
OpenShift Container Platform 3.5

Scaling and Performance Guide

OpenShift Container Platform 3.5 Scaling and Performance Guide

Last Updated: 2019-02-24

OpenShift Container Platform 3.5 Scaling and Performance Guide

OpenShift Container Platform 3.5 Scaling and Performance Guide

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Scale up your cluster and tune performance in production environments

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW

CHAPTER 2. RECOMMENDED INSTALLATION PRACTICES
2.1. PRE-INSTALLING DEPENDENCIES
2.2. ANSIBLE INSTALL OPTIMIZATION
2.3. NETWORKING CONSIDERATIONS

CHAPTER 3. RECOMMENDED HOST PRACTICES
3.1. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM MASTER HOSTS
3.2. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM NODE HOSTS
3.3. RECOMMENDED PRACTICES FOR OPENSHIFT ETCD HOSTS
3.4. SCALING HOSTS USING THE TUNED PROFILE

CHAPTER 4. OPTIMIZING COMPUTE RESOURCES
4.1. OVERCOMMITTING
4.2. IMAGE CONSIDERATIONS

4.2.1. Using a Pre-deployed Image to Improve Efficiency
4.2.2. Pre-pulling Images

4.3. DEBUGGING OPENSHIFT CONTAINER PLATFORM USING THE RHEL TOOLS CONTAINER

CHAPTER 5. OPTIMIZING STORAGE
5.1. OVERVIEW
5.2. GENERAL STORAGE GUIDELINES
5.3. STORAGE RECOMMENDATIONS

5.3.1. Specific Application Storage Recommendations
5.3.1.1. Registry
5.3.1.2. Scaled Registry
5.3.1.3. Metrics
5.3.1.4. Logging
5.3.1.5. Applications

5.3.2. Other Specific Application Storage Recommendations
5.4. CHOOSING A DOCKER GRAPH DRIVER

CHAPTER 6. ROUTING AND NETWORK OPTIMIZATION
6.1. SCALING OPENSHIFT CONTAINER PLATFORM HAPROXY ROUTER
6.2. OPTIMIZING NETWORK PERFORMANCE

6.2.1. Optimizing the MTU for Your Network
6.3. CONFIGURING NETWORK SUBNETS
6.4. OPTIMIZING IPSEC

CHAPTER 7. SCALING CLUSTER METRICS
7.1. OVERVIEW
7.2. RECOMMENDATIONS FOR OPENSHIFT CONTAINER PLATFORM VERSION 3.5
7.3. CAPACITY PLANNING FOR CLUSTER METRICS
7.4. SCALING OPENSHIFT CONTAINER PLATFORM METRICS PODS

7.4.1. Prerequisites
7.4.2. Scaling the Cassandra Components

CHAPTER 8. REVISION HISTORY: SCALING AND PERFORMANCE GUIDE
8.1. MON AUG 14 2017
8.2. MON JUN 19 2017
8.3. TUE JUN 13 2017
8.4. TUE MAY 02 2017

4

5
5
5
6

7
7
7
8
8

10
10
10
10
10
11

12
12
12
13
14
14
14
15
15
15
15
16

18
18
19
19
20
20

22
22
22
22
23
23
23

25
25
25
25
25

Table of Contents

1

8.5. WED APR 12 2017 25

OpenShift Container Platform 3.5 Scaling and Performance Guide

2

Table of Contents

3

CHAPTER 1. OVERVIEW
This guide provides procedures and examples for how to enhance your OpenShift Container Platform
cluster performance and conduct scaling at different levels of an OpenShift Container Platform
production stack. It includes recommended practices for building, scaling, and tuning OpenShift
Container Platform clusters.

Tuning considerations can vary depending on your cluster setup, and be advised that any performance
recommendations in this guide might come with trade-offs.

OpenShift Container Platform 3.5 Scaling and Performance Guide

4

CHAPTER 2. RECOMMENDED INSTALLATION PRACTICES

2.1. PRE-INSTALLING DEPENDENCIES

A node host will access the network to install any RPMs dependencies, such as atomic-openshift-
*, iptables, and docker. Pre-installing these dependencies, creates a more efficient install, because
the RPMs are only accessed when necessary, instead of a number of times per host during the install.

This is also useful for machines that cannot access the registry for security purposes.

2.2. ANSIBLE INSTALL OPTIMIZATION

The OpenShift Container Platform install method uses Ansible. Ansible is useful for running parallel
operations, meaning a fast and efficient installation. However, these can be improved upon with
additional tuning options. See the Configuring Ansible section for a list of available Ansible configuration
options.

IMPORTANT

Parallel behavior can overwhelm a content source, such as your image registry or Red
Hat Satellite server. Preparing your server’s infrastructure pods and operating system
patches can help prevent this issue.

Run the installer from the lowest-possible latency control node (LAN speeds). Running over a wide area
network (WAN) is not advised, neither is running the installation over a lossy network connection.

Ansible provides its own guidance for performance and scaling, including using RHEL 6.6 or later to
ensure the version of OpenSSH supports ControlPersist, and running the installer from the same
LAN as the cluster, but not running it from a machine in the cluster.

