring-stack.html#configuring-alertmanager

3. Optional: Filter the alerts by state using one or more of the state buttons Firing, Silenced,
Pending, Not firing.

4. Optional: Sort the alerts by clicking one or more of the Name, State, and Severity column
headers.

5. After you see the alert, you can see either details of the alert or details of its governing alerting
rule.
To see alert details, click on the name of the alert. This is the page with alert details:

The page has the graph with timeseries of the alert. It also has information about the alert,
including:

A link to its governing alerting rule

Description of the alert

To see alerting rule details, click the button in the last column and select View Alerting Rule.
This is the page with alerting rule details:

OpenShift Container Platform 4.2 Monitoring

20

The page has information about the alerting rule, including:

Alerting rule name, severity, and description

The expression that defines the condition for firing the alert

The time for which the condition should be true for an alert to fire

Graph for each alert governed by the alerting rule, showing the value with which the alert is
firing

Table of all alerts governed by the alerting rule

1.3.3. Silencing alerts

You can either silence a specific alert or silence alerts that match a specification that you define.

Procedure

To silence a set of alerts by creating an alert specification:

1. Navigate to the Monitoring → Alerting → Silences page of the OpenShift Container Platform
web console.

2. Click Create Silence.

3. Populate the Create Silence form.

4. To create the silence, click Create.

To silence a specific alert:

1. Navigate to the Monitoring → Alerting → Alerts page of the OpenShift Container Platform
web console.

2. For the alert that you want to silence, click the button in the last column and click Silence Alert.

CHAPTER 1. CLUSTER MONITORING

21

2. For the alert that you want to silence, click the button in the last column and click Silence Alert.
The Create Silence form will appear with prepopulated specification of the chosen alert.

3. Optional: Modify the silence.

4. To create the silence, click Create.

1.3.4. Getting information about silences

You can find a silence and view its details.

Procedure

1. Open the OpenShift Container Platform web console and navigate to the Monitoring →
Alerting → Silences page.

2. Optional: Filter the silences by name using the Filter Silences by name field.

3. Optional: Filter the silences by state using one or more of the state buttons Active, Pending,
Expired.

4. Optional: Sort the silences by clicking one or more of the Name, State, and Firing alerts column
headers.

5. After you see the silence, you can click its name to see the details, including:

Alert specification

State

Start time

End time

Number and list of firing alerts

1.3.5. Editing silences

You can edit a silence, which will expire the existing silence and create a new silence with the changed
configuration.

Procedure

1. Navigate to the Monitoring → Alerting → Silences page.

2. For the silence you want to modify, click the button in the last column and click Edit silence.
Alternatively, you can click Actions → Edit Silence in the Silence Overview screen for a
particular silence.

3. In the Edit Silence screen, enter your changes and click the Save button. This will expire the
existing silence and create one with the chosen configuration.

1.3.6. Expiring silences

You can expire a silence. Expiring a silence deactivates it forever.

OpenShift Container Platform 4.2 Monitoring

22

Procedure

1. Navigate to the Monitoring → Alerting → Silences page.

2. For the silence you want to expire, click the button in the last column and click Expire Silence.
Alternatively, you can click the Actions → Expire Silence button in the Silence Overview page
for a particular silence.

3. Confirm by clicking Expire Silence. This expires the silence.

Next steps

Examine cluster metrics.

1.4. EXAMINING CLUSTER METRICS

OpenShift Container Platform 4.2 provides a web interface to Prometheus, which enables you to run
Prometheus Query Language (PromQL) queries and examine the metrics visualized on a plot. This
functionality provides an extensive overview of the cluster state and enables you to troubleshoot
problems.

1.4.1. Contents of the Metrics UI

This section shows and explains the contents of the Metrics UI, a web interface to Prometheus.

The Metrics page is accessible by clicking Monitoring → Metrics in the OpenShift Container Platform
web console.

CHAPTER 1. CLUSTER MONITORING

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/monitoring/#examining-cluster-metrics

1. Actions.

Add query.

Expand or collapse all query tables.

Delete all queries.

2. Hide the plot.

3. The interactive plot.

4. The catalog of available metrics.

5. Add query.

6. Run queries.

7. Query forms.

8. Expand or collapse the form.

OpenShift Container Platform 4.2 Monitoring

24

9. The query.

10. Clear query.

11. Enable or disable query.

12. Actions for a specific query.

Enable or disable query.

Show or hide all series of the query from the plot.

Delete query.