The following is an example Ansible configuration for large cluster installation and administration that
incorporates the recommendations documented by Ansible:

cat /etc/ansible/ansible.cfg
config file for ansible -- http://ansible.com/
==
[defaults]

forks = 20 1
host_key_checking = False
remote_user = root
roles_path = roles/
gathering = smart
fact_caching = jsonfile
fact_caching_connection = $HOME/ansible/facts
fact_caching_timeout = 600
log_path = /var/log/ansible.log
nocows = 1
callback_whitelist = profile_tasks

[privilege_escalation]
become = False

[ssh_connection]

CHAPTER 2. RECOMMENDED INSTALLATION PRACTICES

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#configuring-ansible
https://www.ansible.com/blog/ansible-performance-tuning

1

2

ssh_args = -o ControlMaster=auto -o ControlPersist=600s -o
ServerAliveInterval=60
control_path = %(directory)s/%%h-%%r

pipelining = True 2
timeout = 10

20 forks is ideal, because larger forks can lead to installations failing.

Pipelining reduces the number of connections between control and target nodes, helping to improve
installer performance.

NOTE

By default, logging is disabled in Ansible. Ensure logging in the
/etc/ansible/ansible.cfg file is not commented out.

2.3. NETWORKING CONSIDERATIONS

Network subnets can be changed post-install, but with difficulty. It is much easier to consider the network
subnet size prior to installation, because underestimating the size can create problems with growing
clusters.

See the Network Optimization topic for recommended network subnetting practices.

OpenShift Container Platform 3.5 Scaling and Performance Guide

6

CHAPTER 3. RECOMMENDED HOST PRACTICES

3.1. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER
PLATFORM MASTER HOSTS

In addition to pod traffic, the most-used data-path in an OpenShift Container Platform infrastructure is
between the OpenShift Container Platform master hosts and etcd. The OpenShift Container Platform
API server (part of the master binary) consults etcd for node status, network configuration, secrets, and
more.

Optimize this traffic path by:

Co-locating master hosts and etcd servers.

Ensuring an uncongested, low latency LAN communication link between master hosts.

3.2. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER
PLATFORM NODE HOSTS

The OpenShift Container Platform node configuration file at /etc/origin/node/node-config.yaml
contains important options, such as the iptables synchronization period, the Maximum Transmission Unit
(MTU) of the SDN network, and the proxy-mode.

The node configuration file allows you to pass arguments to the kubelet (node) process. You can view a
list of possible options by running kubelet --help.

NOTE

Not all kubelet options are supported by OpenShift Container Platform, and are used in
the upstream Kubernetes. This means certain options are in limited support.

In the /etc/origin/node/node-config.yaml file, two parameters control the maximum number of pods
that can be scheduled to a node: pods-per-core and max-pods. When both options are in use, the
lower of the two limits the number of pods on a node. Exceeding these values can result in:

Increased CPU utilization on both OpenShift Container Platform and Docker.

Slow pod scheduling.

Potential out-of-memory scenarios (depends on the amount of memory in the node).

Exhausting the pool of IP addresses.

Resource overcommitting, leading to poor user application performance.

NOTE

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

CHAPTER 3. RECOMMENDED HOST PRACTICES

7

pods-per-core sets the number of pods the node can run based on the number of processor cores on
the node. For example, if pods-per-core is set to 10 on a node with 4 processor cores, the maximum
number of pods allowed on the node will be 40.

kubeletArguments:
 pods-per-core:
 - "10"

NOTE

Setting pods-per-core to 0 disables this limit.

max-pods sets the number of pods the node can run to a fixed value, regardless of the properties of the
node.

kubeletArguments:
 max-pods:
 - "250"

Using the above example, the default value for pods-per-core is 10 and the default value for max-
pods is 250. This means that unless the node has 25 cores or more, by default, pods-per-core will be
the limiting factor.

See the Sizing Considerations section in the installation documentation for the recommended limits for
an OpenShift Container Platform cluster. The recommended sizing accounts for OpenShift Container
Platform and Docker coordination for container status updates. This coordination puts CPU pressure on
the master and docker processes, which can include writing a large amount of log data.

3.3. RECOMMENDED PRACTICES FOR OPENSHIFT ETCD HOSTS

etcd is a distributed key-value store that OpenShift Container Platform uses for configuration.

IMPORTANT

After profiling etcd under OpenShift Container Platform, etcd frequently performs small
amounts of storage input and output. Using etcd with storage that handles small
read/write operations quickly, such as SSD, is highly recommended.

Optimize communication between etcd and master hosts either by co-locating them on the same host, or
providing a dedicated network.

NOTE

etcd hosts are typically memory intensive.

3.4. SCALING HOSTS USING THE TUNED PROFILE

Tuned is a tuning profile delivery mechanism enabled by default in Red Hat Enterprise Linux and other
Red Hat products. Tuned customizes Linux settings, such as sysctls, power management, and kernel
command line options, to optimize the operating system for different workload performance and
scalability requirements.

OpenShift Container Platform 3.5 Scaling and Performance Guide

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#sizing

OpenShift Container Platform leverages the tuned daemon and includes Tuned profiles called atomic-
openshift-host and atomic-openshift-guest. These profiles safely increase some of the
commonly encountered vertical scaling limits present in the kernel, and are automatically applied to your
system during installation.

The Tuned profiles support inheritance between profiles. On an OpenShift Container Platform system,
the findings delivered by Tuned will be the union of throughput-performance (the default for RHEL)
and atomic-openshift-guest. Tuned will determine if you are running OpenShift Container Platform
on a virtual machine, and, if so, automatically apply virtual-guest tuning as well.

To see which Tuned profile is enabled on your system, run:

tuned-adm active
Current active profile: atomic-openshift-node-guest

See the Red Hat Enterprise Linux Performance Tuning Guide for more information about Tuned.

CHAPTER 3. RECOMMENDED HOST PRACTICES

9

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html#chap-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Tuned

CHAPTER 4. OPTIMIZING COMPUTE RESOURCES

4.1. OVERCOMMITTING

You can use overcommit procedures so that resources such as CPU and memory are more accessible
to the parts of your cluster that need them.

Note that when you overcommit, there is a risk that another application may not have access to the
resources it requires when it needs them, which will result in reduced performance. However, this may
be an acceptable trade-off in favor of increased density and reduced costs. For example, development,
quality assurance (QA), or test environments may be overcommited, whereas production might not be.

OpenShift Container Platform implements resource management through the compute resource model
and quota system. See the documentation for more information about the OpenShift resource model.

For more information and strategies for overcommiting, see the Overcommitting documentation in the
Cluster Administration Guide.

4.2. IMAGE CONSIDERATIONS

4.2.1. Using a Pre-deployed Image to Improve Efficiency

You can create a base OpenShift Container Platform image with a number of tasks built-in to improve
efficiency, maintain configuration consistency on all node hosts, and reduce repetitive tasks. This is
known as a pre-deployed image.

For example, because every node requires the ose-pod image in order to run pods, each node has to
periodically connect to the Docker registry in order to pull the latest image. This can become problematic
when you have 100 nodes attempting this at the same time, and can lead to resource contention on the
image registry, waste of network bandwidth, and increased pod launch times.

To build a pre-deployed image:

Create an instance of the type and size required.

Ensure a dedicated storage device is available for Docker local image or container storage,
separate from any persistent volumes for containers.

Fully update the system, and ensure Docker is installed.

Ensure the host has access to all yum repositories.

Set up thin-provisioned LVM storage.

Pre-seed your commonly used images (such as the rhel7 base image), as well as OpenShift
Container Platform infrastructure container images (ose-pod, ose-deployer, etc.) into your pre-
deployed image.

Ensure that pre-deployed images are configured for any appropriate cluster configurations, such as
being able to run on OpenStack, or AWS, as well as any other cluster configurations.

4.2.2. Pre-pulling Images

OpenShift Container Platform 3.5 Scaling and Performance Guide

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-compute-resources
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#admin-guide-overcommit
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/getting-started-with-containers/chapter-8-managing-storage-with-docker-formatted-containers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-configuring-openstack
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-configuring-aws

To efficiently produce images, you can pre-pull any necessary container images to all node hosts. This
means the image does not have to be initially pulled, which saves time and performance over slow
connections, especially for images, such as S2I, metrics, and logging, which can be large.

This is also useful for machines that cannot access the registry for security purposes.

Alternatively, you can use a local image instead of the default of a specified registry. To do this:

1. Pull from local images by setting the imagePullPolicy parameter of a pod configuration to
IfNotPresent or Never.

2. Ensure that all nodes in the cluster have the same images saved locally.

NOTE

Pulling from a local registry is suitable if you can control node configuration. However, it
will not work reliably on cloud providers that do not replace nodes automatically, such as
GCE. If you are running on Google Container Engine (GKE), there will already be a
.dockercfg file on each node with Google Container Registry credentials.

4.3. DEBUGGING OPENSHIFT CONTAINER PLATFORM USING THE
RHEL TOOLS CONTAINER

Red Hat distributes a rhel-tools container, which:

Allow users to deploy minimal footprint container hosts by moving packages out of the base
distribution and into this support container.

Provide debugging capabilities for Red Hat Enterprise Linux 7 Atomic Host, which has an
immutable packet tree. rhel-tools includes utilities such as tcpdump, sosreport, git, gdb, perf,
and many more common system administration utilities.

Use the rhel-tools container with the following:

atomic run rhel7/rhel-tools

See the RHEL Tools Container documentation for more information.

CHAPTER 4. OPTIMIZING COMPUTE RESOURCES

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/creating_images/#creating-images-s2i
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/getting-started-with-containers/chapter-11-using-the-atomic-tools-container-image

CHAPTER 5. OPTIMIZING STORAGE

5.1. OVERVIEW

Optimizing storage helps to minimize storage use across all resources. By optimizing storage,
administrators help ensure that existing storage resources are working in an efficient manner.

5.2. GENERAL STORAGE GUIDELINES

The following table lists the available persistent storage technologies for OpenShift Container Platform.

Table 5.1. Available storage options

Storage
type

Description Examples

Block
Presented to the operating system (OS) as
a block device

Suitable for applications that need full
control of storage and operate at a low level
on files bypassing the file system

Also referred to as a Storage Area Network
(SAN)

Non-shareable, which means that only one
client at a time can mount an endpoint of
this type

CNS/CRS GlusterFS [a] iSCSI, Fibre
Channel, Ceph RBD, OpenStack

Cinder, AWS EBS [a], Dell/EMC
Scale.IO, VMware vSphere Volume,

GCE Persistent Disk [a], Azure Disk

File
Presented to the OS as a file system export
to be mounted

Also referred to as Network Attached
Storage (NAS)

Concurrency, latency, file locking
mechanisms, and other capabilities vary
widely between protocols, implementations,
vendors, and scales.