13. The metrics table for a query.

14. Color assigned to the graph of the metric. Clicking the square shows or hides the metric’s graph.

Additionally, there is a link to the old Prometheus interface next to the title of the page.

1.4.2. Running metrics queries

You begin working with metrics by entering one or several Prometheus Query Language (PromQL)
queries.

Procedure

1. Open the OpenShift Container Platform web console and navigate to the Monitoring →
Metrics page.

2. In the query field, enter your PromQL query.

To show all available metrics and PromQL functions, click Insert Metric at Cursor.

3. For multiple queries, click Add Query.

4. For deleting queries, click for the query, then select Delete query.

5. For keeping but not running a query, click the Disable query button.

6. Once you finish creating queries, click the Run Queries button. The metrics from the queries
are visualized on the plot. If a query is invalid, the UI shows an error message.

NOTE

Queries that operate on large amounts of data might timeout or overload the
browser when drawing timeseries graphs. To avoid this, hide the graph and
calibrate your query using only the metrics table. Then, after finding a feasible
query, enable the plot to draw the graphs.

7. Optional: The page URL now contains the queries you ran. To use this set of queries again in the
future, save this URL.

Additional resources

CHAPTER 1. CLUSTER MONITORING

25

See the Prometheus Query Language documentation.

1.4.3. Exploring the visualized metrics

After running the queries, the metrics are displayed on the interactive plot. The X axis of the plot
represents time. The Y axis represents the metrics values. Each metric is shown as a colored graph. You
can manipulate the plot and explore the metrics.

Procedure

1. Initially, all metrics from all enabled queries are shown on the plot. You can select which metrics
are shown.

To hide all metrics from a query, click for the query and click Hide all series.

To hide a specific metric, go to the query table and click the colored square near the metric
name.

2. To zoom into the plot and change the shown time range, do one of the following:

Visually select the time range by clicking and dragging on the plot horizontally.

Use the menu in the left upper corner to select the time range.

To reset the time range, click Reset Zoom.

3. To display outputs of all queries at a specific point in time, hold the mouse cursor on the plot at
that point. The query outputs will appear in a pop-up box.

4. For more detailed information about metrics of a specific query, expand the table of that query
using the drop-down button. Every metric is shown with its current value.

5. To hide the plot, click Hide Graph.

Next steps

Access the Prometheus, Alertmanager, and Grafana.

1.5. ACCESSING PROMETHEUS, ALERTMANAGER, AND GRAFANA

To work with data gathered by the monitoring stack, you might want to use the Prometheus,
Alertmanager, and Grafana interfaces. They are available by default.

1.5.1. Accessing Prometheus, Alerting UI, and Grafana using the web console

You can access Prometheus, Alerting, and Grafana web UIs using a web browser through the OpenShift
Container Platform web console.

NOTE

The Alerting UI accessed in this procedure is the new interface for Alertmanager.

Prerequisites

Authentication is performed against the OpenShift Container Platform identity and uses the

OpenShift Container Platform 4.2 Monitoring

26

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/monitoring/#prometheus-alertmanager-and-grafana

Authentication is performed against the OpenShift Container Platform identity and uses the
same credentials or means of authentication as is used elsewhere in OpenShift Container
Platform. You must use a role that has read access to all namespaces, such as the cluster-
monitoring-view cluster role.

Procedure

1. Navigate to the OpenShift Container Platform web console and authenticate.

2. To access Prometheus, navigate to the "Monitoring" → "Metrics" page.
To access the Alerting UI, navigate to the "Monitoring" → "Alerting" page.

To access Grafana, navigate to the "Monitoring" → "Dashboards" page.

1.5.2. Accessing Prometheus, Alertmanager, and Grafana directly

You can access Prometheus, Alertmanager, and Grafana web UIs using the oc tool and a web browser.

NOTE

The Alertmanager UI accessed in this procedure is the old interface for Alertmanager.

Prerequisites

Authentication is performed against the OpenShift Container Platform identity and uses the
same credentials or means of authentication as is used elsewhere in OpenShift Container
Platform. You must use a role that has read access to all namespaces, such as the cluster-
monitoring-view cluster role.

Procedure

1. Run:

$ oc -n openshift-monitoring get routes
NAME HOST/PORT ...
alertmanager-main alertmanager-main-openshift-monitoring.apps._url_.openshift.com ...
grafana grafana-openshift-monitoring.apps._url_.openshift.com ...
prometheus-k8s prometheus-k8s-openshift-monitoring.apps._url_.openshift.com ...

2. Prepend https:// to the address, you cannot access web UIs using unencrypted connection.
For example, this is the resulting URL for Alertmanager:

https://alertmanager-main-openshift-monitoring.apps._url_.openshift.com

3. Navigate to the address using a web browser and authenticate.

Additional resources

For documentation on the new interface for Alertmanager, see Managing cluster alerts.

IMPORTANT

CHAPTER 1. CLUSTER MONITORING

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/monitoring/#managing-cluster-alerts

IMPORTANT

The monitoring routes are managed by the Cluster Monitoring Operator and cannot be
modified by the user.

OpenShift Container Platform 4.2 Monitoring

28

CHAPTER 2. EXPOSING CUSTOM APPLICATION METRICS
FOR AUTOSCALING

You can export custom application metrics for the horizontal pod autoscaler.

IMPORTANT

Prometheus Adapter is a Technology Preview feature only. Technology Preview features
are not supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

2.1. EXPOSING CUSTOM APPLICATION METRICS FOR HORIZONTAL
POD AUTOSCALING

You can use the prometheus-adapter resource to expose custom application metrics for the horizontal
pod autoscaler.

Prerequisites

Make sure you have a custom Prometheus instance installed. In this example, it is presumed that
Prometheus was installed in the default namespace.

Make sure you configured monitoring for your application. In this example, it is presumed that
the application and the service monitor for it were installed in the default namespace.

Procedure

1. Create a YAML file for your configuration. In this example, it is called deploy.yaml.

2. Add configuration for creating the service account, necessary roles, and role bindings for
prometheus-adapter:

kind: ServiceAccount
apiVersion: v1
metadata:
 name: custom-metrics-apiserver
 namespace: default

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: custom-metrics-server-resources
rules:
- apiGroups:
 - custom.metrics.k8s.io
 resources: ["*"]
 verbs: ["*"]

apiVersion: rbac.authorization.k8s.io/v1

CHAPTER 2. EXPOSING CUSTOM APPLICATION METRICS FOR AUTOSCALING

29

https://access.redhat.com/support/offerings/techpreview/

kind: ClusterRole
metadata:
 name: custom-metrics-resource-reader
rules:
- apiGroups:
 - ""
 resources:
 - namespaces
 - pods
 - services
 verbs:
 - get
 - list

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: custom-metrics:system:auth-delegator
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: system:auth-delegator
subjects:
- kind: ServiceAccount
 name: custom-metrics-apiserver
 namespace: default

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: custom-metrics-auth-reader
 namespace: kube-system
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
 name: custom-metrics-apiserver
 namespace: default

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: custom-metrics-resource-reader
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: custom-metrics-resource-reader
subjects:
- kind: ServiceAccount
 name: custom-metrics-apiserver
 namespace: default

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding

OpenShift Container Platform 4.2 Monitoring

30

1

2

3. Add configuration for the custom metrics for prometheus-adapter:

Specifies the chosen metric to be the number of HTTP requests.

Specifies the frequency for the metric.

4. Add configuration for registering prometheus-adapter as an API service:

metadata:
 name: hpa-controller-custom-metrics
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: custom-metrics-server-resources
subjects:
- kind: ServiceAccount
 name: horizontal-pod-autoscaler
 namespace: kube-system

apiVersion: v1
kind: ConfigMap
metadata:
 name: adapter-config
 namespace: default
data:
 config.yaml: |
 rules:
 - seriesQuery: 'http_requests_total{namespace!="",pod!=""}' 1
 resources:
 overrides:
 namespace: {resource: "namespace"}
 pod: {resource: "pod"}
 service: {resource: "service"}
 name:
 matches: "^(.*)_total"
 as: "${1}_per_second" 2
 metricsQuery: 'sum(rate(<<.Series>>{<<.LabelMatchers>>}[2m])) by (<<.GroupBy>>)'

apiVersion: v1
kind: Service
metadata:
 annotations:
 service.alpha.openshift.io/serving-cert-secret-name: prometheus-adapter-tls
 labels:
 name: prometheus-adapter
 name: prometheus-adapter
 namespace: default
spec:
 ports:
 - name: https
 port: 443
 targetPort: 6443

CHAPTER 2. EXPOSING CUSTOM APPLICATION METRICS FOR AUTOSCALING

31

5. Show the Prometheus Adapter image to use:

$ kubectl get -n openshift-monitoring deploy/prometheus-adapter -o jsonpath="{..image}"
quay.io/openshift-release-dev/ocp-v4.2-art-
dev@sha256:76db3c86554ad7f581ba33844d6a6ebc891236f7db64f2d290c3135ba81c264c