CNS/CRS GlusterFS [a], RHEL NFS,

NetApp NFS [b] , Azure File, Vendor

NFS, Vendor GlusterFS [c], Azure File,
AWS EFS

Object
Accessible through a REST API endpoint

Configurable for use in the OpenShift
Container Platform Registry

Applications must build their drivers into the
application and/or container.

CNS/CRS GlusterFS [a], Ceph Object
Storage (RADOS Gateway),
OpenStack Swift, Aliyun OSS, AWS
S3, Google Cloud Storage, Azure Blob

Storage, Vendor S3 [c], Vendor Swift [c]

OpenShift Container Platform 3.5 Scaling and Performance Guide

12

[a] CNS/CRS GlusterFS, Ceph RBD, OpenStack Cinder, AWS EBS, Azure Disk, GCE persistent disk, and VMware vSphere
support dynamic persistent volume (PV) provisioning natively in OpenShift Container Platform.

[b] NetApp NFS supports dynamic PV provisioning when using the Trident plugin.

[c] Vendor GlusterFS, Vendor S3, and Vendor Swift supportability and configurability may vary.

Storage
type

Description Examples

NOTE

As of OpenShift Container Platform 3.6.1, Container-Native Storage (CNS) GlusterFS (a
hyperconverged or cluster-hosted storage solution) and Container-Ready Storage (CRS)
GlusterFS (an externally hosted storage solution) provides interfaces for block, file, and
object storage for the purpose of the OpenShift Container Platform registry, logging, and
metrics.

5.3. STORAGE RECOMMENDATIONS

The following table summarizes the recommended and configurable storage technologies for the given
OpenShift Container Platform cluster application.

Table 5.2. Recommended and configurable storage technology

Storage
type

ROX [a] RWX [b] Registry Scaled
registry

Metrics Logging Apps

Block Yes [c] No Configura
ble

Not
configura
ble

Recomme
nded

Recomme
nded

Recomme
nded

File Yes [c] Yes Configura
ble

Configura
ble

Configura
ble

Configura
ble

Recomme
nded

Object Yes Yes Recomme
nded

Recomme
nded

Not
configura
ble

Not
configura
ble

Not
configura

ble [d]

[a] ReadOnlyMany

[b] ReadWriteMany

[c] This does not apply to physical disk, VM physical disk, VMDK, loopback over NFS, AWS EBS, and Azure Disk.

[d] Object storage is not consumed through OpenShift Container Platform’s PVs/persistent volume claims (PVCs). Apps
must integrate with the object storage REST API.

CHAPTER 5. OPTIMIZING STORAGE

13

NOTE

A scaled registry is an OpenShift Container Platform registry where three or more pod
replicas are running.

5.3.1. Specific Application Storage Recommendations

5.3.1.1. Registry

In a non-scaled/high-availability (HA) OpenShift Container Platform registry cluster deployment:

The preferred storage technology is object storage followed by block storage. The storage
technology does not need to support RWX access mode.

The storage technology must ensure read-after-write consistency. All NAS storage (excluding
CNS/CRS GlusterFS as it uses an object storage interface) are not recommended for OpenShift
Container Platform Registry cluster deployment with production workloads.

While hostPath volumes are configurable for a non-scaled/HA OpenShift Container Platform
Registry, they are not recommended for cluster deployment.

WARNING

Corruption may occur when using NFS to back OpenShift Container Platform
registry with production workloads.

5.3.1.2. Scaled Registry

In a scaled/HA OpenShift Container Platform registry cluster deployment:

The preferred storage technology is object storage. The storage technology must support RWX
access mode and must ensure read-after-write consistency.

File storage and block storage are not recommended for a scaled/HA OpenShift Container
Platform registry cluster deployment with production workloads.

All NAS storage (excluding CNS/CRS GlusterFS as it uses an object storage interface) are not
recommended for OpenShift Container Platform Registry cluster deployment with production
workloads.

WARNING

Corruption may occur when using NFS to back OpenShift Container Platform
scaled/HA registry with production workloads.

OpenShift Container Platform 3.5 Scaling and Performance Guide

14

5.3.1.3. Metrics

In an OpenShift Container Platform hosted metrics cluster deployment:

The preferred storage technology is block storage.

It is not recommended to use NAS storage (excluding CNS/CRS GlusterFS as it uses a block
storage interface from iSCSI) for a hosted metrics cluster deployment with production workloads.

WARNING

Corruption may occur when using NFS to back a hosted metrics cluster deployment
with production workloads.

5.3.1.4. Logging

In an OpenShift Container Platform hosted logging cluster deployment:

The preferred storage technology is block storage.

It is not recommended to use NAS storage (excluding CNS/CRS GlusterFS as it uses a block
storage interface from iSCSI) for a hosted metrics cluster deployment with production workloads.

WARNING

Corruption may occur when using NFS to back hosted logging with production
workloads.

5.3.1.5. Applications

Application use cases vary from application to application, as described in the following examples:

Storage technologies that support dynamic PV provisioning have low mount time latencies, and
are not tied to nodes to support a healthy cluster.

NFS does not guarantee read-after-write consistency and is not recommended for applications
which require it.

Applications that depend on writing to the same, shared NFS export may experience issues with
production workloads.

5.3.2. Other Specific Application Storage Recommendations

OpenShift Container Platform Internal etcd: For the best etcd reliability, the lowest consistent
latency storage technology is preferable.

CHAPTER 5. OPTIMIZING STORAGE

15

OpenStack Cinder: OpenStack Cinder tends to be adept in ROX access mode use cases.

Databases: Databases (RDBMSs, NoSQL DBs, etc.) tend to perform best with dedicated block
storage.

5.4. CHOOSING A DOCKER GRAPH DRIVER

Docker stores images and containers in a graph driver (a pluggable storage backend), such as Device
Mapper, Overlay, and Btrfs. Each have advantages and disadvantages. For example, Overlay is faster
than Device Mapper at starting and stopping containers, but is not POSIX compliant because of the
architectural limitations of a union file system, and does not yet support SELinux.

For more information about Overlay, including supportability and usage caveats, see the RHEL 7.3
Release Notes.

In production environments, using a LVM thin pool on top of regular block devices (not loop devices) for
container images and container root file systems storage is recommended.

NOTE

Using a Loop device back-end can affect performance issues. While you can still continue
to use it, Docker logs a warning message. For example:

devmapper: Usage of loopback devices is strongly discouraged
for production use.
Please use `--storage-opt dm.thinpooldev` or use `man docker`
to refer to
dm.thinpooldev section.

To ease Docker backend storage configuration, use the docker-storage-setup utility, which
automates much of the configuration details:

1. If you had a separate disk drive dedicated to Docker storage (for example, /dev/xvdb), add the
following to the /etc/sysconfig/docker-storage-setup file:

DEVS=/dev/xvdb
VG=docker_vg

2. Restart the docker-storage-setup service:

systemctl restart docker-storage-setup

After the restart, docker-storage-setup sets up a volume group named docker_vg and
creates a thin pool logical volume. Documentation for thin provisioning on RHEL is available in
the LVM Administrator Guide. View the newly created volumes with the lsblk command:

lsblk /dev/xvdb
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
xvdb 202:16 0 20G 0 disk
└─xvdb1 202:17 0 10G 0 part
 ├─docker_vg-docker--pool_tmeta 253:0 0 12M 0 lvm

OpenShift Container Platform 3.5 Scaling and Performance Guide

16

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/7.3_Release_Notes/index.html#technology_previews_file_systems
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Logical_Volume_Manager_Administration/index.html

 │ └─docker_vg-docker--pool 253:2 0 6.9G 0 lvm
 └─docker_vg-docker--pool_tdata 253:1 0 6.9G 0 lvm
 └─docker_vg-docker--pool 253:2 0 6.9G 0 lvm

NOTE

Thin-provisioned volumes are not mounted and have no file system (individual
containers do have an XFS file system), thus they will not show up in “df” output.

3. To verify that Docker is using a LVM thin pool, and to monitor disk space utilization, use the
docker info command. The Pool Name will correspond with the VG you specified in
/etc/sysconfig/docker-storage-setup:

docker info | egrep -i 'storage|pool|space|filesystem'
Storage Driver: devicemapper
 Pool Name: docker_vg-docker--pool
 Pool Blocksize: 524.3 kB
 Backing Filesystem: xfs
 Data Space Used: 62.39 MB
 Data Space Total: 6.434 GB
 Data Space Available: 6.372 GB
 Metadata Space Used: 40.96 kB
 Metadata Space Total: 16.78 MB
 Metadata Space Available: 16.74 MB

By default, a thin pool is configured to use 40% of the underlying block device. As you use the storage,
LVM automatically extends the thin pool up to 100%. This is why the Data Space Total value does
not match the full size of the underlying LVM device. This auto-extend technique was used to unify the
storage approach taken in both Red Hat Enterprise Linux and Red Hat Atomic Host, which only uses a
single partition.

In development, Docker in Red Hat distributions defaults to a loopback mounted sparse file. To see if
your system is using the loopback mode:

docker info|grep loop0
 Data file: /dev/loop0

IMPORTANT

Red Hat strongly recommends using the Device Mapper storage driver in thin pool mode
for production workloads.

Overlay is also supported for Docker use cases as of Red Hat Enterprise Linux 7.2, and provides faster
start up time and page cache sharing, which can potentially improve density by reducing overall memory
utilization.

CHAPTER 5. OPTIMIZING STORAGE

17

CHAPTER 6. ROUTING AND NETWORK OPTIMIZATION

6.1. SCALING OPENSHIFT CONTAINER PLATFORM HAPROXY
ROUTER

The OpenShift Container Platform router is the ingress point for all external traffic destined for OpenShift
Container Platform services.

On an public cloud instance of size 4 vCPU/16GB RAM, a single HAProxy router is able to handle
between 7000-32000 HTTP keep-alive requests depending on encryption, page size, and the number of
connections used. For example, when using TLS edge or re-encryption terminations with large page
sizes and a high numbers of connections, expect to see results in the lower range. With HTTP keep-
alive, a single HAProxy router is capable of saturating 1 Gbit NIC at page sizes as small as 8 kB.