6. Add configuration for deploying prometheus-adapter:

 selector:
 app: prometheus-adapter
 type: ClusterIP

apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
 name: v1beta1.custom.metrics.k8s.io
spec:
 service:
 name: prometheus-adapter
 namespace: default
 group: custom.metrics.k8s.io
 version: v1beta1
 insecureSkipTLSVerify: true
 groupPriorityMinimum: 100
 versionPriority: 100

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: prometheus-adapter
 name: prometheus-adapter
 namespace: default
spec:
 replicas: 1
 selector:
 matchLabels:
 app: prometheus-adapter
 template:
 metadata:
 labels:
 app: prometheus-adapter
 name: prometheus-adapter
 spec:
 serviceAccountName: custom-metrics-apiserver
 containers:
 - name: prometheus-adapter
 image: openshift-release-dev/ocp-v4.2-art-dev 1
 args:
 - --secure-port=6443
 - --tls-cert-file=/var/run/serving-cert/tls.crt
 - --tls-private-key-file=/var/run/serving-cert/tls.key
 - --logtostderr=true
 - --prometheus-url=http://prometheus-operated.default.svc:9090/

OpenShift Container Platform 4.2 Monitoring

32

1 image: openshift-release-dev/ocp-v4.2-art-dev specifies the Prometheus Adapter image
found in the previous step.

7. Apply the configuration file to the cluster:

$ oc apply -f deploy.yaml

8. Now the application’s metrics are exposed and can be used to configure horizontal pod
autoscaling.

Additional resources

See the horizontal pod autoscaling documentation .

See the Kubernetes documentation on horizontal pod autoscaler .

 - --metrics-relist-interval=1m
 - --v=4
 - --config=/etc/adapter/config.yaml
 ports:
 - containerPort: 6443
 volumeMounts:
 - mountPath: /var/run/serving-cert
 name: volume-serving-cert
 readOnly: true
 - mountPath: /etc/adapter/
 name: config
 readOnly: true
 - mountPath: /tmp
 name: tmp-vol
 volumes:
 - name: volume-serving-cert
 secret:
 secretName: prometheus-adapter-tls
 - name: config
 configMap:
 name: adapter-config
 - name: tmp-vol
 emptyDir: {}

CHAPTER 2. EXPOSING CUSTOM APPLICATION METRICS FOR AUTOSCALING

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.2/html-single/nodes/#nodes-pods-autoscaling
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale

	Table of Contents
	CHAPTER 1. CLUSTER MONITORING
	1.1. ABOUT CLUSTER MONITORING
	1.1.1. Stack components and monitored targets

	1.2. CONFIGURING THE MONITORING STACK
	1.2.1. Maintenance and support
	1.2.2. Creating cluster monitoring ConfigMap
	1.2.3. Configuring the cluster monitoring stack
	1.2.4. Configurable monitoring components
	1.2.5. Moving monitoring components to different nodes
	1.2.6. Assigning tolerations to monitoring components
	1.2.7. Configuring persistent storage
	1.2.7.1. Configuring a local persistent volume claim
	1.2.7.2. Modifying retention time for Prometheus metrics data

	1.2.8. Configuring Alertmanager
	1.2.8.1. Alertmanager default configuration
	1.2.8.2. Applying custom Alertmanager configuration
	1.2.8.3. Alerting rules
	1.2.8.4. Listing acting alerting rules

	1.3. MANAGING CLUSTER ALERTS
	1.3.1. Contents of the Alerting UI
	1.3.2. Getting information about alerts and alerting rules
	1.3.3. Silencing alerts
	1.3.4. Getting information about silences
	1.3.5. Editing silences
	1.3.6. Expiring silences

	1.4. EXAMINING CLUSTER METRICS
	1.4.1. Contents of the Metrics UI
	1.4.2. Running metrics queries
	1.4.3. Exploring the visualized metrics

	1.5. ACCESSING PROMETHEUS, ALERTMANAGER, AND GRAFANA
	1.5.1. Accessing Prometheus, Alerting UI, and Grafana using the web console
	1.5.2. Accessing Prometheus, Alertmanager, and Grafana directly

	CHAPTER 2. EXPOSING CUSTOM APPLICATION METRICS FOR AUTOSCALING
	2.1. EXPOSING CUSTOM APPLICATION METRICS FOR HORIZONTAL POD AUTOSCALING