The table below shows HTTP keep-alive performance on such a public cloud instance with a single
HAProxy and 100 routes:

Encryption Page size HTTP(s) requests per second

none 1kB 15435

none 4kB 11947

edge 1kB 7467

edge 4kB 7678

passthrough 1kB 25789

passthrough 4kB 17876

re-encrypt 1kB 7611

re-encrypt 4kB 7395

When running on bare metal with modern processors, you can expect roughly twice the performance of
the public cloud instance above. This overhead is introduced by the virtualization layer in place on public
clouds and holds mostly true for private cloud-based virtualization as well. The following table is a guide
on how many applications to use behind the router:

Number of applications Application type

5-10 static file/web server or caching proxy

100-1000 applications generating dynamic content

In general, HAProxy can saturate about 5-1000 applications, depending on the technology in use. The
number will typically be lower for applications serving only static content.

OpenShift Container Platform 3.5 Scaling and Performance Guide

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-router-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#edge-termination
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#re-encryption-termination

Router sharding should be used to serve more routes towards applications and help horizontally scale
the routing tier.

6.2. OPTIMIZING NETWORK PERFORMANCE

The OpenShift SDN uses OpenvSwitch, virtual extensible LAN (VXLAN) tunnels, OpenFlow rules, and
iptables. This network can be tuned by using jumbo frames, network interface cards (NIC) offloads,
multi-queue, and ethtool settings.

VXLAN provides benefits over VLANs, such as an increase in networks from 4096 to over 16 million, and
layer 2 connectivity across physical networks. This allows for all pods behind a service to communicate
with each other, even if they are running on different systems.

VXLAN encapsulates all tunneled traffic in user datagram protocol (UDP) packets. However, this leads to
increased CPU utilization. Both these outer- and inner-packets are subject to normal checksumming
rules to guarantee data has not been corrupted during transit. Depending on CPU performance, this
additional processing overhead can cause a reduction in throughput and increased latency when
compared to traditional, non-overlay networks.

Cloud, VM, and bare metal CPU performance can be capable of handling much more than one Gbps
network throughput. When using higher bandwidth links such as 10 or 40 Gbps, reduced performance
can occur. This is a known issue in VXLAN-based environments and is not specific to containers or
OpenShift Container Platform. Any network that relies on VXLAN tunnels will perform similarly because
of the VXLAN implementation.

If you are looking to push beyond one Gbps, you can:

Use Native Container Routing. This option has important operational caveats that do not exist
when using OpenShift SDN, such as updating routing tables on a router.

Evaluate network plug-ins that implement different routing techniques, such as border gateway
protocol (BGP).

Use VXLAN-offload capable network adapters. VXLAN-offload moves the packet checksum
calculation and associated CPU overhead off of the system CPU and onto dedicated hardware
on the network adapter. This frees up CPU cycles for use by pods and applications, and allows
users to utilize the full bandwidth of their network infrastructure.

VXLAN-offload does not reduce latency. However, CPU utilization is reduced even in latency tests.

6.2.1. Optimizing the MTU for Your Network

There are two important maximum transmission units (MTUs): the network interface card (NIC) MTU and
the SDN overlay’s MTU.

The NIC MTU must be less than or equal to the maximum supported value of the NIC of your network. If
you are optimizing for throughput, pick the largest possible value. If you are optimizing for lowest latency,
pick a lower value.

The SDN overlay’s MTU must be less than the NIC MTU by 50 bytes at a minimum. This accounts for
the SDN overlay header. So, on a normal ethernet network, set this to 1450. On a jumbo frame ethernet
network, set this to 8950.

CHAPTER 6. ROUTING AND NETWORK OPTIMIZATION

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/architecture/#router-sharding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#install-config-configuring-routing

1

2

NOTE

This 50 byte overlay header is relevant to the OpenShift SDN. Other SDN solutions might
require the value to be more or less.

To configure the MTU, edit the node configuration file at /etc/origin/node/node-config.yaml, and edit
the following:

Maximum transmission unit (MTU) for the pod overlay network.

Set to redhat/openshift-ovs-subnet for the ovs-subnet plug-in, redhat/openshift-
ovs-multitenant for the ovs-multitenant plug-in, or redhat/openshift-ovs-
networkpolicy for the ovs-networkpolicy plug-in. This can also be set to any other CNI-
compatible plug-in as well.

6.3. CONFIGURING NETWORK SUBNETS

OpenShift Container Platform provides IP address management for both pods and services. The default
values allow for:

Maximum cluster size of 1024 nodes

Each of the 1024 nodes has a /23 allocated to it (510 usable IP addresses for pods)

Provides 65,536 IP addresses for services.

Under most circumstances, these networks cannot be changed after deployment. Thus it is important to
plan ahead for growth.

Restrictions for resizing networks are document here: Configuring SDN documentation.

If you would like to plan for a larger environment, here are some example values to consider adding to
the [OSE3:vars] section in your Ansible inventory file:

[OSE3:vars]
osm_cluster_network_cidr=10.128.0.0/10

This will allow for 8192 nodes, each with 510 usable IP addresses.

See the supportability limits in the OpenShift Container Platform documentation for node/pod limits for
the version of software you are installing.

6.4. OPTIMIZING IPSEC

Because encrypting and decrypting node hosts uses CPU power, performance is affected both in
throughput and CPU usage on the nodes when encryption is enabled, regardless of the IP security
system being used.

networkConfig:

 mtu: 1450 1

 networkPluginName: "redhat/openshift-ovs-subnet" 2

OpenShift Container Platform 3.5 Scaling and Performance Guide

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#configuring-the-pod-network-on-masters

IPSec encrypts traffic at the IP payload level, before it hits the NIC, protecting fields that would otherwise
be used for NIC offloading. This means that some NIC acceleration features may not be usable when
IPSec is enabled and will lead to increased throughput and CPU usage.

CHAPTER 6. ROUTING AND NETWORK OPTIMIZATION

21

CHAPTER 7. SCALING CLUSTER METRICS

7.1. OVERVIEW

OpenShift Container Platform exposes metrics that can be collected and stored in back-ends by
Heapster. As an OpenShift Container Platform administrator, you can view containers and components
metrics in one user interface. These metrics are also used by horizontal pod autoscalers in order to
determine when and how to scale.

This topic provides information for scaling the metrics components.

NOTE

Autoscaling the metrics components, such as Hawkular and Heapster, is not supported by
OpenShift Container Platform.

7.2. RECOMMENDATIONS FOR OPENSHIFT CONTAINER PLATFORM
VERSION 3.5

Run metrics pods on dedicated OpenShift Container Platform infrastructure nodes.

Use persistent storage when configuring metrics. Set USE_PERSISTENT_STORAGE=true.

Keep the METRICS_RESOLUTION=30 parameter in OpenShift Container Platform metrics
deployments. Using a value lower than the default value of 30 for METRICS_RESOLUTION is not
recommended. When using the Ansible metrics installation procedure, this is the
openshift_metrics_resolution parameter.

Closely monitor OpenShift Container Platform nodes with host metrics pods to detect early
capacity shortages (CPU and memory) on the host system. These capacity shortages can cause
problems for metrics pods.

In OpenShift Container Platform version 3.5 testing, test cases up to 25,000 pods were
monitored in a OpenShift Container Platform cluster.

7.3. CAPACITY PLANNING FOR CLUSTER METRICS

In tests performed with with 210 and 990 OpenShift Container Platform nodes, where 10500 pods and
11000 pods were monitored respectively, the Cassandra database grew at the speed shown in the table
below:

Table 7.1. Cassandra Database storage requirements based on number of nodes/pods in the
cluster

Number of Nodes Number of Pods Cassandra
Storage growth
speed

Cassandra
storage growth
per day

Cassandra
storage growth
per week

210 10500 500 MB per hour 15 GB 75 GB

990 11000 1 GB per hour 30 GB 210 GB

OpenShift Container Platform 3.5 Scaling and Performance Guide

22

https://github.com/GoogleCloudPlatform/heapster
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-pod-autoscaling
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/cluster_administration/#infrastructure-nodes

In the above calculation, approximately 20 percent of the expected size was added as overhead to
ensure that the storage requirements do not exceed calculated value.

If the METRICS_DURATION and METRICS_RESOLUTION values are kept at the default (7 days and 15
seconds respectively), it is safe to plan Cassandra storage size requirements for week, as in the values
above.

WARNING

Because OpenShift Container Platform metrics uses the Cassandra database as a
datastore for metrics data, if USE_PERSISTENT_STORAGE=true is set during the
metrics set up process, PV will be on top in the network storage, with NFS as the
default. However, using network storage in combination with Cassandra is not
recommended, as per the Cassandra documentation.

7.4. SCALING OPENSHIFT CONTAINER PLATFORM METRICS PODS

One set of metrics pods (Cassandra/Hawkular/Heapster) is able to monitor at least 25,000 pods.

CAUTION

Pay attention to system load on nodes where OpenShift Container Platform metrics pods run. Use that
information to determine if it is necessary to scale out a number of OpenShift Container Platform metrics
pods and spread the load across multiple OpenShift Container Platform nodes. Scaling OpenShift
Container Platform metrics heapster pods is not recommended.

7.4.1. Prerequisites

If persistent storage was used to deploy OpenShift Container Platform metrics, then you must create a
persistent volume (PV) for the new Cassandra pod to use before you can scale out the number of
OpenShift Container Platform metrics Cassandra pods. However, if Cassandra was deployed with
dynamically provisioned PVs, then this step is not necessary.

7.4.2. Scaling the Cassandra Components

Cassandra nodes use persistent storage. Therefore, scaling up or down is not possible with replication
controllers.

Scaling a Cassandra cluster requires modifying the openshift_metrics_cassandra_replicas
variable and re-running the deployment. By default, the Cassandra cluster is a single-node cluster.

To scale up the number of OpenShift Container Platform metrics hawkular pods to two replicas, run:

oc scale -n openshift-infra --replicas=2 rc hawkular-metrics

Alternatively, update your inventory file and re-run the deployment.

CHAPTER 7. SCALING CLUSTER METRICS

23

https://docs.datastax.com/en/landing_page/doc/landing_page/planning/planningAntiPatterns.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/developer_guide/#dev-guide-persistent-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#deploying-the-metrics-components
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.5/html-single/installation_and_configuration/#deploying-the-metrics-components

NOTE

If you add a new node to or remove an existing node from a Cassandra cluster, the data
stored in the cluster rebalances across the cluster.

To scale down:

1. If remotely accessing the container, run the following for the Cassandra node you want to
remove:

$ oc exec -it <hawkular-cassandra-pod> nodetool decommission

If locally accessing the container, run the following instead:

$ oc rsh <hawkular-cassandra-pod> nodetool decommission

This command can take a while to run since it copies data across the cluster. You can monitor
the decommission progress with nodetool netstats -H.

2. Once the previous command succeeds, scale down the rc for the Cassandra instance to 0.

oc scale -n openshift-infra --replicas=0 rc <hawkular-cassandra-
rc>

This will remove the Cassandra pod.

IMPORTANT

If the scale down process completed and the existing Cassandra nodes are functioning as
expected, you can also delete the rc for this Cassandra instance and its corresponding
persistent volume claim (PVC). Deleting the PVC can permanently delete any data
associated with this Cassandra instance, so if the scale down did not fully and
successfully complete, you will not be able to recover the lost data.

OpenShift Container Platform 3.5 Scaling and Performance Guide

24

CHAPTER 8. REVISION HISTORY: SCALING AND
PERFORMANCE GUIDE

8.1. MON AUG 14 2017

Affected Topic Description of Change

Routing and Network
Optimization

Added the Optimizing the MTU for Your Network section.

8.2. MON JUN 19 2017

Affected Topic Description of Change

Routing and Network
Optimization

Added the Optimizing IPSec section.

8.3. TUE JUN 13 2017

Affected Topic Description of Change

Recommended Host
Practices

Removed recommendation that the local etcd instance be listed first in master
configuration.

8.4. TUE MAY 02 2017

Affected Topic Description of Change

Recommended Host
Practices

Included a section on setting max pods per node.

8.5. WED APR 12 2017

OpenShift Container Platform 3.5 Initial Release

Affected Topic Description of Change

All topics New guide on recommended practices for building, scaling, and tuning OpenShift
Container Platform clusters.

CHAPTER 8. REVISION HISTORY: SCALING AND PERFORMANCE GUIDE

25

OpenShift Container Platform 3.5 Scaling and Performance Guide

26

	Table of Contents
	CHAPTER 1. OVERVIEW
	CHAPTER 2. RECOMMENDED INSTALLATION PRACTICES
	2.1. PRE-INSTALLING DEPENDENCIES
	2.2. ANSIBLE INSTALL OPTIMIZATION
	2.3. NETWORKING CONSIDERATIONS

	CHAPTER 3. RECOMMENDED HOST PRACTICES
	3.1. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM MASTER HOSTS
	3.2. RECOMMENDED PRACTICES FOR OPENSHIFT CONTAINER PLATFORM NODE HOSTS
	3.3. RECOMMENDED PRACTICES FOR OPENSHIFT ETCD HOSTS
	3.4. SCALING HOSTS USING THE TUNED PROFILE

	CHAPTER 4. OPTIMIZING COMPUTE RESOURCES
	4.1. OVERCOMMITTING
	4.2. IMAGE CONSIDERATIONS
	4.2.1. Using a Pre-deployed Image to Improve Efficiency
	4.2.2. Pre-pulling Images

	4.3. DEBUGGING OPENSHIFT CONTAINER PLATFORM USING THE RHEL TOOLS CONTAINER

	CHAPTER 5. OPTIMIZING STORAGE
	5.1. OVERVIEW
	5.2. GENERAL STORAGE GUIDELINES
	5.3. STORAGE RECOMMENDATIONS
	5.3.1. Specific Application Storage Recommendations
	5.3.1.1. Registry
	5.3.1.2. Scaled Registry
	5.3.1.3. Metrics
	5.3.1.4. Logging
	5.3.1.5. Applications

	5.3.2. Other Specific Application Storage Recommendations

	5.4. CHOOSING A DOCKER GRAPH DRIVER

	CHAPTER 6. ROUTING AND NETWORK OPTIMIZATION
	6.1. SCALING OPENSHIFT CONTAINER PLATFORM HAPROXY ROUTER
	6.2. OPTIMIZING NETWORK PERFORMANCE
	6.2.1. Optimizing the MTU for Your Network

	6.3. CONFIGURING NETWORK SUBNETS
	6.4. OPTIMIZING IPSEC

	CHAPTER 7. SCALING CLUSTER METRICS
	7.1. OVERVIEW
	7.2. RECOMMENDATIONS FOR OPENSHIFT CONTAINER PLATFORM VERSION 3.5
	7.3. CAPACITY PLANNING FOR CLUSTER METRICS
	7.4. SCALING OPENSHIFT CONTAINER PLATFORM METRICS PODS
	7.4.1. Prerequisites
	7.4.2. Scaling the Cassandra Components

	CHAPTER 8. REVISION HISTORY: SCALING AND PERFORMANCE GUIDE
	8.1. MON AUG 14 2017
	8.2. MON JUN 19 2017
	8.3. TUE JUN 13 2017
	8.4. TUE MAY 02 2017
	8.5. WED APR 12 2017

